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Principles of Robot Simulation and their Application
in a PC-based Educational Robot Simulation System

Dipl.-Inform. C. Laloni

Technical University of Braunschweig
Institute for Robotics and Computer Control
Hamburger Str. 267, W�3300 Braunschweig

Tel.: (49) 531 391-7460
Fax.: (49) 531 391-5696

E�Mail: cla@rob.cs.tu-bs.de

Abstract

Modeling and simulation of robots and robot work cells is one of the main aspects in the �eld of
robotics research. The main task of simulation systems, which are used e.g. in CAD systems, is the
visualization of a virtual environment (e.g. a planned building in an architectural application), with
the aim of giving an illusion to the spectator, as close as possible to reality. These visual simulation is
achieved by different techniques, which have been introduced by the computer graphics community.
e.g. 3d views, multiple light sources, true color displays, ray tracing etc.
In contrast to such systems, a robot simulation system is used for off-line robot program develop
ment, and therefore has to satisfy additional constraints such as kinematic and dynamic models to
achieve a useful simulation. The kinematic model of a robot arm describes the geometric structure
of the robot arm links, including joint angles and joint velocities. For a description of the robot
kinematics, coordinate systems are affixed to each link; their positions and orientations can be
described by homogeneous transformation matrices. The Denavit-Hartenberg notation is used to
specify the relationship between two adjacent links using a set of four parameters, including the
free joint variable. .
To achieve a 3d-graphical simulation of such a kinematically speci�ed robot, previously modeled
bodies can be attached to each link coordinate system. These relations are speci�ed by af�xments,
which are also used to describe the connections of different objects. With these af�xments object
relations such as �object A is mounted to object B�, or �object C is gripped by the robots hand�
can be modeled.

In addition to the robot arm kinematics it is very useful during off-line robot program development,
to provide the relation between the cartesian coordinates within the robot work space, an the
corresponding joint variables. This relation is known as the inverse robot arm kinematics and
offers the possibility to specify robot movements relative to a user de�ned cartesian coordinate
system.
With the additional use of a dynamic robot arm model, the robot simulation can be improved and
even critical effects such as overshots can be simulated correctly.
Finally, the term time plays an important role in robot simulation, because the relation of the
different objects within the simulated world can vary during the course of time. Especially, if
the simulation computation can only be done offline, and the simulation time is not identically
with the simulated time, it is necessary to get information about the elapsed time to execute tlie
simulated actions in the real world environment.
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1 



Advanced Techniques in Robot Simulation

Dipl.-lng. Christoph Woenckhaus

Dipl.-lng. Rainer Stetter

Institut for Tool Machines and Industrial Engineering

Prof. Dr. J. Milberg

Technical University of Munich

introduction

The number of robot installations in industry has
increased signi�cantly over the past several years.
To support planning of new complex robot
applications, several offline programming and
simulation systems have been developed.

The Institute for Tool Machines and Industrial

Engineering (iwb) of the Technical University of
Munich is developing its own offline programming
and simulation system, called USIS (Universal
Simulation System) [1,2]. The goal of the
development is to create a system which, one the
one hand, contains a precise model description of
the work cell to simulate robot behaviour accurately.
On the other hand, new programming and planning
techniques will be implemented to reduce
programming efforts significantly. This paper
presents some results from this research work 1&#39;

USIS in General

A basic feature of the USIS is the design of a robot
work cell. The user is able to select different cell

components from several libraries, for example
about 30 different robot types, containing up to six
different control languages. The geometrical
description of parts, which are not stored in this
libraries can be passed over from CAD-systems
using different interfaces, like VDAFS, IGES or
SLA.The components have to be placed interactively

after being choosen. This task is done by the use of
several interactive functions to change the locations

of components.
In the next step programs are generated offline in
the robot speci�c control language. USIS offers
different interactive functions for graphical robot

programming.
Another feature is the execution of these programs
in real time, which allows the user to simulate

operations of different robots simultaneously.
Different actions can be synchronized by input and
output signals between different simulated robot
control systems. While simulating offline programs it
is possible to check for collisions in real time. The
application of USIS is not limited to robot simulation,
also the programming and simulation of tool
machines [3] and the simulation of manual work
systems [4] is feasible.

To meet the requirements for a quick validi�cation of
new assembly concepts and to increase planning
efficiency, it is important to apply sophisticated
computer graphics to the problem of graphic robot
simulation. USIS uses the capabilities of powerful
UNIX-workstations and the graphic standards
PHIGS (+) and MOTIF.

Advanced Model Description

In order to get usable simulation results exact model
descriptions are necessary. This does not only affect
the geometrical model description but the real
component behaviour. Some examples for this

1 The work on which this report is based is sponsored by the Deutsche Forschungsgemeinschaft (DFG)
within the framework of the special research projects SF B 331 and SFB 336
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extended model description are physical effects, like
gravity, flexibility or friction, which are implemented
into the USIS [5]. E.g. under the effect of simulated
gravity a part, which is released from a gripper, is
forced to fall down. Coupled with fast algorithms for
collision detection it is possible to calculate the final
position of impact. with the development of faster
and lighter manipulators robot dynamics becomes
increasingly important. The determination and
solution of the system of nonlinear differential
equations is done by integrated dynamic simulation
packages [6]. Another topic is the simulation of
flexible material behaviour, for example a flexible
pipe between the robot and the gripper. In addition to
this different sensor systems, like a laser sensor [7],
a laser scanner or a CCD-camera [2] are integrated
into the USIS system, too.

Graphical Robot Programming

An advantage of offline programming is the
possibility to develope robot programs without using
the real robot. The most common method of graphic
robot programming is the graphic teach-in. To
generate a whole path the user has to identify
certain robot positions. Teaching a position, a new
command line is automatically inserted into the robot
program. In order to do this the programming system
automatically computes the new robot coordinates
and wams the user if a desired position cannot be
reached. This method is very time consuming and
does not use all available information, which the

simulation model contains.

A more advanced method of graphical robot
programming is realized by using the so called frame
mode. Positions are no longer stored in absolute
coordinate values but with respect to a reference
coordinate system linked to a component. If this
component is placed to another position during the
planning process, the program positions are
adjusted automatically and the program will run,
using the new location of the part.

The most comfortable method of offline robot

programming is the automatical path planning. In
USIS this is done by a self developed algorithm,
which searches a collision free path between an user
de�ned starting point and a destination point [8]. To
find this robot track, it is necessary to have exact
informations about the assembly cell environment.
These informations are obtained from several sensor

3

systems, which are also implemented in USIS. The
result of path planning is a complete optimized robot
program, which is written in the speci�c robot control

language.
In addition to the path planning algorithm grasp
operations are planned automatically by the system.
too. The planning process is done in two steps. First
an optimized arrangement between gripper and part
is choosen with respect to geometric restrictions. In
the second step the generation of the robot program
for the oomplete grasp sequence is automatically
done. Both, path planning and grasp planning, can
be used in combination. So the planner only has to
identify the part to grasp and the start and
destination location. USIS then automatically
generates the necessary program statements for a
collision free grasp sequence, the transfering motion
and the droping motion.

Numerical Optimization of a Layout

Planning robot work cells using three-dimensional
simulation systems is an effectiv way to minimize
planning efforts. While creating a layout of a work
cell contradictory parameters must be considered. In
most cases the context between these parameters is

very complex and a manual change will not lead to
the optimal solution. For example there is still a great
potential to optimize the component arrangement in
order to get the shortest possible cycle time.

The basic idea is, to link the three-dimensional

simulation system to a numerical optimization
package [9,10]. An optimization algorithm wili
suggest changing locations of different cell
components. After this the robot programs will be
automatically updated to the new locations using the
so called frame mode. Subsequently this layout
configuration is estimated by the execution of the
modi�ed robot programs. The result from a special
assessment function is a so called quality value.
which describes the quality of the current layout
configuration. This value is given back to the
optimization algorithm. Now this algorithm is able to
suggest new component locations, and the next
optimization loop starts.

With this system the planner is able to find optimized
locations for different cell components, robots or
sensor systems. Some possible optimization
criterions are for example the cycle time, the sun: of
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and the draping motion. 

Numerical Optimization of a Layout 

Planning robot work cells using three-dimensional 
simulation systems is an effectiv way to minimize 
planning efforts. While creating a layout of a work 
cell contradictory parameters must be considered. In 
most cases the context between these parameters is 
very complex and a manual change will not lead to 
the optimal solution. For example there is still a great 
potential to optimize the component arrangement in 
order to get the shortest possible cycle time. 

The basic idea is, to link the three-dimensional 
simulation system to a numerical optimization 
package (9, 10). An optimization algorithm will 
suggest changing locations of different cell 
components. After this the robot programs will be 
automatically updated to the new locations using the 
so called frame mode. Subsequentiy this layout 
configuration is estimated by the execution of the 
modified robot programs. The result from a special 
assessment function is a so called quality value, 
which describes thf:: quality of the current layout 
configuration. This value is given back to the 
optimization algorithm. Now this algorithm is able to 
suggest new component locations, and the next 
optimization loop starts. 

With this system the planner is able to find optimized 
locations for different cell components, robots or 
sensor systems. Some possible optimization 
criterions are for example the cycle time, the sum of 



angle to cover and the dynamic load while executing
a robot program.

Conclusion

Advanced three-dimensional planning and simulation
systems should enable the simulation of complex
work cells as realistic as possible. In addition to this
different planning tools should support the planner
with automatic functions, like path planning
algorithms or numerical layout optimization
packages. USIS embodies the discussed features of
advanced graphic robot simulation systems. USIS
has been applied to solve various problems and has
proved its functionality in several industrial projects.
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Today the most significant problems in robot programming arise in the tm(.&#39;(�I�I(liItli(�.\�

given by robot and environment. Mechanical inaccuracies on the manipulator level and

uncertainties in the environment cannot be compensated by ollline progratnming systems.

Local adaptations on path generation level have to be done via teach-in C.()ll)m1lll(.lS by human

Operator. Even small deviations in position, orientation and form of all the objects to be

handled are not allowed because the task execution will lail in an uncertain cnvit&#39;otttnettt.

Graphical simulation of robot tasks and downloading the generated commands to the real

robot is limited to the joint or cartesian motion level. This approach is only ttselul it�

geometrical consistency m� real environment and the simulated one can be guaranteed. This

is a demand that cannot be met with available programming systems.
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Similar problems as in robot ofllinc programming arise in the tield of I(:lc&#39;rol>n1it&#39;.s- with

time delay especially in space and subsea applications. l)irect visual feedback in a few

seconds time delayed control loop is not feasible for the lnnnan opc.rator to handle the robot

movements �in a suitable way.

The uncertainty problem in both application areas can be solved by increasing rizrrmzomy

on the execution level. To achieve this goal there are a lot of things to provide. The

most important requirement is the ability ol&#39; .s&#39;wr.mry perception and sensor data processing.

Without accurate information about the actual environment �successful task execution can

be considered as impossible in an uncertain environment. High level planning lacilities for

task scheduling or intelligent error handling mechanisms are required tor lull autonomy but

state�of�the-art techniques are insullicicnt to provide adequate tools.

&#39;l�herel�orc we favour a shared autonomy concept that distributes intelligence to man and

machine. Local sensory feedback loops are executed by the robot system, global task level

jobs have to be specilied interactively from a human operator. Coarse planning activities have

to be done on a task-oriented level by human intelligence, line path planning on manipulator

level takes place on a sensor based control level with predelined artilicial intelligence.

For this shared control approach we have coined the term telesezzsmpmgrmnnzing. This

means teaching by showing with the aid of sensory relinement in a completely simulated

world on a task�oriented level. The graphical oflline programming concept is extended by the
processing of simulated sensory data. Not only joint and cartesian in formation is gathered by

graphically guiding the robot through the task, but also simulated sensory inlorntaliort to store
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them offline as nominal patterns for subtask execution on a loe.al feedback loop level. Besitles
this sensory perception Simulation the shared autonomy concept has to provitlt: interactive

tools to describe various tasks by different parameters. The operator has only to decide
what kind of sensors and control algoritlnns should be used at each local sensor eontrolletl

feedback loop. The line motion control to handle uncertainties occur indepentlent of any

human influence both at the simulation side and the real one.

ln the field of telerobotics the time delay problem can be solved with the same approaeli of

telesensorprogramming. l�I&#39;c&#39;rIir&#39;tii2e sinmlalirm �-� graphical and functional �~- is the medium

for the operator to tclemanipulate the remote system online. He only has to guide the robot

in a rough manner through the task space and to activate specific sensor control pliases. /\Iter

sending these gross commands to the remote system the real robot will be able to execute the

desired task with his own local autonomy alter the delay time has elapsed. On the basis ol

the online requirement realtime power is an important aspect in spite of simulation Iaeilities.

The main feature of our telerobotie concept is to replace the time-delayed visual l&#39;ee<lbaek by

predictive stereo graphics with sensor simulation providing a supervisory control teeliniqne

that will allow to shift more and moi� autonomy and intelligence to the robot system.

The main focus of this paper lies on the model based simulation of robot, workcell and a

set of typical sensors. We are able to emulate the behaviour of laser distance and force~torque

sensors under realtime considerations. Stereo vision is simulated by the tools of graphical

animation as the framework for a model based vision approach. These different kinds of

sensors can be used to develop and test new types of sensor fusion algoritlnns to proxritle

efficient control schemes and to verify the proposed telescnsorprogramming approach.
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1 Introduction

Interactive computer graphics allows now to view and to manipulate different kinds of
information interactively so one can simulate the behavior of complex systems in real-time
to analyse and optimize the systems. There are several commercial and research systems
for robot simulation available  ,` However, in existing robot simulation systems, vision
systems especially dynamic vision systems are scarcely taken into account. In fact, graphic
simulation of vision based robotic workcells is not only needed for the off-line planning and
programming of an advanced robot, but also useful for the investigation of its real-time
control strategies and algorithms.

As well known, arti�cial vision is of primary importance for an intelligent robot. It
extends the ability of robots to cope with uncertainties and to work adaptively in changing
environments.

At present, the vision systems in industrial use remain in general monochrome, two-
dimensional (2D), static and most often two-valued. Being at such rudimentary level, they
are limited to some simple robotic tasks, especially pick-and -place type manipulations.
Many potential applications call for more advanced robot vision, prossessing characteristics
such as multi-gray-levels, 3D, dynamics and colour. The so-called dynamic visual control of
industrial robots �implies that the robot control is based on computer vision which should
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offer the changing world information all along the robot manipulative process. This invol-
ves on one hand a continuous processing of time varying imagery, on the other hand the
integration of vision into the different control loops in a robot system.

This paper presents our preliminary work for establishing a graphic simulation support
for dynamic vision based robots, byextending a graphic interactive robot simulation system,
the Robotics Kernel System (RKS) [3, 4].

2 Dynamic Vision based Robotic System

Dynamic vision is capable of sensing in process the environmental situation and the ma-
nipulator position, thus permitting visual servo control and on-line decision making of a

robot. 
In [2], a theoretical analysis on dynamic vision based robotic systems and an experi-

mentalrealization were presented. We use now the model described there (�gure 1).

task command :1-fffII.tff!-&#39;jjIII...;jIi/�iiIIi.L: ,:�,b?i  �:� 0¸� ~-�ff:-~jf�I.«jjjI-jjjll--jjf�l--fl task world
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end-e�ector posinon vision Subsystem
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Figure 1: Dynamic Vision Based Robot Systems

Additional to a conventional robotic system consisting joints and joint servo control, the
vision subsystem allows to control the robot arm according to the actual external situations.
This vision subsystem in its turn has two basic kinds of roles: proprioceptive and extero-
ceptive ones, corresponding often to "end-effector position measurement� and �environment
sensing�. Robot vision in either static or dynamic mode serves primarily as exteroceptive
sensor. However, in "static mode, the vision subsystem recognizes the environment which
supposed to be stationary while the robot system works. It is only in dynamic mode, that
vision forms a feedback in a closed control loop.

3 Graphics Simulation

Concerning the robot and the environments, the geometric or kinematic model is usually
adopted in existing robotic simulation systems. For vision based systems, an additional
model is needed which represents the transformation �om the observed scene to the digital
images in _ the frame buffer and further to the information needed by the decision and
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control component of the robotic system. This is done by a viewing transformation to the
vision systems coordinate system [1] and by a �ltering process which emulates the image
preprocessing (e.g. �À The viewing transformation is based on the object hierachy (e.g
Figure 2).

Figure 2: Example of the Object Hierachy

Additionally for dynamic vision, dynamics in the vision process have to be considered,
thus, the motion related problems, such as the bluzzing caused by the relative movements
between the camera and the observed objects, and also the dynamic behavior of the robot.
For the first step, the time delays due to image processing, control calculations and robot
inertia are essential, as they will in�uence greatly the system control performance. The
overal simulation model is as depicted in Figure 3.

idealized -
. �ltenn .trans vzew simulated 

image

emulation of robot simulated image
or maschine contro sensor data processing

Figure 3: Simulation Model of Dynamic Vision Based Robot Systems

viewing 
formation

scene

In the graphics simulation, it is important to present the modeled information in a
suitable manner and to allow easy manipulation of them. At first, multiple user-controlled
windows allow to present all information individually. These are for example: users view
of the environment, vision systems views, images after preprocessing and final vision infor-
mation.

Second, vision system parameters, for instance the image resolutions of the cameras and
the frame buffer, the placement of the lights and the cameras, the acquisition frequence,
the target tracking windows, and the position of the cameras can be changed interactively
using powerful graphic interaction features. Of course, the whole work environment of the
robots can be conveniently de�ned too.

Other than the uses mentioned above, this work is also helpful for vision system ca-
libration and evaluation, model based vision and model based control of the vision based
robots.
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4 A Simulation Example

Our preliminary realization is based on RKS, which offers powerful interactive modeling
and simulation tools. Using the existing features of RKS, we de�ned an additional object
called �eye�, that can be put onto individual objects like robot hand, car or room parts.
To simulate the vision system, a procedure for image processing is extended to RKS. A
module emulating the robots dynamics is implemented preliminary considering only the
time delays. This module is to be extended later.

In the simulation example, the robotic system under consideration consists mainly of
the following three subsystems: a 6 DOF manipulator and its controller, a dynamic vision
system, and the working environment including the workpieces to be manipulated. The
dynamic vision system considered here is composed of a hand-held CCD camera, a �xed
camera, an image preprocessing board and a micro computer.

5 Conclusions

Advanced robot systems will be dynamic vision controlled. Interactive graphics simulation
helps to analyse the effectiveness of sensor placement, characteristics and supporting envi-
ronment for the robot. Considering the dynamic behaivior is important for vision systems
calibration and evaluation. If the control strategies and algorithms are considered in the
model, simulation will also help to investigate and to develop, optimize the whole robot
system.

Using powerful graphics interaction techniques and multiple windows the user can view
all information and de�ne the parameters conveniently. Our work discussed the model for
the graphics simulation of dynamic vision-based robot systems and has shown an example
realized using RKS. It shows also, that RKS can be easily extended to simulate new appli-
cations. The next step will be to integrate multi-media functions into RKS. This will allow
to display real and simulated vision data simultanously.

Further works will be also, the improvements of the system modeling and simulation,
and on the other hand, study of novel methods for the planning and control of the dynamic
vision based robot, utilizing the simulation support thus developped.
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During their studies. students of the Teclmisrlie l&#39;uiyersit..�it Miiuchen can

attend a tutorial on robot programming. One aim of this tutorial is to present.

to the students the state-of the�art technology ol robot progranuning, and

therefore some work has been glone to integrate exercises which use a robot

sinmlation system.

The purpose of these exercises is to save time in learning to work with a

robot simulation system. &#39;l&#39;his is why the system must have an easy-to-learn

user interface and its program operated intuitively.

So_me characteristics of robots are very (lillicult to recognize in reality.

For example, the difference in robot motion between straight movements and

. those with joint interpolation. Using a real robot one can see these motions

only sequentially, whereas a simulation system can show them at the same

time. Another of these characteristics is the so called continuous path. which

is only visible in high speed motions of the robot. l_ln.&#39;nrt.u|iately. this type

of motion is an exertion for the robot and should therefore be avoidecl. All

these ellects can easily be shown with the help of a simulation system.

In a further step, the simulation system will be used to verify the correct-

ness and to test the reliability of programs that run in the real robots. &#39;_l°he

main purpose of this step is to increase the safety of our robots.
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TOROS: Graphical Toolbox for Robot Simulation

C.Balaguer, F.J.Rodr(guez, C.F.Rodrfguez, A.Garcfa, A.Bax1rientos, R. Aracil, E.A.Puente

Div. de Ingenierfa de Sistemas y Automatics (DISAM)
Polytechnical University of Madrid, SPAIN

EXTENDED ABSTRACT

Graphical environments for task and path planning, simulation and off-line
programming are basic tools for design and analysis of robotized systems.
Integrating graphics and interactive features is specially suitable for dealing with
problems like generation and validation of tasks sequences, planning grasping
conditions and collision free path generation in autonomous or assisted way.
Simulation tool provide a safe way to foresee robot&#39;s capabilities, drawbacks and
pro�ciency, during design or application stages. A great advantage is acquired, if
experimenting on the real system is impossible because it is not constructed yet,
or if system&#39;s environment conditions are hard to reproduce.

In this paper we introduce TOROS (T001-box for RObot Simulation), a
software tool deu...-loped by DISAM during the last three years. TOROS is an
integrated environment for design, path planning and simulation of complex rol:.::>t
systems, such as redundant and multirobot systems. The system is graphically
displayed by the integrated graphical simulator. There are other modules for robot
parameter adjusting, automatic path planning and collision-free veri�cation.

The graphical simulator is the central module of the tool. It provides an
easy way to represent geometric models of the robot(s) and its environment. The
representation is �xlly three dimensional, including wire and solid modelling and
is displayed using one or time mobile or static views. It is also possible to get
speci�c sections of the 3D model, for example, a plane section by the work plane
of a robot which may be very useful in collision-free veri�cation and robots
kinematic deign.

The simulator is commanded kg,� an internal clock. Anjmati on speed can be
increased or decreased adjusting the clock period. The clock minimum period is
limited by the calculation time. Anyway applications for ASEA IRB-2000, PUMA
560, and AMR2 robots, con�rm that simulation is always fast enough for the real
system. During each clock iteration the following sequence must be completed: a)
transformation of mobile objects, b) veri�cation (if selected) of collisions between
robots themselves, robots-environment, robot-workpieces and workpieces-
environment, c) control of input devices, and d) composition and redraw of scenes.
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Robot and environment modelling

Geometrical models of robot(s) and its enviromnent are constructed using
rectangular polyhedra, generated by polygon linear swept. Although, boundary
representation is used internally. There are three types of objects: active objects
(robots), passive objects (workpieces) and �xed objects (obstacles). Objects
modi�cation is performed easely editing speci�c �les.

An active object is an object able to produce movement by itself. There are
two types of active objects: robots and vehicles. Robots are represented by solid
links, s- ;l rotation or translation joints. The relationship between links and joints
is based in homogeneous transformation according to Denavit-Hartenberg
parameters. Any type of gripper or tool can be added at the tip of the robot&#39;s last
link, de�ning its solid model and its �ng..~rs&#39; movement type (discrete or
continuous). The robot�s TCP is de�ned for each gripper or tool.

Vehicles are represented by a solid�s set without articulations. Their
movements are speci�ed by their position and orientation, constrained to tay on
the defined �oor. Slight modi�cations have to be made to describe the behaviour
of other possible active objects, like belts, transportation devices, etc. in order to
include their models into the environment.

Passive objects cannot move by themselves, but they can be held and moved
by an active object. The passive object&#39;s position and orientation may be changed
only by the action of an active object. In this sense they can be seen like
workpieces. Finally, some passive objects in the environment can be considered
�xed obstacles like floor, walls, etc.

Two objects may be related by a grasping or holding relationship. In such
case if one is moved, also does the other one, 0 they are said to be "linked".
Although only active objects can "generate" movement by themselves, for some
tasks it is easier to move a passive object following a desired path and
automatically produce the appropriated movement for any object linked to it
(either active or passive).

Collision-free veri�cation

Automatic collision veri�cation between objects can be activated if
necessary. Every solid is veri�ed to not interect any other which is not related to.
For example, if a robot is grasping a bar, the bar is veri�ed with every robot link,
except the git:-.sping gripper, which is obviouly collided with the bar.

Due to the fact that exhaustive intersection veri�cation between every side
and face of both solids is time consuming, a set of very fast checks are performed
before doing that. Thi set of sufficient or necessary conditions for intersection or
not-intersection are applied in increasing complexity order.
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Another important feature OfTOROS system is the collision-free verification
in manual mode. If an object (robot, workpiece) is moved and collision-free
veri�cation is activated during the movement, it is not possible to collide the
object, i.e. only guarded movements are produced.

Path planning� module

The path planning module permits the manual or automatic generation of
robot trajectories. For manual operation a simple line editor and an instruction
interpreter have been implemented.

Automatic collision-free trajectory generation is based in path searching in
C-paces. Two methods have been implemented: a global method and a local one.
In the global approach, several complete C-spaces are computed and combined.
The computation of C-spaces is not quite fast, but it is possible to store them for
search many other paths. &#39;i,rajectoi-ies are computed very fast and they have good
quality.

The local method builds the C-space and searches the trajectory at the same
time. In both methods (global and local) path searching is performed using the
heuristic searching algorithm A�. The local method takes advantage of the local
information for auto-adjusting and adapting the algorithm parameters on-line.
Normally, only a sub-region of the free space is handled. Local C-space generation
is fast but path planning is slower than in the global method.

Robot parameter adjusting module

As mentioned before. the environment can be used for design robot&#39;s
kinematic structure, especially when reachability, con�guration or accessibility are
important features. This module was developed to show the effects of kinematic
parameter changes in robot structure. Joint limits or Denavit-Hartenberg
parameters can be interactively modi�ed and consequent effects are displayed
immediately in the simulator. Links shape and size can be easily modi�ed as a
new input of the simulation environment.

Conclusions

The "TOROS" environment has been successfully applied and checked in several
R&D projects, in which DISAM has been involved:

- For collision-free path planning in complex environments in the EUREKA-
EU-18 project "Advanced Mobile Robots for Public Safety" (AMR).

- For path planning and simulation of a multirobot syrttem in CICYT ROB89-
O174 project Coordinated Control of Multiarm Systems" (CUCO).
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For path planning and simulation of a multirobot eyr: ~ m in CICYT ROB89-
0174 project. Coordinated Control ofMultiarm Systems" (CUCO). 
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- For design and path planning of a robotized system for electrical hot lines
maintenance in the IBERDROLA S.A. project "Robot for hot line
maintenance" (ROBTET).

- For design and path planning of a construction robot in the ESPRIT 6450
project "Assembly Robot System for Computer Integrated Construction"
(ROCCO).

An example of path planning application in bay construction of industrial
buildings using a 12 meters long 7DOF robot, is presented in Fig. 1.

18
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Robot simulation � an overview

Robot simulation techniques have found their way into commercial
products. This contribution gives an overview about commercial and
academic systems. It tries further to show areas of applications,
problems of use and further developments.
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(JSG hased Collision Detection

A method for detecting collisions among complex objects modelled mm -..~ozwxuc::\o um
geometry will be presented. The algorithm is performed in three steps bounding Volumes
reduce the possible colliding primitives to a small number, spatial SUbdl\-&#39;ls�lUn detects pairs of
primitives to be tested. and the tests are performed on an analytical bar-vs l&#39;he goal of the
method is to provide a powerful tool for simulating realistic motion in &#39;.;&#39;-;.�rlllptIlL�l&#39; zmimation.
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Using Graphics Algorithms as Subroutines in Collision Detection
Simulation

Heinrich Müller, Fachbereich Informatik, Lehrstuhl VII (Graphische Systeme),
Universität Dortmund, Postfach 500500, 4600 Dortmund 50, Germany

Collision detection is the central task of motion planning, in on-line planning simulations as well
as in precalculating the con�guration space for searching optimal paths. Collision dete<:.tion
can be formulated as follows:

Input: A geometric environment, a geometric object.

Output: For an arbitrary given location of the geometric object in the environment, the
information whether the object intersects the geometric environment.

A closer look at this problem shows that it is related to the visibility problem of Computer
graphics. This observation has led e.g. to the use of raytracing for collision detection [Pellegrini,
1992]. Raytracing is a well know technique of photorealistic rendering in computer graphics.

One approach for analyzing con�guration spaces is to carry out a regular cell decomposition.
This is in fact a task of rasterization or scan conversion which is centra.l in raster graphirs.
This ol)servation was used by [liengyel et al., 1990].

In our contribution we Focus on the possibilities of using further graphics algorithms for Collision
detection purposes, in particular the z-buffer-algorithm.

References

M. Pellegrini, Incidence and nearest-neighbor problems for lines in 3-space, 8th ACM Sympo-
sium on Computational Geometry� 1992, 130-137

J. Lengyel, M. Reichert, B.R.. Donald, D.P. Greenberg, Real-time robot motion planning using
rasterized computer graphics hardware, Computer Graphics 24(4) 1990, 327--336
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In recent times the licld of coop:-rating robots has bvvn gaining more ancl more
interest. However, the task of programming r&#39;oopr&#39;r:\l.ing robots is vvry cnunpIc-x.

and there is still. a_ lot of r«.&#39;sea.r¢:h to be «lone. One snhproblc-m to be l.r¢-atml in
this paper is planning m||ision-frm- paths for voopvrating robots with nlr-p«-mlvnl.

tool center points� (TC-l�s) in environments with obs|.a«&#39;h~s. (&#39;-oHi;:ion means robots
rolliriing with each other or with their vnviromnvnt, as wc-H as rt-:u&#39;hing tlwir joint

limits.

A planner for these tasks has to plan a pair of tiIIn2�syn«�hmnons paths wit h om-

TC!� moving along 51 given bath rviativc to the other robots ICI� Irauux IIut-sv

planning tasks are subdivided into two groups:

o transport. tasks, in which the points WIICH! the synchronous pal.hs iwgin and

end are given, and the relative �path between the &#39;I&#39;(}l�s is reduced to a constant

transformation, and

0 manufacturing and assembly tasks, with one robot holding a workpim-v in a

continuously changing position so that the other robot (�an perform its task on

it. ilcre, the bvgirming and mid point of the s_VIn&#39;hronons paths and the rhos<~n

syllchrolmlls paths tiI(�ll|S(&#39;iV(&#39;S are inure or ivss a.ri)iI.rary, while the rvia.t.i\&#39;<é path

between the &#39;l&#39;Cl�s has to be ¢&#39;x(�(�lIt(&#39;«i without rollision or rvarhing the robot&#39;s

joint limits. 
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In rcce11t times the lidd of coop,•rali11g roliols ha.<; l..-1•11 g,1 i11i11~ 1110w ;111,I 111on· 

interest. llowcvcr, llie Lask of programming 1·oop1•rnl.i11g roliol.s is vny rn111pl1•x. 

and lhcrf! is stilt' a . lot. of rcsc.i.rd, l.o h11 '10111•. 0111! s11hprol,l.-111 t.o lw I w ;1 1.t-d i11 

thiiJ pnpcr is pla1111i11g rnllision-fm• paLlrn r,,r rno1wrnl.i11~ rnhol.s wit.Ii d«v 1 ·11d<•11t, 

Looi u~nlcr poi11ts· (Tt'Ps) i11 c 11viro1111w11l.s wi t. It 111,s l.adPs. ( \,lli.; io11 111<·.111s rol,ol.s 

n,lli1li11g with <'ad, ot.lic r or wit.I, Llwir 1•11\·ir11111111'11I . ;t:; w« ·II :,s n •,1dii11~ 1.lwir joi111. 

lirnit.s. 

A pla1111cr for 1.hes<' la.c;ks ha.~ to !'Ian a p;1ir of li11u:-!-y 11d1ro11011s paths wil Ii 01w 

TCP moving along a given path rdativc l.o lire otlwr rol,ol.s T < '.(> fr.1111<·. Thcs,· 

planning tasks arc s11l>elividf'cl i11t.o two groups: 

• lra11sporL la.'lks, in whid1 lhc points wlwre the sy11d1ro11011s paths lw~i 11 n11d 

~rul arr. givr.11, and the r<'lativ" l>alh bdwccn tl,r. T C Ps is reduced 1.o a n>11 sL.i11t 

traw;formalion, and 

• 111a11ufacluri11g and a.o;semhly la.c;ks, wit.Ii our. robot lu,ldi11g a workpi,,, . ., i11 i'I. 

co11li11uo11sly changing i>osi t.io11 so lhat I.Ire ol.lwr rohol c.i.11 p1•rforrn il.s l.1sk 011 

it . llr.rc, lhe lwgi11ni11g n11,I ,·rul poi11t. u f I Ii<' sy1wlr ro11011s pat.Its a11d t.lu• < hww11 

:o.y11chro11011s paths Llw1wwlv1•s ,He 1110n: ur less nrl,il.rary, while Llw rc-lat.i,·<· pnl I, 

bclwcc'.11 Llw TCP; h:1!'! l.o lw 1•x,·c11tcd wit ho11t coll isio11 or rl' ild1i111~ I.Ill' rol,ul.'s 

jui11l li111ilR-
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This paper desrrihes three planners. The lirst solves the problem of lincling a

pair of S_VIl(�i|f()l|()|lS paths for transporting ohjc:-c:ts in an enviromnent with uhsl..&#39;n&#39;h&#39;s.

The second and third are «h-signed to liml a pair of s_\&#39;m&#39;hrmions paths that. u-a|i&#39;/.4�

a given u°|:1|.ive path hetwc-1-n two &#39;|&#39;(&#39;|�s.

The planners avoid the immense (�0IIIph�.�<it_v of a roniplete se:ur<&#39;h and in.-<t«-ml

use henristirs as gna.|-¢tiI&#39;e«&#39;l.m| search and sliclingz along ohstm Im. Ifscapiuug hum a

lm at minimum is done hy stm&#39;hastir st.I&#39;;1.t.vgies. /\|though these searrh st.r:1l¢~gi«&#39;.-<

are in(&#39;mnph&#39;te, a planner using them for a single H)iH)t has hven shown to he extre-

nwly ellirient ancl has proves! its ahility to hunt a solution in many tlillirnlt n&#39;alisti<&#39;

enviromnv-nts.

I. The Inst. planner ch-sigm-cl for tl&#39;:1.n:=puI�|. tasks tries to lincl a path In" fnllnwing

the straight six-<IiInensional path from the starting point to the gnal. Whe-

never an ot»st:1¢&#39;.l¢: is hit, the plzulnvr tries to lind a path h_v Siitting ahnu; the

ohstarle as long as the (listance to the goal «h~«&#39;reasvs. As soon as there is no

possilvle collision-free step leading rloser to the ghal. this position is slnrecl as

a Ioral minimum. Then an arhitrary position is clelim.-«I as :1 sulygual anal p:1|.hs

are S(�.&#39;1l&#39;(&#39;.iIC(i from it to the starting amt vncl positions and all the storm! loral

minima. Thus :1 net of possible vonnvdions is r&#39;Ul|h�tl�I|(&#39;t(�(i. As soon as tln-iv

exists a path through this not from the start to the goal position this path is

returned as a solution of the planning task.

As mentioned above for manufacturing tasks (like welding a large \voI&#39;t<pi¢�(&#39;.I�),

there is no need for the workpieces to follow :1 certain path. Only the given

relative TCP path has to be followed. Thus, to ohtain I.he next inrremental

step diltercnt optimi7&#39;.ation criteria can he integratml.

Examples for these are:

0 minimizing the sum of all joint movements,

0 minimizing the movement of the \\&#39;¢)l&#39;kpi(.�C(�s or

0 keeping the joints around the mi«h_||e of their movement range in orclvr to

prevent them from reaching their limits.

This paper dr.scrihC's thn·c pl.1111wrs. Tltc lirst sol\'rs t.lw probl,·111 of li11di11~ a 

l':1ir of sy111 hro11011s paths f,>r lrn11sporti11g objl'c:1.S i11 a11 c11\·iro1111w11l with lll,st.ad,·s. 

Tiu• Sl'<.·011cl ;11111 1.liircl ar<' dc·sig11rd l.o li11cl a. p.iir .,f sy11diro11011s pat.lis th;d. 11·aliz1· 

a 1!,i Vt'II 1.-lal.ivc p;1l.lt lH'lwc·1·11 l.wo T( ' I's. 

TIii' plarnlf'rs an>id 1.IIC' i1111111·11s1• cornplcxily of a n1111pl1·t.1· S<'ilfl'li ;i11d i11~l1·;1d 

11::1• li,·111 isti, s as goal -din·dnl s1•;1 rd1 and slicl i111~ ;d,111g uhst ;11 ll's. l•:s1",1pi11~ f1lll tl ;, 

111, ;d 111i11i11111111 il'I dotll' by st.od1asl.ic sl.r;tl.1·gi1·s. /\ lt.l11111J!,li t.h1•s1• S<'ar«-11 sl.1;11 q.;i,·s 

an· i11ni111pl1•I.<', a plamwr 11si11~ I hem for a. siuJ>,k 1tJl10I. h:is lw<'II shown 1.o lw ,·xl.11'• 

11 11'1)' Plli l' i1•11l and lia!i prov1·d il.s al,ility to li11d a sol111.i,m i11 111a11y dillirnll 11•,distic 

I ' ll V j roll 1111 'II t.s . 

Tlw li1 sl. pla.111wr cl<·sigrwd for l.ra.11:, porl. l.;:sb lrics lo li11d a p:it.li l,y f11llo1wi11 ~ 

Lh,• st r aiglil six-cli11w11sio11.il pat.Ii f r11111 1.111: sf.;1rl i11~ point. 1.o t.lw ~o;i l. \\'111'­

lll'Vf"r a11 ol,sl.i.d,: is hil, t.lw pla111wr I ri,•:; f.o li11d a p;d.h l1y siidi11~ :.11111~ 1.lw 

ohslal'11) as long a.s tlw disl.i11c:<! lo I.hi• ~0;1.I ,l,·nc•asc•s. ,\s soo11 ;is I lwrc• is 1111 

poss il,1,... collisio11-fn•<~ sl.cp l,~:uli11~ dos,•r l.o l11<· ~i,al. this posil.io11 is s lnr,.,I as 

a loC"al 111ini11111111. Tlwn a11 arhitrnry posil.io11 is ddi11cd as a s11hg.,;d and p;11. l1:; 

arc s1·:ud1c1I fro111 it lo i.111• starting and c•11d p11sil.io11s a11d all t.lw s t.11rr·cl loc·:il 

111i11i111a. '1'111111 ,\ tlC'I. of pos:;il,I,• cm1mTt.io11s is 1·u11sl.r11l'l.<'d. i\s s111,11 a :, r. li,·1•• 

cxisl.!'l a. palh ll1ro11gli tliis nd frn111 I.lie: sl.arl. l.o t.lw ~11al posil.iou t.liis pal 11 is 

rd11r1wd as a sol11Lio11 o r tli1) planning ta."k. 

/\s 11w11tioucd al>ove for 111a1111faduri11g ta.--k.<1 (like wc:lcli ng ;L IMgc workpic•n·) , 

t lwrc is no nred for Lhe workpiccrs lo follow a q~rl,ti11 pal.Ii. Only llic giv,·11 

relative TCP path has lo be followr.d. Th11!i, lo obtain I.he 1wxl. i11cn·11w11l..il 

sl.t·p different optimiza.tio11 c:rileria. c:a11 he inlPgral.P,I. 

Ex:rniplcs for lhrsc arc: 

• minimizing the s11111 of all joi11l 1110,·r.111t!t1ls1 

• minimizing lhe movct11Pt1l of the workpit~c<'s or 

• keeping I.he joint.s aro111HI the mi.Jc.lie or llicir 111ovr111<•11l rang•· i11 ordc·r lo 

1>rcvcnl Lhrm from rc•ad1i11g tlwir li111it.s. 
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2.

IL

The sccond [alannnr is clc-signml fur n1mmf:u:I.uring and «�lSS(&#39;llli)i_\&#39; lnsks. It lrivs�

ln lincl :1 pair ul paths that lnllil llw givvn rvlntivv path lnelxvvvn Llw m|ml.&#39;.s&#39;

&#39;l&#39;(.&#39;.l�s. 1\ time: is clc-linnml fur Llw n-|aI.ivv p.&#39;Il.i|. &#39;l&#39;imc~ () nnvnns HM� sI-snrlimä

puinl, tinw &#39;.l&#39; nwnns lln- rm! point. ll :1 local minimum is «rm&#39;m|nlm&#39;ml. l.|u�

plmllwr slums limo l". Hi Iltis lncnl lllinillllllll. Tlwln il. lrivs to Iiml :<vwr;nl

pairs ul cunlignrnl.iuns Llml. lnllill the rvl:1l.i\&#39;v &#39;l�(7l� p.-uh nl. Linn� t nml ;;m&#39;~�

nn planning :1 pair nl p.&#39;\l.|1s lnr crnrln nnlil linw &#39;l&#39; is l&#39;(&#39;.�H&#39;iH�Ii m� llw nv:-:l lnrnl

minimum is �9&#39;|(")"&#39;|�.(I"�|(l. &#39;|&#39;I..~ :,;._«.-I; �l �wenn tint; im» (�nllllglllülll�llfs lmking

l|w::.�1Im&#39;l.i|m~;1I¢mg Llw rc&#39;I.&#39;1.l.i1&#39;v&#39;i&#39;(°i&#39; pull! i:< n H;nII&#39;-"pm I im; l.&#39;1:&#39;.L nntl i&#39;~&#39; ~&#39;n|�.�c-ci

lny Hm lirsl. plnlllnvl�.

Tlw sc-runcl plnnnvr rmnslrllrls n. pair nl pnllns� |»_\&#39; °_;0�lI¢&#39;l&#39;:&#39;Ii.ilLt!. p:1I|:~&#39; nl pnlllrä

and lhvn ronnvrling l.|u-ir .s&#39;I;u&#39;liu_s; um! «-ml pninls�. Il. lhns� I&#39;c�:|lI/t&#39;t< nmrv

«&#39;uInp|i¢f.&#39;1.l.ml nmnnlnrlnring lnsks In� .x°IuppiIir.&#39;, 1&#39;.�-L¢"&#39;|||iHlI. «&#39;h;nmgim; In mmllu-r

«�«m|igur;1I.im| und vunlinning lln-iv.

Plnnnvr Il is «ivsigm-cl lm� ¢&#39;;I..~:«&#39;:: cI«~II1.&#39;nIc|iIu;; n �.()"&#39;A.&#39;�&#39;!�)"&#39;N. ¢&#39;.�(¢�¢�|I|iHlI nl Ilw nur

nipu|:1I.imI p:1t.|I.

ll. swslrrlirs :1 p:1l.i1 iI_\&#39;=.&#39;}&#39;,l�()WilLI&#39;, |n&#39;.&#39;1m&#39;iu-.~&#39; lrnm Ilw .&#39;n|u~:u|_\&#39; linmcl lrrv nl pal Inc".

|.i|<v Iln- svruncl plnnnnvr, il. nmw-:4l.|mm1gh lwv .�~&#39;|h&#39;I.1&#39;(&#39;.&#39;ll|0i sliclvs .&#39;I,inIIi1Ui>r4|;u�ii";

wlnilv pI�m°m~.¢|iIIg on llnr rv|.&#39;1l.iv«-.&#39;l&#39;(T|� puth. \\&#39;|wn :1 |n<�.&#39;1| minimum im vnrcilin-

h~i&#39;c&#39;«|,:1II :1I�hii.r:lry puinl. on |.iu-..&#39;1ir¢°:ul_1&#39; «-&#39;-:isl.iI1;; path (nr l.|(�(� HI. p.&#39;1l||::) nncl an

«&#39;1l&#39;i)ii.l&#39;.&#39;ll�_\&#39; Six-(iiIl|(�lISi()l|:1i (iil&#39;(�(&#39;i.iU|| lm� Liar rulmls In nuwv in nrv rlnn-zvn. I�mn

l.lI1�l(&#39; llw svnrrll guvs un until Hm vncl pf llw r«�|.&#39;:li\&#39;o� &#39;|i(&#39;I".~»&#39; p.°1Ih it; rrns liml
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Visual Navigation within Volume Data

litecently, the availability of new interaction devices from the Virtual Ileality area as well as fast
graphics hardware have triggered the need for techniques allowing navigation within three-dimensional
data spaces. In this context, one of the main problems consists of the identification and visualization of
relevant objects within the volume. Volume visualization techniques which have been proposed in the
literature rely on a pre--segmentation or pre-classification of the data. In most situations this is hardly
:chievable,.or only by tedious editing tasks. A new approach will be presented allowing interactive
mlnme exploration by walkthrongh simulations. llere, object recognition is performed by integration
of computer vision technirpies into the visualization pipeline. When the volume data represent a real
3|) space, as for example in medical imaging, the optimal path (e.g. minimal risk of destructing vital
organs in neurosurgery) can be found, thus visually programming and navigating a robot.
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Abstract

The (�O;"_ii_)Xt of this paper is the design of an
appr: =;;riate working environment for learning
robots. We are interested in robots which are

able f - structure incoming sensor data on the
basis of internal reference schemes and robot

tasks. For efficiency reasons, we want to per-
form the learning cycles in simulated environ-
ments explored by the robot. In this paper,
we outline how advanced visualization and in-

teraction techniques as developed in the �eld
of Virtual Reality could be employed to study
the development and properties of the inter-
nal data of a semi-autonomous robot, as well
as the learning process itself.

1 The scenario

Robots of the forthcoming generation are en-
visioned to have greater autonomy in get-
ting organized in their environment, and they
will be able to make task-dependent decisions
on the basis of available world data. These
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robots will be learning systems which gain in-
formation about their environments individu-

ally, and will develop and maintain their own
world models of the environment on the basis

of their sensorimotor capabilities. This way,
they create their own �Merkwelten�, i.e. sim-
ple internal representations of corresponding
entities in the real world.

In our scenario, a physical robot serves as a
template for a simulated robot model: a vir-
tual robot in a virtual environment. A robot

controller is able to control either the physical
or the virtual robot without any further mod-
i�cation. The virtual environment is intended

to show nearly the same characteristics as the
natural environment of the physical robot.

The virtual environment will be an arti�cial

room similar to a maze, and the virtual robot
will navigate through this room. In this room,
there are one or several users which participate
in this scenario through the use of headphones
and data gloves, or simplified versions of a Vir-
tual Reality-type of access. The user is able
to inspect the robot�s internal representations

RoboVis - a Scenario for Using Virtual Reality 
Techniques in Learning Robot Development 

Berthold Kirsch t, Uwe Schnepf+, Ipke Wachsmuth t 
Christian-A. Bohn t, Axel Dirksen t, Ulrich Licht + 

t Scientific Visualization Dept. of HLRZ 

+ AI Research Division 
GMD 

Sankt Augustin 
Germany 

January 28, 1993 

Abstract 

The ror t c.:xt of this paper is the design of an 
appr, ,priate working environment for learning 
robot1:-. We are interested in robots which are 
able t structure incoming sensor data on the 
basis \.lf internal reference schemes and robot 
tasks. For efficiency reasons, we want to per­
form the learning cycles in simulated environ­
ments explored by the robot . Jn this paper, 
we outline how advanced visualization and in­
teraction techniques as developed in the field 
of Virtual Reality could be employed to study 
the development and properties of the inter­
nal data of a semi-autonomous robot, as well 
as the learning pro_cess itself. 

1 The scenario 

Robots of the forthcoming generation are en­
visioned to have greater autonomy in get­
ting organized in their environment, and they 
will be able to make task-dependent decisions 
on the basis of available world data. These 

2 7 

robots will be learning systems which gain in­
formation about their environments individu­
ally, and will develop and maintain their own 
world models of the environment on the basis 
of their sensorimotor capabilities. This way, 
they create their own "Merkwelten", i.e. sim­
ple internal representations of corresponding 
entities in the real world. 

In our scenario, a physical robot serves as a 
template for a simulated rob.ot model: a vir­
tual robot in a virtual environment. A robot 
controller is able to control either the physical 
or the virtual robot without any further mod­
ification. The virtual environment is intended 
to show nearly the same characteristics as the 
natural environment of the physical robot. 

The virtual environment will be an artificial 
room similar to a maze, and the virtual robot 
will navigate through this room. In this room, 
there are one or several users which participate 
in this scenario through the use of headphones 
and data gloves, or simplified versions of a Vir­
tual Reality-type of access. The user is able 
to inspect the robot's internal representations 



and to switch between different robot views.

Also, it is possible for the user to interact with
the robot in their shared environment, either
physical or simulated.

The distributed and modularflow of con-

trol in the overall system allows to specify in-
dividual changes in the communication chan-
nels of sensors and effectors of the robot. So,
arbitrary variations in the interaction between
physical and virtual sensors and effectors are
possible, e.g., a virtual sensor might trigger the
action of a physical effector and vice versa.

2 The working environ-
ment

Our goal is to support the developer of learn-
ing robots with advanced methods for control-
ling, inspecting and manipulating the learning
processes of these robots. To this end, we want
to enable the developer to actually experience
the sensorimotor capabilities of the robot in
terms of both raw data as well as learned data

abstractions performed by the robot controller
(the robot data view). This robot sensor and
control data has to be translated into repre-
sentations accessible by human senses. In ad-
dition, we want the user to be able to experi-
ence and manipulate internal states and pro-
cesses of the robot controller (the Merkwelt
view). Finally, we want to equip the user with
advanced visualization and interaction tech-

niques in order to provide natural ways of in-
specting and testing the robot�s behaviour (the
user view). .

2.1 The physical robot

The physical robot is equipped with four
wheels driven by two separated stepping mo-
tors, and one or several of the following sen-
sors: ultrasonic sensors, touch sensors, simple
light intensity sensors, odometric sensors, laser
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range finder, compass. We have started with
using ultrasonic and touch sensors because of
their simplicity and robustness as well as the
low complexity of returned data.

2.2 The virtual robot

The virtual -robot has similar sensorimotor

characteristics as the physical robot plus ad-
ditional abstract sensors which only exist and
function in the virtual versions of the robot

and its environment. These abstract sensors

can be thought of as, e.g., a data glove sensor
which is able to transmit various commands

given by a human instructor.

3 The approach

In this section we describe how we want to

realize different aspects of the working envi-
ronment mentioned above. As a basis, we use
a physical robot as described before. First we
have to model the robot, its physical sensori-
motor capabilities and its environment to re-
alize the simulation aspect of our work. Sec-

- ond, we need interface communication chan-
nels between the different modules such as

robot controller, world simulation and visu-
alization. Third, we describe three different
views, the robot data view, the Merlcwelt view,
and the user view, which enable the user to
obtain taylored visualizations of the robot and
its activities.

3.1 Modelling

Modelling can be divided into two categories,
(1) geometric and (2) physical modelling of the
robot, its sensors and motors, and the robot�s
environment. For geometric modelling, we use
standard techniques from computer graphics
to create the data model to be visualized. This

data model is the basic reference model for the
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Modelling can be divided into two categories, 
( 1) geometric and (2) physical modelling of the 
robot, its sensors and motors, and the robot's 
environment. For geometric modelling, we use 
standard techniques from computer graphics 
to create the data model to be visualized. This 
data model is the basic reference model for the 



visualization taking place when adopting the
user view.

The physical model of the robot and its envi-
ronment will be developed to realistically sim-
ulate sensorimotor behaviour of the physical
robot as well as changes in the simulated en-
vironment due to interactions of the user with

the working environment. For sensorimotor
simulation, we apply speci�c techniques for
the simulation of the physical effects of vari-
ous robot components such as ultrasonic, light
and touch sensors, as well as motors. We make
use of (precalculated) radiosity for the simula-
tion of light, and raytracing for the simulation
of touch and ultrasonic sensing. For imposing
changes on the scene, we use Virtual Reality
interaction techniques.

3.2 �Communication

Process interface The main modules of the

system are the physical robot, the robot con-
troller, the virtual robot in its virtual environ-
ment, and the visualization. All these mod-
ules can be linked together through a parallel -
message passing-based programming system
based on distributed and cooperating Unix
and transputer processes. The robot controller
communicates with the physical robot in the
same way as with the virtual robot. For the
robot�s controlling behaviour there is no differ-
ence between communicating with the physi-
cal or the virtual robot. The learning process
which is part of the robot controller is inde-
pendent of the actual robot (virtual or phys-
ical) used. The visualization module receives
its data either from the robot controller only
(when using the physical robot) or from the
robot controller and the environment (when
using the simulated robot). Then these data
is processed and displayed depending on the
selected view.
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User interface Since the working environ-
ment is adaptable to different parameters
(physical or virtual robot, physical or viitua�.
sensors used) the interface to the user inter-
acting with the robot and the environsi�;«:i&#39;it
must be configurable as well. This may be
done via keyboard commands, mouse or user
interface tools which consist of buttons, slid-
ers, browsers, or input fields. Using Virtual
Reality equipment such as the data glove al-
low a more straight-forward approach to in-
teract with the robot and the environment. A

head-mounted display allows to explore sensor
data in a more direct way. For instance, a ti-
sual grasp of robot sensor data could support
the system-user cooperation in solving a given
problem, e.g., obstacle detection, or maneu-
vering.

3.3 Visualization

The robot and the environment are modelled

as different sets of simple planar surfaces. The
model can be visualized as a wireframe picture
as well as a more elaborated picture including
static, precalculated light intensities based on
radiosity. The robot currently is visualized by
a cube. Later on, this simple representation
will be replaced by a more realistic model of
the physical robot. .

We want to develop methods for inspecting
internal properties and activities of the robot
controller. For this, we consider two different
views, the robot data view and the Mcrlcwelt
view.

The robot data view The robot data view

requires new visualization techniques to trans-
late and display non-human sensory informa-
tion into a form understandable to humans.

For instance, it is necessary to display the
dynamic characteristics of ultrasonic beams.
The robot data view is used to visualize the

data from the different (physical or simulated)
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sensors of the (physical or simulated) robot.
For this purpose, we have to transfer the
non-visual quality of the (physical or simu-
lated) sensors into visual representations un-
derstandable to humans. Adopting the robot
data view, the user can examine and interpret
the data which form the basis of the robot�s

current activities.

The Merkwelt view The Merkwelt View

expresses the internal robot �knowledge�
gained by ongoing learning processes. The
idea to provide the Merkwelt view originates
from the incorporation of machine learning
techniques into the robot controller. The
learning process and the knowledge state of
the robot, as it is based on the robot�s sensing
and acting capabilities, is difficult to under-
stand by the user and therefore will be trans-
lated into visual categories.

How to represent the Merkwelt view will be
a. new research topic to be dealt with in co-
operation between robotics and graphics. The
main focus herein will be the visualization of

the gradually growing knowledge of the robot
controller about its (physical or simulated) en- &#39;
vironment formed on the basis of ultrasonic

sensor readings.

The user view Apart from developing
methods for inspecting internal properties and
activities of the robot controller, we need a vi-
sual way to inspect the overall scene. When
using the robot simulation, the user view is to
provide similar external viewing and interac-
tion capabilities as in a physical testing envi-
ronment. In this view, the user underlies no
restrictions with respect to physical size, po-
sition, and movements. Further simulated de-
vices such as abstract sensors and manipula-
tion abilities for robot control algorithms may
enrich the physical interaction capabilities.
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4 State of the work - pro-
posed work

Work is divided into several work packages
some of which have been realized at the time

of this writing, and others which still have to
be implemented (based on our existing robot,
its sensorimotor capabilities, and the message
passing-based operating system as described
before) :

Geometric modelling of:

o the robot shape.

o the environment.

Physical modelling of:

o the motor behaviour of the robot.

o the ultrasonic sensors.

o the light sensors.

o the touch sensors.

o the odometric sensors.

Development of:

0 learning robot control algorithms.

0 user interface for:

� user robot interaction.

� visualization of sonar sensor data.

-� visualization of robot control data.

�� user robot communication.

The geometric modelling activities have be-
gun using the wavefront data �le format used
in VR visualization. We are able to directly
feed in the geometric model of the robot and
the environment into the VR visualization sys-
tem and can make use of different views and
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gun using the vave:front data file format used 
in VR visualization. We are able to directly 
feed in the geometric model of the robot and 
the environment into the VR visualization sys­
tem and can make use of different views and 



perspectives. Currently, the robot is shown as
a simple cube, and the environment has simple
perpendicular walls with homogeneous surface
and reflection properties. We are also able to
make use of different modellers,� e.g., softim-
age, in order to develop modified or new envi-
ronments.

The physical modelling aspects have been
solved partly on the basis of raytracing-like
simulation of sound distribution and obsta-

cle detection (for the simulation of sonar and
touch sensors). The light sensor physics will be
modelled by the use of radiosity techniques for
the simulation of light distribution in a scene
(for the simulation of light sensors). Current
radiosity techniques calculate light distribu-
tions of a particular scene offline. Powerful
workstations could perform the scene render-
ing on the basis of the data generated by the
radiosity algorithm online. This way, a partic-
ular scene having a static light distribution can
be displayed from various perspectives. One
disadvantage, however, is the long compute
time of radiosity data as well as the lack of dy-
namics in case the scene is changing. These as-
pects limit the applicability of radiosity tech-
niques in Virtual Reality, where real-time per- ~
formance is requested. Hence, one focus will
be on improving radiosity techniques with re-
spect to efficiency and dynamics. A fast par-
allel algorithm for radiosity computation on
the Connection Machine CM2 has been imple-
mented and is used to prepare input for scene
rendering on Silicon Graphics workstations. It
would be helpful to have incremental radiosity
techniques to allow real-time computation of
dynamic light distributions. Future work will
include the use of more advanced obstacle de-

tection techniques developed on the CM2 in
the context of VR obstacle detection.

The development of learning control al-
gorithms is underway on the basis of a
behaviour-based control approach. In this ap-
proach, we make simple re�exes available to
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the overall robot controller, so that raw sen-
sor data can be transformed into motor com-

mands quickly and reliably. A modularisa-
tion is planned for different behavioural as-
pects such as wall following, crossing and room
traversing, turning, and obstacle avoidance.
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A context for this work is the increasingly important use of computer graphics in all areas of
object and scene design. An example is the visualization of virtual environments such as office
rooms or buildings prior to their physical realization. The aim is to obtain realistic impressions
of a construction while it is evolving and to give free way to imagination at the same time.

Working with the graphics computer allows the designer to explore. and to interact with. a

manipulable environment without wasting physical matter and with the ability to readily change
the immaterial model. l)ue to the need of having to communicate ideas of complex form to a

technical device, though, the designer may face crucial obstacles in the process of designing.
Hence. a comfortable user interface is of special importance to keep the designer free from
technical considerations such as planning of geometric details, etc.

ln the paper a scenario for some of the main themes in the new research program on "Artificial

lntelligence and Computer Graphics" at the University of Bielefeld is presented for discussion.
One aim is to provide ways of intelligent communication with a technical system for designing
and generating 3D computer graphics. To do so new Al methods and techniques are going to be
applied that build on ideas of situated agents (e.g., Rodney Brooks at MIT), graphics agents
(e.g.. Norman Badler at U of Pennsylvania), and of interface agents (e.g.. Pattie Maes at MIT
Media Lab). The concept of an "intelligent mediator" is proposed - a system which integrates
certain abilities to perceive, act, and communicate and which is able to exploit these abilities in
the ful�lment of a particular task and adapted to the actual situation. As one feature a synthetic

agent graphically visualized is used to place the designer&#39;s eye in the virtual environment and to
allow the use of situated language and of gestures in interactive modelling.
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Virtual Reality as a novel man machine interface

l&#39;or a multirobot control system

Ii, Freund, J. Rolltnann

lnstitute. of Robotics Research

()tto--Hahn-Str. 8

4600 �Dortmund 50

Email: 1�ossmann@damon.it1&#39;.uni Ll0T1mllll(l.(lC

&#39;l&#39;he design of a man machine interface for a multirobot control systent that enables users to

specify processing tasks after a short training period is dit�t�ienlt to accomplish. Conventional

programtning techniques, such as teach-in of separate l71(�t\�(�.n�tL�ttlS anti CAD-bassed olllinc

pt. bunmningrsystcnys, require a basic knowlcdgc. of robot pt&#39;t)g,rammt&#39;rtg and vocabulary like

working area, singttlarities, pathtypes etc. These techniques allow the writing of simple

programs. llut they are dedicated for single-robot-workeells, therel&#39;ore they make poor use of a

ntultirobot systems �exibility. For example, it is not possible to ]ll���,&#39;_.&#39;,l&#39;£lllt a task where the

task&#39;s parts can run parallely or sequentially depending on the availability of the robots at

runtime. l"&#39;ut&#39;thermore, the conventional programming techniques du not allow object handling

with more than one robot, which becomes neeeessary if the object cannot be handled with one

tobot due to its size or weight.

The. multirohot control system lR(.�.S developed at the institute of Robotics Research is used

for the ClR(_)S-tcstbcd. This is an exact scale model of a space laboratory, that etmtaitts two 7-

link-robots with overlapping working areas executing, experiment SCl&#39;VlClllg tasks. The lRCS

provides the functionality that is needed to handle t.>|.tjeL&#39;ts with several t.&#39;t)()l&#39;tlltl:llL�tl robots and

it has the feature of automatic action planning, which greatly simplilies the progrannnittg. For

example, a valid task description is "put sample x into heater-slot y". &#39;t&#39;he automatic action

planning (l(:.L&#39;.()n1]&#39;7OSCS this high-level task tleseription ttsittg an environmettt model into

elementary operations, which can be exeetttcd by the. robot control system. ll� both robots are
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available, the elementary operations are executed parallely, i.e. one robot gets the sample from

the sample stock, while the other one opens the heater door. lf it is necccssary to exchange

grippers, then this operation is generated automatically.

The project VITAL (Virtual Reality for telerohotics) has the goal to improve the IRCS by

atltlittg a Virtual Reality component as an intuitively operatahle man machine interl&#39;aee. The

advantage of the VR consists in the t�urtlter minimization of the training time for the multitohot

control system&#39;s programming, which has been improved greatly by employment of the

automatic action planning. The ease of operation is given by the fact llml the user does his

handling tasks inside the VR environment. where he doesn&#39;t have to consider mhot spceilie

problems, and the robot system executes these tasks in the real working cell.

&#39;I.ue presentation explains why only in special instances it makes sense to imitate the

movements of the data--glove inside the VR with the robots. As an alternative a second mode

of operation is proposed, which uses the automati: action planning&#39;s abilities for optimal

execution of tasks described within the VR. l7urthermore, a method for avoiding collisions

between the robots or between the robots and their environment in both modes of operation is
I

ht ietly presented.
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Virtual Manufacturing

Presented by: Philip Willis
Project colleagues: Adrian Bowyer, Richard Taylor, Gary Bayliss

University of Bath
Bath BA2 7AY, UK

Abstract

There is a growing interest in virtual reality techniques for many applications, rang-
ing from mass-market entertainment to scienti�c visualization. The Virtual Manu-
facturing (VMAN) project at the University of Bath is exploring what desk-top VR
techniques can do to assist the computer-aided design of engineering components,
Our aim is to supply a virtual mechanical engineering workshop which can be used
to malte prototypes using computer-modelling techniques. This safe, interactive en-
vironment also captures enough infnrmation to allow the subsequent creation of the
actual components with a numerically�controlled milling machine. The project is
newly-established and we describe here our hopes and expectations for its progress. .

1 Introduction

Computer-aided design of three-dimensional components has come a long way since
the very early days of computer graphics. It is however still the case that it is diflicult.
to bring together all the aspects of the design process needed to give a full man-
ufacturing speci�cation of a component. Modellers are very good at representing -
geometry and topology in a way which allows rendered images to be produced. To
be useful, the basic modelling process has to be extended to incorporate attributes,
such as material; tolerances; and blends. Even then, we still lack the information
needed to manufacture the component by machine. In particular, determining a
tool-path which will correctly and safely make the component is a major di�iculty. �
A further problem centres on the user interface. Human beings are notably poor
at visualizing in three dimensions, though well-used to manipulating objects in 3-
space. Computers are good at calculating in any number of dimensions but less
easy to interact with above two spatial dimensions.

2 Virtual reality and the design process-

Virtual reality promises a ready ability to interact in three dimensional space. In
particular it is possible to provide a visual simulation of familiar real-world envi-
ronments, and to make changes within such an environment. We have accordingly
set ourselves the task of creating a virtual mechanical engineering workshop with
the aim of allowing the user to design by direct creation of the component, using
virtual machinery, capturing what the user does, and later �replaying� the actions on
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a real, numerically-controlled machine. This approach is certainly open to criticism:
this is not how designers design, construction is a separate process to design, some
practical aspects are not relevant during the creative part of design, design should
be imagination�limited not machinery-limited and so forth. While we accept that
such a case has its strengths, we also believe that there is much to be gained by
exploring modelling-by-machining. An engineer may well machine an approximate
form as part of the design experimentation, so this is a legitimate part of the design
process which is currently not addressed by computer systems. I�irther, and most
importantly, using virtual tools is a good way of ensuring that the component can
really be made and indeed of verifying toolpaths before a real machine and a real
piece of material collide, with possibly dangerous and certainly expensive results.
Veri�cation is an important part of the design process. There are other virtues too,
especially of using an involving medium like VR.

3 Desk-top or immersive VR?

;From the start, we wanted the viewer to be able to work in stereo, in order to
be able to inspect the workpiece and to judge its overall shape and balance. We
have tried the fully-immersive, headset VR systems and it was apparent that they
were not suitable for our needs. Firstly, they were tiring to use for extended lengths
of time. Secondly the image quality was poor. Thirdly there was a lag in picture
update which made precise work rather difficult. Fourthly, the user can only see the
virtual world, making it impossible to consult real working drawings, to share the
design process with colleagues or even to type. Fifthly, certain forms of interaction,
such as clicking on a menu, are much harder (to the point of irritation) in an im-
mersive virtual world. We therefore concluded that desktop VR, the use of a stereo
visual system in an otherwise familiar computer workstation environment, was a
better approach. The system we chose has liquid crystal spectacles, synchronized
by an infra-red beam with an alternating left-right view on the sharp workstation
monitor. It is possible to see the real world through these spectacles (slightly low-
ered in brightness) and of course several users can each have a pair. The weight
and bulk are both low, so they are not tiring to use, and they can be put on and
taken off immediately with no set-up procedure.

We have installed a Silicon Graphics Reality Engine for the main demonstrator
on this project, as this supports the real-time texture that we intend to use later.
We also have an SG Elan with the stereo option, for visual development, and two
24 bit Indigo 4000s for Software development.

4 Technical progress

To date, we have relied on existing software as we patched together an early proto-
type in order to get a feel for the possibilities. The solid modeller is one which has
had extensive development here at Bath, called DORA (Divided Object Raytrace
Algorithm). Traditionally this has been used with a descriptive input language,
SID, which converts into a structure which DORA ray-traces. For the current
project we have introduced two changes. Firstly, the output is now converted into
polygons so that the SG display hardware can render it directly (and in real time).
Secondly, we accept as input the G-codes which are normally used to drive a real

36

a real, numerically-controlled machine. This approach is certainly open to criticism: 
this is not how designers design, construction is a separate process to design, some 
practical aspects are not relevant during the creative part of design, design should 
be imagination-limited not machinery-limited and so forth. While we accept that 
such a case has its strengths, we also believe that there is much to be gained by 
exploring modelling-by-machining. An engineer may well machine an approximate 
form as part of the design experimentation, so this is a legitimate part of the design 
process which is currently not addressed by computer systems. Further, and most 
importantly, using virtual tools is a good way of ensuring that the component can 
really be made and indeed of verifying toolpaths before a real machine and a real 
piece of material collide, with possibly dangerous and certainly expensive results. 
Verification is an important part of the design process. There are other virtues too, 
especially of using an involving medium like VR. 

3 Desk-top or immersive VR? 

;,From the start, we wanted the viewer to be able to work in stereo, in order to 
be able to inspect the workpiece and to judge its overall shape and balance. We 
have tried the fully-immersive, headset VR systems and it was apparent that they 
were not suitable for our needs. Firstly, they were tiring to use for extended lengths 
of time. Secondly the image quality was poor. Thirdly there was a lag in picture 
update which made precise work rather difficult. Fourthly, the user can only see the 
virtual world, making it impossible to consult real working drawings, to share the 
design process w:t h colleagues or even to type. Fifthly, certain forms of interaction , 
such as clicking on a menu, are much harder (to the point of irritation) in an im­
mersive virtual world. We therefore concluded that desktop VR, the use of a stereo 
visual system in an otherwise familiar computer workstation environment, was a 
better approach. The system we chose has liquid crystal spectacles, synchronized 
by an infra-red beam with an alternating left-right view on the sharp workstation 
monitor. It is possible to see the real world through these spectacles (slightly low­
ered in brightness) and of course several users can each have a pair. The weight 
and bulk are both low, so they are not tiring to u11e, and they can be put on and 
taken off immediately with no set-up procedure. 

We have installed a Silicon Graphics Reality Engine for the main demonstrator 
on this project, as this supports the real-time texture that we intend to use later. 
We also have an SG Elan with the stereo option, for visual development, and two 
24 bit Indigo 4000s for software development. 

4 Technical progress 

To date, we have relied on existing software as we patched together an early proto­
type in order to get a feel for the possibilities. The solid modeller is one which has 
had extensive development here at Bath, called DORA (Divided Object Raytrace 
Algorithm). Traditionally this has been used with a descriptive input language, 
SID, which converts into a structure which DORA ray-traces. For the current 
project we have introduced two changes. Firstly, the output is now converted into 
polygons so that the SG display hardware can render it directly (and in real time). 
Secondly, we accept as input the G-codes which are normally used to drive a real 

36 



numerically-controlled milling machine. We use these to drive a virtual tool across
a block of virtual material, cutting a path which the in fact is used to remove the
corresponding shape from our computer model. In the early system this is done
in near real-time in the sense that we show the tool moving continuously "but up-
date the model only when the tool changes direction. The visual effect is thus seen
correctly only at these instances. This is not intended to remain the case and we
expect full real-time updating soon. At the time of writing the project has been
active for only four months, so we are quite satis�ed with current results.

5 Planned improvements

There are many experiments that could be tried, some relating to the model-
construction and some to the human interface. As a base, we expect to put together
a system which allows the user to drive the virtual milling machine directly, with
the display updating in real time, and with the model at all times essentially up to
date. We expect this to generate output which can be used directly to control. a
real milling machine, and indeed our largest computer is installed in an engineering
workshop a few metres from an actual numerically-controlled milling machine for
precisely that reason.

Texture mapping is likely to be important to give a greater illusion of reality,
both for the material surface and also to give greater visual realism to the rotating
tool and the surrounding workshop area (necessary to give a sense of scale and
depth)

There are also non-realistic effects which can be put to good use. For example,
as we intend to model the overall shape of the machinery and the tools, it is quite
possible to check the toolpath and to highlight or prohibit cutting of the machine
rather than the workpiece. We can also check the tool speed and known material
properties and show material and tool temperature, colour-coded to highlight hot-
spots. The human interface can be enriched in non-realistic ways. For example,
pop-up instructions can be made to �oat in space near to the object. to which they
refer. Similarly arrows can be made to point to features of interest. In visual
simulation it is common to reduce levels of detail to ensure adequate updating in
important parts of the scene. In our kind of VR world there is an argument for
using level-of-detail management to reduce the visual clutter to allow the user to
concentrate on the important task. This can be done either by removing the extra
detail or by �lowlighting� it so that it only appears dimly.

One overall interest is the extent to which we can use non-realistic operations
initially, then impose realistic ones later. For example, there is no need to respect
actual milling speeds when creating a virtual prototype, so all constraints on speed,
tool-material temperature, clogging etc can be removed. Ho_les can be drilled in-
stantly if we are only interested in the resulting shape.

Finally, the user is able to see the real world and so there is an argument for
making familiar machine controls available as a physical mock-up, rather than as a
virtual presentation. It is our current belief that this will be more acceptable and
indeed more reliable as a source of data.
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6 Summary

We are studying the use of desk-top virtual reality as an aid to manufacturing
design. The project is newly established, though we have demonstrated an early
prototype. We aim to use the system to generate real objects on a numerically-
controlled milling machine, using data created from our virtual milling machine.
Our experiments are intended to �nd the best way of presenting this technology to
actual designers.
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Accurate visualisation of a design is an important aspect of an engineering
process. This is especially true in those disciplines involving building design
and urban planning. Computer simulations that allow a user to "walk through"
a proposed building extension or modification enable the proposal to be
visualised and thus evaluated before the expensive construction phase is
commenced. The more realistic the proposed building model is, the better the
evaluation will be, but such a model may be extremely complex consisting of
thousands of objects. A walk-through which required the user to wait for
possibly hours for each image to be rendered would be of little use. Test have
shown that at about 6 frames per second the virtual building illusion "works"
and the user is able to comfortably navigate the building.

This paper discusses PING (Parallel processing for INteractive Graphics), which
will implement the particle tracing method of computing global illumination on
a minimum path parallel processing system in order to achieve the required
interactive photorealism for building walk-throughs.
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As modeling problems in graphics and motion planning problems in robotics grow
i2: complexity. the needs arises for sophisticated algorithms for doing geometric compu-
;.;.:ions. Many such algorithms have been developed by computational geometers. How-
z:�.rer. there has been limited technology transfer between the theoreticians and practition-
ers. The difficulty seems to arise because of the complex nature of many theoretical
algorithms. This makes it dif�cult for practitioners to implement these algorithms or
wen] to understand key aspects of the algorithm which might be applied to simplify com-
putational tasks. Our work is aimed as helping with this technology transfer. We do so
by implementing some of these algorithms and producing animations which aid the
viewer to understand the essence of the algorithm. As a part of our work, we are
developing tools that make it easier to implement, debug and animate geometric algo-
rithms. We describe here the algorithm animation and designs of a tool kit to ultimately
make this task easier. These animations describe fast algorithms for computing all inter-
sections of n line segments in the plane and for detecting intersections of suitably prepro-
cessed convex polyhedra in sublinear time. We will describe these algorithms and their
animations.

A longstanding open problem in computational geometry was the problem of deter-
mining in optimal time all intersecting pairs among a collection of n planar line seg-
ments. This problem lies at the heart of object space algorithms for hidden surface remo-
val. Many other intersection algorithms relating to ray shooting and shadow casting have
similar structure so that methods which apply here are likely to be worthwhile for various
other problems. Ideally, an algorithm to solve this problem would run fast when there
are few intersections, slowing down to report all intersections if there are many. Indeed,
it is known that no algorithm can have a running time asymptotically smaller than
n log n + k where k is the number of intersections reported. Initial algorithms for the
problem used sweepline techniques similar to scanline algorithms for hidden surface
removal. They were able to achieve the bound n log n + k log n . It could be shown
that a limitation of the sweepline paradigm was its inability to break through this barrier
and the problem of �nding an optimal algorithm remained open. By combining a
number of ideas and data structures, Chazelle and Edelsbrunner achieved this optimal
time in 1988. Their algorithm is complex, though the ideas on which it is built might
find application elsewhere. We believe our video makes this algorithm more accessible
to potential users.

Many tasks in computer graphics and robotics involve the detection of intersections
between convex polyhedra. This arises as a subroutine in motion planning tasks as well
as in tasks where occlusion or interference between objects must be determined. Most
often, objects to be tested do not intersect. Thus, a fast test which detects intersection or
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separation but computes no portion of an intersection is desirable. In joint work with
Chazelle we developed algorithms satisfying this criterion. In later work with Kirkpa-
trick we have re�ned these algorithms. A result of this is a data structure of independent
interest for organizing convex polyhedra so that they can be rapidly searched. This struc-
ture can be used to give algorithms of running time 0(log n) for determining whether a
plane intersects such a polyhedron. An algorithm of running time 0(log2n) which can
be used to detect if two such polyhedra intersect. This data structure and algorithm are
best described by the video we show.

The tools we are developing to aid in creating our videos are of independent
interest. Our animations differ from those typical in the computer graphics community.
We seldom are near the edge of the art of image synthesis techniques. Indeed, our
models tend to be polyhedral and we want to highlight their rough edges rather than
smooth them. On the other hand, our algorithm tend to require sophisticated data struc-
tures and it.is often desirable to show multiple views of an algorithm as it progresses.
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Curves and Surfaces VVith Minimal C�urvat_ure

for Graphics and Robotics

Giinther Greiner
I.\=I;\&#39;ID IX . Universitat Erlangen

.�\1n VVeichselgart.en 9. 8-320 Erlangen

Abstract

Both in Graphics and R.obotics one often faces the problem to construc.t "optimal"
curves and surfaces subject to certain constraints. Here optimal typically means that
the curve or surface minimizes length. area, curvature or other geometric properties.

In Graphics for example. scattered data interpolation as well as blending surfaces
lead to such problems. In scattered data. interpolation one has to construct a surface
which does not oscillate too rapidel_v and goes through a sampled set of points in
the space. Finding a blending surface (in. a rather smooth tran.~:irion between pri-
mary surfaces) amounts to construct a (nice looking) surface which satis�es certain
boundary conditions determined by the primary surfaces.

In Robotics. path planning can be considered as a problem of the above type. One
has to �nd a curve which connects two points and optimizes a mixture of length.
curvature and the distance to obstacles.

All these problems can be solved by �nding a surface and curve respectivel_v, which
satis�es two conditions:

�� it has to ful�ll certain constraints and

�� it has to minimize an appropriate functional. which ineasures the
total curvature and surface area (arc length).

This optimization problem is highly nonlinear, a direct solution (if possible at all)
will be very involved. We present an iterative procedure. Instead of investigating
the nonlinear problem, we consider a sequence of quadratic variational problems.
Thus. in each step of the iteration, one has to solve a linear system. In each step
one obtains a curve or surface which satis�es the constraints. The smoothness of

the curve/ surface will increase progressively.

For ractical ur oses, the roblem is considered in a suf�cientlv lar �e s )ace of. - l

quadratic or cubic� spline curves. Or in a space of tensor spline surfaces. Thus the
solution we obtain can be visualized easily.

_We describe the general procedure in detail and explain how one can apply it to
generate blending functions, to interpolate scattered data and �nd optimal paths.
We also compare it to existing methods and outline possible further applicatons.
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Triangular B-Splines for Modeling
in Graphics and Robotics

Hans-Peter Seidel

Universität Erlangen
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Abstract

Triangular B-splines are a new tool for the modeling of complex objects with non-
rectangular topology. The new B-spline scheme is based on blending functions and
control points and allows to model piecewise polynomial surfaces of degree n that
are (.&#39;�"1-continuous throughout. A �rst test implementation of the new scheme has
succeeded in demonstrating the practical feasibility of the fundamental algorithms
underlying the new scheme.

In this talk we discusses applications of triangular B-splines for modeling in
graphics and robotics.

One of the features that make triangular B-splines attractive for applications
in graphics and robotics is their low degree: It is possible, e.g., to construct C�-
continuous surfaces with piecewise quadratics (total degree d = 2) (in contrast to
the more standard bi-quadratic tensor-product surfaces having total degree d = 4).

Furthermore, it is possible to represent any piecewise polynomial surface (rectan-
gular or non-rectangular topology) as a linear combination of triangular B-splines.
Thus, triangular B-splines provide a uni�ed data format.

Finally, triangular B-splines are ideally suited for blending applications. Using
triangular B-splines, it becomes possible, e.g., to achieve smoothC."-blends with
piecewise quadratics. Again, this compares favourably with other approaches, where
the parametric degree of the blending surfaces is typically exceedingly high.
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Symbolic Relationships as Basis for Assembly Planning

R. Gutsche, F. Rohrdanz and F. M. Wahl
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Hamburger Str. 267, D-W-3300 Braunschweig, F.R.G.

Abstract

In modern and �exible manufacturing processes the automatic generation of assembly plans

and their subsequent execution by a robot will be one of the key technologies. Our assembly

planning system consists of two consecutive steps. During the �rst one all constraints are

taken into account which are caused directly by the assembly itself (internal constraints),

like stability. During the second step the possible solutions are further restricted, because

constraints concerning the robot and its environment are taken into account. Examples for

these external constraints are the shape of the robot&#39;s work space and the kind of the gripper.

In this paper only the first step of the whole �system will be described.

An overview about several techniques dealing with mechanical assembly planning can be

found in 0p�� Most of the systems are working with an ideal geometric model and with

homogeneous transformations to describe the assembly. Thus the resulting plan consists
often of a set of ideal frames without any additional information. As the environment can�t

be modeled exactly and as a real robot has always a position uncertainty, sensor information

has to be added later during the execution of the plan. But this method has the following

drawbacks: the description of an assembly using numerical homogeneous transformations is

more dif�cult and more faulty than using natural symbolic descriptions and the automatic

adding of sensor information to a plan consisting only of a numerical description is very

diflicult.

Our assembly planning system works with rigid parts, modeled in two levels. In one level

parts look like bodiless objects consisting only of a set of mathematical frames [3]: one base

frame and several feature frames, like face or hole, describing one special feature of the part

in relation to the base frame. In the other level the parts are represented as polyhedrons

and optionally as CSGs. Often some faces of the polyhedron correspond to in�nite features
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constraints concerning the robot and its environment are taken into account. Examples for 

these external constraints are the shape of the robot's work space and the kind of the gripper. 

In this paper only the first step of the whole system will be described. 

An overview about several techniques dealing with mechanical assembly planning can be 

found in [1). Most of the systems are working with an ideal geometric model and with 

homogeneous transformations to describe the assembly. Thus the resulting plan consists 

often of a. set of ideal frames without any additional information. As the environment can't 

be modeled exactly and as a real robot has always a position uncertainty, sensor information 

has to be added later during the execution of the plan. But this method has the following 

drawbacks: the description of an assembly using numerical homogeneous transformations is 

more difficult and more faulty than using natural symbolic descriptions and the automatic 

adding of sensor information to a plan consisting only of a numerical description is very 

difficult. 

Our assembly planning system works with rigid parts, modeled in two levels. In one level 

parts look like bodiless objects consisting only of a set of mathematical frames [3]: one base 

frame and several feature frames, like face or hole, describing one special feature of the part 

in relation to the base frame. In the other level the parts are represented as polyhedrons 

and optional_ly as CSGs. Often some faces of the polyhedron correspond to infinite features 
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frames and vice versa, but that isn�t necessary.

The geometrical relations of the whole assembly consisting of several parts is described only

with symbolic spatial relationships between the feature coordinate systems, like face against

face. A cycle �nder computes automatically the numerical homogeneous transformation

between the parts. The principle of the cycle �nder like published in [3] and our extensions will
be shown in the paper. The results of our cycle �nder are the ideal numerical homogeneous

transformations between the parts and the corresponding symbolical relations, which can be
used during a latter step to generate additional sensor information for the execution of the

plan. Thus the end position can be de�ned by a special sensor event instead of using the

ideal frame from the exact model.

Decomposing a mechanical assembly into two subassemblies a lot of constraints have to be

taken into account, e.g. stability of the resulting two subassemblies, geometric-feasibility and
mechanical-feasibility of the assembly process of these two subassemblies ���� In the full paper,

we will describe our assembly planning system including the modeled constraints. Some ideas

of our system are similar to the system introduced in ��R� But in addition, we have integrated

a symbolic description of the assembly which is used to compute automatically the numerical

values of the homogeneous transformations between the parts (s. above). Consequently it

isn�t necessary to specify manually homogeneous transformations between components.

Our assembly planning system was designed as base framework with the symbolic spatial

description of the assembly, a cut-set method and AND/ OR graph plan representation to

deliver a good environment for procedures which should check additional constraints, like

stability. Each of these procedures delivers automatically no failure, if the appropriate con-

straint is ful�lled, failure, if the constraint isn�t ful�lled and unknown, if the procedure can�t

decide between the other two cases. In the last case the user will be asked to answer the

question.
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The realization of an automatic assembly planner is Stlictly related to

the knowledge about the assembled components and the workcc-.11.

Geometric knowledge of components, stored in CAD models, are not

sufficient for the assembly planning solution which, in general,
corresponds to a sequence of elementary actions. Most advanced

assembly planners are described by graphs, where nodes represent
assembly states and connecting arcs represent actions.
Thus. assembly planners work on a higher level of information than

geometric modelling, so they cannot refer to the same structures and

datatypes defined in CAD models. The required data include

adjacencies between components. assembly directions, mating
operations referred either to a component or to a pair of components or
to the whole assembly.

Some of thesw data can  L�� extracted from the low level gc.m&#39;m~.Ilu.
description, but it is more powerful and easier to extract or to associate

them to models which include also functional and technit.-at

information. These are the so called Feature Based Models.

in this paper. we present a module developed tor the National �PI&#39;(�)]t:(�l�(._)ll.
Robotics. sub project P.R.O.R.A., regarding Automatic Programming of

tliitimhlit Pnhnt by Foutupu l�laaa,I_{tI.;t:.-....
The presented module is characterised by some fundamental aspects:

- �FllF|¢�PYl(�iP.*�-�. l&#39;(lr*ntifir�aHnn hoaturoon oonupononto:
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- integration of the adjacency information with the feature based

description in a data structure which enables the manipulation at

different levels of detail:

~ ident.ification of the assembly operations and their execution

directions. performed by a rule based module

We have adopted graphical facilities for the classification of the
assembly features. The problem of feature classification is well known

in the automation environment. in fact it is quite impossible to give a
"universal" definition of what a feature is. It strictly depends on the

context, Le. manufacturing. assembling. design..... and also in the same
context it may change depending on the available tools. Thus, in oitler
to realise a system suitable to satisfy different needs, we have provide
an easy system for the interactive definition of the features of interest. A

deep knowledge neither of the internal description nor of the system
code are needed by the user. In fact. he has only to create the CAD

representation of an example of the feature to be recognised l\«Ioreover

he can associate functional parameters to the feature through the

graphical user interface.
The stniittiire resiilting from the CAD model analysis assnttiates the
adjacencies information to the feature description. This is very useful
to determine the required operations, the access directions and the

knowledge of the available space.
Starting from this structure. a rule based module performs the search

of all possible mating operations associated with each component. The

compatibility of these operations with the selected robot. is also verified.

Moreover, the feature based model and all the identified operations are

used to make fine~motion interference checks. in this way, geometric

constraints and consequent precedence relationships are ClCt8ITIlllIt.�.(.l
We have also taken advantages from graphical facilities to time a
feedback of the resulting assembly plan. Thus. we have integrated our
sequence generator into a Commercial CAD system orie.I&#39;iI.i:tl to
robotics. For the assembling simulation we have used both facilities oi�

the system for the optimisation of the graphical representation and

newly implemented ones. In this way. assembly sequences are
automatically represented and collision detection is performed. In order
to avoid collisions. a module has been developed to automatically

update the gross~motion trajectories.
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Interactive Feature Modeling

Feature modelling offers new opportunities to add �mctional information related to design,
analysis, manufacturing and assembly, to geometrically de�ned product models. A widely used
approach is to recognize features from the geometric model. For different applications,
di�erent classes of features are applied and therefore different feature recognition passes have
to be performed. Changing the geometric model will therefore require a completely new
evaluation of the derived feature models. In this presentation an integrated approach will be
presented that combines interactive modeling with semi-automatic feature conversion
capabilities. Each view will be represented by a window showing the feature representation of
the model for that particular aspect or application. Proposed modi�cations will be propagated
to the other views by means of an constraint graph. One of the applications that is considered
in the near �xture ist the use of features for automatic assembly planning for the Delft
Intelligent Assembly Cell (DIAC). This assembly cell consists of two robots equiped with
vision and sensor systems that can handle fairly complex assemblies. Use of assembly features
will increase the possibilities of, among other things, semi-automat sequence and grip planning.
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Projective Geometry for Robot Vision

K. Voss, S.Abraham, R. Neubauer, M. Schubert
Friedrich Schiller University Jena / Germany

Department of Mathematics and Informatics, UHH, I 7. 0G, D-0 6900 Jena

In this paper, an overview is given about the extensive use of projective geometry and vector
algebra for problems in 3D scene analysis. The model of the perspective mapping of space
points r=(x,y,z) to image points (¬,n) is the only mathematical object under investigation:

�\� &#39; &#39;1� 1+<a0�r>

The projective camera parameters a,.,, are determined by a least-square method of camera
calibration. The residual errors are of order i lmm in a robotic scene of about 3003 mm3
and a distance of about 1000 mm between scene and camera. From the projective camera
parameter, one can derive in a very simple manner motion invariants which are directly
related to the physical camera parameters (e.g. principal point of the camera). Also location
and orientation of the camera (e. g. direction of the optical axis) follow from the a,.,,.

In the second part of the paper, the epipolar geometry of more-camera experiments will
be investigated, and it is shown that the vector algebra yields relatively simple formulas
using the camera vectors a,,a2,a3. The epipo1ar�recti�cation of more-camera images are
investigated, and applications are given for point matching in correspondence problems.

Finally, basic problems of monocular robot vision are discussed, also in the projective-
geometry / vector-analysis approach. It is shown that using CAD information, not only the
3D reconstruction for spheres, cones and cylinders can be solved in a short way, but also the
full reconstruction of planar n-point configurations with n> 3 is described in terms of
projective geometry: simple systems of linear equations give the location and the orientation
of the planar CAD object in the robot coordinate system.

The framework given here is thwretically closed and numerically effective. Therefore
only a small set of procedures for least-square estimations and vector algebra is needed to
handle the problems of camera calibration, epipolar matching, and 3D reconstruction.
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Depths Data Acquisition
R. Sasse, TU Berlin

Abstract

Subject of the talk is the range measurement with computer vision systems, in this case the

so-called active stereo, which involves an active source of light and a passive stereo set-up.

This measurement principle and a special application of it, the active stereo with continuous

colour stripes, will be introduced.

The measurement principle uses the additional light source to project an easily identifiable

pattern onto the scene. In the special application of active colour stereo, the pattern is

composed of coloured vertical stripes. The difference in colour between adjacent stripes is so

small that the pattern may be called continuous. Thus the correspondence search is reduced to

the search for points of the same colour.

This technique sports the following advantages:

v The correspondence search (matching) is heavily simplified.

v Unique marking a set of points avoids ambiguities, which results in very dense range

maps because "negative false" matches, such as familiar from passive stereo, are unlikely.

v The method is insensitive to colour changes in the pattern caused by scene objects

because they affect both cameras in the same way.

v Position and orientation of the light source are irrelevant because they do not influence

the range computation.

v Correspondences of all points visible in both cameras can be found from a single pair of

images (snap-shot). This enables the range image generation of fast moving objects.

v The usage of a continuous pattern enables high resolution and accuracy. This is only

limited by the resolution of the cameras.

v The simplification of correspondence analysis enables the employment of simple

algorithms and parallel computation to decrease evaluation time.

Disadvantages of the technique are reduced to problems inherited from the underlying

measurement principles. These are namely the missing part problem and problems caused by

absorbed or re�ected energy.

We present quantitative and qualitative results of the experimental set-up and will finally

discuss methods to improve and extend the measurement method.
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Dr. Andre� Cagalowicz

Vision-Driven Home Robots

The purpose ofthis work is to study the vision task of a home robot. We want the robot to
"understand" perfectly the workspace in which he is evolving so that he can perform all kinds
of different tasks, such as bring coffee, close a door, switch a light on and off,... We shall not
consider speech analysis/synthesis use�il for the interface with the robot, neither robotics nor
specialised hardware which are fundamental for the solution of the problem. We restrict
ourselves to the vision task.

We first propose an interactive technique in order to create the data base modelling the robot
knowledge. lt is here a pure geometric decription of the robot workspace. We then propose a
vision task where, from a given stereo pair of the scene observed, we produce a complete
description of the scene including a polyedral model and a photometric one. We �nally design a
synthesis program using this complete description as input. With this program, we compute a
stereo pair related to the same focal planes as those of the cameras from which the initial stereo
pair was taken. The idea is then to use the difference between the natural and the synthetic
stereo pair on order to improve the scene description. This, in its turn, implies an improvement
of the vision and the synthesis procedures.
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Automatic Model�Generation for Image Analysis

Abstract

A. Winzen

Lehrstuhl für Informatik 5 (Mustererkennung)
UHiVCfSität Erlangen-Nürnberg

Martenstr. 3

D-8520 Erlangen

A model-based vision system consists of components performing tasks like preprocessing and
segmentation, ima.ge analysis and a knowledge base containing models of objects and scenes
which should be analysed. Models suited for image analysis have to provide information
different from correct geometric data. Information represented by such models depends on
segmentation results, because only those features which are stable, i.e., the detection of them
by the segmentation process is reliable, should be included in the model. Using a.dditional
unstable features unecessarily enlarges search space for matching models and segmentation
data during image analysis, because objects are recognized by comparing features in the
models and features found in the image. Statistical information about numerical data, such
as lengths of line segments and positions of vertices, is also useful for measuring the quality of
a matching during image analysis. These are reasons for a.n automatic generation of mode-,ls
from samples of image data. Threedimensiona.l models a.re generated by integrating sarnplc.-s
of range data from multiple views of an object. Models are represented using a semantic
network, with a structure similar to CAD-models. The structure of such models, a.utoina.tic
model-generation and experimental results will be described.
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