Dagstuhl Seminar

No. 02371, Report No. 353

08.-13.09.2002

Experimental Algorithmics

J. Bentley (Avaya Labs, USA)
R. Fleischer (Hong Kong U of Science and Technology)
B. Moret (U New Mexico, USA)

E. M. Schmidt (Aarhus U, Denmark)

Contents
1 Summary

2 Program

Monday, September 11 Lo
Tuesday, September 12
Wednesday, September 13 L.
Thursday, September 14
Friday, September 15 oo

Abstracts
John Bentley, Both Sides Now: Tales from Three Decades of Experi-
ments on Algorithms L o000
Tetsuo Asano, Distribute Points Uniformly: Applications to Digital
Halftoning
Matthias Stallmann, The Importance of Instance Classes in Experimen-
tal Algorithm Evaluation
Irene Finocchi, Trading off colors and rounds in distributed vertex col-
oring algorithmso Lo oo
Peter Sanders, A Practical Minimum Spanning Tree Algorithm Using
the Cycle Property L.
Stefan Droste, Complexity of Black-Box Optimization
Michael Jiinger, Simple and Efficient Bilayer Cross Counting
Mike Fellows, Parameterized Complexity: the Main Ideas and Connec-
tions to Practical Computing
Ulrike Stege, Efficient implementations via combining tractable param-
eterizations Lo
Andrew V. Goldberg, A Practical Shortest Path Algorithm
with Linear Expected Time
Adam L. Buchsbaum, Fast Prefix Matching of Bounded Strings
Karen Aardal, Reformulation and algorithm performance
Tandy Warnow, Phylogenetic Reconstruction.
Knut Reinert, Algorithms for High-throughput Comparison of Peptide
Expression using Liquid Chromatography and Mass Spectrometry
Olaf Delgado-Friedrichs, Algorithms and Experiments in Theoretical
Crystal Chemistry
J. Tan Munro, Experimenting with Grammar Based Compression for
Data Warehousing Applications
Robert E. Bixby, Solving Linear and Integer Programs
Rolf Fagerberg, Dealing with the Memory Hierarchy the Cache-Oblivious
Way . .
Robert Sedgewick, A few thoughts on the analysis of graph algorithms

O Oy Ot ot

10
10
11
11
12
12
13
13
13
14
14

15
16

16
17

Jorg-Riidiger Sack, Parallel implemention of geometric shortest path

algorithms oo 17
Christos Zaroliagis, Using Multi-Level Graphs for Timetable Informa-

tion in Railway Systems 18

Matthias Miiller-Hannemann, Constructing Inverter Trees in VLSI Design 18

Cynthia Phillips, Running Experiments on Parallel Machines 19
Maciej Liskiewicz, On some Experiments with the LINPACK Bench-

mark on the SunFire 15K 19

Rudolf Fleischer, AAR — The Algorithm Animation Repository 20

Collected by E. D. Demaine, Open Problems Session 21

4 List of Participants 25

1 Summary

In September 2000, the Dagstuhl Seminar on Ezperimental Algorithmics brought
together researchers from both worlds of algorithmics, theoreticians and practi-
tioners. The main question of that seminar was whether and how theoretical and
experimental research can co-exist as equal partners under the big roof of algo-
rithmics. At the end, the nearly 50 participants agreed that the seminar had been
very successful in bridging the two worlds, and they decided to summarize their
findings in a Springer Lecture Notes volume Ezperimental Algorithmics The
State of the Art, which was published in 2002. They also agreed that they were
still far away from their main goal, namely to characterize the different roles of
theory and practice in the field of algorithmics, and that there should be another
seminar on this topic in the future.

Therefore, another Seminar was held in September 2002 to further discuss the
fundamental question of the value of experiments as opposed to purely theoret-
ical analysis of algorithms. It was also discussed what happens when computer
scientists (theoretical or practical) venture out in the world of real systems build-
ing and testing (networks, bioinformatics, natural language systems,...) where
they usually meet non-CS engineers or physicists with their own methodological
framework of experimental evaluation. Is there a fruitful interaction between CS
and non-CS? Can we (the experimental algorithmicists) learn from them? Or
they from us?

The aim of this workshop was to bring together three groups, more theoreti-
cal oriented researchers, more practical oriented researchers, and people working
on real systems. In all, 44 researchers with affiliations in Australia, Austria,
Canada, Denmark, Germany, Greece, Hong Kong, Italy, Japan, Spain, and the
USA participated in the meeting. Four invited keynote speakers, Jon Bentley,
Robert Bixby, Mike Fellows, and Tandy Warnow, gave one-hour position talks.
The remaining 21 presentations given by participants of the meeting covered a
wide range of topics in experimental algorithmics. The abstracts of most of these
presentations are contained in this seminar report. One evening was reserved for
an open problems session, also included at the end of this report.

As usual, Schlofl Dagstuhl proved to be an excellent place to hold a great meeting,
so we would not only like to thank the participants of the seminar for making
this a very successful event but also the Dagstuhl staff for providing a friendly
and stimulating working environment.

Jon Bentley

Rudolf Fleischer
Bernard Moret

Erik Meineche Schmidt

9:00
9:15

10:15
10:45

11:15

12:15
15:30
16:00

16:30

17:00
17:30
18:00

9:00
10:00

10:30
11:00

11:30
12:15

Program

Monday, September 11
Rudolf Fleischer: Introduction

Jon Bentley: Both Sides Now: Tales from Three Decades of Experiments
on Algorithms

Coffee Break

Tetsuo Asano: Distribute points uniformly: applications to digital halfton-
ing

Matt Stallmann: The importance of instance classes in experimental eval-
uation of algorithms

Lunch
Coffee Break

Irene Finocchi: Trading off colors and rounds in distributed vertex coloring
algorithms

Peter Sanders: A practical minimum spanning tree algorithm using the
cycle property

Stefan Droste: Complexity of black-box optimization
Michael Jiinger: Simple and efficient bilayer cross counting

Dinner
Tuesday, September 12

Mike Fellows: Parameterized complexity

Ulrike Stege: Efficient implementations via combining tractable parameter-
izations

Coffee Break

Andrew Goldberg: A practical shortest path algorithm with linear expected
time

Adam Buchsbaum: Fast prefix matching of bounded strings
Lunch

15:30
16:00

16:30

18:00
20:00

9:00
10:00
10:30
11:00

11:30
12:15
13:45

18:00

9:00
10:00

10:30
11:00
11:30
12:15

15:30

Coffee Break
Karen Aardal: Reformulation and algorithm performance

Bentley, Sedgewick, Moret, Bixby, Sanders, Demaine: Environemnts for
experiments

Dinner

Special Session: Erik Demaine: Open Problems Session
Wednesday, September 13

Tandy Warnow: Phylogeny reconstruction
Knut Reinert: From peaks to peptids

Coffee Break

Olaf Delgado Friedrichs: Algorithms and experiments in theoretical crystal
chemistry

lan Munro: Grammar based compression of database information
Lunch
Hike to a nice place with cake, coffee, tea, ...

Dinner
Thursday, September 14

Robert Bixby: Solving linear and integer programs

Rolf Fagerberg: Dealing with the memory hierarchy — the cache-oblivious
way

Coffee Break

Robert Sedgewick: Analysis of graph algorithms
Jorg-Riidiger Sack: Geometric shortest paths
Lunch

Coffee Break

16:00
16:30

17:00
17:30
18:00

9:00

9:30
10:00
10:30
11:00
12:15

18:00

Stefan Naher: Automatic visualization of algorithms in C++

Christos Zaroliagis: Using multi-level graphs for time-table information in
railway systems

Matthias Miiller-Hannemann: Construction of inverter trees in VLSI design
Cynthia Phillips: Running experiments on parallel machines

Dinner
Friday, September 15

Maciej Liskiewicz: On some experiments with performance benchmark pro-
grams for parallel computers

Rudolf Fleischer: AAR — the Algorithm Animation Repository
Discussion: Useful tools

Coffee Break

Conclusions

Lunch

Dinner

3 Abstracts

Both Sides Now: Tales from Three Decades of
Experiments on Algorithms

John Bentley

Some algorithmic discussions use the words “applied” and “experimental” as
interchangeable. This talk argues that they are extremes on two (almost) in-
dependent dimensions. One’s motivation for solving a problem can range from
“pure” (addressing the problem for its intrinsic merit) to “applied” (applying
the solution to an external problem). Similarly, the tools for solving a problem
range from “theoretical” (symbolic deduction) to “experimental” (computational
induction). [illustrate these general ideas by describing two ten-year research
programs: one dealt with with Travelling Salesman Problem (TSP), the other
dealt with sorting. The motivations ranged over a continuum from very pure to
very applied, with strong interaction between the two. The tools ranged from
very theoretical to very experimental, also with strong interaction. Summary:

Pure and applied, theory and experiment:
all are worthy, all are fun.

(Joint with Bob Sedgewick, Doug Mcllroy, David Johnson, Cathy McGeoch and
a cast of dozens; the opinions are my own.)

Distribute Points Uniformly: Applications to Digital
Halftoning

Tetsuo Asano

The problem of distributing points as uniformly as possible in a unit square has
been studied for many years. In this talk we are interested in the discrete version
of the problem, that is, given a lattice plane of size N x N and an integer n < N2,
choose n lattice points so that they are distributed uniformly. Among various
criteria for measuring the uniformity we take the one minimizing the ratio of the
maximum gap over the minimum gap, where the maximum gap is defined by
the radius of the largest empty circles touching three points and the minimum
gap is defined by the minimum pairwise distance. A naive algorithm for the
problem is the one called "incremental Voronoi insertion” in which points are
inserted one by one by choosing appropriate lattice points near Voronoi vertices

in the Voronoi diagram for the already selected points. For the application to
digital halftoning we are required to achieve uniformity everytime when we insert
points. We show this problem is closely related to the notions of discrepancy
and dispersion studied in computational geometry. We present efficient heuristic
algorithms together with some experimental results.

The Importance of Instance Classes in Experimental
Algorithm Evaluation

Matthias Stallmann

Traditional experimental evaluation of algorithm performance relies heavily on
random problem instances or, in some problem domains, on specific benchmarks.
Random instances, though useful in analysis of average-case behavior, are not
necessarily typical of practical instances, nor are they likely to present the range of
challenges the algorithms need to overcome. On the other hand, benchmarks can
be useful in pinpointing specific issues with which algorithms must contend, but
they encourage designers to fine-tune algorithms for target instances sometimes
to the detriment of better general techniques.

We propose the concept of an instance class, a set of instances on which, with
respect to a given performance measure (execution time, solution quality, number
of occurrences of some event, etc), "reasonable algorithms” should exhibit low
variance. An instance class, when carefully defined for a problem domain, of-
fers a way to obtain statistically significant results about algorithm performance.
We demonstrate the use of naturally-defined and enlightening instance classes
for problems as disparate as sorting, bigraph crossing minimization, and satis-
fiability. These classes have led to thorough evaluation of existing algorithms
with sometimes surprising results, and to the development of significantly better
algorithms.

(Joint work with Franc Brglez, Debu Ghosh, Robert Hochberg, and Xiao Yu Li.)

Trading off colors and rounds in distributed vertex
coloring algorithms

Irene Finocchi

We report on the results of an extensive experimental evaluation of very simple,
distributed, randomized algorithms for vertex coloring. We consider variants of

algorithms known from the literature, boosting them with a distributed indepen-
dent set computation, and we show that some of them are extremely fast and
very effective, thus being amenable to be used in practice.

(Joint work with Alessandro Panconesi and Riccardo Silvestri.)

A Practical Minimum Spanning Tree Algorithm Using
the Cycle Property

Peter Sanders

We present a simple new algorithm for computing minimum spanning trees that
is more than two times faster than the best previously known algorithms (for
dense, “difficult” inputs). It is of conceptual interest that the algorithm uses the
property that the heaviest edge in a cycle can be discarded. Previously this has
only been exploited in asymptotically optimal algorithms that are considered to
be impractical. An additional advantage is that the algorithm can greatly profit
from pipelined memory access. Hence, an implementation on a vector machine is
up to 13 times faster than previous algorithms. We outline additional refinements
for MSTs of implicitly defined graphs and the use of the central data structure
for querying the heaviest edge between two nodes in the MST. The latter result
is also interesting for sparse graphs.

(Joint work with Irit Katriel and Jesper Traff.)

Complexity of Black-Box Optimization
Stefan Droste

In many engineering applications the objective function to be optimized can only
be accessed by experiments or simulations. Furthermore, there is often no time
or expertise to analyse the function and make a mathematical model. Hence, the
objective function is in a black-box, i. e. can only be evaluated, but its parameters
are not known. In this case black-box algorithms, general heuristics that do not
use any parameters of the objective function, must be used. As a black-box
contains less information than the input of a classical algorithm, the number of
evaluations of the objective function, until an optimum is found, is a sensible
quality measure for black-box algorithms.

Defining the black-box complexity of a function set according to this measure as
the minimal number of evaluations every black-box algorithm must do in order
to find an optimum of any function of the set leads to a new complexity measure.

10

It is uncomparable to classical algorithmic run-time complexity, as problems of
high algorithmic complexity can be represented by function sets having low black-
box complexity and vice versa. For the class of unimodal functions over {0, 1}"
(every non-optimal point has a Hamming neighbour with better function value)
the black-box complexity can be shown to be exponential in n. Hence, no black-
box algorithm can optimize every unimodal function with a polynomial number
of queries.

(Joint work with Thomas Jansen, Karsten Tinnefeld, and Ingo Wegener.)

Simple and Efficient Bilayer Cross Counting
Michael Jiinger

We consider the problem of counting the interior edge crossings when a bipartite
graph G = (V, F') with node set V' and edge set F is drawn such that the nodes of
the two shores of the bipartition are drawn as distinct points on two parallel lines
and the edges as straight line segments. The efficient solution of this problem
is important in layered graph drawing. Our main observation is that it can
be reduced to counting the inversions of a certain sequence. This leads to an
O(|E|+]|C) algorithm, where C' denotes the set of pairwise interior edge crossings,
as well as to a simple O(|F|1og|Viman|) algorithm, where V. is the smaller
cardinality node set in the bipartition of the node set V' of the graph. We present
the algorithms and the results of computational experiments with these and other
algorithms on a large collection of instances.

(Joint work with Wilhelm Barth and Petra Mutzel.)

Parameterized Complexity: the Main Ideas and
Connections to Practical Computing

Mike Fellows

The talk and the paper have two purposes:
1. To give an exposition of the main ideas of parameterized complexity, and

2. To discuss the connections of parameterized complexity and FPT techniques
to the systematic design of heuristics and approximation algorithms.

11

Efficient implementations via combining tractable
parameterizations

Ulrike Stege

We introduce the problem Profit Cover. For a given graph G' = (V| F) and an
integer p > 0, the goal is to determine PC' C V such that the profit, |F'| — |PC|,
is at least p, where E’ are the by PC' covered edges. We show that p-Profit
Cover is a parameterization of Vertex Cover. We present a fixed-parameter-
tractable (fpt) algorithm for p-Profit Cover that runs in O(p|V] + 1.1509647).
We combine our algorithm for p-Profit Cover with an fpt-algorithm for k-Vertex
Cover. We show that this results in a more efficient implementation to solve
Minimum Vertex Cover than each of the algorithms independently. We also
demonstrate the generality of our approach on the example of Planar Dominating
Set.

(Joint work with Iris van Rooij, Alex Hertel, and Philipp Hertel.)

A Practical Shortest Path Algorithm
with Linear Expected Time

Andrew V. Goldberg

The shortest path problem with nonnegative arc lengths is one of the fundamental
optimization problems that is very important in practice. Algorithms for this
problem have been studied since 1950’s.

We present an algorithm for the problem based on the multi-level bucket data
structure. Our algorithm has a linear expected time for a uniform arc length
distribution. The worst-case running time of the algorithm is good, although not
the best.

We also describe an efficient implementation of the algorithm and an experimen-
tal study evaluating performance of our implementation. For 32-bit input arc
lengths, our implementation always takes time that is below 2.5 times the time
to perform breadth-first search on the input graph. On non-pathological inputs,
the time for our implementation is less than a factor of two away from the time
for breadth-first search. This suggests that there is limited room for practical
efficiency improvement.

12

Fast Prefix Matching of Bounded Strings
Adam L. Buchsbaum

Longest Prefix Matching (LPM) is the problem of finding which string from a
given set is the longest prefix of another, given string. LPM is a core problem in
many applications, including IP routing, network data clustering, and telephone
network management. These applications typically require very fast matching of
bounded strings, i.e., strings that are short and based on small alphabets. We
note a simple correspondence between bounded strings and natural numbers that
maps prefixes to nested intervals so that computing the longest prefix matching
a string is equivalent to finding the shortest interval containing its corresponding
integer value. We then present retries, a fast and compact data structure for
LPM on general alphabets. Performance results show that retries outperform
previously published data structures for IP look-up. By extending LPM to gen-
eral alphabets, retries admit new applications that could not exploit prior LPM
solutions designed for IP look-ups.

(Joint work with Glenn S. Fowler, Balachander Krishnamurthy, Kiem-Phong Vo,
and Jia Wang.)

Reformulation and algorithm performance

Karen Aardal

We discuss a reformulation of an integer equality contstrained knapsack problem
in terms of a lattice describing the integer null space. We give a sufficient con-
dition under which this reformulation creates good directions for a tree search.
Using the reformulation makes it possible to solve the problem several orders of
magnitude faster than by brach-and-bound. This is illustrated by a computa-
tional study.

Phylogenetic Reconstruction

Tandy Warnow

The problem of reconstructing phylogenies (also known as evolutionary trees) is
major in biology. There are many methods, and we examine their performance
via simulation, with topological accuracy the most important criterion. Within
the class of polynomial time methods we specifically compare three methods:
Neighbor joining (NJ), greedy maximum parsimony (GMP), and a new method

13

we developed, called “DCMy; + MP”. This is the disk-covering method (DCM)
applied to NJ on subproblems, and with MP as the selection criterion. We show
how experimental performance studies led to the design of this method, although
theoretical results gave us its basic structure. Our simulation study shows how
each of these three methods is affected by parameters of the model tree: the
evolutionary diameter, the deviation from from a molecular clock, and the number
of taxa. All methods require longer sequences to achieve good performance, as
these parameters increase, but GMP is the worst, then NJ, then DCMy; + MP.
See http://www.cs.utexas.edu/users/tandy.

(Joint work with Bernard Moret of the Univ. of New Mexico.)

Algorithms for High-throughput Comparison of Peptide
Expression using Liquid Chromatography and Mass
Spectrometry

Knut Reinert

A stated goal of Proteomics is to provide a snapshot of the active proteins and
their expression levels, in specific tissues under specific conditions and to differen-
tiate this from other tissues. We describe algorithms for measuring and comparing
expression levels of proteins that have been digested into peptides and separated
and analyzed using liquid chromatography coupled with mass spectrometry in
a high-throughput environment. The key step lies in the quick construction of
LC-MS maps, i.e. in the reliable detection of all the peaks belonging to a peptide,
the prediction of mono-isotopic peak m/z, and the prediction of the charge of the
feature. This task is confounded by peaks that have low signal to noise, presence
of chemical noise, and interleaved peaks of co-eluting peptides.

Algorithms and Experiments in Theoretical Crystal
Chemistry

Olaf Delgado-Friedrichs

Many crystal structures can be conveniently interpreted as 1-skeleta of 3-dimen-
sional periodic tilings. Given a tiling, the corresponding network or 3-periodic
graph consisting of its vertices and edges is easy to extract. As it turns out, a
large class of crystal networks can be derived from a surprisingly simple class of
tilings. But is there any natural way to construct a unique tiling for each net-
work? The mathematical theory of Delaney symbols has led to the development

14

of data structures and algorithms which make it possible to investigate this and
related questions experimentally.

Experimenting with Grammar Based Compression for
Data Warehousing Applications

J. lan Munro

In a commercial data warehousing system, it was necessary to compress both
relations and indices. While it was quite acceptable to retain a reasonably large
(several megabyte) dictionary in main memory, decompression had to be both
fast and operate on page sized chunks.

A grammar based technique was explored. A simplistic view of this approach is
that of extending a Huffman code to extra characters by replacing instances of
the substring “ab” with the new symbol < ab >. A grammar would thus grow as
the data string shrank. Clearly the process can continue until we are left with a
single character for the entire string, or, more likely, until either the size of the
grammar together with the (Huffman compressed) string length is minimized or
the grammar has grown to a permitted bound. Finding the best grammar under
any of these criteria is NP-Hard, but heuristics are reasonably effective.

The approach of repeatedly adding the most frequently occurring pair was im-
plemented and runs reasonably quickly. A more intuitively attractive heuristic
is to choose the pair whose replacement will most reduce the expected length of
the compressed string. This expected value is the length of the string (in the
current, alphabet) times the entropy of the current alphabet. Of course, as one
adds new characters, the length of the (uncompressed) string length will decrease
while the entropy will increase. The technical problem is that with r characters
in the current alphabet, we choose the next character to add from a set of up to
r? elements, each of whose effects change at each step. ©O(r) will definitely change
relative to others, and many others may change. O(r) time to add the r + 1st
character leads to a linear time algorithm overall, but re-examining all symbols
at each step is unacceptable. The former takes a few minutes on a 3 megabyte
sample, while the latter takes several hours and would seem to be much worse
on the target range for input of 100 gigabytes. On sample data, the compression
rates were respectively, 10% and 20% better than gzip for the grammar plus file
and substantially better if we ignore the memory resident dictionary. A method
performing partial updates to entropy changes was found to be almost as fast as
the replacing the most frequent pair and almost as effective as the true entropy
based approach. More importantly, page level decompression is easy under this
scheme though not possible under a Lempel-Ziv approach on large sections.
The work is still exploratory, but seems promising, both for effective/efficient
compression and for interesting work on the necessary data structures.

15

(Joint work with J-P Pretti, T. Snider and D. Toman and supported by Aruna
PLC and Communications and Information Technology Ontario.)

Solving Linear and Integer Programs

Robert E. Bixby

Computational results where shown for linear programming claiming that LP
algorithms had achieved over a 2000 fold speed improvement in the last 15 years.
Combined with machine improvments over that period, the result was a total
speed improvement of a factor of nearly 2 million!

The main focus of the talk was integer programming. Over the last several
decades, from the early 1970s to as recently as 1998, the underlying solution
technology in commercial mixed-integer programming codes remained essentially
unchanged. This in spite of important advances in the theory, many of these
advances having clear computational value. In the last several years, that situa-
tion has changed. The talked discussed some of the specific ways in which it had
changed. Singnificant computational results were presented.

Dealing with the Memory Hierarchy the Cache-Oblivious
Way

Rolf Fagerberg

Cache-obliviousness is a particular elegant way of designing algorithms using the
multi-level memory hierarchy of modern computers efficiently. It was introduced
in 1999 by Frigo, Leiserson, Prokop, and Ramachandran. We give examples of
cache-oblivious algorithms, including double for-loops, dynamic programming,
search trees, and sorting, and report on practical experiences with these. Our
main message is that for a number of basic algorithmic problems there exist
solutions which

e are simple,
e are theoretically I/0-efficient,
e adapts automatically to the specifics of the memory hierarchy,

e compete well with explicit (cache-aware) 1/O algorithms.

16

(Joint work with Gerth S. Brodal, Riko Jacob, and Kristoffer Vinther.)

A few thoughts on the analysis of graph algorithms
Robert Sedgewick

Worst-case upper bounds are often not useful for predicting performance or for
comparing graph-processing algorithms. By randomizing the order of input edges,
we set up a situation where we can talk about expected performance of algorithms
and particular graphs, which leads to a number of interesting research questions.

Parallel implemention of geometric shortest path
algorithms

Jorg-Riidiger Sack

Shortest path problems are among the fundamental problems studied in compu-
tational geometry and graph algorithms. They arise in application areas such as
Geographic Information Systems and Robotics. In such applications, frequently,
weighted metrics capturing the varying nature of a terrain (e.g., water, rock,
forest) are more meaningful than the FEuclidean metric. Considering weighted
metric increases significantly the time algorithms execute and it increases the
design complexity of algorithms solving such problems. Our approach has been
to first design novel more efficient sequential algorithms and then to parallelize
one of our practical algorithms.

Here we present the results of this parallelization effort. Our computational
model is the distributed MIMD. Factors influencing the run-time include: algo-
rithmic issues, data (size, partition, clustering, ...), machine related factors (topol-
ogy, processors, interconnection strategies), and programming factors (program-
ming styles, geometric primitives, type and implementation of communication
libraries). Novel data partitioning and processor allocation schemes are intro-
duced which maintain spatial proximity. Our experiments include tests varying
the data partitioning strategy, data sizes, tile sizes, data distribution (such as
clustering), and communication speed. To the best of our knowledge, this is the
first parallel implementation of shortest path problems in these metric. Our ex-
periments show that we achieve a good speedup on standard architectures with
different communication/computation charateristics, incl. PCs interconnected by
a cross-bar switch using fast ethernet and a state-of-the-art beowulf cluster with
gigabit interconnect.

17

(Joint work with Mark Lanthier and Doron Nussbaum; testing by T. Wen and
T. Guo.)

Using Multi-Level Graphs for Timetable Information in
Railway Systems

Christos Zaroliagis

In many fields of application, shortest path finding problems in very large graphs
arise. Scenarios where large numbers of on-line queries for shortest paths have
to be processed in real-time appear for example in traffic information systems.
In such systems, the techniques considered to speed up the shortest path compu-
tation are usually based on precomputed information. One approach proposed
often in this context is a space reduction, where precomputed shortest paths are
replaced by single edges with weight equal to the length of the corresponding
shortest path. In this paper, we give a first systematic experimental study of
such a space reduction approach. We introduce the concept of multi-level graph
decomposition. For one specific application scenario from the field of timetable
information in public transport, we perform a detailed analysis and experimental
evaluation of shortest path computations based on multi-level graph decomposi-
tion. Finally, we discuss a different graph modeling of the timetabling problem
and present preliminary experimental results.

(Joint work with Frank Schulz and Dorothea Wagner.)

Constructing Inverter Trees in VLSI Design

Matthias Miiller-Hannemann

The construction of inverter trees becomes more and more important for timing
optimization and reduced power consumption in physical design of modern chips.
Inverter trees are signal trees where a signal has to be distributed from a source
(an output pin of some circuit) to a number of sinks (input pins of other circuits).
Feasible inverter trees have to respect several constraints (load constraints, parity
constraints, and timing constraints). Moreover, these trees have to be embedded
in a rectilinear fashion on the chip image avoiding blockages (preplaced macros
and other circuits). Optimization goals are to maximize the slack and to minimize
power consumption.

In this talk we present a computational study with instances from ASICS of
IBM, present a slack-bound-based greedy-like clustering heuristic to build up the

18

tree topology, and discuss several embedding and legalization strategies. Our
computational results demonstrate that our code usually builds up inverter trees
which are relatively close to the bounds and which compare favorably with a
standard code currently used by IBM.

Running Experiments on Parallel Machines

Cynthia Phillips

We discuss a number of topics related to (parallel) tools for experimental analy-
sis of algorithms and analyzing parallel codes and parallel system software. We
begin with an example showing that even in pure application analysis, the ob-
vious question may be the wrong question. We then summarize some features
of the PICO (Parallel Integer and Combinatorial Optimizer) massively-parallel
mixed-integer programming (MIP) code. In particular, we summarize using the
AMPL-PICO interface for rapid development of 1) linear-programming-based
approximation-algorithm codes (e.g. for a “one day” test) and 2) MIP codes that
exploit combinatorial structure. We describe two open problems in the analysis
of PICO: handling multiple levels and types of nondeterminism and computing
certificates.

We describe the difficulties inherent in using actual hardware to compare algo-
rithms for scheduling and node allocation. We explore the interaction between
simulation and hardware-based experimentation.

Finally, we invite discussion on components of a full (parallel) experimental algo-
rithmics workbench. We plan to build such a system for analysis of multiple types
of optimization algorithms: combinatorial, stochastic global (e.g. evolutionary
algorithms) and simulaton-based optimization algorithms.

On some Experiments with the LINPACK Benchmark on
the SunFire 15K

Maciej Liskiewicz

We report on some experiments with the standard LINPACK Benchmark on
the SunFire 15K shared-memory parallel computer that we performed in May
and June this year at the University of Liibeck. For the configuration: 72
UltraSPARC III CPUs and 72 GBytes of memory, we achieved the best ma-
chine performance with the Sun Performance Library Ry, = 59.17 Gflop/s for
Ninaz = 91000. To explain the poor efficiency Raz/Rpear = 0.46 (Sun announced

19

the efficiency 0.80) we performed a sequence of tests to measure the scalability of
the computer and we obtained astonishing results concerning the correctness of
the solutions given by the program for some small numbers of threads. In these
cases the norm. resid exceeded the value 10'2, thereby showing that the solutions
are wrong.

AAR — The Algorithm Animation Repository
Rudolf Fleischer

We introduce the Algorithm Animation Repository (AAR), a refereed collection
of algorithm animations, animation tools, and other animation related material
that is currently developed at the HKUST. The goal of the AAR is to provide a
platform where good algorithm animations can be published and thus be made
accessible to a wider audience, in particular for teaching purposes. The AAR
was founded at last year's Dagstuhl Seminar on Software Visualization, with the
above mentioned co-authors serving as the founding Editorial Board, under the
chairmanship of R. Fleischer.

(Joint work with Pierluigi Crescenzi, Nils Faltin, Chris Hundhausen , Stefan
Néher, Guido Rossling, John Stasko, and Erkki Sutinen.)

20

Open Problems Session

Collected by E. D. Demaine

The following is a list of the problems presented on September 10, 2002 at the
open-problem session of the 2nd Dagstuhl Seminar on Experimental Algorithmics
held in Wadern, Germany.

Estimating Running Time: Easy Cases?
Robert Sedgewick

Princeton University
rs@cs.princeton.edu

How should we design an experiment to estimate the running time of a
program as a function of n? In general, of course, this problem is unsolvable
(cf. the halting problem). The idea here is to focus on a very restricted class
of programs, and to focus on just estimating the coefficient of the (known)
lead term, possibly with knowledge of the entire asymptotic expansion of
the running time. Omne of the main questions here is whether it makes
sense to run the program on several instances of the same (large) size, or
to run the program on several instances all of different sizes, or with what
distribution of sizes, etc.

Determining exactly which restricted class of programs makes sense is part
of the open problem. An example of something that should be easy is
insertion sort; there are many other natural candidates. By making some
progress on problems with known solutions computed analytically by hand,
we would hope to obtain techniques for estimating the solution for similar
unknown problems. In particular, when we make a slight modification to
an algorithm whose performance is well-understood, we might not be able
to redo the analysis easily, but we can easily run empirical studies.

A few issues that arose in discussion: The entire functional form of the
asymptotic running time might be necessary to get a good estimate even
for the lead term; at least it may help eliminate noise. A particularly tricky
aspect is when lower-order terms oscillate; in this case, we might bound the
term by e.g. proving a theorem, and use this bound to estimate the lead
term.

Intrinsically Hard Instances: How to Find?
Michael Fellows

University of Newcastle, Australia
mfellows@cs.newcastle.edu.au

How do we find intrinsically hard instances for NP-hard problems that defy
all algorithms? What is the value of finding such instances for evaluating

21

the performance of heuristics? In particular, the restricted domain of pa-
rameterized complexity may make this task easier, because of the tighter
constraints it places on instances.

Three natural suggestions that came up during discussion:

1. Take a random example, kernelize (reduce while preserving the answer,
a notion standard in parameterized complexity), and see how much of
the instance is left. (Is a large kernel always “hard”?)

2. Internet-based competition (“gambling”). The idea is to run a “hard-
instance stock market” which people (even kids) invest a small amount
of money to have their examples considered; this is a sort of random
parallel search driven by humans.

3. Reduction from hard 3SAT instances. A fair amount is known about
hard 3SAT instances, and the reduction from 3SAT to graph 3-coloring
doesn’t blow up the size much.

Can intrinsically hard instances help us compare multiple implementations,
as well as determine whether an implementation is “good enough”? One
example discussed was the problem of graph 3-coloring. In this context, is
the following conjecture true?

Hard puzzle conjecture: There exists an infinite sequence of 3-colorable
graphs such that every algorithm (of constant size) performs poorly on all
sufficiently large instances in the sequence.

Make LEDA Look Bad

Peter Sanders

Max-Planck-Institut fiir Informatik
sanders@mpi-sb.mpg.de

The ‘Make-LEDA-Look-Bad” Contest challenges you to find difficult worst-
case instances for two polynomial-time graph algorithms: general weighted
matching and max-flow. Even more difficult is to develop a worst-case
instance generator that creates an infinite family of difficult instances. The
idea is to collect a good set of instances for benchmarking implementations
of these algorithms.

See http://www.mpi-sb.mpg.de/ schaefer/MLLB/ for more details.
Algorithm Sets
Jon Bentley

Avaya Labs Research
jbentley@avaya.com

Let’s build algorithm sets analogous to chemistry sets, which allow kids
to play and experiment with algorithms instead of chemicals. The idea is

22

to have a classic set of experiments on algorithms, each of which has the
following components:

1.
2.
3.

6.

Problem statement
Application it came from (for the really juicy problems)
Environment for kids to work with

(a) Code for the algorithms

(b) Testbed for exercising the algorithms

(¢) Animation so that they could see it work
(d) Inputs

(e) Generators to make more inputs

Classic form of the experiment

Discussion about the design of the experiment: why it was set up this
way as opposed to various other ways, and how it was implemented.

Interaction between theory and experiments

Some candidates arose during the discussion:

1.
2.

Sorting (insertion sort, quicksort, etc.)

Binary search trees (random inserts, and then random inserts and
deletes, an actual set of experiments that was active for over 10 years)

Longest common subsequence for DNA sequences (easily motivated to
most age groups)

4. Bin packing

5. Traveling Salesman Problem
6.
7

. 2-coloring (for a younger audience)

Minimum spanning tree

“Little kids” might mean first-year graduate students, or undergraduates,
or indeed little kids.

Why Are Solution Spaces So Lumpy?
Michael Fellows

University of Newcastle, Australia
mfellows@cs.newcastle.edu.au

There are several examples of problems whose solution spaces tend to be
(but aren’t universally) “lumpy” in practice, in the sense that many desired
solutions are clustered together instead of being evenly distributed. Can
we prove anything giving insight into why solution spaces are lumpy?

23

For example, with k-leaf spanning tree (is there a spanning tree with at least
k leaves?), solutions seem to be clustered among the leaves of the height-k
search tree. This solution structure has been exploited by Frank Dehne in
some experiments where, by partitioning the search space into pieces and
searching each in parallel, he seems to obtain solutions much faster. (Here
the problem has already been kernel-reduced.)

Another example is Bill Cook’s code for the Traveling Salesman Problem
which picks 7 candidate tours out of a soup, takes their union, solves TSP
exactly on that union, and adds the result to the soup. The union tends to
be a graph with treewidth around 10, which makes TSP solvable exactly in
a reasonable amount of time. But theoretically the treewidth is unbounded;
perhaps the low treewidth is caused by lumpyness.

A few issues arose in discussion: Some insight might come from problems
engineered to have unique solutions, because then there are “no lumps” (in
an exploitable way—from another point of view, all solutions are lumped
together). Additional light may be shed from the extensive study of 3SAT
instances.

24

4 List of Participants - Dagstuhl Seminar 00371
(08.04.99; 17:37)

Date: 10.09.2000 - 15.09.2000
Title: Experimental Algorithms
webpage: http://www.dagstuhl.de/DATA/Participants/00371.html

25

