
Security through Analysis and Verification

Organised by
Pierpaolo Degano (Pisa), Roberto Gorrieri (Bologna),
Chris Hankin (London), Flemming Nielson (Aarhus),

Hanne Riis Nielson (Aarhus).

1 Introduction

Security has increasing relevance and importance for real life applications such
as Internet transactions, electronic commerce, electronic voting and smart cards
thereby stressing the need for appropriate checking measures. Techniques from
program verification and program logics have already proven their worth for
the machine-assisted validation of secure communication protocols. This sem-
inar emanates from recent applications of program analysis which allow fully
automatic validation of systems against certain types of attack. It took place
from 10. December 2000 to 15. December 2000 and comprised a number of
talks, as indicated by the following abstracts, informal discussions as well as a
discussion in plenum forming the basis for this report.

The nature of security. Security has many facets: confidentiality, integrity,
authentication, watermarking, prevention of denial of service, auditing etc. It
emerged quite clearly during the seminar that there is no clear consensus about
the precise definition of many of these concepts. There was agreement that to the
extent possible one should try to reconcile and clarify the differences, possibly
in the form of defining a formal language or logic for security requirements.
During the discussions it became clear that confidentiality, as in certified mail,
was a hard concept to capture precisely, despite the fact that consideration of
information flow (both forward and backward) account for many ingredients of
integrity and secrecy.

Formal approaches to security. The main techniques represented at the
seminar involve flow-based program analysis, model checking, type systems,
simulation techniques, process algebras, cryptographic proofs and dynamic en-
forcement of security policies. Several presentations aimed at spanning a range
of these and a particularly promising direction was the integration of crypto-
graphic reasoning into the more classical approaches to formal methods.

One approach to the security of a system centered around the idea that the
harder to make an intrusion the more secure the system. Several presentations
expanded on the ability to intercept, manipulate and forge messages, including
polynomial-time bounded attackers, Dolev-Yao saboteurs and other forms of
characteristic intruders.

As pointed out by the security community there is a need to address a variety
of more realistic applications and protocols. Indeed a number of techniques have

1



only been applied to the simplest protocols. By contrast, applications towards
multicast protocols and group-key management seem to challenge state-of-the-
art in the most advanced approaches.

There also is a need to identify the most appropriate specification formalisms
and programming calculi for capturing both qualitative and quantitative, pos-
sibilistic and probabilistic aspects of secure systems and protocols.

There was no agreement about whether the approach taken should aim at
studying protocols and procedures at the abstract level or should eventually
aim at studying the fielded software system. However, there was consensus that
special care is required when applying well-defined mathematical theories and
formal validations to actual systems.

Conclusion. Thanks to the pleasant surroundings the different communities
taking part in the meeting were very successful in establishing an amiable social
atmosphere thereby facilitating the necessary cross-fertilization for the field to
progress. Given the predictable growth in electronic commerce and mobile com-
puting the problems discussed are increasingly important and can only benefit
from the interaction of a variety of approaches. It is our prediction that the field
will only be slightly perturbed by future developments in quantum cryptography
and the emerging computational models.

2 Abstracts

Secrecy Types for Asymmetric Communication

Bruno Blanchet, INRIA Rocquencourt

Joint work with Mart́ın Abadi.
We develop a typed process calculus for security protocols in which types con-
vey secrecy properties. We prove a secrecy theorem that shows that well-typed
processes do not reveal their secrets. We focus on asymmetric communication
primitives, especially on public-key encryption. These present special difficul-
ties, partly because they rely on related capabilities (e.g., “public” and “private”
keys) with different levels of secrecy and scopes. Their treatment constitutes
the main novelty of this work.

Our type system can be applied to some small but subtle security protocols.
For example, in the Needham-Schroeder public-key protocol (a standard test
case), one might expect a certain nonce to be secret; however, the protocol fails
to typecheck under the assumption that this nonce is secret. This failure is not
a shortcoming of the type system: it manifests Lowe’s attack on the protocol.
On the other hand, a corrected version of the protocol does typecheck under the
assumption. Our secrecy theorem yields the expected secrecy property in this
case.

2



Randomness Recycling in Constant-Round Private Com-
putation

Carlo Blundo, Università di Salerno

Joint work with Clemente Galdi and Pino Persiano.

Consider a set of n players P = {P1, . . . , Pn}, each possessing a private input
xi, who wish to compute a certain function f of these variables. A private

protocol allows the players to distributively compute the value of the function
f(x1, . . . , xn), in such a way that at the end of the protocol each player knows
the value of the function but no player has information about the other players’
input more than what can be inferred from its own input and from the value
of the function. Obviously some players can collude together in order to infer
information about other players’ inputs. A protocol is said to be t-private if
any coalition consisting of at most t-players cannot learn additional information
from the protocol execution.

In this work we study the randomness complexity needed to distributively
perform k XOR computation in a t-private way using constant-round protocols.

We show that cover-free families allow the recycling of random bits for
constant-round private protocols. More precisely, we show that after an 1-round
initialization phase during which random bits are distributed among the players,
it is possible to perform each of k XOR computations using 2-rounds of com-
munication. In each phase the random bits are used according to a cover-free
family and this allows to use each random bit for more than one computation.

For t = 2, we design a protocol that uses O(n log k) random bits instead of
O(nk) bits if no recycling is performed. More generally, if t > 1 then O(kt2 log n)
random bits are sufficient to accomplish this task, for t = O(n1/2−ε) for
constant ε > 0.

Secrecy and Non-Interference for History Dependent Cryp-
tography

Chiara Bodei, Università di Pisa

Joint work with Pierpaolo Degano, Flemming Nielson and Hanne Riis Nielson.

We introduce the ν SPI-calculus that strengthens the notion of “perfect symmet-
ric cryptography” of the spi-calculus by taking time into account. This involves
defining an operational semantics, defining a control flow analysis (CFA) in the
form of a flow logic, and proving semantic correctness. Our first result is that
secrecy in the sense of Dolev-Yao can be expressed in terms of the CFA. Our
second result is that also non-interference in the sense of Abadi can be expressed
in terms of the CFA; unlike Abadi we find the non-interference property to be
an extension of the Dolev-Yao property.

A Flexible Framework for Formalizing Security Protocols
(kicking the devil out of the details)

Iliano Cervesato, ITT Industries Inc.

When it comes to security protocol analysis, the devil lies in the detail. . . or
more precisely in how they are expressed. We present Typed MSR, an un-

3



ambiguous, flexible, powerful and relatively simple specification framework for
crypto-protocols. Typed MSR is a strongly typed multiset rewriting language
over first order atomic formulas. It uses existential quantifiers to model the
generation of fresh data, memory predicates to encode systems consisting of a
collection of coordinated subprotocols, and guards to handle objects belonging
to complex interpretation domains in an abstract and modular way. Its typing
infrastructure, based on the theory of dependent types with subsorting, supports
type-checking and access control verification. Access control is shown to be in-
timately connected to the Dolev-Yao intruder. We also discuss the execution
model of Typed MSR and present an example.

Process Algebraic Analysis of Cryptographic Protocols

Rocco De Nicola, Università di Firenze

Joint work with Michele Boreale and Rosario Pugliese.

Recent approaches to the analysis of crypto-protocols build on concepts which
are well-established in the field of process algebras, such as labelled transition
systems and observational semantics. A protocol is modelled as a concurrent
system, described in some process calculus, and natural security concepts such
as secrecy and authenticity are expressed as “behavioural equivalence”. More-
over, compositional reasoning becomes possible. In the talk we outlined recent
work in this direction that stems from the use of cryptographic versions of the
pi-calculus (Abadi and Gordon’s spi-calculus) as protocol description languages.
A major line of research is centered around the notions of observational equiva-
lence, which permit making such notions as “attacker” and “secrecy” rigorous.
The definitions of these equivalences, while rigorous and intuitive, suffer from
universal quantification over contexts (attackers), that makes equivalence check-
ing very hard. We showed how to avoid such quantification and obtain more
tractable characterizations. The latters are based on an “environment-sensitive”
lts (as opposed to the “standard” lts, which only explains process intentions).
We discussed the impact of these approaches on a specific example, a simplified
version of the Kerberos protocol.

Flow Logic for Security

Pierpaolo Degano, Università di Pisa

Joint work with Chiara Bodei, Flemming Nielson and Hanne Riis Nielson.

Flow Logic predicts at static time safe and computable approximates, or esti-
mates, of the set of values that the objects of a program may assume at run
time. We advocate here a specific static analysis of this kind, namely Control
Flow Analysis (CFA), for checking security properties. In this talk we shall
discuss the following typical CFA paradigm:

1. choose the values of interest for the required application, so defining the
shape of the estimates;

2. state, through some logical clauses, when estimates are valid, i.e. when
they are solutions;

3. prove that all solutions are semantically correct;

4



4. show that there always exists a least solution;

5. construct, often in polynomial time, the least solution.

The above will be exemplified on the pi- and the spi-calculi. The applications
to security will then require to

6. select a dynamic property;

7. define a static check on a solution of a system (computed once and for
all!) that, if passed, implies the selected dynamic property;

8. show that, even if the property is checked for a system in isolation, it will
also hold in the presence of an unknown attacker (often expressed as a
”most powewrful” attacker).

We shall briefly show the kind of checks needed to ensure some security
properties, among which secrecy (á la Dolev-Yao) and non-interference (á la
Abadi). Finally, we shall mention other properties and other calculi for whicc
a CFA has been defined, and the existence of “efficient” tools for computing
solutions and checking security properties.

Unicast and Multicast Protocol Analysis in CAPSL

Grit Denker, SRI International

Joint work with Jon Millen.
CAPSL, a Common Authentication Protocol Specification Language, is a high-
level language to support security analysis of cryptographic authentication and
key distribution protocols. The CAPSL Integrated Protocol Environment pro-
vides parser, type checker and connectors to analysis tools like the PVS theo-
rem prover, and the model checkers Athena and Maude. CAPSL employs an
intermediate language, CIL, that expresses state transitions with term-rewriting
rules. Our experience has shown that this is an appropriate representation eas-
ily adaptable for many analysis tools. I will report on the current status of the
protocol environment.

The current version of CAPSL is restricted to unicast protocols where each
message has a single addressee. We are currently investigating extensions of
CAPSL in order to handle group management protocols. These protocols im-
pose new challenges for modelling and analysis techniques. Group management
includes such activities as enrolling and disenrolling group members, designat-
ing a leader and changing that designation, distributing a common encryption
key, and achieving full or majority consensus. I will report on our first results
to extend CAPSL with powerful and elegant constructs for expressing secure
group multicast protocols.

5



KLAIM: Design and Implementation

GianLuigi Ferrari, Università di Pisa

Joint work with Lorenzo Bettini, Rocco De Nicola, Rosario Pugliese and Betti
Venneri.
In the design of programming languages for highly distributed systems where
processes can migrate and execute on new hosts, the integration of security
mechanisms is a major challenge. We report our experience in the design of an
experimental programming language, called Klaim (Kernel Language for Agent
Interaction and Mobility), which provides mechanisms to customize access con-
trol policies. Klaim security architecture exploits a capability-based type system
to provide mechanisms for specifying and enforcing policies that control uses of
resources and authorize migration and execution of processes.

We illustrate the design of Klaim access control model and show how a
capability-based type system is a useful and effective tool to write secure network
applications. The main features of the approach are summarized below.

• Access rights are explicitly recorded in type specification, thereby provid-
ing declarative specifications of access control policies.

• Subtyping of access rights: alternative access policies can be defined by
replacing the default policy with a new, more restrictive policy that is a
subtype of the default policy.

• Mobile processes are typed by their access control requirements; these are
automatically generated by the type inference procedure.

• Process access control requirements are clearly separated from node ac-
cess control policies: the node access control policy is formulated by the
authority (the owner) of the node and is dynamically enforceable at run-
time.

Klaim type system is sufficiently powerful to express access patterns of
policies for customizing and confining the route of process migration.

The language and the design philosophy underlying Klaim are presented in
[3]. The mathematical foundations (decidability and soundness) of the kernel
of Klaim type system can be found in [4] (a preliminary presentation appeared
in [2]). The prototype implementation of the language is described in [1].

[1] L. Bettini, R. De Nicola, G. Ferrari, R. Pugliese. Interactive Mobile Agents in
XKlaim. IEEE Seventh International Workshop on Enabling Technologies: In-

frastructure for Collaborative Enterprises, Proceedings (P. Ciancarini, R. Tolks-
dorf, Eds.), IEEE Computer Society Press, 1998.

[2] R. De Nicola, G. Ferrari, R. Pugliese. Coordinating Mobile Agents via Black-
boards and Access Rights. Coordination Languages and Models (COORDINA-
TION’97), Proceedings (D. Garlan, D. Le Metayer, Eds.), LNCS 1282, pp. 220-
237, Springer, 1997.

[3] R. De Nicola, G. Ferrari, R. Pugliese. Klaim: a Kernel Language for Agents Inter-
action and Mobility. IEEE Transactions on Software Engineering, Vol.24(5):315-
330, IEEE Computer Society Press, 1998.

[4] R. De Nicola, G. Ferrari, R. Pugliese, B. Venneri. Types for Access Control. To
appear, Theoretical Computer Science, 2000.

6



Secure Implementation of Distributed Languages

Cedric Fournet, Microsoft Research

Joint work with Mart́ın Abadi and Georges Gonthier.

Adopting a programming-language perspective, we study the problem of im-
plementing secrecy and authentication in open distributed systems. Communi-
cations processing is a key part of distributed systems, with facilities such as
RPC and RMI. For security reasons, messages may require cryptographic op-
erations in addition to ordinary marshalling. More abstractly, these operations
can (sometimes) be used to implement a language as a whole, so that every
program written in the language can be compiled to a distributed system with
strong security properties. We describe such a method that wraps communica-
tions processing around an entity with secure local communication, such as a
single machine or a protected network. The wrapping extends security proper-
ties of local communication to distributed communication. We formulate and
analyse the method within a process calculus.

Cryptanalysis of SPIFI II and ENROOT II

Willi Geiselmann, Universität Karlsruhe

Joint work with Feng Bao, Thomas Beth, Robert H. Deng, Claus Schnorr,
Rainer Steinwandt and Hongjun Wu.

Banks, Lieman, Shparlinski, and To suggested strengthened versions of their
identification scheme SPIFI and their public key encryption system ENROOT
at ICISC-2000 in Seoul. Both improved systems make use of sparse polynomials
over a finite ring, e. g., the integers modulo n. These systems are based on
two hard mathematical problems: finding a sparse interpolation polynomial
over a fixed set of coefficients and finding common zeros of sparse multivariate
polynomials. The transformation of these problems to crytographic protocols
adds a lot of structure for the resulting systems. With this additional structure
the computations performed throughout the execution of the protocol can be
recovered and thus the secret key is revealed. The calculations necessary for
these attacks essentially involve basic arithmetic in the integers modulo some
number and solving a small system of linear equations; the secret keys can be
disclosed within seconds of computing time.

Analysing the Analysis of Cryptographic Protocols

Dieter Gollmann, Microsoft Research

The design of cryptographic protocols has the reputation of being difficult and
error-prone. In my view, this is due to the fact that the (informal) goals a
security protocol is designed to meet and the environment in which the protocol
is expected to operate often remain vague. In this respect, protocol analysis is
equally difficult and error-prone when goals and environmental assumptions are
picked arbitrarily without taking sufficient care to clarify these aspects before
making them precise.

Entity authentication and formal semantics for SDSI are given as examples to
demonstrate that formal security verification may be precise about the problem
being addressed without being clear about what the problem is. Correspondence

7



properties as used in the formal analysis of authentication protocols may capture
that

• the responder is “alive” (see ISO/IEC 9798-1)

• two parties are establishing a secure connection (see ISO/IEC 7498-2)

• the protocol run itself simulates a connection (Roscoe’s canonical inten-
sional specification)

or some other property with no clear relationship to what is called “authentica-
tion” somewhere in the security literature. Lowe’s renowned attack against the
Needham-Schroeder protocol does not break the first of the goals above, and one
could argue that the property he chose to capture authentication for the respon-
der is not a conventional authentication property. Moreover, in his attack the
traditional all-powerful attacker who interferes with the traffic between honest
principals is replaced by an insider who does not follow the protocol rules.

With SDSI, we find logics with formal semantics that fit the intuitions of
access control but do not fully match SDSI name resolution, and logics that do
precisely that but have unclear relevance for access control. (We note that the
authors of SDSI state access control as their intended application.)

Coping with Denial of Service due to Malicious Java Ap-
plets

Roberto Gorrieri, Università di Bologna

In this talk I argue that static approches, widely exploited for improving Java
security, are of little use when considering the typical security problems caused
by malicious Java applets, e.g., denial of service and antagonism. As a conse-
quence, a monitoring application (called Signed Applet Watch-Dog — SAWD)
is proposed to control the execution of malicious Java applets and to stop (or
suspend) their execution when some critical conditions on, e.g., resource usage
are met. The application is a signed Java applet, to be executed outside of the
sandbox, simple to use and easily configurable by the user, because it works
like a user interface. SAWD can stop (almost) all the applets causing denial of
service (screen obscuration, generation of dozens of windows, usage of all CPU
time, etc.) and many causing antagonism (unwanted sounds and images, “work
for me” applets, etc.) at the price of a modest degradation of the Web browser.
SAWD seems also a necessary tool for software development environments for
Java applets, as it offers a much better environment to experiment on applets
than the JDK appletviewer.

Modeling Security Goals and Systems for Trust Manage-
ment

Joshua Guttman, The MITRE Corporation

In this talk, we will stress three main points. First, security is not one thing, but
different things in different contexts, so that modeling is needed to determine
exactly what class of security goals is relevant. Second, this modeling process
suggests algorithms that can be used to determine whether goals are met in

8



even complex systems. Third, trust management to achieve security goals de-
spite complexity is frequently more pressing than the design of isolated security
mechanisms. We illustrate the points with reference to packet filtering and the
IP security protocols.

Deciding Bisimilarity in the Spi Calculus(Results and Di-
rections)

Hans Hüttel, Aalborg University

Joint work with Josva Kleist, Uwe Nestmann and Björn Victor.

We present results whose common aim is to shed light on the problem of decid-
ing bisimilarity for (a simple version of) Abadi and Gordon’s spi calculus. In
particular, we show the negative result that even a finite-control spi-calculus,
where processes may only contain a fixed number of parallel components, suf-
fices for an encoding of Minsky’s two-counter machines. Thus, in contrast to the
situation for the finite-control π-calculus, no non-trivial notion of behavioural
equivalence can be decidable for finite-control spi calculus processes.

Even for processes without recursion we encounter the problem of infinite
branching on inputs. We describe a symbolic semantics in the style of Hennessy
and Lin. The symbolic semantics captures exactly the transition properties of
the environment-sensitive labelled transition semantics proposed by Boreale, De
Nicola and Pugliese. We briefly discuss our ongoing work on defining a notion
of symbolic bisimulation equivalence.

Model Checking Security Properties of Control Flow Graphs

Thomas Jensen, Université de Rennes, IRISA

Joint work with Frederic Besson, Daniel Le Metayer and Tommy Thorn.

A fundamental problem in software-based security is whether local security
checks inserted into the code are sufficient to implement a global security prop-
erty. This article introduces a formalism based on a linear-time temporal logic
for specifying global security properties pertaining to the control flow of the
program, and illustrates its expressive power with a number of existing prop-
erties. We define a minimalistic, security-dedicated program model that only
contains procedure call and run-time security checks and propose an automatic
method for verifying that an implementation using local security checks satis-
fies a global security property. We then show how to instantiate the framework
to the security architecture of Java 2 based on stack inspection and privileged
method calls.

Quantitative Measures of Security

Erland Jonsson, Chalmers University of Technology

Security is a multifaceted, composite concept. In order for quantitative mea-
sures to be attributed to security we have found that it has to be divided into
its different aspects: confidentiality, integrity and availability. Since there seems
to be an overlap with dependability aspects, an overall integrated approach be-
tween security and dependability has to be taken. Thus, we have found that

9



some aspects, the behavioural aspects reliability and availability, describe the
system behaviour with respect to its intended (authorized) users. The aspect
of confidentiality defines its behaviour with respect to the non-authorized users.
In this context safety is a sub-aspect, referring to a failure of the others with
catastrophic consequences. Behavioural measures can be derived using tradi-
tional Markov models, including phase-type modelling. The integrity aspect,
however, defines the ability of the system to protect itself against unauthorized
detrimental influence, e.g. intrusions. This aspect can be covered using a pro-
tective measure. We have suggested that the effort it takes to make an intrusion
be used as a measure of integrity (“intrusion security”). The hypothesis is that
“the more effort it takes to make an intrusion the more secure is the system”.
In order to get some data that would confirm this hypothesis we have carried
out a number of intrusion experiments. During these, undergraduate students
were asked to attack a system while reporting all the details of how it was done.
Data from the experiments have been used for some initial modelling, which
shows that it is at least possible in principle to use such experimental data to
get measures of intrusion security.

Bridging the gap: Formal vs. Complexity-Theoretical Rea-
soning about Cryptography

Jan Jürjens, Oxford University

Joint work with Mart́ın Abadi.
We compare two views of symmetric cryptographic primitives in the context
of the systems that use them. We express those systems in a simple program-
ming language; each of the views yields a semantics for the language. One of
the semantics treats cryptographic operations formally (that is, symbolically).
The other semantics is more detailed and computational; it treats cryptographic
operations as functions on bitstrings. Each semantics leads to a definition of
equivalence of systems with respect to eavesdroppers. We establish the sound-
ness of the formal definition with respect to the computational one. This result
provides a precise computational justification for formal reasoning about secu-
rity against eavesdroppers.

Computationally Secure Information Flow

Peeter Laud, Universität des Saarlandes

We propose a definition of secure information flow in programs. Our definition
is not based on noninterference, but on computational indistinguishability, i.e.
we do not require that the low security outputs of the program do not depend
in any way from the high security inputs, but only require that the dependency
is such, that no computationally bounded attacker can make use of it. In this
sense our definition is somewhat similar to the definition of semantic security.
This definition allows us to handle cryptographic primitives, whose security
is usually defined in similar terms — only security against computationally
bounded adversaries is required. For example, according to our definition, the
program that assigns to a low security variable the result of encrypting the value
of a high security variable under a high security key, is deemed secure.

10



We also give a data flow analysis which allows us to certify programs for
secure information flow in our sense. The analysis is quite similar to that of D.
Denning. It finds all such subsets of the set of variables (possibly overestimat-
ing), for which it holds, that an adversary that knows the final values of the
variables in such a subset, has significantly better chances in guessing something
about the high security part of the input of the program, than an adversary that
has does not know the final values of any variables. If all such subsets also con-
tain high security variables, then the information flow in the program has been
certified secure.

An Approach to Information Flow Control

Heiko Mantel, German Research Center for Artificial Intelligence (DFKI)

Information flow properties, like e.g. non-interference, can be used to express
confidentiality as well as integrity requirements. In this process, one first identi-
fies a set of security domains and then decides if information may flow between
these domains or not. This results in a flow policy. Next, a definition of infor-
mation flow must be chosen. The common intuition underlying such definitions
is that information flows from a domain D1 to a domain D2 if the behaviour
of D2 can be affected by actions of D1. However, this intuition can be formal-
ized in different ways and, at least for non-deterministic systems, no agreement
on an optimal definition has been reached. Rather a collection of definitions
co-exists. In order to deal with this variety, uniform frameworks have been pro-
posed in which the different definitions can be easily compared to each other.
One limitation of the definitions of information flow (for non-deterministic sys-
tems) which have been proposed so far is, that they cannot cope with intran-
sitive flow policies, i.e. flow policies in which the interference relation is not
transitive. However, such policies are necessary in order to deal with concepts
like channel control, information filters, or explicit downgrading. In this talk,
I will illustrate this problem and propose novel definitions of information flow
as a solution. These proposed definitions are compatible with intransitive flow
policies.

The results presented in this talk are derived from the following articles.

Heiko Mantel. Possibilistic Definitions of Security - An Assembly Kit -. In
Proceedings of the 13th IEEE Computer Security Foundations Workshop,
pp. 185-199, IEEE 2000.

Heiko Mantel. Information Flow Control and Applications - Bridging a Gap -.
to appear in Proceedings of Formal Methods Europe, Berlin, 2001.

A General Framework for Security Analysis

Fabio Martinelli, IAT-CNR

Joint work with Riccardo Foccardi and Roberto Gorrieri.
We set up a framework to describe and verify both network and system security
properties. The idea is that a system should guarantee a secure behavior even
under the attack of whatever hostile environments. If we describe the secure
behavior as an abstract process then we obtain the so-called GNDC schema.
This is based on a suitable extension of the notion of non-interference (NI) to

11



security protocols. Several existing properties have been recast as specific in-
stances of this schema. Once these security properties are uniformly described
then it is easier to compare them. Indeed, we studied several relationships
among different security properties, e.g. authentication and NI. Moreover, we
can re-use analysis techniques and software tools studied for a property en-
coded in this schema to deal with other ones in the same schema. For example,
the Cosec tool for the compositional verification of Non-interference properties
(e.g., NDC) has been extended to deal also with secrecy and authentication
properties of cryptographic protocols. Furthermore, we are able to give suffi-
cient conditions for avoiding the necessity of the quantification over the possible
hostile environments by considering the most general one. In our framework
we can also specify security properties through temporal logic formulas (e.g.,
mu-calculus). The system is checked against every possible hostile environment
which can interact with it. This verification problem, known in concurrency
theory as module checking problem, is solved by means of partial model check-
ing techniques and satisfiability procedures for the logic. Our analysis approach
works also when the so-called most general intruder approach seems useless,
e.g. for checking bisimulation-based non interference properties. A software
tool (SecTool) which implements this methodology has been realized and tested
over significant case studies.

Checking Security Properties using History-Dependent Au-
tomata

Ugo Montanari, University of Pisa

Joint work with Marco Pistore.

History-dependent automata (HD-automata in brief) are an extension of ordi-
nary automata that overcomes their limitations in dealing with history-dependent
formalisms. In a history-dependent formalism, the actions that a system can
perform refer to events in the past history of the system. The most interesting
examples are process description languages equipped with name mobility, like
the pi-calculus: channel names can be created by some actions and they can
then be referenced by successive actions. Also security protocols can be modeled
using HD-automata, since nonces and keys can be represented as fresh names,
and protocol verification can be often expressed via semantic equivalence.

The coalgebraic framework developed for classical process algebras, and in
particular its advantages concerning minimal realizations, do not fully apply
to history-dependent formalisms, due to the constraints on freshly generated
names that appear in the definition of bisimilarity.

Recent work by the authors has proposed to model HD-automata (and in
particular the transition system of the pi-calculus) as a coalgebra on a category
of name permutation algebras and to define its abstract semantics as the final
coalgebra on such a category. It is shown that permutations are sufficient to rep-
resent in an explicit way fresh name generation, thus allowing for the definition
of minimal realizations up to the ordinary notion of bisimilarity.

12



Flow Logics for Hardest Attackers

Flemming Nielson, Aarhus University

Joint work with Hanne Riis Nielson and René Rydhof Hansen.

Mobile ambients show the way to the next generation internet languages where
not only code (like the applets in Java) may move between sites but where
actual computations may traverse the internet under their own control. Static
analysis is called for to obtain decidable approximations to the behaviour of
such computations in all possible execution contexts. The spirit of the flow logic
approach is similar to that of type systems and logic specifications but aims at
transferring state-of-the-art techniques from data flow analysis, set constraints
and abstract interpretation to the more dynamic and concurrent scenario offered
by mobile ambients.

In the talk we develop a simple flow logic for mobile ambients showing which
ambients may end up inside what other ambients. Based on this we validate
a proposed firewall as being impenetrable by all agents not knowing the right
passwords. Despite the fact that there are infinitely many such agents, we are
able to identify a “hardest attacker” (in the manner of hardest problems in a
complexity class) and to prove that the inability of the “hardest attacker” to
penetrate the firewall implies the inability of all agents to penetrate the firewall
unless they know the passwords.

Cryptographic Security of Reactive Systems

Birgit Pfitzmann, Universität des Saarlandes

Joint work with Matthias Schunter and Michael Waidner.
The overall goal of this work is to provide a cryptographic semantics for “ab-
stract” specifications, so that the “reality” of cryptographic definitions can be
combined with the brevity or, if a formal language is used, the precision and
tool-support, of abstract specifications.

Speicifically, we present a general definition of security for reactive systems,
generalizing previous definitions relying on the simulatability paradigm.

The main novel aspects are a separate treatment of honest users, precise
synchronous and asynchronous switching models, and easy inclusion of various
trust models. We also believe to have the first general strategy to deal abstractly
with tolerable imperfections (such as leakage of traffic patterns), and the first
worked-out serious-size examples within a general model. Most importantly, our
model has the first reactive composition theorem, and a link to requirements
formulated in logics.

More details under http://www.semper.org/sirene.

Primitives for Authentication in Process Algebras

Corrado Priami, Università di Verona

Joint work with Chiara Bodei, Pierpaolo Degano and Riccardo Focardi.

We extend the π-calculus and the spi-calculus with two primitives that guar-
antee authentication. They enable us to abstract from various implementa-
tions/specifications of authentication, and to obtain idealized protocols which
are “secure by construction”. The main underlying idea, originally proposed by

13



Focardi for entity authentication, is to use the “locations” of processes in order
to check who is sending a message (authentication of a party) and who origi-
nated a message (message authentication). The theory of local names developed
by Bodei, Degano and Priami for the π-calculus, gives us almost for free both
the partner authentication primitive and the message authentication one.

Probability-Sensitive Secure Information Flow

Andrei Sabelfeld, Chalmers University of Technology

Joint work with David Sands.
When is an untrusted program safe to use? One aspect of safety is confiden-
tiality. Given you have some confidential (high) data and some public (low)
data in your computer, you want to make sure the attacker - the supplier of the
untrusted code - will not learn anything about your personal data, despite the
fact that the application (e.g., a spreadsheet) may require legitimate access to
the confidential data in order to perform its task, and legitimate communication
with the supplier of the code (e.g., a registration process for all users).

We assume that the attacker is external to the (trusted) system upon which
the program is run. Our aim is to specify when a program is safe to run -
from the point of view of its confidentiality properties - with an aim to provide
automatic methods for certifying programs prior to execution.

This talk proposes a probability-sensitive confidentiality specification - a
form of probabilistic noninterference - for a small multi-threaded programming
language with dynamic thread creation. Probabilistic covert channels of infor-
mation flow arise from a scheduler which is probabilistic. Since scheduling policy
is typically outside the language specification for multi-threaded languages, we
describe how to generalise the security condition in order to define robust se-
curity with respect to a wide class of schedulers, not excluding the possibility
of deterministic (e.g., round-robin) schedulers and program-controlled thread
priorities. The formulation is based on an adaptation of Larsen and Skou’s no-
tion of probabilistic bisimulation. We show how the security condition satisfies
compositionality properties which facilitate straightforward proofs of correct-
ness for, e.g., security type systems. We illustrate this by defining a security
type-system and proving it correct.

A New Type System for Secure Information Flow

Geoffrey Smith, Florida International University

With the variables of a program classified as L (low, public) or H (high, private),
we wish to prevent the program from leaking information about H variables
into L variables. Given a multi-threaded imperative language with probabilis-
tic scheduling, the goal can be formalized as a property called Probabilistic
Noninterference. Previous work identified a type system sufficient to guarantee
Probabilistic Noninterference, but at the cost of severe restrictions: to prevent
timing leaks, H variables were disallowed from the guards of while-loops. Here
we present a new type system that gives each command a type of the form τ1

cmd τ2; this type says that the command assigns only to variables of level τ1

(or higher) and has running time that depends only on variables of level τ2 (or
lower). Also we use types of the form τ cmd n for commands that terminate in

14



exactly n steps. With these typings, we can prevent timing leaks by demand-
ing that no assignment to an L variable may sequentially follow a command
whose running time depends on H variables. As a result, we can use H variables
more flexibly; for example, under the new system, a thread that involves only
H variables is always well typed.

15


