
Program Comprehension and
Software Reengineering

Dagstuhl Seminar, March 9th-13th, 1998

Hausi Müller Thomas Reps Gregor Snelting
University of Victoria University of Wisconsin Universität Braunschweig

Canada USA Germany

hausi@csr.uvic.ca reps@cs.wisc.edu snelting@ips.cs.tu-bs.de

Analyzing old software systems has become an important topic in software
technology. There are billions of lines of legacy code which constitute sub-
stantial corporate assets. Legacy systems have been subject to countless
modifications and enhancements and, hence, software entropy has typically
increased steadily over the years. If these systems are not refurbished they
might die of old age—and the knowledge embodied in these systems will be
lost forever.

As a first step in “software geriatrics” one usually tries to understand the
old system using program understanding or program comprehension tech-
niques. In a second step, one reconstructs abstract concepts (e.g., the system
architecture, business rules) from the source code, the documentation, and
corporate knowledge; this is called software reverse engineering. Given an ab-
stract representation of the system, one can then re-implement the system.
This forward engineering step ranges from fully automatic approaches to
manual reimplementations including restructuring techniques, formal trans-
formations, injecting component technologies, replacing old user interface or
database technology. The process of moving from an old legacy system to a
new implementation is called software reengineering.

1



It was the aim of this seminar to bring together researchers who are active
in the areas of program comprehension and software reengineering regardless
of their particular approaches and research avenues. However, one of the
areas of concentration for this seminar was slicing technology which is an
important technique for software understanding and maintenance activities.
Another topic of increased interest have been empirical studies for software
reengineering. Mathematical concept analysis gained some attention as a
new framework for program understanding.

Several talks were accompanied by system demonstrations, giving partici-
pants first-hand experience of new analysis and reengineering technology. A
panel session compiled a list of open problems, both technical and method-
ological. The traditional Dagstuhl walk offered an opportunity for topological
comprehension and map reengineering.

We are grateful to the participants who made the seminar an exciting week.
We also acknowledge the financial support provided by the European Union
in the scope of the TMR program. As always in Dagstuhl, the staff was doing
a terrific job looking after us and everything surrounding the seminar.

Hausi Müller
Thomas Reps
Gregor Snelting

2



Abstracts

Coping with Software Change Using Information Trans-

parency

William Griswold, University of California, San Diego

Designs are frequently unsuccessful in designing for change using traditional
modularity techniques. It is difficult to anticipate exactly how technology
will advance, standards will arise, and features from competitor’s products
will influence future features. Market pressures dictate that most time be
invested in timely release of the current product, not in accomodating future
changes.

One way to increase the coverage of relevant design decisions is to use a de-
sign principle called information transparency : Write code such that all uses
of an exposed design decision are easily visible to a programmer using avail-
able tools. The coding conventions include techniques like variable naming
conventions, code formatting, and encoding software architecture into the
program source. As a consequence of using such techniques, a programmer
can use a searching tool like grep to view all the related objects together,
creating locality out of similarity.

Flow-Insensitive Pointer Analysis

Susan Horwitz, University of Wisconsin, Madison

Most static analysis rely on knowing what objects are used and defined at
each point in the program. In a language with pointers, determining this
information can be non-trivial. Lars Andersen defined a flow-insensitive al-
gorithm for computing points-to information that is O(n3) in the worst case.
More recently, Bjarne Steensgard gave another flow-insensitive algorithm
that is faster (essentially O(n)), but less precise (computes larger points-to
sets than Andersen’s algorithm).

In the talk, we first define a new points-to analysis algorithm that can be
“tuned” to provide resolutions that fall all along the spectrum from Steens-
gard to Andersen (both in terms of runtime and precision). We then present

3



the results of experiments that measure how the algorithms perform in prac-
tice, measuring both the “direct” results (sizes of points-to sets) as well
as “transitive” results (the size of the sets computed by GMOD), live, and
truly-live dataflow analysis, using the results of the different pointer analy-
ses. We find that (as expected) better points-to analysis leads to better
dataflow analysis results, also (surprisingly) that, at least for the harder
dataflow problems, the extra time required for the better points-to analysis
is not then made up for by a decrease in the time required for the subsequent
dataflow analysis.

Class Hierarchy Specialization1

Frank Tip, IBM. T.J. Watson Research Center2

Class libraries are typically designed with an emphasis on generality and ex-
tensibility. An application that uses a library typically exercises only part of
the libraries functionality. As a result, objects created by the application may
contain unused (user-defined or compiler-generated) members. We present
an algorithm for specializing a class hierarchy with respect to its usage in
a program P . That is, the algorithm analyzes the member access patterns
for P ’s variables, and creates distinct classes for variables that access differ-
ent members. The algorithm addresses the inheritance mechanisms of C++
in their full generality, including multiple inheritance and virtual (shared)
inheritance. Class hierarchy specialization reduces object size, and may be
viewed as a space optimization. However, execution time may also be reduced
through reduced object creation and destruction time, and caching and pag-
ing effects. Class hierarchy specialization may also create new opportunities
for existing optimizations. In addition, we believe that specialization may be
useful in tools for software maintenance and understanding.

1Paper appeared in the proceedings of OOPSLA’97
2Joint work with Peter Sweeney

4



Reengineering Class Hierarchies Using Concept Analy-
sis

Gregor Snelting, Technische Universität Braunschweig3

Class hierarchies in legacy code may be imperfect. For example, a member
may be located in a class that does not need it, indicating that it may be
eliminated or moved to a different class, or different instances of a given class
C may access different subsets of C’s members, an indication that it might
be appropriate to split C into different classes. We present an approach
for detecting such design problems based on class hierarchy specialization
and concept analysis. Examples demonstrate that our technique can provide
remarkable insight into member access patterns of old C++ programs.

Program Analysis via Graph Reachability

Thomas Reps, University of Wisconsin, Madison4

This talk describes how a number of program analysis problems are all
examples—when viewed in the right way—of a certain kind of generalized
graph-reachability problem: context-free language reachability (CFL-reachability).
In a CFL-reachability problem, we are given (i) a graph in which the edges
are labeled with letters from some alphabet and (ii) a context-free language
L (given, say, via a grammar). A path p from node s to node t only counts
as a valid connection from s to t when the word formed by concatenating
(in order) the letters among the edges of p is a word in L. This generalizes
ordinary graph reachability in the sense that L serves to filter out certain
paths in a graph. A CFL-reachability problem can be solved in time O(n3),
where n is the number of nodes in the graph.

In the talk, I describe how problems such as interprocedural slicing, inter-
procedural dataflow analysis, and shape analysis (for a language without
destructive update) can all be converted into CFL-reachability problems. I
also discuss the relationship between CFL-reachability and a certain class of
set-constraint problems.

3Joint work with Frank Tip
4This represents joint work with Susan Horwitz, Mooly Sagiv, Genevieve Rosay, and

David Melski.

5



Slicing Methods for Large Programs5

Tibor Gyimothy, Joszef Attila University of Szeged6

A method is presented for the computation of the summary edges repre-
senting the interprocedural dependences at call sites. The advantage of this
method is that the memory requirement can be reduced for large programs.
The reason for it is that the algorithm computes summary information for
each strongly connected component of program one at a time. Hence only
dependence information for one strongly connected component is stored in-
stead of for the whole program. Moreover, the method reduces the number
of nodes of the dependence graphs.

VALSOFT – Validation of Measurement System Software:

an Application of Slicing and Constraint Solving

Jens Krinke, Technische Universität Braunschweig7

We show how to combine program slicing and constraint solving in order to
obtain better slice accuracy. The method is used in the VALSOFT slicing
system. One particular application is the validation of computer-controlled
measurement systems. VALSOFT will be used by the Physikalisch-Technische
Bundesanstalt for verification of legally required calibration standards. We
describe the VALSOFT slicing system, its architecture and its application.
In particular, we describe our fine-grained version of the underlying system
dependence graph. We also describe how to generate and to simplify path
conditions based on program slices. The technique can indeed increase slice
precision and reveal manipulations of the so-called calibration path.

5Paper appeared in the proceedings of SEKE’97
6Joint work with Istvan Forgacs
7Joint work with Gregor Snelting

6



Towards Dataflow Minimal Slicing

Mark Harman, Goldsmiths College, University of London8

Consider this program

while i < 3 do

begin

if c = 2 then

begin x := 17, c := 25 end;

i := i+1

end

what primitive statements and predicates affect the final value of x ? (that
is, what is the end slice on {x}?) Most slicing algorithms (all?) will leave
in the assignment to c. This is not a special case; it applies to all data flow
equivalent programs. So its true of the program schema

while {i} do

begin

if {c} then

begin x := {} ; c := {}

end;

i := {i}

end

where the sets denote the variables upon which an expression depends. The
question we ask is “at this dataflow level of abstraction is minimal slicing
computable?” Weiser asked this question in his PhD thesis, having observed
that his algorithm was not minimal in this sense. We believe the answer is
“yes”. We have an algorithm (http://www.unl.ac.uk/∼11danicics/) and
are working on a proof. The algorithm uses an unconventional approach to
data and control flow analysis based upon repeated (but finite) instances of
predicate nodes together with their “dependence history”.

8Joint work with Sebastian Danicic

7



Experience Building an Industrial-Strenght Program Un-
derstanding Tool

John Field, IBM Research9

In early 1996, G. Ramalingam and I became involved with designing and
implementing a program understanding tool for use in IBM’s Cobol tool
suite. The functional requirements for the tool were modest (centered around
control-flow rationalization and a restricted form of slicing), and our original
intent was to use well-understood algorithms in its design. However, we soon
discovered that despite the limited goals, Cobol posed technical challenges
that to our knowledge have not been previously addressed. In addition to
a large number of endearing, but technically inconsequential design quirks,
Cobol possesses several distinctly peculiar control-flow and data manipula-
tion constructs. Typical Cobol programs also use certain otherwise unre-
marked constructs in atypical ways; For example, programs tend to contain
vast quantities of global data and frequent use of non-disjoint unions. In
this talk, I discuss the original design goals for the tool and describe certain
technical challenges posed by Cobol and our approach to solving them. In
particular, I describe an efficient algorithm to transform instances Cobol’s
PERFORM construct to semantically equivalent procedural representations
used for program slicing. Further, I describe special techniques for computing
interprocedural reaching definitions and constructing pseudo-parameters for
the procedural representations computed during PERFORM analysis; these
techniques are necessitated by the unusual properties of Cobol data manip-
ulations.

A Model of Change Propagation

Vaclav Rajlich, Wayne State University

Change in programs starts with programmer a specific component. After the
change, the component may no longer fit with the next, because it may no
longer provide what the other components require, or it may now require dif-
ferent services from the components it depends on. The dependencies that no

9Joint work with G. Ramalingam

8



longer satisfy the require–provide relationships are called inconsistent depen-
dencies, and they may arise whenever a change is made in software. When
these inconsistencies are fixed, they may introduce additional inconsisten-
cies, etc. The paper describes a formal model of change propagation, and
two specific examples of it: change-and-fix scenario, and top-down scenario.

Software Migration

Hausi Müller, University of Victoria

Software migration is a subset of software reengineering and involves mov-
ing existing system to a new platform. Important problems are migrating
to object technology from an imperative language, to GUI technology from
a text-based user interface; to a network-centric environment from a stand-
alone application, to Year 2000 compliant software. Automation is a key
requirement for these processes and wrapping seems to be a promising tech-
nology.

CESR is a Canadian Centre for Excellence for Software Engineering Re-
search. The IBM CSER project which involves John Mylopoulos, University
of Toronto, Ric Holt and Kostas Kontogiannis, University of Waterloo and
my research group, currently investigates how PL/I programs can be auto-
matically and incrementally migrated to C++. The target application is
about 300 kloc written in a PL/I derivative. As a pilot project we converted
a subsystem of 3000 lines to C++. The resulting subsystem was integrated
into the existing PL/I application. Early performance tests revealed that the
new subsystem was 50% slower. Simple C++ optimizations were performed
resulting in significant speedup and a subsystem that is 5-20% faster than
the original code. Using Refine from Reasoning Systems we then built an
automated solution to convert the entire system implementing the optimiza-
tions.

9



Task-aware Program Understanding Techniques

Gail C. Murphy, University of British Columbia10

Many software engineering tools attempt to fully automate tasks that soft-
ware engineers must perform on software systems. Even more tools exist to
analyze code without any notion of how the analyzed information will be
used. In this talk, I argue that there is a useful set of tools and approaches
that fall in the middle of this spectrum. These tools are task-aware. Task-
aware tools may be more amenable to exploiting partial and approximate
information about source. This type of information can help engineers more
effectively perform software engineering tasks on large systems within the
time constraints placed on the task.

I describe two task-aware techniques we have developed to investigate if an
approach of overlaying logical structure on existing source can aid a software
engineer in quickly and easily assessing appropriate source information for
a task at hand. The software reflexion model technique helps an engineer
gain an overall ’gestalt’ of the source by using a high-level structural model
as a lens through which to summarize the code for a system. This tech-
nique has been used to drive an experimental reengineering of the million
lines-of-code Microsoft Excel spreadsheet product. The conceptual module
technique provides direct support for performing a reengineering task by en-
abling source-level queries about a desired, rather than the existing, source
structure. This technique has been used to help reengineer an over fifty thou-
sand lines-of-code binary decision diagram package prior to the source being
parallelized.

The AST Toolkit and ASTLOG

Roger F. Crew, Microsoft Research

The AST Toolkit provides the developer/tester with a C++ application pro-
grammer interface to data structures used by the front end of Microsoft’s

10The reflexion model work is joint with David Notkin (U.Washington) and Kevin Sul-
livan (U.Virginia). Conceptual modules are joint with Elisa Baniassad (U. of British
Colombia)

10



C/C++ product compiler, specifically the abstract syntax trees (ASTs), sym-
bols (including symbol tables and scopes), and the type descriptions. Given
the variations in possible AST structures and compiler idiosyncracies that
product groups often take advantage of, it is often important that one have
access to the actual structures of the compiler one is using. The toolkit has
already been used to solve a variety of elementary program-comprehension,
problems and meta-programming (e.g., automatic generation of stub function
and thunks) tasks.

In addition to providing a direct C++ API, the toolkit also provides ac-
cess via a query language, ASTLOG. ASTLOG was inspired by grep/awk-
style tools that allow the programmer to locate program artifacts without
incurring the overhead of writing an entire C++ application. In contrast
with prior such tools, our goal is to provide a pattern language with suffi-
ciently general abstraction/composition facilities so that programmers can
write queries/abstractions tailored to specific code bases and re-use them for
later works. The language itself is a Prolog variant for which we have written
a small, fast interpreter. The execution model, in which terms are treated
as patterns to be matched against an implicit current object rather than as
simple predicates leads to a ”reverse functional” programming style distinct
from both the usual relational Prolog style and the usual ”forward” style
found in Algol-Family languages, one that is well-suited to the particular
application of querying ASTs and related structures.

GUPRO - Generic Unit for Program Understanding

Andreas Winter, University of Koblenz

The aim behind GUPRO is to develop an adaptable tool to support program
understanding even in a multiple language environment. This adaptability is
based on an user-defined conceptual model which defines the internal data-
structure of the tool (which could be viewed as an instance of a MetaCARE-
tool) and the parsing process into the repository structure. Analysis is done
by a source code independent Query-mechanism.

The formal foundation of GUPRO is given by the EER/GRAL-approach on
graph based, conceptual modeling.

A presentation of GUPRO including queries to a coarse-grained multi-language

11



conceptual model, a fine grained C-model and the according meta model was
given after the talk.

A Range Equivalence Algorithm and its Application to

Type Inference

G. Ramalingam, IBM T.J.Watson Research Center 11

A common program maintenance activity is that of changing the represen-
tation/implementation of an abstract type. A well-known example is that
of making programs ”year 2000 compliant”, which requires ensuring that
the implementation of the abstract type ”YEAR” can adequately distinguish
between years belonging to different centuries.

Ideally, appropriate use of ”abstract data types” would make such changes
easy, requiring appropriate modifications only to the (single) implementation
of the abstract daty type. In practice, such changes turn out to be very
expensive and time-consuming because of inadequate use of abstractions. In
fact, much of the existing legacy code is written in languages such as Cobol
that do not provide adequate abstraction facilities.

Consequently, a programmer facing the problem of making such a change
needs to find all variables in a program that belong to some abstract type.
This talk describes a type inference algorithm that partitions the variables in
a program into equivalence classes, where all variables in an equivalence class
are likely to have the same abstract type. Our algorithm is particularly suited
for languages such as Cobol and PL/I. The primary technical problem that
our algorithm solves is that in a Cobol or PL/I program the set of all ”logical”
variables in a program may not be apparent from the declarative section of
the program. For example, what was declared to be a single (unstructured
scalar) variable may in fact be a record consisting of a sequence of fields,
each with its own abstract type. . . and this fact has to be inferred from how
the variable is used in the program.

Our algorithm is based on an extension of the well-known UNION-FIND data-
structure/algorithm that enables us to efficiently create equivalences between
”sub-ranges” and map-valued variables.

11Joint work with J. Field and F. Tip

12



Software Reengineering: Finding Leverage for Existing
Technologies

Dennis Smith, Carnegie Mellon University, Software Engineering Institute

Based on experiences with the analysis and reengineering of large system,
we have been focusing on large grain issues of strategy reuse. One particular
focus has been the use of legacy system as core assets for the development of
product lines, or families of systems. Although significant technical problems
exist in this type of migration, a number of successful examples exist, includ-
ing such companies as Celsina Tech, HP and Motorola. The reengineering
issues of most relevance for product line technologies include:

1. Identification of the enterprise wide issues of relevance, such as the
organizational goals, project, legacy and target systems, technology
and SW engineering.

2. System understanding, including program understanding and architec-
tural extraction.

3. Distributed object technology and wrapping approaches

4. Net centric approaches and levereraging of web technologies.

Our work is reengineering that addresses these issues was described.

Evaluating Software Maintenance Tools for their Sup-
port of Program Comprehension

Anneliese von Mayrhauser, Colorado State University

The talk presented deliberations, possibilities and limitations of various ap-
proaches to evaluate tool technologies with respect to their support for soft-
ware understanding. It used two types of maintenance tasks as examples,
debugging and enhancement. We compared two static analysis environments
and showed that an environment that includes even limited data flow analysis
and slicing capabilities has the potential of decreasing necessary comprehen-
sion activities by between 19-50% depending on the type of maintenance

13



tasks. Related publication can be found in Proceedings of IEEE Aerospace
Conference, March 21-28, 1998, Snowmass, CO.

Approaches to detect abstract data types and abstract

state encapsulations

Rainer Koschke, University of Stuttgart

One of the first activities in software architecture recovery is to detect atomic
components in the source code. Examples of these are abstract data types
and abstract state encapsulations (global state variable or objects). They are
atomic in the sense that they consist of routines, variables, and types respec-
tively. They do not have any further subcomponents other than these pro-
gramming entities. These atomic components are building blocks for larger
components and so must be understood first. They are candidates for re-use
and in the case of a migration to an object-oriented system they have to be
detected before one can take care of the inheritance relationship. Older pro-
gramming languages do not let the programmer specify them. So, in order to
detect them in legacy code certain other relationships have to be considered.
Several heuristics were proposed in the literature to detect them. We im-
plemented six of them, namely Same Module (Koschke, Girard 1997), Part
Type (Ogando, Yan, Wilde 1994), Internal Access (Yan, Harris, Reubenstein
1994), Delta IC (Canfora, Cimible, Munro, 1993), and Similarity Clustering
(Girard, Koschke, Schied 1997; our enhancement of Schwanke’s approach to
detect subsystems). In order to compare them quantitatively we asked five
software engineers to compile a list of atomic components manually from
three C systems (altogether 100,000 LOC). These references were compared
with the candidate components by a metric for the detection quality. The
results show that Part Type and Similarity Clustering recover most ADT’s
and Same Module and Similarity Clustering most abstract state encapsula-
tions. However, the overall result is that none of the heuristics is sufficient.
To improve the results the techniques should be combined, in a post analysis
many false positives can be removed, and also dataflow information can be
taken into account.

14



Program Tucking

Arun Lakhotia, Univ. of Southwestern Louisiana12

To tuck a set of program statements is to ”gather and fold” these statements
into a function without changing the external behavior of the system. We
present a transformation to tuck non-contiguous program fragments. Tuck
has three steps: wedge, split and fold. One first drives a wedge in the code,
then splits the wedged code, and then folds the split code. Folding replaces
the split code, a single-entry single-exit subgraph with certain constraints,
into a function. That tuck does not alter the behavior of the original function
follows from the semantics preserving property of the other transformations.

The tuck transformation was developed to aid in program restructuring. The
first prototype developed used the transformation to split non-cohesive func-
tions into cohesive functions. We are now developing an interactive environ-
ment that provides this transformation as a primitive accessible to a pro-
grammer through mouse clicks.

Finding Objects in COBOL Code

Peter Reichelt, GMD (German National Research Center for Computer Sci-
ence)

We often find a split of paradigms in companies: Here are the COBOL guys,
there are the OO-guys programming in C++ or Smalltalk etc. Our aim
is to bring together these two worlds. The new COBOL standard includ-
ing OO stuff will help. In the project ROCOCO (Reengineering for Object-
Orientation and Reuse for COBOL Code) (carried out with partners IBM and
CAI, funded by BMBF) we develop a tool to find objects in COBOL Code.
The existing code can be objectified, but our main goal is to just extract the
found objects, and store the resulting classes in a class library. Our hope
is that we can do some work of generalization and standardization on these
classes, so that they can be offered for reuse in the company. To support that
reuse we do not only store the COBOL class, but also data about the struc-
ture of the class, so we call it a repository. Our tool is highly user-oriented.
The user can do all the needed transformations by clicking around with the

12Joint work with Jean-Christophe Deprez

15



mouse in the program text. But the user will want to use our proposal gen-
erator which will create proposals for what part of the program the user may
want to select.

Analysis of Software Variants

Christian Lindig, TU Braunschweig

Software comes in variants because computer platforms are so diverse. When
this diversity can not be encapsulated into modules it gets into the actual
source files. Source file preprocessing then creates a variant for each plat-
form. Under some simplifying assumptions over the C preprocessor (CPP) all
variants that can be generated from a specific source file using the CPP can
be efficiently computed. The technique for this is formal concept analysis.
Formal concept analysis is an algebraic theory for binary relations. Its main
theorem states that there exists a lattice of so-called concepts for every binary
relation. The idea to use it for the analysis is to record the dependencies of
source code segments on CPP expressions in a binary relation. Then concept
analysis can be used to analyze this relation. Each concept of the resulting
concept lattice describes a variant and thus this lattice is called the variant
lattice of the original source. Besides that a concept describes a canonical
way how to generate the actual variant from the actual source. The original
expressions that describe all variants may contain redundancies. These re-
dundancies also show up in the concept lattice. After they are detected there
they can re removed from the original source. It is guaranteed that this will
not lead to a loss of variants.

Rewriting “poor” (design) patterns by “good” (design)
patterns

A. Zündorf, U. Paderborn13

Gamma and his “Gang of 4” proposed a number of “good” solutions to
frequently recurring problems. Along with the “good” solutions they describe
“poor”, i.e. naive solutions to these problems and why these are faulty. Our

13Joint work with J. Jahnke and W. Sch”afer

16



goal is to employ program analysis techniques for detecting poor solutions
of a problem and rewriting them to good solutions. We consider this as an
interaction engineering task and propose to support this with an ’CARE’
environment, driven by a high level (reengineering) process description, i.e.
Generic Fuzzy Reasoning, Nets + Petri Nets + Programmed Crash Rewriting
Rules.

Classification and Retrieval of Software Components us-
ing Semantic Nets

Hans-Jürgen Steffens, FH Kaiserslautern - Standort Zweibrücken

The possibilities of a semantic net for classifying SM entities in a repository
are discussed. In comparison to the complete KL-ONE language only a small
number of features are used to construct the net: starting with a fixed set
of undefined concepts and a fixed set of binary relations new concepts are
defined recursively by mapping a given concept C and relation n to a new
intermediate concept op(r, C). Thus starting with two concepts C1 and C2

a new concept “C1 and op(r, C2)” finally is defined which is a subconcept of
C1 and a “side concept” of C2. Thus we have introduced an explicit ISA-
link between “(C1 and op(r, C2))” and ”C1”. During construction of the net
implicit ISA-links emerge in addition and should be detected by a ”classifier”.
When we restrict to the above rules the classifier is computable but may be
np-hard, when we choose op = csome instead of op = all. Using csome we
have more expressive power, but our special application may justify using
”all”, thus having a classifier of lower complexity.

Analysis and Conversion Tools for Application Software
Reengineering to EMU

Rainer Gimnich, IBM Scientific Center, Heidelberg and IBM EMU Transition
Services, Stuttgart

The European Economic and Monetary Union (EMU) will be effective from
1st January 1999 and probably include 11 member states at the beginning.
Over a transition period of 3 years both Euro and each national currency

17



(NC) may be used and need to be dealt with, also by business partners out-
side Europe. Probably on January 1st 2002, the Euro bills and coins will be
introduced to replace the NC money physically. This time table, along with
strict EU regulations to guide the transition, lead to wide-ranging and tech-
nically challenging software reengineering tasks which are comparable to the
year 2000 (Y2K) transition. Though EMU entails only financial processing
and data, the analysis and conversion tasks are harder to solve than in Y2K
projects.

We approach the EMU problem area by a dedicated methodology called IBM

EuroPath, which is supported in IBM’s project management tool world-wide.
EuroPath accounts for both the business aspects and the IT aspects of the
transition. From this methodology, we derive the tool requirements for each
phase and consider existing reengineering technologies to meet these require-
ments for instance a ”memory-level” dataflow analyzer for COBOL and PL/I,
with built-in heuristics of amount field propagation, will be used during de-
tailed analysis. The EMU tools portfolio currently consists of some 25 tools,
subset of these are chosen to best meet individual project needs.

The Use of Program Profiling for Software Maintenance

with Applications to the Year 2000 Problem

Thomas Reps, University of Wisconsin14

A path profile is a finite, easily obtainable characterization of a program’s exe-
cution on a dataset, and provides a behavior signature—a kind of spectrum—
for a run of the program. When different runs of a program produce different
path spectra, the spectral differences can be used to identify paths in the pro-
gram along which control diverges in the different runs. By choosing input
datasets to hold all factors constant except one, any such divergence can be
attributed to this factor. The point of divergence itself may not be the cause
of the underlying problem, but provides a starting place for a programmer
to begin his exploration. In the talk, I describe how this idea can be ap-
plied to the Year 2000 problem: In this case, the input datasets should be
chosen to keep all factors constant except the (ranges of) dates that appear.
Applications to other software-maintenance problems are also described.

14Joint work with Manuvir Das, Tom Ball and Jim Larus

18



Demos

Demos supporting talks were presented by R. Crew, J. Krinke, P. Reichelt,
A. Winter/J. Ebert, A. Zündorf/W. Schäfer.

In addition, the following independent demos were given:

Demonstration of a Prototype Commercial Slicing Tool

Tim Teitelbaum, GrammaTech, Inc. (and Cornell University)

GrammaTech is commercializing the University of Wisconsin precise inter-
procedural slicing technology developed over the past decade by Reps and
Horwitz. It will offer this technology in two forms: an end-user understand-
ing tool, and a collection of components to be integrated into the tools of
others. The prototype end-user tool provides forward and backward slic-
ing, chopping, and immediate predecessor/successor information by suitable
highlighting on program text and various summary information thereof.

Demonstration of Serving ASTs with the Synthesizer
Generation

Tim Teitelbaum, Cornell University and GammaTech, Inc.

Each edition/interface generated by the Synthesizer Generator (SG) repre-
sents edit buffers as pretty printed attributed abstract syntax trees (ASTs).
These ASTs are available to end users in Scheme, the SG’s scripting lan-
guage. Constructions and destructions on these terms are dynamically type
checked, and attributes on these terms are updated incrementally upon mu-
tations (unless disabled). End users of generated tools, e.g., Ada-ASSURED,
use computations on ASTs in lieu of the text-oriented manipulations of lan-
guages such as PERC.

19



IBM Visual Age for Cobol Professional Redeveloper (I)
Menagerie: A Prototype slicing, symbolic analysis, and

debugging tool (II)

John Field, IBM Research15

In (I), I demonstrate IBM’s Cobol program understanding tool. The tool
provides efficient data dependence slicing, a code browser with various navi-
gation facilities, and a graphical view of rationalized control flow.

In (II), I demonstrate the facilities of a prototype tool developed at IBM’s
Watson Research Center. The tool operates by translating the program
source (written in a subset of the C language) to an intermediate represen-
tation called PIM. PIM has an accompanying equational logic, a subset of
which provides an operational semantics. By normalizing PIM graphs using
term graph rewriting, the graph may be simplified to a canonical form. Using
a technique called dynamic dependence tracking, a slice can be computed by
traversing the canonical form graph, which has been annotated with origin
information during rewriting. The normalized graph can also be displayed
in a form that simplifies the semantics of the original source to aid program
understanding.

Open Problems

An evening session was devoted to open problems. The participants collected
the following list of open problems, which was edited by John Field:

Conceptual

• How to push the world to use languages for which it is easy to obtain
useful analysis? (J. Krinke)

• How can we package analysis tools so as to be useful to non-experts
(queries and results must be intuitive)? (J. Krinke)

15Joint work with F.Tip and G.Ramalingam

20



• What is the role of domain-specific type information in re-engineering?
(A. Goldberg)

• Infrastructure/packaging issue: - exchange formats (both textual and
in-core) - scripting/query languages for computing on intermediate pro-
gram representations (H. Mueller)

• Replacement of #ifdefs for version control in the C language (S. Hor-
witz)

• Design a ”sane”, analyzable preprocessor for the C language (M. Ernst)

• Can design information or user assertions be used to feed into and
improve program analysis (E. Ploedereder)

• Define a taxonomy or vision of tasks, scenarios and corresponding
information-gathering needs (D. Notkin)

• Can dynamically-gathered profile information be used for program un-
derstanding (C. Lindig)

Experimental

• Do we recoup costs of early analysis phases (e.g., pointer analysis) when
analysis phases are solved in a demand-driven fashion (T. Reps)

• Why are slices large? Is it pointers, array usage, infeasible paths?
(A. Goldberg)

• How useful are data-dependence slices? (J. Field)

• How useful are non-conservative analyses? (G. Ramalingam)

• To what extent does static analysis really reflect what goes on at run-
time? (T. Reps/J. Krinke)

• Can we find better experimental benchmarks or testbeds for program-
ming tools (e.g., Netscape, Emacs) (H. Mueller)

21



Algorithms

• Can we have an algorithm/framework for program analysis that ex-
ploits adaptive granularity (e.g., that matches ”effort” to program re-
gion (ála multi-grid finite-element analysis) (G. Murphy/T. Reps)?

• Exploit synergistic integration of analysis results (from different analy-
ses) (G. Snelting)

• Cheap ways of obtaining analysis results when the program artifact
changes, e.g., eagerly/lazily (E. Ploedereder)

• How can ”anticipatory” or ”speculative” analyses be used in program-
ming tools? (F. Tip)

• How can probabilistic algorithms be used in programming tools? (T. Reps)

• How can heuristic algorithms be used in programming tools? (M. Har-
man)

• Are there useful algorithms for recovering design information from
legacy code? (J. Ebert)

• Distilling slices by recognizing cliches or design patterns within them
(E. Ploedereder)

• Can CFL-reachability be solved in less than cubic time? If so, by a
practical algorithm? (T. Reps)

• Can practical demand-driven pointer analysis algorithms be developed?
(S. Horwitz)

• Can flow-sensitive analysis be engineered to apply to greater than 1M
line programs? (J. Field)

• How can we do whole-program analysis on programs when the infor-
mation does not fit in core? (F. Tip)

• What analysis techniques are useful in supporting program design (e.g.,
can concept analysis be used for object-oriented design)? (T. Teitel-
baum/ D. Notkin)

22



CALL FOR PROBLEMS: nPPPA – n Pathological Problems
in Program Analysis16

Jens Krinke, University of Braunschweig

During the “Open Problems” session of the workshop the need for bench-
marks or testbeds for Program analysis tools became obvious. On the other
side, some interesting examples were presented during the workshop which
represents unsolved or hard-to-solve problems. There are many more of those
problems—both users and developers of program analysis tools discover ’in-
teresting’ examples from time to time. These examples often get lost again,
as nobody collects them. Therefore we call the developers and users of pro-
gram analysis to submit their problems to krinke@ips.cs.tu-bs.de.

Requests for the actual list of problems may use the same address.

16At this time, n ≥ 5

23



Taxonomy of participants and their interests

The following concept lattice was generated from a boolean table which en-
coded the interests of the participants. The lattice reveals a hierarchical
structure of both participants and interests. A person x is interested in topic
y, iff x appears below y in the lattice. Suprema factor out common interests,
infima display multi-interested participants.

GrouperDesign Empirical_Studies

A_Mayrhauser

E_Ploedereder R_Koschke G_Murphy

D_Notkin

Queries

R_Crew

Slicer

M_Harman J_Krinke T_Gyimothy S_Horwitz

T_Teitelbaum

Program_Transformation

P_Reichelt A_Lakhotia H_Muller

W_Schaefer A_Zuendorf

Process Y2000

R_Gimnich

H_Steffens J_Ebert A_Winter

Concept_Analysis

C_LindigD_Smith G_Ramalingam J_Field

V_Rajlich T_RepsG_Snelting

F_Tip

W_Griswold

24

• • 

• • • 

• 
• • 


