
Dependability of Component Based Systems

S. Anderson (Univ. of Edinburgh, GB),
R. Bloom�eld (Adelard, GB),
M. Heisel (TU Ilmenau, D),

B. Kr�amer (FernUniv. Hagen, D)

3.11.2002 - 8.11.2002



Abstracts

Modular Speci�cation and Analysis of Reactive Sys-

tems

Ramesh Bharadwaj

To date, the Software Cost Reduction (SCR) method has been used to spec-

ify system requirements. We propose a modular speci�cation approach to

extend the method to system design and software requirements. Our ap-

proach consists of three steps: First, the SCR method is used to specify the

required system behavior, i.e., the required relation between environmental

quantities that the system monitors (called monitored quantities) and the

environmental quantities that the system controls (called controlled quanti-

ties.) Next, the system designers specify the Input/Output devices required

to compute estimates of the monitored quantities and to set values of the

controlled quantities. Finally, the required software behavior is speci�ed as

three modules: a module REQ which speci�es how estimates of the moni-

tored quantities are to be used to compute estimates of the controlled quan-

tities, and modules D IN and D OUT which respectively specify how data

from the input devices are to be used to compute estimates of the monitored

quantities, and how the computed estimates of the controlled quantities are

used to compute data to be written to the output devices. We call this the

extended SCR (E-SCR) Method. To illustrate this approach, we use the

method to specify the system and software requirements of a simple light

controller.

A Tool for Generating Speci�cations from a Family

of Formal Requirements

Jan Bredereke

Telephony features are related to components, and telephony users expect

quite dependable systems. Feature interaction problems increasingly impair

their service. We propose a formal requirements speci�cation methodology

that avoids some of the feature interaction problems from the beginning,

1



and that converts some more into type errors. We maintain all the variants

and versions of such a system together as one family of formal speci�cations.

For this, we de�ne a formal feature combination mechanism. We present a

tool which checks for feature interaction problems, which extracts a desired

family member from the family document, and which generates documen-

tation on the structure of the family. We also report on a quite large case

study.

A Framework for the Justi�cation of Computer Sys-

tems Important to Safety. Composability of Safety

Cases: a Myth?

Pierre-Jacques Courtois

When a computer based system important to safety has to be used and

approved for a given application, "claims" are made on the adequacy of the

system.

These claims at the application level must be inferred from (expanded

into) claims on the architecture, design and operational level. The safety

case is the set of arguments and evidence components which support these

application claims.

Models are needed at the architecture, design and operations levels to

formulate these subclaims and their supporting evidence. The relations be-

tween these models extensions required by the proof obligations to preserve

the inferences made across the models are established. They are shown to

be not easily satis�ed, especially in case of COTS, meta-objects, reection

mechanisms, run-time objects, fault-tolerant and self test mechanisms, and

other architecture or design subsystems justi�ed by independent sub-safety

cases.

Injection of Systematically Selected Errors

Klaus Echtle

The automation of many saftety-critical systems requires fault-tolerant com-

puting systems. Since the required redundant ressources tend to cause sub-

stantial extra cost, the designer should try to adapt the fault tolerance tech-

nique to the system and application properties as much as possible in order

to reduce the expense. The design is mainly inuenced by requirements con-

cering fault coverage of the tests, realtime properties, input-output pro�le,

transparency, safety and availability.

These and some further design criteria may lead to a rather complicated

implementation of fault tolerance. Besides various veri�cation and valida-

2



tion methods, error injection can be applied to reveal potential weaknesses

in the countermeasurs against faults. It must be particularly guaranteed

that no (injected) error can slip through the net built by the fault tolerance

technique.

The most interesting issue of error injection is an appropriate selection

of errors to be injected. Hand-crafted error sets may be valuable, but they

highly depend on personal experience. Randomly generated error sets, on

the other hand, typically lead to a small subset of all the implemented

reactions to fault occurrence. Thus, a systematic and automated approach

should be taken. It will exhibit some similarities to test case generation.

However, there are also important di�erences. Instead of test data, errors

are taken as input, which may occur at any time at any location. Moreover,

the diÆculties in generating correct test outputs do not exist. One can

simply take the output of a test run without error injection (as far as the

system is deterministic).

Black box testing does not really work for error set generation, because

the speci�cation of fault tolerance just says that the system behaviour in

the presence of faults should be the same as in the absence of faults. White

box testing is feasible, but can be very time-consuming. For these reasons

we decide for a so-called grey box approach based on a model "between the

speci�cation and the implementation". A Petri net model with time and

data attributes of the faultfree system part serves for this purpose. The

faulty party is simply cut out of the model. A reachability analysis derives

all the possible behaviours the error injector should enforce, each de�ned

by the (wrong) data to be injected and the injection points in time. If the

number of test runs under error injection is smaller than the number of paths

in the reachability graph, then three selection criteria can be applied: blind

random selection (just for comparison), selection of so-called close-to-danger

paths, and selection according to structural coverage of the model (precisely

speaking: coverage of the place activities in the Petri net). Model-based

expriments turned out that, surprisingly, the structural coverage criterion

leads to the best results.

A formal description for functional dependencies in

a component based system for packet level network

applications

Olaf Ehlert

Current heterogeneous quality-of-service and security requirements are usu-

ally application driven and they induce a high demand for advanced and

exible classi�cation of packets in core network systems.

In our department we have developed a �ne grained component based

3



framework to construct networking applications like router, �rewalls or VPNs,

which can react highly exible on changing requirements, even during run-

time.

Within this framework naturally there exist a diversity of functional

dependencies between the components, e.g. di�erent available lookup algo-

rithms have varying needs for information and induce requirements in the

preceding extraction stage.

A pure syntactical description of the components and their interfaces is

insuÆcient to apply formal analysis on such a network application.

By introduction of a dynamic type system for methods in an interface,

based on dynamic attachments to the packet data, one get the possibility

to map functional dependencies into pre- and postconditions, that can be

checked and analyzed dynamically on runtime and statically before runtime.

Evolution of Computer-based Systems

Massimo Felici

Evolution is one of the major issues a�ecting system dependability as well as

engineering activities and environments. The most common understanding

considers evolution as a phenomenon that needs to be limited. By con-

trast this talk takes into account evolution as a necessary phenomenon for

computer-based systems. This talk reviews a taxonomy of evolution iden-

tifying a conceptual space in which evolution manifests in di�erent forms.

The taxonomy provides a conceptual framework to analyse evolutionary

phenomena of computer-based systems as well as models of evolution and

their limits. The taxonomy of evolution points out dependability aspects

of computer-based systems. The discussion of evolutionary phenomena em-

phasises how they di�erently relate to the dependability of computer-based

systems.

The talk then shows an empirical investigation of a case study focusing

on requirements evolution.

In conclusion, this talk takes account of evolutionary phenomena of

computer-based systems and relates them to dependability. This provides a

conceptual framework to analyse evolution and its inuence on dependabil-

ity.

Accountability of (Designer/Deployer/Executer of)

Components

Andreas P�tzmann and Elke Franz

When speaking about components, do we mean (1) self-contained subsys-

tems, (2) software executed on hardware, or (3) software only? Components

4



depend on their environment in general, and lower execution layers in par-

ticular. These execution layers must not be confused with design layers

common in software engineering.

To hold components accountable, besides a precise speci�cation of their

expected behaviour, we need a precise log of their manifested behaviour: (a)

input, (b) environmental conditions, and (c) output. For software compo-

nents, this means (a) input, including real time properties, (b) execution by

underlying machine, and (c) output, including real time properties.

Accountability gets even more diÆcult if component-based design means

no source code available for components and/or no legal entity taking re-

sponsibility for the components and their integration.

Concerning logging execution, input and output: Who is going to log?

The executing machine? What if it might be the cheater? Expense of

logging? Log only what cannot be calculated repeatedly.

To resolve disputes on logs, outputs should be digitally signed and the

digital signature on inputs checked before processing them. But who is going

to sign? The software component? This is not possible. The executing

machine? This is not suÆcient. Consequently, a combined signature is

necessary.

Modeling and Testing with the Abstract State Ma-

chine Language

Wolfgang Grieskamp

The Foundations of Software Engineering Group at Microsoft Research de-

veloped the Abstract State Machine Language (AsmL). AsmL serves as an

all-round modeling language for use in the Microsoft Environment. It in-

corporates concepts of Gurevich's Abstract State Machines, of speci�cation

languages like VDM or Z, of functional languages, and of modern object ori-

ented languages. The language supports meta programming and is embed-

ded into the .NET environment with decent tool support. One application of

an AsmL model is to use it for test case derivation and runtime veri�cation,

for which techniques have been developed recently. The runtime veri�cation

is able to deal with non-determinism in the model and with matching object

references between the implementation and the model. The test derivation

tool is based on a parameter generator and a sequence generator and comes

with a convenient graphical user interface. AsmL and its tools are being

used in several pilots at Microsoft product groups.

5



Concurrency Patterns - a Petri Net Perspective

{ work in progress {

Monika Heiner

Gamma et al. introduced in the middle of the 90's design patterns. This

idea represents a landmark in software engineering, because from that mo-

ment on seasoned programmers are able to communicate own programming

experience and design skills to freshmen. In the recent past, �rst attempts

for design pattern catalogues dedicated to special application areas have

been published.

We follow that line and propose a collection of concurrency patterns

which are the outcome of many case studies done in model-based system

development. We present the control model for the production cell, which

is composed of only a few patterns: bounded producer/consumer pattern,

three communication patterns for producer/consumer pipeline (independent

input/output, dependent input/output, mutually exclusive input/output),

mutex pattern, and the basic motion step pattern. These patterns come

along with pattern properties, which establish model consistency criteria.

Afterwards, several further concurrency patterns are shortly sketched: n

mutex resource pattern (pattern property to guarantee deadlock freedom:

acyclic access structure), n layered client/server pattern (pattern property

for deadlock freedom: acyclic communication structure), and fault-tolerant

basic structures (n version programming, recovery block scheme). Finally,

two challenges for future work are pointed out:

1. Is it possible to uplift Dijkstra's structured (sequential) programming

approach to avoid uncontrolled use of goto's to a "structured concur-

rent programming" one to avoid uncontrolled use of synchronisation /

communication?

2. Is it possible to develop software by step-wise pattern re�nement at

di�erent abstraction levels, like problem frames, architecture styles,

architecture patterns, e.g. concurrency patterns, design patterns, and

�nally idioms?

Tools for building and evaluating high assurance

software components

Constance L. Heitmeyer

This talk describes the role that formal methods and tools can play in con-

structing a high quality software component, i.e., a software component for

which there exists compelling evidence that the component satis�es its re-

quirements. A number of real-world examples are presented in which formal

6



methods and their support tools were used to detect errors or to verify prop-

erties in software systems and software components. The examples include

the U.S. Navy's A-7 Operational Flight Program, Rockwell's Flight Guid-

ance System, and two current U.S. Navy systems, a Weapons Control Panel

and a software-based cryptographic device. A brief introduction is also given

to two software components that are currently under development { NASA's

Fault Protection Engine and a second software-based cryptographic device

{ and how software tools are being used to evaluate both the components's

speci�cation and its implementation. The tools used to support the SCR

(Software Cost Reduction) tabular notation are used in all of the examples.

Rely/guarantee-conditions and their Relevance to

error-tolerance

Cli� B. Jones

Rely/guarantee-conditions were developed (some 20 years ago) to address

the need for a compositional development method for concurrent programs.

The original work addressed shared-variable programs but subsequent au-

thors -notably Colin Stirling- have shown that the same broad ideas of docu-

menting interference in a speci�cation applies to communication-based (pro-

cess algebraic) concurrency. The underlying link is that concurrency is all

about interference. Following this line, the question can be asked whether

rely-conditions can be used to handle the "interference" that comes from

faults in other systems (which manifest themselves as errors in the system

being speci�ed). In common with John Rushby's contribution, I recognise

the diÆculties caused by failures cutting across levels of abstraction (but

I have something to say here) and the need for ordered (increasingly pes-

simistic) assumptions on the environment.

Synthesizing Re�nements from Predicate Transla-

tions

Florian Kamm�uller with Ste�en Helke and Je� Sanders

We suggest a method for constructing re�nements of a formal speci�cation

that is based on predicate translations input by a system engineer. The

main idea of the method is to infer the retrieve relation, i.e. the relation

that connects abstract and concrete data, from those given translations of

predicates. Classical re�nement methods consider this relation as a neces-

sary input. Building on results from Abstract Interpretation we present a

technique that enables to derive the retrieve relation from translations of

7



predicates. Once the retrieve relation is known a concrete implementation

can be calculated by standard methods.

Parameterised Contracts for Software Components

{ Contractual Use, Adaptation and Reliability Pre-

diction of Software Components

Ralf H. Reussner

In this talk we introduced the concept of "parameterised contracts" for soft-

ware components and demonstrated their application on automated compo-

nent adaptation and reliability prediction.

After a review of current challenges in the �eld of software components,

B. Meyer's design-by-contract principle was formulated for software com-

ponents. The contractual use of software components (a term sometimes

used loosely { or even inconsistently { in current literature) at design-time

refers to the requires-interface as a kind of pre-condition (because it states

the expectations of the component against its environment necessary for

the component to operate). Consequently, the provides-interface acts as a

post-condition of the component, since here it is stated what the user can

expect to component to ful�l, if the component is deployed according to its

pre-condition.

We discuss that this translation acts as a starting point for a generali-

sation of the design-by-contract principle. In practice, it proves to be very

hard for the software component developer to state a single pre- and post-

condition of the component without making to many assumptions on the

component environment. A parameterised contracts is a reversible function,

mapping a pre-condition to a related post-condition.

For example, if a user only uses a subset of a component's functional-

ity the parameterised contract will compute the weakest pre-condition (i.e.,

require-interface) allowing the component to ful�l the requested services. In

a di�erent case, a component may �nd that its environment does not de-

liver all functionality requested in the component's require-interface. Conse-

quently, the parameterised contract computes the strongest post-condition

(i.e., provides-interface) possible in this speci�c environment. These scenar-

ios demonstrate parameterised contracts as a mean to increase the reusabil-

ity of software components.

Besides these functional adaptations also the concrete realisation of pa-

rameterised contracts for protocol-modelling component interfaces were demon-

strated.

The last part of the talk dealt with parameterised contracts and compo-

nent interfaces specifying extra-functional properties of components. Here,

we concentrated on the component's reliability.

8



Our evaluation con�rms that software component reliability prediction

necessitates modelling the behaviour of binary components. Signature-level

reliability (associating reliability measures to interface names) is not suÆ-

cient. Fortunately, our measurements also show that an abstract protocol

view of that behaviour is suÆcient to achieve reliability model accuracy.

Furthermore, it our measurements clearly demonstrate that the reliability

of a component strongly depends on its environment. Therefore, we ad-

vocate the use of parameterised contracts for context-dependent reliability

computation, rather than using a �xed value.

On Problem Analysis, Test Automation and Relia-

bility Testing

Thomas Rottke

Especially in the area of safety critical systems testing consumes a high

fraction of project budgets.

A frame oriented approach to problem analysis and test automation

yields to precise requirements and early acceptance criteria by means of

system environment models and system models as well.

Therefore conformance testing could be done in an early stage of the

system development.

Although conformance testing and reliability testing have the same basic

concepts, reliability testing needs additional stress test pro�les and stress

test interfaces.

Modular Certi�cation

John Rushby

Safety is a system property, so its assurance requires examination of the

whole system. Thus, airplanes, for example, are certi�ed as a whole: there

is no established basis for separately certifying some components indepen-

dently of their speci�c application in a given airplane.

But if a notion of modular certi�cation could be developed, we could

envisage development of components that could be largely "precerti�ed"

and used in several di�erent contexts within a single system, or across many

di�erent systems.

I examine the issues in modular certi�cation of software components and

propose an approach based on assume-guarantee reasoning. I extend the

assume-guarantee method from veri�cation to certi�cation by considering

behavior in the presence of failures. This exposes the need for partitioning,

and strati�cation of assumptions and guarantees into normal and abnormal

9



cases. I identify three classes of property that must be veri�ed within this

framework: safe function, true guarantees, and controlled failure.

Pre-Developed Software to be re-used in Safety-

Relevant Component-based Systems

Francesca Saglietti

The problem of assessing the suitability of o�-the-shelf (OTS-) software

components for new development projects represents a serous challenge for

the software engineering community. The strategy suggested consists of 5

decision phases:

1. identi�cation of safety demands at system level

2. analysis of OTS-role within new system (safety relevance & sensitivity)

3. qualitative (subjective) assessment of development process and prod-

uct quality

4. quantitative (objective) assessment of past (testing or operating) ex-

perience

5. validation of component interfaces within the integrated system

With respect to point 4. an approach to evaluate past operational ex-

perience in terms of reliability to be expected with respect to a new usage

pro�le was presented.

With respect to point 5. a classi�cation of component interface incon-

sistencies was proposed, including a.o. also inconsistency classes related

to syntactical problems and semantical problems in the logical domain, se-

mantical problems on the physical domain, temporal constraints, deviations

between representable data and physical context for the purpose of support-

ing testing and wrapping techniques.

Con�dentiality-Preserving Re�nement {

A Step to Integrate Con�dentiality in Component-

Based Design

Thomas Santen with Maritta Heisel, Andreas P�tzmann, Elke

Franz and Florian Kamm�uller

Integrating security concerns, in particular con�dentiality, in component-

based design means to �nd the right places where to address security issues

in the development process of components and component-based systems:

10



one must �nd ways to distribute security requirements to component speci�-

cations, to ensure that implemented components satisfy these speci�cations

while relying on security mechanisms that a component framework may pro-

vide as part of container and component server implementations. One must

take into account the e�ect that component deployment has on security is-

sues. To consider the run-time environment of a component-based system,

e.g. the server the system runs on, is also important: it must ensure that

security is indeed enforced and security aws can be logged and evaluated

after the fact.

A fundamental problem in this setting is that security properties, most

notably con�dentiality properties, in general are not compositional. This is

true when decomposing and composing security properties at one level of ab-

straction, and it is also true when considering re�nement, i.e. the systematic

transition from one level of abstraction to a more detailed one.

Con�dentiality-preserving re�nement describes a relation between a spec-

i�cation and an implementation that ensures that all con�dentiality prop-

erties required in the speci�cation are preserved by the implementation in a

probabilistic setting. It is interesting to investigate conditions under which

that notion of re�nement is compositional, i.e. the condition under which

re�ning a subsystem of a larger system yields a con�dentiality-preserving

re�nement of the larger system. It turns out that the condition for compo-

sitionality can be stated in a way that builds on the analysis of subsystems

thus aiding system designers in analyzing the con�dentiality properties of a

system whose components are implemented independently of each other.

Contracts versus compositionality:

Reasoning about extra-functional system proper-

ties

Heinz Schmidt

The software architect is concerned with both functional and extra-functional

design. In component-based software engineering, an important task in func-

tional design is the adaptation of a component interface for use by other

components. In extra-functional analysis the focus is rather on the predic-

tion and reasoning about performance, reliability, usability and other \ili-

ties". These are often system properties that depend on other components

in the environment and the architecture or framework that the component

is deployed in.

We present a concurrent trace-based model and method for component

composition and automatic adaptation called called dependent �nite state

machines (DFSMs). DFSMs are based on �nite state machines and Petri

nets, permit model checking, execution-based veri�cation and extend the

11



notion of design-by-contract from precondition, postcondition and invari-

ant assertions on objects to dynamic models for components that cater for

parameters actualised at deployment time. While DFSMs capture only lim-

ited aspects of component behaviour, they are capable of carrying various

extra-functional properties as add-on attributes.

This seminar presents work in progress. We focus on key ideas for a

partially compositional approach and on problems with compositionality

for extra-functional models.

Process-Oriented, Consistent Integration of Soft-

ware Components

Sebastian Th�one

The integration of software components becomes a more and more important

issue in software engineering. Process-oriented approaches should provide

automated information processes. To support dependability properties, the

software components have to be integrated in a consistent way, i.e., their

export interfaces have to be respected by the importing components. Fur-

thermore, the type system of component interfaces has to support a tunable

degree of freedom. This allows the insertion of components with interfaces

of restricted but suÆcient degree of compatibility. In this talk, we introduce

a concept for consistent and exible integration of components. We present a

process modeling language that combines UML and XML in order to support

consistent, exible, and executable processes. Finally, we outline a formal-

ization of the proposed component type system including typed transitions

for bridging incompatible interfaces.

BALES

Willem-Jan van den Heuvel

In this presentation a methodology was outlined, called binding Business Ap-

plications to Legacy systems (BALES), that allows to blend modern business

objects and processes with objecti�ed legacy data and functionality (hence

legacy objects) in order to construct exible, con�gurable applications, that

are able torespond to business changes in a consistent and reliable way.

Legacy objects serve as conceptual repositories of extracted (wrapped)

legacy data and functionality. These objects are, just like business ob-

jects,described by means of their interfaces rather than theirimplementation.

Business objects in the BALES methodology are con�gured so that part of

their implementation is supplied by legacyobjects. This means that their

interfaces are parameterizable (or self-describing) to allow these objects to

12



evolve by accommodating upgrades or adjustments in their structure and

behavior.

13


