Dagstuhl Seminar: Synchronous Languages "96

edited by Klaus Winkelmann

January 20, 1997



(page 2 intentionally left blank)



Introduction
Nicolas Halbwachs, Willem-Paul de Roever, Klaus Winkelmann

The Synchronous Languages Seminar 1996 was the third of a seminar series
started in Dagstuhl (Nov 94) and continued at the CIRM, Marseille-Luminy
(Nov 95). Tt brought together 50 researchers, mainly from France and Germany,
but also from the USA, Great Britain, Sweden, India, and Israel, originating
from both academia and industry.

Presentations covered many topics related to the synchronous programming
languages such as Signal, Lustre, Esterel, Argos and Statemate. They ranged
from foundations to case studies, and include verification as well as synthesis
efforts, amply illustrating both the already now highly successful application
of the associated tools, and the residual problems in applying them which still
await solution.

Combination of several languages and cross-compilation, as well as com-
paring different semantics was one major topic in the presentations. Especially
several groups work on combining data-flow concepts with automata-based mod-
els. Also combining the synchronous approach with deductive methods appears
a promising path.

For some of the attending young researchers this was their first acquain-
tance with the subject of synchronous languages and their application; their
attendance was enabled by a TMR-ESPRIT grant, for which we express our
gratitude.

This workshop furthered a loose style of explanation, collaboration and con-
tact to such an extent that some of the experienced industrial researchers present
declared this to be the most successful workshop they ever attended, where they
learned most.



Contents

Nicolas Halbwachs, Willem-Paul de Roever, Klaus Winkelmann:

Introduction . . . . . . .. L L
Philippe Darondeau:

Synchrony in Nets . . . . . ... ... . ...
Stephen Edwards:

A Specification Scheme for Heterogenenous Synchronous Systems
Eric Rutten:

Time Intervals and Preemptive Tasks in Signal and their Appli-

cation in Experiments . . . . .. .. ... .. 0000 L.
Charles André:

SyncCharts: A Visual Representation of Complex Reactive Be-

haviors . . . . . .. e
Joseph T. Buck:

A Synchronous, Modular Hierarchical Finite State Machine Model

With Extensions . . . . .. ... ... . 0 0 0 0oL
Chris Tofts:

Compositional Approaches to Concurrent Performance Analysis
Carsta Petersohn:

A Real-Time Semantics for the Statemate Implementation of

Statecharts . . . . . . ... o
David Lesens, Nicolas Halbwachs, Pascal Raymond :

Automatic Verification of Parameterized Linear Networks of Pro-

CESSES o v v e e e e e e e e e e e e e e e e e
Klaus Winkelmann:

Semantics and Compilation of Synchronous Specification
Helmut Melcher:

Program Synthesis With CSLxt for the Case Study Production

Cell . .
D. L’Her, L. Marcé :

Modelling and Verification of a Production Cell with Grafcet
Carlos Puchol:

An Operational Semantics for Modechart . . . ... ... .. ..
Erich Mikk, Yassine Lakhnech, Michael Siegel :

Translating Statecharts to Promela/SPIN. . . . .. ... .. ..
Gerard Berry, D. [Kaplan / Terrasse]:

Verifying the Esterel Compiling Algorithms Using COQ . . . . .
Olivier Rouz, Pablo Argén :

Certified compiler construction for a reactive language with the

Coq Prover . . . o v i e e e e e e e e
Jorge R. Cuellar:

A Tutorial Introduction to TLT using the Production Cell . . . .
Peter Scholz:

Specifications of Reactive Systems with p-Charts . . . . . .. ..

10

10

11

11

12

13

13

14



RK Shyamasundar:
Multi Clock Esterel . . . . . . . . . . . .. .. .. .. ... ... 16
F. Maraninchi:

Compiling Argos into Boolean equations or : multi-language pro-

gramming in the synchronous world . . . .. ... ... .. ... 16
Reinhard Budde:
A Smalltalk About Checking Properties In EmbeddedEifel . .. 17

Simin Nadjm-Tehrani:
Verification of Embedded Systems using Synchronous Observers 18
Robert Bissow :

Specifying Concurrent Processes with Statecharts and Z . . . . . 19
Matthias Weber:

Abstract Object Systems . . . . . . . ... oo L. 19
Benoit Caillaud, Paul Caspi, Alain Girault, Claude Jard:

Modelling Parallelization with Partial Orders . . . . ... .. .. 20
Horia Toma:

Sequential Optimization in Esterel . . . . .. ... ... ... .. 21
Rainer G'mehlich:

On Modeling Small Size Automotive Controller Using Lustre . . 21
Eric Nassor:

Esterel++, an Object Oriented Extension of Esterel . .. .. .. 22
Christophe Mauras:

Symbolic Simulation of Interpreted Automata . . . . . .. .. .. 23
Apostolos A. Kountouris:

Reasoning about Time in SIGNAL . .. ... ... ........ 24
Saddek Bensalem, Paul Caspi and Catherine Parent-Vigouroux:

Handling data-flow programsin PVS . ... .. ... ...... 24

Hervé Marchand:
Verification and Control of Polynomial Dynamical Systems over

Galois fields: Application to a Power Transformer Station Con-
troller . . . . L 25



Synchrony in Nets
Philippe Darondeau

Synchronous nets are a class of self-modifying nets where the weights of
input arcs are marking dependent (the vector pre(a) of the weights pre(a)(x)
relative to places x used as input by transition a is a function of the marking M)
while the weights of output arcs are not marking dependent. Let pre(A) and
post(A) be the extensions of pre(a) and post(a) to multisets of actions (thus
the vector pre(A) is a function of M while post(A) is a constant vector), then
the firing rule for synchronous nets is the following step firing rule: M|A >
M’ if M'= M + post(A) — pre(A)(M + post(A)). This rule is motivated by
giving a direct translation from Signal programs to synchronous nets.

A Specification Scheme for Heterogenenous
Synchronous Systems
Stephen Edwards

In this talk, I present a specification scheme for synchronous systems that
are heterogeneous — the compiler does not know the contents of the blocks of
the system, only how to evaluate them. My SR systems are composed of fixed
blocks that evaluate instantly and communicate through single-driver, multiple-
receiver wires. I present a deterministic semantics for them based on the least
fixed point of a continuous function on a complete partial order, and a chaotic-
iteration-based execution scheme. My heuristic scheduling algorithm uses a re-
cursive divide-and-conquer approach based on strongly-connected components.
The experimental results I present suggest this scheme is practical for graphs of
reasonable size (approx. 100 outputs).



Time Intervals and Preemptive Tasks in Signal
and their Application in Experiments
Eric Rutten

The control of reactive systems involves regulation functions, which are equa-
tions specifiable by a data flow graph of operations, as well as sequencing of such
tasks, possibly with preemption. The latter is best specified using imperative
or state-machine-based formalisms. This presentation describes an extension of
the Signal data flow language with a notion of preemptive task. It associates a
data flow process with its time interval of activity. A time interval is entered
and exited upon the occurrence of events. The activity is re-started every time
the interval is (re-)entered, either in its current state, or back from its initial
state.

An implementation of this has been developed, in the form of a pre-processor
to Signal; intervals are encoded into boolean state variables, suspension of the
activity of processes is achieved by filtering of their inputs, and re-initialisation
involves propagating additional control signals towards all state variables of the
process.

Applications feature a system for active robot vision, the controller of a
power transformer, and behavioral animation in image synthesis and simulation.



SyncCharts: A Visual Representation of Complex
Reactive Behaviors
(YACC: Yet Another Control Characterization)
Charles André

Reactive systems involve communication, concurrency and preemption. Few
models support these three concepts, even less can correctly deal with their
coexistence. The synchronous paradigm allows a rigourous approach to this
problem, crucial to reactive systems.

A new visual model (SyncCharts) is introduced. This graphical model is
fully compatible with the imperative synchronous language ”Esterel” and is
specially convenient to express complex reactive behaviors.

SyncCharts support hierarchy (embedded macro-states), concurrency (par-
allel composition of constellations), and preemption (abortion and suspension
of star activities). The way SyncCharts treat normal termination of parallel
evolutions is an interesting feature of the model.

A specification of a Cruise Speed Controller illustrates the use of SyncCharts.
An editor of SyncCharts and a translator to Esterel programs are demonstrated.

A Synchronous, Modular Hierarchical Finite
State Machine Model With Extensions
Joseph T. Buck

A graphical means of specifying hierarchical finite state machines is presented
— a variant of Statecharts designed to be highly modular and to have strictly
synchronous semantics. Of the models in the literature, it is closest to Argos,
adding the concepts of weak and strong abortion, voluntary termination, and
suspension from Esterel. The semantics are defined by specifying a translation
to Esterel of each concept in the description; this translation is explained. The
model is then extended to permit inclusion of dataflow specifications inside the
hierarchical model at any level.



Compositional Approaches to Concurrent

Performance Analysis
Chris Tofts

Recent extensions to process algebra can be used to describe performance
or error rate properties of systems. We examine an abstract approach to the
representation of time costs within these algebras that permits the efficient
calculation of performance bounds on the systems. In particular we avoid the
‘state explosion’ caused by the parallel composition of the representations of
probabilistic time distributions. A major advantage of one of our approaches
is its uniformity which allows the eventual approximation level to be easily
predicted from that of the approximation to the initial distributions.

A Real-Time Semantics for the Statemate
Implementation of Statecharts

Carsta Petersohn

We formalize the central simulation algorithm Go-Step for the language of
Statecharts which are part of the tool StateMate following the most recent de-
scription by Harel and Naamad [HN95]. Our semantics is defined in a modular
way based on full compound transitions, different kinds of steps, and time ab-
stractions. The semantics is given in terms of fair transition systems and clocked
transition systems. This enables the usage of the proof systems for the verifica-
tion of real-time properties given in linear temporal logic. We also discuss how
typical concepts of synchronous languages are modeled by our semantics.

[HN96] David Harel, Amnon Naamad, The STATEMATE Semantics of Stat-
echarts, ACM Trans. Soft. Eng. Method., 1996.

Automatic Verification of Parameterized Linear
Networks of Processes

David Lesens, Nicolas Halbwachs, Pascal Raymond

We present a a method to verify safety properties of parameterized linear
networks of processes. The method is based on the construction of a network
invariant, defined as a fixpoint. Such invariants can often be automatically com-
puted using heuristics based on Cousot’s widening techniques. These techniques
have been implemented and some non-trivial examples are presented. This work

will be published in POPL.’97.



Semantics and Compilation of Synchronous
Specification

Klaus Winkelmann

A Specification is a set of constraints on the traces of an automaton, to-
gether with assumptions (also constraints) on the environment. The concept of
controllability, known from Discrete Event Systems, can be generalized to poly-
chronous systems by introducing controllable and uncontrollable clocks, and
controllable and uncontrollable values of a signal.

Compiling a specification to executable code consists in two main phases,
which we call conflict resolution and function extraction. Conflict resolution is
the same as Ramadge/Wonham’s supervisor synthesis - it generates the most
general automaton that can always react to an environment action. Function
extraction converts this most general automaton - an acceptor - to a transducer.
It involves solving relational equations to a functional form, and scheduling
function calls, i.e. topological sorting.

Some of these ideas underlie the CSLxt language and compiler by Siemens.

Program Synthesis With CSLxt for the Case
Study Production Cell

Helmut Melcher

Controller synthesis is an approach for solving reactive problems by using a
compiler (synthesizer) which automatically generates the control program from
a description of requirements and environment.

We discuss practises for applying the synthesis technique using an exam-
ple from factory automation, a modification of the Production Cell case study.
For this purpose, we use CSLxt, a method developed by Siemens Corporate Re-
search in Munich. CSLxt allows for specifications by implicit automata with fair
process activation. Safety and liveness properties can be described by predicates
over states.

We present several approaches which differ in the complexity of the resulting
synthesis problem and the complexity of the description. A compromise between
these conflicting requirements has to be found. We present and discuss some
ideas towards a systematic solution for this trade-off.

10



Modelling and Verification of a Production Cell
with Grafcet

D. L’Her, L. Marcé

Our aim is to specify and verify the production cell KORSO using the
GRAFCET language.

The semantics of GRAFCET is given with timed automata to take time
into account. A state is defined by a grafcet situation, values of inputs, tempo-
rizations and memorized actions. When an input changes its value or when a
temporization is modified, a transition is defined.

We use this modelling to check properties with the model-checker KRONOS.
In the case of the production cell, there are two problems to solve : size and
environment. To reduce the size, we isolate each component of the cell to verify
properties. We take environment into account also to reduce the size at the
level of TCTL formula, at the level of GRAFCET or during the construction of
timed automaton. For instance we have restraints on states, on transitions and
between actions and sensors. With this strategy, we verify properties of safety.
An interface helps the users to express the properties and the restraints.

An Operational Semantics for Modechart
Carlos Puchol

The Modechart specification language is a formalism for the specification
of real-time systems. The semantics of the language was defined axiomatically
in Real-Time Logic. We define the semantics for Modechart in an operational
style. Modechart is a synchronous language that permits non-deterministic real-
time specifications. The semantics for the class of deterministic specifications
is introduced first, followed by the definition of entire class of non-deterministic
specifications. The deterministic semantics naturally derives a Modechart com-
piler, which allows for automatic synthesis of formal specifications. An extension
to the compiler presented provides support for a limited, but very useful in prac-
tice, subset of the class of non-deterministic specifications. We characterize this
class and show how it can be used in automatic code generation.

11



Translating Statecharts to Promela/SPIN.
Erich Mikk, Yassine Lakhnech, Michael Siegel

Statecharts are compiled into Promela, the input language of the SPIN model
checker. This allows the model-checking of Statecharts with respect to linear-
time temporal logic while taking advantage of the advanced techniques imple-
mented in SPIN for reducing the visited state space. These techniques include
the partial-order approach for tackling the state explosion problem.

The experimental compiler works on a sub-language of statecharts and fo-
cuses on control issues of the language. The translation preserves the parallel
structure present in source statecharts-program and exploits its hierarchy.

The compiler accepts statecharts specifications in an intermediate input for-
mat that enables to build links to graphical editors for drawing statecharts. The
output of the tool is a readable well-structured Promela code.

The presentation focuses on the key translation step: transforming state-
charts to hierarchical automata. The purpose of hierarchical automata is to
provide a semantics model for statecharts where the semantics of a composed
construct can be understood using the semantics of its parts and the way the
parts coordinate with each other. The class on hierarchical automata is defined.
The semantics of HA is given using structural operational semantics rules (SOS
rules). These rules are directly implemented in the compiler. The presentation
is built around Promela, but the approach is applicable for other model-checkers
also.

Future work is further compiler development, adopting the SOS rules for
compositional reasoning about statecharts and translation of statecharts to

other model checkers (SMV).

12



Verifying the Esterel Compiling Algorithms Using
COQ
Gerard Berry, D. [Kaplan / Terrasse]

The Esterel vb compiler is based on two ingredients: the new constructive
semantics based on a theory of information propagation in synchronous pro-
grams, and an improved translation of Esterel programs into digital circuits
that fits well with the constructive semantics. The translation into circuits is
quite subtle at places, especially in the handling of reincarnation of statements
and signals by loops. Furthermore, there are several possible variations in gate
placement that we would like to analyze. We think that a completely formal
proof is the right tool to show the translation correctness and also to analyze
variants: the most natural variants should be those that make the proof the
most elegant.

We have started performing the roof in COQ. Describing the constructive
semantics of Esterel in COQ was trivial. Describing circuits and the circuit
translation turned out to be much more delicate. The solution we use is to
represent circuits by synchronous functions on Scott-adic integers, which differ
form 2-adic integers by the fact that bits may be 0, 1, or undefined. So far, we
have carried out the proof for the loop-free programs that involve no reincar-
nation. We expect the general proof to be a smooth extension of the partial
proof. Once the proof will be completed, we shall be able to use the program
extraction facilities of COQ to extract a reference compiler out of the proof.

Certified compiler construction for a reactive
language with the Coq prover

Olivier Roux, Pablo Argén

We first overview the Electre reactive language through its basic entities and
operators. Then, we give some examples of the way the natural semantics of
the language is expressed in SOS.

We intend to prove the following theorem:

Vp (program).(p € Electre) — Ja (automaton).(p =Electre semantics a).
Moreover, the proof (of p = a) gives a construction of the translation function
p—a

We show that this can be achieved using Coq, and with the following steps:

e Coding the language structures,
e Modeling the semantics,

e Specification: translation function (compiler p — a),

13



e Proofs: consistency and completeness of the specification,
e Extraction of the CAML program of the compiler.

This procedure build a theory of Electre in Coq. It makes it possible (1)
to synthesize the compiler of the language, (2) to extend the semantics, (3) to
make proofs of program properties, and (4) in a more general way, to customize
the ideal kernel of reactive language (with the useful operators).

A Tutorial Introduction to TLT using the
Production Cell

Jorge R. Cuellar

The TLT (Temporal Language of Transitions) specification method and tools
are described using the example of the new (fault-tolerant) production-cell pro-
posed by the German project KORSYS. The TLT semantical-objects, first-order
automata (FOL-automata), are basically well-known. Indeed, many variants
have been studied by Lamport, Kurshan, Wolper, Pnueli, Gurevich and others.
The particular choices in the the definition of FOL-automata (the stuttering
conditions, the type of fairness properties, etc.) are discussed.

The relatives of FOL-automata (Evolving Algebras, TLA, Boolean Auto-
mata, Fair Transition-Systems, etc.) are often used to give a “reference se-
mantics” to more complex programming models or languages, such as Prolog,
StateCharts, etc. Usually this involves a non-trivial translation or coding.

The purpose of TLT is to provide users with syntactical means to describe
directly in FOL-automata (without coding) a) systems, b) their architecture
and c) the user’s knowledge or understanding of the sytem (in the form of an-
notations, or assumption-commitment predicates on the interfaces). In contrast
to TLA, Cospan, Evolving Algebras etc, the TLT method introduces modules,
interfaces, views, inputs/outputs, etc. during the refinement process. This
TLT methodology may be seen as a structural guideline for creating local FOL
verification-conditions to show that the specification is (globally) consistent and
it satisfies its specification.

The fault-tolerant production-cell is particularly interesting because a) the
sensor failures may not be diagnosed immediately, and b) a real-time aspect is
inherent in the problem, namely, the use of timers to supervise the movement
of the motors and the duration of the protocols.

14



Specifications of Reactive Systems with pu-Charts
Peter Scholz

During the last years, Statecharts have gained wide acceptance for the spec-
ification of reactive, embedded systems. However, most semantics suggested so
far are either informal or overly complicated. In this contribution, we present
a lean Statecharts dialect, called p-Charts, that permits nondeterministic spec-
ifications, offers zero-delay broadcast communication, and handles negation in
trigger expressions in a new way.

We give a compositional formal semantics for this dialect, which is abstract
enough for formal reasoning and yet easy to operationalize for simulators, model
checking tools, and code generation.

The well-known causality conflicts that arise under instantaneous feedback
from negative trigger conditions are resolved semantically through oracle sig-
nals. We have implemented a prototypical tool that translates p-Charts specifi-
cations into p-calculus formulae. These formulae are checked against temporal
specifications using a p-calculus verifier.

As a further result of our work on symbolic verification of u-Charts, we
show how a p-Chart can be implemented in hardware, using a register and a
combinational logic block that represents the transition relation of the system.

15



Multi Clock Esterel
RK Shyamasundar!

We present a uniform framework referred to as, M-ESTEREL (Multi-Clock
Esterel), for the modelling of heterogenous systems. The formalism has sev-
eral clocks and generalizes the classical ESTEREL which is monochronous. M-
EsTEREL supports multiple clocks within the same ESTEREL node. Events are
no longer required to be tightly coupled to clocks. This implies the need of
some form of latching to deal with signals which are no longer synchronous with
the current clock; further, latching would have to be defined in the context of
preemption. The formalism has been arrived at with very few additions to the
classical ESTEREL. The additions are: latching of signals and the new statement
“newtick t in STAT end”. In the presentation, we describe the model and show
its generality in describing multi-clocked systems. M-ESTEREL continues to re-
main synchronous with respect to the current clock in a module in as much
as reactions occurred synchronous with them. With M-MESTEREL we hope to
illustrate a model which can handle asynchronous as well as synchronous events
with equal ease and also discuss the power of scalability of the model. The
earlier model of CRP (Communicating Reactive Processes) can be obtained as
special case. Further, several of the features of hardware specification languages
can be described naturally in the model. Relative comparison with respect to
other models is also done.

Compiling Argos into Boolean equations or :
multi-language programming in the synchronous
world

F. Maraninchi

In most imperative synchronous languages (Esterel, Argos, Statecharts,...),
the semantics of the control structures may be conveniently described as compo-
sitions of Mealy machines. This constitutes the usual formal semantics of Argos,
for instance, where basic components are Mealy machines. On the other hand,
the compilation process should not be based upon an exhaustive generation of
the Mealy machine that represents the behaviour of the whole program, because
this machine may have a very large number of states. Hence we try to perform
a symbolic compilation, representing Mealy machines by sets of equations. We
give here the direct semantics of Argos in terms of such equations, and show
that this semantics coincides with the usual one. The current implementation of
the Argos compiler produces DC code, which is the common equational format
for synchronous languages. This will allow to merge imperative and declarative
synchronous languages (Argos and Lustre, for instance), by merging Dc files.

I'With contributions from Basant Rajan, S. Ramesh and G. Berry.

16



A Smalltalk About Checking Properties In
EmbeddedFEifel

Reinhard Budde

Our goal is to develop a methodology for the construction and validation
of medium-scale embedded systems with real-time constraints. We use object
oriented methods during the whole development process to partition the system
into classes. Classes are the units of information hiding and reuse. In a class
both the reactive behavior as well as the datatype behavior of its objects are
defined. Model checking is used to analyze the system, especially to support
design decisions. The partition in classes and the synchronous semantics allow to
describe and analyze crucial parts of the system in isolation. The methodology
is supported by tools for the synchronous realtime language embeddedFEifel.

Formal verification is very attractive for our system development methodol-
ogy because reactive behaviors of objects are defined in a synchronous language.
Synchronous languages are based on the synchrony hypothesis: outputs are syn-
chronous with inputs, for the environment. Synchronous programs are compiled
quite efficiently into boolean automata. This fact makes automatic verification
like model checking feasible.

The systems designer expresses properties to be checked, gives them a name
for referencing and attaches them to some class. The reactive behavior of an
object-configuration to be checked is represented by a boolean automaton. The
properties are translated to either boolean automata or directly to input for a
model-checker (we support SMV and VIS). Boolean automata can translated to
input for model-checker, too. For the systems designer the check of a property
is reduced to a push-button activity of commanding tools to check whether a
formula selected by its name is valid.

Verification is not used to show, that a final implementation meets an ini-
tial formal specification. We use an incremental approach, in which verification
supports design decisions. Proofs refer to the actual implementation and not to
a separate model. Proofs are performed for individual objects and for object-
configurations of a system and their respective classes. In this way they are
modularized. Different formalisms to express properties to be checked are in-
tegrated (based on Boolean Automata): CTL, PTL (past temporal logic), a
Statechart-like graphic notation, and state transition diagrams.

17



Verification of Embedded Systems using
Synchronous Observers
Simin Nadjm-Tehrani

I present a study of observer-based proof techniques applied to the verifica-
tion of a model of a real world embedded system, an aircraft landing gear. A
formal description of these techniques (taken from Halbwachs et.al. [amast93])
is presented, followed by three ways of applying them. More specifically, one
shot verification of the composed system is compared with two approaches to
decompositional verification. The example illustrates that due to the tight inter-
action in a plant-controller setting there is often little to be gained by adopting
a decompositional approach to verification. Nonetheless, two reasons are pre-
sented for separation between the controller and its environment at the mod-
elling stage. Hence the result of the study is that in cases similar to this one, it
is most expedient to prove system properties using the composed model derived
from individual parts.

2Joint work with Martin Westhead, Dept. of AI, University of Edinburgh

18



Specifying Concurrent Processes with Statecharts

and 7

Robert Biissow 2

We specify embedded systems by decomposing them into concurrent, syn-
chronous processes that communicate via shared variables. The system is de-
scribed from three different views: The first view, the architectural view, de-
scribes the decomposition in components or processes. It also specifies the rela-
tionships between these processes, particularly their communication relations.
The reactive view describes the reactive behavior of each class, that is when and
how it reacts upon external and internal stimuli or events. The functional view
describes the space of data states, and, for each process, the transformation of
the data and data invariants.

The reactive behavior of the processes is described using statecharts (State-
mate), the functional behavior is described using the Z specification language.
For the implementation of statechart events, volatile Z variables are introduced.
7 schemas are used to define the interfaces of a process as a set of shared vari-
ables. The reactive behavior of a process is described with statecharts and
its data and data-transformations are described with Z. The interface between
statecharts and 7 are the statecharts’ transition-labels, i.e. the guards are Z
predicates and the actions are Z operations. The combination gives rise to the
problem of executing 7 operations over the same state in parallel. We pro-
pose and discuss two solutions for this problem — interleaved and concurrent
execution:

Interleaved execution is defined as executing the operations sequentially in
a non-determined order. This can be defined with the Z schema calculus for
two Operations Opq and Opy as Op1; Op2 V Op2; Op1 The concurrent execution
is defined as the conjunction of the operations. To avoid contradictions, vari-
ables that are not changed by the operations, are hidden from the operation’s
signature. Then the conjunction can be created, where further hiding, in cases
of racing conditions, is allied.

Abstract Object Systems
Matthias Weber

Abstract object systems are a mathematical model of dynamically changing
collections of interacting objects whose basic operations have non-zero data-de-
pendent durations and where communication is based on asynchronous mes-
sage-passing and controlled by a state machine with operation and timeout
transitions and run-to-completion semantics. Abstract object systems can be
specified by a combination of object diagrams, state charts, and (nested) Z
schemas.

3joint work with partners from the Espress project, see http://www.first.gmd.de/ espress/

19



Modelling Parallelization with Partial Orders
Benoit Caillaud, Paul Caspi, Alain Girault, Claude Jard

Our objective is to prove that a given parallelization algorithm is correct,
that is, that the behavior of the initial centralized program is equivalent to the
behavior of the final parallel program.

Our parallelization algorithm is intended for distributed memory machines,
where parallel programs communicate through a networks of FIFO channels.
This algorithm has been applied to sequential imperative programs as well as
synchronous programs. In both cases, the source program is given as a finite
deterministic automaton labeled with actions. The behavior of the centralized
program is the language of this automaton, i.e., the set of finite and infinite
traces of actions it generates. Finally the parallelization specifications are given
as a partition of the set of actions into as many subsets as there are processors
in the distributed memory machine.

We define a commutation relation between actions according to the data de-
pendencies. This commutation relation induces a rewriting relation over traces
of actions. The set of all possible rewritings is the set of all admissible behaviors
of the centralized program according to the commutation relation. The problem
is that this set cannot, in general, be recognized by a finite automaton. The
intuition of our proof is that this set is identical to the set of linear extensions of
some partial order. For this reason we introduce a new model based on partial
orders.

First, we build a centralized order automaton by turning each action label-
ing the initial automaton into a partial order capturing the data dependencies
between this action and the remaining ones. The language of our order au-
tomaton is the set of finite and infinite traces of partial orders it generates. By
defining a concatenation relation between partial orders, each trace is then itself
a partial order. Thus the language of our order automaton is a set of finite and
infinite partial orders. We show that the set of linear extensions of all these
partial orders is identical to the set of all admissible behaviors of the centralized
program according to the commutation relation.

Second, we show that our order automaton can be transformed into a set
of parallel automata by turning the data dependencies between actions belong-
ing to distinct processors into communication actions, and by projecting the
resulting automaton onto each processor. These transformations are shown to
preserve the behavior of our order automaton.

20



Sequential Optimization in Esterel
Horia Toma

In a gate-level description of a finite state machine, there is a tradeoff be-
tween the number of latches and the size of the logic implementing the next-
state and output functions. Typically, an initial implementation is generated
via explicit state assignment or translation from a high-level language, and this
tradeoff is only lightly explored via logic synthesis from that point on.

We address the problem of efficiently exploring good latch/logic tradeoffs for
large designs generated from high-level specifications. We describe algorithms
for reducing the number of latches while controlling the size of the intermediate
logic. We use these algorithms to generate good final implementations (e.g.,
hardware or software) and good intermediate representations (e.g., for symbolic
state traversal). We demonstrate the efficacy of our techniques on some large
industrial examples.

On Modeling Small Size Automotive Controller
Using Lustre
Rainer Gmehlich

In present cars there are many safety-critical systems which are realized with
micro-controllers or other digital devices. To improve the safety, formal methods
are needed.

In the talk first results of a case study on an automotive application was
presented. In this study the synchronous language Lustre is used to model the
boolean part. On this model safety properties are proven. Problems to ensure
the synchrony hypotheses in real applications are discussed.

21



Esterel+4, an Object Oriented Extension of

Esterel

Eric Nassor

With the last version of the Esterel compiler (Esterel V5), large applications
may be analyzed, but the syntax of the language is not well adapted : many
parts of the code must be duplicated (interfaces, external declarations ...), and
in many cases code reutilization is difficult.

Esterel4++ introduces some new notions in the Esterel language in order to
solve these problems.

lines: lines are a structuration of the signals. With this mechanism, the
size of the interfaces decreases.

packages: all the external declarations may be grouped in one place, and
then be used in differents modules.

synchronous statecharts: based on the Argos semantic, synchronous stat-
echarts may be used to describe the behavior of modules. These modules
can be freely mixed with the Esterel code.

object orientation: Esterel4++ introduces the notion of inheritance be-
tween modules. Modules may inherit interfaces, code, and attributes (all
the module instances are attributes, this means all the run instructions).
As the Eiffel language, Esterel++ support multiple inheritance with re-
naming and redefinition. In particular, with the inheritance of attributes,
this means that the types of the instances may be changed. This is a
powerful mechanism which allows a better code reutilization.

Esterel++ is compatible with Esterel: a correct Esterel code is a correct
Esterel++ code. A preprocessor has been implemented, which translates Es-
terel4++ in Esterel. This compiler is currently being tested.

22



Symbolic Simulation of Interpreted Automata
Christophe Mauras

We present a simulation tool for interpreted automata. Its input language is
a small subset of DC (declarative code for synchronous languages), containing
only assertions about boolean and integer variables defined on the same global
clock.

The tool inherits from a previous one, dealing with boolean automata and
from Bac. It has been enhanced with some numerical computations based on
work by Halbwachs about linear relation analysis.

We illustrate with some examples, how to use it to discover linear relations
over the variables of a synchronous system, and for symbolic debugging of a
temporal specification.

The simulator performs forward analysis, and computes an upper approx-
imation of the set of reachable states. We use Binary Decision Diagrams to
encode set, of states in IB™ % 74", and relations.

An algorithm is presented to apply standard logical operations on such data
structures.

We then talk about relationship with verification tools devoted to syn-
chronous programs, and with some works related to constraint logic program-
ming: Toupie by Rauzy, abstract interpretation of CLP by Handjieva.

We conclude that using relational computations seems to be useful for de-
bugging but inefficient for verification purposes. So, would a symbolic debugger
for DC be a friendly companion to verification tools as Lesar and Polka ?

23



Reasoning about Time in SIGNAL

Apostolos A. Kountouris

Reasoning about Time in SIGNAL

In R/T systems development, temporal correctness signifies that an imple-
mented system respects its real-time constraints. Currently in the SIGNAL
environment the temporal dimension of a system is entirely abstracted by the
use of the synchrony hypothesis, and the focus is mainly put on the functional
aspects. The temporal dimension remains a quite unexplored area. We present
an approach that aims to serve as a facility for the evaluation of the tempo-
ral behavior of a system when implemented on a particular target architecture,
in respect to its R/T constraints. We argue that this should happen at the
specification level so that "temporal debugging” can be more effective and the
development cycle shorter. At a first stage we investigate the factors influencing
execution time and we attempt a classification. These factors come into play
at various points during the process of transforming a functional specification
to an operational system. Consequently it is quite important to identify all of
these factors, in order to effectively take them into account.

What is equally important is the aspect of building tools that can exploit
this information and assist the user when the system evaluation passes from
the functional to the temporal domain. To this end we currently studying how
to model low-level issues at the specification level and how to automatically
extract temporal properties of SIGNAL programs given an intended implemen-
tation. Such tools can find applications in various fields relating yo performance
evaluation like for instance R/T system development, design space exploration

in HW/SW co-design etc.

Handling data-flow programs in PVS
Saddek Bensalem, Paul Caspi and Catherine Parent-Vigouroux

This presentation investigates the use of the PVS tool for handling data-flow
programs. In particular, we show how to express the constructs of the Lustre
synchronous data-flow language. We then provide examples of program deriva-
tion and proofs within this framework, which hopefully illustrate the interest of
the approach.

24



Verification and Control of Polynomial Dynamical
Systems over Galois fields: Application to a
Power Transformer Station Controller
Hervé Marchand

We have presented a methodology for the verification and the automatic
controller synthesis of reactive systems, and its application to a case study. Sys-
tems are specified using the synchronous data-flow language Signal. In order to
check various kind of properties, and synthesize controller, we need to translate
its boolean part into a system of polynomial equations over three values denot-
ing true, false and absent (this translation is natural because Signal is based
on an equationnal approach( i.e. Signal programs are constraint equations be-
tween signals). Using operations of algebraic geometry, on the polynomials, it is
possible to check properties concerning the system, such as liveness, invariance,
reachability or attractivity. We have also presented computational methods for
the synthesis of controllers for discrete event systems, modeled by polynomial
dynamical systems. We also presented our approach to the optimal control syn-
thesis problem as well as other interesting aspects in control synthesis like for
example ensuring the invariance of a property.

Finally, we applied these methods to the verification of the automatic circuit
breaking control system of an electric power transformer station controller. This
controller handles the reaction to electrical defects on high voltage. On the other
hand, we applied the controller synthesis methods to a general safety property
concerning the global system.

25



