Theory and Application of Abstract State
Machines

A. Blass (Univ. of Michigan, Ann Arbor MI, USA)
E. Borger (Univ. di Pisa, Italy)
Y. Gurevich (Microsoft Research, Redmond WA, USA)

3rd-8th March, 2002

This volume contains the abstracts of presentations at the seminar "Theory
and Applications of Abstract State Machines," held at Schloss Dagstuhl from 3
to 8 March, 2002.

The seminar was proposed to the participants with the following goal which
we restate here from the Call for Participation.

The advances in the theory, the tool development, and the progressive indus-
trial employment of Abstract State Machines (ASMs) in the 90’s have turned
ASMs into a practical technique for disciplined rigorous software engineering in
the large. The proposed seminar aims at bringing together ASM researchers
from academia and industrial users of ASMs to strengthen this fruitful interac-
tion between theory and practice.

As a result of the research and the applications of Abstract State Machines
during the last decade, ASMs offer a certain number of theoretically well founded
and industrially useful methods, which support the entire software development
cycle. These include rigorous modeling, analysis and validation methods a) for
the requirements, during the early phases of industrial software development,
and b) for the refinement of the high level models through a design process which
reliably connects the requirements to the code development. Via the definition
of appropriate ground models, which can be made executable, ASMs support
the elicitation, specification, inspection and testing of requirements. Building
the high-level models leads to a good understanding of the requirements. It
contributes to practical inspections and to testing which help to detect errors at
the earliest possible stage of software production - well known to be responsible
for most of the costly errors occurring during the software development process.
The controlled stepwise refinement of high-level models which turns them into
efficiently executable code also supports a good documentation discipline, which
is helpful for the maintenance and the reusability of the intermediate models
which reflect critical design decisions.

The specific goal of the seminar is to survey and to critically evaluate the cur-
rent academic and industrial developments and new results concerning ASMs.
In particular we want to provide guidelines for future research and development
by identifying new challenges coming e.g. from component based design tech-
niques, software architecture patterns, mobile computing, security concerns, etc.
Corresponding to the goal to evaluate ASM related scientific achievements and
their current industrial employment and development, the list of persons to be
invited tries to reflect both the academic and industrial aspects of current work
on ASMs.

The seminar realized those goals. It was attended by over 60 participants
from all over Europe and the US. The presentations ranged from highly theo-
retical work to genuine industrial applications, and so did the discussions.

On behalf of all the participants, we thank the administration of Schloss
Dagstuhl for accommodating an unusually large number of attendees and pro-
viding pleasant conditions conducive to discussions and research. We also thank
the European Community for providing funding for student participants.

The organizers use this opportunity to thank all the participants for their
contributions to the success of the workshop.

Andreas Blass
Egon Borger
Yuri Gurevich

Xasm - An Open Source ASM Implementation

Matthias Anlauff, Kestrel Insitute, Palo Alto, CA , USA
March 7, 2002

In this talk, I will present Xasm, an Open Source implementation of Abstract
State Machines. The talk will also present the new object-oriented features of
Xasm, and how they fit into the general semantical framework of the basic ASM
ideas. During the talk, the support system for Xasm and Montages, Gem-Mex,
will also be presented. As a newly implemented feature, the Xasm-Java language
interface will be demonstrated. The Gem-Mex tool is available as Open Source
software at www.xasm.org.

Runtime Verification using ASMs

Mike Barnett
Microsoft Research
March 6, 2002

We propose a method for implementing behavioral interface specifications on
the the .NET Platform. Our interface specifications are expressed as executable
model programs written in AsmL, a specification language based on the theory
of Abstract State Machines (ASMs). Model programs can be run either as
stand-alone simulations or used as contracts to check the conformance of an
implementation class to its specification. We focus on the latter, which we call
runtime verification. Our method allows for non-deterministic specifications as
well as for the specification of interaction patterns.

Knowledge Discovery, Maximum Entropy and the
Inverse Representation Problem

Christoph Beierle, FernUniversitit Hagen, Germany
March 5, 2002

Commonsense and expert knowledge is most generally expressed by rules, con-
necting a precondition and a conclusion by an if-then-construction. If-then-
rules are more formally denoted as conditionals, and often they occur in the
form of probabilistic conditionals like “Students are young with a probability of
(about) 80 %7 and “Singles (i.e. unmarried people) are young with a probability
of (about) 70 %7, where this commonsense knowledge can be expressed formally
by {(young|student)[0.8], (young|single)[0.7]}. The crucial point with condition-
als is that they carry generic knowledge which can be applied to different sit-
uations. This makes them most interesting objects in Artificial Intelligence, in
theoretical as well as in practical respect.

Whereas probabilistic conditional reasoning is quite weak if all models are
taken into account, the reasoning facilities can be improved by the well-known
principle of maximum entropy. This principle selects a model that completes
the (incomplete) knowledge given by a set of conditionals in an information-
theoretically optimal way. The problem of discovering conditionals from data
can be seen as an instance of a general inverse representation problem. Within
the CONDOR project (Conditionals - discovery and revison), methods and tools
for discovery and revision of knowledge expressed by conditionals are developed.
We will design, specify, and develop the ambitious CONDOR system using Ab-
stract State Machines, based on previous experiences with the ASM approach
and using tools provided by the ASM community.

(joint work with Gabriele Kern-Isberner)

Abstract State Machines Capture Parallel Algo-
rithms

Andreas Blass
University of Michigan and (temporarily) Microsoft Research
March 4, 2002

This is a report on joint work with Yuri Gurevich. We give an axiomatic de-
scription of parallel, synchronous algorithms. Our main result is that every such
algorithm can be simulated, step for step, by an abstract state machine with a
background that provides for multisets.

Abstract State Processes

T. Bolognesi CNR, Istituto IEI, Pisa — bolognesi@iei.pi.cnr.it
E. Birger Dip. di Informatica, Univ. di Pisa — boerger@di.unipi.it
March 4, 2002

Process-algebraic languages and models offer a rich set of structuring techniques
and concurrency patterns which allow one to decompose complex systems into
concurrently interacting simpler component processes, abstracting however al-
most entirely from a notion of system state. Abstract State Machines (ASMs)
offer powerful abstraction and refinement techniques for specifying system dy-
namics based upon a most general notion of structured state. The evolutions of
the state are governed however by a fixed and typically unstructured program,
called 'rule’, which describes a set of abstract updates occurring simultaneously
at each step (synchronous parallelism). We propose to incorporate the advan-
tages offered by each structuring technique into one machine concept, and intro-
duce to this purpose Abstract State Processes (ASPs), i.e. evolving processes
(extended ASM programs which are structured and evolve like process-algebraic
behaviour expressions) operating on evolving abstract states the way traditional
ASM rules do. The ASP constructs are presented in Tables 1 and 2.

Table 1: Syntax of Abstract State Process

Name Syntax of P Alternative syntax and note
Skip skip
Agsignment fltr, .. tn) =10
Let let x =tin P
o Conditional if cond then P; [else P,]
n
< | w Different from ASM construct
= | & | Sequentiality P> P 1 f
E | step (or seq)
[} += .
2|8 where P;4(x) = P 14s a process
g|&| Process ia(2) b
© s . o Pia(t) definition, P;q is a process name,
b=t instantiation
18 P is a program
g Choice choose(Process set) |(Process set)
2 choose z with cond(z) B(x)
w0
k= stands for |{B(z)|cond(x)}
:
)
§ Interleaving interleave(Process set) |||{Process set)
S}
Z | Synchrony sync(Process set) [|(Process set)

forall x with cond(x) B(z)
stands for ||{B(x)|cond(z)}

Table 2: ASP semantics

s P(zn)})

Skip (o, skip) = (@, nil)
Assignment (o, f(t1,...,tn) :==t) = {(f{trlo], ..., tnlo]), t[o])}, nil)
Let (o,1let z =t in P) = ({(«',t[0])}, P(z)), for fresh z’
tlo] = true A {0, R) = (u, R') tlo] = false A {0, S) = (u, S')
Conditional
(o, if t then R else S) = (u, R') (o, if t then R else S) = (u, S’)
tlo] = false
(o, if t then R) = (@, if t then R)
Sequential (o, P) = (u, P{), P{ # nil (o, P1) = (u, nil)
composition (o, P> P) = (u, Pl > P,) (o, P> P) = (u, P»)
P;4(t) is equivalent to let z =¢ in P,
Process . .
where ’P;4(x) = P’ is a process definition,
instantiation .
P; iS a process name
P is a program
Parameter
Computation <Uv 0p8T{P(:E)|COIId(£E)}> = ({(xlv Ul)v IR (:CTH UTL)}7 OpeT{P(m1)7 s
(oper=-choose, where {v1,...,v,} = {v|Cond is true in o(z : v)} and
synch, Z1,...,Tn are fresh and pairwise different.
interleave)
Choice
Vn > 2, (o0, P;) = (u;, Pj)
ASPs Pi,..., Py, (o, choose{Py, ..., Pn}) = (uj, P})
je{l...n}
Interleaving ,
<Ua Pj> = (U‘j7 Pj)
Vn > 2,
(o, interleave{ P\, ..., P,}) = (uj, interleave{P],..., P,})
ASPs P, ..., Py,
foreachi e {1,...,n} : P =P iff i #j
je{l...n}
Synchrony , ,
<07 P1> = (u17 P1)7'~~7<J7 Pn> = (Un, Pn)
vn > 2, , ,
(0, synch{Py,..., P.}) = (U, . ,{ui}, synch{P[,... , P.})
ASPs P, ..., Pa

Definitional Suggestions for Computation Theory!

Egon Borger, Universita di Pisa, Italy
boerger@di.unipi. it
March 6, 2002

For each of the principal current models of computation and of high-level system
design, we present a uniform set of transparent easily understandable descrip-
tions, which are faithful to the basic intuitions and concepts of the investigated
systems. Our main goal is to provide a mathematical basis for technical compar-
ison of established models of computation which can contribute to rationalize
the scientific evaluation of different system specification approaches in the liter-
ature, clarifying in detail their advantages and disadvantages. As a side effect
we obtain a powerful yet simple new approach for teaching the fundamentals of
computation theory.
The systems we are going to study comprise the following:

e UML Diagrams for System Dynamics
e (Classical Models of Computation
— Automata: Moore-Mealy, Stream-Processing FSM, Co-Design FSM,
Timed FSM, PushDown, Turing, Scott, Eilenberg, Minsky, Wegner
— Substitution systems: Thue, Markov, Post, Conway
— Structured programming

* Programming constructs: seq, while, case, alternate, par
* Godel-Herbrand computable functions: B6hm-Jacopini Theorem

— Tree computations: backtracking in logic and functional program-
ming, context free grammars, attribute grammars, tree adjoining
grammars

e Specification and Computation Models for System Design

— Executable high-level design languages: UNITY, COLD
— State-based specification languages

x distributed (Petri Nets)
* sequential: SCR (Parnas Tables), Z, B, VDM

— Dedicated Virtual Machines: Active Database Machines, Data Flow
(Neural) Machines

— Stateless modeling systems

* Logic based systems: axiomatic, denotational, algebraic
x Process algebras (CSP, LOTOS, etc.)

IDraft of an Extended Abstract for an Invited Lecture at the FLoC’02 Workshop “Action
Semantics and Related Semantic Frameworks”, Copenhague, July 2002

10

Since we will use Abstract State Machines (ASMs) as modeling framework,
a question to answer before proceeding is why we do not use (the proof for a
version of) the ASM thesis which claims a form of computational universality for
ASMs. The thesis as formulated in 1985 by Gurevich in a note to the American
Mathematical Society [Gurevich85] reads as follows (where dynamic structures
stand for what nowadays are called ASMs):

Every computational device can be simulated by an appropriate dy-
namic structure—of appropriately the same size—in real time

For the synchronous parallel case of this thesis Blass and Gurevich [BlaGur01]
(to appear in ToCL 2002) discovered postulates from which every synchronous
parallel computational device could be proved by them to be simulatable in
lock-step by an appropriate ASM. Why are we not satisfied for our purpose
with the ASMs constructed by this proof?

The answer has to do with the fact that there is a price to be paid for proving
computational universality from abstract postulates, covering a great variety of
systems. On the one side, a feature the ASM method emphasizes is that of mod-
eling algorithms and systems closely and faithfully, at their level of abstraction,
laying down the essential computational ingredients completely and expressing
them directly, without using any encoding which is foreign to the computational
device under study. On the other side, if one looks for a mathematical argu-
ment proving from explicitly stated assumptions the computational universality
of ASMs as claimed in the thesis, some generality in stating the postulates is
unavoidable, to capture the huge class of data structures and of the many ways
they can be used in a basic computation step, which for every proposed concrete
system have to be derived (decoded) from the postulates.

The construction by Blass and Gurevich in op.cit., which in fact in a sense
transforms an arbitrary synchronous parallel computational system into an ASM
simulating the system step-by-step, depends on the way the abstract postulates
capture the amount of computation (by every single agent) and of the commu-
nication (between the synchronized agents) allowed in a synchronous parallel
computation step. The necessity to uniformly unfold arbitrary concrete basic
parallel communication and computation steps from the postulates unavoidably
yields some encoding overhead, to guarantee for every computational system
which possibly could be proposed a representation by the abstract concepts of
the postulates. As side effect of this— epistemologically significant—generality
of the postulates, the application of the general transformation scheme to es-
tablished models of computation may yield ASMs which are more involved than
necessary and may blur features which really distinguish different concrete sys-
tems.

Our goal is that of naturally modeling systems of specification and compu-
tation, based upon an analysis of the characteristic conceptual features of each
of them. We look for ASM descriptions for each established model of computa-
tion or of high-level system design, a propos including asynchronous distributed
systems, which

11

e for every framework directly reflect the basic intuitions and concepts, by
gently capturing the basic data structures and single computation steps
which characterize the investigated system,

e are formulated in a way which is uniform enough to allow explicit com-
parisons between the considered classical system models.

By deliberately keeping the ASM model for each proposed system as close as
possible to the original usual description of the system, so that it can be recog-
nized straightforwardly to be simulated correctly and step by step by the ASM
model, we provide for the full ASM thesis, i.e.including distributed systems, a
strong argument which

e avoids a sophisticated existence proof for the ASM models from abstract
postulates,

e avoids decoding of concrete concepts from abstract postulates,

e avoids a sophisticated proof to establish the correctness of the ASM mod-
els.

Since despite of listening to the specifics of each investigated framework and
of tailoring the simulating ASM models accordingly we achieve a certain unifor-
mity, this provides a mathematical basis for technical comparison of established
system design approaches which we expect to

e contribute to rationalize the scientific evaluation of different specification
approaches, clarifying their advantages and disadvantages,

e offer a powerful yet simple definitional framework for teaching computa-
tion theory.

For the modeling purpose, we generalize Finite State Machines (FSMs) to a
class of Abstract State Machines (ASMs) which are tailored to UML diagram
visualizable machines (introduced in [Boerger99| under the name of control state
ASMs.)

References

[BlaGur01] A. Blass and Y. Gurevich. Abstract State Machines capture paral-
lel algorithms. Technical Report MSR-TR-2001-117, Microsoft Research,
November 2001.

[Boerger99] E. Borger. High level system design and analysis using abstract
state machines. In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann,
editors, Current Trends in Applied Formal Methods (FM-Trends 98), num-
ber 1641 in LNCS, pages 1-43. Springer-Verlag, 1999.

[Gurevich85] Y. Gurevich. A new thesis. Abstracts, American Mathematical
Society, page 317, August 1985.

12

A precise semantics of UML State Machines: mak-
ing semantic variation points and ambiguities ex-
plicit

Egon Bdérger, Universita di Pisa -
Alessandra Cavarra, Oxford University - UK
Elvinia Riccobene, Universita di Catania - I
March 7, 2002

We present a rigorous and complete semantics for UML state machines. Our
model (a) rigorously defines the UML event handling scheme making all its
“semantic variation points” explicit, including the event deferring and the event
completion mechanism; (b) encapsulates the run-to-completion step in two sim-
ple rules, where the peculiarities relative to entry/exit or transition actions and
sequential, concurrent or history states are dealt with in a modular way; (c)
integrates smoothly the state machine control structure with the data flow; (d)
clarifies various difficulties concerning the scheduling scheme for internal on-
going (really concurrent) activities; (e) describes all the UML state machine
features that break the thread-of-control; (f) provides a precise computational
content to the UML terms of atomic and durative actions/activities, without
losing the intended generality of these concepts, and allows one to clarify some
dark but semantically relevant points in the UML documents on state machines.

Our rigorous semantics for state machines comes in the form of Abstract
State Machines. We model the concurrent subactivities appearing in UML con-
current substates, and the internal activities of state machines, by multi-agent
ASMs, given by a set of sequential agents, each executing its own rules.

Unless necessary to avoid inconsistencies, we do not take any position on
which UML concepts or understandings of them are reasonable or desirable.
Through our definitions we build a framework for rigorous description and anal-
ysis of logically consistent interpretations of the intuitions which underly UML
concepts.

13

Concurrency and Refinement

Jim Davies
University of Ozford
March 7, 2002

The language of Communicating Sequential Processes (CSP) can be used to de-
scribe patterns of interaction: a process is a pattern of possible, communicating
behaviour. This talk reviewed the essential aspects of CSP, and showed how the
language could be used to specify a simple reactive system at five different levels
of abstraction, each specification a refinement of the previous one. The mean-
ing of process refinement was then discussed, and compared with the notion of
sequential, data refinement.

14

Designing Software for Internet Telephony:
Experiences in an Industrial Development Process

Giuseppe Del Castillo, Peter Pdippinghaus
Siemens AG — ICM N PG U ID A 1
March 5, 2002

Experiences in the design and implementation of the CSCF, an entity within a
mobile telephony core network, are reported. The CSCF (call state control func-
tion) works as a call controller within the TP Multimedia Subsystem (IMS) of
the UMTS, a 3rd generation mobile communication system. The IMS architec-
ture, unlike traditional telephony systems, is completely based on the Internet
Protocol (IP). The IMS is being standardized by the 3rd Generation Partnership
Project (3GPP). Within the IMS, the CSCF communicates with other entities
by means of the Session Initiation Protocol (SIP), which is standardized by the
IETF (Internet Engineering Task Force).

The design of the CSCF takes place within a strictly regulated industrial
software development process. As a variation with respect to the standard
development process, a high level executable model of the essential functionality
of the CSCF was developed in the design phase. This model was successfully
used to gain experience with the design in an early development stage and later
taken as the basis for the C++ implementation of the CSCF product.

According to our experience, for the ASM method to become part of every-
day industrial design practice, two requirements are seen as crucial: (i) seamless
combination with object-oriented design methods like UML, and (i) mature tool
support.

15

Programming Languages from Evolutionary Point
of View

Igor Durdanovic, NEC Research Institute
March 5, 2002

Inspired by natural evolution we in the machine learning community have tried
to employ similar methods. In the last 6 years we have been working on evolving
programs (and meta-programs) that solve "hard" combinatorial problems. We
experimented with DNA-like assembler languages with limited pattern match-
ing, typed Lisp-like symbolic expressions, Prolog-like pattern matching. Our
experience shows that with limited computational resources that we have, low-
level assembler like languages take to long to evolve and programs are hard
to understand. Symbolic expressions and typing greatly reduce search space.
However, the evolved programs are very brittle, i.e. small mutation can easily
break them. We had best results with pattern matching languages, which makes
a great case for Prolog as a programming language.

Our experience shows that having the "right" programming language is very
important factor in software engineering. Programming languages that make
use of pattern matching - functional languages, Prolog (unification) are very
good for rapid prototyping and fare well in time-limited programming contests.

The advancement of computer power has enabled us to seek alternatives to
human programming. Today we see many problems being solved by means of
evolutionary algorithms instead of explicit programming. We expect to see an
increase of use of evolutionary programming in industry as the computational
power advances and field gets more mature.

16

Using ASMs for Controlling Technical Systems

Werner Gabrisch
University of Halle
March 4, 2002

Technical systems are safety critical systems. It’s architecture is defined. There
are a lot of methods used to describe the behavior of system parts. So it is
difficult to define the behavior of a complete system.

All description methods can be defined by ASMs. We can handle systems if
we are able to connect the descriptions of the parts. This can be done by using
the protocol layers between the control layers, because all communication must
base on it. They can be specified by ASMs, which are used by higher layers as
submachins.

Description methods like statecharts can be structured in this way too. A
statechart is an automata that controls actions (programs). The communication
between automata and actions is specified by a set of given functions. These
functions can used like a protocol layer. They define a basic signature for
automata and actions.

As an experimental platform we are using a model Railway-system. In this
system we will describe the behavior based on statecharts and its actions and
generate a ASM of all. That must fit because the statecharts and the actions
the same basic signature.

If we have defined a submachine, we will be able to check it. If we generate
code based on this model. The specification of the model must be hold by the
generated program. We can use the program as a function in higher abstraction
levels.

Because of the generation is based on a hierarchical structure of signatures
global states in different generation can’t exists. These global states must be
represented by dynamically functions.

We will also try to generalize this method to be able to describe large systems
by a set of smaller models.

17

Resources, labels and Proofs

Didier Galmiche

LORIA - Universite Henri Poincare
Nancy, France

March 5, 2002

In this talk, we focus on resource logics for modelling systems and programs
and on theorem proving in such logics. Resource is a basic notion in computer
science and location, access to, consumption of resources are central concerns in
the design of correct systems (like networks) and programs (acces to memory,
data structures manipulation). We show how the use of algebra of labels solves
problems like resource distribution in theorem proving in resource logics, the
labels being the elements of resource models. We illustrate the main points of
this approach within the logic of bunched implications BI and present labelled
calculi that are complete w.r.t. resource semantics and provide proofs or coun-
termodels of BI formulae. The relationships between resource semantics, labels
and proof calculi are central in this presentation.

18

Using model checking to generate tests from ASM
specifications

A.Gargantinit, E.Riccobenet, S.Rinzivillof
tDMI- University of Catania

1DI- University of Pisa

March 7, 2002

In this presentation we tackle some aspects concerning the exploitation of Ab-
stract State Machines (ASMs) for testing purposes. We present, for ASM spec-
ifications, a set of adequacy criteria measuring the coverage achieved by a test
suite, and determining whether sufficient testing has been performed. We intro-
duce a method to automatically generate from ASM specifications test sequences
which accomplish a desired coverage. This method exploits the counter example
generation of the model checker Spin. We use ASMs as test oracles to predict
the expected outputs of units under test. We present some interesting results in
evaluating the proposed method. We have measured, using the code coverage
tool JCover, the coverage of code for SIS, Safety Injection System, provided by
the test suite generated by our method. We found that statement and branch
coverage were achieved. Moreover, our method has been compared with ran-
dom generation of test cases. Finally, we present the generation of test cases
for the OpenDoor example and we show how the non discovery problem for this
example has been tackled and solved.

19

Engineering Concurrent Systems with Distributed
Abstract State Machines

Uwe Glaesser

Technical University of BC Surrey
BC, Canada

March 5, 2002

Traditional engineering disciplines, like mechanical and electrical engineering,
rely on well established instruments when it comes to specifying properties of
technical systems with mathematical precision. In particular, the deliberate use
of formalisms-e.g. such as the blueprints of mechanical engineering-is common-
place and well accepted. Software and systems engineering, however, deeply
relies on informal requirement specifications even though establishing require-
ments is the first and most important step on the way from a fuzzy concept
to a concrete implementation. Indeed there are good pragmatic reasons for
deploying more appropriate instruments ([HMO01], p. 171):

. software problems are the most difficult ones human beings have
ever attempted to solve, and mathematics is the single most powerful
intellectual discipline for problem solving. So it seems inevitable that
the two will come together.

Furthermore, informal descriptions are not executable and as such provide only
very limited support for experimental validation although this is ultimately
needed for checking the accuracy of requirements against our intuitive under-
standing of the expected system behavior; indeed, it often is the only way to
fully understand the implications of the specified requirements. Taking into ac-
count the practical needs of systems engineers and application domain experts, a
good compromise for sharpening requirements into specifications means that the
"formal” sneaks in as we attempt to gain precision in natural language specifi-
cations[HMO1]. The talk exemplifies how the computation model of distributed
Abstract State Machines and its underlying notion of partially ordered run, as
defined in the Lipari Guide [Gur95], can be deployed for a gradual formalization
of requirement specifications of complex distributed and embedded systems at
a level of detail and precision as needed. Two recent industrial applications
are presented, namely the Specification and Description Language - SDL stan-
dardized by the International Telecommunication Union - ITU, Geneva, and the
Universal Plug and Play Device Architecture - UPnP [UPNP00] developed at
Microsoft, Redmond. The first application is a comprehensive formalization of
SDL based on a distributed real-time ASM [EGGLPO01]. On behalf of the ITU
and in close collaboration with ITU-T Study Group 10 (Languages for telecom-
munication applications), the dynamic properties of SDL have been formalized
in terms of an SDL abstract machine in combination with an SDL-to-ASM
compiler. In November 2000, this ASM model of SDL was approved as part of
the current standard for SDL as defined by the ITU-T Recommendation Z.100

20

[ITU00]. The core of the SDL abstract machine is a distributed signal flow model
defining the transportation of signals through an SDL system. The underlying
model for delaying the transportation of signals also encompasses the behavior
of SDL timers. Another application is a high-level executable specification of the
UPnP protocol, the part of the UPnP architecture that ensures connectivity and
interoperability among UPnP devices and control points, which also based on a
distributed real-time ASM [GGVO01],[GGV02],|GV02]. This modeling paradigm
allows us to combine both synchronous and asynchronous execution models in
one uniform model of computation. An executable version of the resulting be-
havior model is encoded in AsmI, the ASM Language, and comes together with
a GUI allowing for the required control and visualization of simulation runs.

References

[EGGLPO01] R. Eschbach, U. Glésser, R. Gotzhein, M. von Lowis and A. Prinz.
Formal Definition of SDL-2000 - Compiling and Running SDL Specifica-
tions as ASM Models. Journal of Universal Computer Science, 7 (11): 1025-
1050, Springer Pub. Co., 2001.

[GGVO01] U. Glédsser, Y. Gurevich and M. Veanes. Universal Plug and Play
Machine Models. Foundations of Software Engineering, Microsoft Research,
Redmond, Technical Report, MSR-TR-~2001-59, June 15, 2001

[GGVO02] U. Glasser, Y. Gurevich and M. Veanes. High-level Executable Specifi-
cation of the Universal Plug and Play Architecture. In Proc. of 85th Hawaii
International Conference on System Sciences (HICSS-35), Software Tech-
nology Track, Hawaii, Jan. 2002.

[GV02] U. Glasser and M. Veanes. Universal Plug and Play Machine Models:
Modeling with Distributed Abstract State Machines. To appear in Proc.
of IFIP World Computer Congress, Stream 7 on Distributed and Parallel
Embedded Systems (DIPES’02), Montreal, Aug. 2002.

[Gur95] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger, ed-
itor, Specification and Validation Methods, pages 9-36, Oxford University
Press, 1995.

[HMO1] D. Hamlet and J. Maybee. The Engineering of Software: Technical
Foundations for the Individual. Addison Wesley, 2001.

[ITU00] ITU-T Recommendation Z.100: Languages for Telecommunications
Applications - Specification and Description Language (SDL), Annex F:
SDL Formal Semantics Definition, International Telecommunication Union,
Geneva, 2000.

[UPNP00] UPuP Device Architecture V1.0. Microsoft Universal Plug and Play
Summit, Seattle 2000, Microsoft Corporation, Jan. 2000.

21

The SDL Virtual Machine

Reinhard Gotzhein, University of Kaiserslautern, Germany
Mareh 4, 2002

The SDL Virtual Machine (SVM) is the core of the dynamic semantics of SDL,
the Specification and Description Language. SDL is a design language for dis-
tributed systems, developed and applied in the telecommunications industry.
The SDL Virtual Machine has been formalized based on Abstract State Ma-
chines by defining an SDL Abstract Machine (instruction set, architecture, re-
sources), an SDL compiler, SVM agents, an SVM runtime library, and an SVM
operating system. The SVM definition is part of the formal semantics of SDL,
and has been approved as Annex F to the international SDL standard in Novem-
ber 2000.

22

Quantum Computing and Abstract State Machines

Erich Graedel (joint work with Antje Nowack)
Aachen University of Technology
March 8, 2002

We show that and how ASM can model quantum algorithms.

23

Abstract State Machine Language:
Notes on Design and Implementation

Wolfgang Grieskamp, Microsoft Research, Redmond
March 5, 2002

The Abstract State Machine Language (AsmL) is a modeling language devel-
oped at Microsoft Research over the last few years. AsmL is build upon three
foundations: the ASM paradigm for dealing with state, a rich set of mathe-
matical data types like sets and maps with tailored notations, and the object
and component model as found in the .NET framework. The language’s nota-
tional style is oriented towards pseudo code. The language is a full consumer
and provider of the .NET common language subset, faithfully reflecting concepts
like classes, interfaces, delegates, events and so on. This allows AsmL on the
hand to access all the framework functionality, on the other to be a modeling
language for .NET. AsmL also introduces extensions compared to traditional
ASMs. The concept of partial updates enables pointwise update on maps, sets
and other data values. Partial update on maps replaces dynamic functions. The
concept of submachines allows the description of one step of an ASM by means
of several sub-steps. The language is implemented by compilation to C#. It
has been bootstrapped, i.e. the compiler has been written in AsmL.

24

Explicating the intuition behind Abstract State
Machines

Yuri Gurevich
Microsoft Research
March 4, 2002

The talk has two parts. In Part 1, we address the questions what is computation
and what is algorithm. The analysis leads to our worldview: computation is
state evolution, algoritms are abstractions of computers (where a computer is
just the performer of the computation) that are state based. We discuss various
challenges to this worldview. In Part 2, we consider distributed algorithms and
explicate the notion of run of the Lipari guide.

25

UML/OCL and State Machines

Heinrich Hussmann
Dresden University of Technology, Department of Computer Science, Germany
March 7, 2002

This talk deals with the relationship between state machines and the Unified
Modeling Language (UML) with its formal assertion language, the Object Con-
straint Language (OCL). Naturally, the talk concentrates on UML statecharts.
In an introduction to UML statecharts, the wide range of possible semantics for
UML statecharts is pointed out. In particular, the difference between statecharts
as control machines and statecharts as protocol machines is explained. Control
machines communicate with their environment in a usually asynchronous way by
events and signals, whereas protocol machines describe the dynamic behaviour
of a complex software component under usually synchronous operation calls.
The need for a unifying semantics of the various smeantic variants is discussed.
The OCL has close relationshops to UML statecharts, which are discussed in
the second part of the talk. OCL expressions can be used for writing guards
in UML statecharts. But moreover, the "oclInState" operation of OCL also
makes it possible to express the semantics of a protocol machine in OCL, i.e.
to translate a statechart into a set of OCL constraints. A planned extension of
OCL for the version 2.0 of the UML standard, so-called OCL Message Expres-
sions, are introduced, and it is shown how message expressions can be used to
translate further aspects of statechart information into OCL. It is argued that
in the long run it will be possible to define an adequate abstract semantics for
UML statecharts indirectly through a formal semantics of OCL.

26

ASMs transformations and their correctness

Marcin Mtotkowski
University of Wroctaw
March 8, 2002

The Abstract State Machines can be used not only to study semantics of pro-
gramming languages, but also to study some optimization techniques suitable
to the given language. If a program P is represented by an ASM, then consid-
ered technique can be expressed by corresponding transformation of this ASM
into another one. In order to prove its correctness equivalence between these
two ASMs has to be proven. We present an algebraic approach to this problem.
We define an equivalence relation between two algebraic structures, which repre-
sents "similarity" between these structures. Then we show that this equivalence
is preserved during runs of both ASMs. Hence final algebras are equivalent, i.e.
both ASMs give the same result.

27

A Logic for Abstract State Machines

Stanislas Nanchen and Robert Stark
ETH Zurich
March 4, 2002

In this talk, we discuss a logic for Abstract State Machines. Unlike other ap-
proaches which are based on variants of Dynamic Logic, we propose new axioms
and rules baeds on an update predicate on transition rules. In particular, we
do not expect ASMs to be in normal form, but instead, we allow structural
concepts for ASMs (sequential composition, recursive rule call).

The logic is an extension of FOL with a definedness predicate (def(R)), an
update predicate (upd(R, f, z,y)) and a modal operator ([R]p). With these new
constructs, we are able to express the consistency of ASMs.

The logic is sound and, in the case of hierarchical ASMs (without recursive
rule call), the logic is a definitional extension of FOL, and, by then, complete.

28

A consistent operation to compose Abstract State
Machines and rigorous techniques to define, rec-
ognize and prove properties of distributed ASMs

Marianna Nicolosi Asmundo, Elvinia Riccobene
University of Catania
March 4, 2002

Modelling distributed systems in a coherent and rigorous way is a basic goal in
Formal Methods. In this work we are addressing the problem for Abstract State
Machines by giving an operation to integrate sequential ASMs together with
some tests checking the consistency of simultaneous updates in the composed
system and a method to define and prove safety and liveness properties of the
system.

The composition operation takes as input a collection of sequential ASMs
returning as output their composition (a multi-agents ASM). It is applied only
after the execution of two tests checking the consistency of simultaneous up-
dates. These preliminary tests are of syntactical nature. They simply do an
inspection of the vocabulary and of the rules of the components. If one of them
succeeds, the system is consistent with respect to simultaneous updates and the
composition operation is successfully applied. If the preliminary tests fail, the
composed system may still be consistent with respect to simultaneous updates
but we cannot check it with an a priori test. Then we compose the system and
check whether simultaneous updates of the same function are possible (test b.).
If there is no run of the composed system allowing simultaneous updates of the
same function then the system is consistent otherwise it is inconsistent.

Definition and proof of system properties is our concern as well. In this work
we focus on the interfaces between the components and between the composed
system and the environment describing their behavior, defining and proving
their properties. In order to do that, we provide ASMs with the definitions of
"interaction traces" and of "input/output traces" which describe the behavior
of the ASMs on the interface hiding the internal behavior. System properties
are defined as interfaces having their own vocabulary which is a collection of
external and interaction functions and their set of traces or scenarios. This
formulation allows us to define properties in a rigorous and precise way and
to recognize safety and liveness properties by analyzing the structure of their
traces. In particular it allows to apply classical and rigorous techniques to prove
that a system satisfies a property like induction for safety properties and the
construction of a progress function for liveness properties.

The Production Cell case study, already formalized in terms of multi-agents
ASMs by Boerger and Mearelli, has been our first example of application and it
gave good results. Now we are working on a consistent composition operation
for distributed ASMs and investigating on a different kind of inconsistency re-
garding interactions between partially synchronized components which we called
"synchronization inconsistency".

29

Deciding the Verification-Problem for ASMs via
Model-Checking

Antje Nowack
LuFg Mathematische Grundlagen der Informatik
March 6, 2002

We focus on the decidability of the general verification problem:
"Given an ASM A and a temporal property ¢. Does every computation of A
satisfy 7"

We identify a class of deterministic parallel ASMs and a fragment of tempo-
ral first-order logic such that the general verification problem is decidable for
ASMs from this class and properties expressed in this fragment. The proof
of the decidability is done via a reduction to the satisfiability problem of the
clique-guarded monodic fragment of temporal first-order logic in (IN, <) over
finite, not expanding domains. This is known to be decidable.

Similarly (but partially easier), one can prove such a result for other classes of
parallel ASMs and fragments of the monodic fragment of temporal first-order
logic.

30

Time in ASMs - Some Problems and Solutions

Andreas Prinz
DResearch Digital Media Systems GmbH
March 6, 2002

Starting from the problems to cover time in the formal ASM semantics of SDL,
various properties of time are analyzed. Following a proposal by Yuri Gurevich,
a series of time axioms for SDL is provided and the corresponding semantics of
ASMs is compared with this. Then some desirable extensions to the ASM time
mechanism are given.

31

ASM in the classroom

Wolfgang Reisig
March 5, 2002

ASM can be motivated by its successful applications, as well as by Yuri’s seminal
theorem for (sequential) ASM. We followed the second way in a students course
on Formal Methods. As an introductory example we started out with the well-
known algorithm to construct a tangent at a circle. This algorithm has been
chosen, as it has various , non-isomorphic realizations: a node is a pair (z¢, yo)
of real numbers or of integers min < xg, yo < mazx, or a spot on a blackboard,
or axiomatically given, or just a ground term, etc. Operations likewise vary
over many realizations, adjusted to the representations of points, circles, lines,
etc. Hence, this algorithm represents a typical, albeit very simple problem,
that ASM is intended for. We emphasize that ASM is based on signatures
(vocabularies): A signature X fixes the set of algorithms over X. To understand
the borderline between algorithmic and non-algorithmic sets of behaviors, we
consider a number of examples and counter-examples. For example, with a
signature of one constant and one unary operation, the sequences (IN, i, suc)
and (IN, 24, suc) are algorithmic, whereas (IN, 2¢, suc) is not.

Finally, we presented the observation that most non-trivial counterexamples
follow the schema

s - g
h | 1 R
Q —
=T | | tog #tr
R — R

where h is a homomorphism and T a finite set of "witness", all interpreted
equally on @ and R, but not on Q' and R'.

32

An Object Model Of Abstract Cryptography

Dean Rosenzweig, Neva Slani
University of Zagreb
March 7, 2002

The AsmL specification language suggests a model of objects and classes within
ASMs, with a native notion of local state and accessibility. This allows a novel
model of abstract cryptography, with the intended black-box properties of se-
crecy and indistinguishability, as postulated for usual term models, built in by
construction. Due to ASMs, the model is rigorous, and due to AsmL it is exe-
cutable as is. The Abadi-Rogaway mapping of abstract messages to probability
ensembles relating abstract and computational indistinguishability carries over,
and can be naturally extended from statics of messages and encryptions to dy-
namics of protocols. Dynamics of abstract and computational protocols can
thus be directly related by correctness proofs in the same computational model.

33

Refinement of Abstract State Machines

Gerhard Schellhorn
Lehrstuhl fuer Softwaretechnik und Programmiersprachen, Institut fuer Infor-
matik

Universitaet Augsburg
March 5, 2002

The talk describes a generic proof method for the correctness of refinements
of Abstract State Machines based on commuting diagrams. The method gen-
eralizes forward simulations from the refinement of I/O automata by allowing
arbitrary m:n diagrams, and by combining it with the refinement of data struc-
tures.

34

Modeling Mobility Management

Wolfgang Schionfeld
Fraunhofer IPSI
March 6, 2002

Mobility of a phone within a cellular network or of a computer within the
Internet has to be managed by the respective network infrastructure: Routes
to and from a mobile device have to be changed. In order to base mobility
management of future cellular networks on IP, the Internet Protocol, various
proposals like Mobile IP are currently being discussed. In this talk, we develop
a simple model of mobility management, analyse handoff performance as well
as its effect on payload. We also sketch the design of a network simulator for
this kind of models.

35

ASM Concept in Refinement of Real-time Systems
and in Verification

D.Beauquier, J.Cohen, A.Slissenko
University Paris 12, France
March 7, 2002

This talk unites two different subjects: compositionality of refinements of real-
time systems and the verification of security of some cryptographic protocols.
The particular feature of real-time refinements lies in real-time constraints.
They impose some kind of "context-sensitiveness" of runs that drastically differs
this case from classical refinements where runs are in some sense " context-free".
As a consequence we loose many commutativity properties, in particular tran-
sitivity. Treating runs as evolving algebras helps to understand the difficulties
related to compositionality and to develop notions that permit to give some con-
ditions for compositionality. The second topic is the security of cryptographic
protocols. We observe that the logical framework that we developed for the ver-
ification of real-time systems that uses ASM to embed programs into the logic
works well also for the security of cryptographic protocols. Security of some (or
many) session key distribution protocols (Needham-Schroeder, Otway-Rees etc),
correct or bugged, is in a decidable class. For bugged protocols the decidability
algorithm gives a description of possible attacks.

36

Continuous Software Engineering: Architectural
Design of Evolutionary Software Systems

Asuman Stunbil
Kestrel Institute
March 5, 2002

The classical view of the software engineering discipline is revised under the
circumstances, that today’s large software systems often make it impossible to
start the development of a system from scratch. In nearly all cases, already
existing software components are re-used and assembled to form new software
systems. The origin of software components can be manifold: they may be
bought from outside vendors or taken from in-house software resources. Fur-
thermore, software systems become obsolete during its operating time due to
continuous changes concerning upgrading, local and global adjustments, im-
provement of software, or other kind of changes. These changes often lead to
undesired side-effects. The original system structure cannot be kept, the sys-
tem becomes obscure and untraceable. Thus, in order to avoid these unwanted
effects, these changes must be part of a disciplined method capturing also the
above mentioned long-term aspects of software development processes.

We suggest our Service Layer Model SLM approach which is focusing on
component composition techniques. The semantics of the component model
forming the technical basis for the approach is specified using the Abstract
State Machines (ASM) method. Additionally, a component model input lan-
guage (CMIL) is introduced as a user interface to the component model. In
CMIL, system design processes are carried out using refinement techniques, es-
pecially by connector refinements. Therefore, the notion of abstract connectors
is introduced as a mean to abstract from concrete connector specifications. The
semantics of the refinement techniques is also fully formalized using ASMs. As
a side effect, the formalizations contained in the work have directly been used
to generate an executable version of the ASM rules using an ASM support en-
vironment. The generated code, the "CMIL-checker", has also been used to
validate the examples and case studies presented in the work.

37

Information Services Semantics via ASM

Bernhard Thalheim, BTU Cottbus
Mareh 4, 2002

Information Services are developed everywhere. Large sites have to be designed
very carefully in order to be maintainable, be supportable by information sys-
tems and be extensible. Thus, a sound methodology is required. Beside method-
ologies or engineering approaches well-founded language must be developed.
These languages should be able to cover various level of abstraction. The Web-
SiteLang developed at CottBus Tech aims in meeting these goals. Furthermore,
the language can be entirely based on ASM. Thus, the operational semantics is
provided by ASM’s. The WebSiteLang has been challenged by a project aiming
in development of TV-based set-top-box-based cable-channel-supported inter-
active information services. The great benefit of the semantic basis that has
shown to be the most important advantage is the refinemendability.

38

Applications of ASMs in Microsoft: Modeling and
Testing

Margus Veanes, Lev Nachmanson
Microsoft Research, Redmond
March 6, 2002

AsmL is an advanced ASM-based executable specification language that has
been developed at Microsoft Research. It provides a modern specification envi-
ronment that is object-oriented and component-based. AsmlL is integrated into
Microsoft Visual Studio, Word and COM.

AsmL can be used to model highly distributed architectures on any desired
level of abstraction. Since AsmL models are executable they can be used for
early design validation. Since they are easily readable they can be used for
rigorous documentation. Since they have a precise semantics they can be used
for static analysis and be used as test oracles. In this talk we discuss and demo
our experience of using AsmL as a modeling tool of web service architectures. In
particular we show parts of the Universal Plug and Play model of AsmL and we
also demo the AsmL model of the business process description language Xlang.

We are working on an effort of making AsmL part of model-based testing
in Microsoft. We discuss and demo how we plan to do this and what are the
benefits. In particular, we are working on the integration of AsmL with an
internal testing tool at Microsoft that is based on FSMs. The goal of this effort
is to enrich the expressive modeling power of this tool and to avoid several
shortcomings of FSMs that in general lead to state space explosion.

39

On ASM specifications for expression evaluation

Wolf Zimmermann

Universitit Halle- Wittenberg
FB Mathematik und Informatik
March 7, 2002

We present a framework for formalizing the semantics of expression evaluation
using Abstract State Machines. Many programming languages allow some non-
determinism for evaluating expressions. The semantics only have in common
that arguments are evaluated before an operator is applied. However, program-
ming languages usually restrict this most liberal evaluation order. For exam-
ple, the expression evaluation may take into account short-circuit evaluation of
boolean expressions which implies that right operands must not be evaluated
before the complete left operand is evaluated. Our approach provides a generic
expression evaluation semantics that only need to be instantiated adequatly.
We demonstrate this approach by the example of Ada95, C, Java, and Fortran.
(joint work with Axel Dold)

40

