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COUNTING ISSUES

in Complexity Theory, Discrete Optimization,
and Computational Convexity

December 6 � 10, 1993

The last few yea.rs have seen a rapid growth in resea.rch on issues rela.ted
to counting, both theoretical and applied. Among others, t.he fields of dis-
crete optimization and more recently, computational conve.\&#39;ity (the study
of the computational and algorithmic. aspects of high-dimensional convex
bodies, especially polytopes) have been important sources of new questions
involving counting. Furthermore, major new results have been proved about.
complexity classes based on counting.

This workshop was intended to bring together people from different com-
munities who are interested in counting issues, and to facilitate (and furt.her
stimulate) communication amongst the researchers involved.

According to the concept of this conference, the pa.rticipa.nt.s belonged t.o
different �elds of theoretical computer science and discrete mathematics.

The meeting was attended by 22 participants who each gave a ta.lk. Some
of the lectures surveyed new developments in important sub�elds. others
presented recent new results. The lengths of the talks varied between 30 and
60 minutes.

The topics that were discussed at the workshop reflected the wide range
of the subject. Some of the lectures dealt with aspects of counting related to
structural complexity theory, with complexity classes based on counting, a.nd
with counting issues in the theory of communication complexity. Others were
devoted to randomized and approximate counting problems, while yet others
mentioned algebraic aspects of the field. Another group of contributions
focussed on graph theoretic. counting problems, and certain complexity issues
in enumerative combinatoric.s. Some other talks gave reslllts on counting
issues in integer programming, while counting (and uniqueness) issues in
convexity was the subject of another group of lectures. Many of the problems
discussed were motivated by practical applications.
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In addition various open problems were stated which led to vivid discus-
sions and numerous interactions.

The conference showed that even though the participants belonged to
different �elds that have quite different tool-boxes, approaches and ideas for
solving their problems, there is a deep and close connection which is centered
around the concept of counting.

Peter Gritzmann & David Johnson & Victor Klee & Christoph Meinel
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Inductive Counting for Branching Programs

by Carsten Damm (joint work with M. Holzer and K.-J. Lange)

lmmerman (1987) and Szelepscenyi (1987) proved that for space bounds
.s(n) 2 log n, N .S&#39;pace(s(n)) is closed under complement. The method they
used ��� it came to be known as �inductive counting� � relies on the fact
that the space bound allows to implement a step counter. A consequence
of this celebrated result is the collapse of the alternating space hierarchy for
space bounds above log n.

In contrast to this it has been proved that for space bounds below log n (that
is s(n) E Q(log log n) F�! o(log n)) the alternating space hierarchy is in�nite
(Liskiewicz/ Reischuk 92; Geffert 9�2;von Braunniiihl 92). The key argument
there is uniformity: alternating Turing machines that are sublogarithmically
space bounded work the same way on inputs of the form ulmv and ul��+���v.

Can one throw away both obstacles (the need to implement step counters
and uniformity) to complement on a nonuniform model of computation�? We
show that this is possible. Weiperform inductive counting on nondeterminis-
tic branching programs while increasing the width of the programs from w to
at most O(w3). Width restricted branching programs are interesting objects
of study in their own since they can be regarded as being half�way between
NC� (constant width, poly size) and L (poly width, poly size) or NL in the
nondeterministic case. Additionally we show that width restricted branching
programs are equivalent in computational power to a variant of nonuniform
Turing machines, which are generalizations of Barrington�s nonuniform au-
tomata and correspond directly to the usual Karp/ Lipton model of nonuni-
formity in case of space bounds s(n) 2 log n. That means nonuniform Turing
machines can complement regardless of the space bound.

Counting Lattice Points in Polytopes in Fixed Dimension

by Martin Dyer (joint work with Ravi Kannan)

Very recently, Alexander Barvinok gave a polynomial time algorithm for the
problem of counting the number of integer points in a polytope in any �xed
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dimension <1. This improved dramatically a result of Dyer (1991) for the
cases d S 4. Barvinok�s method uses complex analysis and a theorem of
Brion on exponential sums over polytopes. We show that the machinery
of complex variables and Brion�s theorem can be dispensed with. However
our �improved� algorithm still relies heavily on Barvinok�s ideas. We will
describe Barvinok�s methods, our improvements and the history of this topic.

Approximately Counting Hamilton Cycles in Dense Graphs

by Alan Frieze (joint work with Martin Dyer and Mark Jerrum)

Call a graph G on n vertices, dense if it has minimum degree at least (1 /2 +
a)n for some constant a > 0. We consider the problems of computing the
number of Hamilton cycles, the number of Hamilton paths, the total number
of cycles, the total number of paths. We describe F PRA.S"s for each problem
restricted to dense graphs.

We also show that it is #P�hard to count Hamilton paths or cycles exactly
in dense graphs and N P�hard to determine the existence of a Hamilton path
or cycle in graphs with minimum degree _>_ 7n for constant 7 < 1/ 2.

Counting and Efficient Data Structures for Boolean Functions

by Jordan Gergov

It is proved that any deterministic, nondeterministic, co�nondeter1ninistic
and M 0D,, (p is a prime) oblivious branching program of linear length for
the integer multiplication is of size 2�(��).

Counting the number of one�s (# f 4(1)) of a Boolean function f given its
F BDD representation (free binary decision diagram, read�once branching
program) can be done easily in polynomial time (e.g. Akers,78). We proved
that counting the number of one�s given a parity (MODZ, EXOP.) OBDD
for f is #P�complete (for motivation e.g. Gergov &: Meinel, STACS�93) while
the corresponding decision problem is in R.
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On the Complexity of Computing (Mixed) Volumes

by Peter Gritzmann

We report on recent results (jointly with M. Dyer and A. Hufnagel) and
some of their applications concerning the problem of computing the volume
of zonotopes and of computing mixed volumes of polytopes (and more general
convex bodies) by means of deterministic and randomized algorithms.

Applications touched upon contain a problem from mixture management and
the problem of computing the permanent of an integer matrix.

Hypergraphs and Complexity Classes

by Ulrich Hertrampf

We investigate complexity classes in the area between P and PSPAC E which
can be de�ned via leaf languages, like NP (leaf language O*1{0, 1}*), co-NP
(leaf language 0*), GBP ({w /# 1�s in w is odd}), etc.

Introducing a generalized form of hypergraphs, we give a very general cri-
terion to decide, whether there is an oracle separation between two such
classes.

The results include well�known separations like 3X: N PX Q co-NPX , or
3X: MOD,--PX Q M0Dk-PX (where k is a prime number, not dividing �€

but also new ones, like 
3X 3 052,210) g C§Y1,:�:o(2)

where C>a,,_�_b(2) means the class de�ned by the following acceptance condition:
# of accepting computations of a nondeterministic polynomial time machine
is greater than a, and is congruent to b mod 2.
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Generalization of the Coloring Problem

by Klaus Jansen
(joint work with H.L. Bodlaender, P. Schefller and GJ. Woeginger)

We discuss the Precoloring Extension (PrExt) and the List Coloring (LiCol)
problems for trees, partial k-trees, bipartite graphs and cographs in the.
decision and the construction versions.
PrExt

given: an undirected graph G = (V, E), m G W and a m�coloring of a vertex
subset W Q V.
question: is the coloring extenclible to the entire graph .1�?
LiCol

given: an undirected graph G = (V, E), subsets 5., C {l, . . . m}�v E V.
question: is there a m�coloring f of G such that f (v) E .S&#39;,,, v E V?

Both problems for partial k�trees are solved in linear time, when m is
bounded by a constant and by polynomial time algoritlnns for unbounded m.
For trees we improve this to linear time. Moreover, we prove that 1-PrExt is
N P�complete for bipartite graphs and m = 3. In contrast to that, PrExt and
LiCol differ in complexity for cographs while the first has a linear decision al-
gorithm, the second is shown to be N P-complete. We give polynomial time
algorithms for the corresponding enumeration problems #PrExt, #LiCol on
partial k�trees and trees and for #PrExt on cographs.

Approximately Counting Hamilton
Cycles in a Random Regular Graph

by Mark Jerrum (joint work with Alan Frieze and Mike Molley)

The problem of determining whether a cubic (3-regular) graph is a Hamil-
tonian is known to be N P�complete; it follows that there can be no f pras
(fully�polynomial randomised approximation scheme) for the number of Hamil-
ton cycles in a cubic graph unless RP = N P. This is a �worst case� result.
In contrast, we show that there is an f pras for Hamilton cycles that succeeds
for almost every 1&#39;-regular graph G, where r is any constant 2 3. (In the
event of failure, the algorithm provides a warning message.)
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The basic idea of the algorithm is to estimate the. number of �2�factors in G;
and then the ratio of Hamilton cycles to �2-factors by Monte Carlo experi-
ment. The veri�cation of the algorithm rests on showing that the ratio of
Hamilton cycles to 2�factors in G is likely to be not too small: this involves
a difficult second moment calculation combined with an application of the
�conditional variance� method.

Counting Issues

by David S. Johnson

We provide an introductory survey of the topics of the workshop. We begin
with a mock history of counting, leading through the traditional mathemat-
ical diversion of counting the number of objects of a given type of �size� n
(e.g., the number of trees with n leaves) to the question of counting the num-
ber of objects derivable from a given graph, polytope, etc. (e.g., the number
of perfect matchings in a given graph). We then introduce the complexity
classes P and #P for classifying such problems, and give a quick survey of
#P-hardness results (prepared by Milena Mihail and Peter Winkler). Next
we introduce the concept of a fully polynomial randomized approximation
scheme (F PRAS) and mention some results about the existence (or non-
existence, assuming NP 7¬ R) of such schemes for certain #1�-hard problems.
We then brie�y discuss the question of listing objects, as opposed to count-
ing them, and the various notions of output-sensitive �polynomial-time� for
this task. The next part of the talk is a brief survey of complexity classes
related to counting. By this we mean classes de�ned in terms of the number
of accepting computation of a nondeterministic Turing machine (N DTM ).
For polynomial time NDTM�s, we get classes such as #I�, PI�, Hai�, and
U nique-P. For polynomial time N DTM �s obeying additional restrictions on
their operation, we obtain classes such as R, BPP, Few-P, UP, and (with
some additional contortions) I P. The talk concludes with a brief description
of other complexity theory issues related to computing, such as the complex-
ity of optimization problems with unique optimal solutions, and the power
of boolean circuits augmented by mod-lc and threshold gates.
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Computing Threshold Functions by Depth 3 Threshold Circuits

by Stasys J ukna

The threshold gate with threshold value �s is any of the two Boolean functions
T;" and T� 1 where Ts"�(;1:1, ..., mm): 1 iff 231:; > .9. We prove that any depthm�s+ �

3 threshold circuit with threshold values of its gates g s which computes Ti.�
and has bottom fan�in g t, must be of size at least (n/k.st)k/S. We also show
that depth 3 threshold circuits with threshold values of its gates _<_ s which
computes the majority function 3/2 and has either only /lND_�s or OR�s at
the bottom must have size 8.&#39;I1p(Q(\/�H/.S)).

Efficient Approximation of Some �Hard�
Algebraic Counting Problems

by Marek Karpinski

We present some efficient randomized approximation algorithms for a num-
ber of (provably) hard algebraic and geometric counting problems, like the
problem of estimating the size of an algebraic set or the size of an algebraic
curve over GF The proof methods involve the convexity argument on cer-
tain cylindrical partitions of the sets of nonzeros of multivariate polynomials
over GF [q], and the ratios on the number of nonzeros.

The above problems have been proven, only recently, to be computationally
intractable in the exact counting setting.

Some Geometric Uniqueness Problems

by Victor Klee

Each of the following problems turns out to be P�hard: -

Instance: n E 1/V,n�paral1elotope in R" with one vertex at the origin.
Question: Does the Euclidean norm attain its maximum at more than one
vertex of the parallelotope?

l0

Computing Threshold Functions by Depth 3 Threshold Circuits 

by Stasys J ukna 

The threshold gate with threshold values is any of the two Boolean functions 
Tsm and T,~i-s+l where T;''(x1, ... , xm)= I iff Exi ~ s. We prove that any depth 
3 threshold circuit with threshold values of its gates ::; s which computes T{: 
and bas bottom fan- in ~ t, must be of size at least (n/ k.st)k/s_ We also show 
that depth 3 threshold circuits with threshold values of its gates ::; s which 
computes the majority function T,:';2 and bas either only AN D's or OR's at 
the bottom must have size exp(f!(Jn/s)). 

Efficient Approximation of Some "Hard" 
Algebraic Counting Problems 

by Marek Karpinski 

We present some efficient randomized approximation algorithms for a num­
ber of (provably) hard algebraic and geometric counting problems, like the 
problem of estimating the size of an algebraic set or the size of an algebraic 
curve over GF[q]. The proof methods involve the convexity argument oncer­
tain cylindrical partitions of the sets of nonzeros of multivariate polynomials 
over GF[q], and the ratios on the number of nonzeros. 

The above problems have been proven, only recently, to be computationally 
intractable in the exact counting setting. 

Some Geometric Uniqueness Problems 

by Victor Klee 

Each of the following problems turns out to be NP- hard: 

Instance: n E JN, n- parallelotope in /R" with one vertex at the origin . 
Question: Does the Euclidean norm attain its maximum at more than one 
vertex of the pa.rallelotope? 

10 



Instance: n. E W, n-parallelotope in B".
Question: Does the circumsphere contain (in its boundary) more than one
diametral pair of vertices?

Instance: n E W, n-cross-polytope in H".
Question: Does the insphere hit more than one pair of opposite facets�?
(The hardness is proved in the following paper: P. Gritzmann & V. Klee,
Deciding uniqueness in norm maximization, Math. Programming 57 (1992)
203-214.)

Now let 1/) : W --> W and 7 : W �> W be such that l 5 7(71) S n. and both ~z_j~
and 7 are Q(n.�/"&#39;) for some I: E W. Then the following problem is NP�hard:

Instance: n E W, n-polytope P in H" givenas the convex hull of its n.+~z/~(n.)
vertices.

Question: Is the largest* &#39;y(n)�simplex in P unique�? ("� largest with respect
to 7(n)�measure).
(The hardness is proved in the following paper: P. Gritzmann, V. Klee 81, D.
Larman, Largest j�simplices in n��polytopes, manuscript, 1993.)

On the Power of Single Bits of a t1P Function

by Johannes Köbler
(joint work with F. Green, K. Regan, T. Schwentick, �\� Toda, .l. Toran)

We study the class M P of languages which can be solved in polynomial time
with the additional information of one bit of a #P function. It is shown that
the polynomial hierarchy and the classes M()D;,. P, k Z 2, are low for MP.
They are also low for a class we call AmpM P which is de�ned by abstracting
the �ampli�cation� methods of Toda. As a consequence we get a new upper
bound for Barrington�s class ACC7 which might be useful in separating T(7g
from A(7&#39;(7.

To resolve the question of the computational power of AmpM P we introrluce
the generalized M()D�class ModP. We show that any #P function can be
computed in polynomial time by asking parallel queries to a Modi� oracle.
Furthermore we prove that M 0dP is contained in AmpM P. This shows that,
AmpM P, M odP, and MP are equally powerful.

ll
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On the Computational Power of Boolean
Circuits vs. Depth 2 Threshold Circuits

by Matthias Krause

The most powerful methods which are known for lower bounding the size of
threshold circuits are:

1. the discriminator method giving explicit exponential lower bounds on the
number of edges of depth 2 threshold circuits, and
�2. the spectral method giving exponential lower bounds on the number of
nodes (unbounded number of edges) of depth �2 threshold circuits if the bot-
tom level contains only EB-gates (threshold�¬a circuits).

Using probabilistic arguments we give a more powerful method which works
for threshold-MOD" circuits, r�arbitrary, and which allows to prove new
structural results on Boolean� vs. depth��2 threshold circuits. In particular
we show that:

� For distinct primes p,q threshold-MOD" circuits for M OD� have expo-
nentially many nodes,
- For all natural r there are AC&#39;o,3�functions which need exponential size
threshold�M()D� circuits,
� All AC0,-I-functions can be efficiently realized by threshold�M0D2 circuits.
The second result is of special interest because the known lower bound meth-
ods (1 and 2) don�t provably work for AC°�functions. Thus we get a (partial)
negative answer to the open question whether there is a more efficient sim-
ulation of AC&#39;°�circuits by small depth threshold circuits better than that
given by [YAO 90] yielding AC C Q T093.

Counting Rich Cells in Arrangements of Hyperplanes in R�

by D. G. La rman

Let H1 � ..., H,, be an arrangement of n hyperplanes in Rd. These hyperplanes
partition Rd into regions which we call cells. A cell is rig:_l_1_ if every hyperplane
H1, ..., 11,, touches the cell. The maximal number of such rich cells is ~
72""?/d � �2, n large.

How large can n be so that if H1, ..., H,, is in general position, a rich cell is
guarantied. In R2, n = 4 and conjecture n = 2d in Rd.
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Some Lower Bounds on the Counting
Communication Complexity of M OD".-GAP

by Christoph Meinel

We consider the counting versions of the graph accessibility problems M OD,"-
GAP, m > 1. These problems arecomplete for the counting classes M OD,"-
Log.5&#39;pace. With the aid of rank arguments and certain projection reductions
we prove some lower bounds on the counting coimnunication complexity
MODk�Counting and MAJ�(fIounting. ln detail we show:

MOD�.-Counting (G/lP,,) = P~��
MOD;,.-Counting (M()D,,. � GAR.) = ƒ
MAJ-Countitlg (G/1R.) = Sl(\/ii)
MAJ�(3ounting (MOD,,. � GAR.) = `À

This work was done together with Stephan Waack (Göttingen).

Counting Triangle�Free Graphs

by Hans-Jiirgen Prömel

An important result of Erdiis, Kleitman and Rothschild (1976) says that
almost every triangle�free graph on n vertices has chromatic. number 2.
This result allows to derive easily an asymptotic formula. for the number
of triangle�free graphs. In this talk we study the asymptotic structure of
graphs in F o1°b���(lx&#39;3), i.e. in the class of triangle��free graphs on n. ver-
tices having m = m(n) edges. ln particular, we prove that an analogue
to the Erdös/ Kleitman / Rothschild result is true, whenever m. Z c-.117/" Iogn
for some constant c > 0. On the other hand, it is shown that almost ev-
ery graph in F orb,.,,,,(l\&#39;3) has at least chromatic. number 3, provided that
cm < m < C2113/2,�wliere (:1, C2 > 0 are appropriate constants.

This is joint work with A. Steger (Bonn).
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On the Number of Graph Automorphisms

by Jacobo Toran

We survey some results on the counting properties of the Graph Automor-
phism and Graph Isomorphism problems, obtained with .l. Kobler and U.
Schöning. We Show that for the case of GA, there is a nondeterministic ma-
chine that on input a graph G has exactly �2�(lGl) accepting paths if 6&#39; 6 GA,
and exactly �.2�(l("ll + 1 accepting paths if G ¢ GA. This implies that GA is in
(BP and low for the class PP. For the Graph Isomorphism problem we show
that there is a machine with a similar accepting mechanism as in the GA
case, but now it has 2� accepting paths if the input graphs are isomorphic,
and �Z7� + 9�� accepting paths if they are not isomorphic (where f is a
poly-time computable function). This implies that GI is low for PP.

We also show some results indicating the difficulty of approximating the I
function #Aut, counting the number of graph automorphisms, in the sense
of enumerability. We show that if #Aut has a log1"�(n) enumerator then
GA 6 P, and if #Aut has an nl/2�� enumerator then GA 6 R.

Introducing Interactions into Randomized Optimization Algorithms

by Umesh Vazirani

Running a heuristic randomized optimization algorithm k times is conceptu-
ally the same as running It simulations simultaneously without interaction.
Can one do better by introducing some interaction�? We study this question
in the context of a concrete model of �nding deep vertices on trees. This tree
model mimics aspects of the polynomial time behavior of simulated annealing
algorithms.

Joint work with David Aldous.

14

On the Number of Graph Automorphisms 

by Jacobo Toran 

We survey some results on the counting properties of the Graph Automor­
phism and Graph Isomorphism problems, obtained with .J. Kobler and U. 
Schoning. We show that for the case of GA, there is a noudeterministic ma­
chine that on input a graph G has exactly 2P(IGI) accepting paths if GE GA, 
and exactly 2P(IGI) + I accept ing paths if G' (j_ G'A. This implies that GA is in 
(B P and low for the class PP. For the Graph Isomorphism problem we show 
t hat there is a machine with a similar accepting mechanism as in t he G'A 
case, but now it has 2P accepting paths if the input graphs are isomorphic, 
and 2P + / (IG1 I) accepting paths if they are not isomorphic (where J is a 
poly-time computable function) . This implies t hat GJ is low for PP. 

We also show some results indicating the difficulty of approximat ing the 
function #Aut, counting t he number of graph autrmorphisms, in t he sense 
of enumerabi lity. We show that if #Aut has a log1-"(n) enumerator then 
GA E P, and if #Aut has an n 1!2 -« enumerator t hen GA E R. 

Introducing Interactions into Randomized Opt imization Algorithms 

by Umesh Vazirani 

Running a heuristic randomized optimization algorithm k times is conceptu­
a lly the same as running k simulations simultaneously without interaction. 
Can one do better by introducing some interaction'? We study this question 
in the context of a concrete model of finding deep vert ices on trees. T his tree 
model mimic.~ aspects of t he polynomial time behavior of simulated annealing 
algorithms . 

. Joint work with David Aldous. 

14 



On Different Reducibility Notions for Function Classes

by Heribert Vollmer

We continue research of Toda on problems complete for function classes like
FP#P and MidP under Krentel�s metric reductions. �e first show that

metric reductions wipe out the difference between M27dP a.nd other related
classes of functions which are proba.bly different from MidP. In order to
obtain a more detailed classi�cation of naturally arising functional problems
we then examine a stricter notion of reducibility a.nd show that a number
of problems, among them those proved by Toda to be hard for M idP under
metric reductions, are complete for different classes of median functions re-
lated to MidP under this stricter reducibility. Finally, we use these results
to exhibit new natural complete sets for the well�studied classes of sets PP.
PPNP, and PPP.

Counting Issues in a General Theory of Polynomial Time
Complexity Classes

by Klaus W. Wagner

Many of the well~-studied complexity classes like NP, BPP, PP, <}%P, �C
. . . can be considered to be the result of the application of a.n operator to the
class P. For example, for any class K we define:
A E 3 - K öde; there exist a set B E K and a polynomial p such that:

w E A <-+ 33/(lyl = P(|=v|) /\ (slay) 6 B).

and we obtain NP = HP.

The main observation of the talk is: all the exciting results on the relation-
ships between the above mention results can be considered as results on the
corresponding operators applied to the class P, and they remain valid when
the operators are applied to an arbitrary class K ful�lling
� K is closed under union and intersection,
- K is closed under polynomial~�time conjunctive and disjunctive it--reducibility,
�- Pg K.
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The main observation of the talk is: all the exciting result::; 011 Ll1 <" relation­
ships between the above mention results can be considered as results 011 t he 
corresponding operators applied to the class P, and they remain valid when 
t he operators are applied to an arbitrary class I{ fulfilling 
- /( is closed under union and intersection, 
- I< is closed under polynomial- time conjunctive aud disjunctivP /.l - reducibilit.y, 
- p ~ I<. 
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For such classes K we can prove that e.g.(assume K = coK):
� BP - K Q 3 - �v�- K n V- 3 - K (Lautemann/Sipser/Gacs)
� NPK = 3 - K
� 3 - \7�- 3- - - K Q PC� (Toda)

Randomised Counting Problems

by Dominic J. A. Welsh

Each of the following problems is a specialisation of the problem of evaluating
the Tutte polynomial at a particular point of the plane:
1. counting subforest
�Z. counting acyclic orientations
3. counting connected subgraphs
4. determining the chromatic polynomial

# of �ows over any abelian group
Jones polynomial of Knot
weight enumerator of linear code.

As we (.laeger, Vertigan, Welsh 1990) have shown the Tutte plane is #P-
hard at all but one curve 5�� - l)(y -� l) = l and at 8 special points, it follows
that all above are #P-hard counting problems.

I now consider the possibility of obtaining a f pras (fully polynomial ran-
domised approximation scheme). It turns out that 1. and 3. are approxa
imable when the graph is dense (every point has at least a|V| neighbours for
some a). The general question of which point has a f pras is wide open. The
last results are due to Annan (1993), Frieze/Welsh ( 1993), who show also
that reliabiliiy and Potts are f prasable for dense graphs.

I also give a survey of speci�c open problems in this area.
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