Dagstuhl Report No. 300

Deduction
Ulrich Furbach Harald Ganzinger
Universitat Koblenz-Landau ~ Max-Planck-Institut fiir Informatik
Fachbereich Informatik Programming Logics Group
Rheinau 1 Im Stadtwald
56075 Koblenz D-66123 Saarbriicken
Germany Germany
E-mail: uli@uni-koblenz.de E-mail: hg@mpi-sb.mpg.de
Ryuzo Hasegawa Deepak Kapur
Department of Electronics University of New Mexico
Kyushu University 36, Dept. of Computer Science
Fukuoka 812, Farris Eng. Center # 339
Japan NM87131 Albuquerque, USA

E-mail: hasegawa@ele.kyuhsu-u.ac.jp E-mail: kapur@cs.unm.edu

This report! covers the seminar no. 01101 on Deduction, held at Dagstuhl,
Germany during March 4-March 9, 2001. This seminar was organized by
U. Furbach (Koblenz, Germany), H. Ganzinger (Saarbriicken, Germany) and
D. Kapur (Albuquerque, USA). It brought together about 50 researchers from
various countries.

Dagstuhl, a place being developed exclusively for research activities in
Computer Science, provides an excellent atmosphere for researchers to meet
and exchange ideas. During this seminar we had 40 talks and a discussion
session on an ‘open source software repository’.

LCompiled by Peter Baumgartner and Jan Murray, Universitit Koblenz-Landau.

Contents

1 A Note from the Organizers 4
2 Abstracts 5
Alexandre Riazanov, Andrei Voronkov: Path-indexing with database
joins for efficient retrieval of instances and backward subsump-
72 5
Jirgen Avenhaus, B. Lochner: Redundancy Elimination in Equa-
tional Theorem Proving 6
Brigitte Pientka: Termination and Reduction Checking for Higher-
Order Logic Programs 6
Stefan Berghofer: Fzecuting Higher Order Logic 7
David A. Plaisted: Elements of Theorem Proving Intelligence 7
Maria Paola Bonacina: On the representation of search spaces in
theorem proving: from forward to backward reasoning 8

Adnan Yahya (joint work with Donald Loveland): Incorporating
Bidirectional Relevancy into Model Generation Theorem Provers 9

Katsumi Inoue (joint work with Koji Iwanuma, Takashi Matsuda,
Hiromasa Haneda, and Ken Satoh): Incorporating Lemmas

into Consequence-finding Procedure SOL 9
Manfred Kerber (joint work with Mateja Jamnik and Christoph

Benzmiiller): Learning Methods to Prove Theorems 9
Renate A. Schmidt and Ullrich Hustadt: Deciding Fluted Logic with

Resolution 10
Hans de Nivelle: Redundancy Checking 10
David Basin: Deriving and Applying Program Synthesis Calculi . . 11
Deepak Kapur (joint work with M. Subramaniam and J. Giesl):

Induction and Decision Procedures 11
Ian Horrocks: Description Logics: Theory and Practice 12
Christopher Lynch and Barbara Morawska: FE-unification: Com-

pleteness, Decidability, Complexity 12
Jeremy E. Dawson and Rajeev Goré: Formalising The Proof Theory

of Display Calculi in Logical Frameworks 13

Reinhold Letz: A Decision Procedure for Quantified Boolean Formulas 13
Peter Baumgartner: Deductive Knowledge Management for Person-
alized Documents L 14
Jorg Siekmann, Erika Melis: DEDUCTION and EDUCATION . . 15
Johann Schumann (joint work with Bernd Fischer): AutoBayes: A
System for the Automatic Synthesis of Data Analysis Programs 15
Jirgen Giesl: Process Verification using Dependency Pairs 16

Reiner Hahnle: The KeY Approach: Integrating Object Oriented

Design and Formal Verification 17
Bernhard Beckert: A Program Logic for the Verification of Java
Card Programs 17

Olga Shumsky Matlin (joint work with L. J. Henschen): Unified
Framework for Simulation, Verification, and Testing of For-

mal Specifications 18
Paliath Narendran: A decision Procedure for the Theory of Unary

TDO o o e e e e e e e e 18
Michael Kohlhase: Representation, Administration, and Distribu-

tion of Mathematical Knowledge in the Internet Era 18
David McAllester (joint work with Harald Ganzinger): Meta-Complezity

Theorems e 19
Michael Lowry: Synthesis of verifiably correct code for avionics. . . 19
Fabio Massacci: Model Checking is easier than deduction, isn’t it?

Actually not!.o 19
Hans-Jiirgen Ohlbach: Description Logics and Arithmetics 20
Robert Nieuwenhuis: New Ideas on Term Indexing 21

Mitsuru Ishizuka, Yutaka Matsuo and Helmut Prendinger: Polynomzial-
time Cost-based Hypothetical Reasoning: Propositional and

Predicate Logic Cases 21
Kai Briinnler, Paola Bruscoli, Alessio Guglielmi, Steffen Holldobler,

Lutz Straburger: The Calculus of Structures 22
Uwe Waldmann: Superposition and Chaining for Totally Ordered

Divisible Abelian Groups 23
Terrence Swift: Complezity of Logic Programming Approaches to

Model Checking 23
Dieter Hutter: Annotated Reasoning 24
Martin Giese: Incremental Closure of Free Variable Tableaux 25
Natarajan Shankar: Deduction, Exploration and Abstraction 25

Eric Deplagne, Claude Kirchner: Induction as Deduction Modulo . . 25
Christoph Walther: Symbolic Evaluation and the Use of Lemmas

in the \/e'r"leunSystem 26
Manfred Schmidt-Schauss: Stratified Context Unification is in PSPACE 26
Ulrich Furbach and Rajeev Goré: Modal Normal Form Tableaux . . 26
Alexander Leitsch (joint work with Gernot Salzer and Andrei Voronkov):

Meta-Inference in Krom-Horn Logic, an Application to the de-

ciston problem 27

1 A Note from the Organizers

Logic has become a prominent formal language and formalism for all of com-
puter science. It serves in many applications such as in problem specifica-
tion, program development, program transformation, program verification,
hardware design and verification, consistency checking of databases, theo-
rem proving, expert systems, logic programming, and so on and so forth. Its
strength derives from the universality of the language as well as from the fun-
damental logical operations and relations. Logical manipulations as needed
in all these applications are realized by mechanisms developed in the field of
deduction which has produced a variety of techniques of great importance in
all these applications.

During the last years successful research has led to the development of
high performance deduction systems, and to laying a broad basis for various
applications. This success of deduction can be observed within the interna-
tional Al and computer science scene as well. Deduction systems recently
have achieved considerable successes and even public press: it was a first-
order theorem prover which first proved the Robbins algebra conjecture and
even reached the New York Times Science section. But not only in proofing
mathematical theorems, also in various other disciplines of AI, automated
deduction made substantial progress. In planning, for example, it turned out
that propositional theorem provers are able to outperform special purpose
planning systems. This is remarkable, since it was considered folklore that
planning requires specialized algorithms, which was only recently disproved
by the development of propositional satisfiability testing methods which can
now handle much larger planning problem sizes. A very similar development
can be observed in the field of model based diagnosis.

It is the idea of this Dagstuhl-Seminar to bring together leading scientists
in the area of Deduction from all over the world. By all participants the
previous seminars in 1993, 1995, 1997 and 1999 were unanimously considered
great successes. The Dagstuhl-Seminar Reports No. 58, 110, 170 and 232 of
these seminars, together with this one, reflect the development of the entire
discipline over the last 10 years.?

Ulrich Furbach, Harald Ganzinger, Ryuzo Hasegawa, Deepak Kapur

2They are still available in the Dagstuhl Office or on the Dagstuhl Web-pages.

4

2 Abstracts

Path-indexing with database joins for efficient retrieval of
instances and backward subsumption

Alexandre Riazanov, Andrei Voronkov, University of Manchester, Great
Britain

If we represent a term as a tree with nodes marked by functional symbols,
and edges marked by the corresponding argument numbers, any path in this
tree is called a path in the original term. The main idea behind path-indexing
for retrieving instances of a given term from a given set of terms is as follows:
every instance of a query term g must contain all the paths that are present
in ¢. The standard path-indexing technique ([1],[2],[3]) for instance retrieval
does not provide perfect filtering: it simply filters out those terms from the
set of indexed terms that do not contain all the necessary paths and then we
have to perform the matching test on all the remaining terms.

We present an indexing technique for instance retrieval based on path-
indexing and database joins. When a term is integrated into the index, its
subterms are stored in special tables, called path relations, corresponding
to paths in which these subterms occur. This allows us to check equality
subterms assigned to different occurences of the same variable in the query
term. This check is expressed as database-style joins on the corresponding
path relations. This makes our indexing technique a perfect filter. Moreover,
we show how the same technique can be used as a very efficient perfect
filter for backward subsumption. This is done by simply adding fields in the
path relations, containing numbers of the literals in the indexed clauses, and
performing joins on these fields. And, finally, we show that our technique can
be easily modified for efficient specialised treatment of symmetric predicates
and commutative functions.

The proposed indexing technique for backward subsumption has been
implemented in our theorem prover Vampire [5]. In our early experiments
we discovered that the naive representation of path relations as sorted linked
lists leads to unacceptably bad performance. Fortunately, there is a data
structure called skip-lists ([4]) that is ideally suited for this task. With a few
related optimisations, this resulted in a very efficient implementation.

References

[1] M. Stickel. The path indexing method for indexing terms. Technical
Report 473, Artificial Intelligence Center, SRI International, Menlo Park,
CA, 1989.

[2] P. Graf. Term Indexing, volume 1053 of Lecture Notes in Computer
Science. Springer Verlag, 1996.

[3] William W. McCune. Experiments with discrimination-tree indexing and
path indexing for term retrieval. Journal of Automated Reasoning, 9(2),
1992.

[4] W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees.
CACM, 33(6), 1990

Redundancy Elimination in Equational Theorem Proving

Jurgen Avenhaus, B. Léochner, Universitat Kaiserslautern, Germany

Redundancy elimination is a key feature to make theorem provers efficient.
But it is known that detecting redundancy is very expensive in practice. We
describe a cheap method to detect that an equation is redundant with re-
spect to a set of equations. It is based on testing ground joinability. Ground
joinable equations can be deleted and this results in saving work for comput-
ing new consequences of this equation. But, deleting a redundant equation
also weakens the power of simplification and so of pruning the search space.
Hence we have sharpened the test for ground joinability and now can identify
redundant equations that need not be used to compute critical pairs but can
still be used for simplification. The main advantage is that this test is very
cheap and so has a good cost benefit ratio. This test constitutes a main
reason why our system Waldmeister is one of the strongest provers for pure
equational logic and is especially efficient in handling AC-symbols.

Termination and Reduction Checking for Higher-Order Logic
Programs

Brigitte Pientka, Carnegie Mellon University, USA

We present a syntax-directed termination and reduction checker for higher-
order logic programs. The reduction checker verifies parametric higher-order
subterm orderings describing input and output relations. These reduction
orderings are exploited during termination checking to infer that a specified
termination order holds. To reason about parametric higher-order subterm
orderings, we introduce a deductive system as a logical foundation for prov-
ing termination. This allows the study of proof-theoretical properties, such
as consistency, local soundness and completeness and decidability. We con-
centrate here on proving consistency of the presented inference system. The

termination and reduction checker are implemented as part of the T'welf sys-
tem and enables us to verify proofs by complete induction.

Executing Higher Order Logic
Stefan Berghofer, TU Miinchen, Germany

Executing formal specifications has been a popular research topic for some
decades, covering every known specification formalism. Executability is es-
sential for validating complex specifications by runnig test cases and for gen-
erating code automatically ("rapid prototyping”). In the theorem proving
community executability is no less of an issue. Two prominent examples
are the Boyer-Moore system (and its successor ACL2) and constructive type
theory, both of which contain a functional programming language.

We report on the design of a prototyping component for the theorem
prover Isabelle/HOL. We give a precise definition of an executable subset of
HOL and describe its compilation into a functional programming language.
The executable subset contains datatypes and recursive functions as well as
inductive relations. Inductive relations must be such that they can be ex-
ecuted in Prolog style but requiring only matching rather than unification.
This restriction is enforced by a mode analysis. Datatypes and recursive
functions compile directly into their programming language equivalents, and
inductive relations are translated into functional programs using mode infor-
mation and standard programming techniques for lazy lists.

Our aim has not been to reach or extend the limits of functional-logic pro-
gramming but to design a lightweight and efficient execution mechanism for
HOL specifications that requires only a functional programming language
and is sufficient for typical applications like excution of programming lan-
guage semantics or abstract machines.

Elements of Theorem Proving Intelligence

David A. Plaisted, University of North Carolina, USA

We review the history of Al, emphasizing the distinction between strong and
”weak” methods. We also review the history of the speaker’s own research in
automated deduction. Current automated deduction programs have too few
mechanisms. In order to increase the power of automated theorem provers,
more mechanisms need to be present in the same theorem prover. When
enough mechanisms are present, there may be a dramatic increase in the
power of theorem provers. Mechanisms that are neglected in current provers

include the use of natural semantics, case analysis, relevance, and (some-
times) goal-sensitivity. The performance of resolution on logic puzzles and
problems involving definition expansion dramatically illustrates the weakness
of resolution on some easy problems. The OSHL (ordered semantic hyper-
linking) strategy combines these neglected mechanisms and sometimes far
outperforms resolution, despite being implemented in Prolog. Some recent
experiments on set theory problems show that a natural semantics for set the-
ory significantly improves the performance of OSHL, and a natural weighting
of terms to prefer terms likely to occur in a proof gives a further significant
improvement. Simple rules, often mechanically derivable from the axioms,
give such natural term weightings. By combining these rules with custom

weightings given by the user, a further improvement in the performance of
OSHL is possible.

On the representation of search spaces in theorem proving: from
forward to backward reasoning

Maria Paola Bonacina, University of lowa, USA

This talk is concerned with theorem proving as a search problem, and inves-
tigates what is the search space of some of the most popular, refutational,
clausal strategies for fully automated theorem proving, with the purpose of
providing a unified framework for representing search space and modelling
search behavior. Such a framework would offer a common basis for devel-
oping a better understanding of control issues in deduction, hence possibly
better search plans, and for comparing strategies.

Strategies covered include ordering-based strategies, such as those based
on (ordered) resolution, (ordered) paramodulation/ superposition, simplifi-
cation and subsumption, that are synthetic in nature, and subgoal-reduction
strategies, both synthetic ones, such as those based on linear resolution and
model elimination with chains, and analytic ones, such as those based on
tableaux.

The talk surveys the application of the concepts of state space and closure
to these strategies, and discusses the limitations of these notions. A repre-
sentation of search space called marked search graph is proposed as a better
suited alternative, and shown to apply to all strategies above, thus succeed-
ing in capturing both forward reasoning, synthetic, ordering-based strate-
gies with contraction, and backward reasoning, analytic, subgoal-reduction
strategies with backtracking.

Incorporating Bidirectional Relevancy into Model Generation
Theorem Provers

Adnan Yahya (joint work with Donald Loveland), Duke University,
Durham, USA

Model-generation theorem provers, SATCHMO-style, can explore a larger
than needed search space when answering a query. Partial and total relevancy
were suggested as a mechanisms to limit the search space to clauses that
are needed for the refutation. SATCHMORE was an implementation of
the latter. SATCHMORE relevancy, however, is driven by the entire set of
negative clauses of the theory and no distinction is accorded to the query
negation.

Under unfavorable circumstances, such as in the presence of large amounts
of negative data, this can reduce efficiency. In this lecture we define a further
refinement of that uses only the negation of the query for relevancy determi-
nation at the start. Other negative clauses are introduced on demand and
only if a refutation is not possible using the current set of negative clauses.
The search for the relevant negative clauses is performed in a forward chain-
ing mode as opposed to relevancy propagation in SATCHMORE which is
based on backward chaining. The approach is shown to be refutationally
sound and complete. Experiments on a prototype implementation point to
its potential to enhance the efficiency of the query answering process in dis-
junctive databases.

Incorporating Lemmas into Consequence-finding Procedure SOL

Katsumi Inoue (joint work with Koji Iwanuma, Takashi Matsuda,
Hiromasa Haneda, and Ken Satoh), Kobe University, Japan

SOL resolution is a consequence-finding procedure based on Model Elimi-
nation, and is complete for finding characteristic clauses. Previous imple-
mentation of SOL resolution often recomputes the same subgoals. In the
new version of SOL resolution, the calculi are defined with the connection
tableau, and avoids much redundancy in SOL resolution using mandatory
operations, cutting-off rules, lemmas and folding-up, and skip pruning.

Learning Methods to Prove Theorems

Manfred Kerber (joint work with Mateja Jamnik and Christoph
Benzmiiller), University of Birmingham, Great Britain

A framework for automated learning within mathematical reasoning systems
is presented. This framework enables proof planning systems to automat-
ically learn new proof methods from well chosen examples of proofs which

use a similar reasoning strategy to prove related theorems. The framework
consists of a representation formalism for methods and a machine learning
technique which can learn methods using this representation formalism. The
aim is to emulate some of the human informal mathematical reasoning, in
particular the human learning capability, on machines. This work bridges two
areas of research, namely it applies machine learning techniques to advance
the capability of automated reasoning systems.

Deciding Fluted Logic with Resolution

Renate A. Schmidt and Ullrich Hustadt, Department of Computer Science,
University of Manchester and Department of Computer Science, University
of Liverpool, Great Britain

Fluted logic is a solvable fragment of first-order logic which is a by-product
of Quine’s predicate functor logic. In fluted logic the arguments of atoms
are sequences of variables in a fixed order and a quantifier can only bind
the free variable which is largest according to this ordering. We contrast
the way decidability is obtained in fluted logic to other solvable first-order
fragments which are more well-known, in particular, quantifier prefix classes,
the guarded fragment, the two-variable fragment, the monadic class, and
Maslov’s class K. Fluted logic is also of interest for its relationship to non-
classical logics. Just like the guarded fragment, fluted logic may be viewed
as a first-order generalisation of propositional modal logic which has many
of the pleasant properties that modal logics have. It turns out that fluted
logic subsumes a large class of enriched modal logics. Interestingly, there is
more than one way of translating propositional modal formulae into fluted
formulae. In the context of resolution fluted logic can be charaterised by
a class of fluted clauses. Our decision procedure for this class is based on
a standard ordering refinement of resolution and an additional separation
rule. This is a new inference rule which does a form of dynamic renaming.
Formally:
NuU{CV D}
NU{—~q(zy,...,2,) VO, q(xy1,...,2,) V D}

provided (N denotes a set of clauses) (i) the clause C' V D is separable
into clauses C' and D, that is, var(C') € var(D) and var(D) ¢ var(C), (ii)
var(C') N var(D) = {x1,...,2,} for n > 0, and (iii) ¢ does not occur in N,
C or D. The rule is sound, in general, and resolution extended by this rule
remains complete, if it is applied finitely often.

Redundancy Checking
Hans de Nivelle, MPI fiir Informatik, Saarbriicken, Germany

10

Deriving and Applying Program Synthesis Calculi

David Basin, University of Freiburg, Germany

Over the last decade I have worked with colleagues on several different
projects to develop, implement, and automate the use of calculi for program
synthesis and transformation. These projects had different motivations and
goals and differed too in the kinds of programs synthesized (e.g., functional
programs, logic programs, and even circuit descriptions). However, despite
their differences they were all based on three simple ideas. First, calculi can
be formally derive in a rich enough logic (e.g., higher-order logic). Second,
higher-order resolution is the central mechanism used to synthesize programs
during proofs of their correctness. And third, synthesis proofs have a pre-
dictable form and can be partially or completely automated. In this talk I
explain these ideas and illustrate the general methodology employed.

Induction and Decision Procedures

Deepak Kapur (joint work with M. Subramaniam and J. Giesl), University
of New Mexico, USA

Decision procedures are considered vital for automating reasoning about sys-
tem design and mobile computing, particularly hardware verification and
proof-carrying code. Their power is, however, limited in the sense that most
decision procedures (with Presburger arithmetic being an exception) do not
incorporate induction schemes. Induction is considered central in proving
properties of computation descriptions using loops, recursion and arbitrary
data widths. We will show how decision procedures can be extended with
induction schemes without losing automation. Using examples of Presburger
arithmetic and decision procedures for the quantifier-free theory of free con-
structors, we will identify syntactic constraints on recursively defined func-
tions and conjectures about them so that these conjectures can be decided
automatically even though their proofs/disproofs need the use of induction
schemes. For an invalid conjecture, methods for synthesizing the correctness
predicate exactly characterizing the domain of values on which the conjec-
ture is true, are developed. For an arbitrary quantifier-free conjecture, its
correctness predicate can be synthesized from the correctness predicates for
the equations appearing in the conjecture. For a conjecture in a subclass
of formulas satisfying certain restrictions, the conjecture can be automati-
cally decided by deciding the associated correctness predicate. This work

11

is done in the framework of the theorem proving approach of Rewrite Rule
Laboratory (RRL), a rewrite-based induction prover. The cover set method
for generating induction schemes based on terminating function definitions
seems particularly effective for this approach.

Description Logics: Theory and Practice

Ian Horrocks, University of Manchester, Great Britain

There are now several promising application areas for description logics,
e.g., reasoning about DB schemas and queries, and ontological engineering.
Such applications generally require expressive logical languages, inevitably
with high worst case complexities. However, experience has shown that by
focusing on empirical tractability, practical systems are still possible.

As demonstrate by the FaCT system, empirical tractability can be
achieved by combining a careful choice of logic with a highly optimised imple-
mentation. As far as the logic is concerned, a key feature of FaCT is the use
of transitive roles instead of transitive closure. Although the addition of role
inclusion axioms results in logics of the same complexity class (ExpTime),
algorithms for the SH family of logics (SH = ALC with transitive roles and
role inclusions) are simple and amenable to optimisation and behave well in
realistic application.

The FaCT system includes a wide range of optimisations including lexical
normalisation, simplification and encoding of concepts, absorption (simpli-
fication) of axioms, Davis-Putnam style semantic branching search, Depen-
dency directed backtracking, caching and heuristics. When combined with
the choice of algorithm, this provides acceptable performance in applications,
e.g., when classifying large ontologies (knowledge bases).

The logic implemented in FaCT is SHIQ: SH with the addition of inverse
roles and qualified number restrictions (graded modalities). Several applica-
tions require additional features, in particular datatypes (numbers, strings
etc.), nominals (extensionally defined classes) and finite model reasoning.
Extending the system to include datatypes should be straightforward, but
nominals seem to be problematical: even for ALC with inverse roles, adding
nominals makes reasoning NExpTime hard. However, an algorithm for SHQ
(i.e., SHIQ without inverse roles) is relatively straightforward. Finite model
reasoning leads to similar problems and is still an open problem (for SHIQ).

E-unification: Completeness, Decidability, Complexity

Christopher Lynch and Barbara Morawska, Clarkson University, Potsdam,
NY, USA

12

We give a general goal directed procedure for solving E-unification. Then
we give a more specialized procedure for linear equational theories and goals
with no repeated variables. This procedure has the advantage that Eager
Variable Elimination preserves completeness. We further restrict the equa-
tional theory so there are no repeated variables, and give an algorithm that
decides E-unification in those theories in linear time. This result can be used
to give a fast approximation algorithm for E-unification, which can quickly
rule out goals that cannot be E-unifiable. Finally we define fintely closable
equational theories. For a linear finitely closable equational theory, and a goal
with no repeated variables, we give an algorithm that solves E-unification in
PSPACE, and in NP or quadratic time for some special cases.

Formalising The Proof Theory of Display Calculi in Logical
Frameworks

Jeremy E. Dawson and Rajeev Goré, Department of Computer Science,
Faculty of Engineering and Information Technology, Australian National
University, and

Automated Reasoning Group, Computer Sciences Laboratory, Research
School of Information Science and Engineering, Australian National
University

Logical frameworks are computer systems which allow a user to formalise
mathematics using specially designed languages based upon mathematical
logic and Church’s theory of types. They can be used to derive programs
from logical specifications, thereby guaranteeing the correctness of the re-
sulting programs. They can also be used to formalise rigorous proofs about
logical systems. We compare several methods of implementing the display
(sequent) calculus dRA for relation algebra in the logical frameworks Isabelle
and Twelf. We aim for an implementation enabling us to formalise, within
the logical framework, proof-theoretic results such as the cut-elimination the-
orem for dRA, and any associated increase in proof length.

Keywords: logical frameworks, higher-order logics, proof systems for re-
lation algebra, non-classical logics, automated deduction, display logic.

A Decision Procedure for Quantified Boolean Formulas

Reinhold Letz, TU Miinchen, Germany

The language of quantified Boolean formulas (@QBF's) is gaining importance.
While in complexity theory the central role of this language is obvious from
the fact that it represents one of the natural paradigms for characterising

13

the complexity class PSPACE, in the last few years it has been recognised
that QBF's are also suitable for a natural formulation or reformulation of
many problems from planning, abduction, nonmonotonic reasoning, or from
intuitionistic, terminological and modal logics. This has motivated the need
for efficient decision procedures for QBFs. As a consequence, recently, a
number of such procedures have been developed. However, when compared
with the procedures available for propositional logic, these procedures are
still in their infancy. Furthermore, even for the few procedures available,
there is a tendency of divergence, in the sense that almost every procedure
contains some special adhoc techniques that apply well to some examples,
but may not be useful for a generally successful approach.

In this talk we identify some techniques that are very important if not es-
sential for any powerful and robust QBF procedure. One of the paradigms is
intelligent backtracking, which can be implemented quite efficiently in differ-
ent variants. We also give experimental evidence that intelligent backtracking
is of general importance for deciding quantified Boolean formulas. Another
paradigm is caching which comes in two dual variants, caching of lemmas
and caching of models. Unfortunately, the efficient integration of caching
methods is much more difficult. However, there exist very small formulas
which are intractable for the existing QBF procedures, but which become
trivial when using caching methods. This suggests that such an integration
might be indispensable.

Deductive Knowledge Management for Personalized Documents

Peter Baumgartner, Universitat GieBen, Germany (On leave of absence
from Universitdt Koblenz)

The work is about a real-world application of automated deduction. The ap-
plication is the management of documents (such as mathematical textbooks)
that are ”‘sliced”’ into small units. A particular task ist to assemble a new
document from such units in a selective way, based on the user’s current
interest.

It is argued that this task can be naturally expressed as a model com-
putation task, provided that the full first-order clausal logic (beyond Horn
logic) with some default negation principle is available.

A calculus for reasoning in this logic is developed in detail. It builds
on our previously developed calculi for first-order classical reasoning (Hyper
Tableaux, First-order Davis-Putnam-Logeman-Loveland procedure). Distin-
guished features of the new calculus are inferences directly at the first-order
level (not via grounding) and absence of syntactical restrictions (such as
range-restrictedness). The calculus is refutationally complete for the sub-case

14

of classical logic. For model generation, it computes finite representations of
possibly infinite supported models whenever it terminates.

DEDUCTION and EDUCATION

Jorg Siekmann, Erika Melis, Deutsches Forschungszentrum fiir Kiinstliche
Intelligenz, Saarbriicken, Germany

The first part of the talk presents an overview of a current paradigm change
in automated reasoning from traditional automated theorem proving — for
example, based on resolution — to proof planning research. We report about
psychological experiments to test the role of different instructions for proving
theorems in an educational context. The results provide first evidence for the
superiority of teaching proof planning methods versus teaching of examples-
only or textbook-like instructions. Finally, we present ActiveMath, a web-
based learning environment that integrates several external systems useful for
exploratory learning — among them the proof planner of the Omega system.

AutoBayes: A System for the Automatic Synthesis of Data
Analysis Programs

Johann Schumann (joint work with Bernd Fischer), RIACS / NASA Ames,
Moffett Field CA, USA

Although data analysis is an important scientific task, implementing a data
analysis program is a difficult and time-consuming task, because it requires
knowledge and experience in computational statistics and numerical mathe-
matics.

In this talk, I present AutoBayes, a high-level generator for data analysis
programs from statistical models. A statistic model specifies the properties
for each problem variable (i.e., observation or model parameter) and its de-
pendencies in a fully declarative way. From this model AutoBayes generates
optimized and fully commented C/C++ code which can be linked dynami-
cally into a MatLab or Octave environment.

Code is generated by schema-guided deductive synthesis. A schema con-
sists of a code template and applicability conditions. Symbolic-algebraic
computations augment schema-guided synthesis and thus can derive closed
form solutions for many problems. AutoBayes has been tested on various
text-book and statistical benchmark examples and is capable of synthesizing
data analysis programs consisting of more than 1200 lines of optimized C++

15

code in roughly one minute. I also report on a recent small experiment on an-
alyzing gamma ray burst data from the Compton Gamma Ray Observatory
platform.

Process Verification using Dependency Pairs

Jirgen Giesl, RWTH Aachen, Germany

The dependency pair approach [1] is a technique which allows automated ter-
mination and innermost termination proofs for many term rewriting systems
for which such proofs were not possible before. Apart from its use for termi-
nation analysis, we illustrate that the dependency pair approach is also very
useful for process verification. To this end, we show how dependency pairs
were applied at Ericsson Telecom in order to verify properties of a protocol
for concurrent telecommunication processes.

In order to be applicable in this area, several refinements of the depen-
dency pair technique had to be developed. We show how to extend the
dependency pair approach to termination proofs of conditional rewrite sys-
tems. Moreover, we developed techniques for manipulating dependency pairs
by narrowing, rewriting, and instantiations. These refinements are not only
of use in the industrial application sketched in the talk, but they are gen-
erally applicable to arbitrary (conditional) rewrite systems. Thus, in this
way dependency pairs can be used to prove termination of even more rewrite
systems automatically.

This talk is based on joint work with Thomas Arts (Ericsson Telecom,
Stockholm) [2, 3].

References

[1] T. Arts and J. Giesl, Termination of Term Rewriting Using Dependency
Pairs, Theoretical Computer Science, 236:133-178, 2000.

[2] T. Arts and J. Giesl Applying Rewriting Techniques to the Verification
of Erlang Processes, in Proceedings of the Annual Conference of the
European Association for Computer Science Logic (CSL ’99), Madrid,
Spain, Lecture Notes in Computer Science 1683, pages 96-110, 1999.

[3] J. Giesl and T. Arts, Verification of Erlang Processes by Dependency
Pairs, Applicable Algebra in Engineering, Communication and Comput-
ing. To appear.

16

The KeY Approach: Integrating Object Oriented Design and
Formal Verification

Reiner Hdhnle, Universitat Karlsruhe, Germany

The KeY project aims at bridging the gap between (a) object-oriented soft-
ware engineering methods and tools and (b) deductive verification. A dis-
tinctive feature of our approach is the use of a commercial CASE tool en-
hanced with functionality for formal specification and deductive verification.
To help users coming up with formal specifications, in the KeY system we
provide design patterns that come complete with predefined OCL constraint
schemata. The user needs not write formal specifications from scratch, but
only to adapt and complete them.

A Program Logic for the Verification of Java Card Programs

Bernhard Beckert, Universitat Karlsruhe, Germany

The work that is reported in this talk has been carried out as part of
the KeY project (http:// i12www.ira.uka.de/ " key). The goal of KeY is to
enhance a commercial CASE tool with functionality for formal specification
and deductive verification and, thus, to integrate formal methods into real-
world software development processes. Accordingly, the design principles for
the software verification component of the KeY system are:

e The programs that are verified should be written in a “real” object-
oriented programming language (we decided to use JAVA CARD).

e The logical formalism should be as easy as possible to use for software
developers (that do not have years of training in formal methods).

The ultimate goal of the KeY project is to facilitate and promote the
use of formal verification as an integral part of the development process of
JAvA CARD applications in an industrial context.

In this talk, I present a Dynamic Logic (a program logic that can be seen
as an extension of Hoare logic) for JAVA CARD. It allows to express properties
of JAVA CARD programs. The syntax and semantics of this logic is described.
I present a calculus for this program logic that allows to reason about the
properties of JAVA CARD programs and to verify them. The main ideas and
principles of the calculus are described and some of its rules are presented.
Finally, I give an example for the verification of a small JAVA CARD program.

17

Unified Framework for Simulation, Verification, and Testing of
Formal Specifications

Olga Shumsky Matlin (joint work with L. J. Henschen), Northwestern
University, Dept. of EE & CS, USA

Creating a formal design is considered an important first step in the system
development cycle as doing so can eliminate significant design errors early
on and thus lead to significant savings in later stages of the development.
However, constructing formal designs is often omitted or the designs are
essentially thrown away upon completion.

This work is concerned with building a unified framework for design,
verification, and testing of system specifications. The goal is to make use
of the formal specification beyond the design stage and to derive from the
specifications as much benefit as possible at all stages of the development
cycle. SDL, one of standardized formal description techniques, is chosen as
an example formal language in which the original designs are created. Using
ACL2, we build a framework that allows at earlier stages of the design to
simulate and verify the SDL specification of the system and at later stages
to use the specification to construct expected results for test scenarios and
to automatically derive a test driver. At the current stage of the project we
concentrate on building the mechanisms for simulation and verification of
SDL specifications.

A decision Procedure for the Theory of Unary rpo
Paliath Narendran, State University of New York, USA

Representation, Administration, and Distribution of
Mathematical Knowledge in the Internet Era

Michael Kohlhase, Carnegie Mellon University, USA (on leave from
Saarland University, Germany)

In this talk I will survey the new opportunities for the dissemination of
mathematical knowledge opening up by the Internet. It is plausible to assume
that the way we publish mathematics will change radically in the next five
years, and more generally that the way we do (conceive, develop, and verify)
math.

Of course, this development is not restricted to mathematics itself, but
will also affect other well-conceptualized and highly structured areas like
formal methods or physics.

18

The trend towards high-quality Internet accessible math. is initiated
by the availability of XML-based representation standards for mathematical
formulae (MathML and OpenMath) together with corresponding browsers
that allow to present formulae in LaTeX-quality, while retaining the flexibility
of html.

The next step will inevitably follow: to represent the meaning of formu-
lae, so that they can be transmitted to mathematical software systems like
computer algebra systems, automated theorem provers, or proof presenta-
tion systems. The possibility of universal exchange of mathematical objects
will radically change and de-centralize the way we work in mathematics,
engineering and sciences.

In this talk, I want to discuss the infrastructure that is needed to con-
veniently and efficiently manipulate, visualize, and distribute mathematical
knowledge on the basis of the OMDoc format (an extension of the OpenMath
standard for the communication of mathematical objects) and the MBase
system (a mathematical knowledge base).

Meta-Complexity Theorems

David McAllester (joint work with Harald Ganzinger), AT & T Labs
Research, USA

We give two meta-complexity theorems. These are nontrivial theorems gov-
erning the run-time of bottom-up logic programs. We give a variety of exam-
ples of algorithms presented as logic programs and show how theorems gov-
erning run time allow a simple complexity analysis for these logic-program
algorithms.

Synthesis of verifiably correct code for avionics

Michael Lowry, NASA, Ames Research Center, USA

Model Checking is easier than deduction, isn’t it? Actually not!

Fabio Massacci, Universita degli Studi di Siena, Italy

The appeal of model checking technology is based on its computational ef-
fectiveness: it has linear complexity in the size of the system. Yet, in prac-
tice, systems are given in high-level languages which are by far more “user-
friendly” (and concise) that Kripke structures but for which the computa-
tional promises may not hold.

19

In talk I'll focus on the complexity of model checking when the Kripke
structure is specified using SMV primitives (modules, bounded arithmetics,
non-determinism, etc.).

I'll show that CTL and LTL model checking SMV-specifications is
PSPACE-hard in the size of the structure by using a simple, linear-size
reduction from QBF which uses only a constant size LTL/CTL specification.

Next we see that, for LTL, it is possible to encode synchronous SMV
specifications allowing generalized set-expressions, bounded arithmetic, etc.
into LTL formulae. Thus, LTL model checking using a practical language is
as hard as LTL theorem proving.

One of the aim of this QBF2SMV and SMV2LTL reductions is to use
the generation of QQBF problems as a source for controlled generation of
benchmarks to test model-checking systems.

Joint work with Francesco Donini, Paolo Liberatore, Marco Schaerf

Description Logics and Arithmetics

Hans-Jirgen Ohlbach, Ludwig-Maximilians-Universitat Miinchen, Germany

In the presentation, mathematical programming and atomic decomposi-
tion was introduced as the basic modal (T-Box) inference techniques for a
large class of modal and description logics. The class of description logics
suitable for the proposed methods is strong on the arithmetical side. In par-
ticular there may be complex arithmetical conditions on sets of accessible
worlds (role fillers).

The atomic decomposition technique can deal with set constructors for
modal parameters (role terms) and parameter (role) hierarchies specified in
full propositional logic. Besides the standard modal operators, a number of
other constructors can be added in a relatively straightforward way. Exam-
ples are graded modalities (qualified number restrictions) and also general-
ized quantifiers like ‘most’, ‘n%’, ‘more’ and ‘many’. Details can be found in
1, 2].

References

[1] Hans Jiirgen Ohlbach and Jana Koehler. How to extend a formal
system with a boolean algebra component. In W. Bibel P.H. Schmidt,
editor, Automated Deduction. A Basis for Applications, volume III,
pages 57-75. Kluwer Academic Publishers, 1998.

[2] Hans Jirgen Ohlbach and Jana Koehler. Modal logics, description
logics and arithmetic reasoning. Journal of Aritificial Intelligence,
(109):1-31, 1999.

20

New Ideas on Term Indexing

Robert Nieuwenhuis, Tech. Univ. Catalonia, Barcelona, Spain

Indexing data structures are well-known to be crucial for the efficiency of
the current state-of-the-art theorem provers. In this talk we first recall dis-
crimination trees, which are like tries where terms are seen as strings and
common prefixes are shared, and substitution trees, where terms keep their
tree structure and all common contexts can be shared.

Second, we describe a new indexing data structure, called context trees,
where, by means of a limited kind of context variables, also common subterms
can be shared, even if they occur below different function symbols.

Third, we discuss our new methodology for objectively evaluating in-
dexing data structures. Experiments using this methodology for matching
show that our preliminary implementation is already competitive with tightly
coded current state-of-the-art implementations of the other main techniques.
In particular space consumption of context trees is substantially less than for
other index structures.

Finally, we describe current work on intelligent backtracking for retrievals
on context trees, and the possibility of using flatterm queries in compiled
context trees.

Polynomial-time Cost-based Hypothetical Reasoning:
Propositional and Predicate Logic Cases

Mitsuru Ishizuka, Yutaka Matsuo and Helmut Prendinger, University of
Tokyo, Japan

Hypothetical reasoning (or abduction) is an important framework for
knowledge-based systems because it is theoretically founded and useful for
many practical problems. Since the inference time of hypothetical reasoning
grows exponentially with respect to problem size, its efficiency becomes the
most crucial problem when applied to practical problems.

As the first topic, we present an efficient method called SL (slide-down
and lift-up) method, which uses a linear programming technique, namely the
simplex method, for determining an initial search point, and a non-linear
programming technique for efficiently finding a near-optimal 0-1 solution.
To escape from trapping into local optima, a local handler is incorporated
which systematically fixes a set of variables to locally consistent values when
a locally optimal point is detected. The SL method, whose behavior is very
comprehensive for humans, can find a near-optimal solution for propositional
cost-based hypothetical reasoning problems in polynomial time with respect
to problem size.

21

During the above research, we have noticed that there are two major ways
of transforming propositional clauses into numerical constraints. One trans-
forms the clauses into linear inequalities, while the other transforms them
into non-linear equalities; these two transformations reveal different charac-
teristics. As the second topic, we show a method of integrating these two
transformations by using the augmented Lagrangian method to effectively
find better near-optimal solutions in propositional cost-based hypothetical
reasoning.

As described above, these exist some efficient reasoning mechanisms in
propositional-level hypothetical reasoning. However, these methods are not
directly applicable to predicate-logic-version hypothetical reasoning. As
the third topic, we present our approach to this problem. Specially, we
first perform a knowledge-level transformation followed by instantiation of
the first-order clauses into propositional ones, and then apply an efficient
propositional-level reasoning mechanism to find a near-optimal solution. The
knowledge-level transformation here is based on equivalency-preserving un-
fold /definition /fold transformations, and allows to obtain a compact propo-
sitional representation with significantly less clauses than a simple-minded
instantiation of the original first-order theory.

One important message of this research is the effectiveness of using search
mechanisms in continuous-value space rather than those in binary space to
compute near-optimal solutions efficiently. In the continuous-value space, we
can obtain the guiding information of search everywhere in the space as a
gradient value of the defined objective function, whereas this is not true in
binary space.

The Calculus of Structures

Kai Brinnler, Paola Bruscoli, Alessio Guglielmi, Steffen Holldobler, Lutz
Strafsburger, TU Dresden, Germany

Our main goal is the development of appropriate logics and calculi for dis-
tributed computing such that we can solve existential problems like plan-
ning problems as well as universal ones like verifying deadlock freeness. Dis-
tributed computing is characterized by parallel and interacting processes as
well as by sequential processes. It is well known that parallel and interacting
processes can be modelled using two binary operators, which are associa-
tive, commutative and admit a unit element, but which are not idempotent.
But how can sequential processes be modelled? Clearly, we need an asso-
ciative, but non-commutative operator. It seems to be quite difficult if not
impossible to develop a calculus with two commutative and a single non-
commutative operator using a standard methodology like natural deduction

22

calculi, sequent-style calculi or the connection method. We have developed a
new methodology based on so-called structures, which allowed us to specify
appropriate calculi for our tasks. The basic calculus of structures enjoyes
some nice properties like atomic interaction and atomic cut rules, a perfect
top-down symmetry as well as cut elimination. We also tested our method-
ology by specifying calculi of structures for the multiplicative fragment of
linear logic including exponentials as well as propositional logic. In both
cases the calculi enjoyed the same nice properties mentioned above. It also
appears that in calculi of structures derivations can be decomposed in some
structured way allowing for a modulatization of cut elimination proofs.

Superposition and Chaining for Totally Ordered Divisible Abelian
Groups

Uwe Waldmann, MPI fiir Informatik, Saarbriicken, Germany

We present a calculus for first-order theorem proving in the presence of
the axioms of totally ordered divisible abelian groups. The calculus extends
previous superposition or chaining calculi for divisible torsion-free abelian
groups and dense total orderings without endpoints. As its predecessors,
it is refutationally complete and requires neither explicit inferences with the
theory axioms nor variable overlaps. It offers thus an efficient way of treating
equalities and inequalities between additive terms over, e.g., the rational
numbers within a first-order theorem prover.

The calculus splits into two parts: The first one is a base calculus that
works on clauses in which all variables are shielded (i. e., every variable occurs
at least once below a free function symbol). This calculus has the property
that saturated sets of clauses are unsatisfiable if and only if they contain
the empty clause, but as its rules may produce clauses with unshielded vari-
ables, it can not be used to effectively saturate a given set of clauses. The
second part of the calculus is a variable elimination algorithm for totally or-
dered divisible abelian groups, that makes it possible to get rid of unshielded
variables, and thus renders the base calculus effective.

Complexity of Logic Programming Approaches to Model
Checking

Terrence Swift, SUNY at Stony Brook, USA

23

Annotated Reasoning

Dieter Hutter, Deutsches Forschungszentrum fiir Kiinstliche Intelligenz,
Saarbriicken, Germany

The application of deduction in various domains resulted in a variety of
different techniques to guide the proof search. Many of these techniques in-
corporate additional knowledge to restrict or select possible proof steps. In
the past a large variety of approaches have been presented on how additional
knowledge can improve proof search. In automated theorem the proofs that
specific calculus rules can be permuted are used to cut off redundant branches
of the search tree. In basic ordered paramodulation and basic superposition,
for instance, paramodulation inferences are forbidden at terms introduced by
substitutions from previous inference steps. To implement such a strategy,
we have to maintain such knowledge for each individual subterm. In tactic
based theorem proving, the problem arises to monitor parts of the problem
during the proof search. Such focus mechanisms have been developed and
hardwired into several calculi. Proving the invariance of a state-transition
system suggests the use of a specialized proof methodology which knows
about the constituents (e.g. action descriptions or instances of the invari-
ants for various states) of the arising proof obligations and their treatments
inside the proof. Rippling is also a successful example of how to use domain
knowledge to guide a theorem prover. The application oriented heuristic,
that the induction hypothesis should be used when proving the induction
step, is translated into a syntactical requirement that in each proof step, the
hypothesis should be embedded in the conclusion. In analogical reasoning,
a given proof (the so-called source proof) is abstracted to serve as a proof
sketch for other, so-called target problems. Typically, additional information
about the source proof (besides the usual proof tree) is required to compute
an abstract proof sketch for a related target problem.

In all these examples there is a need for encoding and maintaining ad-
ditional knowledge, which is used to guide the proof search. While all the
presented approaches developed their own individual solutions to this prob-
lem, i.e. by introducing specialized calculi, we aim at a uniform represen-
tation and maintenance of such information in a logical (and thus formal)
way. We provide a methodology to augment a logic calculus by a generic
mechanism to maintain such strategic knowledge. It is formally encoded into
a term language and stored as annotations at the individual parts of the
logic formulas. Calculus rules and necessary basic algorithms like unification
are reformulated to cope with such logic annotations. Annotations are used
to restrict possible deductions as the unification of two annotated terms has
also to identify corresponding annotations. In contrast to labeled deduction
systems, annotations are used only to maintain strategic knowledge. Each

24

deduction in the annotated calculus corresponds to a deduction in the origi-
nal (not annotated) calculus. We obtain such a deduction simply by stripping
off all annotations. Regardless of how we use annotations to encode strategic
knowledge, the soundness of the underlying derivation is guaranteed. Thus
an annotated calculus suggests itself as a secure kernel of a tactic based the-
orem prover. Annotations provide a flexible, generic mechanism to maintain
strategic knowledge during proof search without jeopardizing the soundness
of the underlying calculus. To instantiate this generic approach for her indi-
vidual needs, a user has to provide rules how to annotate the initial problem
and the given calculus rules. After these initial setting, the strategic knowl-
edge encoded into annotations is automatically maintained by the annotated
calculus and by annotated unification in particular.

Incremental Closure of Free Variable Tableaux

Martin Giese, Universitat Karlsruhe, Germany

A technique for automated theorem proving with free variable tableaux is
presented, that does not require backtracking.

Most existing automated proof procedures using free variable tableaux
require iterative deepening and backtracking over applied instantiations to
guarantee completeness. If the correct instantiation is hard to find, this can
lead to a significant amount of duplicated work. Incremental Closure is a way
of organizing the search for closing instantiations that avoids this inefficiency.
Instead of globally applying substitutions to close branches, an instantiation
that closes all branches simultaneously is incrementally calculated.

Deduction, Exploration and Abstraction

Natarajan Shankar, SRI International Computer Science Laboratory, USA

Induction as Deduction Modulo

Eric Deplagne, Claude Kirchner, LORIA - INRIA, France

Inductive proofs can be built either explicitly by making use of an induc-
tion principle or implicitly by using the so-called induction by rewriting and
inductionless induction methods. When mechanizing proof construction, ex-
plicit induction is used in proof assistants and implicit induction is used in
automated theorem provers. The two approaches are clearly complementary

25

but up to now there was no framework able to encompass and to understand
uniformly the two methods. In this paper, we propose such an approach
based on the general notion of deduction modulo. We extend slightly the
original version of the deduction modulo framework and we provide modu-
larity properties for it. We show how this applies to a uniform understanding
of the so called induction by rewriting and inductionless induction methods
and how this relates directly to the general use of an induction principle.

Symbolic Evaluation and the Use of Lemmas in the \/eriFun
System

Christoph Walther, Technische Universitat Darmstadt, Germany

Symbolic evaluation is a technique to prove statements about programs, or to
simplify them at least. The phrase "symbolic” stresses the fact that expres-
sions to be evaluated usually contain uninterpreted symbols, like program
variables which are not bound at verification time or calls of procedures
which are not defined within the program. The term ”evaluation” refers to
the control regime of the theorem prover which mimics an interpreter of a
programming language, e.g. when conditionals or procedure calls are encoun-
tered. We investigate how to integrate the use of lemmas, which have been
proven elsewhere, into a theorem prover based on symbolic evaluation. This
theorem prover then is used in the VeriFun System, an interactive verifier
for a simple functional language.

Stratified Context Unification is in PSPACE
Manfred Schmidt-Schauss, Universitat Frankfurt, Germany

Context unification is a variant of second order unification and also a gen-
eralization of string unification. Currently it is not known whether context
unification is decidable. A decidable specialization of context unification is
stratified context unification, which is equivalent to satisfiability of one-step
rewrite constraints.

This paper contains an optimization of the decision algorithm, which
shows that stratified context unification can be done in polynomial space.

Modal Normal Form Tableaux

Ulrich Furbach and Rajeev Goré, Universitat Koblenz, Germany

26

Tableau calculi for the logics K, T and K4 are introduced. These calculi are
based on a clausal normal form of modal logics, which has been used until
now mainly for the definition of modal resolution calculi. We present the
calculi such that the close relationship to clause normal form tableau proce-
dures for the classical case become obvious. For this, a bottom-up tableau
method, based on Hyper-Tableaux or SATCHMO is given. By this, the nec-
essary information about the worlds visited during a tableau construction is
implicitly coded in the branch-structure and can be used by the inference
rules.

Meta-Inference in Krom-Horn Logic, an Application to the
decision problem

Alexander Leitsch (joint work with Gernot Salzer and Andrei Voronkov),
TU Vienna, Austria

In computational inference systems deductions frequently show ”regular” and
iterative patterns. Though, in some cases, these patterns are easily describ-
able in the mathematical meta-language, pure first-order inference systems
mostly are incapable to handle them. This observation and the need to ob-
tain shorter proofs and better termination behavior in first-order inference
systems led to the investigation of meta-terms and deductive generalization
around 1990. We use one of these meta-term concepts, namely R-terms
(Salzer 1989, 1992), in the context of resolution inference in Krom-Horn
logic; this logic allows for a particularly simple handling of cycle generation
(= generation of a meta-clause C, describing the clause powers C" of a clause
(). We define a deduction operator R);s which is based on hyperresolution,
rule resolution, cycle generation and forward subsumption. It is shown that
Rjs terminates on an extension K H; of the class VAVHorn N Krom. This
gives the first proof-theoretical decision procedure for this class, which so
far resisted all attempts to decide it via a resolution refinement. R, does
not only decide the class, but yields (meta-term representations of) minimal
Herbrand models in case of satisfiability. The operator R;;s is not just a
tool to decide the class K Hy, but also a simple and powerful calculus which
might turn out useful to "real” automated deduction as well.

27

