
Rudi Studer, Mark A. Musen (editors): 

Shareable and Reusable 
Problem Solving Methods 

Dagstuhl-Seminar-Report; 113 
08.05.-12.05.95 (9519) 



ISSN 0940-1121 

Copyright © 1995 by IBFI GmbH, Schloss Dagstuhl , 0-66687 Wadern, Germany 
Tel.: +49 - 6871 - 2458, Fax: +49 - 6871 - 5942 

Das lnternationale Begegnungs- und Forschungszentrum fur lnformatik (IBFI) ist eine gemein­
nutzige GmbH. Sie veranstaltet regelmaBig wissenschaftliche Seminare, welche nach Antrag der 
Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit personlich einge­
ladenen Gasten durchgefuhrt werden. 

Verantwortlich fur das Programm ist das Wissenschaftliche Direktorium: 
Prof. Dr. Thomas Beth, 
Prof. Dr. Oswald Drobnik, 
Prof. Dr.-lng. Jose Encarnac;:ao, 
Prof. Dr. Hans Hagen, 
Dr. Michael Laska, 
Prof. Dr. Thomas Lengauer, 
Prof. Dr. Christoph Meinel, 
Prof. Dr. Wolfgang Thomas, 
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor) 

Gesellschafter: Gesellschaft fur lnformatik e.V., Bonn, 
Universitat des Saarlandes, 
Universitat Frankfurt, 
Universitat Kaiserslautern , 
Universitat Karlsruhe, 
Universitat Stuttgart, 
Universitat Trier, 
TH Darmstadt 

Trager: Die Bundeslander Saarland und Rheinland-Pfalz 

Bezugsadresse: Geschaftsstelle Schloss Dagstuhl 
Universitat des Saarlandes 
Postfach 15 11 50 
D-66041 Saarbrucken, Germany 
Tel. : +49 -681 - 302 4396 
Fax: +49 -681 - 302 4397 
e-mail: office@dag.uni-sb.de 
url: http://www.dag.uni-sb.de 



Sharable and Reusable Problem-Solving Methods 
Mark A. Musen Rudi Studer 
Stanford University University of Karlsruhe 

For several years, researchers have argued that there are significant advantages 
when intelligent systems are constructed so that the procedural knowledge used 
to solve problems is made explicit. In the 1980s, a number of researchers experi­
mented with single, abstract problem-solving methods (such as "heuristic classifi­
cation" or "propose and revise") that not only provided a unifying architecture for 
a class of knowledge-based systems at runtime, but that also defined precise 
"knowledge·roles" that could facilitate the process of knowledge acquisition: Buil­
ding a new knowledge-based system became a matter of providing domain know­
ledge to satisfy each of the "knowledge roles" associated with the method. The 
explicitness of these knowledge roles made it possible to build both automated 
knowledge-acquisition tools that could create systems that incorporated these 
unitary problem-solving methods, and knowledge-acquisition-tool generators 
that could create interactive knowledge-acquisition tools that were specialized for 
different classes of application areas. 

Although monolithic problem-solving methods such as "propose and revise" can 
be shared among developers and reused to generate new applications, they have 
significant limitations. They often do not fit the problem requirements of the 
application tasks for which they are employed, and lack flexibility at runtime in 
adapting their control strategies to unexpected situations. In recent years, inves­
tigators have begun to experiment with sharable and reusable problem-solving 
methods that may be composed from smaller grained building blocks, and that 
may provide more versatility in system development and operation. 
Furthermore, several research groups have begun to investigate how domain 
models also might be made reusable and sharable. These investigations have 
resulted in various proposals for formal ontologies that make explicit the concep­
tualizations on which domain models are based, and for providing the means to 
define different views on such domain models. 

This Dagstuhl seminar brought together investigators and practitioners from 
Europe, the United States, and Japan, all of whom were involved in development 
of intelligent systems from reusable components. Intensive discussions made it 
evident that, despite continued progress by the research community, terms used 
to describe problem-solving methods and the domain knowledge on which those 
methods operate are not always used in a consistent manner, thus sometimes 
making it difficult to compare approaches. An important benefit of the seminar 
was to understand alternative frameworks in more detail. 

Although the use of formal languages to represent problem-solving behavior in a 
declarative fashion offers the best opportunity to clarify semantics, seminar par­
ticipants were keenly aware of the difficulty of formalizing knowledge that is 
inherently procedural in nature. Much discussion focussed on the limitations 
both of formal descriptions ofproblem-sovling methods, and of situations in 
which problem-solving components have only operational semantics. 

3 



Additional discussion concentrated on the relationships between problem-solving 
methods and domain knowledge. Seminar participants debated approaches to 
representing as explicit ontologies both domain knowledge and the data on which 
problem-solving methods operate. 

Seminar participants demonstrated the importance of developing modularized, 
component-based architectures for intelligent systems. There was a belief that 
researchers were developing a more shared perspective, but that differences in 
approach clearly remain. However, now that the development and definition of 
reusable problem-solving methods has become a maturing field, there is an 
urgent need for empirical results to validate many of the assumptions that inves­
tigators have made. The difficulty of carrying out many of the necessary empiri­
cal studies was well appreciated by seminar participants. 

Contents 
Hans Akkermans 

Is Tacit Knowledge Sharable? 

Frances Brazier and Jan Treur 
Reuse within a Formal Compositional Framework 

Joost Breuker 
The Problems with Tasks and Methods 

Henrik Eriksson 
Ontology Critiquing 

Dieter Fensel and Remco Straatman 
Problem-Solving Methods: Programming at the Knowledge Level 

Nicola Guarino 
Formalizing Basic Ontological Distinctions 

Frank van Harmelen 
Notations for Problem-Solving Methods 

Masahiro Hori 
Object-Oriented Reuse of Problem-Solving Knowledge: Experiences in 
Scheduling Applications 

Todd R. Johnson and B. Chandrasekaran 
Maximizing Reusability and Usability in Problem-Solving Methods 

Enrico Motta 
Reuse in the VITAL workbench 

4 



Frank Puppe 
Problem Solving Methods for Configurable Expert System Shells 

Wilhelm Schafer 
A Component-oriented Approach Towards Software Reuse 

Guus Schreiber 
Issues in Ontology Construction and their Connection to 
Problem-Solving Methods 

Nigel Shadbolt 
Are Tasks and Problem Solving Methods Indispensable? 

Bill Swartout 
Method Representations in EXPECT 

Walter van de Velde 
Reuse in Cyberspace 

Is Tacit Knowledge Sharable? 
by Hans Akkermans, 
University ofTwente 

In the area of knowledge management, a distinction is often made between tacit 
and explicit knowledge in the organization. Tacit knowledge refers to the hard-to­
pin-down skills rooted in experience, and is seen as hard to manage. Ontologies, 
however, are a means to make tacit background knowledge explicit. 
This is illustrated by discussing various ontologies underlying a database library 
of reusable and sharable physical simulation models, currently und_er develop­
ment in order to speed up mechatronic systems design. Ontologies represent dif­
ferent relevant, but separate, viewpoints on the world of the application. These 
viewpoints are connected by ontology mapping rules, which appear themselves to 
be quite elaborate and containing a lot of knowledge. Although ontologies repre­
sent tacit background knowledge and thus often have a meta-level flavour (about­
ness), they are not necessarily meta-level specifications of domain knowledge in 
the technical-formal sense. Nevertheless, they are quite different from conceptual 
schemata of applications. Also, it appears that the conceptualizations they cha­
racterize cannot be seen as semantic points; rather, conceptualizations are fuzzy 
areas. 
Thus, ontological engineering is about describing underlying viewpoints on the 
world as well as about different shades of meaning within a single viewpoint. A 
variety of mechanisms to structure sharable ontologies is therefore needed. 

Reuse within a Formal Compositional Framework 
by Frances Brazier and Jan Treur, 
Vrije Universiteit Amsterdam 

5 



The focus of interaction between knowledge engineers and experts is to devise a 
shared task model on which they both agree. The acquisition of this agreed 
(mediating) model is often structured on the basis of existing abstract, domain­
independent task models. Such mdoels are specialised and instantiated for the 
task at hand on the basis of knowledge of (1) specification of tasks and subtasks 
as components and sub-components, (2) information exchange between tasks and 
subtasks as information links, (3) sequencing of tasks as task control, (4) domain 
knowledge as knowledge structures and (5) delegation of tasks between agents as 
task assignment. The result of knowledge and task modelling is a task model 
with a compositional structure, formally specifi ed within a compositional 
architecture. Task models for which domain knowledge of the specific domain of 
application has been left unspecified , are, in principle , reusable problem solving 
methods. The advantage of this formal compositional approach is that control and 
strategic knowledge are explicitly (declaratively) defined, together with the con­
ceptual, formal and operational semantics of both static and dynamic aspects-of 
system behaviour. By defining the formal semantics in temporal logic a basis is 
provided for verification and validation. By defining a formal language automated 
support can be provided (e.g. automated prototype generation (currently avai­
lable), automated redesign of compositional a rchitectures (current research )). 
This behaviour-oriented approach has been particularly useful in modelling 
multi-agent tasks in which cooperation and flexible distributed control are essen­
tial. DESIRE, a formal compositional framework, developed over the past 7 years 
within the AI group at the VU (10-15 researchers), has been successfully applied 
in both academic environments and industry. 

The Problems with Tasks and Methods 
by Joost Breuker, 
SWI, University of Amsterdam 

For the CommonKADS methodology for building knowledge based systems a 
"library of reusable problem solving" components has been constructed. These 
components are (parts of) problem solving methods (PSMs). However a major pro­
blem is the indexing of these PSMs by problem types or tasks . This simple 
questions got not a simple answer. It has lead to revisiting the notions of solution, 
problem and PSM. Full solutions consist of a case model and a related argument 
structure. The latter part is constructed from tests applied to (parts of) proposed 
case model. (Parts of) case models are constructed or selected. This explains the 
"generate & test" paradigm that can be identified in all PSM. Looking at case 
models, or rather their "conclusion" parts suggests 8 major types of problems. 
These conclusion or problem types have dependencies, which can be represented 

6 



as a suite: 

/planning~ assesment 

modelling assignment___.. predictio< 

1'design / ~ 
monitoring 

Ontology Critiquing 
by Henrik Eriksson, 
Linkoping University 

Ldiagnosis 

The use of tools that support the knowledge-engineering process can be challen­
ging. Developers often make modeling mistakes that could have been avoided in 
hindsight. Design-critiquing systems can assist the developer by highlighting 
potential problems with modeling decisions, and with the use of knowledge-engi­
neering tools. Naturally, automated systems cannot detect all potential problems, 
but they help developers avoid many common mistakes, and they improve the 
quality of the target knowledge-based system. 

PROTEGE-II is a knowledge-engineering environment that supports the develo­
per in the reuse of problem-solving methods and the design of domain-specific 
knowledge-acquisition tools. PROTEGE-11 provides a set of tools that allows the 
developer to combine problem solvers from reusable components, edit ontologies 
(which define concepts and relationships among concepts), and generate automa­
tically knowledge-acquisition tools based on the ontologies. In our approach, the 
Critique Tool (CT) examines intermediate structures produced by PROTEGE-11, 
and presents a list of critiquing points to the PROTEGE-11 user. Critiquing 
systems are useful in many phases in the PROTEGE-II design cycle. 

Problem-Solving Methods: Programming at the Knowledge Level 
by Dieter Fensel and Remco Straatman, 
SWI, University of Amsterdam 

The talk argues that we need a level between symbol and knowledge level where 
we can reason about rational problem solvers with limited resources. Given the 
rationality by the knowledge level of Newel, all computational problems can be 
solved by variants of generate and test. Problem-solving methods which are 
developed by the knowledge engineering community (like propose and revise for 
parametric designs etc.) do not improve the effect but the efficiency of the pro­
blem-solving process. That is, they enable problem solving in practice and not 
only in principle. In more detail, the talk has three main messages: First, pro­
blem-solving methods describe an efficient way to achieve a goal (i.e., to meet a 
desired functionality) by making assumptions about available knowledge. There-

7 



fore, the description of a problem-solving method consists of three parts: First, 
the functionality of a problem-solving method must be described. This functiona­
lity must be matched with the goal (i.e., the task) which should be solved. Second, 
an operational description of a problem-solving method describes a heuristic algo­
rithm which achieves the goal in an efficient manner. Third, the operational 
description of the method makes assumptions about the available domain know­
ledge which is required to find a solution efficiently. Such assumptions must be 
fulfilled by a given domain layer if a problem-solving method should be appli­
cable. Second, the development of efficient problem-solving methods is not at all 
achieved by hierarchical refinement of its conceptual representation (i.e., by its 
inference structure and its control). That is, the conceptual structure of the pro­
blem-solving method will be changed and not only refined during such a process. 
In general, a more efficient variant of a problem-solving method is not achieved 
by refinement of a given method but by merging different inference steps into 
each other. Mainly, generation and test steps are merged into each other to come 
up with very efficient generation steps. Improving the efficiency of a method does 
therefore change its conceptual structure. Therefore, the conceptual structure 
can not be used as a guideline for this process. Instead, the assumptions made by 
a method can be used for this purpose. Improvement in efficiency is achieved by 
introducing new assumptions or by strengthening given assumptions. Developing 
efficient problem solvers is therefore an assumption-driven activity. 
Third, the model of expertise does not describe a high-level design model of the 
system. We expect the same structure-destroying phenomena in order to achieve 
efficiency as observed when developing more efficient variants of a problem-sol­
ving method. Again, the conceptual structure of the specification becomes chan­
ged in order to achieve efficiency. Still, the model of expertise has a very 
important purpose. It describes the informal structure of the correctness and 
efficiency proof of a problem-solving process. It describes the way to deduce the 
functionality of the method based on its assumptions. Therefore, it describes the 
rational underlying the assumptions of the method. 
An open issue for future research is to develop an appropriate notion to speak 
about efficiency at the knowledge level. 

Formalizing Basic Ontological Distinctions 
by Nicola Guarino, 
National Research Council, LADSEB-CNR, 

Formalizing the basic ontological distinctions which underly a particular know­
ledge base means offering a way to specify the intended meaning of its vocabulary 
by constraining the set of its models, giving explicit information about the inten­
ded nature of the modelling primitives and their a priori relationships. 

We proposed an intensional definition of a conceptualization, aimed to capture 
the very basic ontological assumptions about the intended domain, related to 
issues such as identity and internal structure. To tackle such issues, a model fra­
mework endowed with mereological primitives has been adopted. Within such a 

8 



framework, we have introduced some ontological properties of unary predicates 
like countability, rigidity and dependence, which have been used to draw a rigo­
rous distinction between concepts, types, properties, and roles. We also introdu­
ced some ontological distinctions between binary relations, in order to distinguish 
between internal relations (suitable to be used as attributes within objects) and 
external relations, which link together different objects. 

Notations for Problem-Solving Methods 
by·Frank van Harmelen joint work with Annette ten Teije, 
SWI, University of Amsterdam 

Notations for problem solving methods have evolved from mostly informal to for­
mal notations . However, currently available notations do not allow any formal 
representations of properties of these problem-solving methods. We present a 
novel notation for the functionality of problem-solving methods which allows us 
to write down such properties. This in turn enables us, for the first time, to for­
malise a theory about the composition and selection of (the functionality of) pro­
blem-solving methods. 
Our notation can be summarised as problem-solving methods as axiom schemas. 
More precisely, a family of related problem-solving methods (e.g for diagnosis or 
design) is written as an axiom schema for first-order axioms. Such an axiom 
schema defines the schematic form of any individual problem-solving method 
that is a member of that family. The axiom schema contains a number of predi­
cate variables. Different instantiations of these predicate variables correspond to 
different individual problem-solving methods. We can write the axiom-schema as 
a formula in a first-order meta-theory, with the predicate-variables as first-order 
variables ranging over names of object-predicates. Because of this, we can state 
relationships between problem-solving methods in this first-order meta-theory. 
This can be done for properties such as their relative strength, their (conditional) 
equivalence, the effects of substituting parameters, and how to obtain problem­
solving methods with particular properties. 
We have used our notation to formalise a large family of problem-solving methods 
for diagnosis, and we ha ve begun to use this family for formulating a configura­
tion theory and an approximation theory for (the functionality of) diagnostic pro­
blem-solving methods. 

Object-Oriented Reuse of Problem-Solving Knowledge: Experiences in 
Scheduling Applications 
by Masahiro Hori, 
Tokyo Research Laboratory, IBM Japan Ltd. 

The focus of recent research on development methodologies for knowledge 
systems has been shifting from composition issues toward context issues, with 
sharing and reuse of problem-solving knowledge as goals. This talk introduced 
our research on both types of issues, in the light of our experiences in developing 

9 



scheduling applications. 

We have been working on configuring problem-solving methods from components, 
following the concept of Computer-Aided Knowledge Engineering (CAKE). The 
CAKE environment consists not only of processes for building knowledge 
systems, but also of processes for developing libraries of knowledge to be reused 
in the prospective systems. We are investigating the composition issues for a 
class of scheduling problems, called the job assignment task, by defining the task 
ontology and the task-specific components to be configured into methods. We are 
also exploring the context issues related to the component elicitation process in 
the development of knowledge systems. Our task formulation, however, is rather 
abstract, defining a broad range of scheduling problems solely as assigning given 
jobs to available resources while satisfying constraints. Therefore, the typology of 
basic inference steps, which we call method ontology, consists of generic seU 
structure manipulation, and component customization is not necessarily easy. 
We then focus on production-scheduling problems, slightly limiting the scope of 
the target problems. In this way, we have revealed regularities in the application 
domain knowledge, and have remodeled the problem-solving knowledge by expli­
cating its structural aspect. On the basis of this investigation, we have implemen­
ted a framework for production-scheduling applications in C++. It consists of 
three loosely coupled subsystems: a schedule model , a scheduling engine, and a 
graphical user interface. The talk described a couple of our experiences in 
applying the framework to the development of actual applications. 

Finally, we point out that, in industrial applications, it is crucial to accumulate 
reusable knowledge contents and integrate them with existing software environ­
ments, and that moderate synergy between knowledge engineering and software 
engineering is indispensable for this purpose. 

Maximizing Reusability and Usability in Problem-Solving Methods 
by Todd R. Johnson and B. Chandrasekaran, 
The Ohio State University 

Many of the difficulties with reusing methods from task-specific architectures 
arise because they are designed around inflexible methods that overly limit the 
knowledge that can be used by a system and that make it difficult to build 
systems that smoothly integrate multiple problem-solving methods. To some 
extent, this inflexibility stems from a fundamental trade-off between reusability 
and usability. As the reusability (generality) of a method is increased, its usability 
(i .e., ability to constrain and guide system development) usually decreases. 
Reusability is limited whenever a method either expects knowledge that is not 
available, provides no means to make use of certain kinds of available knowledge, 
or cannot make use of special purpose control knowledge. When one or more of 
these occur, the method user must drop out of the knowledge level view provided 
by the method in order to modify the symbol-level implementation of the method. 
We propose that the problem space computational model (PSCM) can be used to 

10 



maximize reusability and usability because it enables us to define methods that: 
1) Specify only necessary control knowledge without completely specifying the 
sequence of inference steps. 2) Afford dynamic component composition, based on 
the knowledge available at run time; 3) Permit a user to modify method behavior 
by adding additional domain and control knowledge without modifying the origi­
nal method specification; and 4) Allow dynamic interleaving of subtasks from dif­
ferent methods without modifying the original methods. Although the PSCM 
provides the potential for maxiiµizing reusability and usability, it does not pro­
vide any constraints for guiding system design. These constraints are provided by 
Task Structures and Generic Task Problem Spaces. Each task structure specifies 
for a given generic task the alternative methods for achieving that task, the sub­
tasks of each method, methods for achieving each subtask, and so on, until primi­
tive subtasks, which do not require further decomposition, are reached. Task 
structures are specified at the knowledge level, so that representational details 
are avoided . Each method in the task structure is implemented as a Generic Task 
Problem Space (GTPS), described using the PSCM language. Thus, the know­
ledge level and the PSCM are two levels for describing systems: the knowledge 
level is implemented using the PSCM. Task structures and GTPSs are content 
theories of tasks and methods described, respectively, at the knowledge level and 
the PSCM. In this approach, reusability is maximized because methods do not 
overly constrain the knowledge they can use. Usability is maximized because a 
problem-solving method specifies knowledge roles for required domain knowledge 
as well as specific roles for optional control knowledge. 

Reuse in the VITAL workbench 
by Enrico Motta, 
Knowledge Media Institute, The Open University 

Structured methodologies for knowledge-based system (KBS) development such 
as CommonKADS or VITAL view knowledge engineering as a process characteri­
zed by the construction of multiple models fulfilling different goals in the appli­
cation life-cycle. In particular, the VITAL workbench supports the construction of 
conceptual models of problem solving, functional and technical design models, as 
well as providing a software architecture supporting the implementation of 
hybrid knowledge bases. From a general point of view there are two aspects con­
cerning reuse-centred model development. The first is related to the fact that 
model-development should be reuse-based; the other concerns the outcome of a 
model development process, which should be a reusable product. In VITAL we 
provide methods, languages, and tools supporting both aspects of reuse-centred 
model-development. Model-based knowledge acquisition (KA) in VITAL is sup­
ported by the GDM methodology and tool, and is carried out through a process of 
model refinement, in which an initial, highly coarse-grained problem solving 
model is made increasingly fine-grained during various cycles of KA, using a 
generative grammar of model fragments. This grammar takes the form of rewrite 
rules, which replace an inference step with a finer-grained description. From a 
model reuse perspective the important aspect of the GDM methodology is that 

11 



the model construction process is reuse-based and that a comparatively small 
number of rewrite rules can provide an extensive library of problem-solving 
models. Moreover, because the rules in the GDM library have been designed with 
the aim of generating generic problem solving models, the oui;come of the GDM 
analysis is itself a reusable product. 
An important aspect of model-based KA is the formalization or operationalization 
of the conceptual model. The VITAL workbench supports the construction of ope­
rational conceptual models by means of the OCML language. A number of featu­
res of OCML facilitate reuse-centred conceptual modelling. The modelling 
framework underlying OCML distinguishes between problem solving and domain 
model and this distinction (common to many approaches to KBS development) 
facilitates the reuse of domain-independent problem solving methods and 
method-independent domain KBs. Recording the various steps in a model 
development process is crucial for reuse. To this purpose OCML comprises an 
expressive language for recording the argumentation process, OCML-DDL, which 
allows the knowledge engineer to record design choices at various levels of granu­
larity. Finally, the VITAL workbench also comprises a software architecture, 
VITAL-KR which provides the basic substructure for integrating knowledge­
based software components making use of diverse representation and inference 
paradigms. This architecture supports implementation-level reuse, as well as 
allowing experimentation in the design and implementation of hybrid systems. 

Problem Solving Methods for Configurable Expert System Shells 
by Frank Puppe, 
Wiirzburg University 

Problem-specific expert system shells with graphical knowledge acquisition com­
ponents like ONCOCIN/OPAL or MED2/CLASSIKA are quite successful in enab­
ling experts to build and maintain knowledge bases largely on their own. Their 
usefulness can be greatly increased, if they can be adapted to a specific domain._ 
Adaption may include adding new or switching between available methods for a 
subtask like e.g. heuristic, statistic, case-based, set-covering or functional diagno­
stic evaluation ir .side classification or different ways for exchanging particular 
assignments between demand objects and supply objects violating some con­
straints inside assignment problem solving. 
This is achieveci by following some restrictions, in particular that all methods 
sharing th1: same knowledge have to represent it in the same form and that all 
methods sdvirig the same subtask need to have the same interfaces. 

The resulting flexibility greatly increases the programming effort necessary for 
developing the various graphical knowledge acquisition components. For 
reducing the effort tools for generating them are needed, which should be based 
on the specification of the knowledge representation of the methods. This is achie­
ved by. a library of parametrized graphical editors for e.g. hierarchies, forms, 
tables, graphs, together with a declarative specification language for the graphi­
cal design and the mapping between the graphical and the internal knowledge 

12 



representation. 
The concepts proposed here are implemented in the shell-boxes D3 for classifi­
cation, COKE for assignment, and in the generator MET A*KA for graphical 
knowledge acquisition components. 

A Component-oriented Approach Towards Software Reuse 
by Wilhelm Schafer, 
FB Mathematik/Informatik, Universitat-GH Paderborn 

The talk gave an overview about existing approaches for developing, assessing 
and retrieving reusable components. It describes the limits of type systems of cur­
rent program languages concerning reuse and indicates that more large-grained 
components than classes or packages or modules have to be developed to make 
reuse an economic benefit. Consequently the notion of a subsystem is introduced. 
A tool supporting modular design based on graphical notations and subsystems is 
presented. This tool supports incremental and intertwined development of subsy­
stems and maintains consistency of design and code. 
This allows later reuse of design patterns together with their corresponding code 
pieces. Such sophisticated tools are not widely available and require application 
of reuse concepts to build them efficiently and not from the scratch. Consequently, 
a generator for those type of tools which support incremental and intertwined is 
discussed. Then the talk lists a few approaches for defining metrics to assess a 
component's quality and for building a controlled vocabulary to classify and 
retrieve a component. Finally, examples for reengineering existing legacy code 
are given which is another type of reuse than the previously presented develop­
ment of components with having their later reuse is mind. 

Issues in Ontology Construction and their Connection to Problem­
Solving Methods 
by Guus Schreiber, 
University of Amsterdam 

The term ontology" is currently fashionable in the context of knowledge sharing 
and reuse. However, no a greement exists on what an ontology is or how it can be 
used. In this talk we discuss the view taken by the European ESPRIT project 
KACTUS on what an ontology is and we illustrate through examples one particu­
lar way of using ontologies. The KACTUS project aims at the development of 
methods and tools for the reuse of knowledge about technical systems during 
their life-cycle. The project is application-driven: systems are being developed in 
the domains of preliminary-ship design, oil-production processes, and electrical 
networks. 
In KACTUS, an ontology is defined as an "explicit, partial specification of a con­
ceptualization that is expressible as a meta-level viewpoint on a set of possible 
domain theories for the purpose of modular design, redesign and reuse of know­
ledge-intensive system components". Ontologies can have a recursive structure, 

13 



meaning that an ontology expresses a viewpoint on another ontology. Such a vie­
wpoint entails a reformulation and/or reinterpretation of the other ontology. This 
multi-level organization raises research questions such as the required expressi­
vity of the mapping formalisms for expressing viewpoints between ontologies. 
The important consequence of this approach is that through the use of different 
ontologies with different generality and by partitioning the knowledge base 
accordingly, we can identify different classes of knowledge bases, with different 
scope, generality and reusability. These features are illustrated through an 
example of knwoledge-base reuse in the doamin of designing elevators. 

Are Tasks and Problem Solving Methods Indispensable? 
by Nigel Shadbolt, 
University of Nottingham 

This talk reviewed a number of issues associated with tasks and problem 
solving methods in Knowledge Engineering: 
- What kinds of things can tasks and methods be? 
- What utility do they have? 
- What future do they have? 
Tasks are classically defined as a description of *what* needs to be achieved to 
solve a problem. A method is a description of *how':' to achieve a task. A number 
of positions were discussed with respect to the terms task and method. 
The first of them regards examples of tasks (e.g. design) and methods (e.g. pro­
pose and revise) as having the status of psychological categories. It is still 
important to determine what sort of status this means: a functional equivalence, 
an algorithmic equivalence or an implementational one. 
A second approach - characterized as "cheerful unconcern" - argues that the con­
tent of a theory of tasks and methods has only pragmatic utility. This instrumen­
tal view seems to be held by the majority of Knowledge Engineers. 
A third position - psychological anti-realism - argues that a large proportion of 
the elements used in psychological accounts of behaviour are the unavoidable by­
products of our interpretive acts. This does not mean that they are debased as 
explanatory accounts. 
I defined the "Cognitive Interaction Problem". This is the recognition that all 
accounts of cognition will depend on the use to which such accounts are put by 
cognitive agents. Any explanatory account is given in the context of a set of goals 
and expectations. It was argued that for both Knowledge Engineering and Cogni­
tive Psychology these are similar: decomposing the complexity of a phenomenon, 
facilitating communication and sharing of the domain content, reliably repro­
ducing classes of behaviour given certain states. In addition, it appears that the 
content theory of "pragmatic" Knowledge Engineering can be exported as puta­
tive psychological explanations under the anti-realist interpretation. 
Finally a number of deficiencies in our understanding of problem solving methods 
were enumerated. Including a lack of agreed ways of characterising the control 
aspects of methods and the absence of empirical studies across subjects of the 
cost/benefit of using our task structure and problem solving methods. 

14 



Method Representations in EXPECT 
by Bill Swartout, 
USC/Information Sciences Institute 

Our long term research goal is to develop tools that will guide end users in aug­
menting and modifying knowledge based systems so that they can make changes 
without having to understand the details of how a system is implemented, or its 
underlying structure. In current knowledge acquisition tools much of the know­
ledge needed to guide acquisition is inflexible because it is either built into the 
tool itself or fixed when the system is first created. This limits the range of 
systems that can be built and supported with these tools. 

To create more powerful knowledge acquisition tools and systems, we not only 
need better tools, but we also need to change the architecture of the knowledge 
based systems themselves so that their structure will provide better support for 
acquisition. The EXPECT framework for knowledge based systems makes the 
structure of knowledge based systems more explicit and declarative, thus enab­
ling its knowledge acquisition tools to analyze a system's structure and thereby 
guide acquisition. This allows more flexible acquisition than is possible with cur­
rent tools. 
In this talk, we focused on one aspect ofEXPECT's more explicit architecture: its 
representation of goals and the capabilities of problem solving methods. In many 
frameworks, goals are just symbols that have little explicit semantics associated 
with them. In EXPECT, the key idea for capturing more of the semantics is to 
represent goals and method capabilities using the Loom knowledge representa­
tion language. Using the Loom Classifier, a hierarchy of methods can be automa­
tically created which helps both in locating methods that can be used for 
achieving goals and in identifying related methods, In addition, because this 
representation captures the semantics of the goals and is decomposable, it is pos­
sible to reformulate goals (that is, change them into other forms) in the event a 
method for achieving a goal cannot be found . This helps ease the reuse of 
methods and makes them applicable in a broader context. 

Reuse in Cyperspace 
by Walter van de Velde, 
Artificial Intelligence Laboratory, Free University of Brussels 

My aim here is to provoque some thought on present and future directions for reu­
se. My starting point is that the reality of computing is rapidly changing. Wide 
area networks, distributed application and multi-medial systems are a the compo­
nent technologies of new computing environments that classical techniques for 
reuse may no longer be well adapted to. 

Libraries, standard interface and interchange formats are key elements in the 

15 



classical reuse toolbox. Libraries rely on the hypothesis that a model can be reu­
sed over a characterizable range of situations. The solution for reuse therefor 
seems to be clear: one or more appropriatly indexed libraries of reusable elements 
must be agreed on, maintained and used. One has to ask three questions: Does it 
work? Is it useful? Is it possible? For all three arguments can be provided that 
cast doubt on the standard positive answer. 

But also the kind of applications that we will be building will have very different 
characteristics from the present more stand-alone and custom made applications. 
They will execute on different computers in an extended time-span, trying to 
achieve real tasks that go beyond functional computation (e.g. spending your 
money to search for and acquire your favorite collector's item). Such software 
agents, much like human agents, go out to search for the information and 
resources (including people) that they require to achieve the tasks that they were 
send out to do. What will be needed is a new model of computing altogether. 
Societies of software agents will cooperate and compete in their virtual world of 
networks and resources, building up much of the same social dynamics that one 
finds in everyday life. 

In summary I argue for 4 elements in an agent-based approach to reuse: 
(1) identification based on formal features (e.g. syntactic compatibility), (2) inte­
grated testing and validation behavior, (3) adaptation and learning and (4) defer­
red commitment. The first one is classical but over-emphasized. The second one 
leads to what I call a courting behavior of software agents. Software agents can, 
by virtue of being complete executable entities, try eachother out, so to speak. 
The fourth element, deferred commitment, refers to the fact that the decision to 
use is always revocable. An agent's usefulness is constantly questioned and its 
service subject to competition from other agents. A whole new type of software 
economy can be based on this. 

Of course we can only start to explore the implications for reuse, and this is the 
main theme of the presentation. What is possible and useful can only be guessed 
right now but that there will be a hugue impact on the practice in research, edu­
cation, business and everyday life is beyond doubt. If knowledge engineering fails 
to track these evolutions then it will become increasingly irrelevant to practical 
demands. 

16 



Dagstuhl-Seminar 9519: 

Agnar Aamodt 
University of Trondheim 
Department of Informatics 
College of Arts and Science 
N-7055 Dragvoll 
Norway 
agnar@ifi.unit.no 
tel.: +47-73 59-1838 /1840 

Manfred Aben 
Unilever Research Laboratories 
Technology Application Unit 
Olivier van Noortlaan 120 
NL-3133 AT Vlaardingen 
The Netherlands 
manfred.aben@2488taux.urlnl.sprint.com 
tel. : +31-10-460-5716 

Stuart Aitken 
University of Glasgow 
Department of Computing Science 
17 Lilybank Gardens 
Glasgow G12 800 
Great Britain 
stuart @dcs.gla.ac.uk 
lei.: +44-41-3398855 X 2049 

Hans Akkermans 
Universiteit Twente 
Information Systems DepartmentlNF/IS 
Postbus 217 
NL-7500 AE Enschede 
The Netherlands · 
akkerman@cs.utwente.nl or 
akkermans@ecn .nl 
tel.: +31-53-893690 

Richard Benjamins 
Universite Paris Sud 
Lab. de Recherche en lnformatique 
Batiment 490 
F-91405 Orsay Cedex 
France 
richard @lri .lri .fr 

Frances Brazier 
Vrye Universiteit Amsterdam 
Dept. of Mathematics and 
Computer Science 
De Boelelaan 1081 a 
NL-1081 HV Amsterdam 
The Netherlands 
frances@cs.vu.nl 
tel. : +31-20-444-7737 

List of Participants 

Joos! Breuker 
Universiteit van Amsterdam 
Department Social Science Informatics 
Roetersstraat 15 
NL-1018 WB Amsterdam 
The Netherlands 
breuker@swi.psy.uva.nl 
tel.: +31-20-525-3494 /6789 

Jose Cuena 
University of Madrid 
Dep. de lntelligencia Artificial 
Facultad de lnformatica 
Campus de Montegancedo s/n 
E-28660 Boadilla del Monte 
Spain 
jcuena@dia.fi.upm.es 
tel.: +34-352-48-03 

Henrik Eriksson 
Linki:iping University 
Dept. of Computer and 
Information Science 
S-58183 Linki:iping 
Sweden 
her@ida.liu.se 
tel.: +46-13 28-26 73 

Dieter Fensel 
University of Amsterdam 
Dept. of Social Science Informatics 
Roetersstraat 15 
1018 WB Amsterdam 
The Netherlands 
dieter@swi.psy.uva.nl 
tel.: +31 20-525.6791/525.6789 

Ute Gappa 
Universitat Karlsruhe 
lnstitut fur Logik / Komplexitat 
und Deduktionssysteme 
Am Fasanengarten 5 
D-76128 Karlsruhe 
Germany 
gappa@ira.uka.de 
tel. : +49-721-608-4209 

Nicola Guarino 
National Research Council 
LADSEB-CNR 
Corso Stati Uniti 4 
1-35020 Padova 
Italy 
guarino@ladseb.pd.cnr.it 
tel.: +39-49-82 95-751 



Rune Gustavsson 
University College of Karlskrona/Ronneby 
Dept of Computer Science & Economy 
S-372 25 Ronneby 
Sweden 
rune.gustavsson@ide.hk-r.se 
tel. : +46-457 717 00 

Frank van Harmelen 
Universiteit van Amsterdam 
Department Social Science Informatics 
Roetersstraat 15 
NL-1018 WB Amsterdam 
The Netherlands 
frankh@swi .psy.uva.nl 
tel. : +31-20-525-67 91 

Masahiro Hori 
Tokyo Research Laboratory 
IBM Japan Ltd. 
1623-14 Shimo-tsuruma 
Kanagawa-ken 242 Tokyo 
Japan 
hori@trl.ibm.co.jp 
tel.: +81-462-73-46 67 

Todd R. Johnson 
Ohio State University 
Division of Medical Informatics 
Rm395 
2051 Neil Ave. 
Columbus OH 43210 
USA 
tjohnson@magnus.acs.ohio-state.edu 

Dieter Landes 
Universitat Karlsruhe 
lnstitut fur Angewandte lnformatik 
und Formale Beschreibungsverfahren 
Englerstr. 11 
0-76128 Karlsruhe 
Germany 
landes@aifb.uni-karlsruhe.de 
tel.: +49-721-608-3998 

Frank Maurer 
Universitat Kaiserslautern 
FB lnformatik 
Postfach 3049 
D-67653 Kaiserslautern 
Germany 
maurer@informatik.uni-kl.de 
tel.: +49-631-205-3356 

Pedro Meseguer 
Universidad Politecnica de Catalufia 
Dept. LSI 
Pau Gargallo 5 
E-08028 Barcelona 
Spain 
meseguer@lsi.upc.es 
tel.: +34-3401-73 26 

Enrico Motta 
Open University 
Walton Hall 
Milton Keynes MK76AA 
Great Britain 
e.motta@open.ac.uk 
tel. : +44-908-65-3506 

Mark Musen 
Stanford University 
School of Medicine 
Knowledge Systems Laboratory 
Section on Medical Informatics 
Stanford CA 94305-5479 
USA 
musen@camis.stanford.edu 
tel. : + 1-415-723-6979 

Rainer Perkuhn 
Universitat Karlsruhe 
lnstitut AIFB 
Englerstr. 11 
D-76128 Karlsruhe 
Germany 
perkuhn@aifb.uni-karlsruhe.de 
tel.: +49-721-608-4 754 

Christine Pierret-Golbreich 
Universite Paris Sud 
Laboratoire de Recherche en lnformatique 
Bat 490 CNRS URA 410 
F-91405 Orsay Cedex 
France 
pierret@lri.fr 

Karsten Poeck 
Universitat Wurzburg 
lnstitut fur lnformatik VI 
Allesgrundweg 12 
0-97218 Gerbrunn 
Germany 
poeck@informatik.uni-wuerzburg.de 
tel. : +49-931-70 56-118 



Frank Puppe 
Universitat Wurzburg 
Lehrstuhl fur Kl und 
Angewandte lnformatik 
Allesgrundweg 12 
D-97218 Gerbrunn 
Germany 
puppe@informatik.uni-wuerzburg.de 
tel. : +49-931-70561-10 

Thomas Rothenfluh 
University of Zurich 
Zurichbergstr. 43 
CH-8044 Zurich 
Switzerland 
rothen@ ifi. unizh .eh 
tel.: +41-1-257-21 06 

Wilhelm Schafer 
Universitat Paderborn 
FB 17 - lnformatik 
Warburger Str. 100 
33095 Paderborn 
Germany 
wilhelm@uni-paderborn.de 
tel. : +49-5251/60-24 28 

Franz Schmalhofer 
Deutsches Forschungszentrum 
fur Kunstliche lntelligenz 
Erwin-Schrodinger-StraBe 
D-67663 Kaiserslautern 
Germany 
schmalho@dfki.uni-kl.de 
tel.: +49-631-205-3465 

Guus Schreiber 
Universiteit van Amsterdam 
Department Social Science Informatics 
(SWI) 
Roetersstraat 15 
NL-1018 WB Amsterdam 
The Netherlands 
schreiber@swi.psy.uva.nl 
tel. : +31-20-525-6792/6789 

Nigel Shadbolt 
University of Nottingham 
Dept. of Psychology 
University Park 
Nottingham NG? 2RD 
Great Britain 
nrs@psyc.nott.ac.uk 
tel.: +44-115-951-5317 

Yurval Shahar 
Stanford University 
School of Medicine 
Dept. of Medicine 
Medical School Office Building X215 
Stanford CA 94305-5479 
USA 
shahar@camis.stanford.edu 
tel.: + 1-415-723-3393 

Mario Stefanelli 
Laboratory for medical Informatics 
Dept. of Computer & Systems Sciences 
Via Abbiategrasso 209 
1-27100 Pavia 
Italy 
mstefa@ipvstefa.unipv.it 

Remco Straatman 
University of Amsterdam 
Department SWI 
Roeterstraat 15 
NL-1018 WB Amsterdam 
The Netherlands 
remco@swi.psy.uva.nl 
tel.: +31-20-525-6787 

Rudi Studer 
Universitat Karlsruhe 
lnstitut AIFB 
D-76128 Karlsruhe 
Germany 
studer@aifb. uni-karlsruhe .de 
tel.: +49-721-608-3923 

William R. Swartout 
USC/ISI 
Intelligent Systems Division 
4676 Admiralty Way 
Marina del Rey CA 90292 
USA 
swartout@isi.edu 
tel.: + 1-310-822-15 11 

Jan Treur 
Vrye Universiteit Amsterdam 
Dept. of Mathematics and 
Computer Science 
De Boelelaan 1081 a 
NL-1081 HV Amsterdam 
The Netherlands 
treur@cs.vu.nl 
tel.: +31-20-444-7763/ 7730 



Samson Tu 
Stanford Univ. School of Medicine 
Medical School Office Building 
Room X-215 
Stanford CA 94305-5479 
USA 
tu@camis.stanford.edu 
tel.: + 1-415-725-3391 

Johan Vanwelkenhuysen 
INRIA 
ACACIA Project 
2004 route des Lucioles 
F-06902 Sophia Antipolis Cedex 
France 
jvanwelk@sophia.inria.fr 
tel.: +33 93 65 77 88 

Walter van de Velde 
Free University of Brussels 
Dept. ·of Computer Science 
Pleinlaan 2 
B-1050 Brussels 
Belgium 
walter@arti.vub.ac.be 
tel. : +32-2641-3700 

Thomas Wetter 
IBM Wiss. Zentrum 
lnstitut tor Logik und Linguistik 
Vangerowstr. 18 
D-69121 Heidelberg 
Germany 
twetter@vnet.ibm.com 
tel.: +49-6221-59-4212 



Zuletzt erschienene und geplante Titel: 

R. Giegerich, J. Hughes (editors) : 
Functional Programming in the Real World, Dagstuhl-Seminar-Report; 89; 16.05.-20.05.94 (9420) 

H. Hagen, H. MOiier, G.M. Nielson (editors) : 
Sc;ientific Visualization , Dagstuhl-Seminar-Report; 90; 23.05.-27.05.94 (9421) 

T. Dietterich, W. Maass, H.U. Simon, M. Warmuth (editors): 
Theory and Praxis of Machine Learning, Dagstuhl-Seminar-Report; 91 ; 27.06.-01 .07.94 (9426) 

J. Encarnar;:ao, J. Foley, R.G. Herrtwich (editors): 
Fundamentals and Perspectives of Multimedia Systems, Dagstuhl-Seminar-Report; 92; 04.07.-
08.07.94 (9427) 

W. Hoeppner, H. Horacek, J. Moore (editors): 
Principles of Natural Language Generation, Dagstuhl-Seminar-Report; 93; 25.07.-29.07.94 (9430) 

A. Lesgold, F. Schmalhofer (editors): 
Expert- and Tutoring-Systems as Media for Embodying and Sharing Knowledge, Dagstuhl-Semi­
nar-Report ; 94; 01 .08.-05.08.94 (9431) 

H.-D. Ehrich, G. Engels, J. Paredaens, P. Wegner (editors): 
Fundamentals of Object-Oriented Languages, Systems, and Methods, Dagstuhl-Seminar-Report; 
95; 22.08.-26.08.94 (9434) 

K. Birman, F. Cristian, F. Mattern, A. Schiper (editors): 
Unifying Theory and Practice in Distributed Systems. Dagstuhl-Seminar-Report; 96; 05.09.-
09.09.94 (9436) 

L. Bannon, R. Keil-Slawik, I. Wagner (editors): 
Interdisciplinary Foundations of Systems Design and Evaluation, Dagstuhl-Seminar-Report; 97; 
19.09.-23.09.94 (9438) 

M. Broy, L. Lamport (editors): 
Specification and Refinement of Reactive Systems - A Case Study, Dagstuhl-Seminar-Report ; 98; 
26.09.-30.09.94 (9439) 

M. Jarke, P. Loucopoulos, J. Mylopoulos, A. Sutcliffe (editors): 
System Requirements: Analysis, Management, and Exploitation, Dagstuhl-Seminar-Report; 99; 
04.10.-07.10.94 (9440) 

J. Buchmann, H. Niederreiter, A.M. Odlyzko, H.G. Zimmer (editors): 
Algorithms and Number Theory. Dagstuhl-Seminar-Report; 100; 10.10.-14.10.94 (9441) 

S. Heinrich, J. Traub, H. Wozniakowski (editors): 
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report; 101 ; 17.10.-
21.10.94 (9442) 

H. Bunke, T. Kanade, H. Noltemeier (editors): 
Environment Modelling and Motion Planning for Autonomous Robots, Dagstuhl-Seminar-Report; 
102; 24.10.-28.10.94 (9443) 

W. Maass, Ch. v.d. Malsburg, E. Sontag, I. Wegener (editors) : 
Neural Computing, Dagstuhl-Seminar-Report; 103; 07.11.-11.11.94 (9445) 

G. Berry, W.P. de Roever, A. Poigne, A. Pnueli (editors): 
Syncronous Languages, Dagstuhl-Seminar-Report; 104; 28.11 .-02.12.94 (9448) 

B. Becker, R. Bryant, 0. Coudert , Ch. Meinel (editors): 
Computer Aided Design and Test, Dagstuhl-Seminar-Report; 105; 13.02.-17.02.95 (9507) 

D. Garlan, F. Paulisch, W. Tichy (editors) : 
Software Architectures, Dagstuhl-Seminar-Report; 106; 20.02.-24.02.95 (9508) 



W.J. Cullyer. W.A. Halang, B. Kramer (editors): 
High Integrity Programmable Electronic Systems, Dagstuhl-Seminar-Report; 107; 27.02.-
03.03.95 (9509) 

J. Gruska, H. Umeo, R. Vollmar (editors): 
Cellular Automata. Dagstuhl-Seminar-Report; 108; 06.03.-10.03.95 (9510) 

H. Alt, B. Chazelle, R. Seidel (editors): 
Computational Geometry, Dagstuhl-Seminar-Report; 109; 13.03.-17.03.95 (9511) 

W. Bibel, K. Furukawa. M. Stickel (editors): 
Deduction, Dagstuhl-Seminar-Report; 11 O; 20.03.-24.03.95 (9512) 

B. Freitag, C.B. Jones. Ch . Lengauer. H.-J. Scheck (editors) : 
Object-Orientation with Parallelism and Persistence, Dagstuhl-Seminar-Report; 111; 03.04.-
07.04.95 (9514) 

J. Doran, N. Gilbert, U. Mueller, K. Troitzsch (editors): 
Social Science Microsimulation: A Challenge for Computer Science, Dagstuhl-Seminar-Report; 
112; 01 .05.-05.05.95 (9518) 

R. Studer, M. Musen (editors) : 
Shareable and Reusable Problem Solving Methods, Dagstuhl-Seminar-Report; 113; 08.05.-
12.05.95 (9519) 

J. Blazewicz, K. Ecker, L. Welch (editors): 
Scheduling in Computer & Manufacturing Systems, Dagstuhl-Seminar-Report; 114; 15.05.-
19.05.95 (9520) 

H. Beilner, G. Ciardo, C. Lindemann, K. Trivedi (editors): 
Performance and Dependability Modeling with Stochastic Petri Nets. Dagstuhl-Seminar-Report; 
115; 22.05.-26.05.95 (9521) 

M. Aigner, J. Spencer, E. Triesch (editors): 
Computing with Faulty Inputs, Dagstuhl-Seminar-Report; 116; 29.05.-02.06.95 (9522) 

J.-R. Abrial, E. Borger. H. Langmaack (editors): 
Methods for Semantics and Specification, Dagstuhl-Seminar-Report; 117; 05.06.-09.06.95 (9523) 

W. Effelsberg, D. Ferrari, 0 . Spaniol, A. Danthine (editors): 
Architecture and Protocols for High Performance Networks, Dagstuhl-Seminar-Report; 118: 
19.06.-23.06.95 (9525) 

Ph. Flajolet, R. Kemp, H. Prodinger, R. Sedgewick (editors): 
Average-Case'-Analysis of Algorithms. Dagstuhl-Seminar-Report; 119; 03.07.-07.07.95 (9527) 

D. Gustfield, T. Lengauer, C. Sander (editors): 
Molecular Bioinformatics. Dagstuhl-Seminar-Report; 120; 10.07.-14.07.95 (9528) 

J. Chomicki, G. Saake, C. Sernadas (editors): 
Role of Logics in Information Systems, Dagstuhl-Seminar-Report; 121 ; 17.07.-21.07.95 (9529) 

R.S. Boyer.A. Bundy, D.Kapur. Ch. Walther (editors): 
Automation of Proof by Mathematical Induction, Dagstuhl-Seminar-Report; 122; 24.07.-28.07.95 
(9530) 

P. Cousot, R. Cousot, A. Mycroft (editors): 
Abstract Interpretation, Dagstuhl-Seminar-Report; 123; 28.08.-01.09.95 (9535) 

P. Brunet, D. Roller, J. Rossignac (editors): 
CAD Tools for Products. Dagstuhl-Seminar-Report; 124; 04.09.-08.09.95 (9536) 

C. Dwork, E.W. Mayr, F. Meyer a.d. Heide (editors): 
Parallel and Distributed Algorithms, Dagstuhl-Seminar-Report; 125; 11 .09.-15.09.95 (9537) 

C. Hankin, H. R. Nielson (editors): 
New Trends In the Integration of Paradigms, Dagstuhl-Seminar-Report; 126; 18.09.-22.09.95 
(9538) 


