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Abstracts

On Fat Partitioning, Fat Covering and the Union Size of Polygons

by MARC VAN KREVELD

The complexity of the contour of simple polygons with 0(n) vertices in tota.l ca.11 be @(n2)
in general. In this pa.per, a necessa.ry and sufficient condition is given which gua.ra11tees
s111a.ller u11ion size. A 6-corridor in a simple polygon is a passage between two edges in a
polygon with width / length ratio Ö. If a. set of polygons with O(n) vertices in tota.l has no
6-corridors than the union size is O ((n log log n) / 6), which is close to optima.l in the worst
case. The result has many applications to basic problems in computational geometry, such
as hidden surface removal, motion planning, ray shooting, injection moulding, etc.

The result is based on a new methodto partition a. simple polygon P with n vertices
into 0(n) convex quadrilaterals, without introducing angles smaller than 7r / 1&#39;2 radiant, or
narrow corridors. Furthermore. a. convex quadrilateral with no 6-corridor can be covered
(but not partitioned!) by O(1/6) fat triangles. The maximum overlap of the triangles
at any point is �2. The bound on the maximum union size now follows from a result of
Matousek et al, F OCS 1991. They prove that the maximum union size of n. fat triangles
is 0(nloglog n).

The partitioning and covering algorithms take O(~n.log2 n.) and ()(n log� n. + n/b) time,
respectively.

Coloring Rectilinear Polygons and the Prison Yard Problem

by FRANK HOFFMANN (joint work with Klaus Kriegel)

One of the main open Art-Gallery-type problems is to determine the minimal number
of vertex guards sufficient to watch simultaneously both the interior a.nd the exterior of
any n-sided simple rectilinear polygon. First, we present a class of py1�ami(ls that need
asymptotically 5n/16 guards, which is a new lower bound for the problem, am] we show
that 51%] + 2 guards suffice for any orthoconvex rectilinear polygon. The proof uses
a new generalized coloring argument that can be applied to a convex partition of the
plane derived from the quadrilateralized polygon. Then we prove a purely graphtheoretic
result: To an embedded planar graph with all inner faces being 4-cycles one can a.dd one
diagonal per 4-cycle in such a way that the resulting graph is 3-colorable. As iminediate
consequences we get the following new upper bounds:

(1) 9@ vertex guards are sufficient to solve the Art Gallery Problem for rectilinear poly-
gons with holes.

(2) P�@ + 3 vertex guards (resp. Á point guards) are sufficient to solve the l�1&#39;is(m
Yard Problem for rectilinear polygons.
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Generalized Hidden Surface Removal

by MARK DE BERG

One of the basic problems in computer graphics is the hidden surface removal problem:
Given a set of objects in 3-space and a view point, compute which parts of the objects are
visible. To obtain realistic images, however, one should also take lighting considerations
into account. We start the investigation of this problem from the computational geometry
point of view by considering the generalized hidden surface removal problem: Given a.
set of objects in 3-space, a view point, and a (point) light source, compute which parts
of the objects are visible, subdivided into parts which are lit and parts which are not
lit. We prove tight bounds on the maximum combinatorial complexity of such views for
three different settings, namely where the objects are triangles, where the objects are axis-
parallel horizontal rectangles and where the objects are the faces of a polygonal terrain.
We also give output-sensitive algorithms for all three cases.

Distribution of Distances

by JANOS PACH

Extremal graph theory has proved to be a powerful tool in bounding the combinatorial
complexity of arrangements arising in various fields of computational geometry. Unfortu-
nately, in many cases it fails to provide the best possible answers. The following result
(joint with P. Erdös and E. Makai) can be established by using Szemeredi�s Regularity
Lemma. For any positive integer k and 6 > 0, there exist m�, ck�, > O with the following
property. Given any system of n > n� points in the plane with minimal distance 1 and
any t1, . . ., tk > 0, the number of those pairs whose distance is between t,- and t,- + ck,�/71-
for some 1 5 i 5 k, is at most 1�; ( � H}; + e). This bound is asymptotically tight (in
more than one sense).

Exact and Approximate Solutions to the Embedding Problem
by PETER SCHORN

We solve one of the simplest, non-trivial, instances of the embedding problem, the fun-
damental problem of Distance Geometry. The exact solution with the Computer Algebra
System Maple generates for the :1:-coordinate of one of the vertices a 12th-degree minimal-
polynomial which has 15-digit coefficients. Alternatively we propose a simple iterative
technique for the solution of the embedding problem. An implementation on the X YZ
GeoBench, our workbench for geometric computation, can quickly �nd all solutions to
small instances of the embedding problem.

Optimal Parallel Algorithms for Rectilinear Link Distance Problems

by JÖRG RÜDIGER SACK (joint work-with: A. Lingas, A. Maheshwa.ri// T. Hagerup)
We provide parallel solutions to several link distance problems set in trapezoided rectilinear
polygons. All algorithms are deterministic and designed to run on the EREW PRAM.
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Let. P be a trapezoided rectilinea.r single polygon with n vertices. In O(n log n) time using
O(log 72.) processors we ca.n optimally compute

0 minimum rectilinear li11k paths, or shortest pa.th in the L1 metric. from a.ny point in
P to all vertices of P,

o minimunl rectilinear li11k paths from any segment to all vertices of P,

o rectilinear window (histogram) partition of P,

0 both coveri11g radii a.nd vertex intervals for any diagonal of P,

o a data. structure to support rectilinear link distance queries between any two points
in P.

This improves on the preciously best known sequential algorithm for this problem which
used O(n log n) time a.nd spa.ce.

We employ the parallel technique for example to optimally compute the link dianieter,
link radius and link center of a rectilinear polygon.

Fast Euclidean Lattice Reduction

by CH EE YAP

Reduction of lattices can be viewed as a genera.liza.tion of the Euclidean algorithm for
integer GCD. In 2-dimensions, Gauss has a generalization of Euclid�s algoritlun. We
review the technique of Lehn1er-Knuth-Schonhage for fast GCD computation and show
how this can be extended to the 2-dimensional case. The result is that if u, v E Z2 are
given, then the smallest basis for the lattice A(&#39;u., 1)) can be computed in

O(M(1z.) log n.)

bit complexity, where n = log(|u| +  .�� To achieve this, we introduce the concept: of
coherent remainder sequences and analyze some basic properties.

We then consider how to extend the reduction method to 3-dimensions. Here we must

de�ne the �reduction� operation �u mod(v, w)� where u, v, w G R3. We may also assume
that 22,112 are already reduced, using the 2-dimension algorithm. We want to use this
operation to repeatedly reduce a vector by the other 2 until no more reduction occurs. A
simple example shows that the de�nition

2:, mod(v,w) r: (u mod12)modw

does not work. We introduce the concept of the �minimal fundamental region� of (v, u?)
and give a suitable de�nition. This gives rise to a. simple la.ttice redu.ction algorithni to
�nd the shortest basis in 3-dimensions. The complexity is 0(M(n)nlog PÁ
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A Pathological Shortest Path

by JEAN-DANIEL BOISSONNAT (joint work with Andre? Ceregzo and Juliette Leblond)

We consider the class of C2 piecewice regular paths joining two given con�gurations (i.e.
position, orientation and curvature) mo and 1:,» in the plane, along which the derivative of
the curvature (with respect to the arc length) remains bounded. Regular means here that
the path consists of an at most countable number of C3 arcs of �nite length and that the
set of endpoints of such arcs admits at most a �nite number of points of accumulation.
We prove that there is no path of minimal length in this class for generic .730 and :1: f. This
means that the optimal control of a car-like robot with a bounded wheel-turning speed is

extremely irregular.

This problem is a natural generalization of a problem studied by Dubins who gave a
complete characterization of the C1 shortest paths of bounded curvature joining two points
with prescribed tangents.

Some Thoughts on Perturbations

by RAIMUND SEIDEL (joint work with Yiannis Emiris and John Canny)

A sequence 3 = (¬11, . . .� qn) of points in Rd is said to be non-degenerate with respect to a
function g : Rd� ��> R, iff for every s�tup1e of distinct i1, . . . �i3 we have g(q,-, , . . .,q,-3) ;£ 0.
We call 5 non-degenerate with respect to a set G� of functions if it is so for every g 6 G.
A sequence ll z (7r1, . . .,7rn) of continuous, smooth functions 7r,- : [0,1] �-> Rd is said to
be a valid perturbation for S with respect to G iff for all i 7r,~(O) =0, and the sequence
(�Ii + 7r,-(e))1<,-<7, is non-degenerate with respect to G for all sufficiently small 6 > 0.

Valid perturbations are a. useful tool for making geometric algorithms that work only
for non-degenerate inputs applicable to all inputs. Crucial problems for this approach
are the ability to determine a valid perturbation and the ability to compute the sign of
5(6) z: g(q,-1 + 7r,-,(c), . . .,q,-5 + 7r,-5(6)) for all suf�ciently small ¬ > 0 efficiently. We point
out that for many commonly used geometric predicate functions g such as �orientation�,
�sidedness �, �z&#39;n-sphere� and many others there is a surprisingly simple solution to these

problems.

1. If G consists of multivariate homogeneous polynomials and P = (p1,. . . , pn) is non-
degenerate for G, then for any sequence S = (q1,...,q,,) a valid perturbation is
given by (ep,-)1S,-Sn.

�2. If g is a multivariate polynomial of degree A, then determining the sign of &#39;g&#39;(c) =
g (g,~, + cpil , . . ., g,-S + ep,-3 ) requires only A+1 evaluations ofg (say for 6 = 0, 1,. . ., A)
and computation of the coef�cients of the polynomial ä by interpolation.
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by J8AN - DANIEL B01ssoNNAT (joint work with Andre Ceregzo a nd Ju liette Leblond) 

We consider the class of C'2 piecewice regular pat hs joining two given configurations (i.e. 
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Convex Distance Functions in 3D

by ROLF KLEIN (joint. work with Christian Icking, Minh Le, and Lihong Ma)

We show tha.t given any number n one can construct a smooth convex body 5 in 3D and
four points a1,a2,a3,a4 in R3, such that for sufficiently small 6 > 0 and each choice of
points af in U¢(a,-) there are n or n + 1 homothetic copies of S that contain the points a;
on its surface. Consequently, there is no upper bound for the complexity of the Voronoi
diagram of four points in 3D that is based on a convex distance funtion.

In particular, we showed that in the L4-metric three spheres can pass through four points
in general position. However, there exists an upper bound independent of p for the number
of Lp-spheres that can pass through four points in general position.

Exact Algorithms for an NP-Complete Packing Problem

by KURT MEHLHORN (joint work with L. Kucera, B. Preis und E. Schwarzenecker)

We consider the following N P-complete geometric packing problem: For a. given set .5� of n
points p1,...,p,, in the plane and a positive real r decide whether there are n axis-parallel
squares Q1, ..., Q" of sidelength r such that Q,- has one of its corners incident to point p,-
for all i, 1 S i 5 n and such that Q; and Q �- are disjoint for i different from j. The problem
arose in the context of map lettering.

Forman and Wagner have shown this problem to be N P-complete, that there is an ap-
proximation algorithm for the associated optimization problem (�nd the largest r such
that P9[� which comes within a factor two of optimum, and that no better approximation
algorithm exists provided that P 75 N P.

We discuss exact algorithms for the optimization problem. A naive algorithm runs in time
0(4"poly(n)) and can be used to solve problems with less than 20 points. We describe two

11. In nbetter algorithms: one with running time 40�/E) and one with running time 4&#39;10�/���).
The second algorithm can be used to solve problems with 100 points. It�s analysis is
related to an old problem in measure theory, namely Ka.keya�s problem which asks for the
smallest measure of any set in which a unit length segment can be turned by 180 degrees
without leaving the set. The second algorithms also allows us to show experimentally that
the approximation algorithm is within 5 percent of optimum for practical problems.

Can Visibility Graphs be Represented Compactly

by PANKAJ K. AGARWAL (joint work with N. Alon, B. Aronov, and S. Suri)

We consider the problem of representing the visibility graph of segments as a union of
cliques and bipartite cliques. Given a graph G�, a family (J = {G1, . . .,G&#39;,,,} is called a
�clique cover� of G� if each G,- is a clique or a bipartite clique, and the union of G�,-�s is (I.
The size of Q is de�ned as  ,A� n,-, where n,- is the number of vertices in G,-. Our inain
result is �that there exist visibility graphs of n nonintersecting segments in the plane wlmse
smallest clique cover has size Q (n2/ log2 n). On the other hand, we show that the visibilil,_v
graph of a simple polygon always admits a clique cover of size 0(1). log3 12.), and that there
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a.re simple polygons whose visibility gra.phs require a clique cover of size Q(n log n).

Objects That Cannot be Taken Apart with Two Hands

JACK SNOEYINK (joint work with Jorge Stol�)

lt has been conjectured that every con�guration C� of convex objects in 3-spare with
disjoint interior can be taken apart by tmnslation wit/z two hands: that. is, some proper
subset of C can be translated to in�nity without disturbing its complement. We show that
this conjecture holds for �ve or fewer objects but give a counterexample with six objects
that is built on the symmetry group of a tetrahedron. We extend the counterexample to
a con�guration of 30 objects that cannot be taken apart with two hands using arbitrary
isometries (rigid motions).

Safe & Effective Determinant Evaluation

by KENNETH CLARKSON

Many geometric algorithms use as a primitive operation the computation of the sign of
the determinant of a. small matrix. This operation is done many times, so it should be
fast, but it is vital that it is correct. Given an n X n matrix A of b-bit integers, I show
that the determinant of A can be computed with low relative error using a combination
of approximate &. exact integer arithmetic. The running time of the algorithm depends
on the orthogonality defect OD(A), where OD(A)| det A| is the product of the lengths of
the columns of A. Here OD(A) 5 8�� 2b)". If �ß + 1.512 + b + �2lgn + 2 bits of precision
are available, the algorithm needs (�)(n3) + (9(n2)(lg OD(A)&#39;)/ b time. Thus the algorithm
is fast even with small ß, if lg OD(A) is small, as commonly holds.

On the Union of Convex Polyhedra

by BORIS ARONOV (joint work with Micha Sharir)

We almost settle a conjecture involving a set of k convex polyhedra in R3, with a total of n
faces. We consider the union of such a family and estimate the maximum possible number
of edges, vertices, and faces on its boundary. We show that this quantity if O (k3 + nk1"")
for any 6 > O with the constant of proportionality in the second term depending on G. This
almost matches a lower bound of Q (k3 + p���

Almost Tight Upper Bounds for Lower Envelopes in Higher Dimensions

by MICHA SHARIR (partly joint work with Dan Halperin)

Let Z : {a1 , . . . , an} be a collection of n algebraic surfaces or surface patches, of constant
maximum degree, in Rd. The lower envelope E); is the map that associates with each
g = (.731, . . .,:rd_1) the lowest point of intersection, if any, of the vertical line through g
with the surfaces of E. When Eg is projected onto H : rd = 0, we get a decomposition
of this hyperplane into cells of various dimensions over each of which the envelope is
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attained b_v a fixed subset. of surfaces. The combinatorial complexit_v of 15: is the number
of cells in t.his deconiposition. Our ma.in result is: The combina.t.oria.l co1nplexit_v of E: is
Ö (II"�H"). for any 6 > 0. where the constant of proport.ionalit_v depends on (J1. and the
maximum degree of the surfaces. The bound is almost tight in the worst case. The result
has many a.pplications to the complexity of generalized or dynamic \=&#39;oronoi diagrams.
visibility in terrains. spaces of connno11 transversals of convex sets. spaces of lines missing
a star-shaped set in 3-space, and many more. The proof is relatively simple. and it.s main
tool is the probabilistic analysis technique of C� 1a.rkso11 and Shor (1989). We also give
a.n 0(n2+�) algorithm for computing lower envelopes in 3-space. but a technical (lifficulty
prevents the extension of the algoritlnn to higher dimensions.

Advances in Exact Motion Planning with Three Degrees of Freedom

by DAN HALPERIN (joint. work with Micha Sharir and Cltee Yap)

We present two recent results in the study of exa.ct (non-heuristic) motion planning of
rigid bodies with three degrees of freedom:

1. We consider the problem of planning the motion of an a.rbitrar_v Insider! poLvgrjnaI
robot. B, free to transla.te and rotate in a polygonal environment. bounded by n (-�(lges.
VVe show that the complexity of a single component. of the free configuration space
of B is O (k312.2+�), for any 6 > 0. where the constant of p0p01&#39;tionalit_\-&#39; depends on
f. This is a signi�ca.nt improvement of the naive bound 0 ((.k�l))3).

&#39;2. We study the spa.ce of free translations of a box a.n1idst. polyhedral obstacles with 12
features in 3-spa.ce. We show that the 1na.xi1nu1n combinatorial complexity of this
space is O (n.2cr(n)) where am) is the inverse .~\ckermaun function. Our bound is
within an cr(n) factor off the lower bound, and it constitutes an improvement of
almost a.n order of magnitude over the naive bound for this problem. O(n3).

Straight Skeletons of Simple Polygons

by FRANZ AURENHAMMER.

Let P be a simple polygon with �n, edges. The medial axis of I� is t.he set. of all points in
P whose nearest neighbor on the boundary of P is not unique. If P is convex then the
medial axix consists of portions of angle bisectors only. Re�ex polygon vertices. however.
cause the appearance of parabolic arcs. In contrast, the straigl1t. skeleton of I� is made up
of angle bisectors only. We introduce this structure a.nd investigate some of its properties.
Care has to be ta.ken 011 the de�nition of a stra.ight. Skeleton as there are nrany \va._vs of
partitioning P by angle bisectors in a consistent way. Given the skeleton. a triangulation
of P ca.n be obtained very easily in O(n) time. The structure is also useful for planning
a motion within P that keeps away from sharp polygon angles, and for constructing a -1.3
degree roof of minimal volume above polygonal ground walls. In spite o!" its nice proper! ies.
the algorithmic construction of a straight. skeleton turns out to be surprisingly (llllicult.
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On the Number of Cells De�ned by a Set of Polynomials

by �M. F. ROY (joint work with R. Pollack)

Let (&#39;(gn..r1.D) be the total number of non-empty sign conditions de�ned by a set of s
pol_\&#39;n0n1ia.ls of degree (I in 12 space.

Theorem (&#39;(n.d, s) = [O(s(l/n)]".

The formerly known bound based on Bezout.-Heintz inequality is the algebraically closed
case together with T hom-Milnor�s Theorem gave (s(l)0("l. Here. rather than Tho1n-
i\=Iilnor�s classical results. we use a result from Warren, which includes a. more combina.t.orial
approach (adding one equation after the other rather than making directly the product
of the equations) a.nd bounds the number of connected components of the complementary
of an algebraic set union of the zero set of a. polynomial of degree d in n variables by
[0(_s(l/ni)]". Our proofs use a.s a teclmical tool Puiseux series and in�nitesimal elements
and is a.n extension of Alon�s result on the number of non�empty sign conditions (a.lso
in [O(sr1/n)]"). As a. corollary we obtain a bound on the number of isotopy classes of

J ndcon�gurations of n points in d space as [0(n.d) which matches the already known lower
bound.

Weak c-nets

by LE()Nl[)AS GUIBAS

Range spaces of infinite VC-dimension do not have (regular, strong) 6-nets whose size is
a function of 6 only. The most well-known example is that of a space of points in Ed
(Euclidean d-space) in convex ranges. For such situations we generalize the concept of
c-net to allow in the set points not necessarily in the original set � these are called weak
6-7163158. In this talk we summarize what is known about weak e-nets for convex ranges.
Speci�cally, we show a construction of a weak net for convex sets in Ed whose size is

O (-lglogx �-B ,c c

where .1: is a large function of d. We also show the many connections between weak nets to
other classical concepts in Combinatorial Geometry, such as centerpoints, kl-sets, selection
lemmas, Tverborg points, Helly type theorems, etc.

Foundations of a Convexity Theory on the Affine Grassmannian G?�

by RICHARD PoLLAc1< (joint work with JACOB E. GOODMAN)

G?� is the space of It-�ats in Rd with its natural topology. We give several equivalent
de�nitions of the convex hull of subsets of G3�, in terms of �convex tra.nsversa.ls" and
"surrounding" among others, which in the case k = 0 specialize to the standard notion of
convexity of point sets in R1. E.g. F� E conv(J-&#39;) iff F� meets every convex set of points
which meets every k-flat in .7-&#39;. Equivalently, F� 6 conv(.7-&#39;) iff 3 an Z-�at G containing F�,
I: g 6 5 d, s.t. for every Z � 1 �at H C G which contains F�, both open half spaces of G
de�ned by H contain a k��at of .7�. I
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£-net to allow in t he set points not necessarily in t he original set - t hese a re called weak 

c-nets. Jn this talk we summarize what is known about weak €-nets for convex ranges. 
Specifi cally, we show a construction of a weak net for convex sets in Ed whose size is 

0 ( _.!:_ logx !) , 
Ed E 

where x is a. large fu nct ion of d. We also show the many ~onnectio ns between weak nets to 
other cla ssical concep ts in Combinatorial Geomet ry, such as centerpoints, k-sets, sPl<'f t ion 
lemmas, Tver borg point s, Helly type t heorems, etc. 

Foundations of a Convexity Theory on the Affine Grassmannian G ~ .. d 

b:v R ICHARD POLLACK {joint work wit h JACO B E . GOODMAN) 

G~.,i is the space of k-f\a.ts in R d with its nat ura l topology. We give severa l equivalPnt 
definit ions of t he convex hull of subsets of G ~.d in terp1s of "convex t ransversa.Js" a nd 
--surround ing" among others, which in the case k = 0 specialize to the standa rd not ion of 
coll\·exit!· of point sets in R d. E.g. F' E conv(F ) iff F' meet s every convex set of points 
which meets every !.:- fl at in F. Equivalently, F' E conv(F ) iff 3 a n £-flat G containing F' , 
k ::; l ::; d, s . t. for ever,\· l - l fl at H C G which contains F', both open half spaces of G 
defined by H cont ain a k-fla t of F. · 
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This definition satisfies.

idempotence: conv(f) z conv(con\&#39;(.&#39;F))
monotonicity : f] C SF; 2:» conv(.&#39;F1) C conv(.77-2)
anti-exchange: 1&#39;1. F; e� conv(.&#39;F), F, E conv(]-&#39; U {.F2}). F2 E conv(fU {F1})

-"-�> F] = •�

lt is also invariant. unde.r nonsingular afline transformations a.nd behaves well with respect
to restriction to subspaces. l\-Ioreover, the I\&#39;rein-;\=lilman Theorem (every compact convex
set in G2,�, is the convex hull of its extreme /c-flats) is true. We give several examples
exhibiting some unus11a.l beha.vior. Finally we give a simple chara.ct.erization of "parallel-
closed" convex sets. E.g. a parallel-closed set. J7 C G�l._.3 is convex if and only if� the
corresponding set. of directions (in P2) is the complement. of a union of lines.

Dog Bites Postmen � Point Location in Moving Voronoi Diagrams

by OLIVIER DEVILLERS (joint work with Mordicai (John)

We present. a new applicat.ion of general framework of incrementa.l randomized algorithms
to the problem of moving Voronoi diagrams.

The moving Voronoi diagram is a subdivision of t.he 3D-space (.r, y, t) where the objects
are I-monotone curves describing the trajectories of sites in the plane. The structure can
be computed in nea.rl_v expected output sensitive time. Queries can be answered in l(ig"( n)
time. where a query is: �VVhat. is the nearest. among the 11 sites at time t of a given point 2"�

The structure can also ha.ndle another kind of queries with the same coniple.\&#39;ities: Let
us call the sites postmen, and assume they have constant speed. Now a dog wakes up at
time t a.nd point (m, y), it can run a.t speed v: Who is the postman it can reach and bite
a.s soon as possible? Notice tha.t the query is now 4D: (m, y, 1., r) but we have to assunie
that the dog runs quicker than any postman. The structure can be (lynaniized (post men
ca.n be inserted or deleted). All results are randomized.

Maintaining the Approximate Width of a Point Set

by GÜNTER ROTE

The width of a. set. of points in the plane is the smallest distance between two parallel lines
that enclose the set. We want. t.o n1a.inta.in the set. of points under insertions (and pussihl\&#39;
also deletions) of points and be able to report an appro.\&#39;ima.t.ion of the width of this
dynamic point set. R. Ja.na.rdan gave a solution which reports the width of an 12-point set
with some speci�ed relative error bmlnd epsilon in time ()(blog2 12) using a dzyta .<.lI�u("1lll&#39;e
with space ()(bn) in which points can be inserted and deleted in tirne ()(blog2 12). where
b = �V(� is a parameter that depends on the desired precision.

The algorithm is based on �nding the enclosing two parallel lines for the point. set whose
distance in a given direction is minimal. This is repeated for b evenly spaced directions
among the angular range 0

�� of all possible directions.
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By some easy modifications of this algorithm one ca.n reduce the query time to 0(1) log n ).
t.he storage to 0(n), and the update time to 0(log2 n). One part of this simplification
results from repla.cing a two-level nested binar_v search log2 n by the prune-a.nd�search
strategy log �n:�time. The insertion time results from maintaining the convex hull. &#39;.l.�hus.
in the semi-dynamic case (only insertions or onl_v deletions). the update time is reduced
t.o O(log n) (amortized).

Then we propose a different method: We pla.ce tangents to the points set in b evenly spaced
directions. The smallest. distance between two pa.rallel tangents gives us a.n upper estimate
of the width. Then we start. from these two tangents and search in a neighborhood of this
direction for a loca.l minimum of the width. This is guaranteed to differ from the (global)
minimum width by a relative error of a.t most O(1/122). similarly as above. For fully
(lynamic point sets this leads to an update time of ()(log2 n) and 0( n) storage. llowever.
the query time is ()(b log n + log2 n). The term logz �n could be reduced if we knew a faster
way of looking for a local minimum of the width. given a hierarchical representation of a
convex polygon (in the form of a balanced search tree of the vertices and edges). Only for
the case ofinsertions only can we improve the bounds of Jana�rdan: VVe get 0(log n +log b)
amort.i7.ed update time. O( n+b) storage. and an amortized query time of ()(log n log log n).
Tliis results by applying an idea. of C. Schwarz which allows to reduce the time for finding
a local minimum in this ca.se.

A Simple Proof Technique for Geometric Discrepancy

by BERNARD CIUXZPJLIJZ

It is possible to place n points in d-space so that given any �2-coloring of the points. there
exists a halfspace within which one color dominates the other by as much as C111/2-1/2d,
for some constant (r > 0. This result was proven in a slightly weaker from by Beck a.nd the
bound was tightened by Alexander. It was shown t.o be quasi-optimal by Matousek. Welzl
and Wernisch. The lower bound proofs are highly technical a.11d do not provide much
intuitive insight int.o the �large discrepancy� phenomenon. We develop a proof technique
which allows us t.o rederive the same lower bound in a much simpler fashion. We give a
probabilistic interpretation of the result and we discuss the connection of our method to
Beck�s Fourier transform approach. We also provide a qua.si�optima.l lower bound on the
discrepancy of fixed size rotated boxes, which significantly improves the previous bound.

A Subexponential Algorithm for Abstract Optimization Problems

by BERND GÄRTNFIR

Let H be a �nite set, < a linea.r order on &#39;2� and (I) a function that for given F C_I G Q H,
decides whether F = m<in(�2G) and if not, returns F� Q G, F� < F. How many calls to (I?
does it take to find m<in(2H)?

For deterministic algorithms there is a lower bound of 2lHl � 1; we give a randomized
algorithm that takes expected e0(VlHll calls. The bound can be applied to yield first
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subexponential bounds for some geometric problems: �nding the minimum spanning ball
of a point set if Rd, determining the dista.nce between polytopes in Rd.

Computing the Hausdorff-distance between Geometric Objects in Higher Di-

mension
by HELM UT ALT (joint work with Michael Godau)

(ifomputing the Hausdorff-distance between geometric objects is 1not.iva.ted by questions
from pattern a.nd shape a.nalysis. We generalize the problems considered so far to curves
and surfaces in higher dimensions and �nally to sets of k-dimensional simplices in (1-
dimensional space for a.rbitra.ry ie 5 d. It turns out that for �xed k, (1 the prohleni can be
solved in polynomial time, where the degree of the polynomial depends only on k, not on
d. In fact, for two sets of n. and m line segments in (I-dimensional space the Hausdorff-
distance can be computed, using parametric search, in time O (nm,log3(n.m)). For sets
of triangles (k -_- 2) we give an algorithm of runtime O ((n2m + m2n�)log3(:mn&#39;)). For
arbitrary k-dimensional simplices we obtain (n. + vmou�).

Piecewise Linear Paths Among Convex Obstacles (I)

by OTFRIED SCHWARZKOPF (joint work with Jii&#39;1&#39; Matousek and Mark de Berg)

Leb B be a set of n convex obstacles in the plane, and p, q two points in the same connected
component of R2\ UB. We show that there is a path connecting p and q with at most
0(n2) links, and this bound is the best possible if the obstacles are allowed to intersect
arbitrarily. If they are only allowed to touch, or are obtained as the Minkowski�sum of
disjoint obstacles with a convex robot, the bound can be improved to @( n). We can
compute such a path in time O(n2Q + n.2cr(n)log n) for the general, O(n log n + 72,62) for
the touching case, where Q is the time necessary for an oracle describing the obstacles.
For the pseudo disc-case, the time bound is O(n log Q* + n62), where Q and Q*-are oracles
for the expanded / original obstacles.

Piecewise Linear Paths Among Convex Obstacles (II)
by J 1111&#39; MATOU§EK (joint work with Otfried Schwarzkopf and Mark dc Berg)
We consider the problem discussed in the previous talk generalized to higher dimensions.
For n convex, open and bounded obstacles in Rd, we show that the link diameter of any
connected component of their complement is O (n(d&#39;1)l d/2+�) and (Mund) in the worst.
case. Special cases of disjoint, resp. touching obstacles are also considered, obtaining
signi�cantly better bounds. Our main tool is an �expansion lemma�, saying that if we
enlarge each obstacle in such a way that no new d-wise intersection is created, points
connected by a path avoiding the original obstacles can still be connected among the
enlarged obstacles.
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Approximate Tightness-dependent Motion Planning

by STEFAN SCHIRRA

We extend the notion of the �tightness� of a motion planning problem, introduced by Alt.
et al. for a rectangle, to geometric objects with rotational a.nd sliding joints. Then the
technique of slicing is applied, analogously to the rectangle case, i.e. restricted motions
are de�ned for such objects. If the tightness of a motion planning problem is large, it is
sufficient to consider restricted motions. This observation leads to �t.ightness-dependent�
a.lgorithms, which a.re much more efficient than known tightness-independent motion plan-
ning algorithms for large tightness. E.g., we obtain a.n 0 (122(f(t) + 1)) time bound for
moving two rectangles joint via a common corner, where f(t) is a function depending
only on the tightness. For large tightness, f(,t_) is a constant. The best tightness inde-
pendent bound is 0(n�log `jB Here n is the number of polygon corners in the polygonal
environment.

A Lower Bound for the �3-Points on a Line� and Related Problems

by JEFF ERICKSON (joint work with Raimund Seidel)

We show that the problem of deciding whether in a set S of n points in the plane there
are three that lie on a common line requires Q(n2) time on the decision tree model of
computation, where the only test allowed is the predicate that checks whether a point
p E 5 lies to the left of, on, or to the right. of the directed line through points q, r e S.

The proof consists of a simple adversary argument:

1. Any �collapsible triple p, q, r 6 S� (i.e. p, q, r can be moved s.t. they become collinear,
but no other collinearities are created during the movement) needs to be tested
explicitely;

2. for every n > 2 there exists a set S with IS] = n that has (-)(n2) collapsible triples.

Our result generalizes to an Q(nd) lower bound for the problem of detecting affine degen-
eracies in a set of n points in Rd. It also generalizes to other problems, such as an Q(n2)
lower bound for testing whether (A + B) n C = (0 (for integer sets A, B, C of size n), where

the only operations allowed are tests of the form a + b ä c.
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Open Problem Session

reported by MICHA SHARIR.

Mark de Berg

G&#39;iven n pairwise-disjoint triangles in 3-space, we want to compute the visibility graph of
their vertices, i.e. report all pairs of mutually-visible vertices. A simple method for doing
this is to compute for each vertex v the vertices visible from v. This ca.n be done, using
ray-shooting and related techniques, in time ()(n�/3+�) for ea.ch vertex v, for a total of
O(n7/3+� ) time. The problem is to improve this, hopefully to near�qua.dratic. There is
a method that runs in near-quadratic time and produces a near-quadratic output which
represents in a compact manner all pairs of non-visible vertices, but it seems hard to
extract the complementary information from this structure.

Leo Guibas

If P is a simple polygon with n > 3 vertices, then P has a diagonal; more strongly,
for any vertex v of P, either v l1as a diagonal emanating from it, or its two neighbors
can be connected by a diagonal. The problem is to generalize this to simple �polygons�
whose edges are algebraic arcs of constant maximum degree. Here a dia.gonal would be
an algebraic arc connecting two vertices of P within the interior of P and not intersecting
any edge of P.

Does there always exists a diagonal whose degree is bounded by the same constant degree
of the edges of P? by some other constant degree (independent of the number of edges of
P)? Does the strenger property of simple polygons mentioned above extend to the curved
case? (If one considers a curved polygon consisting of 4 circular arcs forming a �bow-tie�
pattern, a diagonal must connect two opposite corner a.nd thus must ha.ve an in�ection
point, so it cannot .be a second-degree a.rc.)

Can show: Given a simple polygon with kn (straight) edges so that every k-th vertex is
marked, then there is a pair of non-adjacent marked vertices with link distance 5 k. Also.
from each marked vertex 12 either there is a Ic-link path to another non-adjacent marked
vertex or the two marked vertices adjacent to v are connected by a k-link path.

Chee Yap

Given a lattice A(u, v, w) formed by three vectors u, v, w in 3-space, we want to analyze
the structure of a Voronoi cell of the lattice (a Voronoi cell in the diagram formed by all
lattice points). In the planar case, the cell is a hexagon with vertices on a circle. What is
the analogue in three or higher dimensions? In general, give a bound on the complexity
of Voronoi cells in d-dimensional lattices.
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Open Problem Session 

reported by MICHA S IIARIIl 

Mark de Berg 

Given II pairwise-disjoint triangles in 3-space, we want to compute t he visibility graph of 
their vertices, i.e. report all pairs of mutualJy-visible vertices. A simple method for doing 
this is to compute for each vertex v t he vertices visible from r . This can be done, using 
ray-shooting and related techniques , in time 0( n4/ 3 +e) for ea.eh vertex ,,, for a total of 
0( 1/ f3+e) time. The problem is to improve this, hopefully to near-qua.dra.tic. There is 
a ml'thod that runs in near-quadratic time and produces a near-quadratic output which 
represents in a compact mannP.r all pairs o f non-visible vertices, but it seems hard to 
extract the complementary information from this structure. 
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If P is a simple polygon with n > 3 vertices, then P has a. diagoual; more strongly, 
for any vertex v of P, either v has a diagonal emanating from it , or its two neighbors 
can be connected by a diagonal . The problem is to generalize this to simple ' polygons' 
whose edges are algebraic arcs of constant maximum degree. Here a. diagonal would be 
an algebraic arc connecting two vertices of P within the interior of P a.nd not in h'rsecting 
any edge of P . 

Does there always exists a diagonal whose degree is bounded by the same constant degre<' 
of the edges of P? by some other const ant degree (independent of the number of edges of 
P)? Does the stronger property of simple polygons mentioned above extend to the curved 
case? (If one considers a curved polygon consisting of 4 circular arcs forming a. ' bow-tie ' 
pattern , a diagonal must connect two opposite corner and thus must have an inflection 
point, so it cannot .be a second-degree a.re.) 

Can show: Given a simple polygon with Im (straight) edges so tha.t every k-th vertex is 
marked , then there is a pair of non-adjacent marked vertices with link distance ~ k. Also. 
from each marked vertex v either there is a k-link pa.th to another no11 -a.dja.ce111. ma.rkPcl 
vertex or the two marked vertices adjacent to v are connected by a k-link pa.th . 

Chee Yap 

Given a lattice A( u, v, w) formed by three vectors u, v, w in 3-space, we want to ana.lyz<> 
the structure of a Voronoi cell of the latt ice ( a Voronoi cell in the diagram formed by all 
lattice points) . In the planar case, the cell is a hexagon with vertices ori a circle. What is 
the analogue in three or higher dimensions? In general, give a bound on the complexity 
of Voronoi cells in d-dimensional lattices. 
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Bernard Chazelle

Let Q be a unit square and let S be any set of n points in Q so tl1a.t the distance between
any pair of points is 2 �°��. Show that there exists an empty strip intersecting Q and

x/5 A
not containing any vertex of Q, whose width is w(1/n). Note that if the points of S
are lattice points, then the width of such a strip is 1/\/H, and if the points are chosen
independently at random from a uniform distribution then there exists an empty strip
with width `�-� i

Raimund Seidel

Given an n X n integer grid. We want to �nd a large set S on the grid having no 3 colinear
points and no 4 cocircular points. How large can the size of S be? Clearly O (n) is a.n upper
bound. Can the size be �+� A class of examples with |S| = @(n2/3") is apparently
known.

Ken Clarkson

Scattered Data Interpolation: Given a �nite set S in 3-space, viewed as points on a surface
z : f(x, y). We want to construct a piecewise-linear interpolation of S that will approxi-
mate f closely. Speci�cally, we seek a triangulation T of the my-projection S "� of S, so that
H ff � f is minimized, where fT is the piecewise-linear function that passes through the
points of S and is linear over each triangle of T, and where ||g||oo = max�, |g(:1:,  ` We
assume that f is known. We note that if f is convex (concave), then T is the projection
of the lower (upper) hull of S. If f = x2 + y2 then T is the Delaunay triangulation of S *.
What happens when f(:c,y) = asy? What is T? How can it be constructed? (Standard
heuristics, such as edge �ipping or insertion, do not seem to work.) Is there an f for which
the problem is NP-hard?

Marc van Kreveld

Optimal construction of the (5 k)�levels in an arrangement of n planes in 3-D: The goal
is to construct these levels in time O(nk2 + nlog �L(� The best known algorithm, due
to Mulmuley, takes time O(nk2log A An optimal deterministic solution (with 0(nk +
n log n) time) is known in the plane (by Everett, Robert and van Kreveld), and randomized
optimal solutions are known for all dimensions 2 4.

Panka j Agarwal

Let I� be a collection of n :1:-monotone arcs, each pair of which intersect in at most a
constant number 3 of points. What is the complexity of a single level in the arrangement

1
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of I�. In other words, how many vertices of the arrangement are there, with exa.ctly k arcs
pa.ssing below them. for some �xed k?

Leo Guibas

Given 1:. triangles in the plane, �nd the region of the plane covered by a.t lea.st half of the
tria.ngles. or the region covered by most triangles. [These appea.r to be n2�11a.r(l problems]

J änos Pach

We say tha.t k points in the plane a.re in genera.l position if all  �. distances that. they
determine a.re distinct. For a �xed k, almost all k-tuples of any n.-elernent set in the plane
are in general position (that. is, the fra.ction of k-tuples in general position tends to l
as n. tends to oo). This also holds if k is allowed to grow (slowly) with n: lt. is true if
k z: o(n1/7), and false for k :: 121/4. How large can k = k(n) grow a.s a. function of n. so
that the property still holds?

Jack Snoeyink

In 2-D: Given two convex polygons A, B, and a Center of rotation, compute the smallest
angle by which B has to rotate about the given center to meet A. (Can be done in linear

time.)

In 3-D: Given two convex polyhedra A, B, and a. line of rotation, compute the slnallest
angle by which B has to rotate about the line to meet A. Can this be done in sul)qua(l1�at.i(&#39;
time? (Parametric searching does not seem to help because B ca.n enter a.nd leave �3� several
times as it rotates.) &#39;

Chee Yap

Given two placements of a line segment 3 = pq, we want to move s �linearly� from one
placement to the other, meaning that one endpoint, p, moves at constant speed on the
straight segment connecting its initial and �nal positions, while 5 rotates simlnta.neous|y
about p at constant angular velocity. Given a convex polygon A, we want to compute
whether 3 collides with A during its motion.

Ken Clarkson

How hard is it to compute optimal 6-nets (6-approximations) for a given set of objects
and a collection of ranges? As an abstract problem this is the minimal �hypergraph cover
problem and so is NP-hard. What happens in geometric settings�?
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