
Catriel Beeri, Andreas Heuer, Gunter Saake,
Susan Urban (editors):

Formal Aspects of Object Base Dynamics

Dagstuh|�Seminar-Report; 62
26.04.-30.04.93 (9317)

Catriel Beeri , Andreas Heuer, Gunter Saake,
Susan Urban (editors):

Formal Aspects of Object Base Dynamics

Dagstuhl-Seminar-Report; 62
26.04.-30.04.93 (9317)

ISSN 0940-1121

Copyright © 1993 by IBF l GmbH, Schloss Dagstuhl, 66687 Wadern� Germany
Tel.: +49-6871 - 2458

Fax: +49-6871 - 5942

Das Internationale Begegnungs- und Forschungszentrum für Informatik (IBFI) ist eine gemein-
nützige GmbH. Sie veranstaltet regelmäßig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit persönlich
eingeladenen Gästen durchgeführt werden.

Verantwortlich für das Programm ist das Wissenschaftliche Direktorium:
Prof. Dr. Thomas Beth.,
Prof. Dr.-lng. José Encamagao,
Prof. Dr. Hans Hagen,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Dr. Wolfgang Thomas,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Universität des Saarlandes,
Universität Kaiserslautern,
Universität Karlsruhe,
Gesellschaft für Informatik e.V., Bonn

Träger: Die Bundesländer Saarland und Rheinland-Pfalz

Bezugsadresse: Geschäftsstelle Schloss Dagstuhl
Universität des Saarlandes
Postfach 1150

66041 Saarbrücken, Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397

e-mail: office@dag.uni-sb.de

ISSN 0940-1121

Copyright © 1993 by IBFI GmbH, Schloss Dagstuhl, 66687 Wadem, Germany
Tel.: +49-6871 - 2458
Fax: +49-6871 - 5942

Das lntemationale Begegnungs- und Forschungszentrum fur lnformatik (IBFI) ist eine gemein­
nutzige GmbH. Sie veranstaltet regelmal3ig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit personlich
eingeladenen Gasten durchgefuhrt warden.

Verantwortlich fur das Programm ist das Wissenschaftliche Direktorium:
Prof. Dr. Thomas Beth.,
Prof. Dr.-lng. Jose Encama~o.
Prof. Dr. Hans Hagen,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Dr. Wolfgang Thomas,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Universitat des Saarlandes,
Universitat Kaiserslautern,
Universitat Karlsruhe,
Gesellschaft fur lnformatik e.V., Bonn

Trager: Die Bundeslander Saarland und Rheinland-Pfalz

Bezugsadresse: Geschaftsstelle Schloss Dagstuhl
Universitat des Saarlandes
Postfach 1150
66041 Saarbrucken, Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397
e-mail: office@dag.uni-sb.de

DAGSTUHL SEMINAR: 9317

FORMAL ASPECTS OF OBJECT BASE DYNAMICS

Organized by:

Catriel Beeri (University of Jerusalem, Israel)
Andreas Heuer (TU Clausthal-Zellerfeld, Germany)

Gunter Saake (TU Braunschweig, Germany)
Susan Urban (Arizona State University, USA)

April 26-30, 1993

DAGSTUHL SEMINAR: 9317

FORMAL ASPECTS OF OBJECT BASE DYNAMICS

Organized by:

Catriel Beeri (University of Jerusalem, Israel)
Andreas Heuer (TU Oausthal-Zellerfeld, Germany)

Gunter Saake (TU Braunschweig. Gennany)
Susan Urban (Arizona State University, USA)

April 26-30, 1993

SUMMARY

Object-oriented concepts have become important in helping to formulate next-generation
database systems. The STRUCTURAL part of object-oriented database models has been formalized
and is well understood. On the other hand. for the BEHAVIOURAL part of such models -- the
dynamics of object bases -- there seems to be only a few approaches to a serious foundation.
Nevertheless. this aspect of object-oriented systems is critical for de�ning the semantics of
object-oriented database systems and their applications.

The behavioural part of an object base includes the concepts of database updates, transactions.
and temporal integrity. as well as schema evolution. object migration. query processing, and
active mle processing. This workshop brought together researchers working on foundations of
programming languages. object-oriented systems. and databases to address the research directions
for the formal aspects of object base dynamics. The intemational group, with representatives
from Austria. Germany. Portugal. Estonia. Sweden, The Netherlands, Switzerland. Belgium. Italy.
Israel. Canada. and the USA. met for �ve days in the peaceful setting of the Dagstuhl Castle to
present current research projects on the dynamic aspects of object-oriented databases and to discuss
research issues that need to be addressed.

The abstracts that follow provide summaries of the topics presented at the workshop. The topics
are broadly categorized into �ve different areas. The �rst area is that of behavior speci�cation. A
large number of the abstracts fall into this category. addressing subtopics such as inheritance. the
�ow of object behaviour in information systems design. interaction between objects. the evolution
of object-oriented databases, and the speci�cation and use of constraints. This area included a
group discussion on the problems associated with the inheritance of object behaviour.

The second area addresses the important issue of object updates. Update issues have often been
ignored in object-oriented databases. The abstracts presented at the workshop represent some of the
formal work that has been initiated in this area. addressing the semantics of updates. the declarative
speci�cation of updates. and problems associated with set-oriented updates.

The third topic presented at the workshop was that of transactions. The issues discussed in
this area ranged from concurrent execution of transactions in object-oriented environments to more
formal issues such as the declarative speci�cation of state changes in transaction execution. The
speci�cation of distributed transactions was also discussed.

A fourth category for discussion was the area of active database systems. The research issues
in this area focused on the integration of active rule processing with object-oriented databases, the
automatic generation of rules for maintaining constraints, the integration of active, deductive. and
object-oriented concepts. as well as the need for tools to support the analysis of rule behavior. The
active database category was followed by a lively panel discussion on the future the active database

paradigm.
The �fth and �nal topic addressed at the workshop was that of object-oriented queries. The

subtopics in this category included issues related to the evaluation of path expressions as well as
the evaluation of queries in logic programs involving negation. Issues related to the use of queries
to support derived information in object bases were also addressed.

Although the papers have been organized into groups, many of the papers could actually �t into

SUMMARY

Object-oriented concepts have become important in helping to formulate next-generation
database systems. The STRUCTURAL part of object-oriented database models has been formalized
and is well understood. On the other hand, for the BEHAVIOURAL part of such models -- the
dynamics of object bases -- there seems to be only a few approaches to a serious foundation.
Nevertheless, this aspect of object-oriented systems is critical for defining the semantics of
object-oriented database systems and their applications.

The behavioural part of an object base includes the concepts of database updates, transactions.
and temporal integrity. as well as schema evolution. object migration. query processing. and
active rule processing. This workshop brought together researchers working on foundations of
programming languages. object-oriented systems. and databases to address the research directions
for the formal aspects of object base dynamics. The international group. with representatives
from Austria. Germany. Portugal. Estonia, Sweden, The Netherlands, Switzerland. Belgium, Italy.
Israel, Canada. and the USA. met for five days in the peaceful setting of the Dagstuh.l Castle to
present current research projects on the dynamic aspects of object-oriented databases and to discuss
research issues that need to be add.ressed.

The abstracts that follow provide summaries of the topics presented at the workshop. The topics
are broadly categorized into five different areas. The first area is that of behavior specification. A
large number of the abstracts fall into this category, addressing subtopics such as inheritance, the
flow of object behaviour in infoimation systems design. interaction between objects. the evolution
of object-oriented databases, and the specification and use of constraints. Titis area included a
group discussion on the problems associated with the inheritance of object behaviour.

The second area addresses the important issue of object updates. Update issues have often been
ignored in object-oriented databases. The abstracts presented at the workshop represent some of the
formal work that has been initiated in this area. addressing the semantics of updates, the declarative
specification of updates. and problems associated with set-oriented updates.

The third topic presented at the workshop was that of transactions. The issues discussed in
this area ranged from concurrent execution of transactions in object-oriented environments to more
formal issues such as the declarative specification of state changes in transaction execution. The
specification of distributed transactions was also discussed.

A fourth category for discussion was the area of active database systems. The research issues
in this area focused on the integration of active rule processing with object-oriented databases, the
automatic generation of rules for maintaining constraints, the integration of active, deductive, and
object-oriented concepts, as well as the need for tools to support the analysis of rule behavior. The
active database category was followed by a lively panel discussion on the future the active database
paradigm.

The fifth and final topic addressed at the workshop was that of object-oriented queries. The
subtopics in this category included issues related to the evaluation of path expressions as well as
the evaluation of queries in logic programs involving negation. Issues related to the use of queries
to support derived infonnation in object bases were also addressed.

Although the papers have been organized into groups, many of the papers could actually fit into

2

several of the above categories. For example, some of the abstracts on updates and active databases
are related to transaction issues as well as the speci�cation of behavior. The overlap between these
area characterizes the dif�culty of research issues that must be addressed in object base dynamics.
We hope that this workshop has helped to identify the important aspects of object base dynamics,
providing motivation for continued research in this area.

Catriel Beeri

Andreas Heuer

Gunter Saake

Susan Urban

several of the above categories. For example, some of the abstracts on updates and active databases
are related to transaction issues as well as the specification of behavior. The overlap between these
area characterizes the difficulty of research issues that must be addressed in object base dynamics.
We hope that this workshop has helped to identify the important aspects of object base dynamics,
providing motivation for continued research in this area.

Catriel Beeri
Andreas Heuer
Gunter Saake
Susan Urban

3

1 Specification of Behaviour

Some Thoughts on Inheritance of Object Behavior

Gerti Kappel (University of Vienna)
Michael Schre� (University of Linz) .

In this talk we describe desirable semantic properties of inheritance of object behavior
speci�cations and discuss problems of mapping these speci�cations to typed object-oriented
(database) languages. As underlying speci�cation language we use OBD (Object/Behavior
Diagrams [1]). �

The speci�cation of object behavior takes place at two interrelated levels of detail. At the
object type level, the interdependencies of the activities of one object type are de�ned stating
preconditions (in terms of prestates) and postconditions (in terms of poststates) of the activities.
At the activity level. the signature of an activity is de�ned stating types and preconditions (=
prestates) of input parameters, and the type and postcondition (= poststate) of the return value.
In this realm, inheritance of object behavior is an important mechanism for structuring domain
knowledge and for incremental behavior speci�cation. Applying inheritance at the type level
resolves to inheriting life cycle speci�cations and extending as well as specializing them, i.e.,
activities are added and pre- and postconditions are strengthened. Applying inheritance at the
activity level resolves to inheriting signatures and specializing them, i.e., adding parameters,
rede�ning types of pamneters to subtypes, and strengthening pre- and postconditions by adding
prestates and poststates. Unfortrmately, these desirable semantic properties known as specialization
(isa) inheritance following the covariance nrle contradict the speci�cation (subtype) inheritance
following the contravariance rule. In the latter approach preconditions may only be weakened
and types of input parameters may only be generalized to supertypes. Subtyping is necessary for
approaching type safety and type substitutability, which are desirable properties of typed (database)
languages. Providing covariance at the speci�cation level and contravariance at the implementation
level makes run-time (type) checks necessary. We discuss mechanisms to (partially) bridge this gap.
such as distinguishing between abstract and concrete activities (the former have no implementation
and thus can not be invoked on objects), and distinguishing abstract object types from concrete
ones (the latter may only be leaf nodes in the inheritance graph).

[1] G. Kappel, M. Schre�: Object/Behavior Diagrams. In: Proceedings of the 7th International
Conference on Data Engineering, IEEE Computer Society Press, Kobe, Japan, April 1991,

p.530-539.

1 Specification of Behaviour

Some Thoughts on Inheritance of Object Behavior

Gerti Kappel (University of Vienna)
Michael Schrefl (University of Linz)

In this talk we describe desirable semantic properties of inheritance of object behavior
specifications and discuss problems of mapping these specifications to typed object-oriented
(database) languages. As underlying specification language we use OBD (Object/Behavior
Diagrams [l]).

The specification of object behavior talces place at two interrelated levels of detail. At the
object type level, the interdependencies of the activities of one object type are defined stating
preconditions (in terms of prestates) and postconditions (in terms of poststates) of the activities.
At the activity level. th.e signature of an activity is defined stating types and preconditions (=
prestates) of input parameters, and the type and postcondition (= poststate) of the return value.
In this realm, inheritance of object behavior is an important mechanism for structuring domain
knowledge and for incremental behavior specification. Applying inheritance at the type level
resolves to inheriting life cycle specifications and extending as well as specializing them, i.e.,
activities are added and pre- and postconditions are strengthened. Applying inheritance at the
activity level resolves to inheriting signatures and specializing them, i.e., adding parameters,
redefining types of para •. neters to subtypes, and strengthening pre- and postconditions by adding
prestates and poststates. Unfortunately, these desirable semantic properties known as specialization
(isa) inheritance following the covariance rule contradict the specification (subtype) inheritance
following the contravariance rule. In the latter approach preconditions may only be weakened
and types of input parameters may only be generalized to supertypes. Subtyping is necessary for
approaching type safety and type substitutability, which are desirable properties of typed (database)
languages. Providing covariance at the specification level and contravariance at the implementation
level makes run-time (type) checks necessary. We discuss mechanisms to (partially) bridge this gap.
such as distinguishing between abstract and concrete activities (the former have no implementation
and thus can not be invoked on objects), and distinguishing abstract object types from concrete
ones (the latter may only be leaf nodes in the inheritance graph).

[l) G. Kappel, M. Schrefl: Object/Behavior Diagrams. In: Proceedings of the 7th International
Conference on Data Engineering, IEEE Computer Society Press, Kobe, Japan, April 1991,
p.530-539.

4

Superposition of Behaviour

Georg Reichwein (INESC, Lisbon)
(joint work with Jose Fiadeiro)

Category theory is the mathematics for structure and modularity. Superposition is one of the
main stmcturing principles for the modular design of parallel programs and distributed systems. We
provide a categorial theory of superposition and place this theory in the context of the fonnalisation
of object-oriented disciplines for decomposing and organising the development of reactive systems.

The presentation concentrates on the propositional fragment of this theory, i.e. object
descriptions have only boolean control variables. We study the impact of various notions of
superposition on the shape of the behaviour diagrams which graphically describe the �nite
automata representing the control part of object descriptions. The results are relevant for CASE
tools which support graphical object speci�cation languages like OBLOG.

Logic-Based Speci�cation of Object Dynamics

Ralf Jungclaus (TU Braunschweig)

Dynamic Object Systems consist of objects that have a local state, that show local behavior and
that interact. In the conceptual modeling phase, A Universe of Discourse is specified according
to such a perspective. For the representation of evolving object systems, a mixture of operational
(i.e. action/event-based) and declarative features should be available to allow for �natural"

speci�cations.
In this talk we present a Temporal Object Logic that underlies a language for conceptual

modeling of object systems. The syntax of the logic provides predicates that represent the
enabledness of actions. the occurrence of actions, and the observability of attribute values in a state.
The logic supports a strong notion of locality in that signatures are local to objects. predicates are
localized by binding them to object identi�er variables and only permitting local action to change
the local state. The logic supports the speci�cations of temporal properties involving both actions
and attributes.

We show how features of the conceptual modeling language TROLL" describing object life cycles
and interaction are translated into the logic to de�ne their semantics.

Superposition of Behaviour

Georg Reichwein (INESC, Lisbon)
(joint work with Jose Fiadeiro)

Category theory is the mathematics for structure and modularity. Superposition is one of the
main structuring principles for the modular design of parallel programs and distributed systems. We
provide a categorial theory of superposition and place this theory in the context of the fonnalisation
of object-oriented disciplines for decomposing and organising the development of reactive systems.

The presentation concentrates on the propositional fragment of this theory, i.e. object
descriptions have only boolean control variables. We study the impact of vario~s notions of
superposition on the shape of the behaviour diagrams which graphically describe the finite
automata representing the control part of object descriptions. The results are relevant for CASE
tools which support graphical object specification languages like OBLOG.

Logic-Based Specification of Object Dynamics

Ralf Jungclaus (TU Braunschweig)

Dynamic Object Systems consist of objects that have a local state, that show local behavior and
that interact. In the conceptual modeling phase, A Universe of Discourse is specified according
to such a perspective. For the representation of evolving object systems, a mixture of operational
(i.e. action/event-based) and declarative features should be available to allow for "natural"
specifications.

In this talk we present a Temporal Object Logic that underlies a language for conceptual
modeling of object systems. The syntax of the logic provides predicates that represent the
enabledness of actions. the occurrence of actions, and the observability of attribute values in a state.
The logic suppons a strong notion of locality in that signatures are local to objects. predicates are
localized by binding them to object identifier variables and only pennitting local action to change
the local state. The logic supports the specifications of temporal propenies involving bolh actions
and attributes.

We show how features of the conceptual modeling language ThOLLR describing object life cycles
and interaction are translated into the logic to define their semantics.

5

TROLL light A Core Language for Specifying Objects

Martin Gogolla (TU Braunschweig)

TROLL light is a language for conceptual modeling of infonnation systems. It is designed
to describe the Universe of Discourse (UoD) as a system of concunently existing and interacting
objects. TROLL light objects have observable properties modeled by attributes. and the behavior
of objects is described by events. Possible object observations may be restricted by constraints.
whereas event occurrences may be restricted to speci�ed life cycles. TROLL light objects are
organized in an object hierarchy established by sub�objects relationships. Communication among
objects is supported by event calling. Apart from introducing the various possibilities for the
syntactical description of objects, we aim to describe how the state of an object community may be
changed by event occunences.

As a basis for our language we took the speci�cation language TROLL. However, TROLL light
is not just a subset of TROLL. Some details have been added or modi�ed in order to round off
TROLL light. This was necessary because we needed a clear and balanced semantic basis for our
speci�cation language. In particular we want to stress the fact that in TROLL light classes are
understood as composite objects having the class extension as sub-objects. Therefore in contrast to
TROLL an extra notion of class is not needed in TROLL light. This leads to a more orthogonal
use of object descriptions. Over and above that concepts like class attributes. meta-classes. or
heterogeneous classes are inherent in TROLL light while they had to be introduced in TROLL
by additional language features. Second TROLL light incorporates a query calculus providing a
general declarative query facility for object-oriented databases. For instance. terms of this calculus
may be used in object speci�cations to describe derivation rules for attributes. or to query object
communities in an ad hoc manner.

Our speci�cation language is described in more detail in [1], the accompanying speci�cation
environment is outlined in [3], and the operational semantics of the language is presented in [2].

[1] S. Conrad. M. Gogolla, and R. Herzig. TROLL light: A Core Language for Specifying Objects.
Infonnatik-Bericht 92--02, Technische Universitat Braunschweig, 1992.

[2] M. Gogolla. S. Conrad, and R. Herzig. Sketching Concepts and Computational Model of
TROLL light. In A. Miola, editor. Proc. 3rd Im. Conf. Design and Implementation of Symbolic
Computation Systems (DISC 0'93). Springer, LNCS Series, 1993.

[3] N. Vlachantonis, R. Herzig. M. Gogolla. G. Denker. S. Conrad. and H.-D. Ehrich. Towards
Reliable Information Systems: The KORSO Approach. In C. Rolland, editor. Proc. 5th Int. Cord�.
Advanced Information Systems Engineering (CAiSE� 93). Springer, LNCS Series, 1993.

TROLL light A Core Language for Specifying Objects

Martin Gogolla (TU Braunschweig)

TROLL light is a language for conceptual modeling of infonnation systems. It is designed
to describe the Universe of Discourse (UoD) as a system of concurrently existing and interacting
objects. TROLL light objects have observable properties modeled by attributes. and the behavior
of objects is described by events. Possible object observations may be restricted by constraints,
whereas event occurrences may be restricted to specified life cycles. TROLL light objects are
organized in an object hierarchy established by sub-objects relationships. Communication among
objects is supported by event calling. Apan from introducing the various possibilities for the
syntactical description of objects, we aim to describe how the state of an object community may be
changed by event occurrences.

As a basis for our language we took the specification language TROLL. However, TROLL light
is not just a subset of TROLL. Some details have been added or modified in order to round off
TROLL light. 1ltis was necessary because we needed a clear and balanced semantic basis for our
specification language. In panicular we want to stress the fact that in TROLL light classes are
understood as composite objects having the class extension as sub-objects. Therefore in contrast to
TROLL an extra notion of class is not needed in TROLL light. 1ltis leads to a more orthogonal
use of object descriptions. Over and above that concepts like class attributes. meta-classes. or
heterogeneous classes are inherent in TROLL light while they had to be introduced in TROLL
by additional language features. Second TROLL light incorporates a query calculus providing a
general declarative query facility for object-oriented databases. For instance, tenns of this calculus
may be used in object specifications to describe derivation rules for attributes, or to query object
communities in an ad hoe manner.

Our specification language is described in more detail in [l), the accompanying specification
environment is outlined in [3), and the operational semantics of the language is presented in [2].

[1] S. Conrad. M. Gogolla. and R. Herzig. TROLL light: A Core Language for Specifying Objects.
Infonnatik-Bericht 92--02, Technische Universitat Braunschweig, 1992.

[2] M. Gogolla. S. Conrad, and R. Herzig. Sketching Concepts and Computational Model of
TROLL light. In A. Miola, editor. Proc. 3rd lnt. Conf Design and Implementation of Symbolic
Computation Systems (D/SC0'93). Springer, LNCS Series, 1993.

[3] N. Vlachantonis, R. Herzig. M. Gogolla. G. Denker. S. Conrad. and H.-O. Ehrich. Towards
Reliable Infonnation Systems: The KORSO Approach. In C. Rolland, editor. Proc. 5th lnt. Co,if.
Advanced Information Systems Engineering (CAiSE'93). Springer, LNCS Series, 1993.

6

Specification of Coordinated Behaviour in the Software Development Process

Gregor Engels (University of Leiden)
Luuk Groenewegen (University of Leiden)

Software development is a complex, long�tenn process where a lot of different persons are
involved to develop and maintain a lot of different documents. Nowadays software development
environments which aim at the support of the software development process lack an explicit
support of the process while offering a lot of isolated tools to handle documents. These so-called
product-centered environments hava to evolve to process-centered environments in order to offer
the desired and needed support for the software development process.

We present a speci�cation language by which all static and dynamic perspectives of a
software process model can be described in an integrated way. The language consists of several
intenelated sublanguages. All of them are pure visual languages and are based on well-known
diagrammatic languages like Entity-Relationship diagrams, data/object �ow diagrams and state
transition diagrams [1, 2].

The talk concentrates on the speci�cation of coordinated behaviour of different human or
computerized agents during the software development process. This sublanguage is based on the
use of two-level state transition diagrams, which originally were developed in the PARADIGM

approach [3].
The results presented in the talk are partly being developed within the ESPRIT BRWG

PROMOTER, a basic research working group on software process modelling.

[1] G. Engels, L.P.J. Groenewegen: Speci�cation of Coordinated Behaviour in the Software
Development Process (Position Paper). In J.C. Derniarne (ed.): Proc. 2nd European Workshop on
Software Process Technology (EWSPT 92), Trondheim (Norway), Springer-Verlag, Berlin, LNCS
635. 58-60. 1992

[2] G. Engels, L.P.J. Groenewegen: Modular, Visual Speci�cations of Software Processes (Position
Paper). To appear in Proc. 8th Intem. Software Process Workshop, SchloDagstuhl (Germany),
March 1993

[3] Groenewegen, L.P.J., Morssink� P.J.: Modeling structural constraints as behaviour. In
Informatiesystemen in beweging, Eds. P.W.G. Bots, H.G. Sol, l.G. Sprinkhuizen-Kuyper. Kluwer,
Deventer, The Netherlands. 1991. 195-212

Modelling Evolution in Object-Oriented Databases

Hele-Mai Haav (Estonian Academy of Sciences)
(Joint work with M. Matskin)

In this talk we propose a methodology for speci�cation of semantics of evolution in object-
oriented databases. We de�ne metalevel constraints on evolution of database schema. classes and

Specification of Coordinated Behaviour in the Software Development Process

Gregor Engels (University of Leiden)
Luuk Groenewegen (University of Leiden)

Software development is a complex, long-tenn process where a lot of different persons are
involved to develop and maintain a lot of different documents. Nowadays software development
environments which aim at the support of the software development process lack an explicit
support of the process while offering a lot of isolated tools to handle documents. These so-called
product-centered environments hava to evolve to process-centered environments in order to offer
the desired and needed support for the software development process.

We present a specification language by which all static and dynamic perspectives of a
software process model can be described in an integrated way. The language consists of several
interrelated sublanguages. All of them are pure visual languages and are based on well-known
diagrammatic languages like Entity-Relationship diagrams, data/object flow diagrams and state
transition diagrams [l , 2).

The talk concentrates on the specification of coordinated behaviour of different human or
computerized agents during the software development process. This sublanguage is based on the
use of two-level state transition diagrams, which originally were developed in the PARADIGM
approach [3].

The results presented in the talk are partly being developed within the ESPRIT BRWG
PROMOTER, a basic research working group on software process modelling.

[1] G. Engels, L.P.J. Groenewegen: Specification of Coordinated Behaviour in the Software
Development Process (Position Paper). In J.C. Derniame (ed.): Proc. 2nd European Workshop on
Software Process Technology (EWSPT 92). Trondheim (Norway). Springer-Verlag. Berlin, LNCS
635, 58-60, 1992

[2] G. Engels, L.P.J. Groenewegen: Modular, Visual Specifications of Software Processes (Position
Paper). To appear in Proc. 8th Intern. Software Process Workshop, SchloDagstuhl (Gennany).
March 1993

[3] Groenewegen, L.P.J., Morssink, P.J.: Modeling structural constraints as behaviour. In
Informatiesystemen in beweging, Eds. P.W.G. Bots, H.G. Sol, I.G. Sprinkhuizen-Kuyper. Kluwer,
Deventer, The Netherlands, 1991. 195-212

Modelling Evolution in Object-Oriented Databases

Hele-Mai Haav (Estonian Academy of Sciences)
(Joint work with M. Matskin)

In this talk we propose a methodology for specification of semantics of evolution in object­
oriented databases. We define metalevel constraints on evolution of database schema. classes and

7

objects in terms of Hom logic. A part of metalevel constraints is generated automatically from
the speci�cation of classes and inheritance lattice or is obtained on the basis of object states.
Another set of metalevel constraints can be de�ned as rules for modelling the behaviour of the
data model concepts and these are considered as general constraints integrated to the metalevel.
For example, implicit constraints on inheritance lattice or class reorganization rules can form this
set of constraints. In addition. application oriented constraints can be de�ned by the user. We use
Partial Deduction techniques besides the traditional deduction to guarantee the validity of managing
evolution in OODB. Although using Partial Deduction is unusual in object- oriented databases, it
allows to make deduction on incomplete speci�cation of the semantics of evolution . This is the
case when the object-oriented speci�cations are transformed to Hom clauses and not all possible
predicates (facts) are generated at the compile time of classes. But the partial deduction method
allows to do a part of deduction before knowing all facts. The result of partial deduction of a set of
metalevel constraints can be considered as a collection of specialized conditions with respect to the
particular problem of managing evolution in OODB. Validity of these conditions can be checked
before performing real changes in OODB. Implementation principles of the methodology are
discussed on the basis of the object-oriented language NUT [1]. Different types of transformations
are de�ned for generation of predicates from the descriptions of classes and objects used in the
NUT system. General idea of the methodology proposed is presented in [2].

[I] Tyugu E, Matskin M, Penjam J, Eomois P. NUT- An object-oriented language, Computers and
Arti�cial Intelligence 1986. 6:521-542.

[2] Haav H-M. Specifying Semantics of Evolution in Object-Oriented Databases Using Partial
Deduction. In. Modelling Database Dynamics (Eds. U. Lipeck and B. Thalheim), Springer-Verlag
1992, pp 48-63 .

Frame Assumptions and Operational Semantics of Object Behavior in CMSL

Roel Wieringa (Free University of Amsterdam)
Remco Feenstra (Free University of Amsterdam)

John-Jules (Free University of Amsterdam and University of Nijmegen)
Paul Spruit (Free University of Amsterdam)

CMSL (Conceptual Model Speci�cation Language) is a language to specify object-oriented
databases. Each transaction is viewed conceptually as a �nite set of synchronously occurring events
in the life of different objects. The effect of events is de�ned declaratively by means of dynamic
logic axioms plus a frame assumption that says what remains unchanged by the event. One problem
with this frame assumption is that it cannot serve as a basis for an operational semantics. Second,
because the frame assumption says an event c has only a local effect and leaves the rest of the world
unchanged, e cannot be combined with any other event that does change something in the rest of
the world.

To solve these problems, we �rst de�ne Dynamic Database Logic (DDL), which axiomatizes
bulk insert/update/delete actions on logic databases. A sound and complete axiomatization exists

8

objects in tenns of Hom logic. A part of metalevel constraints is generated automatically from
the specification of classes and inheritance lattice or is obtained on the basis of object states.
Another set of metalevel constraints can be defined as rules for modelling the behaviour of the
data model concepts and these are considered as general constraints integrated to the metalevel.
For example, implicit constraints on inheritance lattice or class reorganization rules can fonn this
set of constraints. ln addition. application oriented constraints can be defined by the user. We use
Partial Deduction techniques besides the traditional deduction to guarantee the validity of managing
evolution in OODB. Although using Partial Deduction is unusual in object- oriented databases. it
allows to make deduction on incomplete specification of the semantics of evolution . This is the
case when the object-oriented specifications are transfonned to Hom clauses and not all possible
predicates (facts) are generated at the compile time of classes. But the partial deduction method
allows to do a part of deduction before knowing all facts. The result of partial deduction of a set of
metalevel constraints can be considered as a collection of specialized conditions with respect to the
particular problem of managing evolution in OODB. Validity of these conditions can be checked
before performing real changes in OODB. Implementation principles of the methodology are
discussed on the basis of the object-oriented language NUT [I]. Different types of transformations
are defined for generation of predicates from the descriptions of classes and objects used in the
NUT system. General idea of the methodology proposed is presented in [2].

[l] Tyugu E, Matskin M, Penjam J, Eomois P. NUT- An object-oriented language, Computers and
Artificial Intelligence 1986. 6:521-542.

[2] Haav H-M. Specifying Semantics of Evolution in Object-Oriented Databases Using Partial
Deduction. In. Modelling Database Dynamics (Eds. U. Lipeck and B. Thalheim), Springer-Verlag
1992. pp 48-63.

Frame Assumptions and Operational Semantics or Object Behavior in CMSL

Roel Wieringa (Free University of Amsterdam)
Remco Feenstra (Free University of Amsterdam)

John-Jules (Free University of Amsterdam and University of Nijmegen)
Paul Spruit (Free University of Amsterdam)

CMSL (Conceptual Model Specification Language) is a language to specify object-oriented
databases. Each transaction is viewed conceptually as a finite set of synchronously occurring events
in the life of different objects. The effect of events is defined declaratively by means of dynamic
logic axioms plus a frame assumption that says what remains unchanged by the event. One problem
with this frame assumption is that it cannot serve as a basis for an operational semantics. Second.
because the frame assumption says an event e has only a local effect and leaves the rest of the world
unchanged, e cannot be combined with any other event that does change something in the rest of
the world.

To solve these problems. we first define Dynamic Database Logic (DDL), which axiomatizes
bulk insert/update/delete actions on logic databases. A sound and complete axiomatization exists

8

for propositional DDL and for �rst-order DDL without function symbols and with �nitely many
constants. In addition, there is a sound and complete operational semantics for these variants of
DDL. We next show how CMSL update events can be implemented as DDL update programs that
have an operational semantics as well as a compositional declarative semantics of transactions.

[1] P.A. Spruit, R.J. Wieringa, and J .-J .Ch. Meyer. Dynamic database logic: The �rst-order case. In
U.W. Lipeck and B. Thalheim, editors, Modelling Database Dynamics. pages 103--120. Springer,
1993.

[2] P.A. Spruit. R.J. Wieringa, and J.-J.Ch. Meyer. Axiomatization, declarative semantics and
operational semantics of passive and active updates in logic databases. Journal of Logic and
Computation, To be published.

[3] R.J. Wieringa. A fonnalization of objects using equational dynamic logic. In C. Delobel.
M. Kifer, and Y. Masunaga, editors, 2nd International Conference on Deductive and Object-
Oriented Databases, pages 431--452. Springer, 1991. Lecture Notes in Computer Science 566.

Petri Net Based Modelling of Procedures in Complex Object Database Applications

Andreas Oberweis (Universitaet Karlsruhe)

(Joint work with Peter Sander, Universitaet Karlsruhe)

A new type of high level Petri nets is introduced for modelling procedures in complex object
database applications. Each net de�nes a class of possible system procedures, i.e. sequences of
(possibly concurrent) operations, in a complex object database application. Places (predicates)
in these so-called nested relation/transition nets (NR/l�-nets) represent schemes of unnormalized
relations ("nested relations"). The marking of each place is a (possibly empty) nested relation of
the respective type. Each transition represents a speci�c type of operation on the relations in the
adjacent places. These operations may not only operate on whole tuples of a given relation but also
on "subtuples" of existing tuples. Arcs in a net are inscribed with so- called �lter tables which allow
(together with an optional logical expression as transition inscription) to formulate conditions on
the speci�ed (sub-) tuples.

CLOOD: A Class-less Models for

Object--Oriented Design Databases

Margret Gro-Handt
Gottfried Vossen

(Justus-Liebig-Universitat Giessen)

Engineering design applications have speci�c requirements to database support which are not
yet met completely by existing systems. We argue that one reason is the inability of cunent

9

for propositional DDL and for first-order DDL without function symbols and with finitely many
constants. In addition, there is a sound and complete operational semantics for these variants of
DDL. We next show how CMSL update events can be implemented as DDL update programs that
have an operational semantics as well as a compositional declarative semantics of transactions.

[1] P.A. Spruit, R.J. Wieringa. and J .-J.Ch. Meyer. Dynamic database logic: The first-order case. 1n
U. W. Lipeck and B. Thalhe im, editors. Modelling Database Dynamics. pages 103--120. Springer.
1993.

[2] P.A. Spruit, R.J. Wieringa, and J.-J.Ch. Meyer. Axiomatization. declarative semantics and
operational semantics of passive and active updates in logic databases . Journal of Logic and
Computation, To be published.

[3] R.J. Wieringa. A formalization of objects using equational dynamic logic. In C. Delobel.
M. Kifer. and Y. Masunaga, editors. 2nd International Conference 0 11 Deducrive and Object­
Oriented Databases. pages 431--452. Springer. 1991. Lecture Notes in Computer Science 566.

Petri Net Based Modelling of Procedures in Complex Object Database Applications

Andreas Oberweis (Universitaet Karlsruhe)
(Joint work with Peter Sander, Universitaet Karlsruhe)

A new type of high level Petri nets is introduced for modelling procedures in complex object
database applications. Each net defines a class of possible system procedures. i.e. sequences of
(possibly concurrent) operations, in a complex object database application. Places (predicates)
in these so-called nested relation/transition nets (NR/f-nets) represent schemes of unnormalized
relations ("nested relations"). The marldng of each place is a (possibly empty) nested relation of
the respective type. Each transition represents a specific type of operation on the relations in the
adjacent places. These operations may not only operate on whole tuples of a given relation but also
on "subtuples" of existing tuples. Arcs in a net are inscribed with so- called filter tables which allow
(together with an optional logical expression as transition inscription) to formulate conditions on
the specified (sub-) tuples.

CLOOD: A Class-less Models for
Object--Oriented Design Databases

Margret Gm-Hardt
Gottfried Vossen

(Justus-Liebig-Universitat Giessen)

Engineering design applications have specific requirements to database support which are not
yet met completely by existing systems. We argue that one reason is the inability of current

9

object models to capture the needs of design applications appropriately. First, object-oriented
data models typically center around the notion of class; however, applications like CAD or CASE
frequently center around objects with types varying during the design process (which has a creative
or experimental �avor) and therefore have little use for de�ning classes in the �rst place. In a design
environment a class lattice is seldomly de�ned �rst and then populated with objects, but objects
exist prior to their classes. The result of a design process is, for instance, a prototype representation
for a certain car, and as the word � � prototype� already indicates, it is a singleton with respect to the
representation of other objects.

Second, design applications need a versioning mechanism, which is typically not provided
within the data model, but as an additional construct whose usage then creates unnecessary
overhead.

We show how to combine concepts from prototype programming languages with a versioning
mechanism for objects into a new model which does without the notion of a class. The idea is
that objects can freely exist in a database, have multiple versions, and can share structure and
behavior with others. This provides much more �exibility in specifying structure and behavior of
a design object (e. g., there are no problems with migration of objects from one class to another).
Nevertheless, a grouping mechanism for objects is provided, so--called collections, which serve as
addressees for declarative queries. Collections contain arbitrary objects (and/or versions), though
(in general) they do not partition the whole objectspace. In addition, working with design objects is
done both associatively (via user-de�ned identi�ers) and declaratively (via collections as a query
tool).

Principles of Object Oriented Database Design

Klaus--Dieter Schewe

Bernhard Thalheim

(Cottbus Technical University)

The design of complex information systems requires a transparent model-based methodology.
It has been claimed that object orientation will have a signi�cant impact on the development of
such a methodology, especially as reusability and naturality of conceptual modelling are concemed.

The methodology presented in this paper concentrates on four signi�cant principles of object
oriented database (OODB) design. The basic constituent is stepwise refinement. i.e. to begin
the design process with a partial model that is completed and concretized furtheron depending on
the growth of application knowledge. Class abstraction, i.e. to support libraries of incomplete
parameterized designs that are instantiated and specialized later, is a natural consequence hereof.
Declarariviry is achieved by constraint centered design with (up to some degree) automatic
transformation into consistent transactions. Variations enable the design of information systems
with heavy reuse of existing design components.

The methodology is based on a theoretically founded object oriented datamodel (OODM).
Hence the support of inferences such as deciding the identi�ability of objects, detecting the

10

object models to capture the needs of design applications appropriately. First, object-oriented
data models typically center around the notion of class; however, applications like CAD or CASE
frequently center around objects with types varying during the design process (which has a creative
or experimental flavor) and therefore have little use for defining classes in the first place. In a design
environment a class lattice is seldomly defined first and then populated with objects, but objects
exist prior to their classes. The result of a design process is, for instaQce, a prototype representation
for a certain car, and as the word "prototype" already indicates, it is a singleton with respect to the
representation of other objects.

Second. design applications need a versioning mechanism. which is typically not provided
within the data model, but as an additional construct whose usage then creates unnecessary
overhead.

We show how to combine concepts from prototype programming Languages with a versioning
mechanism for objects into a new model which does without the notion of a class. The idea is
that objects can freely exist in a database, have multiple versions, and can share structure and
behavior with others. This provides much more flexibility in specifying structure and behavior of
a design object (e. g., there are no problems with migration of objects from one class to another).
Nevertheless, a grouping mechanism for objects is provided, so--called collections. which serve as
addressees for declarative queries. Collections contain arbitrary objects (and/or versions), though
(in general) they do not partition the whole objectspace. In addition, working with design objects is
done both associatively (via user-defined identifiers) and declaratively (via collections as a query
tool).

Principles of Object Oriented Database Design

Klaus--Dieter Schewe
Bernhard Thalheim

(Conbus Technical University)

The design of complex infonnation systems requires a transparent model-based methodology.
It has been claimed that object orientation will have a significant impact on the development of
such a methodology, especially as re usability and naturality of conceptual modelling are concerned.

The methodology presented in this paper concentrates on four significant principles of object
oriented database (OODB) design. The basic constituent is stepwise refinement. i.e. to begin
the design process with a partial model that is completed and concretized furtheron depending on
the growth of application knowledge. Class abstraction, i.e. to support libraries of incomplete
parameterized designs that are instantiated and specialized later, is a natural consequence hereof.
Declarativity is achieved by constraint centered design with (up to some degree) automatic
transfonnation into consistent transactions. Variations enable the design of information systems
with heavy reuse of existing design components.

The methodology is based on a theoretically founded object oriented datamodel (OODM).
Hence the support of inferences such as deciding the identifiability of objects, detecting the

10

relation of an intended design to components in existing design libraries, and checking operations
for reducedness as a prerequisite for the automatic transformation of constraints into consistent
transactions.

Inheriting and Using Integrity Constraints or Not?

1Bemhard Thalheim
(Cottbus University)

The talk gives an overview on the theory of integrity constraints in different database models.
First. the history of the theory of integrity constraints is surveyed brie�y. The main results obtained
mainly in the context of the relational model are discussed. This development led to a very rich
theory of integrity and to an overwhelming set of different classes. The book [1] surveys only
95 different classes of static integrity constraint. During the last decade this theory has been
extended to different (semantical) database models. There are some papers with extensions to
object-oriented models. However, it is often claimed that this theory has been useless. During the
talk several arguments (representation in constructors, combinatorial. human abilities. systems use,
bad properties) against the generalization of this theory to other database models are discussed.
The main part of the talk is used for the development of a general theory of integrity constraints.
It is shown how different classes of integrity constraints can be generalized in accordance to the
constructors used in the new model. The basis for this part of the talk is the approach used in
[2]. The next part shows how integrity constraints can be used in other models and in database
management systems. There are several areas where these constraints are necessary and useful.
Finally, it is shown that integrity constraints can be inherited by any other database model.

[1] B. Thalheim, Dependencies in relational databases. Teubner, Leipzig, 1991.

[2] B. Thalheim, Fundamentals of entity-relationship modeling. Springer, Heidelberg, 1993

Aspects of Interaction for Abstract Objects

Gunter Saake

Thorsten Hartmann

(TU Braunschweig)

The object-oriented approach provides a natural view of evolving information systems as
collections of objects having both structure as well as behaviour. This view is supported by
speci�cation languages like TROLL [1], Oblog or Troll light. The basic communication primitive
in these languages is erent calling. Event calling can be characterized as synchronous asymmetric
communication. A formal object model based on life cycles consisting of event snapshots (sets
of synchronized events) allows to model event calling inside (composite) objects [2]. Properties;

11

relation of an intended design to components in existing design libraries, and checking operations
for reducedness as a prerequisite for the automatic transformation of constraints into consistent
transactions.

Inheriting and Using Integrity Constraints or Not?

Bernhard Thalheim
(Conbus University)

Toe talk gives an overview on the theory of integrity constraints in different database models.
First. the history of the theory of integri'ty constraints is surveyed briefly. The main results obtained
mainly in the context of the relational model are discussed. This development led to a very rich
theory of integrity and to an overwhelming set of different classes. The book [1 J surveys only
95 different classes of static integrity constraint. During the last decade this theory has been
extended to different (semantical) database models. There are some papers with extensions to
object-oriented models. However, it is often claimed that this theory has been useless. During the
talk several arguments (representation in constructors. combinatorial. human abilities. systems use,
bad properties) against the generalization of this theory to other database models are discussed.
The main part of the talk is used for the development of a general theory of integrity constraints.
It is shown how different classes of integrity constraints can be generalized in accordance to the
constructors used in the new model. The basis for this part of the talk is the approach used in
[2]. The next part shows how integrity constraints can be used in other models and in database
management systems. There are several areas where these constraints are necessary and useful.
Finally. it is shown that integrity constraints can be inherited by any other database model.

[1] B. Thalheim, Dependencies in relational databases. Teubner. Leipzig, 199 1.

[2] B. Thalheim, Fundamentals of entity-relationship modeling. Springer. Heidelberg. 1993

Aspects of Interaction for Abstract Objects

Gunter Saake
Thorsten Hartmann
(TU Braunschweig)

The object-oriented approach provides a natural view of evolving information systems as
collections of objects having both structure as well as behaviour. This view is supported by
specification languages like TRo LL [1], Oblog or Troll light. The basic communication primitive
in these languages is erent calling. Event calling can be characterized as synchronous asymmetric
communication. A formal object model based on life cycles consisting of event snapshots (set,;
of synchronized event-,) allows to model event calling inside (composite) objects [2J. Properties

11

of interest for snapshots resulting from event calling are consistency (no attribute modi�cation
con�icts) and �niteness. Both properties are in general undecidable but suf�cient conditions for
them can be analyzed based on syntactic properties of speci�cation documents. Ordering relations
based on control and data �ow between events of a snapshot can be used to describe execution
models extending the notion of parallel execution of events [3], respectively to derive execution
plans for snapshots.

[1] Jungclaus. R. and Saake. G. and Hartrnarm. T. and Semadas, C.: Object-Oriented Speci�cation
of Information Systems: The TROLL Language. TU Braunschweig, Technical Report 91-04, 1991.

[2] Hartrnarm, T. and Jungclaus. R. and Saake. G.: Aggregation in a Behavior Oriented Object
Model. In: Proc. European Conference on Object�Oriented Programming (ECOOP�92), Lehrmann
Madsen, 0. (ed.), Springer, Berlin. LNCS 615, 1992, pages 57--77.

[3] Hartmann, T. and Jungclaus. R. and Saake, G.: Animation Support for a Conceptual Modelling
Language. In: Proc. Int. Conf. on Database and Expert Systems Applications (DEXA 93). Springer.
Berlin, LN CS series. To appear.

Dynamic Modelling in Database Design

Moira C. Norrie

(ETH, Zurich)

Dynarnic modelling in terms of entity life cycles can be used as a basis for the determination of
classi�cation structures in object model schemas. The talk presented some preliminary work in this
area based on the use of two forms of entity state transition diagrams (ESTD). The w work follows
on from previous work on interactive systems for the support of object-oriented database design
which was done in the context of the Esprit project Comandos. The main features of the Comandos
data model, BROOM, and accompanying proposals for mechanisms to support and control object
evolution were also presented.

Panel Discussion on the Speci�cation of Behaviour: Subtyping versus Specialization

Gerti Kappel
(University of Vienna)

Subtyping or speci�cation inheritance refers to inheriting attributes and methods of a supertype
T to a subtype T� such that objects of T� may be used whenever objects of T are expected and no
run-time type error occurs (type-safe type substitutability). This kind of inheritance is based on the
contravariance rule. Specialization or isa-inheritance refers to inheriting attributes and methods of
a supertype T to a subtype T� such that the objects of T� constitute a subset of the objects of T and

12

of interest for snapshots resulting from event calling are consistency (no attribute modification
conflicts) and finiteness. Both properties are in general undecidable but sufficient conditions for
them can be analyzed based on syntactic properties of specification documents. Ordering relations
based on control and data flow between events of a snapshot can be used to describe execution
models extending the notion of parallel execution of events [3], respectively to derive execution
plans for snapshots.

[I] Jungclaus. R. and Saa.Ice, G. and Hartmann, T. and Semadas, C.: Object-Oriented Specification
of Information Systems: The TROLL Language. TU Braunschweig, Technical Report 9 1-04, 1991.

[2] Hanmann, T. and Jungclaus. R. and Saake, G.: Aggregation in a Behavior Oriented Object
Model. In: Proc. European Conference on Object-Oriented Programming (ECOOP'92). Lehrmann
Madsen, 0. (ed.), Springer. Berlin. LNCS 615, 1992, pages 57--77.

[3) Hartmann, T. and Jungclaus. R. and Saake, G.: Animation Support for a Conceptual Modelling
Language. In: Proc. Int. Conf. on Database and Expert Systems Applications (DEXA 93), Springer,

Berlin, LNCS series. To appear.

Dynamic Modelling in Database Design

Moira C. Nonie
(ETH. Zurich)

Dynamic modelling in terms of entity life cycles can be used as a basis for the determination of
classification structures in object model schemas. The talk presented some preliminary work in this
area based on the use of two forms of entity state transition diagrams (ESTD). The w work follows
on from previous work on interactive systems for the support of object-oriented database design
which was done in the context of the Esprit project Comandos. The main features of the Comandos
data model, BROOM, and accompanying proposals for mechanisms to support and control object
evolution were also presented.

Panel Discussion on the Specification of Behaviour: Subtyping versus Specialization

Gerti Kappel
(University of Vienna)

Subtyping or specification inheritance refers to inheriting attributes and methods of a supertype
T to a subtype T' such that objects of T' may be used whenever objects of T are expected and no
run-time type error occurs (type-safe type substitutability). This kind of inheritance is based on the
contravariance rule. Specialization or isa-inheritance refers to inheriting attributes and methods of
a supertype T to a subtype T' such that the objects of T' constitute a subset of the objects of T and

12

T� is a more specialized speci�cation than T (type subsurnption). This kind of inheritance is based
on the covariance rule. Whereas the latter is a desirable feature of object-oriented modeling and
design, the former is a desirable feature of type-safe system development.

The lifely discussion, hence, the dilemma of these con�icting goals is best summarized by the
following example (brought up by Andreas Heuer). Assume object type BOOK with attributes and
corresponding domains Title:STRING, Pn'ce:REAL and method price_Ca1c(pub:PUBLISHER)
(the price of the book depends also on the publisher�s tax). Assume further subtype AUS-
TRIAN.BOOK with inherited (and overridden) attributes and method Title:STRING, Pn'ce:REAL,
and pn'ce-Calc(pub:AUSTRIAN_PUBLISHER). The variables b and p have the static types BOOK
and PUBLISHER, respectively. The statement b->price-Calc(p) should be dynamically bound to
the appropriate implementation depending on the dynamic types of b and p. Find solutions in your
favorite language which are type-safe!

T' is a more specialized specification than T (type subsumption). This kind of inheritance is based
on the covariance rule. Whereas the latter is a desirable feature of object-oriented modeling and
design, the fonner is a desirable feature of type-safe system development.

The lifely discussion, hence. the dilemma of these conflicting goals is best summarized by the
following example (brought up by Andreas Heuer). Assume object type BOOK with attributes and
corresponding domains Title:STRING. Price:REAL and method price_Calc(pub:PUBLISHER)
(the price of the book depends also on the publisher's tax). Assume further subtype AUS­
TRIAN..BOOK with inherited (and overridden) attributes and method Title:STRJNG, Price:REAL.
and price_Calc(pub:AUSTRIAN.PUBLISHER). The variables band p have the static types BOOK
and PUBLISHER. respectively. The statement b->price_Calc(p) should be dynamically bound to
the appropriate implementation depending on the dynamic types of b and p. Find solutions in your
favorite language which are type-safe!

13

2 Updates

Determinism of Bulk Application of Update Methods

Marc Andries (University of Leiden)
Jan Paredaens (University of Antwerp, UIA)

Jan Van den Bussche (University of Antwerp, UIA)

Assume M is an update method, which when called on a receiver object and possibly a
number of parameters, transforms the database. We discuss the issue of calling such a method
not to one receiver-parameter tuple, but to a set of them. We consider two possible intended
semantics for such "Bulk Applications": a parallel one and a sequential one. These two intended
semantics are compared. A fundamental difference between them is that the sequential one may be
non-deterministic.

We study ways to test for determinism. Two major possible directions toward this problem
are mentioned. The �rst remains in the general framework but provides additional semantics of
the method in terms of "scheme colorings", which, for example, describe which types of objects
and properties in the database are deleted, created. or used. This direction brings up the issue of
axiomatizing the behavior of an arbitrary database transformation, in analogy with type theory.

The second direction assumes that the methods are programmed in a declarative language like
the relational algebra. This leads to the novel application of known relational database theory
techniques, like testing far containment of positive relational algebra expressions, as well as the
extension of these techniques to, say, object creation. Open problems of this kind have already
been posed in the literature [1,2,3].

[1] A. Chandra. Programming primitives for database languages. In Proceedings POPL�8 1.

[2] R. Hull and Y. Su. Accessing object-oriented databases. In Proceedings SIGMOD�89.

[3] R. Hull and M. Yoshikawa. Equivalence of database restnrcturings involving object identi�ers.
In Proceedings PODS�91.

Speci�cation and Evaluation of Database Updates

Weidong Chen
Jinghong Zeng

(Southem Methodist University)

We present a novel approach to speci�cation of database updates. Declarative update languages
are derived by extending existing query languages with atomic formulas for a new database after an
update. Evaluation of database updates reduces to abductive reasoning in which atomic fonnulas
about a new database are abducible.

An extension of logic programming with updates is described as a case study. Recursive

14

2 Updates

Determinism of Bulk Application of Update Methods

Marc Andries (University of Leiden)
Jan Paredaens (University of Antwerp, UIJ\)

Jan Van den Bussche (University of Antwerp. lJ1A)

Asswne M is an update method, which when called on a receiver object and possibly a
number of parameters, transfonns the database. We discuss the issue of calling such a method
not to one receiver-parameter tuple, but to a set of them. We consider two possible intended
semantics for such "Bulk Applications": a parallel one and a sequential one. These two intended
semantics are compared. A fundamental difference between them is that the sequential one may be
non-detenninistic.

We study ways to test for determinism. Two major possible directions toward this problem
are mentioned. The first remains in the general framework but provides additional semantics of
the method in tenns of "scheme colorings". which. for example, describe which types of objects
and properties in the database are deleted, created. or used. 11lis direction brings up the issue of
axiomatizing the behavior of an arbitrary database transformation, in analogy with type theory.

The second direction asswnes that the methods are programmed in a declarative language like
the relational algebra. 1bis leads to the novel application of known relational database theory
techniques. like testing ff.~ containment of positive relational algebra expressions, as well as the
extension of these techniques to, say, object creation. Open problems of this kind have already
been posed in the literature [l,2,3].

[1] A. Oiandra. Programming primitives for database languages. In Proceedings POPL '81.

(2) R. Hull and Y. Su. Accessing object-oriented databases. In Proceedings SIGMOD'89.

(3] R. Hull and M. Yoshikawa. Equivalence of database restructurings involving object identifiers.
In Proceedings PODS'91.

Specification and Evaluation of Database Updates

Weidong Olen
Jinghong 2.eng

(Southern Methodist University)

We present a novel approach to specification of database updates. Declarative update languages
are derived by extending existing query languages with atomic fonnulas for a new database after an
update. Evaluation of database updates reduces to abductive reasoning in which atomic fonnulas
about a new database are abducible.

An extension of logic programming with updates is described as a case study. Recursive

14

and set-based updates are naturally speci�ed. Current query processing techniques can be readily
applied for ef�cient update evaluation.

Deterministic Semantics of Set-Oriented Update Sequences

Marc H. Scholl

(University of Ulm)

Updates and set-orientation can not be combined as easily as retrievals can. The reason for this is
that the state transitions performed by each update step might interact with expressions that are part
of the update speci�cations. leading to non-detenninistic behavior due to order dependencies. The
problem shows up even in simple SQL updates with so-called self-referential update statements. It
becomes even worse, if one tries to combine set-orientation and sequences of elementary updates
(or other control �ow mechanisms), as necessary in method languages for ODBMSs.

A generic iterator ("apply.to.all") is proposed that allows to apply sequences of update operations
in a set-oriented way with deterministic semantics. Because the mechanism is independent of a
particular model. it can be used in the relational and in object-oriented ones. Thus. the deterministic
semantics of embedded SQL cursors, and of triggers that are applied after (set-oriented) SQL
updates can be checked. Furthennore, the iterator can be used to apply object-oriented methods.
which are typically sequences (or other more complex control structures) of elementary update
steps de�ned on a single object, also to sets of objects in a deterministic way.

The criteria that are used to detect whether or not a sequence of updates can be applied to a
set are essentially the same that can be used for semantic concunency control. What we need is a
matrix of the con�icts between the elementary update and retrieval operations provided by the data
model. This is the only model dependency of our approach, all the rest is completely generic.

We can exploit the relationship with concurrency control even further, by using a nested trans-
action model that immediately shows the potential for fully parallel (intra-transaction parallelism)
implementation of set-oriented updates.

[1] Christian Laasch and Mann H. Scholl: Deterministic Semantics of Set-Oriented Update
Sequences. Proc. 9th lnt�l Conf. on Data Engineering (ICDE), Vienna, 1993, pp. 4- 13.

Updates and Rules

Georg Lausen
(Universitat Mannheim)

The problem of performing updates in relational database systems is studied. A program to
perform updates consists of a set of nrles, where the intended updates are indicated by +, meaning
insert. respectively, -, meaning delete in the head of the nrles. The speci�c feature of the language
presented is the automatic creation of states of the relations being updated (frame rule). In this

15

and set-based updates are naturally specified. Current query processing techniques can be readily
applied for efficient update evaluation.

Deterministic Semantics of Set-Oriented Update Sequences

Marc H. Scholl
(University of Ulm)

Updates and set-orientation can not be combined as easily as retrievals can. The reason for this is
that the state transitions perfonned by each update step might interact with expressions that are part
of the update specifications, leading to non-detenninistic behavior due to order dependencies. The
problem shows up even in simple SQL updates with so-called self-referential update statements. It
becomes even worse, if one tries to combine set-orientation and sequences of elementary updates
(or other control flow mechanisms). as necessary in method languages for ODBMSs.

A generic iterator(" apply ..10..al.l") is proposed that allows to apply sequences of update operations
in a set-oriented way with deterministic semantics. Because the mechanism is independent of a
particular model, it can be used in the relational and in object-oriented ones. Thus, the detenninistic
semantics of embedded SQL cursors. and of triggers that are applied after (set-oriented) SQL
updates can be checked. Furthennore, the iterator can be used to apply object-oriented methods,
which are typically sequences (or other more complex control structures) of elementary update
steps defined on a single object, also to sets of objects in a detenninistic way.

The criteria that are used to detect whether or not a sequence of updates can be applied to a
set are essentially the same that can be used for semantic concurrency control. What we need is a
matrix of the conflicts between the elementary update and retrieval operations provided by the data
model. This is the only model dependency of our approach, all the rest is completely generic.

We can exploit the relationship with concurrency control even further, by using a nested trans­
action model that immediately shows the potential for fully parallel (intra-transaction parallelism)
implementation of set-oriented updates.

[1] Ouistian Laasch and Marc H. Scholl: Deterministic Semantics of Set-Oriented Update
Sequences, Proc. 9th Int'l Conf. on Data Engineering (ICDE), Vienna, 1993, pp. 4-13.

Updates and Rules

Georg Lausen
(Universitat Mannheim)

The problem of performing updates in relational database systems is studied. A program to
perfonn updates consists of a set of rules, where the intended updates are indicated by +, meaning
insert, respectively, - , meaning delete in the head of the rule&. The specific feature of the language
presented is the automatic creation of states of the relations being updated (frame rule). In this

15

way an intuitiv control of the update process is achieved. The impact on the power and the
declarativeness is discussed. In addition, a rewriting of update programs into standard Datalog is
outlined.

Transactions and Updates in Deductive Databases

Danilo Montesi (Universita di Pisa)

Elisa Bertino (Universita di Genova)
Maurizio Martelli (Universita di Genova)

We present a new approach introduced in [1] to study the update problem and its integration in
logic-based languages, with the aim of understanding how a logic language may express updates
and how they can have a transactional behavior.

In particular, we �rst analyze the major drawbacks of the approaches in the literature and
then we propose a new approach to base relation updates. called non-immediate update semantics,
which has some nice properties. The basic idea is to consider a two steps computation. In the
�rst step the tentative updates are collected and in the second step they are executed altogether.
The updates resulting from the �rst step of the computation are not redundant and can be executed
in parallel. Moreover, the �rst step can be computed top-down or bottom-up. In this way one
reconciles forward and backward reasoning in logic-based language with updates. In addition
expensive runtime roll back is not required. Then we analyze the Constraint Logic Programming
(CLP) framework, and we show that it provides a fonnal setting for the non-immediate update
semantics. However, to completely characterize our approach, CLP will be extended to allow
modular program construction, resulting in the notion of open CLP program and its semantics.
Indeed, considering a database as composed by the time varying extensional database and the time
invariant intensional one, one needs a way to provide the semantics of the intensional database
modulo the possible extensional ones. Updates to base relations are expressed as constraints in CLP
scheme and a query triggering updates has a transactional behavior. Moreover, in order to express
complex transactions, some control is introduced explicitly, outside the logic language. through
sequence and iteration constructs. .

The resulting language, called Extended Constrained Datalog has a four steps semantics. This
semantics captures a rich observable property which induces two interesting equivalence notions
for transactions and for databases. Those equivalence notions extend those for relational databases
and deductive databases capturing the all-or-nothing behavior of complex transactions.

[1] D. Montesi� A Model for Updates and Transactions in Deductive Databases, Ph.D. Thesis.
Dipartimento di Inforrnatica, Universita di Pisa, March 1993.

16

way an intuitiv control of the update process is achieved. The impact on the power and the
declarativeness is discussed. In addition, a rewriting of update programs into standard Datalog is
outlined.

Transactions and Updates in Deductive Databases

Danilo Montesi (Universita di Pisa)
Elisa Bertino (Universita di Genova)

Maurizio Martelli (Universita di Genova)

We present a new approach introduced in [1] to study the update problem and its integration in
logic-based languages. with the aim of understanding how a logic language may express updates
and how they can have a transactional behavior.

In particular, we first analyze the major drawbacks of the approaches in the literature and
then we propose a new approach to base relation updates. called non-immediate update semantics,
which has some nice properties. The basic idea is to consider a two steps computation. In the
first step the tentative updates are collected and in the second step they are executed altogether.
The updates resulting from the first step of the computation are not redundant and can be executed
in parallel. Moreover, the first step can be computed top-down or bottom-up. In this way one
reconciles forward and backward reasoning in logic-based language with updates. In addition
expensive runtime roll back is not required. Then we analyze the Constraint Logic Programming
(CLP) frameworlc, and we show that it provides a fonnal setting for the non-immediate update
semantics. However, to completely characterize our approach, CLP will be extended to allow
modular program construction. resulting in the notion of open CLP program and its semantics.
Indeed, considering a database as composed by the time varying extensional database and the time
invariant intensional one, one needs a way to provide the semantics of the intensional database
modulo the possible extensional ones. Updates to base relations are expressed as constraints in CLP
scheme and a query triggering updates has a transactional behavior. Moreover, in order to express
complex transactions, some control is introduced explicitly, outside the logic language. through
sequence and iteration constructs.

The resulting language, called Extended Constrained Datalog has a four steps semantics. This
semantics captures a rich observable property which induces two interesting equivalence notions
for transactions and for databases. Those equivalence notions extend those for relational databases
and deductive databases capturing the all-or-nothing behavior of complex transactions.

[I] D. Montesi, A Model for Updates and Transactions in Deductive Databases, Ph.D. Thesis,
Dipartimento di lnformatica, Universita di Pisa, March 1993.

16

3 Transactions

Distributed Transaction Speci�cation

" Rolf A. de By

Hennie J. Steenhagen
(University of Twente, The Netherlands)

The fonnal speci�cation of a network of cooperating database systems is a tedious and
error-prone task in which the designer(s) should be supported by tools based on fonnal theories.

We discuss the motivation and goals of a recently started research project in which we will
try to combine the formal speci�cation languages LOTOS and TM. The �rst language is an ISO
standard for Open Systems Interconnection description based on process algebra. The second is a
(sub)typed functional database speci�cation language. Around both languages fairly complete tool
sets have been developed in the past. or are currently being developed. and it is our aim to combine
those tool sets in the coming years.

The goal of this effort is to provide a complete environment for distributed database design.
veri�cation, prototyping, simulation and testing. A theory of correctness-preserving transforrna-
tions should lead to an evolutionary. and formally veri�able design trajectory towards correct

implementations.

Semantics-Based Transaction Management in Object-oriented Database Systems

Gerhard Weikum (ETH Zurich)

The talk presented a model for reasoning about the correctness of concurrent transaction
executions in object-oriented database systems, based on the notion of open nested transactions.
Transactions are modeled as method invocation trees, and schedules are partially ordered forests.
For each object type. a compatibility speci�cation for its methods is assumed to be given. where
two methods are considered compatible if their ordering in a schedule is insigni�cant from an
application point of view (e.g., based on commutativity properties). A schedule is semantically
serializable if it can be transfonned into a serial schedule of the transaction roots by applying the
following two rules: 1) the order of two compatible leaves that are ordered and ajacent in the
schedule can be exchanged. and 2) "isolated" subtrees (i.e., subtrees that are ordered with respect
to all nodes other than their own descendants) can be pruned. This model allows correctness
reasoning about both inter- and intra-transaction parallelism. and it can deal with the coexistence
of encapsulated-object hierarchies and directly accessible objects.

l7

3 Transactions

Distributed Transaction Specification

Rolf A. de By
Hennie J. Steenhagen

(University of Twente, The Netherlands)

The fonnal specification of a network of cooperating database systems is a tedious and
error-prone task in which the designer(s) should be supported by tools based on formal theories.

We discuss the motivation and goals of a recently started research project in which we will
try to combine the fonnal specification languages LOTOS and TM. The first language is an ISO
standard for Open Systems Interconnection description based on process algebra. The second is a
(sub)typed functional database specification language. Around both languages fairly complete tool
sets have been developed in the past. or are currently being developed, and it is our aim to combine
those tool sets in the coming years.

The goal of this effort is to provide a complete environment for distributed database design.
verification. prototyping, simulation and testing. A theory of correctness-preserving transforma­
tions should lead to an evolutionary. and formally verifiable design trajectory towards correct
implementations.

Semantics-Based Transaction Management in Object-oriented Database Systems

Gerhard Weikum (ETH Zurich)

The talk presented a model for reasoning about the correctness of concurrent transaction
executions in object-oriented database systems. based on the notion of open nested transactions.
Transactions are modeled as method invocation trees, and schedules are partially ordered forests.
For each object type. a compatibility specification for its methods is assumed to be given. where
two methods are considered compatible if their ordering in a schedule is insignificant from an
application point of view (e.g .. based on commutativity properties). A schedule is semantically
serializable if it can be transformed into a serial schedule of the transaction roots by applying the
following two rules: I) the order of two compatible leaves that are ordered and ajacent in the
schedule can be exchanged. and 2) "isolated" subtrees (i.e .. subtrees that are ordered with respect
to all nodes other than their own descendants) can be pruned. This model allows correctness
reasoning about both inter- and intra-transaction parallelism. and it can deal with the coexistence
of encapsulated-object hierarchies and directly accessible objects.

17

Towards a Uni�ed Theory of Concurrency Control and Recovery

Hans-Jorg Schek
Gerhard Weikum

Haiyan Ye
(ETH Zurich)

The classical theory of transaction management is based on two differe nt and independent
criteria for the conect execution of transactions. The �rst criterion, serializability, ensures conect
execution of parallel transactions under the assumption that no failures occur. The second criterion,
strictness, ensures correct recovery from failures.

In this paper we develop a uni�ed model that allows reasoning about the correctness of
concunency control and recovery within the same framework. We introduce the conectness criteria
of (pre�x-)reducibi1ity and (pre�x-)expanded serializability and investi gate their relationships to
the classical criteria. An important advantage of our model is that it captures schedules with
semantically rich ADT actions in addition to classical read/write schedules.

Transaction Logic Programming (or, A Logic of Procedural and Declarative Knowledge)

Anthony Bonner (University of Toronto)
Micheal Kifer (SUNY at Stony Brook)

An extension of predicate logic, called Transaction Logic, is proposed, which accounts in a
clean and declarative fashion for the phenomenon of state changes in logic programs and databases.
Transaction Logic has a natural model theory and a sound and complete proof theory, but unlike
many other logics, it allows users to program transactions. This is possible because, like classical
logic, Transaction Logic has a �Hom� version which has a procedural as well as a declarative
semantics. In addition, the semantics leads naturally to features whose amalgamation in a single
logic has proved elusive in the past. These features include both hypothetical and committed
updates, dynamic constraints on transaction execution, nondetenninism. and bulk updates. Finally,
Transaction Logic holds promise as a logical model of hitherto non-logical phenomena, including
so-called procedural knowledge in Al, and the behavior of object-oriented databases, especially
methods with side effects. Apart from the applications to Databases and Logic Programming, we
also discuss applications to a number of AI problems, such as planning, temporal speci�cations,
and the frame problem.

A technical report is available by anonymous ftp to "csri.toronto.edu", in the �le "csn'-technical-
reports/270/report.ps" It includes a complete development of the model theory, proof theory, and
numerous applications.

18

Towards a Unified Theory of Concurrency Control and Recovery

Hans-Jorg Schek
Gerhard Weikum

Haiyan Ye
(ETH Zurich)

The classical theory of transaction management is based on two differe nt and independent
criteria for the correct execution of transactions. The first criterion, serializability, ensures correct
execution of parallel transactions under the assumption that no failures occur. The second criterion,
strictness. ensures correct recovery from failures.

In this paper we develop a unified model that allows reasoning about the correctness of
concurrency control and recovery within the same framework. We introduce the correctness criteria
of (prefix-)reducibility and (prefix-)expanded serializability and investigate their relationships to
the classical criteria. An important advantage of our model is that it captures schedules with
semantically rich ADT actions in addition to classical read/write schedules.

Transaction Logic Programming (or, A Logic of Procedural and Declarative Knowledge)

Anthony Bonner (University of Toronto)
Micheal Kifer (SUNY at Stony Brook)

An extension of predicate logic, called Transaction Logic, is proposed, which accounts in a
clean and declarative fashion for the phenomenon of state changes in logic programs and databases.
Transaction Logic has a natural model theory and a sound and complete proof theory. but unlike
many other logics, it allows users to program transactions. This is possible because, like classical
logic, Transaction Logic has a "Hom" version which has a procedural as well as a declarative
semantics. In addition, the semantics leads naturally to features whose amalgamation in a single
logic has proved elusive in the past. These features include both hypothetical and committed
updates, dynamic constraints on transaction execution, nondetenninism. and bulk updates. Finally,
Transaction Logic holds promise as a logical model of hitherto non-logical phenomena, including
so-called procedural knowledge in AI. and the behavior of object-oriented databases, especially
methods with side effects. Apart from the applications to Databases and Logic Programming. we
also discuss applications to a number of AI problems, such as planning, temporal specifications,
and the frame problem.

A technical report is available by anonymous ftp to "csri.toronto.edu", in the file "csri-technical­
reports/270/report.ps" It includes a complete development of the model theory. proof theory, and
numerous applications.

18

4 Active Rule Processing

Reactive Object Oriented Databases: -or What Causes Events in ACOOD?

Mikael Bemdtsson (University of Skovde, Sweden)

Reactive databases [1] have been proposed as an approach to support rules in database systems.
Most proposals for reactive object oriented databases support event-condition-action rules. where
method invocations are the triggering events. In recent, both rules and events have been proposed
to be represented as �rst class obejcts.

ACOOD is a prototype reACtive Object Oriented Database. built on top of a commercial object
oriented database. Both rules and events in ACOOD are treated as �rst class objects. This approach
allows us to introduce a subscription mechanism, where rules can subscribe to events in order to
reduce mle checking. Future research will focus on: i) dynamic event speci�cation, ii) composite
events, iii) event hierarchies, where events can subscribe to other events. and iv) the semantics of
EC-CA rules.

[1] IEEE Bulletin of the TC on Data Engineering. Vol. 15, No. 1-4, Special Issue on Active
Databases, December 1992.

Automatic Generation of Production Rules for Integrity Maintenance

Stefano Ceri

Piero Fratemali

Stefano Paraboschi

Letizia Tanca

(Politecnico di Milano)

We present an approach to integrity maintenance, consisting in automatically generating
production rules for integrity enforcement. Constraints are expressed as particular formulas of
Domain Relational Calculus; they are automatically translated into a set of compensating actions.
encoded as production rules of an active database system. Production rules may be redundant (they
enforce the same constraint in different ways) and con�icting (because repairing one constraint may
cause the violation of another constraint). Thus, it is necessary to develop techniques for analyzing
the properties of the set of active rules and for ensuring that any computation of production rules
after any faulty transaction terminates and produces a consistent database state.

Along these guidelines, we describe a speci�c architecture for constraint de�nition and their
enforcement. The components of the architecture include a Rule Generator. for producing all
possible compensating actions, and a Rule Analyzer and Selector, for producing a collection of
production mles such that their execution after a faulty transaction always terminates in a consistent
state (possibly by rolling back the transaction); moreover, the needs of applications are modeled.
so that integrity-enforcing mles reach the �nal state that better represents the original intentions

19

4 Active Rule Processing

Reactive Object Oriented Databases: -or What Causes Events in ACOOD?

Mikael Bemdtsson (University of Skovde, Sweden)

Reactive databases [1] have been proposed as an approach to support rules in database systems.
Most proposals for reactive object oriented databases support event-condition-action rules. where
method invocations are the triggering events. In recent. both rules and events have been proposed
to be represented as first class obejcts.

ACOOD is a prototype reACtive Object Oriented Database. built on top of a commercial object
oriented database. Both rules and events in ACOOD are treated as first class objects. This approach
allows us to introduce a subscription mechanism. where rules can subscribe to events in order to
reduce rule checking. Future research will focus on: i) dynamic event specification. ii) composite
events, iii) event hierarchies. where events can subscribe to other events. and iv) the semantics of
EC-CA rules.

[1] IEEE Bulletin of the TC on Data Engineering. Vol. 15, No. 1-4. Special Issue on Active
Databases, December 1992.

Automatic Generation of Production Rules for Integrity Maintenance

Stefano Ceri
Piero Fratemali

Stefano Paraboschi
Letizia Tanca

(Politecnico di Milano)

We present an approach to integrity maintenance. consisting in automatically generating
production rules for integrity enforcement. Constraints are expressed as panicular fonnulas of
Domain Relational Calculus: they are automatically translated into a set of compensating actions.
encoded as production rules of an active database system. Production rules may be redW1dant (they
enforce the same constraint in different ways) and conflicting (because repairing one constraint may
cause the violation of another constraint). Thus, it is necessary to develop techniques for analyzing
the properties of the set of active rules and for ensuring that any computation of production rules
after any faulty transaction tenninates and produces a consistent database state.

Along these guidelines, we describe a specific architecture for constraint definition and their
enforcement. 1lle components of the architecture include a Rule Generator, for producing all
possible compensating actions, and a Rule Analyzer and Selector, for producing a collection of
production rules such that their execution after a faulty transaction always tenninates in a consistent
state (~ssibly by rolling back the transaction): moreover, the needs of applications are modeled.
so that integrity-enforcing rules reach the final state that better represents the original intentions

19

of the transaction�s supplier. Experimental results of a prototype implementation of the proposed
architecture are also described.

This work has been supported by ESPRIT II of the EC (project n.6333 IDEA) and by Centro
N azionale delle Ricerche (Progetto LOGIDATA+.

{I} S. Ceri, P. Fratemali, S. Paraboschi, L. Tanca �Automatic Generation of Production Rules

for Integrity Maintenance�. Tech. Rep. n. 92-054, Laboratorio di Calcolatori, Dipartimento di
Elettronica, Politecnico di Milano. 1992 (submitted for publication).

[2] S. Ceri, P. Fratemali, S. Paraboschi, L. Tanca �Constraint Enforcement through Production
Rules: Putting Active Databases to Work", Data Engineering, Vol. 15 No. 1-4, Dec. 1992, pp.
I O~l4

['3] P. Fratemali, S. Paraboschi, L. Tanca �Automatic rule generation for correction of constraint
violations in active databases� �, Proc. 4th Int. Workshop on Foundations of Models and Languages
for Data and Objects, Volkse, Germany, October 1992, pp. 93-112

[4] P. Fratemali, S. Paraboschi, �Selecting Production Rules for Constraint Maintenance: Com-
plexity and Heuristic Solution�, Tech. Rep. n. 92-057, Laboratorio di Calcolatori, Dipartimento di
Elettronica, Politecnico di Milano. 1992 (submitted for publication).

[5] P. Fratemali, S. Paraboschi, �A Review of Compensating Techniques for Integrity Mainte-
nance� �, paper submitted for publication.

Integrating Active and Deductive Rules in an Object Based Model

Riccardo Torlone

(IASI--CNR)

It is widely recognized that both deductive rules, which allow to specify deductions in a logic
programming style, and active rules, which allow to specify actions to be undertaken whenever
certain events occur, enhance the capabilities of database systems as they provide very natural and
powerful mechanisms for the management of various kinds of activities. Therefore, an integration
of these two linguistic paradigms into a unique homogeneous semantic framework appears to be
an important and challenging issue. However, in spite of their syntactical similarity, the task is not
easy because active and deductive nrles differ quite a lot in the semantics traditionally provided for
them.

To this aim, we �rst try to analyze the technical problems that make this integration dif�cult.
Then, we present a rule-based language for an object based data model within which queries,
expressed as deductive nrles, and event triggered computations, expressed as production mles, can
be expressed in the same fashion. The language is based on the notion of generalized production
rule. It consists of three parts: (1) the event part, which speci�es a generalized event triggering the
rule. (2) the query part, which contains a query that at the same time states the conditions under
which the rule has to be executed, and returns a set of bindings to the rest of the rule, and (3)

20

of the transaction 's supplier. Experimental results of a prototype implementation of the proposed
architecture are also described.

This work has been supported by ESPRIT II of the EC (project n.6333 IDEA) and by Centro
Nazionale delle Ricerche (Progeno LOGIDATA+.

l 1] S. Ceri, P. Fratemali, S. Paraboschi, L. Tanca " Automatic Generation of Production Rules
for Integrity Maintenance", Tech. Rep. n. 92-054, Laboratorio di Calcolatori, Dipartimento di
Elettronica, Politecnico di Milano, 1992 (submitted for publication).

[2] S. Ceri, P. Fr.atem ali, S. Paraboschi, L. Tanca "Constraint Enforcement through Production
Rules: Putting Active Databases to Work", Data Engineering, Vol. 15 No. 1-4, Dec. 1992, pp.
10-14

[31 P. Fratemali, S. Paraboschi, L. Tanca "Automatic rule generation for correction of constraint
violations in active databases· ', Proc. 4th lnt. Workshop on Foundations of Models and Languages
for Data and Objects, Volkse. Gennany. October 1992. pp. 93-1 12

[4] P. Fratemali, S. Paraboschi, "Selecting Production Rules for Constraint Maintenance: Com­
plexity and Heuristic Solution". Tech. Rep. n. 92-057. Laboratorio di Calcolatori, Dipartimento di
Elettronica, Politecnico di Milano, 1992 (submitted for publication).

[5) P. Fratemali, S. Paraboschi. "A Review of Compensating Techniques for Integrity Mainte­
nance·', paper submitted for publication.

Integrating Active and Deductive Rules in an Object Based Model

Riccardo Torlone
(IASI--CNR)

It is widely recognized that both deductive rules, which allow to specify deductions in a logic
programming style , and active rules, which allow to specify actions to be undertaken whenever
certain events occur, enhance the capabilities of database systems as they provide very natural and
powerful mechanisms for the management of various kinds of activities. Therefore, an integration
of these two linguistic paradigms into a unique homogeneous semantic framework appears to be
an important and challenging issue. However, in spite of their syntactical similarity, the task is not
easy because active and deductive rules differ quite a lot in the semantics traditionally provided for
them.

To this aim, we first try to analyze the technical problems that make this integration difficult.
Then, we present a rule-based language for an object based data model within which queries,
expressed as deductive rules, and event triggered computations. expressed as production rules, can
be expressed in the same fashion. The language is based on the notion of generalized production
rule. It consists of three parts: (1) the event part, which specifies a generalized event triggering the
rule, (2) the query part, which contains a query that at the same time states the conditions under
which the rule has to be executed, and returns a set of bindings to the rest of the rule, and (3)

20

the update part. which contains a set of updates to be performed on the underlying database. The
activation of a rule is triggered based. and its execution with respect to a certain instance produces
not only a new instance but also the answer to a query with respect to the original state. The answer
can be retumed to the triggering event. thus simulating a top-down evaluation of a deductive nrle.
By using several examples. we show that it is possible to program with this model any kind of
active rule as well a quite general class of deductive nrles, which makes the language a powerful
tool for the implementation of several database activities.

A Deductive, Object-Oriented Model as a Formal Framework for Active Database
Environments

Susan D. Urban

Anton P. Karadimce

Suzarme W. Dietrich

(Arizona State University)

The successful integration of active, deductive. and object-oriented databases for the basis
of future generation databases is a challenging research objective. This presentation outlines
speci�c research directions in this area within a project known as A DOOD RANCH (Active,
Deductive, Object�Oriented Databases - Relating Action. Negation. Constraints. and Hom Rules).
A DOOD RANCH project has as its goal the development of an object-oriented database system
that ef�ciently and correctly processes queries. constraints, and active rules that involve extensional
and intensional data.

After outlining several research issues related to language evaluation and rule execution models.
the presentation then focused on a detailed presentation of CDOL (Comprehensive. Declarative
Object Language), the deductive. object-oriented data model and language on which this research
is based. A unique aspect of CDOL is that it provides a framework for supporting ad-hoc.
declarative update requests in an object-oriented databases while maintaining database consistency
and atomicity of update requests. The framework is based on the emulation of classic update
methods in an object-oriented database by a controlled. active. and user-transparent interaction
between a prede�ned set of elementary updates and a set of integrity methods designed to maintain
database consistency upon violations of integrity constraints.

Given an object-oriented framework and a declarative query language. we extend this framework
by (1) isolating declaratively stated integrity constraints as as separate concept, (2) developing
a high-level update language on top of the query language, and (3) developing active integnty
methods from the integrity constraints. The advantage of the approach is that users can freely pose
declarative ad-hoc updates without jeopardizing database consistency.

the update part, which contains a set of updates to be perfonned on the underlying database. The
activation of a rule is triggered based. and its execution with respect to a cenain instance producc:s
not only a new instance but also the answer to a query with respect to the original state. The answer
can be returned to the triggering event. thus simulating a top-down evaluation of a deductive rule.
By using several examples. we show that it is possible to program with this model any k.ind ol
active rule as well a quite general class of deductive rules. which makes the language a powerful
tool for the implementation of several database activities.

A Deductive, Object-Oriented Model as a Formal Framework for Active Database
Environments

Susan D. Urban
Anton P. Karadimce
Suzanne W. Dietrich

(Arizona State University)

The successful integration of active, deductive. and object-oriented databases for the basis
of future generation databases is a challenging research objective. This presentation outlines
specific research directions in this area within a project known as A D000 RANCH (Active.
Deductive. Object-Oriented Databases - Relating Action. Negation. Constraints. and Hom Rules).
A D00D RANCH project has as its goal the development of an object-oriented database system
that efficiently and correctly processes queries. constraints, and active rules that involve extensional
and intensional data.

After outlining several research issues related to language evaluation and rule execution models.
the presentation then focused on a detailed presentation of COOL (Comprehensive, Declarative
Object Language). the deductive. object-oriented data model and language on which this rese:u-ch
is based. A unique aspect of COOL is that it provides a framework for supporting ad-hoe.
declarative update requests in an object-oriented databases while maintaining database consis1ency
and atomicity of update requests. The framework is based on the emulation of classic update
methods in an object-oriented database by a controlled. active. and user-transparent imeraction
between a predefined set of elementary updates and a set of integrity methods designed to maintain
database consistency upon violations of integrity constraints.

Given an object-oriented framework and a declarative query language. we extend this framework
by (1) isolating declaratively stated integrity constraints as as separate concept. (2) developing
a high-level update language on top of the query language. and (3) developing active integrity
methods from the integrity constraints. The advantage of Ute approach is that users c:m freely pose
declarative ad-hoe updates without jeopardizing database consistency.

21

Termination and Con�uence of Integrity Rules in OODB�S

Anton P. Karadimce

Susan D. Urban

(Arizona State University)

Incorporating active capabilities in OODBs requires means to guarantee correctness and
predictability of active rules behavior. The properties of termination and con�uence are particularly
important for the class of integrity rules as active agents that maintain database consistency upon
ad-hoc updates.

In this talk we model integrity nrlcs as conditional tenn rewrite mles that rewrite the current
database state. Rules communicate using messages that represent update requests and occurrences
of events. By capturing database dynamics through conditional rewrites it is possible to use
termination and con�uence results developed for conditional term rewrite systems (CI'RSs). A
suf�cient condition for tennination is to have a reducing CTRS. A suf�cient condition for con�uence
is the convergence of all contextual critical pairs. Under a set of simplifying assumptions. we
present a decision procedure for ground con�uence of a reducing CTRS. These results can serve as
a basis for methodology and criteria for developing well-behaved integrity niles.

Panel Discussion on Active Database Systems (ADBS)

Gerti Kappel (University of Vienna)
Michael Schre� (University of Linz)

This discussion session was motivated by the fact that several talks at the seminar have
introduced quite different approaches to ADBS. Out of this situation the following questions were
addressed in the discussion: 1. Are ADBS the right solution to the right problem? What are the
problems ADBS should solve? 2. What are the basic concepts behind ADBMS? Should ADBMS
include object-oriented. deductive. real-time. <include your favorite> concepts? 4. Provocative
Statement: AI people have found that large systems of rules are hard to manage. They are looking
for altematives. e.g.. model-based approaches. DB people move into rules having realized that they
need to go beyond data modeling. 5. Traditionally, relational database systems have been made
active by extending them with mles. They had no notion of behavior. Object-oriented database
systems already have a notion of behavior. realized by methods associated with classes. Adding nile
management to object-oriented database systems offers two ways of specifying behavior: method
bodies and nile bodies (actions of nrles). Are then message events still meaningful? Or should the
reaction to a message be implemented solely by the method body? 6. ADBS help to distinguish
between local behavior modeled via methods and global behavior modeled via nrles introducing
a second level of modularity. But appropriate languages. methods and tools for designing and
working with ADBS are stiH missing.

Termination and Confluence of Integrity Rules in OODB'S

Anton P. Karadimce
Susan D. Urban

(Arizona State University)

Incorporating active capabilities in OODBs requires means to guarantee correctness and
predictability of active rules behavior. The properties of tennination and confluence are particularly
important for the class of integrity rules as active agents that maintain database consistency upon
ad-hoe updates.

In tltis Lalk we model integrity rules as conditional tenn rewrite rules that rewrite the current
database state. Rules communicate using messages that represent update requests and occurrences
of events. By capturing database dynamics through conditional rewrites it is possible to use
termination and confluence results developed for conditional tenn rewrite systems (CTRSs). A
sufficient condition fortennination is to have a reducing CTRS. A sufficient condition for confluence
is the convergence of all contextual critical pairs. Under a set of simplifying assumptions. we
present a decision procedure for ground confluence of a reducing CTRS. These results can serve as
a basis for methodology and criteria for developing well-behaved integrity rules.

Panel Discussion on Active Database Systems (ADBS)

Gerti Kappel (University of Vienna)
Michael Schrefl (University of Linz)

This discussion session was motivated by the fact that several talks at the seminar have
introduced quite different approaches to ADBS. Out of this situation the following questions were
addressed in the discussion: 1. Are ADBS the right solution to the right problem? What are the
problems ADBS should solve? 2. What are the basic concepts behind ADBMS? Should ADBMS
include object-oriented. deductive, real-time, <include your favorite> concepts? 4. Provocative
Statement: AI people have found that large systems of rules are hard to manage. They are looking
for alternatives. e.g .• model-based approaches. DB people move into rules having realized that they
need to go beyond data modeling. 5. Traditionally, relational database systems have been made
active by extending them with rules. They had no notion of behavior. Object-oriented database
systems already have a notion of behavior. realized by methods associated with classes. Adding rule
management to object-oriented database systems offers two ways of specifying behavior. method
bodies and rule bodies (actions of rules). Are then message events still meaningful? Or should the
reaction to a message be implemented solely by the method body? 6. ADBS help to distinguish
between local behavior modeled via methods and global behavior modeled via rules introducing
a second level of modularity. But appropriate languages. methods and tools for designing and
working with ADBS are still missing.

22

S Queries

An Extension of Path Expressions to Simplify Navigation in Object-Oriented Queries

Jan Van den Bussche (University of Antwerp (UIA))
Gottfried Vossen (University of Giessen)

Path expressions. a central ingredient of query languages for object-oriented databases. are
currently used as a purely navigational vehicle. We argue that this does not fully exploit the
potential expressive power as a tool to specify connections between database objects. In particular.
a user should not be required to specify a path to be followed in full, but rather should provide
enough information so that the underlying system can infer missing details automatically. We
present and study an extended mechanism for path expressions which resembles the omission of
joins in universal relation interfaces. The semantics of our mechanism is given in the general
framework of a calculus-like query language. Techniques from semantic query optimization are
employed to obtain ef�cient speci�cations. We also consider the possibility that links can be
traversed backwards. which subsumes previous proposals to specify inverse relationships at the
schema level and also fully exploits the meaning of inheritance links.

This work was partially sponsored by the NFWO.

Default-Based Semantics of Logic Programs with Negation

Catriel Beeri

(Hebrew University of Jerusalem)

In the last �ve years. a variety of formalisms have been presented to account for the semantics
of logic programs with negation. One of the most well known is the well-founded semantics, that
assigns a meaning to every program. albeit often a three�valued semantics. A similar approach.
also de�ned for all programs is the valid semantics. A common problem with these and other
approaches is that they are complex to understand and reason about.

The talk describes an approach that simpli�es and uni�es the approaches above. Simpli�cation
is achieved by using computations rather than �xed points. The derivation of false facts is
represented abstractly by the notion of a default rule.

Among the results: Identi�cation of useful properties of default rules: an extremely simple proof
that a monotonicity property of a default mle implies existence and uniqueness of the semantics
for programs de�ned by the nrle; the well-founded and valid semantics are special cases, obtained
from appropriate default mies.

The results are general. hence can presumably be applied to logic programs de�ned over many
kinds of logic. not just over �rst order predicate logic.

5 Queries

An Extension of Path Expressions to Simplify Navigation in Object-Oriented Queries

Jan Van den Bussche (University of Antwerp (UIA))
Gottfried Vossen (University of Giessen)

Path expressions. a central ingredient of query languages for object-oriented databases. are
currently used as a purely navigational vehicle. We argue that this does not fully exploit the
potential expressive power as a tool to specify connections between database objects. In panicular.
a user should not be required to specify a path to be followed in full, but rather should provide
enough infonnation so that the underlying system can infer missing details automatically. We
present and study an extended mechanism for path expressions which resembles the omission of
joins in universal relation interfaces. The semantics of our mechanism is given in the general
framework of a calculus-like query language. Techniques from semantic query optimization are
employed to obtain efficient specifications. We also consider the possibility that links can be
traversed backwards. which subsumes previous proposals to specify inverse relationships at the
schema level and also fully exploits the meaning of inheritance links.

This work was panially sponsored by the NFWO.

Default-Based Semantics of Logic Programs with Negation

Catriel Beeri
(Hebrew University of Jerusalem)

In the last five years. a variety of fonnalisms have been presented to account for the semantics
of logic programs with negation. One of the most well known is the well-founded semantics. that
assigns a meaning to every program. albeit often a three-valued semantics. A similar approach.
also defined for all programs is the valid semantics. A common problem with these and other
approaches is that they are complex to understand and reason about.

The talk describes an approach that simplifies and unifies the approaches above. Simplification
is achieved by using computations rather than fixed points. The derivation of false facts is
represented abstractly by the notion of a default rule.

Among the results: Identification of useful properties of default rules: an extremely simple proof
that a monotonicity property of a default rule implies existence and uniqueness of the semantics
for programs defined by the rule: the well-founded and valid semantics are special cases. obtained
from appropriate default rules.

The results are general. hence can presumably be applied to logic programs defined over many
kinds of logic, not just over first order predicate logic.

23

The Role of Generic Operations in OODBs

Andreas Heuer (TU Clausthal)

Fundamental to the speci�cation of behaviour or non-trivial object life-cycles and non-trivial
update operations is an object-oriented database model allowing the derivation of new information
(derived classes). This derivation should be safe. ef�cient. and optimizable. among others. meeting
exactly the criteria of query languages in database systems.

To provide a persistent. lomg-term. centralized management of data. an object-oriented database
model should support object evolution. schema evolution, and different user views on the same set
of objects. Besides explicit update operations. object evolution can be performed by de�nition of
derived classes, which are de�ned by query expressions.

Generic operations can be relational (producing complex values). object-generating (creating
new classes with new objects) and object-preserving. The last kind of query operation either
computes a subset of existing objects in the database. or a class, which may be a sub- or superclass
of existing classes. One can attach attributes or methods to derived classes, so that they can be used
like any base class in the database scheme.

Derived classes can be used for user views, the resolution of con�icts in dynamic binding of
methods, to integrate different database models, languages, and schemes, and for a more appropriate
database design avoiding redundant information and class explosion.

More infonnation about a concrete query language in this �avour can be obtained from [1].

[l] A. Heuer and P. Sander, The LIVING IN A LATTICE rule language Data and Knowledge
Engineering Vol. 9. No. 3. January 1993.249 - 286.

The Role of Generic Operations in 00D8s

Andreas Heuer (TU Oausthal)

Fundamemal to the specification of behaviour or non-trivial object life-cycles and non-trivial
update operations is an object-oriented database model allowing the derivation of new information
(derived classes). This derivation should be safe. efficient. and optimizable. among others, meeting
exactly the criteria of query languages in database systems.

To provide a persistent. lomg-terrn. centralized management of data. an object-oriented database
model should support object evolution. schema evolution. and different user views on the same set
of objects. Besides explicit update operations. object evolution can be performed by definition of
derived classes. which are defined by query expressions.

Generic operations can be relational (producing complex values). object-generating (creating
new classes with new objects) and object-preserving. The last kind of query operation either
computes a subset of existing objects in the database, or a class, which may be a sub- or superclass
of existing classes. One can attach attributes or methods to derived classes. so that they can be used
like any base class in the database scheme.

Derived classes can be used for user views, the resolution of conflicts in dynamic binding of
methods, to integrate different database models, languages. and schemes. and for a more appropriate
database design avoiding redundant information and class explosion.

More information about a concrete query language in this flavour can be obtained from [1].

[1] A. Heuer and P. Sander. The LIVING IN A LATTICE rule language Data and Knowledge
Engineering Vol. 9. No. 3. January 1993. 249 - 286.

24

Dagstuhl-Seminar 9317: List of Participants 29.06.93

Catriei Beeri Martin Gogolla
The Hebrew University of Jerusalem TU Braunschweig
Department of Computer Science lnformatik Abt. Datenbanken
91904 Jerusalem Postfach 3329
Israel W-3300 Braunschweig
beeri@cs.huji.ac.iI German
tel.: +972�2-585 266 gogolla idb.cs.tu-bs.de

teI.: +49-531-391-3102
Mikael Berndtsson
University of Skovde Margret Groß-Hardt
Department of Computer Science Universität Gießen
Box 408 Arbeitsgruppe Informatik
541 28 Skovde Arndtstraße 2
Sweden W-6300 Gießen
spiff@his.se Germany
tel.: +46-500�477 600 margret@neumann.informatik.uni-gies-

sen.dp.de
Antony Bonner tel.: +49�641-7022584
Universit of Toronto
Dept. of omputer Science Hele-Mai Haav
10 King's College of Road Estonian Academy of Sciences
Toronto Ontario M5S 1A4 Institute of Cybernetics
Canada Akadeemia tee 21
bonner@db.toronto.edu EE-0026 Tallinn
tel.: +1-416-978-7441 Estonia

helemai@ioc.ee
Rolf de By tel.: +7-0142-527 314
Universieit Twente
Faculteit der Informatica Andreas Heuer
Postbus 217 TU Clausthal
NL-7500 AE Enschede Institut für Informatik
The Netherlands Erzstrasse 1
deby@cs.utwente.nl W-3392 ClausthaI-Zellerfeld
teI.: +31 -53-89 37 53 Germany

inah@ibm.rz.tu-c|austha|.de
Weidong Chen teI.: +49-5323-72-2070
Southern Methodist University
Computer Science & Engineering Ralf Jungclaus
Dallas TX 75275-0122 Tu Braunschweig
USA Informatik
wchen@seas.smu.edu Abteilung Datenbanken
tel.: +1-214-768-3097 Gaußstr. 12

W-3300 Braunschweig
Gregor Engels Germany
University of Leiden jungclau@idb.cs.tu�bs.de
Department of Computer Science tel.: +49-531-391 7443/7442
P.O. Box 9512
NL-2300 RA Leiden Gerti Kappel
The Netherlands Universität Wien -
engeIs@wi.Ieidenuniv.nI Institut für Angewandte Informatik
tel.: +31 -71 -277065 und Informationssysteme

Liebiggasse 4/3-4
A-1010 Wien
Austria

gerti@ifs.univie.ac.at
tel.: +43�1-432367 ext. 15

Dagstuhl-Seminar 9317:

Catriel Beeri
The Hebrew University of Jerusalem
Department of Computer Science
91904 Jerusalem
Israel
beeri@cs.huji.ac.il
tel.: +972-2-585 266

Mikael Berndtsson
University of Skovde
Department of Computer Science
Box 408
54 1 28 Skovde
Sweden
spiff@his.se
tel.: +46-500-477 600

Antony Bonner
University of Toronto
Dept. of Computer Science
10 King's College of Road
Toronto Ontario M5S 1 A4
Canada
bonner@db.toronto.edu
tel. : + 1-416-978-7 441

Rolf de By
Universieit Twente
Faculteit der lnformatica
Postbus 217
NL-7500 AE Enschede
The Netherlands
deby@cs.utwente.nl
tel.: +31-53-89 37 53

Weidong Chen
Southern Methodist University
Computer Science & Engineering
Dallas TX 75275-0122
USA
wchen@seas.smu.edu
tel.: + 1-214-768-3097

Gregor Engels
University of Leiden
Department of Computer Science
P.O. Box 9512
NL-2300 RA Leiden
The Netherlands
engels@wi.leidenuniv.nl
tel.: +31-71-277065

List of Participants

Martin Gogolla
TU Braunschweig
lnformatik Abt. Datenbanken
Postfach 3329
W-3300 Braunschweig
Germany
gogolla@idb.cs.tu-bs.de
tel.: +49-531-391-3102

Margret GroB-Hardt
Universitat GieBen
Arbeitsgruppe lnformatik
ArndtstraBe 2
W-6300 GieBen

29.06.93

Germany
margret@neumann.informatik.uni-gies­
sen.dp.de
tel. : +49-641-7022584

Hele-Mai Haav
Estonian Academy of Sciences
Institute of Cybernetics
Akadeemia tee 21
EE-0026 Tallinn
Estonia
helemai@ioc.ee
tel. : +7-0142-527 314

Andreas Heuer
TU Clausthal
lnstitut fur lnformatik
Erzstrasse 1
W-3392 Clausthal-Zellerfeld
Germany
inah@ibm.rz.tu-clausthal.de
tel. : +49-5323-72-2070

Ralf Jungclaus
Tu Braunschweig
lnformatik
Abteilung Datenbanken
GauBstr. 12
W-3300 Braunschweig
Germany
ju ngclau@idb. cs. tu-bs. de
tel. : +49-531-391 7 443/7 442

Gerti Kappel
Universitat Wien ·
lnstitut fur Angewandte lnformatik
und lnformationssysteme
Liebiggasse 4/3-4
A-1010 Wien
Austria
gerti@ifs.univie.ac.at
tel. : +43-1-432367 ext. 15

Anton P. Karadimce Gunter Saake
Arizona State University TU Braunschweig
Department of Computer Science lnformatik
and Engineering Abteilung Datenbanken
Tempe AZ 85287-5406 Gau Bstr. 12
USA W-3300 Braunschweig
karadimc@enuxha.eas.asu.edu Germany
teI.: +1 �602-965-41 96 saake@idb.cs.tu-bs.de

teI.: +49-531-391-32 67

Georg Lausen
Universität Mannheim Klaus-Dieter Schewe
Fakultät Mathematik und Informatik Krampengrund 20 b
W-6800 Mannheim W-2000 Hamburg 67
Germany Germany
Iausen@pi3.informatik.uni-mannheim.de teI.: +49-40-6039998
teI.: +49-621-292-54 O3

Marc H. Scholl
Danilo Montesi Universität Ulm
Politecnico di Milano Fakultät für Informatik
Dipartimento di Electronica e Informazione Abt. Datenbank u. Informationssysteme
Piazza Vinci 32 Oberer Eselsberg
I-20133 Milano D-89069 Ulm

Italy Germany
montesi@ipmeI2.e|et.poIimi.it scho|I@informatik.uni-u|m.de
teI.: +39-2-2399-3667 teI.: +49-731-502-4135 /4131 (Sekr.)

Moira Norrie Michael Schrefl
ETH Zürich Johannes Kepler Universität Linz
Department of Computer Science Inst. für Wirtschaftsinformatik
ETH-Zentrum Data & Knowledge Engineering
CH�8092 Zürich Altenbergerstr. 69
Switzerland A-4040 Linz
norrie@inf.ethz.ch Austria
tel. : +41 -1 -254-72 45 schrefI@dke.uni-linz.ac.at

teI.: +43�732-2468-9480
Andreas Oberweis
Inst. für Angewandte Informatik u. Letizia Tanca
Formale Beschreibungsverfahren Politecnico di Milano
Postfach 6980 Dipartimento di Elettronica e
W-7500 Karlsruhe Informazione
Germany Piazza Leonardo da Vinci 32
oberweis@aifb.uni-karIsruhe.de I-20133 Milano
teI.: +49 -721-608-4283 Italy

tanca@ipme|2.po|imi.it
Georg Reichwein teI.: +39-2-23 99 36 24
INESC
Apartado 10 105 Bernhard Thalheim
Rua Alves Redol 9 Universität Rostock
P-1017 Lisboa Codex Fachbereich Informatik
Portugal Albert-Einstein-Str. 21
ger@inesc.pt O-2500 Rostock 6
teI.: +351-1 -3100 000 Germany

thalheim@informatik.uni-rostock.dbp.de
teI.: +49-381 -44424

Anton P. Karadimce
Arizona State University
Department of Computer Science
and Engineering
Tempe AZ 85287-5406
USA
karadimc@enuxha.eas.asu.edu
tel.: + 1-602-965-4196

Georg Lausen
Universitat Mannheim
Fakultat Mathematik und lnformatik
W-6800 Mannheim
Germany
lausen@pi3. informatik.uni-mannheim.de
tel.: +49-621-292-54 03

Danilo Montesi
Politecnico di Milano
Dipartimento di Electronica e lnformazione
Piazza Vinci 32
1-20133 Milano
Italy
montesi@ipmel2.elet.polimi.it
tel. : +39-2-2399-3667

Moira Norrie
ETH Zurich
Department of Computer Science
ETH-Zentrum
CH-8092 Zurich
Switzerland
norrie@inf.ethz.ch
tel.: +41-1-254-72 45

Andreas Oberweis
Inst. fur Angewandte lnformatik u.
Formale Beschreibungsverfahren
Postfach 6980
W-7500 Karlsruhe
Germany
oberweis@aifb.uni-karlsruhe.de
tel.: +49 -721-608-4283

Georg Relchweln
INESC
Apartado 1 0 1 05
Rua Alves Redel 9
P-1 O 17 Lisboa Codex
Portugal
ger@inesc.pt
tel.: +351 -1-3100 000

Gunter Saake
TU Braunschweig
lnformatik
Abteilung Datenbanken
GauBstr. 12
W-3300 Braunschweig
Germany
saake@idb.cs.tu-bs.de
tel. : +49-531-391 -32 67

Klaus-Dieter Schewe
Krampengrund 20 b
W-2000 Hamburg 67
Germany
tel. : +49-40-6039998

Marc H. Scholl
Universitat Ulm
Fakultat fOr lnformatik
Abt. Datenbank u. lnformationssysteme
Oberer Eselsberg
D-89069 Ulm
Germany
scholl@informatik.uni-ulm.de
tel. : +49-731-502-4135 /4131 (Sekr.)

Michael Schrefl
Johannes Kepler Universitat Linz
Inst. fur Wirtschaftsinformatik
Data & Knowledge Engineering
Altenbergerstr. 69
A-4040 Linz
Austria
schrefl@dke.uni-linz.ac.at
tel. : +43-732-2468-9480

Letizia Tanca
Politecnico di Milano
Dipartimento di Elettronica e
I nformazione
Piazza Leonardo da Vinci 32
1-20133 Milano
Italy
tanca@ipmel2.polimi.it
tel.: +39-2-23 99 36 24

Bernhard Thalheim
Universitat Rostock
Fachbereich lnformatik
Albert-Einstein-Str. 21
0-2500 Rostock 6
Germany
thalheim@informatik.uni-rostock.dbp.de
tel. : +49-381-44424

Riccardo Torlone
IASI-CNR
Viale Manzoni 30
I-00185 Roma

Italy

tor|one@iasi.rm.cnr.it
teI.: +39-6-77161
Susan D. Urban
Arizona State University
Department of Computer Science and
Engineering
Tempe AZ 85287-5406
USA

urban@asuvax.eas.asu.edu
teI.: +1 -602-965-2784

Jan Van den Bussche

University of Antwerp/UIA
Dept. of Mathematics & Computer Science
Unrversiteitsplein 1
B-261 O Wilrijk/Antwerp
Belgium
vdbuss@uia.ac.be
tel.: +32-3-8202403

Gottfried Vossen
Universität Gießen
Arbeitsgruppe Informatik
Arndtstraße 2
W-6300 Gießen

vossen@informatik.rvvth-aachen.de
tel. : +49-641 -702-2551

Gerhard Weikum
ETH Zürich
Department of Computer Science
ETH-Zentrum
CH-8092 Zürich
Switzerland

weikum@inf.ethz.ch
tel.: +41 -1 -254-7242

Roel Wieringa
Faculteit Wiskunde en Informatica
Dept. of Mathematics and
Computer Science
De Boelelaan 1081 a
NL-1081 HV Amsterdam
The Netherlands

roe|w@cs.vu.nl
tel.: +31 -20-548 5568

Haiyan Ye
ETH Zürich

Department of Computer Science
ETH-Zentrum
CH-8092 Zürich
Switzerland

ye@inf.ethz.ch
tel.: +41 -1 -254-7259

Riccardo Torlone
IASI-CNR
Viale Manzoni 30
1-00185 Roma
Italy
torlone@iasi.rm.cnr.it
tel. : +39-6-77161

Susan D. Urban
Arizona State University
Department of Computer Science and
Engineering
Tempe AZ 85287-5406
USA
urban@asuvax.eas.asu.edu
tel.: + 1-602-965-2784

Jan Van den Bussche
University of Antwerp/UIA
Dept. of Mathematics & Computer Science
Un1versiteitsplein 1
B-2610 Wilrijk/Antwerp
Belgium
vdbuss@uia.ac.be
tel. : +32-3-8202403

Gottfried Vossen
Universitat Gie Ben
Arbeitsgruppe lnformatik
ArndtstraBe 2
W-6300 GieBen
vossen@i nformatik. rwth-aachen.de
tel. : +49-641-702-2551

Gerhard Welkum
ETH Zurich
Department of Computer Science
ETH-Zentrum
CH-8092 Zurich
Switzerland
weikum@inf.ethz.ch
tel. : +41-1-254-7242

Roel Wieringa
Faculteit Wiskunde en lnformatica
Dept. of Mathematics and
Computer Science
De Boelelaan 1081 a
NL-1081 HV Amsterdam
The Netherlands
roelw@cs.vu. nl
tel. : +31-20-548 5568

Haiyan Ye
ETH Zurich
Department of Computer Science
ETH-Zent rum
CH-8092 Zurich
Switzerland
ye@inf.ethz.ch
tel. : +41-1-254-7259

Zuletzt erschienene und geplante Titel:

K. Compton, J.E. Pin � W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Fleport; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors):
Software Construction - Foundation and Application, Dagstuhl-Seminar-Fleport; 29, 13.-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. Schöning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.2.92 (9206)

B. Booß, W. Coy, J.-M. Pfliiger (editors):
Limits of Information-technological Models, Dagstuhl-Seminar-Report; 31, 10.-14.2.92 (9207)

N. Habermann, W.F. Tichy (editors):
Future Directions in Software Engineering, Dagstuhl�Seminar-Report; 32; 17.2.-21.2.92 (9208)

R. Cole, E.W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms; Dagstuhl-Seminar-Report; 33; 2.3.-6.3.92 (9210)

P. Klint, T. Reps, G. Snelting (editors):
Programming Environments; Dagstuhl-Seminar-Report; 34; 9.3.-13.3.92 (9211)

H.-D. Ehrich, J.A. Goguen, A. Sernadas (editors):
Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-Report; 35;
16.3.-19.3.9 (9212)

W. Damm, Ch. Hankin, J. Hughes (editors):
Functional Languages:
Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Diffie, G.J. Simmons (editors):
System Security; Dagstuhl-Seminar-Report; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jarke (editors):
Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 5.4.-
9.4.92 (9215)

J. Buchmann, H. Niederreiter, A.M. Odlyzko, H.G. Zimmer (editors):
Algorithms and Number Theory, DagstuhI-Seminar-Report; 39; 22.06.-26.06.92 (9226)

E. Börger, Y. Gurevich, H. Kleine-Bunlng, M.M. Richter (editors):
Computer Science Logic, DagstuhI-Seminar-Report; 40; 13.07.-17.07.92 (9229)

J. von zur Gathen, M. Karpinski, D. Kozen (editors):
Algebraic Complexity and Parallelism, Dagstuhl-Seminar-Fleport; 41; 20.07.-24.07.92 (9230)

F. Baader, J. Siekmann, W. Snyder (editors):
6th Intemational Workshop on Unification, Dagstuhl-Seminar-Report; 42; 29.07.-31.07.92 (9231)

J.W. Davenport, F. Krückeberg, R.E. Moore, 8. Flump (editors):
Symbolic, algebraic and validated numerical Computation, Dagstuhl-Seminar-Fleport; 43; 03.08.-
07.08.92 (9232)

R. Cohen, Fl. Kass, C. Paris, W. Wahlster (editors):
Third International Workshop on User Modeling (UM�92)� DagstuhI-Seminar-Report; 44; 10.-
13.3.92 (9233)

R. Reischuk, D. Uhlig (editors):
Complexity and Realization of Boolean Functions, Dagstuhl-Seminar-Fleport; 45; 24.08.-28.08.92
(9235)

Th. Lengauer, D. Schomburg, M.S. Waterman (editors):
Molecular Bioinformatics, Dagstuhl-Seminar-Report; 46; 07.09.-11.09.92 (9237)

V.Fl. Basili, H.D. Rombach, R.W. Selby (editors):
Experimental Software Engineering Issues, Dagstuhl-Seminar-Report; 47; 14.-18.09.92 (9238)

Zuletzt erschlenene und geplante Tltel:

K. Compton, J.E. Pin , W. Thomas (editors):
Automata Theory: Infinite Computations, Dagstuhl-Seminar-Report; 28, 6.-10.1.92 (9202)

H. Langmaack, E. Neuhold, M. Paul (editors) :
Software Construction - Foundation and Application, Dagstuhl-Seminar-Report; 29, 13.-17.1.92
(9203)

K. Ambos-Spies, S. Homer, U. ScMning (editors):
Structure and Complexity Theory, Dagstuhl-Seminar-Report; 30, 3.-7.2.92 (9206)

B. BooB, w. Coy, J.-M. Pfluger (editors):
Limits of Information-technological Models, Dagstuhl-Seminar-Report; 31 , 10.-14.2.92 (9207)

N. Habermann, W.F. Tichy (editors):
Future Directions in Software Engineering, Dagstuhl-Seminar-Report; 32; 17.2.-21.2.92 (9208)

R. Cole, E.W. Mayr, F. Meyer auf der Heide (editors):
Parallel and Distributed Algorithms; Dagstuhl-Seminar-Report; 33; 2.3.-6.3.92 (9210)

P. Klint, T. Reps, G. Snelting (editors):
Programming Environments; Dagstuhl-Seminar-Report; 34; 9 .3.-13.3.92 (9211)

H.-D. Ehrich, J.A . Goguen, A. Sernadas (editors):
Foundations of Information Systems Specification and Design; Dagstuhl-Seminar-Report; 35;
16.3 .-19.3.9 (9212)

W. Damm, Ch. Hankin, J. Hughes (editors):
Functional Languages:
Compiler Technology and Parallelism; Dagstuhl-Seminar-Report; 36; 23.3.-27.3.92 (9213)

Th. Beth, W. Diffie, G.J . Simmons (editors):
System Security; Dagstuhl-Seminar-Report; 37; 30.3.-3.4.92 (9214)

C.A. Ellis, M. Jarke (editors):
Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 5 .4.-
9 .4.92 (9215)

J. Buchmann, H. Niederreiter, A.M. Odlyzko, H.G . Zimmer (editors):
Algorithms and Number Theory, Dagstuhl-Seminar-Report; 39; 22.06.-26.06.92 (9226)

E. Borger, Y. Gurevich, H. Kleine-Suning, M.M. Richter (editors):
Computer Science Logic, Dagstuhl-Seminar-Report; 40; 13.07.-17.07.92 (9229)

J. von zur Gathen, M. Karpinski, D. Kozan (editors):
Algebraic Complexity and Parallelism, Dagstuhl-Seminar-Report; 41 ; 20.07.-24.07.92 (9230)

F. Baader, J. Siekmann, W. Snyder (editors):
6th International Workshop on Unification, Dagstuhl-Seminar-Report; 42; 29 .07. -31 . 07 .92 (9231)

J.W. Davenport, F. Kruckeberg, R.E. Moore, S. Rump (editors):
Symbolic, algebraic and validated numerical Computation, Dagstuhl-Seminar-Report; 43; 03.08.-
07.08.92 (9232)

R. Cohen, R. Kass, C. Paris, W. Wahlster (editors):
Third International Workshop on User Modeling (UM'92), Dagstuhl-Seminar-Report; 44; 10.-
13.8.92 (9233)

R. Reischuk, D. Uhlig (editors):
Complexity and Realization of Boolean Functions, Dagstuhl-Seminar-Report; 45; 24.08.-28.08.92
(9235)

Th. Lengauer, D. Schormurg, M .S. Waterman (editors):
Molecular Bioinformatics, Dagstuhl-Seminar-Report; 46; 07.09.-11 .09.92 (9237)

V.R. Basili, H.D . Rombach, R.W. Selby (editors):
Experimental Software Engineering Issues, Dagstuhl-Seminar-Report; 47; 14.-18.09.92 (9238)

Y. Dittrich, H. Hastedt, P. Schete (editors):
Computer Science and Philosophy, Dagstuhl-Seminar-Report; 48; 21 .09.-25.09.92 (9239)

R.P. Daley, U. Furbach, K.P. Jantke (editors):
Analogical and Inductive Inference 1992 , Dagstuhl-Seminar-Report; 49; 05.10.-09.10.92 (9241)

E. Novak, St. Smale, J.F. Traub (editors):
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report; 50; 12.10.-
16.10.92 (9242)

J. Encarnacao, J. Foley (editors):
Multimedia - System Architectures and Applications, Dagstuhl-Seminar-Report; 51; 02.11.-
06.1 1.92 (9245)

F.J. Rammig, J. Staunstrup, G. Zimmermann (editors):
Sell-Timed Design, Dagstuhl-Seminar-Report; 52; 30.11.-04.12.92 (9249)

B. Courcelle, H. Ehrig, G. Rozenberg, H.J. Schneider (editors):
Graph-Transformations in Computer Science, Dagstuhl-Seminar-Report; 53; 04.01.-08.01.93
(9301)

A. Arnold, L. Priese, R. Vollmar (editors):
Automata Theory: Distributed Models, Dagstuhl-Seminar-Report; 54; 11.01 .-15.01 .93 (9302)

W. Cellary, K. Vidyasankar , G. Vossen (editors):
Versioning in Database Management Systems, Dagstuhl-Seminar-Report; 55; 01.02.-05.02.93
(9305)

B. Becker, R. Bryant, Ch. Meinel (editors):
Computer Aided Design and Test , Dagstuhl-Seminar-Report; 56; 15.02.-19.02.93 (9307)

M. Pinkal, R. Scha, L. Schubert (editors):
Semantic Formalisms in Natural Language Processing, Dagstuhl-Seminar-Report; 57; 23.02.-
26.02.93 (9308)

W. Bibel, K. Furukawa, M. Stickel (editors):
Deduction , Dagstuhl-Seminar-Report; 58; 08.03.-12.03.93 (9310)

H. Alt, B. Chazelle, E. Welzl (editors):
Computational Geometry, Dagstuhl-Seminar-Report; 59; 22.03.-26.03.93 (9312)

H. Karnp. J. Pustejovsky (editors):
Universals in the Lexicon: At the Intersection of Lexical Semantic Theories, Dagstuhl-Seminar-
Report; 60; 29.03.-02.04.93 (9313)

W. Strasser, F. Wahl (editors):
Graphics & Robotics, Dagstuhl-Seminar-Report; 61; 19.04.-22.04.93 (9316)

C. Beeri, A. Heuer, G. Saake, S.D. Urban (editors):
Formal Aspects of Object Base Dynamics , Dagstuhl-Seminar-Report; 62; 26.04.-30.04.93 (9317)

R. Book, E.P.D. Pednault, D. Wotschke (editors):
Descriptional Complexity: A Multidisciplinary Perspective , Dagstuhl-Seminar-Report; 63; 03.05.-
07.05.93 (9318)

H.-D. Ehrig, F. von Henke, J. Meseguer, M. Wirsing (editors):
Specification and Semantics, Dagstuhl-Seminar-Report; 64; 24.05.-28.05.93 (9321)

M. Droste, Y. Gurevich (editors):
Semantics of Programming Languages and Algebra, Dagstuhl-Seminar-Report; 65; 07.06.-
1 1.06.93 (9323)

Ch. Lengauer, P. Quinton, Y. Robert, L. Thiele (editors):
Parallelization Techniques for Uniform Algorithms, Dagstuhl-Seminar-Report; 66; 21 .06.-25.06.93
(9325)

G. Farin, H. Hagen, H. Noltemeier (editors):
Geometric Modelling, Dagstuhl-Seminar-Report; 67; 28.06.-02.07.93 (9326)

Y. Dittrich, H. Hastedt, P. Schefe (editors):
Computer Science and Philosophy, Dagstuhl-Seminar-Report; 48; 21 .09.-25.09.92 (9239)

R.P. Daley, U. Furbach, K.P. Jantke (editors):
Analogical and Inductive Inference 1992 , Dagstuhl-Seminar-Report ; 49; 05.10.-09.10.92 (9241)

E. Novak, St. Smale, J.F. Traub (editors):
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report; 50; 12.10.-
16.10.92 (9242)

J. Encarna~ao, J. Foley (editors):
Multimedia - System Architectures and Applications, Dagstuhl-Seminar-Report; 51; 02.11 .-
06.11 .92 (9245)

F.J. Rammig, J. Staunstrup, G. Zimmermann (editors) :
Self-Timed Design, Dagstuhl-Seminar-Report; 52; 30.11 .-04.12.92 (9249)

B. Courcelle, H. Ehrig, G. Rozenberg, H.J. Schneider (editors):
Graph-Transformations in Computer Science, Dagstuhl-Seminar-Report ; 53; 04.01 .-08.01 .93
(9301)

A. Arnold, L. Priese, R. Vollmar (editors):
Automata Theory: Distributed Models, Dagstuhl-Seminar-Report; 54 ; 11 .01.-15 .01 .93 (9302)

W. Cellary, K. Vidyasankar , G. Vossen (editors):
Versioning in Database Management Systems, Dagstuhl-Seminar-Report; 55; 01 .02.-05.02.93
(9305)

B. Becker, R. Bryant, Ch. Meinel (editors) :
Computer Aided Design and Test, Dagstuhl-Seminar-Report; 56; 15.02.- 19.02.93 (9307)

M. Pinkal, A. Scha, L. Schubert (editors):
Semantic Formalisms in Natural Language Processing, Dagstuhl-Seminar-Report; 57: 23.02.-
26.02.93 (9308)

W. Bibel, K. Furukawa, M. Stickel (editors):
Deduction , Dagstuhl-Seminar-Report; 58; 08.03.-12.03.93 (9310)

H. Alt, B. Chazelle , E. Welzl (editors):
Computational Geometry, Dagstuhl-Seminar-Report; 59; 22.03.-26.03.93 (9312)

H. Kamp, J. Pustejovsky (editors):
Universals in the Lexicon: At the Intersection of Lexical Semantic Theories, Dagstuhl-Seminar­
Report; 60; 29.03.-02.04.93 (9313)

W. Strasser, F. Wahl (editors):
Graphics & Robotics, Dagstuhl-Seminar-Report; 61 ; 19.04.-22.04.93 (9316)

C. Beeri, A. Heuer, G. Saake, S.D. Urban (editors):
Formal Aspects of Object Base Dynamics. Dagstuhl-Seminar-Report; 62; 26.04.-30.04.93 (9317)

A. Book, E.P.D. Pednault, D. Wotschke (editors):
Descriptional Complexity: A Multidisciplinary Perspective , Dagstuhl-Seminar-Report ; 63; 03.05.-
07.05.93 (9318)

H.-D. Ehrig, F. von Henke, J. Meseguer, M. Wirsing (editors):
Specification and Semantics, Dagstuhl-Seminar-Report; 64; 24.05.-28.05.93 (9321)

M. Droste, Y . Gurevich (editors):
Semantics of Programming Languages and Algebra, Dagstuhl-Seminar-Report: 65; 07.06.-
11 .06.93 (9323)

Ch. Lengauer, P. Quinton, Y . Robert, L. Thiele (editors):
Parallelization Techniques for Uniform Algorithms, Dagstuhl-Seminar-Report; 66; 21.06.-25.06.93
(9325)

G. Farin, H. Hagen, H. Noltemeier (editors):
Geometric Modelling, Dagstuhl-Seminar-Report; 67; 28.06.-02.07.93 (9326)

