Dagstuhl Seminar 01141, 2-6 April, 2001
Semantic Foundations of Proof-search

David Pym Eike Ritter Thomas Streicher

May 2, 2001

1 Introduction

We present a brief report on Dagstuhl Seminar 01141, “Semantic Founda-
tions of Proof-search”, held 2—-6 April, 2001. We begin, in § 2, with the
usual description of the seminar, as required by the Dagstuhl administra-
tion. Then, in § 3, we provide a brief account of the seminar itself, discussing
the main themes emerging from the lectures and the associated conversa-
tions. In § 4 we give the programme of the seminar. In § 5, we give the
abstracts of the lectures delivered by the particpants. We conclude with a
list of the participants and their addresses.

2 Description

Traditionally, logics are formulated as systems of deductive inference in
which proofs are constructions which derive conclusions from given assump-
tions. However, in computing, many problems are naturally formulated
as questions of reductive inference in which the correctness of a given pu-
tative conclusion must be shown by reduction, commonly formulated as
proof-search in a given formal system, to established acceptable assump-
tions. Examples of this phenomenon include type-inference, parsing, pro-
gram correctness and internet information retrieval. Typically, such exam-
ples are described as long and complex formal texts. Consequently, algo-
rithmic proof-search is a fundamental enabling technology throughout the
computing sciences. Moreover, the reductive view of inference represents an
alternative view of logic, just as fundamental as the deductive one, which is
largely undeveloped.

So far, the theory of proof-search has developed mostly along proof-
theoretic lines but using many type-theoretic techniques. The utility of
type-theoretic methods suggests that semantic methods of the kind found
to be valuable in the semantics of programming languages should be useful
in tackling the main outstanding difficulty in the theory of proof-search, i.e.,

the representation of intermediate stages in the search for a proof. The space
of searches is much larger than the space of proofs: An adequate semantics
would represent both the space of searches and the space of proofs and give
an account of the recovery of proofs (which are extensional objects) from
searches (which are more intensional objects). It would distinguish between
different proof-search strategies and permit analyses of their relative merits.

This seminar helps to establish a program to build such a semantics. To
this end, we propose the following foci for the seminar:

e Reductive vs. deductive logic: their logical, mathematical and com-
putational properties;

e Proof-search in type-theoretic languages: the role of typing constraints
during proof-search;

e Proof- and model-theoretic analyses of search spaces: the search-oriented
counterparts to traditional proof theory and model theory;

e Intensional semantics for proof-search: specific intensional and com-
putational models based on structures such as games, continuations
and realizability;

e Applications of proof-theoretic and semantic techniques to the design
and implementation of theorem provers.

3 The Seminar

The seminar was lively and friendly, with many people commenting that they
found the exposure to some new ideas quite stimulating. It was particularly
pleasing that there was little or no tendency among the participants to form
into subgroups: Everyone talked to everyone else.

Several broad themes may be identified in the given lectures:

e Foundational issues: Basic questions about the meaning and mathe-
matical semantics of search spaces and search-objects;

e Logic programming: Issues in semantics and pragmatics;

e Type theory and interactive theorem proving: Issues in the formulation
and representation of problems;

e Tableaux and counter-models:

e Syntactic methods: Optimizing the execution dynamics of search en-
gines via the logical properties of the target system;

e Applications: To formal mathematics, to logic programming and to
verification of Java bytecodel!

4 Programme of the Seminar

Monday, 2 April

David Pym Semantic foundations of proof-search

Conor McBride Elimination with a motive

Kurt Ranalter A decision procedure and Kripke-style semantics for the
language ILP of intuitionistic formal pragmatics

Andrea Schalk Games played on graphs

Dominique Larchey-Wendling Refutation as counter-models for intuitionistic logic

Roy Dyckhoff Rule invertibility in sequent calculi

Tuesday, 3 April

Eike Ritter Modelling backtracking

Didier Galmiche Proof-search and counter-model generation in mized logics
Edmund Robinson Proof-nets for classical logic

Alberto Momigliano Uniform proof-search and negation

Uwe Egly A polynomial translation of propositional Sj into propositional
intuitionistic logic
Gianluigi Bellin Towards a pragmatics

Wednesday, 4 April

Andrei Voronkov Syntactic foundations of proof-search

Iliano Cervesato A linear spine calculus

James McKinna Towards a calculus of problems in type theory with applications
to relational Tippling

Thursday, 5 April

Jim Lipton Semantics of higher-order logic programming
Patricia Hill Logic programming, data-flow analysis and equality theories
Robert Stark Problems of bytecode verification
Thomas Streicher Ontological status of paraproofs
Kevin Watkins Defining an operational semantics for
resource management in Lolli
Alan Smaill Research specification language in practice
Randy Pollack On the extensibility of proof-checkers

Konstantin Korovin Solving Knuth-Bendix ordering constraints

Friday, 6 April

Manfred Kerber Towards a classification of proofs
Alexandre Riazanov Splitting without backtracking
Roy Dyckhoff Proof-search and computation in Herbelin’s calculus

5 Abstracts

Semantic foundations of proof-search

David Pym
Queen Mary, University of London

Algorithmic proof-search is an essential enabling technology throughout in-
formatics. Proof-search is the proof-theoretic realization of the formulation
of logic not as a theory of deduction but rather as a theory of reduction.
Whilst deductive logics typically have a well-developed semantics of proofs,
reductive logics are typically well-understood only operationally. Each de-
ductive system can, typically, be read as a corresponding reductive system.
We discuss some of the problems which must be addressed in order to provide
such a semantics of proof-searches of comparable value to the corresponding
semantics of proofs. Just as the semantics of proofs is intimately related
to the model theory of the underlying logic, so too should be the seman-
tics of proof-searches. We discuss how it is that the semantics of search is
essentially constructive, in the sense of Kripke, and how to solve the prob-
lem of providing a semantics for (the construction of) proof-searches which
adequately models both the operational and logical aspects of the reductive
logic. In particular, we propose an algebraic approach to the semantics of
control.

(¢f. ENTCS 37(2000), 18pp.)

Elimination with a motive

Conor McBride
University of Durham

Elimination rules for datatypes look like this:

Vo(Vy- - — @ﬂﬂ]) — - VZ.OF

In a refinement proof we exploit our ability to choose ® to attack”the
goal at hand”. @ abstracts the motive for the elimination. The subgoals
so generated not only expose the “predecessors” of the Z, they also yield
more specific applications of ®, rewriting the goal in the light of the new
information available. Such rules explain the leverage that the assumptions
listed in the ¥ give us on an arbitrary goal.

I give a tactic to apply rules in this style, and I use this tactic not only
with the native rules supplied with datatypes and relations, but also with
derived rules of the above form. The tactic takes any such theorem (suitably
annotated) and turns it into a left rule in the sense of the sequent calculus.

Examples of such rules are used to

e give an analysis of induction which generates case analysis from recur-
sion

e characterize the behaviour of functions

e equip datatypes with a more sophisticated notion of pattern and smaller
subsystem

A decision procedure and Kripke-style semantics for the lan-
guage ILP of Intuitionistic Formal Pragmatics

Kurt Ranalter
University of Verona

We consider the language ILP of Intuitionistic Formal Pragmatics proposed
by Bellin and Dalla Pozza (Dagstuhl Seminar on Linear Logic, 1999) focusing
on the relation between the notions of causal implication, assertability and
obligation. We give a Kripke-style semantics ILP and prove the completeness
theorem for it. The decision procedure extends standard procedures for
intuitionistic logic with one for a fragment of relevant implicational logic
and of deontic logic: it takes a sequent S as input and yields either a proof
of S in the sequent calculus for ILP or a countermodel for S.

Games played on graphs

Andrea Schalk
University of Manchester

Games have become increasingly successful when it comes to modelling a
variety of logics and programming languages. These games are typically
played on trees - once play has diverged, two strands can never be reunited.
This does not agree wit ha description of games via positions, where it is
of no importance how a given constellation was arrived at. Furthermore,
even for the simples games (eg Hyland’s “Games for Fun”, see CLICS Sum-
mer School Lecture Notes, Cambridge 1995) the categorical structure is not
as simple as one might like - the linear function space of two such simple
tree games can become quite complex. Choosing positions as a primitive
concept we introduce games played on graphs rather than trees. We keep
the standard restrictions, that is there are two players, P and O, who move
strictly alternatingly, and O always starts. We show that we can define a
linear function space - its positions are elements of the product of the set of
positions of the constituent games - allowing us to define a category in the
usual way with morphisms being given by strategies on the linear function
space of A and B. This category is symmetric monoidal closed and has all
products. A full subcatgegory has the property that morphisms can be seen

as relations, and composition (originally defined via “parallel composition
and hiding”) becomes relational composition. We further define a “Curien
exponential” giving rise to a cartesian closed category in the standard way.
This exponential formalizes the idea that O should be allowed to explore
a given strategy (for P) on A and satisfies the property that it produces a
finite games when applied to a finite game, unlike the standard construction
for tree games. We conclude in identifying applications of this model.

Refutation as counter-models for intuitionistic logic

Dominique Larchey-Wendling
LORIA, Nancy

We propose to investigate and to reuse the semantics of intuitionistic linear
logic (ILL), from an initial analysis of known semantics like phase semantics
or Petri net semantics. Thus, we focus on notions like quantale, closure and
resource frames, and we define a new semantics of ILL that is called resource
semantics. The completeness and finite model property are proved from a
based-on proof search method in which countermodels are obtained from
refutation trees. Moreover, we define a new preordered monoid semantics
from an adequate choice of pretopology. As Petri Nets can be seen as a
concrete representation of preordered monoids, such a choice also leads to
a new Petri nets semantics for ILL with new results like completeness and
finite model property. From these semantical considerations we obtain some
results about non-provability in ILL and then we can expect to develop
methods for the generation of countermodels.
This is joint work with Didier Galmiche.

Rule invertibility in sequent calculi

Roy Dyckhoff
University of St Andrews

We discuss a simple calculus for Godel-Dummett logic in which all infer-
ence rules are invertible, illustrating the point that rule invertibility (for the
avoidance of backtracking) is related not to the use of classical logic but to
the use of a logic characterized by linear (i.e., non-branching) Kripke models.

Modelling backtracking
FEike Ritter

University of Birmingham

The work presented in this talk is part of a bigger project, which intends to
give semantics to proof search. In this talk we present some general steps

which are necessary to achieve such a semantics, and focus on one aspect,
namely how to model backtracking in intuitionistic logic via continuations.

The first step consists of giving semantics to partial, possibly incomplete-
able proofs. We use polynomial categories for this purpose. The universal
property of these categories ensures that a partial proof can be completed
to a proof if and only if one can find a substitution consisting only of ground
terms for the indeterminates in the polynomial category. The left-rules of
the sequent calculus force us to consider also a Kripke-style semantics where
the information contained in the Kripke-worlds is the substitution arising
from modelling the implication left-rule.

In this paper we model backtracking by embedding intuitionistic logic
into classical logic. Hence in a second step we extend these polynomial
categories and the Kripke-semantics to the Aur-calculus, a term calculus for
classical logic. In this semantics, a switch in the focus on the right-hand
side corresponds to applying a continuation in functional languages.

When we embed LJ-proofs with backtracking into LK and translate these
proofs into the semantics we have developed, we realize that backtracking
in LJ-proofs gives rise to switching the right-hand side in the LK-proofs
resulting from the embedding, and hence to continuations.

This is joint work with David Pym.

Proof-search and counter-model generation in mixed logics

Didier Galmiche
LORIA, Nancy

We study proof-search in the propositional Bl-logic that can be viewed as
a merging of intuitionistic logic and multiplicative intuitionistic linear logic
with its underlying sharing interpretation. BI is the basis of new foundations
for Computer Science applications (logic programming, reasoning about mu-
table data structures). We propose a labelled tableau calculus for BI, the
use of labels making it possible to generate countermodels. We show that
from a given formula A, a non-redundant tableau construction procedure
terminates and yields either a tableau proof of A or a finite countermodel
of A in terms of the Kripke resource monoid semantics. Moreover, we prove
the finite model property for BI with respect to this semantics.

Proof nets for classical logic

Edmund Robinson
Queen Mary, University of London

Classical sequent calculus is a beautifully symmetric system but imposes an
ordering on operations which makes too many distinctions from a semantic
point of view. In this talk I propose to outline how someone seeking a more

graphical representation is led to something like proof nets, and to explain
why the only serious problem in adapting the standard linear technology is
caused by weakening. Taking weakening as a rule in its own right, not as
a nullary contraction, allows an extension of the standard Danos-Regnier
switchings to cover it. This gives a notion of proof net for full classical
propositional logic. We sketch the proof that any such net is sequentializable
(i.e. can be derived from a valid sequent proof). In this talk I shall only
deal with statics.

A “negative” look to uniform proof-search

Alberto Momigliano
University of Leicester

Logical frameworks with a logic programming interpretation, such as heredi-
tary Harrop formulae (HHF), do not allow to express directly negative infor-
mation, in order to preserve goal-oriented proof search. Since negation-as-
failure does not fit well in a logical framework especially one endowed with
hypothetical and parametric judgments, we adapt the idea of elimination
of negation in Horn logic to a fragment of higher-order HHF. This entails
finding a middle ground between the Closed World Assumption usually as-
sociated with negation and the Open World Assumption typical of logical
frameworks; the main technical idea is to isolate a set of programs where
static and dynamic clauses do not overlap.

A Polynomial Translation of Propositional S4 into Proposi-
tional Intuitionistic Logic

Uwe Egly
Technical University Vienna

We present a polynomial translation of the propositional fragment of the
modal logic S4 into the propositional fragment of intuitionistic logic. The
translation is performed in three main steps. Properties of intermediate
translations are established by purely proof-theoretical means, i.e., by proof
transformations between different cut-free sequent calculi. Consequently,
this approach yields effective translation procedures.

Towards a formal pragmatics

Gianluigi Bellin
University of Verona

The project of providing a logic for formal pragmatics (presented in the
Dagstuhl seminar on linear logic 1999) is motivated by the need of extending

the framework of logical theory to account for aspects of informal reasoning
involving the illocutionary acts of assertion, obligation, etc. also in mixed
contexts. A long-term aim of the project is to give “intended interpreta-
tions” of substructual logics and a coherent account of these formal system
within the standard framework of logical theory. Currently, the language
ILP has the usual intuitionistic connectives plus a connective -o expressing
relevant causal implication; the elementary sentences are of the form F «
(cv is assertible) and O — « (« is obligatory), where « is a classically inter-
preted proposition. The main result reached so far is the characterization
of mixed-contexts inferences yielding the principle: “if « is obligatory and
from the assertion that « it can be causally inferred the assertion that [,
then (is obligator”. An open problem is how to reflect classical reasoning
within the system, e.g., to account for the principle ”if 3 is forbidden and
from the assertion that « it can be causally inferred the assertion that (3,
then « is forbidden”.

Syntactic foundations of proof-search

Andrei Voronkov
University of Manchester

We show how to decide modal logics by the inverse method. Unlike the
semantics-based tableau method, the inverse method only derives tautolo-
gies, so search space pruning using semantics is difficult, if possible at all.
We demonstrate how one can find redundancy criteria for sequents and
derivations using syntactic properties of derivations in sequent calculi.

A linear spine calculus

Iliano Cervesato
ITT Inc.

We present the spine calculus S~ °%7 as an efficient representation for the

linear lambda-calculus A~ %7 which includes intuitionistic functions (—),
linear functions (—o), additive pairing (&), and additive unit (7"). enhances
the representation of Church’s simply typed lambda-calculus as abstract
Bohm trees by enforcing extensionality and by incorporating linear con-
structs. This approach permits procedures such as unification to retain the
efficient head access that characterizes first-order term languages without
the overhead of performing eta-conversions at run time. Potential applica-
tions lie in proof search, logic programming, and logical frameworks based
on linear type theories. We define the spine calculus, give translations of
A7 24T into S~ T and vice-versa, prove their soundness and complete-
ness with respect to typing and reductions, and show that the spine calculus
is strongly normalizing and admits unique canonical forms.

Towards a calculus of problems in type theory with applica-
tions to relational rippling

James McKinna
University of Durham

We seek a (search) calculus of problems posed in a type theory with inductive
definition. In particular, one which

e is distinguished from existing presentations of type theory

e emphasises induction /recursion/case analysis over search oriented anal-
yses which focus on the lambda-Pi fragment of dependent type theory

We identify a general form of problem statement which subsumes the
e-expressions of Bundy and Lombart’s Relational Rippling (Dagstuhl 9350;
July 1995). We further identify a number of rewrite rules in relational
rippling as arising from inversion of inductive definitions.

Induction, recursion, inversion, and even derived case analysis as in the
work of McBride, are expressed as left rules in our calculus, whose general
from is that of rewriting of subcontexts, similarly to the annotated rewriting
of Bundy/Lombart.

Relational rippling in general is a notationally and semantically complex
theory of rewriting annotated e-expressions. Our hope is, by reanalysing
these notions in our new framework, we may simplify as well as learn from,
this important search technique. This is very much work in progress.

Semantics of higher-order logic programming

Jim Lipton
Wesleyan University

Church’s Theory is one of the older type theories (1940) based on (Church’s)
simply typed lambda calculus, with logical constants added at the appro-
priate types. It is the basis for lambda-prolog (Miller,Nadathur, Pfenning,
Scedrov), as well as Peter Andrews’ work on higher-order automated deduc-
tion in the 60s and 70s. Its classical semantics was developed in Henkin’s
thesis in 1950, and an intensional variant by Andrews in the 1970s. Using
an indexed version of (Kripke-like) Omega-set models, we develop sound
and complete semantics for the intuitionistic fragment of Church’s theory
of types (ICTT). We then show how to adapt the semantics to the lambda-
prolog fragment(HOHH)of this theory via Uniform Algebras, a Goal-Atom-
Program sorted variant of the above semantics. The problem of producing
sound and complete semantics for Higher Order Hereditarily Harrop for-
mulas with resolution (uniform) proofs had been open for ten years. We
have solved it, but have not touched the question of lambda-prolog’s rather

10

unique brand of polymorphism or its kind and type definition mechanisms.
The mathematical background required is quite basic (a little intuitionistic
semantics, an affection for completeness theorems).

The work was done jointly with Mary de Marco at Wesleyan.

Logic programming, data-flow analysis and equality theories

Patricia Hill
University of Leeds

For logic programming, the standard procedural semantics is based on res-
olution and, more specifically, full unification, which is sound with respect
to the Herbrand equality theory. On the other hand, most Prolog systems
implement a form of unification that is sound with respect to the equality
theory of rational trees. The advantages are that the unification is more ef-
ficient and that the equality theory allows for cyclic terms which have many
applications, including, in particular, an efficient representation of gram-
mars. However, to really enjoy these benefits, we need to be able to support
a flexible system that allows for both the Herbrand and the rational tree
equality theory to exist side-by-side in the program. In particular, the sys-
tem should help the programmer and compiler ensure that the unification
at each step is sound for the intended equality theories and that uses of
the data-structures are consistent with their cardinality and structure. In
this note we discuss what is needed in more detail and show how data-flow
analysers can provide this support.

Problems of bytecode verification

Robert Stark
ETH Zurich

Most research on Java Bytecode Verification is focussed on the soundness
of the bytecode verifier. From the security point of view it is important to
know that bytecode which is accepted by the verifier does not violate type
conditions at run-time. From the practical point of view it is also impor-
tant to know that bytecode that is generated by a Java compiler from legal
well-typed Java programs is accepted by the verifier afterwards. During an
attempt to prove that a Java compiler generates verifiable code, however,
we found examples of legal Java programs which are rejected by any Byte-
code Verifier. The examples show that Java Bytecode Verification as it has
been introduced by Sun is not possible. We propose therefore to restrict the
so-called rules of definite assignment for the try-finally statement as well
as for the labeled statement such that our example programs are no longer

11

allowed. Then we can prove, using the framework of Abstract State Ma-
chines, that each program from the restricted Java language is verifiable by
the Java Bytecode Verifier.

Ontological status of paraproofs

Thomas Streicher
University of Darmstadt

Both in proof-search and proof theory certain paraproofs show up, i.e.,
derivations where some leaves are not justified by axioms but by author-
ity. These justifications by authority rather serve the purpose of error ele-
ments known from programming. These paraproofs do not serve in general
the purpose of establishing truths but rather are used for testing the real
proofs.

This is basic to Girard’s Ludics programme. But paraproofs also appear
in recent work of Krivine and Danos on realizability for classical AFy and
in Curien and Herbelin’s Duality of Computation where paraproofs appear
as continuation terms. We leave it as a question for future investigations
to find out whether paraproofs may provide a bridge between the fields of
proof search and continuation semantics.

Defining An Operational Semantics for Resource Management
in Lolli

Kevin Watkins
Carnegie-Mellon University

A research specification language in practice

Alan Smaill
University of Edinburgh

We have been working for some time on a search engine that allows dec-
larations of the primitive search steps and supports use of different search
regimes by means of a small control language. One level of this is intended
to give a general search mechanism in terms of a calculus of structural goals
and means of achieving search goals using higher-order representations. I
speculate on the integration of search and logic declarations within a single
framework logic, and how semantic considerations should help this enter-
prise.

On the extensibility of proof-checkers
Randy Pollack

University of Durham

12

In a proof checker, we are interested in proofs; no other evidence for a
judgement is acceptable. There is a question, however, whether we insist
on objects that are immediately recognizable as proofs, or will accept some
meta-notations that only compute to proofs. For example the deduction
theorem is a sound rule (e.g. admissible) of Hilbert style minimal implica-
tional logic, because a proof of G F a — b can be computed from a proof
of G,a F b, but it is not directly a rule of the logic. Even if we allow a
proof checker to directly implement such rules, we cannot expect to know
and implement all the sound rules users may want. This talk is about how
to construct a proof checker such that the stringent requirement of formality
can be met without sacrificing the convenience and computational efficiency
of such indirect proof notations as admissible rules.

Isn’t this just what LCF tactics are for? Surprisingly, although LCF
tactics are programmed in a Turing-complete programming language (e.g.
SML), only derivable rules are representable. Further, because SML’s type
system is not expressive enough to specify which theorem a tactic will return,
and because SML has general recursion which may not terminate, tactics
must actually be evaluated, which is infeasible for many rules.

My proposal is to program LCF-style proof checkers in languages with
only terminating functions, and dependent type systems. Then many non-
derivable rules can be expressed as tactics, and these tactics for admissible
rules can be used without being executed, because they cannot fail to ter-
minate if executed, and their type tells explicitly which theorem they will
return.

Solving Knuth-Bendix ordering constraints

Konstantin Korovin
University of Manchester

Solving ordering constrains is used in automated deduction to prune the
search space. Mainly two kinds of orders are used; the Knuth-Bendix or-
ders and recursive path orders. For recursive path orders, decidability of
constraint solving was shown by Comon, and NP-completeness by Nieuwen-
huis. We show that for the Knuth-Bendix order the constraint solvability
problem is NP-complete. For constraints consisting of a single inequality
we present a polynomial time algorithm. More information can be found at
http://www.cs.man.ac.uk/ korovink.

Towards a classification of proofs

Manfred Kerber
University of Birmingham

13

In this talk different views on the concept of proof are presented. I advocate
that the traditional view of Hilbert is only partly describing a multicoloured
concept. Recent advances in the mechanization of proof (in particular, the
integration of computer algebra systems and mechanized reasoning systems)
makes it necessary to deal with very long proofs. In agent-oriented proof
search it is also necessary to communicate partial proofs efficiently. In order
to do that effectively and efficiently it is necessary to write and communicate
proofs on different levels. In the presentation I discuss important different
dimensions of proofs, in particular

e the formal system in which the proof is formulated (like natural de-
duction, tableau, resolution);

e the rigour of the proof (in Polya’s terminology to distinguish between
demonstrative proofs and plausible proofs);

e the problem formulation (is the theorem proved in the system it is
originally stated or in a reformulated way);

e the completeness of the proof (whether it is given in full detail or
whether a lot of computation is required to construct it);

e whether it is concise (the most concise form of a proof can be a triple
consisting of the theorem, a theorem prover, and the number of steps
performed by the prover to construct a proof);

e the probabilistic level (primality tests, e.g., often demonstrate primal-
ity with high probability, but do not guarantee a property);

e the information content (some faulty proofs can be easily patched,
others do not contain any useful information).

Splitting without backtracking

Alexandre Riazanov
University of Manchester

The case analysis principle is the core of tableau-based theorem proving. Is
can also be integrated into saturation-based theorem proving in the form
of the splitting rule S U{C vV D} — SU{C} U SU{D} if C and D have no
common variables (in order to refute S |J{C V D}, refute separately S J{C'}
and SJ{D}). Splitting can be implemented by using backtracking but this
is difficult and affects the design of the system. We introduce a much simpler
form of splitting that does not use backtracking: SU{C VvV D} — SJ{C Vv
p, 7PV D} where p is a new predicate. This form of splitting is implemented
in our resolution-and superposition-based theorem prover Vampire. Some
optimizations to this technique are presented and experimentally compared.

14

For more information see A. Riazanov, A. Voronkov, Splitting without
Backtracking, University of Manchester, CSPP-10.

Proof-search and computation in Herbelin’s calculus

Roy Dyckhoff
University of St Andrews

Herbelin presented at CSL’94 a simple sequent calculus for minimal im-
plicational logic, with a complete set of cut-reduction rules which is both
confluent and strongly normalizing. We describe briefly its utility for proof
search and its relationship to calculi for uniform proof search; our novel point
is that if one adds cut-reduction rules to allow simulation of ordinary beta-
reduction one has a system which is still confluent and strongly normalizing,
and in fact preserves strong normalizability of untyped terms, thus solving
a problem left open by Herbelin. We speculate about the possibility of ex-
tending the calculus to allow confluence on open terms (“meta-confluence”)
but retaining the SN-property.
This is joint work with Christian Urban, Cambridge.

15

6 The Participants

Gianluigi Bellin
Iliano Cervesato
Ewen Denney

Roy Dyckhoff

Uwe Egly

Didier Galmiche
Patricia Hill
Manfred Kerber
Konstantin Korovin
Kurt Ranalter
Dominique Larchey-Wendling
Jim Lipton

Conor McBride
James McKinna
Daniel Mery
Alberto Momigliano
Michel Parigot
Randy Pollack
David Pym
Alexandre Riazanov
Eike Ritter
Edmund Robinson
Andrea Schalk
Alan Smaill

Robert Stark
Thomas Streicher
Hayo Thielecke
Andrei Voronkov
Kevin Watkins

University of Verona

ITT Inc. - Alexandria
University of Edinburgh
University of St Andrews

TU Wien

LORIA - Nancy

University of Leeds
University of Birmingham
Manchester University
University of Verona

LORIA - Nancy

Wesleyan Univ. - Middletown
University of Durham
University of Durham
LORIA - Nancy

University of Leicester
Université Paris VII
University of Durham

Queen Mary College - London
Manchester University
University of Birmingham
Queen Mary College - London
Manchester University
University of Edinburgh

ETH Ziirich

TU Darmstadt

University of Birmingham
Manchester University

CMU - Pittsburgh

16

