
Frank Leymann, Hans-Jorg Schek,
Gottfried Vossen (editors):

Transactional Workflows

Dagstuhl-Seminar-Report; 152
15.07.-19.07.95 (9629)

ISSN 0940-1121

Copyright© 1996 by IBFI GmbH, Schloss Dagstuhl, D-66687 Wadern, Germany
Tel.: +49 - 6871 - 905 O, Fax: +49 - 6871 - 905 133

Das lnternationale Begegnungs- und Forschungszentrum fur lnformatik (IBFI) ist eine gemein
nutzige GmbH. Sie veranstaltet regelmii.Big wissenschaftliche Seminare, welche nach Antrag der
Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit personlich einge
ladenen Gasten durchgefuhrt werden.

Verantwortlich fur das Programm ist das Wissenschaftliche Direktorium:
Prof. Dr. Thomas Beth,
Prof. Dr. Oswald Drobnik,
Prof. Dr. Otto Spaniol,
Prof. Dr. Peter Gorny,
Prof. Dr. Klaus Madlener,
Prof. Dr. Thomas Lengauer,
Prof. Dr. Christoph Meinel,
Prof. Dr. Joachim W. Schmidt,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Gesellschaft fur lnformatik e.V. , Bonn,
Universitat des Saarlandes,
Universitat Frankfurt,
Universitat Kaiserslautern,
Universitat Karlsruhe,
Universitat Stuttgart,
Universitat Trier,
TH Darmstadt

Trager: Die Bundeslander Saarland und Rheinland-Pfalz

Bezugsadresse: Geschaftsstelle Schloss Dagstuhl
Universitat des Saarlandes
Postfach 15 11 50
D-66041 Saarbrucken, Germany
Tel.: +49 -681 - 302 4396
Fax: +49 -681 - 302 4397
e-mail: office@dag.uni-sb.de
url : http://www.dag.uni-sb.de

Transactional Workflows

Organizers: F. Leymann, H.-J. Schek, G. Vossen

Dagstuhl Seminar 9629

1 The Subject

1.1 Transactional Workflows: An Introduction

by Gottfried Vossen

Workfiows are activities involving the coordinated execution of multiple tasks performed
by a number of different processing entities [6, 10]. In this context, tasks represent work
to be done and can be specified in a variety of ways, including textual descriptions
(e.g., in e-mail or a file) , forms, messages, or computer programs. Processing entities
which can perform tasks may be humans or software systems, e.g., mailers, application
programs, database management systems. Work.flow executions are controlled and coor
dinated by software systems called workfiow management systems (WFMS, [3, 12]). The
modeling, specification, simulation, verification, and optimization of extensible, adapt
able, and scalable workflows, and the design and implementation of WFlVIS has recently
gained considerable interest, due to the recognition that information system applications
nowadays are heterogeneous, distributed, and need to integrate hosts of different tech
nologies, legacy systems, and existing software, and that a computer-aided coordination
of users of such systems who are involved in the execution of some enterprise process is
of increasing importance [11].

Workflow management combines influences from a variety of disciplines, including co
operative information systems, computer-supported cooperative work (CSCW), group
ware systems, or active databases. On the other hand, workflows can be considered as
a generalization of multidatabase transactions [5], i.e., transactions accessing multiple
databases which are locally autonomous. Indeed, multidatabase transactions can be
seen as special workflows in which structuring, isolation, and atomicity properties are
determined by the underlying transaction model. However, for workflows that are exe
cuted in an environment of heterogeneous processing entities transaction models which
were developed for distributed database systems are rarely sufficient. For example,
transaction models typically provide a predefined set of properties which may or may
not be required by the semantics of a workflow; conversely, processing entities involved
in workflow execution may not provide support for facilities required by a specific trans
action model, the reason being that transaction models are tailored towards processing
entities which are database systems [1, 4, 10].

Nevertheless, there are good reasons for assuming that what has been learned over
the years in the context of database transaction models and processing can fruitfully be
exploited for work.flow management. For example,

• a variety of advanced transaction models has been proposed in recent years which
aims at reflecting issues like modular software construction, user control over exe
cutions, modeling of complex or long-lived activities, cooperation, interactiveness,
or system federations [2, 7, 8];

• for executing multiple transactions concurrently, a number of correctness criteria
has been proposed which go considerable beyond traditional serializability [2];

1

• a great body of experience now exists in designing and implementing scheduling
devices for database systems and transaction processing (TP) monitors [9].

When enterprises run their business based on WFMS, these systems must have the same
industrial strength and robustness that, e.g., database management systems have today.
Moreover, advanced processing paradigms like "disconnected users" are to be supported
in such environments. Thus, architectural lessons learned by the database community
or the TP monitor community can contribute to WFMS architectures, but several new
issues must be incorporated into such architectural frameworks.

Another relP.vant area of application for WFMS is Business Process Reengineering
(BPR, [12]) . One of its major goals is to allow an enterprise to react fast in dynamic
environments. This requires the extraction of flow information (control, data, organi
zation) from application systems, to allow for the required flexibility of the software.
The resulting application structure also stimulates reuse, and enhances productivity of
application developers (e.g., composing applications from parts) . In this context, the
relationship of the workflow paradigm to the object paradigm becomes relevant.

The goal of this seminar was to bring together (1) researchers from the areas of
databases and information systems, and (2) developers as well as users of WFMS, in
order to get to an in-depth understanding of the issues, and to discuss demanding
questions and open problems in detail. These issues include

• the distinctive features of workflow management, as opposed to, for example,
CSCvV, groupware, or conferencing systems,

• a taxonomy of different workflow definitions, both from an informal and from a
formal point of view,

• the impact of advanced transaction models on workflow models,

• the relevance of the ACID properties,

• suitable correctness criteria for single and for concurrent workflow executions,

• architectures for WFMS and their relationship to recent standardization efforts
and middleware components in distributed computing, e.g., CORBA or DCE.

Since there are many different notions of workflow, ranging from a loose description of
a business process to rigorous definitions given in several theoretical papers, it is impor
tant to classify different definitions along with their applicability to a solution of various
practical and practically important theoretical issues of the WFMS systems. Such a
taxonomy can then be made fit with different notions of extended transactions mod
els, their correctness criteria, and their processing environments. As was said above,
advanced transaction models typically capture some aspects of workflows, but not all;
nevertheless, models like multi-level transactions or ConTracts, which relax atomicity
and isolation commonly associated with a transaction, appear applicable in specific
workflow contexts. Moreover, TP monitors can ensure transaction atomicity in a homo
geneous distributed environment. On the other hand, currently available WFMS allow

2

an execution of a workflow in a heterogeneous distributed environment but without
guaranteeing something like transactional ACID properties.

Regarding correctness, more research is needed on the question of how to extend
classical correctness notions for concurrent transaction executions to workflow manage
ment in a simple, yet formally precise and technically adequate way. This seems to be a
non-trivial task, due, for example, to the fact that workflows typically have to maintain
global invariants, while their constituent transactions need to preserve local constraints.
Additionally, workflow correctness requirements are often hidden in their specification,
as part of the "knowledge" about the underlying application and its dynamics . Another
aspect is that system architectures for WFMS need to enforce workflow rules along with
local systems concurrent transaction processing requirements (i.e. , local serializability,
rigorousness, etc.), so it is reasonable to ask whether a successful marriage of WFMS
with TP monitors and more generally with DBMS's is possible. Finally, recovery aspects
commonly attributed to a transaction-processing environment need new underpinnings
in the context of workflow management, due, for example, to the fact that compensation
is often more appropriate than simple undoing of actions.

The seminar clearly emphasized the view that workflow management is a core issue
of computer science and emerges from the transaction area; this justifies the term "trans
actional workflows." It explored transaction-related concepts for workflow management
(adequate modeling, correctness, scheduling, concurrency control, recovery), but also
touched upon related questions. The following is an abstract of my introductory talk
given on the first morning of the seminar:

The transaction concept has been around for many years, primarily in the database
area. It has undergone a considerable evolution from primitive read/write operations
to powerful operations described in a high-level script language. A recent idea, to be
studied in this seminar, is to transfer the transaction concept from data-centric settings
to process-centric ones, as brought along by workfiow management. To get the seminar
going, I first survey workfiow issues and applications, then summarize the transaction
concept, and finally try to give initial pointers on how the two fields could grow together,
or what obstacles are present. I end with a list of questions, to which we hopefully find
answers during this week.

References

[l] Y. Breitbart, A. Deacon, H.-J. Schek, A. Sheth, G. Weikum: Merging Application-Centric
and Data-Centric Approaches to Support Transaction-Oriented Multi-system Workflows;
ACM SIGMOD Record, September 1993.

[2] A.K. Elmagarmid (ed.): Database Transaction Models for Advanced Applications; Morgan
Kaufmann 1992.

[3] D. Georgakopoulos, M. Hornick, A. Sheth: An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure; Distributed and Par
allel Databases 3, 1995, 119-153.

3

[4] D. Georgakopoulos, M. Hornick, F. Manola: Customizing Transaction Models and Mecha
nisms in a Programmable Environment Supporting Reliable Workflow Automation; GTE
Tech. Report TC-0263-03-95-165, 1995.

[5] M. Hsu (ed.): Special Issue on Workf/.ow and Extended Transaction Systems. IEEE Data
Engineering Bulletin 16 (2) 1993.

[6] M. Hsu (ed.): Special Issue on Workfl.ow Systems. IEEE Data Engineering Bulletin 18
(1) 1995.

[7] F. Leymann: Supporting Business Transactions via Partial Backward Recovery in Work
flow Management, Systems; Proc. BTW '95 Databases in Office, Engineering and Science,
(Dresden, Germany, March 22-24, 1995), Springer 1995.

[8] F. Leymann: Transaktionskonzepte fiir Workflow-Managementsysteme; In: [12], 335-352.

[9] R. Obermarck (ed.): Special Issue on TP Monitors and Distributed Transaction Manage
ment. IEEE Data Engineering Bulletin 17 (1) 1994.

[10] M. Rusinkiewicz, A. Sheth: Specification and Execution of Transactional Workflows. In:
W. Kim (ed.): Modern Database Systems - The Object Model, Interoperability, and
Beyond, Addison-Wesley, 1995, 592-620.

[11] A. Sheth (ed.): Workfl.ow and Process Automation in Information Systems: State-of-the
Art and Future Directions; Proc. NSF Workshop, Athens, GA, May 1996.

[12] G. Vossen, J. Becker (Hrsg.): Geschiiftsprozeftmodellierung und Workfiow-Management
- Mode/le, Methoden, Werkze·uge; International Thomson Publishing, Bonn 1996.

1.2 Transactional Workflows - A Contradiction?

by Hans-Jiirg Schek

While for many it is no question that workflows should be transactional, it seems that
some experts doubt that transactional workflows make any sense. There are even papers
with claims that transactions and serializability are inappropriate or even undesired for
workflows. For those, transactional workflows clearly is a contradiction. But why are
workflows not transactions? Why not? What are transactions after all? What is
serializability? Some define serializability as the result of 2PL on data pages. Is this
the ultimate truth? What is correctness beyond serializability? Do we find answers by
moving to semantic serializability? And to semantic atomicity?

We could make a little test and look at the following sentences in order to find out
what the difference between transactions and workflows is. Here is the test. Please
check the following definitions and answer with yes, maybe, or no:

A transaction is

• a sequence of reads & writes on pages or records with ACID property,

• a sequence of SQL statements with commit or abort at the end,

• a program with embedded SQL and control statements,

4

• a program with several (asynchronous) RPC and trigger executions,

• a script with several service calls to resource managers coordinated by a tp monitor,

• control and data flow between activities coordinated by a workflow engine.

The test is easy. One has passed it if the number of yes answers is two or more. Note
that it is not the point to say that every sequence of SQL statements is a transaction or
that every script with service calls must be a transaction. The important point is that
it can be a transaction. It makes a lot of sense for the application developer to tell the
system that a sequence of service calls must be atomic and/or that it must be isolated.

Classical ACID transactions bundle persistence, atomicity and isolation together.
Clearly there is no inherent need to stay with this. It is not a shift of paradigm if
we require that future transactions must offer these properties more independently. It
must be possible to require atomicity without isolation for example, or isolation without
atomicity, if this is possible at all . Clearly we need to investigate whether dependencies
between these properties exist and what the restrictions are. We must stay on solid and
well-understood grounds. What is correct compensation in case of early commit? To
whom do I want to commit an activity and to whom should commits be deferred and how
long? Can I do forward recovery after partial rollback without generating cascades, i.e.
without undesired dependencies to other concurrent activities? What about alternative
executions and dynamic changes of the execution? What does correct execution and
controlled termination mean?

While these questions still require a lot of research, the point to make here is that
many of these questions can be answered by looking into theoretical foundations from
transaction research during the past ten years, such as work in [BBG89], [VHBS96],
[WS92] . Although politicians require paradigm shifts we should not be driven be this
and by fashion . \~1e must further develop our understood theory and apply and generalize
it. Our field needs soundness and continuity and less fashion waves.

References

[BBG89] Beeri, C., P.A. Bernstein, N. Goodman: A Model for Concurrency in Nested Trans
action Systems, Journal of the ACM 36, No. 2, pp. 230-269, 1989.

[VHBS96] Vingralek, R., Hasse, H., Breitbart, Y., Sebek, H.-J. : Unifying Concurrency Control
And Recovery of Transactions With Semantically Rich Operations. In: Journal of
Theoretical Computer Science, to appear 1996.

[WS92] Gerhard Weikum and Hans-J. Sebek: Concepts and Applications of Multilevel
Transactions and Open Nested Transactions. In: Database 'n·ansaction Models,
Editor: Ahmed K. Elmagarmid, Morgan Kaufmann, 1992.

5

1.3 Organization of the Report

The meeting brought together 35 scientists from 5 different countries. During the week,
25 presentations were given with plenty of discussion time during and after each; in
addition, ample time were reserved for discussions of special topics in small working
groups. The remainder of this report contains the final program (Section 2), abstracts of
the presentations (Section 3), working group summaries (Section 4), the complete list of
participants (Section 5), and, following recent practice, a collection of each participant's
URL (Scr.tion 6).

We felt that ;i,ll participants enjoyed the workshop and the pleasant and construc
tive atmosphere of the Dagstuhl Castle, which this time was coupled with splendid
weather throughout the whole week. We particularly wish to thank the Dagstuhl staff
for ensuring that everything ran so smoothly.

6

2 Final Program

The program consisted of talks and several working groups which reported their findings
on the last day. In addition, there was the usual Wednesday afternoon excursion, and
a presenta tion and demo of the DB & LP Web Server of Trier. In detail, the program
was as follows:

• Monday, July 15, 1996, 9-12.15pm
Chair: F. Leymann

1. Frank Leymann:
Opening Remarks, Participants' Introduction

2. Gottfried Vossen:
Transactional Workflows: An Introduction

3. Hans-Jorg Schek:
Transactional Workflows - a Contradiction?

Break 10.45-ll.15am

4. Gustavo Alonso:
Transaction Processing and Workflow Management

• Monday, July 15, 1996, l.45-5.30pm
Chair: G. Alonso

1. Frank Leymann:
Semantical Recovery and Crash Recovery in WFMS

2. Dieter Roller:
Workflow-based Applications

Break 3.30-4pm

3. Betty Salzberg:
Simplified and Formalized DSDT: No Heterogeneity, No Loops, just Log
Records

4. C. Mohan:
Exotica : A Workflow Management Project at IBM Almaden Research Center

• Tuesday, July 16, 1996, 9-12.30pm
Chair: G. V-/eikum

1. Johann Eder:
Workflow Transactions in Panta Rhei

2. Mathias Weske:
Event-Based Modeling of Workflow Executions

Break 10.30-llam

7

3. Klaus Schwab:
A Case Study: Transactional Workflows in the Cooperative System PlanKo
- Problems and Possible Solutions

4. Wolfgang Deiters:
Transactions in the FUNSOFT Net Approach for Process Management

• Tuesday, July 16, 1996, 2-5.30pm
Chair: C. Mohan

1. Christoph Bussler:
Reliable and Scalable Execution of Workflows in the Distributed WFMS MO
BI LE

2. Gerhard Weikum:
Considerations on Scalability and Availability in the MENTOR Architecture

Break 3.30-4pm

3. Gerti Kappel:
A Transaction Model for Handling Composite Events

4. Thomas Rose:
Document Management: Technology Means for Workflow Implementation

• Tuesday, July 16, 1996, starting at 7.30pm
Working Groups

• Wednesday, July 17, 1996, 9- 12.30pm
Chair: G. Kappel

1. Gerhard Chroust:
(a) Workflow - A Survey in the German-Speaking Countries
(b) Process Enactment in Software Development, Office Automation, and
Flexible Manufacturing - A Comparison

2. Andreas Geppert:
Design and Implementation of Process-Oriented Environments

Break 10.30-llam

3. Working Groups cont'd

• Wednesday, July 17, 1996, l.15-6pm:
Trip to Trier: guided tour of the city

• Wednesday, July 17, 1996, 7.30-9pm:
Demonstration of the DB&LP Web Server at the University of Trier
(by Michael Ley, U Trier)

8

• Thursday, July 18, 1996, 9-12.30pm
Chair: J. Klein

1. Peter Muth:
The Cooperative Activity Model

2. Andreas Oberweis:
Petri-Net-Based Workflow Management

Break 10.30-llam

3. Heinrich Jasper:
Time Issues in Advanced Workflows

4. Tony Bonner:
Concurrent Transaction Logic

• Thursday, July 18, 1996, 2-5.30pm
Chair: M. Weske

1. Rainer Unland, Ulrich Wanka:
Consistency Issues in Multi Agent Systems

2. Bernd Mitschang, Norbert Ritter:
. Cooperative DesignFlows in CONCORD

Break 3.30-4pm

3. Working Groups cont'd

• Thursday, .July 18, 1996, starting at 7.30pm
Working Groups cont'd

• Friday, July 19, 1996, 9-12
Chair: R. Unland

1. Hans Schuster:
Integration of (Transactional) Application Programs into Workflows

2 . .Johannes Klein:
Active Messaging - towards simple workflows

Break 10.30-11

3. Findings Reports by the Working Groups:
What Have We Learned?

9

3 Abstracts of Presentations

The following abstracts of presentations appear in alphabetical order of speakers' last
names. The titles showing up in this section may vary slightly from the titles of the
corresponding presentations as reported in the previous section.

Research Issues in Workflow Management Systems
Gustavo Alonso, ETH Zuerich, Switzerland

vVorkfl.ow Management Systems have enjoyed considerable success in the last few years.
They are, however, victims of their own success. Designed for small groups and small
loads, and without a clear understanding of the environment where they were going to
be deployed, workfl.ow products are far from being able to meet the requirements set by
current applications. Part of the problem is the goals of workfl.ow systems, which may
may not be within technological reach for a number of years. There is then the question
of whether current systems will survive long enough to become established tools or they
will disappear with their main ideas being discarded or, with some luck, incorporated
in a different set of products/tools.

From a research point of view this situation creates a number of uncertainties that
make it very difficult to decide which areas are worthwhile research topics and which
areas are simply fashionable topics but non-issues from a scientific and sometimes also
from a practical point of view. As part of the workshop the goal will be to determine
how much research needs to be done in this area, probably very little, and how much
engineering, most likely a lot. Additionally, a number of issues need to be studied in
terms of the role they play in workfl.ow systems.

Concurrent Transaction Logic
Tony Bonner, University of Toronto, Canada

In previous work, we developed Transaction Logic (or TR), which deals with state
changes in databases. TR provides a logical framework in which elementary database
updates and queries can be combined into complex database transactions. TR accounts
not only for the updates themselves, but also for important related problems, such as the
order of update operations, non-determinism, and transaction failure and rollback. In
this talk, we propose Concurrent Transaction Logic (or CTR), which extends Transac
tion Logic with connectives for modeling the concurrent execution of complex processes.
Concurrent processes in CTR execute in an interleaved fashion and can communicate
and synchronize themselves. Like classical logic, CTR has a "Horn" fragment that has
both a procedural and a declarative semantics, in which users can program and exe
cute database transactions. CTR is thus a deductive database language that integrates
concurrency, communication, and updates. All this is accomplished in a completely
logical framework, including a natural model theory and a proof theory. Moreover, the
framework is flexible enough to accommodate many different semantics for updates and

10

deductive databases. Finally, the proof theory for CTR has an efficient SLD-style proof
procedure. As in the sequential version of the logic, this proof procedure not only finds
proofs, it also executes concurrent transactions, finds their execution schedules, and up
dates the database. A main result is that the proof theory is sound and complete for the
model theory. Besides specifying database transactions, potential applications of CTR
include view updates, active databases and workflow management. Papers on TR and
CTR, a prototype implementation of TR, and a tutorial can be found at the following
URL: http:/ /db. toronto. edu: 8020/transaction-logic. html

Scalable and Reliable Execution in the Distributed
Workflow-Management-System MOBILE

Christoph Bussler, University of Erlangen, Germany

Workflow management is a relatively new area in the research community. The "gestalt"
of workflow, i.e., its functional contents is not yet precisely defined. New application
areas might require to add new functionality, on the modeling level as well as on the
implementation level.

MOBILE as a comprehensive approach to workflow management respects this and is
open in the following sense: the model of MOBILE, its language for defining workflow
types, its software architecture as well as its implementation is built in such a mod
ular way that extensions of functionality can be done easily, i.e., in a structured and
straightforward way.

Concentrating on software architecture and implementation work achieved so far, this
contribution emphasized the necessity of being able to adjust to requirements coming
from the deployment environment. If a certain network topology and communication
infrastructure is given, an implementation should be adjusted to that in such a way that
it fits optimal. Since environments change, one single implementation is never able to
cope with all equally good.

MOBILE therefore allows to be configured dynamically as needed. To support this
the MOBILE system is modularized according to functional criteria. These modules
stand by themselves and do not assume a certain environment. Because of this they
can be configured in various ways (like in one or multiple) servers such that special
circumstances can be dealt with easily in a networked environment.

Workflow 1994 - A User Survey
Gerhard Chroust, Kepler University, Linz, Austria

Workflow is a much-discussed topic in the press, but what is the real influence in in
dustry? In order to find out, our department initiated in fall 1994 a survey in Austria,
Germany and Switzerland based upon a questionnaire containing some 70 questions in
cluding subquestions. Some 370 questionnaires were returned (5The answers - even if

11

strictly speaking statistically not representative - showed some interesting aspects of
current use of workflow tools. The following observations could be made:

• Companies, on the average, have a good penetration with PCs and they are usually
interconnected.

• Despite the fact that 50% of the documents are created on the computer, most of
them are still archived and transported in paper form. Transport is largely done
by persons (even if a computer network is in place), in smaller companies by the
person having worked on the document, in larger companies by managers.

• Numerous copies are made, their number increases with company size .

• vVorkflow products seem to be used by small coherent groups only, communication
with the rest of the company is by conventional means.

• The concept of business process is not universally understood.

• vVorkflow products, when used , are considered very good by users .

• The return on investment is seen as satisfying.

• The use of workflow products has some useful influence on customer relations .

• Imaging and archiving are seen as the main functionality.

Summing up it seems that workflow products are - in the industrial world - still in
the experimental phase . Given the general satisfaction, they should make their way into
general usage.

Process Models in Different Areas: Comparing Paradigms
Gerhard Chroust, Kepler University, Linz, Austria

In many areas we see socio-technical processes, i.e., processes where humans and ma
chines cooperate in different roles. The processes in general need computer support.
Currently three areas receive considerable attention:

1. Software development : supporting work by a process model and in enacting envi
ronment

2. vVorkflow: supporting office work and the flow of documents by a supporting
environment.

3. Work cell design (CIM): defining and enacting process descriptions which define
the sections and behavior of the robots, machines and transport facilities within
the cell.

12

Comparison is done on

• the character of the process,

• the user's role perception,

• the documentation needs of the process,

• the process' security requirements,

• the multiplicity of the processes.

We argue that despite some differences the same enactment paradigm can be used.

Modeling Transactions in the FUNSOFT Net Approach to Process
Management

Wolfgang Deiters, FhG ISST Dortmund, Germany

In our approach we aim at supporting various phases of what we call the "life-cycle of
business processes." The phases are

• a modeling phase, the definition of explicit descriptions of the processes,

• an analysis phase, the validation and verification of models in order to detect
problems, errors and bottlenecks and to optimize the model, and

• an enactment phase, in order to support the processes to be carried out (workflows)
by appropriate IT-tools.

In order to provide support for these phases FUNSOFT nets, a high level Petri net
language, are being used in an approach that distinguishes between different represen
tations. On a user level representation different views emphasizing different aspects of
process models are offered. These view representations are mapped and integrated onto
an internal representation for analysis and enactment purposes.

An application of FUNSOFT nets revealed further requirements in order to appropri
ately describe and manage process models. These requirements are: - the identification
of an atomic sphere for certain activity schedules within a process model (described by
net parts in a FUNSOFT net) - the possibility to deal with conditions that make it nec
essary to stop and roll back process parts (that means to abort and roll back the firing
of net parts For supporting these requirements the FUNSOFT nets are being extended
by the concept of FUNSOFT net transactions.

In order to keep the resulting nets comprehensible in size (in terms of net nodes)
new net elements (non-refined and refined transaction agencies) have been introduced
on the user level representation. These transaction agencies identify the atomic sphere
(the net part that should be run under transactional properties) . Second, startup and
termination conditions are introduced in order to distinguish objects that are needed for

13

starting or terminating a transaction from those objects that are seen as intermediate
inputs or outputs. For the latter objects the isolation property is released. Furthermore,
they encompass definitions for abort and recovery. A transaction can be aborted due to
time constraints (if a specified time limit is exceeded), due to internal abortion trigger
(conditions defined in the process model), or due to external abortion trigger (abort by
an authorized user of the process management system) .

The required behavior of FUNSOFT transactions is achieved by mapping transaction
agencies onto nets in the internal process model representation. That means for each
transaction agency new net parts are generated that ensure the required transactional
properties. These net parts are integrated with those net parts from the user level rep
resentation defining the remaining process schedule. By that the resulting nets are kept
comprehensible for understanding process models on the user level representation while
the required transactional properties are ensured on the internal process representation .
A first version of the transaction concept for FUNSOFT nets has been implemented in
the CORMAN prototype for process management.

Workflow Transactions in Panta Rhei
Johann Eder, University of Klagenfurt, Austria

Transactional features for Workflow Management systems are needed for easier modeling
and executing business processes. For the consideration which transactional features
should be provided by a workflow management system we have to consider the division of
work between the workflow management system itself, the application programs invoked
by the workflow management system and the user. In particular, we found recovery an
important issue. We extend the definition of workflows with some information about the
compensatability of activities and generate from the workflow for usual situation a set of
alternate processes which are executed in the case of exceptions. Further transactional
features we introduce are the management of shared resources, the classification of data
with respect to their changeability and the management of time. Several of these features
have been implemented in our prototype system Panta Rhei .

Design and Implementation of Process-Oriented Environments
Andreas Geppert, University of Zurich, Switzerland

Cooperative process-oriented environments are complex, heterogeneous, distributed sys
tems whose behavior is defined by process models. Examples for such environments are
workflow systems and process-centered software development environments.

We propose an executable software architecture model to structure and describe this
kind of environment. The major constructs in this model are brokers and services. Ser
vices model some functionality of the system or its components, they can for instance
refer to activities to be executed in a workflow. Brokers are reactive components being
able to react to simple events (such as requests for a service, a reply to a service request,

14

etc.), or composite events (e.g., the termination of multiple concurrent activities). Bro
kers can, e.g., represent processing entities in a workflow or wrap an external system.
Thus, they do not only reflect the static architecture, due to their reactiveness they are
also able to execute workflows.

A software architecture (in terms of brokers and services) is made executable through
a low-level event engine, called EvE. EvE supports event-condition-action rules (ECA
rules). These rules are used to implement the reactive behavior of brokers. The dis
tributed multi-server architecture of EvE makes it possible to execute workflows in geo
graphically distributed environments.

Time Issues in Advanced Workflows
Heinrich Jasper, University of Oldenburg, Germany

Workflow management systems schedule tasks in accordance with previously known
process structures. Additionally, advanced workflow applications have to deal with
parametric processes and exceptional situations. Using active database technology to
implement such applications results in mature demands for their respective time han
dling capabilities. This regards both, the possibilities of time specification as well as a
sophisticated time management within the rule execution mechanism. It turns out, that
neither the management of time in conventional database systems nor the handling of
time in most active database systems are sufficient for controlling workflows. This is
due to the following problems that have to be solved:

1. Lack of a semantically well founded notion of time for both, data management as
well as rule processing in active databases.

2. Lack of a uniform sub-language for the specification of time constraints for both,
data and rules.

3. In order to support reliable rule execution for workflow management, a relaxed
transaction model must be used. Here, the recovery of the active component of
the DBMS, especially of time-events is a crucial problem which has to be tackled .

As an overall result, it turned out that techniques fulfilling soft real-time requirements
are sufficient in the aforementioned areas .

A Transaction Model For Handling Composite Events
Gerti Kappel, University of Linz, Austria

Rule-based (re)active systems are a commonly accepted solution in the area of non
standard applications in order to express an event-driven and constraint-driven system
environment. Several attempts have been made to integrate active concepts into object
oriented databases and to extend active knowledge models to gain more and more ex
pressive power and flexibility. Unfortunately, execution models of active systems do not

15

fully exploit all the advantages of the provided knowledge models. Among the most
challenging research problems is the development of a transaction model in the presence
of so called composite events. Our approach of multi-parent sub-transactions tries to
fill this gap. Multi-parent sub-transactions extend the well-known nested transaction
model by allowing multiple transactions to start a sub-transaction in cooperation. In
particular, we will discuss the impacts of our extensions on the locking protocol of the
original nested transaction model.

Active Messaging
Johannes Klein, Tandem Computers Inc. , USA

Data management, request processing and, messaging are the cornerstones of commercial
data processing. During the 70's and S0's the research community developed modern
concepts for data management and request processing. Examples are SQL and RPC
style invocation mechanisms. Messaging is the focus of the 90's. Research on workflow
management and mobile agents are the result. As with most efforts initial concepts are
complex and difficult to use. Especially in workflow management complex programming
paradigms are dominant. Acceptance of workflow management systems will depend on
a simple but powerful programming model.

Active messages introduce an approach based on task containers. Task containers
represent individual steps as well as complete business processes. Controlflow is part of
the definition of a task container. Business processes are defined as a composition of task
containers. Predefined task containers are provided as templates for repetitive tasks.
Task containers can be modified at any time during execution of a business process to
cope with exceptions. Once a task container has been instantiated it moves from service
to service. All services are executed with transactional protection.

Task containers define a simple but powerful programming model for workflow appli
cations. Domain specific constraints will be implemented by specialized task containers.
Java and similar technologies will allow the exchange of task containers in heterogeneous
networks and across organizational boundaries.

Crash Recovery and Semantical Recovery in WFMS
Frank Leymann, IBM Germany

Production workflow systems deal with the enactment of business process models of
high business value for enterprises. Traditionally, corresponding application systems are
implemented via transactions . So, it does not surprise that users of production work
flows ask for "transactional features" supported by WFMS. First, the engine itself must
be translated in the sense of providing Phoenix behavior (persistent states, forward
recovery, etc.) . Secondly, since WFMS stimulate reuse ("flow independent" activity im
plementation) of programs, these programs must not assume transaction boundaries;
these boundaries are specified and established at the workflow level ("atomic spheres") .

16

In addition, since workflows represent (very) long lasting computations the encompassed
steps of which are often not reversible, a partial compensation-based rollback mecha
nism has to be provided ("compensation spheres"). This positions WFMS as the next
generation of transaction management systems.

Exotica: A Project on Workflow and Advanced Transaction Management
C. Mohan, IBM Almaden Research Center, San Jose, USA

The Exotica project has focused on exploring advanced transaction management con
cepts and many issues relating to workflow management. Our work has been done in
the context of IBM products CICS, !VIQSeries and Flow Mark, and Lotus Notes. Many
papers have been written (see http://www.almaden.ibm.com/cs/exotica) which relate
to the following topics: scalability, availability, exploitation of transactional messaging
for distributed workflow management, mapping advanced transaction models like Sagas
and Flex transactions to FlowMark, providing high-level process definition capabilities
on top of Lotus Notes, supporting disconnected mobile users of Flow Mark, etc. A proto
type has been built which modified FlowMark to allow ready work items to be checked
out and then be executed at a time when the client is not necessarily connected to the
server. In the future, we plan to provide more advanced functionality in this area (e.g.,
checking out a ready activity and some follow-on non-ready activities). Currently we
are also exploring better integration of FlowMark with desktop applications (e.g. , OLE
enablement) and the Internet. Early on in the project we also worked on compensa
tion concepts for legacy applications which involve TP monitors like CICS. RPccntly,
we have also been analyzing the use of DB2 by Flow Mark instead of ObjectStore as the
repository for process control data.

The Cooperative Activity Model
Peter Muth, University of the Saarland, Germany

With the emergence of cooperative applications it turned out that traditional transaction
concepts are not suitable for theses scenarios. We propose a cooperative activity model
that provides the required transactional properties for cooperative scenarios. The talk
focuses on the problem of merging actions of different co-workers, executed in isolation,
into a single, legal history. We investigate the usability of well-known conflict predicates
like read/write conflicts and commutativity as the basis for dependency relations which
define a correct merge. We finally propose a new dependency relation which is less
restrictive than the other relations investigated, and is defined independent of actual
histories.

17

Petri Net Based Workflow Management
Andreas Oberweis, University of Frankfurt, Germany

The goal of workflow management is to support business processes by using information
and communication technology such as workflow and database management systems. A
business process model usually describes a business process from an application oriented
perspective and includes a description of aspects such as ordering of activities, temporal
aspects, r.ost a.nd quality issues, organizational constraints. Different semi-formal nota
tions have been proposed for business process modeling. A workflow program on the
other side is an excr.utable description of what a workflow management system should
do with respect to a certain workflow. It includes synchronization aspects, database
accesses and interfaces to application software, hardware devices etc . Between busi
ness process model and workflow program there exists a "semantic gap" which can be
bridged by formal , platform and implementation independent languages, e.g., Petri nets.
It should be noted that in general there does not exist a 1:1 mapping between business
process model, formal "conceptual" model and workflow program: some information is
only contained in the business process model, some information only in the workflow
program. Usually it is not possible to map one model completely automatically into
another model. High-level Petri nets are closely related to databases: places can be
interpreted as data types, a place marking as a database state, a transition as a type of
database transaction and a transition occurrence as an instance of the respective type.
Petri nets are extensible in a way that arbitrary data models may be used to model
places.

A Petri net specifies a type of workflow, a partial ordered execution of transition
occurrences in the net describes au instance of a workflow type. The occurrence rule
precisely describes, what transitions are enabled (i.e. may occur) in a given state and
how a transition occurrence changes the state. Additionally, spheres of atomicity or
isolation can be defined in a given Petri net, and mechanisms to guarantee these spheres
can be included as refinements of the given net. Petri net interpreters check for a given
initial marking, what transitions are enabled and "fire" selected enabled transitions.
They can be used for net simulation to validate a given workflow schema or to do
"What-if-analyses" at workflow runtime. A net interpreter can also be used as a simple
workflow engine. However, this requires interfaces to application programs, database
system(s), hardware devices and workflow users. Petri net based workflow models can
also be used as a formal basis for workflow distribution in a networked environment:
they allow fragmentation of workflows and allocation of workflow fragments in a natural
way. Data and workflow fragmentation and allocation can be handled in an integrated
formalism.

A Petri net interpreter can also be used to control workflows in (standard) application
software systems (and by this contribute to the systems' flexibility). Finally a Petri net
interpreter may also be used as a dynamic extension of a relational database management
system on top of transaction manager, query optimizer etc., leading to some kind of
"database with integrated workflow support."

18

Cooperative Design Flows in CONCORD
Norbert Ritter, University of Kaiserslautern, Germany 1

Amongst .the most important components in concurrent design/engineering environ
ments is a flexible and sophisticated activity management. Designflow management and
cooperation control are crucial issues of activity management. An adequate support
requires means for guiding designers through design tasks as well as mechanisms for
coordinating the work of several designers involved _in a common design process. The
latter, in turn, demands flexible coordination and cooperation concepts supporting both,
a pre-planned as well as a free cooperation among designers.

The CONCORD (CON trolling COopeRation in Design environments) provides activity
control concepts for design environments by integrating transaction protection of design
data manipulations, designflow management, as well as cooperation control. This pre
sentation focuses on the interplay of cooperation control and designflow management
and discusses how the above mentioned flexibility requirements are met in CONCORD.

Workflow-Based Applications
Dieter Roller, IBM Germany

The structure of applications is changing from monolithical applications managing their
own data and control flow to workflow-based applications where the control- and data
flow is described to and managed by a workflow management system. This type of
application is by nature distributed and executing in a heterogeneous environment. A
new methodology called Process-based Case supports the creation , debugging, testing,
and monitoring of workflow-based applications. The underlying two-level programming,
where process modeling is supported by the WFMS build-time and activity implemen
tation is performed by Visual Builders, allows the rapid construction of applications. In
a final step, the activity implementations are represented by the invocation of methods
against business objects.

Document Management: Driving Technology for the Implementation of
Business Processes

Thomas Rose, FAW Ulm, Germany

This position statement addresses workflow management from an application-oriented
perspective. Workflow management is intended to improve an organization's perfor
mance in terms of quality of services, customer responsiveness, and traceability of oper
ations, be it for eco-auditing or other certification purposes. Yet, companies that have
not reached a sufficiently mature level of organizational management are not familiar

1 Joint Work with Bernhard Mitschang, Technical University of Munich, and Theo Harder, University
of Kaiserslautern.

19

with the concept of business processes. They cannot name and describe their processes.
Hence, they are not well enough prepared to start electronic workflow management.
They, however, face huge amounts of documents, which ought to be consistent and float
around the enterprise. In these cases, document management has proven to be the
key element to disembark on designing and eventually implementing business processes:
introduce electronic document handling facilities first, and then implement workflow
applications on top of it.

Simplified and Formalized DSDT: No Heterogeneity, No Loops, Just Log
Records

Betty Salzberg, Northeastern University, Boston, USA

DSDT (Durable Scripts containing Database Transactions) (ICDE 1996, pp. 624-633)
is a proposal for making long-running activities durable. These activities are described
with a script containing code units (CUs). Code units are either deterministic (DCUs) or
logged (LCUs). Deterministic code units (DCUs) can be replayed during recovery from
a failure . Code units which cannot be replayed (LCUs) include calls to transactions,
user input, or received messages from remote locations, for example. A standard DBMS
is used for logging results of LCUs. The most recent stable script state (SSS) is placed in
the standard log checkpoint record. The state of the script can be recovered by obtaining
the SSS from the log checkpoint and replaying DCUs and obtaining information from
log records pertaining to the script which are in the log after the checkpoint. This can
be done in the same forward pass made by a standard recovery manager after system
failure .

Integration of (Transactional) Application Programs into Workflows
Hans Schuster, University of Erlangen-Nuremberg, Germany

Application programs are a substantial asset of an organization. The introduction of
workflow management technology must provide means and mechanisms to integrate ex
isting application programs which are not aware of workflow management systems in
the same seamless manner as newly written, workflow-aware applications. This work
presents a general approach for integrating workflow-unaware application programs into
workflow management systems. Access to application programs within workflows is done
using so-called workflow applications. Workflow applications are internally represented
by workflow application objects. These provide a unique interface for the workflow
management system to invoke external programs and build an abstraction from imple
mentation details and characteristics of application programs (e.g., calling mechanism).
Thus, the complexity of the workflow management system is reduced. Our concepts
enable the integration of application programs which are implemented on top of het
erogeneous operating systems or base services into our prototype workflow management

20

system Mobile. Furthermore, we support the execution of several transactional appli
cation programs within a single transaction controlled by the workflow management
system.

Usage of Transactional Concepts in the Cooperation Management System
PlanKo: Requirements, Problems and possible Solutions

Klaus Schwab, University of Bamberg, Germany

The goal of the Plan Ko Cooperation Management System is to integrate different CSCW
applications and workflows within a business process. Integration becomes necessary
because most of the CSCW systems and workflow systems act as specialists. They only
support a specific type of cooperation or communication instead of taking care of various
cooperative needs of real-life work-groups involved in a business process. Three different
levels of integration can be identified, which result in the three layer architecture of the
PlanKo Cooperation Management System.

The Basic Data Storage Layer provides access to data jointly used by different co
operations of different types. Different CSCW systems and a workflow management
system have been implemented at the Cooperative Application Layer. The Cooperation
Access Layer enables cooperating people to be aware of their involvement in different
cooperations and allows to manipulate it. On each layer integration components have
been added: The Cooperative Context Control Component manages the access to data
objects by cooperative applications. The Action Flow Control Component synchronizes
waiting dependencies between different activities (steps) within different cooperations.
The Cooperation Manager provides a common interface for the creation and the man
agement of cooperations. Introduction of high level transaction concepts arise several
problems within this environment. Isolation for examples is not an appropriate concept,
for the results of work done in a single application should be externalized as soon as
possible. An automatic rollback may therefore result in inconsistent data. Furthermore
it is not clear, how "to roll back" more than one single workflow for there exists various
dependencies between workflows. Therefore the only solution in respect to data sharing
considered up to now is a specialized version management system.

Consistency Issues in Multiagent Systems
Ulrich Wanka, University of Muenster, Germany2

The aim of the talk was to identify requirements for a Customized Transaction Manage
ment (CTM) for Multiagent Systems (MAS). MAS is a subfield of Distributed Artificial
Intelligence (DAI) that investigates how a set of different autonomous problem solvers
can be coordinated in a way that they are able to cooperate in an intelligent way. The
workflows or problem solving processes within such a system require different forms of

2 Joint work with Rainer Unland, University of Essen, Germany.

21

cooperation. We differentiate between quality-sharing, task-sharing, and result-sharing.
Whereas the first two forms can be implemented by nested transactions, the latter re
quires a fully cooperative environment (i.e., no isolation, early visibility of results). Since
robustness is of uttermost importance for such kind of systems we suggest a partial roll
back strategy supplemented by compensation. The question of how autonomy of the
agents interferes with these methods remains to be investigated.

Considerations on Scalability and Availability in the MENTOR
Architecture

Gerhard Weikum, University of the Saarland, Germany

The MENTOR project aims to reconcile a rigorous workfl.ow specification method with
a distributed middleware architecture as a step towards enterprise-wide workfl.ow man
agement. The project uses the formalism of state and activity charts for specification.
For scalability, a workfl.ow is partitioned into distributable components that can be as
signed to different workfl.ow servers, depending on the performance requirements and
organizational decentralization of the application. Fault tolerance issues are addressed
by using a TP monitor for communication between distributed workfl.ow servers and
by maintaining an additional log of workflow state information at each server. High
availability can be ensured by optionally replicating workflow servers at different sites,
with the degree of replication chosen according to the required availability level.

Event-Based Modeling of Workflow Executions
Mathias Weske, University of Munster, Germany

Workflow executions have so far mostly been treated in technical terms like client
server communication or the use of persistent message queues. However, a formal and
system-independent way to model workflow executions is suited to describe and reason
about workflow executions. In this talk we propose an event-based model that regards
a workflow execution as a distributed computation, focusing on the events and their
ordering that occur during the workfl.ow execution. Hence, workflow executions are
represented by event structures that can be analyzed w.r.t . correctness properties, like
the compliance of a workfl.ow execution with its specification. Finally, we discuss the
use of our approach in the dynamic modification issue, i.e., to describe and reason about
workflow executions in presence of dynamically changing workflow models.

22

4 Working Groups

During the week four different working groups were formed, each of which met several
times to discuss particular issues in depth. Following are the summaries of these groups,
which were presented on the last morning of the seminar.

4.1 Concurrent Executions

The basic subject of this working group was the question of what are reasonable cor
rectness criteria for concurrent executions of multiple workflows. The major questions
raised and hypotheses issued for this working group during an opening plenary session
were the following:

• The process model is the specification of correctness, at least for single processes
or workflow instances, not for parallel processes. Therefore, correctness for single
workflow instances is the responsibility of the application programmer, and as a
consequence it may be the case that all interleaved executions of workflows are
correct.

• What are good examples for situations or scenarios in which correctness (of con-
current executions) really is an issue for workflows?

• What is essentially meant by correctness?

• Is "workspace serializability" the right (or at least a good) notion?

• Since there is more than a single shared resource in a workflow execution con
text, it is reasonable to distinguish static from dynamic constraints. Are such
(concurrency) constraints needed for compensation issues?

• Are "spheres of isolation" the right concept? Are they independent of spheres of
atomicity?

• Is serializability more restrictive that other correctness criteria, or is it more lib
eral? Is serializability actually what we want, or can be get away with something
simpler (e.g., monitors, semaphores)?

• Can there be correctness by controlling the data, or is it the actions which should
be controlled?

As could be expected, not all of these questions could be discussed or even answered
during the meetings of the group. The following is a summary of what did come out
and which (in part preliminary) conclusions were reached:

1. A reasonable view of the situation present in the concurrent execution of workflows
distinguishes two levels: The upper level is represented by the workflow specifica
tion and the application design, while the lower level comprises the database(s) and
its/their transactions. This assumes that workflow executions access databases by

23

means of transactions; since transactions operating on databases need synchro
nization, they get this through the respective DBMS mechanisms. It follows that,
at the lower level, concepts like serializability remain in effect.

On the other hand, work.flows (as entities of a higher level of abstraction) have
to maintain business rules and dependencies driven by business goals, referring to
accesses applied to shared enterprise data. If business rules are part of a given
specification, which is often the case, no extra mechanism is required to enforce
them. If they are not, a reasonable approach is to distinguish global consistency
(at the upper level) from local consistency (at the lower level); a desirable cor
rectness criterion would provide conditions under which local correctness (such as
serializability) implies global correctness (w.r.t. business rules). Obviously, busi
ness rules create dependencies between workflows, and it may even be reasonable
to distinguish business rules from business requirements.

The situation just described can be further refined according to whether it suffices
to keep the overall situation consistent (e.g., a bank giving credit should not go
bankrupt), or whether each individual workflow has to maintain an enterprise rule
(e.g., each bank workfiow earns money for the bank) . An open question is whether
there are abstractions which allow valid statements for a sufficiently large class of
applications.

2. Since workflow transactions are typically long-running activities, atomicity and
locking are no longer applicable. In this situation, "atomic spheres" may some
times help, but generally compensation will be required to recover from a faulty
situation. To enforce local, data-oriented dependencies (as found in databases),
synchronization could hence alternatively be left to the objects themselves: objects
would have to be aware of accesses to them and the correct sequencing for these;
the appropriate paradigm could be that of "agents," and a relevant formalism to
describe and investigate this approach could be automata, possibly augmented by
synchronization means such as timestamps.

3. With respect to recovery, it occurred to the group that lower-level transaction
synchronization also requires failure handling, for being able to properly react to
transaction aborts or systems errors, whereas higher-level workflows and applica
tions may even tolerate failures. The latter particularly applies when a workflow
specification comprises detailed exception handling and treatment of failures and
abnormal situations.

4. The examples discussed by the group for getting a better understanding of correct
ness issues included banks and private homes (credits and sales) . These examples
indicate that there exist synchronization problems in applications for which ex
plicit solutions have been developed. For example, if someone tries to get credit
based on his house and at the same time tries to sell the house to another per
son, the local central registry for house ownership will detect the incompatibility
between these two actions and prevent the execution of one of them. Here, the

24

explicit solution is that registry, which has been invented a long time ago for ex
actly the purpose of synchronizing such conflicting actions. In workflow terms,
contacting the registry is an action included in credit approvals or house transfers
after a sale. In other words, these "synchronization units" are an integral part
of the underlying application and hence contained in a corresponding workflow
modeling.

5. The above does not imply that there are no synchronization problems left in con
current workflow executions. Indeed, the con11iderations so far implicitly referred
to workflows which can be completely specified in advance. However, there is an
increasing number of situations in workflows are ad-hoe, i.e., not specified at all
before their execution is launched. For such situations, the above may not be
applicable.

(Summary by G. Vossen; participants were A. Brayner, J. Ebert, J. Eder, P. Muth,
N. Ritter, G. Vossen; comments or questions were also contributed by G. Alonso, T .
Bonner, G. Chroust, J. Klein, F. Leymann, B. Salzberg, H. Schek, G. Weikum.)

4.2 Recovery and Error Handling

We assume the following architecture: A workflow engine, the top layer, makes calls to
several tasks at the lowest layer, and a durable queue maintains information about these
calls at a middle layer. A database stores information about the state of the workflow.

The following failures can occur:

1. The engine can fail.

2. A task can return: fail, abort, success, or can return nothing, where "fail" means
the task was canceled by its user, "abort" includes task/system failures such as
deadlocks, beyond the control of the user.

There are various kinds of tasks, including

• manual/interactive tasks with the "user" involved, e.g., filling out forms, editing,

• purely manual, e.g., a robot in an assembly line,

• automatic (machine only), e.g., database transactions.

Possible reactions to the various kinds of failures, depending on the type of task involved
are the following:

1. If the workflow engine fails, the state is recovered from the workflow database.
If some tasks were in progress, the engine can wait for them to respond or can
inquire about their status.

25

2. If a task fails it is up to the task to do any partial recovery such as resuming
an editing session at the most recent saved version. The workflow engine cannot
help for this, but it can be programmed to do various actions when a task fails .
This may trigger some manual intervention, automatic intervention or the failure
can be ignored. Alternatively, the task may be retried N times or there may be a
timeout before other actions are taken.

3. Automated tasks such as database transactions may be undone if there is a failure,
and then tried again. It may not be possible to undo manual actions. It may not
be desirablP- to undo user-involved (manual interactive) tasks such as filling out a
form; for such tasks, the goal is to disturb the user as little as possible.

This working group ended by discussing several types of errors and ways those errors
could be handled.
(Summary by Betty Salzberg; participants were Walter Liebhart, Ute Masermann, Ger
hard Chroust, Claus Hagen, Betty Salzberg, Klaus Schwab, Rainer Unland, Ulrich
Wanka.)

4.3 Event-Driven Workflow Execution

In this working group, we have discussed the use (and usefulness) of "events" for work
flow modeling and execution. In the very basic sense, an event (occurrence) is a happen
ing of interest either in the system itself or in its environment. In many areas (including
active databases, extended transaction models, distributed systems, software architec
ture, user interfaces), the general notion of event has been used to, e.g., describe the
behavior of systems and prove correctness properties of distributed systems and algo
rithms. Thus, we feel that it is worthwhile to consider events for several aspects of
workflow management.

We considered two areas in more detail:

• specification and semantics of workflows,

• execution and evolution of workflows.

With respect to the first topic, we agreed that "events" (in the sense of event-condition
action rules (ECA rules) as found in active databases) are not a useful concept for
specifying workflows. This is due to the fact that the resulting set of ECA rules would
be very large and, thus, hard to understand.

V/e then -discussed events as a means to describe the semantics of workflows. Concep
tually, we considered workflows on three different levels of abstraction. On the topmost
level, workflows are specified in some formalism (Petri Nets, state-charts, dedicated spec
ification languages). Such specifications might be (internally) represented as extended
regular expressions over events, where the extension refers to constructs for parallelism.

On the bottom level we consider event histories. An event history is a partially
ordered set of events and represents the order of events which occurred during a workflow.
The correctness of a complete event history is defined by constraints which specify

26

ordering of events and coexistence of events. Ordering of events is either expressed as
delay, i.e., a > b, (a is delayed until b occurred) or deadline, i.e. b < a (b cannot occur
after a occurred). The ordering constraints allow for the following event histories: {},
{a}, {b}, {b,a} . Coexistence of events is expressed by logical implication, i.e., a-+ b.
The follO\ving histories satisfy the implication: {}, { b}, { a, b}, { b, a}.

Event histories can be used to reason about the correctness of workflow executions.
Consider the aforementioned regular expressions as a language definition defining the
intention of a workflow (type). A concrete workflow execution is then considered as
correct if the corresponding event history is a phrase of the language defined by the
expression.

Correctness can be either proven after workflow execution (by checking a history
against the expression), or it can be enforced during workflow execution (by ensuring
that the event history conforms to the expression) .

We further considered event-driven workflow execution, and compared it to other
approaches (i.e., script-based approaches). The event-driven approach means that a
workflow specification is compiled into a set of rules (e.g., ECA rules) , while in many
script-based approaches an interpretative approach is pursued. We concluded that event
driven workflow execution performed by some kind of active persistent system is sup
posed to be more efficient than an interpretative one for the several reasons.

• The workflow definitions are compiled into ECA rules, and due to the executability
of these rules we expect a performance gain in comparison to interpretation of
scripts.

• Detection of relevant events is performed by the engine and polling for event
occurrences (as it is necessary in script-based approaches which operate on top of
a database) is circumvented.

• Condition evaluation can be pushed into the engine and can be performed directly
after event detection (thus process dispatches are avoided and active workflows
can be scheduled more efficiently) .

For practical cases, several solutions concerning the specification of ad-hoe workflows
and evolution of workflow definitions still have to be addressed. In order to define ad
hoe workflows, it must be possible on the implementation level to define new ECA rules
"on the fly". We shortly discussed self-modifying sets of ECA rules as means to handle
workflow evolution as well as for flexible exception handling. We concluded that more
work is necessary to understand the problems and possible solutions of workflow evolu
tion in event-driven approaches (this certainly holds for script-based approaches, too),
while we felt that the technical issues related to evolution can be handled in some way.
(Summary by Andreas Geppert; participants were Heinrich Jasper, Gerti Kappel, Jo
hannes Klein, Mathias Weske).

4.4 Scalability

The main difficulty when discussing scalability of workflow systems is that the compo
nents are not known, i.e., unlike in databases, in workflow systems it is still unclear

27

which are the key system components and their impact on performance and scalability.
As a result, every product and prototype addresses the problem in an entirely ad-hoe
manner in a process that resembles more debugging than optimization. Questions that
need to be addressed by the research community are the overall architecture of a work
flow system and the role of the database as a building block. For instance, it is possible
that many of the scalability problems of workfl.ow systems can be solved by using the
appropriate database (replicated, scalable, high performance, maybe a parallel database
and so on). The discussions in the work group were centered around this premise and,
hence, several areas were identified in which research is needed:

1. Extend/export database functionality for workfl.ow applications. Current databases
do not provide the primitives needed in a workflow environment. It would not be
very difficult to customize the database engine to the operations and character
istics of workflow tools so as to facilitate their integration. Using commercial,
industrial strength databases, many of the scalability problems could be solved.

2. Workflow requirements are not standard. It is widely recognized that workfl.ow
requirements go beyond what is technically feasible nowadays and are different
from traditional database applications. For instance, workflows tend to be heavily
update oriented. It is therefore necessary to continue the research work in areas
such as distributed systems, very large databases, and distributed information
systems.

3. Scalability is determined by the database architecture. Judging from the experi
ence of commercial products, many scalability problems arise from the integration
of the workflow system with the database. From the modeling stages to the actual
database access, workflow systems still lack a clear understanding of what are ad
equate design approaches and how they can be optimized. Scalability will remain
a problem as long as there are no sound concepts in which to base the design.

4. Workflow model/workload as a scalability factor. Scalability is not always an issue.
There are many workflow applications in which the nature of the environment
allows to apply known techniques such as data partition and data replication to
solve the scalability problem. It is an issue that deserves further analysis when
these techniques can be used and how they can be adapted to workfl.ow systems.

(Summary by G. Alonso; participants were Frank Leymann, C. Mohan, Dieter Roller,
Christoph Bussler, Hans Schuster)

28

5 List of Participants Universitat Koblenz-Landau
Rheinau 1

1. Gustavo Alonso D-56075 Koblenz, Germany
Institut fiir Informationssysteme ebert@informatik.uni-koblenz.de
ETH Ziirich
ETH-Zentrum 8. Johann Eder

CH-8092 Ziirich, Switzerland Universitat Klagenfurt

alonso@inf.ethz.ch Institut fiir Informatik
U11iversitatsstrasse 65-67

2. Anthony Bonner A-9022 Klagenfurt, Austria
Dept. of Computer Science eder@ifi.uni-klu.ac.at
University of Toronto
10 King's College Road 9. Andreas Geppert

Toronto, Ontario M5S 1A4, Canada Universitat Ziirich

bonner@db.toronto.edu Institut fiir Informatik
Winterthurerstr. 190

3. Angelo Brayner CH-8057 Ziirich, Switzerland
Institut fiir Wirtschaftsinformatik geppert@ifi.unizh.ch
Universitat Munster
Grevenerstrafie 91 10. Claus Hagen

D-48159 Miinster, Germany Institut fiir Informationssysteme

brayner@helios.uni-muenster.de ETH Ziirich
ETH-Zentrum

4. Christoph Bufiler CH-8092 Ziirich, Switzerland
Universitat Erlangen-Nuernberg hagen@inf.ethz.ch
Lehrstuhl fiir Datenbanksysteme

11 . Stefan Jablonski (IMMD VI)
Martensstrafie 3 Universitiit Erlangen-Nuernberg

D-91058 Erlangen, Germany Lehrstuhl fiir Datenbanksysteme

bussler@informatik.uni-erlangen.de (IMMD VI)
ivlartensstrafie 3

5. Gerhard Chroust D-91058 Erlangen, Germany
Universitat Linz jablonski@informatik. uni-erlangen .de
Systems Engineering and Automation

12. Heinrich Jasper Altenbergerstr. 69
A-4040 Linz, Austria Universitat Oldenburg

chroust@sea.uni-linz.ac.at Fachbereich 10 Informatik
Postfach 25 03

6. Wolfgang Deiters D-26111 Oldenburg, Germany
Fraunhofer-Gesellschaft j asper@informatik.uni-oldenburg.de
Inst. f. Software & Systemtechnik

13. Gerti Kappel Josef v. Fraunhoferstr. 20
D-44227 Dortmund, Germany Abt. fiir Informationssysteme

deiters@do.isst.fhg.de Universitiit Linz
Altenbergerstr. 69

7. J iirgen Ebert A-4040 Linz, Austria
Fachbereich Informatik gerti@ifs.uni-linz.ac. at

29

14. Michael Kifer 21. Peter Muth
SUNY at Stony Brook Universiiit des Saarlandes
Computer Science Dept. Fachbereich 14 - Informatik
Stony Brook, NY 11794-4400, USA Postfach 15 11 50
kifer@cs.sunysb.edu D-66041 Saarbriicken, Germany

muth@cs.uni-sb.de
15. Johannes Klein

Tandem Computers Inc. 22. Andreas Oberweis
10555 Ridgeview Court J.W. Goethe-Universitaet
Cupertino, CA 95014, USA Lehrstuhl f. Wirtschaftsinformatik II
klein_johannes@tandem.com Postfach 11 19 32

16. Frank Leymann
D-60054 Frankfurt, Germany
oberweis@wiwi.uni-frankfurt.de

IBM Entwicklung GmbH
Dept. 2366, IBM GSDL 23. Andreas Reuter
Hanns-Klemm-StraBe 45 Universitii.t Stuttgart
D-71034 Boeblingen, Germany Institut fiir Parallele und
frankJey@vnet.ibm.com Verteilte Hiichstleistungsrechner

Breitwiesenstr. 20-22
17. Walter Liebhart D-70565 Stuttgart, Germany

Universitii.t Klagenfurt reu ter@informatik. uni-stuttgart .de
Institut fiir Informatik
Universitii.tsstrasse 65- 67 24. Norbert Ritter
A-9022 Klagenfurt, Austria Universitii.t Kaiserslautern
walter@ifi.uni-klu.ac.at Fachbereich Informatik, AG DVS

Postfach 3049
18. Ute Masermann D-67653 Kaiserslautern, Germany

MU Liibeck ritter@informatik.uni-kl.de
Institut fiir Informationssysteme
Osterweide 8 25. Dieter Roller
D-23562 Liibeck, Germany IBM Entwicklung GmbH
maserman@ifis.mu-luebeck.de Dept. 2366, IBM GSDL

Hanns-Klemm-StraBe 45
19. Bernhard Mitschang D-71034 Boeblingen, Germany

TU Miinchen droller@vnet.ibm.com
Institut fiir Informatik
Orleansstr. 34 26. Thomas Rose
D-81667 Miinchen, Germany FAW Ulm
mitsch@informatik.tu-muenchen.de Helmholtzstr. 16

20. C. Mohan
D-89081 Ulm, Germany
Rose@faw.uni-ulm.de

IBM Almaden Research Center
K55/Bl 27. Betty Salzberg
650 Harry Road Northeastern University
San Jose, CA 95120-6099, USA College of Computer Science
mohan@almaden.ibm.com 161 Cullianne Hall

30

Boston, MA 02115, USA
salzberg@ccs.neu.edu

28. Hans-Jorg Schek
Institut fur Informationssysteme
ETH Zurich
ETH-Zentrum
CH-8092 Zurich, Switzerland
schek@inf.ethz.ch

29. Hans Schuster
Universitat Erlangen-Nuernberg
Lehrstuhl fiir Datenbanksysteme
(IMMD VI)
Martensstral3e 3
D-91058 Erlangen, Germany
schuster@informatik.uni-erlangen.de

30. Klaus Schwab
Universitat Bamberg
Lehrstuhl fiir Wirtschaftsinformatik
Buro u. Verwaltungsautomation
Feldkirchenstrasse 21
D-96052 Bamberg, Germany
schwab@buva.sowi.uni-bamberg.de

31. Rainer Unland
Universitat-GH Essen
Fachbereich Math. u . Informatik
Schutzenbalm 70
D-45127 Essen, Germany
unlandr@informatik.uni-essen.de

32. Gottfried Vossen
Institut fur Wirtschaftsinformatik
Universitat Munster
Grevenerstral3e 91
D-48159 Munster, Germany
vossen@helios.uni-muenster.de

33. Ulrich Wanka
Institut fiir Wirtschaftsinformatik
Universitat Munster
Grevenerstral3e 91
D-48159 Munster, Germany
dbulwa@helios.uni-muenster.de

31

34. Gerhard Weikum
Universiat des Saarlandes
Fachbereich 14 - Informatik
Postfach 15 11 50
D-66041 Saarbrucken, Germany
weikum@cs.uni-sb.de

35. Mathias Weske
Institut fiir Wirtschaftsinfonnatik
Universitat Munster
Grevenerstral3e 91
D-48159 Munster, Germany
weske@helios. uni-muenster .de

6 Participants' URLs

Alonso:
http : //www.inf.ethz.ch/personal/alonso/alonso_page.html

Bonner:
http : //db.toronto.edu :8020/people/bonner/bonner.html

Brayner:
http : //wwwmath.uni-muenster .de/-dbis/Brayner

Bussler:
http://www6.informatik.uni-erlangen.de/-bussler

Chroust:
http://www .sea .uni-linz.ac.at

Deiters:
http://www . isst .fhg.de/pages/fotoDeiters .html

Ebert:
http : //www.uni-koblenz.de/personen/EbertJuergen.entry

Eder :
http : //www . ifi.uni-klu.ac .at
http : //www . ifi.uni-klu.ac.at/-herb/workflow.html

Geppert:
http://www .ifi .unizh.ch/groups/dbtg/Staff/Geppert/andreas.html

Hagen:
http://www-dbs . inf . ethz . ch/chhomepage.html

Jablonski:
http://www6.informatik .uni-erlangen .de/dept/staff/jablonski.html

Jasper :
http://www-is . informatik.uni-oldenburg.de/ais.html

Kappel:
http://www . ifs.uni-linz.ac.at

Kifer:
http : //www.cs . sunysb.edu/-kifer/

32

Klein:
http://www.tandem.com

Leymann:
http://www.software . ibm . com/ad/flowmark/exmn0mst.htm

Liebhart :
http : //www . ifi.uni-klu .ac . at/home?walter

Masermann:
http : //www . ifis.mu-luebeck .de/-ifis/staff/maserman .html

Mitschang:
http://www3 . informatik .tu-muenchen.de/public//mitarbeiter/mitschang.html

Mohan:
http://www . almaden . ibm.com/cs/people/mohan
http://www .almaden . ibm .com/cs/exotica/

Muth :
http : //www-dbs .cs .uni-sb .de/public_html/leute/peter/muth .html

Oberweis :
http : //www.wiwi .uni-frankfurt.de/ - oberweis/

Reuter:
http : //www.informatik.uni-stuttgart .de/ipvr/as/as_home .html

Ritter :
http : //www.uni-kl.de/AG-Haerder/
http : //www.uni-kl .de/AG-Haerder/Ritter.html

Roller :
http : //www . software.ibm.com/ad/flowmark/exmn0mst .htm

Rose:
http : //www.faw.uni-ulm .de/

Salzberg:
http://www.ccs.neu.edu/home/salzberg/

Schek:
http://www-dbs.inf.ethz.ch

33

Schuster:
http : //www6 . informatik.uni-erlangen.de/Staff/schuster .html

Schwab:
http : //www.buva . sowi.uni-bamberg.de/mitarbeiter/schwab .html

Unland:
http://www-wi.uni-muenster.de/pi/personal/index .htm
http : //www . informatik.uni-essen.de/DW/

Vossen:
http://wwwmath.uni-muenster.de/-dbis/index .html
http : //wwwmath .uni-muenster.de/-dbis/Vossen/index.html

Wanka:
http://www-wi .uni-muenster .de/pi/personal/wanka.htm

Weikum:
http://www-dbs.cs.uni-sb .de/

Weske:
http://wwwmath .uni-muenster.de/-dbis/Weske/index.html

34

Zuletzt erschienene und geplante Titel:

P. Cousot, R. Cousot, A. Mycroft (editors):
Abstract Interpretation, Dagstuhl•Seminar-Report; 123; 28.08.-01 .09.95 (9535)

P. Brunet, D. Roller, J. Rossignac {editors):
CAD Tools for Products, Dagstuhl-Seminar-Report; 124; 04.09.-08.09.95 (9536)

C. Dwork, E.W. Mayr, F. Meyer a.d. Heide (editors):
Parallel and Distributed Algorithms, Dagstuhl-Seminar-Report; 125; 11.09.·15.09.95 (9537)

C. Hankin, H. R. Nielson (editors):
New Trends In the Integration of Paradigms, Dagstuhl-Seminar-Report; 126; 18.09.-22.09.95
(9538)

U. Herzog, G. Latouche, P. Tran-Gia, V. Ramaswami {editors):
Applied Stochastic Modelling in Telecommunication and Manufacturing Systems, Dagstuhl•Semi·
nar-Report; 127; 25.09.-29.09.95 (9539)

L. Hordijk, G. Korn, A. Sydow (editors):
Modelling and Simulation of Complex Environmental Problems, Dagstuhl-Seminar-Report; 128;
02.10.-06.10.95 (9540)

J. Andre, A. Bruggemann-Klein, R. Furuta, V. Quint {editors):
Document Processing, Dagstuhl·Seminar-Report; 129; 16.10.·20.10.95 (9542)

J. Collado-Vides, R. Hofestadt, M. Loffler, M. Mavrovouniotis (editors) :
Modelling and Simulation of Gene and Cell Regulation, Dagstuhl•Seminar-Report; 130; 23.10.·
27.10.95 (9543)

F. Gucker, T. Lickteig, M. Shub (editors):
Real Computation and Complexity, Dagstuhl-Seminar-Report; 131; 06.11.-10.11.95 (9545)

K. Echtle, W. Giirke, J.·C. Laprie, W. Schneeweiss (editors):
Quantitative Aspects of Designing and Validating Dependable Computing Systems ·· Calcula•
lions, Measurements, and Simulations, Dagstuhl·Seminar-Report; 132; 13.11.· 17.11 .95 (9546)

J. Buchmann, R. Loos, R. Mader (editors):
Computeralgebra • Software, Dagstuhl·Seminar·Report; 133; 05.02.·09.02.96 (9606)

0. Danvy, A.Gluck, P. Thiemann (editors) :
Partial Evaluation, Dagstuhl-Seminar-Report; 134; 12.02·16.02.96 (9607)

P.B. Andersen, M. Nadin, F. Nake {editors) :
Informatics and Semiotics, Dagstuhl-Seminar-Report; 135; 19.02.-23.02.96 (9608)

S. Na.her, H. Noltemeier, I. Munro (editors):
Data Structures, Dagstuhl-Seminar-Report; 136; 26.02.-01.03.96 (9609)

A. Bonner, A. Heuer, L. Tanca {editors):
New Trends in Database Languages, Dagstuhl-Seminar-Report; 137; 04.03.-08.03.96 (9610)

D. Dolev, R. Strong, R. Reischuk (editors):
Time Services, Dagstuhl-Seminar-Report; 138; 11.03.-15.03.96 (9611)

R. Bajcsy, R. Klette, W. Kropatsch, F. Solina {editors):
Theoretical Foundations of Computer Vision, Dagstuhl-Seminar-Report; 139; 18.·22.03.96 (9612)

V. Claus, J. Hopf, H.·P. Schwefel (editors):
Evolutionary Algorithms and their Application, Dagstuhl•Seminar-Report; 140; 25.·29.3.96 (9613)

U. Dayal, A. Kemper, G. Moerkotte, G. Weikum (editors):
Performance Enhancement in Object Bases, Dagstuhl-Seminar-Report; 141; 01.-04.04.96 (9614)

Ch. Lengauer, L. Thiele, M. Wolfe, H. Zima (editors):
Loop Parallelization, Dagstuhl·Seminar-Report; 142; 15.04.-19.04.96 (9616)

E. A. Lee, G. de Micheli, W. Rosenstiel, L. Thiele (editors):
Design Automation for Embedded Systems, Dagstuhl-Seminar-Report; 143; 22.-26.04.96 (9617)

M. Droste, E.-R. Olderog, B. Steffen, G. Winskel (editors):
Semantics of Concurrent Systems - Foundations and Applications, Dagstuhl-Seminar-Report;
144; 06.05.-10.05.96 (9619)

T. Nishizeki, A. Tamassia, D. Wagner (editors):
Graph Algorithms and Applications, Dagstuhl-Seminar-Report; 145; 13.05.-17.05.96 (9620)

M. Hanus, J. Lloyd, J. Moreno Navarro (editors):
Integration of Functional and Logic Languages, Dagstuhl-Seminar-Report; 146; 20.-24.5.96
(9621)

H. Bieri, G. Brunnett, T. DeRose, G. Farin (editors):
Geometric Modelling, Dagstuhl-Seminar-Report; 147; 27.05.-31 .05.96 (9622)

P. Hanrahan, H. MOiier, C. Puech (editors):
Rendering, Dagstuhl-Seminar-Report; 148; 10.06.-14.06.96 (9624)

A. Fiat, G. Woeginger (editors):
On-line Algorithms, Dagstuhl-Seminar-Report; 149; 24.06.-28.06.96 (9626)

J. Dix, D. Loveland, J. Minker, D. Warren (editors):
Disjunctive Logic Programming and Databases: Nonmonotonic Aspects, Dagstuhl-Seminar-Re
port; 150; 01.07.-05.07.96 (9627)

H.-D. Ehrig, F. von Henke, J. Meseguer, M. Wirsing (editors):
Specification and Semantics, Dagstuhl-Seminar-Report; 151; 08.07.-12.07.96 (9628)

F. Leymann, H.-J. Schek, G. Vossen (editors):
Transactional Workflows, Dagstuhl-Seminar-Report; 152; 15.07.-19.07.95 (9629)

W. Aspray, R. Keil-Slawik, D. Parnas (editors):
The History of Software Engineering, Dagstuhl-Seminar-Report; 153; 26.08. -30.08.96 (9635)

H. Bunke, R. Bolles, H. Noltemeier (editors):
Modelling and Planing for Sensor Based Intelligent Robot Systems, Dagstuhl-Seminar-Report;
154; 02.09.-06.09.96 (9636)

H. Ehrig, U. Montanari, G. Rozenberg, H.J. Schneider (editors):
Graph Transformations in Computer Science, Dagstuhl-Seminar-Report; 155; 9.-13.9.96 (9637)

U. Goltz, A. De Nicola, F. Vaandrager (editors):
Expressiveness in Concurrency, Dagstuhl-Seminar-Report; 156; 16.09.-20.09.96 (9638)

J. Bocca, H. Decker, A. Voronkov (editors):
Advances in Logic Databases, Dagstuhl-Seminar-Report; 157; 23.09.-27.09.96 (9639)

E. Allender, U. Schoning, K. Wagner (editors):
Structure and Complexityv, Dagstuhl-Seminar-Report; 158; 30.09.-04.10.96 (9640)

E. Nowak, J. Traub, G. Wasilkowski (editors):
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report; 159; 21 .10.-
25.10.96 (9643)

Ch. Gold, J. Snoeyink, F. Wagner (editors):
Computational Carthography, Dagstuhl-Seminar-Report; 160; 04.11 .-08.11.96 (9645)

J. Hendler, J. Koehler (editors):
Control of Search in Al Planning, Dagstuhl-Seminar-Report; 161; 18.11.-22.11.96 (9647)

M. Broy, Ch. Floyd, J. Goguen, B. Paech (editors):
Formal Methods and Situated Cooperative Design in Software Development, Dagstuhl-Seminar
Report; 162; 25.11 .-29.11.96 (9648)

G. Berry, W.P. de Roever, N. Halbwachs, A. Pnueli (editors):
Syncronous Languages, Dagstuhl-Seminar-Report; 163; 09.12.-13.12.96 (9650)

