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Report 
on the Fourth Dagstuhl Seminar on 

Computational Geometry 
March 13 - 17, 1995 

The Fourth Dagstuhl Seminar on Computational Geometry was organized by Helmut Alt 
(Freie Universitiit Berlin), Bernard Chazelle (Princeton University) and Raimund Seidel 
(Universitiit des Saarlandes). 

35 talks were given by 37 participants from 11 countries. 11 participants came from the 
US, 9 from Germany, 4 from Canada, 3 from the Netherlands, 2 from Austria, France and 
Israel, and 1 from Hungary, the UK, Singapore and Japan. 

This report contains the abstract of all the 35 talks, in the order as they were given at the 
meeting, as well as a report on the open problem session. 

Compilation done by Bernd Gartner (open problems report by Raimund Seidel) . 
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List of Abstracts. 

Voronoi Diagrams in Higher Dimensions 

by MICHA SHARIR (joint work with B. Aronov, P. Chew, K. Kedem, J .D. Boissonnat, M. 
Yvinec, B. Tagansky and E. Welzl) 

We wish to estimate the combinatorial complexity of the Voronoi diagram of n convex poly
hedral sites in ]Rd (points, lines, etc.) induced by a polyhedral convex distance function 
(where the defining polytope has a constant number of facets). An 'equivalent' formulation 
is: Let P be a convex polytope in JR.d, and let A1 , ... , An be the sites. We want to bound 
the number of free , rigid homothetic placements of P. (Here free means that P's interior 
meets no site, rigid means that P's boundary makes the maximum possible number of 
contacts with sites (which is d + 1 in JR.d, assuming general position), and homothetic 
means that P is only allowed to translate and scale.) These placements correspond to the 
vertices of the Voronoi diagram. 
If P is a ball (Euclidean distance) and the sites are points, then it is well known that 
the maximal diagram complexity is 0(nfd/2l). We have conjectured that roughly the 
same bound holds in fairly general situations, and were .not aware of any example with 
significantly larger complexity. However,,after the talk, Boris Aronov came up with a 
simple construction where the diagram has !1(nd-l) complexity. The conjecture is still 
open when the sites are singleton points. 
We substantiate the conjecture in several special cases: 
(1) Sites are lines in JR.3, P is a polytope with 0(1) faces: maximum complexity is 
O(n2a(n) log n) and !1(n2a(n)). 
(2) Sites are line segments in JR.3, P as above: upper bound is open, and lower bound is 
!1(n2a2(n)). 
(3) Sites are points in JR.3 and P is a regular octahedron (the £ 1-distance) : maximum 
complexity is 0(n2). 
(4) Sites are points in JR.d and P is a cube (the £ 00-distance) : maximum complexity is 
0(nfd/2l) (just like the Euclidean case) . The same bound holds if Pisa simplex. 
Hiding in (4) is a new bound on the maximum complexity of the union of n axis-parallel 
hypercubes in JR.d: it is 0(n~/2J) if all cubes have equal sizes, and is 0(nfd/2l) otherwise. 
All the upper bounds are proved using a new probabilistic analysis technique due to 
Tagansky. This technique applies (so far) only when the problem can be described in 
terms of piecewise-linear constraints, and fails in more general situations (e.g. it fails 
when P is a ball) . 
Many related problems are still open: for example, problems (1) and (2) are open for the 
Euclidean metric; problems (3) and (4) are open for more general P, etc. 

How to find the Kernel of a Polygon 

by ROLF KLEIN (joint work with C. lcking) 

We assume that a mobile robot wakes up in an unknown starshaped polygon. Its task is 
to walk to the closest point of the kernel. Each invisible 'cave' of the polygon defines a 
halfplane into which the robot should move in order to gain insight into the cave. The 
strategy we propose requires the robot to compute the intersection of these halfplanes, 
and to follow the angular bisector of the resulting wedge. 
The path created by this strategy is 'self-approaching' in the following sense: if a, b, c are 
consecutive points (in start-to-goal orient~tion) then lb - cl :::; la - cl holds. 
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We then show that the length of a self-approaching curve is bounded from above by the 
perimeter of its convex hull. This can be used for proving that the curve length does 
not exceed a constant (e.g. 5.52) times the distance between its endpoints. We have an 
example where this ratio equals 5.331 ... 
Consequently, our strategy for finding the closest kernel point is competetive with a factor 
of 5.52. No factor less than v'2 can be achieved. 
It remains to close the gap (5.3331 .. . 5.52) for self-approaching curves, and to improve 
on the performance of the strategy. 

Euclidean Spanners: Short, Thin, and Lanky 

by MICHIEL SMID Uoint work with S. Arya, G. Das, D. Mount and J. Salowe) 

Euclidean spanners are important data structures in geometric algorithm design, because 
they provide a means of approximating the complete Euclidean graph with only O(n) 
edges, so that the shortest path length between each pair of points is not more than a 
constant factor longer than the Euclidean distance between the points. 
However, in many applications of spanners, it is important that the spanner possess a 
number of additional properties: low total edge weight, bounded degree, and low diameter. 
Existing research on spanners has considered one property or the other. We show that it is 
possible to build spanners in optimal O(nlogn) time and O(n) space that achieve optimal 
or nearly optimal tradeoffs between all combinations of these properties. We achieve these 
results in large part because of a new structure, called the dumbbell tree which provides 
a method of decomposing a spanner into a constant number of trees, so that each of the 
O(n2) spanner paths is mapped entirely to a path in one of the trees. 

Road Map Algorithms 

by RICKY POLLACK Uoint work with S. Basu and M.-F. Roy) 

A roadmap R(S, M) for a semialgebraic set S <;;; Rk which passes through the points of 
the finite set M is a one dimensional semi-algebraic set satisfying 
(1) M <;;; R(S,M) <;;; S 
(2) 

(a) if C is a connected component of S then C n R(S, M) is non-empty and connected, 
(b) for every connected component C' of Sn 1r-1(x), C' n R(S, M) ,f 0 

where 1r is the projection from JR,k onto the first coordinate. 
We suppose that the semialgebraic set is defined by s polynomials Pi . . . P, <;;; D[x 1 , .. • xk] 
where D is subring of R and the polynomials P; have degrees bounded by d. 
We outline a correct roadmap algorithm for S whose complexity (measured by the number 
of arithmetic operations in D) is sk+2dO(k

2
). 

The techniques used are based on ideas presented in our recent paper on quantifier eli
mation (FOCS'94). It also follows previous developments due to Schwartz-Sharir, Canny, 
Grigor'ev-Vorobjov, Heintz-Roy-Solerno and Gournay-Risler. 

A new approach to systems of inequalities 

by MARIE-FRANCOISE ROY Uoint work with Nicolaj Mnev and Henri Lombardi) 

We associate to a system of polynomial inequalities a net of small equations and inequal
ities. They are given by x = 0, x = l, x ~ 0, x + y = a, xy = a. 
Any polynomial can be described by such a net, adding more variables. We define two 
equivalence relations on systems of polynomials: 
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• logical equivalence 

• algebraic equivalence 

and prove they coincide. 
Two sets are logically equivalent when they can be extended to the same net, using alge
braic rules (associativity, x > 0, y 2'. 0 => x + y 2'. 0 and similar rules) and simplification 
rules {for example a3 2'. 0 => a 2'. 0, ab > 0, a> 0 => b > 0, a(a2 + b) 2'. 0, b 2'. 0 ⇒ a 2'. 0). 
Two nets are algebraically equivalent if their rings of quadratic functions are isomorphic. 
Quadratic functions are obtained by inverting c/ 0 elements, taking positive square roots 
of positive functions and algebraic operations, from the variables. 
Our hope is to be able to associate invariants to nets, respecting their equivalence. It 
would provide new ways of deciding if a semialgebraic set is empty or not. 

Approximating Shortest Paths on a Convex Polytope in JR3 

by SUBHASH SuRI Uoint work with J. Hershberger) 

We give a simple linear-time algorithm that computes a path of length at most 2D(p, q) 
for any two points p, q on the surface of a convex polytope P in JR3. By extending the 
algorithms, we can also approximate distances from a fixed source point p to all vertices 
of Pin time O{nlogn). The approximation factor is 2.38{1 +i:) for any e > 0. A weak 
approximation result for shortest paths among k disjoint convex polytopes is this: an O(n) 
algorithm for computing an obstacle-avoiding path of length 2kD(p, q). 

Approximative Nearest Neighbor Queries 

by JACK SNOEYINK Uoint work with T. Chan) 

We survey recent approaches to the problem of approximate nearest neighbor queries: 
given a set of n points {p1, ... p;,} in JEd, form a data structure that, for a query point q 
and e > 0 finds a p; where d(q,p;)::,; {l + i:) minj d(q,pj)- We focus on the dependence on 
dimension d and tolerance e of known approaches and also give some new results ( especially 
in low dimensions) with better i:-dependence. 

On the Minkowski Sum of Simple Pe,lygons 

by JACK SNOEYINK {proved the night before with B. Aronov, T . Chan and D. Halperin) 

We prove that the complexity of the outer face of the boundary of the Minkowski sum of 
two simple polygons P and Q with n and k edges, n > k is 0(nka(k)). The upper bound is 
by analyzing Davenport-Schinzel sequences of families; the lower bound is a construction 
based on lower envelopes of line segments. Micha Sharir reports that the upper bound 
can be derived from S. Har-Peled's results on combining k arrangements. 

A Parallel Algorithm for fixed-dimensional Linear Programming 

by MARTIN DYER 

We discuss the complexity of linear programming in fixed dimension in the sequential and 
parallel case. We describe a new parallel algorithm, based on Megiddo's sequential algo
rithm, which improves the complexity of the problem on an n-processor EREW PRAM. 
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Randomized Simplex Algorithms on Klee-Minty Cubes 

by BERND GARTNER Uoint work with G. Ziegler) 

We consider the behavior of the simplex algorithm on combinatorial cubes. Particularly 
interesting is the RANDOM_EDGE pivot rule which at any nonoptimal vertex traverses 
any of the improving edges with equal probability. We prove an 11( n 2 / log n) lower bound 
for the number of pivot steps on the Klee-Minty cube, a well known worst case example for 
exponential behavior of a deterministic simplex variant. This improves on the previously 
known !1(n) bound and leaves only a logn gap to the upper bound of O(n2). 

We discuss an abstract framework in which it might more easily be possible to obtain 
superquadratic lower bounds for the RANDOM_EDGE rule. 

A new Approach to Subdivison Simplification 

by MARC VAN KREVELD Uoint work with M. de Berg and S. Schirra) 

Given a polygonal planar subdivision Sand a set P of points in the faces of the subdivision, 
we study the problem of computing a new subdivision with fewer vertices but such that 
the points of P remain in the same face. A subdivision can be viewed as a collection of 
polygonal chains, and we will reduce the complexity of these in turn. Let C be a polygonal 
chain with n vertices and let P be a set of m extra points. The simplification C' of C uses 
a subset of the vertices of C and has the following properties: 

• all points on C should be within distance E from the corresponding part of C', where 
E > 0 is a pre-specified error tolerance, 

• C' may not have self-intersections, 

• C' may not intersect any other chains of S, 

• the points of P should be to the same side of C' as of C. 

The algorithm runs in O(n(n + m) log n) time and the reduction in size is optimal for 
x-monotone chains (and somewhat more general chains as well). The algorithm is simple; 
the most difficult steps are a standard plane sweep and shortest paths in an unweighted 
DAG. It extends the line simplification algorithm previously described by Imai & Iri. 

On levels of detail in Terrains 

by KATRIN DoBRINDT Uoint work with M. de Berg) 

In many applications it is important that one can view a scene at different levels of detail. 
A prime example is flight simulation: a high level of detail is needed when flying low, 
whereas a low level of detail suffices when flying high. More precisely, one would like to 
visualize the part of the scene that is close at a high level of detail, and the part that is far 
away at a low level of detail. We propose a hierarchy of detail levels for a polyhedral terrain 
(or, triangulated irregular network) that allows this: given a view point, it is possible to 
select the appropriate level of detail for each part of the terrain in such a way that the 
parts still fit together continuously. The main advantage of our structure is that it uses the 
Delaunay triangulation at each level, so that triangles with very small angles are avoided. 
This is the first method that uses the Delaunay triangulation and still allows to combine 
different levels into a single representation. 
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Projections of 4D Polytopes 

by NINA AMENTA {joint work with G. Ziegler and B. Gartner) 

We show an example of a four dimensional polytope whose projection to the plane has 
O(n2) vertices. This question has applications to non-linear optimization; if the projection 
to 2D had asymptotically fewer vertices, then it would be possible to maximize a convex 
function over a 4D polytope with n facets in less than O(n2) time. Unfortunately our 
example shows that this is not possible in all cases. 
The example is a polytop3 essentially described by Klee and Minty in their classic paper 
"How good is the simplex algorithm?". It is combinatorially equivalent to a product 
polytope, but geometrically warped. We checked the projection by making a computer 
graphics model of the polytope and interactively controlling the projection to the screen. 
We showed a rough-cut of a video. 

Practical Collision Detection for Interactive Walkthroughs 

by CARLO H. SEQUIN 

The existence of the fast closest-feature tracking algorithm developed by Lin and Canny 
was a strong invitation to try to add collision detection to the interactive version of our 
Soda hall walkthrough program. The algorithm existed as a well-written program module 
with good documentation of the required· interface, and it was not too hard to make the 
program work. However, to provide actual collision detection in the framework of our 
interactive walkthrough model was a substantially more involved task. 
First, the Lin-Canny algorithm deals only with convex polyhedra. To make it useful for 
the artifacts found in a typical building, those objects had to be decomposed into unions 
of convex polyhedra and a significant amount of book-keeping had to be added to track 
the closest feature pairs on all n*m combinations- of convex sub-parts. 
Furthermore, the closest-feature algorithm ends up in an infinite loop if the two objects 
are already intersecting. Thus care has to be taken to avoid that situation by putting thin 
safety zones around every object ancl by taking rather conservative bounds on the time 
steps with which one tries to approach a possible intersection event. 
Another difficulty resulted from the fact that we tried to combine two quite different 
environments: The Walkthru program useti object descriptions in the form of polygon lists, 
where each facet carries jts own vertex coordinates, while the closest-feature algorithm 
needs a fully developed winged-edge data structure of simple convex elements. We did not 
want to reprogram either one of the two environments. We created some additional data 
structures which are loaded on demand whenever two objects have a chance to interact in 
the near future. 
Overall, the amount of code devoted to these "engineering issues" far outweighs the code 
for the closest-feature algorithm. 

Averaging Point Sets with Approximate Weights 

by MARSHALL BERN {joint work with D. Eppstein, L. Guibas, J. Hershberger, S. Suri and 
J. Wolter) 

Let S be a set of n points in JR,d, each with an unknown weight drawn from a known range. 
What is the locus of possible centroids of S? We show that this locus is a convex polytope, 
a perspective projection of a zonotope in JR,d+l; its worst-case complexity is 0(nd-l ). We 
give an optimal O(nlogn) algorithm for computing the locus in the cased= 2. We also 
consider a generalization in which there are explicit bounds on the total weight of S . In 
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this case, the locus is a projection of a section of a zonotope, and the complexity increases 
to O(nd). 

Optimal Motions of a Rod amidst Polygonal Obstacles 

by DAVID KIRKPATRICK (joint work with T. Asano and C. Yap) 

We consider the problem of moving a rod (line segment, ladder) from one placement in the 
plane to another so as to avoid proper-intersections with any of a collection of specified 
polygonal obstacles. The question of existence of sm:h a motion has been well studied. 
We address the problem of finding an optimal motion. Our optimality criterion is based 
on minimizing the length of the orbit of a fixed but arbitrary point in the interior of the 
rod ( the so-called "d1 -distance"). 
We first present a characterization Theorem that describes all locally optimal motions 
in terms of critical curves (including circles, ellipses and ???) determined by pairs of 
obstacle features and so-called reflection curves (formed by displaced obstacle features). 
This characterization would suffice to construct a polynomial time algorithm if it could 
be shown that motions include only a constant number of successive reflections between 
stopovers at object vertices or critical curves. Unfortunately this is not the case in general. 
In fact, the problem of determining if a motion exists whose d1-length is less than a 
specified value, is NP-hard. This construction paralleles the proof of Canny and Reif that 
the shortest path problem for a point in a three-dimensional polygonal scene is NP-hard. 

A Matching Lemma for Planar Triangulations 

by FRANZ AURENHAMMER, GUNTER ROTE (joint work with 0. Aichholzer, M. Taschwer) 

We prove that two different triangulations of the same planar point set always intersect 
in a systematic manner, concerning both their edges and their triangles. In particular, 
there exists a perfect matching between their edge sets such that matched edges either 
cross or coincide. Based on this general property, improved lower bounds on the total edge 
length (weight) of a triangulation are obtained by solving an assignment problem. The 
new bounds cover all previously known bounds and can be computed in polynomial time. 
As a byproduct, an easy-to-recognize class of point sets is exhibited where the minimum 
weight triangulation coincides with the greedy triangulation. While the complexity status 
of the former triangulation is unknown for general point sets, the latter can be computed 
in an efficient way by various known algorithms. 

A Simple Linear-Time Algorithm to Compute the Greedy Triangulations of 
Uniformly Distributed Points 

by SCOT DRYSDALE (joint work with G. Rote, 0 . Aichholzer) 

The greedy triangulation of a set of points in the plane is the triangulation obtained by 
starting with an empty set of edges and at each step adding the shortest compatible edge 
between two of the points, where an edge is defined to be compatible if it crosses none of 
the previously added edges. We present a simple, practical algorithm that computes the 
greedy triangulation in expected O(n) time and space, for n point:S chosen from a uniform 
distribution over some fixed convex shape C. 
This algorithm is an improvement of the O(n logn) algorithm by Dickerson, Drysdale, 
McElfresh and Welz!. It is similar in approach, but generates only O(n) plausible edges 
to test.instead of O(n logn) . 
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Geometric Ramsey Theorems 

by JANOS PACH Uoint work with G. Toth and G. Karolyi) 

Theorem I. Let f(n) denote the largest number such that any family of n convex sets 
in the plane contains either J(n) pairwise disjoint members or J(n) pairwise intersecting 
members. Then 

71 1/5 :'.S J(n) :'.S 71Jog4/log27_ 

The set of (;) segments connecting n points in general position in the plane is said to form 
a complete geometric graph. 

Theorem 2. Any complete geometric graph whose edges are colored with two colors 
contains a non-selfintersecting spanning tree, all of whose edges are of the same color. 

Theorem 3. Any complete geometric graph of 3n - 1 points, whose edges are colored 
with two colors, contains n pairwise disjoint edges of the same color. 

Killing two Birds with one Stone 

by JORG-RUDIGER SACK (joint work with F. Bauerniippel, E. Kranakis, D. Krizanc, A. 
Maheshwari, M. Noy, J. Urrutia) 

Suppose that an archer is hunting birds flying over hunting grounds described as a bounded 
region, possibly with holes formed by obstacles such as mountains and lakes. In an attempt 
to minimize the number of arrows used, the archer tries to indentify pairs of birds that 
can be pierced by a single arrow (birds line up). 
Let X = {p 1, ... ,Pn} be a collec tion of points (general position) in (JR2 or) JR3 such that 
the z-coordinate of each element of X is > 0. Let S be a compact plane set of JR3

, called 
stage contained in Ho = {p E JR3 I z - coordinate of p = O} . Given X and S, construct 
a graph G(X, S); Pi,Pj are adjacent if the line through p; and Pj intersects S. G(X, S) is 
called stage graph. In the planar case, S is a line segment. 

o We show that the family of stage graphs generated is exactly the set of permutation 
graphs. 

o This yields an O(IVl2 ) algorithm for recognizing stage graphs. 

• The characterization implies a linear space representation. 

• The archer's problem can be solved via matching in 0( JiVIIEI) time. Using 2-
processor scheduling, an O(IVI + IEI) algorithm is obtained. Through vector domi
nance and using computational geometry we establish an O(n log3 n) solution, n = 
IVI-

• This implies an improved matching algorithm for permutation graphs and for some 
2-processor scheduling tasks. 

• We also obtain simple, new and improved algorithms for vector dominance and 
rectangle query problems. E.g., we obtain a new simple EREW PRAM algorithm 
for reporting all dominance pairs (previously CREW). 

• Generalizations to multiple stages and 3D have also been studied. E.g., we give 
upper and lower bounds on the number l•f stages required to represent all graphs 
and particular classes. 
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At most k-sets 

by EMO WELZL 

Given a set of n points in 3-space, a subset S C P is called a ~ k-set, if O < ISI ~ k and S 
can be separated from P - S by a hyperplane. For k < n/4, we show a tight upper bound 
of k2n - (k - 1)(2k + 5)k/3 for the number of~ k-sets of P. 

Shelling balls and spheres and an application 

by GUNTER M. ZIEGLER 

Shellability is a powerful concept that originated in polytope theory (Brugges5er & Mani's 
1971 proof that polytopes are shellable) but found widespread applications in combina
torics and (computational) geometry. 
There is a long history of constructions of non-shellable triangulations of 3-dimensional 
(topological) balls, among them Newman's 1929 example that may have been the first, 
R H Bing's 1962 construction using knotted curves, and M. E. Rudin's 1958 nonshellable 
triangulation of a tetrahedron with only 14 vertices (all on the boundary) and 41 facets. 
Contrasting this, we present an example of a z-convex non-shellable simplicial ball with 
only 12 vertices and 25 facets . [Added in proof: one can even achieve 10 vertices and 21 
facets.] 
Also we show that shellings of 3-balls and 4-polytopes can "get stuck": 4-polytopes are 
not "extendably shellable." Our constructions imply that the Delaunay triangulation 
algorithm of Beichl & Sullivan 1990, which proceeds along an arbitrary shelling of a 
Delaunay triangulation, can get stuck in the 3D version: for example this may happen if 
the shelling follows a knotted curve. 

lpe - an extensible drawing editor 

by OTFRIED SCHWARZKOPF 

Many of us spend a considerable amount of time preparing figures for our papers. lpe is a 
system that's meant to make this easier, and is particularly useful for the kind of drawing 
typical for a computational geometry paper. The main properties of Ipe are 

• UTE]Xsupport: All text is entered as I~TE]Xsource. lpe shows a bounding box of the 
right size on the screen, and can show a second window with the resulting output. 

• Snapping: Objects on the canvas can be made 'magnetic', so it becomes easy to 
align new objects with already existing ones. 

• Extensibility: There is a very simple interface that allows you to add your own 
functions to lpe. 

• Multi-page mode for making slides or transparencies 

More information about lpe is available at 

http://www.cs.ruu.nl/people/otfried/html/ipe/html. 
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The Voronoi Diagram of Curved Objects 

by HELMUT ALT (joint work with 0. Schwarzkopf) 

Voronoi diagrams of curved objects can show certain phenomena that make their computa
tion difficult: nonconnectedness, bisectors that are not simple curves, 'self-Voronoi-edges', 
i.e. Voronoi-edges between different parts of the same site.; these self-Voronoi-edges may 
end at seemingly arbitrary points. 
We give _a systematic study of these phenomena characterizing their differential geometric 
and topological properties. We show that a given set of curves can be refined such that 
the resulting curves define a 'well-behaved' Voronoi diagram. We give a randomized in
cremental algorithm to compute this diagram. Its expected runtime is O(nlogn) , where 
n is the number of pieces the original curves have been decomposed into. For algebraic 
curves of constant degree, for example, this number is proportional to the original number 
of curves. 

Output-sensitive Results on Convex Hulls, Extreme Points and Related Prob
lems 

by TIMOTHY M . CHAN 

We use known data structures for ray shooting and linear programming queries to derive 
new output-sensitive results on convex hulls, extreme points, and related problems. We 
show that the f-face convex hull of an n-point set Pin fixed dimension d can be constructed 
in O(n log f + (nf) 1- 1/(ld/ 2J+1) logO(l) n} time. In particular, this yields new optimal 
output-sensitive convex hull algorithms in two and three dimensions. We also show that 
the h extreme points of P can be computed in O(n logd+2 h + (nh) 1-l/(ld/2J+l) logO(l) n) 
time. Our techniques are then applied to obtain improved time bounds for other problems 
including convex layers, levels in arrangements, and linear programming with few violated 
constraints. 

The Union of Moving Polygonal Pseudodisks 

by LEONIDAS GurnAS (joint work with M. de Berg, H. Everett) 

Let P be a set of polygonal pseudodisks in the plane with n edges total translating with 
fixed velocities. We show that the maximum number of combinatorial changes in the union 
of the pseudodisks is 0(n2a(n)) . For more general motions we get a bound of the form 
O(n>.s+2(n)) where sis the maximum number of times any three edges become concurrent. 
We apply this result to rederive more simply certain results in motion planning: the 
complexity of the free space for a convex polygon that is (a) translating and rotating in JE2 

amidst convex obstacles, or (b) translating in JE3 amidst convex polyhedra is O(n2a(n)). 
We also show that the space of all lines missing n convex homothets in JE3 of constant 
complexity each is O(n3a(n)) . 
All the above bounds are tight or nearly tight in the worst case. 

Exact Sign Computation of 2 x 2 and 3 x 3 Determinants 

by OLIVIER DEVILLERS (joint work with F . Avnaim, J.-D. Boissonnat, F. Preparata, M. 
Yvinec) 

We propose a method for computing exactly the sign of determinants with b-bit integer 
entries using only a b-bit arithmetic in 2D and I,+ 1-bit arithmetic in 3D. For computing 
3 x 3 determinant D = IU1U2U3I the idea is that either you can realize that the vector U3 
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is far above or below the plane spanned by U1 and U2 and you can find the sign of D, or 
U3 is close to this plane and you can subtract from U3 an integer combination of U1 and 
U2 to get a vector R = U3 - k1U1 - k2U2 such that the z-coordinate of R is less than half 
of the one of U3. Then you can iterate on D = IU1 U2RI . By choosing U3 to be the vector 
with largest z-coordinate you ensure that 3b iterations are certainly enough to conclude. 
The algorithm has been implemented and compares favorably with an exact computation 
of the determinant. Report, test data and code for SparcStation and DEC Station are 
available at URL 

http://www.inria.fr: / prisme/ personnel/ devillers/ anglais/ determinant.html 

Two Efficient Algorithms for Arrangements 

by DAN HALPERIN Uoint work with M. de Berg and L. Guibas, resp. L. Guibas, H. 
Hirukawa, J.-C. Latombe and R. Wilson) 

(1) We present a deterministic output-sensitive algorithm for computing the vertical de
composition of an arrangement of n triangles in three-dimensional space that runs in 
O(n2 logn + V logn) time, where V is the complexity of the decomposition. The algo
rithm is reasonably simple and in particular, it tries to perform as much of the computation 
in two-dimensional spaces as possible. 
The algorithm is extended to compute the vertical decomposition of arrangements of 
n algebraic surface patches of constant maximum degree in three-dimensional space in 
time O(n.>-q(n) logn + V log n), where V is the combinatorial complexity of the vertical 
decomposition, Aq(n) is a near-linear function related to Davenport-Schinzel sequences, 
and q is a constant that depends on the degree of the surface patches and their boundaries. 
We also present an algorithm with improved running time for the case of triangles which 
is, however, more complicated than the first algorithm. The running time of the faster 
algorithm is O(min(n4fs+,y4/5, n2 logn) + V logn). 

(2) We then present an algorithm for sampling a special substructure in arrangements 
of convex polytopes, and its application to assembly planning. Our result is motivated 
by the problem of partitioning a polyhedral assembly with infinitesimal translation .and 
rotation. This problem can be transformed into that of traversing an arrangement of 
convex polytopes in the space of directions of rigid motions. We identify a special type of 
cells in that arrangement, so-called maximally covered cells, and we show that it suffices for 
the problem at hand to consider a representative point in each of these special cells rather 
than to compute the entire arrangement. Using this observation we devise an algorithm 
that improves considerably over the best previously known solutions. The algorithm has 
been implemented, and several experimental results will be presented and discussed. 

Stabbing Triangulations by Lines in 3D 

by Borus ARONOV Uoint work with P.K. Agarwal, S. Stlri) 

Let S be a set of (possible degenerate) triangles in JR.3 whose interiors are disjoint. A 
triangulation of JR.3 with respect to S, denoted by T(S), is a simplicial complex in which 
each face of T(S) is either disjoint from S or contained in a face of S of equal or higher 
dimension. The line stabbing number of T(S) is the maximum number of tetrahedra of 
T(S) intersected by a segment that does not intersect any triangle of S. We investigate 
the line stabbing number of triangulations in several cases - when S is a set of points, 
when t_riangles of S form the boundary of a convex or non-convex polyhedron, or when 
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the triangles of S form the boundaries of k disjoint convex polyhedra. We prove almost 
tight worst-case upper bounds and lower bounds on line stabbing numbers for these cases. 
We also estimate the number of tetrahedra necessary to guarantee low stabbing number. 

Short Proofs for Random Sampling and Randomized Incremental Construction 

by RAIMUND SEIDEL 

We give short proofs for two of the central results in the theory of configuration spaces. 
These spaces were introduced by Clarkson and Shor and have been a unifying tool in the 
application of randomization to computational geometry. In the formulation of Mulmuley, 
a configuration space consists of a set S of n 'objects; and a finite set C of 'configurations', 
where each c EC has associa ted with it a set tr(c) of 'triggers' and a set st(c) of'stoppers' . 
A configuration c is called active for R ~ S if tr(c) ~ R and st(c) ~ S - R; c is said to 
become active during an enumeration s 1, s2, .. . , Sn of S if it is active for some prefix set 
{s1, ... , Sj} - Of special interest are the following quantities, where R ~Sandi E IN: 

fo(R) 

X;(7r) 

B;(R) 

l{c EC I c active for R}I 

L (ltr(c) I + jst(c)l)'-
cEC, c becomes active during 1r 

jst(c)I'-, 
cEC, active for R 

along with their expectations fo(r) = E[fo(R)], A; = E[X;(7r)], B;(r) = E[B;(R)], where 
R is drawn uniformly from (;) and 7r is drawn uniformly from all permutations of S. 
Typically Ao and A 1 describe the expected space and time requirements of randomized 
irncremental construction. B;(r) often arises in the analysis of randomized divide-and
conquer. We prove the following bounds: 

for O :Si< li 

-(d+l)i+I 
:S (n - r)' L fo(j) . 

(r + I)i+I O<;;j<;;r 
B;(r) 

Here li = min{jtr(c)I I c EC} and d = max{ltr(c)I I c EC}. 

Applications of Computational Geometry in Computer Vision 

by TETSUO ASANO 

Computational Geometry can contribute to Computer Vision in various manners. A direct 
way of contribution is to develop (asymptotically) faster algorithms or improve the com
putational complexities of existing algorithms. Another way of contribution is to define a 
notion mathematically to formulate it as an optimization problem. As one such example 
I talked about curve detection algorithms. Although a number of algorithms have been 
presented for this purpose under the name of Hough Transform, the desired output was 
sometimes very vaguely defined. Our approach starts with a strict definition of digital 
curve components and formulate it as a problem of visiting every cell in the arrangement 
of corresponding dual lines. Th~ proposed algorithm runs in O(nd) time and O(n) space 
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where d is the complexity of the family of curves. The third way of contribution is to 
develop an efficient algorithm for a problem for which no polynomial-time algorithm has 
been knwon or analyze the computational complexity. Along this line I explained two 
approaches. One is related to Image Segmentation, which requires to partition a given 
image into several regions corresponding to meaningful regions in the image. We gave 
polynomial-time algorithms in some restricted cases and showed some NP-hardness re
sults. I also showed that Contour representation opf an image which is a totally geometric 
expression helps us to design efficient algorithms for several problems which were not 
solved by any other methods. Flaw repairing and interpolation of gray levels are included. 
Finally, I showed the effectiveness of our approach by experimental results. 

Shelling 3D-triangulations 

by Tiow-Seng Tan 

A sequence ( T 1 , T2, ... , T n) of j tetrahedr~ of a 3D triangulation T is a partial shelling of 
T if Uf=l Ti is a topological 3-ball for every k '.S j . A shelling of_T is a partial shelling for 
which j is the number of tetrahedra in T, and T is shellable if it admits a shelling. We 
study the open question on the time complexity of computing a shelling (if it exists) for 
a given triangulation T. It is known that not all partial shellings can be extended to a 
shelling. We show that an extendable partial shelling P (i.e. one that can be extended to 
a shelling) union with a tetrahedron in T - P that shares 2 or 3 facets with P produces yet 
another extendable partial shelling. This simple observation may be useful in designing 
an efficient algorithm for the problem studied. 

Geometric Selection and Optimization via Sorted Matrices 

by KLARA KEDEM 

We show that in some selection and optimization problems in computational geometry, 
the optimization scheme of Frederickson and Johnson, using implicitly sorted matrices, 
yields better runtimes than the Megiddo parametric optimization scheme. 
The main idea is to detect an ordering in the space of candidate solutions of the problem, 
then represent them in an implicitly sorted matrix and apply the [F J] optimization scheme. 
The [FJ] scheme will generally multiply the decision algorithm runtime by a logn-factor, 
and the [Me] scheme will multiply by a factor of log2 n. 
The problems with which we exemplify the technique are 
(1) Find two strips whose union covers a given point set, such that the width of the wider 
strip is minimized. Here we construct implicitly a matrix sorted by columns. 
(2) Given a point set in the plane and two directions 11 and 12, find two squares, one parallel 
to 11 and and the other to 12, that together cover the point set and whose maximum size 
is minimized. Here we use a sorted matrix. 
(3) Find two axis-parallel rectangles R1, R2 whose union covers a planar point set so as to 
minimize max(µ(Ri), µ(R2)) whereµ is a monotone, nondecreasing function in the width 
and the height of the rectangles. Here we use a constant number of implicitly sorted 
matrices. 
Moral: look into ordering in the space of candidate solutions. 

Randomized Algorithms for some Geometric Optimization Problems 

by PANKAJ AGARWAL Qoint work with M. Sharir} 

We present randomized algorithms for a number of geometric optimization problems, 
including the following: 
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(i) Compute the width of a set of n points in JR3 . 

(ii) Compute the minimum width annulus containing a set of points in the plane. 
(iii) Compute a longest segment lying inside a simple polygon. 
All the three problems can be solved in O(n3/2+<) expected time, for any c > 0. 

Spectral Techniques in Range Searching 

by BERNARD CHAZELLE 

Given N weighted points in the plane and N boxes (or triangles), compute the sum of the 
weights of the points in each box (triangle). 
The model allows real weights with addition and subtraction (no multiplication). We prove 
an l1(N log log N) lower bound for boxes and l1(N log N) for triangles. The proof relies 
on estimates of the spectrum of AT A, where A is the incidence matrix of the underlying 
set system. 

On the Minkowski Sum of Simple Polygons 

by JACK SNOEYINK (proved the night before with B. Aronov, T. Chan and D. Halperin) 

We prove that the complexity of the outer face of the boundary of the Minkowski sum of 
two simple polygons P and Q with n and k edges, n > k is 0(nka(k)) . The upper bound is 
by analyzing Davenport-Schinzel sequences of families; the lower bound is a construction 
based on lower envelopes of line segments. Micha Sharir reports that the upper bound 
can be derived from S. Har-Peled's results on combining k arrangements. 
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List of Open Problems. 

Ricky Pollack: {Originally posed by Dennis Shasha) Voronoi Game: 

Given a rectangular grid (or square if you wish) n by m . Two or more players are 
going to play a game of k moves where k « min(m, n) . 

We'll look at the two player game first assuming the players are called White and 
Black, each having k stones. 

Players alternate placing stones on the board. At the end, a Voronoi diagram is 
formed. A polygon is owned by White if it contains a white stone in it and black 
otherwise. Frontiers between black and white polygons may be neutral.· The winner 
is the player with the largest area. 

Symmetry issue: The second player can always play symmetrically. So, we can break 
symmetry in three ways. 

1. Have a definite center. 

2. Require that the second player place two stones immediately after the first 
player's first move. So, the first player will also be the last one to play. 

3. Require that a player always play in the same column or the same row as some 
other piece on the board. 

Snipe Variant: Let j < k: White and Black place their k stones as in the Voronoi 
game, but after they finish they alternate turns removing j stones (either their own 
or their opponent's) . 

Shuffle variant: Let j < k: White and Black place their k stones as in the Voronoi 
game, but after they finish they alternate turns moving stones (either their own or 
their opponent's). 

(Apparently a PC implementation of a version of this game is available from 
shasha@shasha.cs.nyu.edu.) 

Marc van Krefeld: 

1. Given a set of n lines in the plane and two points s, t that lie on the skeleton 
. of the arrangement of the lines. Can one compute a shortest path from s to t 
on the skeleton of the arrangement faster than quadratic time? 

2. Given a polyhedral terrain with n vertices and two points s, t on the terrain. 
Can one decide if there exists a path from s to t that has monotonously de
creasing height faster than in O{nlogn) time (without preprocessing)? 

3. Given a simple polygon with k disjoint holes and n vertices in total, and also 
two points s and t in the polygon. Can one compute a path from s to t faster 
than in O(n + k log k) time {it need not be the shortest path)? 

Raimund Seidel: 

Let p and q be two distinct points in the plane and let 'Y be a curve directed from p 
to q. For a point x on 'Y let Vx be a tangent line of 'Y at x in the forward direction, 
and let Cx(a) be the cone with apex at x with symmetry axis Vx and with angle of 
aperture 2a. Now call 'Y an a-selfapproaching curve iff for every x on 'Y the part of 
'Y between x and q is contained in Cx(a). 
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Rolf Klein showed in his talk, that for the special case of a = 1r /2 the length of an 
a-selfapproaching curve is at most 5.44 times the distance d(p, q). 

Is it true, that for every O <a< 1r there is a constant b(a) so that the length of every 
a-selfapproaching curve is at most b(a) times the distance between its endpoints? If 
not, for what a's is this true? How small can one prove b(a) to be? 

Giinter Rote: 

A curve has no angles sharper than a if, for any three points x, y, and z appearing 
on the curve in this order, the angle xyz is .at least 1r - a . Prove that the longest 
such curve between two given endpoints p and q in the plane is a circular arc for 
whose points y the angle pyq is equal to 1r - a . 

Janos Pach: 

There are two different ways how to define the crossing number of a graph G: 

A) The minimum number of crossing pairs of edges in a drawing of Gin the plane 
(where the edges can be represented by arbitrary Jordan curves connecting two 
vertices but not passing through a third vertex). 

B) The minimum number of points where two edges cross each other in a drawing 
of Gin the plane (no three edges are allowed to cross at the same pointj. 

Clearly, the latter minimum is at least as large as the first one. Are they exactly (or 
roughly) equal? 

Bernard Chazelle: 

1. A classical result in discrepancy theory says that no matter how one bicolors 
the vertices of an N-by-N grid there exists a halfplane within which one color 
outnumbers the other one by at least c-JN, for some constant c > 0. Is it 
possible to find p = O(N2) halfplanes such that given any coloring one of them 
has large discrepancy? This is clearly true for large enough p. But how small 
can p be so that the maximum discrepancy remains on the order of root N. 

2. k-nearest neighbor searching in {0, 1 }N: Store M points (M = a few thousands) 
in {0, 1 }N (N ~ 1000) so that given a query point in {0, 1 }N, the k nearest 
neighbors (Hamming distance) (k ::=; 20) can be found quickly. What is desired 
is a method that leads to an efficient, simple working program. 

Emo Welz!: 

Let P be a set of n :2:: d + 1 points in d-space in general position (i.e., no d + 1 points 
lie on a common hyperplane) . We define its nonconvexity by 

nc(P) = card{A E {d:2) I A is not in convex position} 

Clearly, P is in convex position if and only if nc(P) = 0. 

PROBLEM. Is it always possible to continously move a set P of n :2:: 4 in 3-space 
into convex position so that the nonconvexity never increases? (During the whole 
motion the set P has to be in general position, except for a finite number of time 
steps, when exactly one coplanarity occurs.) 
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REMARKS. An affirmative answer to the problem implies that, for each k < n/2, 
the number of ::; k-sets of an n-point set in 3-space is maximized in convex position, 
where this number is known to be 

k2n _ k(k-I)(2k+5) 
3 

Marshall Bern: (Problems from Eppstein) 

Let S be a finite set of points in the Euclidean plane. Let S' be a finite superset of 
S, and let MWT(S') represent the length of the shortest triangulation of S'. ·Let 
MWST(S) be the infimum over all S' of MWT(S'). Is there always an S' such that 
MWT(S') = MWST(S)? 

Now assume that S is in convex position. Is there always an S' with MWT(S') = 
MWST(S), such that each point of S' lies on an edge of the convex hull of S? 

Subhash Suri: 

Let P be a convex polytope in 3-space. For two points p, q on the surface of P, let 
D(p, q) denote the length of a shortest path (geodesic) joining p, q on P. Let A(p, q) 
denote the length of a "planar" shortest path between p and q on P-a planar path 
is constrained to lie on a plane passing through p, q. 

Let a denote the worst-case ratio A(p, q)/ D(p, q) over all convex polytopes and all 
pairs of points p, q. 

Prove lower and upper bounds for the ratio a. 

Gunter Rote: 

A lattice packing of the plane by a polygon P is determined by two vectors u and 
v such that the set { P + .>-u + µv I .>-, µ integer} covers the plane. The density of 
the packing is the ratio between the total area used and the area covered. Find 
an efficient algorithm that, for a given polygon P, finds the lattice covering with 
minimum density. 

Remark: For lattice coverings by centrally symmetric polygons, as well as for lattice 
packings, linear-time algorithms were given by SilverMount (J. Algorithms, 1990). 

Jack Snoeyink: (Due to Chris Gold) 

Suppose that you want to traverse the edges of a Voronoi diagram. Because the 
Voronoi is a planar graph, if you remove edges that form a spanning tree of the 
faces, then the edges that remain form a spanning tree of the vertices and you can 
traverse this tree starting from any vertex by leaving a vertex by the edge just ccw 
of the one you used to enter the vertex. This takes a constant amount of memory. 

One simple way to do this for the Voronoi diagram of points is to imagine that the 
edge just left of the lowest vertex of each cell (i.e., the of each vertex) is deleted. 
That is, ignore the uppermost left-going edge of the current vertex when deciding 
which edge to exit and, if you find that you entered a vertex along its uppermost 
left-going edge, then return to where you came from. 

The question is, is there a similar simple rule that can apply to the Voronoi diagram 
of line segments? The fact that segments could be replaced by many points indicates 
that there is a similar rule; is it possible that there is one requiring no changes to 
the graph and no memory? 
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