Hans-Dieter Ehrich, Gregor Engels,
Jan Paredaens, Peter Wegner (editors):

Fundamentals of Object-Oriented Languages,
Systems, and Methods

Dagstuhl-Seminar-Report 95
22.-26.8.94 (9434)

DAGSTUHL SEMINAR
ON

Fundamentals of Object-Oriented Languages, Systems, and Methods

Organized by:

Hans-Dieter Ehrich (Technische Universitat Braunschweig, Germany)
Gregor Engels (Leiden University, The Netherlands)
Jan Paredaens (University of Antwerp, Belgium)
Peter Wegner (Brown University, Providence, USA)

Schlo Dagstuhl, August 22 - 26, 1994

Contents

1 Preface

2 Final Seminar Program

3 Abstracts of Presentations

Typing issues related to
Herman Balsters

object-oriented queries

FEquivalences among conjunctive queries involving object creation

Jan Van Den Buss

Method Engineering of Object-oriented Analysis and Design Methods: Concept Ana-

che . .. e

lysis and Method Assembly
Sjaak Brinkkemper oo o L
Transactions in Object-Oriented Specifications

Grit Denker . . .

Structural and Behavioral Views of OMT-Classes

Jirgen Ebert . .

Distribution and Concurrency without Tears
Hans-Dieter Ehrich o
Coordination Constraints

Gregor Iingels . .

A New Type Theoretic Approach to Objects

Radu Grosu . . .

The Chimera Object-Oriented Data Model

Giovanna Guerrini

Object Creation in Databases

Mare Gyssens . .

A Meta-language for Representation of Fuvolution Invariants in OODB

Hele-Mai Haav .

The ODMG-93 Standard vs. Object-Oriented Database Theory

Andreas Heuer .

The Advocatus Diaboli of Object-Oriented Development

Gerti Kappel . .
Generic Update Operati
Christian Laasch

ons for Objectbases

Foundations of Adaptive Software

Karl J. Lieberherr

10

10

10

11

12

13

13

14

14

15

15

16

16

17

18

19

Incremental Specifications for Abstract Object-Oriented Modelling

Gianna Reggio

Inheritance Conditions for Object Life Cycle Diagrams

Gunter Saake oL,
Group-Oriented Architecture Development

Wilhelm Schafer

Inheritance of Object Behavior: Fxtension and Refinement of Object Life Cycles

Michael Schrefl

Fundamental Concepts of Object-oriented Databases

Bernhard Thalheim

Database Applications of Reflective Programming

Gottfried Vossen

Ezxploring the Foundations of Interactive Computing

Peter Wegner

A Flexible Framework for Formal and Informal Conceptual Modeling

Roel Wieringa

4 Summary of Working Groups
Working Group 1: Inheritance - Covariance vs.

Contravariance

Working Group 2: Observing Behavior of Objects

Working Group 3: Object Fvolution
Working Group 4: Class Organization
Working Group 5: Database Models
Working Group 6: Software Fngineering Models

5 List of Participants

19

20

21

21

22

24

24

25

27
27
29
33
36
40
42

45

1 Preface

During the last decade, there has been progress within the object-oriented community in
agreeing on what object-orientedness means. The role of object identity, specialization, inher-
itance, and dynamic binding have been examined. However, a careful look at articles written
by people with a theory, programming language, database, and software engineering back-
ground shows that the semantical understanding of the same features still differs considerably.
A well-known example is the feature of inheritance, which has quite a different meaning for
persons from the database community with a semantic data model background and persons
from the programming language community with a compiling technique background. This
observation also applies to the literature on object-oriented software development methods.
Here, object-oriented analysis and design methods are often heavily influenced by semantic
data modelling concepts. An implementation of an object-oriented design by an object-
oriented programming language usually causes more difficulties than expected although the
“same” object-oriented paradigm is used.

Even when there is agreement on terminology, there are legitimate differences in per-
spective among different object-oriented research communities. It was the intention of this
seminar to clarify differences in terminology as well as to clarify legitimate differences in per-
spective. The seminar brought together an approximately equal number of researchers from
each of these four areas and was being jointly organized by four organizers representing each
of the four areas:

e theoretical foundations of object-orientedness (H.-D. Ehrich)
e object-oriented programming languages (P. Wegner)
¢ object-oriented database systems (J. Paredaens)

e object-oriented software development methods (G. Engels)

This gathering of experts, working in the “same” field within computer science, offered an
excellent opportunity to discuss and understand the differences, similarities, and commonal-
ities of basic notions within the object-oriented world. In addition, the specific atmosphere
of Schlof Dagstuhl gave new impulses to already existing cooperations and stimulated new
“interdisciplinary” research in the whole range of object-orientedness.

This booklet summarizes the presentations and discussions during the seminar. It com-
prises the final seminar program, abstracts of all (morning) talks, summaries of all (afternoon)
workshops, as well as a list of the participants.

Hans-Dieter Ehrich Gregor Iingels Jan Paredaens Peter Wegner

2 Final Seminar Program

9:00

Monday, August 22, 1994

Opening Remarks
Gregor Iingels, Germany

Session 1, 9:30 - 12:30
Chair: Gregor Engels

9:30

10:00

10:30

11:00
11:30

12:00

What comes after Object-Oriented Programming

Peter Wegner, USA

Fundamentals of Adaptive Object-Oriented Software

Karl Lieberherr, USA

Pitfalls and Possible Solutions of Object-Oriented Development
Gerti Kappel, Austria

BREAK

Distribution and Concurrency without Tears

Hans-Dieter Ehrich, Germany

A Method for Specifying Conceptual Models of Data Processing Systems
Roel Wieringa, The Netherlands

Working Groups, 14:00 - 18:00

14:00
Chair

15:00
15:30

Discussion about Topics
Peter Wegner

BREAK
Parallel Working Groups:

WG 1: Inheritance: Covariance vs. Contravariance

Chair: Roel Wieringa, The Netherlands
WG 2: Observing Behavior of Objects

Chair: Gunter Saake, Germany

Tuesday, August 23, 1994

Session 2, 9:30 - 12:30
Chair: Hans-Dieter Ehrich

9:00

9:40

10:20

11:00
11:20

12:00

Coordination Constraints

Gregor Iingels, The Netherlands

ODMG-93 Standard vs. Object-Oriented Databases Theory
Andreas Heuer, Germany

Fundamentals of Object-Oriented Database Models
Bernhard Thalheim, Germany

BREAK

Incremental Specifications for Abstract Object-Oriented Modeling
Gianna Reggio, [taly

Testing Fquivalence and Containment of Database Queries Involving
Object Identifier Creation

Jan van den Bussche, Belgium

Working Groups, 14:00 - 18:00

14:00

Chair:

15:00
15:30

Plenum
Peter Wegner

BREAK
Parallel Working Groups:

WG 3: Object Fvolution
Chair: Roel Wieringa, The Netherlands

WG 4: Class Organization
Chair: Karl Lieberherr, USA

Wednesday, August 24, 1994

Session 3, 9:30 - 12:30

Chair: Jan Paredaens

9:00

9:40

10:20

11:00
11:20

12:00

The Chimera Object-Oriented Data Model
Giovanna Guerrini, Italy

Typing Issues Related to Object-Oriented Queries
Herman Balsters, The Netherlands

Structural and Behavioral Views on OMT-Classes
Jirgen Ebert, Germany

BREAK

Inheritance Conditions for Object Life Cycle Diagrams
Gunter Saake, Germany

Object Creation in Databases

Mare Gyssens, Belgium

++x AFTERNOON EXCURSION # *

Thursday, August 25, 1994

Session 4, 9:30 - 12:30
Chair: Gerti Kappel

9:00

9:40

10:20
10:20

11:00
11:20

12:00

Method Fngineering of Object-Oriented Analysis and Design Methods:
Concept Analysis and Method Assembly

Sjaak Brinkkemper, The Netherlands

On Reification in Object-Oriented Specification

Grit Denker, Germany

A Meta-Language for Representation of Fvaluation Invariants in OODB
Hele-Mai Haav, Estonia

BREAK

Inheritance of Object Behavior: Frxtension and Refinement of Object
Life Cycles

Michael Schrefl, Germany

Database Applications of Reflective Programming

Gottfried Vossen, Germany

Working Groups, 14:00 - 18:00

14:00 Plenum
Chair: Peter Wegner

15:00 BREAK
15:30 Parallel Working Groups:

WG 5: Database Models
Chair: Gottfried Vossen, Germany

WG 6: Software Engineering Models
Chair: Sjaak Brinkkemper, The Netherlands

Friday, August 26, 1994

Session 5, 9:30 - 12:00
Chair: Peter Wegner

9:00 A New Type-theoretic Approach to Objects
Radu Grosu, Germany
9:30 Group-Oriented Architecture Development
Wilhelm Schaefer, Germany
10:00 Generic Update Operations for OODB
Christian Laasch, Germany

10:30 BREAK
Working Groups, 11:00 - 12:00

14:00 Plenum

12:00 Closing Remarks
Gregor Iingels

10

3 Abstracts of Presentations

The following abstracts appear in alphabetical order of the speakers.

Typing issues related to object-oriented queries

Herman Balsters

University of Twente
Enschede, The Netherlands

In the various proposals for O-O data models, there also occur those employing set-
constructs, especially in the case that query results are of importance. In these data models
there is no consensus —as yet— on how to type sets; i.e. each data model has its own way to
type check correctness of set-membership. In some cases it is allowed to collect expressions
that have different minimal types into a set. Such sets are called heterogeneous, as opposed
to homogeneous sets where it it is allowed only to collect expressions of exactly the same
minimal type. In the paper “A semantics of O-O sets” by Balsters & de Vreeze (cf. [DBPL91],
Nafplion, Greece) it is argued that the correct way to handle O-O sets is to only allow for
homogeneous sets. In that paper we worked with greatest-lower-bound (GLB) and least-
upper-bound (LUB) constructs, as given in the basic type system of Cardelli. In order to
give further evidence that the homogeneous approach is indeed the correct way of dealing
with O-O sets, we have taken up the issue again by looking into alternative type systems. In
order to investigate whether it is in some way possible to define a type system allowing for
heterogeneous sets, we employ the notion of disjunct sums (A + B, where A B are types).
The idea is that the A + B -construct could replace the LUB(A,B)-construct as a candidate
for typing heterogeneous sets. It turns out that the more subtle construct A + B (w.r.t.
the much coarser construct LUB(A,B)) cannot be included in the type system without also
including certain additional axioms. These additional axioms, concerning the 4+ -construct,
seem to be rather ad-hoc and somewhat unnatural (both in form and content), thus making
such a type system unappealing to use. There also remains a formal argument in favor of
homogeneous sets (cf. [DBPL’91]) that also makes a type system employing + -constructs
and sets hard to maintain.

Equivalences among conjunctive queries involving object
creation

Jan Van Den Bussche!
University of Antwerp (UIA)
Antwerp, Belgium

Classical conjunctive queries on relational databases have been well-studied. The proper-
ties of equivalence and subsumption between conjunctive queries are decidable by testing for

! This is joint work with Riccardo Torlone, IASI-CNR, Rome, Italy

11

the existence of a homomorphism. These decisions have NP complexity. In a 1991 PODS pa-
per, Hull and Yoshikawa considered the problems of testing equivalence of conjunctive queries,
or more generally unions of conjunctive queries, extended with the possibility of creating new
objects. This problem is considerably more intricate than the classical problem. In partic-
ular, the existence of a classical homomorphism is no longer necessary but only sufficient
for subsumption between queries. Hull and Yoshikawa were able to establish decidability of
equivalence in the special case of "isolated object creation”. Their approach, however, is not
based on the idea of homomorphisms and does not yield tests with NP complexity. In this
work, we try to generalize the notion of homomorphism to take into account the intricacies
involved in the creation of new objects in terms of existing objects. Our goal is to thus ob-
tain NP tests for containment, and also equivalence, between conjunctive queries with object
creation.

Method Engineering of Object-oriented Analysis and Design
Methods: Concept Analysis and Method Assembly

Sjaak Brinkkemper?
Center of Telematics and Information Technology
University of Twente
Enschede, The Netherlands

Method Engineering is the engineering discipline of methods, techniques and tools for
systems development. We report about an in-depth analysis of ten generally accepted O-O
methods, available in textbooks. The comparison is performed by method modelling, resulting
into detailed information on the concepts of the methods in Concept Structure Diagrams, and
on the steps of the procedure of the methods in Task Diagrams. Extensive comparison tables
of steps, concepts, techniques are presented. From the comparison it can be concluded that
the contemporary methods, although diverse, possess a common kernel of basic object oriented
concepts. The process models of the methods turn out to be very rudimentary exposing the
limited experience with the methods. The complexity of the various graphical specification
formalisms of the methods indicate the absolute necessity of advanced tool support when the
methods are to be applied in practice.

Method fragments, being coherent parts of methods, can be stored in a so-called method
base for method engineering purposes. We discuss the selection and assembly of method
fragments into a situation specific method. The architecture of the Computer Aided Method
Engineering tool (CAME tool) is presented.

Literature:

S. Hong, G. van den Goor, S. Brinkkemper, A Formal Approach to the Comparison of
Object- Oriented Analysis and Design Methodologies, Hawaii International Conference on
System Sciences (HICSS) (IEEE Computer Society Press, Hawaii) 1993, Vol. IV, pp. 689-
698.

2This work is jointly performed with Frank Harmsen, Han Oei, Arjan Bulthuis (all Univ. Twente, NL),
Shuguang Hong (Georgia State Univ, USA) and Geert van den Goor (Andersen Consulting, NL).

12

F. Harmsen, S. Brinkkemper and H. Oei, Situational Method Engineering for Information
System Project Approaches, To appear in: T.W. Olle et.al. (Eds.), Proceedings of CRIS’94,
North-Holland, September 1994.

F. Harmsen, S. Brinkkemper and H. QOei, A Language and Tool for Situational Method
Engineering for Information System Project Approaches. To appear in the Proceedings of
1SD’94 Conference, Slovenia, September 1994.

Transactions in Object-Oriented Specifications

Grit Denker?
Technische Universitdt Braunschweig
Braunschweig, Germany

The formal step by step development of implementations from specifications is necessary
to allow the incremental description of large software systems and hence split the software
development process in tractable portions. Due to the complex notion of objects as units of
structure and behavior the refinement process has to be reconsidered in the object-oriented
framework. Apart from refining structure the behavioral part of objects give rise to refine
actions by transactions. Assuch the refinement step possibly comprises a change of granularity
with respect to the design process. We will refer to this as (action) reification. Referring
to information systems as application domain synchronization problems arise when different
transactions access shared data. Because of this reification of actions by transactions forces to
take care of concurrency control issues. We aim at introducing transactions in object-oriented
specifications for supporting action reification and outline a semantics for it.

In particular, we have the most liberal composition of transactions resulting from a reifica-
tion process in mind. More precisely, imagine two abstract actions each reified to a sequence
of concrete actions, i.e, transactions. It is too strict to force the sequential execution of these
abstract actions to be reified only through the sequential composition of the corresponding
transactions. There may exist concrete actions in the transactions which do not access the
same sources, and, therefore, they are independent and may be executed in arbitrary order
without changing the overall effect. Our aim is to provide a semantic framework in which
reification of actions is treated as liberal as possible with respect to serial composition of
transactions. We propose a semantics based on event structures which appropriately explain
the semantics of abstract objects as well as the one of reified objects, and, moreover, liberalizes
the sequential composition of transactions.

?This is joint work with Hans-Dieter Ehrich, Technical University Braunschweig.

13

Structural and Behavioral Views of OMT-Classes

Jiirgen Ebert?
Universitidt Koblenz
Koblenz, Germany

The dynamic behavior of objects of a given class may be described by a state diagram
(STD), which specifies the allowed sequences of method calls. Such an STD, sometimes called
life cycle diagram, has to be compatible with the STDs of its super- and subclasses.

It is shown that the existence of an homomorphism from the subclass STD to the superclass
STD is a sufficient criterion for the compatibility of behavior descriptions with respect to
inheritance.

Some examples are given including the case of restriction views to classes, which turn out
to be (virtual) superclasses where the homomorphisms are a projections.

Distribution and Concurrency without Tears

Hans-Dieter Ehrich®
Technische Universitdt Braunschweig
Braunschweig, Germany

Fully concurrent models of distributed object systems are specified using linear temporal
logic that does not per se cope with concurrency. This is achieved by employing the principle
of local sequentiality: we specify from local viewpoints assuming that there is no intra-object
concurrency but full inter-object concurrency. Local formulae are labelled by identity terms.
For interaction, objects may refer to actions of other objects, e.g., calling them to happen
synchronously. A locality predicate allows for making local statements about other objects.
The interpretation structures are global webs of local life cycles, glued together at shared
communication events. These interpretation structures are embedded in an interpretation
frame that is a labelled locally sequential event structure. Two initiality results are presented:
the category of labelled locally sequential event structures has initial elements, and so has the
full subcategory of those satisfying given temporal axioms. As in abstract data type theory,
these initial elements are obvious candidates for assigning standard semantics to signatures
and specifications.

*This is joint work with Gregor Engels, Leiden University, The Netherlands
®This is joint work with Amilcar Sernadas, Cristina Sernadas, Gunter Saake and Grit Denker

14

Coordination Constraints

Gregor Engels®
Leiden University
Leiden, The Netherlands

Nowadays object-oriented analysis and design methods propose to split the specification of
a system into several parts, where each part describes a certain perspective. We follow this line
and present the object-oriented specification language SOCCA (Specification of Coordinated
and Cooperative Activities). A SOCCA specification consists of

e a class diagram to describe the structural part of objects and their interrelations with
other objects,

e state transition diagrams to describe the external behavior (”life cycle”) of objects,
e an interaction diagram to describe the "uses” relationship between classes, and

e (once more) state transition diagrams to describe the internal behavior ("realization”)
of operations.

In addition to most of the existing approaches, we also model the coordination of object
behavior explicitly. This is done by splitting the internal behavior descriptions into subdi-
agrams and by controlling the transition from one subbehavior to another by coordination
constraints added to the external behavior description of objects.

A New Type Theoretic Approach to Objects
Radu Grosu

Technische Universitat Miinchen
Miinchen, Germany

In this talk we present a novel, implicitly typed A—calculus for objects, by viewing these
as extendible case—functions rather than as extendible records.

This novel view, allows to unify the concepts of function, object and process into one
concept, that of a functional entity which is self contained and provided with a uniform
communication protocol. We use this view to give a formal foundation for both sequential
and concurrent object oriented languages. In the later case, we view objects as case—functions
communicating asynchronously over unbounded channels.

Our calculus is a conservative extension of the polymorphic type system of Aiken and
Wimmers, to include case—function extension and lazy data types. Its soundness is proven
with respect to a semantical model based on ideals. Subtyping and case—function extension
play a central role in our modeling of generalization/specialization and inheritance. To model
self and self—class, our calculus includes recursive types. These are also necessary to model
streams and provide the theoretical background for passing streams themselves as messages.
We use higher order streams to express mobile systems.

5This is joint work with Luuk Groenewegen, Leiden University, The Netherlands

15

The implicitly typed A—calculus is accompanied with a decidable type inference algorithm,
which always delivers the least type of a term (if this exists). An implementation of this
algorithm was written in Common Lisp.

The Chimera Object-Oriented Data Model

Giovanna Guerrini’

Universita di Genova
Genova, Italy

Chimera is a novel database language that integrates object-oriented, deductive and active
capabilities, developed as part of ESPRIT Project 6333 IDEA. Chimera supports all the
concepts commonly ascribed to object-oriented data models, such as object identity, complex
objects, user-defined operations, classes and inheritance. Moreover it provides capabilities
for expressing deductive rules, that can be used to define view and integrity constraints, to
express the implementation of derived features and to formulate queries. Finally, Chimera
supports a powerful language for defining triggers.

In this talk, the Chimera language is presented and its innovative features are pointed out.
A particular emphasis is given to the Chimera data model. The most relevant characteristics
of this data model are (constrained) user-defined types, value classes, class features, implicitly
populated classes, intensionally defined attributes and declarative method implementation.
Then, the most relevant issues in the formalization of the Chimera data model are discussed.
These issues are mainly related to heterogeneous structures, metaclasses, [SA hierarchies and
typing. The main contributions of this formalization work are a clear definition of classes
and schema, a precise characterization of type refinement and the definition of a set of typing
rules for declarative expressions (terms, formulas and rules). Finally, our current directions
in enriching the model are sketched, discussing features like objects belonging to several most
specific classes, constraint and trigger redefinition and support for composite objects.

Object Creation in Databases

Marc Gyssens®
University of Limburg
Limburg, Belgium

Two properties that are often desired in object-oriented databases are the availability
of a complete language to manipulate the data and the possibility to create new objects.
Completeness issues have been investigated at length for data models in which all entries in the
result of a query are already present in the input. In the presence of object creation, however,
transformations become non-deterministic and require adapted completeness criteria. We
discuss determinacy, constructiveness, semi-determinism, and swap-genericity, and point out

"This is joint work with Elisa Bertino, Universitd di Milano, and René Bal, University of Twente
8 This is joint work with with Marc Andries, Leiden University; Jan Van den Bussche, University of Antwerp;
and Dirk Van Gucht, Indiana University

16

the connections between these notions. We also discuss to which extent complete languages
exist for these various notions.

A Meta-language for Representation of Evolution Invariants
in OODB

Hele-Mai Haav®
Estonian Academy of Sciences
Talinn, Estonia

Class lattice design is the most important step of OO database design process. In order
to keep the database schema correct and consistent during its evolution several constraints
have to be checked dynamically.

We propose a logic based meta-language for representing constraints on class and object
lattices and provide a set of corresponding inference rules. The meta-language [1] differs from
other logic based languages for complex objects in its intention to be used on the top of the
00 language NUT and its tight relationships with underlying OO specifications of objects
and classes.

From the logical point of view the meta-language is a very simple language based on Horn
clauses without function symbols in order to represent class and object lattices specified by
the OO language NUT. Notions of class atoms and superclass atoms are introduced to the
meta-language for mapping concepts from the OO language to the meta-language. These
atoms are generated automatically during the compile time of class definitions using certain
transformation rules defined in [2].

We provide a set of inference rules for class and object lattice constraints as well as for
evolution invariants.

The meta-language will be prototypically incorporated to the OO language and environ-
ment NUT developed at the Institute of Cybernetics of the Estonian Academy of Sciences

[3].
References:

1. Haav H-M , A Meta-language for Specification of Evolving Class and Object Lattices
in OODB, In: Proceedings of the Second International Fast-West Database Workshop, Sept.
25-28, 1994, Klagenfurt, Austria (to appear)

2. Haav H-M. and Matskin M., Using Partial Deduction for automatic propagation of
changes in OODB, In: Information Modelling and Knowledge Bases IV: Foundations , Theory
and Applications, IOS Press, Amsterdam, 1993 pp 339-353

3. Tyugu E., Matskin M, Penjam J, Fomois P., NUT- An object-oriented language,
Computer and Al 1986, 6:521-542

®This is joint work with M. Matskin, Tallinn

17

The ODMG-93 Standard vs. Object-Oriented Database
Theory

Andreas Heuer
University of Rostock
Rostock, Germany

Since end of 1993, there is a standard for an object-oriented database model and associated
object definition and query languages: the ODMG-93-Standard [3]. Since this standard was
mainly initiated by vendors of existing OODBMS, the concepts of some of these existing
systems (e.g. ObjectStore and O3) are mixed up.

As one result of this process, the standard has become inconsistent (e.g. the definition
of inheritance and keys), too weak (e.g. the query semantics and all dynamic aspects) and
not “safe” (e.g. the usage of keys and a proposed extension for multiple type membership of
objects may cause problems).

A formal OODB model (following the lines of Beeri [1] consists of classes and types
containing objects and values which are organized in class and type hierarchies. While a class
hierarchy is defined by subsetting of extents of classes, the type hierarchy is defined in the
Cardelli-Wegner style [2]. A prerequisite for the definition of class hierarchy is the multiple
membership of objects in class extents.

The ODMG-Standard mixes up the two definitions even though objects can reside only
in one class up to now. This is one of the inconsistencies in the standard.

In a formal OODB model, a query language is closed and adequate [4], that is, given as
an input extents of classes and types organized in hierarchies, the result of a query should
also be extents of derived classes and types which are integrated into the existing hierarchy.

This is not possible with the OQL language of the standard which only allows to collect
sets of objects of a given class or values of some type. Object creation and derivation of
classes is not possible.

The ODMG-standard introduces keys as a means to identify objects not even by the
(invisible) object identifier but also by values. Since keys can be defined via component
classes, objects can be identified by values of component objects. There are situations where
the identification of objects is not possible though there are keys defined for each class: this
is caused by class-component class relationships with cycles or even more subtle structures.
There are solutions for this problem in OODB theory, e.g. the usage of keys in the OSCAR
OODBMS or the criteria introduced by Beeri and Thalheim (see this volume).

[1] C. Beeri. A formal approach to object-oriented databases. Data and Knowledge Engineer-
ing, 5(4):353-382, 1990.

[2] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4):471-522, December 1985.

[3] R.G.G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan-Kaufmann,
San Mateo, CA, 1994.

[4] A. Heuer and M.H. Scholl. Principles of object-oriented query languages. In Proceedings
GI-Fachtagung “Datenbanksysteme fiir Biro, Technik und Wissenschaft”, Kaiserslautern,
pages 178-197. Springer, Informatik-Fachbericht 270, 1991.

18

The Advocatus Diaboli of Object-Oriented Development

Gerti Kappel
University of Linz
Linz, Austria

Object-oriented development has to overcome two currently existing obstacles, one tech-
nical by nature and the other organizational, to prove success in the large.

The technical obstacle has three causes. Firstly, some of the concepts of object-oriented
analysis methods and object-oriented programming languages comprise subtle yet severe dif-
ferences. A prominent example is the use of specialization inheritance during analysis and the
use of specification inheritance or even code inheritance during implementation. Secondly,
the almost exclusive concentration on the concept of an “object” forces that everything has
to be expressed in terms of encapsulated objects. However, there are situations which de-
mand further concepts, too. For example, complex operations involving several object classes
should be modeled independently of a particular object class. Another example concerns the
modeling of local object behavior versus the modeling of global system behavior. Whereas
the former comprises the possible life cycles of objects, the latter should be stated in a more
flexible manner, for example in terms of production rules. A third example concerns the infor-
mation hiding aspect of objects. To be able to decrease the complexity of an object-oriented
system it is necessary to resolve the coupling between objects beforehand. This could be done
easily if the required interface, i.e., the operations used from other objects, would be part of
the publicly visible interface of objects. Lastly, there is still a gap between the understanding
of objects in programming languages and in database systems. For example, the notion of an
active object as having an own thread of control in programming languages is different to the
notion of an active object as reacting according to some predefined ECA rules in database
systems.

The organizational obstacle is due to a lack of new project management principles. These
have to take into account that object-oriented development is development by investment,
that new job profiles are necessary for proliferation of a no-not-invented-here syndrome, and
that we need new metrics like the lines-of-reused-code metric, to mention just a few.

Resolving these obstacles would make object-oriented development a real candidate for
building quality systems.

Generic Update Operations for Objectbases

Christian Laasch!?
University of Ulm
Ulm, Germany

In OODBMSs type-specific methods are used for manipulating objects, in order to main-
tain the consistency of the database. This is, however, of little help for the method implemen-
tor as far as the model-inherent constraints are concerned. We propose a set of generic update
operations, including operations for object evolution that maintain integrity constraints that

19This is joint work with Marc H. Scholl, University of Ulm, Ulm, Germany

19

can be expressed in database schemas. On the one hand integrity constraints such as types,
class memberships, subtype-, subclass-relationships, class predicates, and inverse functions
are kept consistent after update operations, on the other hand the capabilities to express se-
mantics in a schema are chosen such that such a set of update operations exists. The update
operations can be used for implementing type-specific update methods or directly by appli-
cations. We present an approach to consistently define update semantics for an object model
including classes, views, and variables that is based on necessary and sufficient predicates
akin to defined concepts in KL-ONE style languages.

Foundations of Adaptive Software

Karl J. Lieberherr!!
Northeastern University

Boston, USA

We present shortcomings of object-oriented programs and queries (redundancy and in-
flexibility) and we introduce adaptive programs to overcome the shortcomings. An adaptive
program is a program which adjusts automatically to changing contexts. They may be: se-
quential behavior, structure, distribution, concurrency, etc.

Adaptiveness is achieved by splitting programs into loosely coupled, cooperating contexts.
Changes to one context may then preserve, due to the loose coupling between contexts, the
intent of the other contexts, leading to adaptiveness. One specific form of adaptiveness is
achieved through succinct subgraph specifications and by using only two contexts: sequen-
tial behavior and structure. Adaptive programs of this form are expressed at a high level
of abstraction, minimizing information about the implementation in the form of a specific
class structure. The programs are called adaptive since they work for infinitely many class
structures.

Adaptive programs apply Polya’s inventor paradox to programming: Instead of developing
a set of specific classes to solve a problem, we implicitly develop a family of sets of classes. A
specific set of classes to solve the given problem is obtained through a customization process.

For further information, see Comm. ACM, May 94, page 94.

Incremental Specifications for Abstract Object-Oriented
Modelling

Gianna Reggio!?
Universita’ di Genova
Genova, Italy

We present a novel approach showing that classical algebraic techniques can support the
incremental specification of classes of objects.
The approach is in three parts:

" This is joint work with Cun Xiao, Jens Palsberg and other member of the Demeter Research Group.
12This is joint work with Egidio Astesiano, University of Genova, Italy

20

e object model
e basic class specifications

e incremental specifications.

Object model Commonly to many approaches (starting with CCS), an object is modelled as
a labelled transition tree, whose labels correspond to method invocation and acceptance
and whose nodes are the local state configurations. As it is well known, that kind of
model easily supports concurrency and distribution. The encapsulation of the local
state is provided by an appropriate observational semantics (bisimulation) forgetting
the nodes.

Here the key new feature in our approach, supporting incremental specifications (by
inheritance), is the abstract canonical form we give to the states, which in a sense is a
very abstract generalization of the notion of record.

Basic class specifications A concrete class is specified as a many sorted algebra with sorts,
whose elements are the states and the labels respectively, and a ternary predicate giving
the labelled transitions. The specification takes the form of a conditional specification,
whose axioms for the transitions follow a special pattern.

Incremental specifications An inheritance operation over specifications is defined with its
semantic model. Then “incremental specifications” are defined inductively by inheri-
tance on the basis of basic class specifications. Key property: the incremental specifi-
cations enjoy a property, persistence of the properties of the inherited symbols, which
tries to capture what it is preserved through the inheritance operation.

Inheritance Conditions for Object Life Cycle Diagrams

Gunter Saake!?
Otto-von-Guericke Universitdt Magdeburg
Magdeburg, Germany

Inheritance is the main principle in object-oriented design methods to support structur-
ing and reuse of object behavior descriptions. Most proposals restrict the (formal) use of
inheritance to method interfaces and method effect specifications. We propose to extend the
inheritance relation to cover whole object life cycles, i.e., to long term object behavior. This
inheritance relation corresponds to IS-A inheritance in object-oriented data models. An in-
teresting question is to lift the inheritance relation from the level of object life cycles to the
level of life cycle descriptions, for example graphical notations like state transition automata.

The object-oriented specification language TROLL supports behavior inheritance by in-
cluding (temporal) logic behavior description of the superclass into the objects of the subclass.
This corresponds to a subset relation on object traces, which in fact is a special case of an

!3The current work on the TROLL language is joint work with T. Hartmann, P. Hartel and J. Kusch. The
discussion on object life cycle diagram inheritance is result of a joint research effort with R. Feenstra, P. Hartel,
R. Jungclaus and R. Wieringa.

21

embedding graph morphism. The talk discusses to lift the idea of having graph morphisms as
inheritance condition up to the level of behavior descriptions. It is shown that this criterion
gives an intuitively acceptable condition to check two given state transition automata whether
one of them inherits the other description. After sketching the basic idea of inheriting object
life cycles, we give inheritance conditions and inheritance-preserving construction operators
for the graphical notation used in the OMT dynamic model for specifying life cycles.

This work was partially supported by CEC under ESPRIT WG 6071 IS-CORE 1II (Information
Systems — COrrectness and REusability), and under ESPRIT WG 8319 ModelAge (A Common Formal
Model of Cooperating Intelligent Agents).

Group-Oriented Architecture Development
Wilhelm Schéfer!?

Universitat Dortmund
Dortmund, Germany

The talk presents an architecture definition language (Module Interconnection Language).
The main new feature of this language are particular language constructs which are exploited
to support cooperative architecture development. A corresponding software process model
based on those features is presented. The suitability of an object-oriented database system
as the underlying implementation platform is discussed. Finally, the talk extends the idea
of “product-based” process modeling. It sketches the solution of the Merlin project which is
based on a dedicated, rule-based process model definition language and a set of predefined
so-called cooperation patterns. Similar to transactions, those patterns have a well-defined
synchronization policy which guarantees consistency of a software project but allow flexibility
in terms of defining sharing policies of software documents in a (large) software project.

Inheritance of Object Behavior: Extension and Refinement
of Object Life Cycles

Michael Schrefi'®
Universitat Linz
Linz, Austria

We discuss inheritance of object-life cycles in the realm of Behavior Diagrams[KS91],
which are based on Petri Nets. A behavior diagram of an object type represents the possible
life cycles of its instances by activities, states, and arcs corresponding to transitions, places,
and arcs of Petri Nets. Opposed to Petri Nets, an activity must be explicitly invoked on a
specific object resident in all pre-states of the activity; and, as activities are not instantaneous,
an object resides in an activity state for every activity which is currently performed on the
object.

' This is joint work with Wolfgang Emmerich and Stefan Wolf
1>This is joint work with Gerti Kappel, University of Linz

22

Object life cycles can be specialized in two ways: (1) by extension, which means adding
activities, states and arcs, and (2) by refinement, which means expanding activities and states
in subdiagrams.

A life cycle occurrence (LFO) of an object is a sequence of life cycle states (LF'S), each
being a set of states and activities, such that the transition from one LFS to the next one
reflects the start or completion of an activity.

The behavior diagram B’ of a subtype O’ of O consists at least of the activities, states
and arcs of the behavior diagram B of O (inheritance axiom).

B’ is a consistent extension of B, if every LCO of B’ from which all activities and states

added in B’ have been deleted is also a LCO of B.

Sufficient and necessary conditions for checking whether B’ is a consistent extension of B
exist, if only activities alive in the initial LF'S are considered and the inheritance axiom is
obeyed: B’ is a consistent extension of B, iff (1) no arc is added in B’ between two elements
which both belong to B and (2) an activity added in B’ does not have a state belonging to B
as pre- or post-state.

Behavior refinement is used in two ways: (1) for developing the behavior diagram of one
object type by stepwise refinement [Sch90], and (2) for refining activities and states, not yet
refined at a supertype, at a subtype.

Structured refinement primitives for states and activities together with sufficient rules for
consistently embedding refinements are presented.

[Sch90] Schrefl, M.: Behavior Modeling by Stepwise Refining Behavior Diagrams. Int.
Conf. on Entity-Relationship Approach, 1990.

[KS91] Kappel, G. and M. Schrefl: Object Behavior Diagrams. IEEE Int. Conf. on Data
Engineering, 1991.

Fundamental Concepts of Object-oriented Databases

Bernhard Thalheim
Cottbus Technical University
Cottbus, Germany

It is often claimed that object oriented databases overcome many of the limitations of the
relational model. However, the formal foundation of OODB concepts is still an open problem.
Even worse, for relational databases a commonly accepted data model existed very early on
whereas for OODBs the unification of concepts is still missing. During our talk we report our
first investigations on a formally founded object oriented databases.

A clear distinction between objects and values turns out to be essential in the OODM.
Types and classes are used to structure values and objects respectively. One important
concept of object oriented databases is object identity. The immutable identity of an object
can be encoded by the concept of abstract object identifiers. The identification problem
can be solved for classes with extents that are completely representable by values (value-
representable). Uniqueness constraints express equality on identifiers as a consequence of the
equality of some values or references.

23

The success of the relational data model is due certainly to the existence of simple query
and update languages. Preserving this goal in OODB is a serious goal. This property of
existence of generic update operations can be carried over to object oriented data models if
classes are value- representable.

One of the primary benefits that database systems offer is automatic enforcement of
database integrity. One type of integrity is maintained through automatic concurrency con-
trol and recovery mechanisms; another one is the automatic enforcement of user-specified in-
tegrity constraints. The maintenance problem is the problem how to ensure that the database
satisfies its constraints after certain actions. There are at present two approaches to this main-
tenance problem. The first one, more classical is the modification of methods in accordance
to the specified constraints. The second approach uses generation mechanisms for specified
events. Upon occurrence of certain database events like update operations the management
component is activated for integrity maintenance. The first direction did not succeed because
of limitations within the approach. The second one is at present one of the most active
database research areas.

Especially for active database systems rule triggering systems are used for integrity main-
tenance. However, this approach cannot succeed even for very simple schemata. During the
talk we demonstrate that the first approach can be extended to object oriented databases
using stronger mathematical fundamentals. We outline an operational approach based on the
computation of greatest consistent specializations.

This research shows that identification is one of the main properties for object oriented
databases. For the user the abstract identifier of an object has no meaning. Therefore, a
different access to the identification problem is required. The unique identification of an
object in a class leads to the notion of weak value-identifiability. It turns out that this notion
is equivalent to the notion of identifiability. A database instance is identifiable if the orbit
of each object in the database is trivial. This notion is weaker than the notion of value-
representability which is required for the unique definition of generic update operations.

References:
C. Beeri, B. Thalheim, Can I See Your Identification Please. Manuscript, Jerusalem-Cottbus,
1994.
K.-D. Schewe, B. Thalheim, Fundamentals Concepts of Object-oriented Databases. Acta Cy-
bernetica, 11, 1-2, 1993, 49 - 83.
K.-D. Schewe, B. Thalheim, J.W. Schmidt, I. Wetzel, Integrity Enforcement in Object-
oriented Databases. In ‘Foundations of Models and Languages for Data and Objects’ Mod-
elling Database Dynamics, Springer, 1993
K.-D. Schewe, J.W. Schmidt, D. Stemple, B. Thalheim, 1. Wetzel, A Reflective Approach to
Method Generation in Object-oriented Databases. Rostocker Informatik-Berichte, 14, 1992.

24

Database Applications of Reflective Programming

Gottfried Vossenl®
Universitat Minster
Miinster, Germany

We survey the use of reflection in various areas of computer science, with an emphasis
on the area of databases. Besides its exploitation in implementing object-oriented languages
and data models, little use of reflection has been made so far from a purely theoretical point
of view; indeed, the idea vastly appears in two approaches only: the reflective relational
machine of Abiteboul, Papadimitriou, and Vianu, and the reflective relational algebra of
Van den Bussche, Van Gucht, and Vossen (which subsumes a third approach by Ross on an
algebra). We give an overview of ideas, techniques, and results used and obtained for the
latter, and discuss various applications in which the reflective algebra appears to be useful.

Exploring the Foundations of Interactive Computing

Peter Wegner
Brown University

Providence, USA

A computation is ”interactive” if new information can be acquired and used during the
process of computation and "algorithmic” if it yields a unique result (postcondition) for
all input arguments (preconditions). The greater richness of interactive over algorithmic
behavior is demonstrated by showing both that the observable behavior of objects cannot
be expressed by algorithms and that life cycle requirements for programming in the large
are nonfunctional. Objects can exhibit ”passive” non-algorithmic behavior by ”echoing” non-
algorithmic input sequences or "active” non-algorithmic behavior that cannot be expressed by
algorithmic transformations of input messages to outputs. Software systems are not simply
large algorithms; they are interactive, open systems with non-algorithmic requirements and
non-algorithmic behavior.

Algorithms and objects both specify infinite observable behavior by finite imperative code
specifications. But the observable behavior of algorithms can, according to Church’s Thesis,
be specified by computable functions, while the observable behavior of objects cannot. The
non-formalizability of observable object behavior is a strength rather than a weakness, allow-
ing imperative object specifications to express richer behavior than formalizable algorithmic
specifications. Interactive systems may have formalizable behavior for specific tasks or clients,
but complete (fully abstract) observable behavior is too rich to be formalizable by functions
or first-order logic.

Objects are open systems that incrementally acquire and use new information, while
automata are closed systems with predefined input tapes. The delayed (unspecified) binding
time of inputs is crucial in causing objects to exhibit non-algorithmic behavior while predefined

1 ©Major portions of this talk are based on joint work with Jan Van den Bussche (University of Antwerp,

Belgium) and Dirk Van Gucht (Indiana University, USA).

25

inputs constrain automata to behave algorithmically. The ”proof” that objects exhibit non-
computable behavior when they "echo” non-computable input sequences is trivial. Examples
of "echo” systems include Simon’s "ant on a beach”, the Eliza program that simulates a passive
psychiatrist, and the agent who wins half the games in a simultaneous chess tournament by
echoing the moves of one player on the board of another. The "proof” that objects can
exhibit non-algorithmic transformational behavior is also straightforward. Milner gives a
version of this argument in his Turing lecture (CACM January 1993) and it has been part
of the folklore of concurrent programming for much longer. However, the implications of
the greater richness of interactive over algorithmic computation have not, to the author’s
knowledge, been previously explored.

The inherently non-algorithmic nature of interactive problem solving has radical con-
sequences for the theory of computation. Turing machines can no longer be considered a
universal model of computational behavior, while Church’s thesis loses its force because func-
tions are not rich enough to capture interactive computing. However, interactive problem
solving is shown to be the the computational counterpart of empirical modeling in the physi-
cal sciences and therefore as robust and respectable in its scholarly pedigree as the rationalist
algorithmic problem solving paradigm of logic and mathematics.

The correspondence of interactive models with open systems, programming in the large,
and empirical models indicates that interaction is as robust in its invariance for a variety
of definitions as algorithmic computability, and that canonical interaction machines playing
the role of Turing machines for interactive systems probably exist. The Pi calculus, which
is claimed by Milner to provide universal primitives for interaction, is a candidate univer-
sal interaction machine. The behavior analysis used to show that interaction is richer than
algorithmic computation can be adapted to show that empiricism is richer than rational-
ism, thereby settling a 2000-year-old fuzzy philosophical question by a precise computational
argument.

A Flexible Framework for Formal and Informal Conceptual
Modeling

Roel Wieringa
Free University
Amsterdam, The Netherlands

The research reported here has three goals: to show that there is progress in the field
of system development method research; to integrate formal and informal methods; and to
define a flexible method that can accommodate components of structured and object-oriented
methods. To this end, a framework is for system development methods is presented and a
general structure for conceptual models of external system behavior is given. MCM (Method
for Conceptual Modeling) is presented as an example method that fills in this framework and
satisfies the stated goals. It models external system behavior by means of various techniques
taken from structured and object-oriented methods: a function decomposition tree, context
diagrams, a class diagram, life cycle diagrams, a system transaction decomposition table and
a class dictionary. In addition to these techniques, MCM contains a variety of induction and

26

evaluation methods from structured and object-oriented methods, from formal specification
theory and from a philosophical analysis of the concepts involved. If required by the applica-
tion, a formal specification of external system behavior can be produced in LCM (Language
for Conceptual Modeling), a specification language based on order-sorted dynamic logic and
process algebra, which allows a precise and formal specification that corresponds to the in-
formal specification given by means of diagrams and tables. The talk ends with a discussion
of the role of formal specification in method building and model building.

27

4 Summary of Working Groups

Working Group 1:
Inheritance - Covariance vs. Contravariance

Chair: Roel Wieringa, The Netherlands

Participants: Herman Balsters, Sjaak Brinkkemper, Jan van den Bussche, Jiirgen Ebert, Gio-
vanni Guerrini, Marc Gyssens, Andreas Heuer, Gerti Kappel, Christian Laasch, Diana Sidark-
eviciute

This brief note summarizes the results of a discussion group on covariance and contravari-
ance in inheritance relations. Three questions were discussed, as summarized in the following
three sections. Only the outcome of the discussion is given, not the road leading to this
outcome.

1. What is the meaning of “inheritance”?

¢ Code inheritance; also known as implementation inheritance. It consists of reuse of
code, e.g. code import. It is a relation between specifications (at the textual level). It
can be shown that a queue specification can code inherit from a stack specification or
vice versa. Covariance and contravariance have no meaning in this kind of inheritance.

¢ Subtyping; also known as specification inheritance. To give a precise definition, one
must choose a formal framework (e.g. Cardelli-Wegner type theory or algebraic data
type specification). To avoid religious disputes about what the best type theory is, some
general statements were put forward on which all participants agreed.

— Subtyping is a partial ordering on types.

— If 7 < o then all terms of type 7 can be used in any context in which terms of type
o can be used.

— If 7 < o, then instances of type 7 have (at least) all properties that instances of
type ¢ have. In order-sorted logic we have that the theory of the supertype is
contained in the theory of the subtype, i.e. 7 < o & Th(o) C Th(r). Subtyping
therefore implies a subset relationship between intentions.

We have that SQUARE < RECTANGLE but RECTANGLE £ SQUARE.

e Specialization; also known as is_a inheritance. This too is a partial ordering on
classes. 7 < ¢ iff each instance of 7 is identical to one instance of ¢. For instance,
CAR < VEHICLE because each car is (identical to) a vehicle. This is a subset
relationship between extensions of classes.

There are two questions regarding the relationship between specialization and subtyping:

28

1. Does specialization (is_a) require subtyping? A consensus emerged that if you define a
specialization, e.g. PROF is.a PERSON, then you define a subset and therefore you
at least inherit the structure (i.e. type) of the superclass. So the type of the subclass is a
subtype of the type of the superclass. In other words, specialization requires subtyping.

2. Does subtyping require specialization? A consensus emerged that you can have a class
(7 of objects of type 7, and a class C5 of type o, such that 7 < ¢ but ' is not a
subclass of (5. This issue is related to the fact that in programming languages, you do
not want to conclude from structure equivalence of types that the types are identical
(have the same instances).

Covariance and contravariance are meaningful for the subtype relationship (and therefore for

the subclass relationship).

2. What is the meaning of covariance and contravariance?
Suppose CAR < VEHICLE and INTEGER < RATION AL, and declare the function

speed as

speed : VEHICLE — INTEGER.

Then speed also accepts arguments of type C'AR and the results it delivers are also of type
RATIONAL. So speed is also a function of arity

CAR — RATIONAL.
If we denote the type of functions from 7 tom ¢ by 7 — o, then we have
VEHICLE - INTEGER < (CAR— RATIONAL.

So if we generalize a function type, we specialize its domain type. This phenomenon was noted

by Cardelli in 1984 and is called contravariance. It was remarked by Herman Balsters in the

discussion that when a function with argument type VFEHICLFE is applied to an argument

c: C'AR, then the argument is coerced to a supertype before the function is applied to it.
When we inherit a method

speed : VEHICLE — RATION AL

from the class VEHICLFE to the class C AR, then we may want to restrict the codomain, so
that we get for example a method

speed : CAR — INTEGER

in the CAR class. This is covariance, for when we specialize, we specialize the domain as
well as the codomain of the method. It was remarked by Herman Balsters that in covariance,
when we apply a method to an object, we push the method down into the class hierarchy so
that its domain is the type of the argument.

3. When do we need covariance and contravariance?

It was argued that for function inheritance, we need contravariance whereas for method
inheritance, we need covariance. Contravariance is the natural thing we get when comparing

29

function types. In method inheritance, by contrast, we do not compare function types, but
we want to specialize a method for a particular subclass. In contrast to Cardelli’s approach in
his 1984 paper, this requires us to declare methods not as fields in a record, but as functions
applicable to record types.

Suppose we have types ColoredPoint with attributes z, y, ¢ and Point with attributes
x and y. Then ColoredPoint < Point. Using an example given by Herman Balsters, Now
define a method eq as

Ap1 2 Point. Apy @ Point.(pr1.x = pa.x A pr1.y = p2.y).

In ColoredPoint, we override (or really extend) eq by a method which additionally tests the
equality of the colors:

Apy : ColoredPoint. Apy : Colored Point.(pr.x = pe.x A p1.y = p2.y A p1.¢c = pa.c).

The typing rule for the equals sign (=) says that the left- and right hand side must have
the same smallest type. Applying eq to two points or two colored points does not given any
problem. At the same time, specialization uses here the covariance rule.

The typing of the eq method can be made explicit using Cardelli and Wegner’s bounded
quantification:

eq = Aa < Point.Apy : a.Ape : a.(pr.@ = pa.x A p1.y = p2.y).

Working Group 2:
Observing Behavior of Objects

Chair: Gunter Saake, Germany

Participants: Vytautas Cyras, Grit Denker, Hans-Dieter Ehrich, Gregor Engels, Karl Lieber-
herr, Gianna Reggio, Wilhelm Schifer, Michael Schrefl, Silke Seehusen, Bernhard Thalheim,

Peter Wegner, Andreas Zamperoni

1. Starting Point

The working group was motivated by some problems and open points collected on the
first day of the Dagstuhl workshop:

e Trace models for objects: What is the role of traces in dynamic models and object
design?

e Behavioral semantics of objects: How should the complete behavior of objects be de-
scribed?

e Observing object behavior: Should the rules for observing objects be explicitly modeled
in object semantics?

e Local object behavior vs. global system behavior.

30

At the beginning of the meeting, the participants added two more points to this list:

o Alternatives to the trace model for objects, for example Labelled Transition Systems
(related to the contribution of Gianna Reggio)

o Concurrency: The role of different models for concurrency for object behavior.
The participants agreed that this point is of importance for the topic of the working
group.

After the introductory discussion, we realized that the title of our working group gave rise
to some very fundamental questions:

o What is the meaning of Observation ?
e What is an Object ?
e What is Behavior ?

e And what is the role of Concurrency for these concepts?

But it was suggested that discussing these concepts individually might be too general and
that discussing the questions “What is the observable behavior of concurrent objects?” and
“How should it be specified?” might be more specific.

One answer to this question was to specify the behavior of an object by its interaction
history over its lifetime (also called its life cycle behavior). This behavior can in special cases
be specified using traces. But traces are not adequate to specify time stamping requirements,
fairness requirements, or concurrency requirements. The general question of how the life cycle
behavior of objects should be specified has no easy solution and appears to be intractable in
general.

2. What is an object?

The first oft the fundamental questions discussed in some detail was of course “What is an
Object?”. The participants discussed some different definitions but finally only agreed (more
or less) on a very general definition based on the presentation of Peter Wegner from Monday
morning.

The state of an object (or equivalently the reaction on stimuli or the next local
decision of an object) depends only on the local history (including the initial state).

This definition is very general because it leaves room for defining the concepts of

e locality, and

e history.

The history may consist of a trace of external stimuli, an event structure modelling some
concurrency in the past, or even more general models. As a discussion question the following
problem arises:

31

What is a sufficient set of (past) observations to reproduce object behavior?

In fact, this definition only excludes a global state accessible by an object (locality prop-
erty) and object behavior depending on the future. So the next discussion point was:

Is it possible to be more concrete about suitable models for object behavior? Does
it make sense to restrict this very general idea to simpler models?

3. Models for Object Behavior

After some different statements what are appropriate models for object behavior the
participants agreed to distinguish at least two kinds of models depending on the problem
domains:

o General Models for (real world) Objects

o Tractable Models for (artificial) Objects

3.1. General Models for (real world) Objects

For modelling “real world” objects, ie, objects that may appear in the analysis of arbitrary
application areas, we can give no real restrictions:

e For arbitrary problem domains we have to handle full concurrency.
e As a result, object histories are more general than traces.

e For these general models, observational equivalence is in general undecidable and in
practice not tractable.

o but: Objects are inherently concurrent!

The participants agreed that such general models are the price we have to pay if we want
to model real applications appropriately.

3.2. Tractable Models for (artificial) Objects

For artificial objects (ie, software artifacts), it seems to be a good idea to restrict the
behavior models to more specific models.

e The proposal of Hans-Dieter Ehrich in his talk from Monday morning is a good candidate
for such a model.

o Local sequentialily seems to be a good compromise for software objects.

Local sequentiality means, that basic objects are sequential processes and concurrency
appears only between objects. Hans-Dieter Ehrich presented a model based on event
structures in his talk which has this property. This restrictions seems to be reasonable
at the current stage of software technology.

32

e Such restriction make the design process and implementation easier, and enable the use
of existing formal methods for sequential processes.

e but: The restriction to sequential base objects seems to be too restrictive for analysis
and in special application areas!

4. Spectrum for Behavior Modelling

As a result of the discussion on the need of several model classes for object behavior
depending on the application area, we discussed the spectrum we have in fixing a suitable
model for object behavior:

e synchronous versus asynchronous communication
o degree of concurrency
o degree of (internal) nondeterminism

e inter-object or intra-object concurrency
The participants agreed that there is no “best choice” for the general problem.

The choice of a model with respect to this spectrum depends on the application
area as well as the phase on the software construction process!

As a summary we come to the following observation:

General models are important....
[because objects are inherently concurrent!]
but simplification towards tractable models is necessary in software design.

[for example, local sequentiality for base objects.]

5. Discussion on Behavior Modelling

Besides the fundamental discussions on appropriate models for object behavior, the dis-
cussion touched a lot of topics concerned with behavior modelling. The following list is a
summary of the areas discussed there:

¢ Communication patterns. We need abstraction mechanisms for patterns of cooper-
ation in analogy to the mechanisms we have for structuring. Such patterns tend to be
specific for application areas and are candidates for reuse.

¢ Communication architecture. Arbitrary interaction between objects makes large
systems unmanageable. A restriction to manageable connection networks seems to be
a solution to these problems.

33

Other areas which are touched in the discussion are activity (active versus re-acting ob-
jects) and behavior evolution (objects may persist longer than the specification of the appli-
cation software is valid).

Working Group 3:
Object Evolution

Chair: Roel Wieringa, The Netherlands

Participants: Herman Balsters, Grit Denker, Giovanna Guerrini, Radu Grosu, Andreas Heuer,
Christian Laasch, Boris Magnusson, Jan Paredaens, Gianna Reggio, Pierre-Yves Schobbens,

Roel Wieringa

This brief note summarizes the results of a discussion group on object evolution. Only
the outcome of the discussion is given, not the road leading to this outcome.

1. We did not discuss class evolution. Class evolution is the phenomenon that a class
changes its definition, i.e. it is a schema update. Object evolution is the phenomenon that
an object changes its class without the definition of the class changing. This is distinct from
object updates, in which an attribute changes its value.

2. The starting remark was that each attribute value defines a class, and that therefore each
attribute update defines a migration through classes. Conversely, each partition of a class
into subclasses defines an attribute with a enumeration range. A class migration causes an
update of this attribute. In the extreme case, therefore, object evolution and object updates
are equivalent.

The Martin/Odell development method takes the above view of attributes and class mi-
gration. Such a representation is however inconvenient and in practical data models, not all
object evolutions will be object updates and not all updates will be evolutions.

3. If we want to allow class migration, we want to allow an object to have multiple roles,
which it may play simultaneously. Roles have been given various other names in the literature,
such as aspects and dynamic subclasses.

Wieringa proposed to define the concept of dynamic subclass. Fach class can be parti-
tioned in several ways into dynamic subclass partitions; each dynamic subclass partition is a
partition of the state space of the object, and the object can, while moving through its state
space, go from one dynamic subclass to another (see the ECOOP’94 paper by Wieringa, De
Jonge and Spruit). Class migration methods can be allocated to the appropriate subclasses.
For example, PERSON could be partitioned into STUDENT and NON _STUDFENT with
methods finish and become_student, respectively.

Requiring a dynamic subclass to be an element of a partition was thought too artifi-
cial by the majority of the discussion group. Furthermore, most participants, agreed that
become_student should be modeled as a database method (rather than being allocated to the
database).

34

As a rebuttal against these arguments, it was argued that partitioning actually makes
the model conceptually cleaner (cf. the abstract superclass rule) and that we need NON_-
STUDENT exactly because it is an event in the life of a person (in the state of being a
non-student). Nevertheless, we proceeded on the assumption that become_student would
be a database method and that we would not require dynamic subclasses to be exhaustive
partitions.

4. In most object-oriented programming languages, an object can be an instance of only one
class. To allow class migration, we need to allow an object to be an instance of several classes
at the same time (i.e. to be an element of the extent of several classes). We then need only
two methods, each of which comes in two variants:

e insert an object into the extent of a class.

— create: this creates a fresh object identifier (oid) and inserts it into an extent.

— start: this takes an existing oid (already in at least one extent) and adds it to an
extent.

e remove an object from the extent of a class.

— delete: this removes the object from all extents it is currently in.

— finish: this removes the object from some, but not all extents it is currently in.

For some cases of class migration, some of these methods must be executed in one atomic
transaction (eg. moving the object from one extent to another). The insert methods would
be database methods (or possible class methods).

The finish method should take care that all dangling pointers to an object in a particular
role are removed.

5. The taxonomic structure of the class model defines some obvious constraints on class
migration. For example, if we put an object into the extent of C', it must also be in the
extent of all superclasses of C'. A recent VLDB paper discusses some of these class migration
constraints.

6. It was noted by Andreas Heuer that there is a distinction between dynamic subclasses
for which an explicit start/finish pair of events is defined, and dynamic subclasses whose
membership is determined by a predicate (predicate classes) or query (derived classes).

Boris Magnusson remarked that derived classes often offer a more accurate modeling
tool than other kinds of subclasses. For example one can model SQUARE as a subclass
of RECTANGLE on the grounds that the in SQUARE, length and breadth attributes
are subject to an extra constraint length = breadth. On the other hand, we may say that
SQUARFE is a superclass of RECTANGLE, because it has only one attribute length, whereas
RECTANGLFE has an additional attribute breadth. In both cases, the problem is that a
rectangle may be updated so that length happens to be equal to breadth. In both cases,
this is represented incorrectly or at least clumsily. A better way would be to associate the
condition length = breath to the derived class SQU ARFE, which would thereby become a
dynamic subclass of RECTANGLE.

35

7. Boris Magnusson remarked that instead of representing roles in the Simula way as nested
subclasses. A rough example (in a non-existing programming language) would be:

class PERSON
age: NATURAL
r: ROLES
become_student
add new STUDENT to r

role STUDENT
. body of STUDENT ...

role EMPLOYEE
. body of EMPLOYEE ...

STUDENT is also accessible from within PERSON. One can also easily implement
inheritance in this way.

8. A different variant of class migration is obtained if we allow an object to play several
roles of the same class simultaneously. (These may be called Roel’s roles, as opposed to
roles as discussed up till now. See also the ECOOP’94 by Wieringa et al.) For example, one
may define a role class KM P with a many-one relationship (i.e. an object-valued attribute)
player : EMP — PFERSON. EMP is almost the same as an object class, except for one
thing: suppose the age function is defined for PERSON objects but that it is applied to
an EM P object e. Then age(e) is a type error and the compiler should replace this by
age(player(e)). This is a kind of compile-time delegation that is performed especially for
roles but not for objects.

There were some doubts about the utility of this. For example, it was remarked that roles
can be represented by set-valued attributes. A rebuttal to this is that this is equivalent to the
above representation, because the intended set-valued attribute is equivalent to the player
function.

There are ways in which we can avoid multiple role playing in the model. For exam-
ple, perhaps a person is two employees at the same time because he or she is a secretary
and engineer at the same time. Then we can define FNM P subclasses SECRETARY and
ENGIN EER, define the intersection class, and put the object in this intersection class (with
a single identifier). It is then member of the SECRETARY and ENGIN EER extents and
can therefore be said to play these two roles. No conclusion was reached about the best
representation.

36

Working Group 4:
Class Organization

Chair: Karl Lieberherr, USA

Participants: Vytautas Cyras, Gregor Engels, Hans-Dieter Ehrich, Gerti Kappel, Gunter
Saake, Michael Schrefl, Silke Seehusen, Diana Sidarkeviciute, Bernhard Thalheim, Gottfried
Vossen, Peter Wegner, Andreas Zamperoni

The main topics discussed were

1. The general issues of class organization

2. Structure-shy class organizations

3. Roles
1. The general issues of class organization

Peter Wegner asked: What is a good class organization?

Gerti Kappel and Michael Schrefl have studied this issue from the point of view of cou-
pling and cohesion. They studied, for example, three kinds of class coupling: component
coupling, interaction coupling and inheritance coupling. Whereas component coupling deals
with the structural and interaction relationships between object classes interaction coupling
investigates the kind of interaction which takes place between object classes. They noticed
tradeoffs between those coupling kinds, for example, when following the Law of Demeter, the
component coupling improves in the sense that an object class does only talk to a restricted
set of object classes. But the interaction coupling gets worse in the sense that it increases
interaction of a class with its part classes.

Previous work on coupling was done by Kemerer/Chidamber, Wirfs-Brock, Berard, and

Coad/Yourdon.

The Law of Demeter (LoD) was described as a style rule (among others) which reduces
the dependency of individual member functions on the class structure. The LoD says that a
member function M of class C should only use the functionality of “closely related” classes:
the (stored and computed) part classes of C, the argument classes of M and the classes whose
objects are created in M. In other words, you should only talk to friends, not to strangers.

Gerti Kappel was pointing out that there are situations where the LoD is beneficial and
others where it makes sense to violate it. These situations can be analyzed from a semantic
data model point of view. If the component structure of some class C comprises dependent
components, which only exist in the context of C, or if the component structure captures
mainly the implementation of C the Law of Demeter should be considered. If the components
describe conceptual objects of their own, and if they are not considered as implementation
details of some inspected class C but rather as different classes related to C it is favorable to
reveal the component hierarchy thus violating the LoD.

37

Michael Schrefl was pointing out a further style rule which limits the set of classes who
can update other classes. His style rule prevents communication among objects of the same
level.

Peter Wegner was summarizing the pattern work. It describes and classifies generally
useful class organizations. A specific pattern was discussed: The Null Object Pattern.

Beck and Johnson define patterns to have preconditions that define when a pattern is
applicable, a problem specification of the problem that it solves, constraints that specify the
principal sub-cases, and a solution structure that specifies the class organizations. Patterns
relate class organization to the semantics of particular problems being solved.

2. Structure-shy class organizations

The title is somewhat controversial as pointed out by Andreas Zamperoni and Gottfried
Vossen: How can a class organization be structure shy? Classes are thought to be specified in
two parts: the structure part and the behavior part. When we write the behavior part with
minimal dependence on the structure part, we say we have a structure-shy class organization.
The trick to achieve this is to apply Polya’s inventor paradox: instead of writing one class
organization, we write an entire family of class organizations from which we select the desired
one later. The paradox consists in the fact that, although we solve a more general problem,
the solution becomes easier. The resulting solution is more generic than “usual” solutions.

Adaptive programs have been introduced at IFIP ’92 and CASE ’92 and a recent descrip-
tion is in Comm. ACM May 94, page 94. They are implemented in the Demeter System/C++
which is used at several universities.

Peter Wegner was pointing out that adaptive programs describe behavior minimizing
information about the implementation in the form of a specific class structure. This is also the
goal of his work on mega-programming with Gio Wiederhold. It is also the goal of Jacobson’s
use cases to describe behavior without being side-tracked by a detailed object-structure.

Gottfried Vossen was presenting the point of view of the data base community towards
“schema-shy” queries. There are a number of papers on this topic in the literature:

o Catriel Beeri and Hank Korth, 1. ACM PODS ’82

e E.J. Neuhold and Michael Schrefl, VLDB 1988

Ed Sciore, TOIS 91, ER 91

Chang and Ed Sciore, IEEE TKDE *90

Jan van den Bussche, Gottfried Vossen, DOOD ’93

loannidis et. al, SIGMOD ’94
The data base community has been working with abbreviated path expressions to reduce

the amount of information on the schema needed for querying the database. The focus is on
finding “minimal” paths according to some metric.

38

Gunter Saake pointed out the relationship between adaptive programs and views. The
wrappers are working on the views. To use a collection of adaptive programs is related to
using a collection of views with the same conceptual schema.

Gottfried Vossen was pointing out that work in the relational database field on view in-
tegration is related to coming up with a type theory for adaptive programs. In particular,
views are used in bottom-up database design to model external schemas; the goal is to in-
tegrate them into a global conceptual schema. In the oo context, path expressions/adaptive
programs could play a similar role. However, as known from relational database theory, such
an approach can run into problems which are not computable. Specifically he was pointing
to the work of Bernhard Convent ”Unsolvable Problems Related To The View Integration
Approach”, International Conference on Database Theory, ICDT ’86, Rome Italy, September
1986, Springer Verlag LNCS 243.

The situation with adaptive software is somewhat different than with view integration:
When an adaptive program is developed, it is done in the context of a conceptual model which
serves to test the adaptive program. This way it is guaranteed a priori that the integration
can be done. However, when libraries of adaptive programs are used and programs from
different libraries are combined, the issue of view integration comes up.

Hans-Dieter Ehrich pointed out the concept of logical data independence of the ANSI
SPARC community (late seventies). Three kinds of schemas are used: external, conceptual
and internal schemas for the implementation. It is possible to change the conceptual schema
as long as it is still consistent with all the views. A similar situation exists in adaptive
programs: The conceptual schema can be changed as long as it is consistent with all adaptive
programs which use it.

Adaptive programs are more abstract than views since they are defined in terms of succinct
subgraph specifications.

Gunter Saake pointed out the following references:

Dennis Tsichritzis and A. Klug, "The ANSI/X3/SPARC DBMS Framework Report of the
Study Group on Data Base Management Systems, Information Systems, Vol. 3, No. 3, 1978,
pp 173-191.

DAFTG, Database Architecture Framework Task Group of the ANSI/X3/SPARC Da-
tabase System Study Group: Reference Model for DBMS Standardization, ACM SIGMOD
Records, Vol. 15, No. 1, 1986, pp 19-58.

Comparison of the database work and the work on adaptive software
¢ Common:

— Motivation to be structure-shy.

— Focus on paths in conceptual data model.
¢ Database work:
— Focus on non-computationally complete query notations.

e Adaptive software work:

39

— Focus on a computationally complete programming language which extends C++,

Smalltalk or Eiffel.

Gregor Engels pointed out that a collection of adaptive programs can be considered as
a module which has an additional, new interface not present in ordinary modules: This
interface contains the succinct subgraph specifications of all adaptive programs contained in
the module. In the simplest form, the succinct subgraph specifications satisfy the grammar

S::= [A,B] — S+S — S*S.

The issue of how to combine adaptiveness with concurrency was discussed briefly. Gerti
Kappel suggested that the concept of transactions be added. Adaptiveness and concurrency
have been combined in an ECOOP ’92 paper.

Silke Seehusen viewed adaptive software as a useful tool to specify the behavior of frame-
works. Indeed, an adaptive program can describe an entire family of frameworks.

3. Roles

Bernhard Thalheim presented the following approach to roles:

Objects are described by their values and references and belong to classes. They can be
involved in different roles during their life cycle, sometimes in parallel and several times. In
this case the 1-1 allocation of objects to one class is not sufficient. Roles can be presented
directly in the SAMT language which is is developed in accordance to C. Beeri’s Kyoto
proposal for oo languages. Since each object has an identifier, it is possible to define class and
type hierarchies which are not in a sub-hierarchy relationship. This possibility can be used
for modeling roles and aspects of objects in higher granularity. In this case role or aspect
classes are subclasses. The modular design-by-units approach of our system uses roles and
aspects for class organization and behavioral views.

Michael Schrefl was presenting the concept of roles treated in several recent papers to
cope with inflexibilities of class hierarchies.

Gottlob, Kappel and Schrefl (East-West Database Workshop) studied the semantics of
role inheritance and type inheritance using evolving algebras. Albano et al. (VLDB ’93)
showed how roles can be provided in a new data base programming language called Fibonacci.
Wieringa (ECOOP ’94) stressed the importance of distinguishing traditional classes, roles
with role-specific identifiers, and dynamic classes to which instances of classes are associated
dynamically. Gottlob, Schrefl, Rueck (ACM TOIS, in print) showed how class-based languages
such as Smalltalk can be extended with roles.

40

Working Group 5:
Database Models

Chair: Gottfried Vossen

Participants: Herman Balsters, Giovanna Guerrini, Marc Gyssens, Christian Laasch, Karl
Lieberherr, Jan Paredaens, Gunter Saake, Michael Schrefl, Diana Sidarkeviciute, Jan Van
den Bussche

The focus of our discussions was not on data models and databases in general, but mostly
on object-oriented data models. Specifically, two broad aspects were discussed, first the
practical point of view, then the theoretical point of view.

Although most of the participants are not practitioners, we were able to make several
observations on the practical use of object-oriented (OO) databases:

1. It is easy to see that OOA, OOD, and OOP are in wide use in practice, but when
people using or applying OO technology need a database, they still switch to SQL,
i.e., a relational one. So it seems that people are not attracted to OO databases.
Although their concepts are powerful, systems incorporating these concepts are not
mature enough.

2. Many people feel the need for OO, but not for OO databases. Indeed, most database
applications are still happy with the tabular form of data representation offered by the
relational model, possibly augmented with OO features. So it is not surprising that
many people feel the next generation of database systems will be OR, systems, which
combine object and relational aspects.

3. Personally, one of my favorite arguments is that CAx technologies, which were among
the triggers for the development of OO database systems some 10 years ago, are still
not using what is commercially available. And worse, present-day publications do not
even refer to these applications any more when discussing or illustrating features of a
model or a system. It should be mentioned, however, that there are a few exceptions
to this (e.g., CAD systems using an OO database).

4. Relational databases have required lots of implementation efforts and even considerable
financial investments, so many companies hesitate to throw that away. A prominent
example is IBM, who recently “bought” an OO database system for incorporation into
company projects, instead to develop one from scratch.

5. In the world of OO databases, there are no people who do for this area what Codd and
Date did for the relational field.

A final remark in this context, not directly practical, is that it can even be observed that,
at least at the moment, OO papers seem to vanish from the major database conferences.

From a more theoretical perspective, the most interesting feature of this working group
was that we had people among the participants representing six different groups which have
be developing, or still develop, an OO data model. I now list these models (in random order)
and indicate what their most distinguished features are, according to their inventors:

41

1. GOOD (Antwerp): the emphasis is on graph-structured databases and on the idea of
patterns: if access to an information system is desired, the user typically knows some
properties he or she is looking for, and searches for items in the systems following that
pattern.

2. Troll (Braunschweig): this is actually not a data model in the strict sense; emphasized
is the view that objects are communicating processes. Troll combines this view with
OO concepts (e.g., inheritance).

3. COCOON (Ulm): here the focus is on operations; the model takes advantage of (nested)
relational algebra and relations, but provides operations with more semantics. Also em-
phasized is that the data model part and the operational part should not be separated.

4. CHIMERA (Milano): here the focus is on rules and on the combination of deductive
and QO features; furthermore, it is on activeness in databases. Rules are used both for
expressing semantics in a data model, and for modeling active parts of a database.

5. TM (Twente): here the motivating observation was that some form of mathematics
is missing in existing models. So the emphasis here is on a mathematically sound
type theory; in addition, the TM model knows various kinds of constraints, and treats
methods as part of a database schema.

6. Demeter (Boston): the major aspects is that binding of methods to classes is delayed,
through the use of succinct (sub-)graph specifications.

Other than the distinctive features of each model listed above, all these (and even other
models not mentioned here) have a number of commonalities, which indicates that a conver-
gence in this area is in sight. However, it seems important that researchers in the area do not
get blinded by OO stuff, thereby forgetting about core database features:

e Contrary to programming languages, database systems are able to do optimization; in
particular, they can optimize access times to objects, which is irrelevant in programming
languages.

e Databases allow to share things between different users or applications. This, in turn,
requires high-level languages, which, as said, must then be optimizable.

As a consequence, the current discussion about how to deal with methods in OO databases
can benefit from remembering these basic aspects; indeed, methods in an OO database might
even use a restricted language, as along as they are optimizable. A database method language
needs not be computationally complete; that can be captured in the outside application.

I mention that we also briefly discussed views in OO databases, which are not simple
extensions of relational views since methods are present. An agreement seemed to exist on
that a view restricts database access: for methods, this can mean forbidding the use of some
methods, or the derivation of new methods (in a view) in terms of given ones.

A general agreement was that the foundations of OO databases are still in their infancy.
What will really happen in the future and survive from the developments and proposals so
far will, as usual, heavily depend on the commercial world. However, that should not keep
academia away from producing new ideas and experimenting with them.

42

Working Group 6:
Software Engineering Models

Chair: Sjaak Brinkkemper

Participants: Vytautas Cyras, Grit Denker, Juergen Ebert, Gregor Engels, Gerti Kappel,
Boris Magnusson, Gianna Reggio, Wilhelm Schaefer, Silke Seehusen, Diana Sidarkevicuite,
Bernhard Thalheim, Peter Wegner, Roel Wieringa and Andreas Zamperoni

Optimal set of OO specification techniques

First, the motivations for splitting the complete system specification into several partial
specifications were discussed. This splitting, also called factorization, can be according to
various stages in the systems life-cycle: the horizontal factorization, or according to the system
perspectives: the vertical factorization. There are several motivations for factorizations:

¢ Reduction of working complexity.

Visual (graphical) restrictions in modelling.

Distinct aspects to be modelled.

e Communication medium.

Support for the abstraction and information gathering processes.

For one system it turns out that there exist different suitable factorizations of the spec-
ification. The choice for the most appropriate one is made by development team influenced
by the application domain characteristics and the functionality of the design tools. The
phenomenon of factorization is also present in other engineering areas, such as mechanical
engineering, civil engineering, and architecture. The different specialties in the design team
(e.g. database designers and user-interface designers) need their own formalisms.

The optimal set of specification types gave four different viewpoints:

1. Conceptual viewpoint (Roel Wieringa): structure, dynamics, and communication
2. Design process viewpoint (Peter Wegner): structure, dynamics and functional

3. Systems development viewpoint (Sjaak Brinkkemper): instance, class structure, life
cycle, subsystems, class communication, event triggering, functionality, implementation
system

4. Teaching viewpoint (Juergen Ebert): the paradigms of: entity relationship, data flow,
control flow, state transition, and logic

The core of specification was discussed in depth. The suitability of functional model by
means of Data Flow Diagrams was questioned. The necessity of tools for the simulation and
animation of dynamic specifications was generally accepted. Furthermore, experience shows
that an intermediate specification level above the level of object classes is needed to obtain
an overview of the system structure.

43

Tools support to show the multiple views on screen and to record accordingly in repository.
Procedural support for the assistance of designers during the specification process can be
incorporated in the tool as well. From the viewpoint of teaching the toolkit approach was
advocated. This toolkit approach implies that designers are able to work with a set of high
quality specification formalisms that can be employed according to circumstances and to the
application domain.

OO0 metrics

There is little experience with quality metrics for object oriented designs. Booch men-
tions: coupling, cohesion, sufficiency, completeness and primitive, but gives no measurement
function. Furthermore, all but coupling are qualitative metrics.

Chidamber and Kemerer [1] have proposed a set of OO metrics. They have not collected
actual numbers for the metrics yet, so these have not been validated. The proposed metrics
are among others: depth of inheritance tree, number of children, coupling between objects,
response for class, weighted methods per class, lack of cohesion in methods, object-to-root
depth, object-to-leaf depth, fan-in/fan-out, and used-by/uses relationships of objects.

Metrics on complexity of a specification technique and for the aggregate level of a complete
method are under development. In this case concrete figures have to be evaluated in order to
establish insight.

We ended with some wise words on the dangers of metrics. Metrics should not substitute
thinking. Moreover, it makes no sense to apply metrics that are based on poor knowledge.

[1] Shyam R. Chidamber, Chris F. Kemerer: A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering, vol. 20, no. 6, June 1994, pp. 476-493

44

Acknowledgement

The organizers are grateful to Andreas Zamperoni who helped a lot in organizing
the workshop and editing this report.

45

Dagstuhl-Seminar 9434

Herman Balsters

University of Twente
Computer Science Department
P.O. Box 217

7500 AE Enschede

The Netherlands
balsters@cs.utwente.nl

tel: 4+31-53-893-772

Sjaak Brinkkemper

University of Twente

Center of Telematics and Information Technology
P.O.Box 217

7500 AE Enschede

The Netherlands

sjbr@cs.utwente.nl

Jan Van den Bussche

University of Antwerp (UIA)

Dept. of Mathematics and Computer Science
Universiteitsplein 1

2610 Antwerp

Belgium

vdbuss@wins.uia.ac.be

tel: +32-3-8202-417

fax: +32-3-8202-421

Vytautas Cyras
Vilnius-University
Faculty of Mathematics
Naugarduko 24

2600 Vilnius

Lithuania
vytautas.cyras@maf.vu.lt

tel: +370-2-636-035/028

Grit Denker

Technische Universitit Braunschweig
Informatik, Abt. Datenbanken
Postfach 3329

38023 Braunschweig

Germany

denker@idb.cs.tu-bs.de

tel: +49-531-391-3103

List of Participants

Jirgen Ebert

Universitat Koblenz-Landau
Institut fiir Softwaretechnik
Rheinau 1

56075 Koblenz

Germany
ebert@informatik.uni-koblenz.de
tel: +49-261-9119-412

fax: +49-261-9119-499

Hans-Dieter Ehrich
Technische Universitit
Abteilung Datenbanken
Postfach 3329

38023 Braunschweig
Germany
ehrich@idb.cs.tu-bs.de
tel: +49 531 3271

fax: +49 531 3298

Gregor Engels

Leiden University

Dept. of Computer Science
P.O. Box 9512

NL-2300 RA Leiden
engels@wi.leidenuniv.nl
tel: +31-71-27 7063

fax: +31-71-27 6985

Radu Grosu

Technische Universitdt Miinchen
Fakultat fiir Informatik
Arcisstr. 21

80290 Miinchen

Germany

grosu@informatik.tu-muenchen.de
tel: +49-89-2105-2398

46

Giovanna Guerrini Christian Laasch

Universita di Genova University of Ulm

Dip. di Informatica e Scienze dell’Informazione Facultédt fir Informatik

Viale Benedetto XV, 3 Abt. Datenbanken & Informationssysteme

16132 Genova 89081 Ulm

Ttaly Germany

guerrini@disi.unige.it laasch@informatik.uni-ulm.de

tel: +39-10-3538783 tel: +49-731-502-4135

fax: +39-10-3538028 fax: +49-731-502-4134

Marc Gyssens Karl Lieberherr

University of Limburgs Northeastern University

Dept. WNI Center for Software Sciences

3590 Diepenbeek College of Computer Science

Belgium 125 Cullinane Hall

Hele-Mai Haav Boston, MA 02115-9959
USA

Estonian Academy of Sciences
Institute of Cybernetics
Department of Software
Akadeemia tee 21

EE-0026 Tallinn

Estonia

lieber@ccs.neu.edu

tel: +1 (617) 373 2077

fax: +1 (617) 373 5121

ftp: ftp.ccs.neu.edu
pub/people/lieber

helemai@cs.ioc.ee pub/research/demeter

tel: +3722-2-527-314 Boris Magnusson
Lund University

Andreas Heuer .
Dept. of Computer Science

Universitat Rostock

Lehrstuhl Datenbank & Informationssysteme QPé(l)(')OBEX 1(118
18051 Rostock u
Sweden

Germany
heuer@informatik.uni-rostock.de

boris@dna.lth.se
tel: +46-46-108044
Gerti Kappel

University of Linz

Institute of Computer Science
Altenbergerstrafie 69

4040 Linz

Austria

Jan Paredaens

University of Antwerpen

Dept. of Math. and Computer Science
Universiteitsplein 1

2610 Antwerpen

Belgium

pareda@wins.uia.ac.be

tel: +32-3-820-2401

gerti@ifs.uni-linz.ac.at
tel: +43-732-2468-879

47

Gianna Reggio

Universita’ di Genova

Dip. di Informatica e Scienze dell’Informazione
Viale Benedetto XV,3

16132 Genova,

Italy

email: reggio @ disi.unige.it

tel: 4+39-10-3538032

fax: 4+39-10-3538028

Gunter Saake

Otto-von-Guericke Universitit Magdeburg
Fakultat fir Informati

Inst. fiir Technische Informationssysteme
P.O. Box 4120

39016 Magdeburg

Germany

saake@iti.cs.tu-magdeburg.de

tel: +49-391-5592-3800

Wilhelm Schafer
Universitat Paderborn

FB 17 - Informatik

33098 Paderborn
wilhelm@uni-paderborn.de
tel: +49-5251-60 2428

Michael Schrefl

Universitat Linz

Inst. fiir Wirtschaftsinformatik

Abt. fir Data and Knowledge Engineering
Altenbergerstr. 69

4040 Linz

Austria

schrefl@dke.uni-linz.ac.at

tel: +43-732-2468-9480

Silke Seehusen
Fachhochschule Liibeck
Fachbereich Flektotechnik
Stephensenstr. 3
silke@acm.org

tel: +49-451-500-5219

Diana Sidarkeviciute
Vilnius-University

Faculty of Mathematics
Department of Informatics
Naugarduko 24

2600 Vilnius
Lithuania
diana.sidarkeviciute@maf.vu.lt

tel: +370-2-636-035/028

Bernhard Thalheim

Cottbus Technical University
Computer Science Institute
P.O.Box 101344

03013 Cottbus

Germany
thalheim@informatik.tu-cottbus.de

Gottfried Vossen

Universitat Miinster

Institut fiir Wirtschaftsinformatik
Grevenerstr. 91

48159 Miinster
vossen@uni-muenster.de

tel: +49-251-9275-103

fax: +49-251-839754

Peter Wegner

Brown University
Mathematics Department
P.O. Box 1910
Providence RI 02912
USA

pw@cs.brown.edu

tel: +1-401-863-7632

Roel Wieringa

Vrije Universiteit Amsterdam

Faculty of Mathematics and Computer Science
De Boelelaan 1081a

1081 HV Amsterdam

The Netherlands

roelw@cs.vu.nl

tel: +31-20-4447771

Andreas Zamperoni
Leiden University

Dept. of Computer Science
P.O. Box 9512

2300 RA Leiden

The Netherlands
zamper@wi.leidenuniv.nl
tel: +31-71-27-7103

fax: +31-71-27-6985

48

