
Dagstuhl Seminar

on

High Performance Computing and Java

Organized by

Susan Flynn-Hummel (IBM Thomas J. Watson Research Center)

Vladimir Getov (University of Westminster)

François Irigoin (École de Mines de Paris)

Christian Lengauer (Universität Passau)

Schloÿ Dagstuhl, 28. � 31.08.2000

Contents

1 Preface 1

2 Abstracts 3

Java Communications for Grande Applications

Vladimir Getov . 3

Invoke Interface Bytecode

Bowen Alpern . 3

Distributed Execution of Java Bytecode Implementing Java Consis-

tency Using a Generic, Multithreaded DSM Runtime System

Luc Bougé . 4

Cluster Computing with Java Threads

Philip J. Hatcher . 5

Java-Based Code Mobility

Omer F. Rana . 5

Manta: E�cient Communication for Java

Thilo Kielmann . 6

Java Numerics: Prospects and Technology

Ronald F. Boisvert . 7

Performance Evaluation of Java for Numerical Computing

Roldan Pozo . 8

High-Performance Java Codes for Computational Fluid Dynamics

and Sparse Matrix Computations

Christopher Riley . 8

Problem-Solving Environments for Scienti�c Computing

David Walker . 9

On Structuring Scienti�c Java Systems

Judith Bishop . 9

Java Programming for Numerical High Performance Computing:

Language, Libraries, and Compiler Issues

Jose E. Moreira . 11

Software Components

Steven Newhouse . 12

Using Java within the Grid

Gregor von Laszewski . 12

Actors and High-Performance Java

Gul Agha . 13

i

Synchronous Java Event Spaces

Alexander Knapp . 14

Reference Analysis in Java

Paul A. Feautrier . 14

Shape Analysis

Reinhard Wilhelm . 15

Making Java Unexceptionally Fast

Christian Probst . 15

Object Inlining

Peeter Laud . 16

Compilation Techniques for Explicitly Parallel Programs

Jaejin Lee . 17

Java Compilation for Embedded Systems: Current and Next Gen-

eration

Christian Fabré . 18

The Spar/Java Programming Language

Henk J. Sips . 19

Java-Based Parallel Computing on the Internet

Peter Cappello . 20

OpenMP and Java

Barbara M. Chapman . 20

Tool Requirements for High-Performance Java

Cherri M. Pancake . 21

Portability of Parallel and Distributed Applications

Ami Marowka . 22

3 List of Participants 24

ii

1 Preface

The object-oriented programming language Java is being viewed as the mod-

ern alternative for C++ and has rapidly captured people's attention, largely

because of its features for interactive and Internet programming. One ad-

vantage of Java over C++ is that it includes mechanisms for parallelism and

coordination, which makes it a natural language for distributed computing.

Java is still commonly perceived as execution-ine�cient. It is not being

realized widely enough that this ine�ciency is a property of the language

implementation, not of the language per se. Initial implementations inter-

preted relatively unoptimized bytecode via a relatively unsophisticated Java

Virtual Machine (JVM). Recent developments in compilation technology �for

instance, increased static analysis and just-in-time (JIT) compilation� and

extensions of the JVM with instruction-level optimizations have done away

with many of the initial sources of Java's execution ine�ciency. In certain

applications, Java is these days competitive with C or C++, but a lot safer

to execute and easier to program.

In the face of these developments, interest in Java has grown also in the �eld

of high performance computing. Obviously, high performance applications

place extreme demands on execution e�ciency.

The �rst question which is immediately being asked when Java is being pro-

posed as a vehicle for high performance computing is: why?

The most frequent answer is: to get access to the incredible amount of re-

sources that goes into program development in Java (this includes class li-

braries, compilation technology, programmer education, etc.). Without any

other answer, one would mimic high performance programming in Fortran, C

or C++ when programming in Java, and one would expect the Java compiler

to produce essentially the target code which a Fortran, C or C++ compiler

would produce. This approach is actually being pursued in some research

and is legitimate as an immediate aid to a new generation of programmers,

who make Java their preferred choice.

An answer that is much more ambitious to implement but that does Java

more justice is: to develop a new technology in high performance computing

that allows us to do things that cannot easily be done with Fortran, C or

C++. For example, one distinct advantage of Java over Fortran, C, and

C++ is its support of secure, portable and dynamic target code. This makes

it a promising vehicle for irregular applications, such as those with thread-

1

based parallelism, or for run-time compilation and optimization � if Java can

deliver the expected execution e�ciency.

So, the next question is: can Java deliver? The immediate answer seems to

be: in its present form to a limited extent. Many obstacles to high perfor-

mance are due to current implementations of the language. However, some

are part of its design and others are imposed by the unusually restrictive

semantics of Java.

How can Java be made more suitable for high performance computing?

Should high performance applications be adapted to the present limitations

of the language, or should the language be extended (moderately) to be-

come better suited? If the former, how can we tune Java implementations to

exploit the performance potential of the language to the fullest? If the lat-

ter, what form should these extensions take? Is it permitted to add/modify

language features or can/should one stick to class library extensions?

These and similar questions were explored by 35 researchers at Schloÿ Dagstuhl.

The abstracts in this report summarize the presentations. Three full papers

of participants in the October 2001 issue of the Communications of the ACM

provide an overview of the current state of the art in getting high performance

from Java.

The outcome of the seminar has been: Java has a lot more potential for

high-performance computing than is commonly believed. Yes, if implemented

naïvely, there are problems with scienti�c programming � no, they are largely

not inherent but can be overcome. Yes, exploiting the full potential of Java's

parallelism requires e�cient virtual machines and high-performance network-

ing software � which is in the process of being developed.

We are grateful to the IBM Thomas J. Watson Research Center for �nancial

support for the seminar.

Susan Flynn-Hummel, Vladimir Getov, François Irigoin, Christian Lengauer

2

2 Abstracts

Java Communications for Grande Applications

Vladimir Getov

University of Westminster, UK

Java is receiving increasing attention as the most popular platform for dis-

tributed computing. However, it is still subject to signi�cant performance

drawbacks and lack of support for parallel message-passing computing. In

this talk, we present part of the results and proposed solutions to these prob-

lems. In particular, we report about the current status of the organized

collaborations within the Java Grande Forum in the area of Message Pass-

ing for Java (MPJ). An outline of the current MPJ speci�cation is given

along with a discussion of several open issues and performance results on

di�erent platforms - Linux cluster, IBM SP-2, and Sun E4000. These �proof-

of-concept� Java and message-passing results are quite encouraging for future

developments and e�orts in this area. We also demonstrate that a much faster

drop-in RMI and an e�cient serialization can be designed and implemented

in pure Java. Our benchmark results show that our better serialization and

improved RMI save more than 50% of the runtime in comparison to the stan-

dard implementations available at the moment. Our results con�rm that fast

parallel and distributed computing in Java is indeed possible.

Invoke Interface Bytecode

Bowen Alpern

IBM Thomas J. Watson Research Center, USA

Like Java itself, Java interfaces have a reputation for ine�ciency. This talk

reports on a small case study to see if Java features can be supported with

low run time overhead. The results are mixed. An e�cient technique for

interface-method dispatch is presented. Unfortunately, since Java interfaces

3

are not loaded with the classes that purport to implement them, dynamic

type checking is required before each interface-method call. Thus, while

Java-style interfaces are not inherently ine�cient, Java's scheme for loading

them at the last possible moment may be.

Distributed Execution of Java Bytecode
Implementing Java Consistency Using a

Generic, Multithreaded DSM Runtime System

Luc Bougé

ENS Lyon, France

(joint work with Gabriel Antoniu, Philip Hatcher, Mark McBeth, Keith

McGuigan, Raymond Namyst)

This talk describes the implementation of Hyperion, an environment for exe-

cuting pure Java programs on clusters of computers. To provide high perfor-

mance, the environment compiles the original Java bytecode to native code

and supports the concurrent execution of Java threads on multiple nodes

of a cluster. The implementation uses the PM2 distributed, multithreaded

runtime system. PM2 provides lightweight threads and e�cient inter-node

communication. It also includes a generic, distributed shared memory layer

(DSM-PM2) which allows the e�cient and �exible implementation of the

Java memory consistency model. We provide preliminary performance �g-

ures for our implementation of Hyperion/PM2 on clusters of Linux machines

connected by SCI and Myrinet.

4

Cluster Computing with Java Threads

Philip J. Hatcher

University of New Hampshire at Durham, USA

Our work combines Java compilation to native code with a run-time library

that executes Java threads in a distributed-memory environment. This allows

a Java programmer to view a cluster of processors as executing a single Java

virtual machine. The separate processors are simply resources for executing

Java threads with true concurrency and the run-time system provides the

illusion of a shared memory on top of the private memories of the processors.

The environment we present is available on top of several UNIX systems and

can use a large variety of network protocols thanks to the high portability

of its run-time system. To evaluate our approach, we compare serial C,

serial Java, and multithreaded Java implementations of a branch-and-bound

solution to the minimal-cost map-coloring problem. All measurements have

been carried out on two platforms using two di�erent network protocols:

SISCI/SCI and MPI-BIP/Myrinet.

Java-Based Code Mobility

Omer F. Rana

University of Wales, UK

Two themes are investigated, the �rst explores the importance of mobile

computing with reference to �high performance computing�. Generally, the

scienti�c computing community has been viewed as a synonym for high per-

formance computing. However, we suggest that scienti�c computing should

be considered as more than improvements in performance, and should also

take into consideration ease of use, and large scale, high throughout applica-

tions. The emergence of mobile and nomadic computing requires interaction

5

between embedded and mobile devices connected over low bandwidth links,

and with the capability to support millions of devices and users. In such

systems, mobility can support (1) User Virtual Environments, whereby mo-

bile users are given a uniform view of their prefered working environment,

as they migrate from one domain to another, and (2) Mobile Virtual Termi-

nals, where devices can move and connect to di�erent points of attachment,

and continue to access and receive the same services. Mobile computing ne-

cessites the provisioning of geographically transparent services, and requires

novel ways to manage devices and resources to provide such services.

The second theme suggests that Java provides the best implementationmedium

for achieving mobile software services, and various aspects of Java for achiev-

ing mobile services are explored. The Java class loading mechanism is �rst

explored, followed by the Jini API for uploading dynamic code to implement

software services. A systems architecture based on Java services and Jini is

de�ned, and extended with the use of code distribution based on the mobile-

agent paradigm. We suggest that Java based implementation gives us a good

abstraction for implementing mobile services.

Manta: E�cient Communication for Java

Thilo Kielmann

Free University of Amsterdam, The Netherlands

Manta is a high-performance Java platform for parallel programming on

distributed-memory systems. Manta is based on a static compiler, trans-

lating Java source code directly into executable programs. Here, the focus is

on Manta's communication mechanisms that aim to achieve high e�ciency

while �tting into Java's object-oriented model.

In Java, objects communicate by invoking methods on each other. For

distributed-memory platforms, Java provides the Remote Method Invoca-

tion mechanism (RMI) accordingly. Unfortunately, Java RMI has been de-

signed for Internet-based client-server applications; slow execution is the

well-known consequence. For Manta, we re-implemented the RMI mecha-

nism from scratch. Manta RMI relies on compiler-generated serialization

routines, on an e�cient (compact) RMI protocol, and on fast user-level com-

munication. On our platform (using 200MHz Pentium Pro's and Myrinet),

6

a parameterless RMI completes in just 37 microseconds, only 3 microsec-

onds slower than the underlying, C-based RPC call. Compared to the JDK

implementation of RMI, Manta RMI is at least a factor of 10 faster. For in-

teroperability with JVM's, Manta also implements the (slow) Sun protocol,

including dynamic loading and compilation of byte codes.

For parallel applications, remote objects are shared between threads in dif-

ferent address spaces. Unfortunately, such shared objects constitute perfor-

mance bottlenecks when accessed frequently within a parallel application.

For shared objects with a high read/write ratio, replication can signi�cantly

improve performance. Manta implements Replicated Method Invocation

(RepMI) for achieving this goal. RepMI resembles RMI as much as pos-

sible: replicated objects are identi�ed by implementing special interfaces

which are recognized by the Manta compiler. Write methods are simulta-

neously shipped to all replicas, much like a RMI is shipped to the single,

remote object. For replica consistency, write operations are executed in a

globally ordered sequence. On our platform, a read method (on the local ob-

ject replica) completes in less than one microsecond, while writing 64 replicas

takes just 120 microseconds.

RepMI provides e�cient access to shared objects with a simple and object-

oriented programming interface. For some uses of shared objects, however,

its consistency model is too strict, thus degrading performance. Examples

of such uses are collective operations among all parallel threads of an ap-

plication, like reductions or all-to-all exchanges. The integration of such

collectively used objects into Manta is subject to ongoing work.

Java Numerics: Prospects and Technology

Ronald F. Boisvert

National Institute of Standards and Technology, U.S.A.

In this talk, I survey the activities of the Numerics Working Group of the Java

Grande Forum. The Working Group is an open association of researchers

from industry, academia, and government seeking to improve the Java lan-

guage and its environment for numeric-intensive computing. From a basic

set of requirements for numerical computing, the group has identi�ed sev-

eral critical areas where improvements in Java are necessary: �oating-point

7

performance, complex arithmetic, multidimensional arrays, elementary func-

tions, access to IEEE arithmetic features, and a lack of standardized class

libraries for core numerical tasks. I discuss the current progress and future

plans in each of these areas.

Performance Evaluation of Java for Numerical
Computing

Roldan Pozo

National Institute of Standards and Technology, U.S.A.

Among the many features of Java as program development platform, one of

the most commonly cited shortcomings is its performance, particularly for

computational-intensive codes. In this presentation we will take a close look

at how Java works and how it can be made to execute faster for scienti�c

simulations and modeling. We will examine optimization strategies and byte-

code transformations that generate 100% pure Java with 2-10x performance

improvement, with speeds competitive with optimized C/C++ and Fortran.

High-Performance Java Codes for
Computational Fluid Dynamics and Sparse

Matrix Computations

Christopher Riley

University of North Carolina at Chapel Hill, U.S.A.

Are Java's object-oriented features compatible with high performance com-

puting? To help answer this question, Java implementations of a Computa-

tional Fluid Dynamic (CFD) code and a sparse matrix package have been

developed as part of the HARPOON project at UNC-CH. The CFD code

is a �nite-volume, structured grid solver used to model high-speed, high-

temperature �ows. Originally written in Fortran, the current Java version

8

employs an object-oriented design that uses abstract classes to model the var-

ious chemistry options, boundary conditions, and grid-related concepts. The

Java version of the sparse matrix package is based on the C implementation

of the sparse matrix routines in MATLAB.

Test cases to benchmark performance were run on three platforms (Sun, Intel,

SGI) using di�erent versions of the JVM (Java 1.1.7, Java 1.2, Java 1.3). The

measured execution times of the Java sparse matrix routines are less than 2

times slower than the MATLAB version. The Java CFD code runs between

2 and 10 times slower than the original Fortran version depending on the

platform. The best relative performance was measured on an Intel Pentium

II. Because these Java codes are derived from realistic applications, they can

make excellent benchmarks.

Problem-Solving Environments for Scienti�c
Computing

David Walker

Oak Ridge National Laboratory, U.S.A.

(presented by Omer F. Rana)

Problem Solving Environments (PSEs) provide an automated compiling,

composition and execution environment for scienti�c application. PCEs are,

by de�nition, problem speci�c. Each PSE contains software components for

a speci�c application, maintained in a repository. Each component contains

XML interface, which contains a de�nition of the I/O) parts, execution con-

straints and links to executable codes, etc. A scientist can construct apps

by connecting components (which can wrap sequential or parallel codes) into

a data �ow graph. This is then passed to a resource management program

execution.

Although a PSE is problem speci�c the infrastructure for a PSE is not. We

describe PSE infrastructure, and discuss common theme & lessons learned.

9

On Structuring Scienti�c Java Systems

Judith Bishop

University of Pretoria, South Africa

While high performance of computers is essential, high performance of people

is often forgotten in the scienti�c milieu. Good programming practices such

as separation of concerns, re-use, maintainability and correct concurrrent

execution need attention alongside performance. Often projects that switch

from Fortran or C to Java do not take the step of ratcheting up on the new

programming paradigm Java o�ers. The same is true for many courses taught

to engineering and science students. This talk addresses the dual issues of

how Java can best supply everything that the older languages do, and then

what it can meaningfully give in added value, especially in the parallel and

scienti�c area. Experience with developing solutions in Java to some �fty

typical numerical problems has led to a coherent object-oriented approach

and a couple of essential support classes for teaching and production work.

The novel Java features that can best be employed on scienti�c program-

ming are objects, packages (libraries), abstract classes, interfaces, serializa-

tion, threads and socket connections (for messaging). A typical solution to a

numerical proble is structured as a class with two objects. The �rst instan-

tiates a Worker class which inherits from an abstract library class supplying

a solver method and which provides the concrete equations to work on. The

second object instantiates a Datahandler class into which all input-output

is relegated. A Display class and a Graph class augment the novice user's

experience of input-output in Java. If more equations are to be solved, the

library class is re-inherited with the new information.

For trainee programmers, early experience with concurrency, distribution

and parallelism is essential. An approach which concentrates on threads

that are �red up on di�erent computers and communicate via input-output

statements on socket connections is both simple and safe. At a later stage,

the programmers can move on to RMI, Corba or MPJ. Our �gures show

that both RMI and CORBA have reasonable performance for distributed

programs, both in Java and with interfaces to other languages.

Further information on the approach and all the examples can be found on

http://www.cs.up.ac.za/javagently under the �Java for Engineers and Scien-

tists� site, and papers related to the approach and to the �gures for RMI and

CORBA are on http://www.cs.up.ac.za/�jbishop under publications.

10

Java Programming for Numerical High
Performance Computing: Language, Libraries,

and Compiler Issues

Jose E. Moreira

IBM Thomas J. Watson Research Center, U.S.A.

The performance of Java programs has improved signi�cantly since the in-

troduction of the language a few years ago. However, some characteristics

of the language still make optimization a di�cult chore for Java compilers

and virtual machines. In particular, the structure of multidimensional ar-

rays, which in Java are organized as arrays of arrays, make the optimization

of run-time tests and alias disambiguation a very hard problem. Our ap-

proach to improving Java performance starts with the introduction of true

multidimensional arrays, through a fully Java-compliant class library (pack-

age). Using the properties of these multidimensional arrays, our prototype

compiler builds safe and alias-free regions of code that are guaranteed to

be free of exceptions and aliasing between arrays. Extensive loop transfor-

mations and automatic loop parallelization can be applied to these regions.

Our results show that, for many benchmarks, Java can be very competitive

in performance, delivering between 80-100% of the performance of the best

Fortran compilers. For some cases, we also observe close to linear speedup

on a modest sized (4-processor) SMP.

11

Software Components

Steven Newhouse

Imperial College of Science, Technology & Medicine, UK

(joint work with Anthony Mayer and John Darlington)

We introduce a component software architecture designed for demanding grid

computing environments. That allows the optimal performance of the com-

ponent based applications to be achieved. Performance over the assembled

component application is maintained through inter-component static and dy-

namic optimisation techniques. Having de�ned an application through both

its component task and data �ow graphs we are able to use the associated per-

formance models to support application level scheduling. By building grid

aware applications through reusable interchangeable software components

with integrated performance models, we enable the automatic and optimal

partitioning of an application across distributed computational resources.

Using Java within the Grid

Gregor von Laszewski

Argonne National Laboratory, U.S.A.

Emerging national-scale �Computational Grid� infrastructures are deploying

advanced services beyond those taken for granted in today's Internet: for

example, authentication, remote access to computers, resource management,

and directory services. The availability of these services represents both an

opportunity and a challenge for the application developer: an opportunity

because they enable access to remote resources in new ways, a challenge be-

cause these services may not be compatible with the commodity distributed-

computing technologies used for application development. The Commodity

Grid project is working to overcome this di�culty by creating what we call

12

Commodity Grid Toolkits (CoG Kits) that de�ne mappings and interfaces

between Grid and particular commodity frameworks. In this paper, we ex-

plain why CoG Kits are important, describe the design and implementation

of a Java CoG Kit, and use examples to illustrate how CoG Kits can enable

new approaches to application development based on the integrated use of

commodity and Grid technologies.

More information is available at http://www.globus.org/cog.

Actors and High-Performance Java

Gul Agha

The University of Illinois at Urbana-Champaign, U.S.A.

The goal of a high-level programming language is to provide an easy to

understand and correct representation which can be nevertheless executed

e�ciently. In other words, the level at which programs are written should

be as close as is feasible to a mental model for the computation. Actors pro-

vide a natural model for concurrent activity extending objects to encapsulate

threads and support mobility. Compilers and run-time systems developed for

actors show that it is possible to obtain the same performance using high-

level actor based languages as it is with the fastest lower-level langaguages

such as Split-C. By contrast, Java is a di�cult language to program parallel

and distributed systems. Threads can interfere with each other, and excessive

synchronization can cause deadlocks. Moreover, migration is excessively ex-

pensive as is communication (serialization and synchronous communication).

We have also studied supporting actors in Java and experimented with an

actor-based dialect of Java. Our conclusion is that actors can simplify pro-

gramming while improving execution e�ciency.

13

Synchronous Java Event Spaces

Alexander Knapp

Ludwig-Maximilians-Universität München, Germany

The Java Language Speci�cation de�nes an asynchronous interaction be-

tween the main memory and the threads' working memories by pairings of

read and write actions on behalf of the main memory and load and store

actions on behalf of the threads. We demonstrate that this asynchronous

behaviour indeed is observable. However, for the special class of properly

synchronised Java programs, limiting access to shared variables to synchro-

nised regions, we prove that the Java memory model may be simpli�ed by

identifying read�load and store�write pairs. The proof is based on a straight-

forward formalisation of the Java memory model as partial orders, called

event spaces.

Reference Analysis in Java

Paul A. Feautrier

Université de Versailles, France

Java ine�ciency is the price we pay for Java safety and portability. One way

of recovering performance without sacri�cing safety is hoisting as much as

possible the run-time checks to compile time. This can be done only if we

have a way of precisely analysing the relation between references and objects

(the �points-to� relation). I propose such an analysis method, in which �ref-

erence equations� are solved by a process akin to Gaussian elimination. At

present, the solution process is incomplete and applies only to static control

programs, but extensions are contemplated. Applications include remov-

ing array bounds checks, �attening arrays, helping the garbage detector and

computing dependencies.

14

Shape Analysis

Reinhard Wilhelm

University of Saarland, Germany

(joint work with Mooly Sagiv and Thomas Reps)

A shape-analysis algorithm statically analyzes a program to determine infor-

mation about the heap-allocated data structures that the program manipu-

lates. The results can be used to understand and verify programs. They also

contain information valuable for debugging, compile-time garbage collection,

instruction scheduling, and parallelization.

Our approach is parametric, i.e., it can be tailored to a particular application

by de�ning the means of observation through which to look at the contents

of the heap.

Making Java Unexceptionally Fast

Christian Probst

University of Saarland, Germany

Static analysis for imperative languages is a topic quite well understood.

Having tools like the program analyzer generator PAG at hand allows the

compiler write to concentrate on specifying his analysis instead of on imple-

menting all kind of administrative stu�. The generated analyzers then can

easily be integrated into existing compilers and optimizers.

Those analysers work on the static interprocedural control �ow graph that

must be constructed before starting the analysis. While this construction is

easily done for imperative languages things get more complicated for object

oriented ones. Here one may not know at compile time for a variable to

which class' objects it may point to at run time. As this classes are used to

determine possible targets for method calls this also hinders construction of

15

a precise control �ow graph, introducing super�uous call edges and thereby

sources for data dependencies.

We present a mixture of �ow-insensitive and �ow-sensitive approaches, where

the �rst ones are used to construct a conservative approximation of the con-

trol �ow graph. The second ones work on this graph in order to re�ne it by

narrowing the set of classes that a variable may point to.

Those analysers work on the static interprocedural control �ow graph that

must be constructed before starting the analysis. While this construction is

easily done for imperative languages things get more complicated for object

oriented ones. Here one may not know at compile time for a variable to

which class' objects it may point to at run time. As this classes are used to

determine possible targets for method calls this also hinders construction of

a precise control �ow graph, introducing super�uous call edges and thereby

sources for data dependencies.

We present a mixture of �ow-insensitive and �ow-sensitive approaches, where

the �rst ones are used to construct a conservative approximation of the con-

trol �ow graph. The second ones work on this graph in order to re�ne it by

narrowing the set of classes that a variable may point to.

In addition, we have developed an analysis allowing to identify super�uous

checks for null pointers and classes not yet initialized. These work by keep-

ing track of objects already checked (classes already initialized) by partially

evaluating if-statements. First benchmarks counting the static number of

removed checks look rather promising.

Object Inlining

Peeter Laud

University of Saarland, Germany

The semantics of objects in Java requires in general, that each object is

represented as a pointer to the area in the heap, which contains the actual

data of the object. This will result in fragmentation of the heap, thereby

causing extra e�ort in dereferencing the pointers, making heap management

(garbage collection) more time-consuming and also having negative e�ect on

the locality of the data, which may result in decreased cache performance.

16

In contrast to that, in C++ (and also in other languages) one also has the

possibility to declare the �elds of classes to be �aggregated�, i.e., their content

is kept together with the object, instead of being made to follow a pointer to

get it. Object inlining means changing the layout of objects by aggregating

subobjects into their containers. Of course, one has to be careful not to

change the semantics of the program that way.

In our talk, we describe an analysis of Java, which conservatively estimates,

which �elds of which objects may be aggregated. Our analysis is based on

estimating the sharing patterns, but we try to avoid doing a full-blown alias

analysis, and instead try to detect only patterns having relevance to deciding,

whether inlining is allowed.

Compilation Techniques for Explicitly Parallel
Programs

Jaejin Lee

Michigan State University, U.S.A.

A problem faced by compilers of explicitly parallel languages, such as Java,

OpenMP, and Pthreads, the solution of which is the focus of this talk, is

that data races and synchronization make it impossible to apply classical

optimization and analysis techniques directly to shared memory parallel pro-

grams because the classical methods do not account for updates to variables

in threads other than the one being analyzed.

Many current multiprocessor architectures follow relaxed memory consis-

tency models. However, this makes programming and porting more di�cult.

Moreover, sequential consistency, which is not a relaxed consistency model,

is what most programmers assume when they program shared memory mul-

tiprocessors, even if they do not know exactly what sequential consistency

is.

In this talk, we present analysis and optimization techniques for an optimiz-

ing compiler for shared memory explicitly parallel programs. The compiler

presents programmers with a sequentially consistent view of the underlying

machine irrespective of whether it follows a sequentially consistent model or a

relaxed model. Furthermore, the compiler allows optimization techniques to

17

be applied correctly to parallel programs that conventional compilers cannot

handle.

To hide the underlying relaxed memory consistency model (including the

Java memory model) and to guarantee sequential consistency, our algorithm

inserts fence instructions. We reduce the number of fence instructions by

exploiting the ordering constraints of the underlying memory consistency

model and the property of the fence instruction. To do so, we introduce a

new concept called dominance with respect to a node in a control �ow graph.

We also show that reducing the number of fences by minimizing the number

of nodes is NP-hard.

We introduce two intermediate representations: the concurrent control �ow

graph, and the concurrent static single assignment form. Based on these

representations, we develop an analysis technique, called concurrent global

value numbering, by extending classical value partitioning and global value

numbering. We also extend commonly used classical compiler optimization

techniques to parallel programs using those intermediate representations. By

doing this, we guarantee the correctness (sequential consistency) of the op-

timized program and maintain single processor performance in a multipro-

cessor environment. We also describe a parallel loop overhead reduction

technique.

Java Compilation for Embedded Systems:
Current and Next Generation

Christian Fabré

Silicomp Research Institute, U.S.A.

The Silicomp Research Institute is developing Java solutions for the embed-

ded world. One of our belief is that, due to the scarce CPU and RAM

resources available in embedded systems, there is no room for a compiler

within the VM. Therefore, compilation must be done outside the JVM.

We have developed two such bytecodes to native compilers dedicated to the

embedded world, and which can be used with o�-the-shelf VMs.

Turbo is precompiling a whole application, with the intent of burning the

resulting native code into the embedded device's ROM. Besides traditional

18

intra-method optimisations, Turbo can make a number of global optimisa-

tions due to its knowledge of the structure of the whole application.

Fajita can compile method per method and aims at low lattency compila-

tion amd easy retargetability. It can be used in two scenarios: on-demand-

compilation, where a small (approx. 10K) pro�ler sitting within the VM can

ask a remote server for the compilation of a �hot� method; and compile-on-

the-way, where the compiler is used within a class proxy and the native code

is propagated within an extension of the class �le format. Both scenarios

preserve the full Java dynamicity.

In this presentation, we present the details of Turbo and Fajita, as well as

our view of where the embedded world is going in terms of solutions and

technologies for Java performance.

The Spar/Java Programming Language

Henk J. Sips

Delft University of Technology, The Netherlands

(joint work with & C. van Reeuwijk)

In recent years, embedded systems with multiple processors have become

increasingly important. These systems often consist of a general-purpose

processor and one, or even several, digital signal processors (DSPs). For

portability, �exibility, and robustness it is often useful to regard such a clus-

ter as a single, parallel system. Since such a system contains several types

of processors, it is said to be heterogeneous. In its simplest form, paral-

lelization of applications can be done using an explicit parallel programming

interface, such as provided by libraries like MPI, or Java threads. Unfor-

tunately, programming using this model requires a detailed understanding

of the complex interplay between program and machine, which is extremely

laborious and error-prone. Moreover, this approach is often not portable.

Instead, in the Spar/Java language, we follow a more implicit approach,

where parallelism is generated by the compiler, supported by user annota-

tions to the program. We have designed the Spar/Java [something funny

here...] supports Java, augmented with the each and foreach constructs for

19

semi-implicit parallelization. The each and foreach expose opportunities for

parallelization to the compiler, but the details of the parallelization are left

to the compiler. This allows for more robust and portable parallelization.

The each and foreach statements, together with with language extensions for

multi- dimensional arrays and support for more specialized arrays, form the

`Spar' language extensions. Spar/Java includes an annotation language that

allows the description of explicit or partially explicit placement of data and

tasks on processors in a homogeneous or heterogeneous parallel system. In

Spar/Java, all placements are static at run time; no object migration be-

tween processors is done. The annotations do not alter the semantics of the

program, they just serve as hints for the scheduler in the compiler. The

annotations allow the placement of both tasks and data to be speci�ed in a

uniform manner.

Java-Based Parallel Computing on the Internet

Peter Cappello

University of California at Santa Barbara, U.S.A.

Javelin is a Java-based system for parallel computation on the Internet. We

present Javelin 2.0, focusing on enhancements that facilitate aggregating

larger sets of host processors, a branch-and-bound computational model and

its supporting architecture, a scalable task scheduler using distributed work

stealing, an eager scheduler implementing fault tolerance, and the results

of performance experiments. Javelin 2.0 frees application developers from

concerns about interprocess or communication and fault tolerance among In-

ternetworked hosts. When all or part of their application can be cast as a

piecework or a branch-and-bound computation, Javelin 2.0 allows developers

to focus on the underlying application, separating logic for communication

and fault tolerance from application logic.

Future work, based on Jini and Javaspaces technology, is discussed brie�y.

20

OpenMP and Java

Barbara M. Chapman

University of Houston, U.S.A.

Java provides threads for share memory parallel programming. However,

they are de�ned in a manner that facilitates the coordination of a number

of di�erent tasks, and do not o�er the functionality used to develop parallel

scienti�c applications. Although it is possible to write data parallel code

for shared memory systems using Java threads, the resulting code will be

very low-level and may di�er signi�cantly from the original sequential code.

OpenMP is a recent de facto standard for shared memory parallel program-

ming that has bindings for Fortran, C, and C++. It provides a traditional

APT for scienti�c and technical compiling; but relying largely on directions,

the base language does not need to be extended. We introduce the Op-

neMP features, and discuss OpenMP language issues, its application and

limitations. OpenMP was quickly adopted by the user community, and it is

proposed that a Java binding be made available, so that Java users may also

take advantage of this higher-level programming interface.

Tool Requirements for High-Performance Java

Cherri M. Pancake

Oregon State University, U.S.A.

A variety of tools are available to assist in the development of high- perfor-

mance Java (HPJ) applications. They are primarily directed at three aspects

of development: creating and launching parallel or distributed programs, de-

bugging HPJ, and tuning HPJ performance. This presentation gives a brief

survey of HPJ tools, showing how they have evolved from two sources, serial

Java IDEs and parallel tools for other languages. Comparisons with the re-

quirements of typical HPJ users demonstrate that today's tools are lacking

many basic capabilities that are critical for developing e�ective programs. It

is unlikely that signi�cant numbers of new users will be attracted to HPJ

until those gaps can be addressed.

21

Portability of Parallel and Distributed
Applications

Ami Marowka

The Hebrew University of Jerusalem, Israel

Portability has become an important consideration in parallel application

design.

The word portable, or portability, has been widely and often used in the

parallel processing community. However, there is no adequate, commonly

accepted de�nition of portability evaluation available. Portability evaluation

of parallel application is di�cult to quantify, evaluate, and compare. In

this talk, I will introduce a framework called Scalable Portability Evaluation

Methodology (SPEM) for analyzing the parallel portability.

The novelty of SPEM methodology is in its ability to compare, evaluate and

analyze the parallel portability over di�erent applications and architecture.

Portable speedup and e�ciency metrics are de�ned and function as the basis

for the de�nition of a new parallel portability metric called Portability Degree

(PD). Based on the new metric the Scalable Portability (SP) approach to

analyze portability of a parallel system is formally de�ned.

The empirical nature of the problem calls for experimental comparisons

across parallel machines. Then an abstraction of a parallel system from

the viewpoint of a single process called Parallel Processes System (PPS) is

de�ned. The PPS abstraction serves as a base model for the development of

a proof-of-concept prototype of a scalable and portable parallel system called

Scalable-PVM (S-PVM).

The e�ectiveness of the Portability Degree metric was tested using two sets

of experimental studies. The �rst set, consisting of two scienti�c applications

that were developed by S-PVM prototype, was tested on three di�erent ho-

mogeneous parallel machines architecture. The second set, consisting of �ve

kernels from the NAS Parallel Benchmark (NPB) suit, was studied in a het-

erogeneous environment of supercomputers.

Scalable portability analysis using SPEM methodology was applied to the

tested applications. The experimental results show that the newly de�ned

22

Portability Degree metric provides a unique quantitative measurement to

describe the scalable portability of a parallel application-environment com-

bination as sizes are varied which cannot be provided by any other scalability

metric.

23

3 List of Participants

24

