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1 Preface

During the last ten, �fteen years we could witness a remarkable revival of interest
in non-classical logics foremost in connection with topics from computer science.
There seem to be two explanations for this phenomenon:

o The intention to use non-classical logics, like many-valued, modal or tempo-
ral logics for real world applications has made the usual reductions to classi-
cal �rst-order logic less attractive, since they obscure the intuitive meaning
of formulas. Also the implementations of theorem provers for these logics
seem to work more efficient without first translating them.

0 Computer science also brought about a change in the focus of application
areas of logic, from mathematics to the representation of and reasoning with
more general and less structured domains of knowledge. This led to the
invention of new types of logic. Non-monotonic logic is the prime example
to be named here.

To provide the necessary focus for a fruitful interaction during the seminar we
limited the contributions to the following subjects:

0 non-monotonic logics to model common sense reasoning,

o Horn-clause logic and its extensions as a basis for declarative programming
and as a source of non-monotonic inference,

o many-valued logics to extend the expressiveness of �rst-order logic and as a
frame for explaining phenomena arising in two-valued logic and modal logics
as a basis for treating temporal and epistemological aspects.

The bulk of the talks turned out to be on the subject of non-monotonic logic, which
can rightly be jugded to have turned into a mature subject with a sound theoretical
basis and moving towards serious implementations and applications. Despite the
seemingly non-homogeneous audience but supported by the known interactions
between modal and non-monotonic logic and also between many-valued logic and
semantics of logic programs intensive and stimulating conversations evolved during
the week of the seminar and will, it is to be hoped, further continue.

Peter H. Schmitt
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2 Workshop Programme

Monday, September 20

7.30 - 8.30: Breakfast

8.30 - 8.45: Opening
8.45 - 9.30: A. Nerode

Non-Monotonic Rule Systems and Predicate Logic
by Linear Programming

9.30 - 10.15: J. Remmel

Various Aspects of Nonmonotonic Rule Systems:
Normal NR5�, Forward Chaining and NR5

10.15 - 10.45: Coffee Break

10.45 - 11.30: D. Lehmann

A new Perspective on Default Logic
11.30 - 12.15: M. Truszczy�ski

Subnormal Modal logics
12.15 - 14.00: Lunch

14.30 - 15.15: A. S. Troelstra

Natural Deduction for Intuitionistic Linear Logic
15.15 - 16.00: B. Hösli

Robust Logics
16.00 - 16.30: Coffee Break

16.30 - 17.15: A. Herzig
Intcrfercnce Logic and Change

17.15 - 18.00: A. Gomolinska

On Logic of Acceptance and Rejection
18.15: Dinner A
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Tuesday, September 21

7.30 - 8.30: Breakfast

8.45 - 9.30: D. Mundici

Deduction in M any- Valued Logic
9.30 - 10.15: R. Hähnle

Short Conjunctive Normal Forms for Finitely- Valued Logics
10.15 - 10.45: Coffee Break

10.45 - 11.30: T. Mellouli

Three-Valued TMPR Theorem Prover and its

Use for Handling Presuppositions and Vagueness
11.30 - 12.15: L. Iturrioz

A Many- Valued Logic for Reasoning about Knowledge
12.15 - 14.00: Lunch

14.30 - 15.15: R. Stärk

T A New Semantics for Negation-as-Failure: Classical Logic
15.15 - 16.00: D. Cvetkovié

The Logic of Preference and Non-Classical Logics
16.00 - 16.30: Coffee Break

16.30 - 17.15: T. Strassen

The Basic Logic of Proofs
17.15 - 18.00: E. Orlowska

. Applied Non- Classical Logics in a Relational Framework
18.15: Dinner

Wednesday, September 22

7.30 - 8.30: Breakfast

8.45 - 9.30: W. Marek

DeReS&#39; � Default Reasoning System:
Theory and Paradigm

9.30 - 10.15: H. Herre

Contributions to Nonmonotonic Model Theory
10.15 - 10.45: Coffee Break. * �

10.45 - 11.30: G. Antoniou, V. Sperschneider
The Role of Process in Default Logic

11.30 - 12.15: P. Marquis, E. Grégoire
The Concept of �Novelty� in Non-Monotonic Logics

12.15 - 14.00: Lunch

14.30 - 18.15: EXCURSIONS

18.15: Dinner
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Thursday, September 23

7.30- 8.30: Breakfast

8.45- 9.30: M. Gelfond

Formalizing Commonsense in Logic Programming:
In Search of new Logical Connectives

9.30 - 10.15: T. Przymusinski I »
Semantics of Logic Programs and Non-Classical Logics

10.15 - 10.45: Coffee Break

10.45 - 11.30: J. Dix

An Aziomatic Approach to Semantics of Logic Programs
11.30 - 12.15: J. Schlipf

Kriplce Models for Logic Programming
with Incomplete Information

12.15 - 14.00: Lunch

14.30 - 15.15: D.S. Warren

On Implementing SL G-Resolution
15.15 - 16.00: St. Brass

Query Evaluation for Modular Speci�cations
with Simple Defaults

16.00 - 16.30: Coffee Break

16.30 - 18.00: General Discussion

18.15: Dinner

Friday, September 24

7.30 - 8.30: Breakfast

8.30 - 8.45: Opening
8.45 - 9.30: G. Gottlob

Carnap�s Modal Logic and NP Trees
9.30 - 10.15: R. Goré

Semi-Analytic Tableauz for Propositional
Modal Logics of Nonmonotonicity

10.15 - 10.45: Coffee Break

10.45 - 11.30: E. Börger
Logic vs. Logic Programming:
A Model for Control in the Language GÖDEL

11.30 - 12.15: H. Blair

Nonstandard Models of Uni�cation
12.15 - 14.00: Lunch
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3 Abstracts of presented talks

The Role of Processes in Default Logic

Grigoris Antoniou.
(with Volker Sperschneidcr),

University of Osnabrück

We introduce an operational interpretation of the �xedpoint de�nition of default
logic extensions. It consists essentially in applying defaults in some order while
ful�lling a success condition; if the condition is violated, we have to backtrack.
Furthermore, we must proceed in a fair way. Using this model it is easy to de-
termine the extensions of a default theory even for the beginner in the �eld of
nonmonotonic reasoning.

Then we demonstrate how this interpretation can be used as a theoretical tool
which allows to derive simpler, more understandable proofs for known results.
We demonstrate this point especially on Etherington�s result on the existence of
extensions for ordered, semi-normal default theories. We point out that this result
is found in several, wrong variants in literature. We give the correct version of the
theorem and a new proof that is clearer and makes the usually missing conditions
immediately apparent.

Finally, we use processes as the starting point for some implementational work.
First we give a prototypical Prolog implementation using an external theorem
prover. The main work, though, aims at implementing (portions of) default logic
in logic programming with its standard semantics by mapping default theories T to
de�nite logic programs calculating the generating defaults of the extensions of T.
We present the main idea of our approach and show soundness and completeness
for a quite restricted class of default theories (truths in Horn logic, �nite set of
defaults, only literals occur in the defaults). We are working on weakening some
of the conditions.

Nonstandard Models of Uni�cation

Howard A. Blair,
Syracuse University

For a �rst-order language C we construct algebras satisfying K. Clark�s equality
theory CETL which are quotients of the set of ground and nonground terms of �C.
In contrast to the Herbrand universe of L, each such algebra C has the property
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that every logic programlP in the language L is canonical with respect to C; that
is, the one step deductive consequence operator T? corresponding to P satis�es
T5; ,[,w(B;) = greatest �xed point(T%), where B g is the Herbrand base of L re-
lativized to C. A-terms built from the function and predicate symbols of L are
representable as elements of C. Subalgebras of C can be extended to applicative
structures satisfying the simple theory of types. Moreover, C can be constructed to
contain elements representing various arbitrary functions on C, provided the car-
dinality of the collection of represented functions does not exceed the cardinality
of L. In particular, if L is countable, then C can be constructed to be countable.

Logic versus Programming:
Modelling control of the language GOEDEL

Egon Börgcr
(with E. Riccobene),

University of Pisa.

J. Lloyd and P. Hill have recently proposed the new logic programming language
GOEDEL, which puts particular emphasis on improving the declarative seman-
tics compared with PROLOG. Also the attempt is made to give implementors
the option of using other theorem proving techniques than SLDNF resolution to
implement the language.

We present a mathematically precise but simple interpreter which describes
the full (control �ow) behaviour of GOEDEL programs (pruning, negation, con-
ditionals including their delay features) on the basis of abstract�ma.chine and
resolution independent� search trees. We exemplify the model for (an SLDNF
like) resolution as basic computation mechanism, in a modular way and exhibiting
an explicit interface. L

Our de�nition uses Gurevich�s notion of evolving algebras. It is mathematically
precise and starts from scratch, thus establishing a rigorous basis for an equiva-
lence proof between declarative and procedural semantics of Goedel programs.
It provides a tool for mathematical�machine and proof system independent�
description and analysis of design decisions in the development of the language;
it also lays the ground for stepwise re�nement and correctness proofs, through a
hierarchy of speci�cations at lower levels, down to implementations.
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Query Evaluation for Modular Speci�cations
with Simple Defaults

Stefan Brasa,
University of Hannover

We add a simple module system to supernormal default speci�cations in order to
distinguish between �de�ning� and �calling� occurrences of predicates. This grea-
tly improves the understandability of large default speci�cations and especially
helps to solve the problem of unwanted contrapositions of rules.

Most logic programs can be naturally translated into modular default speci-
�cations, whereas the converse is not true. So our results can help to integrate
both approaches � at least on the semantical. side for speci�cation purposes.

We also prove a strong connection to speci�cations with prioritized defaults.
But there the dependencies between the defaults have to be speci�ed, whereas
here only the de�ned predicates of each module must be given.

Finally, we introduce a syntactic completion which characterizes the intended
models of a speci�cation. It can be used as a basis for query evaluation.

The Logic of Preference and N on-Classical Logics

Dragan Cvetkovic�,
M a.:c-Planck-Institute Saarbrücken

In this talk we are exploring some models for von Wright�s preference logic. Given
(initial) set of axioms and a set of formulas, some of them valid, some of them
problematic (in the sense that it is not always intuitively clear should they be
valid or not), we investigated some matrix semantics for those formulas including
semantics in relevant logics (�rst degree entailment and RM3), various many-
valued (Kleene, Lukasiewicz,  and/ or paraconsistent logics, Sugihara matrix,
and one interpretation for preference relation using modal operators El and O. In
each case, we also investigated dependence results between various formulas. Also,
models are searched with given constraints with respect to a set of formulas which
should or should not be valid.
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An Axiomatic Approach to Semantics of Logic Programs

Jürgen Dix,
University of K oblenz-Landau

We present a method for classifying and characterizing the various different se-
mantics of logic programs that have been considered in the last years. Instead of
appealing to more or less questionable intuitions we take a more structural point
of view: our starting point is the observation that all semantics induce in a natural
way nonmonotonic entailment relations � iv �. The novel idea of our approach is
to ask for the properties of these bi -relations and to use them for describing all
possible semantics. We introduce two sorts of properties:

o Strong Properties, and

0 Weak Properties.

The former are adaptations of notions well-known in general nonmonotonic rea-
soning: they were introduced and investigated by Gabbay, Makinson, Lehmann,
Kraus and Magidor. The latter are inspired by serious shortcomings of some of
the existing semantics and intended to avoid this strange behaviour. We argue
that any reasonable semantics should satisfy our weak principles � we call these
semantics well-behaved.

We show that any well-behaved semantics is an extension of M fa�? p and a 5;.-
extension of the wellfounded semantics. We also show that Schlipf�s wellfounded-
by-case semantics can be de�ned as the 3;.-least supraclassical extension of WFS
satisfying Cut. We also conjecture that some semantics can be uniquely determi-
ned by their strong and weak properties.
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Representing knowledge in logic programming languages

Michael Gelfond,
University of Texas at EI Paso

In recent years the traditional language of declarative logic programming was
signi�cantly enhanced to allow for a better representation of incomplete informa-
tion. New, more expressive languages, contain not only negation as failure but
also stronger form(s) of negation, disjunction, and even modal operators. The at-
tempt to understand the meaning of all these connectives led to the development
of various semantics and to the investigation of the relationship between them.

I believe that, though this direction of research proved to be very successful, it
should be complemented by a serious investigation of a methodology of using
these languages for knowledge representation and even system design. This paper
aims to illustrate a possible approach to such an investigation and to outline
some problems relating to it. It starts with a simple story 5&#39;, collection A of
the closed world and other assumptions about the world, and a description U of
possible updates of S. We start with a logic program Ho formalizing S and A
together with a description of the way it"should be expanded under the update.
Then H0 is gradually modi�ed to allow for more complicated forms of updates.
We investigate properties of programs Ho, . . . ,II,, obtained in this way. We are
especially interested in monotonicity of updates, i.e. conditions under which II,- l:
f implies H; + 1 |== f and in changes which should be made in H; in ordu: to
remove (or to impose) an old (new) assumption(s) about the domain of disconrse.

On Logic of Acceptance and Rejection

Anna Gomolivislca,
University of Warsaw

In the paper we focus on a certain aspect of reasoning about knowledge with incom-
plete information closely related to the autoepistemic logic approach. The agents
knowledge is understood as an ability to classify facts. The agent can believe a
given fact, disbelieve it or cannot decide about this fact at all. The uncertainty
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of the agent is expressed using a formalism based on classical propositional logic.
We propose a formal solution to the following problem:

Given a pair (A, A�) of sets of formulae where A (resp. A�) is an initial
set of formulae accepted (resp. rejected ) by the agent, what are the sets
of all formulae accepted and rejected by her in this situation?

Such sets of formulae form so-called AE2 extensions being pair of theories, say
(T, T�) that ful�ll special conditions. AE2 extensions are characterized syntacti-
cally by means of so-called stable pairs of theories. A Kripke-style semantics for
AE2 extensions is proposed as well.

Acceptance and rejection are not complementary notions in our approach.
Facts neither accepted nor rejected are allowed. Additionally, we discuss two
undesirable cases:

1. T n T� 7E Q), i.e. there is a fact accepted and rejected simultaneously,

2. T, T� are mirror-images of each other, i.e. -T Q T� and -wT� C_I T.

Semi-Analytic Tableaux for Propositional
Modal Logics of Nonmonotonicity

Rajeev Gare�,
University of Manchester

The propositional monotonic modal logics K45, K45D, S4.2, S4R and S4F
elegantly capture the semantics of many current nonmonotonic formalisms as long
as (strong) deducibility of A from a theory I�, I� l&#39;- A, allows the use of necessitation
on the members of I�. This is usually forbidden in modal logic where I� is required
to be empty, resulting in a wealcer notion of deducibility.

Recently, Marek, Schwarz and Truszczinski have given algorithms to compute
the stable expansions of a �nite theory I� in various such nonmonotonic formalisms.
Their algorithms assume the existence of procedures for deciding (strong) deduci-
bility in these monotonic modal logics and consequently such decision procedures
are important for automating nonmonotonic deduction.

We first give a sound, (weakly) complete and cut-free, semi-analytic tableau
calculus for monotonic S4R, thus extending the cut elimination results of Schwarz
for monotonic K45 and K45D. We then give sound and complete semi-analytic
tableau calculi for monotonic K45, K45D, S4.2 and S4F by adding an (analytic)
cut rule. The proofs of tableau completeness yield a deterministic satis�ability
test to determine theoremhood (weak deducibility), t-L A, because all proofs are
constructive. The techniques are due to Hintikka and Rautenberg. We then show
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that the tableau calculi extend trivially to handle (strong) deducibility, I� l- A, for
�nite I�.

Using a general theorem due to Rautenberg we also obtain the (weak) inter-
polation theorem for K45, K45D, S4.2 and S4R.

Carnap�s Modal Logic and NP Trees

Georg Gottlob,
Technische Universität Wien

We oonsider problems and complexity classes de�nable by interdependent que-
ries to an oracle in NP. How the queries depend on each other is speci�ed by a
directed graph G. We first study the class of problems where G is a general dag
and show that this class coincides with A5. We then consider the class where
G is a tree. Our main result states that this class is identical to PNP[0(log n)],
the class of problems solvable in polynomial time with a logarithmic number of
queries to an oracle in NP. This result has interesting applications in the �elds
of modal logic and arti�cial intelligence. In particular, we show that the follo-
wing problems are all PNP[0(log n)] complete: validity-checking of formulas in
Carnap�s modal logic, checking whether a formula is almost surely valid over �-
nite structures in modal logics K, T, and S4 (a problem recently considered by
Halpern and Kapron), and checking whether a formula belongs to the stable set
of beliefs generated by a propositional theory.

We generalize the case of dags to the case where G� is a general (possibly cyclic)
directed graph of NP-oracle queries and show that this class corresponds to Hf.
We show that such graphs are easily expressible in autoepistemic logic. Finally,
we generalize our complexity results to higher classes of the polynomial-time l.?.er-
archy.

Short Conjunctive Normal Forms for
Finitely-Valued Logics

Reiner H ähnle,
University of Karlsruhe

New applications for many-valued theorem proving in various sub�elds, for ex-
ample in the theory of error�correcting codes, in non-monotonic reasoning, and
in formal software and hardware veri�cation, demand efficient automatic proof
procedures for many-valued logics. Many successful theorem proving methods in
twovalued logic, notably resolution, presume the existence of a conjunctive nor-
mal form (CNF). We present a general satis�ability preserving transformation of
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formulae from arbitrary �nitely-valued logics into a CNF which is based on signed
atomic formulae. The transformation is always linear with respect to the length of
the input, and we de�ne a. generalized concept of polarity in order to avoid the ge-
neration of redundant clauses. The transformation rules are based on the concept
of �sets-as-signs� developed earlier by the author in the context of tableau-based
deduction in many-valued logics. We discuss several possible resolution rules that
operate on the signed CNF including a streamlined version for so-called regular
logics, a class of �nitely-valued logics de�ned earlier by the author. We compare
our work to related approaches to many-valued resolution, and argue that our
approach is computationally more efficient.

Contributions to Nonmonotonic Model Theory

Heinrich H erre,
University of Leipzig

I present a general framework for nonmonotonic reasoning inspired by the para-
digm of model theory. It is re�nement and continuation of [He 91] where the idea
of a model operator was introduced to formalize nonmonotonic reasoning.

A deductive frame (L, C&#39;o,C) is de�ned by a language L and inference ope-
rations Co,C&#39; : 2L �+ 2L such that Co is monotonic, idempotent, satis�es in-
clusion and compactness, and C satis�es left absorption and congruence, i.e.
C&#39;o(C&#39;(X)) = C&#39;(X) and C&#39;o(X) = C&#39;o(Y) implies C&#39;(X) = C&#39;(Y). (L, Co) is a logical
base and C is said to be logical over (L, Co). A semantical frame (L, M, }=, <I>) is
given by a language L, a set M of models, a satisfaction relation |=§ L x M and a
selection function <I> : 2L �-> 2M , satisfying <I>(X) Q Modl"&#39; (X Then we introduce
the inference operation C&#39;q.(X) = Th(<I>(X where Th(K) = ‚ : K f: ,F� In this
framework several model theoretic questions are studied and solved, in particu-
lar representation theorems, the existence of deductive bases which are maximal
below a cumulative inference operation C�, and weak compactness properties of
minimal reasoning in propositional calculus.

Independently and recently, several researchers used the notion of a selection
function to formalize nonmonotonic inference operations; the selection function
oorrespondes to the notion of a model operator. Among them are G. Amati, St.
Brass, J. Bell, S. Lindstroem and H. Thiele.
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Independence and Change

A. Herzig
( with L. Farina: del Cerro),

Université Paul Sabatier

We study the notion of independence as a basis for change operations. Such a
notion permits us to enrich conditional logics with the following frame axiom:

C -> (A > C�) if A and C� are independent.

We show in particular how updates based on Winslett�s Possible Models Approach
can be axiomatized in this way.

Sequent Calculus with Restricted Weakening

Brigitte Ho".sli,
E TH Zürich

The weakening rules of Gentzen�s sequent calculus admit adding new formulas to
a derivable sequent. Thus, the weakening rule on the left (IW) corresponds to
the monotony of the logic, whereas the rule on the right (rW) is related to the
paraconsistency of the logic.

LCR is de�ned as a sequent calculus, where the rule (rW) is only missing -
in contrast to Gentzen�s calculus � and where the other rules do not imply the
weakening or transfer the weakening from the left to the right hand side. The
derivable sequents are robust against loosing prime formulas. This means: if we
discard some prime formulas from a derivable sequent we obtain a new derivable

sequent.
LC R is sound and complete w.r.t. a 3-valued semantics where the third truth-

value has the intention �neutral�. Hence, this value is a neutral element of the
conjunction as well as the disjunction.

By a suitable restriction of Gira.rd�s phase-semantics (of the linear logic) we
obtain this semantics from the multiplicative connectives and Kleene�s (strong)
semantics from the additive ones.
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A Many-Valued Logic for Reasoning about Knowledge

Luisa Iturrioz,
University of Lyon

A generalized Lukasiewicz logic is proposed as a model for reasoning about know-
ledge of fully communicating agents which are completely symmetrical connected.
In this approach, the abilities of different agents may be comparable or non com-
parable and knowledge of an agent about a predicate p can be reflected by her
abilities to recognize objects which are positive or negative instances of predicate
p . The notion of �agent t perceives p� is interpreted as a modal operator. The
proposed system, which is related to a Rasiowa-Marek model (1989), has inte-
resting provable properties as, for example, the possibility to manage incoherent
observations made by agents. If only two comparable agents are involved, the
formal system here proposed is equivalent to the three-valued Lukasiewicz logic.

A New Perspective on Default Logic

Daniel Lehmann,
Hebrew University

Nonmonotonic Logic is the study of deduction (of formulas from a set of formu-
las) in the presence of some �xed �default� or �background� information. This
information may be of a statistical nature, about speech conventions, or express
heuristics. Default information should de�ne a rational consequence relation. As
a first rough approximation one may consider that default information is given
by a set of conditional assertions K and that the relation defined should be a
rational extension of K. Two constructions satisfying these conditions have been
found: the rational closure construction de�ned in my KR�89 paper and a lexi-
cographic closure found independently by Benferhat, Cayrol, Dubois, Lang and
Prade (IJ CAI 93) and by myself. Both constructions are similarly described as the
relations defined by ranking the models by the set of defaults (of K) they violate.
They differ in the rankings used. Both rankings agree on how to compare single-
tons, but disagree on how to handle bigger sets. Rational closure enjoys pleasant
meta-level properties, the lexicographic closure does not. The latter provides for
inheritance of generic properties to exceptional classes whereas the former does
not. Some ideas have been presented as to the kind of other basic items of default
informz ..ion one could like to have at his disposal. The idea of a triple (c,a,b)
expressing the fact that, in the context c, the truth of a can never undermine b
seems attractive. This meaning is easily formalized as a property of consequence
relations. It seems that given any set I of such triples and any set K, there is a
rational extension of K that satis�es the triples of I that is less than (in the sense
of Lehmann-M -Lgidor) any other such extension, at least for �nite K�s.
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DeReS � Default Reasoning System
Theory and Paradigm

Victor W. Marelc,
University of Kentucky

We describe DeReS, a software system for nonmonotonic reasoning. This system
is an extensible shell for conducting nonmonotonic reasoning such as �nding stable
models of a propositional program or �nding extensions of a default theory.

This project represents the paradigm of �Second-order Logic Programming�.
�Second-order� here means that we are interested in finding the subsets rather
than elements of the Herbrand Base.

We indicate how the nonmonotonic reasoning can be used to declaratively de-
scribe solutions to various combinatorial problems. As a consequence, DeReS will
use a large number of combinatorial problems as benchmarks for its algorithms.

The Concept of Novelty in Nonmonotonic Logics

Pierre Marquis
(with E. Gregoire),

CRIN-CNRS/ INRIA-Lorraine

A concept of novelty of a formula for a topic w.r.t. a. deductive batabase is
investigated from a logical point of view. Intuitively, a formula is new for a to-
pic when inserting the formula together with some additional information in the
database allows us to infer an instance of the topic (or its negation) from the
resulting database, while this proves impossible when only the additional infor-
mation is inserted. First, this concept is analyzed in the framework of first-order
(Herbrand) monotonic databases. A decision procedure is provided, based (£1 a
prime implicants characterization of I ovelty. Then, novelty is investigated in the
context of non-monotonic - completed - databases. Actually, four types of novelty
are put forward to capture various intuitions about the relations between novelty
and forms of non-monotonicity. These types of novelty are proved incomparable
in the general case and their decision problems are discussed.
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Three-Valued TMPR Theorem Prover and its Use

for Handling Presuppositions and Vagueness

Taieb Mel louli,
University of Paderborn

In this paper, two complementary topics are discussed. The �rst concerns auto-
mated deduction for the three�valued logic L3, which has been introduced e.g.
in the study of natural language semantics. We present our three�valued deduc-
tion system TMPR, Tree�structured Modi�ed Problem Reduction, which we have
developed in an earlier work. TMPR expands only positive goals and utilizes
a controlled case analysis mechanism for non-Horn reasoning in the classical as
well as in the three�valued case. The second topic is to show how our three-
valued TMPR proof procedure can be used for handling two natural language
phenomena: presupposition failure and vagueness, also occurring in scienti�cal
formulations. This non�trivial application using three�valued logical inferencing
includes the following three aspects: Designing an adequate semantical modeling
allowing for the occurrence of the mentioned phenomena by making some modi-
�cations to Blau�s �three�valued logic of language� (De Gruyter, 1978), giving
a logical framework in which information about presuppositions as well as about
vagueness can be formulated, and finally developing an inference system extending
the three�valued TMPR inferencing techniques and capable of a correct handling
of the two phenomena. Owing to a differentiation between unde�nedness caused
by presupposition failure and that caused by vagueness at the inferencing level,
this differentiation is reflected as special informations in the proofs generated by
the inference system.

Deduction in many-valued logic
(and desingularization of toric varieties)

Daniele Mundici,
University of Milan

Up to logical equivalence, a formula in the in�nite-valued calculus of Lukasiewicz
is a piecewise linear function f from [O,1]" to [0, 1], each piece being a linear poly-
nomial with integer coefficients (McNaughton�s theorem). The linear subdomains
of f give a complex C of convex polyhedra with rational vertices. Passing to
homogeneous coordinates in Z"&#39;�, we obtain a complex K of cones with integral
vertices�called a fan in algebraic geometry. K canonically corresponds to a toric
variety X (K), and desingularizing X (K ) amounts to �nding a subdivision K� of
K such that each cone in K� is generated by a part of a basis of Z""&#39;1. Going back
to nonhomogeneous coordinates, K� determines a unimodular subdivision C� of C,
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from which we obtain a disjunctive normal form representation of f as a sum of
pyramids, known as the Schauder hats of C�. Before discovering in 1992 their rela-
tionship with toric varieties, the author had introduced Schauder normal forms as
an interesting tool for deduction in all many-valued calculi. Algebraic geometry
makes this tool even more interesting. For instance, toric desingularization and
factorization techniques yield a purely geometric proof of the completeness of the
Lukasiewicz axioms for the in�nite-valued calculus. Conversely, computational fa-
miliarity with desingularizations of fans arising from normal form reductions yields
tight upper and lower bounds for the Euler characteristic of desingularizations of
3-dimensional toric varieties.
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Hybrid Systems

Anil N erode

(joint with W. Kohn),
Cornell University, Ithaca

Hybrid Systems are interacting networks of continous plants and digital control
programs. The fundamental problem of hybrid systems is to extract from simula-
tion models and performance speci�cations of the plants, control programs which
force the plants to obey performance speci�cations. The Kohn-Nerode model is a
model mixing differential equations descriptions of plants with automata descrip-
tions of digital control programs. The Kohn-Nerode Extraction-Procedure casts
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all problems as problems of �nding an e-optimal solution to a variational problem.
For each plant state there is a lower semi-continuous functional from possible con-
trol functions to the nonnnegative reals to be minimized. The control functions
are measure valued, the measures being on the space of controls. The problems are
compact convex. in this context of so-called relaxed control. Then, with an 5 error
from optimality allowed, the optimal control function of state is approximated by
a �nite control automaton which realizes e optimality. The subject is a mix of Lie
algebras of controls, relaxed calculus of variations, and solving Schuetzenberger
series equations by the Kleene-Eilenberg method to extract the required control
automaton. The program that does this is a large constraint Meta-Prolog program
with domains for the subjects above. Non-Monotonicity enters when deviations
from the performance speci�cation to the plants is detected and a new control
automaton has to be computed. Current applications include control of �ring of
tank cannon, traffic control, control of industrial plants, etc.

Applied Nonclassical Logics in a Relational Framework

Ewa Orlowska,
Polish Academy of Sciences

Relational formalization of nonclassical logics is realized on the following three me-
thodological levels: Semantics and model theory: With a logic L there is associated
a class of relational models for L. Proof theory: With logic L there is associated
a relational logic for L such that its proof system provides a deduction method
for L. Algebraizationz With the class of standard semantic structures for L there
is associated a class of nonclassical algebras of relations that provide an algebraic
semantics for L. Relational formalization enables us to treat formulas of logical
systems as relations and propositional connectives as relational operations in a
suitable algebra of relations. Intensional connectives, like modal operations, intui-
tionist ic or relevant implication etc., become nonclassical relational operations,
and accessibility relations from possible world models of these logics become con-
stants in the respective algebras. Relational proof systems are Rasiowa-Sikorski
style systems consisting of decomposition rules for all the underlying relational
operations and speci�c rules that reflect properties of relational constants. In
the paper relational formalization is outlined for a class of information logics for
reasoning with incomplete information.
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Semantics of Logic Programs and Non-Classical Logics

Teodor Przymusinslci,
University of California at Riverside

During the last couple of years a signi�cant body of knowledge has been ac-
cumulated providing us with a better understanding of semantic issues in logic
programming and the theory of deductive databases. In particular, the class of
perfect models was shown to provide a suitable semantics for strati�ed logic pro-
grams. Subsequently, two closely related extensions of the class of perfect models
to all normal, non-disjunctive logic programs were introduced and extensively in-
vestigated. One of them is the class of well-founded models and the other is the
class of stable models. Subsequently, another extension of the class of perfect mo-
dels, namely the class of partial stable models, later renamed stationary models,
was introduced (Partial stable models were also called 3-valued stable models.),
for arbitrary normal programs. Stationary models include both stable and well-
founded models. Moreover, every normal program has the least stationary model
which coincides with its well-founded model.

In my talk I discussed various characterizations of stationary models in the
language of 2-valued and 3-valued logic, epistemic logic and default logic.

Rule systems, well-orderings, and forward chaining

Je�rey Remmel,
University of California at San Diego

We survey some recent results on logic programming and nonmonotonic rule sy-
stems which is joint work with A. Nerode of Cornell University and W. Marek of
the University of Kentucky. In particular, we describe a basic forward chaining
type construction which can be applied to any general logic program. The input of
the construction is any well ordering of the non-Horn clauses of the program. The
construction will then output a subprogram of the original program and a stable
model of the subprogram. We show that for any stable model M of the original
program P, there is a suitable ordering of the non-Horn clauses of the program so
that the subprogram produced by our construction is just P itself and the stable
model of subprogram produced by our construction is M. Thus all stable models
of the original program can be constucted by our foward chaining construction
for suitable orderings. Moreover, we show that for �nite propositional logic pro-
grams, our construction runs in polynomial time. More speci�cally, our fowarding
chaining construction runs in order of the square of the length of the program.

In fact, we present a basic Forward Chaining (FC) construction which can be
applied to any nonmonotonic rule system (NRS) as de�ned in [MNR90, MN R92c].
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In [MN R90, MNR92c], it was shown that nonmonotonic rule systems capture all
the essential features of many nonmonotonic reasoning formalisms, including logic
programming with negation as failure , general logic programming with classical
negation, Reiter�s default logic, and truth maintenance systems. Thus in the set-
ting of nonmonotonic rule systems, one can give general proofs for many of the
basic theorems about such nonmonotonic reasoning formalisms. Our FC construc-
tion can thus be applied to any of these formalisms. Our FC construction will take
any wellordering -< of the nonmonotonic rules of a NRS S = (U, N) and produce
a subset C� of N, the set of rules of S, and a. subset E" of U, the universe of
S, which is an extension of the rule system S� = (U, C *). Here an extension of a
nonmonotonic rule system is the comman generalization of a stable model of logic
program, an extension of a default theory, and an extension of truth maintenance
system. We will call E� a partial extension of S. We show that any extension E
of S can be produced via our FC construction for some well ordering -<, i.e. every
extension of S is a. partial extension of S. "

In the case where our original rule system S = (U, N) is inconsistent in the
sense that S has no extensions, our FC construction can be viewed as a way of
extracting a maximal consistent subset of rules C� Q N such that the system
S� = (U, C *) has an extension. This feature of the FC construction has a number
of potential applications. In particular, in the construction of expert systems, one
often consults several experts and the rules of different experts may conflict. Thus
the designer of the expert system is left with the task of extracting a consistent
set of rules from the rules supplied by different experts. Our FC construction is
ideally suited to this task for it allows us to favor the rules of one expert over
another by the simple process of placing the rules of our favored expert earlier in
the list. Because there are simple translations of general logic programs, default
theories, and truth maintenance systems into nonmonotonic rule systems, our
results apply equally well to the construction of stable models of general logic
programs, answer sets of logic programs with classical negation, extensions of
default theories, or extensions of truth maintenance systems and to the problem
of extracting maximal consistent information from general logic programs, default
theories, or truth maintenance systems when they are inconsistent.

We also have analyzed the complexity of our FC construction. For example,
for general recursive nonmonotonic rule systems, we can always produce a partial
extension whidi is r.e. in the jump of the empty set, 0&#39;. Note that in [MNR92b],
the authors constructed a recursive rule sytem S such that S had extensions but
no hyperarithmetic extensions. Thus we are always guaranteed that a recursive
nonmonotonic rule system has a partial extension which occurs at a relatively
low level in the arithmetic hierarchy where no such guarantee can be made for
extens&#39; ms of recursive nonmonotonic rule systems even when such systems have
extensions. More importantly, for �nite nonmonotonic rule systems, we can always
�nd a partial extension and its corresponding subsystem in polynomial time. Thus
our FC construction has potential applications for real time systems.

Finally we de�ne a class of rule systems called Forward Chaining Normal rule
systems for vfiich our FC construction always produces an extension of the ori-
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ginal rule system. It turns out that Forward Chaining Normal rule systems are a
generalization of R.ieter�s normal default theories and such rule systems have all
the desirable properties possessed by normal default theories.
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Kripke Models for Logic Programming with Incomplete
Information

John S. Schlipf,
University of Cincinnati

The study of stable expansions of theories in modal logics has proved very
fruitful in logic programming and nonmonotonic reasoning, both as an inspiration
for semantics and as a way of understanding semantics. Notably, Gelfond used
Moore�s autoepistemic logic in developing the stable semantics for logic program-
ming, and the modal viewpoint provides one very natural intuitive justi�cation
for that semantics.

Competing with the stable semantics, which is founded upon traditional two-
valued logic, is the well-founded semantic, which turns out to be the three-valued
analogue of the stable semantics. Przymusiriski showed that the well-founded
semantics can be de�ned using a three-valued autoepistemic logic. Other papers
have shown how to de�ne the well-founded semantics using extra relation symbols
with assumed meanings. Schwarz has pointed out that these extra relation symbols
are taken to be implied modalities, and it would clarify our understanding of the
semantics if we could make these modalities explicit. Also, a development of the
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Kripke Models for Logic Programming with Incomplete 
Information 

John S. Schlipf, 
Univer.,i1.y of Cincinnati 

The study of stable expansions of theories in modal logics has proved very 
fruitful in logic programming and nonmonotonic reasoning, both as an inspiration 
for semantics and as a way of understanding semantics. Notably, Gelfond used 
Moore's autoepistemic logic in developing the stable semantics for logic program­
ming, and the modal viewpoint provides one very natural intuitive justification 
for that semantics. 

Competing with the stable semantics, which is founded upon traditional two­
valued logic, is the well-founded semantic, which turns out to be the three-valued 
analogue of the stable semantics. Przymusinski showed that the well-founded 
semantics can be defined using a three-valued autoepistemic logic. Other papers 
have shown how to define the well-founded semantics using extra relation symbols 
with assumed meanings. Schwarz has pointed out that these extra relation symbols 
are taken to be implied modalities, and it would clarify our understanding of the 
semantics if we could make these modalities explicit. Also, a development of the 
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well-founded semantics in a two-valued modal logic should clarify our intuitions
about the semantics.

In this paper we present such a de�nition of the well-founded semantics. We
also present a similar de�nition of our well-founded-by-case semantics, which Dix
showed coincides with his well-founded+ semantics. Finally, we point out some
other applications of the incomplete information approach, where we explicitly
include a form of incomplete information into some of the rules of a logic program;
this adds no signi�cant extra complexity to computing the well-founded semantics.

A New Semantics for Negation-as-Failure:
Classical Logic

Robert F. Stärk,
Universität München

We introduce the partial completion of a normal logic program as a new declara-
tive semantics for Negation-as-Failure. The partial completion of a program P,
denoted by pa.rtcomp(P), is a re�ned version of Clark�s completion. We obtain it
by extending the language by new predicate symbols R for every predicate R. The
intended meaning of an atom R-(Ö is that R(f) �nitely fails. We show that the
classical consequences of the partial completion are exactly the formulas which are
true in all three-valued models of the completion. Thus, the partial completion is
just a classical formulation of the three-valued Fitting/Kunen semantics of a logic
program. The partial completion has several advantages compared with Clark�s
completion. It is always consistent and it can be viewed as a simultaneous positive
elementary inductive de�nitions of the relations R and R The partial completion
captures exactly the meaning of a large class of normal programs. We prove that
SLDNF-resolution is sound and complete with respect to the partial completion
for the class of so called well-moded programs. A program is well-moded if all
clauses of the program are correct with respect to some mode speci�cation. A
mode speci�cation assigns to every predicate a set of positive and a set of nega-
tive modes. Positive modes are used in positive calls and negative modes are used
in negative calls. A mode declares the arguments of predicates as input argu-
ments, output arguments or logical arguments. De�nite programs together with
de�nite goals and allowed programs together with allowed goals are correct with
respect to some mode speci�cation. Since we have always some modes in mind
when we write logic programs, we believe that all programs of practical interest
are well-moded and therefore covered by our theory.
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The Basic Logic of Proofs

Tyko Strassen,
University of Berne

The Propositional Provability Logic GL for Peano Arithmetic was axiomatized
1976 by R.M . Solovay. GL describes the behaviour of the arithmetical operator
�A is provable� by means of modal logic. Since GL is decidable, one has an elegant
and ef�cient tool for studying subjects cent ered around Gödel�s incompleteness
theorems, e.g. L6b�s theorem, substitutions, � xed points and formalizations.

The Basic Logic of Proofs is de�ned exactly in the same environment as GL.
But instead of having modal formulas of the form DA and interpreting CIA as �A
is provable�, the language of the Basic Logic of Proofs contains labeled modalit
ies Cl,,,A which can be interpreted in a wide range of applications, e.g. as �p is a
proof of A�, �p is a proof which contains A�, �p is a program which computes
A�, or �A is computable by a program which size is bounded by p�. The Basic
Logic of Proofs is provided with syntactical models; as neither the necessitation
rule A l*- DPA, nor the substitution rule A 4-» B |- Cl,,A H DPB is valid, the usual
technique of Kripke models cannot be applied. Some basic properties, mainly
concerning �xed points, are investigated. Finally, a system of �nite models is
introduced, from which the decidability of the 10 gic follows.

Natural deduction for intuitionistic linear logic

Anne S. Troelstra,
University of Amsterdam

The talk deals with two versions of the fragment with unit, tensor, linear impli-
cation and storage operator (the exponential !) of intuitionistic linear logic. The
�rst version, ILL, appears in a paper by Benton, Bierman, Hyland and de Paiva;
the second one, ILL+, is described in this talk. ILL has a contraction rule and
an introduction rule !I for the exponential; in ILL+, instead of a contraction rule,
multiple occurrences of labels for assumptions are permitted under certain con-
ditions; moreover, there is a different introduction rule for the exponential, !I+,
which is closer in spirit to the necessitation rule for the normalizable version of
S4 discussed by Prawitz in his monograph �Natural Deduction�.

It is relatively easy to adapt Prawitz�s treatment of natural deduction for
intuitionistic logic to ILL+; in particular one can formulate a notion of strong
validity (as in Prawitz�s �Ideas and Results in Proof Theory�) permitting a proof
of strong normalization.

The conversion rules for ILL explicitly mentioned in the paper by Benton et.
al. do not suffice for normal forms with subformula property, but we can show
that this can be remedied by addition of a single conversion rule.
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ILL+ also suggests the study of a class of categorical models, more special
than the class introduced by Benton et. al.

Subnormal modal logics

Miroslaw Truszczynski,
University of Kentucky

Attempts to provide modal account of default reasoning lead recently to an intere-
sting class of modal logics. These logics contain all propositional tautologies in the
modal language. They are closed under uniform substitution, necessitation and
modus ponens and, �nally, they do not contain the axiom schema K. We provide
a semantic characterization of these logics � similar to Kripke semantics for nor-
mal modal logics. We then focus on two very special logics in this class: the logic
N, which does not contain any axiom for manipulating modalities, and the logic
NT, which is obtained from N by including the axiom schema T. We argue that
both logics are intuitively well- motivated and have applications in default logic
and logic programming. In particular, nonmonotonic logics N and NT provide
characterizations of extensions of default theories, stable and supported models of
logic programs, and stable expansions in autoepistemic logic. We present several
properties of nonmonotonic logics N and NT including minimal model characteri-
zations of these logics and the property of being robust under extensions by new
de�nitions.

Implementing SLG-Resolution

David. 5&#39;. Warren

(with Weidong Chen and Terrance Swift),
SUNY at Stony Brook

SLG resolution is strategy for computing answers to queries to General logic pro-
grams (those with unrestricted closed-world negation) [PODS�93]. It is a partial
evaluation strategy that reduces queries / programs with respect to the partial (or
3-valued) stable model semantics. It can be used directly to evaluate queries with
respect to the well-founded semantics, and the residual program could be further
processed to compute partial stable models. For Datalog programs, the procedure
is terminating and has polynomial data complexity.

In this talk we brie�y describe the transformations that de�ne SLG resolution.
We then discuss issues involved in implementing it ef�ciently. We desribe a full
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implementation of SLG, written as a meta-interpreter in Prolog. We present the
results of simple benchmarks that indicate that it is competitive in performance
with current implementations of other bottom-up algorithms. We then describe
a partial implementation of SLG at the engine level of a WAM�based Prolog sy-
stem. This XSB system implements a subset of the transformations of full SLG
that handles strati�ed programs. Benchmarks show that the XSB system is appro-
ximately 30 times faster than the SLG meta-interpreter on stratified programs.
Finally we present benchmark results that show that XSB is approximately an
order of magnitude faster than some other deductive database systems on simple
recursive Datalog queries.

Reporter: Jürgen Dix
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