
Software Visualization

20.05. - 25.05.2001

organized by

Stephan Diehl (Saarbrücken)
Peter Eades (Sydney)

John Stasko (Atlanta)

It is often said that humans have never before created any artifacts which are as
complex as todays software systems. As a result creating, maintaining, under-
standing and teaching software is a challenging task. Software is neither matter
nor energy, it is just a kind of information. Sometimes the representation and the
information itself are confused. Software visualization is concerned with visually
representing different aspects of software including its structure, execution and
evolution.
So far, research on software visualization was mostly motivated by its potential to
support teaching. Many systems have been developed to facilitate the production
of algorithm animations.
At Dagstuhl software enginieers and re-engineers repeatedly argued that there
is a strong need for software visualization in their areas. Here further research
includes the use of techniques from information visualization to display sofware
metrics, graph layout and graph animations to show the structure and changes
in software systems and program animation for debugging.
At the seminar more than 50 researchers from all around the world discussed the
state-of-the-art as well as challenging questions for the future of software visual-
ization. The program included 38 presentations and 15 system demonstrations,
as well as several sessions for group discussions.
Participants of the seminar volunteered

• to compile a post seminar proceedings, which is to be published as a
Springer LNCS state-of-the-art survey.

• to create a repository with algorithm animations and software visualization
tools

• to initiate an international conference series on software visualization.

We feel that the seminar was a seminal event. The future will tell whether it
reached its ambitious goals to form a community and raise awareness of software
visualization as a challenging and important research field of its own.

1



Contents

1 Visualizing Software Changes 5

2 Visualization for End-User Software
Engineering 5

3 Structure in Sources, Structure in Systems
and Structure in Between 6

4 Fun with Leonardo 6

5 Understanding Algorithms by means of Path Testing 7

6 Algorithm Animation for Constrained
Domains 8

7 Low Fidelity Algorithm Visualization 9

8 Algorithm Explanation:
Focussing and Invariants 9

9 Jeliot as a program animation tool 10

10 State Chart Visualization 11

11 GXL - Graph eXchange Language 12

12 Structure and constraints in interactive
exploratory algorithm learning 12

13 Visually Teaching Network Protocols 13

14 Developing GATO and OATBox with
Python: Teaching Graph Algorithms
through Visualization and Experimentation 14

15 Animating Algorithms Post Mortem 14

16 Graph Animation 15

17 Visualization for Fault Location 15

18 Interactive Visualization of Java Programs
for performance analysis and debugging 16

2



19 An Artistic Approach to Model and
Software Engineering Design 17

20 On the Visualization of Java Programs 18

21 Automatic Program Visualization with
Sequence and Object Diagrams Using
the Java Debug Interface (javavis) 20

22 Visual debugging of concurrent Java
programs with UML 21

23 Visualizing Memory Maps 21

24 Algorithm Animation for Teaching 22

25 Graphical Liquid Miro: Dynamic Graphical JavaDocs 22

26 Visualization for the Mind’s Eye 23

27 Opportunities for Software Visualization
in Reverse Engineering 23

28 3D Visualization of Large Object-Oriented Programs 26

29 Visual Modeling and Model Visualizations 27

30 Multi-sensory metaphors for interacting
with abstract data within a Virtual
Environment 27

31 Using JFLAP for Visualization and
Interaction in the Automata Theory Course 28

32 Integrating Animation into Comprehensive
Teaching and Learning Resources for the
Web 29

33 aiCall - Call graph and control flow graph
visualization for developers of embedded
systems 30

34 Algorithm Animation Based on Data Flow Tracing 31

A Presentations without Abstract 33

3



B Software Demonstrations 34

4



1 Visualizing Software Changes

Stephen G. Eick
Visual Insights, USA

A fundamental problem in software engineering is changing the code, to add new
functionality, support new hardware, accommodate new operating environments,
and fulfill new increased user expectations. In an ideal world, software architec-
ture would anticipate and facilitate future changes. In reality, the architecture
is imperfect, and incorporate compromises forced by time and cost constraints.
In real-world systems the scale and complexity become daunting. Software vi-
sualization is a natural, effective, and perhaps essential way to help programs
overcome this complexity. We have developed a number of tools that facilitate
rapid exploration of software change data, provide access to details, and support
the maintenance and evolution of software systems.

2 Visualization for End-User Software

Engineering

Margaret Burnett
Oregon State University, USA

Tools and environments to enable end users to ”program” are becoming increas-
ingly popular. The best known such environment is the spreadsheet, and the
way users program in this type of environment is by providing formulas. Unfor-
tunately, it has become clear that end users’ programs are no more reliable than
those written by professional software engineers. To try to help address this prob-
lem, we are developing a holistic approach to software engineering for end users.
It incorporates support for testing, finding bugs, maintenance, and requirements
specification. The software engineering knowledge needed is in the system, and
the user is not expected to develop expertise at software engineering; instead, the
strategy is for the system to provide guidance to the user. The way this is done
is through an interactive visualization of the software engineering attributes of
the spreadsheet, tightly intertwined with the spreadsheet display of cells, values,
etc. Empirical studies show that with this approach, end users’ ability to test
and debug their spreadsheets is greater than has been true without the approach.

5



3 Structure in Sources, Structure in Systems

and Structure in Between

Siegfried Wendt
Hasso-Plattner-Institut für Softwaresystemtechnik, Germany

It is one of the major tasks of engineers to spread the knowledge concerning the
design of complex systems. In civil, mechanical and electrical engineering, opti-
mal representations of such knowledge have been developed in a long evolutionary
process. In software engineering, it is much more difficult to find adequate rep-
resentations because of the abstract nature of software systems. The software
itself should not be treated as the primary object to be described, but as a de-
scription which is the result of a mapping. The primary object to be described
is the software controlled hardware. This system is dynamic, discrete, directed
and informational, and it can be described using bipartite graphs for representing
structures, ranges and processes. The software elements are obtained at the end
of a sequence of mappings of system models.

4 Fun with Leonardo

Camil Demetrescu
Universita di Roma ”La Sapienza”, Italy

Joint work with:
Irene Finocchi, Universita di Roma ”La Sapienza”, Italy

Leonardo is an integrated environment for developing, executing and animating
C programs. It provides two major improvements over a traditional IDE. First,
it provides a mechanism for visualizing computations graphically as they happen
by attaching in a declarative style graphical representations to key variables in a
program. Second, code written with Leonardo can be executed both forwards and
backwards, i.e., it is completely reversible: variable assignments will be undone,
output sent to the console will disappear, graphics drawn will be undrawn, and
so on. You have access to the full set of standard ANSI functions, and those are
reversible too. Leonardo has been widely distributed over the Web (more than
15000 downloads over the last two years) and features a repository of more than
60 animated algorithms.

6



In this talk we survey the main features of Leonardo and we show examples of
how to bind pictures to C code. In particular, we build in Leonardo a complete
animation of the breadth-first visit of a graph starting from a plain C code.

URL: http://www.dis.uniroma1.it/~demetres/Leonardo/

5 Understanding Algorithms by means of Path

Testing

Jorma Tarhio
Helsinki University of Technology, Finland

Joint work with:
Ari Korhonen, Helsinki University of Technology, Finland
Erkki Sutinen, University of Joensuu, Finland
University of Linköping, Sweden

Visualization of an algorithm offers only a rough picture of operations. Expla-
nations are crucial for deeper understanding, because they help the viewer to
associate the visualization with the real meaning of each detail. We present a
framework based on path testing for associating explanations with a self-study
visualization of an algorithm.
The algorithm is divided into blocks, and the system provides a description for
each block. The system contains a separate window for code, flowchart, anima-
tion, explanations, and control. Students are given assignments based on the
flowchart and coverage conditions of path testing. Path testing leads more ex-
act evaluation of learning outcomes because of systematic instruction instead of
common trial-and-error heuristics

7



6 Algorithm Animation for Constrained

Domains

Ayellet Tal
Technion, Department of Electrical Engineering, Israel

A major goal in the design of an algorithm animation system is how to create a
system that let others use it easily. One possible way to do it, the one proposed
here, is to limit the domain the system supports. By constraining the domain we
are able to incorporate into the system Knowledge regarding the objects and the
operations which are prevalent in the domain. Built in the system are ways to
visualize these objects and ways to animate the operations on them. As a result,
large parts of the user’s tasks can be automated.
A system for a constrained domain allows the user to be isolated from any concern
about how graphics is being done. A typical animation can then be produced in
a matter of days or even hours. This can be done regardless of the complexity of
the algorithm being visualized. Even highly complex algorithms can be animated
with ease.
We define a hierarchy of users: naive programmers, advanced programmers, end
users, and groups of end users. The naive programmer cares solely about the
contents of the visualization. Advanced programmers can also modify and extend
various visualization aspects of the animation. End users experiment with an
algorithm to understand its functioning. Finally, groups of end users are able to
collaborate. In response to these needs, the visualization system should consist
of libraries for the naive programmer, an external graphical user interface for the
advanced programmer, an environment that lets end users run the animation,
and tools for collaboration.
We have presented three algorithm visualization systems that realize this model
in two specific domains. GASP and GASP-II were designed for the domain
of computational geometry. VADE was designed for the domain of distributed
algorithms.

8



7 Low Fidelity Algorithm Visualization

Chris Hundhausen
University of Hawaii at Manoa, USA

Computer science educators have traditionally used algorithm visualization (AV)
software to create graphical representations of algorithms that are later used as
visual aids in lectures, or as the basis for interactive labs. Typically, such visual-
izations are ”high fidelity” in the sense that (a) they depict the target algorithm
for arbitrary input, and (b) they tend to have the polished look of textbook fig-
ures. In contrast, ”low fidelity” visualizations illustrate the target algorithm for
a few, carefully chosen input data sets, and tend to have a sketched, unpolished
appearance. Drawing both on the findings of ethnographic field studies I con-
ducted in a junior-level algorithms course, and on the results of an experiment
I conducted that compared the educational effectiveness of high and low fidelity
visualizations, I motivate the use of low fidelity AV technology as the basis for
an alternative learning paradigm in which students construct their own visual-
izations, and then present those visualizations to their instructor and peers for
feedback and discussion. To explore the design space of low fidelity AV technol-
ogy, I present a prototype language and system derived from empirical studies
in which students constructed and presented visualizations made out of simple
art supplies. The prototype language and system pioneer a novel technique for
programming visualizations based on spatial relations, and a novel presentation
interface that supports reverse execution and dynamic mark-up and modifica-
tion. Moreover, the prototype provides an ideal foundation for what I see as the
algorithms classroom of the future: the interactive ”algorithms studio.”

8 Algorithm Explanation:

Focussing and Invariants

Reinhard Wilhelm
Universität des Saarlandes, Germany

Joint work with:
Tomasz Mueldner, Acadia University, Canada

We propose to preprocess software before visualizing it. Preprocessing is done

9



by shape analysis, a particular static program analysis technique. Shape analysis
attempts to compute invariants at program points. Invariants both express struc-
tural as well as non-structural properties of the contents of the heap. Typical
structural properties of heap elements are being pointed to by a specific pointer
varibale, being reachable from a specific pointer variable or some pointer variable,
being the target of at least two different heap pointers, and lying on a cycle.
Non-structural properties encompass properties such as having a data component
wich is greater than that of the left neighbour (child) and smaller than that of the
right neighbour (child). Structural properties can be used in abstracting concrete
heap contents of arbitrary size to abstract heap states of bounded size. It can also
be used to make software visualization focus on active parts of the heap contents,
i.e. those parts of heap data structures where the algorithm currently works.
A particular problem connected to our approach of visualizing a program pre-
processed by shape analysis is the necessity to deal with uncertainty. Our visu-
alizations of algorithms do not work on concrete input data, but show abstract
executions representing all concrete executions. Properties of some abstract data
may not be known to hold, but may still be have to be represented. The best ex-
amples are programs working on totally ordered domains, e.g., sorting programs.
Our visualizations may encounter abstract data that are incomparable to other
data. Hence, only a partial order may exist. However, the visual representation
of the abstract data should not induce the impression of comparability in the
viewers mind. Specific solutions to this problem are presented.
Appropriate visualizations of structural properties have to be found and visu-
alizations of non-structural properties have to be impressed on top of them. A
visual calculus is envisioned in which the results of the shape analysis of a piece
of software can be visulaized more or less automatically. Examples are given for
binary search trees and red-black trees.

9 Jeliot as a program animation tool

Erkki Sutinen
University of Joensuu, Finland
University of Linköping, Sweden

Joint work with:
Moti Ben-Ari, Weizmann Institute of Science, Israel
Jorma Tarhio, Helsinki University of Technology, Finland

Jeliot is a program animation system which allows a Web user to write a Java

10



code, determine its visual appearance on the screen and have the system automat-
ically produce an animation of the code according to the given visual guidelines.
A related version, called preliminarily Jeliot 2000, is a stand alone system with
a reduced set of features. For example, the animation will be compiled into the
visual format in a fully automatic way, without users’ preferences.
Although the history of Jeliot started from ready made animations for string
algorithms, implemented by XTango, the development team soon understood
that it is not seeing or observing existing animations but constructing them for
one’s own codes that contributes to positive learning outcomes. Both Jeliot and
Jeliot 2000 serve this purpose.
To design an efficient visualization environment, one has to think carefully of the
aimed target group. Especially in the case of Jeliot 2000, the intended audience
consists primarily of beginning programmers, independently of the language they
use. The emphasis is on understanding the basic language structures. Evaluation
of the learning outcomes indicates that this approach is particularly useful for
mid-performers.
The original Jeliot serves a bit more advanced students who already can manage
the features offered by the environment. Moreover, they can focus the visualiza-
tion into the variables which they are interested in. This helps in crossing the
learning boundaries at the zone of proximal development (Vygotsky).

10 State Chart Visualization

Rym Mili
University of Texas at Dallas, USA

ViSta is a tool suite designed to support the requirements specification of reactive
systems. It enables the user to prepare and analyze a diagrammatic description of
requirements using the statechart notation. ViSta includes a template wizzard, a
graphical editor and a statechart visualization tool. The template wizzard guides
the user through the steps necessary for the extraction of relevant information
from a textual description. The statechart visulization tool offers a framework
that combines hierarchical drawing, labeling, and floorplanning techniques, de-
signed to work in a cooperative enviroment.

11



11 GXL - Graph eXchange Language

Andreas Winter
Universität Koblenz-Landau, Germany

The fields of reverse engineering and program analysis have matured to the extent
that there are many tools to extract information about programs, to manipulate
and analyze this information, and to visualize it. What is missing is a generally
accepted means to allow these tools to interoperate.
GXL offers a graph-based format supporting tool interoperability on the data
interchange level. GXL has evolved from many discussions among groups de-
veloping reengineering tools. It was also influenced by similar activies on tool
interoperability in graph drawing and graph transformation.
In GXL instance data and their according schema data is represented by typed,
attributed, directed graphs. Both, instance data and schema data are exchanged
as XML documents following ONE common DTD (document type definition).
The repesentation of graphs and schemas follows the notation given for UML
object and class diagrams.
At the Dagstuhl seminar on ”Interoperability of Reengineering tools” (January
2001) GXL 1.0 was ratified as standard exchange format in the software reengi-
neering community. GXL also defines the graph structure part in the standard
exchange format for graph transformation systems (GTXL). Currently more than
15 groups from industrie and accademics are developing tools using and support-
ing GXL.

URL: http://www.gupro.de/GXL

12 Structure and constraints in interactive

exploratory algorithm learning

Nils Faltin
University of Oldenburg, Germany

Traditionally an algorithm is tought by presenting and explaining the problem,the
algorithm pseudocode and finally an algorithm animation or a sequence of static
snapshots. My aim is to foster creativity, motivation and high level programming

12



concepts by providing the student an alternative route to algorithm understand-
ing: exploratory learing. The algorithm is structured into several functions and
this structure is presented to the student. The student is encouraged to device a
pseudocode description himself. An instance of the problem is presented on the
level of each algorithm function. A graphical simulation of the data structures
and some of the algorithm functions are provided. It is the students task to
find out a correct sequence of function calls that will solve the problem instance.
The instructor can control the difficulty of the task by providing algorithm con-
straints. Each new constraint will shrink the solution space and thus ease the
task. Algorithm structure together with algorithm constraints can be seen as an
alternative way of describing an algorithm. More information can be found at:

URL: http://www-cg-hci-e.informatik.uni-oldenburg.de/~faltin/SALA/
int_vis_alg_e.html

13 Visually Teaching Network Protocols

Pierluigi Crescenzi
Universita degli Studi di Firenze, Italy

In this talk we propose a general framework for building network protocol visual-
izations. To this aim, we start from the Abstract Protocol (AP) notation, which
is a useful formal notation for specifying network protocols, and we propose a
Java based implementation of this notation. By using our implementation, pro-
totyping and implementing a network protocol turn out to be a very easy task
(once its AP specification has been formalized). Moreover, by suitably adding
visualization components to the implementation, the visualization of the network
protocol (mainly for teaching purposes) can be done in a completely automatic
way.

13



14 Developing GATO and OATBox with

Python: Teaching Graph Algorithms

through Visualization and Experimentation

Alexander Schliep
Universität Köln, ZAIK, Germany

CATBox (Combinatorial Algorithm Toolbox) is an interactive course on discrete
mathematics using Gato (Graph Animation Toolbox) to supply algorithm anima-
tion and graph visualization allowing students to enrich the learning experience
through experimentation. Using Python as the language to represent and im-
plement algorithms together with the novel concept of animated data structures,
which allows to easily encode visualization rules linking cause and visual effect,
provides a (semi-)automatic visualization environment. This allows to extend
experimentation also to algorithms.

15 Animating Algorithms Post Mortem

Carsten Görg
University of Saarland, Germany

Joint work with:
Stephan Diehl, University of Saarland, Germany
Andreas Kerren, University of Saarland, Germany

In the first part of our presentation we introduce two new generative approaches
of animated computational models. These approaches are applied in context
of educational software systems for compiler design. We shortly describe the
implementation of the first approach. Based on the experiences with this proto-
type implementation we have developed the second approach and the GANIMAL
framework was designed. This framework consists of a generic algorithm anima-
tion system, which offers a unique set of possibilities because of its graphical
base package, concurrent runtime system with graphical user interface and its
programming and animation specification language GANILA. In the second part
we present a generic algorithm which computes a Foresighted Layout for dynam-
ically drawing a sequence of evolving graphs while preserving the mental map.
The algorithm is generic in the sense that it takes a static graph drawing algo-

14



rithm as a parameter. Furthermore we discuss some applications of Foresighted
Layout including a 3D grapher which uses the third dimension as a history.

URL: http://www.cs.uni-sb.de/GANIMAL

16 Graph Animation

Carsten Friedrich
University of Sydney, Australia

Enabling the user of a graph drawing system to preserve the mental map between
two different layouts of a graph is a major problem. Whenever a layout in a
graph drawing system is modified, the mental map of the user must be preserved.
One way in which the user can be helped in understanding a change of layout
is through animation of the change. In this talk, we present clustering-based
strategies for identifying groups of nodes sharing a common, simple motion from
initial layout to final layout. Transformation of these groups is then handled
separately in order to generate a smooth animation.

17 Visualization for Fault Location

John Stasko
Georgia Institute of Technology, USA

Large test suites are frequently used to evaluate the correctness of software sys-
tems and to locate errors. Unfortunately, this process can generate a huge amount
of data that is difficult to interpret manually. We have created a system called
Tarantula that visually encodes test data to help find program errors. The sys-
tem uses a principled color mapping to represent how particular source lines act
in passed and failed tests. It also provides a flexible user interface for examining
different perspectives that show the effects on source regions of test suites ranging
from individual tests, to important subsets such as the set of failed tests, to the
entire test suite.

15



URL: http://www.cc.gatech.edu/gvu/softviz

18 Interactive Visualization of Java Programs

for performance analysis and debugging

Wim De Pauw
IBM T. J. Watson Research Center, USA

Jinsight is a tool that displays a Java program’s behavior at execution. It displays
object population, messages, garbage collection, bottlenecks for CPU time and
memory, thread interactions, deadlocks, and memory leaks. Jinsight can also
take repetitive execution behavior and boil it down to its essentials, eliminating
redundancy and uncovering the highlights of an execution. By displaying program
behavior and hot spots from several perspectives, Jinsight strengthens your ability
to understand, debug, and fine-tune your program.
Jinsight advances the analysis of dynamic, object-oriented (OO) programs in a
number of ways:

• It is fully object-oriented. Most performance-tuning tools for OO languages
do little more than profile methods as they do procedures in non-OO lan-
guages. Some go as far as showing the total number of objects per class.
But the OO programming model is fundamentally different from the pro-
cedural model, and much of the power of OO is lost on conventional tools.
Jinsight’s views of program execution use metaphors that are both natural
and consistent with the OO model. These views let you visualize both ob-
jects and messages explicitly. The Histogram view lets you see calling and
reference relationships among objects. The Execution, Invocation Browser,
and Execution Pattern views show sequences of messages among objects as
a function of time. The Reference Pattern view displays patterns of refer-
ences among objects. These views work together seamlessly to reveal the
inner workings of your program.

• Jinsight has powerful pattern extraction capabilities that let you deal with
large, real-world traces. It presents recurring patterns of run-time behav-
ior in a single, compact view. Pattern extraction takes what is often an
overwhelming and highly redundant mass of execution information and re-
duces it to its fundamental interactions. It lets you peruse vast areas of the
execution space without sifting through it message by message, object by
object. Pattern extraction greatly simplifies run-time analysis.

16



• Jinsight has a unique memory leak finder. Where other tools claim to find
memory leaks by ”displaying an abnormal volume of instances,” Jinsight
can reveal the causes of the memory leaks with far greater precision. Its
Reference Pattern view shows which objects are holding references that
are hampering garbage collection, thereby drawing attention to the code
responsible for those references.

• We have an efficient way to visualize program on-line, by using task-oriented
tracing. This live visualization allows the user to carve out pieces of the
execution that are related to a given task.

19 An Artistic Approach to Model and

Software Engineering Design

Paul A. Fishwick
University of Florida, USA

As we obtain less expensive and more visually oriented toolkits for software engi-
neering, we find that the structure of software evolves into a ”model structure.”
The Unified Modeling Language provides one solution to modeling for require-
ments specification and design, but there are many others, each with their own
symbology. Along with this movement toward modeling, the increasing empha-
sis on personalization in consumer products, which includes interfaces, suggests
that art can play a significant role in the design of future programs. We present
our research using our ”rube Methodology” that encourages the application of
aesthetically-based metaphors to traditional diagrammatic models to produce 3D
executable software in VRML (Virtual Reality Modeling Language). We have
built several dynamic model worlds, including 1) the Dining Philosophers Petri
net model, 2) an Operating System kernel, 3) numerous finite state automata
examples, and 4) a System Dynamics model. The current reusability aspect of
rube lies in the VRML Prototype library needed for model construction.

17



20 On the Visualization of Java Programs

Holger Eichelberger
J. Wolff von Gudenberg University of Würzburg, Germany

The Unifed Modelling Language (UML) has become the standard language for
object-oriented analysis and design. Static structure diagrams like class diagrams
visualize design aspects, serve as a guideline for the implementation and can be
used to document a concrete implementation. This process is automated in mod-
ern CASE tools which do not retrieve all the information provided by the source
code and which still have problems in automatic layout of the generated diagrams.
Further information like the participation of model elements in design patters and
the visualization of various versions of the same program are not considered by
current CASE tools. Information retrieved from source code or exported by soft-
ware development tools has to be stored into a format which re the items to
be visualized. We have taken three languages into account: XMI (XML Meta-
data Interchange), UMLscript and TA (Tuple-Attribue-Language). XMI is an
extendible OMG standard based on XML which is currently implemented by dif-
ferent tool vendors. It provides metamodel exchange and stores all information of
all kinds of UML diagrams but it is complicated to read and not human-writable.
Vendor specific extensions to store layout information add additional complexity
for the use in external tools. UMLscript is a programming language for object
oriented design and can be used for the specification of UML class diagrams.
One of the design goals of this language is that it has to be human readable and
writable. Because it is implemented by a generated parser it is difficult to adopt
to new versions of UML. Currently it is the language which is used in our tools.
TA, invented by R. Holt, combines the advantages of XMI and UMLscript. The
basic ideas of TA combined with other features have been implemented in GXL
(Graph Exchange Language) which is an upcoming standard for the exchange of
graph information. An extension can be used to specify class diagrams. In order
to retrieve information from source code we have implemented a common pars-
ing API for source code in Java called JTransform. All structural information
including comments are represented in a highly configurable parse tree. On the
parse tree additional binary relations like containments, references, dependencies,
downcasts, instance creations and method categorizations into predefined cate-
gories (like constructors) and user defined categories can be calculated. Using
these relations it is easy to retrieve associations and aggregations, Filter classes
and enable certain marked comments to be included in the output format. By
applying a visitor class which generates the output we can transform java source
code into UMLscript, XMI and GXL. Other applications are consistency check-
ing on javadoc comments against method signatures, comment transformations,

18



Makefile generation and checking, if the source code is pretty- printed. The out-
put produced by the java source code to UMLscript compiler (javac2UMLscript)
might be used directly as input to the visualization framework SugiBib. SugiBib
is a pure Java framework which was developed to implement a general Sugiyama
algorithm (hierarchical layout). It has been refined and
J. Seemann (steps 6,9,10,12 and 14 in the following enumeration) which can be
applied to layout UML class diagrams. Our current algorithm circumvents the
problems of the original Seemann algorithm: diagrams with no proper hierarchy
were not laid out aesthetically, nested model elements like packages and classes
and comments were not regarded. The following enumeration gives an overview
of the algorithm restricted to reverse engineering applications:

1. Identify the edges of the hierarchy (preference to the inheritance subgraph).

2. Order the set of nodes with respect to packages, nested nodes, clusters and
collaborations. Within a subsequence like a package order the top level
nodes by the weighted number of edges. This step releases the dependency
between predefined sequences in the input graph and the layout result.

3. Insert additional edges to the hierarchy in order to represent the contain-
ment hierarchy of inner classes and nested packges.

4. Remove the comment nodes and attach them to the related model element.

5. Remove reflexive edges (edges which have the same node as start and end
point) by inserting them into the node, which is furthermore responsible
for the correct layout of its reflexive edges.

6. Remove non-hierarchical edges from the graph temporarily.

7. Transform the graph to an acyclic graph in order to get a proper hierarchy.

8. Insert a virtual root if the graph consists of more than one component.

9. Apply the network simplex algorithm to get the ranking of the graph.

10. Reduce the number of crossings by reordering the nodes of each rank.

11. Remove the edges inserted in step 3.

12. Execute the incremental extension proposed by Seemann. Therefore rein-
sert the non-hierarchical edges which have been removed temporarily in
step 6.

13. Rearrange the graph and eliminate edge crossings which occured because
of the reinsertion of edges in the last step.

19



14. Iteratively calculate the coordinates of the nodes with respect to the space
needed by nodes. Nested structures are treated by a frame layout approach.
Then calculate the orthogonal layout of the non-hierarchical edges.

15. Reintegrate the comment nodes by searching minimum displacements for
the affected nodes.

We presented a way to visualize Java source code. The combination of javac2-
UMLscript and SugiBib can be applied in education as well as in documentation
of source code by enriching the HTML documentation generated by javadoc with
automaticly generated diagrams. Latest information about our work can be ob-
tained from our website:

URL: http://www2.informatik.uni-wuerzburg.de/WURST

21 Automatic Program Visualization with

Sequence and Object Diagrams Using

the Java Debug Interface (javavis)

Rainer Oechsle
FH Trier, Germany

The goal of javavis is to help students to understand what is happening in a
Java program during execution. The focus of the first release is on sequential
Java programs. The system uses the Java Debug Interface (JDI), so there are no
modifications needed in the Java source code for the extraction of information.
The system shows the dynamic behavior of a running program by displaying
several object diagrams and one sequence diagram. There is one object diagram
for each active method on the call stack. All modifications in the diagrams are
made by smooth transitions.

20



22 Visual debugging of concurrent Java

programs with UML

Katharina Mehner
Universität Paderborn, Germany

Concurrent programming is getting more and more important. While this is
taken into account by modern programming languages like Java debugging facil-
ities fall behind. Understanding errors in concurrent programs requires to deal
with several threads and their execution history. Usually, textual traces, i.e.,
protocols from a program run, are the starting point for finding the cause of an
error. However, a graphical visualization can improve the understanding of the
interactions between threads. In addition, automated support is needed to find
errors in traces such as deadlocks or dormant threads.
We have developed an extension to UML interaction diagrams to visualize traces
with deadlocks from concurrent Java programs. Using UML, the standard lan-
guage for object-oriented modeling, allows a better integration of debugging with
other activities during the software development from a language perspective and
minimizes the overall number of languages.
Our tool supports tracing of concurrent Java programs using a non-invasive ap-
proach, i.e., the source code is not changed. Traces can be analyzed for deadlocks.
Traces and deadlocks are visualized post-mortem using the UML extensions. The
tracing is based on the Java Platform Debugger Architecture. The visualization
has been implemented as an extension to the UML CASE tool TogetherJ.

23 Visualizing Memory Maps

Andreas Zeller
Universität des Saarlandes, Germany

Joint work with:
Thomas Zimmermann, University of Passau, Germany

To understand the dynamics of a running program, it is often useful to examine
its state at specific moments during its execution. We present memory graphs

as a means to capture and explore program states. A memory graph gives a
comprehensive view of all data structures of a program; data items are related

21



by operations like dereferencing, indexing or member access. Although memory
graphs are typically too large to be visualized as a whole, one can easily focus
on specific aspects using well-known graph operations. For instance, a great-
est common subgraph visualizes commonalities and differences between program
states.

24 Algorithm Animation for Teaching

Rudolf Fleischer
Hong Kong University of Science and Technology, HK

Throwing C-code onto poor students is not the right way to teach algorithms. It
is necessary to explain high-level concepts. Algorithm animations should support
these conceptual explanations, they should show why an algorithm works and why

it is fast. Current algorithm animation tools are not more than sophisticated
graphical editors driven by program events, i.e., graphical debuggers that can
only show how an algorithm runs. Automatic animation of algorithms does not
work, each algorithm must be animated individually.

25 Graphical Liquid Miro: Dynamic Graphical

JavaDocs

Aaron Quigley
University of Newcastle, Australia

Much of the interest in Software Visualization stems from the need to support the
initial development effort. However as software engineers know, the maintenance
and evolution of a software system typically constitutes the vast majority of effort
in the lifetime of any software system. Graphical Liquid Miro is a Visualization
system that captures the ”logical navigation” software maintainer makes through
a software system, design and documentation. This talk outlines the back-end
liquid Miro system and how this can be coupled to a front-end graphical explo-
ration tool. The case study presented will be centered on Graphical JavaDocs;

22



the visualization is used to show not only the syntactic structure of the informa-
tion but also the dynamic semantic structure as introduced by software engineers
using the system.

26 Visualization for the Mind’s Eye

Wolfram Luther
GMU Duisburg, Germany

Joint work with:
Nelson Baloian, Universidad de Chile, Chile

Today there is a growing interest in enhancing standard visual interfaces by au-
ral or haptic components and in complementing usual approaches to make aware
logical structures or data types through different perception channels To achieve
a better comprehension, we deal with new or augmented interfaces added to stan-
dard systems for data visualization and algorithm animation. As a consequence,
modern information and learning systems are designed in such a way that not
only sighted but also blind users can navigate within these systems.

ACM classification: K.3.1, H.5.2

Key words: Software visualization, Tutoring systems, Sensory
disabilities, User adapted interfaces

27 Opportunities for Software Visualization

in Reverse Engineering

Rainer Koschke
Universität Stuttgart, Germany

Because reverse engineering is a highly interactive and incremental process, in
which results of automatic analyses need to be presented to the reverse engineer
that are then validated, augmented and fed back to following automatic analy-
ses, software visualization plays a key role in reverse engineering. Research in

23



reverse engineering focuses on extracting and storing information, locating spe-
cific things, reducing the amount of unnecessary information for a particular task,
analyzing the extracted data and to build useful abstractions of the system under
analysis. Presenting the data to the reverse engineer in a suitable manner is a
main issue here and the reverse engineering research community struggles with
finding solutions to this problem.
Specific problems of software visualization for reverse engineering are the follow-
ing:

• graphs that are used to represent the data have semantics; automatic lay-
outs should take the semantics of nodes and edges into account

• the amount of data that need to be visualized can be rather large; graphs
with 4,000 nodes and more are typical

• reverse engineering activities require weeks, months, or even years, i.e.,
there is not just one graph, but many graphs that are derived from each
other such that visualizations evolve and one has to keep track of this
evolution

• reverse engineering activities require team-work and, hence, visualizations
need to support multiple users

• reverse engineering activities are often in parallel to normal maintenance
and changes are made while one is analyzing; consequently, visualizations
need to be incremental

• reverse engineering needs multiple views; different dimensions of the data
need to be visualized:

– time,

– different users,

– same / subset / overlapping / different information,

– and different levels of granularity,

which raises the questions how are these views integrated, how can one
navigate within and between views and how can the context be maintained
during navigation?

Summarizing the topics that have been discussed at this Dagstuhl seminar, we can
identify the following classes. From my perspective, most of them are specifically
interesting for the domain of reverse engineering while some others deal with
problems that are more relevant to other domains.

24



• Visual languages, for instance, are useful to express structural properties
of a software system and may be used to capture the actual architecture of
the system and to specify the idealized architecture.

• Algorithm animations have their strength in teaching algorithms; it is not
clear to me whether these techniques scale to large programs; moreover,
they seem to require some preknowledge on the algorithm in order to pro-
duce useful animations, which cannot necessarily be assumed in reverse
engineering.

• Metaphorical visualizations are useful to introduce novices to a new domain;
however, generally, reverse engineers understand the domain well enough
and metaphors involve the danger of allowing misleading conclusions.

• Problem-driven visualizations are visualization for specific concrete pur-
poses, like drawing UML models or state charts.

• Mental map preserving techniques attempt to help the observer of the data
to maintain the context while changing from one view to the other; these
techniques are extremely important as reverse engineers need to browse the
system from different perspectives.

• Metric visualizations helps to identify certain spots where reengineering
needs to be targeted.

• Recognition of repeated patterns in the data to be visualized may help to
reduce the visual complexity.

Interestingly enough, there is surprisingly little overlap between the communities
for reverse engineering and software visualization in terms of people despite of
the large overlap in terms of topics. And - to my further suprise - it turned
out that the visualization community is very heterogeneous, too. It is high time
for our communities to team up since our common goal is to help programmers
understand programs.

25



28 3D Visualization of Large Object-Oriented

Programs

Claus Lewerentz
BTU Cottbus, Germany

Joint work with:
Frank Simon, BTU Cottbus, Germany
Frank Steinbrückner, BTU Cottbus, Germany

The size and complexity of object-oriented programs permanently grows. Frame-
works and component technology allow to quickly build very complex and large
systems which have to be maintained and which undergo incremental evolution.
To support such maintenance and re-engineering processes program comprehen-
sion and quality assessments are key factors.
In order to understand programs and to communicate them, traditionally dif-
ferent forms of hierarchical diagrams are used to represent the static program
structure. Examples are UML package and class diagrams, or different graph
structures as inheritance trees. While these notations are useful for depicting
small systems, parts of larger systems or abstract views of them, they do not well
scale-up for real-world program systems. Furthermore, these notations often are
designed to support the construction process rather than the analysis process of
existing code.
Our approach to visualize existing object-oriented programs on the basis of ex-
tracted structure and metrics data uses attributed 3D graphs. Nodes in such
graphs represent structure entities like classes or packages. They are visualized
by simple geometric objects (as spheres or cubes) with geometrical properties
(as color or size) representing software metrics values. Relations are displayed
as straight lines colored according to their relation type (method usage, inheri-
tance). A central idea for drawing these graphs is the use of a generic similarity
and distance concept that allows to calculate metric distances for each pair of
nodes. The distances may be calculated from arbitrary common property sets.
The 3D graph layout algorithm is based on a spring-embedding method. It takes
these distances and produces a layout which approximately preserves the node
distances on an ordinal scale in the 3D space. In the resulting graph layouts the
spatial relationships are meaningful and can be interpreted in the problem do-
main. Interaction and navigation mechanisms allow for an interactive exploration
of the graphs using 3D display devices.
The visualizations are used as part of a software analysis tool environment which
we use for code comprehension and re-engineering for large (MLOC) object-
oriented programs. The first results from case studies together with industrial
software developers are very encouraging. The 3D visualization proved to be a

26



very effective means to quickly detect typical design weaknesses and to give re-
structuring recommendations on the basis of simple visual patterns.

URL: http://www.software-systemtechnik.de

29 Visual Modeling and Model Visualizations

John Hosking
University of Auckland, New Zealand

This talk describes experience in constructing environments that support model-
ing of software systems using multiple visual and textual notations, together with
reuse of the notations to provide dynamic visualization of the realised models.
The background research for this work is described, together with three indus-
trial applications of our approach: a process control modelling environment; a
message translation specification environment; and a business simulation game.

30 Multi-sensory metaphors for interacting

with abstract data within a Virtual

Environment

Keith Nesbitt
University of Newcastle, Australia

With the advent of Virtual Environment technology it is now possible to con-
struct new styles of user interfaces that provide multi-sensory interactions. For
example, interfaces can be designed which utilise 3D visual spaces and also pro-
vide auditory and haptic feedback. Many information spaces are multivariate,
large and abstract in nature. It has been a goal of Virtual Environments to
”widen the human to computer bandwidth” and so assist in the interpretation of
these spaces by providing models that map different attributes of data to different
senses.
While this approach has the potential to assist in understanding these large in-

27



formation spaces what is unclear is how to choose the best metaphors or mod-
els to define these mappings between the abstract information and the human
sensory channels. My research examines the features of multi-sensory virtual en-
vironments, in an attempt to define generic guidelines for designing interaction
metaphors.
This work is applied in a number of case study areas including...

• Interpreting ”Technical Analysis” data for trading finanical instruments on
the stock market.

• Understanding complex software designs.

• Investigating logicstical data.

31 Using JFLAP for Visualization and

Interaction in the Automata Theory Course

Susan H. Rodger
Duke University, USA

We present a suite of tools for teaching the automata theory course in an inter-
active and visual manner. JFLAP is a tool for creating and simulating deter-
ministic and nondeterministic automata, pushdown automata, and 1-tape and
2-tape Turing machines. In addition, one can interactively convert representa-
tions of languages from one form to another. Examples include converting a
regular grammar to an NFA to a DFA to a minumum state DFA to a regular
expression. Pate is a tool for parsing restricted and unrestricted grammars, show-
ing either the textual derivation or the graphical parse tree. In addition one can
interactivly transform a context-free grammar to CNF. JAWAA is a tool for eas-
ily developing animations on the web, which can be used in any course. All of
these tools are used in CPS 140 at Duke University and many other universities
to provide hands-on experimentation of automata theory concepts.

Tools web page: www.cs.duke.edu/~rodger/tools/
Slides of Talk: www.cs.duke.edu/~rodger/talks/softvis01/talk.html

28



32 Integrating Animation into Comprehensive

Teaching and Learning Resources for the

Web

Rockford J. Ross
Montana State University, USA

Software visualization has long been heralded as a means to enhance the learning
of difficult concepts. Many interesting software visualizations systems have been
developed in computer science for educational purposes, notably algorithm ani-
mation systems. In spite of their appeal, however, most of these systems languish
and are not widely used in the classroom. We have identified a number of rea-
sons for this, including technical issues surrounding the use of a new visualization
system, the learning curve associated with the effective use of visualization soft-
ware, and the problem of integrating new visualization software into an existing
course. Technical issues include the downloading, installation, and maintenance
of the visualization software in the local environment, issues which may become
insurmountable if the software in question is platform dependent. The learning
curve for a new software visualization system is not insignificant, as the instructor
must first become very familiar with the system, and then this knowledge must
be imparted to each new group of students. Course integration is also a serious
impediment. If visualization software is to be used in a course, where is its use
most appropriate? How can it be woven seamlessly into the existing fabric of a
course? All of these issues can be summed up in one word: time. Faculty simply
do not have the time to deal with all of these issues.
We have begun a concerted effort to realize the promise of software visualizations
in enhancing teaching and learning by implementing an integrative approach that
addresses each of the issues raised above. The result is what we call active learn-
ing hypertextbooks. Such hypertextbooks are envisioned as replacements for (or
at least equal companions to) traditional textbooks; in any case, they are to be
considered to be the major teaching and learning resource for a course. They in-
corporate traditional textual material enhanced for learning through hyperlinks,
sound, visual information, and embedded, interactive applets that engage the
student in active learning of important concepts. Hypertextbooks are also or-
ganized through hyperlinks to address different levels of maturity and different
learning styles.
In our scheme, hypertextbooks are HTML- and Java-based so that they run in
standard web browsers, eliminating most of the technical problems associated
with downloading, installation, and maintenance, as well as unpleasant plat-
form dependency problems. There is only a small learning curve associated with

29



well-done hypertextbooks, as both the instructor and the students are already
comfortable with the use of browsers and the web. Course integration issues also
pale, because a hypertextbook is the main resource for the course and as such
is the integration of the course materials. As a result, the issue of faculty time
becomes a moot point: a hypertextbook should be as easy to use as a traditional
textbook. We are exploring these ideas while constructing a hypertextbook called
Snapshots of the Theory of Computing in an ongoing project in the Webworks
Laboratory at Montana State University.

URL: http://www.cs.montana.edu/webworks

33 aiCall - Call graph and control flow graph

visualization for developers of embedded

systems

Alexander A. Evstiougov-Babaev
AbsInt, Germany

aiCall is a software visualization tool which helps programmers to better under-
stand their software, generally improving learning, speeding up development and
saving considerable effort and expense. aiCall visualizes the call graph and the
control flow graph of embedded application code. Currently supported targets
are Infineon C16x and STMicroelectronics ST10. These microcontroller families
are very popular and widely used in consumer goods (cellular phones, CD-players,
washing machines) and in safety-critical environments (airbags, navigation sys-
tems, automotive and aircraft controls).
The complexity of embedded software increases continuously. Typical applica-
tions have to handle many sources of inputs which often requires complex inter-
rupt handling code. Furthermore, embedded applications are usually time-critical
and/or safety-critical. Due to the ’embedded’ aspect the use of debuggers is often
restricted. Advanced software visualization and static program analyses tools can
help the developers of embedded systems to master the increasing complexity.
aiCall reads assembly files in .src format as produced by the Tasking C compiler
for C16x/ST10 and generates a .gdl (graph description language) representation
of the call graph and the control flow graph. GDL is the input format for the
graph layout software aiSee, which is integrated into aiCall. aiSee provides for
fast layout calculation and excellent graph readability, and supports recursive

30



subgraph nesting which is mandatory for hierarchical representation of software
structures.
The top-level graph is the call graph. Each routine is represented by a node.
Edges show the calling relationship between routines. Subgraph nesting opera-
tions enable the user to view the content of a routine, i.e. the routine’s control
flow graph, where nodes represent basic blocks and edges represent the control
flow. The basic blocks are labeled with C source code snippets. Subgraph nest-
ing operations enable the user to view the content of a basic block: the sequence
of assembly instructions corresponding to the particular C source code snippet.
Additional information windows enable viewing source code comments, internal
addresses and source file destinations.
aiCall supports multi-page printer output, 15 basic graph layout algorithms, fish-
eye views and animation after relayout. aiCall is easily retargetable and provides
for smooth integration of other static program analysis components, e.g. for stack
usage analyses. Stack height differences can be shown as annotations in the call
graph and the control flow graph. Critical program parts can be immediately
recognized thanks to color coding.

URLs to aiCall:
Homepages: www.aicall.de and www.absint.com/aicall

Downloads: www.aicall.de/download and www.absint.com/aicall/download

URLs to aiSee:
Homepages: www.aisee.de and www.absint.com/aisee

Downloads: www.aisee.de/download and www.absint.com/aisee/download

34 Algorithm Animation Based on Data Flow

Tracing

Jaroslaw M. Francik
Silesian University of Technology, Poland

Successful algorithm animations usually go beyond isomorphic mappings of pro-
gram data or code to graphical representation of program semantics, and they
provide a high level of abstraction, supplying an extra information on the seman-
tics and meaning that is behind the code. The goal of the presented work is to
introduce into an animation some elements that significantly increase the level of
abstraction - in a strictly automatic mode, without any additional effort on the

31



part of the visualiser. An original method of algorithm animation based on data
flow tracing has been proposed. The key features of this method are as follows:

• Focusing on data flow rather then temporary values of data structures.
Data flow operations are considered to be operations of change of data
addresses, and are visualized by smooth changing the selected attributes
of graphical objects; usually these attributes are spatial coordinates, giving
an impression of smooth motion. In the same time the changes of data
values are also visualized, usually using such attributes, as width, height
and colour of graphical objects.

• Suppressing information on the variables considered to be unimportant (e.g.
detailed auxiliary variables). It is enough to omit the definition of graph-
ical representation for those variables to make the machine automatically
exclude them from the final animation; all the data flows are automatically
reconstructed even if the omitted variables were their intermediary stages.

• Suppressing information on temporal order of execution - where applica-
ble. Some operations are shown as if they were executed in parallel, syn-
chronously.

All the three paradigms simplify the image of some complex operations in a way
which is usually obtained in other systems manually.
To discover what information could be suppressed, the proposed animation sys-
tem architecture applies the dynamic information delivered from the program
being visualized. It is then analysed using Petri net formalism.
The proposed method has been practically verified in an algorithm animation sys-
tem called Daphnis. In its current, functional but still prototype version, Daphnis

is a general purpose, language-independent and easy-to-use system. The system
is suitable for both didactic and engineering applications. Further information is
available at:

URL: http://www-zo.iinf.polsl.gliwice.pl/~jfrancik/aa

32



A Presentations without Abstract

SV Work within the Knowledge Media Institute
John Domingue
Open University, Knowledge Media Institute, GB

Visualization of Algorithms
Ludek Kucera
Charles University, CZ

A Comprehensive Framework for Defining
Software Visualizations
Steve Reiss
Brown University, USA

Visualizing Object-Oriented Systems
James Noble
Victoria University of Wellington, New Zealand

33



B Software Demonstrations

KIEL
Rudolf Berghammer
University of Kiel, Germany

LEONARDO
Camil Demetrescu
Universita di Roma ”La Sapienza”, Italy

Algorithm Animations
Markus Eiglsperger
University of Tübingen, Germany

VAM
Peter Ziewer
University of Trier, Germany

GANIMAM
Andreas Kerren
University of Saarland, Germany

GUPRO
Andreas Winter
Universität Koblenz-Landau, Germany

GEOWIN
Stefan Näher
University of Trier, Germany

BLOOM
Steve Reiss

34



Brown University, USA

JELIOT
Erkki Sutinen
University of Joensuu, Finland

HeapSort/BinomialHeap
Nils Faltin
University of Oldenburg, Germany

UML-Layout
Holger Eichelberger
J. Wolff von Gudenberg University of Würzburg, Germany

3D-OO Systems
Claus Lewerentz
BTU Cottbus, Germany

JAVAVIS
Rainer Oechsle
FH Trier, Germany

AGD-Library
Petra Mutzel
Technical University of Vienna, Austria

Multi-Sensory Environment (Video)
Keith Nesbitt
University of Newcastle, Australia

35


