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Report
of the Third Dagstuhl Seminar on
Computational Geometry
March 22-26, 1993

The Third Dagstuhl Seminar on Computational Geometry was organized by Helmut Alt
(FU Berlin), Bernard Chazelle (Princeton University), and Emo Welzl (I'U Berlin). The

32 participants came from 10 countries, among them 13 who came from North America
and Israel.

This report contains abstracts of the 30 talks (in chronological order) given at the meeting
as well as Micha Sharir’s report of the open problem session which took place on Tuesday
afternoon and was chaired by Kurt Mehlhorn.

Berichterstatter: Frank Hoffmann
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Abstracts

On Fat Partitioning, Fat Covering and the Union Size of Polygons
by MARC VAN KREVELD

"The complexity of the contour of simple polygons with O(n) vertices in total can be @(n?)
in general. In this paper, a necessary and sufficient condition is given which guarantees
smaller union size. A é-corridor in a simple polygon is a passage between two edges in a
polygon with width/length ratio é. If a set of polygons with O(n) vertices in total has no
é-corridors than the union size is O ((n loglog n)/é), which is close to optimal in the worst
case. The result has many applications to basic problems in computational geometry, such
as hidden surface removal, motion planning, ray shooting, injection moulding, etc.

The result is based on a new method to partition a simple polygon P with n vertices
into O(n) convex quadrilaterals, without introducing angles smaller than 7/12 radiant, or
narrow corridors. Furthermore. a convex quadrilateral with no é-corridor can be covered
(but not partitioned!) by OQ(1/6) fat triangles. The maximum overlap of the triangles
at any point is 2. The bound on the maximum union size now follows from a result of
Matousek et al, FOCS 1991. They prove that the maximum union size of n fat triangles
is O(nloglogn).

The partitioning and covering algorithms take O(nlog®n) and O(n log?n + n/é) time,
respectively.

Coloring Rectilinear Polygons and the Prison Yard Problem
by FRANK HOFFMANN (joint work with Klaus Kriegel)

One of the main open Art-Gallery-type problems is to determine the minimal number
of vertex guards sufficient to watch simultaneously both the interior and the exterior of
any n-sided simple rectilinear polygon. First, we present a class of pyramids that need
asymptotically 5n/16 guards, which is a new lower bound for the problem, and we show
that [%—’6}] + 2 guards suffice for any orthoconvex rectilinear polygon. The proof uses
a new generalized coloring argument that can be applied to a convex partition of the
plane derived from the quadrilateralized polygon. Then we prove a purely graphtheoretic
result: To an embedded planar graph with all inner faces being 4-cycles one can add one
diagonal per 4-cycle in such a way that the resulting graph is 3-colorable. As immediate
consequences we get the following new upper bounds:

(1) | 3] vertex guards are sufficient to solve the Art Gallery Problem for rectilinear poly-
gons with holes.

(2) [32] + 3 vertex guards (resp. |*t!] point guards) are sufficient to solve the Prison
Yard Problem for rectilinear polygons.



Generalized Hidden Surface Removal
by MARK DE BERG

One of the basic problems in computer graphics is the hidden surface removal problem:
Given a set of objects in 3-space and a view point, compute which parts of the objects are
visible. To obtain realistic images, however, one should also take lighting considerations
into account. We start the investigation of this problem from the computational geometry
point of view by considering the generalized hidden surface removal problem: Given a
set of objects in 3-space, a view point, and a (point) light source, compute which parts
of the objects are visible, subdivided into parts which are lit and parts which are not
lit. We prove tight bounds on the maximum combinatorial complexity of such views for
three different settings, namely where the objects are triangles, where the objects are axis-
parallel horizontal rectangles and where the objects are the faces of a polygonal terrain.
We also give output-sensitive algorithms for all three cases.

Distribution of Distances
by JANos Pach

Extremal graph theory has proved to be a powerful tool in bounding the combinatorial
complexity of arrangements arising in various fields of computational geometry. Unfortu-
nately, in many cases it fails to provide the best possible answers. The following result
(joint with P. Erdés and E. Makai) can be established by using Szemeredi’s Regularity
Lemma. For any positive integer k and € > 0, there exist Nk, Cke > 0 with the following
property. Given any system of n > nj . points in the plane with minimal distance 1 and
any ty,...,t > 0, the number of those pairs whose distance is between t; and t; + ck/n

for some 1 < 7 < k, is at most % (1 - kl? +c). This bound is asymptotically tight (in

more than one sense).

Exact and Approximate Solutions to the Embedding Problem
by PETER SCHORN

We solve one of the simplest, non-trivial, instances of the embedding problem, the fun-
damental problem of Distance Geometry. The exact solution with the Computer Algebra
System Maple generates for the z-coordinate of one of the vertices a 12th-degree minimal-
polynomial which has 15-digit coefficients. Alternatively we propose a simple iterative
technique for the solution of the embedding problem. An implementation on the XY Z
GeoBench, our workbench for geometric computation, can quickly find all solutions to
small instances of the embedding problem.

Optimal Parallel Algorithms for Rectilinear Link Distance Problems
by JORG RUDIGER SAcK (joint work-with: A. Lingas, A. Maheshwari// T. Hagerup)

We provide parallel solutions to several link distance problems set in trapezoided rectilinear
polygons. All algorithms are deterministic and designed to run on the EREW PRAM.



Let P be a trapezoided rectilinear single polygon with n vertices. In O(nlogn) time using
O(log n) processors we can optimally compute

e minimum rectilinear link paths, or shortest path in the L; metric from any point in
P to all vertices of P,

e minimum rectilinear link paths from any segment to all vertices of P,
o rectilinear window (histogram) partition of P,
¢ both covering radii and vertex intervals for any diagonal of P,

e a data structure to support rectilinear link distance queries between any two points

in P.

This improves on the preciously best known sequential algorithm for this problem which
used O(nlogn) time and space.

We employ the parallel technique for example to optimally compute the link diameter,
link radius and link center of a rectilinear polygon.

Fast Euclidean Lattice Reduction
by CHEE Yap

Reduction of lattices can be viewed as a generalization of the Euclidean algorithm for
integer GCD. In 2-dimensions, Gauss has a generalization of Euclid’s algorithm. We
review the technique of Lehmer-Knuth-Schonhage for fast GCD computation and show
how this can be extended to the 2-dimensional case. The result is that if u,v € Z?% are
given, then the smallest basis for the lattice A(u,v) can be computed in

O(M(n)logn)

bit complexity, where n = log(|u| + |v|). To achieve this, we introduce the concept of
coherent remainder sequences and analyze some basic properties.

We then consider how to extend the reduction method to 3-dimensions. Here we must
define the “reduction” operation “u mod(v,w)” where u,v, w € R®. We may also assume
that v,w are already reduced, using the 2-dimension algorithm. We want to use this
operation to repeatedly reduce a vector by the other 2 until no more reduction occurs. A
simple example shows that the definition

u mod(v,w) := (« modv)modw

does not work. We introduce the concept of the “minimal fundamental region™ of (v, u')
and give a suitable definition. This gives rise to a simple lattice reduction algorithm 1o
find the shortest basis in 3-dimensions. The complexity is O(M(n)nlogn).



A Pathological Shortest Path
by JEAN-DANIEL BOISSONNAT (joint work with André Ceregzo and Juliette Leblond)

We consider the class of C* piecewice regular paths joining two given configurations (i.e.
position, orientation and curvature) zo and z; in the plane, along which the derivative of
the curvature (with respect to the arc length) remains bounded. Regular means here that
the path consists of an at most countable number of C'® arcs of finite length and that the
set of endpoints of such arcs admits at most a finite number of points of accumulation.
We prove that there is no path of minimal length in this class for generic zg and 2 ;. This
means that the optimal control of a car-like robot with a bounded wheel-turning speed is
extremely irregular.

This problem is a natural generalization of a problem studied by Dubins who gave a
complete characterization of the ('! shortest paths of bounded curvature joining two points
with prescribed tangents.

Some Thoughts on Perturbations
by RAIMUND SEIDEL (joint work with Yiannis Emiris and John Canny)

A sequence S = (qy,...,q,) of points in R? is said to be non-degenerate with respect to a
function ¢ : R% — R, iff for every s-tuple of distinct iy,...,i5; we have g(g;,,...,¢:,) # 0.
We call § non-degenerate with respect to a set GG of functions if it is so for every g € G.
A sequence Il = (my,...,m,) of continuous, smooth functions =; : [0,1] — R? is said to

be a wvalid perturbation for S with respect to G iff for all ¢ 7;(0) 26, and the sequence
(i + mi(€)),<;<, is non-degenerate with respect to G for all sufficiently small € > 0.

Valid perturbations are a useful tool for making geometric algorithms that work only
for non-degenerate inputs applicable to all inputs. Crucial problems for this approach
are the ability to determine a valid perturbation and the ability to compute the sign of
gle) = g(qi, +mi,(€),...,q, + m,(¢)) for all sufficiently small ¢ > 0 efficiently. We point
out that for many commonly used geometric predicate functions g such as “orientation”,
“sidedness”, “in-sphere” and many others there is a surprisingly simple solution to these
problems.

1. If GG consists of multivariate homogeneous polynomials and P = (p1,...,p,) is non-
degenerate for G, then for any sequence S = (¢1,...,¢,) a valid perturbation is

given by (epi)i<i<na-

2. If g is a multivariate polynomial of degree A, then determining the sign of g(¢) =
9 (i, + €piyy- -, 9i, + €pi,) requires only A+1 evaluations of g (say fore = 0,1,...,4)
and computation of the coefficients of the polynomial g by interpolation.
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Convex Distance Functions in 3D
by RoLF KLEIN (joint work with Christian Icking, Minh Lé, and Lihong Ma)

We show that given any number n one can construct a smooth convex body S in 3D and
four points a;,a;, as.aq in R3, such that for sufficiently small € > 0 and each choice of
points a} in U,(a;) there are n or n + 1 homothetic copies of S that contain the points a!
on its surface. Consequently, there is no upper bound for the complexity of the Voronoi
diagram of four points in 3D that is based on a convex distance funtion.

In particular, we showed that in the L -metric three spheres can pass through four points
in general position. However, there exists an upper bound independent of p for the number
of L,-spheres that can pass through four points in general position.

Exact Algorithms for an NP-Complete Packing Problem
by KURT MEHLHORN (joint work with L. Kucera, B. Preis und E. Schwarzenecker)

We consider the following NP-complete geometric packing problem: For a given set 5 of n
points py, ..., p, in the plane and a positive real » decide whether there are n axis-parallel
squares @1, ..., Q, of sidelength r such that @; has one of its corners incident to point p;
for all 7,1 < i < n and such that @; and Q; are disjoint for ¢ different from j. The problem
arose in the context of map lettering.

Forman and Wagner have shown this problem to be NP-complete, that there is an ap-
proximation algorithm for the associated optimization problem (find the largest » such
that ...) which comes within a factor two of optimum, and that no better approximation
algorithm exists provided that P # N P.

We discuss exact algorithms for the optimization problem. A naive algorithm runs in time
O(4™poly(n)) and can be used to solve problems with less than 20 points. We describe two
better algorithms: one with running time 4°(V") and one with running time 40/ninn),
The second algorithm can be used to solve problems with 100 points. It’s analysis is
related to an old problem in measure theory, namely Kakeya’s problem which asks for the
smallest measure of any set in which a unit length segment can be turned by 180 degrees
without leaving the set. The second algorithms also allows us to show experimentally that
the approximation algorithm is within 5 percent of optimum for practical problems.

Can Visibility Graphs be Represented Compactly
by PANKAJ K. AGARWAL (joint work with N. Alon, B. Aronov, and S. Suri)

We consider the problem of representing the visibility graph of segments as a union of
cliques and bipartite cliques. Given a graph G, a family ¢ = {G,...,G,,} is called a
‘clique cover’ of G if each G; is a clique or a bipartite clique, and the union of ;’s is (/.
The size of G is defined as } -, n;, where n; is the number of vertices in ;. Our main
result is that there exist visibility graphs of n nonintersecting segments in the plane whose
smallest clique cover has size  (n?/log® n). On the other hand, we show that the visibility
graph of a simple polygon always admits a clique cover of size O(nlog® n), and that there

L



are simple polygons whose visibility graphs require a clique cover of size Q(nlogn).

Objects That Cannot be Taken Apart with Two Hands
JACK SNOEYINK (joint work with Jorge Stolfi)

It has been conjectured that every configuration (' of convex objects in 3-space with
disjoint interior can be taken apart by translation with two hands: that is., some proper
subset of (" can be translated to infinity without disturbing its complement. We show that
this conjecture holds for five or fewer objects but give a counterexample with six objects
that is built on the symmetry group of a tetrahedron. We extend the counterexample 1o
a configuration of 30 objects that cannot be taken apart with two hands using arbitrary
isometries (rigid motions).

Safe & Effective Determinant Evaluation
by KENNETH CLARKSON

Many geometric algorithms use as a primitive operation the computation of the sign of
the determinant of a small matrix. This operation is done many times, so it should be
fast, but it is vital that it is correct. Given an n X n matrix A of b-bit integers, I show
that the determinant of A can be computed with low relative error using a combination
of approximate & exact integer arithmetic. The running time of the algorithm depends
on the orthogonality defect OD(A), where OD(A)|det A| is the product of the lengths of
the columns of A. Here OD(A) < (y/n 2%)". If B+ 1.5n + b + 21g n + 2 bits of precision
are available, the algorithm needs O(n?) + O(n?)(lg OD(A))/b time. Thus the algorithm
is fast even with small 3, if lgOD(A) is small, as commonly holds.

On the Union of Convex Polyhedra
by Boris ArRoNoV (joint work with Micha Sharir)

We almost settle a conjecture involving a set of k convex polyhedra in R?, with a total of n
faces. We consider the union of such a family and estimate the maximum possible number
of edges, vertices, and faces on its boundary. We show that this quantity if O (k* + nk'+<)
for any € > 0 with the constant of proportionality in the second term depending on ¢. This
almost matches a lower bound of Q (k* + nk).

Almost Tight Upper Bounds for Lower Envelopes in Higher Dimensions
by MiCHA SHARIR (partly joint work with Dan Halperin)

Let }° = {01,...,0,} be a collection of n algebraic surfaces or surface patches, of constant
maximum degree, in R?. The lower envelope Ey is the map that associates with each
z = (21,...,74-1) the lowest point of intersection, if any, of the vertical line through z
with the surfaces of £. When Ey is projected onto H : z4 = 0, we get a decomposition
of this hyperplane into cells of various dimensions over each of which the envelope is
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attained by a fixed subset of surfaces. The combinatorial complexity of fs~ is the number

of cells in this decomposition. Our main result is: The combinatorial complexity of Fx~ is
VA

0 (u"“"‘“‘). for any € > 0. where the constant of proportionality depends on ¢.d. and the
maximum degree of the surfaces. The bound is almost tight in the worst case. The result
has many applications to the complexity of generalized or dynamic Voronoi diagrams.
visibility in terrains. spaces of common transversals of convex sets. spaces of lines missing
a star-shaped set in 3-space, and many more. The proof is relatively simple. and its main
tool is the probabilistic analysis technique of Clarkson and Shor (1989). We also give
an Q(n?*) algorithm for computing lower envelopes in 3-space. but a technical difficulty
prevents the extension of the algorithm to higher dimensions.

Advances in Exact Motion Planning with Three Degrees of Freedom
by DAN HALPERIN (joint work with Micha Sharir and Chee Yap)

We present two recent results in the study of exact (non-heuristic) motion planning of
rigid bodies with three degrees of freedom:

1. We consider the problem of planning the motion of an arbitrary A-sided polveonal
robot B, free to translate and rotate in a polvgonal environment bounded by n edgoes.
We show that the complexity of a single component of the free confliguration space
of B is O (k*n?*¢), for any € > 0. where the constant of poportionality depends on
¢. This is a significant improvement of the naive bound O ((kn)*).

2. We study the space of free translations of a box amidst polyhedral obstacles with »
features in 3-space. We show that the maximum combinatorial complexity of this
space is O (nza(n )) where a(n) is the inverse Ackermann function. Our bound is
within an a(n) factor off the Jower bound, and it constitutes an improvement of
almost an order of magnitude over the naive bound for this problem. O(n?).

Straight Skeletons of Simple Polygons
by FRANZ AURENHAMMER

Let P be a simple polygon with n edges. The medial axis of I” is the set of all points in
P whose nearest neighbor on the boundary of P is not unique. If F is convex then the
medial axix consists of portions of angle bisectors only. Reflex polygon vertices. however.
cause the appearance of parabolic arcs. In contrast, the straight skeleton of P is made up
of angle bisectors only. We introduce this structure and investigate some of its propertics.
Care has to be taken on the definition of a straight skeleton as there are many ways of
partitioning P by angle bisectors in a consistent way. Given the skeleton. a triangulation
of P can be obtained very easily in O(n) time. The structure is also useful for planniug,
a motion within P that keeps away from sharp polvgon angles. and for constructing a 15
degree roof of minimal volume above polygonal ground walls. In spite of its nice properties,
the algorithmic construction of a straight skeleton turns out to be surprisingly diflicult.
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On the Number of Cells Defined by a Set of Polynomials
by M. F. Roy (joint work with R. Pollack)

Let e(n,d. D) be the total number of non-empty sign conditions defined by a set of s
polynomials of degree d in n space.

Theorem ¢(n.d, s) = [O(sd/n)]".

The formerly known bound based on Bezout-Heintz inequality is the algebraically closed
case together with Thom-Milnor’s Theorem gave (sd)?("). Here, rather than Thom-
Milnor’s classical results. we use a result from Warren, which includes a more combinatorial
approach (adding one equation after the other rather than making directly the product
of the equations) and bounds the number of connected components of the complementary
of an algebraic set union of the zero set of a polynomial of degree d in n variables by
[O(sd/n)]". Our proofs use as a technical tool Puiseux series and infinitesimal elements
and is an extension of Alon’s result on the number of non-empty sign conditions (also
in [O(sd/n)]"). As a corollary we obtain a bound on the number of isotopy classes of
configurations of n points in d space as [O(nd)] "d
bound.

which matches the already known lower

Weak c-nets
by LEONIDAS GUIBAS

Range spaces of infinite VC-dimension do not have (regular, strong) e-nets whose size is
a function of ¢ only. The most well-known example is that of a space of points in E?
(Euclidean d-space) in convexr ranges. For such situations we generalize the concept of
e-net to allow in the set points not necessarily in the original set — these are called weak
e-nets. In this talk we summarize what is known about weak e-nets for convex ranges.
Specifically, we show a construction of a weak net for convex sets in E? whose size is

0 (idlog‘r l) )
€ €

where 2 is a large function of d. We also show the many connections between weak nets to
other classical concepts in Combinatorial Geometry, such as centerpoints, k-sets, selection
lemmas, Tverborg points, Helly type theorems, etc.

Foundations of a Convexity Theory on the Affine Grassmannian G ,
by RICHARD POLLACK (joint work with JacoB E. GOODMAN)

G/, is the space of k-flats in R with its natural topology. We give several equivalent
definitions of the convex hull of subsets of Gj ; in terms of “convex transversals™ and
“surrounding” among others, which in the case k = 0 specialize to the standard notion of
convexity of point sets in R?. E.g. F' € conv(F) iff F' meets every convex set of points
which meets every k-flat in F. Equivalently, F' € conv(F) iff 3 an £-flat G containing F",
k < €<d,s.t. for every £ — 1 flat H C G which contains F’, both open half spaces of G
defined by H contain a k-flat of F.

14



This definition satisfies.

idempotence: conv(JF) = conv(conv(F))

monotonicity :  F; C Fy = conv(F}) C conv(F,)

anti-exchange: Fy. Fy € conv(F), Fy € conv(F U {F}). Fy € conv(FU{F1})
> h=F

It is also invariant under nonsingular affine transformations and behaves well with respect
to restriction to subspaces. Moreover, the Krein-Milman Theorem (every compact convex
set in G}, is the convex hull of its extreme k-flats) is true. We give several examples
exhibiting some unusual behavior. Finally we give a simple characterization of “parallel-
closed™ convex sets. E.g. a parallel-closed set F C G} 4 is convex if and ounly if the
corresponding set of directions (in P?) is the complement of a union of lines.

Dog Bites Postmen — Point Location in Moving Voronoi Diagrams
by OLIVIER DEVILLERS (joint work with Mordicai Golin)

We present a new application of general framework of incremental randomized algorithms
to the problem of moving Voronoi diagrams.

The moving Voronoi diagram is a subdivision of the 3D-space (r,y, ) where the objects
are {-monotone curves describing the trajectories of sites in the plane. The structure can
be computed in nearly expected output sensitive time. Queries can be answered in log(n)
time. where a query is: *What is the nearest among the n sites at time t of a given point?”

The structure can also handle another kind of queries with the same complexities: Let
us call the sites postmen, and assume they have constant speed. Now a dog wakes up at
time t and point (z,y), it can run at speed v: Who is the postman it can reach and bite
as soon as possible? Notice that the query is now 4D: (2. y,f. ¢) but we have to assume
that the dog runs quicker than any postman. The structure can be dyvnamized (postmen
can be inserted or deleted). All results are randomized.

Maintaining the Approximate Width of a Point Set
by GUNTER ROTE

The width of a set of points in the plane is the smallest distance between two parallel lines
that enclose the set. We want to maintain the set of points under insertions (and possibly
also deletions) of points and he able to report an approximation of the width of this
dynamic point set. R. Janardan gave a solution which reports the width of an n-point set
with some specified relative error bound epsilon in time O(blog? n) using a dita structure
with space O(bn) in which points can be inserted and deleted in time O(blog® n). where
b= \/l_/r is a parameter that depends on the desired precision.

The algorithm is based on finding the enclosing two parallel lines for the point set whose
distance in a given direction is minimal. This is repeated for b evenly spaced directions
among the angular range (7) of all possible directions.
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By some easy modifications of this algorithm one can reduce the query time to O(b log n).
the storage to O(n), and the update time to O(log® n). One part of this simplification
results from replacing a two-level nested binary search log?n by the prune-and-search
strategy log n—time. The insertion time results from maintaining the convex hull. Thus.
in the semi-dynamic case (only insertions or only deletions). the update time is reduced
to O(logn) (amortized).

Then we propose a different method: We place tangents to the points set in b evenly spaced
directions. The smallest distance between two paralle]l tangents gives us an upper estimate
of the width. Then we start from these two tangents and search in a neighborhood of this
direction for a local minimum of the width. This is guaranteed to differ from the (global)
minimum width by a relative error of at most O(1/b%). similarly as above. For fully
dynanic point sets this leads to an update time of O(log® n) and O(n) storage. However.
the query time is O(blogn +log? n). The term log? n could be reduced if we knew a faster
way of looking for a local minimum of the width, given a hierarchical representation of a
convex polygon (in the form of a balanced search tree of the vertices and edges). Only for
the case of insertions only can we improve the bounds of Janardan: We get O(log n +log b)
amortized update time. O(n+0b) storage, and an amortized query time of O(log n log log n).
This results by applying an idea of C. Schwarz which allows to reduce the time for finding
a local minitmum in this case.

A Simple Proof Technique for Geometric Discrepancy
by BERNARD CHAZELLE

[t is possible to place n points in d-space so that given any 2-coloring of the points, there
exists a halfspace within which one color dominates the other by as much as ¢ n!/2-1/24
for some constant ¢ > 0. This result was proven in a slightly weaker from by Beck and the
bound was tightened by Alexander. It was shown to be quasi-optimal by Matousek. Welzl
and Wernisch. The lower bound proofs are highly technical and do not provide much
intuitive insight into the “large discrepancy™ phenomenon. We develop a proof technique
which allows us to rederive the same lower bound in a much simpler fashion. We give a
probabilistic interpretation of the result and we discuss the connection of our method to
Beck’s Fourier transform approach. We also provide a quasi-optimal lower bound on the
discrepancy of fixed size rotated boxes, which significantly improves the previous bound.

A Subexponential Algorithm for Abstract Optimization Problems
by BERND GARTNER

Let H be a finite set, < a linear order on 2/7 and & a function that for given ' CGCH,
decides whether I’ = n}(in(:Z(’) and if not, returns I/ C G, F’ < F. How many calls to &

does it take to find m<in(2H)?

For deterministic algorithms there is a lower bound of 2/¥! — 1; we give a randomized
algorithm that takes expected eC(WVIHD calls. The bound can be applied to yield first
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subexponential bounds for some geometric problems: finding the minimum spanning ball
of a point set if R?, determining the distance between polytopes in RY.

Computing the Hausdorff-distance between Geometric Objects in Higher Di-
mension

by HELMUT ALT (joint work with Michael Godau)

Computing the Hausdorff-distance between geometric objects is motivated by questions
from pattern and shape analysis. We generalize the problems considered so far to curves
and surfaces in higher dimensions and finally to sets of k-dimensional simplices in d-
dimensional space for arbitrary k& < d. It turns out that for fixed k,d the problem can be
solved in polynomial time, where the degree of the polynomial depends only on k., not on
d. In fact, for two sets of n and m line segments in d-dimensional space the Hausdorff-
distance can be computed, using parametric search, in time O (nm logB(nm)). For sets
of triangles (k = 2) we give an algorithm of runtime O ((n*m + m?n)log®*(mn)). For

arbitrary k-dimensional simplices we obtain (n + m )0 k),

Piecewise Linear Paths Among Convex Obstacles (I)
by OTFRIED SCHWARZKOPF (joint work with Jifi Matousek and Mark de Berg)

Leb B be a set of n convex obstacles in the plane, and p, ¢ two points in the same connected
component of R?\ |J B. We show that there is a path connecting p and ¢ with at most
O(n?) links, and this bound is the best possible if the obstacles are allowed to intersect
arbitrarily. If they are only allowed to touch, or are obtained as the Minkowski-sum of
disjoint obstacles with a convex robot, the bound can be improved to ©(n). We can
compute such a path in time O(n?Q + n?a(n)logn) for the general, O(nlogn + n@Q) for
the touching case, where @ is the time necessary for an oracle describing the obstacles.
For the pseudo disc-case, the time bound is O(nlog Q* +n@Q), where ) and Q™ are oracles
for the expanded/original obstacles.

Piecewise Linear Paths Among Convex Obstacles (II)
by Jiki MATOUSEK (joint work with Otfried Schwarzkopf and Mark de Berg)

We consider the problem discussed in the previous talk generalized to higher dimensions.
For n convex, open and bounded obstacles in R?, we show that the link diameter of any
connected component of their complement is O ("n(‘"_”L df””) and Q(n?) in the worst
case. Special cases of disjoint, resp. touching obstacles are also considered, obtaining
significantly better bounds. Our main tool is an “expansion lemma”, saying that if we
enlarge each obstacle in such a way that no new d-wise intersection is created. points
connected by a path avoiding the original obstacles can still be connected among the
enlarged obstacles.

17



Approximate Tightness-dependent Motion Planning
by STEFAN SCHIRRA

We extend the notion of the “tightness” of a motion planning problem, introduced by Alt
et al. for a rectangle, to geometric objects with rotational and sliding joints. Then the
technique of slicing is applied, analogously to the rectangle case, i.e. restricted motions
are defined for such objects. If the tightness of a motion planning problem is large, it is
sufficient to consider restricted motions. This observation leads to “tightness-dependent”
algorithms, which are much more efficient than known tightness-independent motion plan-
ning algorithms for large tightness. E.g., we obtain an O (n?(f(t)+ 1)) time bound for
moving two rectangles joint via a common corner, where f(t) is a function depending
only on the tightness. For large tightness, f(¢) is a constant. The best tightness inde-
pendent bound is O(n*logn). Here n is the number of polygon corners in the polygonal
environment.

A Lower Bound for the “3-Points on a Line” and Related Problems
by JEFF EriICKsON (joint work with Raimund Seidel)

We show that the problem of deciding whether in a set S of n points in the plane there
are three that lie on a common line requires 2(n?) time on the decision tree model of
computation, where the only test allowed is the predicate that checks whether a point
p € S lies to the left of, on, or to the right of the directed line through points ¢, € 5.

The proof consists of a simple adversary argument:
1. Any “collapsible triple p, ¢, € S” (i.e. p, ¢, r can be moved s.t. they become collinear,

but no other collinearities are created during the movement) needs to be tested
explicitely;

2. for every n > 2 there exists a set § with | S| = n that has ©(n?) collapsible triples.
Our result generalizes to an Q(n?) lower bound for the problem of detecting affine degen-

eracies in a set of n points in R%. It also generalizes to other problems, such as an Q(n?)
lower bound for testing whether (A+ B)NC = ( (for integer sets A, B, C of size n), where

the only operations allowed are tests of the form a + b é c.
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Open Problem Session

reported by MicHA SHARIR

Mark de Berg

Given n pairwise-disjoint triangles in 3-space, we want to compute the visibility graph of
their vertices. i.e. report all pairs of mutually-visible vertices. A simple method for doing
this is to compute for each vertex v the vertices visible from v. This can be done, using
ray-shooting and related techniques, in time O(n*/3*<) for each vertex v, for a total of
O(n"/3+¢) time. The problem is to improve this, hopefully to near-quadratic. There is
a method that runs in near-quadratic time and produces a near-quadratic output which
represents in a compact manner all pairs of non-visible vertices, but it seems hard to
extract the complementary information from this structure.

Leo Guibas

If P is a simple polygon with n > 3 vertices, then P has a diagonal; more strongly,
for any vertex v of P, either v has a diagonal emanating from it, or its two neighbors
can be connected by a diagonal. The problem is to generalize this to simple “polygons’
whose edges are algebraic arcs of constant maximum degree. Here a diagonal would be
an algebraic arc connecting two vertices of P within the interior of P and not intersecting
any edge of P.

Does there always exists a diagonal whose degree is bounded by the same constant degree
of the edges of P? by some other constant degree (independent of the number of edges of
P)? Does the stronger property of simple polygons mentioned above extend to the curved
case? (If one considers a curved polygon consisting of 4 circular arcs forming a ‘bow-tie’
pattern, a diagonal must connect two opposite corner and thus must have an inflection
point, so it cannot be a second-degree arc.)

Can show: Given a simple polygon with kn (straight) edges so that every k-th vertex is
marked, then there is a pair of non-adjacent marked vertices with link distance < k. Also,
from each marked vertex v either there is a k-link path to another non-adjacent marked
vertex or the two marked vertices adjacent to v are connected by a k-link path.

Chee Yap

Given a lattice A(u,v,w) formed by three vectors u,v, w in 3-space, we want to analyze
the structure of a Voronoi cell of the lattice (a Voronoi cell in the diagram formed by all
lattice points). In the planar case, the cell is a hexagon with vertices on a circle. What is
the analogue in three or higher dimensions? In general, give a bound on the complexity
of Voronoi cells in d-dimensional lattices.

19



Bernard Chazelle

Let ) be a unit square and let S be any set of n points in ¢ so that the distance between
any pair of points is > ﬁ Show that there exists an empty strip intersecting ¢ and
not containing any vertex of @), whose width is w(1/n). Note that if the points of §
are lattice points, then the width of such a strip is 1/y/nr, and if the points are chosen
independently at random from a uniform distribution then there exists an empty strip
with width Q('&%).

Raimund Seidel

Given an n x n integer grid. We want to find a large set S on the grid having no 3 colinear
points and no 4 cocircular points. How large can the size of 5 be? Clearly O(n)is an upper
bound. Can the size be Q(n)? A class of examples with |5| = O©(n?/3¢) is apparently
known.

Ken Clarkson

Scattered Data Interpolation: Given a finite set S in 3-space, viewed as points on a surface
z = f(z,y). We want to construct a piecewise-linear interpolation of S that will approxi-
mate f closely. Specifically, we seek a triangulation T' of the zy-projection S* of 5, so that
|| fr = f]|oo is minimized, where fr is the piecewise-linear function that passes through the
points of S and is linear over each triangle of T', and where ||g||cc = max; 4 |g(z,y)|. We
assume that f is known. We note that if f is convex (concave), then T is the projection
of the lower (upper) hult of §. If f = 2? + y? then T is the Delaunay triangulation of S*.
What happens when f(z,y) = zy? What is 7?7 How can it be constructed? (Standard
heuristics, such as edge flipping or insertion, do not seem to work.) Is there an f for which
the problem is NP-hard?

Marc van Kreveld

Optimal construction of the (< k)-levels in an arrangement of n planes in 3-D: The goal
is to construct these levels in time O(nk? + nlogn). The best known algorithm, due
to Mulmuley, takes time O(nk?log%). An optimal deterministic solution (with O(nk +
nlogn) time) is known in the plane (by Everett, Robert and van Kreveld), and randomized
optimal solutions are known for all dimensions > 4.

Pankaj Agarwal

Let T' be a collection of n z-monotone arcs, each pair of which intersect in at most a
constant number s of points. What is the complexity of a single level in the arrangement

1

20



of I". In other words, how many vertices of the arrangement are there, with exactly k arcs
passing below them. for some fixed &7

Leo Guibas

Given n triangles in the plane, find the region of the plane covered by at least half of the
triangles. or the region covered by most triangles. [These appear to be n*-hard problemns.]

Janos Pach

We say that & points in the plane are in general position if all ("5) distances that they
determine are distinct. For a fixed k, almost all k-tuples of any n-element set in the plane
are in general position (that is, the fraction of k-tuples in general position tends to |
as n tends to oo). This also holds if & is allowed to grow (slowly) with n: It is true if
k = o(n'/7), and false for k = n'/*. How large can k = k(n) grow as a function of n so
that the property still holds?

Jack Snoeyink

In 2-D: Given two convex polygons A, B, and a center of rotation, compute the smallest
angle by which B has to rotate about the given center to meet A. (Can be done in linear
time.)

In 3-D: Given two convex polyhedra A, B, and a line of rotation, compute the smallest
angle by which B has to rotate about the line to meet A. Can this be done in subquadratic
time? (Parametric searching does not seem to help because B can enter and leave /A several
times as it rotates.)

Chee Yap

Given two placements of a line segment s = pg, we want to move s ‘linearly’ from one
placement to the other, meaning that one endpoint, p, moves at constant speed on the
straight segment connecting its initial and final positions, while s rotates simlutancously
about p at constant angular velocity. Given a convex polygon A, we want to compute
whether s collides with A during its motion.

Ken Clarkson

How hard is it to compute optimal e-nets (e-approximations) for a given set of objects
and a collection of ranges? As an abstract problem this is the minimal ‘hypergraph cover
problem and so is NP-hard. What happens in geometric settings?
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