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Logic is an essential formalism for computer science and artificial intelligence. It is used in such
diverse and important activities as

e Problem specification;

e Program transformation, verification, and synthesis;

e Hardware design and verification;

e Logic programming;

e Deductive databases;

o Knowledge representation, reasoning, diagnosis, and planning;
e Natural language understanding;

e Mathematical theorem proving.

The universality of the language of logic, the certainty about the meaning of statements in
logic, and the implementability of operations of logic, all contribute to its usefulness in these
endeavors.

Implementations of logical operations are realized in the field of automated deduction, which
has introduced fundamental techniques such as unification, resolution, and term rewriting, and
developed automated deduction systems for propositional, first-order, higher-order, and non-
classical logics.

The 1995 Dagstuhl Seminar on Deduction, succeeding the one in 1993, was convened to give
international researchers on deduction the opportunity to meet and discuss techniques, appli-
cations and research directions for deduction. It featured 38 presentations, a panel discussion,
and an excursion. Some of the results were deemed really exciting by the audience; among those
are the discovery of proofs for a number of new mathematical theorems (in algebraic geometry,
quasi-groups etc.) which were established with substantial participation of automatic systems;
further the mechanical proofs of large parts of mathematical books on set theory, automata the-
ory, and so forth. With the comfortable facilities available at Dagstuhl, system demonstrations
were given such as a geometry prover, remarkable not only for its proof power but also for its
amazing interface featuring geometrical constructions along with the formal theories and theo-
rems. To an extent limited by the restricted number (43) of participants the seminar provided
also a forum for presenting results obtained in a German project (DFG Schwerpunktprogramm)
on deduction to the international participants.

The success of this meeting was due in no small part to the Dagstuhl Seminar Center and its
staff for creating such a friendly and productive environment. The organizers and participants
greatly appreciate their effort. The organizers also thank Uwe Egly for his support in many
organizational details. Financial support from NSF and CEU (directly and through Compulog)
are also greatly appreciated.
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A Reduction Ordering for Higher-Order Terms

Jiirgen Avenhaus, Carlos Loria-Sdenz, and Joachim Steinbach
Universitdt Kaiserslautern

We investigate one of the classical problems of the theory of term rewriting, namely termina-
tion. We present an ordering for comparing higher-order terms that can be utilized for testing
termination and decreasingness of higher-order conditional term rewriting systems. The order-
ing relies on a first-order interpretation of higher-order terms and a suitable extension of the
recursive path ordering.

Term rewriting systems (TRSs) can be considered as a powerful theoretical model for reason-
ing about functional and logic programming in an abstract way, independently of a particular
programming language. In such an approach to computer programming, logic and functional pro-
grams are represented by means of executable specifications essentially consisting of conditional
equations. The operational semantics of these specifications is defined by term rewriting and
equation solving, respectively. The extension of first-order logic to higher-order logic by means
of (universally quantified) conditional equations enormously increases the expressive power of
the specifications and permits an efficient operationalization. In this paper we study how to
prove termination of higher-order conditional term rewriting systems (HCTRSs).

In order to verify termination of HCTRSs, higher-order terms must be compared in a suitable
ordering. We develop a method for performing that task which is based on an extensions
of first-order techniques. More specifically, we construct an ordering called HPO (for higher-
order path ordering) by means of an extension of the recursive path ordering RPO so that
non-algebraic terms can also be compared. Termination and decreasingness of HCTRSs are
then achieved as usual in the first-order case: the associated rewrite relation is required to be
included in this ordering guaranteeing some kinds of monotonicity properties wrt. term structure
and substitutions.

Our method is essentially based on a first-order interpretation of higher-order terms in 37-
normal form. Therefore, some of the principal properties and proof-techniques existing in the
first-order case can also be used for the HPO.

Combination of Constraint Solving Techniques:
An Algebraic Point of View

Franz Baader Klaus U. Schulz
RWTH Aachen Universitat Miinchen

In a previous paper we have introduced a method that allows one to combine decision procedures
for unifiability in disjoint equational theories. Lately, it has turned out that the prerequisite
for this method to apply—namely that unification with so-called linear constant restrictions is
decidable in the single theories—is equivalent to requiring decidability of the positive fragment
of the first order theory of the equational theories. Thus, the combination method can also be
seen as a tool for combining decision procedures for positive theories of free algebras defined by
equational theories.

The present paper uses this observation as the starting point of a more abstract, algebraic



approach to formulating and solving the combination problem. Its contributions are twofold. As
a new result, we describe an optimization and an extension of our combination method to the
case of constraint solvers that also take relational constraints (such as ordering constraints) into
account. The second contribution is a new proof method, which depends on abstract notions and
results from universal algebra, as opposed to technical manipulations of terms (such as ordered
rewriting, abstraction functions, etc.)

Integrating Automated Deduction and
Symbolic Computation Techniques

Leo Bachmair
SUNY - Stony Brook

Theorem proving systems, whether interactive or fully automated, are usually not very efficient
at dealing with mathematical domains. One approach to equipping theorem provers with built-in
knowledge about specific theories is the integration of decision procedures into general-purpose
deductive systems. In this talk, I will discuss the integration of certain algorithms for dealing
with ring theory, as they are used in many computer algebra systems, in a resolution-type
theorem prover for logic with equality. More specifically, I will show how Buchberger’s algorithm
for constructing a canonical basis for a polynomial ideal can be reformulated in logical terms, so
that algebraic manipulations on polynomials correspond to deductive inferences. Furthermore, it
is possible to extract from the polynomial algorithm certain strategies that are useful in guiding
the proof search of the deductive system. The resulting combined method can be extended to
theories specified by arbitrary sets of clauses, enriched by a commutative ring. Similar techniques
are applicable in other contexts as well, such as geometry theorem proving.

(This research resulted from a joint collaboration with Harald Ganzinger, MPI, Saarbruecken,
Germany. )

Type Inferencing for First Order Logic with
Polymorphic Order-sorted Types

Christoph Beierle
FernUniversitat Hagen

The problem of complete type inferencing for polymorphic order-sorted logic programs studied
here is as follows: Given a type language with polymorphic order-sorted types and a formula
over a signature with typed function and predicate symbols, derive a mapping from variables
occurring in the formula to types such that the formula is well-typed. We show that previous
approaches are incomplete even if one does not employ the full power of the used type systems.
We present a complete type inferencing algorithm that allows for parametric polymorphism as
in ML and for hierarchically structured monomorphic types. It can easily be extended to first
order predicate logic and also to the case where subtype relationships are also allowed between
polymorphic types having the same arity. Various details as well as related aspects of this work
are presented in [1], [2] and [3].
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Decomposition of Tautologies into Regular Formulas
and Strong Completeness of Connection-Graph Resolution

Wolfgang Bibel Elmar Eder
TH Darmstadt Universitdt Salzburg

This paper addresses and answers a fundamental question about (ground) resolution. Informally,
what is gained with respect to the search for a proof by performing a single resolution step? It
is first shown that any unsatisfiable formula may be decomposed into regular formulas provable
in linear time (by resolution). A relevant resolution step strictly reduces at least one of the
formulas in the decomposition while an irrelevant one does not contribute to the proof in any
way. The relevance of this novel insight into the nature of resolution and of the unsatisfiability
problem for the development of proof strategies and for complexity considerations are briefly
discussed.

The decomposition also provides a novel technique for establishing completeness proofs for
refinements of resolution. As a first application, connection-graph resolution is shown to be
strongly complete on the ground level. The result (as well as the aforementioned answer) can be
lifted to the first-order level the way briefly outlined in the paper. This settles a problem which
remained open for two decades despite many proof attempts. The result is relevant for theorem
proving because without strong completeness a connection graph resolution prover might run
into an infinite loop even on the ground level.

Semantic Resolution, Lemmaizing and Contraction

Maria Paola Bonacina
University of Iowa

Subgoal-reduction strategies, such as those based on Model Elimination and implemented in
Prolog Technology Theorem Proving, prevent redundant search by using lemmaizing (caching),
whereas contraction-based strategies prevent redundant search by using contraction rules, such
as subsumption. In this work we show that lemmaizing and contraction can coexist in the frame-
work of semantic resolution. We define two meta-level inference rules for lemmaizing in semantic
resolution, one for unit lemmas and one for non-unit lemmas, and we prove their soundness.
Rules for lemmaizing are meta-rules because they use global knowledge about the derivation,
e.g. ancestry relations, in order to derive lemmas. Then we define a purity deletion rule for
first-order clauses that preserves completeness. Thus we can have a semantic resolution strat-
egy with resolution, factoring, lemmaizing and contraction (subsumption, clausal simplification



and purity deletion). Our meta-rules for lemmaizing generalize to semantic resolution the rules
for lemmaizing in Model Elimination. Subsumption and purity deletion in a forward-resoning
strategy correspond to success and failure caching, respectively, in a subgoal-reduction strategy.

Towards a Decidable Class of n-ary Horn Predicates

Jochen Burghardt
GMD Berlin

Formalisms to finitely describe infinite sets of ground terms have numerous applications in
automated reasoning and other fields of computer science. Existing formalisms are regular tree
grammars, semi-linear term declarations, regular substitution sets, various approaches based on
set constraints, -terms, ... The minimum requirements to such a formalism is that it should
be decidable whether a representation denotes the empty set, and that the intersection of two
representable sets is again representable. A first comparison of such formalisms based on their
translation into Horn clauses is given, where term sets are described as solution sets of predicates.

A new formalism based on term orderings that commute with the least-common-instance
operator (lct) is presented. Define a mapping ¢ from the set of all terms mod. renaming into
itself to be a descending homomorphism iff ¢(lci(t1,t2)) = lei(@(t1), d(t2)) and ¢(t) < t wrt.
some well-founded ordering <. We consider the class of Horn program consisting of arbitrary
facts and of clauses of the form p;(¢;) < p;1(¢(¢;)) for some descending homomorphism ¢. (Since
neither of the ¢; nor of the ¢(¢;) are restricted to be variables, n-ary predicates can be coded
e.g. by using “,” as a binary function symbol.) Algorithms to decide the satisfiability of any
such p; as well as to compute new clauses for the conjunction of any p; and p; are given.
While their correctness follows from standard fixed point arguments, their termination relies on
the properties of ¢. Neccessary and sufficient condition for the extendibility of an assignment

ty — ...ty — L, to a descending homomorphism are given.

It is conjectured but not yet verified that this approach can be generalized to allow arbitrarily
many body literals; in this case, regular tree grammars, regular substitution sets, and semi-linear
term declarations would be subsumed.

Automated Production of Human-Readable Proofs in Geometry

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang
The Wichita State University

The algebraic methods based on the coordinate approach, i.e., Wu’s method and the Grébner
basis method, have been very succcesuful in proving hundreds of geometry theorems of equal-
ity type. The proofs produced by these methods are generally not readable for two reasons:
coordinates do not have clear geometry meanings and polynomials in the proofs are generally
large.

We introduce a completely new method, the area method, and the computer program based on
this method has produced elegant, short (sometimes even shorter than those given by geometry
experts), and human-readable proofs of over 400 theorems. The new method is summarized in
the book Machine Proofs in Geometry (World Scientific, 1994). Our computer program, GE
(Geometry Expert), is now available via ftp at



emcity.cs.twsu.edu: pub/geometry/software/ge sun.tar.Z.

Structuring Theories and Proofs

Bernd Ingo Dahn
Humboldt University Berlin

The ILF system uses automated theorem provers developed in the DFG-Schwerpunkt ”Deduk-
tion” to assist the user in the construction of large formal proofs. The ILF user can support the
work of the integrated automated systems by specifying lemmata or by pointing to a specific
part of the knowledge base to guide the the solution of a specific problem. In order to do this,
the theory has to be structured in an appropriate way. ILF gives the possibility to combine
the structuring of theories with the introduction of sorts. Definitions of sorted theories can be
parametrized and can include other theories. By specifying in a derived theory an axiom with
the same name as in the parent theory, axioms can be overloaded. Using these tools, large
knowledge bases can be constructed and structured efficiently.

The interactive ILF system provides the Block Calculus to support the user in editing well-
structured proofs. These proofs are well suited for automated and interactive restructuring and
flexible presentation. Model elimination proofs generated by the integrated provers SETHEO
and KoMeT are automatically translated into the Block Calculus.

A natural language LaTeX presentation of a solution of the Steam Roller Problem by KoMeT
was given in order to show the effect of the ILF proof restructuring tools. It was indicated, how
the structuring of the theory in use can be exploited in order to adopt the natural language
output to the knowledge of a specific reader.

Rewrite-Based Deduction:

Expansion and Contraction

Nachum Dershowitz
University of Illinois

At the heart of automated deduction lies an inference engine that repeatedly expands the data-
base of formule by applying rules of inference (forwards or backwards). Unlike classical proof
theory, the database is not only expanded during deduction, but also contracted as a result of
(typically ad-hoc) deletion of formule deemed “redundant” (e.g. tautology, subsumption, and
demodulation tests).

Research in rewriting has contributed in various ways, including the suggestion of refinements
of existing inference calculi. On the conceptual level, notions from rewriting have led to a
formalization of contraction steps in theorem provers. A (possibly goal-oriented) complexity
measure for proofs can be used to characterize redundant expansions that can be glossed over,
as well as contractions to eliminate newly introduced redundancies. This approach provides a
methodology for completeness proofs in the presence of contraction. Every proof based on the
current formula set that requires a non-redundant inference must contain a subproof that can
be replaced—after some expansion step—to obtain a strictly smaller proof. Then contraction
does not harm completeness if it never forces the complexity of a proof to increase.



Improved versions of completion (with oriented instances of equations, contextual simplifica-
tion, and critical pair criteria), resolution (with ordering strategies, subsumption and simplifi-
cation), Horn-clause deduction (with ordering-based strategies and simplification by decreasing
instances), and inductive proofs (with rippling) can be phrased within this framework. The
choice of complexity measure dictates the precise contractions that are permissible.

Formalizing Inductive Proofs of Network Algorithms

Amy Felty
AT&T Bell Laboratories

Logical specifications of programs implementing distributed network algorithms are often defined
precisely enough to enable a (human) verifier to prove the program’s correctness, possibly with
the aid of a mechanical proof-checker. However, the topology of the underlying network and its
relation to the program, which is crucial for the program’s correctness, are not formalized. In
this talk, we show how the underlying network can be formally defined by means of induction,
and how to reason about network algorithms by structural induction. We demonstrate our
techniques on a broadcasting algorithm and an underlying network constituting a binary tree
of arbitrary size. We use the theorem prover CoqQ to fully mechanically check the correctness
proof.

An important ongoing goal of this work is to integrate model-checking and theorem proving
techniques on a problem domain that could benefit from such integration. Model checkers are
highly automated but limited in the size and kind of statements that can be proved. Theorem
provers are expressive and powerful but require sophisticated insight and guidance by the user.
We discuss initial experiments we have carried out on how a model checker could assist in our
broadcasting algorithm correctness proof.

This is joint work with Ramesh Bharadwaj of McMaster University and Frank Stomp of
AT&T Bell Laboratories.

More on Quasigroup Open Problems

Masayuki Fujita
Mitsubishi Research Institute, Inc.

1 Introduction

An MGTP (model generation theorem prover) [5] on the Parallel Inference Machine with 256
processors [4] made an obvious breakthrough in deciding some finite quasigroup existence prob-
lems by a method of model enumeration, after some tries and a success in China [10] and
Australia [7].

Since then, two types of systems, such Mark Stickel’s DDPP, an implementation of the Davis-
Putnam algorithm, and John Slaney’s Finder, a finite-domain constraint based enumeration
system, have achieved solutions to harder problems in the domain and contributed to great
progress in design theory in discrete mathematics [8]. In this process, the major reasons for new
breakthroughs are strongly related to “how to minimize guessing,” or how to cleverly choose
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Problem | Order | BCCP(time:sec) | Davis Putnam(time:sec) | Look Ahead
QG3 8 236(101) 1037( 6) i
QG5 10 27(75) 38(66) 5

11 43(225) 136(228) i
12 191(950) 443(883) 83

Table 0.1: Failed branches in the search space

the next place to assign a value. Choosing a cell with the least alternative values in the latin
square or choosing a literal in one of the least length positive clauses is the common criterion of
all systems. And heuristics we found have taken the role of shortening the least length positive
clauses. A list of the heuristics and the reasons why they are effective will clarify the advantage
of representing the problem as propositions. One reason is that all heuristics are represented
declaratively and they are independent from the program and are very easy to verify and modify.

Further investigation was made since then and the following two parts of this talk are an
interim report of the continuing research.

1. Experimental results by binary clause closure method [3]

2. Further challenging open problems

2 Experiments

In the research domain of finite constraint solving, look ahead is a well known method to
propagate constraints [9]. This method is obviously useful for model finding. This has quite
improved the search with the high cost of execution time in the quasigroup application [6].
Because look ahead compute again and again all possible unit consequences of each undecided
assignment at every node of the search tree. This is exponentially redundant.

The deductive closure of binary clauses(2-Closure) is not so expensive as look ahead and useful
to obtain a similar constraint propagation. Propagation of the constraints by 2-Closure occurs
when a V b and a V —b are in the closure.

But the look ahead is not equivalent to this. For example, there is a well known method in the
constraint domain that the look ahead simulates. In this method, ’supported’ or 'non-supported’
assignment corresponds to positive or negative fact respectively. A supported assignment X; = a
by X; is that all possible assignment of X; derives X; = a. So all the other possible assignment of
Xi are negated by this fact. Non-supported assignment is one of the dual constraint propagation
of this situation.

For seeing how the above method work to the quasigroup problems, an experimental program
BCCP (binary clause closure program) in klic was created and some results (Table 0.1) were
obtained. The results of DDPP and Look Ahead are from [8] and [6].

We can see the look ahead has much smaller size of the search tree than BCCP. However
BCCP runs reasonably fast and using a basic data structure instead of stack vectors can make
some constant times speedup.

11



3 More challenging problems

The second part is the introduction of further open problems in this domain. Problems are from
the reffered pages of the book [2]. Although the order is comparable to QG1 - QG8 in FSS93,
none of them are solved by our method. QG11 was stated ’out of the existing computer’s power’
in the book.

QG9 (pl4)
for order n quasigroups, for max size t of partial transversial t < n — 1. For odd n, t = n.
No counterexamples are found for any order
(partial transversial: a set of cells of a quasigroup with distinct value and all of them are
distinct both in row and column)

QG10 (p15)
Are there three mutually orthogonal LS(10) ?

QG11 (P50)
Are there order 11 row complete lattin square
(complete:all n(n — 1) ordered pairs(A4; ;, A; ;1) are distinct)

QG12 (P116)
Construct No-LS(16)
(No: for all LS(N) for all 1 < I < N no subsquare exists )

QG13 (pl17)
are there Ny, -LS(N) other than N =2a %357

QG14 (P145)
ISOLS(14,4)(Idempotent Self Orthogonal Latin Square order 14 with a hole of size 4) ?
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Model Elimination, Logic Programming and Computing Answers

Ulrich Furbach

Universitat Koblenz-Landau

We prove that theorem provers using model elimination (ME) can be used as answer com-
plete interpreters for disjunctive logic programming. For this, the restart variant of ME with
a mechanism for computing answers and the ancestry refinement is introduced. Furthermore,
we demonstrate that in the context of automated theorem proving it is much more difficult to
compute (non-trivial) answers to goals, instead of only proving the ezistence of answers. It holds
that resolution with subsumption is not answer complete. We consider puzzle examples and give
a comparative study of OTTER, SETHEO and our restart model elimination prover PROTEIN.

Locality and Saturation

Harald Ganzinger
Max-Planck-Institut fiir Informatik

We report on joint work with David Basin about relating locality and saturation. McAllester
calls an Horn theory local if whenever a ground clause, called query, is entailed by the theory then
it is already entailed by ground instances in which all terms are subterms of some query term.
Local entailment problems are decidable in polynomial time. We propose a slightly different
concept of locality in which we compare the ground atoms in proofs to the ground atoms in
the query with respect to some well-founded ordering. We show that a theory is local in this
sense if and only if it is saturated under ordered resolution up to redundancy. With our concept
of locality we can describe more complexity classes. We can admit full clauses, not just Horn
clauses, and we may attempt to transform non-local presentations into local ones by applying
saturation.

Proof Presentation

Xiaorong Huang Jorg Siekmann
Universitdt des Saarlandes DFKI

This talk outlines an implemented system called PROVERB that explains machine-found nat-
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ural deduction proofs in natural language. Different from earlier works, we pursue a reconstruc-
tive approach. Based on the observation that natural deduction proofs are at a too low level of
abstraction compared with proofs found in mathematical textbooks, we define first the concept
of so-called assertion level inference rules. Derivations justified by these rules can intuitively be
understood as the application of a definition or a theorem. Then an algorithm is introduced
that abstracts machine-found ND proofs using the assertion level inference rules. Abstracted
proofs are then verbalized into natural language by a presentation module. The most significant
feature of the presentation module is that it combines standard hierarchical text planning and
techniques that locally organize argumentative texts based on the derivation relation under the
guidance of a focus mechanism.

Parallel Term Rewriting with PaReDuX

Wolfgang Kiichlin, Reinhard Biindgen, and Manfred Gébel
Universitdt Tiibingen

We report on the construction of PaReDuX, a parallel term-rewriting and completion system.
It is designed for shared memory multi-processors and exploits the fine-grained parallelism pro-
vided in a multi-threaded environment. PaReDuX contains modules with a plain Knuth-Bendix
completion procedure (ptc), a Peterson-Stickel procedure for AC-theories (pac) and an unfailing
completion procedure (puc).

Our goal is to enable the construction of parallel theorem provers in the multi-threaded envi-
ronment of modern multiprocessor workstations. To this end we are developing a discipline of
parallel programming, an efficient portable programming environment, and a prototype imple-
mentation to evaluate our concepts.

PaReDuX programs are parallelized versions of the corresponding sequential ReDuX pro-
grams. The parallelization takes place in the framework of the PARSAC-2 parallel Computer
Algebra system, using the same Virtual S-threads parallelization environment. Virtual S-threads
supports the parallel execution of C functions calls which need access to a parallel heap structure
for list processing. The environment also provides a highly efficient threads system supporting
the simultaneous use of tens of thousands of threads. Together with our programming paradigm
of parallel divide-and-conquer it releases the programmer from the burden of scheduling parallel
tasks and thinking about the actual hardware underneath.

Our completion procedures are strategy-compliant. They parallelize the inner completion loop
while the selection of the best new rule in the outer loop, and hence the completion strategy, is
exactly the same as for the sequential algorithm. Both critical pair generation and normalization
of critical pairs are done in parallel. For AC-completion, we also use parallelism within the
reduction of individual terms. We thus achieve speed-ups of up to a factor of 3.6 on 4 processors.

For more details of this work we refer to our articles in the proceedings of ISSAC’94, PASCO’94,
and RTA’95.
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Function Introduction in Clause Logic

Alexander Leitsch
TU Vienna
(joint work with Matthias Baaz)

Typically computational calculi are characterized by simple logical syntax and economic princi-
ples of inference. Particularly clauses are logic—free forms and all substitutions applied within
these calculi are most general unifiers. Thus, in some sense, both syntax and inference are min-
imalized. This feature is quite beneficial to proof search, but the absence of logical structure
can lead to very high proof complexity. On the other hand, full logic calculi like LK and natural
deduction, allow the formulation of short and highly structured proofs, but are not suited for
proof search. F—extension (function introduction) is a method to produce new clauses by some
simple quantifier shifting rule and re—skolemization; this rule is simple and computationally con-
trollable. It is shown that F—extension combined with resolution can simulate the power of the
full cut rule, thus resulting in a nonelementary speed—up of proof complexity versus ordinary
resolution. Therefore F—extension combines the good features of computational calculi with
the strength of full logic calculi. A well-known principle of function introduction is skolem-
ization, although it is usually considered as mere preprocessing. It is demonstrated that the
proof complexity of different skolem forms (prenex versus structural) may differ nonelementar-
ily from each other. This shows the importance of creating and preserving logical structure in
automated deduction. Particularly structural transformation and controlled cut—introduction
(by F-extension) are powerful techniques to increase the power of computational calculi.

LINUS: A Link Instantiation Prover With Unit Support

Reinhold Letz
TU Minchen

A theorem prover for first-order clause logic is presented which is based on ground instantiation
and propositional decision. Like in Plaisted’s 1992 approach, the enumeration of (ground)
instances is controlled by hyperlinking, ie instances of the input clauses are saturated as induced
by unification with complementary mates in the increasing formula. The generation of clause
instances is supported by an increasing theory of (first-order) unit clauses, which are obtained
as a by-product of the hyperlinking process and which are used to simplify the clause instances.
The enumeration modulo unit clauses is complete for Horn clause logic, ie, for this sublanguage,
no propositional decision procedure is needed. Completeness is preserved under any set-of-
support strategy, thus permitting a form of goal-oriented (generalized) unit-resulting resolution.
Furthermore, a new method of dynamic clause splitting is presented. Dynamic clause splitting
minimizes the number of distinct variables in clauses and can reduce the set of generated (ground)
instances significantly, without lengthening proofs. The entire prover is implemented in Lisp.
Because of the use of indexing techniques, the system is very efficient. The prover was evaluated
on the TPTP problem library (v1.1.1), which consists of 2652 formulae (63 % non-Horn, 79 %
with equality). The first version of Linus (which has no special equality handling) could solve 39
% of the problems on a Sun Sparc 10, with a time limit of 200 seconds per problem. Thus, the
system can compete well with the most successful general purpose theorem provers currently
available.
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Automated Deduction in Algebraic Geometry

William McCune
Argonne National Laboratory

y=x(xy)
xy
X
Y74
e=ee
R. Padmanabhan’s inference rule =(gL)=- allows one to prove, in an equational setting,

some theorems about cubic curves in algebraic geometry without reference to the underlying
geometry or topology of the curves. But the rule is awkward for mathematicians to use, and
very little had been done with it until we installed it in the automated theorem prover OTTER.
Many experiments were conducted, and several new results of interest to researchers in algebraic
geometry were obtained by OTTER. Examples of the new results are that cancellative semigroups
on a cubic curve must be commutative, and that a 5-ary Steiner law on cubic curve is unique.

Derived Rules for the Generic Reasoning Assistant System

EUODHILOS-II

Toshiro Minami
Fujitsu Laboratories Limited

EUODHILOS-II is developed with the intention that it helps us humans with reasoning in
various logical structures, especially for new ones. Since it deals with a variety of logics in a
uniform way, it is designed to be logic-independent system; the user gives the logic to be dealt
with in a NBF-style syntax description and in the Natural Deduction-style logical structures.

Using the representations easy-to-be-recognized by humans and supporting the variety of
reasoning styles are fairly important for EUODHILOS-II. Defining and using the derived rules
is one of the essentially important features in such an interactive reasoning assistant system
like EUODHILOS-II. We proposed a way to improve the present treatment for derived rules
in EUODHILOS-II. It intends to overcome the problems of overinstantiation and delay of side
condition checking. The idea for the improvement is based on the generalization and dynamic
side condition checking. We gave a criterion for classifying the side conditions remains in a
derived rule, then gave a way to eliminate redundant conditions.

Implementing Deduction with Constraints

Robert Nieuwenhuis
Technical University Catalonia

We first overview our different theoretical results obtained during the last three years on auto-

16



mated deduction techniques with constrained equality clauses. After this, their current exper-
imental implementation within the Saturate system is outlined. Its main limitations from the
efficiency point of view are analysed, which motivates some ideas on more efficient implementa-
tions, based on WAM data structures combined with indexing methods like discrimination- or
substitution tree indexing.

Programming Language Semantics in Isabelle

Tobias Nipkow
TU Miinchen

In this talk I review a number of different formalizations of language semantics and their equiv-
alence proofs in different logics inside the generic theorem prover Isabelle.

One major case study is the formalization of a simple first-order functional language in LCF.
The denotational semantics is given in the standard way, the operational semantics by a step
by step simplification, i.e. evaluation at the term level, of the source program. The equivalence
proof required 300 lemmas and revealed that LCF complicates matters considerably because it
insists that every type is a cpo and that every function is computable and potentially partial.

The second example is the formalization of the first few chapters of Winskel’s “The Formal
Semantics of Programming Languages” describing the operational, denotational and axiomatic
semantics of a simple while-language and their relationship. This was done in 3 different logics:
Zermelo-Fraenkel set theory (ZF), Higher-Order Logic (HOL), and HOL enriched with domain
theory (HOLCF due to Regensburger). It appears that HOLCF is most suitable for this task,
although the example is simple enough all three logics can handle it very easily.

Term Indexing, a Parallel Theorem Prover,
More Parallelism by Transformation

Hans Jiirgen Ohlbach
Max-Planck-Institut fiir Informatik

The manipulation of large amounts of formulae in an automated deduction system can be sup-
ported considerably by special term indexing mechanisms. A term index is a datastructure
representing sets of terms and allowing fast retrieval of particular terms. Typical operations are,
given an index I and a term ¢, find all terms in I which are unifiable with ¢, instances of ¢ or
more general than ¢t. Other operations are: given two indices I and J, compute a third index
representing the pairs of unifiable terms in I and J.

We (that means in the first place Peter Graf and Christoph Meyer) have implemented a number
of indexing mechanisms, path indexing, discrimination tree indexing, abstraction tree indexing
and substitution tree indexing. Substitution tree indexing showed the best performance on a
considerable variety of examples. The functionality of the different indexing schemes, however,
is different. For example FPA indexing can be implemented such that parallel access of different
processes is possible, and even more, one process may change the index while another process
does a retrieval.

Most of the indexing schemes we have investigated are implemented in the library ACID,
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accessible via FTP from pub/tools/deduction/ACID.

With the indexes as basic datastructures we have implemented a parallel hyperresolution
theorem prover for Horn clause logic. Each non-unit Horn clause is represented by a master
process and various satellite processes. The master process is responsible for computing from
the incoming indexes which represent initial and derived unit clauses a new index containing the
compatible unifiers with the corresponding body literals. These unifiers represent new derived
unit clauses. The satellite processes do subsumption on the incoming and outgoing substitutions.
All operations work directly on the indices, not on the clauses.

The degree of parallelism in this theorem prover depends on the number of non-unit Horn
clauses. In order to increase the number of Horn clauses, I presented a transformation on the
initial clause set which replaces particular clauses by a certain number of resolvents. For example
one can show that the transitivity clause can be eliminated by adding for each positive literal in
the other clauses just one resolvent with one of the two premise literals of the transitivity. This
method can be generalized to other self resolving clauses. Applied to the condensed detatchmet
clause, for example, we obtained improvements of the search behaviour even for sequential
theorem provers like Otter.

Theorem Proving with Binary Decision Diagrams

Hiroshi G. Okuno
NTT Basic Research Laboratories

Binary Decision Diagrams (BDDs) are compact representations of boolean functions (proposi-
tional logic). We first review BDDs and describe their application to the Magic Square Problem.
The problem is encoded as a set of constraints and each constraint is specified by (arithmetic)
logic expression. The BDD for all the solutions is constructed by taking logical and’s of all the
constraints. In constructing BDDs, the order of constraints is critical to avoid combinatorial
explosions. Since the resulting BDD contains all the solutions implicitly, the solutions are ex-
tracted by enumerating all the paths from the root of BDD to the terminal node 1. However,
various capabilities are possible without enumerating the solutions. For example, the theorem
that the sum of the inner four squares of the Magic Square of order 4 (4 x 4 chess board) is
the same as that of any column, row or diagonal can be proved by constructing a BDD for the
theorem.

Since a (standard) BDD contains logical relations between propositional symbols, its size
is much larger than that of simple representation of combination sets. Standard BDDs can
represent combination sets by logical functions, but such representations are not canonical. We
introduce a new kind of BDD called 0-suppressed-BDD (0-sup-BDD) to represent a combination
set uniquely. The following two combination-set operations are introduced:

e Restriction (FAC): FAC = {ecF|dyeC z2Dy}

e Ezclusion (FyC): FyC = F—(FAC)
Some theorems concerning combination-set operations are used to reorder the order of applying
operations to avoid the combinatorial explosions. The main differences of 0-sup-BDD from

standard BDDs in solving the Magic Square problems and N-Queen problems are (1) the size
of BDD is by ten times smaller, and (2) the same constraints may be applied repeatedly. The
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latter property is due to the theorem that elements of constraint C that are irrelevant to F are
ignored in restriction and exclusion operations.

Proof Logging and Proof Checking in NEVER

William Pase
ORA Canada

NEVER is the theorem prover for the EVES program specification and verification system. The
proof logging and proof checking efforts are intended to increase the level of assurance in the
proofs generated by NEVER. The ultimate goal is to place responsibility for the validity of
proofs upon a simple, formally verified proof checker.

The proof logging effort will result in a version of NEVER that can produce detailed descrip-
tions of the generated proofs in the form of a list of the inferences. These proof logs will be used
for proof checking and proof browsing. Each of the inferences must be simple and easy to check,
including those generated by decision procedures.

The proof checking effort will result in a formally verified proof checker. This will provide a
high degree of assurance in the proofs generated, independent of the complexity of the NEVER
theorem prover. Because of the simplicity of the inferences in the proof logs, checking does not
involve search, it consists of stepping through the inferences.

The proof browsing effort will result in a proof browser that will allow a proof to be displayed
while controlling the amount of detail. Browsing can be used for the validation of proofs, and
for the understanding of proofs. This requires that proof logs contain structure, in the form of
annotations, in addition to the inferences.

There is an experimental version of NEVER that generates proof logs for everything except
simplification by decision procedures. However, this is being implemented. There is a prototype
proof checker that has successfully checked all of the proofs within the EVES test suite. The
proof browser is being designed.

Mechanising Set Theory: Cardinal Arithmetic and the Axiom of Choice

Lawrence C. Paulson Krzysztof Grabczewski
University of Cambridge Nicholas Copernicus University

Fairly deep results of Zermelo-Fraenkel (ZF) set theory have been mechanised using the proof
assistant Isabelle. The results concern cardinal arithmetic and the Axiom of Choice (AC). A
key result about cardinal multiplication is kK ® kK = k, where & is any infinite cardinal. Proving
this result required developing theories of orders, order-isomorphisms, order types, ordinal arith-
metic, cardinals, etc.; this covers most of Kunen, Set Theory, Chapter I. Furthermore, we have
proved the equivalence of 7 formulations of the Well-ordering Theorem and 20 formulations of
AC; this covers the first two chapters of Rubin and Rubin, Equivalents of the Aziom of Choice.
The definitions used in the proofs are faithful in style to the original mathematics.
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Reasoning Theories: Towards an Architecture for Open
Mechanized Reasoning Systems

Fausto Giunchiglia Paolo Pecchiari Carolyn Talcott
IRST and Universita di Trento IRST and Universita di Genova Stanford University

Our ultimate goal is to provide a framework and a methodology which will allow users, and not
only system developers, to construct complex systems by composing existing modules, or to add
new modules to existing systems, in a “plug and play” manner. These modules and systems
might be based on different logics; have different domain models; use different vocabularies and
data structures; use different reasoning strategies; and have different interaction capabilities.
The work presented in this talk, which is a first small step towards our goal, makes two main
contributions. First, it proposes a general architecture for a class of reasoning modules and
systems called Open Mechanized Reasoning Systems (OMRSs). An OMRS has three components:
a reasoning theory component which is the counterpart of the logical notion of formal system, a
control component which consists of a set of inference strategies, and an interaction component
which provides an OMRS with the capability of interacting with other systems, including OMRSs
and human users. Second, it develops the theory underlying the reasoning theory component.
This development is motivated by an analysis of the Boyer-Moore system, NQTHM.

A Flexible Theorem Prover

Uwe Petermann
HTWK Leipzig

The aim of this research (a joint work with Gerd Neugebauer) is to combine the high inference
rates of a PTTP-based theorem prover with high flexibility. By flexibility we mean something
beyond the manipulation of dozens of switches. In particular we would like to have the possibility
to modify the underlying calculus. This includes the possibility to specify the inference rules
that will be applied by the prover. Moreover, experience showed that one needs access to data
structures maintained by the prover during the proof search. Clearly, the access to those data
structures should be save and well understood in terms of the considered calculus.

This idea has been realized by the calculi programming interface CaPrl of the theorem prover
ProCom. Inference rules may be specified by a description language. Basic data structures, like
the current path maintained by a model elimination prover, are specified as an abstract data
type. The user may substitute the default implementation by his favored implementation.

Those features of CaPrl are illustrated by an analysis of three different calculi: a simple
kind of theory reasoning, the translation of multi-modal logic into first-order logic and the
implementation of lemma application.

The prover is available by ftp. For more informations see [1] and under
ftp://upsilon.imn.th-leipzig.de/pub/Wiii/welcome-german.html

References
[1] G. Neugebauer and U. Petermann, Specifications of Inference Rules and Their Automatic
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Translation, Proceedings of the Workshop on Theorem Proving with Analytic Tableaux
and Related Methods, 1995.

On Words with Variables

Michakl Rusinowitch
INRIA-Lorraine and CRIN

Ground reducibility is a key property used by inductive completion procedures in order to
detect false conjectures. A term is said to be ground reducible whan all its ground instances are
reducible. We present the case of word rewrite systems where ground reducibility is undecidable
in general and co-NP-complete for the case of a linear system with a linear term. The problem is
related to some old open questions in language theory concerning the unavoidability of patterns.
The simpler reducibility problem of a word by a (linear) word rewrite system is also related
to string matching with variable-length don’t cares symbols. This is joint work with Gregory
Kucherov.

Program Extraction from Classical Proofs

Helmut Schwichtenberg
Universitat Miinchen

As is well known a proof of a Yi-theorem with a quantifier—free kernel — where 3 is viewed
as defined by =V— — can be used as a program. We describe a “direct method” to use such
a proof as a program, and compare it with Harvey Friedman’s A-translation followed by the
well-known program extraction from constructive proofs.

A refinement of Harvey Friedman’s A—translation is introduced, in order to simplify the ex-
tracted program. The simplification concerns the type of the auxiliary functions as well as
their if-then—else structure. The type reduction is achieved by not replacing all atoms P by
(P — A) — A. To reduce case splitting we construct “good” proofs of C — C# for quantifier—
free C'. The following example is used to show that such improvements are indeed necessary.
Let f: N — N be an unbounded function with f(0) = 0. Then one can extract a program from
a classical proof of Vnim.f(m) < n < f(m + 1). If for instance f(m) = m?, then this formula
expresses the existence of an integer square root.

PVS = Decision Procedures + Interaction

Natarajan Shankar
SRI International

SRI’s PVS verification system is:

1. An experiment aimed at studying the synergistic interaction between expressive specifica-
tion language features and powerful deductive capabilities.

2. An attempt to build an interactive proof checker on top of efficient decision procedures for
equality, arithmetic, and propositional simplification.
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The PVS specification language includes parametric theories, predicate subtypes, dependent
types, subtyping judgements, and user-definable abstract datatypes. With these features, type-
checking becomes undecidable — the typechecker generates proof obligations that can be dis-
charged using the proof checker. The PVS proof checker contains primitive commands for infer-
ence steps like simplification, rewriting, and beta-reduction. Higher-level inference commands
can be defined using a simple strategy language with constructs for branching, backtracking, and
recursion. PVS has been used in the verification of a commercial microprocessor design where it
revealed both seeded and unseeded errors, and in a variety of other large and small verification
efforts. PVS only makes limited use of currently available theorem proving technology, and it
would be interesting to see how other general and special-purpose theorem proving tools can be
integrated into the system.

Two Approaches for Finite-Domain Constraint Satisfaction Problems

Yasuyuki Shirai and Ryuzo Hasegawa
Institute For New Generation Computer Technology

We have developed two types of systems; CP and CMGTP, for finite-domain constraint satis-
faction problems. CP is based on the constraint logic programming scheme, and is written in
SICStus Prolog. CP has achieved high performance on quasigroup (QG) existence problems
in terms of the number of branches and execution time. CP succeeded in solving a new open
quasigroup problem. On the other hand, CMGTP is a slightly modified version of our theorem
prover MGTP (Model Generation Theorem Prover), enabling negative constraint propagation
using the unit simplification mechanism. CMGTP has exhibited the same pruning ability as
CP for QG problems. CMGTP can be used as a general constraint solver for finite-domains
on which we can write down constraint propagation rules with CMGTP input clauses directly.
We also show the methods of parallelization in CMGTP system and the results on the parallel
inference machine PIM/m which has 256 processors. We obtained almost linear speedups for
QG5.13.

Constraint Satisfaction and Deduction: Some Techniques

John Slaney
Australian National University

Finite domain constraint satisfaction problems (CSPs) are easily described in terms of propo-
sitional satisfiability and it is well known that backtracking search methods for CSPs amount
essentially to proof searches in propositional logic. In this talk we note several techniques for
improving efficiency, drawing on experience with CSP solvers. The two most important are

e the addition of secondary (derived) constraints during the search. These record information
extracted from the points at which backtracking was forced, thus making the constraint
network contain explicitly what was implicit knowledge about the problem

e lazy constraint generation, whereby first order clauses are not reduced to their ground
instances over the domain but instead are kept as first order conditions against which
model candidates are tested. If a model candidate fails the test, one violated ground
instance of the clause is selected and added to the constraint network. In this way, only a
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few ground clauses are used, but these suffice to determine the solutions.

Some sample problems are examined briefly and their characteristics with respect to the sug-
gested techniques are noted.

Equational Reasoning about Quasigroups

Mark E. Stickel
SRI International

Finite quasigroups in the form of Latin squares have been extensively studied in design theory.
Some quasigroups satisfy constraints in the form of equations, called quasigroup identities. Nu-
merous open problems of the existence of quasigroups of particular size that satisfy particular
identities have been solved by automated theorem-proving methods (such as the Davis-Putnam
procedure) that are complete over a finite domain. We illustrate how other kinds of questions
concerning quasigroup identities can sometimes be answered by the alternative equality-based
automated theorem-proving method of term rewriting and completion.

Typelab: Towards an Interactive Prover for Type Theory

Friedrich W. von Henke
Universitat Ulm

In this talk we give an overview of the capabilities of the system Typelab currently under
development at the University of Ulm. The formal basis of Typelab is a constructive type theory,
the Extended Calculus of Construction augmented by inductive types. Into the type theory, the
intuitionistic predicate calculus can be embedded. For this calculus, an interactive prover has
been developed; it is built on a Gentzen-style sequent calculus, using prover commands and
tactics similar to those provided by the PVS prover for classical predicate calculus. The prover
also incorporates a decision procedure for propositional logic and a proof search procedure for
(intuitionistic) predicate logic that generates some proofs automatically. This prover component
provides the basic proof capability that supports the other more experimental ones. A second
approach investigated in Typelab involves representing theories in a hierarchy similar to concept
hierarchies in terminological logics, the idea being that a theorem would be stated and proved
in the “most general” theory in which they it is true; it could then be “inherited” by theories
subsumed by that theory. This approach makes use of the fact that theories may be modeled
in the type theory as certain kinds of dependent types and theory morphisms, representing a
general kind of subsumption relation, can be expressed as mappings between such types. A third
kind of reasoning investigated in Typelab is the modeling of meta-reasoning. For this purpose,
suitable reflection principles have been designed and implemented; their practical usefulness is
currently being explored.
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Specification and Analysis of Proof-Valued Computations

Lincoln A. Wallen
University of Oxford

Proof-procedures compute evidence for logical consequences but do not do so simply by enumer-
ating proofs. Techniques such as unification, resolution and its refinements, connection calculi
and other analytic methods, all make use of logical structure to improve computational behav-
iour. The relationships between these methods and techniques are difficult to formulate and this
in turn makes it difficult to adapt them to new logical systems and problem domains.

In this talk we outline an approach to the specification and analysis of proof-procedures. We
use a metalanguage — the Edinburgh Logical Framework (LF) — to characterise the terms,
formulae and proofs of a logical system as particular sets of typed lambda terms via a signature
defining the logic. Proof-procedures and their component techniques are then characterised by
stating the invariants that they maintain by means of a theory of partial objects: approximations
to proofs and terms where some structure remains indeterminate. For example: (1) the use of
unification and skolemisation within a first-order logic is given an interpretation via partial proofs
with indeterminate terms and indeterminate placements of the rules governing quantifiers; (2)
the use of connections/clashes and propositional normal forms is given an interpretation via
partial proofs whose propositional structure is highly indeterminate. This abstract view enables
these techniques to be applied to classes of logical systems defined via their LF signatures, thus
generalising standard and recent results extending proof procedures to non-classical logics.

Apart from analysis and theoretical extension, the interpretation supports the compilation
of (invariants for) algorithms such as unification from (invariants for) a unification algorithm
for the framework language by making use of properties of the signature defining terms. The
appropriate invariants for both first-order, and higher-order unification algorithms have been
generated in this way from a new presentation of unification for the LF.

In the long run, we hope that this approach will enable us to give a mathematical treatment
of search spaces, and describe the effect particular refinements have on such spaces.

This is joint work with David Pym (Birmingham), Eike Ritter and Jason Brown (Oxford).

Reusing Proofs

Christoph Walther
TH Darmstadt
(joint work with Thomas Kolbe)

We investigate the application of machine learning paradigms in automated reasoning, viz. the
improvement of theorem provers by reusing previously computed proofs. If the prover has
computed a proof of a conjecture, the proof is analyzed yielding a so-called catch. The catch
provides the features of the proof which are relevant for reusing it in subsequent verification
tasks and may also suggest useful lemmata. Proof analysis techniques for computing the catch
are presented. A catch is generalized in a certain sense for increasing the reusability of proofs.
We discuss problems arising when learning from proofs and illustrate our method by several
examples.
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Model Generation by Propositional Reasoning

Hantao Zhang
The University of Iowa

In the recent two years, we have solved several hundreds of open cases in finite mathematics by a
propositional theorem prover for model generation. The contribution of our work is twofold: (1)
We provided solutions that mathematicians are interested but cannot obtain either by hand or
by special purpose programs; (2) We improved substantially our reasoning tools so that they can
be used to attack problems in other domains. OQur propositional theorem prover is called SATO
(SAtisfiability Testing Optimized) that is based on the Davis-Putnam algorithm. the Davis-
Putnam algorithm. The new features of our implementation of the Davis-Putnam algorithm
include (i) a novel unit-propagation algorithm and (ii) the trie data structure for propositional
clauses.

Abstract of Panel Discussion at Dagstuhl Meeting on Deduction:
Mining Proof Attempts for Logical Structure

Lincoln A. Wallen
University of Oxford

A number of speakers in the early part of the Dagstuhl meeting described techniques for adjusting
the behaviour of theorem provers over a series of proof attempts. The techniques ranged from
the very formal—eg., C. Walther’s use of proof-schemata abstracted from successful proofs to
guide the search for proofs of new formulae—to the informal—eg., W. McCune’s description of
parameter setting over successive runs of Otter. A discussion was held to explore the extent to
which these techniques could be seen as a way of introducing appropriate cut-formulae into a
problem so as to bring a proof into the search space at a particular depth, a method used to
good effect in A. Leitsch’s technique of function introduction to shorten proofs.

The well-known proof-theoretic properties of cut-introduction for shortening proofs was re-
viewed and the discussion identified following two central questions:

o first, the availability of logical languages suitable to describe the guidance information in
particular cases;

e secondly, the problem of describing and measuring the effect of refinements on search
spaces.

To use Walther’s example as an illustration, the proof schema “mined” from a successful search
is expressed in what resembles a second-order language. Formulation of such techniques using
logical methods, such as higher-order languages, might permit a logical analysis of the worth of
the techniques in shortening the length of shortest proof available.

However, it is a reduction in the size of space searched that indicates a practical improvement
in theorem proving method. Once again the woeful lack of a theory of search spaces was keenly
felt by the participants. As a consequence, effective techniques for improving performance in
practice, did not seem to be amenable to analysis simply on the basis of “shortest proof™.

In summary, two ideas emerged from the discussion. The need for analytic techniques to
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describe and measure the behaviour of theorem proving systems over several proof-attempts
(a form of iterative analysis similar to that performed in the machine-learning domain?), and
the related need to develop theories of search spaces. The discussion revealed the central place
that techniques for the analysis of failed proof-attempts occupies in successful provers (Otter,
Boyer-Moore etc.) and could be seen as sounding a call for more analysis and formal description
of these sometimes interactive, sometimes automatic, methods for the productive use of failure.
The calculation of appropriate cut formulae was identified as an important goal for the future,
but, without an analysis of search spaces, would not in itself be sufficient to describe the effect
of these “data mining” techniques.
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