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1 Overview

The first Dagstuhl Seminar on Neural Computing had been organized by
Wolfgang Maass (Technische Univrsität Graz, Austria), Christoph von der
Malsburg (Ruhr Universität Bochum), Eduardo Sontag (Rutgers University,
USA) und Ingo Wegener (Universität Dortmund). It brought together 35
participants from 6 countries, among these 6 from overseas.
The seminar consisted of 28 plenary talks, 5 tutorials, a panel discussion, an
open problem session, and numerous discussions as well as two extra talks
in smaller groups. The panel discussion covered a number of common prob-
lems in theoretical and experimental research on neural networks, such as
the proper choice of models and benchmark problems for the investigation of
computing and learning on biological and artificial neural networks. Tutorials
were given by Christoph von der Malsburg (”The binding problem of neural
networks”), Wulfram Gerstner (”Models of spiking neurons”), Angus Mac-
intyre (”The VC-dimension of neural networks”), Jehoshua Bruck/Thomas
Hofmeister/Matthias Krause (”The computational complexity of threshold
circuits”), and Peter Bartlett (”Learning on neural nets from the point of
view of computational learning theory”).
A thorough understanding of neural networks requires methods and results
from quite diverse disciplines such as computer science, biology, engineer-
ing, physics, statistics, and mathematics. Therefore we had invited to this
Dagstuhl seminar besides computer scientists also experts for neural networks
from these other disciplines. The five tutorials provided a substantial com-
mon knowledge background and sufficient mutual ”language-understanding”,
so that the participants could follow the presentations of new research results
from all of the here represented disciplines. Many interesting interdisciplinary
discussions ensued, especially since many of the participants never had the
opportunity before to attend a meeting of this type.
Apart from this interdisciplinary aspects, the meeting also provided a forum
for the presentation of a number of exciting new research results about neural
networks. As just one example one could mention the plenary talk, and two
evening sessions with technical details, which were given by Angus Macintyre
from Oxford University. He reported on the solution of a well-known open
problem in theoretical research on neural networks, which he had recently
achieved jointly with Marek Karpinski from the University of Bonn. Their
seminal result, which was made public for the first time at this Dagstuhl
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meeting, provides a polynomial upper bound for the Vapnik-Chervonenkis
dimension of sigmoidal neural nets (previously only a double-exponential
upper bound had been achieved).
This new result, as well as some other new research results which were pre-
sented at this seminar, will be published in a special issue of the Journal
of Computer and System Sciences for the first Dagstuhl Seminar on Neural
Computing.

Wolfgang Maass

Edited by Berthold Ruf
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2 Abstracts

Tutorial: The Binding Problem of Neural Networks
by Christoph von der Malsburg

Neural Networks aspire to be a universal data structure, fit for a great variety
of applications. In their context each neuron is an elementary proposition,
and a situation is fully described by a vector of neural signals. This data
structure is criticised for being too limited in its power. For instance, let a
visual scene contain several objects, each described by a set of neurons en-
coding single features. This data structure is grossly ambiguous, not being
explicit about the grouping of features in terms of objects (a red triangle and
a green square would be confused with a green triangle and a red square).
What is called upon is a device, as fundamental ingredient of the neural
data structure, for expressing the grouping (or “binding”) of neurons into
separate structures. This is the binding problem. It can be solved with the
help of temporally structured neural signals and signal correlations to express
grouping. The ambiguity mentioned is demonstrated in psychophysical ex-
periments under viewing time restrictions. Model simulations are presented
which illustrate the problem and its solution by temporal coding. The sig-
nificance for reducing the complexity of learning from examples is discussed
and illustrated by a model.

Tutorial: Models of spiking neurons
by Wulfram Gerstner

In most models of neural networks, the output of a neuron is described by
an analog (or binary) variable and is often called a firing ‘rate’. The firing
rate is, however, a somewhat unprecise notion, and a description of biological
neurons on the level of single spikes seems more appropriate.
Presently, there exist a number of different models of spiking neurons which
are reviewed in this tutorial. It is shown that many of these models, in par-
ticular different versions of the integrate-and-fire model, can be classified in
terms of their linear response to incoming spikes. The response is described
by a kernel κ(s, s′) where s and s′ denote the time that has passed since the
last spike of the postsynaptic and presynaptic neuron, respectively. Further-
more, there is a function η(s) which describes the free evolution after a spike
at s = 0. This approach naturally leads to the Spike Response Model which
is the most general renewal model with linear inputs.
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From single spiking neurons to global network behavior: The ‘Spike
Response Model’
by Wulfram Gerstner

The ‘Spike Response Model’ is a simple but powerful phenomenological model
of a single neuron. Spike generation is induced by a combination of thresh-
old and refractoriness as described by a function η(s) where s is the time
since spike emission. Spike reception evokes a postsynaptic potential, mod-
eled by another response function κ(s, s′) where s′ or s is the time since the
last presynaptic or postsynaptic spike, respectively. Within the mathemat-
ics of stochastic point processes the spiking statistics of a single neuron can
be calculated for arbitrary input. The global dynamics of a fully connected
network of N SRM-neurons is described by a dynamic mean-field equation
which is exact in the limit of N → ∞. The network can be either homoge-
neous or it may consist of several pools of equivalent neurons. We discuss
three types of solution, i.e., incoherent, coherent, and spatio-temporal fir-
ing patterns. In the case of incoherent firing, the mean firing rate is the
only relevant parameter. But there are also coherent oscillatory and more
complex spatio-temporal states. The latter allow information processing on
a time-scale of a few ms. The potential relevance of these states for coding
by single spikes is discussed.

The Spike Response Model and its Applications
by Raphael Ritz

Feature linking and pattern separation are shown to be performed as simul-

taneous processes by a highly connected auto–associative network of spiking

neurons (the Spike Response Model). In principle, many patterns can be
separated, but with a biological set of parameters the number is limited to
four . The patterns have been learned by an asymmetric Hebbian rule that
can handle a low activity which may vary from pattern to pattern. Spikes
are generated by a threshold process and – with some delay – transmitted to
postsynaptic neurons. There they evoke an excitatory or inhibitory postsy-
naptic potential (EPSP or IPSP). Spike emission is followed by an absolute
refractory period and activates an inhibitory delay loop that prevents con-
tinuous firing.
Three different network topologies are discussed, i.e., a structureless fully
connected system, a hierarchical network with four subsystems that represent
different ‘functions’ and interact via feedforward and feedback connections.
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Functional feedback turns out to be essential for context-sensitive binding.
Finally, a locally connected net is studied as a simple model of a cortical
sheet. Depending on the synaptic efficacy, four different scenarios evolve
spontaneously, viz., stripes, spirals, rings, and complex pulsating patterns.
These results can be related to experimental observations of drug–induced
hallucinations.

Neural Nets and Statistics
by Kurt Hornik

A great number of Neural Network application consist in using them, in par-
ticular multilayer perceptrons (MLPs) with sigmoidal actication functions,
to “learn” unknown input-output maps f , usually by minizing MSE. From a
statistician’s perspective, this amounts to approximating the conditional ex-
pectation of the target y given the input x by “estimating” f in the regression
model y = f(x) + e.
This can either be done nonparametrically by smoothing the data, or by
fitting certain families M of parametric models, such as polynomials, radial
basis functions, MLPs, etc., to the data. Hence, it is obviously of fundamental
interest to carefully investigate up to what extent MLPs can outperform their
competitors at this task, if at all.
Whereas the basic universality of approximation results for MLPs were ob-
tained more than 5 years ago, the more important questions regarding rates

of approximation, i.e. how the approximation accuracy scales with the “com-
plexity” of both the model class M (typically MLPs with bounds on the
number of hidden units) and the underlying f , are still far from being well-
understood. We present a few important open problems in this direction.
In particular, we ask what “good” or “interesting” complexity measures for
continuous-valued functions are.

Polynomial Bounds for VC-Dimensions of Sigmoidal Neural Net-
works
by Angus Macintyre (joint work with Marek Karpinski)

By using methods from differential topology (Sard’s Theorem and Morse
Theory), and Finiteness Theorems of Hovanskii, we give bounds for the VC-
dimension for neural nets with activation function σ(x) = 1

1+eΓ§ , in which
the dominant term is w4, where w is the number of weights. The method
can be adapted to other activation functions such as arctan(x). The method
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also gives bounds for sparse polynomial activation functions.

Invariance in Feedforward Networks
by John Shawe-Taylor

The paper describes a framework for addressing the training problem of
multi-layer perceptrons by a principled introduction of weight sharing. The
technique not only reduces the size of the class from which the learning al-
gorithm must select its hypothesis but also reduces the number of examples
required for a given level of generalization. The required sample size is anal-
ysed in the Probably Approximately Correct (PAC) model of learning and is
shown to be proportional to the number of parameters times the logarithm of
the number of computational nodes. The question of assessing the function-
ality of the weight sharing network is addressed, with a view to ensuring that
the weight constraints introduced have not excluded the target functions of
the learning task. A general theorem is given characterising when a sigmoid
network with a given class of symmetries can distinguish two inputs.

On Bridging the Gap between Theory and Practice of Neural Net-
works
by Georg Dorffner

In this talk I present an approach, pursued at our Institute, toward a more
thorough theoretical underpinning of neural networks from the view of a
practitioner. By doing this we aim at partially filling the apparent gap be-
tween common practice of neural nets and existing theoretical results. In
particular, our approach is based on a general feedforward network model in
the virtual room spanned by the dimensions propagation rule (”net input”),
transfer function and learning rule. We show that, besides the well-known
models like MLP or RBFN, this virtual room contains novel, largely unex-
plored network types, sometimes even with a continuum between types. Each
of these network types is appropriate for certain data distributions and prob-
lem domains. Thus they can be viewed like pieces of a jigsaw puzzle yielding
an overall picture of an application-driven selection of appropriate architec-
tures for a given problem. Further discussion will be devoted to approaches
for narrowing the number of degrees-of-freedom of networks in the light of
some rather pessimistic results on learnability from computational learning
theory. This view will be highlighted with several examples - mainly from
the medical domain - including cases of initialization based on data anal-
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ysis, adaptive decision boundaries and neural network units functioning as
hyperplane regressors.

Tutorial: The Computational Complexity of Threshold Circuits
by Thomas Hofmeister and Matthias Krause

Threshold circuits may be viewed as discrete feedforward neural nets. In
this tutorial, we try to give a survey of recent results which characterize the
computational power of threshold circuits.
There is a close connection to analog neurons and we mention how sigmoidal
circuits can be simulated by threshold circuits efficiently.
We then discuss the influence of the size of the weights upon the power of
threshold circuits. E.g., a recent result showed that exponential-size weights
can be simulated by polynomial-size weights by increasing the depth only by
one.
Some of the complexity classes which capture the power of threshold circuits
are defined, namely LTd and ˆLTd = TC0

d . In particular, TC0
d stands for

the class of all functions which can be computed in threshold circuits of
polynomial size and depth d. Many basic functions are now known to be
contained in TC0

d for some small d. In fact, in many cases, even depth 2 or
depth 3 is enough. Some of the functions are listed in the talk.
Another result included is the fact that ACC-functions have subexponential
size depth 3 threshold circuits. On the lower bound side, we mention the
function ”Inner Product modulo 2” which is known not to be computable in
TC0

2 .
A short section of the talk is devoted to depth 2 circuits with a threshold
output gate and gates from some set of basic operations as its input gates.
One example is the set of all parity functions, which leads us to the notion
of Voting Polynomials.
We then go into detail as far as the upper bounds are concerned. One very
successful technique which helped in designing small-depth threshold circuits
is given by the notion of approximability. We will define it and sketch its
usefulness by explaining how it can be used to reduce the depth of threshold
circuits.
Since circuits for more complex functions are designed using decomposition
into less complex functions, it is useful to know that some of these ”less
complex” functions are 1-approximable. We show that some of the earlier
methods which proved some function to be contained in TC 0

2 also yield as
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a byproduct the proof that the function is even 1-approximable. Examples
of 1-approximable functions which are used as submodules are the ”multiple
addition” or every symmetric function. We then show another depth-saving
trick which consists of the observation that constant fan-in can be exploited
when input functions are d-approximable.
These tricks can be applied to show that basic functions like ”division”,
”multiplication” or ”sorting” can be computed in TC 0

3 . We also show some
lower bound results which use projection reductions and which show that the
circuits constructed above are depth-optimal if we require polynomial size.

Fourier Transforms and Threshold (Neural) Circuit Complexity
by Jehoshua Bruck

There exists a large gap between the empirical evidence of the computational
capabilities of neural networks and our ability to systematically analyze and
design those networks. While it is well known that classical Fourier Analysis
is a very effective mathematical tool for the design and the analysis of linear
systems, such a tool was not available for artificial neural networks which
are inherently nonlinear. Recently, the spectral analysis tool was introduced
in the domain of discrete neural networks. The application of the spectral
technique led to a number of new insights and results, including lower and
upper bounds on the complexity of computing with neural networks as well
as methods for constructing optimal (in terms of performance) feedforward
networks for computing various arithmetic functions. The focus of the pre-
sentation is on an elementary description of the basic techniques of Fourier
analysis and its applications in threshold circuit complexity.

Realizing AC0–functions by Real Polynomials
by Matthias Krause

The task of realizing an n–argument Boolean function f by one thresh-
old gate is equivalent to constructing a hyperplane (i.e., a linear functional
l = l(x1, . . . , xn)) of the n–dimensional Euclidian space which separates the
positive inputs from the negative inputs. We study the more general prob-
lem of representing f by a polynomial p = p(x1, . . . , xn) in the sense that for
all positive inputs x it holds p(x) > 0 and for all negative inputs x it holds
p(x) < 0. We are interested in estimating the length of f which is defined to
be the minimal number of monomials a polynomial must have for represent-
ing a given function in the above sense. Observe that f : {−1, 1}n → {−1, 1}
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can be represented by k monomials iff f has a depth–two circuit consisting
of k parity gates at the bottom connected with one threshold gate at the top.
There was known a close relation between the representability of a given func-
tion and properties of its spectral coefficients, the length of f is bounded from
above by the sum of the absolute values all spectral coefficients, and from
below by the inverse of the maximal coefficient (Bruck, Smolensky 1990).
We study representability of AC0–functions. We show by probabilistic ar-
guments that on the one hand AC0,2–functions always have small length,
but that one the other hand there are AC0,3–functions of exponential length.
Both results can not be obtained by spectral–theoretic arguments as by a
result of Linial, Mansour, and Nisan (1990) AC0–functions always have big
spectral coeffiecients, where also the sum of the absolute values all spectral
coefficients may be exponential.

Computing Sparse Approximations Deterministically
by Thomas Hofmeister and Hanno Lefmann

It is known that for every n×m-matrix A with entries taken from the interval
[0, 1] and for every probability vector p, there is a sparse probability vector
q with only O(lnn/ε2) non-zero entries such that every component of the
vector A ·q differs from every component of A ·p in absolute value by at most
ε.
The existence of such a vector is proved by a probabilistic argument. It
was an open problem whether there is an efficient, i.e. polynomial-time,
deterministic algorithm which actually constructs such a vector q.
In this paper, we provide an algorithm which computes such a vector q and
which takes time polynomial in n,m, and ε. The algorithm is based on the
method of “pessimistic estimators”.
The approximation result was crucial in some applications to matrix games.
In the talk, we also sketch why this result could have some implications for
threshold circuits.
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On the complexity of analog circuits: computing Boolean functions
with analog circuits of bounded fan–in
by György Turán (joint work with Farrokh Vatan)

An arithmetic threshold circuit is built of bounded fan–in addition, subtrac-
tion, multiplication and sign gates, and the real constant inputs. It is related
to the other models of analog computation such as feedforward neural nets
and real random access machines. We consider the computational power of
analog threshold circuits for computing Boolean functions. It was shown by
Gashkov that almost all n–variable Boolean functions require arithmetic cir-
cuits (i.e. arithmetic threshold circuits without sign gates) of size Ω(2n/2).
We show that this bound can be extended to arithmetic threshold circuits.
On the other hand, there is a size–depth trade–off in the sense that for every
polynomial p(n), for almost all Boolean functions f , every arithmetic circuit
of depth p(n) computing f has size Ω(2n−O(log n)). We also prove a superlinear
lower bound for the arithmetic threshold formula size of an explicitly defined
Boolean finction. It is shown that the arithmetic threshold formula size of
the Element Distinctness function is Ω(n3/2/ logn). This implies a lower
bound for ‘standard’ threshold circuits: every depth d threshold circuit with
arbitrary weights computing this function has size Ω(n1/2(d−1)/(log n)1/d−1).

Computational Models Using Recurrent Neural Nets
by Eduardo Sontag (joint work with Hava Siegelmann)

We pursue a particular approach to analog computation, based on dynamical
systems of the type used in neural networks research. Our systems have a
fixed structure, invariant in time, corresponding to an unchanging number
of “neurons”. If allowed exponential time for computation, they turn out to
have unbounded power. However, under polynomial-time constraints there
are limits on their capabilities, though being more powerful than Turing Ma-
chines. (For rational weights, a similar but more restricted model is shown to
be polynomial-time equivalent to classical digital computation.) Moreover,
there is a precise correspondence between nets and standard non-uniform
circuits with equivalent resources, and as a consequence one has lower bound
constraints on what they can compute. This relationship is perhaps surpris-
ing since our analog devices do not change in any manner with input size.
We note that these networks are not likely to solve polynomially NP-hard
problems, as the equality “P = NP” in our model implies the almost complete
collapse of the standard polynomial hierarchy. In contrast to classical com-
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putational models, the models studied here exhibit at least some robustness
with respect to noise and implementation errors.

On the Computational Complexity of Networks of Spiking Neurons
by Wolfgang Maass

We investigate the computational power of a formal model for networks of
spiking neurons. It is shown that simple operations on phase-differences
between spike-trains provide a very powerful computational tool that can
in principle be used to carry out highly complex computations on a small
network of spiking neurons. We construct networks of spiking neurons that
simulate arbitrary threshold circuits, Turing machines, and a certain type of
random access machines with real valued inputs. We also show that relatively
weak basic assumptions about the response- and threshold-functions of the
spiking neurons are sufficient in order to employ them for such computations.
Furthermore we prove upper bounds for the computational power of networks
of spiking neurons with arbitrary piecewise linear response- and threshold-
functions, and show that they are with regard to real-time simulations com-
putationally equivalent to a certain type of random access machine, and to
recurrent analog neural nets with piecewise linear activation functions. In
addition we give corresponding results for networks of spiking neurons with
a limited timing precision, and we prove upper and lower bounds for the
VC-dimension and pseudo-dimension of networks of spiking neurons.

Subsymbolic-Symbolic Cooperative Learning
by Giancarlo Mauri

Today, there is a strong evidence that a lot of advantages can be obtained by
integrating a symbolic approach to learning with a subsymbolic (i.e., neural)
one, so as they can cooperate in a more powerful paradigm. Using this kind
of integration, we obtained very good results in control problems (control of a
flexible arm, control of the attitude angles of a geostationary satellite), in face
recognition and in natural language parsing, better than with classical sym-
bolic approaches. After showing these examples, a formal model of learning
machine is proposed where the usual components of the so called Probably
Approximately Correct (PAC) learning model interact with a neural network
which behaves as a noisy, but realistic, Oracle. The ideal framework is that
a broad ”intuitive” knowledge about a concept c, achieved subsymbolically
through the neural network, is employed to enlarge, randomly or by demand,
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the set of examples available for giving a symbolic representation of c within
a concept class C. In case a neural network is trainable with no errors on
the training set and no ”malicious” errors in generalization, we exhibit the
success of two PAC-style algorithms for learning the two classes k-CNF and
k-term DNF.

Data Clustering and Computer Vision: An Approach to Adaptive
Vision
by J.M. Buhmann

Partitioning a set of data points which are characterized by their mutual
dissimilarities instead of an explicit coordinate representation is a difficult,
NP-hard combinatorial optimization problem. We formulate this optimiza-
tion problem of a pairwise clustering cost function in the maximum entropy
framework using a variational principle to derive corresponding data parti-
tionings in a d-dimensional Euclidian space. This approximation solves the
embedding problem and the grouping of these data into clusters simultane-
ously and in a selfconsistent fashion.
The algorithm implements a new strategy for nonlinear dimension reduction
and visualization. To yield a clustering solution of predefined quality, active
data selection is employed to considerably reduce the number of required
dissimilarities.

Neural Computation for Robot Vision
by Helge Ritter

The talk focuses on a class of neural learning algorithms that are derived from
the Self-organizing maps, which model the structuring of neural layers in the
brain. The talk presents two extensions of the basic self-organizing map
approach, namely (i) LLM-networks, in which a self-organizing map is used
to adaptively tesselate the input space for a collection of locally linear maps
or “linear experts”, and (ii) parametrized self-organizing maps (PSOMs), in
which the map is represented parametrically, using a set of basis manifolds
or “basis maps”. In contrast to most spin-glass-type networks, which are
limited to the storage of point attractors, PSOMs can be viewed as recurrent
nets with a more general, smooth attractor manifold and thus can provide a
“continuous associative memory”. Several case studies of these approaches to
learning problems in robotics and computer vision are discussed. In addition,
a hierarchical combination of multiple PSOMs is presented, in which higher
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level PSOMs use pre-trained lower-level PSOMs as their “building blocks”.
This approach allows a hierarchical specialization and can lead to extremely
rapid learning at the upper levels.

Segmentation of Optical Flow Fields
by Hans-Helmut Nagel

While estimating both components of optical flow based on the postulated
validity of the Optical Flow Constraint Equation, it has been tacitly assumed
so far that the partial derivatives of the gray value distribution - which are
required for this approach at the pixel positions involved - are independent
from each other. It has been shown in a theoretical investigation (Nagel
94) how dropping this assumption affects the estimation procedure. The
advantage of such a more rigorous approach consists in the possibility to
replace heuristic tests for the local detection of discontinuities on optical flow
fields by well known stochastic tests. First results from various experiments
with this new approach are presented and discussed. The question has then
been raised of how these results might be related to neural computation.

Tutorial: Computational Learning Theory
by Peter Bartlett

This tutorial provides an introduction to computational learning theory and
reviews results relevant to the problem of learning in neural networks.
We review Valiant’s probably approximately correct model, which gives a
probabilistic framework for learning classification functions. In this model,
the sample size necessary to learn using a set of classification functions (such
as a class of feed-forward neural networks) depends on a combinatorial mea-
sure of complexity of the function class known as its Vapnik-Chervonenkis
dimension. The computational complexity of learning is equivalent to that of
a certain optimization problem (finding a function in the class consistent with
the data). We discuss the implications of these results for neural network
learning, concentrating on feed-forward networks. We describe extensions of
these results to the problem of learning real-valued functions.

Agnostic PAC-Learning Within Small Neural Nets
by Hans Ulrich Simon

We consider a variant of Wolfgang Maass’ algorithm for agnostic pac-learning
within small neural networks. Our learning algorithm runs on an architec-
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ture consisting of the input layer, one hidden layer, and the output layer.
This architecture is augmented with an auxiliary data structure which rep-
resents an ordered partition P of the input space into p cells. The units in
the hidden layer compute functions which are linear in the input variables,
and whose weights are programmable. The output units compute piecewise
linear functions, where there are p pieces (linear functions) per output unit
whose weights are architectural (not programmable). In computation mode,
the ordered partition controls which of these pieces is applied: if the input
belongs to cell numbered i, then all output units use the respective piece
number i. In learning mode, not only the programmble weights associated
with the hidden units are programmable, but also the choice of the ordered
partition P is adjustable: P may be selected from a given “polynomialy enu-
merable” system P of partitions. “Polynomially enumerable” means that
given a sample S of m training examples, there are only M = pol(m) many
different ways to partition S by partitions from P, and representations for
such partitions P1, . . . , PM can be computed in polynomial time.

Our main results are as follows:

1. Agnostic pac-learning of real-valued functions can be perfomed on each
architecture of this kind by solving pol(ǫ, δ) many linear programs.

2. Our architecture can efficiently simulate any first order net with piece-
wise linear activation functions. Thus our learning algorithm can take
first-order architectures of constant size as its touchstone class.

3. Although our architecture is computationally more powerful than the
architecture (the first-order neural tree) used by Maass’ algorithm, the
linear programs that we must solve are considerably simpler, and the
generalization capabilities of both algorithms are similar (because the
pseudo-dimensions of the associated classes of loss-functions are closely
related).

On the Complexity of Learning on Perceptrons with Binary Weights
by Michael Schmitt

We know that a lot of problems dealing with learning in neural networks are
computationally not feasible. Commonly used methods to cope with com-
plexity in practice try to incorporate knowledge about the functions being
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learned into the algorithm. Techniques to choose the architecture or prede-
termine weights may lead to more efficient algorithms, however, we do not
know how to apply these methods optimally.
In our work we pursue a different approach. We try to bypass intractability
of training a specific architecture by restricting the set of permitted training
samples. To this end, we introduce two parameters to characterize what
we think makes samples hard to train. The values of the first parameter,
termed “heaviness”, is the maximum dot product of an example with itself,
the second parameter, termed “coincidence”, is the maximum dot product
of two different examples. For binary examples heaviness corresponds to
the maximum number of non-zero components, coincidence corresponds to
the maximum number of non-zero components that two examples have in
common.
The results presented concern single neurons with binary weights and binary
inputs. It is shown that the problem of achieving agreement with all examples
remains NP-complete if the examples are allowed to have heaviness at least
4 and coincidence at least 1. For the problem of minimizing disagreement
we obtain NP-completeness already for heaviness 2 and coincidence 1. For
all complementary cases we are able to present linear time algorithms. Thus
we have completely characterized all defined restrictions of learning problems
for this architecture with respect to their complexity. Similar results have
been obtained for other architectures as well.

Convergence of the back-propagation algorithm for time-delay and
recurrent networks
by Peter Bartlett

We study local convergence properties of a gradient descent learning algo-
rithm for two-layer time-delay and locally recurrent sigmoid networks. We
assume that the observed data sequence is generated by a network of this
type with a known structure, and consider the convergence of the estimated
parameters to their true values. Under mild conditions on the true param-
eters (that are generically satisfied), for almost all input sequences the es-
timated parameters locally converge to these true values exponentially fast.
Furthermore for periodic input sequences, almost all sequences with period
at least N will suffice, where N is the number of parameters. Any shorter
sequence will not give guaranteed local exponential convergence, in the sense
that there are initial parameter estimates in every neighbourhood of the true

18



parameters that do not lead to convergence to the true parameters.

A Rigorous Analysis Of Linsker-type Hebbian Learning Networks
by Vwani P. Roychowdhury

We propose a novel approach for a rigorous analysis of the nonlinear dynamics
of Linsker’s unsupervised Hebbian learning network. Our analysis allows us
to determine the whole set of fixed point attractors of the nonlinear synaptic
stabilization process, and explicitly obtain a necessary and sufficient condi-
tion for the emergence of structured receptive fields. These results provide
for the first time comprehensive explanations of the generation of the various
structured connection patterns, and of the roles of the different system pa-
rameters of the model. In particular, the crucial role of the synaptic density
function is explicitly demonstrated. The parameter regimes for the emer-
gence of commonly observed receptive fields (e.g., center-surround, oriented,
and bi-lobbed cells) are explicitly derived from our framework. The theoreti-
cal results derived in our work provide (without any approximation) rigorous
analytical justification of several key observations made about the dynamics
of the Linsker’s network. Our theoretical predictions are also confirmed by
numerical simulations.

Note: This is a joint work with Hong Pan and Jianfeng Feng, and was sup-
ported in part by the NSF Grant No. ECS-9308814

Approximation and learning of real-valued functions
by Pascal Koiran (joint work with Leonid Gurvits)

We present a fairly general method for constructing classes of functions of
finite scale-sensitive dimension (the scale-sensitive dimension is a generaliza-
tion of the Vapnik-Chervonenkis dimension to real-valued functions). The
construction is as follows: start from a class F of functions of finite VC di-
mension, take the convex hull coF of F , and then take the closure coF of
coF in an appropriate sense. As an example, we study in more detail the
case where F is the class of threshold functions. It is shown coF includes
two important classes of functions:

• neural networks with one hidden layer and bounded output weights;

• the so-called Γ class of Barron, which was shown to satisfy a number
of interesting approximation and closure properties.
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We also give an integral representation in the form of a “continuous neural
network” which generalizes Barron’s. It is shown that the existence of an
integral representation is equivalent to both L2 and L∞ approximability.

Object Recognition by Elastic Graph Matching
by Christoph von der Malsburg

Retinal images of objects vary trivially due to changing perspective. Ef-
fective learning from examples is possible only on the basis of an invariant
representation. I desribe a neural system that represents objects and images
as two-dimensional labeled graphs. Approximate isomorphy (in the sense of
similar label arrangement) between a model and a segment of the image is
discovered by elastic matching. As labels we employ sets of wavelets. The
match process takes place in two stages, a “global move” and a “local move.”
In the global move a model graph is shifted, rotated and scaled without dis-
tortion to find a global optimum of the sum of pairwise label similarities
between nodes in the model and the image. In the ensuing local move, indi-
vidual model nodes are allowed to diffuse over the image plane, each trying
to maximize label similarity while minimizing graph distortion. Matches of
different objects are compared in terms of a global cost function character-
izing the match. A fully neural version of the match process is presented by
Laurenz Wiskott in his talk.

Object Recognition with Dynamic Link Matching
by Laurenz Wiskott and Christoph von der Malsburg

A fully neural system for translation and distortion invariant object recogni-
tion is presented. As an example we use faces. A couple of faces are stored as
small layers of neurons carrying Gabor jets as features. Gabor jets are local
descriptors of the underlying grey value distribution of the respective face
images. A new face to be recognized is represented on a larger layer. It can
be at any position and distorted by rotation in depth or a different mimic.
The key problem in this kind of task is to find the right mapping between the
input image layer and the model layers of stored faces. Here we apply the
Dynamic Link Matching. Its principle mechanism is the following: The ini-
tial connectivity between the model layer and the image layer is given by the
similarity of the respective features. Neighbouring neurons of one layer and
connected nodes of the two layers do cooperate and tend to have correlated
time signals. By this means a regular, neighbourhood preserving mapping
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between the two layers depending on the feature similarities is induced by
correlation. Based on the correlations the synaptic links can switch on a fast
time scale and finally converge to the correct mapping between image and
model domain. Once the correct mapping was found the recognition task just
consists in selecting the model layer with the strongest connections to the
image, given that the synaptic weights are bound by the similarities between
the local features.

Learning with incremental self-organizing networks
by Bernd Fritzke

A class of self-organizing networks is presented which can be applied to un-
supervised and supervised learning. In both cases the network structure is
incrementally constructed by a growth process. Insertion of new units are
done on the basis of statistics which are gathered locally at the existing units.
At the same time a neighborhood connectivity is constructed.
In the case of unsupervised learning there are (at least) two important prob-
lem classes: a) In topology learning one likes to describe the topology of a
signal distribution by a graph consisting of nodes in n-dimensional space and
connecting edges. In other words, the submanifold where the signal density
is non-zero is to be identified. b) In dimensionality reduction one likes to
map the possibly high-dimensional data onto a lower-dimensional sheet of
neurons. One application of this procedure is data visualization.
For both unsupervised learning problems incremental algorithms are pre-
sented which differed mainly in the way the topology was updated. The
Growing Neural Gas Method used a competitive Hebbian learning to gener-
ate a topology which closely reflects the topology of the data submanifold.
Thereby, the network dimensionality may locally vary with the dimension-
ality of the data submanifold. The Growing Cell Structures, in contrast,
generate a topology which has a fixed dimensionality, no matter what the
dimensionality of the given data may be. The result is a dimensionality-
reducing mapping which tries to preserve neighborhood relations.
For supervised learning the described incremental models can be coupled with
the radial basis function (RBF) approach. This leads to incremental RBF
networks. In this case accumulated classification error is used to guide the
insertion of new units (problem dependent positioning). The result are small
networks which generalize well and can be constructed in with a fraction of
the training epochs needed, e.g., for a back-propagation trained multi-layer
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perceptron.
General advantages of all proposed models over other approaches are that all
parameters are constant (no variation over time) and that network size and
structure need not to be predefined but result from the growth process and
some user-definable stopping criterion.

Local Minima of Least Square Problems Associated to Sigmoidal
Nets
by Eduardo Sontag

In this talk, I described techniques that allow estimating the number of local
minima in least square problems associated to sigmoidal nets. The techniques
combine nonlinear approximation facts and Khovanskii-type estimates (to
count critical values), tools from semianalytic set theory (to show that the
estimates are good for almost all input/output data, leading to good teaching
dimension), and finally the uniqueness results developed in joint work with
Francesca Albertini (for showing that weights are determined by the values).

Discovering neural nets with low Kolmogorov complexity and high
generalization capability
by Jürgen Schmidhuber

Many machine learning algorithms aim at finding “simple” rules to explain
training data. The expectation is: the “simpler” the rules, the better the gen-
eralization on test data (→ Occam’s razor). Most practical implementations,
however, use measures for “simplicity” that lack the power, universality and
elegance of those based on Kolmogorov complexity and Solomonoff’s algo-
rithmic probability. Likewise, most previous approaches (especially those of
the “Bayesian” kind) suffer from the problem of choosing appropriate pri-
ors. This paper addresses both issues. It first reviews some basic concepts
of algorithmic complexity theory relevant to machine learning, and how the
Solomonoff-Levin distribution (or universal prior) deals with the prior prob-
lem. The universal prior leads to a probabilistic method for finding “al-
gorithmically simple” problem solutions with high generalization capability.
The method is based on Levin complexity (a time-bounded generalization
of Kolmogorov complexity) and inspired by Levin’s optimal universal search
algorithm. With a given problem, solution candidates are computed by ef-
ficient “self-sizing” programs that influence their own runtime and storage
size. The probabilistic search algorithm finds the “good” programs (the ones
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quickly computing algorith- mically probable solutions fitting the training
data). Simulations focus on the task of discovering “algorithmically simple”
neural networks with low Kolmogorov complexity and high generalization
capability. It is demonstrated that the method, at least with certain toy
problems where it is computationally feasible, can lead to generalization re-
sults unmatchable by previous neural net algorithms. Much remains to be
done, however, to make large scale applications and “incremental” learning
feasible.

Associative Memory Capacities
by Günther Palm

We give an overview of recent results concerning the information storage and
retrieval capacity of neural associative memories. Another emphasis of the
talk is on the fine differences in various definitions of these capacities that
are used in the literature.
The tasks are auto-association and hetero-association; one has to store and
retrieve a set S of patterns xµ(µ = 1, . . . , n), or a mapping, xµ → yµ , i.e.
a set S of pairs (xµ, yµ), respectively. The patterns xµ and yµ are binary
patterns of length n .
Storage is performed in the sum-of-outer-products matrix C (or in its binary
version). In auto- association, retrieval is performed by pattern completion
of the stored patterns or by identifying (recognizing) the stored patterns
upon presentation of the whole patterns. In hetero-association, retrieval is
performed by mapping the inputs xµ to the outputs yµ . This is done by
means of a simple network of binary threshold neurons with connectivity
or weight matrix C. In every case capacities are calculated as the gain in
transinformation about the stored patterns in the retrieval process.
In this way one can define and distinguish the following capacities:

• Recognition capacity cR

• Completion capacity cC

• Mapping capacity cM

• Storage capacity cS .

These obey the obvious relations cS ≥ cM+R ≥ cM , cR, cM+C ≥ cC .
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One can show that these capacities can be maximized for sparse pattern
vectors , i.e. for vectors xµ, yµ , where most components are 0. In this
so called sparse limit the following results can be calculated by statistical
methods (compare Palm, Concepts in Neuroscience 2 (1991), 97-128):
(1) For hetero-association with additive learning rule

1

2 ln 2
= cS = cM+R = cM+C = cM = cR > cC

(2) For hetero-association with binary weights

ln 2 = cS = cM+R = cM+C = cM = cR > cC

(3) For auto-association with additive learning rules

1

4 ln 2
= cS = cR > cC

(4) For auto-association with binary weights:

ln2

2
= cS = cR > cC

Computational Complexity Issues in Recurrent Nets
by Pekka Orponen

We consider the computational power and other computational complexity
aspects of discrete recurrent network models. With the help of known con-
structions of symmetric networks with exponential transient times we show
that polynomially growing sequences of symmetric (i.e., Hopfield) networks
have the full computational power of polynomial space bounded Turing ma-
chines. Restricting the networks to have polynomially bounded weights con-
strains their computational power to that of polynomial time bounded Turing
machines. Based on this equivalence, a toy compiler translating simple paral-
lel condition-action programs into Hopfield networks has been designed and
implemented.
We also point to some known results and open questions concerning the
complexity of analyzing and synthesizing associative memory networks for a
given set of binary patterns.
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On Ensembles of Competing Experts
by Thomas Martinetz

Ensembles of individual experts or agents allow solutions of action control
tasks by creating subtasks, each of which is handled by the most suited expert
of the ensemble. This approach is very promising, however, it turns out that
adapting such an ensemble of competing experts to the global state which
yields the best solution for a given task is very difficult. The reason is that the
best expert for a subtask strongly tends to increase its task domain, which
leads to a suppression of other experts and prevents an optimal exploitation of
the ensemble’s resources. Up to now, only heuristic solutions to the problem
are known.
We present a solution based on the maximum entropy principle. Under given
constraints, e.g., a desired average output error of the ensemble of experts,
the maximum entropy principle provides the probability that a given state
of the ensemble yields the best solution. This probability can be used to
select an ensemble state which optimizes certain criteria, e.g., provides the
best solution on average (which naturally leads to mixtures of experts) or,
alternatively, provides the best solution most likely. The maximum entropy
principle leads to a “computational temperature” of the ensemble and sug-
ests deterministic annealing for steering a self-organizing adaptation process.
With this adaptation process experts are formed by phase transitions.
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