
Dagstuhl Seminar on

Competitive Algorithms

June 20–25 1999

Organized by:

Amos Fiat (Tel-Aviv University)

Anna Karlin (University of Washington)
Gerhard Woeginger (TU Graz)

2 Competitive Algorithms

Summary

Decision making can be considered in two different contexts: making decisions with com-
plete information, and making decisions based on partial information. A major reason for
the study of algorithms is to try to answer the question: ‘Which is the better algorithm?’
The study of the computational complexity of algorithms is useful for distinguishing the
quality of algorithms based on the computational resources used and the quality of the
solution they compute. However, the computational complexity of algorithms may be
irrelevant or a secondary issue when dealing with algorithms that operate in a state of
uncertainty. ‘Competitive’ analysis of algorithms has been developed in the study of such
algorithms.

Competitive analysis is useful in the analysis of systems that have some notion of a
time progression, that have an environment, that respond in some way to changes in the
environment, and that have a memory state. Competitive analysis is used for so-called
‘on-line algorithms’ that have to respond to events over time. Competitive analysis is
used whenever the nature of the problem is such that decisions have to be made with
incomplete information.

The Dagstuhl meeting on Competitive Algorithms brought together researchers with
affiliations in Austria, Canada, Czech Republic, Denmark, Germany, Hungary, Israel,
Italy, the Netherlands, Poland, and the USA. 36 presentations were given. The abstracts
of most of these presentations are contained in this seminar report. Moreover, there is
a list with some open problems that were mentioned in the open problem session on
Wednesday evening.

As always, we enjoyed the social aspects of a Dagstuhl meeting. As always, we had a
wine-and-cheese party every evening. And as always, we are looking forward to the next
Dagstuhl workshop.

Amos Fiat
Anna Karlin

Gerhard Woeginger

Competitive Algorithms 3

Abstracts

Page Replacement for General Caching Problems
Susanne Albers

Caching (paging) is a well-studied problem in online algorithms, usually studied under the
assumption that all pages have a uniform size and a uniform fault cost (uniform caching).
However, recent applications related to the web involve situations in which pages can be
of different sizes and costs. This general caching problem seems more intricate than the
uniform version. In particular, the offline case itself is NP-hard. In this talk we develop
good offline page replacement policies for the general caching problem, with the hope
that any insight gained here may lead to good online algorithms. Our main result is that
by using only a small amount of additional memory, say O(1) times the largest page size,
we can obtain an O(1)-approximation to the general caching problem. Note that the
largest page size is typically a very small fraction of the total cache size, say 1%. Our
result uses a new rounding technique for linear programs which may be of independent
interest. We also present a randomized online algorithm for the Bit Model which achieves
a competitive ratio of O(ln(1 + 1/c)) while using M(1 + c) memory.

This is joint work with Sanjeev Arora and Sajeev Khanna.

The adversarial bandit problem
Peter Auer

In the multi-armed bandit problem, a gambler must decide which arm of K non-identical
slot machines to play in a sequence of trials so as to maximize his reward. This classical
problem has received much attention because of the simple model it provides of the
trade-off between exploration (trying out each arm to find the best one) and exploitation
(playing the arm believed to give the best payoff). Past solutions for the bandit problem
have almost always relied on assumptions about the statistics of the slot machines.

In this work, we make no statistical assumptions whatsoever about the nature of the
process generating the payoffs of the slot machines. We give a solution to the bandit
problem in which an adversary, rather than a well-behaved stochastic process, has com-
plete control over the payoffs. In a sequence of T plays, we prove that the expected
per-round payoff of our algorithm approaches that of the best arm at the rate O(T −1/2).
In addition, we consider a setting in which the player has a team of “experts” advising
him on which arm to play; here, we give a strategy that will guarantee expected payoff
close to that of the best expert. We apply our result to the problem of learning to play an

4 Competitive Algorithms

unknown repeated matrix game. A more involved application of our techniques gives an
on-line algorithm which adaptively selects a path with (almost) minimum average weight
in a graph where the edge weights change over time.

This is joint work with N. Cesa-Bianchi, Y. Freund, and R. Schapire

Independent sets in hypergraphs with applications to routing via fixed paths

Yossi Azar

The problem of finding a large independent set in a hypergraph by an online algorithm is
considered. We provide bounds for the best possible performance ratio of deterministic
vs. randomized and non-preemptive vs. preemptive algorithms. Applying these results
we prove bounds for the performance of online algorithms for routing problems via fixed
paths over networks.

Joint work with N. Alon and U. Arad.

The accommodating ratio: a measure for the performance of on-line algo-
rithms
Joan Boyar

The Unit Price Bin Packing Problem was used as an example to motivate the definition
of the accommodating ratio. In this variant of bin packing, there is a fixed number n of
bins, each of size k, and all requests have integer sizes. There is a requirement that the
algorithms considered be fair, i.e., if when a request is given there is room for it in some
bin, then it must be accepted. The goal is to maximize the number of objects accepted.

The accommodating ratio is very similar to the competitive ratio in that it is the
worst case ratio of the on-line algorithm’s performance to the optimal off-line algorithm’s
performance. The difference is that this worst case is not over all possible sequences, but
rather over all sequences which an optimal off-line algorithm could have accommodated.
The accommodating ratio was originally defined for the Seat Reservation Problem.

For the Unit Price Bin Packing Problem, Worst-Fit has a better competitive ratio
than First-Fit, but First-Fit has a better accommodating ratio than Worst-Fit. Thus,
the accommodating ratio can be useful in distinguishing between two algorithms.

This work is joint with Kim Skak Larsen and Morten Nyhave Nielsen.

On-Line prediction with experts: recent results
Nicolò Cesa-Bianchi

We present sequential strategies for assigning probabilities to the elements that may
appear next in a sequence of data. The goal is to minimize the regret under log loss over
the worst possible sequence. That is, to minimize the worst-case drop in the log-likelihood

Competitive Algorithms 5

of the final sequence when measured under the assigned probabilities, as opposed to being
measured under the best assignment in a given class of strategies (or experts). Using
tools from empirical process theory, we prove a general upper bound on the best possible
(minimax) regret that depends on the metric properties of the class of experts. This
extends previous results by Opper and Haussler. Finally, we connect the minimax regret
under log loss with a corresponding minimax quantity related to the theory of portfolio
selection introduced by Cover.

Joint work with Gábor Lugosi.

The 3-server problem in the plane
Marek Chrobak

In the k-server problem we wish to minimize, in an online fashion, the movement cost
of k servers in response to a sequence of requests (we assume that k ≥ 2). The request
issued at each step is specified by a point r in a given metric space M . To serve this
request, one of the k servers must move to r.

It is known that if M has at least k+1 points then no online algorithm for the k-server
problem in M has competitive ratio smaller than k. The best known upper bound on
the competitive ratio in arbitrary metric spaces, by Koutsoupias and Papadimitriou, is
2k−1. There are only a few special cases for which k-competitive algorithms are known:
for k = 2, when M is a tree, or when M has at most k + 2 points.

We prove that the Work Function Algorithm is 3-competitive for the 3-Server Problem
in the Manhattan plane. As a corollary, we obtain a 4.243-competitive algorithm for 3
servers in the Euclidean plane. The best previously known competitive ratio for 3 servers
in these spaces was 5.

This is joint work with Wolfgang W. Bein and Lawrence L. Larmore

A new algorithm for bin packing
János Csirik

In the classical bin packing problem, a list of items and a bin size B is given. We have
to pack the items into a minimum number of bins such that the sum of items in each bin
is B or less. We will assume that B and the item sizes are integers. Let P be a packing
of list L and let NP (h) be the number of bins whose contents have total size equal to h.
Let the sum of squares ss(P) be

∑B−1
h=1 NP (h).

The Sum-of-Squares Algorithm is the following: let a be the next item to be packed.
A legal bin for a is either empty or has a current empty space which is enough for a.
Place a into a legal bin so as to yield the minimum possible value for the resulting ss(P ′).

We gave results for packing lists from uniform discrete distribution. We have a great
number of experiments showing that this new online algorithm has a better average
behaviour than the well-known best fit algorithm.

6 Competitive Algorithms

Scheduling with precedence constraints
Leah Epstein

We consider several variants of scheduling jobs on m parallel machines. We discuss
deterministic and randomized algorithms, preemptive or non-preemptive, independent
jobs or precedence constraints and known or unknown durations. We also consider all
four machine models which are identical machines, uniformly related machines, restricted
assignment, and unrelated machines. We state results on on-line scheduling in some
variants, and give some new results. We give upper and lower bounds of O(m) and
Ω(m) for deterministic and randomized, preemptive and non-preemptive scheduling with
precedence constraints, with known or unknown durations for the restricted assignment

model. If only consistent precedence constraints are allowed, we give lower and upper
bounds of Ω(log m) and O(log m) for the same problems. We also consider the same
variants on related machines. We give a lower bound of Ω(

√
m) which is tight.

Joint work with Yossi Azar.

On Some Maximum Weight Independent Set Problems
Thomas Erlebach

Given an undirected graph G = (V, E) with positive node weights w(v), the maximum
weight independent set problem is to compute a subset A ⊆ V such that A is an in-
dependent set (no two nodes in A are adjacent) and such that w(A) :=

∑
v∈A w(v) is

maximized. We consider a simple algorithm, called GREEDY α, that processes the nodes
in some order and selects each node v if w(Cv) ≤ α ·w(v), where Cv is the set of currently
selected nodes that are adjacent to v. If v is selected, the nodes in Cv are discarded.
In the end, the selected nodes are returned. Here, α is a parameter that can be chosen
between 0 and 1. For α = 1

2
, GREEDYα is known as the “double-the-gain” strategy.

We discuss two applications of GREEDYα. The first is a job interval selection problem
(JISP), where the input is a set of jobs, each of which consists of a certain number of
intervals. The goal is to compute a subset of disjoint intervals with at most one interval
from each job such that the total weight of the intervals in the subset is maximized. If
we let GREEDYα process the intervals in order of increasing right endpoints, it achieves
approximation ratio 3 + 2

√
2 ≈ 5.83 for α =

√
2 − 1 in the case where all intervals

of a job must have the same weight, and approximation ratio 8 for α = 1
2

if intervals
can have arbitrary weights. For the former case, we prove a competitive lower bound of
2 + 2

√
2 ≈ 4.83 on the approximation ratio of any deterministic algorithm that processes

the intervals in the same order as GREEDYα and that must select or reject each interval
without knowledge of future requests. The second application is the weighted maximum
edge-disjoint paths problem in bidirected trees, where GREEDY 1

2

achieves approximation
ratio 8 if the paths are processed in order of non-increasing distance from the root of the
tree.

In general, we show that GREEDY 1

2

achieves approximation ratio 4k if the nodes of

Competitive Algorithms 7

a graph G are processed in an order v1, . . . , vn such that the subgraph of G induced by
Γ(vi) ∩ {vi+1, . . . , vn} has independent set size at most k.
Note: The 5.83-approximation for JISP with equal weight for intervals of the same job
was already found in a different context by Bar-Noy et al. [1]. They also present an
LP-based approach that can easily be adapted to JISP with arbitrary weights and gives
a 2-approximation (our lower bound does not apply to this algorithm).

Joint work with Frits Spieksma.

[1] A. Bar-Noy, S. Guha, J. Naor, B. Schieber. Approximating the Throughput of Mul-
tiple Machines under Real-Time Scheduling. Presented at this seminar, published in
Proceedings of STOC’99, pp. 622–631.

Dynamic traitor tracing
Amos Fiat

We study the problem of how to watermark content so as to distribute different versions
of watermarked content (such as a movie) to different subscribers. We consider an on-
line variant of this problem where we assume that pirate broadcasts can be viewed and
subsequent transmissions can be modified based upon the current pirate behaviour. This
problem translates into the following online problem:

Our goal is to isolate “bad users” until we have certain proof that such a user is bad,
at which point the user can be removed. Initially, we are unaware of any “bad users”, and
transmit the identical movie to all subscribers, when a pirate transmission is intercepted
then we know that there is at least one ”bad user”. At any point in time we have a lower
bound on the number of ”bad users”, k, (initially zero) and may partition the user group
into up to k + 1 different sets, each of which is given a different version of a scene from
the movie. Let us call one such tranmission an experiment. The goal is to isolate all bad
users in singleton sets and to minimize the number of experiments required to do so.

We found an algorithm to do so that requires 3p · p log n experiments, where p is the
total number of bad users. An open problem posed in the open problems session was
to improve the above bound. Jiri Sgall found a much better algorithm requiring only
p3 log n experiments.

Joint work with Tamir Tassa.

On the polygon exploration problem
Frank Hoffmann

We present an online strategy that enables a mobile robot with a 2π–vision system to
explore an unknown simple polygon. The resulting length of a tour created by this
strategy is at most 26.5 as long as the shortest watchman tour that could be computed
off–line (knowing the polygon).

Especially, we show how the analysis of our strategy leads to a novel geometric struc-

8 Competitive Algorithms

ture called the angle hull. Let D be a connected and relative convex region inside a simple
polygon P . The angle hull of D, AH(D), is defined to be the set of all points in P that
can see two points of D at a right angle. We show that for any P and D the length of
the perimeter of AH(D) is at most twice as long as the perimeter of D, and, moreover,
this bound is tight.

Finally, we discuss open problems related to the question how to explore polygons
with a certain number of holes.

Joint work with Rolf Klein, Christian Icking, and Klaus Kriegel

Linear Algebra and Web Search
Ravi Kannan

With the abundance of information (especially on the web), an interesting problem is:
Given a large collection of documents, find correlations bewteen the documents and
classify the collection into clusters of similar documents. Such clustering problems arise
in other application areas as well. Linear Algebra based methods have long been proposed
for finding such correlations; but traditional Linear Algebra takes too long to be used in
many modern applications.

We present results which prove that in many contexts, it suffices to do Linear Alge-
bra on a randomly chosen submatrix of the entire matrix of data. Using the resulting
algorithms, we have implemented a document classification system which can be used to
classify the results of a keyword search of the web very fast; thus making the use of such
correlation analysis a feasible addition to a web search engine.

Game coloring number
Hal Kierstead

Let G = (V, E) be a finite graph and Π (G) be the set of linear orders on V . Each
order L ∈ Π (G) determines an orientation GL = (V, EL) of G defined by EL =
{(v, u) : {v, u} ∈ E and v > u in L}. Let ∆+ (GL) denote the maximum outdegree of
GL. The coloring number of G = (V, E) is defined by

col (G) = 1 + min
L∈Π(G)

∆+ (GL) .

Clearly the chromatic number χ (G) ≤ col (G), since if col (G) = 1+∆+ (GL), then First-
Fit applied to the vertices of G in the order L will use at most col (G) colors. We shall
consider competitive versions of the graph parameters chromatic number and coloring

number .
The chromatic game is played on G, using a set of colors C, by two players Alice

and Bob with Alice playing first. The players take turns choosing and properly coloring
uncolored vertices of G with colors from C. Bob wins if at some time one of the players
has no legal move; otherwise Alice wins when the players eventually create a proper

Competitive Algorithms 9

coloring of G. The game chromatic number of G, denoted χg (G), is the least t such that
Alice has a winning strategy when |C| = t.

The ordering game is played on G with a target t by Alice and Bob with Alice playing
first. In this game the players take turns choosing unchosen vertices. This creates a linear
ordering L on the vertex set of G with x < y iff x is chosen before y. The score of the
game is ∆+ (GL) + 1. Alice wins if the score is at most t; otherwise Bob wins. The
game coloring number colg (G) of G is the least cardinal t such that Alice has a winning
strategy for the ordering game played on G with target t. The game coloring number was
originally introduced as a tool for studying the game chromatic number, but in retrospect
it seems that it may actually be a more interesting parameter.

We consider the problem of bounding the game coloring number, and therefore the
game chromatic number, of various classes of graphs, including forests, subgraphs of
chordal graphs, outerplanar graphs, planar graphs, and line graphs. In all these cases
the best known bounds on the game chromatic number are obtained by bounding the
game coloring number. Here we present a single simple strategy for Alice to use to play
the ordering game. This strategy is based on a preordering of the vertices of the graph
G on which the game is played. We define a rank function on such preorderings and
then bound the score of the game in terms of the rank of the preordering. This approach
allows us to very easily obtain all known results for these cases by showing that the various
graphs all have preorderings with small enough rank. We also obtain the new result that
if G is embeddable on an orientable surface of genus g then colg (G) ≤ 3

√
73+96g+41

4
=

(1 + o (1))
√

54g.

Online two-machine preemptive job shop scheduling
Tracy Kimbrel

We consider online and offline algorithms for special cases of preemptive job shop schedul-
ing to minimize makespan. These special cases are of interest because they commonly
arise in the scheduling of computer systems. Our results are

• A randomized online algorithm for the two-machine preemptive job shop that is
1.5-competitive against oblivious adversaries;

• Lower bounds showing that the randomized bound of 1.5 and the trivial determin-
istic upper bound of 2 are asymptotically tight;

• A linear-time offline 1.5-approximation algorithm for the two-machine preemptive
job shop.

Interestingly, the randomized algorithm requires only a single random bit.
Joint work with Jared Saia.

10 Competitive Algorithms

On the work function algorithm
Elias Koutsoupias

We present a new “pictorial” proof that the wfa has competitive ratio 2k − 1 for the
k-server problem. The proof technique is applicable also to the generalization of the k-
server problem when the off-line algorithm has fewer than k servers. We give two upper
bounds of the cost wfa(ρ) of the Work Function Algorithm. The first upper bound is
kopth(ρ) + (h − 1)optk(ρ), where optm(ρ) denotes the optimal cost to service ρ by m
servers. The second upper bound is 2hopth(ρ)−optk(ρ) for h ≤ k. Both bounds imply
that the Work Function Algorithm is (2k − 1)-competitive against an adversary with k
servers. The proofs are simple and intuitive and they do not involve potential functions.

Online dial-a-ride problems: competitive analysis and reasonable load
Sven O. Krumke

We present results for online “dial-a-ride” transportation problems: Objects are to be
transported between the vertices of a given graph. Transportation requests arrive online,
specifying the objects to be transported and the corresponding source and target vertex.
These requests are to be handled by a server which starts its work at a designated origin
vertex and which picks up and drops objects at their starts and destinations. The server
can move at constant unit speed. After the end of its service the server returns to its
start. The goal of the basic problem is to come up with a transportation schedule for the
server which finishes as early as possible, i.e., which minimizes the makespan.

We show a lower bound of 1 +
√

2/2 ≈ 1.70 for the competitive ratio of any deter-
ministic algorithm which holds even if the graph is a simple path. We then analyze two
simple and natural strategies which we call Replan and Ignore. Replan completely
discards its schedule and recomputes a new one when a new request arrives. Ignore

always runs a (locally optimal) schedule for a set of known requests and ignores all new
requests until this schedule is completed.

We show that both strategies, Replan and Ignore are 5/2-competitive.
We then analyze the algorithms with request sets that fulfill a certain worst-case

restriction: roughly speaking, a set of requests for the online dial-a-ride problem is “rea-
sonable” if the requests that come up in a sufficiently large time period can be served in a
time period of at most the same length. This new notion is a stability criterion implying
that the system is not overloaded.

The new concept is used to analyze the online dial-a-ride problem for the minimization
of the maximal resp. average flow time. Under reasonable load it is possible to distinguish
the performance of Replan and Ignore for this problem, which seems to be impossible
by means of classical competitive analysis. In particular, under reasonable load we are
able to establish upper bounds on the maximum flow time for the Ignore strategy.

Joint work with Jörg Rambau and Dietrich Hauptmeier.

-

Competitive Algorithms 11

Minimizing the Flow Time without Migration
Stefano Leonardi

We consider the classical problem of scheduling jobs in a multiprocessor setting in order
to minimize the flow time (total time in the system). The performance of the algorithm,
both in offline and online settings, can be significantly improved if we allow preemption:
i.e., interrupt a job and later continue its execution, perhaps migrating it to a different
machine. Preemption is inherent to make a scheduling algorithm efficient. While in case
of a single processor, most operating systems can easily handle preemptions, migrating a
job to a different machine results in a huge overhead. Thus, it is not commonly used in
most multiprocessor operating systems.

The natural question is whether migration is an inherent component for an efficient
scheduling algorithm, in either online or offline setting.

Leonardi and Raz (STOC’97) showed that the well known algorithm, shortest re-
maining processing time (SRPT), performs within a logarithmic factor of the optimal
algorithm. Note that SRPT must use both preemption and migration to schedule the
jobs. It is also known that in the on-line setting that no algorithm can achieve a better
bound.

In this work it is presented a new algorithm that does not use migration, works online,
and is just as effective (in terms of competitive ratio) as the best known algorithm (SRPT)
that uses migration.

(Joint work with B. Awerbuch, Y. Azar and O. Regev)

On-line algorithms for the network RAM problem
Ketsiya E. Meirman

The network RAM problem can be describe as follows: given a computing cluster, with
several nodes that are connected by a fast LAN. Suppose that a process needs to access
a large data segment, which does not fit in the main memory of any node. Assume that
the data segment is placed in the main memory of several nodes. The motivation is that
remote paging, in which a remote page is brought to the local memory through a fast
LAN is much faster than reading a page from a local disk. Assume further that the
operating system of all the nodes supports preemptive process migration, i.e., a process
can stop running in one node and after a migration, can resume its execution in another
node. In the cluster environment, the execution of the process involves access to local
pages (in the memory of the current node) as well as access to remote pages, in the
memory of other nodes. If the number of remote paging becomes excessive, then it might
be beneficial to migrate the process to the remote node rather than to perform remote
paging. Since the list of future access pages is not known, the problem is to design an
algorithm that decides on-line if to page or to migrate, to minimize the execution time
of the process. This problem assume a static page model. In the static memory model a
page loaded onto node’s memory can not move to another one. In each node there is one

12 Competitive Algorithms

special memory page that holds temporarily remote pages. On the dynamic page model
where the whole memory can be reorginized the problem is MAX-SNP hard.

The above, network RAM problem, has two cost models. In the partial cost model,
access to local pages costs zero, access to a remote page costs one, while process migration
costs a constant D, proportional to the process size (in pages). For this model, the network
RAM problem maps to the file migration problem, for which it was proved in [4,3] that
there is a deterministic lower bound of 3. We note that Black & Sleator [3] and Bartal
et al. [2,1] developed algorithms, M and RFWF respectively, which achieve this lower
bound.

In our work we developed a new, 3.56 competitive algorithm, called cD-FRE. Experi-
mental results shows that for many real cases, e.g., simulation of matrix multiplications,
sorts, etc., algorithm cD-FRE performs better than algorithm M and RFWF. To explain
this we analyze the problem in the full cost model, in which a local access to a page costs
1, remote access costs some constant s and process migration costs sD. In the full paper
we present definitions of locality of reference for this model, and we show that cD-FRE
exploits locality of reference, while both M and RFWF does not. Our work was inspired
by that of Torng [5] on the locality of reference in the paging problem. In the paper we
also present a new algorithm, called M-FRE, which is a combination of M and FRE. This
algorithm outperforms all the previous algorithms.

Joint work with Amnon Barak.

[1] Bartal Y., Distributed Paging. In Online Algorithms, Fiat, A.; Woeginger G.J.;
Lecture Notes in Computer Science, Vol 1442, Springer, May 1998.

[2] Bartal, Y.; Charikar, M.; Indyk P., On Page Migration and Othe Relaxed Task Sys-
tems. In Proc. of the 8th Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 43-52,
January 1997.

[3] Black, D.L. and Sleator D.D., Competitive Algorithms for Replication and Migra-
tion Problems. In Technical report CMU-CS-89-201, Department of Computer Science,
Carnegie Mellon University, November 1989.

[4] Karlin, A.R.; Manasse, M.S.; Rudolph, L.; Sleator, D.D., Competitive Snoopy
Caching. In Algorithmica, 3(1):79-119, 1988.

[5] Torng, E., A Unified Analysis of Paging and Caching. In Algorithmica, 20:175-200,
1998.

Refined Locality of Reference for Paging
Manor Mendel

In this talk we refine the locality of reference concept, captured by the access graph

model of [1], to allow temporal changes in the behavior of the underlying process. We
formalize this by introducing the concept of an extended access graph. We then give truly

Competitive Algorithms 13

online algorithms for extended access graphs with “low rate of change” in the locality
of reference, and show almost tight impossibility results for graphs with “high rate of
change” in the locality of reference.

Joint work with Amos Fiat.

[1] Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. Competitive
paging with locality of reference. J. Comp. Syst. Sci., 50(2):244–258, April 1995.

The accommodating function
Morten Nyhave Nielsen

The competitive ratio as a measure for the quality of on-line algorithms has been criticized
for giving bounds that are unrealistically pessimistic and for not being able to distinguish
between algorithms with very different behavior in practical applications.

A new measure, the accommodating function, for the quality of on-line algorithms is
presented. The accommodating function is a generalization of both the competitive ratio
and the accommodating ratio. As an example, we investigate the measure for a variant
of bin-packing in which the goal is to maximize the number of objects put in n bins.

We give upper and lower bounds for the accommodating function for any fair algo-
rithm for this problem, and tighter bounds for the concrete algorithm, First-Fit.

Joint work with Joan Boyar and Kim S. Larsen.

Caching for web searching
John Noga

We discuss web caching when the input sequence is a depth first search traversal of some
tree. There are at least two good motivations for investigating tree traversal as a search
technique on the web: First, empirical studies of people browsing and searching the
WWW have shown that user access patterns commonly are nearly depth first traversals
of some tree. Secondly, the problem of visiting all the pages on some web site using
anchor clicks (clicks on links) and back button clicks — by far the two most common
user actions — reduces to the problem of how to best cache a tree traversal sequence.

We show that for tree traversal sequences the optimal offline strategy can be computed
efficiently. In the bit model, where the access time of a page is proportional to its size,
we show that the online algorithm LRU is 2-competitive against an adversary with an
unbounded cache as long as LRU has a cache large enough to store the largest two
items in the input sequence. In the general model, where pages have arbitrary access
times and sizes, we show that in order to be constant competitive, any online algorithm
needs a cache large enough to store Ω(log n) pages; here n is the number of distinct pages
in the input sequence. We provide a matching upper bound by showing that the online
algorithm Landlord is constant competitive against an adversary with an unbounded
cache if Landlord has a cache large enough to store the Ω(log n) largest pages. This is

14 Competitive Algorithms

further theoretical evidence that Landlord is the “right” algorithm for web caching.
Joint work with Bala Kalyanasundaram, Kirk Pruhs, and Gerhard Woeginger

Computer-aided complexity classification of dial-a-ride problems
Willem de Paepe

A Dial-a-Ride problem is a problem in which a set of servers with a given capacity and
speed has to serve a set of rides. Every ride i is characterized by a source si, a destination
ti, a release time ri, and a deadline di. A server has to pick up an item at time x ≥ ri in
si and deliver it at time x′ ≤ di in ti. We assume that all items are identical. Preemption
may be allowed, and there might be precedence constraints on the order in which the rides
are served. The goal is to minimize a certain objective function. Dial-a-Ride problems are
defined on some metric space in which an origin O is specified. The servers are supposed
to start and end in O. We assume the number of rides is finite for every instance of a
Dial-a-Ride problem. Dial-a-Ride problems can be studied from an offline as well as an
online point of view.

In [2] Lawler, Lenstra, Rinnooy Kan and Shmoys present a classification for scheduling
problems that enables us to give a short and unambiguous notation for most scheduling
problems. We propose a similar classification for Dial-a-Ride problems and we describe
the set of problems that can be classified in this way. Whereas a scheduling problem is
represented by the contents of three fields, we need four fields to describe a Dial-a-Ride
problem. In these fields information about the servers, the rides, the metric space and the
objective are given, respectively. Any combination of entries can be interpreted as a Dial-
a-Ride problem and the problem class under study consists of all possible combinations
of entries. The problem class consists of 9160 problems.

Using the relations between the entries of each field, we define a partial ordering
“ → ” on the problems in the problem class that is useful in studying the structure of the
problem class. A similar approach for scheduling problems can be found in [1]. We show
how this partial ordering can be helpful in determining the computational complexity of
the problems in the problem class, without studying every single problem separately. To
this end we use the computer program DaRClass which is able to determine whether
or not for any two problems P and P ′ the relation P → P ′ holds. At the moment we
have determined the complexity of 8457 problems using only 55 NP-completeness results
and 33 polynomial algoritmes. It turns out that more than 97 percent of these problems
are NP-complete.

Joint work with Jan Karel Lenstra, Leen Stougie.

[1] B.J. Lageweg & J.K. Lenstra, E.L. Lawler, A.H.G. Rinnooy Kan, Computer-Aided
Complexity Classification of Combinatorial Problems, Communications of the ACM,
November 1982, Volume 25, Number 11, 817-822.

[2] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, Sequencing and
Scheduling: Algorithms and Complexity, Handbooks in OR & MS (1993), 445-522.

Competitive Algorithms 15

A quick tour of resource augmentation results
Kirk Pruhs

In the context of approximating NP-hard optimization problems, and in the context of
online problems, one compares the performance of a limited algorithm (one that can
only run in polynomial time, and one that has no knowledge of the future, respectively)
against a omnipotent clairvoyant adversary. To be more concrete consider a minimization
problem, and let L be the limited algorithm. Then the competitive ratio, or performance
ratio, or ratio bound, or worst-case ratio, etc., of L is then

ρ(n) = max
I

L(I)

A(I)

where L(I) denotes the cost of the solution produced by the algorithm L on input I, A(I)
denotes the cost of the optimal solution, and the maximum is over all inputs I of size
n. The competitive ratio for the problem is then essentially the infimum over all limited
algorithms of the competitive ratio of that algorithm.

If the competitive ratio of a problem is O(1) then this is generally considered a
positive result. Resource augmentation is an analysis technique for those problems where
the competitive ratio is ω(1). In resource augmentation analysis, the limited algorithm
is given more resources, in a scheduling problem this might be faster processors or more
processors, than the adversary.

I will explain the rationale behind resource augmentation analysis, and give a feel
for the types of results that one can obtain with this analysis. I will concentrate on
scheduling problems. The problems that I will consider will be something like:

• The classic paging/caching problem. As far as I know, the analysis of this problem
by Sleator and Tarjan in [10] was the first use of resource augmentation analysis.

• The online version of the real-time scheduling problem 1|r i, pmtn|∑ wi(1−Ui) [5,6].

• The online version of the classic uni-processor CPU scheduling problem
1|ri, pmtn|∑ Fi [5,9,2,3]. The analysis of this problem, and the previous problem,
in [5] was the first application of resource augmentation to scheduling problems.

• Hard real-time scheduling of preemptable tasks on a multi-processor [9,7]. In [9]
the term resource augmentation was coined.

• Jitter control in QoS networks [8].

• The offline version of generalized paging (this is the type of paging that your
Netscape or Internet Explorer browser has to perform) [1].

[1] S. Albers, S. Arora, and S. Khanna, “Page replacement for generalized caching prob-
lems”, ACM/SIAM Symposium on Discrete Algorithms, 31 – 40, 1999.

16 Competitive Algorithms

[2] P. Berman and C. Coulston, “Speed is more powerful than clairvoyance”, Scandinavian
Workshop on Algorithms and Theory, 255 -263, 1998.

[3] J. Edmonds, “Scheduling in the dark”, to appear in ACM Symposium on Theory of
Computing.

[4] B. Kalyanasundaram, and K. Pruhs, “The online transportation problem”, European

Symposium on Algorithms, 484–493, 1995.

[5] B. Kalyanasundaram, and K. Pruhs, “Speed is more powerful than clairvoyance”,
IEEE Symposium on Foundations of Computer Science, 1995.

[6] B. Kalyanasundaram, and K. Pruhs, “Maximizing job completions online”, European
Symposium on Algorithms, 235 – 246, 1998.

[7] T. Lam and K. To, “Trade-offs between speed and processor in hard-deadline schedul-
ing”, ACM/SIAM Symposium on Discrete Algorithms, 623 – 632.

[8] Y. Mansour, and B. Patt-Shamir, “Jitter control in QoS networks” IEEE Symposium
on Foundations of Computer Science, 50 – 59, 1998.

[9] C. Phillips, C. Stein, E. Torng, and J. Wein, “Optimal time-critical scheduling via
resource augmentation”, ACM Symposium on Theory of Computing, 140–149, 1997.

[10] D. Sleator, and R. Tarjan, “Amortized efficiency of list update and paging rules”,
Communications of the ACM, 28, 202 – 208, 1985.

Simple competitive request scheduling strategies
Marco Riedel

This work studies the problem of scheduling real-time requests in distributed data servers.
We assume the time to be divided into time steps of equal length called rounds. During
every round a set of requests arrives at the system, and every resource is able to fulfill
one request per round. Every request specifies two distinct resources and requires to get
access to one of them. Furthermore, every request has a deadline of d, i.e. a request that
arrives in round t has to be fulfilled during round t + d − 1 at the latest. The goal is to
maximize the number of requests that are fulfilled before their deadlines expire.

We examine the scheduling problem in an online setting, i.e. new requests continuously
arrive at the system, and an scheduling algorithm has to determine online an assignment
of the requests to the resources in such a way that every resource has to fulfill at most one
request per round. The output of such an online algorithm in round t is the set of requests
which are scheduled to be served in round t. We study both global (i.e. centralized) and
local (i.e. distributed) scheduling strategies. Competitive analyses is applied in order to
measure the performance. Previously, no non-trivial bounds have been known for the

Competitive Algorithms 17

competitive ratio of scheduling strategies in our model. We present (partly matching)
upper and lower bounds for several simple scheduling strategies.

Joint work with Petra Berenbrink and Christian Scheideler.

Approximating the throughput of multiple machines in real-time scheduling
Baruch Schieber

We consider the following fundamental scheduling problem. The input to the problem
consists of n jobs and k machines. Each of the jobs is associated with a release time, a
deadline, a weight, and a processing time on each of the machines. The goal is to find a
schedule that maximizes the weight of jobs that meet their respective deadlines. We give
constant factor approximation algorithms for four variants of the problem, depending on
the type of the machines (identical vs. unrelated), and the weight of the jobs (identical vs.
arbitrary). All these variants are known to be NP-Hard, and the two variants involving
unrelated machines are also MAX-SNP hard. The specific results obtained are:

• For identical job weights and unrelated machines: a greedy 2-approximation algo-
rithm.

• For identical job weights and k identical machines: the same greedy algorithm

achieves a tight (1+1/k)k

(1+1/k)k−1
-approximation factor.

• For arbitrary job weights and a single machine: an LP formulation achieves a 2-
approximation for polynomially bounded integral input and a 3-approximation for
arbitrary input. For unrelated machines, the factors are 3 and 4 respectively.

• For arbitrary job weights and k identical machines: the LP based algorithm applied

repeatedly achieves a (1+1/k)k

(1+1/k)k−1
approximation factor for polynomially bounded

integral input and a (1+1/2k)k

(1+1/2k)k−1
approximation factor for arbitrary input.

• For arbitrary job weights and unrelated machines: a combinatorial (3 + 2
√

2 ≈
5.828)-approximation algorithm.

Open problems: For identical job weights and a single machine can the factor 2 approx-
imation be improved. Can this problem be shown to be Max-SNP Hard?

Joint work with Amotz Bar-Noy, Sudipto Guha, and Joseph (Seffi) Naor.

On-line scheduling on parallel machines with a makespan related criterion
Uwe Schwiegelshohn

In this talk we consider a system consisting of m identical machines on which n jobs
must be scheduled. These jobs may be either sequential or parallel requiring a fixed
number machines during their whole execution. Further, the jobs may either be run

18 Competitive Algorithms

to completion or preemption (gang scheduling) is allowed. Therefore, we address four
different cases. There are two on-line aspects in the problem: The jobs are unknown
before their submission and the execution time of a job becomes only known once the
execution of the job has completed. We compare the makespan results with the results
of so called ratio scheduling. Ratio scheduling is a version of weighted completion time
scheduling where the weight of each job is the product of its execution time and its degree
of parallelism.

Contrary to makespan scheduling every job contributes to the scheduling costs in ratio
scheduling. In both methods every single processor schedule without holes is optimal.
However, an optimal makespan schedule need not be an optimal ratio schedule and vice
versa. But while an optimal ratio schedule has a close to optimal makespan there are
some optimal makespan schedules with high ratio costs in the presence of parallel jobs.
These results are best described by the performance guarantees for the various cases:

Run to completion Preemption

Makespan Ratio Makespan Ratio

Sequential jobs 2 − 1
m

1.5 2 − 1
m

1.5

Garey, Graham Kawaguchi, Kyan McNaughton

Parallel jobs 2 − 1
m

O(m0.5) 2 − 1
m

3.56

Garey, Graham McNaughton

Page replication — variations on a theme
Rudolf Fleischer, W lodzimierz G lazek, and Steve Seiden

In the online page replication problem, one must decide which nodes of a given network
should have a copy of a fixed database (or page). Initially only one node has this page.
The page can be replicated to any other node, but only at high cost. Users of the network
make requests for data at their respective nodes. How do we best serve these requests?
If the page is located close by, the requests can be easily served, but if not we may want
to copy the page to a location close to where we are currently receiving requests.

This problem was introduced by Black and Sleator [2], and further studied by Albers
and Koga [1], and G lazek [3]. Formally, it can be stated as follows: We have a fixed finite
metric M with a distinguished origin vertex s. A sequence of requests is given. Before
serving each request, the online algorithm has the option of duplicating the page. I.e.,
one can copy the database from any current vertex x which has it, to another vertex y
which does not at cost D · d(x, y) where D is the replication factor. Then the request is
served at cost d(r, x) where r is the request vertex and x is the closest vertex which has
the page. Most research on this problem has focused on two types of metric spaces: trees
and rings.

Competitive Algorithms 19

We present several new results about this problem:

• In their seminal paper about the page replication problem, Black and Sleator [2]
claim that 2.5 is a lower bound for “the four node cycle”, but give no proof. We
give evidence against their claim, showing an upper bound of 2.36603 for the ring
with four evenly spaced nodes.

• We show that 2.36603 is also a deterministic lower bound for the 4-node cycle.

• We present the first randomized lower bound for rings; no algorithm is better than
1.75037-competitive for the 4-node cycle.

• We initiate the study of replication in continuous metric spaces. Deterministic algo-
rithms in continuous metric spaces correspond naturally to randomized algorithms
in discrete metric spaces with the same competitive ratio. We give a 1.58198-
competitive deterministic algorithm for continuous trees and a 2.54150-competitive
deterministic algorithm for continuous rings. These algorithms correspond to the
randomized discrete algorithms by Albers and Koga [1] and G lazek [3], respectively,
but our proofs are much simpler.

• We show a deterministic lower bound of 2.31023 for the continuous cycle.

• We investigate a randomized algorithm for the ring proposed by Albers and
Koga [1]. They showed that this algorithm is 3.16396-competitive. We present
a modification of their algorithm which is 2.37297-competitive. This is the best
known upper bound for the ring.

[1] Albers, S., and Koga, H. New on-line algorithms for the page replication problem.
Journal of Algorithms 27, 1 (Apr 1998), 75–96.

[2] Black, D. L., and Sleator, D. D. Competitive algorithms for replication and
migration problems. Tech. Rep. CMU-CS-89-201, Department of Computer Science,
Carnegie-Mellon University, 1989.

[3] G lazek, W. On-line algorithms for page replication in rings. Presented at the
ALCOM Workshop on On-line Algorithms, Udine, Italy, Sep 1998. Final version to
appear in Theoretical Computer Science.

Approximation schemes for scheduling on uniformly related and identical par-
allel machines
Jiř́ı Sgall

We give a polynomial approximation scheme for the problem of scheduling on uniformly
related parallel machines for a large class of objective functions that depend only on the

20 Competitive Algorithms

machine completion times, including minimizing the l p norm of the vector of completion
times. This generalizes and simplifies many previous results in this area.

Joint work with Leah Epstein.

Running a job on a collection of dynamic machines, with on-line restarts
Rob van Stee

We consider the problem of running a background job on a selected machine of a collection
of machines. Each of these machines may become temporarily unavailable (busy) without
warning, in which case the scheduler is allowed to restart the job on a different machine.
The behaviour of machines is characterized by a Markov chain. The objective is to
minimize completion time of the job. For several types of Markov chains, we present
elegant and optimal policies.

Joint work with Han La Poutré.

Competitive advertising
Andrew Tomkins

We analyze algorithms for two problems that arise in the context of the World Wide Web.
The first, called recommendation systems, is exemplified by the problem of suggesting
books to users browsing at amazon.com. A recommendation system tracks past actions
of a group of users to make recommendations to individual members of the group. The
growth of computer-mediated marketing and commerce has led to increased interest in
such systems. We introduce a simple analytical framework for recommendation systems,
including a basis for defining the utility of such a system. We perform probabilistic
analyses of algorithmic methods within this framework. These analyses yield insights
into how much utility can be derived from the memory of past actions and on how this
memory can be exploited. (A paper describing this work appeared in FOCS 98.)

The second problem we consider, targeting Markov segments, occurs when an organi-
zation wishes to make use of information about the trails followed by users through a set
of states (for example, pages on the web). Consider two user populations, of which one
is targeted and the other is not. Users in the targeted population follow a Markov chain
P on a space of n states. The untargeted population follows Q, also defined on the same
set of n states. Each time a user arrives at a state, she is presented an advertisement
with some probability. Presenting the ad incurs a cost proportional to the total flow
(targeted and untargeted) through the state, and generates revenue proportional to the
flow of targeted users through the state.

The world-wide web is a natural setting for such a problem. Internet Service Providers
(ISP’s) have trail information for building such Markovian user models. In this paper
we study the simple problem above, as well as the variants with multiple targetable
segments. In some settings the policy need not be a static probability distribution on

Competitive Algorithms 21

states. Instead, we can dynamically vary the policy based on the user’s path through
the states. We provide characterizations which reveal interesting insight into the nature
of optimal policies, and then use these insights for algorithm design. Such targeting
problems do not seem amenable to solutions using methods from familiar fields such as
Markov decision processes. (A paper describing this work appeared in STOC 99.)

This is joint work with Moses Charikar, Ravi Kumar, Prabhakar Raghavan, and
Sridhar Rajagopalan.

Mathematical programming and lower bounds for online problems
Eric Torng

In this paper, we present an algorithm for generating lower bounds for many online
problems using mathematical programming techniques. This result is fairly unique as
lower bounds are typically developed in an ad hoc fashion. Our algorithm can be applied
to a wide variety of problems including several variations of the k-server problem, the
online load balancing problem, and the online circuit routing problem. One of our results
is that the complement of the k-server conjecture is recursively enumerable. That is,
if the k-server conjecture is not true, our algorithm is guaranteed to eventually find a
proof that the k-server conjecture is not true. Our algorithm can also be used to develop
essentially optimal online algorithms for many online problems. Its main drawback is its
prohibitive running time. Thus we have only derived a slightly improved lower bound of
1.85358 for the online load balancing problem on m ≥ 80 identical machines.

This is joint work with Todd Gormley.

22 Competitive Algorithms

Open Problems

Two routing problems
Yossi Azar

(1) Routing with bandwidth 1/2 (or 1/k). Given a general network G=(V,E); each edge
has unit capacity; requests from si to ti with bandwidth 1/2 (or 1/k) appear online. Each
request should be either rejected or routed on a virtual path. The goal is to maximize
the number of accepted requests (subject to capacity constraint). Is their a poly-log
competitive randomized algorithm?

Known results: For bandwidth = 1 [6] showed an nc lower bound. For bandwidth
< 1/ log n [3] showed a log n tight competitive algorithm. For fixed paths [2] showed an
n1/(k+1) lower bound. For trees/meshes, [4,5] showed a log n tight competitive algorithm.

(2) The same problem where accepted request may be discarded later (rejected are
lost). Is their a constant competitive algorithm or a non-constant lower bound for low
bandwidth requests? Is their a good competitive randomized algorithm or non-constant
randomized lower bound for bandwidth 1/k?

Known results: For bandwidth = 1 [6] showed an nc lower bound. For bandwidth
< 1/ log n the result of [3] of course holds. For fixed paths [2] showed an n1/2(k+1) lower
bound. For the line [1] showed a constant competitive algorithm.

[1] R. Adler and Y. Azar, Beating the logarithmic lower bound: randomized preemptive

disjoint paths and call control algorithms, Proc. 10th ACM-SIAM Symp. on Discrete
Algorithms, 1999, pp. 1–10.

[2] N. Alon, U. Arad, and Y. Azar, Independent sets in hypergraphs with applications to

routing via fixed paths, Proc. 2nd Workshop on Approximation Algorithms for Combi-
natorial Optimization Problems, 1999, to appear.

[3] B. Awerbuch, Y. Azar, and S. Plotkin, Throughput-competitive online routing, 34th
IEEE Symposium on Foundations of Computer Science, 1993, pp. 32–40.

[4] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén, Competitive non-preemptive call

control, Proc. of 5th ACM-SIAM Symposium on Discrete Algorithms, 1994, pp. 312–
320.

Competitive Algorithms 23

[5] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani, On-line admission control and

circuit routing for high performance computation and communication, Proc. 35th IEEE
Symp. on Found. of Comp. Science, 1994, pp. 412–423.

[6] Y. Bartal, A. Fiat, and S. Leonardi, Lower bounds for on-line graph problems with

application to on-line circuit and optical routing, Proc. 28th ACM Symp. on Theory of
Computing, 1996, pp. 531–540.

The CNN problem
Elias Koutsoupias

Consider a server in the Euclidean plane that responds to a sequence of requests as
in the k-server problem. However, for this problem, the server does not have to move
to the requested point; it can service a request by moving to any point that is on the
same horizontal or vertical line with the request. The name —suggested by Gerhard
Woeginger— is derived from a certain television network. The relation is that a TV crew
can cover incidents in Manhattan (by zooming in) from far away, provided that it is in
the same street; in the worst case, incidents happen only at intersections!

The problem was originally suggested by Mike Zaks and studied by William Burley.
The best lower bound of the competitive ratio is 6 +

√
17 = 10.123 . . . No upper bound

is known. I conjecture that the generalized wfa (3w(A′) + d(A, A′)) has competitive
ratio around 13. Special cases and certain generalizations of the problem seem to be
important on-line problems. For example, the “cow-path problem” and the “weighted
2-server problem in a line” are special cases of the CNN problem.

In the near future, I plan to put more information about this problem at the webpage
http://www.cs.ucla.edu/˜elias/publications

Using a buffer as a Cache in the (read only) file migration problem
Ketsiya E. Meirman

In the file migration problem [1,2,3,4] for a uniform graph, there are n connected nodes
that access a common file, that consists of D pages. Assume that there is only one copy
of the file, and that it can be migrated from one node to another. A sequence of requests
is generated at the different nodes accesses to the file. In the classical file migration
problem, each node maintains a read/write buffer of one page. If the file is present in a
node, then the local access cost of the file is 0. When a process access a file from a remote
node, then this request can be performed in two ways: either by bringing one page from
the file to the buffer of the requesting node, at the cost of 1, or by migrating the whole
file to the requesting node, at cost D. In particular, we note that in the first case, each
remote file access results in an actual read operation from the remote node, even if the
requested page is already in the buffer from the previous operation.

An interesting variation of the file migration problem is for read-only files. In this

--

24 Competitive Algorithms

case if the requested page is already in the buffer of a node, then there is no need to read
that page again from the file, i.e., the buffer can be considered as a cache, which is valid
as long as successive read requests are addressed to the same page. This problem can
further be generalized to nodes with buffer size k, where 1 ≤ k < D.

This scenario, of accessing successively many time the same page is realistic, since
there is often locality of reference in file accesses, both since one item of a page is accessed
more then once or since multiple items of one page are accessed successively.

For example, assume that there are two nodes: P1 and P2, and a read-only file, with
D pages f1, ..., fD that reside in either P1 or P2. A request σPi,fj

denotes that there is a
request access from processor Pi to the j’th page of the file. For the access sequence:

σP1,f1
, σP1,f1

, σP2,f1
, σP1,f1

, σP1,f1
, σP2,f2

, ..., σP1,f1
, σP1,f1

, σP2,fimodD

it is better to place the file in P2 , since the process in P1 can always use the cache page
f1 that is brought only once.

[1] Bartal Y., Disributed Paging. In Online Algorithms, Fiat, A.; Woeginger G.J.; Lecture
Notes in Computer Science, Vol 1442, Springer, May 1998.

[2] Bartal, Y.; Charikar, M.; Indyk P., On Page Migration and Othe Relaxed Task Sys-
tems. In Proc. of the 8th Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 43-52,
January 1997.

[3] Black, D.L. and Sleator D.D., Competitive Algorithms for Replication and Migra-
tion Problems. In Technical report CMU-CS-89-201, Department of Computer Science,
Carnegie Mellon University, November 1989.

[4] Chrobak, M.; Larmore, L.L.; Reingold, N. and Westbrook J., Page Migration Algo-
rithms Using Work Functions. In Proceedings of the 4th International Symposium on
Algorithms and Computation, ISAAC ’93, volume 762 of Lecture Notes in Computer
Science, pages 406-415, Hong Kong, Springer-Verlag, 1993.

An online sorting problem
Bala Kalyanasundaram and Kirk Pruhs

We ran into the following basic online combinatorial problem doing research on online
dynamic storage allocation that we imagine could well arise in other applications and
that seems interesting.

The online algorithm is given an online sequence S = s1, . . . , si of n integers. The
online algorithm must irrevocably place s i in an array A of size m ≥ n before seeing si+1.
The goal is that A should be as “sorted” as possible. One can have many variants of this
problem. There are many possible formalizations of “sorted”. In the particular problem
that we were examining, we wanted that the largest si should near each other in A. But
there are probably many more natural definitions of “sorted”. The online algorithm may

Competitive Algorithms 25

be deterministic or randomized. The input S may be adversarial, or each s i could be
selected from some independent probability distribution. In seems that in many variants
of this problem the online algorithm has a very difficult task. So top level, perhaps the
goal should be to determine in what variants of the problem can the online algorithm
can do something better than random assignment.

Algorithms for on-line scheduling on related machines
Jiř́ı Sgall

Consider the following model of scheduling. We have m machines of possibly different
speeds and a sequence of n jobs arriving on-line one by one. As soon as a job arrives, we
learn its size (processing time) and we have to assign it to one or more machines and time
slots; we are allowed to use preemption, i.e., to use more time slots on one or different
machines, provided that the time intervals are non-overlapping and sufficient to process
the jobs. The goal is to minimize the makespan (the total length of the schedule).

We have a lower bound approaching 2 as the number of machines increases to infinity.
We also have tight bounds for 2 machines and any speeds.

We conjecture that the optimal competitive ratio is fairly small, probably at most 4.
However, at this point we do not have any better algorithms than the non-preemptive
ones, which (if compared to the optimal preemptive schedule) yields only a competitive
ratio around 20. So, the open problem is to find any better algorithms.

For more details see http://www.math.cas.cz/~sgall/ps/rel-lb.ps

