
Dagstuhl Seminar No. 01411

Proof Theory in Computer Science

organized by
Reinhard Kahle (Tübingen)

Peter Schröder-Heister (Tübingen)
Robert F. Stärk (Zürich)

1 Motivation

Proof theory has long been established as a basic discipline of mathematical
logic. In recent years it has become increasingly relevant to computer science.
The deductive apparatus provided by proof theory has proved to be useful
both for metatheoretical purposes and for practical applications in various
fields of computer science.

The aim of this conference is to assess which role proof theory is already
playing in computer science, and which role it might play in further devel-
opments. Is proof theory going to be the most preferential approach to the
logical foundations of computer science? Does is provide viable alternatives
in areas where model-theoretic approaches are predominant?

A central focus of the conference may be captured by the slogan log-
ics for programs, i.e. the proof theoretic approach in dealing with design,
development and application of programming languages.

Major divisions of PTCS are the following (but this list is not intended
to be exclusive):

• The proofs as programs paradigm in general

• Typed and untyped systems related to functional programming

• Proof-theoretic approaches to logic programming

• Proof-theoretic ways of dealing with computational complexity

• Proof-theoretic semantics of languages for specification and program-
ming

• Foundational issues

Proof theory is not a uniform subject at all. The list of invited partici-
pants includes researchers from different research paradigms. In particular,
we are inviting both proof theorists in the more traditional “theoretical” or
“mathematical” sense, and computer scientists using proof theoretic tools in
the area of deduction.

1

2 Final Programm

Monday

9:00-9:45 Roger Hindley
The Birth of Combinators and Lambd

9:45 Coffee break

10:15-11:00 Thierry Coquand
A finitary subsystem of polymorphic λ-calculus

11:15-12:00 Roy Dyckhoff
Cut elimination and explicit substitutions

12:15 Lunch

14:00-14:45 Jaco van de Pol
Equational Binary Decision Diagrams

14:45-15:30 Andreas Weiermann
Analytic combinatorics and proof theory

15:30 Coffee break

16:00-16:45 Arnold Beckmann
Well-founded principles in weak arithmetics

17:00-17:45 Lev Gordeev
Proof Theory and Post-Turin analysis

18:00 Dinner

Tuesday

9:00-9:45 Helmut Schwichtenberg
Feasible computation with types

9:45 Coffee break

10:15-11:00 Jan Johannsen
Fragments of Gödel’s system T characterizing fast parallel
computation

11:15-12:00 Lev Beklemishev
On the induction for decidable predicates and related systems

2

12:15 Lunch

14:00-14:45 Geoffrey Ostrin
Exponential complexity within an elementary arithmetic

14:45-15:30 Isabel Oitavem
Implicit characterizations

15:30 Coffee break

16:00-16:45 Jeremy Avigad
Weak theories of nonstandard arithmetic and analysis

17:00-17:45 Sergei Artemov
Reflective λ-calculus

18:00 Dinner

Wednesday

9:00-9:45 Oliver Kullmann
Searching refutations and searching models in propositional
logic — possible interactions

9:45 Coffee break

10:15-11:00 Peter Schmitt
Iterate logic

11:15-12:00 Stanislas Nanchen
A logic for abstract state machines

12:15 Lunch

14:00 Excursion

18:00 Dinner

Thursday

9:00-9:45 Alexander Leitsch
Cut-elmination by resolution

9:45 Coffee break

3

10:15-11:00 Wlodek Drabent
Proving correctness and completeness of logic programs —
a declarative approach

11:15-12:00 Birgit Elbl
Modeling meta-logical features in a calculus with frozen vari-
ables

12:15 Lunch

14:00-14:45 Christian Fermüller
Proof theortic effects of the schema of identity

14:45-15:30 Anton Setzer
Coalgebras in dependent type theory

15:30 Coffee break

16:00-16:45 Kosta Došen
Conjunction and disjunction in categories

17:00-17:45 Ralph Matthes
A refinement of interpolation for natural deduction

18:00 Dinner

Friday

9:00-9:45 Robert Stärk
The problem of bytecode verification in current implementa-
tions of the JVM

9:45 Coffee break

10:15-11:00 Hans Leiß
Normal forms of CFGs in fixed-point-semirings

11:15-12:00 Ulrich Berger
Programs from proofs

12:15 Lunch

4

3 Abstracts

The Birth of Combinators and Lambda

by Roger Hindley, University Wales Swansea (joint work with Felice Car-
done)

Despite a very natural tendency for combinatory logic to be seen as a mod-
ification of λ-calculus, combinators were actually invented in 1920, 8 years
before λ. Further, they were invented at least twice : by Schönfinkel in
Göttingen in 1920, by von Neuman in Göttingen (perhaps independently ?)
in 1925, and by Curry in Harvard in 1927. They gave rise to two results :
eliminability of bound variables (Schönfinkel and Curry), and finite axioma-
tizability of set theory (von Neumann). Then in about 1928, the λ-calculus
was invented by Church as part of a general system intended to be an ax-
iomatic basis for all of mathematics. This system was inconsistent, but its
core was the pure λ-calculus, which gave him his proof of undecidability of
the Entscheidungsproblem. This talk is based on material from an article
by Cardone and Hindley on the history of lambda and combinators, for a
book on the history of mathematical logic, to be published by North-Holland
Elsevier.

A finitary subsystem of polymorphic λ-calculus

by Thierry Coquand, University of Göteborg (joint work with Thorsten Al-
tenkirch)

Polymorphic λ-calculus, or system F, has a simple interpretation where
types are interpreted as sets of untyped λ-terms. Such an interpretation,
however, has to use strong proof theoretic principle. We present a natural
subsystem of system F (no nested products), which has a finitary interpreta-
tion. This is essentially the previous interpretation above but over a suitable
Kripke models. As an application, one can prove that the numerical func-
tions representable in this subsystem are the ones provably total in PA. This
is closely related to Buchholz’s Omega-rule.NSString * FieldFieldTypeNil;

Cut elimination and explicit substitutions.

by Roy Dyckhoff, University of St Andrews

Cut elimination (in Gentzen’s sequent calculus) and beta-reduction (in
lambda calculus or, equivalently, natural deduction) are well-known to be

5

similar processes but without an exact correspondence. Since about 1990,
the lambda calculus has been enriched by the study of explicit substitution
calculi, allowing beta-reductions to be interleaved with substitution reduc-
tions. Herbelin proposed in 1994 a calculus intermediate between sequent
calculus and natural deduction, suitable like the former for proof search but
without the permutabilities of Gentzen’s calculus; he proposed a complete cut
elimination system and showed it to be confluent and strongly normalising.
Work described in the talk (joint work with C. Urban) shows how to extend
this system with extra rules that allow the simulation of beta-reduction.

Equational Binary Decision Diagrams

by Jaco von de Pol, CWI, Amsterdam

We allow equations in binary decision diagrams (BDD). The resulting
objects are called EQ-BDDs. A straightforward notion of reduced ordered
EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is
logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability
and tautology checking can be done in constant time.

Several procedures to eliminate equality from BDDs have been reported
in the literature. Typical for our approach is that we keep equalities, and
as a consequence do not employ the finite domain property. Furthermore,
our setting does not strictly require Ackermann’s elimination of function
symbols. This makes our setting much more amenable to combinations with
other techniques in the realm of automatic theorem proving, such as term
rewriting.

We introduce an algorithm, which for any propositional formula with
equations finds an EQ-OBDD that is equivalent to it. The algorithm has
been implemented, and applied to benchmarks known from literature.

We will also discuss an extension of EQ-BDDs with defined functions.
For this extension the theory is underdeveloped, but experiments show that
such a system can be very useful.

Analytic combinatorics and proof theory

by Andreas Weiermann, University of Münster

Via analytic combinatorics and methods used in the average case analysis
of algorithms we obtain independence results for first order Peano arith-
metic and related theories. We obtain a classification of H. Friedman’s
miniaturization of Kruskal’s tree theorem in terms of Otter’s tree con-

6

stant 2.95576... and we get a classification of H. Friedman’s miniaturization
of the transfinite induction up to ε0. Similarly we classify hydra games and
Goodstein sequences and we refine the Paris Harrington theorem. We
give a characterization of ε0 in terms of zero one laws using methods from fi-
nite model theory. We indicate possible generalizations and we present some
open problems.

Well-foundeness principles in weak arithmetics

Arnold Beckmann, TU Wien, Austria

Well-foundeness principles are essential in the characterization of proof
and computational strength of theories of arithmetics like Peano arithmetic
and its fragment. We describe how to make use of them in weak arithmetics,
especially in bounded arithmetics defined by Buss.

For fragments T of bounded arithmetic we define their dynamic ordinal
DO(T) given by those number-theoretic functions (represented by terms in
the language of bounded arithmetic) such that T proofs the schema of order-
induction up to f(x) for all x for all Πb

1(X)-sets. We compute dynamic
ordinals of the theories T ′2(X), S ′2(X), sR2

2(X), . . . , sΣb
m-LmInd. This way we

directly obtain separation results of relativised bounded arithmetic theories.
In the second part, we connect dynamic ordinals with definable multi-

functions of the theories. The multifunctions are described by generalization
of ptime witness oracle Turing machines due to Pollett, which have only
restricted access to the witnessing oracle. The connection it that the Σb

2-
definable multifunctions of T are exactly these multifunctions computable
by a ptime witness oracle Turing machine with at most log(DO(T))-many
queries to a Σb

1-oracle, for all T where we can reasonably compute DO(T).
Also, conservativity results are obtained characterizing dynamic ordinals.
Hence, we obtain a nice relation of dynamic ordinals to provable recursive
functions for fragments of bounded arithmetic, quite similar to the relation of
proof-theoretic ordinals to provable recursive functions of stronger subsystem
of arithmetic.

Finally, we sketch how dynamic ordinals may look for other theories of
bounded arithmetic, and how they may be defined.

7

Proof Theory and Post-Turin analysis

by Lev Gordeev, Tübingen University

We revise familiar descriptions of Turing machines M by viewing them
parametric in the total number of states admitted in the vocabulary of M .
Call them p(M). It turns out that the computation corresponds to M with
p(M) > 2 is a suitable iterated functional composition of the computations
corresponding to the appropriate 4 machines M0, M1, M2, M3 such that
p(Mi) = p(M) − 1 for each i = 0, 1, 2, 3. If M is a Ptime machine then the
length of this iteration is bounded by #(Input)C for C = const. We wish
to specify topological structure of the computation of M by recursion on
P (M) via this M0 - M3 expansion. The initial cases p(M) = 2, 3 are easy,
but the rest is much more involved. The desired feature is that the Boolean
DNF Tautology evaluation is not continuous in any topology such obtained
for p(M) = 2, 3, 4, . . . < ∞. This yields as corollary P 6= NP. The main
idea is to describe basic environments as solutions of polynomial systems of
polynomial order-relations.

Feasible programs from proofs

by Helmut Schwichtenberg, Univ. München

It is shown how to restrict recursion on notation in all finite types so as to
characterize the polynomial-time computable functions. The restrictions are
obtained by using a ramified type structure, and by adding linear concepts
to the lambda calculus.

In the talk we simplify previous work along these lines (jointly with
Stephen Bellantoni and Karl-Heinz Niggl, APAL 2000) by (1) restricting
the use of the �-operator to premises of implications, and (2) – following a
proposal of Bellantoni – using parse dags as our computational model.

Fragments of Gödel’s System T Characterizing Fast Parallel Com-
putation

by Jan Johannsen, Ludwig-Maximilians-Universität München (joint work
with Klaus Aehlig, Helmut Schwichtenberg and Sebastian Terwijn)

A typed lambda calculus with recursion in all finite types, i.e., a fragment
of Gödel’s T, is defined such that the first-order terms exactly characterize
the parallel complexity class NC. This is achieved by use of the appropriate

8

forms of recursion (concatenation recursion and logarithmic recursion), a
ramified type structure and imposing of a linearity constraint.

On the induction for decidable predicates and related systems

by Lev Beklemishev, Steklov Mathematical Institute, Utrecht University

We give an overview of the results on ∆1-induction in formal arith-
metic, focusing on the still open problem of separating ∆1-induction from
Σ1-collection.

Our approach is based on a reduction of these systems to fragments of
arithmetic axiomatized by rules and studying the effects of these rules on
classes of provably total computable functions. Connections of these prob-
lems with query complexity will be presented.

Exponential complexity within an elementary arithmetic

by Geoffrey Ostrin, University of Bern, Switzerland (joint work with Stan
Wainer)

Our motivation comes from the variable separation applied to the function
schemes of primitive recursion given by Bellantoni and Cook. Essentially this
separates the recursion variables from the substitution variables. In proof
theoretic terms this translates to a separation of the induction variables and
the quantification variables. Our question was what would we obtain when
this restriction is applied to a formal system such as Peano Arithmetic. It
turns out that the provably recursive functions are now related to the Slow
Growing Hierarchy, whereas the classical single-sorted results relate to the
Fast Growing Hierarchy. Thus our two-sorted theory, PA(i), has provably
terminating functions being the elementary functions, ε3, thus alternatively
we could call our theory an Elementary Arithmetic.

Further, by analysing the inductive fragments we obtain the ε2 functions
provably terminating in the Σ1 fragment whereas for the level 2 (essentially
Π2) fragment this relates to these functions that are register mantric com-
putable in time bounded by an exponential, 2Poly(n). It is hoped that a
complete characterization can be soon obtained for all fragments.

9

Implicit characterizations

by Isabel Oitavem, Univ. Nova de Lisboa (contains joint work with S. Bel-
lantoni)

Several machine independent approaches to relevant classes of computa-
tional complexity have been developed. All of them lead to characterizations
of classes of computational complexity where the machine formulation and
resources are implicit – implicit characterizations. We work in a free alge-
bra context. That allows us to obtain implicit characterizations of classes as
different as Ptime, Lspace and NC just by changing the starting free alge-
bra. By doing so, we give a uniform approach to classes which result from
processes as different as deterministic and parallel computations with time,
space or time and space constraints.

The last part of this talk is devoted to Pspace. We describe and discuss
implicit characterizations of Pspace.

Weak theories of nonstandard arithmetic and analysis

by Jeremy Avigad, Carnegie Melton University

In this talk, I will discuss weak higher-type theories of nonstandard arith-
metic. Such theories provide a natural setting for formalizing nonstandard
arguments in analysis and combinatorics, while an explicit forcing translation
allows one to intepret them in their standard counterparts. This enables us
to formalize interesting portions of mathematics in conservative extensions of
primitive recursive arithmetic, elementary recursive arithmetic, and possibly
even polynomial-time computable arithmetic.

Reflective lambda-calculus

by Sergei Artemov, The Graduate Center CUNY New York

We introduce a general purpose typed lambda-calculus which contains
intuitionistic logic, typed lambda-calculus, is capable of internalizing its own
derivations as lambda-terms and yet enjoys strong normalization with respect
to a natural reduction system. The Curry-Howard isomorphism converting
intuitionistic proofs into lambda-terms is a simple instance of the internal-
ization property of the reflective lambda-calculus. The standard semantics
of reflective lambda-terms is given by a proof system with proof checking
capacities. This system is a theoretical prototype of reflective extensions of

10

a broad class of type-based systems in programming languages, provers, AI
and knowledge representation, etc.

Searching refutations and searching models in propositional logic
– possible interactions

by Oliver Kullmann, University of Wales Swansea

There is a fundamental difference between NP (“searching a model”) and
co-NP (“searching a refutation”). However, for SAT (e.g.), we are interested
for deciding whether a propositional formula is satisfiable or unsatisfiable,
and then the difference between NP and co-NP vanishes. I “conlude” that
on one hand the tools for handling satisfiability and unsatisfiability are to be
investigated separately, while on the other side the handling of satisfiability
and unsatisfiability has to be integrated (the ultimate goal would be a gener-
alised duality theory). As tool for handling satisfiability I propose the theory
of autarkies, while for handling unsatisfiability one important tool use forced
assignments. A first example for (very weak) duality it the theorem that for
any clause set F and any clause C ∈ F either these is a autarky satisfiability
C, or these is a resolution refutation of F using C, but no both. A second
example for interaction SAT - USAT is given by the maximal deficing of a
clause-set, which yields an upper bound on resolution complexity of unsatis-
fiable clause-sets as well as an upper bound on the complexity of satisfying
assignments of satisfiable clause-sets.

Iterate logic

by Peter Schmitt, Universität Karlsruhe

The topic of this talk evolved within the investigation into a formal se-
mantics of the Unified Modeling Language (UML), in particular its text-
based part, the Object Constraint Language (OCL). I will begin by a short
review of what needs to been known from this area for the purpose of this
talk. OCL looks at first very much like a notational variant of first-order
logic. Closer inspection, however, reveals some interesting, non-first-order
constructs. Among those figures most prominently the ”iterate” construct.
I will introduce ”Iterate Logic”, a new logic on finite structures extending
classical first-order logic intended to isolate the principles of the iterate con-
struct and study its logic properties ”in vitro”. I will present first results
comparing ”Iterate Logic” with other logics on finite structures.

11

A Logic for Abstract State Machines

by Stanislas Nanchen, ETH Zürich (joint work with R. Stärk)

We will discuss a logic for sequential, non distributed Abstract State Ma-
chines. Unlike other logics for ASMs which are based on dynamic logic, our
logic is based on atomic propositions for the function updates of transition
rules. We do not assume that the transition rules of ASMs are in normal
form, for example, that they concern distinct cases. Instead we allow struc-
turing concepts of ASM rules including sequential composition and possibly
recursive submachine calls. We have shown that several axioms that have
been proposed for reasoning about ASMs are derivable in our system and
proved that the logic is complete for hierarchical (non-recursive) ASMs.

Cut-Elimination by Resolution

by Alexander Leitsch, TU Wien (joint work with Matthias Baaz)

A new cut-elimination method for Gentzen’s LK is defined. First cut-
elimination is generalized to the problem of redundancy-elimination. Then
the elimination of redundancy in LK-proofs is performed by a resolution
method in the following way: A set of clauses C is assigned to an LK-proof
p and it is shown that C is always unsatisfiable. A resolution refutation of
C then serves as a skeleton of an LK-proof p’ with atomic cuts; p’ can be
constructed from the resolution proof and from p by a projection method. In
the last step the atomic cuts are eliminated and a cut-free proof is obtained.
The complexity of the method is discussed and it is illustrated how a nonele-
mentary speed-up over Tait’s method of cut-elimination can be achieved.

Proving Correctness and Completeness of Logic Programs - a De-
clarative Approach

by Wlodek Drabent, Polish Academy of Sciences and Linköpings universitet
(joint work with M. Milkowska)

We advocate a declarative approach to proving properties of logic pro-
grams. Total correctness can be separated into correctness, completeness and
clean termination; the latter includes non-floundering. Only clean termina-
tion depends on the operational semantics, in particular on the selection rule.
We show how to deal with correctness and completeness in a declarative way,
treating programs only from the logical point of view. Specifications used

12

in this approach are interpretations (or theories). We point out that spec-
ifications for correctness may differ from those for completeness, as usually
there are answers which are neither considered erroneous nor required to be
computed.

We present proof methods for correctness and completeness for definite
programs and generalize them to normal programs. The considered semantics
of normal programs is the standard one, given by the program completion in
3-valued logic.

The method of proving correctness of definite programs is not new and can
be traced back to the work of Clark in 1979. However a more complicated
approach using operational semantics was proposed by some authors. We
show that it is not stronger than the declarative one, as far as properties of
program answers are concerned.

Modeling Meta-Logical Features in a Calculus with Frozen Vari-
ables (a contribution to proof-theoretic semantics for predicational
languages)

by Birgit Elbl, Univ. München

We consider predicational languages, i.e. logic programming in the sense
that the central notion is the predicate expression applied to constructor
terms, the computation mechanism is based on communicating partial infor-
mation by instantiating variables in these terms, and the basic constructions
are related to logic programming connectives and quantifiers. This does not
include, however, that these ingredients have the classical meaning or that
they are ‘pure’ in the sense of ‘pure Prolog’. In particular, variables do not
just represent all ground instances but turn into objects in their own right.
In order to deal with these languages the binding mechanism ‘freezing’ is in-
troduced. A calculus with frozen variables is used to model a language with
term inspection predicates and the control conditional.

Proof theortic effects of the schema of identity

by Christian Fermüller, TU Wien

Every instance of the schema of identity is derivable from identity axioms.
However, from a proof theoretic perspective the schema of identity is quite
powerful. We show that from a single instance of it a family of formulas can
be proofed uniformly, where no fixed number of instances of identity axioms
is sufficient for this purpose.

13

Coalgebras in Dependent Type Theory

by Anton Setzer, University of Wales Swansea, UK

We study, how to define interactive programs in dependent type theory.
We argue, that a suitable representation is in the form of non-well-founded
trees with nodes labelled by commands c : C which are to be executed in
the real world, and branching degrees of a node with label c being the set
of reponses R(c) the real world gives when command c has been executed.
We then arrive at the problem, namely how to represent non-well-founded
trees in dependent type theory. Standard dependent type theory has only
inductive data types, so an extension is needed (an alternative would be some
coding mechanism).

We introduce the notion of strictly positive functors, and consider the
question of rules for the largest fixed point F∞

0 of F . A first version formulates
coiteration. Since it is difficult to define successor operations in it we develop
a second version, corecursion. We then extend F∞

0 to a functor F∞.
Now we develop constructions for introducing atomic elements into F∞

0

and a repeat loop. There are as well while-loops, compostion of programs
and a redirect construct.

In the last part we investigate T. Coquand’s principle of guarded induc-
tion. A suitable introduction-rule for F∞

0 in this setting would be to apply
a constructor µ to a function f : (A → F∞

0) → A → F (F∞
0), yielding a

function µ f : A → F∞
0 , the last fixed point of f . Because µ is a constructor,

the recursion will be only evaluated one step when the elimination function
elim is applied to µ f a. However we will see that we don’t get a normalizing
version, unless we have a syntactic restriction on f , the principle of guard-
edness suggested by T. Coquand. We then see that repeat loops allow to
define all elements which can be introduced by µ applied to guarded f , but
that repeat loops are more powerful. However we can reduce repeat to in-
tro, the introduction rule suggested above and all terms introduced by intro
can be expressed as µ applied to guarded f . In follows that both principles
allow to define the same elements of F∞

0 . We therefore conclude that in a
formal systems the rules proposed above for corecursion are the appropriate
ones, whereas µ applied to functions f is more suitable for implementations,
although the latter has a syntactic condition, and is therefore not purely
type theoretic. This situation similar to what we have with algebras: in the
introduction rules we introduce eliminating functions by the (primitive) re-
cursion operator, whereas in implementations full recursion plus a syntactic
termination check is more suitable.

14

Conjunction and Disjunction in Categories

by Kosta Došen, Mathematical Institute, Belgrade

Abstract: For deciding equality of deductions involving conjunction and
disjunction - this equality being induced by normalization, or cut elimina-
tion - one may use a simple graphical model of bicartesian categories in the
category of relations on finite ordinals. This model vindicates up to a point
the idea that two deductions should be considered equal if and only if they
yield the same deduction after generalizing.

A refinement of interpolation for natural deduction

by Ralph Matthes, LMU München

Interpolation is the tool for reducing provable monotonicity to syntactic
positivity. With the ultimate goal of finding a predicative simulation of the
behavior of monotone inductive types by that of positive inductive types, one
cannot restrict the attention to inhabitation (= provability via the Curry-
Howard-isomorphism). One also has to be aware of proof terms. This addi-
tion of coherence information already appears in Čubrić (Archive for Math-
ematical Logic, 1994). We reprove the result for a variant ΛJ of λ-calculus
which allows to define the interpolants by a single recursion on the build-up
of normal terms of ΛJ: It has a generalized application rρ→σ(sρ, zσ.tτ) : τ
which may be seen as the closure of the left implication rule of Gentzen
under substitution. Normalization of ΛJ requires permutative conversions.
The interpolation result à la Čubrić even requires some extended permuta-
tions with unknown reduction properties. Nevertheless, one gets the result
on λ-calculus as a corollary.

Towards the intended application, the positivization of monotone type
dependencies is presented. Some remarks on uniform interpolation and its
consequences for positivization indicate future work.

The problem of bytecode verification in current implementations
of the JVM

by Robert Stärk, ETH Zürich

The Java Programming language is a strongly typed general-purpose lan-
guage. Java programms are compiled to bytecode instructions which are
executed by the Java Virtual Machine (JVM). A correct Java compiler pro-
duces bytecode instructions which can be trustfully executed on a JVM. A

15

JVM, however, cannot distinguish between bytecode generated by a correct
compiler and bytecode produced by a different source to exploit the JVM.
This is the reason why a JVM has to verify bytecode programms before exe-
cuting them. For the security of the JVM it is important that the verifier is
sound, i.e. that bytecode programms which are accepted by the verifier are
type-safe at run-time and cannot corrupt the memory. A bytecode verifier
should also be complete. It should accept at least all bytecode programms
generated by a correct Java compiler from legal Java programms. During an
attempt to prove that our bytecode verifier (R. Stärk, J. Schmid, E. Börger :
“Java and the JVM – Definition, Verification, Validation”, Springer-Verlag,
2001) is complete we found exemples of legal Java programms which are re-
jected by any commercial bytecode verifier we tried. This discovery was a
surprise for most experts.

Normal forms of CFGs in fixed-point-semirings

by Hans Leiß, Universität München

We consider regular µ-terms

t := x|0|1|(t1 + t2)|(t1 · t2)|µx.t

and context-free grammars as systems ~x = ~t(~x, ~y) resp. simultaneous
fixed points µ~x.~t(~x, ~y) of such systems (~y as alphabet). We show that classical
normalizations of grammars like elimination of ε-rules, elimination of chain-
rules, and Greibach normal form follow from semirings axioms, least-(pre)-
fixed point properties for µ, fixed-point induction rule, and two equations
µx(t · x + s) = µx(tx + 1) · s and µx(x · t + s) = s · µx(tx + 1). It follows
that the CF6-normal forms hold not only int continuous semirings, but in
all semirings having “enough” fixed points and satisfying the two equations.
Idempotency of + is needed for ε-elimination only.

Programs from proofs

by Ulrich Berger

- From a formalization of Gentzen’s proof of transfinite induction up to
the ordinal ε0 we extract a program transforming any algorithm using
transfinite recursion on ordinals < ε0 into an equivalent, but more
efficient one using higher type (Gödel) primitive recursion instead.

16

- From a classical proof of

∀fN→N∃n f(f(n) + 1) 6= n

we extract a program computing a witness n from any given f .

Exercises: 1. Find the classical proof, that is, assume ∀n f(f(n)+1) =
n and derive a contradiction (easy).

2. Find (manually) finitely many terms ti (containing f free) such that
∀f : N → N ∃i f(f(ti) + 1) 6= ti (difficult).

In Minlog we can extract these terms from the classical proof auto-
matically.

- We show that the classical axiom of countable choice

∀n ∃xρA(n, x) → ∃fN→ρ∀n A(n, f(n)

(A, ρ arbitrary) can be given a modified realizability interpretation
(à la Kreisel/Troelstra). The idea for this is derived from a result by
Berardi, Bezem and Coquand, but our construction is simpler and,
apparently, more efficient.

17

