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1 PrefaceDuring the last decade, there has been progress within the object-oriented community inagreeing on what object-orientedness means. The role of object identity, specialization, inher-itance, and dynamic binding have been examined. However, a careful look at articles writtenby people with a theory, programming language, database, and software engineering back-ground shows that the semantical understanding of the same features still di�ers considerably.A well-known example is the feature of inheritance, which has quite a di�erent meaning forpersons from the database community with a semantic data model background and personsfrom the programming language community with a compiling technique background. Thisobservation also applies to the literature on object-oriented software development methods.Here, object-oriented analysis and design methods are often heavily in
uenced by semanticdata modelling concepts. An implementation of an object-oriented design by an object-oriented programming language usually causes more di�culties than expected although the\same" object-oriented paradigm is used.Even when there is agreement on terminology, there are legitimate di�erences in per-spective among di�erent object-oriented research communities. It was the intention of thisseminar to clarify di�erences in terminology as well as to clarify legitimate di�erences in per-spective. The seminar brought together an approximately equal number of researchers fromeach of these four areas and was being jointly organized by four organizers representing eachof the four areas:� theoretical foundations of object-orientedness (H.-D. Ehrich)� object-oriented programming languages (P. Wegner)� object-oriented database systems (J. Paredaens)� object-oriented software development methods (G. Engels)This gathering of experts, working in the \same" �eld within computer science, o�ered anexcellent opportunity to discuss and understand the di�erences, similarities, and commonal-ities of basic notions within the object-oriented world. In addition, the speci�c atmosphereof Schlo� Dagstuhl gave new impulses to already existing cooperations and stimulated new\interdisciplinary" research in the whole range of object-orientedness.This booklet summarizes the presentations and discussions during the seminar. It com-prises the �nal seminar program, abstracts of all (morning) talks, summaries of all (afternoon)workshops, as well as a list of the participants.Hans-Dieter Ehrich Gregor Engels Jan Paredaens Peter Wegner
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2 Final Seminar ProgramMonday, August 22, 19949:00 Opening RemarksGregor Engels, GermanySession 1, 9:30 - 12:30Chair: Gregor Engels9:30 What comes after Object-Oriented ProgrammingPeter Wegner, USA10:00 Fundamentals of Adaptive Object-Oriented SoftwareKarl Lieberherr, USA10:30 Pitfalls and Possible Solutions of Object-Oriented DevelopmentGerti Kappel, Austria11:00 BREAK11:30 Distribution and Concurrency without TearsHans-Dieter Ehrich, Germany12:00 A Method for Specifying Conceptual Models of Data Processing SystemsRoel Wieringa, The NetherlandsWorking Groups, 14:00 - 18:0014:00 Discussion about TopicsChair: Peter Wegner15:00 BREAK15:30 Parallel Working Groups:WG 1: Inheritance: Covariance vs. ContravarianceChair: Roel Wieringa, The NetherlandsWG 2: Observing Behavior of ObjectsChair: Gunter Saake, Germany
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Tuesday, August 23, 1994Session 2, 9:30 - 12:30Chair: Hans-Dieter Ehrich9:00 Coordination ConstraintsGregor Engels, The Netherlands9:40 ODMG-93 Standard vs. Object-Oriented Databases TheoryAndreas Heuer, Germany10:20 Fundamentals of Object-Oriented Database ModelsBernhard Thalheim, Germany11:00 BREAK11:20 Incremental Speci�cations for Abstract Object-Oriented ModelingGianna Reggio, Italy12:00 Testing Equivalence and Containment of Database Queries InvolvingObject Identi�er CreationJan van den Bussche, BelgiumWorking Groups, 14:00 - 18:0014:00 PlenumChair: Peter Wegner15:00 BREAK15:30 Parallel Working Groups:WG 3: Object EvolutionChair: Roel Wieringa, The NetherlandsWG 4: Class OrganizationChair: Karl Lieberherr, USA
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Wednesday, August 24, 1994Session 3, 9:30 - 12:30Chair: Jan Paredaens9:00 The Chimera Object-Oriented Data ModelGiovanna Guerrini, Italy9:40 Typing Issues Related to Object-Oriented QueriesHerman Balsters, The Netherlands10:20 Structural and Behavioral Views on OMT-ClassesJ�urgen Ebert, Germany11:00 BREAK11:20 Inheritance Conditions for Object Life Cycle DiagramsGunter Saake, Germany12:00 Object Creation in DatabasesMarc Gyssens, Belgium� � � AFTERNOON EXCURSION � � �Thursday, August 25, 1994Session 4, 9:30 - 12:30Chair: Gerti Kappel9:00 Method Engineering of Object-Oriented Analysis and Design Methods:Concept Analysis and Method AssemblySjaak Brinkkemper, The Netherlands9:40 On Rei�cation in Object-Oriented Speci�cationGrit Denker, Germany10:20 A Meta-Language for Representation of Evaluation Invariants in OODB10:20 Hele-Mai Haav, Estonia11:00 BREAK11:20 Inheritance of Object Behavior: Extension and Re�nement of ObjectLife CyclesMichael Schre
, Germany12:00 Database Applications of Re
ective ProgrammingGottfried Vossen, Germany 9



Working Groups, 14:00 - 18:0014:00 PlenumChair: Peter Wegner15:00 BREAK15:30 Parallel Working Groups:WG 5: Database ModelsChair: Gottfried Vossen, GermanyWG 6: Software Engineering ModelsChair: Sjaak Brinkkemper, The NetherlandsFriday, August 26, 1994Session 5, 9:30 - 12:00Chair: Peter Wegner9:00 A New Type-theoretic Approach to ObjectsRadu Grosu, Germany9:30 Group-Oriented Architecture DevelopmentWilhelm Schaefer, Germany10:00 Generic Update Operations for OODBChristian Laasch, Germany10:30 BREAKWorking Groups, 11:00 - 12:0014:00 Plenum12:00 Closing RemarksGregor Engels
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3 Abstracts of PresentationsThe following abstracts appear in alphabetical order of the speakers.Typing issues related to object-oriented queriesHerman BalstersUniversity of TwenteEnschede, The NetherlandsIn the various proposals for O-O data models, there also occur those employing set-constructs, especially in the case that query results are of importance. In these data modelsthere is no consensus {as yet{ on how to type sets; i.e. each data model has its own way totype check correctness of set-membership. In some cases it is allowed to collect expressionsthat have di�erent minimal types into a set. Such sets are called heterogeneous, as opposedto homogeneous sets where it it is allowed only to collect expressions of exactly the sameminimal type. In the paper \A semantics of O-O sets" by Balsters & de Vreeze (cf. [DBPL'91],Nafplion, Greece) it is argued that the correct way to handle O-O sets is to only allow forhomogeneous sets. In that paper we worked with greatest-lower-bound (GLB) and least-upper-bound (LUB) constructs, as given in the basic type system of Cardelli. In order togive further evidence that the homogeneous approach is indeed the correct way of dealingwith O-O sets, we have taken up the issue again by looking into alternative type systems. Inorder to investigate whether it is in some way possible to de�ne a type system allowing forheterogeneous sets, we employ the notion of disjunct sums (A + B, where A,B are types).The idea is that the A + B -construct could replace the LUB(A,B)-construct as a candidatefor typing heterogeneous sets. It turns out that the more subtle construct A + B (w.r.t.the much coarser construct LUB(A,B)) cannot be included in the type system without alsoincluding certain additional axioms. These additional axioms, concerning the + -construct,seem to be rather ad-hoc and somewhat unnatural (both in form and content), thus makingsuch a type system unappealing to use. There also remains a formal argument in favor ofhomogeneous sets (cf. [DBPL'91]) that also makes a type system employing + -constructsand sets hard to maintain.Equivalences among conjunctive queries involving objectcreationJan Van Den Bussche1University of Antwerp (UIA)Antwerp, BelgiumClassical conjunctive queries on relational databases have been well-studied. The proper-ties of equivalence and subsumption between conjunctive queries are decidable by testing for1This is joint work with Riccardo Torlone, IASI-CNR, Rome, Italy11



the existence of a homomorphism. These decisions have NP complexity. In a 1991 PODS pa-per, Hull and Yoshikawa considered the problems of testing equivalence of conjunctive queries,or more generally unions of conjunctive queries, extended with the possibility of creating newobjects. This problem is considerably more intricate than the classical problem. In partic-ular, the existence of a classical homomorphism is no longer necessary but only su�cientfor subsumption between queries. Hull and Yoshikawa were able to establish decidability ofequivalence in the special case of "isolated object creation". Their approach, however, is notbased on the idea of homomorphisms and does not yield tests with NP complexity. In thiswork, we try to generalize the notion of homomorphism to take into account the intricaciesinvolved in the creation of new objects in terms of existing objects. Our goal is to thus ob-tain NP tests for containment, and also equivalence, between conjunctive queries with objectcreation.Method Engineering of Object-oriented Analysis and DesignMethods: Concept Analysis and Method AssemblySjaak Brinkkemper2Center of Telematics and Information TechnologyUniversity of TwenteEnschede, The NetherlandsMethod Engineering is the engineering discipline of methods, techniques and tools forsystems development. We report about an in-depth analysis of ten generally accepted O-Omethods, available in textbooks. The comparison is performed by method modelling, resultinginto detailed information on the concepts of the methods in Concept Structure Diagrams, andon the steps of the procedure of the methods in Task Diagrams. Extensive comparison tablesof steps, concepts, techniques are presented. From the comparison it can be concluded thatthe contemporary methods, although diverse, possess a common kernel of basic object orientedconcepts. The process models of the methods turn out to be very rudimentary exposing thelimited experience with the methods. The complexity of the various graphical speci�cationformalisms of the methods indicate the absolute necessity of advanced tool support when themethods are to be applied in practice.Method fragments, being coherent parts of methods, can be stored in a so-called methodbase for method engineering purposes. We discuss the selection and assembly of methodfragments into a situation speci�c method. The architecture of the Computer Aided MethodEngineering tool (CAME tool) is presented.Literature:S. Hong, G. van den Goor, S. Brinkkemper, A Formal Approach to the Comparison ofObject- Oriented Analysis and Design Methodologies, Hawaii International Conference onSystem Sciences (HICSS) (IEEE Computer Society Press, Hawaii) 1993, Vol. IV, pp. 689-698.2This work is jointly performed with Frank Harmsen, Han Oei, Arjan Bulthuis (all Univ. Twente, NL),Shuguang Hong (Georgia State Univ, USA) and Geert van den Goor (Andersen Consulting, NL).12



F. Harmsen, S. Brinkkemper and H. Oei, Situational Method Engineering for InformationSystem Project Approaches, To appear in: T.W. Olle et.al. (Eds.), Proceedings of CRIS'94,North-Holland, September 1994.F. Harmsen, S. Brinkkemper and H. Oei, A Language and Tool for Situational MethodEngineering for Information System Project Approaches. To appear in the Proceedings ofISD'94 Conference, Slovenia, September 1994.Transactions in Object-Oriented Speci�cationsGrit Denker3Technische Universit�at BraunschweigBraunschweig, GermanyThe formal step by step development of implementations from speci�cations is necessaryto allow the incremental description of large software systems and hence split the softwaredevelopment process in tractable portions. Due to the complex notion of objects as units ofstructure and behavior the re�nement process has to be reconsidered in the object-orientedframework. Apart from re�ning structure the behavioral part of objects give rise to re�neactions by transactions. As such the re�nement step possibly comprises a change of granularitywith respect to the design process. We will refer to this as (action) rei�cation. Referringto information systems as application domain synchronization problems arise when di�erenttransactions access shared data. Because of this rei�cation of actions by transactions forces totake care of concurrency control issues. We aim at introducing transactions in object-orientedspeci�cations for supporting action rei�cation and outline a semantics for it.In particular, we have the most liberal composition of transactions resulting from a rei�ca-tion process in mind. More precisely, imagine two abstract actions each rei�ed to a sequenceof concrete actions, i.e, transactions. It is too strict to force the sequential execution of theseabstract actions to be rei�ed only through the sequential composition of the correspondingtransactions. There may exist concrete actions in the transactions which do not access thesame sources, and, therefore, they are independent and may be executed in arbitrary orderwithout changing the overall e�ect. Our aim is to provide a semantic framework in whichrei�cation of actions is treated as liberal as possible with respect to serial composition oftransactions. We propose a semantics based on event structures which appropriately explainthe semantics of abstract objects as well as the one of rei�ed objects, and, moreover, liberalizesthe sequential composition of transactions.
3This is joint work with Hans-Dieter Ehrich, Technical University Braunschweig.13



Structural and Behavioral Views of OMT-ClassesJ�urgen Ebert4Universit�at KoblenzKoblenz, GermanyThe dynamic behavior of objects of a given class may be described by a state diagram(STD), which speci�es the allowed sequences of method calls. Such an STD, sometimes calledlife cycle diagram, has to be compatible with the STDs of its super- and subclasses.It is shown that the existence of an homomorphism from the subclass STD to the superclassSTD is a su�cient criterion for the compatibility of behavior descriptions with respect toinheritance.Some examples are given including the case of restriction views to classes, which turn outto be (virtual) superclasses where the homomorphisms are a projections.Distribution and Concurrency without TearsHans-Dieter Ehrich5Technische Universit�at BraunschweigBraunschweig, GermanyFully concurrent models of distributed object systems are speci�ed using linear temporallogic that does not per se cope with concurrency. This is achieved by employing the principleof local sequentiality: we specify from local viewpoints assuming that there is no intra-objectconcurrency but full inter-object concurrency. Local formulae are labelled by identity terms.For interaction, objects may refer to actions of other objects, e.g., calling them to happensynchronously. A locality predicate allows for making local statements about other objects.The interpretation structures are global webs of local life cycles, glued together at sharedcommunication events. These interpretation structures are embedded in an interpretationframe that is a labelled locally sequential event structure. Two initiality results are presented:the category of labelled locally sequential event structures has initial elements, and so has thefull subcategory of those satisfying given temporal axioms. As in abstract data type theory,these initial elements are obvious candidates for assigning standard semantics to signaturesand speci�cations.
4This is joint work with Gregor Engels, Leiden University, The Netherlands5This is joint work with Am��lcar Sernadas, Cristina Sernadas, Gunter Saake and Grit Denker14



Coordination ConstraintsGregor Engels6Leiden UniversityLeiden, The NetherlandsNowadays object-oriented analysis and design methods propose to split the speci�cation ofa system into several parts, where each part describes a certain perspective. We follow this lineand present the object-oriented speci�cation language SOCCA (Speci�cation of Coordinatedand Cooperative Activities). A SOCCA speci�cation consists of� a class diagram to describe the structural part of objects and their interrelations withother objects,� state transition diagrams to describe the external behavior ("life cycle") of objects,� an interaction diagram to describe the "uses" relationship between classes, and� (once more) state transition diagrams to describe the internal behavior ("realization")of operations.In addition to most of the existing approaches, we also model the coordination of objectbehavior explicitly. This is done by splitting the internal behavior descriptions into subdi-agrams and by controlling the transition from one subbehavior to another by coordinationconstraints added to the external behavior description of objects.A New Type Theoretic Approach to ObjectsRadu GrosuTechnische Universit�at M�unchenM�unchen, GermanyIn this talk we present a novel, implicitly typed �{calculus for objects, by viewing theseas extendible case{functions rather than as extendible records.This novel view, allows to unify the concepts of function, object and process into oneconcept, that of a functional entity which is self contained and provided with a uniformcommunication protocol. We use this view to give a formal foundation for both sequentialand concurrent object oriented languages. In the later case, we view objects as case{functionscommunicating asynchronously over unbounded channels.Our calculus is a conservative extension of the polymorphic type system of Aiken andWimmers, to include case{function extension and lazy data types. Its soundness is provenwith respect to a semantical model based on ideals. Subtyping and case{function extensionplay a central role in our modeling of generalization/specialization and inheritance. To modelself and self{class, our calculus includes recursive types. These are also necessary to modelstreams and provide the theoretical background for passing streams themselves as messages.We use higher order streams to express mobile systems.6This is joint work with Luuk Groenewegen, Leiden University, The Netherlands15



The implicitly typed �{calculus is accompanied with a decidable type inference algorithm,which always delivers the least type of a term (if this exists). An implementation of thisalgorithm was written in Common Lisp.The Chimera Object-Oriented Data ModelGiovanna Guerrini7Universit�a di GenovaGenova, ItalyChimera is a novel database language that integrates object-oriented, deductive and activecapabilities, developed as part of ESPRIT Project 6333 IDEA. Chimera supports all theconcepts commonly ascribed to object-oriented data models, such as object identity, complexobjects, user-de�ned operations, classes and inheritance. Moreover it provides capabilitiesfor expressing deductive rules, that can be used to de�ne view and integrity constraints, toexpress the implementation of derived features and to formulate queries. Finally, Chimerasupports a powerful language for de�ning triggers.In this talk, the Chimera language is presented and its innovative features are pointed out.A particular emphasis is given to the Chimera data model. The most relevant characteristicsof this data model are (constrained) user-de�ned types, value classes, class features, implicitlypopulated classes, intensionally de�ned attributes and declarative method implementation.Then, the most relevant issues in the formalization of the Chimera data model are discussed.These issues are mainly related to heterogeneous structures, metaclasses, ISA hierarchies andtyping. The main contributions of this formalization work are a clear de�nition of classesand schema, a precise characterization of type re�nement and the de�nition of a set of typingrules for declarative expressions (terms, formulas and rules). Finally, our current directionsin enriching the model are sketched, discussing features like objects belonging to several mostspeci�c classes, constraint and trigger rede�nition and support for composite objects.Object Creation in DatabasesMarc Gyssens8University of LimburgLimburg, BelgiumTwo properties that are often desired in object-oriented databases are the availabilityof a complete language to manipulate the data and the possibility to create new objects.Completeness issues have been investigated at length for data models in which all entries in theresult of a query are already present in the input. In the presence of object creation, however,transformations become non-deterministic and require adapted completeness criteria. Wediscuss determinacy, constructiveness, semi-determinism, and swap-genericity, and point out7This is joint work with Elisa Bertino, Universit�a di Milano, and Ren�e Bal, University of Twente8This is joint work with with Marc Andries, Leiden University; Jan Van den Bussche, University of Antwerp;and Dirk Van Gucht, Indiana University 16



the connections between these notions. We also discuss to which extent complete languagesexist for these various notions.A Meta-language for Representation of Evolution Invariantsin OODBHele-Mai Haav9Estonian Academy of SciencesTalinn, EstoniaClass lattice design is the most important step of OO database design process. In orderto keep the database schema correct and consistent during its evolution several constraintshave to be checked dynamically.We propose a logic based meta-language for representing constraints on class and objectlattices and provide a set of corresponding inference rules. The meta-language [1] di�ers fromother logic based languages for complex objects in its intention to be used on the top of theOO language NUT and its tight relationships with underlying OO speci�cations of objectsand classes.From the logical point of view the meta-language is a very simple language based on Hornclauses without function symbols in order to represent class and object lattices speci�ed bythe OO language NUT. Notions of class atoms and superclass atoms are introduced to themeta-language for mapping concepts from the OO language to the meta-language. Theseatoms are generated automatically during the compile time of class de�nitions using certaintransformation rules de�ned in [2].We provide a set of inference rules for class and object lattice constraints as well as forevolution invariants.The meta-language will be prototypically incorporated to the OO language and environ-ment NUT developed at the Institute of Cybernetics of the Estonian Academy of Sciences[3]. References:1. Haav H-M , A Meta-language for Speci�cation of Evolving Class and Object Latticesin OODB, In: Proceedings of the Second International East-West Database Workshop, Sept.25-28, 1994, Klagenfurt, Austria (to appear)2. Haav H-M. and Matskin M., Using Partial Deduction for automatic propagation ofchanges in OODB, In: Information Modelling and Knowledge Bases IV: Foundations , Theoryand Applications, IOS Press, Amsterdam, 1993 pp 339-3533. Tyugu E., Matskin M, Penjam J, Eomois P., NUT- An object-oriented language,Computer and AI 1986, 6:521-5429This is joint work with M. Matskin, Tallinn 17



The ODMG-93 Standard vs. Object-Oriented DatabaseTheoryAndreas HeuerUniversity of RostockRostock, GermanySince end of 1993, there is a standard for an object-oriented database model and associatedobject de�nition and query languages: the ODMG-93-Standard [3]. Since this standard wasmainly initiated by vendors of existing OODBMS, the concepts of some of these existingsystems (e.g. ObjectStore and O2) are mixed up.As one result of this process, the standard has become inconsistent (e.g. the de�nitionof inheritance and keys), too weak (e.g. the query semantics and all dynamic aspects) andnot \safe" (e.g. the usage of keys and a proposed extension for multiple type membership ofobjects may cause problems).A formal OODB model (following the lines of Beeri [1] consists of classes and typescontaining objects and values which are organized in class and type hierarchies. While a classhierarchy is de�ned by subsetting of extents of classes, the type hierarchy is de�ned in theCardelli-Wegner style [2]. A prerequisite for the de�nition of class hierarchy is the multiplemembership of objects in class extents.The ODMG-Standard mixes up the two de�nitions even though objects can reside onlyin one class up to now. This is one of the inconsistencies in the standard.In a formal OODB model, a query language is closed and adequate [4], that is, given asan input extents of classes and types organized in hierarchies, the result of a query shouldalso be extents of derived classes and types which are integrated into the existing hierarchy.This is not possible with the OQL language of the standard which only allows to collectsets of objects of a given class or values of some type. Object creation and derivation ofclasses is not possible.The ODMG-standard introduces keys as a means to identify objects not even by the(invisible) object identi�er but also by values. Since keys can be de�ned via componentclasses, objects can be identi�ed by values of component objects. There are situations wherethe identi�cation of objects is not possible though there are keys de�ned for each class: thisis caused by class-component class relationships with cycles or even more subtle structures.There are solutions for this problem in OODB theory, e.g. the usage of keys in the OSCAROODBMS or the criteria introduced by Beeri and Thalheim (see this volume).[1] C. Beeri. A formal approach to object-oriented databases. Data and Knowledge Engineer-ing, 5(4):353{382, 1990.[2] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.ACM Computing Surveys, 17(4):471{522, December 1985.[3] R.G.G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan-Kaufmann,San Mateo, CA, 1994.[4] A. Heuer and M.H. Scholl. Principles of object-oriented query languages. In ProceedingsGI-Fachtagung \Datenbanksysteme f�ur B�uro, Technik und Wissenschaft", Kaiserslautern,pages 178{197. Springer, Informatik-Fachbericht 270, 1991.18



The Advocatus Diaboli of Object-Oriented DevelopmentGerti KappelUniversity of LinzLinz, AustriaObject-oriented development has to overcome two currently existing obstacles, one tech-nical by nature and the other organizational, to prove success in the large.The technical obstacle has three causes. Firstly , some of the concepts of object-orientedanalysis methods and object-oriented programming languages comprise subtle yet severe dif-ferences. A prominent example is the use of specialization inheritance during analysis and theuse of speci�cation inheritance or even code inheritance during implementation. Secondly ,the almost exclusive concentration on the concept of an \object" forces that everything hasto be expressed in terms of encapsulated objects. However, there are situations which de-mand further concepts, too. For example, complex operations involving several object classesshould be modeled independently of a particular object class. Another example concerns themodeling of local object behavior versus the modeling of global system behavior. Whereasthe former comprises the possible life cycles of objects, the latter should be stated in a more
exible manner, for example in terms of production rules. A third example concerns the infor-mation hiding aspect of objects. To be able to decrease the complexity of an object-orientedsystem it is necessary to resolve the coupling between objects beforehand. This could be doneeasily if the required interface, i.e., the operations used from other objects, would be part ofthe publicly visible interface of objects. Lastly , there is still a gap between the understandingof objects in programming languages and in database systems. For example, the notion of anactive object as having an own thread of control in programming languages is di�erent to thenotion of an active object as reacting according to some prede�ned ECA rules in databasesystems.The organizational obstacle is due to a lack of new project management principles. Thesehave to take into account that object-oriented development is development by investment,that new job pro�les are necessary for proliferation of a no-not-invented-here syndrome, andthat we need new metrics like the lines-of-reused-code metric, to mention just a few.Resolving these obstacles would make object-oriented development a real candidate forbuilding quality systems.Generic Update Operations for ObjectbasesChristian Laasch10University of UlmUlm, GermanyIn OODBMSs type-speci�c methods are used for manipulating objects, in order to main-tain the consistency of the database. This is, however, of little help for the method implemen-tor as far as the model-inherent constraints are concerned. We propose a set of generic updateoperations, including operations for object evolution that maintain integrity constraints that10This is joint work with Marc H. Scholl, University of Ulm, Ulm, Germany19



can be expressed in database schemas. On the one hand integrity constraints such as types,class memberships, subtype-, subclass-relationships, class predicates, and inverse functionsare kept consistent after update operations, on the other hand the capabilities to express se-mantics in a schema are chosen such that such a set of update operations exists. The updateoperations can be used for implementing type-speci�c update methods or directly by appli-cations. We present an approach to consistently de�ne update semantics for an object modelincluding classes, views, and variables that is based on necessary and su�cient predicatesakin to de�ned concepts in KL-ONE style languages.Foundations of Adaptive SoftwareKarl J. Lieberherr11Northeastern UniversityBoston, USAWe present shortcomings of object-oriented programs and queries (redundancy and in-
exibility) and we introduce adaptive programs to overcome the shortcomings. An adaptiveprogram is a program which adjusts automatically to changing contexts. They may be: se-quential behavior, structure, distribution, concurrency, etc.Adaptiveness is achieved by splitting programs into loosely coupled, cooperating contexts.Changes to one context may then preserve, due to the loose coupling between contexts, theintent of the other contexts, leading to adaptiveness. One speci�c form of adaptiveness isachieved through succinct subgraph speci�cations and by using only two contexts: sequen-tial behavior and structure. Adaptive programs of this form are expressed at a high levelof abstraction, minimizing information about the implementation in the form of a speci�cclass structure. The programs are called adaptive since they work for in�nitely many classstructures.Adaptive programs apply Polya's inventor paradox to programming: Instead of developinga set of speci�c classes to solve a problem, we implicitly develop a family of sets of classes. Aspeci�c set of classes to solve the given problem is obtained through a customization process.For further information, see Comm. ACM, May 94, page 94.Incremental Speci�cations for Abstract Object-OrientedModellingGianna Reggio12Universita' di GenovaGenova, ItalyWe present a novel approach showing that classical algebraic techniques can support theincremental speci�cation of classes of objects.The approach is in three parts:11This is joint work with Cun Xiao, Jens Palsberg and other member of the Demeter Research Group.12This is joint work with Egidio Astesiano, University of Genova, Italy20



� object model� basic class speci�cations� incremental speci�cations.Object model Commonly to many approaches (starting with CCS), an object is modelled asa labelled transition tree, whose labels correspond to method invocation and acceptanceand whose nodes are the local state con�gurations. As it is well known, that kind ofmodel easily supports concurrency and distribution. The encapsulation of the localstate is provided by an appropriate observational semantics (bisimulation) forgettingthe nodes.Here the key new feature in our approach, supporting incremental speci�cations (byinheritance), is the abstract canonical form we give to the states, which in a sense is avery abstract generalization of the notion of record.Basic class speci�cations A concrete class is speci�ed as a many sorted algebra with sorts,whose elements are the states and the labels respectively, and a ternary predicate givingthe labelled transitions. The speci�cation takes the form of a conditional speci�cation,whose axioms for the transitions follow a special pattern.Incremental speci�cations An inheritance operation over speci�cations is de�ned with itssemantic model. Then \incremental speci�cations" are de�ned inductively by inheri-tance on the basis of basic class speci�cations. Key property: the incremental speci�-cations enjoy a property, persistence of the properties of the inherited symbols, whichtries to capture what it is preserved through the inheritance operation.Inheritance Conditions for Object Life Cycle DiagramsGunter Saake13Otto-von-Guericke Universit�at MagdeburgMagdeburg, GermanyInheritance is the main principle in object-oriented design methods to support structur-ing and reuse of object behavior descriptions. Most proposals restrict the (formal) use ofinheritance to method interfaces and method e�ect speci�cations. We propose to extend theinheritance relation to cover whole object life cycles, i.e., to long term object behavior. Thisinheritance relation corresponds to IS-A inheritance in object-oriented data models. An in-teresting question is to lift the inheritance relation from the level of object life cycles to thelevel of life cycle descriptions, for example graphical notations like state transition automata.The object-oriented speci�cation language Troll supports behavior inheritance by in-cluding (temporal) logic behavior description of the superclass into the objects of the subclass.This corresponds to a subset relation on object traces, which in fact is a special case of an13The current work on the Troll language is joint work with T. Hartmann, P. Hartel and J. Kusch. Thediscussion on object life cycle diagram inheritance is result of a joint research e�ort with R. Feenstra, P. Hartel,R. Jungclaus and R. Wieringa. 21



embedding graph morphism. The talk discusses to lift the idea of having graph morphisms asinheritance condition up to the level of behavior descriptions. It is shown that this criteriongives an intuitively acceptable condition to check two given state transition automata whetherone of them inherits the other description. After sketching the basic idea of inheriting objectlife cycles, we give inheritance conditions and inheritance-preserving construction operatorsfor the graphical notation used in the OMT dynamic model for specifying life cycles.This work was partially supported by CEC under ESPRIT WG 6071 IS-CORE II (InformationSystems { COrrectness and REusability), and under ESPRITWG 8319 ModelAge (A CommonFormalModel of Cooperating Intelligent Agents).Group-Oriented Architecture DevelopmentWilhelm Sch�afer14Universit�at DortmundDortmund, GermanyThe talk presents an architecture de�nition language (Module Interconnection Language).The main new feature of this language are particular language constructs which are exploitedto support cooperative architecture development. A corresponding software process modelbased on those features is presented. The suitability of an object-oriented database systemas the underlying implementation platform is discussed. Finally, the talk extends the ideaof \product-based" process modeling. It sketches the solution of the Merlin project which isbased on a dedicated, rule-based process model de�nition language and a set of prede�nedso-called cooperation patterns. Similar to transactions, those patterns have a well-de�nedsynchronization policy which guarantees consistency of a software project but allow 
exibilityin terms of de�ning sharing policies of software documents in a (large) software project.Inheritance of Object Behavior: Extension and Re�nementof Object Life CyclesMichael Schre
15Universit�at LinzLinz, AustriaWe discuss inheritance of object-life cycles in the realm of Behavior Diagrams[KS91],which are based on Petri Nets. A behavior diagram of an object type represents the possiblelife cycles of its instances by activities, states, and arcs corresponding to transitions, places,and arcs of Petri Nets. Opposed to Petri Nets, an activity must be explicitly invoked on aspeci�c object resident in all pre-states of the activity; and, as activities are not instantaneous,an object resides in an activity state for every activity which is currently performed on theobject.14This is joint work with Wolfgang Emmerich and Stefan Wolf15This is joint work with Gerti Kappel, University of Linz22



Object life cycles can be specialized in two ways: (1) by extension, which means addingactivities, states and arcs, and (2) by re�nement, which means expanding activities and statesin subdiagrams.A life cycle occurrence (LFO) of an object is a sequence of life cycle states (LFS), eachbeing a set of states and activities, such that the transition from one LFS to the next onere
ects the start or completion of an activity.The behavior diagram B' of a subtype O' of O consists at least of the activities, statesand arcs of the behavior diagram B of O (inheritance axiom).B' is a consistent extension of B, if every LCO of B' from which all activities and statesadded in B' have been deleted is also a LCO of B.Su�cient and necessary conditions for checking whether B' is a consistent extension of Bexist, if only activities alive in the initial LFS are considered and the inheritance axiom isobeyed: B' is a consistent extension of B, i� (1) no arc is added in B' between two elementswhich both belong to B and (2) an activity added in B' does not have a state belonging to Bas pre- or post-state.Behavior re�nement is used in two ways: (1) for developing the behavior diagram of oneobject type by stepwise re�nement [Sch90], and (2) for re�ning activities and states, not yetre�ned at a supertype, at a subtype.Structured re�nement primitives for states and activities together with su�cient rules forconsistently embedding re�nements are presented.[Sch90] Schre
, M.: Behavior Modeling by Stepwise Re�ning Behavior Diagrams. Int.Conf. on Entity-Relationship Approach, 1990.[KS91] Kappel, G. and M. Schre
: Object Behavior Diagrams. IEEE Int. Conf. on DataEngineering, 1991.Fundamental Concepts of Object-oriented DatabasesBernhard ThalheimCottbus Technical UniversityCottbus, GermanyIt is often claimed that object oriented databases overcome many of the limitations of therelational model. However, the formal foundation of OODB concepts is still an open problem.Even worse, for relational databases a commonly accepted data model existed very early onwhereas for OODBs the uni�cation of concepts is still missing. During our talk we report our�rst investigations on a formally founded object oriented databases.A clear distinction between objects and values turns out to be essential in the OODM.Types and classes are used to structure values and objects respectively. One importantconcept of object oriented databases is object identity. The immutable identity of an objectcan be encoded by the concept of abstract object identi�ers. The identi�cation problemcan be solved for classes with extents that are completely representable by values (value-representable). Uniqueness constraints express equality on identi�ers as a consequence of theequality of some values or references. 23



The success of the relational data model is due certainly to the existence of simple queryand update languages. Preserving this goal in OODB is a serious goal. This property ofexistence of generic update operations can be carried over to object oriented data models ifclasses are value- representable.One of the primary bene�ts that database systems o�er is automatic enforcement ofdatabase integrity. One type of integrity is maintained through automatic concurrency con-trol and recovery mechanisms; another one is the automatic enforcement of user-speci�ed in-tegrity constraints. The maintenance problem is the problem how to ensure that the databasesatis�es its constraints after certain actions. There are at present two approaches to this main-tenance problem. The �rst one, more classical is the modi�cation of methods in accordanceto the speci�ed constraints. The second approach uses generation mechanisms for speci�edevents. Upon occurrence of certain database events like update operations the managementcomponent is activated for integrity maintenance. The �rst direction did not succeed becauseof limitations within the approach. The second one is at present one of the most activedatabase research areas.Especially for active database systems rule triggering systems are used for integrity main-tenance. However, this approach cannot succeed even for very simple schemata. During thetalk we demonstrate that the �rst approach can be extended to object oriented databasesusing stronger mathematical fundamentals. We outline an operational approach based on thecomputation of greatest consistent specializations.This research shows that identi�cation is one of the main properties for object orienteddatabases. For the user the abstract identi�er of an object has no meaning. Therefore, adi�erent access to the identi�cation problem is required. The unique identi�cation of anobject in a class leads to the notion of weak value-identi�ability. It turns out that this notionis equivalent to the notion of identi�ability. A database instance is identi�able if the orbitof each object in the database is trivial. This notion is weaker than the notion of value-representability which is required for the unique de�nition of generic update operations.References:C. Beeri, B. Thalheim, Can I See Your Identi�cation Please. Manuscript, Jerusalem-Cottbus,1994.K.-D. Schewe, B. Thalheim, Fundamentals Concepts of Object-oriented Databases. Acta Cy-bernetica, 11, 1-2, 1993, 49 - 83.K.-D. Schewe, B. Thalheim, J.W. Schmidt, I. Wetzel, Integrity Enforcement in Object-oriented Databases. In `Foundations of Models and Languages for Data and Objects' Mod-elling Database Dynamics, Springer, 1993K.-D. Schewe, J.W. Schmidt, D. Stemple, B. Thalheim, I. Wetzel, A Re
ective Approach toMethod Generation in Object-oriented Databases. Rostocker Informatik-Berichte, 14, 1992.
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Database Applications of Re
ective ProgrammingGottfried Vossen16Universit�at M�unsterM�unster, GermanyWe survey the use of re
ection in various areas of computer science, with an emphasison the area of databases. Besides its exploitation in implementing object-oriented languagesand data models, little use of re
ection has been made so far from a purely theoretical pointof view; indeed, the idea vastly appears in two approaches only: the re
ective relationalmachine of Abiteboul, Papadimitriou, and Vianu, and the re
ective relational algebra ofVan den Bussche, Van Gucht, and Vossen (which subsumes a third approach by Ross on analgebra). We give an overview of ideas, techniques, and results used and obtained for thelatter, and discuss various applications in which the re
ective algebra appears to be useful.Exploring the Foundations of Interactive ComputingPeter WegnerBrown UniversityProvidence, USAA computation is "interactive" if new information can be acquired and used during theprocess of computation and "algorithmic" if it yields a unique result (postcondition) forall input arguments (preconditions). The greater richness of interactive over algorithmicbehavior is demonstrated by showing both that the observable behavior of objects cannotbe expressed by algorithms and that life cycle requirements for programming in the largeare nonfunctional. Objects can exhibit "passive" non-algorithmic behavior by "echoing" non-algorithmic input sequences or "active" non-algorithmic behavior that cannot be expressed byalgorithmic transformations of input messages to outputs. Software systems are not simplylarge algorithms; they are interactive, open systems with non-algorithmic requirements andnon-algorithmic behavior.Algorithms and objects both specify in�nite observable behavior by �nite imperative codespeci�cations. But the observable behavior of algorithms can, according to Church's Thesis,be speci�ed by computable functions, while the observable behavior of objects cannot. Thenon-formalizability of observable object behavior is a strength rather than a weakness, allow-ing imperative object speci�cations to express richer behavior than formalizable algorithmicspeci�cations. Interactive systems may have formalizable behavior for speci�c tasks or clients,but complete (fully abstract) observable behavior is too rich to be formalizable by functionsor �rst-order logic.Objects are open systems that incrementally acquire and use new information, whileautomata are closed systems with prede�ned input tapes. The delayed (unspeci�ed) bindingtime of inputs is crucial in causing objects to exhibit non-algorithmic behavior while prede�ned16Major portions of this talk are based on joint work with Jan Van den Bussche (University of Antwerp,Belgium) and Dirk Van Gucht (Indiana University, USA).25



inputs constrain automata to behave algorithmically. The "proof" that objects exhibit non-computable behavior when they "echo" non-computable input sequences is trivial. Examplesof "echo" systems include Simon's "ant on a beach", the Eliza program that simulates a passivepsychiatrist, and the agent who wins half the games in a simultaneous chess tournament byechoing the moves of one player on the board of another. The "proof" that objects canexhibit non-algorithmic transformational behavior is also straightforward. Milner gives aversion of this argument in his Turing lecture (CACM January 1993) and it has been partof the folklore of concurrent programming for much longer. However, the implications ofthe greater richness of interactive over algorithmic computation have not, to the author'sknowledge, been previously explored.The inherently non-algorithmic nature of interactive problem solving has radical con-sequences for the theory of computation. Turing machines can no longer be considered auniversal model of computational behavior, while Church's thesis loses its force because func-tions are not rich enough to capture interactive computing. However, interactive problemsolving is shown to be the the computational counterpart of empirical modeling in the physi-cal sciences and therefore as robust and respectable in its scholarly pedigree as the rationalistalgorithmic problem solving paradigm of logic and mathematics.The correspondence of interactive models with open systems, programming in the large,and empirical models indicates that interaction is as robust in its invariance for a varietyof de�nitions as algorithmic computability, and that canonical interaction machines playingthe role of Turing machines for interactive systems probably exist. The Pi calculus, whichis claimed by Milner to provide universal primitives for interaction, is a candidate univer-sal interaction machine. The behavior analysis used to show that interaction is richer thanalgorithmic computation can be adapted to show that empiricism is richer than rational-ism, thereby settling a 2000-year-old fuzzy philosophical question by a precise computationalargument.A Flexible Framework for Formal and Informal ConceptualModelingRoel WieringaFree UniversityAmsterdam, The NetherlandsThe research reported here has three goals: to show that there is progress in the �eldof system development method research; to integrate formal and informal methods; and tode�ne a 
exible method that can accommodate components of structured and object-orientedmethods. To this end, a framework is for system development methods is presented and ageneral structure for conceptual models of external system behavior is given. MCM (Methodfor Conceptual Modeling) is presented as an example method that �lls in this framework andsatis�es the stated goals. It models external system behavior by means of various techniquestaken from structured and object-oriented methods: a function decomposition tree, contextdiagrams, a class diagram, life cycle diagrams, a system transaction decomposition table anda class dictionary. In addition to these techniques, MCM contains a variety of induction and26



evaluation methods from structured and object-oriented methods, from formal speci�cationtheory and from a philosophical analysis of the concepts involved. If required by the applica-tion, a formal speci�cation of external system behavior can be produced in LCM (Languagefor Conceptual Modeling), a speci�cation language based on order-sorted dynamic logic andprocess algebra, which allows a precise and formal speci�cation that corresponds to the in-formal speci�cation given by means of diagrams and tables. The talk ends with a discussionof the role of formal speci�cation in method building and model building.
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4 Summary of Working GroupsWorking Group 1:Inheritance - Covariance vs. ContravarianceChair: Roel Wieringa, The NetherlandsParticipants: Herman Balsters, Sjaak Brinkkemper, Jan van den Bussche, J�urgen Ebert, Gio-vanni Guerrini, Marc Gyssens, Andreas Heuer, Gerti Kappel, Christian Laasch, Diana Sidark-eviciuteThis brief note summarizes the results of a discussion group on covariance and contravari-ance in inheritance relations. Three questions were discussed, as summarized in the followingthree sections. Only the outcome of the discussion is given, not the road leading to thisoutcome.1. What is the meaning of \inheritance"?� Code inheritance; also known as implementation inheritance. It consists of reuse ofcode, e.g. code import. It is a relation between speci�cations (at the textual level). Itcan be shown that a queue speci�cation can code inherit from a stack speci�cation orvice versa. Covariance and contravariance have no meaning in this kind of inheritance.� Subtyping; also known as speci�cation inheritance. To give a precise de�nition, onemust choose a formal framework (e.g. Cardelli-Wegner type theory or algebraic datatype speci�cation). To avoid religious disputes about what the best type theory is, somegeneral statements were put forward on which all participants agreed.{ Subtyping is a partial ordering on types.{ If � � � then all terms of type � can be used in any context in which terms of type� can be used.{ If � � �, then instances of type � have (at least) all properties that instances oftype � have. In order-sorted logic we have that the theory of the supertype iscontained in the theory of the subtype, i.e. � � � , Th(�) � Th(�). Subtypingtherefore implies a subset relationship between intentions.We have that SQUARE � RECTANGLE but RECTANGLE 6� SQUARE.� Specialization; also known as is a inheritance. This too is a partial ordering onclasses. � � � i� each instance of � is identical to one instance of �. For instance,CAR � VEHICLE because each car is (identical to) a vehicle. This is a subsetrelationship between extensions of classes.There are two questions regarding the relationship between specialization and subtyping:28



1. Does specialization (is a) require subtyping? A consensus emerged that if you de�ne aspecialization, e.g. PROF is a PERSON , then you de�ne a subset and therefore youat least inherit the structure (i.e. type) of the superclass. So the type of the subclass is asubtype of the type of the superclass. In other words, specialization requires subtyping.2. Does subtyping require specialization? A consensus emerged that you can have a classC1 of objects of type � , and a class C2 of type �, such that � � � but C1 is not asubclass of C2. This issue is related to the fact that in programming languages, you donot want to conclude from structure equivalence of types that the types are identical(have the same instances).Covariance and contravariance are meaningful for the subtype relationship (and therefore forthe subclass relationship).2. What is the meaning of covariance and contravariance?Suppose CAR � V EHICLE and INTEGER� RATIONAL, and declare the functionspeed as speed : VEHICLE! INTEGER:Then speed also accepts arguments of type CAR and the results it delivers are also of typeRATIONAL. So speed is also a function of arityCAR! RATIONAL:If we denote the type of functions from � tom � by � ! �, then we haveVEHICLE! INTEGER � CAR! RATIONAL:So if we generalize a function type, we specialize its domain type. This phenomenon was notedby Cardelli in 1984 and is called contravariance. It was remarked by Herman Balsters in thediscussion that when a function with argument type VEHICLE is applied to an argumentc : CAR, then the argument is coerced to a supertype before the function is applied to it.When we inherit a methodspeed : VEHICLE! RATIONALfrom the class V EHICLE to the class CAR, then we may want to restrict the codomain, sothat we get for example a methodspeed : CAR! INTEGERin the CAR class. This is covariance, for when we specialize, we specialize the domain aswell as the codomain of the method. It was remarked by Herman Balsters that in covariance,when we apply a method to an object, we push the method down into the class hierarchy sothat its domain is the type of the argument.3. When do we need covariance and contravariance?It was argued that for function inheritance, we need contravariance whereas for methodinheritance, we need covariance. Contravariance is the natural thing we get when comparing29



function types. In method inheritance, by contrast, we do not compare function types, butwe want to specialize a method for a particular subclass. In contrast to Cardelli's approach inhis 1984 paper, this requires us to declare methods not as �elds in a record, but as functionsapplicable to record types.Suppose we have types ColoredPoint with attributes x, y, c and Point with attributesx and y. Then ColoredPoint � Point. Using an example given by Herman Balsters, Nowde�ne a method eq as�p1 : Point:�p2 : Point:(p1:x = p2:x^ p1:y = p2:y):In ColoredPoint, we override (or really extend) eq by a method which additionally tests theequality of the colors:�p1 : ColoredPoint:�p2 : ColoredPoint:(p1:x = p2:x ^ p1:y = p2:y ^ p1:c = p2:c):The typing rule for the equals sign (=) says that the left- and right hand side must havethe same smallest type. Applying eq to two points or two colored points does not given anyproblem. At the same time, specialization uses here the covariance rule.The typing of the eq method can be made explicit using Cardelli and Wegner's boundedquanti�cation: eq = �� � Point:�p1 : �:�p2 : �:(p1:x = p2:x ^ p1:y = p2:y):Working Group 2:Observing Behavior of ObjectsChair: Gunter Saake, GermanyParticipants: Vytautas �Cyras, Grit Denker, Hans-Dieter Ehrich, Gregor Engels, Karl Lieber-herr, Gianna Reggio, Wilhelm Sch�afer, Michael Schre
, Silke Seehusen, Bernhard Thalheim,Peter Wegner, Andreas Zamperoni1. Starting PointThe working group was motivated by some problems and open points collected on the�rst day of the Dagstuhl workshop:� Trace models for objects: What is the role of traces in dynamic models and objectdesign?� Behavioral semantics of objects: How should the complete behavior of objects be de-scribed?� Observing object behavior: Should the rules for observing objects be explicitly modeledin object semantics?� Local object behavior vs. global system behavior.30



At the beginning of the meeting, the participants added two more points to this list:� Alternatives to the trace model for objects, for example Labelled Transition Systems(related to the contribution of Gianna Reggio)� Concurrency: The role of di�erent models for concurrency for object behavior.The participants agreed that this point is of importance for the topic of the workinggroup.After the introductory discussion, we realized that the title of our working group gave riseto some very fundamental questions:� What is the meaning of Observation ?� What is an Object ?� What is Behavior ?� And what is the role of Concurrency for these concepts?But it was suggested that discussing these concepts individually might be too general andthat discussing the questions \What is the observable behavior of concurrent objects?" and\How should it be speci�ed?" might be more speci�c.One answer to this question was to specify the behavior of an object by its interactionhistory over its lifetime (also called its life cycle behavior). This behavior can in special casesbe speci�ed using traces. But traces are not adequate to specify time stamping requirements,fairness requirements, or concurrency requirements. The general question of how the life cyclebehavior of objects should be speci�ed has no easy solution and appears to be intractable ingeneral.2. What is an object?The �rst oft the fundamental questions discussed in some detail was of course \What is anObject?". The participants discussed some di�erent de�nitions but �nally only agreed (moreor less) on a very general de�nition based on the presentation of Peter Wegner from Mondaymorning.The state of an object (or equivalently the reaction on stimuli or the next localdecision of an object) depends only on the local history (including the initial state).This de�nition is very general because it leaves room for de�ning the concepts of� locality, and� history.The history may consist of a trace of external stimuli, an event structure modelling someconcurrency in the past, or even more general models. As a discussion question the followingproblem arises: 31



What is a su�cient set of (past) observations to reproduce object behavior?In fact, this de�nition only excludes a global state accessible by an object (locality prop-erty) and object behavior depending on the future. So the next discussion point was:Is it possible to be more concrete about suitable models for object behavior? Doesit make sense to restrict this very general idea to simpler models?3. Models for Object BehaviorAfter some di�erent statements what are appropriate models for object behavior theparticipants agreed to distinguish at least two kinds of models depending on the problemdomains:� General Models for (real world) Objects� Tractable Models for (arti�cial) Objects3.1. General Models for (real world) ObjectsFor modelling \real world" objects, ie, objects that may appear in the analysis of arbitraryapplication areas, we can give no real restrictions:� For arbitrary problem domains we have to handle full concurrency.� As a result, object histories are more general than traces.� For these general models, observational equivalence is in general undecidable and inpractice not tractable.� but: Objects are inherently concurrent!The participants agreed that such general models are the price we have to pay if we wantto model real applications appropriately.3.2. Tractable Models for (arti�cial) ObjectsFor arti�cial objects (ie, software artifacts), it seems to be a good idea to restrict thebehavior models to more speci�c models.� The proposal of Hans-Dieter Ehrich in his talk fromMonday morning is a good candidatefor such a model.� Local sequentiality seems to be a good compromise for software objects.Local sequentiality means, that basic objects are sequential processes and concurrencyappears only between objects. Hans-Dieter Ehrich presented a model based on eventstructures in his talk which has this property. This restrictions seems to be reasonableat the current stage of software technology.32



� Such restriction make the design process and implementation easier, and enable the useof existing formal methods for sequential processes.� but: The restriction to sequential base objects seems to be too restrictive for analysisand in special application areas!4. Spectrum for Behavior ModellingAs a result of the discussion on the need of several model classes for object behaviordepending on the application area, we discussed the spectrum we have in �xing a suitablemodel for object behavior:� synchronous versus asynchronous communication� degree of concurrency� degree of (internal) nondeterminism� inter-object or intra-object concurrencyThe participants agreed that there is no \best choice" for the general problem.The choice of a model with respect to this spectrum depends on the applicationarea as well as the phase on the software construction process!As a summary we come to the following observation:General models are important....[because objects are inherently concurrent!]but simpli�cation towards tractable models is necessary in software design.[for example, local sequentiality for base objects.]5. Discussion on Behavior ModellingBesides the fundamental discussions on appropriate models for object behavior, the dis-cussion touched a lot of topics concerned with behavior modelling. The following list is asummary of the areas discussed there:� Communication patterns. We need abstraction mechanisms for patterns of cooper-ation in analogy to the mechanisms we have for structuring. Such patterns tend to bespeci�c for application areas and are candidates for reuse.� Communication architecture. Arbitrary interaction between objects makes largesystems unmanageable. A restriction to manageable connection networks seems to bea solution to these problems. 33



Other areas which are touched in the discussion are activity (active versus re-acting ob-jects) and behavior evolution (objects may persist longer than the speci�cation of the appli-cation software is valid). Working Group 3:Object EvolutionChair: Roel Wieringa, The NetherlandsParticipants: Herman Balsters, Grit Denker, Giovanna Guerrini, Radu Grosu, Andreas Heuer,Christian Laasch, Boris Magnusson, Jan Paredaens, Gianna Reggio, Pierre-Yves Schobbens,Roel WieringaThis brief note summarizes the results of a discussion group on object evolution. Onlythe outcome of the discussion is given, not the road leading to this outcome.1. We did not discuss class evolution. Class evolution is the phenomenon that a classchanges its de�nition, i.e. it is a schema update. Object evolution is the phenomenon thatan object changes its class without the de�nition of the class changing. This is distinct fromobject updates, in which an attribute changes its value.2. The starting remark was that each attribute value de�nes a class, and that therefore eachattribute update de�nes a migration through classes. Conversely, each partition of a classinto subclasses de�nes an attribute with a enumeration range. A class migration causes anupdate of this attribute. In the extreme case, therefore, object evolution and object updatesare equivalent.The Martin/Odell development method takes the above view of attributes and class mi-gration. Such a representation is however inconvenient and in practical data models, not allobject evolutions will be object updates and not all updates will be evolutions.3. If we want to allow class migration, we want to allow an object to have multiple roles,which it may play simultaneously. Roles have been given various other names in the literature,such as aspects and dynamic subclasses.Wieringa proposed to de�ne the concept of dynamic subclass. Each class can be parti-tioned in several ways into dynamic subclass partitions; each dynamic subclass partition is apartition of the state space of the object, and the object can, while moving through its statespace, go from one dynamic subclass to another (see the ECOOP'94 paper by Wieringa, DeJonge and Spruit). Class migration methods can be allocated to the appropriate subclasses.For example, PERSON could be partitioned into STUDENT and NON STUDENT withmethods finish and become student, respectively.Requiring a dynamic subclass to be an element of a partition was thought too arti�-cial by the majority of the discussion group. Furthermore, most participants, agreed thatbecome student should be modeled as a database method (rather than being allocated to thedatabase). 34



As a rebuttal against these arguments, it was argued that partitioning actually makesthe model conceptually cleaner (cf. the abstract superclass rule) and that we need NON -STUDENT exactly because it is an event in the life of a person (in the state of being anon-student). Nevertheless, we proceeded on the assumption that become student wouldbe a database method and that we would not require dynamic subclasses to be exhaustivepartitions.4. In most object-oriented programming languages, an object can be an instance of only oneclass. To allow class migration, we need to allow an object to be an instance of several classesat the same time (i.e. to be an element of the extent of several classes). We then need onlytwo methods, each of which comes in two variants:� insert an object into the extent of a class.{ create: this creates a fresh object identi�er (oid) and inserts it into an extent.{ start: this takes an existing oid (already in at least one extent) and adds it to anextent.� remove an object from the extent of a class.{ delete: this removes the object from all extents it is currently in.{ �nish: this removes the object from some, but not all extents it is currently in.For some cases of class migration, some of these methods must be executed in one atomictransaction (eg. moving the object from one extent to another). The insert methods wouldbe database methods (or possible class methods).The �nish method should take care that all dangling pointers to an object in a particularrole are removed.5. The taxonomic structure of the class model de�nes some obvious constraints on classmigration. For example, if we put an object into the extent of C, it must also be in theextent of all superclasses of C. A recent VLDB paper discusses some of these class migrationconstraints.6. It was noted by Andreas Heuer that there is a distinction between dynamic subclassesfor which an explicit start/�nish pair of events is de�ned, and dynamic subclasses whosemembership is determined by a predicate (predicate classes) or query (derived classes).Boris Magnusson remarked that derived classes often o�er a more accurate modelingtool than other kinds of subclasses. For example one can model SQUARE as a subclassof RECTANGLE on the grounds that the in SQUARE, length and breadth attributesare subject to an extra constraint length = breadth. On the other hand, we may say thatSQUARE is a superclass ofRECTANGLE, because it has only one attribute length, whereasRECTANGLE has an additional attribute breadth. In both cases, the problem is that arectangle may be updated so that length happens to be equal to breadth. In both cases,this is represented incorrectly or at least clumsily. A better way would be to associate thecondition length = breath to the derived class SQUARE, which would thereby become adynamic subclass of RECTANGLE. 35



7. Boris Magnusson remarked that instead of representing roles in the Simula way as nestedsubclasses. A rough example (in a non-existing programming language) would be:class PERSONage: NATURALr: ROLESbecome_studentadd new STUDENT to rrole STUDENT... body of STUDENT ...role EMPLOYEE... body of EMPLOYEE ...STUDENT is also accessible from within PERSON . One can also easily implementinheritance in this way.8. A di�erent variant of class migration is obtained if we allow an object to play severalroles of the same class simultaneously. (These may be called Roel's roles, as opposed toroles as discussed up till now. See also the ECOOP'94 by Wieringa et al.) For example, onemay de�ne a role class EMP with a many-one relationship (i.e. an object-valued attribute)player : EMP ! PERSON . EMP is almost the same as an object class, except for onething: suppose the age function is de�ned for PERSON objects but that it is applied toan EMP object e. Then age(e) is a type error and the compiler should replace this byage(player(e)). This is a kind of compile-time delegation that is performed especially forroles but not for objects.There were some doubts about the utility of this. For example, it was remarked that rolescan be represented by set-valued attributes. A rebuttal to this is that this is equivalent to theabove representation, because the intended set-valued attribute is equivalent to the playerfunction.There are ways in which we can avoid multiple role playing in the model. For exam-ple, perhaps a person is two employees at the same time because he or she is a secretaryand engineer at the same time. Then we can de�ne EMP subclasses SECRETARY andENGINEER, de�ne the intersection class, and put the object in this intersection class (witha single identi�er). It is then member of the SECRETARY and ENGINEER extents andcan therefore be said to play these two roles. No conclusion was reached about the bestrepresentation. 36



Working Group 4:Class OrganizationChair: Karl Lieberherr, USAParticipants: Vytautas Cyras, Gregor Engels, Hans-Dieter Ehrich, Gerti Kappel, GunterSaake, Michael Schre
, Silke Seehusen, Diana Sidarkeviciute, Bernhard Thalheim, GottfriedVossen, Peter Wegner, Andreas ZamperoniThe main topics discussed were1. The general issues of class organization2. Structure-shy class organizations3. Roles1. The general issues of class organizationPeter Wegner asked: What is a good class organization?Gerti Kappel and Michael Schre
 have studied this issue from the point of view of cou-pling and cohesion. They studied, for example, three kinds of class coupling: componentcoupling, interaction coupling and inheritance coupling. Whereas component coupling dealswith the structural and interaction relationships between object classes interaction couplinginvestigates the kind of interaction which takes place between object classes. They noticedtradeo�s between those coupling kinds, for example, when following the Law of Demeter, thecomponent coupling improves in the sense that an object class does only talk to a restrictedset of object classes. But the interaction coupling gets worse in the sense that it increasesinteraction of a class with its part classes.Previous work on coupling was done by Kemerer/Chidamber, Wirfs-Brock, Berard, andCoad/Yourdon.The Law of Demeter (LoD) was described as a style rule (among others) which reducesthe dependency of individual member functions on the class structure. The LoD says that amember function M of class C should only use the functionality of \closely related" classes:the (stored and computed) part classes of C, the argument classes of M and the classes whoseobjects are created in M. In other words, you should only talk to friends, not to strangers.Gerti Kappel was pointing out that there are situations where the LoD is bene�cial andothers where it makes sense to violate it. These situations can be analyzed from a semanticdata model point of view. If the component structure of some class C comprises dependentcomponents, which only exist in the context of C, or if the component structure capturesmainly the implementation of C the Law of Demeter should be considered. If the componentsdescribe conceptual objects of their own, and if they are not considered as implementationdetails of some inspected class C but rather as di�erent classes related to C it is favorable toreveal the component hierarchy thus violating the LoD.37



Michael Schre
 was pointing out a further style rule which limits the set of classes whocan update other classes. His style rule prevents communication among objects of the samelevel.Peter Wegner was summarizing the pattern work. It describes and classi�es generallyuseful class organizations. A speci�c pattern was discussed: The Null Object Pattern.Beck and Johnson de�ne patterns to have preconditions that de�ne when a pattern isapplicable, a problem speci�cation of the problem that it solves, constraints that specify theprincipal sub-cases, and a solution structure that speci�es the class organizations. Patternsrelate class organization to the semantics of particular problems being solved.2. Structure-shy class organizationsThe title is somewhat controversial as pointed out by Andreas Zamperoni and GottfriedVossen: How can a class organization be structure shy? Classes are thought to be speci�ed intwo parts: the structure part and the behavior part. When we write the behavior part withminimal dependence on the structure part, we say we have a structure-shy class organization.The trick to achieve this is to apply Polya's inventor paradox: instead of writing one classorganization, we write an entire family of class organizations from which we select the desiredone later. The paradox consists in the fact that, although we solve a more general problem,the solution becomes easier. The resulting solution is more generic than \usual" solutions.Adaptive programs have been introduced at IFIP '92 and CASE '92 and a recent descrip-tion is in Comm. ACMMay 94, page 94. They are implemented in the Demeter System/C++which is used at several universities.Peter Wegner was pointing out that adaptive programs describe behavior minimizinginformation about the implementation in the form of a speci�c class structure. This is also thegoal of his work on mega-programming with Gio Wiederhold. It is also the goal of Jacobson'suse cases to describe behavior without being side-tracked by a detailed object-structure.Gottfried Vossen was presenting the point of view of the data base community towards\schema-shy" queries. There are a number of papers on this topic in the literature:� Catriel Beeri and Hank Korth, 1. ACM PODS '82� E.J. Neuhold and Michael Schre
, VLDB 1988� Ed Sciore, TOIS '91, ER '91� Chang and Ed Sciore, IEEE TKDE '90� Jan van den Bussche, Gottfried Vossen, DOOD '93� Ioannidis et. al, SIGMOD '94The data base community has been working with abbreviated path expressions to reducethe amount of information on the schema needed for querying the database. The focus is on�nding \minimal" paths according to some metric.38



Gunter Saake pointed out the relationship between adaptive programs and views. Thewrappers are working on the views. To use a collection of adaptive programs is related tousing a collection of views with the same conceptual schema.Gottfried Vossen was pointing out that work in the relational database �eld on view in-tegration is related to coming up with a type theory for adaptive programs. In particular,views are used in bottom-up database design to model external schemas; the goal is to in-tegrate them into a global conceptual schema. In the oo context, path expressions/adaptiveprograms could play a similar role. However, as known from relational database theory, suchan approach can run into problems which are not computable. Speci�cally he was pointingto the work of Bernhard Convent "Unsolvable Problems Related To The View IntegrationApproach", International Conference on Database Theory, ICDT '86, Rome Italy, September1986, Springer Verlag LNCS 243.The situation with adaptive software is somewhat di�erent than with view integration:When an adaptive program is developed, it is done in the context of a conceptual model whichserves to test the adaptive program. This way it is guaranteed a priori that the integrationcan be done. However, when libraries of adaptive programs are used and programs fromdi�erent libraries are combined, the issue of view integration comes up.Hans-Dieter Ehrich pointed out the concept of logical data independence of the ANSISPARC community (late seventies). Three kinds of schemas are used: external, conceptualand internal schemas for the implementation. It is possible to change the conceptual schemaas long as it is still consistent with all the views. A similar situation exists in adaptiveprograms: The conceptual schema can be changed as long as it is consistent with all adaptiveprograms which use it.Adaptive programs are more abstract than views since they are de�ned in terms of succinctsubgraph speci�cations.Gunter Saake pointed out the following references:Dennis Tsichritzis and A. Klug, "The ANSI/X3/SPARC DBMS Framework Report of theStudy Group on Data Base Management Systems, Information Systems, Vol. 3, No. 3, 1978,pp 173-191.DAFTG, Database Architecture Framework Task Group of the ANSI/X3/SPARC Da-tabase System Study Group: Reference Model for DBMS Standardization, ACM SIGMODRecords, Vol. 15, No. 1, 1986, pp 19-58.Comparison of the database work and the work on adaptive software� Common:{ Motivation to be structure-shy.{ Focus on paths in conceptual data model.� Database work:{ Focus on non-computationally complete query notations.� Adaptive software work: 39



{ Focus on a computationally complete programming language which extends C++,Smalltalk or Ei�el.Gregor Engels pointed out that a collection of adaptive programs can be considered asa module which has an additional, new interface not present in ordinary modules: Thisinterface contains the succinct subgraph speci�cations of all adaptive programs contained inthe module. In the simplest form, the succinct subgraph speci�cations satisfy the grammarS::= [A,B] | S+S | S*S.The issue of how to combine adaptiveness with concurrency was discussed brie
y. GertiKappel suggested that the concept of transactions be added. Adaptiveness and concurrencyhave been combined in an ECOOP '92 paper.Silke Seehusen viewed adaptive software as a useful tool to specify the behavior of frame-works. Indeed, an adaptive program can describe an entire family of frameworks.3. RolesBernhard Thalheim presented the following approach to roles:Objects are described by their values and references and belong to classes. They can beinvolved in di�erent roles during their life cycle, sometimes in parallel and several times. Inthis case the 1-1 allocation of objects to one class is not su�cient. Roles can be presenteddirectly in the SAMT language which is is developed in accordance to C. Beeri's Kyotoproposal for oo languages. Since each object has an identi�er, it is possible to de�ne class andtype hierarchies which are not in a sub-hierarchy relationship. This possibility can be usedfor modeling roles and aspects of objects in higher granularity. In this case role or aspectclasses are subclasses. The modular design-by-units approach of our system uses roles andaspects for class organization and behavioral views.Michael Schre
 was presenting the concept of roles treated in several recent papers tocope with in
exibilities of class hierarchies.Gottlob, Kappel and Schre
 (East-West Database Workshop) studied the semantics ofrole inheritance and type inheritance using evolving algebras. Albano et al. (VLDB '93)showed how roles can be provided in a new data base programming language called Fibonacci.Wieringa (ECOOP '94) stressed the importance of distinguishing traditional classes, roleswith role-speci�c identi�ers, and dynamic classes to which instances of classes are associateddynamically. Gottlob, Schre
, Rueck (ACMTOIS, in print) showed how class-based languagessuch as Smalltalk can be extended with roles.
40



Working Group 5:Database ModelsChair: Gottfried VossenParticipants: Herman Balsters, Giovanna Guerrini, Marc Gyssens, Christian Laasch, KarlLieberherr, Jan Paredaens, Gunter Saake, Michael Schre
, Diana Sidarkeviciute, Jan Vanden BusscheThe focus of our discussions was not on data models and databases in general, but mostlyon object-oriented data models. Speci�cally, two broad aspects were discussed, �rst thepractical point of view, then the theoretical point of view.Although most of the participants are not practitioners, we were able to make severalobservations on the practical use of object-oriented (OO) databases:1. It is easy to see that OOA, OOD, and OOP are in wide use in practice, but whenpeople using or applying OO technology need a database, they still switch to SQL,i.e., a relational one. So it seems that people are not attracted to OO databases.Although their concepts are powerful, systems incorporating these concepts are notmature enough.2. Many people feel the need for OO, but not for OO databases. Indeed, most databaseapplications are still happy with the tabular form of data representation o�ered by therelational model, possibly augmented with OO features. So it is not surprising thatmany people feel the next generation of database systems will be OR systems, whichcombine object and relational aspects.3. Personally, one of my favorite arguments is that CAx technologies, which were amongthe triggers for the development of OO database systems some 10 years ago, are stillnot using what is commercially available. And worse, present-day publications do noteven refer to these applications any more when discussing or illustrating features of amodel or a system. It should be mentioned, however, that there are a few exceptionsto this (e.g., CAD systems using an OO database).4. Relational databases have required lots of implementation e�orts and even considerable�nancial investments, so many companies hesitate to throw that away. A prominentexample is IBM, who recently \bought" an OO database system for incorporation intocompany projects, instead to develop one from scratch.5. In the world of OO databases, there are no people who do for this area what Codd andDate did for the relational �eld.A �nal remark in this context, not directly practical, is that it can even be observed that,at least at the moment, OO papers seem to vanish from the major database conferences.From a more theoretical perspective, the most interesting feature of this working groupwas that we had people among the participants representing six di�erent groups which havebe developing, or still develop, an OO data model. I now list these models (in random order)and indicate what their most distinguished features are, according to their inventors:41



1. GOOD (Antwerp): the emphasis is on graph-structured databases and on the idea ofpatterns: if access to an information system is desired, the user typically knows someproperties he or she is looking for, and searches for items in the systems following thatpattern.2. Troll (Braunschweig): this is actually not a data model in the strict sense; emphasizedis the view that objects are communicating processes. Troll combines this view withOO concepts (e.g., inheritance).3. COCOON (Ulm): here the focus is on operations; the model takes advantage of (nested)relational algebra and relations, but provides operations with more semantics. Also em-phasized is that the data model part and the operational part should not be separated.4. CHIMERA (Milano): here the focus is on rules and on the combination of deductiveand OO features; furthermore, it is on activeness in databases. Rules are used both forexpressing semantics in a data model, and for modeling active parts of a database.5. TM (Twente): here the motivating observation was that some form of mathematicsis missing in existing models. So the emphasis here is on a mathematically soundtype theory; in addition, the TM model knows various kinds of constraints, and treatsmethods as part of a database schema.6. Demeter (Boston): the major aspects is that binding of methods to classes is delayed,through the use of succinct (sub-)graph speci�cations.Other than the distinctive features of each model listed above, all these (and even othermodels not mentioned here) have a number of commonalities, which indicates that a conver-gence in this area is in sight. However, it seems important that researchers in the area do notget blinded by OO stu�, thereby forgetting about core database features:� Contrary to programming languages, database systems are able to do optimization; inparticular, they can optimize access times to objects, which is irrelevant in programminglanguages.� Databases allow to share things between di�erent users or applications. This, in turn,requires high-level languages, which, as said, must then be optimizable.As a consequence, the current discussion about how to deal with methods in OO databasescan bene�t from remembering these basic aspects; indeed, methods in an OO database mighteven use a restricted language, as along as they are optimizable. A database method languageneeds not be computationally complete; that can be captured in the outside application.I mention that we also brie
y discussed views in OO databases, which are not simpleextensions of relational views since methods are present. An agreement seemed to exist onthat a view restricts database access: for methods, this can mean forbidding the use of somemethods, or the derivation of new methods (in a view) in terms of given ones.A general agreement was that the foundations of OO databases are still in their infancy.What will really happen in the future and survive from the developments and proposals sofar will, as usual, heavily depend on the commercial world. However, that should not keepacademia away from producing new ideas and experimenting with them.42



Working Group 6:Software Engineering ModelsChair: Sjaak BrinkkemperParticipants: Vytautas Cyras, Grit Denker, Juergen Ebert, Gregor Engels, Gerti Kappel,Boris Magnusson, Gianna Reggio, Wilhelm Schaefer, Silke Seehusen, Diana Sidarkevicuite,Bernhard Thalheim, Peter Wegner, Roel Wieringa and Andreas ZamperoniOptimal set of OO speci�cation techniquesFirst, the motivations for splitting the complete system speci�cation into several partialspeci�cations were discussed. This splitting, also called factorization, can be according tovarious stages in the systems life-cycle: the horizontal factorization, or according to the systemperspectives: the vertical factorization. There are several motivations for factorizations:� Reduction of working complexity.� Visual (graphical) restrictions in modelling.� Distinct aspects to be modelled.� Communication medium.� Support for the abstraction and information gathering processes.For one system it turns out that there exist di�erent suitable factorizations of the spec-i�cation. The choice for the most appropriate one is made by development team in
uencedby the application domain characteristics and the functionality of the design tools. Thephenomenon of factorization is also present in other engineering areas, such as mechanicalengineering, civil engineering, and architecture. The di�erent specialties in the design team(e.g. database designers and user-interface designers) need their own formalisms.The optimal set of speci�cation types gave four di�erent viewpoints:1. Conceptual viewpoint (Roel Wieringa): structure, dynamics, and communication2. Design process viewpoint (Peter Wegner): structure, dynamics and functional3. Systems development viewpoint (Sjaak Brinkkemper): instance, class structure, lifecycle, subsystems, class communication, event triggering, functionality, implementationsystem4. Teaching viewpoint (Juergen Ebert): the paradigms of: entity relationship, data 
ow,control 
ow, state transition, and logicThe core of speci�cation was discussed in depth. The suitability of functional model bymeans of Data Flow Diagrams was questioned. The necessity of tools for the simulation andanimation of dynamic speci�cations was generally accepted. Furthermore, experience showsthat an intermediate speci�cation level above the level of object classes is needed to obtainan overview of the system structure. 43



Tools support to show the multiple views on screen and to record accordingly in repository.Procedural support for the assistance of designers during the speci�cation process can beincorporated in the tool as well. From the viewpoint of teaching the toolkit approach wasadvocated. This toolkit approach implies that designers are able to work with a set of highquality speci�cation formalisms that can be employed according to circumstances and to theapplication domain.OO metricsThere is little experience with quality metrics for object oriented designs. Booch men-tions: coupling, cohesion, su�ciency, completeness and primitive, but gives no measurementfunction. Furthermore, all but coupling are qualitative metrics.Chidamber and Kemerer [1] have proposed a set of OO metrics. They have not collectedactual numbers for the metrics yet, so these have not been validated. The proposed metricsare among others: depth of inheritance tree, number of children, coupling between objects,response for class, weighted methods per class, lack of cohesion in methods, object-to-rootdepth, object-to-leaf depth, fan-in/fan-out, and used-by/uses relationships of objects.Metrics on complexity of a speci�cation technique and for the aggregate level of a completemethod are under development. In this case concrete �gures have to be evaluated in order toestablish insight.We ended with some wise words on the dangers of metrics. Metrics should not substitutethinking. Moreover, it makes no sense to apply metrics that are based on poor knowledge.[1] Shyam R. Chidamber, Chris F. Kemerer: A Metrics Suite for Object Oriented Design.IEEE Transactions on Software Engineering, vol. 20, no. 6, June 1994, pp. 476-493
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