
The Semantic Challenge of
Object-Oriented Programming

Dagstuhl Seminar 98261

28 June — 3 July 1998

Organisers: Luca Cardelli

Achim Jung
Peter O’Hearn

Jens Palsberg

Report editor: Ian Stark



4



Preface

Object-oriented programming is based on an informal concept of object as
an entity or thing whose identity persists over time. The object concept
is immediately meaningful to programmers, and has proven to be a useful
and flexible organisational device in the analysis, design, and maintenance
of complex systems. But though objects are attractively simple and intu-
itive in their initial conception, programming languages that support object-
orientation are subtle and pose significant challenges for researchers.

Research on the Foundations of OOP began in the mid eighties. Many of
the first inspirations came from denotation models, but it was quickly realised
that existing semantic technology was not adequate to meet the demands of
the object paradigm. For this reason, a number of researchers adopted a
more ad-hoc (but more effective in the short term) operational and type-
theoretical approach. This has resulted in significant achievements, the most
visible of which are calculi and safe type systems for OOP, which simplify
and deal soundly with intricate issues involving inheritance. This lead to
important semantics work on polymorphism and subtyping.

In the meantime there have been substantial advances in more “main-
stream” semantics. Some of this has been directly relevant to or inspired
by OOP, especially work on modelling subtypes and polymorphism. But
there have also been substantial new advances using game semantics, func-
tor categories, and process calculi. This has lead, for example, to a better
understanding of local state and interaction, both of which are integral to
the essence of the object concept.

The purpose of this workshop was to bring researchers from the two camps
together. On one hand, OOP provides a great challenge for current semantic
methods, and attempting to apply them will likely bring up new problems
and give new insight on the methods themselves. On the other hand, a
deeper semantic analysis of object-oriented languages can potentially impact
program specification, type systems, and static analysis.

In addition to the talks presented at the workshop (abstracted below),
there were numerous lively “corridor discussions”, and a wrap-up session,
where the main themes and problems were discussed. Some of the central
problems or issues that repeatedly arose included the following.

Objects versus Functions There are a number of translations from object-
oriented to functional programming. Some researchers stressed, how-
ever, that these translations are somewhat indirect, and (especially)
have difficulty explaining the typing concerns prevalent in OOP. For
this reason, and also because translations go both ways, primitive ob-

5



ject calculi are gaining currency, where translations to (pure or impure)
functional programming are viewed as complementing the calculi, not
replacing them.

State, Extrusion, and Identity Extrusion occurs when an object passes a
newly created object to the outside; this occurs frequently in OOP (and
even forms the basis of Hewitt’s Actor model). Purely functional object
calculi do not give an accurate account of extrusion, however, because
when the extruded entity is changed by the receiver, this change needs
to be reflected in the object itself: the distinction between sharing
and copying is crucial here. But while “adequate” or sound models of
extrusion can easily be given using traditional methods, more accurate
semantics, accounting for locality, presents a challenge.

Specification Specification methods for objects remain a challenge. Par-
ticular problems include abstraction and inheritance, and imperative
behaviour.

Also, while progress in type systems represents perhaps the most significant
advances in Foundations of OOP, and has formed the core of prior work,
interest continues and further work is progressing on a number of fronts.

Peter O’Hearn

6



Participants

Stephen Brookes, Carnegie Mellon University
Kim Bruce, Williams College
Luca Cardelli, Microsoft Research
Pietro Cenciarelli, Ludwig-Maximilians-Universität München
Frank de Boer, University of Utrecht
Mariangiola Dezani-Ciancaglini, Università di Torino
Kathleen Fisher, AT&T Labs-Research
Giorgio Ghelli, Università degli studi di Pisa
Dan Ghica, IBM Toronto Laboratory
Bart Jacobs, University of Nijmegen
C. Barry Jay, University of Technology, Sydney
Achim Jung, University of Birmingham
Søren Bogh Lassen, Cambridge University
K. Rustan M. Leino, Compaq Systems Research Center
Peter O’Hearn, Queen Mary and Westfield College
Jens Palsberg, Purdue University
Benjamin Pierce, University of Pennsylvania
Erik Poll, University of Kent
Uday Reddy, University of Illinois
Didier Remy, INRIA-Rocquencourt
John Reynolds, Carnegie Mellon University
Jon Riecke, Bell Laboratories
Scott Smith, John Hopkins University
Ian Stark, University of Edinburgh
Robert D. Tennent, Queens University
Hayo Thielecke, Queen Mary and Westfield College

Further information on the seminar and participants is available electroni-
cally at http://www.dag.uni-sb.de/DATA/Seminars/98/#98261

7



8



Contents

Benjamin C. Pierce

Some Distinctions without a Difference?

Luca Cardelli

Everything is an Object

Pietro Cenciarelli

Event-Based Operational Semantics of Java

Bart Jacobs

Reasoning about Java Classes

F. de Boer

Reasoning about Dynamically Evolving Object-Structures

Mariangiola Dezani-Ciancaglini

Extensible, Incomplete Objects

Jon Riecke

Privacy via Subsumption

K. Rustan M. Leino

The Essence of Object-Oriented Program Semantics

Didier Remy

From Classes to Objects via Subtyping

Kathleen Fisher

Adding Classes to a Language with Modules

Dan Ghica

Parameters and Linked Structures in Algol-like Languages

Stephen Brookes

Concurrent Objects in Idealised CSP

Erik Poll

(Co)Inductive Types with Sub-typing

Kim Bruce

Grouping Constructs of Semantics in Object-Oriented Languages

Ian Stark

When is a Local Variable not a Local Variable?

S. B. Lassen

Bisimulation up to Context for Sequential Higher-Order Languages

C. Barry Jay

A FISH Language Demonstration

Giorgio Ghelli

Objects with Roles

9



Abstracts

Some Distinctions without a Difference?

Benjamin C. Pierce

University of Pennsylvania

In the spirit of the them of duality introduced by Erik Poll, this will be a
“co-talk”: I will ask questions and the audience will, I hope, help with some
answers. In particular I would like to mention three puzzles arising in type
systems for OO languages:

• the relation between the “by-name” type systems found in most main-
stream OO languages and the “structural” type systems of typed lambda
calculi;

• the striking similarities (striking in view of their evident fundamen-
tal differences) between the “recursive records of functions” model of
objects and the “overloaded methods” model of CLOS and related lan-
guages; and

• the question of formalising the melange of ADT-like and “pure object”
qualities in the classes of Java, C++ and Simula.

Everything is an Object

Luca Cardelli

Microsoft Research

(Joint work with Martin Abadi.)

I discuss some foundational issues in object-oriented programming. Object-
based (as opposed to class-based) languages have attempted to explore sim-
pler object-oriented foundations. Recent results validate the long-standing
intuition, embedded in object-based languages, that everything including
functions and classes can be represented as objects. Moreover (and this was
not a long-standing intuition) function types and class types can be rep-
resented as object types. The basic constructions are simple, flexible and
powerful, reinforcing some people’s belief that object-based languages form
an alternative and simpler foundation for object-oriented programming.

10



Event-Based Operational Semantics of Java

Pietro Cenciarelli

Universität München

(Joint work with A. Knapp, B. Rens and M. Wirsing.)

A structural operational semantics of Java is presented; including the mech-
anisms for running and stopping threads, thread interaction via shared mem-
ory, synchronization via monitoring and notification, and sequential control
mechanisms such as exception handling and return statements.

The operational semantics is parametric in the notion of event space,
which formalises the rules that threads and memory must obey in their in-
teraction. Different computational models are obtained by modifying the
well-formedness conditions on event spaces while leaving the operational rules
untouched. In particular, we implement the prescient stores described in the
Java specification, which allow certain intermediate code optimizations, and
prove that such stores do not affect the semantics of properly synchronized
programs.

Reasoning about Java Classes

Bart Jacobs

University of Nijmegen, The Netherlands

(Joint work with Joachim van den Berg, Marieke Huisman, Martijn van
Berkum, Ulrich Hensel and Hendrick Tews.)

First results are presented of a project on formal methods for the object-
oriented language Java. It aims at verification of program, properties, with
support of modern tools. We use our own front-end tool (which is still under
construction) for translating Java classes into logic, and a back-end theorem
proven (namely PVS) for reasoning. In several examples we will demon-
strate how non-trivial properties of your programs and classes can be proved
following this two step approach.

Reasoning about Dynamically Evolving Object-Structures

F. de Boer

University of Utrecht, The Netherlands

I presented a Hoare-logic for a simple (i.e. without sub-typing and inheri-
tance) OO-language which allows one to reason about object-structures at
an abstraction level which is at least as high as that of the programming
language. This means that the only operations on ‘pointers’ are equality and

11



dereferencing. Moreover, in a given state of the system, it is only possible
to measure the objects that exist in that state. Objects that do not (yet)
exist never play a role. Axiomatizations are given for aliasing object-creation
and method invocation. Extensions to concurrent system have been briefly
indicated. Future work: sub-typing, inheritance and abstract types.

Extensible, Incomplete Objects

Mariangiola Dezani-Ciancaglini

Università di Torino

(Joint work with Viviana Bono, Michele Bugliesi and Luigi Liquori.)

The type system for the Lambda Calculus of Objects is extended to account
for a notion of width subtyping. The main novelties over previous work
are the use of subtype-bounded quantification to capture a new and more
direct encoding of MyType polymorphism, and a treatment of other features
that were accounted for via different systems in subsequent extensions of the
original proposal. The new system provides for

• approximate type specialization of inherited methods;

• static detection of errors;

• width subtyping compatible with object extension;

• sound typing for partially specified objects.

Privacy via Subsumption

Jon Riecke

Bell Laboratories, Lucent Technologies

(Joint work with Christopher Stone, CMU.)

We describe an object calculus allowing object extension and structural sub-
typing. Each object has a “dictionary” to mediate the connection between
names and components. This extra indirection yields the first object calcu-
lus combining both object extension and full width subtyping in a type-safe
manner. If classes are modelled through object extension, private fields and
methods can be achieved directly by scoping restrictions: private fields or
methods are those hidden by subsumption. We prove that the type sys-
tem is sound, discuss a variant allowing covariant self-types, and give some
examples of the expressiveness of the calculus.

12



The Essence of Object-Oriented Program Semantics

K. Rustan M. Leino

Compaq Systems Research Center

I give a semantics for an imperative, object-oriented programming notation.
The semantics is given in terms of what we already know about the weakest-
precondition and refinement semantics of imperative, procedural languages,
which I review in the talk.

From Classes to Objects via Subtyping

Didier Remy

INRIA — Rocquencourt

We extend the Abadi-Cardelli calculus of primitive objects with object ex-
tension. We enrich object types with a more precise, uniform and flexible
type structure. This enables us to type object extension under both width
and depth subtyping. Objects may also have extended-only or virtual contra-
variant methods and read-only co-variant methods. The resulting subtyping
relation is richer, and types of objects can be weakened progressively from a
class level to a more traditional object level along the subtype relationship.

Adding Classes to a Language with Modules

Kathleen Fisher

AT&T Labs — Research

We believe that modern programming languages require both module sys-
tems and class mechanisms. Unfortunately, current class constructs overlap
significantly with module features, causing undue complexity. We describe
the design of a simple class mechanism that works in concert with the module
system, to support a rich class-based programming style. The minimal class
construct is part of MOBY, an ML-like language with support for object-
oriented features. We formalize MOBY in MiniMOBY, a core language that
captures the essence of our design. We validate the expressiveness of our
language by showing how various programming idioms from class-based lan-
guages can be written in MOBY.

Parameters and Linked Structures in Algol-like Languages

Dan Ghica

IBM, Toronto

A mechanism of generating dynamic variables inspired from the ν-calculus

13



(Stark & Pitts) is adapted to an Algol-like language with local variables
and extended to support assignment. A functor category semantics is given
and several typical equivalences are proved. The notions of isomorphism
and observability are introduced, and it is proved that isomorphism implies
observational equivalence, leading to an updated semantic of state. More
equivalences are proved this way.

Concurrent Objects in Idealised CSP

Stephen Brookes

Carnegie Mellon University

Idealised CSP in an Algol-like language combining asynchronous communi-
cating process with a simply typed λ-calculus. The language supports a form
of concurrent object-oriented programming, in which an object is represented
by a collection of local variables and local elements together with a list of
procedures for accessing this local data. These “methods” can be executed
concurrently and objects can be designed so as to ensure desirable properties
such as mutually exclusive access to an object’s data. The language has a
straightforward semantics based on “transition traces”, which builds in the
assumption of fair execution. The semantics validates a number of useful
laws of program equivalence, leading to a methodology for reasoning about
the behaviour of concurrent objects.

(Co)Inductive Types with Sub-typing

Erik Poll

University of Kent

Inductive (or algebraic) datatypes are well known, for instance in functional
programming languages such as ML or Haskell. I will consider a simply typed
λ-calculus with not only inductive types, but also their duals — co-inductive
types — and subtyping. These conductive types can be used as types for
objects, which provides subtyping for object types and a form of code reuse
that corresponds to a simple form of inheritance. (This is essentially just
another syntax for existing object encodings).

Exploring the duality between inductive and conductive types now sug-
gests a notion of subtyping for inductive types and an associated form of
code reuse which I call coinheritance.

When coinductive types are used as object types, object types are just
interfaces (or signatures) and subtyping is so-called structural subtyping. I
will show how this approach can be refined to provide “classes” as types of
objects, and a notion of behavioural subtyping for those classes.

14



Grouping Constructs of Semantics in Object-Oriented Languages

Kim Bruce

Williams College

We review the semantics of class-based object-oriented languages (exempli-
fied by our language LOOM) in order to explain how typing rules and the
notion of matching flow directly from the semantics. The semantics of OO
languages with MyType generalize nicely to groups of mutually reclusive ob-
ject types. Until now, the only way of handling inheritance of these groups
is to use constructs like Beta’s virtual classes. Unfortunately virtual classes
seem to require dynamic type checking. We show how the generalized seman-
tics leads to straightforward static typing rules via collections of MyType-like
variables that are visible to all object types in the group.

When is a Local Variable not a Local Variable?

Ian Stark

University of Edinburgh

This talk presents a method for reasoning about the interaction between first-
class recursive functions and local variables. This combination of features
is found in Standard ML and allows a number of useful program idioms
involving hidden or shared state: however it can also cause problems of
aliasing and interference.

The basis for our reasoning is a novel logical relations that acts not just
between expressions but also the contexts in which they may be used. The
relation is defined inductively over types and gives a complete operational
characterisation of contextual equivalence. From the logical relation we de-
rive a practical proof method of local invariants, which turns informal intu-
ition about why programs should be equivalent into a proof that they are.
This part is joint work with Andrew Pitts and can be found in the paper
Operational Reasoning for Functions with Local State (Higher Order Opera-
tional Techniques in Semantics, Gordon and Pitts CUP 1998).

Interesting, all the examples given fit the idiom of object-based program-
ming; the tricky interaction is now that between private instance variables
and first-class objects. We propose that the same technology of local in-
variants might usefully be adapted to treat object-oriented programming: in
particular to the issue of reasoning about code that involves methods of un-
known foreign objects. Hence the alternative title for the talk: How to Deal

with Objects who Steal your Instance Variables.

15



Bisimulation up to Context for Sequential Higher-Order Languages

S. B. Lassen

University of Cambridge, Computer Laboratory

Bisimulation up to context is a syntactic method which is useful for reasoning
about contextual equivalence in higher-order sequential languages. In the
talk I demonstrated how it could be used to reason about local state and
dynamic references as a hybrid approach between applicative bisimulation
and logical relations.

A FISH Language Demonstration

C. Barry Jay

University of Technology, Sydney

Objects with Roles

Giorgio Ghelli

Pisa University, Computer Science Department

In object-oriented database languages, it is essential to be able to extend
an object in different, unrelated ways. In doing this, we run the risk of
extending the object in non-compatible ways. This problem can be faced by
extending objects with a notion of “role”: an object may play different roles,
and the way it answers messages depends on the role it is accessed through.
We present a formalization of this notion, and how it is related to object
extension.

16


