
Report on the Dagstuhl�Seminar on

INCREMENTAL COMPUTATION AND

DYNAMIC ALGORITHMS

May � � �� ����

The purpose of the Seminar was to bring two research communities together
that have common interests� but that �to date� have had relatively limited
contact	

�
 theoretical computer scientists who work in the area of �dynamic algo�
rithms�� and

�
 programming�language
systems researchers who work in the area of
�incremental computing�

The goal of the Seminar was to stimulate an intellectual cross�fertilization
between the two groups
 For example� theoreticians were exposed to the
concerns that arise when making use of incremental processing in practical
systems� the systems people were exposed to new algorithms and analysis
techniques developed by theoreticians

For both groups� an important goal is to �nd e�cient algorithms that make
use of the solution to one problem instance to �nd the solution to a �nearby�
problem instance
 In the dynamic algorithms community� several avenues of
approach have been followed	

a
 the design of dynamic combinatorial algorithms ��update algorithms��
especially in the context of network problems��

b
 on�line algorithms and competitive analysis�

c
 parametric algorithms and sensitivity analysis� and

d
 the design of on�the��y� adaptive� and self�stabilizing algorithms in the
context of distributed computing

From the programming languages
systems perspective� the motivations for
work on incremental computation and dynamic algorithms include concerns
such as	

a
 e�cient techniques for dealing with �incremental changes� in order to
speed up the response times of interactive systems�

�

b
 the creation of languages and systems that provide support for incre�
mental computation� and

c
 the design of environments involving cooperating tools
 �In such en�
vironments� it is paramount that the tools communicate information
about changes to each other� which raises the possibility for the pro�
cessing of changes by individual tools to be performed incrementally
�

The Seminar provided the opportunity to present the state�of�the�art in the
relevant �elds at a high level and to let the two research communities bene�t
from each other�s insights
 We are grateful to all participants of the Seminar
for engaging in the endeavor with us and for making the meeting so success�
ful
 We thank Han La Poutr�e for organisational assistance
 We hope that
through the Seminar lasting bonds have been created between the two �elds

Jan van Leeuwen �Utrecht�
Kurt Mehlhorn �Saarbr�ucken�
Thomas Reps �Madison�

�

Lecture Schedule

Monday� May �nd� ����

Morning session

�
�� � �
�� Tom Reps� Opening
Jan van Leeuwen

�
�� � ��
�� Giuseppe Italiano Maintaining Spanning Trees of Small
Diameter

��
�� � ��
�� Raymond Seidel New Proofs for the Clarkson�Shor
Framework

��
�� � ��
�� Aswin van den Berg Incremental Higher�Order Attribute
Evaluation

Afternoon session

��
�� � ��
�� Maarten Pennings Incremental Evaluation of Higher�
Order Attribute Grammars

��
�� � ��
�� John Field A Graph Rewriting Approach to Incre�
mental Term Rewriting

��
�� � ��
�� Kurt Mehlhorn Two Problems on Sets and Sequences

Tuesday� May �rd� ����

Morning session

�
�� � �
�� Susan Graham Interactive Computing in Interactive
Software Development Environments

�
�� � �
�� Michael Harrison Incremental Issues in Multimedia
Systems

�
�� � ��
�� Kannan

Muthukkaruppan

Synthesizer for Practical Incremental
Evaluators

��
�� � ��
�� Bill Maddox Incremental Semantic Analyzer for
Ensemble

��
�� � ��
�� Emma van der Meulen Incremental Implementation for Alge�
braic Speci�cations

�

Afternoon session

��
�� � ��
�� Sandra Irani On�line Algorithms and Restricted
Adversaries

��
�� � ��
�� Stefano Leonardo Serving Requests with On�Line Routing

��
�� � ��
�� Susanne Albers On the In�uence of Look�Ahead in Com�
petitive On�Line Algorithms

��
�� � ��
�� Martin Farach Dynamic Dictionary Matching

Evening session

��
�� � ��
�� Discussion Session Theory� Practice

Wednesday� May �th� ����

Morning session

�
�� � ��
�� Tom Reps From �Incremental Attribute Evalu�
ation� to �Bounded Incremental
Computation�

��
�� � ��
�� Tom Marlowe Incrementality for Flow�Sensitive Data
Flow Problems

��
�� � ��
�� Hans Rohnert Dynamic Algorithms for Compilers

Evening session

��
�� � ��
�� System Demo�s Aswin van den Berg and Robert Paige

Thursday� May �th� ����

Morning session

�
�� � �
�� Roger Hoover Alphonse

��
�� � ��
�� Annie Liu Deriving Incremental Programs

��
�� � ��
�� Bob Paige TBA �or	 Algorithm Derivation and
Program Development by Program
Transformation�

�

Afternoon session

��
�� � ��
�� Umberto Nanni Two Incremental Problems on Graphs

��
�� � ��
�� Christos Zaroliagis Dynamic Shortest Paths

��
�� � ��
�� Je�ery Westbrook Dynamic Connectivity with Backtracking

Evening session

��
�� � ��
�� Problem Session

Friday� May �th� ����

Morning session

�
�� � ��
�� Tom Reps Incremental Interprocedural Data Flow
Analysis

��
�� � ��
�� Mats Wiren Incremental Natural�Language Comput�
ing

��
�� � ��
�� Michiel Smid An E�cient Construction of a Bounded�
Degree Spanner

�

insert cartoon on this page�

�

Abstracts

Susanne Albers
MPI� Saarbr�ucken

On the In�uence of Look�Ahead in Competitive On�Line
Algorithms

In the competitive analysis of on�line problems� an on�line algorithm is pre�
sented with a sequence of requests to be served
 The on�line algorithm much
satisfy each request without knowledge of any future requests
 We study the
issue of look�ahead in on�line problems	 What improvement can be achieved
in terms of competitiveness if the on�line algorithm sees not only the present
request but also some future requests� We introduce two di�erent models of
lookahead and investigate problems such as paging� the list update problem�
caching� the k�server problem and metrical task systems using these models

We show that in the paging problem and in the list update problem� looka�
head can reduce the competitive factors of on�line algorithms
 In addition
to lower bounds we present a number of on�line algorithms with lookahead
for these two problems
 However� we also show that in more general on�line
problems such as caching� the k�server problem� and metrical task systems�
look�ahead is of only very little help and cannot reduce competitive factors
of deterministic on�line algorithms

Aswin van den Berg
Cornell University

Incremental Evaluation of Higher Order Attribute Gram�
mars

Normal order attribute grammars have a separation between syntactic and
semantic levels �between derivation trees and attributes�
 This restricts AG�s
to only constant phase transformations
 In higher order attribute grammars
�HAG�s� derivation trees can be de�ned in terms of attributes �NTA�s� and
attributes can reference derivation trees directly �syntactic references�
 This
enables the iteration of transformations and annotations to be modeled or
implemented

We discuss HAG�s and their e�cient incremental implementation
 To al�
low constant time access to attributes we explicitly maintain the attributed
tree
 Higher order evaluation is reduced to normal order evaluation with
side�e�ects that extend the derivation tree
 An algorithm is presented that

�

reuses reusable subtrees of an NTA when reevaluated
 Our methods have
been implemented in the current version of the Synthesizer Generator
 HAG
functionality is used in the implementation of the Polya transformation sys�
tem that was demonstrated during the Seminar
 �Joint work with David
Gries � Sofoklis Efremides
�

Martin Farach
Rutgers University

Dynamic Algorithms for String Matching

We consider two problems of string matching whose static version are classics
within the �eld	 dictionary matching and text indexing
 In the �rst� one is
interested in �nding occurrences of a set of patterns in a text� the dynamic
version allows the set of patterns to change between text queries
 In the sec�
ond problem� a text is given for preprocessing and queries consist of patterns
to be matched for� in the dynamic version� the text may change
 We give
data�structures for these problems and give open questions

John Field
IBM T�J� Watson Research Center

AGraph Reduction Approach to Incremental Term Rewrit�
ing

We present an algorithm for performing incremental reduction in term rewrit�
ing systems �TRS�s�
 Incremental reduction is concerned with normalizing
sequences of similar terms that are derived from one another by some set
of disjoint subtree replacements
 This technique is particularly useful as an
implementation technique for any rewriting�based system in which relatively
small changes to terms to be reduced are made frequently
 In addition�
however� it can be viewed as the basis for a general theory of incremental
computation

The algorithm applies to any unconditional TRS R having �almost� any
normalizing reduction strategy F � and relies on two key ideas	 First� we sys�
tematically transform R into a new TRS R� and also derive a new reduction
strategy F �
 These transformations will enable certain key reduction steps
to be �checkpointed� for use in subsequent reductions
 Next� we implement
the transformed system using a variant of graph reduction� which allows the
results of certain reduction steps to be shared
 Each reduction step in R�

either simulate an R�reduction step� or performs an �administrative� reduc�
tion
 By extending analysis techniques of Huet� L�evy and Maranget� we can

��

de�ne a notion of relative optimality� and show that our technique is rela�
tively optimal
 In addition� we show that for each simulated R�reduction
step� the number of administrative steps is bounded in the worst case by
the number of allowable subtree replacements
 In practice� the overhead is
usually much lower

Susan Graham
University of California� Berkeley

Incremental Computing in Software Development En�
vironments

We �rst examine the role played by incremental algorithms in software de�
velopment environments �SDE�s�� notably the bene�ts of information about
changes
 Next� we illustrate the high level ideas behind incremental language
analysis and summarize the requirements on the speci�cation languages� their
use� and their incremental analysis in SDE�s
 We then review the key ideas
underlying the Colander incremental analyzer created by Ballance for the Pan
language based editing system� and outline its strengths and weaknesses
 Fi�
nally� we summarize some of the goals of the Ensemble system that is being
built at Berkeley to provide language�based services for integrated software
and multi�media document preparation
 The talks by Harrison� Maddox and
Muthukkaruppan discuss various aspects of Ensemble

Michael A� Harrison
University of California� Berkeley

Presentation Issues in Multimedia Systems

The basic properties of the Ensemble system for the creation� manipulation�
browsing and analysis of all software documents are presented
 The system
services include incremental language analysis� high quality formatting� mul�
timedia� multiple presentations� and compound documents
 Key features are
multiple representations and the ability to extend the system to new media

The Ensemble presentation is described in some detail
 The present spec�
i�cations are separate from the document
 An example of the use of the
presentations system to reformat programs is shown and related to attribute
propagation

Examples of other media are discussed
 The relationships between dynamic
media and formatting are presented
 The steps involved in adding a new
medium to Ensemble are enumerated
 Multiple presentations of the same

��

graphic scene are shown and relative attribution is used to make simple
changes
 �joint work with Susan Graham� Bill Maddox� Ethan Munson� and
Kannan Muthukkaruppan
�

��

Roger Hoover
IBM T�J� Watson Research Center

Alphonse

Alphonse is a program transformation system that uses dynamic dependency
analysis and incremental computation techniques to automatically generate
e�cient dynamic implementations from simple exhaustive imperative pro�
gram speci�cations

Sandra Irani
University of California� Irvine

On�line Algorithms and Restricted Adversaries

This talk is an introduction to competitive analysis and a survey of recent
work in the area
 We focus on examples where restrictions to the input
sequence can better re�ect �typical� input sequence and allow for enhanced
algorithm performance
 Examples are taken from virtual memory paging
and �nancial games

Giuseppe F� Italiano
Universit�a di Roma �La Sapienza�

Maintaining Spanning Trees of Small Diameter

Given a graph G with m edges and n nodes� a spanning tree T of G� and an
edge e that is being deleted from or inserted into G� we give e�cient O�n�
algorithms to compute a possible swap for e that minimizes the diameter of
the new spanning tree
 This problem arises in high�speed networks� particu�
larly in optical networks
 �Joint work with Rajiv Ramaswami
�

Stefano Leonardi
Universit�a di Roma �La Sapienza�

Serving Requests with On�Line Routing

In this work we present the problem of a server located at a certain start�
ing time at the origin of a metric space that moves at constant unit speed to
serve a sequence of requests coming in on�line fashion
 A request is presented
at the on�line server at a certain time t and requires to serve the visit of a

��

certain point p in the metric space
 Competitive analyses allows to measure
how close the solution given by an on�line algorithm is to the optimal so�
lution
 The work presents a lower bound of � for the competitive ratio on
the real line� a �
��competitive non�polynomial algorithm for the Euclidean
plane� a ��competitive polynomial on�line algorithm for the Euclidean plane�
and a �
��competitive on�line algorithm for the real line

�This is a joint work with Giorgio Ausiello� Esteban Feuerstein� Leen Stougie
and Maurizio Talamo
�

Y� Annie Liu
Cornell University

Deriving Incremental Programs

An incremental program f � is a program that� after a certain kind of input
change to a program f � computes f �s new result e�ciently based on the
previously computed result of f
 We present a systematic transformational
approach for deriving incremental programs from non�incremental programs
written in a standard functional programming language
 The basic derivation
idea is to expand the computation of f on the new input so that subcompu�
tations whose values can be retrieved from the previously computed result of
f are replaced by corresponding retrievals
 We exploit various types of static
analysis and transformation techniques and domain�speci�c knowledge� cen�
tered around an e�ective utilization of caching� in order to provide a degree
of incrementality not otherwise achievable by a generic incremental evalua�
tor
 We also propose to extend the approach to address caching intermediate
results and discovering auxiliary information
 A prototype system CACHET
based on the approach has been implemented using the Synthesizer Generator
and used to derive a number of incremental programs including incremental
attribute evaluation programs

William Maddox
University of California� Berkeley

Colander II� An Incremental Analysis Facility for En�
semble

Colander II is a multi�lingual static semantic analyzer for the Ensemble
language�based programming environment
 It consists of an analyzer gener�
ator which produces directly executable analyzers from high�level declarative
speci�cations� which can then be dynamically loaded into the programming

��

environment as needed
 Our approach stresses the maintenance of a client�
independent program database� which may be accessed easily by other tools�
in preference to con�ating analysis with a particular service such as the dis�
play of error messages
 To this end� our speci�cation language provides un�
usually rich modeling resources adapted from deductive and object�oriented
database technology

Like most current work in this area� our speci�cation language is based on
attribute grammars
 In addition to the usual notions of terms� attributes
and functions� we also provide relations and objects
 Relations are expressed
in a logical style adapted from Prolog� and may be viewed either as logical
predicates or as sets of tuples
 Both relations and functions may appear as
the values of attributes� but not as components of a data structure
 Objects
possess identity� may themselves be attributed� and are related taxonomi�
cally via a hierarchical class structure
 References �pointers� to objects are
�rst�class attribute values
 The four notions of functions� relations� objects�
and attribution are seamlessly integrated in a single multi�paradigm declar�
ative language

While justi�able entirely on the grounds of modeling expressiveness� judicious
use of objects and relations makes the dependency structure of the analysis
more explicit� as much can be inferred from the general properties of objects
and relations without knowledge of what they represent
 For example� at�
tribute access via an object reference represents what is almost certainly a
non�local attribute dependency� and relations serve as a kind of aggregate
value that permits incremental update as changes to other relations permit
new tuples to be inferred or remove the previous logical justi�cation of old
ones
 We are presently working on algorithms that exploit these properties
of objects and relations in order to provide e�cient treatment of non�local
attribute dependencies and aggregate attributes without the introduction of
ad�hoc mechanisms into the description language� and while providing �ne�
grained programmer control over time�space tradeo�s

Tom Marlowe
Seton Hall University

Incrementality� Data Flow Analysis� and Flow�Sensitivity

We claim that practical software development environments �SDE�s� will re�
quire incremental data �ow analysis� and that new approximate problems
and subproblem encodings will be needed to make such analyses practical

We �rst indicate a number of di�culties which make incremental data �ow
signi�cantly harder than incremental attribute grammar updating
 After an
overview of data �ow analysis� we illustrate its standard framework in terms

��

of Reaching De�nitions and Parameter Aliasing
 We review the standard
solution techniques and the standard properties of frameworks� and de�ne
��ow�sensitivity� �an often�used but previously more�or�less unde�ned term�
as a measure of the complication introduced by summarizing the �ow e�ects
of a region into a summary �ow function� typically induced by a change in
the granularity of the representation of the program �ow graph

We then review incremental techniques and algorithms for data �ow analy�
sis� and discuss the e�ects of framework properties on incrementality� arguing
that �ow sensitivity is the primary obstacle to incrementalization
 We show
how the hybrid algorithm replaces computation of summary �ow functions
by the solution of associated data �ow problems

Since some of the problems needed by SDE�s� such as Pointer�Induced Alias�
ing and Conditional Constant Propagation� are �ow�sensitive� we argue that
attention should be paid to formulation of associated data�valued problems�
and to the use of approximate� �nearly precise� algorithms for the solution
of �ow�sensitive problems� and show how the Torczon et al jump functions
for Interprocedural Constant Propagation �ts neatly into such a model

Emma van de Meulen
CWI�UvA Amsterdam

Incremental Implementation for Algebraic Speci�cations

We present a technique for deriving incremental implementations for a sub�
class of algebraic speci�cations� namely well�presented primitive recursive
schemes with parameters
 We introduce a concept adapted from the trans�
lation of well�presented primitive recursive schemes to strongly non�circular
attribute grammars
 We store results of function applications and their pa�
rameters as attributes in an abstract syntax tree of the �rst argument of the
function in question
 An attribute dependency graph is used to guide incre�
mental evaluation
 The evaluation technique is based on a leftmost�innermost
rewrite strategy
 Next� the uniformity of algebraic speci�cations allows us
to generalize our incremental algorithms to functions on values of auxiliary
datatypes� without extending or modifying the speci�cation language
 Thus
we can obtain �ne�grained incremental implementations
 A �ne�grained in�
cremental implementation of a table datatype can� for instance� solve the
problem caused by aggregated attribute values like table datatypes

Kannan Muthukkaruppan
University of California� Berkeley

SPINE� Synthesizer for Practical Incremental Evaluation

��

SPINE is a system for e�ciently generating practical e�cient incremental
evaluators for a strongly non�circular class of attribute grammars
 Several
interactive language�based software development environments use incremen�
tal evaluation of attribute grammars for context�sensitive semantic analysis

Ease of evaluator construction� e�ective consumption of space applicability to
a large class of AG�s �SNC�� ability to handle multiple subtree replacements
and close to optimal performance are the key advantages SPINE o�ers over
other existing incremental AG systems
 SPINE is being innovatively used in
the Ensemble system to provide advanced incremental formatting of struc�
tured documents

Umberto Nanni
University of L�Aquila

Two Incremental Problems on Graphs

The �rst considered problem is the �Single�Source Shortest Path� �SSSP��
problem
 It is possible to handle a sequence of graph updates in a very
e�cient way in particular situations	 considering only edge insertions and
speci�c classes of graphs� such as bounded genus graphs �including planar
graphs�� bounded treewidth graphs� and bounded degree graphs
 In such
cases the SSSP�tree can be maintained in O�j�j logn � j�j � jGj� total time
for all updates� where j�j is the number of times that any node changes its
distance from the source� jGj is the size of the graph� and n is the number of
its nodes

The second problem concerns the maintenance of a �depth��rst�search� �DFS��
tree in a directed acyclic graph� during a sequence of edge insertions �leav�
ing the graph acyclic�
 The total time required to update the DFS�tree is
O�m � n�� where n is the number of nodes and m is the number of edges in
the �nal graph
 This means O�n� amortized time per edge insertion in a
sequence of ��m� such operations

Robert Paige
New York University�the University of Copenhagen

Algorithm Derivation and Program Development By
Program Transformation

Three transformational tools are discussed
 Each one exploits a di�erent as�
pect of incrementality
 The �rst computes �xed points based on a dominated
convergence argument� a solution arises as a result of a slowly converging se�
quence of values
 The second turns costly repeated calculations into e�cient

��

incremental ones by �nite di�erencing
 The third implements e�cient data
structures for sets and maps by a real�time simulation of an abstract set
machine on a RAM
 Taking the DFA minimization problem as an example�
we show how these transformational tools can be used to explain� verify� an�
alyze� and implement algorithms

Robert Paige
New York University�the University of Copenhagen

Towards Increased Productivity of Algorithm Imple�
mentation � Demonstration of the APTS System

The preceding transformational tools �see the preceding abstract� were in�
corporated into two language translators within the APTS transformational
programming system
 The �rst language is L�� a functional subset of SETL�
augmented with least and greatest �xed points
 It has the property that
any valid L� speci�cation can be compiled into a C�program with worst case
running time and space linear in the I
O space
 The second language is a
Turing�complete low level subset of SETL�
 Any program in this language
can be simulated �using a C�program� on a sequential RAM in real�time

Both languages were used in productivity studies to test the feasibility of the
transformation to support the implementation of complex nonnumerical al�
gorithms correctly and e�ciently
 Productivity was measured in terms of the
number of source lines in the C�implementation divided by manual program�
ming time
 Comparative benchmarks showed that productivity in C using
the low�level subset of SETL� �and its real�time simulation transformation�
can be increased over manual C programming by factors ranging from �
� to
�
�
 Preliminary results also showed that the running time of C�code pro�
duced by this new approach can be as fast as �
� times that of tightly coded
high�quality Fortran
 Experiments with L� were highly encouraging� but not
signi�cant enough to draw credible conclusions
 �Joint work with Jiazhen
Cai
�

Maarten Pennings
Utrecht University� The Netherlands

Incremental Attribute Grammar Evaluation

Numerous incremental problems with various speci�c solutions exist
 We
want to focus on a class of problems and solve the incremental case for the en�
tire class
 Compositional problems are problems de�ned as homomorphisms
on an inductive structure �lists� trees�
 A homomorphism f is de�ned on

��

the basis �� of the inductive structure f � i � � i � and on the �step�
� of the inductive structure f�a � b� fa ��fb where � � � is some
unary and � ��� some binary operation
 A change to one of the basic values
� i � in a term only requires log�n� re�applications of ��� where n is the
size of the term
 This complexity is simply achieved by memoizing �caching�
the so�called visit functions f
 In other words� compositional problems are
well�suited for incremental evaluation
 They form the class we investigate�
and as a formalism� we use attribute grammars

Since the visit functions might be non�strict� which makes them hard to
memoize� we use Kastens� ordering algorithm to break them up into strict
subfunctions
 However� since intermediate values computed in one of the sub�
functions might be needed in a subsequent one� a special mechanism needs
to be incorporated	 bindings
 Finally� since the tree is an input parameter
of the visit functions� and hence a key for the cache� fast tree comparison is
essential
 This is achieved by memoization of constructors so that trees are
shared	 tree equality thereby reduces to pointer equality

The sketched machine implements an incremental attribute evaluator
 It has
been implemented by Matthijs Kuiper and me� it is known as the LRC pro�
cessor
 Some optimalizations can still be realized� most notably splitting the
tree and elimination of copyrule nodes

Thomas Reps
University of Wisconsin

From �Incremental Attribute Evaluation� to �Bounded
Incremental Computation�

In this talk� I describe how the parameter k�k � roughly� the size of the change
in input and output � which has been used in the analysis of algorithms for
incremental attribute evaluation� can be used in the analysis of algorithms
for certain dynamic graph problems
 In particular it is useful in variations
on the shortest�path problem with positive edge weights
 It can be shown
that when the complexity of algorithms for this problem is expressed in terms
of the size of the �current� input� there are worst�case inputs for which no
incremental algorithm can perform better than the �start�over� algorithm
�which ignores all previously computed information and applies the batch
algorithm�
 When the complexity of algorithms is measured in terms of k�k�
there is an algorithm whose running time is O�k�k log k�k�� whereas the run�
ning time of the start�over algorithm is not bounded by any function of k�k

Thus� the use of k�k permits one to distinguish between algorithms that are
indistinguishable using the conventional parameter jinputj
 �Joint work with
G
 Ramalingam
�

��

Thomas Reps
University of Wisconsin

Incremental Interprocedural Data�ow Analysis

This talk presents a framework in which a large class of interprocedural
data�ow analysis problem can be solved precisely in polynomial time
 It
then presents an algorithm for the dynamic version of the problem

The restrictions of the framework are that the set of data�ow functions be
a �nite set and that the data�ow functions distribute over the con�uence
operator �either union or intersection�
 This class of problems includes � but
is not limited to � the classical separable problems� e
g
� reaching de�nitions�
available expressions� and live variables
 In addition� the class of problems
that our techniques handle includes many non�separable problems� includ�
ing truly�live variables� copy constant propagation� and possibly�uninitialized
variables

A novel aspect of our approach is that an interprocedural data�ow�analysis
problem is transformed into a special kind of graph�reachability problem
�reachability along interprocedurally realizable paths�
 �Work on the �batch�
version of the problem was carried out in collaboration with Mooly Sagiv
and Susan Horwitz
�

Hans Rohnert
Siemens AG� Corporate R � D� Munich

Dynamic Algorithms for Compilers

During the design discussion on the object�oriented programming language
Sather and its compiler �both under construction at ICSI� Berkeley� CA� we
stumbled over several dynamic problems on graphs� especially the topolog�
ical sorting problem� transitive closure and reachability from a start node

In detail we describe the solution of the dynamic topological sorting prob�
lem
 We put it into contrast to the original static problem and an on�the��y
application of topological sorting
 Brie�y we mention work of others on a
competitive analysis of topological sorting in an on�line setting vs an adver�
sary

The last part of the talk considers the applicability of dynamic graph algo�
rithms for compiler writers
 The conclusion was that there are possibilities
for these algorithms to be applied but traps and pitfalls like additional over�
head and data to be stored to slow disks have to be avoided

Raimund Seidel

��

University of California� Berkeley

New Proofs for the Clarkson�Shor Framework

We discuss the �con�guration space� framework of Clarkson and Shor in the
formulation of Mulmuley� which has proved very valuable in the analysis of
randomized geometric algorithms

A con�guration space is speci�ed by a set S of n �objects� and a �nite set C
of �con�gurations�� where each c � C has associated with it a set of �trig�
gers� tr�c� � S and a set of �stoppers� st�c� � S with tr�c� � st�c� �
 A
con�guration c is said to be �active� for R � S i� tr�c� � R and st�c��R �

It is said to be active during an enumeration � of S i� it is active for some
subset of S corresponding to a pre�x of �

For integer i � � de�ne

Xi�R�
X

c � C �

c active for R

j st�c�ji � R � S

and

Yi���
X

c � C �

c becomes active during �

�j tr�c�j� j st�c�j�i �

and let Ai�r� Ex!Xi" and Bi Ex!Yi"� where the expectation is taken over

all R �
�

S

r

�
in the �rst case and over all n	 enumerations � in the second

We prove the following two theorems	

Ai�r� 	
�d� ��i��

�r � ��i��
�n
 r�i

X
O�j�r

f��j�

Bi 	 di�� ni
X

O�j�n

f��j�

ji��
for O 	 i � �

with equality in the second case if � d

Here d maxc�C j tr�c�j and � minc�C j tr�c�j� and f��j� denotes the ex�
pected number of con�gurations active for a random J � S of size j

Michiel Smid
MPI� Saarbr�ucken

E�cient Construction of a Bounded Degree Spanner
with Low Weight

��

Let S be a set of n points in Rd and let t � � be a real number
 A t�spanner
for S is a graph having the points of S as its vertices� such that for any pair
p� q of points there is a path between them of length at most t times the
Euclidean distance between p and q

An e�cient implementation of a greedy algorithm is given that constructs
a t�spanner having bounded degree such that the total length of all edges
is bounded by O�logn� times the length of a minimum spanning tree for S

The algorithm has running time O�nlogdn�
 �Joint work with Sunil Arya
�

��

Je� Westbrook
Yale University

Dynamic Graph Connectivity with Backtracking

We consider maintaining the equivalence classes de�ned by connected com�
ponents� ��edge connected components� and two�vertex connected compo�
nents of a graph
 Treating the graph as an abstract datatype� we consider
e�cient implementations of the query �same���edge�component �u� v��� the
query �same���vertex�component �u� v��� and the update operation �insert
edge �u� v��� and �undo�
 The undo operation undoes the most recent not
yet undone edge insertion� and so allows a backtracking search through the
space of all possible edge insertions
 This has applications to both interactive
software � logic programming
 By representing connectivity structure in an
implied form� we achieve algorithms running in O�logn� worst�case time per
operation
 �Joint work with Han La Poutr�e� Utrecht University
�

Mats Wiren
University of the Saarland� Saarbr�ucken

Incremental Natural�Language Computing

After giving an overview of the role and potential applications of incremental
computation in natural�language processing� I focus on one problem� namely�
incrementalizing chart
tabular parsing
 Speci�cally� I take the view that the
time that an incremental algorithm uses to process a change ideally should
be a polynomial function of the size of the change rather than� say� the size of
the entire current input
 Based on a de�nition of �the set of things changed�
by a modi�cation� I then show to what extent such a guarantee can be given
within a chart�based
tabular parsing framework

Christos D� Zaroliagis
MPI� Saarbr�ucken

Dynamic Shortest Paths

The dynamic shortest path problem is the following	 Given an n�vertex
digraph G �with real�valued edge costs but no negative cycles�� build a
data structure that will enable fast on
line shortest path or distance queries
�single�pair and
or single�source ones�
 In case of dynamic changes in G�
update the data structure in an appropriately short time
 We describe algo�
rithms for solving the above problem in a planar digraph which exploit the

��

particular topology of the input graph
 We support the following dynamic
changes	 edge cost modi�cations� edge deletions and the �undo� operation
of them
 The data structure can be updated in poly�logarithmic �worst�case�
time after any such dynamic change
 We also give the �rst parallel algorithms
for solving the dynamic shortest path problem
 Moreover� our algorithms can
detect a negative cycle� either if it exists in the initial digraph� or if it is cre�
ated after an edge cost modi�cation
 Our result can be extended to hold for
digraphs of genus o�n�
 �Joint work with H
 Djidjev � G
 Pantziou
�

��

Problem Session

On Thursday evening �May �th� a plenary session was held aimed at iden�
tifying a selection of interesting open problems in the �eld of �incremental
computation and dynamic algorithms�
 Each participant was asked
required
to state an open problem� in no more than two minutes per problem
 The
session was moderated and timed by Tom Reps
 The summary below is a
close reconstruction of the open problems presented in the session� in order
of presentation

�
 Develop models of computation for obtaining better lower bounds for
the circuit�annotation problem� and give e�cient algorithms for the
problem

�Roger Hoover�

�
 Develop a standard terminology and a taxonomy of issues in incremen�
tal computing

�John Field�

�
 Give a good� dynamic algorithm for the ordered�merge problem for
function maps

�John Field�

�
 Give an e�cient implementation of lazy incremental attribute updat�
ing

�Maarten Pennings�

�
 Give an e�cient algorithm for maintaining the value of a �single� dis�
tinguished attribute

�Kannan Muthukkaruppan�

�
 Develop an e�cient incremental algorithm for the dynamic k�shortest
path problem

�Hans Rohnert�

�
 Explore the analogy between �incremental algorithms� and adaptive
distributed algorithms and analyze the message complexity of adaptive
distributed algorithms in terms of jAFFECTEDj

�Jan van Leeuwen�

�
 Design a good distributed algorithm for the dynamic snapshot problem

�Lefteris Kirousis�

�
 Design an e�cient distributed priority queue algorithm

�Umberto Nanni�

��

��
 Improve the complexity bounds for the semi�dynamic shortest�path
problem with insertions� also for the fully dynamic shortest�path prob�
lem
 Maintain shortest�path information under edge�insertion in o�n�

�Christos Zaroliagis�

��
 Analyze the �competitiveness� of �a� the randomized list update algo�
rithm and �b� self�adjusting trees

�Susanne Albers�

��
 Develop �incremental� algorithms to support e�cient audio� and video�
grep

�Michael Harrison�

��
 Incrementalize language�speci�c preprocessing
 Give algorithms for
schema updates

�Susan Graham�

��
 Analyze the �competitiveness� of attribute update problems
 Give a
model for incremental attributed term�rewriting

�Aswin van den Berg�

��
 Design a good algorithm for updating minimum spanning trees after
a sequence of modi�cations �i
e
� multiple heterogeneous modi�cations
to the tree�� measured in term of the number of modi�cations

�Giuseppe Italiano�

��
 Analyze the competitiveness of eager�evaluation strategies

�Sandra Irani�

��
 Many batch algorithms rely on �preconditioned� input
 Now consider
that �preconditioning 	 batch problems reconditioning 	 incremental
problems�
 Can �reconditioning� be performed using idle cycles�
�Tom Reps�

��
 Deal with the dependency of graph algorithms on cycles �dependency
cycles� in measuring incremental complexity

�Tom Marlowe�

��
 Apply grammar �technology� from programming languages in compu�
tational linguistics
 For example� apply techniques for attribute gram�
mars to de�nite clause grammars

�Mats Wiren�

��
 Is there a general theory for deriving
constructing incremental algo�
rithms

�Chriti�ene Aarts�

��

��
 Analyze the use of �space� in incremental algorithms

�Annie Liu�

��
 Design an algorithm for incremental tree pattern matching
 Is there a
�simple� tree pattern preprocessing algorithm

�Robert Paige�

��
 Study the competitiveness of garbage collection

�Je� Westbrook�

��
 Develop parallel dynamic algorithms

�Je� Westbrook�

��
 Is there a general �computability theory� of incremental computation
�or	 what does this mean��
�Je� Westbrook�

��
 Give methods for assessing the quality of algorithms for �dynamic�
scheduling in token rings

�Stefano Leonardi�

��
 What can be said about space�time tradeo�s in concrete algorithms�
incremental or otherwise

�Kurt Mehlhorn�

��
 Given a lower�directed triangulation of n points in the plane� can an�
other permutation of the points give the same triangulation

�Raymond Seidel�

��
 Give a dynamic algorithm for the nearest marked ancestor problem

�Martin Farach�

��
 Design fully dynamic transitive closure algorithms

�Han La Poutr�e�

��
 Characterize update sequences that arise in practice

�Han La Poutr�e�

��
 Design data structures with �unique representation� properties
equivalence
properties of members of data types

�Bill Maddox�

��
 Suppose Unions take 	 M � what is the complexity of Finds when M

 o�log n�

�Michiel Smid�

��

��
 Is �nding an incremental version of a function on strings decidable�
�Annie Liu�

��
 Permit �laziness� in the function�caching approach to attribute�grammar
evaluation

�John Field�

��

