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Kleene algebra (KA) [23, 16, 24] is an algebraic system for calculating with se-

quential composition, choice and �nite iteration. It was �rst introduced by Kleene

in 1956 and further developed by Conway in 1971. It has reappeared in many

contexts in mathematics and computer science. Its classical application has been

within the theory of formal languages, where it is one of many equivalent ap-

proaches to the description of regular languages.

Within the �eld of eÆcient algorithms it has been applied to path problems on

graphs (being closely related to the algebra of closed semirings [2]), to convex

hull algorithms and formal treatment of pointer algorithms [5, 6, 10, 14, 12].

In compiler construction, Kleene algebra can be used to prove the correctness of

optimization techniques for loop constructs [25].

More recently, Kleene algebra has been successfully applied to the semantic de-

scription of imperative programs with non-deterministic choice [4]. It covers both

angelic and demonic composition and choice [17, 18].

Moreover, it allows a simple algebraic incorporation of assertions [21] as well as

modal and dynamic logic [31, 26]. Also, there are close relations with interval

and temporal logic [29, 22], the duration calculus [33, 34] and timed automata

[3]. Further applications concern switching theory [30].

Finally, a particular form of Kleene algebra corresponds to quantales with unit

elements [32, 1, 11]. Hence there is a correspondence with linear logic.

Extensions of Kleene algebra deal with in�nite iteration. They have been used in

the description and veri�cation of protocols and in proofs about concurrent sys-

tems in general [15]. Related systems are iteration theories [9], the computation

calculus [19] and the theory of !-languages. Dropping one of the distributivity

requirements for Kleene algebras leads to a system that is close to process alge-

bras such as ACP or �CRL [7, 20]. Finally, there are close connections to network

algebra [8, 13].

These tracks of research have so far been undertaken in a rather isolated manner.

The aim of this seminar was to bring the researchers from these tracks together

for fruitful interaction and for helping the subject to more public visibility. To
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our knowledge, this was the �rst international sysmposion dedicated to the ap-

plications of Kleene algebra.

Compared with other algebraic approaches to semantics, such as relation algebra

or sequential calculus, Kleene algebra and its relatives enjoy a particularly sim-

ple axiomatisation, since they do not use a notion of (pseudo-)converse and the

corresponding axioms.

Since its basic features and rules are known even to beginner students of computer

science, Kleene algebra will be more easily accepted than other formal systems

and thus may serve as an e�ective vehicle for formal treatment of various subjects

in computer science.
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Part I

Basic Theory

1 Factor Theory Revisited

Roland Backhouse, University of Nottingham

Conway's book "Regular algebra and �nite machines" has been mentioned fre-

quently at this seminar. However, one important contribution in his book that

has not been mentioned is his study of so-called \factors" of a regular language.

The goal of this talk is to bring this to everyone's attention. Conway's \fac-

tors" are called \residuals" in relation algebra and \weakest prespeci�cations" in

the programming literature; the fact that the same concept is known by various

names attests to its importance. Conway's contribution was to show that the fac-

tors of a regular language can be organised in a matrix, which he called the factor

matrix. This matrix has a number of special properties { for example, the ma-

trix is reexive and transitive. Conway's account of the factor matrix is however

very wordy, making it diÆcult to read and check. In one case, the unfortunate

omission of the word \not" in a sentence caused me a great deal of confusion

when �rst reading his text!! In this talk, I show how factors are formulated using

the now standard Galois connection de�ning the residuals of a relation. This

allows one to give precise, calculational formulations of the factor matrix. I also

mention the relation between the factor \graph" and the Knuth, Morris, Pratt

string matching algorithm (see Backhouse and Lutz, ICALP 1977). Prompted by

an earlier talk I show how factors are used to formulate the well-foundedness of

a relation. This formulation is used to present a calculational proof of Newman's

lemma (see Doornbos, Backhouse and Van der Woude, TCS, 1997).

2 Omega Algebra: the good, the bad, and the

ugly

Ernie Cohen, Telcordia Technologies

We describe omega algebra, an extension of Kleene algebra to omega-regular

expressions. The omega algebra axioms are complete for the standard equational

theory of omega-regular expressions, and have proved to be an e�ective tool for

reasoning about total correctness of asynchronous programs. Nevertheless, in
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contrast to the Kleene case, it's not clear that we have the "right" axioms:

� There appear to be useful theorems from relational algebra that are not

provable in omega algebra. Examples include theorems giving conditions

for well-foundedness of the union of well-founded relations, and rules for

backward data re�nement.

� A suitable theory for probabilistic programs seems to require a binary

(rather than unary) omega operator.

3 Automata on Guarded Strings

Dexter Kozen, Cornell University

Guarded strings were introduced by Kozen and Smith [1996] as a model for Kleene

algebra with tests (KAT). Guarded strings are like ordinary strings, except that

between each letter there is an atom of a free Boolean algebra. The regular sets of

guarded strings play the same role in KAT as the regular sets of ordinary strings

do in Kleene algebra.

Recently we have found guarded strings useful in other contexts. In a recent

paper, we developed a complete Gentzen-style sequent calculus for partial cor-

rectness and conjectured that the decision problem for this system was PSPACE-

complete. We were able to verify this conjecture using guarded strings. Our proof

required the development the elementary theory of �nite automata on guarded

strings, a generalization of the theory of �nite automata on ordinary strings.

In this talk I will introduce automata on guarded strings and give several basic

constructions, including determinization, state minimization, and an analog of

Kleene's theorem, which are generalizations of the analogous results in classical

automata theory. I will show that a central result of the theory of BDDs (Boolean

decision diagrams), namely that reduced ordered BDDs are unique, is a special

case of the Myhill-Nerode theorem for a class of automata on guarded strings.
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4 A complete set of rational identities

Daniel Krob, Universit�e Paris 7 Denis Diderot

A rational identity is a pair (E; F ) of two rational expressions whose interpre-

tations give two identical languages. A set of rational identities is said to be

complete i� one can deduce from it every possible rational identity using only

deductions involving usual rational manipulations and substitutions.

We show how to construct a complete set of rational identities consisting of the

two identities

(M) (ab)� = 1 + a(ba)�b

(S) (a+ b)� = a
�(ba�)�

and of a family of identities indexed by all the symmetric groups. This system

was conjectured to be complete by Conway.

5 Inductive �-Semirings

Zoltan �Esik, University of Szeged
(Joint work with Werner Kuich)

One of the most well-known induction principles in computer science is the �xed

point induction rule, or least pre-�xed point rule. Inductive �-semirings are par-

tially ordered semirings equipped with a star operation satisfying the �xed point

equation and the �xed point induction rule for linear terms. Inductive �-semirings

are extensions of continuous semirings and the Kleene algebras of Conway and

Kozen.

We develop, in a systematic way, the rudiments of the theory of inductive �-

semirings in relation to automata, languages and power series. In particular, we

prove that if S is an inductive �-semiring, then so is the semiring of matrices

S
n�n, for any integer n � 0, and that if S is an inductive �-semiring, then

so is any semiring of power series ShhA�ii. As shown by Kozen, the dual of

an inductive �-semiring may not be inductive. In contrast, we show that the

dual of an iteration semiring is an iteration semiring. Kuich proved a general

Kleene theorem for continuous semirings, and Bloom and �Esik proved a Kleene

theorem for all Conway semirings. Since any inductive �-semiring is a Conway

semiring and an iteration semiring, as we show, there results a Kleene theorem

applicable to all inductive �-semirings. We also describe the structure of the
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initial inductive �-semiring and conjecture that any free inductive �-semiring may

be given as a semiring of rational power series with coeÆcients in the initial

inductive �-semiring. We relate this conjecture to recent axiomatization results

on the equational theory of the regular sets.

6 On some particular Conway semirings

Werner Kuich, Technische Universit�at Wien

(Joint work with Zoltan �Esik)

We consider locally closed semirings and rationally additive semirings. A semiring

S is called locally closed if for all a 2 S there is some integer k such that 1+ a+

: : :+ a
k = 1+ a+ : : :+ a

k+1. In any locally closed semiring we may de�ne a star

operation a 7! a
�, where a� is the above �nite sum. We prove that when S is

locally closed and commutative, then S is a Conway semiring and, moreover, an

iteration semiring.

Rationally additive semirings are a generalization of complete and continuous

semirings. We prove that every rationally additive semiring is a Conway semiring

and, moreover, an iteration semiring. We then characterize the semirings of

rational power series with coeÆcients in N1, the semiring of natural numbers

equipped with a top element, as the free rationally additive semirings.

7 The Greibach-Normal-Form Theorem in Con-

tinuous Kleenean Algebras

Hans Leiss, CIS - Universit�at M�unchen

The well-known Greibach-Normal-Form theorem for context-free grammars can

be understood as a theorem about systems of polynomial inequations

xi � pi(x1; :::; xn); (i = 1; :::; n);

where the unknowns xi correspond to the syntactical categories of the grammar

and the polynomials pi describe the syntactic constructions of expressions of

categories xi.
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We �rst showed the following

Theorem: Let KA = (K;+; 0; ; ; 1; �) be a continuous Kleenean algebra and let

A be a subset of `atoms' of K in the sense that no sum of products of elements

of A is greater or equal to 1. Then for each system

x1 � p1(x1; :::; xm); :::; xm � pm(x1; :::; xm) (1)

of polynomial inequations, in which each monomial of a polynomial pi is a product

of variables x1; :::; xm and atoms a in A, but neither equal to 1 nor to some xj,

there is another system

x1 � q1(x1; :::; xm; :::; xk); :::; xk � qk(x1; :::; xm; :::; xk) (2)

of polynomial inequations, such that

� the least solutions of (1) and (2) in KA agree in x1; :::; xm, and k is at most

m(m + 1),

� each monomial of the polynomials q1; :::; qk is a product of variables and

atoms whose leftmost factor is an atom,

Proof sketch: The continuity assumption on KA is used to ensure the existence

of least pre-�xed points. (1) can be written as a matrix inequation

X � X;R(X) + T (X); (3)

where X;R(X) collects the monomials whose leading factor is a variable and

T (X) collects those whose leading factor is an atom. In the Kleenean algebra of

matrices over KA, the least solutions of (3) and of

X � T (X);R(X)� (4)

agree, where R(X)� is the iteration matrix of R(X). But since R(X)� is the

least solution of Y � R(X);Y + 1, the least solution of (1) coincides with the

X-components of the least solution of the system

X � T (X);Y; Y � R(X);Y + 1: (5)

Essentially, (5) amounts to (2): �rst, in the polynomial inequations correspond-

ing to X � T (X);Y , the monomials have atomic leading factors. Second,

since no monomial of (1) was a variable, the matrix R(X) has no entries 1,

so leading factors of monomials in the polynomial inequations corresponding to

Y � R(X);Y + 1 are atoms or variables among X; the latter can be replaced

by their associated polynomial of X � T (X);Y whose monomials have atoms as

leading factors.

Remark: The unit matrix 1 can be avoided by considering instead the system
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X � T (X);Y + T (X); Y � R(X);Y +R(X); (6)

where Y corresponds to R(X);R(X)�. For context-free grammars, this means

that epsilon-rules do not occur in the grammar in Greibach-Normal-Form.

Note that the left-recursion of (3) is replaced by a right-recursion in (5). The

resulting algorithm is quadratic in the grammar size and similar to the one of

Rosenkrantz 1967, but instead of using power series of matrices, we use properties

of least pre-�xed points.

The second part of the talk showed that the continuity assumption can be weak-

ened to assumptions about existence of least pre-�xed points. In the language of

semirings extended by a least-�xed-point operator �, the essential transformation

(�X:(X;R(X) + T (X)); :::) = �(X; Y ):(T (X);Y;R(X);Y + 1) (7)

can be proven in a formal theory of `Kleene algebra with recursion', axiomatized

by

� axioms for idempotent semirings in 0,1,+,; ,

� Park's axiom of pre-�xed point induction,

� axioms for a basic connection between left- and right-recursion:

8a; b : �X:(X; a+ b) = b; (�X:(a;X + 1))

�X:(a;X + b) = (�X:(X; a+ 1)); b

Using a
� := �X:(a;X + 1), this theory embeds D.Kozen's theory of Kleenean

algebra.

8 Kleene-ing Up Semantics

Bernhard M�oller, Univerit�at Augsburg
(Partially joint work with Jules Desharnais)

Kleene algebras provide a convenient and powerful algebraic axiomatisation of a

complete lattice that is endowed with a sequential composition operation. The

particular kind of Kleene algebras we are considering is equivalent to Boolean

quantales. Models include formal languages under concatenation, relations under
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standard composition, sets of graph paths under path concatenation and sets of

streams under concatenation.

The least and greatest �xpoint operators of a complete lattice allow de�nitions

of the �nite and in�nite iteration operators � and !, resp.

Elements of Kleene algebras can be used, among others, as abstractions of the

input-output semantics of nondeterministic programs or as models for the as-

sociation of pointers with their target objects. In the �rst case, one seeks to

distinguish the subclass of elements that correspond to deterministic programs.

In the second case one is only interested in functional correspondences, since it

does not make sense for a pointer to point to two di�erent objects.

We discuss several candidate notions of determinacy and clarify their relation-

ship. Some characterizations that are equivalent in the case where the underlying

Kleene algebra is an (abstract) relation algebra are not equivalent for general

Kleene algebras.

In relational semantics, the input-output semantics of a program is a relation on

its set of states. We generalize this in considering elements of Kleene algebras

as semantical values. In a nondeterministic context, the demonic semantics is

calculated by considering the worst behavior of the program. In this paper, we

concentrate on while loops. While calculating the semantics of a loop is diÆcult,

showing the correctness of any candidate abstraction is much easier. For deter-

ministic programs, Mills has described a checking method known as the while

statement veri�cation rule. A corresponding programming theorem for nondeter-

ministic iterative constructs is proposed, proved and applied to an example. This

theorem can be considered as a generalization of the while statement veri�cation

rule to nondeterministic loops.

In standard Kleene algebra it is assumed that the composition operation is uni-

versally disjunctive in both arguments. This entails monotonicity and strictness

w.r.t. the least element 0 that plays the role of ? in denotational semantics.

However, full strictness does not make sense when one wants to give an algebraic

account of systems with lazy evaluation. Therefore we study a \one-sided" vari-

ant of KAs in which composition is strict in one argument only. This treatment

�ts well with systems such as the calculus of �nite and in�nite streams which is

also used in or R. Dijkstra's computation calculus.

There is some choice in what to postulate for the other argument. Whereas

Dijkstra stipulates positive disjunctivity, we investigate how far one gets if only

monotonicity is required. The reason is that we want to enable a connection to

process algebra. There only one of the distributivity laws for composition over

choice is postulated to preserve the temporal succession of choices.
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9 A Compositional and Complete Axiom Sys-

tem for Interval Temporal Logic

Ben C. Moszkowski, De Montford University Leicester

Interval Temporal Logic (ITL) is a temporal logic which includes a basic construct

for the sequential composition of two formulas as well as an analog of Kleene star.

Within ITL one can express both �nite-state automata and regular expressions.

Its notation makes it suitable for logic-based modular reasoning involving periods

of time, re�nement and assumptions and commitments. Various conventional

imperative programming language constructs can be directly expressed in ITL

and executable subsets of ITL are available. In addition, operators for projecting

between di�erent levels of time granularity exist (although not considered here).

Zhou Chaochen, Hoare and Ravn have developed a real-time ITL extension called

the Duration Calculus for hybrid systems.

After introducing ITL, our presentation considers two aspects of ITL's theory.

The �rst is a compositional methodology for speci�cation and proof using ITL.

We show how assumptions and commitments based on �xpoints of various ITL

operators provide a exible way to modularly reason about safety and liveness.

In addition, some techniques are described for compositionally transforming and

re�ning ITL speci�cations.

The remainder of our presentation deals with a complete axiom system for ITL.

Prior to our work, no one had proved the completeness of a relatively simple ITL

deductive system supporting in�nite time and permitting in�nite sequential iter-

ation comparable to omega-regular expressions. We have developed a complete

axiomatization for such a version of quanti�ed ITL over �nite domains and can

show completeness by representing �nite-state automata in ITL and then trans-

lating ITL formulas into them. The proof of completeness illustrates some nice

links between automata, regular expressions and temporal logics.

10 Iteration in Process Algebra

Alban Ponse, University of Amsterdam

In this talk I provide an overview of the extension of ACP-style process algebra

with various operations that model some form of iteration.

Process algebra is an algebraic framework that aims to support speci�cation and

analysis of concurrent processes. It comprises primitives for parallelism and syn-
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chronization. A typical point of departure in process algebra is the distinction

between internal and external behavior, which allows for veri�cation by charac-

terization of external behavior (by applying abstraction", i.e., renaming internal

actions to the silent step TAU). In this way, the parallel composition of a num-

ber of communicating components may give rise to a simple external behavior

that indicates that the parallel "implementation" equals the speci�cation of its

external behavior.

In process algebra, a (potentially) in�nite behavior is usually represented as the

solution of a system of guarded recursive equations. An alternative approach is

to extend process algebra with operations that model some form of recursion. In

1984, Milner was the �rst to do so: he considered the Kleene star operation in the

context of process algebra, and raised a few questions concerning expressiveness

and axiomatizability in bisimulation semantics. In 1993, various forms of iteration

were added to ACP-style process algebra, notably (the original, binary version

of) the Kleene star which does not presuppose a special constant SKIP (or 1, or

epsilon) and is therefore easier to combine with parallel operators.

Further contents of the talk:

� An overview of some basic questions that emerged, mainly about axiom-

atizability and expressivity in bisimulation semantics, and of some of the

answers that were found;

� The role of some typical special constants (DELTA for deadlock, SKIP, and

TAU) in the context of iteration;

� Explanation of a general fairness principle in the setting with iteration (i.e.,

TAU(TAU * x) = TAU x);

� An overview of variations of the Kleene star that were proposed in the pro-

cess algebra literature (and of associated basic results), among which some

non-regular operations (the latter leading to much stronger expressiveness

results).

Conclusion: Iterative operations in process algebra provide a relatively simple

introduction to the speci�cation of (potentially) in�nite behavior; and - perhaps

most relevant at this particular Seminar - should be related to (more) standard

approaches in the setting of "Kleene Algebra".
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11 Kleene algebra of two dimensional words - a

model for interactive systems

Gheorghe Stefanescu, University of Bucharest

The talk focuses on an extension of Kleene algebra to cope with concurrent object-

oriented systems. It is part of the MixNA (Mixed Network Algebra) project

aiming to get an algebraic formalism for such systems; see Part IV of the recent

book: G. Stefanescu, "Network Algebra", Springer-Verlag, London, 2000 for some

more informations on this model.

Two-dimensional (or planar) words are proposed as an abstraction for the inter-

action running patterns of concurrent object-oriented systems. They come with a

natural algebraic structure which extend the usual Kleene algebra with a new set

of (horizontal) identity/composition/star operations. These new operations are

used to model objects' interaction. We present 2-dimensional regular expressions,

2-dimensional grammars and 2-dimensional automata as devices for representing

languages of planar words and give some hints on applying them to concurrent

object-oriented systems.

Part II

Applications

12 Application of Dynamic Logic to Complexity

of Path Constraints

Natasha Alechina, University of Nottingham
(Joint work with Stephane Demri and Maarten de Rijke)

Path constraints were introduced by Abiteboul and Vianu [PODS'97] as a means

to optimise queries over data represented as an edge-labelled graph. A path

inclusion constraint says that all vertices which are reachable from the root of

the graph by a p-path are also reachable by a q-path, where p and q are regular

expressions built from edge labels, wild card #, ;,+,*. Abiteboul and Vianu

showed that the implication problem for path inclusion constraints (whether a

set of path inclusion constraints implies another path inclusion constraint) is

decidable in EXPSPACE.
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In this talk, we introduce a new variant of propositional dynamic logic, PDLpath,

which includes a wild card, converse operator and a nominal "root". We show

that the satis�ability problem for PDLpath is EXPTIME-complete, by an easy

adaptation of known results [de Giacomo]. Path inclusion constraints can be

expressed in PDL
path as [p]hq^i root. Backward constraints ("from any vertex

reachable by a p-path from the root, we can come back by a q-path") are express-

ible by [p]hq^iroot. This gives us a new tighter EXPTIME upper bound on the

complexity of the implication problem for inclusion and backward constraints.

A PSPACE lower bound follows from the known results for regular expressions.

13 Applications of regular algebra to language

processing problems

Roland Backhouse, University of Nottingham

Many functions on context-free languages can be expressed in the form of the

least �xed point of a function whose de�nition mimics the grammar of the given

language. Examples include the function returning the length of the shortest word

in a language, and the function returning the smallest number of edit operations

required to transform a given word into a word in a language. This paper presents

the basic theory that explains when a function on a context-free language can be

de�ned in this way. It is shown how the theory can be applied in a methodology

for programming the evaluation of such functions.

14 Reading a Little Kleene Algebra Calculation

Kieran Clenaghan, University of York

Kleene algebra provides for (among other things) the manipulation of expressions

involving transitive closure. It therefore has applications in the calculation of

algorithms from speci�cations based on transitive closure.

In this talk we give a reading of a simple example calculation, that of Dijkstra's

shortest paths algorithm. This is based on work by R. Backhouse and others.

The point of the talk is to illustrate how the calculation can be carried out, and

hopefully followed, in full detail on a couple of blackboards. The intention is to
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show the compactness and e�ectiveness of the algebra, whilst at the same time

paying attention to the readability of the calculation.

The talk prompts the obvious question: can the algebra be applied to a variety

of interesting algorithm calculations? B. M�oller and others have shown that

it can, but there is scope for much more investigation. A particular question

presents itself: can the calculation be generalised "nicely" to give a derivation of

Knuth's generalisation of Dijkstra's algorithm? The generalistion is to �nd best

cost trees in a hypergraph (paths become trees when a graph is generalised to a

hypergraph).

15 System Support for Kleene Algebras

Thorsten Ehm, Universit�at Augsburg

This talk gives a short overview of two systems we are developing to assist our

daily work with Kleene algebras. The �rst one is a library consisting of a set of

Hugs functions used to generate atomic Kleene algebras. These are applied to

test if formulas and equations using Kleene algebraic operations hold. This is no

proof but may { if the equation passes the test { con�rm the researcher of the

correctness of his assumption. On the otherhand { if the test fails { one can get

information what went wrong and possibly correct the equation. Additionally

there are also functions for parsing equations and testing them on manually

typed-in algebras. The talk gives a short overview which problems arise due

to the immense amount of combination possibilities and proposes improvements.

The second part closes the gap between these tests and a formally correct proof

by introducing a proof system for several di�erent axiomatizations of Kleene

algebras. This tool is based on the KIV system, a formal proof system mainly

used for software speci�cation and veri�cation. Using this, proofs in the built-in

algebras can be done in full detail and rigor.
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16 Kleene Algebra with Tests and Compiler Op-

timization: Veri�cation of Cache Blocking in

LU Decomposition with Pivoting

Dexter Kozen, Cornell University

Kleene algebra with tests (KAT), introduced by the author [1997], combines pro-

grams and assertions in a purely equational system. A Kleene algebra with tests

is a Kleene algebra with an embedded Boolean subalgebra. KAT strictly sub-

sumes propositional Hoare logic, is of no greater complexity, and is deductively

complete over relational models. Moreover, KAT requires nothing beyond clas-

sical equational logic, in contrast to Hoare logic, which requires a specialized

syntax involving partial correctness assertions.

KAT has been applied successfully in various low-level veri�cation tasks involving

communication protocols, basic safety analysis, concurrency control, and local

compiler optimizations. A useful feature of KAT in this regard is its ability

to accommodate certain basic equational assumptions regarding the interaction

of atomic instructions. This feature makes KAT ideal for reasoning about the

correctness of low-level code transformations.

In this talk I will report on the use of KAT in a substantial compiler veri�cation

task. Mateev, Menon, and Pingali [2000] have described a series of source-level

compiler transformations for automatic cache blocking in LU decomposition with

partial pivoting. These transformations are used primarily in large applications

to enhance locality of reference. In attempting to verify the correctness of these

transformations, Mateev, Menon, and Pingali observed that the standard ap-

proach involving symbolic dependence analysis is inadequate. One major compli-

cation is that, although the transformations are semantically correct, they do not

preserve de�nition-use dependencies. This led them to consider other approaches

that exploited knowledge of the semantics of the basic operations. They pro-

posed a new system called "fractal symbolic analysis," in which programs are

repeatedly simpli�ed until symbolic analysis becomes feasible. The semantics

is not preserved in the simpli�cation process, but the equality of the simpli�ed

programs implies the equality of the original programs.

In this talk I will demonstrate that the veri�cation task studied by Mateev,

Menon, and Pingali can be adequately handled by KAT in a purely equational

way with no extraneous constructs. I will introduce four new basic rules governing

the interaction of atomic programs and tests. These rules are schematic in nature

and play roughly the same role as the assignment rule in Hoare logic, but are

more versatile.
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17 Calculating With Pointer Structures

Bernhard M�oller, Universit�at Augsburg

In calculational program design one derives implementations from speci�cations

using semantics-preserving deduction rules. The aim of modern algebraic ap-

proaches is to make both speci�cation and calculation more concise and perspic-

uous by compacting logic into algebra as much as possible.

We present such an algebraic approach to the calculation of programs with pointer

structures. It is based on the particular Kleene algebra of relations and partial

maps. However, the basic de�nitions for the selective updating operation and

reachability questions can even be given for general Kleene algebras.

We investigate suÆcient criteria for preservation of substructures under selective

updating. The approach is illustrated with some simple examples such as list

concatenation and reversal, tree rotation and search tree insertion and deletion.

The approach covers also cyclic structures like cyclic lists or threaded trees.

18 Church-Rosser Proofs in Kleene Algebra

Georg Struth, Universit�at Freiburg

We apply Kozen's Kleene algebra to proving Church-Rosser theorems for non-

symmetric transitive relations, quasiorderings and equations. The approach nicely

balances algebraic conciseness, expressive con�nement and computational power.

Speci�cations and proofs are simple, elegant and readable. Proofs are based on

simple natural properties of the regular operations and algebraically reconstruct

precisely the standard diagrammatic arguments. By de�nition of the star opera-

tion, induction is replaced by �xed point computation and thereby deduction by

mere calculation. Large parts of proofs are even amenable to automation, since

Kleene algebra is complete for the algebra of regular events. This makes the

approach well-suited for mechanization. Our claim of simplicity is formally sup-

ported by short and straightforward speci�cations and highly automatic proofs

with the Isabelle proof checker.

The step from Church-Rosser theorems to Church-Rosser theorems modulo a

congruence or Newman's lemma leads beyond Kleene algebra. Using an omega-

operation and allegorial tabulation techniques, we can express and derive the

obligate well-foundedness assumptions and avoid the usual invention of complex

induction orderings and measures in proofs. Proving Newman's lemma in other

variants of Kleene algebra should be of general interest for analyzing systems
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with in�nite behaviour.

19 Algebraic Reasoning about Guarded Loops

Joakim von Wright, Turku Center for Computer Science
(Based on joint work with Ralph-Johan Back)

It is well known that universally conjunctive predicate transformers are isomor-

phic to relations over the underlying state space and thus form a model for

classical Kleene algebra. In a total correctness framework, universally conjunc-

tive predicate transformers model programs that always terminate, with + as

demonic choice (meet) and 0 as miracle (top).

In order to model possibly nonterminating programs, the larger class of conjunc-

tive predicate transformers is considered (those that distribute over nonempty

meets of predicates). By introducing a strong iteration operator which is a least

�xpoint (where the Kleene star is a greatest �xpoint) we can model nontermina-

tion, but we have to give up the axiom x0=0.

By introducing special guard elements (also known as tests or predicates) we

can model two notions of correctness for nonterminating programs and we can

also model while-loops and more general guarded loops, and verify numerous

transformation rules for such loops, preserving total correctness.

We can go one step further and model interaction. For this, we extend our

analysis to a framework of monotonic predicate transformers, with both angelic

and demonic nondeterminism. We weaken the distributivity axiom x(y+z) =

xy+xz to an inequality, and the monotonic predicate transformers become a

model. Thus, we can verify transformation rules that hold for interactive systems.
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