
Kenneth Birman, Flaviu Cristian, Friedemann
Mattern, Andre Schiper (editors):

Unifying Theory and Practice in
Distributed Systems

Dagstuhl-Seminar-Report 96;
05.09.-09.09.94 (9436)

ISSN 0940-1121

Copyright© 1994 -by IBFI GmbH, Schloss Dagstuhl, D-66687 Wadem, Germany
Tel.: +49-6871 - 2458
Fax: +49-6871 - 5942

Das lntemationale Begegnungs- und Forschungszentrum fur lnformatik (IBFI) ist eine gemein
nutzige GmbH. Sie veranstaltet regelmaBig wissenschaftliche Seminare, welche nach Antrag
der Tagungsleite.r und Begutachtung durch das wissenschaftliche Direktorium mit personlich
eingeladenen Gasten durchgefOhrt warden.

Verantwortlich fur das Programm ist das Wissenschaftliche Direktorium:
Prof. Dr. Thomas Beth.,
Prof. Dr.-lng. Jose Encamaoao,
Prof. Dr. Hans Hagen,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Dr. Wolfgang Thomas,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Universitat des Saarlandes,
Universitat Kaiserslautem,
Universitat Karlsruhe,
Gesellschaft fur lnformatik e.V., Bonn

Trager: Die Bundeslander Saarland und Rheinland-Pfalz

Bezugsadresse: Geschaftsstelle Schloss Dagstuhl
Universitat des Saarlandes
Postfach 15 11 50
D-66041 Saarbrucken, Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397
e-mail: office@dag;uni-sb.de

Unifying Theory and Practice in Distributed Systems, September 1994 3

Contents

Architectural Issues in the StormCast System
Dag Johansen and Gunnar Hartvigsen

The Rampart Toolkit for Building High-Integrity Services
Michael K. Reiter

Efficient Information Dissemination in Multi Machine Systems
Danny Dolev

7

7

7

Some Practical Experience from Delta-4 on Implementing Distributed Fault-Tolerance
David Powell 8

Issues on Reusable Spacecraft Control Center Software
Vu Tien Khang

Asynchronous Systems with Failure Detectors-
A Practical Model for Fault-Tolerant Distributed Computing

Sam Toueg and Vassos Hadzilacos

8

9

Towards a Synthesis of the Synchronous and Asynchronous Distributed Computing
Models

Kenneth P. Birman 10

Sequential Consistency in Distributed Systems: Theory and Implementation
Michel R.aynal 12

Transaction Model vs Virtual Synchrony Model: Bridging the Gap
R.achid Guerraoui and Andre Schiper 11

Correctness Proofs of Distributed Algorithms
Wolfgang Reisig 13

A Case Study in Distributed Algorithm Design using Mixed Specifications
Beverly Sanders 13

Some Key Issues in the Design of Distributed Garbage Collectors
Marc Shapiro 14

Speedup Anomalies in Distributed Computations
Reinhard Schwarz 14

Timing Failures and Timeliness Proofs in the Case of Real-Time Distributed Systems
Gerard LeLann 15

Paradigms for Fault-Tolerant Services: from Practice to Theory
Keith Marzullo

Lessons Learned from Building and Using A,juna Distributed Programming System

16

Santosh K. Shrivastava 17

Causally Consistent Observations of Distributed Systems
Friedemann Mattern 18

4 Unifying Theory and Practice in Distributed Systems, September 1994

Detection of Global Predicates in Distributed Systems
Bernadette Charron-Bost

Cheaper Matrix Clocks
Frederic Ruget

Probing and Fault Injection of Distributed Systems
Farnam Jahanian

On the Role of Clock-Less Protocols in Real-Time Systems
Paulo Verissimo

RMP - A High Performance, Totally Ordered Multicast Protocol
Brian Whetten

Selling Heterogeneous RPG to the Masses
Richard D. Schlichting

Towards Open Service Environments
Kurt Geihs

System Structuring: A Convergence of Theory and Practice?

18

19

20

21

21

22

22

Jeff Kramer and Jeff Magee 23

COCOON - Support for Information Sharing in CSCW Based on Causally and Totally
Ordered Group Communication

Markus Kolland 24

New Applications for Group Computing
Robbert van Renesse, Kenneth Birman, Thorsten von Eicken, Keith Marzullo 25

Object Framework for Operating System Serverization
Jishnu Mukerji

Exposing Theory to Practice in Storage Systems
John Wilkes

27

28

Unifying Theory and Practice in Distributed Systems, September 1994 5

Report on the Dagstuhl Seminar

Unifying Theory and Practice in Distributed Systems
September 5th - September 9th, 1994

Kenneth Birman, Flaviu Cristian,

Friedemann Mattern, Andre Schiper

During the past 20 years, a substantial theoretical and practical base has evolved
in the area of distributed computing. However, this work has been done by
largely disjoint sets of researchers, with the resultthat much theory is inapplica
ble to real-world systems, and many of the real-world systems that have been
built suffer from weaknesses that could be overcome using the existing theoreti
cal methodology. It was therefore the intention of the seminar "Unifying Theory
and Practice in Distributed Systems" to bring together a diverse group of prag
matically inclined theoreticians and theoretically inclined practitioners with the
goal of sharing insight, educating one another; and laying the groundwork for the
next generation of distributed systems research and development.

The Dagstuhl seminar was organized by Kenneth Birman (Cornell University),
Flaviu Cristian (University of California at San Diego), Friedemann Mattern
(University of Saarland at Saarbnicken), and Andre Schiper (Ecole Polytechnique
de Lausanne). It brought together 38 participants - established experts from
academia and industry as well as young scientists - from nine countries. 30 talks
(some with on-line and video demonstrations) were given during the week, often
followed by lively and sometimes controversial discussions. The emphasis of the
talks was on the following general themes:

• important paradigms and influential concepts

• fundamental algorithms and principles

• fault-tolerance

• real-time

• system structures, basic services, toolkits

• large scale issues, application domains, case studies

In two evening discussion sessions ·the implications of the Fischer-Lynch
Paterson Theorem (impossibility of distributed consensus with one faulty proces-

6 Unifying Theory and Practice in Distributed Systems, September 1994

sor) for practical system design and the various notions of "real time" were dis
cussed. In total, the seminar was considered to be successful and very interesting,
and the publication of proceedings is now considered.

The special nature and atmosphere of Schloss Dagstuhl offered ample op
portunities for personal discussions, the computer science library was also used
extensively by some participants. The fine food, the good wine, and the per
fect organization by the office and the local staff of Schloss Dagstuhl was much
appreciated by all participants. If there is anything to blame, then it is the
weather-we hope that the next time we will have some sunny days!

Unifying Theory and Practice in Distributed Systems, September 1994 7

Architectural Issues in the StormCast System

Dag Johansen and Gunnar Hartvigsen
Department of Computer Science, University of Tromsp, Nonoay

Email: johansen@cs.cornell.edu

We briefly present the architectural approach to reasoning about large scale
distributed applications used in StonnCast. A high-level architecture and well
defined abstractions are exploited to master the complexity that application de
velopers are confronted with in a particular application domain. This has shown
to be useful in promoting both reusability and rapid prototyping.

The Rampart Toolkit for Building High-Integrity
Services

Michael K. Reiter
AT&T Bell Laboratories, Holmdel, New Jersey, USA

Email: reiter@research.att.com

Rampart is a toolkit of protocols to facilitate the development of high-integrity
services, i.e., distributed services that retain their availability and correctness de
spite the malicious penetration of some component servers by an attacker. At the
core of Rampart are new protocols that solve several basic problems in distrib
uted computing, including asynchronous group membership, reliable multicast
(Byzantine agreement), and atomic multicast. Using these protocols, Rampart
supports the development of high-integrity services via the technique of state ma
chine replication, and also extends this technique with a new approach to server
output voting. To our knowledge, Rampart is the first system to demonstrate re
liable and atomic multicast in asynchronous systems subject to malicious process
failures .

In this talk we give an overview of Rampart, focusing primarily on its protocol
architecture. We also discuss its performance in our prototype implementation,
application services that we are currently developing, and other ongoing work.

8 Unifying Theory and Practice in Distributed Systems, September 1994

Efficient Information Dissemination in Multi Machine
Systems

Danny Dolev
Danny Dolev, Institute of Computer Science, Hebrew University, Givat Ram,

Jerusalem 91904, ISRAEL
Email: dolev@cs.huji.ac.il

Transis is a high availability distributed services system being developed at
the Hebrew University. In the talk we cover its specific services and applications
using it. Transis is the first distributed system to handle partition as integral part
of the transport layer. It offers a reliable multicast transport layer that employs
hardware's broadcast features . It provides applications with causal order, and
completes order of messages. On top of these services it offers "safe messages"
that is a higher knowledge level service about message delivery. Using safe mes
sages, a variety of replications algorithms can be developed without the need for
end-to-end acknowledgements at the application layer.

Some Practical Experience from Delta-4 on
Implementing Distributed Fault-Tolerance

David Powell
LAAS-CNRS, Toulouse, France

Email: dpowell@laas.fr

Software-implemented approaches to fault-tolerance are very resilient to change
since changes in hardware technology do not require extensive re-design of special
ized hardware. The presentation argues the case for implementing fault-tolerance
in a distributed fashion and reports the approach adopted in the Delta-4 project.
Fault-tolerance is achieved by replicating capsules (the run-time representations
of application objects) on distributed nodes interconnected by a local area net
work. Capsule groups can be configured to tolerate either stopping failures or
arbitrary failures . Multipoint protocols are used for coordinating capsule groups
and for error processing and fault treatment. The presentation concludes with a
critical analysis of the project's results regarding in particular: design assump
tions about failure modes; active replication schemes; and performance issues.

Unifying Theory and Practice in Distributed Systems, September 1994 9

Issues on Reusable Spacecraft Control Center Software

Vu Tien Khang
CAP SESA, 8 rue Paul Mesple, 31100 Toulouse, France

Email: vutien@capsogeti.fr

Spacecraft Control Centers can be considered at first view as instances of
the general facilities that perform real-time remote supervision of an automated
system. The system itself, the spacecraft, is not overly complex when compared
with ground systems such as nuclear power plants. However, because of the
hostile space environment, spacecrafts present specific issues on accessibility, on
availability, on remote diagnosis tools or on known restart points. ·

On the other hand, Spacecraft Control Centers rely on a variety of tracking
and telecommands stations that are scattered around the world, each presenting
a different set of features, a different data interface, and operating with different
constraints and work habits.

Because of all these constraints, Spacecraft Control Center software have, until
the present, been implemented specifically for a spacecraft inside a specifically
negotiated environment. Cost factors come in second, after the constraints of the
space segment of the global system are solved. As a result, mostly proprietary
and specific techniques are used.

Recently, some factors put a new accent on the approach used for SCC soft
ware. They are: rising software costs, rising transmitted data volume, rising
launch rates as more countries can afford space systems (telecommunication,
earth observation, localization). In the same time, scientific users also demand
more flexibility to access to on-board experiments. Facing these demands, a pos
sible way to go is to take profit of the trends in the consumer market: RISC and
Open Systems for more computing power and more compatibility, high speed
switched public networks (Data Highway) for more bandwidth at lower costs,
distributed tools for scalable systems, multimedia facilities (sound and images)
for a better resource management.

Research and development in the Cap Sesa Space Skill Center is concerned
with moving beyond the current situation, as summarized above. A new technol
ogy base is being developed that will address all aspects of this general problem.
We expose the current situation as summarized above, then describe the issues
specific to the SCC software field that faces R&D team in Cap Sesa Space Skill
Center, such as: upward compatibility, availability, security (on public networks),
interoperability and, finally, the most difficult issue, the human factor.

10 Unifying Theory and Practice in Distributed Systems, September 1994

Asynchronous Systems with Failure Detectors
A Practical Model for Fault-Tolerant Distributed

Computing
Sam Toueg

Department of Computer Science, Upson Hall, Cornell University, Ithaca, NY 14853
Email: sam@cs.cornell.edu

Vassos Hadzilacos
Computer Systems Research Institute, University of Toronto, 6 King's College Road,

Toronto, Ontario M5S JAl
Email: vassos@cs.toronto.edu

In 1983 Fischer, Lynch and Paterson proved that Consensus, which is a fun
damental problem in fault-tolerant distributed computing, cannot be solved in
asynchronous systems, even in the presence of at most one crash failure. To cir
cumvent this impossibility result, we introduce the concept of failure detectors.
We define a hierarchy of failure detectors including several unreliable ones - i.e.
failure detectors that falsely suspect correct processes as crashed. We show how to
solve Consensus using such failure detectors in asynchronous systems. Finally we
identify a particular failure detector in this hirarchy, called the eventually weak
failure detector W 0 , and show that it is the weakest failure detector that can
be used to solve Consensus. Our theoretical framework and results have useful
implications about practical fault tolerant systems, some of which we discuss.

Towards a Synthesis of the Synchronous and
Asynchronous Distributed Computing Models

Kenneth P. Birman
Dept. of Computer Science, Cornell University

Email: ken@cs.cornell.edu

It has become common to treat distributed systems as having either purely
synchronous or purely asynchronous execution models. In particular, most work
on protocols for real-time computing and for tolerance on severe faults has been
undertaken in a synchronous model, where communication delays can be bounded
and clocks are assumed to have bounded skew and drift. The asynchronous model,
on the other hand, underlies most work on distributed consistency, temporal logics
and distributed knowledge, and is the framework in which the "virtual synchrony"
model used in my work on Isis and Horus was based.

Unifying Theory and Practice in Distributed Systems, September 1994 11

Yet, real-world distributed systems are neither synchronous nor asynchronous,
but rather exhibit elements of both approaches. Current distributed systems are
asynchronous when viewed on a temporal scale at which the resolution of the
execution model approaches the latency for sending messages on the network.
Yet these same systems are synchronous, to increasingly high precision, when the
load _ on the system is well below its maximum and when the temporal scale is
sufficiently coarse. In this presentation, I will suggest that because the developers
of real distributed systems are normally interested in solving problems at a range
of temporal resolutions and with properties that may depend upon circumstances,
we need to start to conceive of distributed systems in terms that directly link the
temporal scale to the properties it offers.

In effect, we need to think of protocol suites as having properties and cor
responding probability distributions, parameterized by the time scale on which
we wish to examine the system and perhaps the "strength" of assumptions made
about the environment._ In this view, a protocol would not guarantee virtual
synchrony or guarantee temporal properties, but rather would achieve each of a
set of properties spanning consistency and temporal behaviors of the system, and
corresponding to a parameterized probability distribution.

The development of tools and technology that are realistic about the envi
ronment in which "real" distributed applications are developed and operated will
not be an easy undertaking. The assumptions underlying the synchronous and
asynchronous models are ultimately simplifying assumptions, and if by relaxing
them a huge new form of complexity is introduced, it is unlikely that useful tools
would result. However, if -methods for controlling complexity can be identified,
we may be able to achieve powerful new tools for engineering reliable distributed
systems - tools in which reliability and real-time properties are attacked from
multiple perspectives, to arrive at correct solutions with very high probability.
Such an outcome would represent a major step forward for our field of research,
and is a challenge worthy of considerable effort.

Transaction Model vs Virtual Synchrony Model:
Bridging the Gap

Rachid Guerraoui and Andre Schiper
Labomtoire de Systemes d'Exploitation, Departement d'lnformatique, EPFL CH1015

Lausanne, Switzerland
Email: rachid@lsesun3.epfl.ch, schiper@lse.epfl.ch

Two important models for building fault-tolerant applications have been in
dependently proposed in the literature, the transaction model (developed within

12 Unifying Theory and Practice in Distributed Systems, September 1994

the context of database applications) and the virtual synchrony model (proposed
initially by the Isis system). An interesting question is then the following: are
the basic mechanisms needed to implement both models exactly the same? We
answer this question by defining the Dynamic-Terminating-Multicast problem
and showing that it can be seen as a generic problem that allows to implement
both the transaction and the virtual synchrony model. It should thus be possible
to build a system offering, in an integrated way, both the transaction model and
the virtual synchrony model. Such a system could offer powerful primitives that
are currently cumbersome or impossible to express in the existing systems.

Sequential Consistency in Distributed Systems:
Theory and Implementation

Michel Raynal
!RISA, Campus de Beaulieu, 35042 RENNES cedex - Fronce.

Email:Michel.Raynal@irisa.fr

Masaaki Mizuno
James Z. Zhou

Dept. of Computing and Info. Sciences, Kansas State University, Manhattan, KS
66506.

Recently, distributed shared memory (DSM) systems have received much at
tention because such an abstraction simplifies programming. It has been shown
that many practical applications using DSMs require competing operations. We
have aimed at unifying theory and implementations of protocols for sequential
consistency, which provides competing operations. The results are useful not
only to clarify previously proposed implementations but also to develop new
efficient implementations for consistency criteria which provide competing opera
tions, such as sequential consistency, weak ordering (with sequential consistency
for competing accesses), and release consistency (with sequential consistency for
competing accesses) . By adopting concepts from concurrency control, we have
developed a theory for sequential consistency, called sequentializability theory.
This paper first presents the sequentializability theory, and then demonstrates
the correctness of existing protocols using the theory. Finally, the paper presents
new protocols which require significantly less communication than previously pro
posed protocols in systems which do not provide hardware atomic broadcasting
facilities.

Unifying Theory and Practice in Distributed Systems, September 1994 13

A Case Study in Distributed Algorithm Design using
Mixed Specifications

Beverly Sanders
ETH Zurich, Institut fuer Informatik, ETH Zentrum, CH 8092 Zuerich, Schweiz

Email: sanders@inf.ethz.ch

Formal proofs can significantly increase ones confidence in the correctness of
distributed algorithms and encourage a helpful way of thinking about a problem
which often yields some general algorithms. The structure of the proof can suggest
a nice way of presenting algorithms after they have been designed. In the talk
we use mixed specification to derive a previously published (incorrect) algorithm
of mutual exclusion in distributed systems.

Correctness Proofs of Distributed Algorithms
Wolfgang Reisig

Institut fiir Informatik, Humboldt-Universitat zu Berlin, 10099 Berlin, Germany
Email: reisig@informatik.hu-berlin.de

For small distributed algorithms, e.g. algorithms for mutual exclusion, wafe
and echo algorithms or round based algorithms, it will be shown that

- such algorithms are frequently simpler to handle than usually done, and
particularly that

- formal correctness proofs are feasible at moderate expenditure.

This is achieved by a (Petrinet based) modeling technique that sticks to syn
chronization issues, avoiding variables and assignment statements. Atomic ac
tions are shaped "If a 1 , •• • , an are arrived, then is sent /31, •• • , /Jm" . Furthermore,
a proof technique is suggested, fully exploiting the operational model. For state
properties ("it is always true that ... "), powerful invariants can be constructed.
Arguments on the static structure of algorithms allow for example to prove mu
tual exclusion for Peterson's algorithm, or the termination of all child-nodes in an
echo-algorithm. For progress properties ("eventually it is true that .. . "), a tem
poral logic based technique is suggested: Basic progress properties can be picked
up from the static structure of the algorithm directly. More involved properties
are derived by help of rules.

14 Unifying Theory and Practice in Distributed Systems, September 1994

Various examples show the adequacy and generality of ·the suggested tech
nique.

Some Key Issues in the Design of Distributed Garbage
Collectors
Marc Shapiro

JNRIA Rocquencourt and Cornell University
Email: mjs@cs.cornell.edu

David Plainfosse,· Paulo Ferreira, Laurent Amsaleg
INRIA Rocquencourt

The design of garbage collectors combines both theoretical aspects (safety
and liveness) and practical ones (such as efficiency, inobtrusiveness, ease of im
ple~entation, fa~lt tolerance, etc.). Although distributed garbage collection is
an instance of a consistency problem, practical designs often use weaker, "conser-·
vative" safety conditions, and/or weaker, "incomplete" liveness conditions. We
report on our experience designing a number of distributed garbage collection
algorithms in different settings, and explore the various design dimensions. The
cost of each design alternative depends on the scale of the distributed system.

Speedup Anomalies in Distributed Computations
Reinhard Schwarz

University of Kaiserslautem, Germany
Email: schwarz@informatik.uni-kl.de

One of the motivations for distributed and parallel computing is the potential
for speeding up the execution of an algorithm. Typically, it is assumed that
a "perfect" realization and execution of a distributed program should yield a
speedup which is linear in the number of processors being used. In practice,
however, such performance gains can hardly ever be obtained. 'Ilhe discrepancy
between the expected linear and the observed speedup is generally considered as a
measure for the quality of the runtime environment, as well as of the quality of the
parallelized algorithm. However, it. can be shown that the underlying hypothesis
that linear speed up is achievable · is generally not justified, even if zero-delay

Unifying Theory and Practice in Distributed Systems, September 1994 15

communication, zero-delay synchronization, and optimal load-balancing among
the processors is assumed, and even if the parallelization of the algorithm does not
cause any additional overhead. We present an analytical study which proves that
tightly-coupled distributed computations - when executed on realistic operating
system platforms - are subject to reduced availability of the runtime system.
Three different models analyzing three different classes of application profiles are
studied, and precise upper bounds on the achievable speedup are derived which
reflect the dramatic speedup loss for certain types of parallel programs. The
models give an intuitive explanation for the analytical results that are obtained.

Timing Failures and Timeliness Proofs in the Case of
Real-Time Distributed Systems

Gerard LeLann
INRIA, B.P. 105, F 78159 Rocquencourt Cedex, France

Email: Gerard.Le..Lann@inria.fr

Most often, real-time centralized or distributed systems are designed consid
ering a synchronous model of computation, i.e. lower and upper bounds are
assumed to exist for communication and computation delays, and the values of
such bounds is· advance knowledge. Furthermore, upper bounds as well as knowl
edge of their values are also postulated for densities of failures.

The first part of this presentation is concerned with timing failures. It can be
easily observed that, so far, timing failures have not received as much attention
as crash or omission or byzantine failures. A timing failure is a (run-time) vio
lation of the value of some postulated bound on communication or computation
delays. Recently, a number of papers on "hard" real-time distributed systems
have suggested that it is possible to perform on-line detection of timing failures,
so as to transform them into omission failures, which we know how to tolerate
or compensate in synchronous systems. In the case of communication delays,
which have postulated bounds denoted min and max, a particular class of on-line
schemes has been considered in these papers, which will be referred to as one-way
timeliness checks. One-way timeliness checks are based on the simple idea that
synchronized clocks can be used to measure interprocessor communication de
lays. Some precision e being maintained among clocks, these one-way timeliness
checks simply consist in verifying whether the following condition holds for every
incoming message: min - e < measured delay < max + e. Contrary to claims
made in published papers, such tests pro;_,ide no "deterministic" (i.e. guaranteed)
detection of timing failures . The solutions presented either are tautologies or are

16 Unifying Theory and Practice in Distributed Systems, September 1994

incorrect or are blocking (i.e., no messages can be accepted). This is demon
strated ·in the talk. Conditions under which such tests do not reject messages
indefinitely are also given.

The second part of this talk is concerned with timeliness proofs. A timeliness
proof is a demonstration that, for any given task, response times of a computing
system are comprised between two bounds, which match the earliest and latest
deadlines specified for that task. Timeliness proofs are mandatory in the case of
"hard" or "critical" real-time systems. The establishment of timeliness proofs is
also notoriously difficult in the case of distributed systems, for the reason that
advance knowledge of future arrivals of events (external and internal to a system)
and associated timeliness constraints is very limited. This is the reason why, most
often, such proofs are not given, even in papers that are concerned witµ "hard"
real-time systems. When given, such proofs usually are based on very restrictive
assumptions, e.g., postulating advance knowledge of the future (typically, periodic
event arrivals), which is not acceptable in the case of "critical" systems, as such
assumptions can be easily violated at run-time. Techniques that have proved
useful in establishing timeliness proofs for the general case are those based on
adversary arguments. In this talk, we present the basic ideas behind such proofs
and examine the different types of adversaries that can be contemplated. An
example of such proofs is given for the case of a multiaccess broadcast network
which implements a deterministic variant of the basic Ethernet protocol.

Paradigms for Fault-Tolerant Services: from Practice to
Theory

Keith Marzullo
University of California at San Diego, Department of Computer Science, 9500

Gilman Drive, La Jolla, CA 92093-0114, USA
Email: marzullo@cs.ucsd.edu

Message logging protocols are an integral part of a technique for implementing
processes that can _ recover from crash failures. All message logging protocols
require that, when recovery is complete, there be no orphan processes, which
are surviving processes whose states are inconsistent with the recovered state of
a crashed process. Orphans are either avoided through careful logging or are
eliminated through a somewhat complex recovery protocol.

We· give a precise specification of the consistency property "no orphan processes"
From this specification, we describe how different existing classes of message log
ging protocols (namely optimistic, pessimistic, and a class that we call causaQ

Unifying Theory and Practice in Distributed Systems, September 1994 17

implement this property. We then propose a set of metrics to evaluate the perfor
mance of message logging protocols, and characterize the protocols that are op
timal with respect to these metrics. Finally, starting from a simple protocol that
relies on causal delivery order, we show how to derive optimal causal protocols
that tolerate f overlapping failures and recoveries for a parameter f : 1 :s; f :s; n.

Lessons Learned from Building and Using Arjuna
Distributed Programming System

Santosh K. Shrivastava
Department of Computing Science, University of Newcastle upon Tyne, Newcastle

upon Tyne, NEl 7RU, England
Email: santosh.shrivastava@newcastle.ac.uk

Arjuna is an object-oriented programming system implemented entirely .in
C++, that provides a set of tools for the construction of fault-tolerant distrib
uted applications. Arjuna exploits features found in most· object-oriented lan
guages (such as inheritance) and only requires a limited set of system capabilities
commonly found in conventional operating systems. Arjuna provides the pro
grammer with classes that implement atomic transactions, object level recovery,
concunency control and persistence. These facilities can be overridden by the
p~6g~~mer as the needs of the application dictate. Distribution of an Arjuna
'application is handled using stub generation techniques that operate on the orig
inal C++ class headers normally used by the standard compiler. The system is
portable, modular and flexible. Arjuna has been used regularly by us for teaching
.di~tributed computing to undergraduate and graduate students. In addition, it
has been used successfully for building a variety of distributed applications. This
.has given us useful insights into the strengths and weaknesses of Arjuna. This
talk presents the overall design details of Arjuna and takes a retrospective look
at the system based on the application building experience of users. Ideas on
restructuring the system to overcome the limitations of the present design are
presented.

18 Unifying Theory and Practice in Distributed Systems, September 1994

Causally Consistent Observations of Distributed Systems
Friedemann Mattern

University of Saarbriicken, · Germany
Email: mattern@cs.uni-sb.de

Observing an asynchronous distributed system is non-trivial not only from
a technical point of view (instrumentation, intrusiveness), but also because of
inherent conceptual problems: Since event notification messages senf to an ob
server are subject to unknown delays, it is generally not possible to observe all
processes at the same instant in (global) time. This has serious consequences
when "detecting" global predicates (such as deadlock or garbage) of distributed
computations. Fortunately, there exist several means to guarantee that the ob
server gets at least a causally consistent view (i.e., a linearly ordered sequence of
events with respect to the causality relation), namely using timestamps based on
real time, on Lamport time, or on vector time.

Furthermore, we show that if two or more causally consistent observers observe
a single computation, they may not agree on the value of a global predicate
which, for example, makes the notion of global (or "distributed") breakpoints
rather doubtful. We explain this phenomenon and shortly mention the concept
of observer independ~nt predicates (i.e., "objective facts").

A closely related problem is causal order message delivery. Here, each process
within the system must get a causally consistent view of all messages addressed to
it. By generalizing the vector timestamp realization of the previous problem in a
canonical way, causal order message delivery can be implemented by timestamps
based on "matrix clocks" (i.e.,. vectors of vectors). We show, however, that
there exists a more space-efficient implementation based on input-output buffer
processes with FIFO message queues that communicate in a handshake-way.

Detection of Global Predicates in Distributed Systems
Bernadette Charron-Bost

Laboratoire d'Informatique, LIX,
Ecole Polytechnique,

91128 Palaiseau Cedex, France
Email: charron@lix.polytechnique.fr

The major problem for detecting a global predicate in a distributed system
is due to the fact that a distributed computation can be observed in many dif
ferent (correct) manners and, according to the observation to which one refers,

Unifying Theory and Practice in Distributed Systems, September 1994 19

one will claim that a given predicate is satisfied or not. Recently, Cooper and
Marzullo addressed this issue by distinguishing the predicates which "possibly"
hold, namely the predicates which hold in some observation, from those which
"definitely" hold, i.e., which hold in all observations. In this way, for a given pred
icate <p, they define two new predicates referred to as "Possibly </>'' and "Definitely
rp".

The definition of the predicates Possibly rp and Definitely rp, where rp is a
global predicate, leads to the definition of two predicate transformers Possibly
and Definitely. We show that Possibly plays the same role with respect to time
as the predicate transformers K; in Knowledge Theory play with respect to space.
·Pursuing this analogy, we prove that local predicates are exactly the fixed-points
of the K;'s while the stable predicates are the fixed-points of Possibly.

In terms of the predicate transformers Possibly and Definitely, we define a
new class of predicates that we call observer-independent predicates and for which
the detection of Possibly rp and Definitely rp is quite e~y. We study this new class
o(p~edica:tes and we give some non-trivial examples of observer-independent
predicates.

Cheaper Matrix Clocks

Frederic Ruget
Chorus·Systemes, 6 Avenue Gustave Eiffel, 78182 Saint Quentin en Yvelines Cedex,

Fronce
Email: ruget@chorus.fr

Matrix clocks have nice properties that can be used in the context of dis
tdbuted database protocols and fault tolerant protocols. Unfortunately, they are
costly to implement, requiring storage and communication overhead of size O(n2

)

for a system of n sites. They ate often considered a non feasible approach when
the number of sites is large.

In this paper, we firstly describe an efficient incremental algorithm to compute
the matrix clock, which achieves storage and communication overhead of size.
0(n) when the sites of the computation are "well synchronized". Secondly, we
introduce the k-matrix clock an approximation to the genuine matrix clock that
can be computed with a storage and communication overhead of size O(kn). k
matrix clocks can be useful to implement fault-tolerant protocols for systems with
crash failure semantics such that the maximum number·of simultaneous faults is
bounded by k - 1.

20 Unifying Theory and Practice in Distributed Systems, September 1994

These cheaper matrices will be useful within the CDB project. CDB is a
debugger for distributed applications running on top of the CHORUS micro
kernel, with an execution replay facility. During record and replay phase, CDB
maintains a distributed data base of all IPC objects of the application, that
enables it to translate oid identifiers to new identifiers (among other things).
The implementation of the distributed database currently relies on the use of
matrix clocks. We plan to optimize it by using these cheaper matrices.

Probing and Fault Injection of Distributed Systems
Farnam Jahanian

University of Michigan
Email: farnam@eecs.umich.edu

We present a technique for probing and fault injection of distributed protocols.
The proposed technique, called "script-driven probing and fault injection", can
be used for studying the behavior of distributed systems and for detecting design
and implementation errors of fault-tolerant protocols.

We view a distributed protocol as an abstraction through which a collection
of participants communicate by exchanging a set of messages. Each layer in a
protocol stack, from the device layer to the application-level protocol, provides
an abstract communication service to higher layers. In the proposed approach,
a fault injection layer is inserted between any two layers in a protocol stack to
filter and to manipulate the messages that are exchanged between the two layers.
The fault injection layer supports the execution of deterministic or randomly
generated test scripts to probe the participants and to inject faults into the
system under various failure models including daemon/link crash, send/receive
omissions, and timing failures. In particular, by intercepting messages between
two layers in a protocol stack, the fault injection layer can delay, drop, reorder,
duplicate, and modify messages. Furthermore, by selective reordering of messages
and spontaneous transmission of new messages, we were able to orchestrate a dis
tributed computation into a particular path without instrumenting the protocol
implementation.

To demonstrate the capabilities of this technique, we performed several ex
periments that studied the behavior of two protocols: the Transmission Control
Protocol (TCP) and a Group Membership Protocol (GMP). These experiments
identified three types of information about these protocol implementations: de
sign decisions made by the developers, violations of protocol specifications, and
design/implementation errors. The talk also discusses some of the ongoing theo
retical and experimental work.

Unifying Theory and Practice in Distributed Systems, September 1994 21

On the Role of Clock-Less Protocols in Real-Time
Systems

Paulo Verissimo
Technical University of Lisboa, IST-INESC, Lisboa, Portugal

Email: paulov@inesc.pt

In a former paper, we have informally pointed out that clock-less and clock
driven protocols are both able to serve distributed time-critical applications, pro
viding time boundedness and temporal order. The objective of this talk is to
formalize a set of application correctness conditions equally valid for clock-less
and dock-driven protocols. This will confirm our point about suitability of clock
less protocols. Then, we derive the correctness limits in real settings, to assess
the applicability of clock-less protocols to real time-critical applications. We show
that in an adverse environment, only clock-driven protocols are able to meet those
criteria, and with limitations. In well-behaved environments, clock-less protocols
may be as able as clock-driven ones. These results open the door to exploring
new forms of communication in time-critical systems, such as supporting mixed
event- and time-triggered operation. We expect that the our results will give
insight to that problem.

RMP - A High Performance, Totally Ordered Multicast
Protocol

Brian Whetten
Department of Computer Science, University of California at Berkeley, Berkeley, CA

94720, USA
Email: whetten@tenet.ICSI.Berkeley.EDU

This paper presents the Reliable Multicast Prot.ocol (RMP). RMP provides a
totally ordered, reliable, atomic multicast service ori. top of an unreliable multi
cast datagram service such as IP Multic~ting. RMP is fully and symmetrically
distributed so that no site bears an undue portion of the communication load.
RMP provides a wide range of guarantees, from unreliable delivery to totally
ordered delivery, to K-resilient, majority resiJient, and totally resilient atomic de
livery. These QoS guarantees are selectable on.a per packet basis. RMP provides
many communication options, including virtual synchrony, a publisher/ subscriber'
model of message delivery, a client/server model of delivery, an implicit naming
service, mufoally exclusive handlers for messages, and mutually ·exclusive locks.

22 Unifying Theory and Practice in Distributed Systems, September 1994

It ha.s commonly been held that a. large performance penalty must be pa.id in
order to implement total ordering-RMP discounts this. On Spa.rcSta.tionl0's on
a. 1250 KB/sec Ethernet, RMP provides totally ordered packet delivery to one
destination a.t 842 KB/sec throughput a.nd with 3.1 ms packet latency. The per
formance stays roughly constant independent of the number of destinations. For
two or more destinations on a. LAN, RMP provides higher throughput than a.ny
protocol that does not use multicast or broa.dca.st.

Selling Heterogeneous RPC to the Masses
Richard D. Schlichting

Department of Computer Science, The University of Arizona, Tucson, Arizona
85721, USA

Email: rick@cs.a.rizona.edu

Heterogeneous Remote Procedure Ca.11 (RPC) a.Hows computational compo
nents executing on different architectures or written in different programming
languages to communicate. This talk describes our experience colla.bora.ting with
computa.tiona.l scientists on using Schooner, an interconnection system that pro
vides heterogeneous RPC facilities, to construct realistic scientific a.pplica.tions
that span the Internet. Several of these a.pplica.tions a.re a.ssocia.ted with the Nu
merical Propulsion System Simulation (NPSS) project, a. NASA project designed
to expand the use of simulation in the development of next generation jet engine
technology. Among the conclusions a.re that heterogeneous RPC is a. feasible tool
for such a.pplica.tions, especially if ea.re is taken to make its semantics resemble
those of normal procedure calls a.s closely a.s possible.

Towards Open Service Environments
Kurt Geihs

Department of Computer Science, University of Fronkfurt, P.O.Boz 11 19 32,
D-60054 Fronkfurt, Germany

Email: geihs@informatik.uni-fra.nkfurt.de

Rapid advances in computer and communications technologies have lead to
a. continuously progressing distribution of information processing. In the future

Unifying Theory and Practice in Distributed Systems, September 1994 23

we will see very large distributed systems in which many independent service
providers will provide a variety of different services to a large population of service
consumers. Customers, looking for some service, will be able to choose from a
nu~ber of similar service offers that differ e.g. in pricing and quality of service.
We call such a. distributed system an open service enviro~ment (OSE) .

The focus ·of our contribution is on service types and service mediation. Char
acteristic for an open service environment will be the wide spectrum of service
types and the inherently dynamic nature of the service configurations. Service
providers will come and go, new service types will be introduced, and other ser
vice types may no longer be supported. In current systems, service types are
defined by a unique name and a syntactical specification of the interface, writ
ten in some Interface Definition Language (IDL) . The IDL-specification basically
describes how the service can be used, but not what it is going to do.

We propose a semantic extension to the purely syntax-based IDL specification.
This extension is based on declarative semantics and supports the service type
matching .without the need for an a priori agreement on the exact syntax of a
particular service interface. The issue of type matching brings up two questions
related to conformance: Do two type specifications conform to a common super
type and does a service implementation conform to its specification? We will show
how these questions can be addressed based on established logic programming
and conformance testing methodology, respectively.

System Structuring: A Convergence of Theory and
Practice?

Jeff Kramer and Jeff Magee
Department of Computing, Imperial College of Science Technology and Medicine, 180

Queen's Gate, London SW7 2BZ, UK
Email:· jk@doc.imperial.ac.uk

Our research work concerned with the provision of sound and practical means
for the construction of distributed systems has resulted in the development of
configuration languages as a means of describing and managing system struc
t~e. The most recent of these languages Darwin is an attempt to provide
a general structuring tool of use in building systems from diverse components
and diverse component interaction mechanisms. Darwin is in essence a binding
language which can be used to define hierarchic compositions of interconnected
components. Distribution is dealt with orthogonally to system structuring. The
language allows the specification of both static structures and dynamic structures
which evolve during execution. The central abstractions managed by Darwin are

24 Unifying Theory and Practice in Distributed Systems, September 1994

components and services. Bindings are formed in a uniform manner by manipu
lating references to services.

Research work on the provision of a theory of concurrency and interaction
has produced process algebras such as CSP, CCS and, most recently, the p
Calculus. The last of these is particularly interesting in its attempt to provide
" ... a direct description of systems which change their configuration" (Milner).
System structure is described as a parallel composition of processes which share
particular channels for interaction. Processes can be dynamically replicated as
necessary. Interaction is defined by synchronous communication along channels,
although asynchronous models have also been proposed for the calculus. The key
idea is the ability to handle naming (or references) of all entities in a uniform
manner, including the ability to pass channel names to other processes to form
bindings. This provides the basis for the binding required for both static and
dynamic configuration.

The correspondence between the treatment of names in the p-Calculus and
the management of service references in Darwin has lead us to work on modelling
Darwin programs in the calculus. In the talk, we describe the approaches in more
detail and indicate the similarities and differences and their implications.

COCOON - Support for Information Sharing in CSCW
Based on Causally and Totally Ordered Group

Communication
Markus Kolland

Corporate Research and Development, Siemens Munich, Germany
Email: makol@km21.zfe.siemens.de

The term CSCW describes IT support for the collaboration of people, which
work together as teams in geographically dispersed settings. The main objective
of each CSCW system is to provide an efficient means of sharing information
within work groups in the context of supporting a specific collaborative task. In
order to really improve the efficiency of team work in these scenarios, CSCW
applications must closely resemble the interaction patterns within human-human
collaboration, bridging the boundaries of time and place while hiding the com
plexity of the underlying distributed environment (geographically dispersed and
mobile hosts, heterogeneous hardware, software and communication, failures and
concurrency).

Addressing the above objective in a CSCW application, however, turns out
to be extremely difficult. The major source of complexity lies in implementing

Unifying Theory and Practice in Distributed Systems, September 1994 25

a uniform information access, manipulation and consistency model for shared
information under the given interactivity and distribution constraints. Current
distrib_uted system technology does not provide adequate support in this area.
Most of the existing commercial platforms for open, distributed software systems
like OSF/DCE, ORBIX or ANSAware don't address the required consistency
requirements. Others like ISIS or TUXEDO provide a set of useful mechanisms
for the -interaction of (operating-) system oriented software components which
is however largely different from the needs of human-human collaboration. The
same observation holds with respect to state-of-the-art database technologies.

· These observations led us to design COCOON, a CSCW support layer based
on the causally and totally ordered group communication paradigm. COCOON
uses existing distributed systems technology (ISIS/News) but with specific focus
on the issues arising from information sharing mechanisms in CSCW. COCOON
is an object-oriented application framework, which provides collaborative appli
cations with the abstraction of a shared information space. In this context CO
COON offers a communication model, an information model, a session model,
and several CSCW specific consistency models to facilitate the implementation
of CSCW systems. COCOON has been successfully implemented and validated
within a real CSCW design project.

New Applications for Group Computing
Robbert van Renesse, Ken Birm_an,

Thorsten von Eicken and Keith Marzullo
Cornell University

Email: rvr@cs.cornell.edu

Group computing (GC) encompasses two important paradigms: membership
and multicast communication. So far, these paradigms are best understood in two
domains: fault-tolerant applications (replicated services), and data dissemination
appiications (e.g. stock trading). Yet GC also has potential in many other areas
of distributed applications. We will discuss sorrie new application domains, what
approaches one may take when trying to apply GC here, and what implications
this has for the GC paradigms themselves. In particular, we will discuss how our
own new GC system,- Horus, addresses these issues. The application domains on
which we focus are parallel computing, multimedia systems, and real-time control
systems.

The Horus system is software development effort that started in 1991 at Cor
nell University. An outgrowth of our prior work on the Isis Toolkit Horus advances

26 Unifying Theory and Practice in Distributed Systems, September 1994

over Isis in a number of ways. The protocols and algorithms used are cheaper,
cleaner, and more modular than in Isis, and they scale better. The architectu~e
uses a layering technique that allows the user (or presentation layer) to construct
special-purpose communication systems which exhibit subsets of the full func
tionality available in the Homs kernel. Moreover, . the user interface has been
implemented in a way that permits high degrees of parallelism both in Homs
itself, and in the application program. This design has resulted in a uniquely
flexible system that considerably outperforms Isis for many operations.

We will not discuss the group computing model in any detail. Briefly, the
approach provides a way to form groups of processes dynamically, using primi
tives by which a process can join a group or leave a group. Failed processes are
automatically removed from a group. In conjunction with these basic operations,
reliable multicast facilities are provided by which processes can communicate
with or within a group, offering varied ordering and stability properties. Naming
services, security mechanisms, and other system infrastructure are provided to
extend this basic model into a comprehensive distributed programming environ
ment, somewhat like the tools available in RPC-oriented distributed computing
environments.

We view parallel computing environments as an important potential applica
tion area for group computing. GC has been exploited for parallel computing
by efforts such as ORCA, a programming language that supports distributed
computations. Although we believe that parallel languages may -open parallel
computing to a large community, the majority of existing parallel codes oper
ate over programming libraries, such as PVM. Recently, the parallel computing
community developed a new standard for parallel computing support. This new
system, called MPI, is based on the assumption that a static number of processors
are assigned to each parallel execution. The processors communicate with each
other through messages and barrier synchronization routines that scatter and
gather interim results. GC may be applied here to manage the group of proces
sors, and implement the barrier synchronization routines. The failure detection
and recovery mechanisms of GC may be applied to add fault-tolerance, trans
parently to the application. This would be particularly useful for long-running
parallel computations.

It is important in this application domain to provide minimal communication
overhead. We are in the process of studying how the very low overhead Active
Messages paradigm.can be consolidated with GC. In the strategy we· are pursuing,
Homs is combined with a microkernel to form a minimal operating system for
use on dedicated processing nodes.

Although GC has not been applied to multi-media applications previously, this
seems also an obvious and promising idea. In multi-media applications, groups
of two or more participants cooperate by communicating in a variety of ways at
the same time. Beside the obvious audio and video, this may also include shared
whiteboards, shared windows which can be used for, e.g., cooperative debugging,

Unifying Theory and Practice in Distributed Systems, September 1994 27

and other types of cooperative applications.
GC can be applied here to do connection management and help with syn

chronization. Even with failing sites and channels, the standard GC membership
protocols provide easy access at every site to the group and the status of its mem
bers. The ordered communication routines can be used to maintain consistent
shared state between the members to reserve communication bandwidth, and syn
chronize the channels. It is important for such applications that the GC system
support at least synchronized clocks and prioritized communication. In addition,
the GC system has to be able to reserve resources for particular connections.

Perhaps more demanding than multi-media, real-time control systems require
hard guarantees on latencies of communication, and detection and recovery of
failures. Besides demands on GC protocols and use of resources, this requires the
GC implementation to be embedded easily into a variety of situations. Such a GC
system needs to be portable and customizable with different sets of protocols. An
example of a GC system with real-time properties is the HAS system, and later
used as a basis for parts of an air traffic control system being constructed at IBM
for the United States FAA. We have started our own project to add real-time
properties to Horus.

Object Framework for Operating System Serverization
Jishnu Mukerji

Novell Inc. USG, 190 River Road, Summit NJ 07901, USA,
Email: jis@summit.novell.com

We describe our experience in the development and evolution of a framework
•for providing object invocation and management service in a microkernel. In the
ESPRIT III funded Ouverture project we have developed an object framework
to aid in the serverization of the UNIX SVR4 ES/MP system onto the Chorus
microkernel. This framework consists of a set of classes and associated derivation
rules .that allow easy incorporation of variations to the basic design. Implementers
of individual servers can specify the interfaces thei support using C++ extended
with OMG-IDL-like constructs for specifying interfaces. This framework allows
selection and use of an appropriate. implementation of the invocation mechanism,
based on the relative location of the invoker and the invokee as well as configura
tion features desired by the server (e.g. migration persistence etc.). Much work
remains to be done in understanding what is the best way of precisely defining the
innovation points and specifying the allowed extensions to the framework. Using
such specifications to automatically check whether a new extension is consistent
with the framework is an open area of inquiry.

28 Unifying Theory and Practice in Distributed Systems, September 1994

This work draws heavily from the Chorus COOL project and has been jointly
developed · by Christian Jacquemot, Peter Jensen and Frederic Herrmann from
Chorus Systemes and Philippe Gautron and Jishnu Mukerji of Novell USG.

Exposing Theory to Practice in Storage Systems

John Wilkes
Hewlett Packard Labs JU13, P.O. Bo:,; 10490, Palo Alto, CA 94303-0969, USA

Email: wilkes@hpl.hp.com

Although it might seem at first sight that research in storage systems - by
which I mean here disks and file systems - is grounded firmly on the "practical"
side of this boundary, the intent of this short talk is to suggest that things may
not be quite so clear.

Consider the humble disk drive, acting as a "slave" peripheral to a host sys
tem. Most system designers treat that disk as a simple, passive object that pretty
much does what it is told, when it is told to do it. In fact, the disk drive is a com
plicated system in its own right: one that exploits caching, request reordering,
and asynchronous operations to improve performance; and one that has a num
ber of ."housekeeping" tasks (like th~rmal recalibration) that can easily interfere
with the "normal" operation of the device. Thus, disk drive behavior needs to be
considered in systems that are exploiting causality (request ordering), or trying
to achieve fault-tolerance (caching dirty data in volatile RAM), or real-time per
formance (asynchronous operations, request ordering). To make matters worse,
the algorithms and policies used by the disk are rarely specified (although it is
usually possible to disable them - but only at a considerable performance cost).

Disks are often embedded into larger ensembles - "disk arrays", which them
selves have large amounts of firmware, much of whose behavior is poorly specified.

And finally, in the larger view of storage systems, multiple hosts • (the clients
of these disks and disk arrays) will themselves be caching data at the file and/or
block level, with all the usual cache consistency problems that entails. In such
systems, the complexity of the physical and logical interconnections (e.g., multi
ported disks connected to different 1/0 adapters on separate hosts), means that
something more than ad-hoe techniques to address failures are required.

In short, the area of storage systems is probably ready to take advantage of
the same kind of theoretical understanding that has improved our ability to build
working distributed systems. Indeed, it is a suitable field for fruitful research
across exactly the boundary under discussion at this workshop.

Dagstuhl-Seminar 9436:

Jean-Pierre Banatre
Universite de Rennes
IRISA
Campus de Beaulieu
Avenue du General Leclerc
F-35042 Rennes Cedex
France
jpbanatre@irisa.fr
tel.: +33-99.84.72.20

Kenneth P. Birman
Cornell University
Department of Computer Science
4106 Upson Hall
Ithaca NY 14853-7510
USA
birman@cs.comell.edu

Bernadette Charron-Bost
Ecole Polytechnique
Laboratoire d'lnformatique
F-91128 Palaiseau Cedeic
France
charron@lix.polytechniqueJr
tel.: +33-1-69.33.34.84

Danny Dolev
The Hebrew University of Jerusalem
Institute of Computer Science
Givat Ram
91904 Jerusalem
Israel
d6lev@cs.huji.ac.i1
tel.: +972-2-584-116

Stefan Fiinfrocken
TH Darmstadt
FB 20 lnformatik
Frankfurter Str. 69 a
63293 Darmstadt
Genilany

Kurt Gelhs
Universitat Frankfurt a.M.
Fachber'eich 20 lnformatik
Postfach 11 19 32
D-60054 Frankfurt
Germany
geihs@informatik.uni-frankfurt.de
tel.: +49-69-798-81 96

List of Participants

Rachid Guerraoui
Ecole Polytechnique de Lausanne
De-partement d'lnformatique
CH-1015 Lausanne
Switzerland
guerraoui@lse.epfl.ch
tel.: +41-21-693-52 72

Vassos Hadzilacos
University of Toronto
Computer Systems Research Institute
6 King's College of Road
Toronto Ontario M5S 1 A 1
Canada
vassos@cs.toronto.edu
tel.: + 1-416-978-60 28

Farnam Jahanlan
The University of Michigan
EECS Department
PO Box 1485
Ann Arbor Ml 48109-2122
USA
famam@eecs.umich.edu
tel.: +1-313-936-29 74

Dag Johansen
University of Tromso
Dept. of Computer Science.
N-9037 Tromso
Norway
dag@cs.uit.no

Markus Kolland
SIEMENS ZFE BT SE 32
Zentralabt. Forschung und Entwicklung
Otto-Hahn-Ring 6
81739 Munchen
Germany
makol@km21.zfe.siemens.de
tel.: +49-89-636-4 13 43

Sacha Krakowiak
Bull-lMAG
21 de Mayencin
2 rue Vignate
F-38610 Gieres
France
krakowiak@imag.fr
tel.: +33-76-634834

Jeff Kramer
Imperial College of Science
Department of Computer Science
180 Queen's Gate
London SW7 2BZ
Great Britain
jk@doc.ic.ac.uk
tel.: +44-71-589-51 11

Gerard Le Lann
INRIA
Domaine de Voluceau
Rocquencourt
BP 105
F-78153 Le Chesnay Cedex
France
gerard.le-lann@inria.fr
tel.: +33-1-39.63.53.64

Jeff Magee
Imperial College of Science
Department of Computer Science
180 Queen's Gate
London SW7 2BZ
Great Britain
jnm@doc.ic.ac.uk
tel.: +44-71-594-82-69

Keith Marzullo
University of California at San Diego
Department of Computer Science
and En~ineering
9500 Gilman Drive
La Jolla CA 92093-0114
USA
marzullo@cs.ucsd.edu
tel.: +1-619-534-37 29

Friedemann Mattern
TH Darmstadt
FB 20 lnformatik
Frankfurter Str. 69 a
63293 Darmstadt
Germany
mattem @iti.informatik.th-darmstadt.de
tel.: +49-6151-16-37 09

Jishnu Mukerji
NOVELL USG
Room A-121
190 River RD
Summit NJ 07901
USA
jis@summit.novell.com
tel.: +1-908-522-50 24

David Powell
LAAS-CNRS
7 Avenue du Colonel Roche
F-31 on Toulouse CEDEX
France.
dpowell@lnas.fr
tel.: +33-61-33-62-87

Michel Raynal
Universite de Rennes
IRISA
Campus de Beaulieu
Avenue du General Leclerc
F-35042 Rennes Cedex
France
raynal@irisa.fr
tel.: +33.99.84.71.88

Wolfgahg Reisig
Humboldt-Universitat
lnstitut fur lnformatik
Unter den Linden 6
10099 Berlin
Germany
reisig@informatik.hu-berlin.de
tel.: +49-30-20 18 12 20

Mike Reiter
AT&T Bell Laboratories
Room 4F-637
Crawfords Comer Road
Holmdel NJ 0TT33
USA
reiter@research.att.com
tel.: +1-908-949-19 57

Robbert van Renesse
Cornell University
Department of Computer Science
4118 Upson Hall
Ithaca NY 14853-7510
USA
rvr@cs.comell.edu
tel.: +1-607-255-10 21

Guy Rilba
Services Techniques de la
Navigation Aerienne
STNA/ATC
95 Rue Rochefort
F-91000 Evry
France
rilba@sthatls.stna 7 .stna.dgac.fr
tel.: +33-62.14.50.92

Frederic Ruget
Chorus Systems SA
6 Avenue Gustave Eiffel
F-78182 St. Quentin en Yvelines
France
ruget@chorus.fr
tel.: +33-1-30-64-82-41

Beverly Sanders
ETH Zurich
lnstitut fur Computersysteme
ETH-Zent rum
CH-8092 Zurich
Switzerland
sanders@inf.ethz.ch
tel.: 41-1-632-2830

Andre Schiper
Ecole Polytechnique de Lausanne
Department d'lnformatique
CH 1015 Lausanne
Switzerland
schiper@lse.epfl.ch
tel.: +41216934248

Rick Schlichting
University of Arizona
Department of Computer Science
Tucson AZ 85721
USA
rick@cs.arizona.edu

Reinhard Schwarz
Universitat Kaiserslautem
FB lnformatik
Postfach 3049
67653 Kaiserslautem
Germany
schwarz@informatik.uni-kl.de
tel.: +49-631-205-32 97

Marc Shapiro
INRIA
Demaine de Voluceau
Roctjt..iencourt
BP105
F-78153 Le Chesnay Cedex
France
shapiro@sor.inria.fr
tel.: +33-1-39.63.53.25

Santosh Shrivastava
University of Newcastle upon Tyne
Corriputing Laboratory
Newcastle upon Tyne NE1 7RU
Great Britain
Santosh.Shrivastava@newcastle.ac.uk
tel.: +44-91-222-80 38

SamTou~
Cornell University
Department of Computer Science
4106 Upson Hall
Ithaca NY 14853-751 0
USA
sam@cs.comell.edu
tel.: +1-607-255-91 97

Paulo Verissimo
INESC
Apartado 1 O 1 05
Rua Alves Redol 9/ 6
P-1017 Lisboa Codex
Portugal
paulov@inesc.pt
tel.: +351-1-3100-2 81

Werner Vogels
Cornell University
Department of Computer Science
4141 Upson Hall
Ithaca NY 14853-751 0
USA
vogels@cs.comell.edu
tel.: + 1-607-255-9205

Khang Vu Tien
CAPSESA
8 Rue Paul Mesple
F-31036 Toulouse Cedex
France
vutien@capsogeti.fr
tel.: +33-61 31 53 30

Brian Whetten
University of California at Berkeley
Computer Science Division
589 Evans Hall
Berkeley CA 94720
USA
whetten@cs.berkeley.edu
tel.: +1-510-664-28 03

John Wilkes
Hewlett Packard Labs
P.O. Box 10490
Palo Alto CA 94303-0969
USA
wilkes@hpl.hp.com
tel.: +1415875 3568

Zuletzt erschienene und geplante Titel:

F. Meyer a.d. Heide, H.J. Pr0mel, E. Upfal (editors):
Expander Graphs, Random Graphs and Their Application in Computer Science, Dagstuhl-Semi
nar-Report; 87; 11.04.-15.04.94 (9415)

J. van Leeuwen, K. Mehlhom, T. Reps (editors):
Incremental Computation and Dynamic Algorithms, Dagstuhl-Seminar-Report; 88; 02.05.-
06.05.94 (9418)

A. Giegerich, J. Hughes (editors):
Functional Programming in the Real World, Dagstuhl-Seminar-Report; 89; 16.05.-20.05.94 (9420)

H. Hagen, H. MOiier, G.M. Nielsori (editors):
Scientific Visualization, Dagstuhl-Seminar-Report; 90; 23.05.-27.05.94 (9421)

T. Dietterich, W. Maass, H.U. Simon, M. Warmuth (editors):
Theory and Praxis of Machine Leaming, Dagstuhl-Seminar-Report; 91; 27.06.-01 .07.94 (9426)

J. Encama~o. J. Foley, A.G. Herrtwich (editors):
Fundamentals and Perspectives of Multimedia Systems, Dagstuhl-Seminar-Report; 92; 04.07:-
08.07.94 (9427)

W. Hoeppner, H. Horacek, J. Moore (editors):
Prinzipien der Generierung nat0r1icher Sprache, Dagstuhl-Seminar-Report; 93; 25.07.-29.07.94
(9430)

A. Lesgold, F. Schmalhofer (editors):
Expert- and Tutoring-Systems as Media for Embodying and Sharing Knowledge, Dagstuhl-Semi
nar-Report; 94; 01 .08.-05.08.94 (9431)

H.-D. Ehrich, G. Engels, J. Paredaens, P. Wegner (editors):
Fundamentals of Object-Oriented Languages, Systems, and Methods, Dagstutil-Seminar-Report;
95; 22.08.-26.08.94 (9434)

K. Birman, F. Cristian, F. Mattern, A. Schiper (editors):
Unifying Theory and Practice in Distributed Systems, Dagstuhl-Seminar-Report; 96; 05.09.-
09.09.94 (9436)

R. Keil-Slawik, I. Wagner (editors):
Interdisciplinary Foundations of Systems Design and Evaluation, Dagstuhl-Seminar-Report; 97;
19.09.-23.09.94 (9438)

M. Broy, L. Lamport (editors):
Specification and Refinement of Reactive Systems - A Case Study, Dagstuhl-Seminar-Report; 98;
26.09.-30.09.94 (9439)

M. Jarke, P. Loucopoulos, J. Mylopoulos, A. Sutcliffe (editors):
System Requirements: Analysis, Management, and Exploitation, Dagstuhl-Seminar-Report; 99;
04.10.-07.10.94 (9440)

J. Buchmann, H. Niederreiter, A.M. Odlyzko, H.G. Zimmer (editors):
Algorithms and Number Theory, Dagstuhl-Seminar-Report; 100; 10.10.-14.10.94 (9441)

S. Heinrich, J. Traub, H. Wozniakowski (editors):
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report; 101; 17.10.-
21.10.94 (9442)

H. Bunke, T. Kanade, H. Noltemeier (editors):
Environment Modelling and Motion Planning for Autonomous Robots, Dagstuhl-Seminar-Report;
102; 24.10.-28.10.94 (9443)

W. Maass, Ch. v.d. Malsburg, E. Sontag, I. Wegener (editors):
Neural Computing, Dagstuhl-Seminar-Report; 103; 07.11.-11.11.94 (9445)

