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A Historical Upshot

Synchronous Languages such as LUSTRE, ESTEREL and SIGNAL were con-
ceived in the first half of the eighties by mainly French researchers. In-
dependently, Harel & Pnueli worked on an almost synchronous language,
STATECHARTS, as part of the STATEMATE system for the specification of
real-time embedded systems (mainly concerning software for the aircraft in-
dustry). Independently, Ward & Mellor published in 1985 their 3-volume
approach “Structured Development of Real-time Systems”, containing im-
portant synchronous elements.
The second half of the 1980’s was used to:
¢ Obtain efficient implementations for these languages and to convince
users that the resulting systems make sense for specifying real-time
embedded systems.

e To resolve semantic problems which are a consequence of the syn-
chronous approach (which states in essence that a system responds in
zero time to environmental requests - Berry’s “synchrony hypothesis”).

On the latter foundational research by Berry & co-workers on the se-
mantics of EsTEREL, Halbwachs & co-workers on LUSTRE, Le Guernic
& Benveniste on S1GNATL, Pnueli, Huizing et al on the semantics of
STATECHARTS, stands out.

At the beginning of the nineties the picture changes. Rather than investigat-
ing what’s there, it is investigated and formulated what should be there, i.e.,
improvements and alternatives are suggested. E.g., Florence Maraninchi (at
Grenoble) proposes a semantics for a new version of STATECHARTS called
ARrGos (and implements this) which yields a truly modular notion of re-
finement of modes (or states) and does away with a number of “paradoxes”
due to the synchronous nature of such languages (which require compli-
cated semantical notions for their solution). However, on the other hand
the following becomes clear:

e There is no way in these languages to specify that an implementation
should satisfy real-time constraints (e.g. in STATECHARTS it is impos-
sible to express that an implementation of a state should run in less
than 10 nano seconds).

e Traditional data structures are not integrated, and neither is their
refinement, or any notion of refinement, suitably described for those
languages.

e There is no notion of object-orientation for such languages. Solutions
are proposed (by Rumbaugh et al) and projects applied for to find
these (Pnueli & Harel).

Also it becomes clear that ESTEREL/LUSTRE on the one hand, and STATE-
MATE on the other, serve different purposes. E/L aims at specifying the



minimal timed automaton to control a component of a real-time embedded
system and become therefore equipped/connected with silicon compilers,
while STATEMATE aims at specifying an overall distributed system with
many components which are geometrically spread (through their notion of
Activity charts). Rather than competing, as done in the period 1985-1990,
their complementary roles get accepted and their general relevance to in-

dustrial purposes becomes known in wider circles than only aircraft manu-
factures (DST/Kiel, Siemens/Miinchen, Ahlstom-Alcatel /Paris).

Joseph Sifakis gets allotted a complete laboratory - VERIMAG - (about
15 engineers in addition to his own equipe) to build a future specification
system for the AIRBUS software in which ARGOS/STATEMATE at the high
level of specification where truly distributed processes count are combined
with LusTRE/ESTEREL on a lower level of specification where single chips
are specified. Model checkers are combined with the structured automata
generated by these systems, e.g. by Werner Damm and co-workers at Old-
enburg. Siemens starts collaborating with the SIGNAL group (Benveniste).
(Siemens builds the fastest BDD model checker at present and may want to
couple it with such systems).

The (mixed) description of combinations of such formalisms becomes a rec-
ognized topic of research (e.g. by Poigné & co-workers who have started to
combine all the synchronous languages in a modular way). Proof systems
and (decidable) assertion languages for the underlying formalisms are de-
veloped (de Roever et al., Damm et al.), versions are formulated to truly
specify real-time (Huizing, Pnueli).

In Germany independent groups working as these issues meet for the first
time jointly (GI Fachgesprach, June 16/17th, 1994, Kiel). DST/Kiel starts
funding a synchronous languages based project in combination with a fund-
ing agency (Technologiestiftung Schleswig-Holstein) to obtain a tool sup-
porting the design of safety critical systems.

It is in this context of emerging industrial and academic interest within Ger-
many in the specification, prototyping, verification and testing capabilities
of real-time embedded systems through the use of synchronous languages
and their coupling with advanced tools that we have applied for a Dagstuhl
seminar on this topic to bring academia and industry together in Germany
and abroad in order to exchange ideas, to discuss their research and to foster
collaboration.

This Dagstuhl meeting was a first effort to get together researchers con-
cerned with the different synchronous formalisms to provide a state-of-the-
art overview of the field.

Since then the industrial impact of synchronous formalisms has increased.
Several industrial applications have been developed being based on the syn-



chronous paradigm and more and more industries have spent considerable
time and efforts in evaluating and applying the synchronous approach, e.g.:

Dassault-Aviation is using extensively ESTEREL for their Rafale air-
plane.

Cadence uses ESTEREL as a front-end for their POLIS experimental
codesign system.

Daimler-Benz is making rather extensive experiments with ESTEREL.

AT&T R&D Indian Hill lab has made successful experiments with
EsTEREL and has built a verification system for ESTEREL programs.

The new generation of Airbus airplanes is programmed in LUSTRE.
The Hong-Kong subway has been re-engineered in LUSTRE.

Part of the French nuclear plant safety system is programmed in L.Us-
TRE.

DASA has developed an environment, called HosTEss, based on the
synchronous data-flow model; they are evaluating the commercial ver-
sion of LUSTRE, SAO+/LUSTRE, which is also a strong candidate to
be used for the development of the software of the Airbus A3XX.

SNECMA, one of the world’s most important manufacturers of jet en-
gines, considers using SILDEX (the professional SIGNAL environment)
for next generation development of engine control systems.

Electricité de France has carried out extensive experiments with SiG-
NAL.



Data-flow Synchronous Languages'

Albert Benveniste, Paul Caspi,
Paul Le Guernic, and Nicolas Halbwachs

In this paper, we present a theory of synchronous data-flow languages. Our
theory is supported by both some heuristic analysis of applications and some
theoretical investigation of the data-flow paradigm. Our model covers both
behavioural and operational aspects, and allows both synchronous and asyn-
chronous styles of implementation for synchronous programs. This model
served as a basis to establish the GC common format for synchronous data-
flow languages. A full version of this paper can be found in LNCS 803 (A
decade of Concurrency).

Dataflow Process Networks and their
Relationship to Synchronous Languages

Edward A. Lee

Dataflow process networks are a special case of Kahn process networks made
up of repeated firings of dataflow actors. This talk explores their use as a
formal underpinning for dataflow languages. These languages are not syn-
chronous, although specialized sublanguages have a great deal in common
with synchronous languages. So called “synchronous dataflow” captures
programs where the dataflow actors have totally predictable firing patterns.
Boolean dataflow captures systems where firing patterns depend in pre-
dictable ways on Boolean signals in the system. Multidimensional dataflow
extends the partial orders to multiple dimensions (as in Lucid). In all cases,
the balance equations serve much the same purpose as the clock calculus in
synchronous languages, but without imposing a total order on events.

!This work has been supported, through several contracts in the framework of C?A-
group, by Ministére de la Recherche et de 'Espace, Ministére de I'Industrie (SERICS),
and Ministere de la Défense (DRET).



Synchronous data-flow and lazy functional
programming

Paul Caspi

We first show how to translate data-flow programs in a lazy functional lan-
guage like Haskell or LazyML. This raises the question: What is synchrony
within this framework? Our answer is based on the striking analogy which
exists between synchronous data-flow compilers, and the deforestation tech-
nique introduced by Philip Wadler in lazy evaluation.

We then show how the clock calculus of synchronous data-flow looks like a
type system which aims at rejecting non deforestable data-flow networks.
Now, expressing these networks in a currified language, and the clock calcu-
lus in terms of type checking, allows us to characterize synchronous recur-
sively defined networks.

Since these synchronous networks are not bounded memory and bounded
reaction time, this raises the question: what is reactivity here? An answer
is: static and tail-recursive synchronous networks.

This leads us to the original concept of tail-recursive block diagrams, which,
hopefully, provides a fully visual, well-structured extension to block-diagram
programming.

Timing and Retiming Statecharts

Adriano Peron and Andrea Maggiolo-Schettini

We generalize Statecharts by associating delays and timeouts with transi-
tions, and durations with communicated signals. Occurrences of transitions
are related with a dense time domain. We consider how behaviour changes
when temporal features are changed. We investigate the effects of temporal
shift, slow-down and speed-up of the environment. We study the conditions
under which non-discrete environments can be equivalently replaced by dis-
crete environments (and viceversa). We investigate also conditions under
which durations can be associated with instantaneous behaviours.



Towards a Process Algebra of Statecharts 2

Andrew Uselton

Our goal is to develop a process algebra, SPA, for statecharts that is in
strict compliance with the semantics of Pnueli and Shalev (“What is in a
Step: On the Semantics of Statecharts,” in Theoretical Aspects of Software,
LNCS 526). In particular we would like to isolate all communication in
a statechart-style broadcast merge operator. Our motivations are twofold.
First, we believe that the notion of hierarchy in statecharts is useful and
should be available independent of the statechart formalism. Second, it is
well known that the various notions of communication have consequences in
the semantics. Isolating communication in the merge operator allows for an
easy and uniform way of comparing, and in particular experimenting with,
alternative semantics.

Here we define a simple algebra SA with two operators. One is a k-place
or-operator for constructing finite state automata-like terms, and the other
is a binary (associative and commutative) and-operator. We formalize the
step semantics as a mapping U : SA — LTS, where LTS is a set of labeled
transition systems. Two statecharts A and A’ are equal, written A = A’ if
U(A) =~ U(A'). Tt is well known that the step semantics is not compositional
—i.e. = is not a congruence — and we present a example showing this.
Next we introduce an alternative semantic mapping ¥~ : SA — LTS, for
the “orderly step semantics.” The semantic labels in LTS are equipped
with enough ordering information to make this semantics compositional,
and again two statecharts A and A’ are equal, written A = A" if U5 (A) ~
U (A"). The careful choice of equivalence over labels gives the (strongly
conjectured) result that = is the largest = respecting congruence over SA
(the proof is in preparation).

We conclude with a quick look at statecharts process algebra SPA and its
relation to SA. SPA uses the operators prefiz, choice, and fiz in their usual
way for specifying finite state automata. A new operator state_refinement
is introduced to capture the statechart notion of hierarchy, and an appro-
priate definition of merge is introduced to capture the broadcast style of
communication.

2This work is in collaboration with Scott Smolka.
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A Comparison of Statecharts Variants

Michael von der Beeck

The Statecharts formalism supports the development of intuitive graphi-
cal specifications for reactive systems. Nevertheless, some serious problems
became apparent in the original Statecharts formalism so that many differ-
ent Statecharts variants were proposed to overcome them. These problems
are thoroughly described and approaches for solving them are evaluated.
Furthermore, a set of distinctive features is elaborated which is used for a
detailed comparison of the Statecharts variants. Finally, the feature set is
used to characterize a new hypothetical Statecharts variant.

Formal Semantics for Ward & Mellor’s

Transformation Schemas
and its Application to Fault-Tolerant Systems

Carsta Petersohn, Jan Peleska,
Cornelis Huizing, and Willem-Paul de Roever

One of the Structured Analysis and Design methods is that of Ward & Mel-
lor aiming at giving a specification of software which is independent of, and
considerably more abstract than, the code eventually produced. Although
widely used in industry, its description [WM85, War86] contains a number of
inconsistencies. Yet W&M’s method contains at least sufficient indications
for us to try to reconstruct its intended meaning. We show that with the
formal methods developed for the definition and analysis of so-called syn-
chronous languages a consistent and precise semantics can be reconstructed
for the W&M method. Incompleteness in description can be identified and
removed. We give an example of the main flaws in W&M’s definition of the
semantics of transition diagrams, discuss our suggestions to resolve them
and sketch a precise semantics for the Essential Model of W&M’s method.
A considerable complete formal semantics is given in [PHPdR94a]. Also a
formal definition of W&M’s semantics enables the development of a sym-
bolic interpreter to animate TS. Moreover, we argue the need for a family of
semantics for different application areas using a ‘real-world’ example from
the field of fault tolerance as discussed in [PHPdR94b].

References

[PHPdR94a] C. Petersohn, C. Huizing, J. Peleska and W.-P. de Roever. Formal
Semantics for Ward & Mellor‘'s TRANSFORMATION SCHEMAS. In
D. Till, editor, Sizth Refinement Workshop Springer Verlag, 1994.
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and D. Powell, editors, Dependable Computing - EDCC-1 (First Euro-
pean Depenable Computing Conference) , volume 852 of LNCS, pages
59-76,1994.
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Exact Causalities for Esterel (part I): Electrical
Causality Analysis

Gérard Berry

Esterel is a synchronous programming language where communication is
done by instantaneously broadcasting signals and instantaneously testing
for this values. This may lead to paradoxes like in

Present S else emit S

which should emit S if, and only if S is not received, contradicting the basic
broadcasting assumption.

The key to rejecting such programs in Esterel is to transform Esterel pro-
grams into boolean circuits and to perform causality analysis on the result-
ing circuit that may have causality cycles. The causality analysis is done
by replacing classical logic by a constructive logic, or equivalently by Scott
Booleans. We give an electrical characterization of circuits that are causal
in this sense, by showing that a circuit is causal iff it is delay insensitive.
We give a BDD-based algorithm to compute formally whether a circuit is
causal.

We finally analyze the Esterel VGT compiler that implements the notion of
electrical causality.
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Exact Causalities for Esterel (part II): Boolean
Causality Analysis

Olivier Ploton

As described in the talk about electrical causality, several Esterel programs
must be rejected as non causal. A basic choice is to decide whether or not
to accept the following program: output S;

present S then emit S else emit S end

Electrical causality rejects this program; boolean causality accepts it. The
boolean causality analysis consists in translating en Esterel term into a
boolean function instead of a gate network (circuit). The causality condition
for a local signal S is expressed as the functional property “The emission of
S does not depend on its presence”. The boolean causality analysis leads to
a compositionnal semantics. It enjoys nice debugging properties: observa-
tion (debug tracing) does not disturb causality. Both electrical and boolean
causalities are implemented using efficient, BDD based algorithms, in the
experimental Esterel vh compiler.

BAC: A Boolean Automaton Checker

Nicolas Halbwachs

BAC is a BDD-based symbolic verification tool devoted to “Boolean au-
tomata”. A Boolean automaton is a finite state machine, where the next
state is uniquely determined by the current state and the current values of
inputs. A state is a vector of Boolean variables. The behavior of the au-
tomaton can be restricted by an “assertion”, a Boolean formula which must
be always true during any execution of the automaton. More precisely, the
behaviors of the machine are exactly all the infinite behaviors of the au-
tomaton (without assertion) which continuously satisfy the assertion. An
“invariant” can also be specified, which will be verified by the tool. The
transition function, the assertion and the invariant are given as Boolean
formulas involving current state variables, current input variables, and pos-
sibly local variables which must be defined in turn. The definitions of local
variables may present loops.

Such automata appeared very convenient to model circuits and the control
part of synchronous programs.

The current functionalities BAC include

o checking the consistency of looping definitions, and solving them, when
possible;
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e making the assertion “executable”, i.e., strengthening the assertion in
such a way that it is possible to check, in each state, which are the
transitions which make possible a future infinite execution;

e computing the set of variable configurations which can be reached from
a given set of initial states, taking into account the assertion;

o checking the satisfaction of the given invariant, by either forward or
backward symbolic traversal of the reachable states. If the verification
fails, BAC returns a diagnosis, which is the set of shortest executions
leading to invariant violation.

The paper and the tool are available by public ftp at
imag.fr:/pub/SPECTRE/LUSTRE/PAPERS/bac.ps.gz
and

imag.fr:/pub/SPECTRE/LUSTRE/BAC.tar.gz.

Boolean Automata for Implementing Pure
Esterel

Axel Poigné

A new compilation scheme is proposed for the synchronous language Es-
terel. The compilation is based on the new intermediate format of Boolean
automata. Boolean automata have two kinds of statements:

o 5 < ¢: the signal s is emitted if the condition ¢ is satisfied, and
o h — ¢: the control register is set for the next instant if ¢ is satisfied.

A Esterel program is represented by a set P of such ‘equations’; the former
compute the status of all signals in the system and are solved simultaneously
on each tick of the clock; the latter are guarded assignments which reset
the state of the automaton’s finite control. The translation is algebraic by
nature using ‘system’ signals for supporting particular constructs. E.g. a
signal a is raised as a start signal, the signal w denotes termination. Then
sequential composition P; Q of two Boolean automata P and Q is defined by
Pa{w « false}Vv Q[P .w/a] where P.w denotes the termination condition for
P which is substituted for the start signal a, i.e. Q starts if P terminates.
P a{w < false} overrides the equations for the termination signal in P
to w < false, hence sequential composition terminates only if Q[P.w/a]
terminates.

A full paper is available by web: http://set.gmd.de/EES/Papers/E2BA.ps.gz.
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Boolean automata: a compact representation of
Pure Esterel programs

Leszek Holenderski, Axel Poigné

A simple translation schema of Pure Esterel to Boolean automata, although
useful for proving correctness of the translation, may lead to an automaton
whose size is exponential w.r.t. the size of a source Esterel program. We
show two optimizations to the translation schema which guarantee that the
size of the resulting automaton is linear in size of the Esterel program,
provided that the program does not use the Esterel’s hiding statement ’signal
S in P end’. Unfortunately, for the programs which use the hiding statement
we still may get automata whose size grows exponentially, in the worst case,
with the number of nested ’signal’ statements. Fortunately, such worst cases
should not occur in practice.

A Compositional Proof System for Statecharts
Based on Symbolic Timing Diagrams

Johannes Helbig

We present a proof system for statecharts that allows compositional rea-
soning about safety and liveness properties expressed in terms of symbolic
timing diagrams. Since the latter can be considered as a visual dialect of
linear-time temporal logic, the assertion language is, by contrast to existing
approaches, decidable. Compositionality allows to reduce the verification
task to subtasks manageable by symbolic model checking. The particular
compositional structure we present supports an incremental design style;
this, and the visual nature of specification languages and proofs enhances
industrial applicability of the verification method.
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Statecharts, Transition Structures and
Transformations

Adriano Peron

Statecharts are state-transition machines endowed with hierarchy on states
and parallelism on transitions. The relationship between structure over
states and behaviour is investigated. It is shown that a statechart is de-
scribed by a pair of relations over transitions (a transition structure), the
former describing causality and the other describing a notion of asymmetric
independence. A statechart can be effectively constructed from its transition
structure. Transition structures corresponding to a subclass of Statecharts
are characterized. Natural notions of morphisms among transition struc-
tures allow to define classes of statechart transformations which preserve
behaviour.

A Comparison of Ward & Mellor’s
TRANSFORMATION SCHEMA with STATE-
& ACTIVITYCHARTS

Jan Peleska®

A comparison is made between Structured Methods, as represented by the
Essential Model of Ward&Mellor’s Transformation Schemas, and the State-
mate specification language consisting of State- and Activitycharts. The
comparison is based on the languages’ semantic properties. An example
from the field of fault-tolerant systems serves as a “benchmark problem” to
investigate the practical applicability of both Transformation Schemas and
Statemate for meaningful “real-world” systems. It is motivated that a fam-
ily of semantics should be introduced for Structured Methods and similar
CASE methods. This family will allow the designer to adjust the specifica-
tion language used in an optimal way to the specific semantic properties of
the target system.

*In collaboration with: Kees Huizing, Carsta Petersohn

16



A Compositional Semantics of ESTEREL in
Durational Calculus

R.K. Shyamasundar?

In this talk, a compositional semantics of pure ESTEREL is presented using
a variant of durational calculus called Mean Value Calculus (MVC). MVC
provides an axiomatization of ESTEREL and the rules can be used to prove
properties of the programs. In the talk, it is shown how the semantics can be
used to study the expressive power of the operators of the language, and in
particular it is shown that the recently added operator, suspend does indeed
increase the power at the behavioural level. The efforts towards obtaining a
completeness-notion for the operators of the language and extensions of the
semantics to the recent asynchronous extensions of ESTEREL namely, CRP,
are also discussed.

Implementation of Communicating Reactive
Processes.

S. Ramesh

Communicating Reactive Processes (CRP) is a new paradigm proposed to
combine the capabilities of both synchronous and asynchronous programs.
Synchronous programs are useful for embedded reactive applications while
asynchronous programs have been useful in distributed systems. CRP, ex-
hibiting both synchronous and asynchronous behaviors, has a wider appli-
cability. In this talk, the issues behind the implementation of CRP are dis-
cussed and a new efficient implementation is suggested. The implementation
is a simple extension of a protocol, proposed by the author, for implementing
CSP. The correctness of the implementation follows from that of the CSP
implementation.

* Joint work with Paritosh Pandya and Y.S. Ramakrishna
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Synchronous Automaton Compositions

Florence Maraninchi

We propose to study various synchronous communication mechanisms (rang-
ing from rendez-vous to the chain-reaction mechanism of Statecharts) by
expressing their semantics in a general framework where mazimal informa-
tion models are associated to programs. The bisimulation of such models is
guaranteed to be a congruence for the language operators. The models are
labeled transition systems with structured labels. We show how to define a
program congruence, coarser than the abovementioned bisimulation, out of
a label congruence. Finally, we propose to define label congruences out of
label abstractions.

A label abstraction which induces a program congruence clearly shows which
part of the maximal-information is relevant for the communication mecha-
nism under study. In other words, it shows which amount of information
has to be kept in what we call the model of a program, for the semantics to
be compositional.

This is related to the pragmatic point of view that, for a language to be
usable in practise, its semantics should be compositional, and the model of
a program should be significantly more abstract than the program itself.

18



An Intermediate Model for Reactive Languages

Cornelis Huizing, Rob Gerth

We wanted to give a denotational semantics for Statext. What’s Statext?
Well, this is the textual version of Statecharts (proposed by Amir Pnueli &
Yonit Kesten, 1992), you could say. But it’s more: there is a powerful timing
operator and the semantics of the macro step is highly nondeterministic.
Anyway, when we defined this denotational semantics we discovered the
same patterns that we’d seen before in other semantics, so we tried to iden-
tify an intermediate model. Translation ot this model (or algrebra, if you
like) should capture most of the pecularities of the language, whereas trans-
lation from this model to a history semantics is straightforward. For Statext,
at least, this works. The semantics of the macro step (the step in which the
computation takes place in the form of micro steps, during which no time
passes) became quite clear, even to some in the audience.

Hallmarks of the intermediate model are:

e one operator for parallelism, non-deterministic choice, and pre-emption!

e a consistency operator, which makes the macro steps globally consis-
tent in the sense that you can consider every micro step as being taken
under the same set of current events (in one macro step).

At the end, the lecturer managed to pop in a stick about “true interleaving”,
which could be considered as a pun, but also as a statement that interleaving
is a misnomer.
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A Calculus of Stochastic Systems for the

Specification, Simulation, and Hidden State

Estimation
of Mixed Stochastic/Non-stochastic Systems

Albert Benveniste, Bernard C. Levy,
Eric Fabre, and Paul Le Guernic®

This is the abstract and introduction of a full paper. This full paper is available,
either as an IRISA research report through ftp at ftp.irisa.fr in techreports/1994 /PI-
837.ps.Z, or in final version, as INRIA res. rep. 2465, accessible in ftp.inria.fr.
The final version will appear in Theoretical Computer Science, 1995.

In this paper, we consider mized systems containing both stochastic and
non-stochastic® components. To compose such systems, we introduce a gen-
eral combinator which allows the specification of an arbitrary mixed system
in terms of elementary components of only two types. Thus, systems are
obtained hierarchically, by composing subsystems, where each subsystem
can be viewed as an “increment” in the decomposition of the full system.
The resulting mixed stochastic system specifications are generally not “exe-
cutable”, since they do not necessarily permit the incremental simulation of
the system variables. Such a simulation requires compiling the dependency
relations existing between the system variables. Another issue involves find-
ing the most likely internal states of a stochastic system from a set of ob-
servations. We provide a small set of primitives for transforming mixed
systems, which allows the solution of the two problems of incremental sim-
ulation and estimation of stochastic systems within a common framework.
The complete model is called CSS (a Calculus of Stochastic Systems), and
is implemented by the SiG language, derived from the SIGNAL synchronous
language. Our results are applicable to pattern recognition problems formu-
lated in terms of Markov random fields or hidden Markov models (HMMs),
and to the automatic generation of diagnostic systems for industrial plants
starting from their risk analysis.

®Eric Fabre is with IRISA-INRIA, Campus Universitaire de Beaulieu, 35042 Rennes
Cedex, France, Fabre@Qirisa.fr. Bernard C. Levy is with the Dept. of of Electrical and
Computer Engineering, Univ. of California, Davis, CA 95616, USA, levy@ece.ucdavis.edu.

®Throughout this paper, we use the word “non-stochastic” to refer to systems which
have no random part. In control science or statistics, such systems would be called “deter-
ministic” as opposed to “stochastic” ; however this name would be misleading in computer
science, where “deterministic” vs. “nondeterministic” has a totally different meaning.
This is why we decided to use the word “non-stochastic” here.
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Object-oriented Statecharts

Amir Pnueli

This paper reports on an effort to develop an integrated set of diagrammatic
languages for modelling object-oriented systems, and to construct a support-
ing tool. The main goal is for models to be intuitive and well-structured,
yet fully executable and analyzable, enabling automatic synthesis of usable
and efficient code in languages such as Ct+. At the heart of the model-
ing method is the language auf statecharts for specifying object behavior,
and a hierarchical OMT-like language for describing the structure of classes
and their inter-relationships, that we call O-charts. Objects can interact by
event generation, or by direct invocation of operations. In the interest of
keeping the exposition manageable, we concentrate here on a rather sim-
ple framework, that we feel adequately represents the issues fundamental to
the entire effort. It leaves out several technically involved topics, such as
inheritance, multiple-thread concurrency and active objects, which will be
described elsewhere.

SIGNAL: Compilation, Composition & Parallel
Implementation

Olivier Maffeis”

We focus on the composition of SIGNAL programs to detect deadlocks at
the specification level as well as to prevent implementation inference from
creating them. First we introduce the abstract representation of SIGNAT pro-
grams which is constituted of a system of boolean equations connected to a
dependence graph. This abstract representation is a generalization of the no-
tion of Directed Acyclic Graphs. Then an abstraction of this representation
is defined to enable the detection of deadlocks by composition. Over this
abstraction we study the composition of processes and define a congruence.
Furthermore we define the new notion of fully deadlock consistent schedul-
ing which preserves the composition capabilities at the implementation level
and thereby enables the separate implementation of SIGNAL programs. We
end by using the notion of fully deadlock consistent scheduling to cluster
nodes; this constitutes a key step towards the parallel implementation of
non regular (i.e., complex controlled) applications specified in SIGNAT.

"Joint work with Paul Le Guernic
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The SL Synchronous Language

Frederic Boussinot

We present a new synchronous programming language named S based on
Esterel, in which hypothesis about signal presences or absences are not al-
lowed. Thus, one can decide that a signal is absent during one instant only
at the end of this instant, and so reaction to this absence is delayed to the
next instant. Esterel “causality problems” are avoided at the price of re-
placing strong preemptions by weak ones. An operational semantics based
on rewriting rules has been built and an implementation is described which
allows either to directly execute programs, or to produce automata.

Mixing Reactive Synchronous and Asynchronous
Languages: a step towards the Hybrid Systems

Olivier Roux and Martin Richard

We present a proposal for the conjunction of the asynchronous and the
synchronous paradigms. This is achieved through the ELECTRE language
[CR95].

The motivation is to cope with reactive programs with lengthing actions.
These actions can be interrupted by some memorizable occurrences of events,
and then possibly restarted at the beginning or resumed at the interruption
point.

Indeed, such programs are featured both by the discrete event switches (in-
stantaneous actions which stand for the synchronous part) and by contin-
uous evolutions (lengthing actions which stand for the asynchronous part).
The combination of these two approaches (namely the synchronous one and
the asynchronous one) makes it possible to compile the so-called ambisyn-
chronous programs which are composed of ESTEREL code joined to ELECTRE
code according to the parallel operator [RR94a].

Moreover, temporal requirements as well as behavioral properties can be
checked upon these reactive hybrid (discrete/continuous) programs. We
show that the ELECTRE programs can also be compiled together with tem-
poral specifications in order to produce stopwatch automata [RR94b] which
are a kind of linear hybrid automata where bounded response and bounded
reachability are decidable.

As a matter of fact, we assert that the ambisynchronism approach is a step
towards the specification of hybrid (discrete/continuous) systems.
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On Designing A Synchronous Object-Oriented
Language

Reinhard Budde

The systems we consider are real-time systems to be embedded into larger
applications. Typically these systems are reactive: They are stimulated by
signals from the environment and they give feedback to the environment.
The reaction time is dictated by the environment. The systems have to be
reliable. Proofs or at least a sound argumentation that specified reaction
times can be met must be possible.

A preferred strategy in industry is to take a standard micro-controller with
lots of peripheral devices integrated on the same chip and to customize it by
software. Far the most microprocessors produced are used in applications
of this kind. Now software is dominant to glue components together and
supply flexible functionality.

Object-orientation is needed for such real-time systems - to hide hard-
ware/software design decisions, - to master the development of variants,
- to achieve maintainable, flexible systems architectures, - to lay a founda-
tion for proving properties of the system. The basic properties we need are
- encapsulation, - inheritance, - polymorphism, The object-oriented basis
of our design language and framework under development is similar to the
concepts of the programming language Fiffel.

SYSTEM DYNAMICS

It is well-established to use object-orientation to describe a systems (static)
architecture. Many methods have been developed and are established now.
But there is a on-going debate of how the dynamics of an object-oriented
systems have to be described. Finite state machines (Booch) and Statechart-
like description (Rumbaugh et.al.) are proposed. Explicitly or implicitly
these proposals are based on a synchronous metaphor and a broadcast of
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signals. At a first glance this seems not to fit to the client-supplier-model
underlying object-oriented architectures.

Means for describing the reactive behavior of an object-oriented system is
a prerequisite for coping with real-time problems. Thus we added to the
class definition a reactive part (such classes are called reactive classes). The
textual variant of this reactive part is based on Esterel, the graphical on
Argos.

Objects, that are direct instances of a reactive class are called reactive ob-
jects. A system executes these objects in parallel. They communicate ex-
clusively by signals. Signals are broadcasted. The notion of causality in the
synchronous setting is adatpted to this framework, and a notion of consis-
tency (absence of time races) added.

THE LANGUAGE eE (embedded Eifel) i~ one I only!

Our framework is a smooth integration of the paradigm of perfect synchro-
nization and the object-oriented paradigm. Its focus is on non-preemptive
descriptions, but allows non-critical parts of the system being preempted.
Reaction times are derived from the systems by worst-case bottom-up cal-
culations. These values are used for prescheduling the time-critical parts.
The time-uncritical parts are scheduled at run-time.

The compiler under development is based on - compilation of the reactive
part to Boolean Automata - dataflow analysis in the data parts Model check-
ing (done with SMV and auto) is integrated to prove assertions about classes,
e.g. the exclusivity of two signals in any instant at compile time to avoid
run-time checks.

An Object Execution Model for Synchronous
Models

Frederic Boulanger, Guy Vidal-Naquet

We present an execution model that allows synchronous modules to be repre-
sented by objects that may communicate synchronously or asynchronously.
This model is intended to be used in the object-oriented design of complex
applications that mix synchronous parts with asynchronous ones, the com-
munication between these parts being asynchronous. Furthermore, the syn-
chronous parts may be developped in several synchronous languages, or even
implemented in hardware. Our model allows synchronous communication
between those separatly compiled parts, assuming there are no dependency
loop.

Object orientation allows dynamic creation and destruction of objects. This
is supported by our model, along with dynamic changes in the synchronous
communication network. This leads to the notion of reaction of a clock (set
of synchronous objects that communicate synchronously). The clock reacts
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to inputs signals at instant t by producing outputs and determining its state
at instant t+1 (new set of objects, new communication network).

The nature of asynchronous communications is intentionnaly not imposed
because it depends on the application domain. However, we propose three
mecanisms: communication by last value (when the full history of events is
not meaningful), communication through unbounded buffer, where overflow
of the physical buffer is an error (when the loss of the least event is critical),
and communication through bounded buffers, where overflow leads to the
loss of the oldest values (when the behaviour is not critically impaired by
the loss of some samples).

This execution model is actually implemented by two tools and a C++ class
library. The first tool, occ++, translates oc code (automaton description)
into a C4++ class. The second tool, mdlc, compiles descriptions of com-
posite modules written in the Module Description Language. The libSync
library provides the excution machine for synchronous objects. This imple-
mentation works on any Unix machine, and it has been succesfully ported
to VxWorks to drive physical devices in a real-time environment.
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Sequential Function Charts (Grafcet): A
Synchronous Semantics

Charles ANDRE

Sequential Function Charts (SFC) are widely used in industrial applications.
The IEC 848 Standard (1987) specifies this model. The semantics given in
the Standard is an informal one.

SFC are synchronous models very convenient for industrial applications.
Synchronous languages are emergent solutions to reactive system program-
ming. Our goal is to combine SFC and the imperative synchronous language
ESTEREL and apply them to control system programming,.

In a first part, we exhibit some ambiguities underlying the “classical” defi-
nition of SFC. We then introduce a formal model for SFC and the principle
of a semantics compatible with ESTEREL’s semantics.

Problems of instantaneous cycle, non determinism and causality are anal-
ysed. A “micro-step” semantics is proposed.

Endowed with this semantics, SFC and ESTEREL programs can be mixed.
SFC can be, now, integrated in the software environment for synchronous
programming.

A Synchronous Data-Flow Proof Method for the
Grafcet Language

Lionel Marce

The Grafcet is a graphical programming language used mainly in the field
of automatisms. Its powerful control structures can express particularly
parallelism. This last notion is often awkward to handle. So it is necessary
to be able to prove some properties on systems programmed in Grafcet.
We define Grafcet semantics without or with stability research (WSR) in
using the synchronous language SIGNAL. We associate an equation S1G-
NALwith each step of the Grafcet program. This equation defines the condi-
tions of activation and desactivation of the step according to its environment.
These equations are put together into one process. In the case of WSR an
other process determines if the reached situation is stable or not.

The validation is brought through a polynomial dynamical system obtained
directly from Signal equations defined on the field F3. The proofs are re-
alized on boolean signals. These equations are put away in 3 classes: one
for the initial conditions, one other for the constraints , and the last for the
evolution. We use some basic operators of the tool Sigali to verify proper-
ties directly on the polynomial dynamical equations or we use the observer
principle.
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An example will be given, and some results on the limits due to the combi-
natorial explosion.

2-adic Numbers and Circuits

Gérard Berry

We use the 2-adic number theory as a semantic tool for describing the se-
mantics of sequential circuits. A 2-adic number is a bitstream interpreted
as a number written low-order bits first. We present the bolean algebra
and ultrametric structure of 2-adic numbers, and we use this structure to
build new arithmetic circuits. Finally, we show a normal form theorem for
sequential circuits: any bitwise function can be computed by a sequential
circuit in normal form.

Verification of linear hybrid systems by means of
convex approximations

Nicolas Halbwachs, Yann-Eric Proy, and Pascal Raymond®

We present a new application of the abstract interpretation by means of
convex polyhedra, to a class of hybrid systems, i.e., systems involving both
discrete and continuous variables. The result is an efficient automatic tool
for approximate, but conservative, verification of reachability properties of
these systems.

This paper has been published in SAS’94, International Symposium on
Static Analysis, LNCS 864, Springer Verlag.

8Miniparc-Zirst, 38330 - Montbonnot, France e-mail: {Pascal.Raymond,Yann-
Eric.Proy}@imag. fr
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