
Dagstuhl Seminar No. 02111
Report No. 337

Concurrency and Dynamic
Behaviour Modelling:

Pragmatics & Semantics

10.03. - 15.03.2002

organized by

Gregor Engels (University of Paderborn, Germany),
Rob van Glabbeek (Stanford University, USA) and

Ursula Goltz (TU Braunschweig, Germany)

Edited by Jochen Kuster, University of Paderborn, April 2002

ii

Preface

A topic which has gained increasing interest in the past years is
the modeling of distributed and concurrent systems. Typical ap
plications are for example in the area of real-time, embedded, and
component-based systems, Web-based and multi-agent systems.
The complexity of such systems in combination with high demands
on their reliability call for adequate design methods.

Concurrency theory provides a formal basis for specifying such
systems, consisting of approaches such as process algebra and
Petri nets for modeling, logics for expressing properties of con
current systems, and methods for analysis and verification; Pi
calculus, ambients and control structures provide mobility con
cepts. Semantic models underlying these concepts were inves
tigated, for example transition systems with various notions of
equivalence and event structures. Coalgebras and hidden alge
bras provide a uniform framework for modeling dynamic behavior
and modularization. However, the impact of these developments
on practical software development has been limited. One reason is
the lack of integration of specification techniques for different as
pects of software development, and the missing support for specific
application domains and methodologies. Another reason lies in the
difficulties of practitioners in reading and writing formal specifica -
tions.

Software engineering methods are being developed which specif
ically address these issues. For example, the Unified Modeling Lan
guage (UML) integrates design notations for specifying the logical
and physical structure of a system, its dynamic behavior, the inter
action with other systems, etc. Being a general-purpose language,
the UML provides mechanisms for defining domain-specific pro
files of the language. An intuitive diagrammatic notation allows its
use by application developers without background in formal meth
ods. However, as UML lacks a formal foundation, models are often

iii

ambiguous, and there is no satisfactory support for analysis and
verification of models.

The goal of this seminar was to bring together people from both
areas of research for the mutual benefit of

• discussing the technology transfer from concurrency theory
to (in particular) object-oriented modeling, and

• deriving new challenges for concurrency theory from problems
in practical software development.

In particular, the following topics have been addressed:

• Semantics ofbehavioral models, including problems of under-
specified and open systems.

• Consistency between between non-orthogonal sub-models.

• Support for methodologies and specific application domains.

• Adequacy and expressiveness of behavior models, abstraction
levels in modeling.

• Analysis and verification (model checking, etc.), code genera
tion.

• Advanced concepts like time and mobility.

The discussion of these and other issues between experts from
the research fields outlined above led to a better understanding of
the semantics of models for dynamic behavior of concurrent sys
tems. In a working group, perspectives on further developments
both from the theoretic and pragmatic point of view have been dis
cussed.

The Organizers

Gregor Engels Rob van Glabbeek

iv

Ursula Goltz

Contents

Abstracts in alphabetical order:

Nasreddine Aoumeur
Specijying Evolving Concurrent Information Systems
Using Object Petri Nets 1

Jos Baeten
Process Algebra with Pointers 1

Rocco De Nicola
Modal Logics for Mobile Agents 1

Jorg Desel
Modeling Flexible Workjlows . 2

Hans-Dieter Ehrich
Avoiding State Space Explosion in Distributed Checking 3

Gregor Engels
The Modeling Triangle 3

Ursula Goltz
Using UML Models for Dynamic Behaviour 4

Luuk Groenewegen
Behaviour Behaviour 5

Martin GroJ3e-Rhode
Integration of Incomplete Behaviour Specifications 5

David Harel
Specijying and Executing Behavioral Requirements:
The Play-In Play-Out Approach 6

V

Reiko Heckel
Detection of Conflicting Functional Requirements in a
Use Case-Driven Approach - A Static Analysis Tech-
nique based on Graph Transformation 7

David N. Jansen
A Probabilistic Extension of UML Statecharts 8

Sebastian John
Semantics of Statecharts: Steps 8

Stuart Kent
The Enterprise Application Integration (EAI) Pro.file qf
the UML . 9

J ochen M. Kuster
A Methodology for Specifying and Analyzing Consis
tency of Object-Oriented Behavioral Models 10

Ruurd Kuiper
Handling Change in OO-Systems 10

Diego Latella
A Semantics First Approach to a Behavioural Subset of
UML Statechart Diagrams 11

Erich Mikk
Hierarchical Automata as Modeljor Statecharts 12

Ernst-Rudiger Olderog
Combining Specification Techniques for Processes,
Data and Time . 13

Wolfgang Reisig
The Temporal Logic of Distributed Actions 15

Arend Rensink
Model Checking Birth and Death 16

W.M.P. van der Aalst
Inheritance and Mining of '\VF-nets 16

Heike Wehrheim
Behavioural Subtyping Relations for Integrated Specifi
cation Formalisms . 18

vi

Roel Wieringa
Verification Supportjor Workjlow Design with UML Ac
tivity Graphs . 19

Albert Zundorf
Fajaba Statecharts 19

vii

viii

Specifying Evolving Concurrent Information
Systems Using Object Petri Nets

Nasreddine Aoumeur

University of Magdeburg

For the development of complex information systems we have been
proposing a new variant of object Petri Nets. Its aspects include a
true concurrency semantics based on rewrite logic, a component
oriented conceptualization and a meta-level for dealing with run
time changes. This presentation overviews the main aspects and
features of this model using a simplified banking systems example.

Process Algebra with Pointers

Jos Baeten

TU Eindhoven

Joint work with Jan Bergstra and Loe Feijs

We present a process algebra for mobile processes without bound
or free variables. Instead, pointers are used, that refer back to
an action executed in the history of a process. The situation is
comparable to a presentation of the lambda-calculus with DeBruijn
indices. This may further work on the pi-calculus, e. g. for axioma
tization, comparison of different notions of equivalence, implemen
tation.

Modal Logics for Mobile Agents

Rocco De Nicola

University Firenze

Joint work with Michele Loreti

I briefly presented KLAIM (a Kernel Language for Agents Interaction
and Mobility) and showed how it can be used to program applica
tions distributed over sites of wide area networks. I then presented

1

a new logic, tailored on Kl.AIM, that can be used for describing
properties of nets of processes modelled in KLAIM. The logic is an
adaptation of Hennessy-Milner modal logic but is geared toward the
descriptions of accesses, resources and mobility. Indeed, the new
modalities have a richer structure: actions are replaced by predi
cates over transitions that permit describing both the nature of the
actions and the sites involvements. After introducing the logic, I
described the possibility of having located formulae, i.e. formulae
that are restricted to specific sets of sites. These formulae can be
exploited to set up a methodology for proving properties of open net
and for developing stepwise implementations from abstract contex
tual specifications to concrete nets while guaranteeing preservation
of properties.

Modeling Flexible Workflows

Jorg Desel

Katholische U niversitat Eichstatt-Ingolstadt

Flexible work.flows are process specifications that are partly struc
tured and partly unstructured. The structured parts have few al
ternatives and are modeled by Petri nets as usual. In contrast,
unstructured parts capture exceptions and provide more freedom
to the user to execute activities in an arbitrary way. We suggest
to specify these parts by sets of simple activities, that can be used
as building blocks, and additional declarative specifications, that
can be formulated graphically. We discuss how flexible work.flows
can be obtained and validated from a set of runs given as occur
rence Petri nets. The approach is partly impemented in the VIP
tool. Finally, different application scenarios for flexible work.flows
are discussed.

2

Avoiding State Space Explosion in Distributed
Checking

Hans-Dieter Ehrich

TU Braunschweig

Joint work with Ralf Pinger

When model checking a concurrent system, the model convention
ally represents concurrency either by global clock synchronization
or by interleaving of its sequential components. This leads to the
well-known "state space explosion problem" which has been tack
led in several ways, including symbolic model checking, partial
order reduction, abstraction, and especially a number of compo
sitionality methods. Very large systems have been successfully
checked, demonstrating the power of the techniques.

We propose a compositionality method separating global con
ditions automatically into local conditions and communication re
quirements such that satisfaction of local conditions entails the
global condition, provided that the communication requirements
are fulfilled. Moreover, we use the more general "perspective con
currency" composition semantics, allowing for synchronization or
interleaving in any combination.

The method is based on distributed logic Dl and its transla
tion to DO as described by Ehrich and Caleiro in Acta Informat
ica 2000. The method has been completed by Pinger (PhD the
sis, 2002), providing an algorithm for matching communication re
quirements, implementing the method, and showing its practicality
with an example of realistic size. The improvements over the only
fully automatic method known so far (not implementing assume
guarantee methods) are quite promising.

The Modeling Triangle

Gregor Engels

University of Paderborn

Software engineering proposes the usage of a model as intermedi
ate step on the long path from a given problem to a program, solv-

3

ing this problem. Such a model abstracts from irrelevant details
from the problem domain on the one hand, and from implemen
tation level details on the other. A model itself should be defined
by a modeling language with a (hopefully precisely defined) syn
tax as well as with a (hopefully precisely defined) semantics. Un
fortunately, current practice in (industrial) software development
shows that used modeling languages lack sometimes a precisely
given syntax and lack very often a precisely defined semantics.
The talk discusses this problem and illustrates it by the use of
a so-called modeling triangle. This modeling triangle, consisting
of the three interrelated dimensions aspects, syntax, and seman
tics, makes clear that syntax and semantics of a modeling language
should be based on a commonly agreed set of aspects, which could
be termed generic conceptual model. Such a generic conceptual
model provides means to abstract from the real world domain, it
forms the base of a corresponding modeling language and it helps
stakeholders like language designers and users, to deploy the mod
eling language with the same intuitive understanding.

Using UML Models for Dynamic Behaviour

Ursula Goltz

TU Braunschweig

Joint work with Karsten Diethers, Michaela Huhn and Martin Mutz

Two applied projects and resulting research issues are presented:
The first project is a part of a collaborative project, funded by

the DFG (SFB 562), concerned with building high speed "paral
lel" robots. We are using UML for specifying the architecture for
the robot control and we validate crucial parts by formal analysis
(based on existing tools). For the latters, we consider semantical
issues for the UML models we are using, including the questions
of consistency between system views and integration of timing con
siderations.

The second project (STEP-X) is ajoint enterprise with Volkswa
gen and the institutes of Prof. Varchmin and Prof. Schnieder of the
TU Braunschweig. Topic is to develop a structured development
process for automotive systems. We are considering the comfort

4

system to be implemented on ECUs (electronic control units). We
suggest a development process (based on commercial tools), lead
ing from informal structured requirements to an architecture de
sign, from which it is possible to generate code. In the intermediate
analysis, we propose to use different versions of Statecharts.

Behaviour Behaviour
Luuk Groenewegen

Leiden University

Behaviour descriptions in terms of alternating sequences of states
and transitions between them are quite common. In addition to
such a (detailed) description, a global view of behaviours in terms
of alternating sequences of phases and overlaps between them is
presented. As the phases consist of behaviours themselves, such a
global view is behaviour (of) behaviour.

Phases and their overlaps are formalized in Paradigm (PAR
allelism, its Analysis, Design and Implementation by a General
Method) through the notions of subprocess and trap.

Based on the phases and their overlaps, communication and its
coordination can be understood and analysed surprisingly easily.
Moreover, process change or process evolution, even on the fly, can
be similarly formulated, understood and analysed on the basis of
phases and their overlaps.

Integration of Incomplete Behaviour Specifications

Martin Groj3e-Rhode

TU Berlin

Viewpoint models of a software system specify some aspects of the
system, seen from a specific point of view. The decomposition of the
development process achieved in this way yields a reduction of the
complexity by separation of concerns, orthogonal to the (horizon
tal) decomposition of the system and its models into components.
By definition, viewpoint models are heterogeneous and incomplete,

5

thus an integration is required that defines how the models cor
respond to each other, how they yield a global specification of the
whole system, and whether they are consistent with each other.

In the talk an integration approach is presented that is based
on an abstract common semantic domain. Basically, the interpre
tation of all specifications in this domain yields the possibility for
their integration. The domain is well structured in that it provides
- beyond the extended labelled transition systems for the represen
tation of entities like objects, components, processes, or systems
- schemes for composition operations and development relations.
Corresponding compositionality results are also shown.

Different applications of the integration approach to formal
specification techniques are discussed. As a more detailed exam
ple UML statecharts and sequence diagrams are considered and
the specific problems of the integration of incomplete (semi-formal)
behaviour specifications are discussed.

Specifying and Executing Behavioral Requirements:
The Play-In Play-Out Approach

David Harel

The Weizmann Institute of Science

Joint work with Rami Marelly

A novel requirements methodology for reactive systems is de
scribed, in which scenario-based requirements are "played in"
directly from the system's GUI or some abstract version thereof,
and behavior can then be "played out" freely, adhering to all the
requirements. The approach is supported and illustrated by a tool
we have built, which we call the play-engine. As the requirements
are played in, the play-engine automatically generates a formal
version in the language of live sequence charts (LSCs). As be
havior is played out, the engine causes the application to react
according to the universal ("must") parts of the specification; the
existential ("may") parts can be monitored to check for successful
completion. Play-in is a user-friendly high-level way of specify
ing behavior and play-out is a rather surprising way of working
with a fully operational system directly from its inter-object re-

6

quirements. We have also implemented a "smart" play-out mode,
whereby a successfully terminating superstep is computed on the
fly by using model-checking. Thus, we employ formal verification
techniques for driving the execution. The entire approach appears
to be useful in many stages in the development of reactive systems,
and could also pave the way to systems that are constructed di
rectly from their requirements, without the need for intra-object or
intra-component modeling or coding at all.

Detection of Conflicting Functional Requirements
in a Use Case-Driven Approach -
A Static Analysis Technique based on Graph
Transformation

Reiko Heckel

University of Paderborn

Joint work with Jan Hendrik Hausmann and Gabi Taentzer

In object-oriented software development, requirements of different
stakeholders are often manifested in use case models which com
plement the static domain model by dynamic and functional re
quirements. In the course of development, these requirements are
analyzed and integrated to produce a consistent overall require
ments specification. Iterations of the model may be triggered by
conflicts between requirements of different parties.

However, due to the diversity, incompleteness, and informal na
ture, in particular of functional and dynamic requirements, such
conflicts are difficult to find. Formal approaches to requirements
engineering, often based on logic, attack these problems, but re
quire highly specialized experts to write and reason about such
specifications.

In this paper, we propose a formal interpretation of use case
models consisting of UML use case, activity, and collaboration di
agrams. The formalization, which is based on concepts from the
theory of graph transformation, allows to make precise the no
tions of conflict and dependency between functional requirements
expressed by different use cases. Then, use case models can be
statically analyzed, and conflicts or dependencies detected by the

7

analysis can be communicated to the modeler by annotating the
model.

An implementation of the static analysis within a graph trans
formation tool is presented.

A Probabilistic Extension of UML Statecharts
David N. Jansen

Universiteit Twente

Joint work with Holger Hermanns and Joost-Pieter Katoen

We introduce means to specify system randomness within stat
echarts. (In system randomness, the system's behaviour itself
asks for a probabilistic description. The opposite is environment
randomness, where the environment of the system generates in
put for the system according to a probability distribution.) To
achieve this, we develop a general recipe to extend a statechart
semantics with discrete probability distributions. The seman
tic structure we use is (a subset of) Markov decision processes.
Properties of interest for probabilistic statecharts are expressed in
PBTL, a probabilistic logiv for MDPs, and checked using the model
checker PRISM. We apply the recipe to the semantics of (Eshuis
and Wieringa; Requirements-level semantics for UML statecharts.
FMOODS 2000), but it could also be applied to many other seman
tics.

Semantics of Statecharts: Steps

Sebastian John

TU Berlin

Is it not surprising that despite of the common use of the graphical
language of the statechart formalism, the reactive systems which
are modelled by them very differ in most cases? Even more surpris
ing would be the fact that the differences arise even if only basic
features of statecharts are employed. This talk reports varieties
of plain statecharts interpretation and their fundamental concepts

8

introduced by the given semantics in the literature. The study is
based on 3 principles: the analysis of conflicts, priority and basic
steps - which are iterated with and without cumulation concepts.
As a resume 72 varieties describing dynamic behaviour are figured
out waiting to be further compared and structured to display their
nature. This talk proposes in a stage of ongoing work, the notion of
normal reactive systems to bring the behaviours modelled by steps
in a hierarchy of abstraction relations.

The Enterprise Application Integration (EAI) Profile
of the UML

Stuart Kent

University of Kent at Canterbury

The EAI UML profile is soon to be ratified as an OMG standard.
Its purpose is to provide a language with a UML-like syntax for de
signing the architecture of message queuing systems . MQ systems
are typically used for Enterprise Application Integration. The pro
file attempts to capture a paradigm which is prevalent in industry,
but which is not a natural fit with UML, namely autonomous com
ponents communicating via (asynchronous) passing of messages
through input and output ports connected by channels. The pro
file clearly illustrates a common practice in the use of UML: choose
a subset of the notation; specialise (the syntax of) that notation
with stereotypes and additional well-formedness constraints; give
the syntax a meaning which suits the domain of interest, but might
not be compatible with the declared meaning of UML, as far as that
is described in the standard. The EAI profile itself is something
which could benefit from formal treatment and seems to have many
of the concepts already considered by theories of concurrency. It
may also contain some surprises that could lead to the develop
ment of new theory. It could do with some good analysis tools to
support it. A formal treatment may also lead to improvement in the
language. The concept of profile poses a challenge to language engi
n eers: how to define languages in families and generate/configure
modelling and analysis tools from the definitions.

9

A Methodology for Specifying and Analyzing
Consistency of Object-Oriented Behavioral Models

Jochen M. Kuster

University of Paderborn

Joint work with Gregor Engels , Reiko Heckel and Luuk Groenewe
gen

Object-oriented modeling favors the modeling of object behavior
from different viewpoints and the successive refinement of behav
ioral models in the development process. This gives rise to con
sistency problems of behavioral models. The absence of a formal
semantics for UML models and the numerous possibilities of em
ploying behavioral models within the development process lead to
the rise of a number of different consistency notions. In this talk,
we discuss the issue of consistency of behavioral models in the
UML and present a general methodology how consistency problems
can be dealt with. According to the methodology, those aspects of
the models relevant to the consistency are mapped to a semantic
domain in which precise consistency tests can be formulated. The
choice of the semantic domain and the definition of consistency
conditions can be used to construct different consistency notions.
We show the applicability of our methodology by giving an exam
ple of a concrete consistency problem of concurrent object-oriented
models.

Handling Change in OO-Systems

Ruurd Kuiper

TU Eindhoven

Joint work with Kees Huizing

In the setting of a Hoare-style proof system (pre/post/inv) for 00-
systems we analyse the effect of changes to classes. We aim for two
properties of the proof system:

• Data indu ction to maintain the invariants

10

• Compositionality in the sense that for proofs about one class
only the specifications of other classes are needed, i. e., not
their code.

We also aim for a property regarding the change: If the super
class is changes, keeping its contract, than the subclass also keeps
its contract, i. e. verification does not have to be repeated for the
subclass.

We approach this subject as a dynamic binding issue and pro
vide a new notion of behavioral subtyping, reinforced behavioral
subtyping, and a new notion of specification, cooperative contract.
The fragile base class problem is shown to be a case in point; a
concrete instantiation of it is shown as an example.

A Semantics First Approach to a Behavioural
Subset of UML Statechart Diagrams

Diego Latella

CNR-CNUCE, Pisa

Joint work with Mieke Massink

In cooperation with S. Gnesi, F. Mazzanti, I. Majzik, I. I. Schiefer
decker

In this talk a 'Semantics/Kernel first' approach to UML Statechart
Diagrams has been presented. By 'semantics first' we mean an
approach which is heavily based on a formal definition of the (se
mantics of) the notation. This way, interesting aspects of the nota
tion can be and have been formally studied and verification/testing
tools can be directly derived. This contributes in increasing the
confidence on the notation and on its supporting tools. We pro
ceeded by first formally defining the semantics of a behavioural
subset of the diagrams, i.e. a 'kernel', and then using it for inves
tigating interesting theories - like formal testing theory and formal
conformance testing -, verification approaches - like LTL model
checking and ACTL model-checking - and useful extensions - like
stochastic statecharts.

We defined our original semantics using hierarchical automata
in a similar way as E. Mikk did, and we proved that the semantics

11

fulfills major requirements stated in the official UML definition. In
each and every- investigation we performed, the formal link to our
original semantics as well as the correctness of the involved algo
rithms have been proven.

Once enough confidence will have been gained on the kernel,
elements of the UML statecharts which are not currently included
in our notation will be taken into consideration.

The 'semantics/kernel first' approach has already proven prof
itable in other fields of concurrency theory-, like e.g. process alge
bra, abd we think it is worth using it also in the UML framework.

Hierarchical Automata as Model for Statecharts

Erich Mikk

Siemens AG

Joint work with Gerard Holzmann, Yassine Lakhnech and Michael
Siegel

We suggest extended hierarchical automata (extended HA) as an
intermediate format to facilitate the linking of new tools to the
STATEMATE environment. The extended HA formalism uses single
source/single-target transitions as in usual automata (no inter
level transitions are admitted) and has a simple priority concept
which facilitates computing the next step of an extended HA. So,
the main idea is to devise a simple formalism with a more restricted
syntax than statecharts which nevertheless allows to capture the
richer formalism. Extended hierarchical automata, which are re
lated to the Argos language, come with a simple operational seman
tics which simplifies the implementation of tools for this formalism.

The main technical problem is to devise a simple formalism
which is nevertheless capable to model inter-level transitions.
Inter-level transitions (possibly with multiple sources/multiple tar
gets) are transitions which do not respect the hierarchy of states,
i.e. those that cross borderlines of states. They can be understood
as a powerful goto mechanism which allows to arbitrary- change of
control across the state hierarchy. The price of inter-level transi
tions is their intricate semantics in particular in combination with
the priority mechanism of statecharts. Inter-level transitions spoil

12

a clean decomposition of a system into subsystems (since "dan
gling'' transitions without source or target result) and thus denies
a structural operational semantics for statecharts.

We introduce extended HA and their semantics. Then we
present the translation of EHA into Promela/SPIN and SMV. This
translation has been implemented in a tool-set which has been
used for the verification of Production Cell and SAFER case study.
The case studies show that the model checking Statecharts is fea
sible with SMV.

This talk gives an overview of the dissertation of Erich Mikk
titled Semantics and Verification of Statecharts. This dissera
tion was prepared while Erich Mikk was affiliated with Christian
Albrech ts-U niversity in Kiel/ Germany.

Combining Specification Techniques for
Processes, Data and Time

Ernst-Rudiger Olderog

Universitat Oldenburg

Joint work with Jochen Hoenicke

Complex computing systems exhibit various behavioural aspects,
for example communication between components, s tate transfor
mation inside components, and real-time constraints on the com
munications and state changes. Formal specification techniques
for such systems have to be able to describe all these aspects. Un
fortunately, a single specification technique that is well suited for
all these aspects is not available. This observation has led to re
search into the combination and semantic integration of specifica
tion techniques.

We combine three well researched specification techniques for
processes, data and time: Communicating Sequential Process es
(CSP) [6, 101, Object-Z (OZ) [111 and Duration Ca lculus (DC) [12,
51. In this talk the emphasis is on a smooth integra tion of the
underlying semantic models and its use for verifying properties.

A class in the combined specification language CSP-OZ-DC is of
the form C = (I , P, D , T) with interface I, process part P, data part
D, and timing part T. Its semantics is a timed process modelled

13

by a DC formula of two observables: tr for timed traces and Ace
for timed acceptance sets. The definition proceeds in several steps:
first the transformational semantics of the untimed combination
CSP-OZ [2, 3] is reused for the parts I, PD yielding an untimed
CSP process, then this process is lifted to the timed setting yielding
a DC formula in the observables fr and Ace, and finally the timing
part T, being a DC formula, is conjoined.

TWs style of semantics definition can be used directly for a par
tially automatic verification of properties of CSP-OZ-DC specifica
tions. The approach proceeds in two steps and succeeds for finite
data types and certain patterns of timing restrictions. First the
FOR model checker [9, 4] for CSP is used to generate for given
class C = (I, PD, T) in this subset an untimed transition system
with acceptance sets covering the parts I, I', D. Then this transi
tion system is automatically transformed into a timed automaton
Ac respecting the timing restrictions of the DC semantics. Prop
erties of the class C can then be verified by applying the model
checker UPPAAL [l, 8] to Ac. This approach is illustrated with an
example. It will be published in [7].

Acknowledgement. This research was partially supported by the
German Research Council (DFG) under grant 01/98-2.

[l] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and
Wang Yi. Uppaal- a tool suite for automatic verification ofreal
time systems. In R. Alur, T.A. Henzinger, and E.D. Sonntag,
editors, Hybrid Systems Ill - Verification and Control, volume
1066 of LNCS, pages 232-243. Springer, 1997.

[2] C. Fischer. CSP-OZ: A combination of Object-Zand CSP. In
H. Bowman and J. Derrick, editors, Formal Metlwdsfor Open
Object-Based Distributed Systems (FMOODS'97), volume 2,
pages 423-438. Chapman & Hall, 1997.

[3] C. Fischer. Combination and Implementat ion of Processes and
Data: From CSP-OZ to Java. PhD thesis, Bericht Nr. 2/2000,
University of Oldenburg, April 2000.

[4] Formal Systems (Europe) Ltd. Failures-Divergence Refinement:
FDR 2, Dec. 1995.

[5] M.R. Hansen and C. Zhou. Duration calculus: Logical foun
dations. FormalAspects of Computing, 9:283-330, 1997.

14

[6] C.A.R. Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

[7] J. Hoenicke and E.-R. Olderog. Combining specification tech
niques for processes, data and time. In M. Butler and
K. Sere, editors, Integrated Formal Methods (IFM 2002), LNCS.
Springer, 2002. To appear.

[8] K.G. Larsen, P. Pettersson, and Wang Yi. Uppaal in a nutshell.
Software Tools for Technology Transfer, 1(1 +2): 134-152, 1997.

[9] A.W. Roscoe. Model-checking CSP. In AW. Roscoe, editor,
A Classical Mind - Essays in Honour of C.A.R.Hoare, pages
353-378. Prentice-Hall, 1994.

I 10] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice
Hall, 1997.

[11] G. Smith. The Object-Z Specification Language. Kluwer Aca
demic Publisher, 2000.

I 12] C. Zhou, C.A.R. Hoare, and A.P. Ravn. A calculus of durations.
Information Processing Letters, 40(5):269-276, 1991.

The Temporal Logic of Distributed Actions

Wolfgang Reisig

Berlin

Modern Specification Languages, including ORJ, Z, LARCH, FO
CUS, and TLA, describe a specification as a huge first order expres
sion, decorated with grains of Temporal Logic. Some of them even
more obey the very useful principles of "Composition is conjunc
tion" and - even more important - "implementation (refinement) is
implication". These principles require particular semantical mod
els such as streams (as in FOCUS), or stuttering sequences (as in
TLA).

We show that the well established notion of concurrent runs
likewise supports the above principles. A minor extension of Lam
port's TLA fits perfectly to concurrent runs. This new Tempora l

15

Logic of DISTRIBUTED actions (TLDA) addresses notions such as
locality, synchronization, and causality, hence fundamental no
tions of distributed behavior. At the same time, reasoning is fre
quently simpler (and never more difficult) than in TLA. For exam
ple, the notion of progress can be formulated without using (weak)
fairness.

All this is gained at a very reasonable price: Just extend TLA by
some few Boolean variables.

Model Checking Birth and Death

Arend Rensink

University of Twente

Joint work with Dino Distefano and Joost-Pieter Katoen

We propose Allocational Linear Temporal Logic (ALTL) as a for
malism to express properties concerning the dynamic allocation
(birth) and de-allocation (death) of entities, such as the objects
in an object-based system. The logic is interpreted on so-called
History-Dependent Automata (Developed by Montanari and oth
ers), extended with a symbolic representation for certain cases of
unbounded allocation. We also present a simple imperative lan
guage with primitive statements for (de)allocation, with an opera
tional semantics, to demonstrate the kind of behaviour that can be
modelled. The main contribution of the paper is a tableau-based
model checking algorithm for AL TL, along the lines of Lichtenstein
and Pnueli's algorithm for LTL.

Inheritance and Mining of WF-nets

W.M.P. van der Aalst

Eindhoven University of Technology

Inheritance is one of the cornerstones of object-oriented pro
gramming and object-oriented design. The basic idea of inheritance
is to provide mechanisms which allow for constructing subclasses

16

that inherit certain properties of a given superclass. In our case
a class corresponds to a workflow process definition (i.e., a rout
ing diagram) and objects (i.e., instances of the class) correspond
to cases. In most object-oriented methods a class is characterized
by a set of attributes and a set of methods. Attributes are used
to describe properties of an object (i.e., an instance of the class).
Methods symbolize operations on objects (e.g., create, destroy, and
change attribute). The structure of a class is specified by the at
tributes and methods of that class. Note that the structure only
refers to the static aspects of the interface. The dynamic behavior
of a class is either hidden inside the methods or modeled explicitly
(in UML the life-cycle of a class is modeled in terms of state ma
chines). Although the dynamic behavior is an intrinsic part of the
class description (either explicit or implicit), inheritance of dynamic
behavior is not well-understood. In recent years, we have developed
four notions of inheritance. On top of these notions we have devel
oped transformation rules, transfer rules, and tools (most notably
Woflan).

Inheritance is about comparing models. This is related to the
topic of mining since in mining models are not compared with other
models but with concrete traces of behavior. Contemporary work
flow management systems are driven by explicit process models,
i.e., a completely specified workflow design is required in order
to enact a given workflow process. Creating a workflow design
is a complicated time-consuming process and typically there are
discrepancies between the actual workflow processes and the pro
cesses as perceived by the management. Therefore, we have devel
oped techniques for (re)discovering workflow models. Starting point
for such techniques are so-called workflow logs containing infor
mation about the workflow process as it is actually being executed.
Unfortunately, it is not possible to (re)discover every workflow pro
cess. Therefore, we explore the class of workflow processes which
can be discovered. Theoretical results demonstrate that most prac
tical workflow processes fit into this class. The tool MiMo supports
the (re)discovery of these processes.

17

Behavioural Subtyping Relations for Integrated
Specification Formalisms

Heike Wehrheim

University of Oldenburg

Behavioural Subtyping Relations are concerned with behavioural
conformance relationships between classes. They have to satisfy
the substitutivity requirement imposed on types and their sub
types: a supertype object should be replacable by a subtype object
without a client of the supertype noticing a difference.

There are a number of proposals for behavioural subtyping rela
tions. They can broadly be classified as state-based and behaviour
oriented approaches. State-based subtyping relations are defined
for state-based specification formalisms describing data and op
erations on data whereas behaviour-oriented subtyping relations
are defined for specification languages describing the dynamic be
haviour of systems. For integrated specification formalisms com
bining state-based and behaviour-oriented languages the question
is then "which relation to use"? Ideally, one would like to be able
to use the existing relations for the separate parts of a combined
specification, and still be sure that an appropriate relationship
also holds for the combination. This can in fact be achieved since
state-based subtyping relations can be shown to induce behaviour
oriented relations when the state-based formalism is equipped with
a behavioural semantics.

The investigation is carried out within the context of the specifi
cation language CSP-OZ, combining the state-based specification
language Object-Z with the process algebra CSP.

18

Verification Support for Workflow Design with UML
Activity Graphs

Roel Wieringa

University of Twente

Ph.D. Work of Rik Eshuis

We describe a tool that supports verification of workflow mod
els specified in UML activity graphs. The tool translates an activ
ity graph into an input format for a model checker according to
a semantics we published earlier. With the model checker arbi
trary propositional requirements can be checked against the input
model. If a requirement fails to hold an error trace is returned by
the model checker. The tool automatically translates such an error
trace into an activity graph trace by high-lighting a corresponding
path in the activity graph.

One of the problems that is dealt with is that model checkers
require a finite state space whereas workflow models in general
have an infinite state space. Another problem is that strong fair
ness is necessary to obtain realistic results. Only model checkers
that use a special model checking algorithm for strong fairness are
suitable for verifying workflow models. In the talk we show how we
deal with these problems. We illustrate our approach with some
example verifications.

Fujaba Statecharts

Albert Zundorf

Technical University of Braunschweig

This talk reports about the Statechart dialect of Fujaba, the
UML case tool we have developed at University of Paderborn. These
statecharts specify the reactive behavior of active objects running
as concurrent threads (in a Java environment). These active ob
jects have (a large) common memory/ object structure. Due to the
common shared memory, handling of sets of events in a single mi
cro step is not feasible. Handling multiple events in parallel may
cause multiple transitions to fire and execute concurrently. This

19

would require some kind of double buffering technique, in order to
coordinate access to common data. Double buffering complex large
object structures is unfeasable. Thus Fujaba Statecharts handle
events strictly sequentially. This leads to a substantially different
semantics of Fujaba Statecharts compared to Harel Statecharts.

20

