
Interoperability of

Reverse Engineering Tools

21.01. - 26.01.2001

organized by

J�urgen Ebert { University of Koblenz, Germany

Kostas Kontogiannis { University of Waterloo, Canada

John Mylopoulus { University of Toronto, Canada

Software Reengineering is the present-day term for all activities for renovating

aging systems to be more responsive to changes. Problems of the 90s like the

Y2k-problem or the problem of converting software to the new European currency

witnessed the importance of concepts, tools and techniques to improve the quality

and maintainability of software.

Reengineering is a part of software engineering with its focus on all problems

appearing during software maintenance of legacy software. In this seminar we

focused on the technical part related to the software artifacts themselves and

excluded the management aspects of software maintenance.

Reengineering activities use to a large part the same concepts, tools and tech-

niques as other software engineering disciplines. Besides software engineering

knowledge, there is also much usage of other more traditional areas of computer

science, especially compiler construction, database systems, formal semantics,

and knowledge representation. But due to its special focus, additional problems

appear, like

� reverse engineering

(recognition of architecture, cliches, procedures, structure, and redocumen-

tation),

� migration

(change of database models and/or programming languages), and

� program understanding

(querying, browsing, visualization techniques, concept analysis).

Software Reengineering activities are widespread and mostly focus on the develop-

ment of tools for software analysis. Thanks to several conferences and workshops

in this area such as CSMR, ICSM, IWPC and WCRE a common terminology

and de�nitions of agreed aims of reengineering research are slowly emanating.

1

The current state of practice is that reengineering tools still solve insular problems

and are treated as research prototypes within the research group that developed

them. In this context, it is very important to de�ne a data interchange format

that allows for di�erent reengineering tools to communicate so that integrated,

multi-faceted representations of software systems can be created.

Even though this issue may look simple at the beginning, it involves a number

of research issues to be resolved. One issue is the de�nition of the levels of

abstraction that information about a software system is to be presented on. These

levels of abstraction may include the abstract syntax tree level, the data and

control
ow level, or the architectural level.

The challenge to the research community is to design a formalism for each level of

abstraction so that information about a software system can be passed from one

analysis tool to another. Moreover, the formalismmust allow for software systems

and constructs in various languages to be presented. Another research challenge

is the de�nition of schemas that allow for data emitted from di�erent parsers to

be fused in a uniform, normalized source code representation. Emerging markup

languages such as XML may provide a vehicle for data fusion and data integration

in this context.

The actions done for enhancing interoperability of research and tools in reengi-

neering have only partially been successful up to now. Schemas for a number

of popular languages such as C, Cobol, Fortran and, PL/I have been developed.

Languages and supporting tools that allow for architectural descriptions to be

speci�ed and exchanged in the form of tuples have been implemented by various

groups.

At this 5-day Dagstuhl seminar 47 people gathered together in order to discuss,

extend and combine the work done by various groups into a common con
uent

and coherent result. This report collects the abstracts of all talks given during

this week covering all relevant aspects of interoperability - including metamodels,

concrete tools and frameworks, practical experiences and relevant technologies

like XML. One afternoon was used for a demo session where several tools were

introduced to the participants (db-main, shrimp, codecrawler, gupro, columbus,

ta, missinglink, fujaba).

The participants agreed on the necessity of interchange languages on di�erent

levels of semantic expressiveness, like

� abstract syntax trees and abstract syntax graphs,

� call graphs and program dependence graphs,

� architecture descriptions.

XML was regarded as a vehicle for reengineering tool interoperability. GXL, a

proposal for an XML-based basic format for interchanging graph-like reengineer-

ing data, had been developed during the last months before the seminar by the

2

cooperation of several groups, especially Waterloo (Ric Holt), Toronto (Susan

Elliott Sim), Koblenz (Andreas Winter) and Munich (Andy Sch�urr). GXL is an

XML-based amalgamation of existing formats. On friday, January 26th, the par-

ticipants of this seminar accepted GXL 1.0 (meanwhile known as the Dagstuhl-

version) as an interchange language and more than twenty participants assured

that they were going to make their tools interoperable on the basis of GXL. The

further development of GXL can be inspected at http://www.gupro.de/GXL/.

Beyond a common format, tool interoperability highly relies on the agreement

of common concepts, schemas, and information structures. During the work-

shop the participants discussed such schemas in four groups focussing on di�er-

ent aspects: syntax level, middle level, architecture level and data level. The

discussions started by these groups did not yet lead to mature proposals, but

this work is still being continued. Concerning the C++ syntactical schema a

lively email-list (gxl-cpp@rgai.inf.u-szeged.hu) was founded where the dis-

cussion is continued. Concerning the middle level a wiki as been installed at

http://scgwiki.iam.unibe.ch:8080/Exchange/2.

So this seminar was not only a productive and pleasant week for all partici-

pants, largely thanks to the well thought-out setup and the quality of service

that Dagstuhl provides. It also was the source of continuing work on interoper-

ability of reengineering tools.

We thank the Dagstuhl sta� for their competent, eÆcient and friendly support

for this productive and enjoyable week.

The Organizers

J�urgen Ebert | Kostas Kontogiannis | John Mylopoulos

3

Powerpoint slides and/or PDF �les of most talks can be found on

the Schlo� Dagstuhl Website of Seminar 01041.

Contents

1 Interoperability of Reengineering Tools: Two Years Back, Two

Years Ahead 5

2 Models for Reverse Engineered Artifacts 5

3 Graph based Reverse Engineering and Reengineering Tools 6

4 Moose - Interoperability in XMI 7

5 What can we do while waiting for a common exchange format

for reverse engineering tools? 7

6 Re-Engineering Tools for Multi-Language Multi-Pargadigm Soft-

ware 8

7 A general meta-model for data-centered application reengineer-

ing 9

8 GXL - Graph eXchange Language 9

9 Tool Interoperation in Large-Scale Euro Transition Projects 10

10 Reverse Engineering Experiences at Nokia 10

11 Architecture Analysis Challenges in the Medical Imaging Do-

main - Why we need interoperability of reengineering tools 11

12 An Examination of Evolution in Linux 12

13 GraphXML { An XML-based graph description format 12

14 Reverse Engineering of C++ Programs 13

15 Program Analysis Infrastructure 14

16 Interoperability of Software Modi�cation Tools 15

17 Experiences in Tool Integration for Reengineering 16

4

18 Interoperability of Re-Engineering Tools: A Requirements ap-

proach { what we have learnt so far 17

19 RDF and RDF Schema 17

20 Enabling Backtracking in Multi-Tool Reengineering

Environments 18

21 Integration Strategies for Building Software Exploration Tools 18

22 Format evolution 19

23 From Research to Startup: Experiences in Interoperability 19

24 Data Interoperability for Software Reengineering Data 21

25 XML-Based Architecture-Exchange in Bauhaus 21

26 Low Level Schema breakout session 24

27 Rati�cation of GXL 1.0 24

5

1 Interoperability of Reengineering Tools: Two

Years Back, Two Years Ahead

Rainer Koschke, University of Stuttgart, Germany
Susan Elliott Sim, University of Toronto, Canada

In this talk, we presented a tool interoperability maturity model and discuss the

past and necessary future e�orts to achieve higher levels on the model. The

model has three levels: 0) ad hoc; 1) static interoperability through an exchange

format; and 2) dynamic interoperability through a control infrastructure. In

1998, there were two groups (one Canadian and one international) working to

develop a standard exchange format. By 2000, these two grops joined their

e�orts and through a series of meetings and workshops achieved a high leve of

consensus, where almost two dozen groups have agreed to work towards making

GXL the standard exchange format. It is expected that version 1.0 of GXL be

compelted and rati�ed by the end of this seminar. However, to acheive level 1

some reference will also need to be developed, speci�cally ones for the abstract

syntax tree level, the program entity level, and the architectural level. This

is work is also anticipated during this seminar along with other discussions to

achieve level 2. The success of the interoperability of tools depends signi�cantly

on the success of interoperability of people through consultation and consensus-

building. The achievements over the last two years have been based on these

principles and we anticipate continuing to rely on them in making progress in the

future.

2 Models for Reverse Engineered Artifacts

Timothy C. Lethbridge, University of Ottawa, Canada

This presentation discusses how to represent information about software that ex-

tracted during the reverse engineering process, and either stored in a database

or transmitted among tools. Other talks have discussed the need for a syntax

for such information, the general consensus bing that GXL is a good candidate.

This talk focuses on the schema to be used. The talk �rst considers the premise

that the UML metamodel might be a good candidate. However the UML meta-

model represents high-level design information, ignoring the fact that there is

6

a need to represent the structure of the source code. For example, the UML

metamodel does not handle such things as �le inclusion, and the precise position

in source code of such things as de�nitions, declarations and references. In the

talk, we then discuss a UML model whose top-level class is called SourceElement.

Important lower level sub-hierarchies include SourceUnit (entire editable source

elements such as �les), SourcePart (parts of SourceUnits, including De�nitions

and Resolvables, which can be Declarations or References), SourcePackages (Col-

lections of source units) and ReferenceExistences. The latter class represents the

relationships between source code entities (e.g. calls, inclusions etc.) without the

full detail of Resolvables.

3 Graph based Reverse Engineering and Reengi-

neering Tools

Katja Cremer, RWTH Aachen, Department of Computer Science
III, Germany (now at Ericsson Eurolab)

In this talk the data formats of a graph based reverse and reengineering tool are

presented. The tool has been developed in a project with two industrial partner.

The main scope of the projekt is the preparation of existing COBOL programs

for the tense in distributed environments.

The �rst step is a design recovery to get a higher level of abstraction. The infor-

mation on this level are presented as directed graphs. The tool o�ers transforma-

tions to restructure the existing programs. The transformations are performed

on the abstract graph level. These transformations are connected with source

code transformations to adapt the concrete underlynng source code according to

redisign steps.

The existence of a exchange format would simplify the development of graph

based reverse and reengineering tools.

GXL seems to be a good approach. But �rst some use cases would be helpful.

7

4 Moose - Interoperability in XMI

Sander Tichelaar, University of Berne, Switzerland

The talk introduces Moose - our language-independent environment for reengi-

neering object-oriented systems - in the context of tool interoperability. It intro-

duces the metamodel (or schema) it uses to store and exchange program-entity

level information. Some of the design decisions such as naming schemes and lan-

guage mappings are discussed, and the fact that we do not use UML because of

its focus on OOAD rather than representing source code. The actual exchange

of information is done using XMI. Advantages of this approach is that it is a

standard and that it is model-based: DTDs and XML �les can be generated au-

tomatically and the common metametamodel (MOF) can be used to integrate

with other models. Disadvantages of XMI are its verbosity and the way it deals

with model extension. Both RDF and CDIF are more
exible in this last respect.

Finally a few points are mentioned that any model should deal with and that not

seem to be covered by the current approaches such as unique naming, incremental

loading of information and support for multiple models.

5 What can we do while waiting for a com-

mon exchange format for reverse engineering

tools?

Spiros Mancoridis, Drexel University, Philadelphia, USA

(we might have to wait for a long time ...)

Together, research groups at Drexel University and the AT&T Labs - Research

have developed reverse engineering tools to support:

� static source code analysis for C/C++ and Java (the Acacia and Chava

tools)

� dynamic analysis for Java executable code (the Form library and the Gadget

tool)

� software clustering (the Bunch tool)

� architecture-level dependency induction (the ISF tool)

8

Of course, there are many other reverse engineering tools developed elsewhere.

Lately, the reverse engineering community has been discussing exchange formats

as a method to integrate tools for reverse engineering. This is a noble goal

that unfortunately, if history is an indicator, may never be realized. Many may

remember the tool integration goals set by CASE tool vendors and researchers

in the early 90's. Although several exchange formats and tool integration stan-

dards were proposed (e.g., CDIF, PCTE), these e�orts were largely ignored by

both researchers and CASE tool vendors.

In the meantime, we are taking a di�erent approach to tool integration as we wait

to see what will emerge from the community regarding tool integration and data

exchange. Speci�cally we are developing an on-line Reverse Engineering Portal

site, called REportal, which will enable programmers to upload their code to a

secure server running at Drexel University and use wizards to guide them through

the various reverse engineering services that will be provided by the portal. The

portal will present services (not tools) to the users and the tool integration will be

done behind the scenes via scripts. The portal simpli�es the reverse engineering

process in two ways: 1) users will not have to learn the speci�cs of any tool, as

the wizards will provide a high-level abstraction to the portal services 2) users

will not need to install any tools on their machines; thus protecting them from

mundane, yet time consuming, problems such as keeping track of bug �xes, new

releases, incompatible operating systems and libraries, di�erent �le formats, and

so on.

This work is a collaborative e�ort involving Drexel University's Spiros Mancoridis

and Timothy Souder as well as AT&T Lab's Yih-Farn Chen, Emden Gansner,

and Je� Korn

6 Re-Engineering Tools for Multi-Language Multi-

Pargadigm Software

Panagiotis K. Linos, Butler University, Indianapolis, USA

It has been documented that more than 30% of software applications today are

written in more than two programming languages. In this talk, I presented

various issues related to the construction and interoperability of re-engineering

tools for multi-language multi-paradigm (MM) software. Speci�cally, a research

framework was presented for formalizing, managing, storing and experimenting

with MM program dependencies, found in MM software.

9

7 A general meta-model for data-centered ap-

plication reengineering

Jean-Luc Hainaut and Jean Henrard, University of Namur, Belgium

Reengineering projects have strong requirements as far as models and engineering

processes are concerned. Three examples: (1) data and processing descriptions

are more tightly linked than in forward engineering, (2) data models must de-

scribe many features that generally are out of scope of standard forward engi-

neering models (for instance, the UML class model is quite inadequate for data

reverse engineering processes), (3) in reverse engineering, the very concept of \ab-

straction level hierarchy" is blurred due to the coexistence, in the same schema,

of constructs pertaining to di�erent abstraction levels. The presentation will �rst

state the main requirements of the reengineering processes. Then, a meta-model

that tries to meet them will be described. Finally, we will show how this meta-

model has been implemented into DB-MAIN, a wide scope reengineering CASE

environment.

8 GXL - Graph eXchange Language

Ric Holt, University of Toronto, Canada
Andy Sch�urr, University BW Munich, Germany
Susan Elliot Sim, University of Toronto, Canada
Andreas Winter, University of Konblenz, Germany

The �elds of reverse engineering and program analysis have matured to the extent

that there are many tools to extract information about programs, to manipulate

this information and to analyze it. What is missing is a generally accepted means

to allow these tools to interoperate.

GXL o�ers a graph-based format supporting tool interoperability on the data

interchange level. GXL has evolved from many discussions among groups de-

veloping reengineering tools. It was also in
uenced by similar activies on tool

interoperability in graph drawing and graph transformation.

In GXL instance data and their according schema data is represented by typed,

attributed, directed graphs. Both, instance data and schema data are exchanged

as XML documents following ONE common DTD (document type de�nition).

10

The repesentation of graphs and schemas follows the notation given for UML

object and class diagrams.

The talk introduces into the foundations of GXL, presents the XML-based ex-

change language for graphs, shows the graphical notation used to represent graphs

and schemas to a human reader, and de�nes the GXL meta schema.

9 Tool Interoperation in Large-Scale Euro Tran-

sition Projects

Rainer Gimnich, IBM Global Services, Stuttgart, Germany

The introduction of the single European currency (the EURO) entails a wide-

ranging adaptive software maintenance problem to the companies and public

administrations in the `Euroland' countries.

In the talk we present a methodology and a set of tools to support practical

Euro reengineering projects. The tools range from analysis tools to database

migration tools. Each tool has a di�erent origin and, for project purposes, their

functionalities have been extended, and interfaces have been built to enable tool

interoperation.

With this approach, large scale (up to 100 MLoc) projects can be performed and

managed eÆciently.

10 Reverse Engineering Experiences at Nokia

Claudio Riva, Nokia Research Center, Finland

We present a reverse engineering experience that has been carried out in Nokia

during the European project FAMOOS. The experience aimed at (1) assessing

the quality of a Nokia software system using the tools developed in the project

and (2) evaluating the FAMOOS reverse engineering tools in practice with an

industrial case study.

The experience has been organised in two steps. In the �rst phase, the nine

developers of the tools have worked together for four days to detect shortcomings

11

in the system and propose solutions. In the second phase, they have presented

the results to the programmers of the system in a panel. The reverse engineering

team worked as a single taskforce, in fact they had daily meetings to exchange

�ndings, suggest new ideas and plan the work ahead.

An interesting problem has been detected in the design of the core classes of the

system and a solution has been proposed. The developers of the system con�rmed

the presence of that problem in the system and welcomed the proposed solution.

The experience shows that in few days a group of nine people managed to under-

stand a lot of an unknown system using the reverse engineering tools. The expe-

rience also shows that reengineering is a team work where team-communication

plays an important role and di�erent reverse engineering approaches are neces-

sary.

11 Architecture Analysis Challenges in the Med-

ical Imaging Domain - Why we need inter-

operability of reengineering tools

Tobias R�otschke, Philips Research Laboratories Eindhoven, The
Netherlands

Medical imaging systems are rather expensive SW intensive embedded systems,

and hence maintained over a long lifetime of typically 10 to 20 years. Di�er-

ent modalities (based on di�erent imaging technologies) di�er widely from the

architecture analyst's point of view:

� Technologies vary from young adolescent to almost ageing, which makes

current development activities rather di�erent.

� Each modality has its own history resulting in independent design choices

of programming languages, architectural concepts, tools etc.

� Architecture analysis issues include, among other things, migration mon-

itoring, architecture-guided performance analysis, interface management,

architecture veri�cation, and cross-language reference analysis.

While di�ering on the one hand, modalities have common or at least related

functionality on the other. So it is sensible to analyse and compare architectures

of di�erent modalities. To keep the analysis e�ort reasonable, a large set of

12

interoperating tools with limited tasks is necessary. These tools can be either

self-made or provided by other organisations. A bottom-up approach to such an

analysis framework seems most promising, i. e. learning from isolated problems

and making their solutions part of a more generic tool-set.

12 An Examination of Evolution in Linux

Michael W. Godfrey, University of Waterloo, Canada

Recently, the reverse engineering research community has been investigating

mechanisms for exchanging data and partial results between reverse engineer-

ing tools. Among the many subproblems inherent in implementing a standard

exchange format is the design of schemas that represent views of source code at

various levels of abstraction. In the �rst part of my talk, I presented some moti-

vation for why the de�nition of an exchange format would be useful: I presented

an analysis of the growth of the Linux kernel that shows that Linux has been

growing at a geometric rate for several years. This is surprising, given previous

formal studies of source code growth of large systems, and it seems to beg for

a more detailed qualitative analysis of the evolution of Linux using a variety of

anaylsis techniques and tools. In the remainder of my talk, I discussed some of

the discussed some of the issues in de�ning, transforming, and exchanging \high-

level" schemas, including previous work on the TAXFORM project, as well as

recent discussions at the Workshop on Standard Exchange Format (WoSEF).

13 GraphXML { An XML-based graph descrip-

tion format

Ivan Herman, M. Scott Marshal, CWI Amsterdam, The Nether-
lands

GraphXML is a graph description language in XML that was developed as an

interchange format for graph visualization. The generality and rich features of

XML make it possible to de�ne an interchange format that not only supports the

13

pure, mathematical description of a graph, but also the needs of information vi-

sualization applications that view graph-based data structures. A list of features

supported by GraphXML includes: embedded and hyperlinked data references,

hierarchical (nested) graphs, graph metadata such as graph theoretic properties,

presentation styles such as color and geometry, and edit actions for graph trans-

formations and history capture. This talk describes the collection of features

and demonstrates them brie
y using the open source graph visualization Java

application \Royere". The focus of the talk is on the experience gained from the

design that could be applicable to the GXL e�ort. The progress of the GraphML

standardization e�ort, which was formed at Graph Drawing Symposium 2000

and includes a member of the GXL team, is also described. Royere is available

at: http://www.cwi.nl/InfoVisu/GVF/

14 Reverse Engineering of C++ Programs

Rudolf Ferenc, Tibor Gyim�othy, University of Szeged, Hungary

One of the most critical issues in large-scale software development and mainte-

nance is the rapidly growing size and complexity of the software systems. As a

result of this rapid growth there is a need to understand the relationships between

the di�erent parts of a large system. We present a reverse engineering framework

called Columbus that is able to analyze large C/C++ projects. Columbus sup-

ports project handling, data extraction, data representation and data storage.

The source code extractor is capable for extracting the usual information such

as the UML class model and the call graph; furthermore, its special feature is

the handling of complex templates and their instantiation at source code level.

EÆcient �ltering methods can be used to produce comprehensible diagrams from

the extracted information, including the �ltering on the visualized class models.

The
exible architecture of the Columbus system (based on plug-ins) makes it

a really versatile and an easily extendible tool for reverse engineering. A re-

cently added feature which we are still working on is the capability to export

the extracted data into our XML representation, which is called CPPML (C++

Markup Language).

14

15 Program Analysis Infrastructure

Jens Krinke, University of Passau, Germany

This talk argues that the purpose of interoperability of tools is not to reuse the

data that tools produce but to reuse the infrastructure of that tools to produce

that data. Instead of exchange data in a common format, the use of an API

is sometimes possible and desirable: SNiFF+ is a source code engineering envi-

ronment that allows accessing the internal repository via an API. The downside

is that SNiFF+ doesn't store enough information to enable data
ow analysis.

Most reengineering tools don't use data
ow information yet. However, in the

future it will be necessary to use data
ow analysis for speci�c reengineering

tasks (like semantic preserving transformations of Java programs). Data
ow

analysis is expensive - in terms of time and memory consumption and in terms

of building the infrastructure that does the analysis. At least the cost of building

a new infrastructure can be avoided, as there are already a number of data
ow

analysis infrastructures and frameworks available. The talk presents the features

and history of two successful infrastructures: Soot and SUIF.

There are some lessons learned from using data
ow analysis for reengineering

tasks:

� Data
ow analysis based on ASTs is a bad idea (ASTs are not the right

abstraction level and makes data
ow analysis harder instead of easier).

� Infrastructure is expensive (even learning to use it).

� Choosing the right infrastructure is hard (evaluation means learning to use

it).

� Compiler infrastructure tend to loose the connection to the source code,

which is a problem for reengineering tasks.

� Academic infrastructure is fragile.

� Commercial interests might not allow using (the right) infrastructure.

� Standard infrastructure needs support and marketing.

With the view on infrastructure some problems of the XML approach are data ex-

plosion, performance and merging data - is the XML infrastructure good enough?

The talk ends with the following suggestions:

� If you build new tools: will you probably need data
ow?

� Don't build your own on top of ASTs, reuse infrastructure.

15

� Anticipate that your tool needs more data
ow information than you think

at the beginning.

� De�ne a schema and dump your fact storage in GXL, somebody might even

�nd it useful!

16 Interoperability of SoftwareModi�cation Tools

Chris Verhoef, Free University of Amsterdam, The Netherlands

In this talk I described that in the case of modi�cations tools, it is hard to rely

on internal formats in the �rst place, let alone it would be possible to connect

two heterogenous modi�cation tools. Also there is no hope that one modi�cation

tool could ever be useful in another context.

Still the problem of parser sharing remains. Thats is: we should not re-implement

parsers all the time. The solution for that is to share grammar speci�cations that

are:

� void of idiosyncrasies (e.g. LR based rules)

� correct (i.e. tested on real code)

� complete (no missing language constraints)

Some the above requirements are feasible these days (see some other programs

by me and others). This allows for a repository of grammar knowledge. Now

this knowledge is the core of parser implementations/generations, which solves

the bottleneck of the remaining parser problem.

16

17 Experiences in Tool Integration for Reengi-

neering

Kenny Wong, University of Alberta, Canada

This talk summarizes the experiences and lessons learned from exploring and us-

ing a number of tool integration technologies to create more interoperable reverse

engineering tools.

The Rigi graph visualization and editing tool uses RSF, a simple, lightweight,

tuple-based graph �le format for data integration. The advantages of RSF include

ease of parsing, generation, editing, composition, and reading. Rigi uses Tcl/Tk

for control and presentation integration. Users can write Tcl scripts to codify

and automate reverse engineering activities.

In the RevEngE (Reverse Engineering Environment) project, the complementary

capabilities of Rigi and the Software Re�nery were integrated. The architectural

analysis and visualization capabilities of Rigi were combined with the lower-level

transformation and analysis capabilities of the Software Re�nery over annotated

abstract syntax trees. RevEngE used a message-based architecture with a reposi-

tory based on the Telos conceptual modeling language and the ObjectStore object

database. The repository used a global schema to integrate the tool data. Oper-

ational di�erences between the tools limited the usefulness of the environment.

In the Software Bookshelf project, an early prototype loosely integrated Rigi to a

web-based user interface for software documentation. Selected program elements

in the documentation have constructive views that can be executed by Rigi to

provide dynamic content. In the underlying repository, references to data and

tool capabilities were stored, not the actual data itself. Rigi ran as a client-side

helper application in conjunction with a server-side CGI script.

Tool integration is one important strategy for designing and evolving more useful

tools to users and to help address the tool adoption problem. These problems

include aspects of relative advantage, complexity, trialability, and visibility. Com-

patibility is especially important for our tools with user comprehension strategies,

preferred development tools, and forward engineering processes. Our approaches

include: working on packaging issues, conducting user studies, identifying and

streamlining common scenarios, focusing on lightweight technologies, and using

benchmark applications for case studies. Also important is producing evidence

of industrial success.

17

18 Interoperability of Re-Engineering Tools: A

Requirements approach { what we have learnt

so far

Kostas Kontogiannis, University of Waterloo, Canada

Tool interoperability for re-engnineering tools has emerged the last few years as

a crucial area at research and practice due to the plethora of software analysis

tools, CASE tools, and integrated developments environments (IDE's) that have

appeared. It has become apparent that in order to facilitate collaboration between

researchers and practitioners alike, we need to devise standards for di�erent tools

to exchange information pertaining to large information systems.

In this presentation, I discuss the problem form two angles. The �rst is the \de

facto state of the art" and \state of practice" view drawn from past experiences

and research e�orts. This view is very helpful for assessing the lessons learnt,

the bene�ts and the diÆculties for having software re-engineering tools to inter-

operate. The second view relates to where do we go from here. In this view, I

will attempt to present tool interoperability as a layered reference model and as

a list of functional and non-functional requirements that release to each layer in

the reference model.

19 RDF and RDF Schema

Derek Rayside, University of Waterloo, Canada

A brief look at RDF and RDF Schema (both form W3C). Look at features for

schema evolution and interoperability. Comparison with GXL, RSF and UML

class diagrams.Problems of parametric types, co- and contra-variance. Inade-

quacy of graph theory to address typing problems. Do we want to model graphs?

Or do we want a richer { e.g. Telos { modeling formalism?

18

20 Enabling Backtracking in Multi-Tool Reengi-

neering

Environments

Jens Jahnke, University of Victoria, Canada

Software Reverse Engineering (RE) and program understanding is a costly and

human-intensive task. Many computer-supported tools have been developed in

industry and academic to support humans in various RE activities. Today, several

of these tools have reached a high level of maturity. It is often desirable to combine

several tools into integrated reengineering environments. Unfortunately, currently

existing tools use various incompatible information formats to store and exchange

information. This impedes their integration in practice. Recently, researchers and

practitioners have started a joint e�ort of de�ning a common exchange format

based on XML technology. The naive approach of streaming GXL data from

one tool to the next (pipeline architecture) bases severe problems in real-world

scenarios. This is due to the fact that RE processes involve frequent backtracking

to previous analysis steps. In this case the consistency with the abstraction

derived before the backtracking step might be lost. Manually re-establishing this

consistency is error-prone and requieres a lot of e�ort. An automatic consistency

management based on the recorded derivation history can be used to automate

the change propagation task. In my presentation, I have motivated and described

a technique and implementation of such a consistency management component

and service that can be reused for tool interoperability.

21 Integration Strategies for Building Software

Exploration Tools

Margaret-Anne Storey, University of Victoria

In this talk I describe how data integration, control integration and presentation

integration are used for visualizing software in the SHriMP system. Data integra-

tion is achieved by combining information extracted from public domain tools.

Information presented includes architectural information, HTML'ized source code

and documentation. Presentation and control integration are achieved by leverag-

19

ing the
exibility and extensibility of Java Beans. An architectural view provides

placeholders for di�erent views accessible at any level of granularity. Hypertext

and zooming features support navigation between and across views. The talk

concludes with a demonstration of using SHriMP for visualizing Java programs.

22 Format evolution

Ralf Laemmel, CWI and Free University of Amsterdam, The Nether-
lands

A systematic approach to the adaptation of XML documents and their DTDs is

developed. The approach facilitates the evolution of XML-based formats. There

are two essential ideas. Firstly, changes in the formats of documents can be often

represented as stepwise transformations on the underlying DTDs. Secondly, the

corresponding format migration of the original XML data is largely induced by

the DTD transformations. We analyse the steps involved in such transformations

and migration procedures.

23 From Research to Startup: Experiences in

Interoperability

Arie van Deursen and Leon Moonen, CWI Amsterdam, The Nether-
lands

We present our experiences with tool interoperability by describing data exchange

and coordination aspects of several projects performed at CWI over the last 10

years.

The �rst project is the development of the ASF+SDF MetaEnvironment, an

environment for writing executable language speci�cations. This environment is

developed as a set of cooperating heterogeneous tools that exchange data over a

software bus called ToolBus. The coordination is de�ned using process algebra.

Data is exchanged using a common annotated term format: ATerms. These

ATerms employ maximal sharing of subterms to reduce the size of data to be

20

transmitted. This is especially important for the amounts of data involved in a

typical legacy software renovation projects.

Other projects used this language technology as a basis for reverse and re-

engineering research. We observed that standardizing grammars for well-known

languages such as C or Cobol was hard to achieve, as di�erent applications de-

mand di�erent ways of viewing such programs. Our best solution was to start

a grammar base collecting all such grammars as opposed to attempts aiming at

setting formal standards.

We have developed tools for language transformations and translation. Further-

more, we built a generic data
ow framework that allows one to map languages

to a common data
ow language (Dhal). Data
ow problems can be solved on

Dhal and results are mapped back to the original language. This framework sup-

ports data
ow analysis on systems written in multiple languages and allows for

development of reusable libraries of DFA solutions. The main problem we have

identi�ed with these projects is divergence of language speci�cations because they

are often re�ned when used to build di�erent tools.

We have also connected several existing reverse engineering tools and components

like databases and graph visualizers to parsers generated using the MetaEnviron-

ment. Data exchange between these tools was done using an RSF like format.

The coordination was done using scripting languages. Although this is a practical

approach for building research prototypes, it is hard to create reusable industrial-

strength tools this way.

To transfer our technology to industry, we have started the Software Improvement

Group, a spino� company that provides services in the areas of documentation

generation, program transformation and strategic consultancy. The transforma-

tion tools are built using the MetaEnvironment and use the same methods of

interoperability. The documentation generation tool DocGen is built around a

repository. This repository is �lled with artifacts that are extracted from legacy

code using generated parsers. DocGen generates views on this repository in hy-

pertext and graphs. Views are speci�ed using a grammar from which we generate

Java classes and visitors. These are used to query the database and traversed

using the visitor to generate hypertext or graphs. Interoperability with DocGen

is achieved by adhering to standards such as JDBC, http, and JavaDoc. More-

over, the data in the database or the views there on could be exported using a

common exchange format such as GXL.

21

24 Data Interoperability for Software Reengi-

neering Data

John Mylopoulos, University of Toronto, Canada

This workshop is looking at data interoperability solution that will make it pos-

sible to have reengineering tools exchange data. We note that there are di�erent

requirements for any proposed solution. If the solution is intended for research

tools developed within the reengineering community the solution needs to be in-

expensive and involve little overhead in adapting it. For industrial practice, on

the other hand, the solution needs to scale up and allow for evolution.

The solution to the interoperability problem discussed in the workshop span a

space between two extremes. At one extreme we have assembly time solutions

where tools exchange data through customized interfaces. At the other extreme

we have a repository based solution where all data are exchanged through a

central repository. We note that the assembly line solution is best for situations

which scalability and evolution are not requirements.

Finally, we note that database technolgy has advanced in the last 4 years with

commercial repository products and XML servers which sit on top of a database

engine. Moreover, much research is done on schema manipulation in support of

data integration.

25 XML-Based Architecture-Exchange in Bauhaus

Holger Kienle, Rainer Koschke, and Erhard Pl�odereder University
of Stuttgart, Germany

The talk, given by Holger Kienle, is in a nutshell an experience report with lots of

`X' acronyms{XML, XMI, GXL, and XSLT. The talk outlines how the Bauhaus

reverse engineering system leverages XML-based technology for architecture-

interchange and how it interfaces with UML tools. The talk discusses results of

Gregor Schiele's Master Thesis \Beschreibung einer halb-automatisch abgeleit-

eten Architektur mit UML-Ausdrucksmitteln."

The talk is divided in three sections. The �rst section brie
y introduces the

Bauhaus reverse engineering tool and the concept of a resource graph. The next

section discusses three methods to export the derived system-architecture from

22

Bauhaus. The most promising export to achieve interoperability with other tools

is GXL, a standard exchange format for reengineering tools. The last section de-

scribes how we used the GXL output to realize a loose coupling between Bauhaus

and a UML tool.

The Bauhaus tool facilitates program understanding of legacy code (currently

C code only). The goal of the system is to assist the reengineer to derive the

architecture of the system under examination. The code of the system is the

only information that is employed for the reverse engineering process, since it

is the only reliable source of information. In the reverse engineering process,

the reengineer uses Bauhaus/Rigi, a graphical user interface that represents the

facts of the source code in a graph structure. The nodes of the graph represent

source-level entities (such as functions, types, and variables) as well as high-level

architectural information (such as atomic components and subsystems). The

edges of the graph describe relations between the nodes (such as calls between

functions, and sets and uses of variables). The underlying data structure of the

graph that is visualized is called the resource graph.

The reengineer can export the derived architecture (i.e., the resource graph, which

conveys the architecture) in three di�erent formats. The binary format (which

is implemented by means of the Ada input/output library) is non-portable since

it di�ers for di�erent compilers and platforms, and can even di�er for di�erent

versions of the same compiler. Hence, it is only useful (typically for a single

user) to make the resource graph persistent. Because of this de�ciency, Bauhaus

o�ers a proprietary, ASCII-based exchange format. It is human-readable, avoids

redundancy with string-sharing, and is line-oriented, which makes it is easy to

parse and write. This format is primarily used for data exchange with the Fraun-

hofer IESE group. Lastly, we support the Graph Exchange Language (GXL),

which is being developed as a cooperation of several universities. It is still under

active development and discussion. Version 1.0 of GXL has been rati�ed by the

Dagstuhl Seminar 01041. The format is based upon XML and proposed as a

standard exchange format for reengineering tools.

One of the activities within the Bauhaus project is the UML integration of

Bauhaus with a UML tool. Our motivation for providing this kind of inter-

operability is to provide a smooth introduction to Bauhaus for users that are

already familiar with UML modeling elements and know how to operate a UML

modeling tool. These users can work in their familiar environment and{in a per-

fect scenario{go back end forth between the two \worlds" of Bauhaus and UML.

Bauhaus has features that a UML tool does not posses, such as semi-automatic

analyses for recovering the system architecture, that makes it attractive for the

user to employ Bauhaus for certain tasks in the architecture recovery process.

Once the user becomes more familiar with Bauhaus, more and more tasks can be

performed in Bauhaus.

We �rst considered a tight coupling between the tools. Tight coupling means that

a change in one \world" is immediately re
ected in the other one. For example,

23

if the user deletes an element in the UML tool, this change must be immediately

re
ected in Bauhaus's resource graph. It turned out that all the UML tools we

looked at (Rational Rose, Together, and Innovator) were not suitable for this

�ne-grained coupling. For example, Together's API is unoÆcial and thus sub-

ject to changes and Innovator has only an API for its data repository. Thus, we

considered loose coupling based on an exchange format. This approach has the

distinct advantage, that potentially an arbitrary UML tool (e.g., the reengineers's

favorite one) can be used. For the actual integration, a challenge that is not ad-

dressed in the talk is the �nding of a good mapping of the system architecture

between Bauhaus and UML. These two \worlds" are quite di�erent, Bauhaus

using a resource graph (which is based on C) and UML using a graphical nota-

tion rooted in object-oriented design. The rest of the talk addresses the other

challenge, namely to realize the actual data exchange.

Stream-based exchange of models between UML tools can be achieved with XMI,

which is tool independent and based upon XML. Currently UML tools do not

fully support XMI, su�er from bugs in the implementation, and generate rather

huge output �les. On the Bauhaus side, the GXL export realizes the loose cou-

pling. The actual data exchange works as follows: The Bauhaus resource graph is

exported with GXL. A translator maps the GXL representation into XMI, which

in turn can be read in by a UML tool. The translation process cannot achieve a

one-to-one mapping. Hence, information will be lost. The reverse data exchange

from UML to Bauhaus works analogously. The reverse mapping loses information

as well. For the actual translation, two alternatives are considered. Since both

GXL and XMI are XML documents, XSLT can be employed for the transfor-

mation. We started to implement prototypical XSLT-scripts for the translation

process, but the translation had a disastrous performance. The other alterna-

tive employs the Xerces XML-library for Java, which provides APIs for parsing

XML. The actual translation is now coded in Java. GXL is parsed with the

Xerces library and an in-memory representation of the resource graph in Java

is built. This representation is translated in-memory to the corresponding UML

model and �nally written out as XMI �le. The performance turned out to be

acceptable, however, we had to use SAX (the low-level API) instead of DOM (the

high-level API). DOM constructs the whole parse tree of the XML document in

memory, which turned out to be too huge for our input �les.

We hope to employ GXL to exchange architecture data with other reengineering

tools in the future. A �rst step to simplify this process is the de�nition of standard

schemas for GXL. An e�ort to de�ne low-level, mid-level, and high-level schemas

is currently underway.

Two main conclusions can be drawn from our experiences. Firstly, GXL proofed

its usefulness for tool integration. Secondly, XMI-based data-exchange is feasible

even though the current UML tools are not yet mature.

24

26 Low Level Schema breakout session

Timothy Lethbridge, Rudolf Ferenc, et al.

This breakout session tried to agree upon a working schedule to achieve a common

C++ schema at AST (abstract syntax tree) level. A brief overview over the results

was given at the end of the seminar.

27 Rati�cation of GXL 1.0

Susan Elliot Sim et al.

As one big and important result of this Dagstuhl Seminar on Interoperability

of Reverse Engineering Tools, the reverse engineering community agreed upon

the GXL format (Graph eXchange Language) as standard interchange format.

Version 1.0 of GXL was rati�ed by the participants. For more information, please

refer to the GXL web site at http://www.gupro.de/GXL

25

