
Dagstuhl Seminar on DeductionWolfgang Bibel Koichi Furukawa Mark StickelTechnische Hochschule Darmstadt Keio University SRI InternationalLogic is an essential formalism for computer science and arti�cial intelligence. It is used in suchdiverse and important activities as� Problem speci�cation;� Program transformation, veri�cation, and synthesis;� Hardware design and veri�cation;� Logic programming;� Deductive databases;� Knowledge representation, reasoning, diagnosis, and planning;� Natural language understanding;� Mathematical theorem proving.The universality of the language of logic, the certainty about the meaning of statements inlogic, and the implementability of operations of logic, all contribute to its usefulness in theseendeavors.Implementations of logical operations are realized in the �eld of automated deduction, whichhas introduced fundamental techniques such as uni�cation, resolution, and term rewriting, anddeveloped automated deduction systems for propositional, �rst-order, higher-order, and non-classical logics.The 1995 Dagstuhl Seminar on Deduction, succeeding the one in 1993, was convened to giveinternational researchers on deduction the opportunity to meet and discuss techniques, appli-cations and research directions for deduction. It featured 38 presentations, a panel discussion,and an excursion. Some of the results were deemed really exciting by the audience; among thoseare the discovery of proofs for a number of new mathematical theorems (in algebraic geometry,quasi-groups etc.) which were established with substantial participation of automatic systems;further the mechanical proofs of large parts of mathematical books on set theory, automata the-ory, and so forth. With the comfortable facilities available at Dagstuhl, system demonstrationswere given such as a geometry prover, remarkable not only for its proof power but also for itsamazing interface featuring geometrical constructions along with the formal theories and theo-rems. To an extent limited by the restricted number (43) of participants the seminar providedalso a forum for presenting results obtained in a German project (DFG Schwerpunktprogramm)on deduction to the international participants.The success of this meeting was due in no small part to the Dagstuhl Seminar Center and itssta� for creating such a friendly and productive environment. The organizers and participantsgreatly appreciate their e�ort. The organizers also thank Uwe Egly for his support in manyorganizational details. Financial support from NSF and CEU (directly and through Compulog)are also greatly appreciated.



ContentsJ�urgen Avenhaus : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5A Reduction Ordering for Higher-Order TermsFranz Baader : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5Combination of Constraint Solving Techniques: An Algebraic Point of ViewLeo Bachmair : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6Integrating Automated Deduction and Symbolic Computation TechniquesChristoph Beierle : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6Type Inferencing for First Order Logic with Polymorphic Order-sorted TypesWolfgang Bibel : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7Decomposition of Tautologies into Regular Formulas and Strong Completeness ofConnection-Graph ResolutionMaria Paola Bonacina : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7Semantic Resolution, Lemmaizing and ContractionJochen Burghardt : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8Towards a Decidable Class of n-ary Horn PredicatesShang-Ching Chou : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8Automated Production of Human-Readable Proofs in GeometryBernd Ingo Dahn : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9Structuring Theories and ProofsNachum Dershowitz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9Rewrite-Based Deduction: Expansion and ContractionAmy Felty : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10Formalizing Inductive Proofs of Network AlgorithmsMasayuki Fujita : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10More on Quasigroup Open ProblemsUlrich Furbach : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13Model Elimination, Logic Programming and Computing AnswersHarald Ganzinger : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 132



Locality and SaturationJ�org Siekmann : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13Proof PresentationWolfgang K�uchlin : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14Parallel Term Rewriting with PaReDuXAlexander Leitsch : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15Function Introduction in Clause LogicReinhold Letz : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15LINUS: A Link Instantiation Prover With Unit SupportWilliam McCune : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15Automated Deduction in Algebraic GeometryToshiro Minami : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16Derived Rules for the Generic Reasoning Assistant System EUODHILOS-IIRobert Nieuwenhuis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16Implementing Deduction with ConstraintsTobias Nipkow : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17Programming Language Semantics in IsabelleHans J�urgen Ohlbach : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17Term Indexing, a Parallel Theorem Prover, More Parallelism by TransformationHiroshi G. Okuno : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18Theorem Proving with Binary Decision DiagramsWilliam Pase : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19Proof Logging and Proof Checking in NEVERLawrence C. Paulson : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19Mechanising Set Theory: Cardinal Arithmetic and the Axiom of ChoicePaolo Pecchiari : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19Reasoning Theories: Towards an Architecture for Open Mechanized Reasoning SystemsUwe Petermann : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20A Flexible Theorem ProverMichakl Rusinowitch : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21On Words with VariablesHelmut Schwichtenberg : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21Program Extraction from Classical ProofsNatarajan Shankar : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21PVS = Decision Procedures + InteractionYasuyuki Shirai : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 223



Two Approaches for Finite-Domain Constraint Satisfaction ProblemsJohn Slaney : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22Constraint Satisfaction and Deduction: Some TechniquesMark E. Stickel : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23Equational Reasoning about QuasigroupsFriedrich W. von Henke : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23Typelab: Towards an Interactive Prover for Type TheoryLincoln A. Wallen : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24Speci�cation and Analysis of Proof-Valued ComputationsChristoph Walther : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24Reusing ProofsHantao Zhang : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24Model Generation by Propositional ReasoningLincoln A. Wallen : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 25Abstract of Panel Discussion at Dagstuhl Meeting on Deduction:Mining Proof Attempts for Logical Structure

4



A Reduction Ordering for Higher-Order TermsJ�urgen Avenhaus, Carlos Lor��a-S�aenz, and Joachim SteinbachUniversit�at KaiserslauternWe investigate one of the classical problems of the theory of term rewriting, namely termina-tion. We present an ordering for comparing higher-order terms that can be utilized for testingtermination and decreasingness of higher-order conditional term rewriting systems. The order-ing relies on a �rst-order interpretation of higher-order terms and a suitable extension of therecursive path ordering.Term rewriting systems (TRSs) can be considered as a powerful theoretical model for reason-ing about functional and logic programming in an abstract way, independently of a particularprogramming language. In such an approach to computer programming, logic and functional pro-grams are represented by means of executable speci�cations essentially consisting of conditionalequations. The operational semantics of these speci�cations is de�ned by term rewriting andequation solving, respectively. The extension of �rst-order logic to higher-order logic by meansof (universally quanti�ed) conditional equations enormously increases the expressive power ofthe speci�cations and permits an e�cient operationalization. In this paper we study how toprove termination of higher-order conditional term rewriting systems (HCTRSs).In order to verify termination of HCTRSs, higher-order terms must be compared in a suitableordering. We develop a method for performing that task which is based on an extensionsof �rst-order techniques. More speci�cally, we construct an ordering called HPO (for higher-order path ordering) by means of an extension of the recursive path ordering RPO so thatnon-algebraic terms can also be compared. Termination and decreasingness of HCTRSs arethen achieved as usual in the �rst-order case: the associated rewrite relation is required to beincluded in this ordering guaranteeing some kinds of monotonicity properties wrt. term structureand substitutions.Our method is essentially based on a �rst-order interpretation of higher-order terms in ��-normal form. Therefore, some of the principal properties and proof-techniques existing in the�rst-order case can also be used for the HPO.Combination of Constraint Solving Techniques:An Algebraic Point of ViewFranz Baader Klaus U. SchulzRWTH Aachen Universit�at M�unchenIn a previous paper we have introduced a method that allows one to combine decision proceduresfor uni�ability in disjoint equational theories. Lately, it has turned out that the prerequisitefor this method to apply|namely that uni�cation with so-called linear constant restrictions isdecidable in the single theories|is equivalent to requiring decidability of the positive fragmentof the �rst order theory of the equational theories. Thus, the combination method can also beseen as a tool for combining decision procedures for positive theories of free algebras de�ned byequational theories.The present paper uses this observation as the starting point of a more abstract, algebraic5



approach to formulating and solving the combination problem. Its contributions are twofold. Asa new result, we describe an optimization and an extension of our combination method to thecase of constraint solvers that also take relational constraints (such as ordering constraints) intoaccount. The second contribution is a new proof method, which depends on abstract notions andresults from universal algebra, as opposed to technical manipulations of terms (such as orderedrewriting, abstraction functions, etc.)Integrating Automated Deduction andSymbolic Computation TechniquesLeo BachmairSUNY - Stony BrookTheorem proving systems, whether interactive or fully automated, are usually not very e�cientat dealing with mathematical domains. One approach to equipping theorem provers with built-inknowledge about speci�c theories is the integration of decision procedures into general-purposedeductive systems. In this talk, I will discuss the integration of certain algorithms for dealingwith ring theory, as they are used in many computer algebra systems, in a resolution-typetheorem prover for logic with equality. More speci�cally, I will show how Buchberger's algorithmfor constructing a canonical basis for a polynomial ideal can be reformulated in logical terms, sothat algebraic manipulations on polynomials correspond to deductive inferences. Furthermore, itis possible to extract from the polynomial algorithm certain strategies that are useful in guidingthe proof search of the deductive system. The resulting combined method can be extended totheories speci�ed by arbitrary sets of clauses, enriched by a commutative ring. Similar techniquesare applicable in other contexts as well, such as geometry theorem proving.(This research resulted from a joint collaboration with Harald Ganzinger, MPI, Saarbruecken,Germany.) Type Inferencing for First Order Logic withPolymorphic Order-sorted TypesChristoph BeierleFernUniversit�at HagenThe problem of complete type inferencing for polymorphic order-sorted logic programs studiedhere is as follows: Given a type language with polymorphic order-sorted types and a formulaover a signature with typed function and predicate symbols, derive a mapping from variablesoccurring in the formula to types such that the formula is well-typed. We show that previousapproaches are incomplete even if one does not employ the full power of the used type systems.We present a complete type inferencing algorithm that allows for parametric polymorphism asin ML and for hierarchically structured monomorphic types. It can easily be extended to �rstorder predicate logic and also to the case where subtype relationships are also allowed betweenpolymorphic types having the same arity. Various details as well as related aspects of this workare presented in [1], [2] and [3]. 6



[1] C. Beierle and G. Meyer. Run-time type computations in the Warren Abstract Machine. Journalof Logic Programming, 18(2):123{148, February 1994.[2] C. Beierle. Concepts, implementation, and applications of a typed logic programming language. InC. Beierle and L. Pl�umer, editors, Logic Programming: Formal Methods and Practical Applications,Studies in Computer Science and Arti�cial Intelligence, chapter 5, pages 139{167. Elsevier ScienceB.V./North-Holland, Amsterdam, Holland, 1995.[3] C. Beierle. Type inferencing for polymorphic order-sorted logic programs. In L. Sterling, editor,Proceedings of the Twelfth International Conference on Logic Programming - ICLP'95, Tokyo,Japan. MIT Press 1995 (to appear).Decomposition of Tautologies into Regular Formulasand Strong Completeness of Connection-Graph ResolutionWolfgang Bibel Elmar EderTH Darmstadt Universit�at SalzburgThis paper addresses and answers a fundamental question about (ground) resolution. Informally,what is gained with respect to the search for a proof by performing a single resolution step? Itis �rst shown that any unsatis�able formula may be decomposed into regular formulas provablein linear time (by resolution). A relevant resolution step strictly reduces at least one of theformulas in the decomposition while an irrelevant one does not contribute to the proof in anyway. The relevance of this novel insight into the nature of resolution and of the unsatis�abilityproblem for the development of proof strategies and for complexity considerations are brie
ydiscussed.The decomposition also provides a novel technique for establishing completeness proofs forre�nements of resolution. As a �rst application, connection-graph resolution is shown to bestrongly complete on the ground level. The result (as well as the aforementioned answer) can belifted to the �rst-order level the way brie
y outlined in the paper. This settles a problem whichremained open for two decades despite many proof attempts. The result is relevant for theoremproving because without strong completeness a connection graph resolution prover might runinto an in�nite loop even on the ground level.Semantic Resolution, Lemmaizing and ContractionMaria Paola BonacinaUniversity of IowaSubgoal-reduction strategies, such as those based on Model Elimination and implemented inProlog Technology Theorem Proving, prevent redundant search by using lemmaizing (caching),whereas contraction-based strategies prevent redundant search by using contraction rules, suchas subsumption. In this work we show that lemmaizing and contraction can coexist in the frame-work of semantic resolution. We de�ne two meta-level inference rules for lemmaizing in semanticresolution, one for unit lemmas and one for non-unit lemmas, and we prove their soundness.Rules for lemmaizing are meta-rules because they use global knowledge about the derivation,e.g. ancestry relations, in order to derive lemmas. Then we de�ne a purity deletion rule for�rst-order clauses that preserves completeness. Thus we can have a semantic resolution strat-egy with resolution, factoring, lemmaizing and contraction (subsumption, clausal simpli�cation7



and purity deletion). Our meta-rules for lemmaizing generalize to semantic resolution the rulesfor lemmaizing in Model Elimination. Subsumption and purity deletion in a forward-resoningstrategy correspond to success and failure caching, respectively, in a subgoal-reduction strategy.Towards a Decidable Class of n-ary Horn PredicatesJochen BurghardtGMD BerlinFormalisms to �nitely describe in�nite sets of ground terms have numerous applications inautomated reasoning and other �elds of computer science. Existing formalisms are regular treegrammars, semi-linear term declarations, regular substitution sets, various approaches based onset constraints, 
-terms, ... The minimum requirements to such a formalism is that it shouldbe decidable whether a representation denotes the empty set, and that the intersection of tworepresentable sets is again representable. A �rst comparison of such formalisms based on theirtranslation into Horn clauses is given, where term sets are described as solution sets of predicates.A new formalism based on term orderings that commute with the least-common-instanceoperator (lci) is presented. De�ne a mapping � from the set of all terms mod. renaming intoitself to be a descending homomorphism i� �(lci(t1; t2)) = lci(�(t1); �(t2)) and �(t) � t wrt.some well-founded ordering <. We consider the class of Horn program consisting of arbitraryfacts and of clauses of the form pi(ti) pi1(�(ti)) for some descending homomorphism �. (Sinceneither of the ti nor of the �(ti) are restricted to be variables, n-ary predicates can be codede.g. by using \;" as a binary function symbol.) Algorithms to decide the satis�ability of anysuch pi as well as to compute new clauses for the conjunction of any pi and pi0 are given.While their correctness follows from standard �xed point arguments, their termination relies onthe properties of �. Neccessary and su�cient condition for the extendibility of an assignmentt1 7! t01; : : : ; tm 7! t0m to a descending homomorphism are given.It is conjectured but not yet veri�ed that this approach can be generalized to allow arbitrarilymany body literals; in this case, regular tree grammars, regular substitution sets, and semi-linearterm declarations would be subsumed.Automated Production of Human-Readable Proofs in GeometryShang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong ZhangThe Wichita State UniversityThe algebraic methods based on the coordinate approach, i.e., Wu's method and the Gr�obnerbasis method, have been very succcesuful in proving hundreds of geometry theorems of equal-ity type. The proofs produced by these methods are generally not readable for two reasons:coordinates do not have clear geometry meanings and polynomials in the proofs are generallylarge.We introduce a completely new method, the area method, and the computer program based onthis method has produced elegant, short (sometimes even shorter than those given by geometryexperts), and human-readable proofs of over 400 theorems. The new method is summarized inthe book Machine Proofs in Geometry (World Scienti�c, 1994). Our computer program, GE(Geometry Expert), is now available via ftp at 8



emcity.cs.twsu.edu: pub/geometry/software/ge sun.tar.Z.Structuring Theories and ProofsBernd Ingo DahnHumboldt University BerlinThe ILF system uses automated theorem provers developed in the DFG-Schwerpunkt "Deduk-tion" to assist the user in the construction of large formal proofs. The ILF user can support thework of the integrated automated systems by specifying lemmata or by pointing to a speci�cpart of the knowledge base to guide the the solution of a speci�c problem. In order to do this,the theory has to be structured in an appropriate way. ILF gives the possibility to combinethe structuring of theories with the introduction of sorts. De�nitions of sorted theories can beparametrized and can include other theories. By specifying in a derived theory an axiom withthe same name as in the parent theory, axioms can be overloaded. Using these tools, largeknowledge bases can be constructed and structured e�ciently.The interactive ILF system provides the Block Calculus to support the user in editing well-structured proofs. These proofs are well suited for automated and interactive restructuring and
exible presentation. Model elimination proofs generated by the integrated provers SETHEOand KoMeT are automatically translated into the Block Calculus.A natural language LaTeX presentation of a solution of the Steam Roller Problem by KoMeTwas given in order to show the e�ect of the ILF proof restructuring tools. It was indicated, howthe structuring of the theory in use can be exploited in order to adopt the natural languageoutput to the knowledge of a speci�c reader.Rewrite-Based Deduction:Expansion and ContractionNachum DershowitzUniversity of IllinoisAt the heart of automated deduction lies an inference engine that repeatedly expands the data-base of formul� by applying rules of inference (forwards or backwards). Unlike classical prooftheory, the database is not only expanded during deduction, but also contracted as a result of(typically ad-hoc) deletion of formul� deemed \redundant" (e.g. tautology, subsumption, anddemodulation tests).Research in rewriting has contributed in various ways, including the suggestion of re�nementsof existing inference calculi. On the conceptual level, notions from rewriting have led to aformalization of contraction steps in theorem provers. A (possibly goal-oriented) complexitymeasure for proofs can be used to characterize redundant expansions that can be glossed over,as well as contractions to eliminate newly introduced redundancies. This approach provides amethodology for completeness proofs in the presence of contraction. Every proof based on thecurrent formula set that requires a non-redundant inference must contain a subproof that canbe replaced|after some expansion step|to obtain a strictly smaller proof. Then contractiondoes not harm completeness if it never forces the complexity of a proof to increase.9
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Improved versions of completion (with oriented instances of equations, contextual simpli�ca-tion, and critical pair criteria), resolution (with ordering strategies, subsumption and simpli�-cation), Horn-clause deduction (with ordering-based strategies and simpli�cation by decreasinginstances), and inductive proofs (with rippling) can be phrased within this framework. Thechoice of complexity measure dictates the precise contractions that are permissible.Formalizing Inductive Proofs of Network AlgorithmsAmy FeltyAT&T Bell LaboratoriesLogical speci�cations of programs implementingdistributed network algorithms are often de�nedprecisely enough to enable a (human) veri�er to prove the program's correctness, possibly withthe aid of a mechanical proof-checker. However, the topology of the underlying network and itsrelation to the program, which is crucial for the program's correctness, are not formalized. Inthis talk, we show how the underlying network can be formally de�ned by means of induction,and how to reason about network algorithms by structural induction. We demonstrate ourtechniques on a broadcasting algorithm and an underlying network constituting a binary treeof arbitrary size. We use the theorem prover Coq to fully mechanically check the correctnessproof.An important ongoing goal of this work is to integrate model-checking and theorem provingtechniques on a problem domain that could bene�t from such integration. Model checkers arehighly automated but limited in the size and kind of statements that can be proved. Theoremprovers are expressive and powerful but require sophisticated insight and guidance by the user.We discuss initial experiments we have carried out on how a model checker could assist in ourbroadcasting algorithm correctness proof.This is joint work with Ramesh Bharadwaj of McMaster University and Frank Stomp ofAT&T Bell Laboratories.More on Quasigroup Open ProblemsMasayuki FujitaMitsubishi Research Institute, Inc.1 IntroductionAn MGTP (model generation theorem prover) [5] on the Parallel Inference Machine with 256processors [4] made an obvious breakthrough in deciding some �nite quasigroup existence prob-lems by a method of model enumeration, after some tries and a success in China [10] andAustralia [7].Since then, two types of systems, such Mark Stickel's DDPP, an implementation of the Davis-Putnam algorithm, and John Slaney's Finder, a �nite-domain constraint based enumerationsystem, have achieved solutions to harder problems in the domain and contributed to greatprogress in design theory in discrete mathematics [8]. In this process, the major reasons for newbreakthroughs are strongly related to \how to minimize guessing," or how to cleverly choose10



Problem Order BCCP(time:sec) Davis Putnam(time:sec) Look AheadQG3 8 236(101) 1037(76) -QG5 10 27(75) 38(66) 511 43(225) 136(228) -12 191(950) 443(883) 83Table 0.1: Failed branches in the search spacethe next place to assign a value. Choosing a cell with the least alternative values in the latinsquare or choosing a literal in one of the least length positive clauses is the common criterion ofall systems. And heuristics we found have taken the role of shortening the least length positiveclauses. A list of the heuristics and the reasons why they are e�ective will clarify the advantageof representing the problem as propositions. One reason is that all heuristics are representeddeclaratively and they are independent from the program and are very easy to verify and modify.Further investigation was made since then and the following two parts of this talk are aninterim report of the continuing research.1. Experimental results by binary clause closure method [3]2. Further challenging open problems2 ExperimentsIn the research domain of �nite constraint solving, look ahead is a well known method topropagate constraints [9]. This method is obviously useful for model �nding. This has quiteimproved the search with the high cost of execution time in the quasigroup application [6].Because look ahead compute again and again all possible unit consequences of each undecidedassignment at every node of the search tree. This is exponentially redundant.The deductive closure of binary clauses(2-Closure) is not so expensive as look ahead and usefulto obtain a similar constraint propagation. Propagation of the constraints by 2-Closure occurswhen a _ b and a _ :b are in the closure.But the look ahead is not equivalent to this. For example, there is a well known method in theconstraint domain that the look ahead simulates. In this method, 'supported' or 'non-supported'assignment corresponds to positive or negative fact respectively. A supported assignmentXi = abyXj is that all possible assignment ofXj derivesXi = a. So all the other possible assignment ofXi are negated by this fact. Non-supported assignment is one of the dual constraint propagationof this situation.For seeing how the above method work to the quasigroup problems, an experimental programBCCP (binary clause closure program) in klic was created and some results (Table 0.1) wereobtained. The results of DDPP and Look Ahead are from [8] and [6].We can see the look ahead has much smaller size of the search tree than BCCP. HoweverBCCP runs reasonably fast and using a basic data structure instead of stack vectors can makesome constant times speedup. 11



3 More challenging problemsThe second part is the introduction of further open problems in this domain. Problems are fromthe re�ered pages of the book [2]. Although the order is comparable to QG1 - QG8 in FSS93,none of them are solved by our method. QG11 was stated 'out of the existing computer's power'in the book.QG9 (p14)for order n quasigroups, for max size t of partial transversial t � n� 1. For odd n, t = n.No counterexamples are found for any order(partial transversial: a set of cells of a quasigroup with distinct value and all of them aredistinct both in row and column)QG10 (p15)Are there three mutually orthogonal LS(10) ?QG11 (P50)Are there order 11 row complete lattin square(complete:all n(n� 1) ordered pairs(Ai;j; Ai;j+1) are distinct)QG12 (P116)Construct N1-LS(16)(N1: for all LS(N) for all 1 < I < N no subsquare exists )QG13 (p117)are there N1 -LS(N) other than N = 2 a � 3 b ?QG14 (P145)ISOLS(14,4)(Idempotent Self Orthogonal Latin Square order 14 with a hole of size 4) ?References[1] F. Bennett, Quasigroup Identities and Mendelshon Designs,Canadian Journal of Math-ematics 41 (1989), pp. 341{368.[2] J. D�enes, A.D. Keedwell, ed., Latin Squares: New Developments in the Theory and Appli-cation, North-Holland, 1991.[3] A. Gelder and Y. Tsuji, Satis�ability Testing with More Reasoning and Less GuessingPreprint, 1994.[4] H. Fujita and R. Hasegawa, A Model Generation Theorem Prover in KL1 Using Rami�ed-Stack Algorithm, Proc. of ICLP91, pp.535-548, 1991.[5] M. Fujita, J. Slaney & F. Bennett, Automatic Generation of Some Results in Finite Algebra,Proc. International Joint Conference on Arti�cial Intelligence, 1993.[6] Masayuki Fujita, Frank O'Carroll, Heuristics and more Heuristics:Toward Solving HarderQuasigroup Problems (Extended Abstract), workshop on Automated Reasoning InAlgebra, CADE-12, 1994 12



[7] J. Slaney, FINDER, Finite Domain Enumerator: Version 2.0 Notes and Guide, technicalreport TR-ARP-1/92, Automated Reasoning Project, Australian National University, 1992.[8] J., Slaney, M. Fujita, & M. Stickel.,Automated reasoning and exhaustive search: Quasigroupexistence problems,Computers and Mathematics with Applications, 1993.[9] A.K.M., Tan, Seach Strategies in Finite Constraint Satisfaction, to appear, 1994 HonoursThesis, Australian National University, 1994.[10] J. Zhang, Search for Idempotent Models of Quasigroup Identities, Typescript, Institute ofSoftware, Academia Sinica, Beijing.Model Elimination, Logic Programming and Computing AnswersUlrich FurbachUniversit�at Koblenz-LandauWe prove that theorem provers using model elimination (ME) can be used as answer com-plete interpreters for disjunctive logic programming. For this, the restart variant of ME witha mechanism for computing answers and the ancestry re�nement is introduced. Furthermore,we demonstrate that in the context of automated theorem proving it is much more di�cult tocompute (non-trivial) answers to goals, instead of only proving the existence of answers. It holdsthat resolution with subsumption is not answer complete. We consider puzzle examples and givea comparative study of OTTER, SETHEO and our restart model elimination prover PROTEIN.Locality and SaturationHarald GanzingerMax-Planck-Institut f�ur InformatikWe report on joint work with David Basin about relating locality and saturation. McAllestercalls an Horn theory local if whenever a ground clause, called query, is entailed by the theory thenit is already entailed by ground instances in which all terms are subterms of some query term.Local entailment problems are decidable in polynomial time. We propose a slightly di�erentconcept of locality in which we compare the ground atoms in proofs to the ground atoms inthe query with respect to some well-founded ordering. We show that a theory is local in thissense if and only if it is saturated under ordered resolution up to redundancy. With our conceptof locality we can describe more complexity classes. We can admit full clauses, not just Hornclauses, and we may attempt to transform non-local presentations into local ones by applyingsaturation. Proof PresentationXiaorong Huang J�org SiekmannUniversit�at des Saarlandes DFKIThis talk outlines an implemented system called PROVERB that explains machine-found nat-13



ural deduction proofs in natural language. Di�erent from earlier works, we pursue a reconstruc-tive approach. Based on the observation that natural deduction proofs are at a too low level ofabstraction compared with proofs found in mathematical textbooks, we de�ne �rst the conceptof so-called assertion level inference rules. Derivations justi�ed by these rules can intuitively beunderstood as the application of a de�nition or a theorem. Then an algorithm is introducedthat abstracts machine-found ND proofs using the assertion level inference rules. Abstractedproofs are then verbalized into natural language by a presentation module. The most signi�cantfeature of the presentation module is that it combines standard hierarchical text planning andtechniques that locally organize argumentative texts based on the derivation relation under theguidance of a focus mechanism.Parallel Term Rewriting with PaReDuXWolfgang K�uchlin, Reinhard B�undgen, and Manfred G�obelUniversit�at T�ubingenWe report on the construction of PaReDuX, a parallel term-rewriting and completion system.It is designed for shared memory multi-processors and exploits the �ne-grained parallelism pro-vided in a multi-threaded environment. PaReDuX contains modules with a plain Knuth-Bendixcompletion procedure (ptc), a Peterson-Stickel procedure for AC-theories (pac) and an unfailingcompletion procedure (puc).Our goal is to enable the construction of parallel theorem provers in the multi-threaded envi-ronment of modern multiprocessor workstations. To this end we are developing a discipline ofparallel programming, an e�cient portable programming environment, and a prototype imple-mentation to evaluate our concepts.PaReDuX programs are parallelized versions of the corresponding sequential ReDuX pro-grams. The parallelization takes place in the framework of the PARSAC-2 parallel ComputerAlgebra system, using the same Virtual S-threads parallelization environment. Virtual S-threadssupports the parallel execution of C functions calls which need access to a parallel heap structurefor list processing. The environment also provides a highly e�cient threads system supportingthe simultaneous use of tens of thousands of threads. Together with our programming paradigmof parallel divide-and-conquer it releases the programmer from the burden of scheduling paralleltasks and thinking about the actual hardware underneath.Our completion procedures are strategy-compliant. They parallelize the inner completion loopwhile the selection of the best new rule in the outer loop, and hence the completion strategy, isexactly the same as for the sequential algorithm. Both critical pair generation and normalizationof critical pairs are done in parallel. For AC-completion, we also use parallelism within thereduction of individual terms. We thus achieve speed-ups of up to a factor of 3.6 on 4 processors.For more details of this work we refer to our articles in the proceedings of ISSAC'94, PASCO'94,and RTA'95. 14



Function Introduction in Clause LogicAlexander LeitschTU Vienna(joint work with Matthias Baaz)Typically computational calculi are characterized by simple logical syntax and economic princi-ples of inference. Particularly clauses are logic{free forms and all substitutions applied withinthese calculi are most general uni�ers. Thus, in some sense, both syntax and inference are min-imalized. This feature is quite bene�cial to proof search, but the absence of logical structurecan lead to very high proof complexity. On the other hand, full logic calculi like LK and naturaldeduction, allow the formulation of short and highly structured proofs, but are not suited forproof search. F{extension (function introduction) is a method to produce new clauses by somesimple quanti�er shifting rule and re{skolemization; this rule is simple and computationally con-trollable. It is shown that F{extension combined with resolution can simulate the power of thefull cut rule, thus resulting in a nonelementary speed{up of proof complexity versus ordinaryresolution. Therefore F{extension combines the good features of computational calculi withthe strength of full logic calculi. A well{known principle of function introduction is skolem-ization, although it is usually considered as mere preprocessing. It is demonstrated that theproof complexity of di�erent skolem forms (prenex versus structural) may di�er nonelementar-ily from each other. This shows the importance of creating and preserving logical structure inautomated deduction. Particularly structural transformation and controlled cut{introduction(by F{extension) are powerful techniques to increase the power of computational calculi.LINUS: A Link Instantiation Prover With Unit SupportReinhold LetzTU M�unchenA theorem prover for �rst-order clause logic is presented which is based on ground instantiationand propositional decision. Like in Plaisted's 1992 approach, the enumeration of (ground)instances is controlled by hyperlinking, ie instances of the input clauses are saturated as inducedby uni�cation with complementary mates in the increasing formula. The generation of clauseinstances is supported by an increasing theory of (�rst-order) unit clauses, which are obtainedas a by-product of the hyperlinking process and which are used to simplify the clause instances.The enumeration modulo unit clauses is complete for Horn clause logic, ie, for this sublanguage,no propositional decision procedure is needed. Completeness is preserved under any set-of-support strategy, thus permitting a form of goal-oriented (generalized) unit-resulting resolution.Furthermore, a new method of dynamic clause splitting is presented. Dynamic clause splittingminimizes the number of distinct variables in clauses and can reduce the set of generated (ground)instances signi�cantly, without lengthening proofs. The entire prover is implemented in Lisp.Because of the use of indexing techniques, the system is very e�cient. The prover was evaluatedon the TPTP problem library (v1.1.1), which consists of 2652 formulae (63 % non-Horn, 79 %with equality). The �rst version of Linus (which has no special equality handling) could solve 39% of the problems on a Sun Sparc 10, with a time limit of 200 seconds per problem. Thus, thesystem can compete well with the most successful general purpose theorem provers currentlyavailable. 15



Automated Deduction in Algebraic GeometryWilliam McCuneArgonne National Laboratory
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e=eeR. Padmanabhan's inference rule =(gL)) allows one to prove, in an equational setting,some theorems about cubic curves in algebraic geometry without reference to the underlyinggeometry or topology of the curves. But the rule is awkward for mathematicians to use, andvery little had been done with it until we installed it in the automated theorem prover Otter.Many experiments were conducted, and several new results of interest to researchers in algebraicgeometry were obtained byOtter. Examples of the new results are that cancellative semigroupson a cubic curve must be commutative, and that a 5-ary Steiner law on cubic curve is unique.Derived Rules for the Generic Reasoning Assistant SystemEUODHILOS-IIToshiro MinamiFujitsu Laboratories LimitedEUODHILOS-II is developed with the intention that it helps us humans with reasoning invarious logical structures, especially for new ones. Since it deals with a variety of logics in auniform way, it is designed to be logic-independent system; the user gives the logic to be dealtwith in a NBF-style syntax description and in the Natural Deduction-style logical structures.Using the representations easy-to-be-recognized by humans and supporting the variety ofreasoning styles are fairly important for EUODHILOS-II. De�ning and using the derived rulesis one of the essentially important features in such an interactive reasoning assistant systemlike EUODHILOS-II. We proposed a way to improve the present treatment for derived rulesin EUODHILOS-II. It intends to overcome the problems of overinstantiation and delay of sidecondition checking. The idea for the improvement is based on the generalization and dynamicside condition checking. We gave a criterion for classifying the side conditions remains in aderived rule, then gave a way to eliminate redundant conditions.Implementing Deduction with ConstraintsRobert NieuwenhuisTechnical University CataloniaWe �rst overview our di�erent theoretical results obtained during the last three years on auto-16



mated deduction techniques with constrained equality clauses. After this, their current exper-imental implementation within the Saturate system is outlined. Its main limitations from thee�ciency point of view are analysed, which motivates some ideas on more e�cient implementa-tions, based on WAM data structures combined with indexing methods like discrimination- orsubstitution tree indexing.Programming Language Semantics in IsabelleTobias NipkowTU M�unchenIn this talk I review a number of di�erent formalizations of language semantics and their equiv-alence proofs in di�erent logics inside the generic theorem prover Isabelle.One major case study is the formalization of a simple �rst-order functional language in LCF.The denotational semantics is given in the standard way, the operational semantics by a stepby step simpli�cation, i.e. evaluation at the term level, of the source program. The equivalenceproof required 300 lemmas and revealed that LCF complicates matters considerably because itinsists that every type is a cpo and that every function is computable and potentially partial.The second example is the formalization of the �rst few chapters of Winskel's \The FormalSemantics of Programming Languages" describing the operational, denotational and axiomaticsemantics of a simple while-language and their relationship. This was done in 3 di�erent logics:Zermelo-Fraenkel set theory (ZF), Higher-Order Logic (HOL), and HOL enriched with domaintheory (HOLCF due to Regensburger). It appears that HOLCF is most suitable for this task,although the example is simple enough all three logics can handle it very easily.Term Indexing, a Parallel Theorem Prover,More Parallelism by TransformationHans J�urgen OhlbachMax-Planck-Institut f�ur InformatikThe manipulation of large amounts of formulae in an automated deduction system can be sup-ported considerably by special term indexing mechanisms. A term index is a datastructurerepresenting sets of terms and allowing fast retrieval of particular terms. Typical operations are,given an index I and a term t, �nd all terms in I which are uni�able with t, instances of t ormore general than t. Other operations are: given two indices I and J , compute a third indexrepresenting the pairs of uni�able terms in I and J .We (that means in the �rst place Peter Graf and ChristophMeyer) have implemented a numberof indexing mechanisms, path indexing, discrimination tree indexing, abstraction tree indexingand substitution tree indexing. Substitution tree indexing showed the best performance on aconsiderable variety of examples. The functionality of the di�erent indexing schemes, however,is di�erent. For example FPA indexing can be implemented such that parallel access of di�erentprocesses is possible, and even more, one process may change the index while another processdoes a retrieval.Most of the indexing schemes we have investigated are implemented in the library ACID,17



accessible via FTP from pub/tools/deduction/ACID.With the indexes as basic datastructures we have implemented a parallel hyperresolutiontheorem prover for Horn clause logic. Each non-unit Horn clause is represented by a masterprocess and various satellite processes. The master process is responsible for computing fromthe incoming indexes which represent initial and derived unit clauses a new index containing thecompatible uni�ers with the corresponding body literals. These uni�ers represent new derivedunit clauses. The satellite processes do subsumption on the incoming and outgoing substitutions.All operations work directly on the indices, not on the clauses.The degree of parallelism in this theorem prover depends on the number of non-unit Hornclauses. In order to increase the number of Horn clauses, I presented a transformation on theinitial clause set which replaces particular clauses by a certain number of resolvents. For exampleone can show that the transitivity clause can be eliminated by adding for each positive literal inthe other clauses just one resolvent with one of the two premise literals of the transitivity. Thismethod can be generalized to other self resolving clauses. Applied to the condensed detatchmetclause, for example, we obtained improvements of the search behaviour even for sequentialtheorem provers like Otter.Theorem Proving with Binary Decision DiagramsHiroshi G. OkunoNTT Basic Research LaboratoriesBinary Decision Diagrams (BDDs) are compact representations of boolean functions (proposi-tional logic). We �rst review BDDs and describe their application to the Magic Square Problem.The problem is encoded as a set of constraints and each constraint is speci�ed by (arithmetic)logic expression. The BDD for all the solutions is constructed by taking logical and 's of all theconstraints. In constructing BDDs, the order of constraints is critical to avoid combinatorialexplosions. Since the resulting BDD contains all the solutions implicitly, the solutions are ex-tracted by enumerating all the paths from the root of BDD to the terminal node 1. However,various capabilities are possible without enumerating the solutions. For example, the theoremthat the sum of the inner four squares of the Magic Square of order 4 (4 x 4 chess board) isthe same as that of any column, row or diagonal can be proved by constructing a BDD for thetheorem.Since a (standard) BDD contains logical relations between propositional symbols, its sizeis much larger than that of simple representation of combination sets. Standard BDDs canrepresent combination sets by logical functions, but such representations are not canonical. Weintroduce a new kind of BDD called 0-suppressed-BDD (0-sup-BDD) to represent a combinationset uniquely. The following two combination-set operations are introduced:� Restriction (F 4 C ): F 4 C � fx 2 F j 9y 2 C x � yg� Exclusion (F 5 C): F 5C � F � (F 4 C)Some theorems concerning combination-set operations are used to reorder the order of applyingoperations to avoid the combinatorial explosions. The main di�erences of 0-sup-BDD fromstandard BDDs in solving the Magic Square problems and N-Queen problems are (1) the sizeof BDD is by ten times smaller, and (2) the same constraints may be applied repeatedly. The18



latter property is due to the theorem that elements of constraint C that are irrelevant to F areignored in restriction and exclusion operations.Proof Logging and Proof Checking in NEVERWilliam PaseORA CanadaNEVER is the theorem prover for the EVES program speci�cation and veri�cation system. Theproof logging and proof checking e�orts are intended to increase the level of assurance in theproofs generated by NEVER. The ultimate goal is to place responsibility for the validity ofproofs upon a simple, formally veri�ed proof checker.The proof logging e�ort will result in a version of NEVER that can produce detailed descrip-tions of the generated proofs in the form of a list of the inferences. These proof logs will be usedfor proof checking and proof browsing. Each of the inferences must be simple and easy to check,including those generated by decision procedures.The proof checking e�ort will result in a formally veri�ed proof checker. This will provide ahigh degree of assurance in the proofs generated, independent of the complexity of the NEVERtheorem prover. Because of the simplicity of the inferences in the proof logs, checking does notinvolve search, it consists of stepping through the inferences.The proof browsing e�ort will result in a proof browser that will allow a proof to be displayedwhile controlling the amount of detail. Browsing can be used for the validation of proofs, andfor the understanding of proofs. This requires that proof logs contain structure, in the form ofannotations, in addition to the inferences.There is an experimental version of NEVER that generates proof logs for everything exceptsimpli�cation by decision procedures. However, this is being implemented. There is a prototypeproof checker that has successfully checked all of the proofs within the EVES test suite. Theproof browser is being designed.Mechanising Set Theory: Cardinal Arithmetic and the Axiom of ChoiceLawrence C. Paulson Krzysztof Gr�abczewskiUniversity of Cambridge Nicholas Copernicus UniversityFairly deep results of Zermelo-Fraenkel (ZF) set theory have been mechanised using the proofassistant Isabelle. The results concern cardinal arithmetic and the Axiom of Choice (AC). Akey result about cardinal multiplication is � 
 � = �, where � is any in�nite cardinal. Provingthis result required developing theories of orders, order-isomorphisms, order types, ordinal arith-metic, cardinals, etc.; this covers most of Kunen, Set Theory, Chapter I. Furthermore, we haveproved the equivalence of 7 formulations of the Well-ordering Theorem and 20 formulations ofAC; this covers the �rst two chapters of Rubin and Rubin, Equivalents of the Axiom of Choice.The de�nitions used in the proofs are faithful in style to the original mathematics.19



Reasoning Theories: Towards an Architecture for OpenMechanized Reasoning SystemsFausto Giunchiglia Paolo Pecchiari Carolyn TalcottIRST and Universit�a di Trento IRST and Universit�a di Genova Stanford UniversityOur ultimate goal is to provide a framework and a methodology which will allow users, and notonly system developers, to construct complex systems by composing existing modules, or to addnew modules to existing systems, in a \plug and play" manner. These modules and systemsmight be based on di�erent logics; have di�erent domain models; use di�erent vocabularies anddata structures; use di�erent reasoning strategies; and have di�erent interaction capabilities.The work presented in this talk, which is a �rst small step towards our goal, makes two maincontributions. First, it proposes a general architecture for a class of reasoning modules andsystems calledOpen Mechanized Reasoning Systems (OMRSs). An OMRS has three components:a reasoning theory component which is the counterpart of the logical notion of formal system, acontrol component which consists of a set of inference strategies, and an interaction componentwhich provides an OMRS with the capability of interacting with other systems, including OMRSsand human users. Second, it develops the theory underlying the reasoning theory component.This development is motivated by an analysis of the Boyer-Moore system, NQTHM.A Flexible Theorem ProverUwe PetermannHTWK LeipzigThe aim of this research (a joint work with Gerd Neugebauer) is to combine the high inferencerates of a PTTP-based theorem prover with high 
exibility. By 
exibility we mean somethingbeyond the manipulation of dozens of switches. In particular we would like to have the possibilityto modify the underlying calculus. This includes the possibility to specify the inference rulesthat will be applied by the prover. Moreover, experience showed that one needs access to datastructures maintained by the prover during the proof search. Clearly, the access to those datastructures should be save and well understood in terms of the considered calculus.This idea has been realized by the calculi programming interface CaPrI of the theorem proverProCom. Inference rules may be speci�ed by a description language. Basic data structures, likethe current path maintained by a model elimination prover, are speci�ed as an abstract datatype. The user may substitute the default implementation by his favored implementation.Those features of CaPrI are illustrated by an analysis of three di�erent calculi: a simplekind of theory reasoning, the translation of multi-modal logic into �rst-order logic and theimplementation of lemma application.The prover is available by ftp. For more informations see [1] and underftp://upsilon.imn.th-leipzig.de/pub/WWW/welcome-german.htmlReferences[1] G. Neugebauer and U. Petermann, Speci�cations of Inference Rules and Their Automatic20



Translation, Proceedings of the Workshop on Theorem Proving with Analytic Tableauxand Related Methods, 1995.On Words with VariablesMichakl RusinowitchINRIA-Lorraine and CRINGround reducibility is a key property used by inductive completion procedures in order todetect false conjectures. A term is said to be ground reducible whan all its ground instances arereducible. We present the case of word rewrite systems where ground reducibility is undecidablein general and co-NP-complete for the case of a linear system with a linear term. The problem isrelated to some old open questions in language theory concerning the unavoidability of patterns.The simpler reducibility problem of a word by a (linear) word rewrite system is also relatedto string matching with variable-length don't cares symbols. This is joint work with GregoryKucherov. Program Extraction from Classical ProofsHelmut SchwichtenbergUniversit�at M�unchenAs is well known a proof of a 89{theorem with a quanti�er{free kernel | where 9 is viewedas de�ned by :8: | can be used as a program. We describe a \direct method" to use sucha proof as a program, and compare it with Harvey Friedman's A{translation followed by thewell{known program extraction from constructive proofs.A re�nement of Harvey Friedman's A{translation is introduced, in order to simplify the ex-tracted program. The simpli�cation concerns the type of the auxiliary functions as well astheir if{then{else structure. The type reduction is achieved by not replacing all atoms P by(P ! A)! A. To reduce case splitting we construct \good" proofs of C ! CA for quanti�er{free C. The following example is used to show that such improvements are indeed necessary.Let f :N ! N be an unbounded function with f(0) = 0. Then one can extract a program froma classical proof of 8n9m:f(m) � n < f(m + 1). If for instance f(m) = m2, then this formulaexpresses the existence of an integer square root.PVS = Decision Procedures + InteractionNatarajan ShankarSRI InternationalSRI's PVS veri�cation system is:1. An experiment aimed at studying the synergistic interaction between expressive speci�ca-tion language features and powerful deductive capabilities.2. An attempt to build an interactive proof checker on top of e�cient decision procedures forequality, arithmetic, and propositional simpli�cation.21



The PVS speci�cation language includes parametric theories, predicate subtypes, dependenttypes, subtyping judgements, and user-de�nable abstract datatypes. With these features, type-checking becomes undecidable | the typechecker generates proof obligations that can be dis-charged using the proof checker. The PVS proof checker contains primitive commands for infer-ence steps like simpli�cation, rewriting, and beta-reduction. Higher-level inference commandscan be de�ned using a simple strategy language with constructs for branching, backtracking, andrecursion. PVS has been used in the veri�cation of a commercial microprocessor design where itrevealed both seeded and unseeded errors, and in a variety of other large and small veri�catione�orts. PVS only makes limited use of currently available theorem proving technology, and itwould be interesting to see how other general and special-purpose theorem proving tools can beintegrated into the system.Two Approaches for Finite-Domain Constraint Satisfaction ProblemsYasuyuki Shirai and Ryuzo HasegawaInstitute For New Generation Computer TechnologyWe have developed two types of systems; CP and CMGTP, for �nite-domain constraint satis-faction problems. CP is based on the constraint logic programming scheme, and is written inSICStus Prolog. CP has achieved high performance on quasigroup (QG) existence problemsin terms of the number of branches and execution time. CP succeeded in solving a new openquasigroup problem. On the other hand, CMGTP is a slightly modi�ed version of our theoremprover MGTP (Model Generation Theorem Prover), enabling negative constraint propagationusing the unit simpli�cation mechanism. CMGTP has exhibited the same pruning ability asCP for QG problems. CMGTP can be used as a general constraint solver for �nite-domainson which we can write down constraint propagation rules with CMGTP input clauses directly.We also show the methods of parallelization in CMGTP system and the results on the parallelinference machine PIM/m which has 256 processors. We obtained almost linear speedups forQG5.13. Constraint Satisfaction and Deduction: Some TechniquesJohn SlaneyAustralian National UniversityFinite domain constraint satisfaction problems (CSPs) are easily described in terms of propo-sitional satis�ability and it is well known that backtracking search methods for CSPs amountessentially to proof searches in propositional logic. In this talk we note several techniques forimproving e�ciency, drawing on experience with CSP solvers. The two most important are� the addition of secondary (derived) constraints during the search. These record informationextracted from the points at which backtracking was forced, thus making the constraintnetwork contain explicitly what was implicit knowledge about the problem� lazy constraint generation, whereby �rst order clauses are not reduced to their groundinstances over the domain but instead are kept as �rst order conditions against whichmodel candidates are tested. If a model candidate fails the test, one violated groundinstance of the clause is selected and added to the constraint network. In this way, only a22



few ground clauses are used, but these su�ce to determine the solutions.Some sample problems are examined brie
y and their characteristics with respect to the sug-gested techniques are noted.Equational Reasoning about QuasigroupsMark E. StickelSRI InternationalFinite quasigroups in the form of Latin squares have been extensively studied in design theory.Some quasigroups satisfy constraints in the form of equations, called quasigroup identities. Nu-merous open problems of the existence of quasigroups of particular size that satisfy particularidentities have been solved by automated theorem-proving methods (such as the Davis-Putnamprocedure) that are complete over a �nite domain. We illustrate how other kinds of questionsconcerning quasigroup identities can sometimes be answered by the alternative equality-basedautomated theorem-proving method of term rewriting and completion.Typelab: Towards an Interactive Prover for Type TheoryFriedrich W. von HenkeUniversit�at UlmIn this talk we give an overview of the capabilities of the system Typelab currently underdevelopment at the University of Ulm. The formal basis of Typelab is a constructive type theory,the Extended Calculus of Construction augmented by inductive types. Into the type theory, theintuitionistic predicate calculus can be embedded. For this calculus, an interactive prover hasbeen developed; it is built on a Gentzen-style sequent calculus, using prover commands andtactics similar to those provided by the PVS prover for classical predicate calculus. The proveralso incorporates a decision procedure for propositional logic and a proof search procedure for(intuitionistic) predicate logic that generates some proofs automatically. This prover componentprovides the basic proof capability that supports the other more experimental ones. A secondapproach investigated in Typelab involves representing theories in a hierarchy similar to concepthierarchies in terminological logics, the idea being that a theorem would be stated and provedin the \most general" theory in which they it is true; it could then be \inherited" by theoriessubsumed by that theory. This approach makes use of the fact that theories may be modeledin the type theory as certain kinds of dependent types and theory morphisms, representing ageneral kind of subsumption relation, can be expressed as mappings between such types. A thirdkind of reasoning investigated in Typelab is the modeling of meta-reasoning. For this purpose,suitable re
ection principles have been designed and implemented; their practical usefulness iscurrently being explored. 23



Speci�cation and Analysis of Proof-Valued ComputationsLincoln A. WallenUniversity of OxfordProof-procedures compute evidence for logical consequences but do not do so simply by enumer-ating proofs. Techniques such as uni�cation, resolution and its re�nements, connection calculiand other analytic methods, all make use of logical structure to improve computational behav-iour. The relationships between these methods and techniques are di�cult to formulate and thisin turn makes it di�cult to adapt them to new logical systems and problem domains.In this talk we outline an approach to the speci�cation and analysis of proof-procedures. Weuse a metalanguage | the Edinburgh Logical Framework (LF) | to characterise the terms,formulae and proofs of a logical system as particular sets of typed lambda terms via a signaturede�ning the logic. Proof-procedures and their component techniques are then characterised bystating the invariants that they maintain by means of a theory of partial objects: approximationsto proofs and terms where some structure remains indeterminate. For example: (1) the use ofuni�cation and skolemisationwithin a �rst-order logic is given an interpretation via partial proofswith indeterminate terms and indeterminate placements of the rules governing quanti�ers; (2)the use of connections/clashes and propositional normal forms is given an interpretation viapartial proofs whose propositional structure is highly indeterminate. This abstract view enablesthese techniques to be applied to classes of logical systems de�ned via their LF signatures, thusgeneralising standard and recent results extending proof procedures to non-classical logics.Apart from analysis and theoretical extension, the interpretation supports the compilationof (invariants for) algorithms such as uni�cation from (invariants for) a uni�cation algorithmfor the framework language by making use of properties of the signature de�ning terms. Theappropriate invariants for both �rst-order, and higher-order uni�cation algorithms have beengenerated in this way from a new presentation of uni�cation for the LF.In the long run, we hope that this approach will enable us to give a mathematical treatmentof search spaces, and describe the e�ect particular re�nements have on such spaces.This is joint work with David Pym (Birmingham), Eike Ritter and Jason Brown (Oxford).Reusing ProofsChristoph WaltherTH Darmstadt(joint work with Thomas Kolbe)We investigate the application of machine learning paradigms in automated reasoning, viz. theimprovement of theorem provers by reusing previously computed proofs. If the prover hascomputed a proof of a conjecture, the proof is analyzed yielding a so-called catch. The catchprovides the features of the proof which are relevant for reusing it in subsequent veri�cationtasks and may also suggest useful lemmata. Proof analysis techniques for computing the catchare presented. A catch is generalized in a certain sense for increasing the reusability of proofs.We discuss problems arising when learning from proofs and illustrate our method by severalexamples. 24



Model Generation by Propositional ReasoningHantao ZhangThe University of IowaIn the recent two years, we have solved several hundreds of open cases in �nite mathematics by apropositional theorem prover for model generation. The contribution of our work is twofold: (1)We provided solutions that mathematicians are interested but cannot obtain either by hand orby special purpose programs; (2) We improved substantially our reasoning tools so that they canbe used to attack problems in other domains. Our propositional theorem prover is called SATO(SAtis�ability Testing Optimized) that is based on the Davis-Putnam algorithm. the Davis-Putnam algorithm. The new features of our implementation of the Davis-Putnam algorithminclude (i) a novel unit-propagation algorithm and (ii) the trie data structure for propositionalclauses.Abstract of Panel Discussion at Dagstuhl Meeting on Deduction:Mining Proof Attempts for Logical StructureLincoln A. WallenUniversity of OxfordA number of speakers in the early part of the Dagstuhl meeting described techniques for adjustingthe behaviour of theorem provers over a series of proof attempts. The techniques ranged fromthe very formal|eg., C. Walther's use of proof-schemata abstracted from successful proofs toguide the search for proofs of new formulae|to the informal|eg., W. McCune's description ofparameter setting over successive runs of Otter. A discussion was held to explore the extent towhich these techniques could be seen as a way of introducing appropriate cut-formulae into aproblem so as to bring a proof into the search space at a particular depth, a method used togood e�ect in A. Leitsch's technique of function introduction to shorten proofs.The well-known proof-theoretic properties of cut-introduction for shortening proofs was re-viewed and the discussion identi�ed following two central questions:� �rst, the availability of logical languages suitable to describe the guidance information inparticular cases;� secondly, the problem of describing and measuring the e�ect of re�nements on searchspaces.To use Walther's example as an illustration, the proof schema \mined" from a successful searchis expressed in what resembles a second-order language. Formulation of such techniques usinglogical methods, such as higher-order languages, might permit a logical analysis of the worth ofthe techniques in shortening the length of shortest proof available.However, it is a reduction in the size of space searched that indicates a practical improvementin theorem proving method. Once again the woeful lack of a theory of search spaces was keenlyfelt by the participants. As a consequence, e�ective techniques for improving performance inpractice, did not seem to be amenable to analysis simply on the basis of \shortest proof".In summary, two ideas emerged from the discussion. The need for analytic techniques to25



describe and measure the behaviour of theorem proving systems over several proof-attempts(a form of iterative analysis similar to that performed in the machine-learning domain?), andthe related need to develop theories of search spaces. The discussion revealed the central placethat techniques for the analysis of failed proof-attempts occupies in successful provers (Otter,Boyer-Moore etc.) and could be seen as sounding a call for more analysis and formal descriptionof these sometimes interactive, sometimes automatic, methods for the productive use of failure.The calculation of appropriate cut formulae was identi�ed as an important goal for the future,but, without an analysis of search spaces, would not in itself be su�cient to describe the e�ectof these \data mining" techniques.
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