
Preface

Metaphor plays a key role in Computer Science and Engineering. New
ideas and methods are infused into existing areas, creating fresh material
and methodologies. An ”agent” carries out our purpose in performing an
act on our behalf. The achievement of this purpose may involve differing
degrees of autonomy. If we take the everyday meaning of ”agent” and
marry this concept with software development, we derive the ”software
agent.”

Software agents address the demand for programs that inter-operate to
solve problems in an open and dynamic environment. As the number and
complexity of agent-oriented programs increases, so does the need for soft-
ware engineering tools and simulation systems that support their design
and evaluation. New research questions whether agent-oriented techniques
hold part of the answer to some urgent problems in engineering simula-
tion systems, such as how to facilitate reuse and exchange of models and
services between simulation systems.

Simulation of Multi-Agent Systems

Agent-based systems are often safety critical, and like other software sys-
tems, must be tested and evaluated before being deployed. Agents are em-
bedded systems, and their dynamic behavior determines their efficiency
and effectiveness. Therefore, simulation is an intrinsic part both during de-
velopment and for testing purposes, to learn more about their behavior or
investigate the implications of alternative architectures and coordination
strategies.

However, work to date has largely ignored recent work in simulation
methodology and systems and has instead tended to employ various ad-hoc
approaches to simulation. The model of the environment the agent shall
be tested in and the simulation mechanisms are typically developed and
implemented from scratch. In setting up the test environment, modeling
and the execution of the model are not distinguished. This hampers a reuse
of test scenarios, reproducing the results of experiments, and comparison
of results achieved through experimentation.

The requirements of a simulation system which has a chance to be
applied by working groups that design agents has to meet a variety of
requirements. Its model design should ideally support:

• a compositional, hierarchical model design
• an integration of diverse agents and agent architectures

• a comfortable interface to plug in agents’ modules
• a dynamic adaptation of the model’s composition and coupling struc-

ture
• a combination of continuous and discrete models

Model execution should be clearly separated from model design. Simula-
tion techniques are required which combine a flexible model design (see
above) with an efficient execution. The computational requirements of sim-
ulations of agent-based systems exceed the capabilities of single platforms.
Each agent requires typically considerable computational resources, and
many agents may be required to investigate the behavior of the system as
a whole. Distributed, concurrent simulation techniques have to take into
account that:

• to determine a lookahead in the domain of deliberative multi-agent
systems is very difficult since during test runs the time needed for
deliberation often varies drastically.

• rollbacks are even more storage expensive due to the flexible structures
which require not only the storage of states but of entire models

• a distributed execution necessitates dynamic load balancing

Simulation systems for multi-agent systems should also be able to in-
teract with other simulation systems. This leads us to the second focus of
the discussions, i.e. employing agents to execute models and to implement
flexible, state of the art simulation systems.

Software Agents for Distributed Modeling and

Simulation

Distributed modeling and simulation imply a geographically distributed
set of models and their components, as well as concurrent execution of
model-derived code. In distributing model components, we must design
model and component repositories over the web. It should be possible to
search these repositories for reusable objects. Although existing mecha-
nisms do not yet exist for distributed model repositories, certain tech-
nologies such as object oriented databases and XML (Extensible Markup
Language) will help in creating appropriate vehicles for model and compo-
nent representations. Distributing the simulation (i.e., model execution) is
another matter and has been more widely studied in the distributed sim-
ulation research community. For both model design and execution, agent-
oriented approaches create a natural fit with the problems of distributed
modeling and execution.

Simulation Systems Executed by a Community of Agents

The execution of a model can be realized by a community of distributed,
concurrently interacting, and moving entities. Their interaction, composi-
tion and location structure adapts itself to improve the efficiency of the
simulation run. Different parts of the model can be executed by different
agents specialized in different formalism, e.g. continuous and discrete mod-
els. To balance the work load processes migrate from one site to another
during simulation. The flexibility of these approaches promise a scalability,
which is necessary to deal with heterogeneous, large-scale applications.

Simulation Systems as a Community of Heterogeneous Agents

Simulation systems can be developed as a community of heterogeneous
agents. These approaches can be rooted back to research of the late 80ties
where knowledge based systems and simulation systems were combined,
e.g. to select test data, evaluate and display simulation results. A multi-
agent design emphasizes modularity, flexibility, and concurrency in con-
structing intelligent simulation systems where modules, e.g. so called intel-
ligent ”front-ends” or ”back-ends”, work as autonomous agents. Depend-
ing on the functionality, e.g. if searching for specific data on the web, a
module’s performance might even benefit from the mobility of an agent.

Simulation Systems as Agents

Due to the diversity and multitude of simulation systems and existing
simulation models, the need for standardization and an improved interop-
erability have been recognized as pressing problems in this area. To facil-
itate the exchange and reuse of models, and services between simulation
systems, recent research suggests exploration of agent-oriented techniques,
including knowledge interchange languages and protocols for interaction
and negotiating.

The entire simulation system becomes an agent. If different simulation
systems shall interoperate, as the DoD initiative HLA requires, ensuring
that simulation systems ”understand” each other becomes crucial. Having
the same semantic refers to the objects, i.e. variables, which are exchanged
between simulations, but also to the temporal horizon of the simulation
systems.

Conclusion

The agent metaphor very nicely supports the development of state of the
art simulation systems, since it complements the main stream of current

simulation research. However, agents do not solve problems by themselves.
Interfaces, semantic frames, and collaboration strategies have to be defined
and negotiated. Distributed model design and model execution techniques
are found to be not only supportive, but also necessary for the systematic
design and testing of multi-agent systems.

Dagstuhl

We began the week realizing that this was no ordinary workshop. We felt
obliged to pay close attention to the interaction of all participants so as
not to dictate a rigid schedule of papers and panel sessions, as would be
done in a larger conference setting. Thus, all participants played an active
role in driving the progress and content of the workshop.

Schloss Dagstuhl was a very pleasurable environment. We were able
to combine some of our discussions with drinks in the wine cellar, walks
in the woods, and trips up to the ruins on the hill. It is the environment
that makes Dagstuhl an amazing location and environment. There is an
unusual blend of the old with the new, and the concept of careful time
management interspersed with a flexibility to deviate and collectively self-
organize. The staff was most gracious and helpful. We thank them for all
of their help in accommodating our needs during our stay.

Adelinde Uhrmacher
Paul Fishwick
Bernard Zeigler

Schedule of the Seminar

Monday, July 5 1999

Presentations

Welcome / Introduction (P.Fishwick, A.Uhrmacher, B.Zeigler)

An Introduction to HLA, DEVS/HLA and Agent Endomorphic Models (B. Zeigler)
The Distributed Simulation of Multi-Agent Systems (B. Logan)

JAMES - A Java-Based Agent Modeling Environment for Simulation (A.Uhrmacher)
ISSAC: An Intelligent System for Exploiting Speculative

Execution and Active Code in Large-Scale Distributed Simulations (C. Carothers)
Working Groups

Simulation for Multiagent System Design

Software Agents for Distributed Simulation
After Dinner Talk

Physical primitives as a basis for reconfigurable simulations,
and agent control architectures, and semantics (P.Cohen)

Tuesday, July 6 1999

Presentations

An Agent Architecture for Agents in Virtual Environments (K.Fischer)
Planning Agents in JAMES (B. Schattenberg)
A Framework for Modeling and Simulation of Mobile Agents (F. Barros)

Cognition and Emotion - Cooperative Agents
and their Internal Structure (B. Schmidt)

Using Agents in a Multiscale Simulation (B.K. Szymanski)
Working Groups . . . Continuing . . .

After Dinner Talk

Formalizing, Replicating and Publishing Simulation Models (N. Gilbert)

Wednesday, July 7 1999

Presentations

Creating 3D Environments for Objects and their Models (P. Fishwick)

Model Semantics:Automated Formalism Transformation (H. Vangheluwe)
Modeling Agents from a Semiotic Perspective (C. Joslyn)

Software Agents and Simulation: A Taxonomy (T. Oren)
After Dinner “Jam Session”

An Agent-Based Design of a Simulation Tool
for Complex Social Systems (M. Möhring, E. Mentges)

Realizing Tutoring with Agents and a Discrete Event Approach (A. Martens)
Using Mobile Agents for Data Acquisition in Simulation (L. Wilson)

Thursday, July 8 1999

Presentations

Macro - Micro - Simulation: Concepts and Applications (R. Grützner, H. Unger)
Using High Level Architecture in Civil Domains -

Looking Back and to the Future (T. Schulze)
Component-based Simulation Using Javabeans (H. Prähofer)

Model Reconstruction for Problem Solving by
Intelligent Demons during Dynamic Simulation (A. Javor)

Interacting Assemblies of Goal-Based Learning (E. Gelenbe)
Working Groups . . . Continuing . . .

Friday, July 9 1999

Discussion

Issues regarding Agents for Modeling and Simulation

(P. Fishwick, B.Zeigler, A. Uhrmacher)

DSDE: A Formalism For Representing

Mobile Components

Fernando Barros

Universidade de Coimbra, Dept. Eng. Informatica

Polo II, Pinhal de Marrocos, P-3030 Coimbra (P)

Many real systems are better perceived when represented as dynamic
structure models. Examples of such systems include adaptive computer
architectures, biological systems, manufacturing systems and communica-
tion systems. For instance, in biological systems, the synapses’ network of
a human’s brain changes its structure in the course of its lifetime by creat-
ing and destroying synapses. One spectacular demonstration of the ability
of biological systems to change their own structure is the metamorpho-
sis of a caterpillar into a butterfly. Non-biological systems, like computer
networks, can also modify their structure to adapt to component failure
or to traffic increase.

The Dynamic Structure Discrete Event Systems Specification (DSDE)
is a modeling formalism that supports structural changes in models. In
the DSDE formalism models are built in a hierarchical and modular form
due to the closure of the composition operation. One type of structural
change supported by the DSDE formalism consists in the movement of a
component between two models. This type of component is named here by
Mobile Component, and can be fully described within the DSDE frame-
work. Mobile Agents are a network technology that involves the movement
of software units called agents, between computers through a network.
Mobile Components, due to structural similarity, offer a natural way to
represent Mobile Agents, and provide the ideal framework for modeling
and testing agent applications.

ISSAC: An Intelligent System for

Speculative and Active Code computations

Christopher D. Carothers, Boleslaw Szymanski, and Mohammed J. Zaki

Rensselaer Polytechnic Institute, Dept. of Computer Science

110 8th Street, NY 12180 Troy (USA)

Next generation distributed object systems will be required to support
millions if not billions of objects. To solve the impending performance
and scalability problem accompanying such large and complex systems,
we propose a societal approach. Here, objects, like people, must possess
the capacity to acquire and share new knowledge, to store knowledge about
their current behaviors, to modify their behavior for the better, as well
as be able to accept some degree of risk by exploiting opportunities for
software level speculative execution, where objects synchronize only when
it becomes absolutely necessary.

Specifically, our system ISSAC: an Intelligent System for Speculative
and Active Code computations, enables the discovery of knowledge re-
garding the common case for large-scale, object-oriented systems using
parallel data mining to detect run-time patterns not possible using pre-
vious compile-time or run-time systems. Using these patterns ISSAC can
determine a variety of potential sources for performance optimizations,
such as dependent/independent objects, data access patterns, communi-
cation patterns, code bottlenecks, abnormal execution states and resource
contention, as well as crucial opportunities to exploit software level, spec-
ulative execution.

Using these patterns, we use a process called Active Code to dynam-
ically modify the source code tree, re-compile the system and reload the
newly optimized distributed object application. This allows not only the
common case to be executed faster, but also the intelligent deployment of
software-level, speculative execution.

To demonstrate the benefits of ISSAC, we plan to conduct a perfor-
mance study using two classes of distributed applications: discrete-event
simulations and irregular numerical computations.

The ultimate goal of ISSAC is to achieve robust performance of com-
plex distributed object systems which enables them to adapt to and opti-
mize for a dynamic critical path as well a dynamic run-time environment
when executed on today’s high-power adaptive “grid” computing plat-
forms.

Physical Primitives as a Basis for

Reconfigurable Simulations, and Agent

Control Architectures, and Semantics

Paul Cohen

University of Massachusetts, Computer & Information Sciences
Lederle GRC, MA 01003-4610 Amherst (USA)

Recent experiments with heterogeneous agents identified semantics as the
principal impediment to interoperability. The DARPA CoABS program
has demonstrated interoperability of roughly 50 heterogeneous agents, but
in the 1999 experiments this was achieved by human developers negoti-
ating the semantics of the messages sent among the agents. Might agents
share a semantic core and negotiate meanings for themselves? It helps to
know how humans understand each other.

I am particularly interested in how semantic systems develop in chil-
dren. As infants, we are sensorimotor agents, capable of pushing and grasp-
ing, mouthing and waving, and so on. The question is whether a semantic
system, one that assigns meanings to symbols, can emerge from sensorimo-
tor activities. Our work on planning for war games and robotics suggests
that physical schemas are a semantic core that can be bootstrapped into
more sophisticated, adult semantic systems. Physical schemas are simple
plans like pushing, moving, blocking, grasping, and so on. Many physi-
cal situations can be understood in terms of these primitives, and many
non-physical situations can be understood as metaphorical extensions of
physical situations.

Multiagent Systems and Simulation —

Thoughts and Applications

Klaus Fischer

Deutsches Forschungszentrum für Künstliche Intelligenz

Stuhlsatzenhausweg 3, D-66123 Saarbrücken (D)

The presentation general remarks on agents and multiagent systems, con-
centrating on characterization of agents and agent architectures. Two
views on simulation using multiagent systems were presented. In the first
view (MAGSY’s view) the simulation world is explicitly represented by
a special agent, but agents do not necessarily have to interact with this
world agent. In the second view (SIF) all agents communicate using a
medium which also represent the simulated world. In this latter view the
agents therefore necessarily interact with the simulated world. As exam-
ples for systems designed according to MAGSY’s view, the transportation
scenario and two settings for flexible manufacturing were presented. To
explain SIF the loading dock example was described.

3D Behavioral Modeling

Paul A. Fishwick

Computer & Information Science Dept., University of Florida

FL 32611-6120 Gainesville (USA)

Modeling is used to build structures that serve as surrogates for other
objects. As children, we learn to model at a very young age. An object
such as a small toy train teaches us about the structure and behavior
of an actual train. Later on in life, we use virtual world construction
techniques on a computer. Virtual worlds enable us with the tools to create
3D geometric, scale-oriented models of trains. But how does the train move
and operate when influenced by its engineer and the environment? We can
build computer programs to facilitate behavior. We can also create models
of the train’s behavior and use the simulation of the models in lieu of the
program.

This leads us to question the relation between the scale model (as
studied in computer graphics and computational geometry) and the dy-
namic model (as studied in areas such as simulation). We demonstrate a
methodology and environment where the same virtual world of objects is
used for both types of models. There is no difference between the objects
and components used to create computer graphics models and those used
for computer simulation. This unification matches our intuitive definition
of ”model” where a 3D object serves to capture attributes of another.

Adaptive Goal Oriented Agents in

Simulation Environments

Erol Gelenbe

University of Central Florida, Dept. of Computer Science
FL 32816-0362 Orlando (USA)

A recent National Academy of Sciences report [5] defines human behav-
ior representation as a computer based model that mimics the behavior
of a single human or the collective behavior of a team of humans, and
decries the lack of behavior realism in simulations. The purpose of our
research is to develop a scientific approach to learning and adaptation
in large scale simulations. We address the key question of mathematical
and computer modeling of units or simulated individuals, or manned ve-
hicles, when these entities have the ability to learn from experience and
rapidly adapt to random and time varying conditions. Many existing or
projected simulation systems use Finite State Machines (FSM) to control
the activity of the significant agents in the system, yet FSM are computa-
tionally too simple to represent complex adaptive behaviors. On the other
hand, randomized or Stochastic FSM (SFSM), have been mathematically
proven [2,3] to have full algorithmic computing power (i.e. as powerful as
any computer algorithm). Thus they constitute a good paradigm for rep-
resenting complex adaptive behaviors in existing simulation frameworks.
In our approach, each simulated agent or entity (individual, manned or
robotic vehicle, unit, etc.) is equipped with one or more decision making
SFSM. We investigate and test three significant adaptation paradigms to
construct “oracles” which determine the next state transitions of SFSM
from current state and inputs, based on externally stated goals: (1) Adap-
tive SFSM, (2) Random Neural Networks with Reinforcement Learning
[7], and (3) Genetic/Evolutionary Computing. Agents in our simulated
world act in a structured environment containing random and time vary-
ing events and elements. The inputs to each agent are observations using
sensors, and information which may be communicated among the agents.
The notion of an “oracle” in mathematical automata and computer sci-
ence theory is a classical concept which comes from mathematical logic [1].
The purpose of the oracles is to provide goal based adaptive control of the
agents, using reward and penalty functions. We theoretically and exper-
imentally evaluate the computing power of each of the three paradigms,

examine how they can be mapped into a FSM framework, and determine
equivalences and relationships between sub-classes of the paradigms. We
examine how broadly defined goals can be translated into appropriate re-
ward and penalty functions for task based adaptive control for each of
the three paradigms. We will also examine the computational cost in-
volved. In order to test these concepts, we have implemented a simulation
where agents engage in an operation in a structured but dangerous ur-
ban environment, as discussed in our recent paper [8]. Each of the three
adaptation paradigms (Adaptive SFSM, Random Neural Networks with
Reinforcement Learning [7], Genetic/Evolutionary Computing) are eval-
uated in an identical setting where adaptation must lead to the agents’
short-term success in real-time.

References

1. H. Rogers “Theory of Recursive Functions and Effective Computability”,

McGraw-Hill, New York, 1967.

2. P. Turakainen “On probabilistic automata and their generalizations”, Ann.
Acad. Sci. Fenn. Ser. A1 Math.-Phys., No. 429, 1968.

3. E. Gelenbe “On languages defined by linear probabilistic automata”, Infor-
mation and Control, Vol. 18, February 1971.

4. E. Gelenbe “Learning in the recurrent random neural network”, Neural Com-

putation, Vol. 5, No. 1, 154-164, 1993.

5. R.W. Pew and A.S. Mavor (Editors) “Representing Human Behavior in Mili-
tary Situations: Interim Report”, National Academy Press, Washington, D.C.,
1997.

6. Proceedings of the 7th Conference on Computer Generated Forces and Be-

havioral Representation, 1998

7. E. Gelenbe, Z.H. Mao, Y. Da Li “Function approximation with spiked ran-

dom networks” IEEE Trans. on Neural Networks, Vol. 10, No. 1, pp. 3–9,
1999.

8. E. Gelenbe “Modeling CGF with learning stochastic finite-state machines”,

Proc. of the 9th Conference on Computer Generated Forces and Behavioral
Representation, pp. 113–116, Orlando, May 1999.

Formalising, Replicating, and Publishing

Simulation Models

Nigel Gilbert

University of Surrey, Dept. of Sociology
GU2 5XH Guildford (Surrey) (GB)

In this after-dinner talk, I examined the papers that have been published
in the electronic journal, the Journal of Artificial Societies and Social
Simulation (JASSS), http://www.soc.surrey.ac.uk/JASSS, since its first
issue in January 1998. As the editor of JASSS, I have been concerned
about the development of a tradition of writing articles describing social
science simulations and in particular about the extent to which articles
provide sufficient detail to enable readers to understand and replicate the
work reported in them.

Computational modelling as a social science methodology experienced
a rebirth in the 1990s. Until 1998, most research reports were published
in edited proceedings. JASSS was founded as a fully refereed academic
journal to provide a widely available, easily accessible outlet for the grow-
ing amount of work in the area. It follows traditional academic journal
procedures, but electronic publication over the Web also allows faster
turn-around of articles, the inclusion of multimedia and code listings, and
distribution to readers all over the world. Access is free of charge.

To date, JASSS has published 19 refereed papers in six issues in two
volumes. In addition it has published 8 unrefereed ’Forum’ articles and
16 book reviews. Of the 19 papers, 18 describe computer simulations (the
remaining paper is a survey of the use of genetic algorithms in social sim-
ulation). Four articles provided access to the program code of the model
or in one case, a Java applet that could be run by the reader. An examina-
tion of the 18 articles showed that no two articles reported the use of the
same programming language (the languages used varied from C and Tur-
boPascal to the specification language Z, and included the use of several
simulation toolkits, including Swarm, SDML, and Dynamo). Six articles
primarily used mathematics to explain the models they described, usually
employing difference equations. Two articles used a high level formalism
(Z and a qualitative simulation language); three used process diagrams;
and seven used textual descriptions.

A subjective estimate of how difficult it would be to replicate the mod-
els revealed that five articles did not provide enough detail to enable a
replication to be carried out. However, it was suggested in the talk that
this is not in itself a mark of an inadequate research report. The primary
objective of an article in JASSS should be to provide a better understand-
ing of some social phenomenon or process. While ideally it should also be
possible to replicate the work, the most important characteristic of a paper
must be that it offers social scientific conclusions that lead to generalis-
able findings. Nevertheless, most papers should explain the models used
in detail. There remains a question about the most appropriate means
of doing this. One possibility would be a universal specification language,
but it is unlikely that there would be consensus about the nature of such a
language. Specifications also need to reflect the objectives and theoretical
context of the research, making it difficult to define a language of general
applicability. The method adopted by the majority of the published arti-
cles, a fairly ad hoc mixture of textual description, process diagrams and
difference equations, may be the best solution.

Macro - Micro - Simulation: Concepts and

Applications

Rolf Grützner and Helen Unger

Universität Rostock, FB Informatik

Albert-Einstein-Str. 21, D-18051 Rostock (D)

The term agent is originated at the Artificial Intelligence whereas individ-
ual is defined in Artificial Life. We will consider both terms as synonymous
and we use mostly individual to document that real living objects may be
modelled. Individuals are used to model objects that perceive, act and rea-
son. We divide models into two groups: micro- models and macro-models.
A model which is based on equations is called macro-model. A macro-
model is an indivisible whole entity, an algebraic structure, it does not
take into account the fact that the modelled real world system usually
consist of smaller individual components. But it may contain different
levels of aggregation or of resolution. The resolution may relate to time,
space, and structure. A model with a very high resolution based on indi-
vidual objects may be called micro-model. A macro-model has a defined
structure which may be fixed or variable. For a micro-model no explicit
structure is defined.

Multi level models incorporate components at multiple levels of reso-
lution. Multi level models appear on the one hand at the macro level if
models are coupled with different resolution levels and on the other hand
by the coupling of micro- and macro-models.

Simulation that run at multiple levels of resolution often encounter
consistency problems because of insufficient correlation between the at-
tributes at multiple levels of the same entity. Even if we assume that the
models to be linked are valid, inconsistency can arise in the linkage. Con-
sistency issues arise when low resolution entities interact with high resolu-
tion entities. The common solution approach is to dynamical change the
resolution of a low resolution entity (or high resolution entity) to match
the resolution of other encountered entities. The problem of linking sim-
ulations at different levels of resolution is so reduced to the aggregation -
disaggregation problem - also called cross-resolution modelling.

The state-of-the-art in multilevel interaction (cross resolution mod-
elling) can be described as being moderately successful in that linkages

have been effective to some extent in each project but a general technique
and associated theory are lacking. The used techniques are:

• full disaggregation,
• partial disaggregation,
• pseudo disaggregation,
• cross-level aggregation,
• unify method, and
• the concept of virtual individuals and virtual compartments.

Virtual compartments and virtual individuals are concepts suggested
by J.Ortmann, a PhD student of our research team. Some projects in
the field of micro-macro simulation and of micro-simulation now are rep-
resented. For example the source traffic and back traffic of a suburban
settlement should be investigated. The cars are modelled as individuals
characterised by the type of the driver and by a daily plan of activities of
this individual.

A model of an adaptive individual which starts to navigate in an un-
known city and which learns to move better and better in the city by
perceiving its environment. That is a problem of learning in geographical
spaces and in variable environments.

A further task is the investigation of the behaviour of persons which
have to choose the transport mode, that means the vehicles for a city trip
(the private car or a public transport mode) by an individual oriented
model with adaptive individuals. A macro-model component models the
traffic density which influences the future behaviour of persons.

Another problem may be the modelling of an ecological food chain,
containing four populations. Three populations are modelled as differential
equation system and one of these populations is modelled as individual
oriented model. A typical micro-macro model.

Model Reconstruction for Problem Solving

by Intelligent Demons During Dynamic

Simulation

Andras Javor

Technical University of Budapest, Dept. of Information Management
Muegyetem rkpt 3 H-1111 Budapest (H)

The methodology using static and mobile agents in form of intelligent
demons [1,2] for changing model structure and parameters during the
process of dynamic simulation as well as Knowledge Attributed Tokens
of high level Knowledge Attributed Petri Nets [3] are introduced and their
implementation in an AI controlled simulation system is outlined.

Examples where the agents have been applied already for determining
optimal solutions in the fields of urban traffic and air pollution control as
well as for optimizing flexible manufacturing systems are presented [4].

As a new type of application the multifaceted [6] problem of the de-
velopment of regions with special emphasis on traffic conditions is dealt
with. In this example the agents are also given the task to find a model
describing the real system adequately [5].

Possibilities for the application of demons as building blocks of the
models in form of interacting agents is also dealt with.

References

1. Javor, A.: Demons in Simulation: A Novel Approach Systems Analysis, Mod-
elling, Simulation 7(1990)5. 331-338.

2. Javor, A.: Demons in Simulation: A Novel Approach in A. Sydow (ed.),
Computational Systems Analysis, Topics and Trends, Elsevier, Amsterdam,

1992, 355-370.

3. Javor, A.: Knowledge Attributed Petri Nets Systems Analysis, Modelling,
Simulation, 13(1993)1/2, 5-12.

4. Javor, A., Szucs, G.: Intelligent Demons with Hill Climbing Strategy for
Optimizing Simulation Models Summer Computer Simulation Conference,

Reno, Neveda, July 19-22, 1998. 99-104.

5. Javor, A., Szucs, G.: AI Controlled Simulation of the Complex Development

of Regions Summer Computer Simulation Conference, Chicago, Illinois, July
11-15, 1999. 385-390.

6. Zeigler, B.P.: Multifacetted Modelling and Discrete Event Simulation Aca-

demic Press Inc., 1984.

Agent Modeling from a Semiotic

Perspective

Cliff Joslyn

Los Alamos National Laboratory

CIC-3, MS B265, NM 87545 Los Alamos (USA)

We present a perspective on agent-based modeling and simulation based
on semiotics, or the science and signs and symbols. After reviewing the
current state of the use of the ”agent” concept in modeling and simula-
tion, we describe the semiotic approach, based on a generalized control
theory architecture and attention to the perceptual (measurement) and
action modalities of the agents. Consequences of the semiotic approach
include the relativism of knowledge (as interpreted symbols) to partic-
ular agents, and control as decentralized constraint on decision-making
which has many sources, including the virtual environment, semiotic com-
munication structures, and shared knowledge among agents. Finally, we
discuss the ideas concerning application to the modeling of socio-technical
organizations with hierarchical command structures.

The Distributed Simulation of Multi-Agent

Systems

Brian Logan

University of Birmingham, School of Computer Science

Edgbaston, B15 2TT Birmingham (GB)

Agent-based systems are increasingly being applied in a wide range of
areas including telecommunications, business process modelling, the con-
trol of mobile robots and computer games. Such systems are typically ex-
tremely complex and it is often useful to be able to simulate an agent-based
system to learn more about its behaviour or to investigate the implications
of alternative architectures. However the computational requirements of
simulations of many agent-based systems far exceeds the capabilities of
conventional sequential von Neumann computer systems. One solution to
this problem is to exploit the high degree of inherent parallelism in agent-
based systems to allow distributed simulation.

In this talk, I briefly outline some of the problems we have encountered
in attempting to apply conventional distributed simulation techniques to
the simulation of multi-agent systems and sketch a new approach to the
efficient distribution of agents and their environments across multiple pro-
cessors.

Realizing Tutoring with Agents and a

Discrete Event Approach

Alke Martens

Universität Ulm, Abt. für Künstliche Intelligenz

D-89081 Ulm (D)

Most of the work in the area of simulation and education is dedicated to the
process of teaching students the essentials of dynamic systems by simula-
tion. Thereby, the system to be taught becomes the subject to be modeled
and simulated. However, the process of tutoring can be perceived itself as
a dynamic process and can be treated as such. To support a flexible and
intelligent tutoring process we distinguish between model and simulation
level. Based on JAMES - a Java Based Agent Modeling Environment for
Simulation [2] we employ a state-based, modular and hierarchical agent-
oriented model design. The tutoring process is structured into different
situations each of which consists of information and decision tasks. The
navigation options are constructed by coupling tasks.

The user is represented as an agent which moves through the tutoring
process by coupling to and uncoupling from tasks. Depending on the user’s
interaction and experience level it steers the tutoring processes and might
even adapt the structure. Thus, agents and their changing interaction
structure becomes central [1].

The system is designed to work on the Internet and is aimed at sup-
porting the interaction of multiple users in a distributed setting.

References

1. Martens A., Uhrmacher A.M., Modeling Tutoring as a Dynamic Process -
A Discrete Event Simulation Approach. In: Proc. European Simulation Mul-

ticonference ESM’99, 111-119, SCS, Ghent, 1999.

2. Uhrmacher A.M., Tyschler P., Tyschler D. Modeling and Simulating Mobile

Agents. Future Generation Computer Systems, Special Issue on Web-Based
Simulation, to appear.

An Agent-Based Design of a Simulation

Tool for Complex Social Systems

Michael Möhring and Elke Mentges

Universität Koblenz - Landau, FB Informatik

Rheinau 1, D-56075 Koblenz (D)

There is a variety of different requirements and qualifications of users ap-
plying simulation as a research method in the social sciences. Experience
gained with users of the simulation system MIMOSE and discussions in
interdisciplinary workshops suggest that developing a unified modelling
and simulation language for the social sciences is an unrealistic aim. This
is why our project called MASSIF (an abbreviation of its german name
Multi-Agenten-Simulation in der sozialwissenschaftlich-interdisziplinären
Forschung) goes a different way. Instead of aiming at one unique modelling
language we are working on a framework applying agent-based modelling
as the approach that seems to be the most promising one to cope with
the complexity of social structures and processes. The underlying con-
cept suggests diverse abstraction levels for the description of multi-agent
systems.

The design of the framework takes into account that its potential users
can not be regarded as a homogeneous group but differ very much in
their experience and capabilites using simulation tools. Hence, it offers
different user layers for constructing multi-agent models with increasing
abstraction level. The layers are horizontally independent, i.e. models can
be completely defined on any layer without taking care of the others. Pre-
fabricated building blocks adjusted to the specific needs and capabilities
support the user constructing executable models. On the other hand the
layers are vertically permeable: The set of building blocks can be enlarged
using the tools and building blocks of the layer below.

To improve comprehensibility and transperancy we suggest to divide
the process of modelling multi-agent systems into modelling agents and
modelling interactions and relations between them: On the first rather
low-level layer, relations and interactions between agents are modelled as
communicative acts, i.e. agents interact with each other by exchanging
messages. Describing communication between agents implicitly, i.e. as an
internal process inside each communicating agent, is quite difficult and
intransparent. Dialogues between agents often build patterns where cer-

tain message sequences are expected and other messages are expected to
follow. This, as a rule, makes planning capabilities and an internal model
of the communication partner(s) necessary. To cause such dialogues to
arise spontaneously is restricted to societies of rather complex agents. A
more transparent and pragmatic way is modelling communication explic-
itly: Typical patterns of communication are defined as message sequences
and agreed as protocols between agents. This facilitates the description of
even rather complex interaction structures. It is not restricted to high-level
agent types - also quite simple agents are able to engage in meaningful
conversation, simply by following the known protocol. Modelling agents
is supported by a generic agent model. Its architecture is strongly related
to the concept of INTERRAP, a hybrid, multi-layered agent architecture.
The structure is modular, so several different types of agents can be assem-
bled using the concept as a basis reaching from simple agents interacting
by reactive patterns of behavior to social agents provided with complex
planning and decision capabilities.

The second layer abstracts from the quite technical and low-level mes-
sage level. It provides pre-defined basic interaction types to be used as
building blocks modelling interaction structures between actors in a multi-
agent system. These types are composed as sequences of messages. The set
of pre-defined interaction types offered on this layer is expandable. Mod-
elling agents is supported by pre-definied, adaptable agent types differing
in structure and (inter-)action capabilities. To cover a broad spectrum,
the range offered contains rather simple reactive agents up to complex so-
cial agents. Users can generate instances of these types and initialize their
knowledge or rule bases and their goal and planning components respec-
tively. All the types are grounded on the generic hybrid agent model and
can therefore easily be stepwise enlarged. This ensures reuse of already
defined agent models as their components can be refined.

The third layer offers a further step of abstraction to support modelling
of multi-agent systems. It corresponds to the way people conceive and
organize their understanding of the world around them. Actors are not
perceived as isolated entities but as related to other entities. They interact
having certain expectations and a restricted perspective on each other.
Their perception and knowledge about the other’s properties and behavior
is always selective. Thus, they play certain roles for each other in their
relations and interactions. Roles and role models are rather new concepts
in object-oriented software engineering. Thinking in roles can also support
modelling of actors in multi-agent models. It is a promising way as it makes
it easier to break down complex models to delimited submodels. For this
purpose pre-defined role patterns determining goals, resonsibilities, tasks

and expertise of agents are offered as building blocks to users of the third
layer of the framework. These patterns can be merged so that submodels
can be combined to an overall model. As in real world phenomena agents
own several roles in parallel, each one at a given time. So role patterns
have to be coupled together. Role patterns have to be instantiated and
adapted. Those properties and abilities ascribed to a role are defined by
the chosen role pattern. They can be enlarged and complemented by the
user with other characteristics of the modelled agent.

Further, we apply agent-based approaches designing the system archi-
tecture of the framework to facilitate reuse of simulation models and inter-
operability of simulation systems: The overall architecture of the MASSIF
system is designed as a system of software components. It connects both
components that will be designed and implemented within our project and
already existing applications. They interact and cooperate to exchange
information and services with each other by communicating in an agent
communication language like KQML or FIPA ACL. Thus, in the sense
of agent-based software engineering, the framework can be viewed as a
multi-agent system itself.

Sequence and content of communication between system components
are defined by interaction protocols. A special software wrapping enables
both internal and external components and applications connected to the
framework to engage in meaningful communication - no matter of the
programming language they are implemented in. All parts of the system
are managed and coordinated by specialized system agents: A so-called
manager agent receives and transmits meta-level information about all the
agents connected to the system by request. Router agents are responsible
for transport and delivery of messages. Their main function is to unburden
agents from the technical level of communication.

As future work within the project we plan - besides the implementation
of a prototype - to apply the introduced concept of several hierarchically
ordered user layers to an experimental frame as the second part of the
framework. This will be done to make tools available for analysing models
and describing experiments that are adapted to the specific requirements
of different user groups.

Simulation, Artificial Intelligence and

Agents: A Taxonomy

Tuncer Ören

Marmara Research Center, Informatics Institute
P.O.B. 21, TR-41470 Gebze-Kocaeli (TR)

The aim is to present a unified framework for different types of synergy
of simulation, artificial intelligence and agents to appreciate the unity of
the field and to systematize the exploration of the possibilities for research
and applications. Six groups of possibilities can be discussed in two general
categories:

AI-directed simulation, i.e., use of AI in simulation

• Cognitive simulation (i.e., simulation of systems with cognitive abil-
ities). It is also be called simulation of intelligent systems. This field
covers natural systems (humans, animals) and engineered systems such
as software systems and computer-embedded systems.

• AI-based simulation (or cognizant simulation) where AI is used for
the generation of model behavior and in associated machine learning.
Some possibilities include knowledge-based simulation, qualitative sim-
ulation and knowledge-based systems used for non-experiential knowl-
edge generation and which can be nested with simulation systems.

• AI-supported simulation (or cognizant simulation environments) where
AI is used in user/system interfaces. Cognitive (also called intelligent)
front-end interfaces can provide advanced help, just-in-time learning
ability, assistance, guidance and solicited or unsolicited advice to the
user. Furthermore, they can also provide abilities such as perception,
speech, deictic (gesture) inputs and haptic (touch) inputs. Cognitive
back-end interfaces can be used in communicating primary and sec-
ondary outputs to the users. Primary outputs include unprocessed and
processed behavior, performance measures, results of evaluations and
advice on the problem. Auxiliary outputs include automated documen-
tations (including virtual gauges) and explanations. Cognitive back-
end interfaces can also be used in virtual and augmented reality appli-
cations.

Agent-directed simulation, i.e., use of agents in simulation

• Agent simulation (i.e., simulation of agents or simulation of systems
which can contain agents). This field covers natural systems (humans or
animals represented as agents or avatars) and engineered systems such
as multi-agent systems with full or reduced autonomy and intelligent
machines or systems which are implemented by software agents.

• Agent-based simulation where agents are used for the generation of
model behavior.

• Agent-supported simulation where agents are used in user/system in-
terfaces.

Component-based Simulation for

Multi-Agent Systems

Herbert Prähofer

Johannes Kepler Universität, Abt. fr Systemtheorie und Informationstechnik

Altenbergerstr. 69, A-4040 Linz (A)

Component-based simulation emerges from the synergism of system the-
oretic simulation modeling formalism and component-based software en-
gineering. In this talk component-based simulation has been discussed
as a paradigm for multi-agent system simulation. While the system for-
malisms most notable the DEVS formalism can serve as a methodology
for modular, hierarchical modeling and simulation, the JavaBeans com-
ponent model provides the appropriate implementation base. The bene-
fits of a component-based simulation methodology for agent-based system
simulation are a more concise model building methodology, better model
reusability, concepts for building model libraries, and the possibility for
interactive programming of simulation systems. The SimBeans simula-
tion framework [1,2] has been presented as a component-based simulation
framework based on the Java language and JavaBeans component model.
It is based on a component-based simulation methodology that provides
component libraries for different purposes, at different levels, for differ-
ent users, and for different applications. The main objective is reusability;
i.e., simulation systems can be built with less effort mainly by selecting,
extending, customizing, and assembling components from libraries. It sup-
ports discrete event, continuous, combined discrete/continuous, and vari-
able structure modeling and simulation. For building reusable simulation
components, the following principles have been proposed.

Separation of concerns: Components should be identified with a clear
separation of concern in mind. Typically components for realizing

• physical objects themselves (effort states, see below)
• the coupling structure (flows, see below)
• control schemes
• containers of physical objects modeling the environmental conditions

(see below)
• output, visualization, animation, and output analysis

should be distinguished.

Modular interfaces: Interface definitions should clearly characterize
how a component can be used and how it can communicate with other
parts of the system. The component itself should make as less assumptions
about its environment it is embedded as possible (use model containers, see
below). Separation between effort and flow components: Similar to the dis-
tinction made in bond-graph modeling between 1- and 0-junctions, there
should be a clear distinction between components storing effort states and
components realizing flows. While effort components should be seen to
provide effort states and are influenced by flows, flow components realize
the flows between components which are dependent of the effort states of
the connected components.

Hierarchical composition: Components should be organized hierar-
chically. More complex components should are built by using primitive
modular components and defining how those work together by realizing
the respective coupling structures.

Component containers: A model container should be provided where
the model components ”live in”. Such a model container should represent
the environmental conditions (physical constraints) which apply. For any
component which is added to live within the container, the conditions are
enforced.

Finally, the application of the guidelines have been shown in the design
of a component framework for moving objects in space, which represents
a subproblem for multi-agent system simulation.

References

1. Prähofer, H., A. Stritzinger, and J. Sametinger, Discrete Event Simulation
using the JavaBeans Component Model. WebSim’99, San Franzisco, CA, Jan,

1999.

2. Prähofer, H., A. Stritzinger, and J. Sametinger, Concepts and Architecture
of Simulation Frame - Based on the JavaBeans Component Model. Journal

of Future Generation Computing Systems, Special Issue on WebbBsed simu-
lation, 1999, (accepted)

Testing Planning Agents in JAMES

Bernd Schattenberg

Universität Ulm, Abt. für Künstliche Intelligenz

D-89081 Ulm (D)

JAMES integrates deliberative agents within discrete event simulation.
It is aimed at providing an environment for experimentally testing agent
architectures, single modules, and interaction strategies [1]. Its main ob-
jective is to facilitate testing in the small and testing in the large, equally.
Therefore, JAMES provides a conceptual framework that enables the com-
plexity of the system to be managed by decomposition and abstraction.
The term “system” refers to (multiple) agents, their dynamic environment
and the multiple interactions existing between them.

JAMES is not a specification tool for agents presenting yet another
agent architecture. Instead, timed state automaton are the “minimal”
frame to embed agent architectures in JAMES. Since agents are embedded
in open environments with varying composition and interaction structure,
JAMES supports the change of structure from an agent’s perspective. It
provides a general, flexible, modular and theoretically well founded simu-
lation approach with a clear separation between a declarative model design
and its concurrent, distributed execution.

Our experiments with BDI agents in a TILEWORLD style environ-
ment, employing different planning systems, e.g. GRAPHPLAN and a
model checking planer, have demonstrated the suitability of the timed
state automata metaphor, the ease of integrating different deliberative
components, and the value of variable structure models to capture the
dynamics of (multi-)agent systems.

The gained experiences emphasize that the worth of our approach as
a tool to develop multi-agent test beds will ultimately depend on the
libraries which provide model prototypes and experimental frames, and
on the ease in interacting with other simulation systems.

References

1. Uhrmacher A.M., Schattenberg B., Agents in Discrete Event Simulation. In:

Proc. of the ESS’98, October 26-28, Nottingham, SCS Publications, Ghent,
129-136, 1998.

Modelling of Human Behaviour - The

PECS Reference Model

Bernd Schmidt

Universität Passau, FB Informatik

D-94030 Passau (D)

The model presented is the multi-purpose PECS reference model for the
simulation of human behaviour in a social environment. Particular empha-
sis is placed on emergent behaviour which is typical of the formation of
groups and societies in social systems. Human behaviour is highly complex
in its structure. It is influenced by physical, emotional, cognitive and social
factors. The human being is consequently perceived as a psychosomatic
unit with cognitive capacities who is embedded in a social environment.
PECS is a reference model which enables us to specify and to model these
= factors and their interactions. PECS stands for

Physical conditions
Emotional state
Cognitive Capabilities
Social Status

The PECS reference model is designed to replace the so-called BDI
architecture. It is inadequate to restrict complex models designed to model
real social systems to the factors belief, desire and intention.

Fundamentally we may distinguish between the following two methods
for the control of behaviour:

Reactive behaviour This category comprises behaviour that follows
fixed rules. This means that no explicit thought processes are required for
the control of such behaviour. Reactive behaviour can be subdivided in
terms of the preconditons for its appearance which determine the archi-
tecture in the model. Initially we may distinguish between:

1. Instinctive behaviour
2. Learned behaviour

A more complex form of reactive behaviour occurs when an inner psy-
chic driving force in the form of an urge or an emotion controls behaviour.

The function of this form of behaviour is the satisfaction of needs com-
prising the physical, social and also the cognitive sphere. Here we can
distinguish:

3. Urge-controlled behaviour
4. Emotionally controlled behaviour

Deliberative behaviour In this case behaviour does not follow fixed
rules. Instead a goal is set which has to be achieved. By means of reflec-
tion, working with models and trying and testing, a sequence of actions
is established which leads to the goal. Deliberative behaviour takes two
forms:

1. Constructive behaviour
2. Reflective behaviour

These modes of behaviour have developed gradually in the course of
evolution. Each step signifies an additional extension of possibilities and
hence leads to better adaptation and to an increase in the chances of
survival.

The human being as the most highly developed organism to date dis-
plays all forms of behaviour control in complex interaction. In all forms
of behaviour control the physical situation, the emotional state, cognitive
abilities and social position play a role. If human behaviour is to be mod-
elled and hence made comprehensible and predictable, the following state
variables must be taken into account:

• Physical state variable
• Emotional state variable
• Cognitive state variable
• Social state variable

Not every model investigation requires consideration of all 4 classes of
the above mentioned state variables. Any number of combinations is pos-
sible depending on the nature of the problem and the model. The decisive
factor is that it must be possible to construct complex models which con-
tain all four classes and do not disregard their interactions. PECS agents
provide a reference model which meets these requirements. The basic ap-
proach adopted for the modelling of human behaviour is first explained
using two simple models. The Adam model shows the interplay of physical,
emotional and cognitive components in an individual. The Group model
extends this approach and documents the interplay of individuals in the
process of group formation, group activities and group disbandment. To

avoid being restricted to hypothetical play models and to demonstrate
the real possibility of modelling human behaviour with PECS agents, real
groups should be studied. For this purpose, children are observed during
role plays. A powerful laboratory enables us to analyse behaviour. It is
planned to compare the behaviour of the real group with the behaviour
of the modelled agent group. The research program is inter-disciplinary
in its approach and touches the fields of human medicine, psychology and
artificial intelligence. However its true location is the field of artificial life.

Using High Level Architecture (HLA) in

Civil Domains - Looking backwards and

into the Future

Thomas Schulze

Universität Magdeburg, Institut für Technische und Betriebliche
Informationssysteme

Universitätsplatz 2, D-39016 Magdeburg (D)

Introduction Simulation is an old and well known methodology to inves-
tigate existing or planed systems. Many existing simulation tools support
the model developer and the user in the whole simulation process. Sim-
ulation would be used in wider areas if the financial and human effort
for providing simulation projects could be reduced. One of the main chal-
lenges for the simulation community is to reduce human time for building
simulation models and experimentation with models. Possible ways are the
computer based (supported) model generation or to split the model into
submodels or components, retrieve and reuse legacy components, build
the remaining components and combine all components to a new com-
position. The reuse of components requires semantic description of the
functionality, well defined interface for interoperability and services for
time synchronisation. The High level Architecture (HLA) is one existing
standard that can support this approach.

High Level Architecture (HLA) The High Level Architecture is a
forthcoming IEEE simulation interoperability standard currently being
developed by the US Department of Defense (DMSO 1998). This archi-
tecture supports Interoperability and Reusability of different kinds of pro-
grams The architecture is defined by :

• Rules which govern the behavior of the overall distributed simulation
(Federation) and their members (Federates).

• An interface specification, which prescribes the interface between each
federate and the Runtime Infrastructure (RTI) which provides com-
munication and coordination services to the federates.

• An Object Model Template (OMT) that defines the way how fed-
erations and federates have to be documented (using the Federation
Object Model, FOM and the Simulation Object Model, SOM, resp.).

Past and Ongoing Projects at the University of Magdeburg One
focus in the research area at the department of computer sciences at the
University of Magdeburg is the HLA-based distributed simulation. Differ-
ent projects have been carried out.

Distributed Driving Federation In order to evaluate the interoper-
ability and federation development aspect further, a distributed driv-
ing simulation project was designed as a joint effort of the Institute for
Simulation and Graphics (ISG) at the University of Magdeburg and
the Competence Center Informatik GmbH (CCI). The federation con-
sists of federates that were brought into the project by both partners
and independently extended for HLA compatibility. The simulation
federates are based on existing simulation applications (legacy appli-
cations) from the partners. Both underlying simulation models had to
be extended for communication with the RTI, interoperability between
the models, and synchronization of local time advancement.

The Barrel Filling Federation This federation was developed in a co-
operation between the Universities in Magdeburg and Passau and is
the first federation featuring a federate modeled with the simulation
system Simplex 3. Simplex 3 is a simulation system developed at the
University of Passau which can be used for discrete and continuous
systems. The main target in this federation was to combine the advan-
tages of both simulation systems used in this federation. SLX offers
very good capabilities for modeling logistical processes because of its
process oriented world view. Simplex 3 has the ability to develop con-
tinuous models in a comfortable fashion and offers several procedures
for the numerical integration. It was most desirable to combine these
advantages of both systems to form a new (distributed) model consist-
ing of two ”sub-models”, or federates, in the HLA sense. The federate
developed with Simplex 3 simulates a chemical barrel filling station.
The filling of barrels is modeled as a continuous process described by
differential equations. The second federate is a SLX model which sim-
ulates the logistical processes in a transport agency. Orders for barrels
are generated from different locations throughout Germany and passed
to the barrel filling station. The SLX federate also performs an online
visualization of the federation with Proof Animation(for Windows).

Online Data Processing in Simulation Models This project was im-
plemented to demonstrate the integration of on-line data into HLA fed-
erations using the on-line federate approach. The federation is a public
traffic management scenario in the city of Magdeburg, Germany, and
was developed with the support of the Magdeburg traffic company
(MVB). A simulation model which performs a schedule based simula-

tion of the public transportation system in Magdeburg (i.e. streetcars,
busses) has been developed using the simulation system SLX. The ani-
mation was developed using the Proof Animation System. The on-line
federate starts a receiver process implemented as a separate thread
to connect to the command and control computer of the Magdeburg
traffic company. From there it receives position updates which are ob-
tained from the ”real-life” streetcars using infrared senders which each
streetcar carries. The receiver process buffers the position updates in
an internal cache which can be read by the actual federate thread
asynchronously. The federate thread is time-regulating in the HLA-
sense. Since position updates are sometimes received with large time
intervals, the federate thread also runs real-time synchronized via the
system clock and announces its time advancement in fixed intervals. In
our case the ”time constrained” condition can be neglected, since the
on-line federate is the only driving force in the federation and, also,
does not depend from any other federate.

Research to HLA-Methodology The future work concentrates on the
two areas of cloning of federates and integrating a geographical informa-
tion system into HLA-federations.

Cloning: We are currently researching mechanisms to test some of the
cloning concepts using the traffic management federation. In order to
do so, a way to save and restore the state of the simulation has to be
implemented first. In order to have a solution which is generally valid,
the simulation tool SLX needed to provide such kind of an option.
Alternately, we will develop a model specific solution to save the state
of this special simulation model. The general potential of cloning in
this prototype lies in the fact that the simulation model shows the
current state of the real system (because of the existence of an on-
line federate) which then can be cloned. The clone can then be used to
evaluate different alternatives for decisions, e.g. sending some streetcars
and busses on a detour to by-pass a traffic jam, etc.

Development of a GIS federate: Another direction of future work will
be the integration of a geographical information system (GIS) as a fed-
erate into HLA federations. The GIS should be used for dynamically
retrieving the street and route network, which the simulation compo-
nents are based on, at runtime of a federation execution. This provides
for a great flexibility, since no networks had to be hard-wired into the
simulation model.

Using Agents in a Multi-Scale Simulation

Boleslaw Szymanski

Rensselaer Polytechnic Institute, Dept. of Computer Science
Lally 204, 110 8th Street, NY 12180 Troy (USA)

This talk presents use of agents in on-line network simulation for data
collection and simulation decomposition as well as in multi-modal epi-
demiological simulations.

As networks grow larger and more complicated, their management also
becomes more difficult, especially when there is no central authority to co-
ordinate management. Several research efforts are underway in the area of
pro-active network problem avoidance which often relies on a large amount
of current and historical network data to build models of network traffic.
We have developed a distributed object, agent based framework for fa-
cilitating management of large networks as a foundation for supporting
pro-active network problem avoidance. The framework serves as a mid-
dleware between a collection of independent network management agents
and network nodes.

The complexity, heterogeneity and speed of the Next Generation In-
ternet (NGI) require new, scalable approaches to network management
and control. Towards this end, we are developing a system of collabora-
tive, on-line simulators that can support a suite of distributed network
management and control functions. On-line collaborative simulators can
predict the network performance under different sets of traffic parameters
therefore enabling an automatic network management to select an opti-
mal parameters in response to the changing medium range temporal traf-
fic patterns. To facilitate on-line simulation, we decompose the simulated
network into domains with inter-domain traffic modeled and simulated by
agents.

Epidemiological simulations often involve interactions of several differ-
ent species at various spatial and temporal scales. For large organisms,
individual based modeling using discrete event simulation is appropriate.
The small organisms require continuous models described by partial dif-
ferential equations. We discuss how mobile agents can be used to link such
different models into one cohesive simulation on the example of Lyme dis-
ease model in which deer and mice are individually modeled whereas ticks
are represented as continuous space coverage.

JAMES - A Java-Based Agent Modeling

Environment for Simulation

Adelinde M. Uhrmacher

Universität Ulm, Abt. für Künstliche Intelligenz

D-89081 Ulm (D)

JAMES, a Java-Based Agent Modeling Environment for Simulation, re-
alizes variable structure models including mobility from the perspective
of single autonomous agents. JAMES is based on DEVS [3] which be-
longs to the formal and general approaches to discrete event simulation.
The model design is coined by a modular compositional construction of
models distinguishing between atomic and coupled models.

In JAMES, the former are able to create new models, to add exist-
ing ones within the boundary of the embedding coupled model. They can
delete, and remove, themselves from their interaction context and deter-
mine their own interaction with their environment [2]. Models can initi-
ate their movement from one interaction context, i.e. coupled model, to
another. An agent can initiate its move however for its completion, i.e.
for being embedded within the new context, it needs the cooperation of
an on-site model. To initiate structural changes outside their boundary,
agents have to turn to communication and negotiation in JAMES. Thus, a
movement from one coupled model to another implies that another atomic
model complies with the request to add the moving model into the new
interaction context. To facilitate modeling, all atomic models are equipped
with default methods that allow them to react to requests, e.g. to add a
model. However, these default reactions can be suppressed to decide de-
liberately what requests shall be executed. The freedom to decide whether
to follow a certain request, and its knowledge, i.e. beliefs, about itself and
its environment, distinguish active agents from more ”reactive” entities.

JAMES itself is based on parallel DEVS and adopts its abstract simu-
lator model [1]. Simulation takes place as a sending of messages between
concurrently active and locally distributed entities, i.e. simulators and co-
ordinators which are associated with atomic models and coupled models
respectively. If a model moves through a model which is executed in a
distributed setting, it will actually move through the physical network. It
forms a type of process migration since it happens transparent for the user
and is motivated by reducing message passing between physical nodes. We

could equally let the model stick to its old place. However this would likely
decrease the efficiency of the simulation, since in JAMES like in DEVS a
simulator is doomed to communicate with and via its coordinator.

Thus, modeling and simulation in JAMES are coined by an agent-
based perspective in terms of concurrently interacting mobile entities with
varying composition and interaction pattern.

References

1. Chow A.C., Parallel DEVS: A Parallel Hierarchical, Modular Modeling For-

malism. SCS - Transactions on Computer Simulation. Vol. 13, No. 2, 55-67,
1996.

2. Uhrmacher A.M., Tyschler P., Tyschler D. Modeling and Simulating Mobile
Agents. Future Generation Computer Systems, Special Issue on Web-Based

Simulation, to appear.

3. Zeigler, B.P.: Multifacetted Modelling and Discrete Event Simulation Aca-
demic Press Inc., London 1984.

Model Semantics for Software Agents

Hans Vangheluwe

Biometrics and Process Control (BIOMATH), Dept. for Applied Mathematics

Coupure Links 653, B-9000 Gent (B)

System Dynamics

DAE a-causal set

DAE causal set

DAE causal sequence (sorted)

Bond Graph a-causal

Bond Graph causal

Process Interaction
Discrete Event

DEVS

state trajectory data

Petri Nets

State Charts

PDE

scheduling-hybrid-DAE

Finite State Automata

DEVS&DESS

Fig. 1. Mapping of Formalisms

For the purpose of discussing how model semantics can enable mean-
ingful communication between agents, a pragmatic definition of agent is
used. An agent is seen as a concept whereby certain attributes of human
agents are present. One hopes that the concept leads to better, faster, more
elegant, ... satisfaction of our goals and solution of our problems. When
the agent concept is restricted to software implementations, in particu-
lar with integration of software components as a goal, we use the name
software agent. It is obvious that somehow, diverse agents need to ex-
change information. It is proposed to let that information be in the form
of models.

In the current context, a model is an abstract representation of the
behaviour of a system. The model (and the experimental frame describing
under which conditions the model accurately represents system behaviour)
is considered to be the basis for formal verification, symbolic manipulation,
numerical simulation, (embedded) code generation, and documentation.
To allow a collection of agents to meaningfully collaborate, a common

frame of reference is needed. Traditionally, some form of ontology is used.
Ontologies tend to not include a (complex) notion of time. If the basic
frame of reference is a modelling formalism, information exchange can be
at a high level. As different agents may externally represent information
in different formalisms (not necessarily the same as the formalisms used
inside the agent), agent communication must be able to handle multiple
formalisms meaningfully.

A suggested solution is to investigate the representation (at meta-level)
of different formalisms, starting with the common, exisiting ones and al-
lowing for addition of new ones. Traditional formalisms include Petri Nets,
Finite State Automata, DEVS, Bond Graphs, Forrester System Dynamics,
Differential Algebraic Equations, ... As basically all formalisms are rooted
in mathematics, a number of primitive mathematical concepts such as sets,
mappings, ... can be the basis for a meta-description of formalisms. Once
this is possible, once can investigate and chart the relationships between
different formalisms. In the figure (1), the arrows denote a homomorphic
relationship ”can be mapped onto”. In a denotational sense, traversing the
graph makes semantics of models in formalisms explicit. This traversal is
also the basis for meaningfully coupling models in different semantics: once
they can be mapped onto a ”common” formalism, closure in that formal-
ism makes explicit the meaning of the coupled model. This approach is
proposed as a basis for content of (e.g., KQML) messages between agents.

Using Mobile Agents for Data Acquisition

in Simulation

Linda F. Wilson

Dartmouth College, Thayer School of Engineering

8000 Cummings Hall, NH 03755-8000 Hanover (USA)

Simulations often operate on static datasets and data sources. Many simu-
lations would produce more-accurate results if they could access dynamically-
changing data from other sources. From the perspective of one simulation,
other simulations are data resources, producing information possibly rel-
evant to the past, present, or future of the system being modeled. Mobile
agents allow dynamic linking between distributed simulations and efficient
monitoring of and access to remote data sources.

In this talk, we discuss briefly our initial work using the D’Agents
system (formerly Agent Tcl) to coordinate distributed operational simu-
lations and efficiently communicate data between simulations.

Introduction to HLA, DEVS and Agent

Endomorphic Models

Bernard P. Zeigler

University of Arizona, Dept. of Electrical & Computer Engineering

1230, E. Speedway, P.O. Box 210204, AZ 85721-0104 Tucson (USA)

HLA (High Level Architecture) is defense standard for distributed simula-
tion. Military systems are increasingly concerned with situation awareness
information control of the battlespace, HLA explicitly supports modeling
the rich sensory/perception (visual, RF, IR,accoustic,..) spatial environ-
ment in which systems operate. Differential abilities in the information
space are critical to which side wins. Our hypothesis is that agents in
general are constrained not only by energy resources but by informa-
tional ones such as the rich environments supported by HLA. Model-
ing/understanding/accounting for these informational constraints may be
a key road to progress in modeling and implementing useful agent be-
haviors. For example, biological arms races played key role in evolution
– so understanding biological agents requires modeling their information
constraints and differential capabilities.

In this presentation, we provide an introduction to HLA emphasiz-
ing the support for data management in the form of environment-to-
environment, agent-to-environment, and agent-to-agent interactions. We
then review DEVS (Discrete Event System Specification) and its imple-
mentation in HLA compliant form. DEVS/HLA provides the ability to
exploit and build upon the data management capabilities of HLA with
a powerful dynamic systems formalism. We conclude with the concept of
endomorphic models (models of system components employed by other
components) and their use in modeling/designing agent-to-agent interac-
tions and communications.

