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Preface

This volume is the collection of papers presented at the 27th International Conference on
Principles and Practice of Constraint Programming (CP 2021), held online during October
25–29, 2021. The conference was meant to be hosted by LIRMM in Montpellier, France.
Yet, the evolving pandemic prompted us to revise those plan and opt for an online format
to ensure that the conference would remain accessible to as many as possible despite the
ongoing health crisis.

There were 129 submissions to the conference. In the end, the Program Committee
selected 57 papers spread across several thematic tracks meant to encourage as diverse a
participation as possible. I wish to extend my thanks to the authors of all submissions.
Your manuscripts offered a rich collection of exciting ideas, directions and ongoing work that
embody a living community. Laying down one’s idea for peer review is both delicate and
difficult, yet critical to the existence of any scientific community. Irrespective of the final
outcome for your submission, I wish to thank you all for participating in the process.

The program of the conference featured 3 invited talks, 4 tutorials and 5 thematic tracks
featuring both short and long papers. The themes of the tracks are:

Technical Track Chair: Laurent Michel
Application Track Chairs: Louis-Martin Rousseau, Michele Lombardi
Operation Research Track Chair: Willem-Jan van Hoeve
Machine Learning Track Chair: Michela Milano
Verification Track Chair: Nadjib Lazaar

The respective chairs deserve all our support and thanks for managing tracks and providing
the necessary oversight throughout the review process.

The Senior Program Committee members were an integral part of the effort as they
contributed to the reviewing efforts, but also guided the conversations during the discussion
period and produced meta-reviews as summaries of the discussions. They played a key role
in providing the necessary input to the selection. The process used 4 weeks to author reviews,
1 week to collect author feedback and 2 weeks to discuss all papers and reach decisions. The
process was capped with a synchronous online meeting to finalize the selection. I wish to
extend my gratitude to all SPC members with a special nod for attending the live meetings.

The reviewer assignment was produced with an IP model developed by Thomas Schiex
and Simon de Givry in 2019, extended by Helmut Simonis in 2020 and further tweaked this
year. Despite the tight schedule and the offered extensions, the pool of reviewers delivered
hundreds of detailed evaluations (at least 3, sometimes 4) for all the submissions and engaged
in lively discussions afterwards. The dedication of such a large group of individuals must be
acknowledged as this function is essential to the community.

The conference itself cannot thrive without the active engagement of a whole slate of
people who took key responsibilities. I wish to thank Andre Cire (University of Toronto)
serving as Workshop Chair, Anastasia Paparizou (CNRS, CRIL, Lens, France) as our Tutorial
Chair, Jeremias Berg (University of Helsinki, Finland) who managed the Doctoral Program
as well as Zeynep Kiziltan (University of Bologna, Italy) who orchestrated all the video
preparation and distribution. While the conference is online, rather than in Montpellier,
Carmen Gervet and Philippe Vismara (Montpellier, LIRMM, France) played a critical role
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for the overall organization and all the logistics that accompany a conference. Their team
included Véronique Rousseau (Communication), Gilles Trombettoni and Clément Carbonnel
(Web). Their role and time commitment to enable an online conference is greatly appreciated!

Let me close by extending my thanks to the Executive Committee of the Association for
Constraint Programming for their support and their trust in organizing the conference.

July 2021, Tolland CT, USA Laurent D. Michel



Organization

Senior Program Committee

Maria Garcia de La Banda Monash University, Australia
Armin Biere JKU, Linz, Austria
Ian Gent Saint Andrews University, Linz, United Kingdom
Carmen Gervet University of Montpellier, Espace-Dev, France
Christophe Lecoutre University of Artois, CRIL, France
Michela Milano University of Bologna, Italy
Andrea Rendl Satalia, United Kingdom
Louis-Martin Rousseau Ecole Polytechnique de Montréal, Canada
Pierre Schauss University of UCLouvain, Belgium
Helmut Simonis Insight Center for Data Analytics, Ireland
Peter J. Stuckey University of Melbourne, Australia
Kostas Stergiou University of New Macedonia, Greece
Guido Tack Monash University, Australia
Gilles Trombettoni University of Montpellier, LIRMM, France
Willem-jan Van Hoeve Carnegie Mellon University, USA
Roland Yap National University of Singapore, Singapore
Standa Zivny University of Oxford, United Kingdom

Program Committee

Özgür Akgün University of St Andrews, United Kingdom
Carlos Ansótegui University of Lleida , Spain
Sebastien Bardin CEA, France
Roman Barták Charles University, Czech Republic
Christopher Beck University of Toronto, Canada
Nicolas Beldiceanu IMT Atlantique, France
Russell Bent Los Alamos National Laboratory, USA
Jeremias Berg Helsinki Institute for Information Technology, Finland
David Bergman University of Connecticut, USA
Miquel Bofill University of Girona, Spain
Andrea Borghesi University of Bologna, Italy
Ken Brown University College Cork, Ireland
Clément Carbonnel CNRS, France
Hadrien Cambazard University of Grenoble, France
Andre Augusto Cire University of Toronto Scarborough, Canada
Martin Cooper University of Toulouse, France
Allegra De Filippo University of Bologna, Italy
Sophie Demassey Mines ParisTech, France
Catherine Dubois ENSII, France
Ferdinando Fioretto Syracuse University, Syracuse
Pierre Flener Uppsala University, Sweden
David Gerault University of Surrey, United Kingdom
Simon de Givry INRAE, France
Vijay Ganesh University of Waterloo (Canada), France

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:xii Organization

Tias Guns Vrije Universiteit Brussel, Belgium
Tarik Hadzic United Technologies Research Center, USA
Emmanuel Hebrard CNRS, France
John Hooker Carnegie Mellon University, USA
Serdar Kadioglu Brown University, USA
George Katsirelos INRAE, France
Zeynep Kiziltan University of Bologna, Italy
Lars Kotthoff University of Wyoming, USA
Edward Lam Monash University, Australia
Jimmy Lee The Chinese University of Hong Kong, China
Samir Loudni University of Caen, France
Ciaran McCreesh University of Glasgow, United Kingdom
Arnaud Malapert University of Nice-Sophia Antipolis, France
Kuldeep S. Meel National University of Singapore
Claude Michel University of Nice-Sophia Antipolis, France
Ian Miguel University of St Andrews, United Kingdom
Peter Nightingale University ok York, United Kingdom
Justin Pearson Uppsala University, Sweden
Marie Pelleau University of Nice-Sophia Antipolis, France
Gilles Pesant Polytechnique Montréal, Canada
Andreas Podelski University of Freiburg, Germany
Enrico Pontelli New Mexico State University, USA
Charles Prud’Homme IMT Atlantique, France
Claude-Guy Quimper University of Laval, Canada
Jean-Charles Régin University of Nice-Sophia Antipolis, France
Michel Rueher University of Côte d’Azur, France
Thomas Schiex INRAE, France
Paul Shaw IBM, France
Mohamed Siala INSA, France
Neil York Smith Delft University of Technology, Netherlands
Cyril Terrioux Aix-Marseille University, France
Charlotte Truchet University of Nantes, France
Phebe Vayanos University of Southern California, USA
Hélène Verhaeghe UCLouvain, Belgium
Petr Vilim IBM, Czech Republic
Lebbah Yahia University of Oran, Algeria
Tallys Yunes Miami Herbert Business School, USA
Neng-Fa Zhou Brooklyn College, USA

Additional Reviewers

Josep,Alos Ion,Mandoiu
Blair,Archibald Maxime,Mulamba Ke Tchomba
Noureddine,Aribi Ali,Najafabadi
Gilles,Audemard Saeed,Nejati
Behrouz,Babaki Jesus,Ojeda
Federico,Baldo Philippe,Olivier
Victor,Bucarey Lopez Abdelkader,Ouali
Mikaël,Capelle Alexandre,Papadopoulos



Organization 0:xiii

Mats,Carlsson William,Pettersson
Violet,Chen Steve,Prestwich
Nguyen,Dang Aida,Rahmattalabi
Elisabetta,De Maria Philippe,Refalo
Eghonghon-Aye,Eigbe András Z.,Salamon
Ozgun,Elci Joe,Scott
Joan,Espasa Arxer Aditya A.,Shrotri
Julien,Ferry Anil,Shukla
Arthur,Godet Fabio,Tardivo
Ruth,Hoffmann Eduard,Torres Montiel
Elizabeth,Hu Cuong,Tran
Isaac,Huang Mathieu,Vavrille
Christopher,Jefferson Abdelrahman,Zayed
Håkan,Kjellerstrand Allen,Zhong
James,Kotary Heytem,Zitoun
Chunxiao,Li

CP 2021





List of Authors

Saman Ahmadi (11)
Department of Data Science and AI, Monash
University, Victoria, Australia; CSIRO Data61,
Canberra, Australia

Marie Anastacio (43)
Leiden Institute of Advanced Computer Science,
Leiden, The Netherlands

Carlos Ansótegui (12)
Logic & Optimization Group (LOG), University
of Lleida, Spain

Valentin Antuori (13, 14)
Renault, Plessis-Robinson, France; LAAS-CNRS,
Université de Toulouse, CNRS, France

João Araújo (4)
NOVA University Lisbon, Portugal

Claudia Archetti (1)
Department of Information Systems, Decision
Sciences and Statistics, ESSEC Business School,
Cergy, France

Blair Archibald (15)
School of Computing Science, University of
Glasgow, UK

Eddie Armstrong (16)
Johnson & Johnson Research Centre, Limerick,
Ireland

Souheib Baarir (7)
Sorbonne Université, CNRS UMR 7606 LIP6,
France; Université Paris Nanterre, France

Yiwei Bai (17)
Cornell University, Ithaca, NY, USA

Tomáš Balyo (6, 55)
CAS Software AG, Karlsruhe, Germany

J. Christopher Beck (35)
Department of Mechanical & Industrial
Engineering, University of Toronto, Canada

Abderahmane Bedouhene (18)
LIGM, Ecole des Ponts ParisTech, Université
Gustave Eiffel, CNRS, Marne-la-Vallée, France

Gleb Belov (49)
Data Science & AI, Monash University, Clayton,
Australia

Jeremias Berg (28, 44, 51)
HIIT, Department of Computer Science,
University of Helsinki, Finland

Vincent Botbol (59)
Nomadic labs, Paris, France

Kenneth N. Brown (46)
Insight Centre for Data Analytics, School of
Computer Science, University College Cork,
Ireland

Víctor Bucarey (42)
Institute of Engineering Sciences, Universidad de
O’Higgins, Rancagua, Chile

Kyle Burns (15)
School of Computing Science, University of
Glasgow, UK

Shaowei Cai (5, 39)
State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of
Sciences, Beijing, China; School of Computer
Science and Technology, University of Chinese
Academy of Sciences, Beijing, China

Rocsildes Canoy (42)
Data Analytics Laboratory, Vrije Universiteit
Brussel, Belgium

Quentin Cappart (33)
Ecole Polytechnique de Montréal, Canada

Yannick Carissan (19)
Aix Marseille Univ, CNRS, Centrale Marseille,
ISM2, Marseille, France

Di Chen (17)
Cornell University, Ithaca, NY, USA

Dingding Chen (41)
College of Computer Science, Chongqing
University, China

Liqian Chen (57)
College of Computer, National University of
Defense Technology, Changsha, China

Taoqing Chen (57)
State Key Laboratory of High Performance
Computing, College of Computer, National
University of Defense Technology, Changsha,
China

Ziyu Chen (41)
College of Computer Science, Chongqing
University, China

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7326-3384
https://doi.org/10.4230/LIPIcs.CP.2021.11
https://orcid.org/0000-0002-4039-2470
https://doi.org/10.4230/LIPIcs.CP.2021.43
https://orcid.org/0000-0001-7727-2766
https://doi.org/10.4230/LIPIcs.CP.2021.12
https://doi.org/10.4230/LIPIcs.CP.2021.13
https://doi.org/10.4230/LIPIcs.CP.2021.14
https://orcid.org/0000-0001-6655-2172
https://doi.org/10.4230/LIPIcs.CP.2021.4
https://doi.org/10.4230/LIPIcs.CP.2021.1
https://orcid.org/0000-0003-3699-6658
https://doi.org/10.4230/LIPIcs.CP.2021.15
https://doi.org/10.4230/LIPIcs.CP.2021.16
https://doi.org/10.4230/LIPIcs.CP.2021.7
https://doi.org/10.4230/LIPIcs.CP.2021.17
https://doi.org/10.4230/LIPIcs.CP.2021.6
https://doi.org/10.4230/LIPIcs.CP.2021.55
https://doi.org/10.4230/LIPIcs.CP.2021.35
https://doi.org/10.4230/LIPIcs.CP.2021.18
https://orcid.org/0000-0002-6120-8484
https://doi.org/10.4230/LIPIcs.CP.2021.49
https://orcid.org/0000-0001-7660-8061
https://doi.org/10.4230/LIPIcs.CP.2021.28
https://doi.org/10.4230/LIPIcs.CP.2021.44
https://doi.org/10.4230/LIPIcs.CP.2021.51
https://doi.org/10.4230/LIPIcs.CP.2021.59
https://orcid.org/0000-0003-1853-0723
https://doi.org/10.4230/LIPIcs.CP.2021.46
https://orcid.org/0000-0002-3043-8404
https://doi.org/10.4230/LIPIcs.CP.2021.42
https://orcid.org/0000-0003-4812-0098
https://doi.org/10.4230/LIPIcs.CP.2021.15
https://orcid.org/0000-0003-1730-6922
https://doi.org/10.4230/LIPIcs.CP.2021.5
https://doi.org/10.4230/LIPIcs.CP.2021.39
https://orcid.org/0000-0003-1810-082X
https://doi.org/10.4230/LIPIcs.CP.2021.42
https://doi.org/10.4230/LIPIcs.CP.2021.33
https://orcid.org/0000-0002-9876-0272
https://doi.org/10.4230/LIPIcs.CP.2021.19
https://doi.org/10.4230/LIPIcs.CP.2021.17
https://doi.org/10.4230/LIPIcs.CP.2021.41
https://doi.org/10.4230/LIPIcs.CP.2021.57
https://doi.org/10.4230/LIPIcs.CP.2021.57
https://doi.org/10.4230/LIPIcs.CP.2021.41
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:xvi Authors

Mohamed Sami Cherif (20)
Aix-Marseille Univ, Université de Toulon, CNRS,
LIS, Marseille, France

Daniil Chivilikhin (47)
ITMO University, St. Petersburg, Russia

Choiwah Chow (4)
Universidade Aberta, Lisbon, Portugal

Eldan Cohen (50)
Department of Mechanical and Industrial
Engineering, University of Toronto, Canada

Jordi Coll (38)
Aix Marseille Univ, Université de Toulon, CNRS,
LIS, Marseille, France

Martin C. Cooper (21)
IRIT, Université de Toulouse III, France

Ágnes Cseh (22)
Hasso-Plattner-Institute, Universität Potsdam,
Germany; Institute of Economics, Centre for
Economic and Regional Studies, Pécs, Hungary

Tobias Czauderna (49)
Human-Centred Computing, Monash University,
Clayton, Australia

Guilherme de Azevedo Silveira (10)
Alura, São Paulo, Brazil

Simon de Givry (23)
Université Fédérale de Toulouse, ANITI,
INRAE, UR 875, France

Maria Garcia de la Banda (49)
Data Science & AI, Monash University, Clayton,
Australia

Adrien Debesson (27)
Ubisoft, Bordeaux, Nouvelle-Aquitaine, France

François Delobel (40)
LIMOS, CNRS UMR 6158, University Clermont
Auvergne, Aubière, France

Matthieu Dien (59)
Université de Caen, France

Tomáš Dlask (23)
Faculty of Electrical Engineering, Czech
Technical University in Prague, Czech Republic

Guillaume Escamocher (22)
Insight Centre for Data Analytics, School of
Computer Science and Information Technology,
University College Cork, Ireland

Siham Essodaigui (14)
Renault, Plessis-Robinson, France

Guangsheng Fan (57)
State Key Laboratory of High Performance
Computing, College of Computer, National
University of Defense Technology, Changsha,
China

Johannes K. Fichte (24, 25)
TU Dresden, Germany

Nathanaël Fijalkow (43)
CNRS, LaBRI, Bordeaux, France,; The Alan
Turing Institute of data science, London, UK

Ferdinando Fioretto (2)
Syracuse University, NY, USA

José Fragoso Santos (31)
INESC-ID/IST, University of Lisbon, Portugal

Cristian Galleguillos (26)
Pontificia Universidad Católica de Valparaíso,
Chile; University of Bologna, Italy

Junsong Gao (41)
College of Computer Science, Chongqing
University, China

Michele Garraffa (16)
Confirm SFI Research Centre for Smart
Manufacturing, Limerick, Ireland; School of
Computer Science, University College Cork,
Ireland

Martin Gebser (36)
Universität Klagenfurt, Austria; Technische
Universität Graz, Austria

Begüm Genç (22)
Insight Centre for Data Analytics, School of
Computer Science and Information Technology,
University College Cork, Ireland

Ambros Gleixner (52)
Zuse Institute Berlin, Germany; HTW Berlin,
Germany

Gaël Glorian (27)
LaBRI – CNRS UMR 5800, Université de
Bordeaux, Talence, Nouvelle-Aquitaine, France;
Ubisoft, Bordeaux, Nouvelle-Aquitaine, France

Carla P. Gomes (17)
Cornell University, Ithaca, NY, USA

Tias Guns (42)
Data Analytics Laboratory, Vrije Universiteit
Brussel, Belgium; Department of Computer
Science, KU Leuven, Belgium

https://orcid.org/0000-0003-4646-9982
https://doi.org/10.4230/LIPIcs.CP.2021.20
https://doi.org/10.4230/LIPIcs.CP.2021.47
https://orcid.org/0000-0002-2067-0568
https://doi.org/10.4230/LIPIcs.CP.2021.4
https://doi.org/10.4230/LIPIcs.CP.2021.50
https://doi.org/10.4230/LIPIcs.CP.2021.38
https://orcid.org/0000-0003-4853-053X
https://doi.org/10.4230/LIPIcs.CP.2021.21
https://orcid.org/0000-0003-4991-2599
https://doi.org/10.4230/LIPIcs.CP.2021.22
https://orcid.org/0000-0002-1788-9593
https://doi.org/10.4230/LIPIcs.CP.2021.49
https://orcid.org/0000-0002-2794-8286
https://doi.org/10.4230/LIPIcs.CP.2021.10
https://orcid.org/0000-0002-2242-0458
https://doi.org/10.4230/LIPIcs.CP.2021.23
https://orcid.org/0000-0002-6666-514X
https://doi.org/10.4230/LIPIcs.CP.2021.49
https://doi.org/10.4230/LIPIcs.CP.2021.27
https://doi.org/10.4230/LIPIcs.CP.2021.40
https://doi.org/10.4230/LIPIcs.CP.2021.59
https://orcid.org/0000-0002-1944-6569
https://doi.org/10.4230/LIPIcs.CP.2021.23
https://orcid.org/0000-0001-9029-5671
https://doi.org/10.4230/LIPIcs.CP.2021.22
https://doi.org/10.4230/LIPIcs.CP.2021.14
https://doi.org/10.4230/LIPIcs.CP.2021.57
https://orcid.org/0000-0002-8681-7470
https://doi.org/10.4230/LIPIcs.CP.2021.24
https://doi.org/10.4230/LIPIcs.CP.2021.25
https://orcid.org/0000-0002-6576-4680
https://doi.org/10.4230/LIPIcs.CP.2021.43
https://orcid.org/0000-0002-1381-6776
https://doi.org/10.4230/LIPIcs.CP.2021.2
https://orcid.org/0000-0001-5077-300X
https://doi.org/10.4230/LIPIcs.CP.2021.31
https://orcid.org/0000-0001-9460-8719
https://doi.org/10.4230/LIPIcs.CP.2021.26
https://doi.org/10.4230/LIPIcs.CP.2021.41
https://doi.org/10.4230/LIPIcs.CP.2021.16
https://doi.org/10.4230/LIPIcs.CP.2021.36
https://orcid.org/0000-0003-0116-6005
https://doi.org/10.4230/LIPIcs.CP.2021.22
https://doi.org/10.4230/LIPIcs.CP.2021.52
https://doi.org/10.4230/LIPIcs.CP.2021.27
https://doi.org/10.4230/LIPIcs.CP.2021.17
https://doi.org/10.4230/LIPIcs.CP.2021.42


Authors 0:xvii

Djamal Habet (20, 38)
Aix-Marseille Univ, Université de Toulon, CNRS,
LIS, Marseille, France

Denis Hagebaum-Reignier (19)
Aix Marseille Univ, CNRS, Centrale Marseille,
ISM2, Marseille, France

Daniel Harabor (11)
Department of Data Science and AI, Monash
University, Victoria, Australia

Kun He (38)
Huazhong University of Science and Technology,
Wuhan, China

Emmanuel Hebrard (13, 14)
LAAS-CNRS, Université de Toulouse, CNRS,
ANITI, France

Markus Hecher (24, 25)
TU Wien, Austria; Universität Potsdam,
Germany

Holger H. Hoos (43)
Leiden Institute of Advanced Computer Science,
Leiden, The Netherlands; University of British
Columbia, Vancouver, Canada

Marie-José Huguet (14)
LAAS-CNRS, Université de Toulouse, CNRS,
INSA, France

Alexey Ignatiev (47)
Monash University, Melbourne, Australia

Hannes Ihalainen (28)
HIIT, Department of Computer Science,
University of Helsinki, Finland

Markus Iser (6)
Karlsruhe Institute of Technology (KIT),
Germany

Nicolas Isoart (29, 30)
Université Côte d’Azur, Nice, France

Ola Jabali (1)
Department of Electronics, Information and
Bioengineering, Politecnico di Milano, Italy

Mikoláš Janota (4, 31)
Czech Technical University in Prague, Czech
Republic

Luc Jaulin (18)
Lab-STICC, ENSTA-Bretagne, Brest, France

Peter Jonsson (32)
Department of Computer and Information
Science, Linköping University, Sweden

Chaitanya K. Joshi (33)
Institute for Infocomm Research, A*STAR,
Singapore

Matti Järvisalo (8, 28, 44, 51)
HIIT, Department of Computer Science,
University of Helsinki, Finland

Anissa Kheireddine (7)
EPITA, LRDE, Kremlin-Bicêtre, France;
Sorbonne Université, UMR 7606 LIP6, Paris,
France

Philip Kilby (11)
CSIRO Data61, Canberra, Australia

Markus Kirchweger (34)
Algorithms and Complexity Group, TU Wien,
Austria

Zeynep Kiziltan (26)
University of Bologna, Italy

Matthias Klapperstueck (49)
Human-Centred Computing, Monash University,
Clayton, Australia

Michael Klein (55)
CAS Software AG, Karlsruhe, Germany

Wolfgang Kohlenbrein (36)
Kostwein Holding GmbH, Klagenfurt, Austria

Tuukka Korhonen (8)
HIIT, Department of Computer Science,
University of Helsinki, Finland

Anton Korikov (35)
Department of Mechanical & Industrial
Engineering, University of Toronto, Canada

Benjamin Kovács (36)
Universität Klagenfurt, Austria

T. K. Satish Kumar (53)
Department of Computer Science, Department
of Physics and Astronomy, Department of
Industrial and Systems Engineering, Information
Sciences Institute, University of Southern
California, Los Angeles, CA, USA

Marie-Louise Lackner (37)
Christian Doppler Laboratory for Artificial
Intelligence and Optimization for Planning and
Scheduling, DBAI, TU Wien, Austria

Pascal Lafourcade (40)
LIMOS, CNRS UMR 6158, University Clermont
Auvergne, Aubière, France

CP 2021

https://doi.org/10.4230/LIPIcs.CP.2021.20
https://doi.org/10.4230/LIPIcs.CP.2021.38
https://orcid.org/0000-0001-8761-1047
https://doi.org/10.4230/LIPIcs.CP.2021.19
https://doi.org/10.4230/LIPIcs.CP.2021.11
https://doi.org/10.4230/LIPIcs.CP.2021.38
https://orcid.org/0000-0003-3131-0709
https://doi.org/10.4230/LIPIcs.CP.2021.13
https://doi.org/10.4230/LIPIcs.CP.2021.14
https://orcid.org/0000-0003-0131-6771
https://doi.org/10.4230/LIPIcs.CP.2021.24
https://doi.org/10.4230/LIPIcs.CP.2021.25
https://orcid.org/0000-0003-0629-0099
https://doi.org/10.4230/LIPIcs.CP.2021.43
https://doi.org/10.4230/LIPIcs.CP.2021.14
https://doi.org/10.4230/LIPIcs.CP.2021.47
https://doi.org/10.4230/LIPIcs.CP.2021.28
https://orcid.org/0000-0003-2904-232X
https://doi.org/10.4230/LIPIcs.CP.2021.6
https://doi.org/10.4230/LIPIcs.CP.2021.29
https://doi.org/10.4230/LIPIcs.CP.2021.30
https://doi.org/10.4230/LIPIcs.CP.2021.1
https://orcid.org/0000-0003-3487-784X
https://doi.org/10.4230/LIPIcs.CP.2021.4
https://doi.org/10.4230/LIPIcs.CP.2021.31
https://doi.org/10.4230/LIPIcs.CP.2021.18
https://doi.org/10.4230/LIPIcs.CP.2021.32
https://orcid.org/0000-0003-4722-1815
https://doi.org/10.4230/LIPIcs.CP.2021.33
https://orcid.org/0000-0003-2572-063X
https://doi.org/10.4230/LIPIcs.CP.2021.8
https://doi.org/10.4230/LIPIcs.CP.2021.28
https://doi.org/10.4230/LIPIcs.CP.2021.44
https://doi.org/10.4230/LIPIcs.CP.2021.51
https://orcid.org/0000-0002-5958-4069
https://doi.org/10.4230/LIPIcs.CP.2021.7
https://doi.org/10.4230/LIPIcs.CP.2021.11
https://doi.org/10.4230/LIPIcs.CP.2021.34
https://orcid.org/0000-0003-0412-4396
https://doi.org/10.4230/LIPIcs.CP.2021.26
https://orcid.org/0000-0002-6759-7185
https://doi.org/10.4230/LIPIcs.CP.2021.49
https://doi.org/10.4230/LIPIcs.CP.2021.55
https://doi.org/10.4230/LIPIcs.CP.2021.36
https://orcid.org/0000-0003-0861-6515
https://doi.org/10.4230/LIPIcs.CP.2021.8
https://doi.org/10.4230/LIPIcs.CP.2021.35
https://doi.org/10.4230/LIPIcs.CP.2021.36
https://doi.org/10.4230/LIPIcs.CP.2021.53
https://doi.org/10.4230/LIPIcs.CP.2021.37
https://doi.org/10.4230/LIPIcs.CP.2021.40


0:xviii Authors

Victor Lagerkvist (32)
Department of Computer and Information
Science, Linköping University, Sweden

Thomas Laurent (33)
Loyola Marymount University, LA, USA

Pierre Le Bodic (48)
Data Science & AI, Monash University, Clayton,
Australia

Stéphane Le Menec (18)
MBDA, Le Plessis Robinson, France

Kevin Leo (49)
Data Science & AI, Monash University, Clayton,
Australia

Bohan Li (39)
State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of
Sciences, Beijing, China; School of Computer
Science and Technology, University of Chinese
Academy of Sciences, Beijing, China

Chu-Min Li (38)
Huazhong University of Science and Technology,
Wuhan, China; Université de Picardie Jules
Verne, Amiens, France; Aix Marseille Univ,
Université de Toulon, CNRS, LIS, Marseille,
France

Hongbo Li (9)
School of Information Science and Technology,
Northeast Normal University, Changchun, China

Zhanshan Li (9)
College of Computer Science and Technology,
Jilin University, Changchun, China

Luc Libralesso (40)
LIMOS, CNRS UMR 6158, University Clermont
Auvergne, Aubière, France

Defeng Liu (3)
CERC, Polytechnique Montréal, Canada

Xiangshuang Liu (41)
College of Computer Science, Chongqing
University, China

Andrea Lodi (3)
Jacobs Technion-Cornell Institute, Cornell Tech
and Technion - Israel Institute of Technology,
New York, NY, USA; CERC, Polytechnique
Montréal, Canada

Chuan Luo (5)
School of Software, Beihang University, Beijing,
China

Jayanta Mandi (42)
Data Analytics Laboratory, Vrije Universiteit
Brussel, Belgium

Vasco Manquinho (31)
INESC-ID/IST, University of Lisbon, Portugal

Felip Manyà (38)
Artificial Intelligence Research Institute, CSIC,
Bellaterra, Spain

João Marques-Silva (21)
IRIT, CNRS, Toulouse, France

Théo Matricon (43)
Univ. Bordeaux, CNRS, LaBRI, UMR 5800,
F-33400, Talence, France

Ciaran McCreesh (15, 25)
School of Computing Science, University of
Glasgow, UK

Sheila McIlraith (50)
Department of Computer Science, University of
Toronto, Canada; Vector Institute, Toronto,
Canada

Kuldeep S. Meel (58)
School of Computing, National University of
Singapore, Singapore

Andrea Mor (1)
Department of Economics and Management,
University of Brescia, Italy

António Morgado (31)
INESC-ID Lisbon, Portugal

Christoph Mrkvicka (37)
MCP GmbH, Wien, Austria

Nysret Musliu (37)
Christian Doppler Laboratory for Artificial
Intelligence and Optimization for Planning and
Scheduling, DBAI, TU Wien, Austria

Bertrand Neveu (18)
LIGM, Ecole des Ponts ParisTech, Université
Gustave Eiffel, CNRS, Marne-la-Vallée, France

Alain Nguyen (14)
Renault, Plessis-Robinson, France

Andreas Niskanen (44)
HIIT, Department of Computer Science,
University of Helsinki, Finland

Barry O’Sullivan (16)
Confirm SFI Research Centre for Smart
Manufacturing, Limerick, Ireland; School of
Computer Science, University College Cork,
Ireland

https://doi.org/10.4230/LIPIcs.CP.2021.32
https://doi.org/10.4230/LIPIcs.CP.2021.33
https://orcid.org/0000-0003-0842-9533
https://doi.org/10.4230/LIPIcs.CP.2021.48
https://doi.org/10.4230/LIPIcs.CP.2021.18
https://orcid.org/0000-0003-4720-4265
https://doi.org/10.4230/LIPIcs.CP.2021.49
https://orcid.org/0000-0003-1356-6057
https://doi.org/10.4230/LIPIcs.CP.2021.39
https://doi.org/10.4230/LIPIcs.CP.2021.38
https://orcid.org/0000-0002-2664-4117
https://doi.org/10.4230/LIPIcs.CP.2021.9
https://doi.org/10.4230/LIPIcs.CP.2021.9
https://doi.org/10.4230/LIPIcs.CP.2021.40
https://doi.org/10.4230/LIPIcs.CP.2021.3
https://doi.org/10.4230/LIPIcs.CP.2021.41
https://orcid.org/0000-0001-9269-633X
https://doi.org/10.4230/LIPIcs.CP.2021.3
https://orcid.org/0000-0001-5028-1064
https://doi.org/10.4230/LIPIcs.CP.2021.5
https://orcid.org/0000-0001-8675-8178
https://doi.org/10.4230/LIPIcs.CP.2021.42
https://orcid.org/0000-0002-4205-2189
https://doi.org/10.4230/LIPIcs.CP.2021.31
https://doi.org/10.4230/LIPIcs.CP.2021.38
https://orcid.org/0000-0002-6632-3086
https://doi.org/10.4230/LIPIcs.CP.2021.21
https://orcid.org/0000-0002-5043-3221
https://doi.org/10.4230/LIPIcs.CP.2021.43
https://orcid.org/0000-0002-6106-4871
https://doi.org/10.4230/LIPIcs.CP.2021.15
https://doi.org/10.4230/LIPIcs.CP.2021.25
https://doi.org/10.4230/LIPIcs.CP.2021.50
https://doi.org/10.4230/LIPIcs.CP.2021.58
https://doi.org/10.4230/LIPIcs.CP.2021.1
https://orcid.org/0000-0002-5295-1321
https://doi.org/10.4230/LIPIcs.CP.2021.31
https://doi.org/10.4230/LIPIcs.CP.2021.37
https://doi.org/10.4230/LIPIcs.CP.2021.37
https://doi.org/10.4230/LIPIcs.CP.2021.18
https://doi.org/10.4230/LIPIcs.CP.2021.14
https://orcid.org/0000-0003-3197-2075
https://doi.org/10.4230/LIPIcs.CP.2021.44
https://doi.org/10.4230/LIPIcs.CP.2021.16


Authors 0:xix

Jesús Ojeda (12)
Logic & Optimization Group (LOG), University
of Lleida, Spain

Sebastian Ordyniak (32)
Algorithms Group, University of Sheffield, UK

Ilya Otpuschennikov (47)
ISDCT SB RAS, Irkutsk, Russia

Artem Pavlenko (47)
ITMO University, St. Petersburg, Russia;
JetBrains Research, St. Petersburg, Russia

Xiao Peng (45)
CITI, INRIA, INSA Lyon, F-69621,
Villeurbanne, France

Omer Perry (60)
Ben Gurion University of the Negev, Beer Sheva,
Israel

Sebastian Pokutta (52)
Zuse Institute Berlin, Germany; TU Berlin,
Germany

Tom Portoleau (13)
LAAS-CNRS, Université de Toulouse, CNRS,
France

Nicolas Prcovic (19)
Aix Marseille Univ, Université de Toulon, CNRS,
LIS, Marseille, France

Charles Prud’homme (56)
TASC, IMT-Atlantique, LS2N-CNRS, F-44307
Nantes, France

Luis Quesada (22, 46)
Insight Centre for Data Analytics, School of
Computer Science and Information Technology,
University College Cork, Ireland

Ben Rachmut (60)
Ben Gurion University of the Negev, Beer Sheva,
Israel

Etienne Renault (7)
EPITA, LRDE, Kremlin-Bicêtre, France

Louis Rivière (13)
LAAS-CNRS, Université de Toulouse, CNRS,
ANITI, France

Valentin Roland (24)
TU Dresden, Germany

Louis-Martin Rousseau (33)
Ecole Polytechnique de Montréal, Canada

Jean-Charles Régin (29, 30)
Université Côte d’Azur, Nice, France

Philipp Schrott-Kostwein (36)
Kostwein Holding GmbH, Klagenfurt, Austria

Alexander Semenov (47)
ITMO University, St. Petersburg, Russia

Ilankaikone Senthooran (48, 49)
Data Science & AI, Monash University, Clayton,
Australia

Michele Sevegnani (15)
School of Computing Science, University of
Glasgow, UK

Anas Shahab (25)
TU Dresden, Germany

Pouya Shati (50)
Department of Computer Science, University of
Toronto, Canada

Laurent Simon (27, 43)
LaBRI – CNRS UMR 5800, Université de
Bordeaux, Talence, Nouvelle-Aquitaine, France

Alberto Simonetto (1)
Multiprotexion srl, Gropello Cairoli, Italy

Olivier Simonin (45)
CITI, INRIA, INSA Lyon, F-69621,
Villeurbanne, France

Helmut Simonis (16)
Confirm SFI Research Centre for Smart
Manufacturing, Limerick, Ireland; School of
Computer Science, University College Cork,
Ireland

Pavel Smirnov (51)
HIIT, Department of Computer Science,
University of Helsinki, Finland

Boro Sofranac (52)
Zuse Institute Berlin, Germany; TU Berlin,
Germany

Christine Solnon (40, 45)
INSA Lyon, CITI, INRIA CHROMA, F-69621
Villeurbanne, France

Ricardo Soto (26)
Pontificia Universidad Católica de Valparaíso,
Chile

M.Grazia Speranza (1)
Department of Economics and Management,
University of Brescia, Italy

Kostas Stergiou (54)
Dept. of Electrical & Computer Engineering,
University of Western Macedonia, Kozani,
Greece

CP 2021

https://orcid.org/0000-0001-9782-5743
https://doi.org/10.4230/LIPIcs.CP.2021.12
https://doi.org/10.4230/LIPIcs.CP.2021.32
https://doi.org/10.4230/LIPIcs.CP.2021.47
https://doi.org/10.4230/LIPIcs.CP.2021.47
https://doi.org/10.4230/LIPIcs.CP.2021.45
https://orcid.org/0000-0002-1994-7291
https://doi.org/10.4230/LIPIcs.CP.2021.60
https://doi.org/10.4230/LIPIcs.CP.2021.52
https://doi.org/10.4230/LIPIcs.CP.2021.13
https://doi.org/10.4230/LIPIcs.CP.2021.19
https://doi.org/10.4230/LIPIcs.CP.2021.56
https://orcid.org/0000-0003-3177-655X
https://doi.org/10.4230/LIPIcs.CP.2021.22
https://doi.org/10.4230/LIPIcs.CP.2021.46
https://orcid.org/0000-0002-3862-9387
https://doi.org/10.4230/LIPIcs.CP.2021.60
https://orcid.org/0000-0001-9013-4413
https://doi.org/10.4230/LIPIcs.CP.2021.7
https://doi.org/10.4230/LIPIcs.CP.2021.13
https://doi.org/10.4230/LIPIcs.CP.2021.24
https://doi.org/10.4230/LIPIcs.CP.2021.33
https://doi.org/10.4230/LIPIcs.CP.2021.29
https://doi.org/10.4230/LIPIcs.CP.2021.30
https://doi.org/10.4230/LIPIcs.CP.2021.36
https://doi.org/10.4230/LIPIcs.CP.2021.47
https://orcid.org/0000-0001-6207-3780
https://doi.org/10.4230/LIPIcs.CP.2021.48
https://doi.org/10.4230/LIPIcs.CP.2021.49
https://orcid.org/0000-0001-6773-9481
https://doi.org/10.4230/LIPIcs.CP.2021.15
https://doi.org/10.4230/LIPIcs.CP.2021.25
https://doi.org/10.4230/LIPIcs.CP.2021.50
https://orcid.org/0000-0003-0544-5503
https://doi.org/10.4230/LIPIcs.CP.2021.27
https://doi.org/10.4230/LIPIcs.CP.2021.43
https://doi.org/10.4230/LIPIcs.CP.2021.1
https://doi.org/10.4230/LIPIcs.CP.2021.45
https://doi.org/10.4230/LIPIcs.CP.2021.16
https://doi.org/10.4230/LIPIcs.CP.2021.51
https://doi.org/10.4230/LIPIcs.CP.2021.52
https://doi.org/10.4230/LIPIcs.CP.2021.40
https://doi.org/10.4230/LIPIcs.CP.2021.45
https://orcid.org/0000-0002-5755-6929
https://doi.org/10.4230/LIPIcs.CP.2021.26
https://doi.org/10.4230/LIPIcs.CP.2021.1
https://doi.org/10.4230/LIPIcs.CP.2021.54


0:xx Authors

Peter J. Stuckey (48)
Data Science & AI, Monash University, Clayton,
Australia

Shannon Sweitzer (53)
Department of Industrial and Systems
Engineering, University of Southern California,
Los Angeles, CA, USA

Stefan Szeider (34)
Algorithms and Complexity Group, TU Wien,
Austria

Guido Tack (11)
Department of Data Science and AI, Monash
University, Victoria, Australia

Pierre Tassel (36)
Universität Klagenfurt, Austria

Cyril Terrioux (19, 20)
Aix Marseille Univ, Université de Toulon, CNRS,
LIS, Marseille, France

Eduard Torres (12)
Logic & Optimization Group (LOG), University
of Lleida, Spain

Gilles Trombettoni (18)
LIRMM, Université de Montpellier, CNRS,
France

Charlotte Truchet (56)
Laboratoire des Sciences du Numérique de
Nantes, 44322 Nantes, France

Dimosthenis C. Tsouros (54)
Dept. of Electrical & Computer Engineering,
University of Western Macedonia, Kozani,
Greece

Nils Merlin Ullmann (55)
CAS Software AG, Karlsruhe, Germany

Vladimir Ulyantsev (47)
ITMO University, St. Petersburg, Russia

Adrien Varet (19)
Aix Marseille Univ, Université de Toulon, CNRS,
LIS, Marseille, France

Mathieu Vavrille (56)
Laboratoire des Sciences du Numérique de
Nantes, 44322 Nantes, France

Daniel Walkiewicz (37)
MCP GmbH, Wien, Austria

Mark Wallace (49)
Data Science & AI, Monash University, Clayton,
Australia

Ji Wang (57)
State Key Laboratory of High Performance
Computing, College of Computer, National
University of Defense Technology, Changsha,
China

Kai Wang (39)
School of Computer Science and Information
Technology, Northeast Normal University,
Changchun, China

Tengbin Wang (57)
College of Computer, National University of
Defense Technology, Changsha, China

Yiyuan Wang (39)
School of Computer Science and Information
Technology, Northeast Normal University,
Changchun, China; Key Laboratory of Applied
Statistics of MOE, Northeast Normal University,
Chnagchun, China

Tomáš Werner (23)
Faculty of Electrical Engineering, Czech
Technical University in Prague, Czech Republic

Felix Winter (37)
Christian Doppler Laboratory for Artificial
Intelligence and Optimization for Planning and
Scheduling, DBAI, TU Wien, Austria

Michael Wybrow (49)
Human-Centred Computing, Monash University,
Clayton, Australia

Zhenxing Xu (38)
Huazhong University of Science and Technology,
Wuhan, China

Jiong Yang (58)
School of Computing, National University of
Singapore, Singapore

William Yeoh (60)
Washington University in Saint Louis, MO, USA

Minghao Yin (9)
School of Information Science and Technology,
Northeast Normal University, Changchun, China

Sylvain Yvon-Paliot (27)
Ubisoft, Bordeaux, Nouvelle-Aquitaine, France

https://orcid.org/0000-0003-2186-0459
https://doi.org/10.4230/LIPIcs.CP.2021.48
https://doi.org/10.4230/LIPIcs.CP.2021.53
https://doi.org/10.4230/LIPIcs.CP.2021.34
https://doi.org/10.4230/LIPIcs.CP.2021.11
https://doi.org/10.4230/LIPIcs.CP.2021.36
https://orcid.org/0000-0002-9779-9108
https://doi.org/10.4230/LIPIcs.CP.2021.19
https://doi.org/10.4230/LIPIcs.CP.2021.20
https://orcid.org/0000-0002-3136-7513
https://doi.org/10.4230/LIPIcs.CP.2021.12
https://doi.org/10.4230/LIPIcs.CP.2021.18
https://doi.org/10.4230/LIPIcs.CP.2021.56
https://doi.org/10.4230/LIPIcs.CP.2021.54
https://doi.org/10.4230/LIPIcs.CP.2021.55
https://doi.org/10.4230/LIPIcs.CP.2021.47
https://doi.org/10.4230/LIPIcs.CP.2021.19
https://doi.org/10.4230/LIPIcs.CP.2021.56
https://doi.org/10.4230/LIPIcs.CP.2021.37
https://orcid.org/0000-0001-7326-8110
https://doi.org/10.4230/LIPIcs.CP.2021.49
https://doi.org/10.4230/LIPIcs.CP.2021.57
https://doi.org/10.4230/LIPIcs.CP.2021.39
https://doi.org/10.4230/LIPIcs.CP.2021.57
https://orcid.org/0000-0002-3071-3461
https://doi.org/10.4230/LIPIcs.CP.2021.39
https://orcid.org/0000-0002-6161-7157
https://doi.org/10.4230/LIPIcs.CP.2021.23
https://doi.org/10.4230/LIPIcs.CP.2021.37
https://orcid.org/0000-0001-5536-7780
https://doi.org/10.4230/LIPIcs.CP.2021.49
https://doi.org/10.4230/LIPIcs.CP.2021.38
https://doi.org/10.4230/LIPIcs.CP.2021.58
https://orcid.org/0000-0002-2617-870X
https://doi.org/10.4230/LIPIcs.CP.2021.60
https://doi.org/10.4230/LIPIcs.CP.2021.9
https://doi.org/10.4230/LIPIcs.CP.2021.27


Authors 0:xxi

Jian Zhang (5)
State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of
Sciences, Beijing, China; School of Computer
Science and Technology, University of Chinese
Academy of Sciences, Beijing, China

Xindi Zhang (5)
State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of
Sciences, Beijing, China; School of Computer
Science and Technology, University of Chinese
Academy of Sciences, Beijing, China

Ghiles Ziat (59)
ISAE-SUPAERO, Université de Toulouse,
France

Roie Zivan (60)
Ben Gurion University of the Negev, Beer Sheva,
Israel

CP 2021

https://orcid.org/0000-0001-8523-3505
https://doi.org/10.4230/LIPIcs.CP.2021.5
https://orcid.org/0000-0001-5541-7194
https://doi.org/10.4230/LIPIcs.CP.2021.5
https://doi.org/10.4230/LIPIcs.CP.2021.59
https://orcid.org/0000-0002-1410-8368
https://doi.org/10.4230/LIPIcs.CP.2021.60




The Bi-Objective Long-Haul Transportation
Problem on a Road Network
Claudia Archetti #

Department of Information Systems, Decision Sciences and Statistics,
ESSEC Business School, Cergy, France

Ola Jabali #

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy

Andrea Mor #

Department of Economics and Management, University of Brescia, Italy

Alberto Simonetto #

Multiprotexion srl, Gropello Cairoli, Italy

M.Grazia Speranza #

Department of Economics and Management, University of Brescia, Italy

Abstract
Long-haul truck transportation is concerned with freight transportation from shipments’ origins to
destinations, with vehicle trips lasting from some hours to several days. Drivers performing long-haul
transportation are subject to strict rules derived from Hours of Service (HoS) regulations. There
exists a large body of literature integrating HoS regulations within long-haul transportation. The
optimization problems in this context generally deal with routing and scheduling decisions aimed at
determining where a driver should stop and how long a rest should be. However, the overwhelming
majority of the literature on long-haul transportation ignores refueling decisions and treats fuel costs
as proportional to the traveled distance.

In this talk we analyze a long-haul truck scheduling problem where a path has to be determined
for a vehicle traveling from a specified origin to a specified destination. We consider refueling decisions
along the path while accounting for heterogeneous fuel prices in a road network. Furthermore,
the path has to comply with Hours of Service (HOS) regulations. Therefore, a path is defined
by the actual road trajectory traveled by the vehicle, as well as the locations where the vehicle
stops due to refueling, compliance with HOS regulations, or a combination of the two. This setting
is cast in a bi-objective optimization problem, considering the minimization of fuel cost and the
minimization of path duration. An algorithm is proposed to solve the problem on a road network.
The algorithm builds a set of non-dominated paths with respect to the two objectives. Given the
enormous theoretical size of the road network, the algorithm follows an interactive path construction
mechanism. Specifically, the algorithm dynamically interacts with a geographic information system to
identify the relevant potential paths and stop locations. Computational tests are made on real-sized
instances where the distance covered ranges from 500 to 1500 km. The algorithm is compared with
solutions obtained from a policy mimicking the current practice of a logistics company. The results
show that the non-dominated solutions produced by the algorithm significantly dominate the ones
generated by the current practice, in terms of fuel costs, while achieving similar path durations. The
average number of non-dominated paths is 2.7, which allows decision-makers to ultimately visually
inspect the proposed alternatives.
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Abstract
Data sets and statistics about groups of individuals are increasingly collected and released, feeding
many optimization and learning algorithms. In many cases, the released data contain sensitive
information whose privacy is strictly regulated. For example, in the U.S., the census data is regulated
under Title 13, which requires that no individual be identified from any data released by the Census
Bureau. In Europe, data release is regulated according to the General Data Protection Regulation,
which addresses the control and transfer of personal data.

Differential privacy [1] has emerged as the de-facto standard to protect data privacy. In a
nutshell, differentially private algorithms protect an individual’s data by injecting random noise into
the output of a computation that involves such data. While this process ensures privacy, it also
impacts the quality of data analysis, and, when private data sets are used as inputs to complex
machine learning or optimization tasks, they may produce results that are fundamentally different
from those obtained on the original data and even rise unintended bias and fairness concerns.

In this talk, I will first focus on the challenge of releasing privacy-preserving data sets for complex
data analysis tasks. I will introduce the notion of Constrained-based Differential Privacy (C-DP),
which allows casting the data release problem to an optimization problem whose goal is to preserve
the salient features of the original data. I will review several applications of C-DP in the context
of very large hierarchical census data [3], data streams [2], energy systems [4], and in the design
of federated data-sharing protocols. Next, I will discuss how errors induced by differential privacy
algorithms may propagate within a decision problem causing biases and fairness issues [5, 6]. This
is particularly important as privacy-preserving data is often used for critical decision processes,
including the allocation of funds and benefits to states and jurisdictions, which ideally should be fair
and unbiased. Finally, I will conclude with a roadmap to future work and some open questions.
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Abstract
Although state-of-the-art solvers for Mixed-Integer Programming (MIP) experienced a dramatic
performance improvement over the past decades, the resolution of some MIPs is still challenging,
requiring hours of computations while, in practice, high-quality solutions are often required to be
computed within a very restricted time frame. In such cases, it might be preferable to provide
anytime solutions, i.e., a first reasonable solution should be generated as early as possible, then
better ones produced in the subsequent computation with the user deciding where to stop.

In this respect, the local branching (LB) heuristic [2] was proposed to improve an incumbent
solution either at very early stages of the computation within a general MIP framework or as a
stand-alone algorithmic framework. Roughly speaking, given a feasible solution, the method iterates
by first defining a solution neighborhood through the so-called local branching cut, then by exploring
it by calling a black-box MIP solver. In the local branching algorithm, the choice of the neighborhood
size is crucial to performance. In principle, it is desirable to have neighborhoods to be relatively small
for efficient computation but still large enough to contain improving solutions. In [2], the size of the
neighborhood is mostly initialized by a fixed constant value, then adjusted at run time. Nonetheless,
it is reasonable to believe that there is no a priori single best neighborhood size and the choice of the
value should depend on the characteristics of the problem. Furthermore, it is worth noting that, in
many applications, instances of the same problem are solved repeatedly. Real-world problems have
a rich structure: while more and more data points are collected, patterns and regularities appear.
Therefore, problem-specific and task-specific knowledge can be learned from data and applied to
adapting the corresponding optimization scenario. This motives a broader paradigm of sizing the
solution neighborhoods in local branching.

Following the line of work analyzed and surveyed in [1] on the use of Machine Learning (ML) for
combinatorial optimization, in this work, we aim to guide the (local) search of the local branching
heuristic by ML techniques. In particular, given a problem instance and a time limit for (heuristically)
solving it, we exploit ML tools to predict reasonable good values of the neighborhood size, in order
to maximize the performance of the local branching algorithm. We computationally show that
the neighborhood size can indeed be learnt leading to improved performances and that the overall
algorithm generalizes well both with respect to the instance size and, more surprisingly, across
instances.
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Abstract
The enumeration of finite models of first order logic formulas is an indispensable tool in computational
algebra. The task is hindered by the existence of isomorphic models, which are of no use to
mathematicians and therefore are typically filtered out a posteriori. This paper proposes a divide-
and-conquer approach to speed up and parallelize this process. We design a series of invariant
properties that enable us to partition existing models into mutually non-isomorphic blocks, which
are then tackled separately. The presented approach is integrated into the popular tool Mace4,
where it shows tremendous speed-ups for a variety of algebraic structures.
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1 Introduction

There are many types of relational algebras (groups, semigroups, quasigroups, fields, rings,
MV-algebras, lattices, etc.) using operations and relations of many arities, but the over-
whelming majority of the most popular only use operations of arity at most 2; in the words of
two famous algebraists, It is a curious fact that the algebras that have been most extensively
studied in conventional (albeit modern!) algebra do not have fundamental operations of arity
greater than two. (See page 26 of [4])

To study and get intuition on them, mathematicians resort to libraries of all order n

models of the algebra they are interested in (for small values of n). These libraries allow
experiments such as testing and/or forming conjectures etc., to gain insights. Therefore, it
comes as no surprise that GAP [8], the most popular computational algebra system, has
many such libraries. For groups it has the list of almost all small groups up to order a few
thousands and the list of all primitive groups up to degree a few thousands, among others;
for semigroups it has the list of all small models up to order 8 [6]; for quasigroups up to
order 6 [16]; there is also a library of Lie algebras and many others. These libraries are so
important that the search for them has a long history in mathematics predating for many
years the use of computers. For example, the search for libraries of degree n primitive groups
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started long ago: Jordan (1872) for n ≤ 7; Burnside (1897) for n ≤ 8; Manning (1906-1929)
for n ≤ 15; Sims (1970) for n ≤ 20, Pogorelov (1980) for n ≤ 50; Dixon and Mortimer (1988)
for n ≤ 1000. (See Appendix B of [7]; and for more recent results in OEIS [17]).

Many more such libraries are needed. For example, SMALLSEMI [6] has the list of
semigroups up to order 8 (there are too many semigroups of order 9 to be storable), but
if we impose extra properties on the semigroup (such as being inverse, a band, regular, or
Clifford, etc. – there are tens of classes of semigroups –) their numbers decrease and hence
libraries of models of higher orders could be produced and stored.

Many of these algebras can be defined in first order logic (FOL) and there are tools
to allow mathematicians to encode their algebras and produce a meaningful library. The
problem is that usually the tools that can be easily learned and used by mathematicians
generate too many isomorphic models, thus wasting time generating redundant models and
then wasting more time to get rid of them. For example, Mace4 [13], a very popular finite
model enumerator among mathematicians due to its very intuitive and user-friendly language,
would produce 28,947,734 inverse semigroups of order 8 when given the following simple
first-order formulas as input [1] (with binary operation ∗ and unary operation ′).

(x ∗ y) ∗ z = x ∗ (y ∗ z). (x ∗ x′) ∗ x = x. 0 ∗ 0 = 0.

((x ∗ x′) ∗ y) ∗ y′ = ((y ∗ y′) ∗ x) ∗ x′. x′′ = x.

During the search, the number of output models in this example is already greatly reduced
by the Least Number Heuristic (LNH) and the special symmetry breaking input clause
0 ∗ 0 = 0. Out of the almost 29 millions output models, only 4,637 (≈ 0.016%) are pairwise
non-isomorphic. The proportion of non-isomorphic models in the outputs tends to get smaller
very fast as the order of the algebraic structure goes higher.

Redundant models may either be eliminated during search or filtered out afterwards.
Guaranteeing that search never produces isomorphic models is a hard problem and is rarely
seen in modern solvers. This paper therefore tackles the second problem, i.e., the removal of
redundant models from an already enumerated set.

In our context, the complexity of checking whether two models are isomorphic is only
part of the problem. Another source of complexity is the large number of models that need
to be checked. If all pairs of models are checked, the performance degrades rapidly as the
total number of models increases (see Section 5).

To tackle this problem, we explored many different strategies eventually concluding that
the best one is to assign to every generated model a vector that is invariant under isomorphism.
This allows us to partition the output with all the isomorphic models living inside the same
block (or part). This splits the problem into substantially smaller sub-problems. Moreover,
processing inside each block can easily be done in parallel as models across blocks cannot
be isomorphic. This is an important facet of the approach since modern-day computers are
more often than not equipped with multiple cores.

What made this project take off was the identification of a large number of general
algebra properties invariant under isomorphism coupled with experiments to identify a small
subset of these properties without losing discriminating power. This approach will help
mathematicians on two levels: first, it provides them with a tool on their desktop that quickly
produces a library for the algebra they are working with; second, the tool may be run on a
cluster of computers to pre-compute libraries for the most famous classes of algebras, and
add them to GAP [8] or a similar system.
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Our contributions to the area of isomorphic model elimination are (see Section 3):
Devise an invariant-based algorithm that can be applied to algebras defined in FOL and
containing at least one binary operation.
Design a small set of invariant properties that in practice have high discriminating power,
and yet are inexpensive to compute.
Use a hash-map to store models partitioned by the invariant-based algorithm to allow
fast storage and retrieval of models in the same block.

We apply the proposed partitioning technique to Mace4’s isomorphic model filtering
programs, and observe orders of magnitude speed-up in its isomorphic model elimination
step (see Section 4).

2 Mathematical Background

Algebra is a pair (A, Ω), where A is a set and Ω is a set of operations, that is, functions
f : An → A (in this case f is said to be an operation of arity n). Let A = (D, ∗A) and
B = (D, ∗B) be two algebras, each with one binary operation on a finite domain (or universe)
D. An isomorphism of these two algebras is a bijective function f : A → B such that
f(a ∗A b) = f(a) ∗B f(b), for all a, b ∈ A. Two models are said to be isomorphic if there exists
an isomorphism between them. The relation A is isomorphic to B is clearly an equivalence
relation and hence induces a partition of the algebras considered. Only one representative
algebra in each block is needed.

The definition of isomorphism can easily be extended to cover algebras with multiple
binary operations. Formally, suppose A and B are algebras of type (2m, 1n), where m, n

are non-negative integers; then we can assume that the binary operations are (∗1, . . . , ∗m)
and the unary operations are (g1, . . . , gn). An isomorphism between them is a bijection
f : A → B such that f(a ∗i b) = f(a) ∗i f(b), for all a, b ∈ D and every binary operation ∗i,
and for any unary operation gi, we have f(gi(a)) = gi(f(a)), for all a ∈ D.

3 Invariant-based Algorithm

Let A and B be two algebras and f : A → B an isomorphism between them; in addition,
suppose e2 = e ∈ A is an idempotent. Then f(ee) = f(e) implies that f(e)f(e) = f(e), that
is, f(e) under an isomorphism is also an idempotent. As isomorphisms map idempotents onto
idempotents, it follows that the number of idempotents in A must be smaller or equal to the
number of idempotents on B. Since the inverse of an isomorphism is an isomorphism, A and
B must have the same number of idempotents. We call these properties that are preserved
by isomorphisms (such as the number of idempotents) invariant properties or invariants for
short. These invariant properties are the basis of our proposed algorithm.

Guided by fundamental concepts heavily appearing in different parts of mathematics,
we design 10 invariant properties that collectively have high discriminating powers, and yet
are inexpensive to compute. For a binary operation in a model with finite domain D, we
compute the invariant properties for each domain element x as:
1. The smallest integer n such that xn = xk, n > k >= 1 where we define xn to be

(. . . (x ∗ x) ∗ x) ∗ x) . . . for n x’s (periodicity).
2. The number of y ∈ D such that x = (xy)x (number of inverses).
3. The number of distinct xy for all y ∈ D (size of right ideal).
4. The number of distinct yx for all y ∈ D (size of left ideal).
5. 1 if xx = x, 0 otherwise (idempotency).
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6. The number of y ∈ D such that x(yy) = (yy)x (number of commuting squares).
7. The number of y ∈ D such that x = yy (number of square roots).
8. The number of y ∈ D such that x(xy) = (xx)y (number of square associatizers).
9. The number of pairs of y, z ∈ D such that zy = yz = x (number of symmetries).

10. The number of y ∈ D such that there exists pairs of s, t ∈ D where x = st and y = ts

(number of conjugates).

Invariant 5 is the idempotent property of the domain element and is preserved by
isomorphisms as discussed before. The correctness of invariants in general hinges on the
following lemma (folklore). Let F be a FOL formula on the signature of the algebra and
M and M ′ two isomorphic models. It holds that the sets S and S′ defined by F in M and
M ′, respectively, are of the same cardinality. This is because the isomorphism induces a
bijection between the two sets (cf. Theorem 1.1.10 in [12]). In other words, invariants based
on solution counting are guaranteed to be correct.

We call the ordered list of invariant properties so calculated the invariant vector of that
domain element. Each model with n domain elements will be associated with n invariant
vectors. Isomorphic models must have the same set of invariant vectors.

To facilitate comparisons of invariant vectors, we sort the invariant vectors by the
lexicographical order of their elements (see the example below for more explanations). It
follows that models isomorphic to each other must have the same sorted invariant vectors. If
the model has multiple binary operations, then invariant vectors are calculated for each of the
binary operations, and all the invariant vectors of the same domain element are concatenated
to form a combo invariant vector for that domain element. The combo invariant vectors will
then be sorted to yield the final ordered list of invariants.

Often we are not only to compare 2 models for isomorphism, but to extract all non-
isomorphic models from a list of models. In that case, we set up a hash map to store the
blocks of the models. We use the invariant vectors for each model to send the model quickly
to the block (in the hash map) to which it belongs. That is, the keys in this hash map
are the invariant vectors, and the values are the blocks of the models. After all models are
hashed into the hash map, the blocks stored in the hash map can be processed separately,
and possibly in parallel, to extract one representative model from each isomorphism class.

Note that our invariant-based algorithm does not compare models for isomorphism. It
only cuts down the size of the problem to improve the speed of existing isomorphism filters
such as Mace4’s isofilter.

As an example to show how invariant vectors are constructed and used, suppose we want
to find all non-isomorphic models in a list of 3 quasigroups, A, B, and C, of order 4. Suppose
further that their domain is D = {0, 1, 2, 3} and their operation tables are given in Table 1.

Table 1 Operation tables of Quasigroups A, B and C.

∗A 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 1 0
3 3 2 0 1

∗B 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

∗C 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Model A Model B Model C

The 10 invariant properties can easily be calculated for each of the domain elements of
these models. Note that while the invariant vector for each domain element is calculated
separately, it is not important exactly which domain element gives a particular invariant
vector. It is the set of invariant vectors as a whole that matters.



J. Araújo, C. Chow, and M. Janota 4:5

Invariant vectors of Model A

0: 2 1 4 4 1 4 2 4 4 1
1: 3 1 4 4 0 4 2 4 4 1
2: 5 1 4 4 0 4 0 4 4 1
3: 5 1 4 4 0 4 0 4 4 1

Invariant vectors of Model B

0: 2 1 4 4 1 4 2 4 4 1
2: 3 1 4 4 0 4 2 4 4 1
1: 5 1 4 4 0 4 0 4 4 1
3: 5 1 4 4 0 4 0 4 4 1

Invariant vectors of Model C

0: 2 1 4 4 1 4 4 4 4 1
1: 3 1 4 4 0 4 0 4 4 1
2: 3 1 4 4 0 4 0 4 4 1
3: 3 1 4 4 0 4 0 4 4 1

Figure 1 Lexicographically sorted invariant vectors with discerning properties highlighted.

Next we sort the invariant vectors of each model by their elements lexicographically.
Invariant vectors of models A and C need no change as they are already in the desired sort
order. Invariant vectors of model B will be in sort order by interchanging the invariant
vectors of elements 1 and 2, which are the second and third row. The final invariant vectors
are shown in the Figure 1. Note that the first column in the tables is the domain element,
and the next 10 columns are its invariant properties.

The highlighted numbers in the figure are the discerning invariant properties in the
example. All other invariant properties are the same from domain element to domain element.
For example, Invariant properties 3, size of right ideal, and 4, size of left ideal, always equal
to the size of the domain D because the operation table of a quasigroup is a Latin square.
This highlights the need for multiple invariant properties targeting different areas of algebraic
structures to increase their collective discriminating powers. In fact, our algorithm depends
more on the orthogonality of the invariants than on the splitting power of any one individual
invariant. See Table 2 for the top invariants in different algebras.

It should be easy to see that models A and B have the same sorted invariant vectors,
and thus are possibly isomorphic to each other. They are indeed isomorphic to each other
because applying the permutation (1, 2) to model B will give model A. However, invariant
vectors alone cannot prove that they are isomorphic models. It is also easy to see that the
invariant vectors of model C are different from those of the other 2 models, and from this
fact alone, we can conclude that model C is not isomorphic to any of A and B.

Finally, for ease of comparison and hashing, we concatenate the sorted invariant vectors
into a single string. The string representation of the invariant vectors for the models are:

A, B: 2,1,4,4,1,4,2,4,4,1,3,1,4,4,0,4,2,4,4,1,5,1,4,4,0,4,0,4,4,1,5,1,4,4,0,4,0,4,4,1
C: 2,1,4,4,1,4,4,4,4,1,3,1,4,4,0,4,0,4,4,1,3,1,4,4,0,4,0,4,4,1,3,1,4,4,0,4,0,4,4,1

Since we are to extract all non-isomorphic models from this list of models, we use the string
representations of the invariant vectors as the keys for the hash map. Both models A and B

will therefore go to the same block in the hash map, but C will go to a different block. Now
that all 3 models are deposited in their blocks in the hash map, each block can be processed
separately in parallel as we only need to compare models in the same block for isomorphism.
This step can be performed by many existing programs such as Mace4’s isomorphism filters
(see Section 4).

Finally, if the models have multiple binary operations, we compute the unsorted invariant
vectors for each binary operation as described above, then concatenate the invariant vectors
of the same domain element into one combo invariant vector, sort these combo invariant
vectors in lexicographical order, and finally concatenate the sorted invariant vectors into
their string format.

It is important to note that the hash map in our algorithm obviates the need to compare
invariant vectors among the models during the partitioning process. If we do pairwise
comparison of models by their invariant vectors in any step, we would end up with a O(n2)
worst-case scenario.
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4 Experimental Results

We have implemented an invariant-based pre-processor to the Mace4’s isomorphic models
filters. We run the experiments on a 6-core Intel® Core™ i7-9850H CPU computer. We
shall show results of tests on 3 algebraic structures, namely, quasigroup, inverse semigroup,
and quandle [1]. They are chosen because of their importance in the mathematical world.
Quasigroup is the most prominent non-associative algebra, inverse semigroup is probably
the most studied associative algebra with a unary operation, and quandles is probably most
important algebra with 2 binary operations.

The results show that when the size of the output models is more than just a few hundreds
of thousands, the invariant vectors often give an order or two magnitudes of improvements in
the speed of the isomorphism elimination process even without running them in parallel. A
very desirable feature of our algorithm is that the improvement increases dramatically as the
size of the problem grows. Furthermore, Mace4’s isofilter2 is not able to handle input size
beyond a few million quasigroups of order 6 (see Table 2), but our invariant-based algorithm
can partition the models into smaller blocks of sizes within Mace4’s limits.

Table 2 Isomorphism Eliminations.

Time (s)

Order # of Mace4 Outputs With Invariants Without Invariants

Quasigroups 5 10,944 1 1
6 11,543,040 1,182 N/A

Inverse Semigroups 5 2,151 <1 <1
6 38,828 3 2
7 929,923 73 81
8 28,947,734 2,873 150,703

Quandles 6 1,833 2 1
7 22,104 6 374
8 359,859 450 267,463

We show the results of the non-parallel runs to demonstrate the improvements due solely
to the invariant vectors. The performance can be improved further if the blocks are processed
in parallel. For example, the processing time for the biggest block for quandles of order 8 is
only 20 seconds, so if we have enough processors to process all the blocks in parallel, then
the processing time can theoretically be cut down close to 24 + 19.937 ≈ 44 seconds from
450 seconds, more than 90% reduction (see Table 3).

Table 3 Isomorphism Eliminations in Parallel.

Time (s)

Order #Blocks Generating Invariants Processing Biggest Block

Quasigroups 6 1,129,129 265 0.0106132
Inverse Semigroups 8 4,582 1,031 2.807
Quandles 8 1,143 24 19.937
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One reason for the dramatic improvement in the run-time by our invariant-based algorithm
is that the invariant vectors chosen have great discriminating power as shown by the fact
that the average number of non-isomorphic models per block is very close to 1 (see Table 4).
The top 4 contributing invariants for the highest order of each class are also listed in Table 4.

Table 4 Discriminating Power of Invariant Vectors.

Non-isomorphic Models

Order #Blocks Total Avg per Block Top 4 Invariants

Quasigroups 5 1,402 1,411 1.01
6 1,129,129 1,130,531 1.00 6, 1, 8, 10

Inverse Semigroups 5 52 52 1.00
6 208 208 1.00
7 908 911 1.02
8 4,582 4,637 1.01 9, 3, 2, 1

Quandles 6 66 73 1.11
7 250 298 1.19
8 1,143 1,581 1.38 8, 3, 6, 10

5 Related Work

The proposed approach falls into the class of divide-and-conquer algorithms; most notably
Heule et al. [10] recently applied the cube-and-conquer approach [9] to solve the Boolean
Pythagorean triples problem.

There are a large number of techniques to break symmetries during the search phase [5],
such as the Least Number Heuristic (LNH) [18] and the eXtended LNH (XLNH) [2]. The
LNH, for example, is a very popular dynamic symmetry breaker implemented in Mace4,
FALCON [18], and SEM [19], etc., to help reduce the number of isomorphic models. However,
these techniques do not guarantee isomorph-freeness. Systems that try to generate isomorph-
free models, such as SEMK [3, 14] and SEMD [11], are either yet to be complete, or are
better off allowing some isomorphic models in the outputs for some problem sets. Thus, post-
processing tools such as our invariant-based algorithm have an important role in isomorphism
elimination as total elimination of isomorphism in the model search phase may not always
be the best option.

Invariants are widely used under different guises in many branches of mathematics. For
example, in graph theory, node invariants can be used to help detect isomorphic graphs [15].
Interestingly, similar ideas can be seen in Mace4’s isomorphism filters. Indeed, Mace4’s
isofilter uses the numbers of occurrences of domain elements in the operation tables as the
lone invariant that serves 2 purposes: First is to do quick checks for non-isomorphism, as
models having different occurrences of domain elements cannot be isomorphic. Second is
to guide the construction of isomorphic functions between potential isomorphic models, as
domain elements can only map to domain elements having the same occurrences in the
operation tables. This reduces the number of permutations to try in the search of isomorphic
functions. However, the lone invariant in isofilter would fail miserably if the models are
quasigroups for which each domain element would appear the same of times in the operation
table. To mitigate this problem, Mace4 provides another isomorphism filter, isofilter2, which
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transforms the models to their canonical forms based on the same algorithm [14] given by
McKay as mentioned above in SEMK. Compared to isofilter, isofilter2 performs much better
for quasigroups, but worse on other algebraic structures such as semigroups due to its high
overheads in computing canonical forms. Nevertheless, both filters compare every model
against the list of non-isomorphic models found so far, and hence their performances degrade
rapidly as the number of models increases. Therefore, both filters benefit immensely from
the reduced number of models in the blocks created by our invariant-based algorithm.

The loops package [16] in GAP [8] uses invariant vectors of 9 invariants in many of its
isomorphism-related functions. Like Mace4’s isofilter, it uses invariant vectors to check for
non-isomorphism, and to help guide the construction of isomorphic function between models
using sophisticated algorithms that take advantage of other GAP functions. Their invariant
vectors work on only one operation table, and exploit heavily specific properties of quasigroups
and loops, which may be ineffective in other kinds of algebras. Our invariant-based algorithm
targets different aspects of all algebraic structures including quasigroups, semigroups, and
more. It also works with multiple binary operations, and does not rely on any built-in
functionality of GAP. Moreover, given a list of models to find non-isomorphic models, the
loops package would compare the invariant vector of every model against those of the list of
all non-isomorphic models found so far to get the list of potential isomorphic models. Our
hash map-based organization of models eliminates the need to compare invariant vectors
repeatedly because all models having the same invariant vectors are already grouped into
the same block in the hash map.

6 Future Work and Conclusions

Currently, we only compute invariants based on binary operations, which are by far the most
prevalent operations in algebraic structures [4]. However, unary operations are also quite
common, and may be even less expensive to manipulate. The discriminating power of the
invariant vectors of the model can be enhanced with the addition of invariant vectors based
on unary operations, and will be part of our future focus.

The results of our research open a whole new line of research into using invariant properties
to eliminate isomorphism in finite model enumeration:

Identify more invariant properties and the cases for which each of them may be useful.
Allow dynamic, and preferably automatic, selection of invariant properties to use in any
given algebraic structure because different invariants work best for different algebraic
structures (see example in Section 3, and also Table 4), so we need to allow dynamic,
and preferably automatic, selection of invariant properties.
Find the best sets of invariant properties to use for various sizes and types of models. A
larger set of algebras (usually of higher orders) may need more invariants in the invariant
vectors to provide enough discriminating power to separate the models into smaller blocks,
but a smaller set of algebras may incur too much overhead in computing the invariant
vectors with many invariant properties.

We observe that the invariant-based algorithm is efficient, scalable, and parallelizable.
It is also compatible with most, if not all, existing finite model enumerators. The focus of
future research will be on finding more good invariant properties, in binary and in unary
operations, to be used as partitioning keys, and on adding the capability of dynamic and
automatic selection of invariant properties to use.
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1 Introduction

Given a Boolean formula, the Boolean Satisfiability problem (SAT) determines whether the
variables of the formula can be assigned in such a way as to make the formula evaluate to
TRUE. In the SAT problem, Boolean formulas are usually presented in Conjunctive Normal
Form (CNF), i.e., F =

∧
i ∨jℓij . SAT is the first NP-complete problem. Besides, SAT solvers

have shown great success in many applications [29], including bounded model checking [10],
program verification [11], and mathematical theorem proving [17].

Two popular methods for SAT are conflict driven clause learning (CDCL) [33] and local
search. The CDCL based solvers evolve from the DPLL backtracking procedure [13] and
combine reasoning techniques. The reasoning techniques in CDCL solvers, particularly unit
propagation (UP) and clause learning, play a critical role in the good performance of CDCL
solvers on application instances. Local search is an incomplete method and its process can
be viewed as a random walk in the search space [19, 27]. Local search SAT solvers begin
with an initial complete assignment and iteratively modify the assignment, until a model is
found or a resource limit (usually the time limit) is reached [19, 28, 26]. Local search solvers
are usually much simpler and lighter than CDCL ones. Indeed, they are probably the most
lightweight SAT solvers. Local search has proved very effective for solving many NP-hard
combinatorial problems. However, it is known that local search solvers are not effective
as CDCL solvers on solving structured SAT instances, particularly those from real-world
applications.

This work aims to improve local search solvers for structured SAT instances. Specifically,
we propose a construct-and-cut (CnC) method for generating initial assignments for local
search, which aims to produce diverse complete assignments as consistent as possible. The
CnC method iteratively performs assigning procedures, which are also called construction
tries, based on unit propagation and heuristics. In each construction try, the algorithm starts
from an empty assignment and extends it to a complete assignment. Also, the algorithm
records the best solution found (with fewest empty clauses) so far and its number of empty
clauses which serves as an upper bound. In the subsequent tries, once the number of empty
clauses reaches the upper bound, the try is cut off.

We use this CnC method to improve three state-of-the-art local search SAT solvers, by
replacing the original initialization method with the CnC method.We conduct experiments
with three important benchmarks, one of which arises from a recent real-world project about
spectrum repacking [32] and the others consist of instances encoded from two important
mathematical problems namely Boolean Pythagorean Triple [17] and Schur Number Five [16].
Experiment results show that, the CnC method brings obvious improvements to the local
search solvers. Particularly, one of the CnC-enhanced local search solver outperforms modern
SAT solvers based on CDCL approach on the three benchmarks.

2 Technical Background

2.1 Preliminary Definitions and Notations
Given a set of Boolean variables {x1, x2, ..., xn}, a literal is either a variable xi or its
negation xi. A conjunctive normal form (CNF) formula F is a conjunction of clauses (i.e.,
F = C1 ∧C2 ∧ ...∧Cm), where a clause is a disjunction of literals (i.e., Ci = ℓi1 ∨ℓi2 ∨ ...∨ℓij).
Alternatively, a CNF formula can be viewed as a set of clauses, and a clause can be viewed
as a set of literals. For a formula F , we denote the set of variables in F by Var(F), and the
number of literals whose corresponding variable is xi is denoted by ∆F (xi).
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For a literal ℓ, its corresponding variable is denoted by ℓ.var, and its phase, denoted by
ℓ.phase, is 1 if ℓ is positive and 0 if ℓ is negative. A literal can be viewed as an ordered pair
of a variable and its phase, i.e., ℓ = (ℓ.var, ℓ.phase). For a literal ℓ, we denote by ℓ the literal
of opposite phase. A clause containing only one literal is a unit clause. We denote ℓ ∈ Ci if ℓ

is a literal in clause Ci.
For a formula F , an assignment α is a mapping V ar(F ) → {0, 1}. If α maps all variables

to a Boolean value, we say it is a complete assignment. For a variable xi ∈ V ar(F ) and an
assignment α, α[xi] is the value of variable xi under α. Given an assignment α, we say that
a literal ℓ is true if α[ℓ.var] is equal to ℓ.phase. A clause is satisfied if it has at least one
true literal, and unsatisfied if all the literals in the clause are false literals. By convention
the empty clause □ is always unsatisfiable, and represents a conflict. SAT is the problem of
deciding whether a given CNF formula is satisfiable.

The process of conditioning a CNF formula F on a literal ℓ amounts to replacing every
occurrence of literal ℓ by the constant true, replacing ℓ by the constant false, and simplifying
accordingly. The result of conditioning F on ℓ is denoted by F |ℓ and can be described
succinctly as follows: F |ℓ = {c/{ℓ}|c ∈ F, ℓ /∈ c}. Note that F |ℓ does not contain any literal
ℓ or ℓ. When we assign a variable x with a value v, we can simplify the formula accordingly,
and the simplified formula is denoted as F |(x,v).

Unit propagation on a CNF formula ϕ works as follows: First, we collect all unit clauses
in ϕ, and then assume that variables are set to satisfy these unit clauses. If the unit clause
{xi} appears in the formula, we set xi to true. Also, if the unit clause {xi} appears in the
formula, we set xi to false. We then condition the formula on these settings. The iterative
application of this rule until no more unit clause remains is called unit propagation (UP).

2.2 Local Search for SAT

When solving a SAT formula by local search, the search space is organized as a network, in
which each position represents a complete assignment and two positions are adjacent if they
are neighbors. A commonly used neighborhood relation N maps assignments to their set of
Hamming neighbors, i.e., assignments that differ in exactly one variable. Typically, a local
search algorithm for SAT starts from a complete assignment, and flips a variable iteratively
to search for a satisfying assignment. In this work, we focus on improving local search for
SAT by generating good initial assignments.

3 Related Works and Discussions

This work utilizes a construct-and-cut method based on unit propagation (UP) to produce a
good quality initial assignment for local search SAT solvers. Unit propagation is a simple
form of reasoning, and has been used to improve local search solver previously.

Some local search solvers use UP to simplify the formula before the search [21, 8]. More
complicated preprocessors have also been developed [31]. These preprocessing techniques are
used to simplify the formula. If the formula cannot be simplified, they just do nothing.

Some algorithms use UP during local search. UnitWalk [18] prefers to perform UP if
possible in each local search step, and only when UP is not applicable a normal local search
step is executed. QingTing [22] is an improved version of UnitWalk with more efficient
implementation and also switches between UnitWalk and a normal local search algorithm.
EagleUP [15] also exploits UP during local search, where UP is performed only when the
algorithm is stuck in local optima.

CP 2021
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Although UP has been previously combined with local search, these previous works either
use UP only as preprocessor, or use UP too heavily. These solvers usually improve local search
on crafted and random instances, but no good result is reported on solving instances from
real-world applications. Most previous local search solvers, including CCAnr [8], Sattime [21]
and ProbSAT [4], generate the initial assignment randomly, while a recent local search solver
YalSAT [5] also utilizes information such as the best found assignment in the last round to
produce the initial assignment. On the other hand, UP-based initialization has been used in
local search for MaxSAT [7, 9, 25]. However, in these works, the initialization does not use
pruning techniques.

Another relevant direction is using CDCL to boost local search solvers. An incomplete
hybrid solver hybridGM [3] calls CDCL search around local minima with only one unsatisfied
clause. SATHYS [1] performs local search and calls a CDCL solver when it is stuck in
local optima. However, these methods do not show improvement over the CDCL solvers on
application benchmarks, although they show better performance than local search on crafted
instances and better performance than CDCL solvers on random instances.

4 A Novel Initialization Method for Local Search SAT Solvers

This section presents the construct-and-cut (CnC) method, which can be used to produce
good quality assignments for local search SAT solvers. The CnC algorithm consists of
individual construction procedures, each of which constructs a complete assignment by
assigning variables one by one.

4.1 The Construct-and-Cut Method
Before presenting the details of the CnC algorithm, we first introduce the key data structures
used in the algorithm.

Set U : it stores all unit clauses, noting that a unit clause has only one literal. U is
updated during the search. Newly generated unit clauses are put into U , and a unit clause is
removed from U after it is picked to perform unit propagation.

Vector value: this vector records the assigned value for each variable. For each variable
x, value(x) has 4 possible values {−2, −1, 0, 1}, as explained below:

value(x) = −2 means unit clauses x and x appear in F simultaneously (may be due to
different UP operations).
value(x) = −1 means x is unassigned.
value(x) = 0 means x is assigned the value 0 (false).
value(x) = 1 means x is assigned the value 1 (true).

The CnC method is depicted in Algorithm 1. The algorithm consists of individual
construction procedures (also called tries), and the number of tries to be executed is controlled
by a parameter cnc_times. We use #(□) to denote the number of empty clauses in the
formula that the CnC algorithm is currently dealing with, which is the cost of the current
assignment. The cost of the best assignment found (e.g. the minimum cost) in previous
construction procedures is denoted as cost∗. In the beginning, CnC initializes cost∗ as the
number of clauses in the input formula, and stores all unit clauses (if any) in U .

In each try, the algorithm works on a copy of the input formula ϕ, which is denoted as F .
In the beginning of each try, value(x) is initialized as -1 for each variable (line 5), indicating
that all variables are unassigned. Then, a loop is executed until there is no unassigned
variable; moreover, the loop is terminated if #(□) reaches cost∗.
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Algorithm 1 CnC(ϕ, cnc_times).
Input: A CNF formula ϕ, cnc_times
Output: An assignment α∗ of variables in ϕ

1 cost∗ ← + the number of clauses in F ;
2 for i← 1 to cnc_times do
3 F ← ϕ;
4 U ← {all unit clauses in ϕ};
5 ∀x ∈ V ar(F ), value(x)← −1;
6 while ∃ unassigned variables do
7 if U ̸= ∅ then
8 ℓ← GetUL(U);
9 x← ℓ.var;

10 if value(x) = −1 then
11 value(x)← ℓ.phase;
12 else
13 value(x)← a random value from {0,1};

14 else
15 x← GetUnassignedVar();
16 value(x)← a random value from {0,1};
17 Simplify F accordingly;
18 foreach newly generated unit clause r do
19 if r /∈ U & r /∈ U then
20 U ← U ∪ {r};
21 else if r ∈ U then
22 value(r.var)← −2;

23 if #(□) ≥ cost∗ then break;
24 if #(□) < cost∗ then
25 α∗ ← value; cost∗ ← #(□);

26 return α∗;

If U is not empty, one literal ℓ is extracted from U via the function GetUL to do unit
propagation. Let us denote x = ℓ.var. We know that x could not have been assigned (either
to 0 or 1). This is because if x is assigned, literals of x would not appear in the formula
and U . Thus, value(x) is either -1 or -2. If value(x) = −1 (e.g., x is unassigned), then x

is assigned the value of ℓ.phase to satisfy the unit clause ℓ; if value(x) = −2, x is assigned
randomly. We would like to mention that, most variables are assigned by UP in the CnC
algorithm.

If U is empty, then an unassigned variable is chosen by the GetUnassignedVar function,
and is assigned a random value.

Whenever a variable x is assigned a value v, the formula F is simplified accordingly. The
result of simplifying F on a literal ℓ can be described succinctly as F |ℓ = {c/{ℓ}|c ∈ F, ℓ /∈ c}
[12]. Moreover, for any newly generated unit clause r, if neither r nor r is in U , then r is
added into U ; if r is already in U , we set value(r.var) to -2 to indicate the conflicting status.

4.2 Main Functions
There are two functions that need to be specified in the CnC algorithm, and they are
presented below.

CP 2021
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Algorithm 2 Local Search with CnC.

Input: A CNF formula ϕ

Output: A satisfying assignment of ϕ if found
1 while not reach time limit do
2 α0 ← CnC(ϕ, cnc_times);
3 if α0 satisfies ϕ then return α0;
4 α← LocalSearch(α0, StepLimit);
5 if α satisfies ϕ then return α;
6 return “UNKNOWN”;

GetUL: the function picks a unit clause in U to perform UP. In the first construction
procedure, the function simply picks a random unit clause to perform UP. For the following
construction procedures, the function utilizes a strategy as follows. The idea is to employ
assigning orders as distant as possible in different tries, so as to exploit diverse reason chains,
among which a good one may be touched. Our heuristic is based on a diversification property.
For a variable, we use prev_assign_step(x) to denote the step number in which it was
assigned in the previous try of CnC. Our heuristic prefers to pick a variable with the largest
prev_assign_step value.

GetUnassignedVar: the function picks an unassigned variable to assign value. We use
the same heuristic as in GetUL. In the first construction procedure, a randomized strategy is
used, and in other procedures a diversification strategy is employed to pick the one with the
largest prev_assign_step values.

An important implementation detail is that we use a sampling method for approximately
implementing the heuristic of picking a variable with the largest prev_assign_step value.
We randomly pick a certain number (which is fixed to 10 according to the preliminary
experiments) of candidate variables and pick the one with the largest prev_assign_step

value. So, we do not need to sort the variables or scan all of them in each iteration. This
allows the linear complexity of our method, as picking a variable to assign can always be done
in O(1) time, and the unit propagation in one iteration can be done in ∆ϕ(xi) in the worst
case, where xi is the chosen variable. Since

∑n
i=1 ∆ϕ(xi) = L(ϕ), the worst case complexity

of one CnC try is bounded by O(L(ϕ)), where L(ϕ) is the length of the formula ϕ.

5 Integrating CnC to Local Search SAT Solvers

In this section, we apply the CnC method to improve local search SAT solvers. The framework
of a local search SAT solver equipped with CnC is depicted in Algorithm 2. As it shows,
the solver calls CnC to produce an initial assignment, which is handed to a local search
algorithm for further improvements, trying to find a satisfying assignment. Local search SAT
solvers may have different restart criterion, which is based on a limit on the steps. So, for
each time the solver restarts, an initial assignment is produced by CnC and then modified
by a local search process.

We apply the CnC method to three state-of-the-art local search SAT solvers for structured
formulas, including Sattime [20], ProbSAT [4] and CCAnr [8]. Sattime is the only example
that a local search solver beats all CDCL solvers in the crafted track of a SAT competition
(in 2011) [20]. ProbSAT is a local search solver based on probability distribution and won
the random track in SAT Competition 2013; it is an improved version of another local search
solver Sparrow [2], which also uses probability distribution functions. CCAnr is a local search
designed with the purpose of solving non-random (structured) SAT instances, and has been
found effective on some application benchmarks [14].
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We also note that a recent local search solver YalSAT performs well on a wide range
of benchmarks, winning the random track of SAT Competition 2017, and is able to solve
some hard crafted and application instances in SAT competitions [5]. Nevertheless, YalSAT
utilizes the Lubby restarting scheme [24] and has very frequent restart in the early stage.
This makes it ineffective to integrate CnC into YalSAT, due to the heavy overhead.

6 Experiments

To evaluate the effectiveness of our CnC method, we compare state-of-the-art local search
solvers with their CnC enhanced versions on three important benchmarks of structured SAT
formulas. Also, we compare the best CnC-enhanced local search solver against state-of-the-art
CDCL solvers.

6.1 Benchmarks

Our experiments are conducted with three important benchmarks, including instances
encoded from a real-world project and two important mathematical problems.
FCC: Recently, SAT solvers have been used by the US Federal Communication Commission

(FCC) for spectrum repacking in the context of bandwidth auction which resulted in
about 7 billion dollar revenue [32]. The SAT instances from this project are available
on line 1 [32]. This benchmark contains 10000 instances, 9482 of which are known to be
satisfiable and 121 unsatisfiable, while the satisfiability of the remaining 397 instances
are unknown. As local search solvers such as UPLS are unable to prove unsatisfiability,
we discard the unsatisfiable instances, leading to 9879 instances in this benchmark.

PTN: This benchmark consists of instances encoded from a mathematical problem named
Boolean Pythagorean Triples. This problem used to be a long-term open mathematical
problem and recently has been solved by SAT techniques, resulting in the currently largest-
sized mathematical proof [17]. Marijn et al. proved the answer to Boolean Pythagorean
Triples (PTN) problem is NO, by encoding PTN into SAT instances, including both
satisfiable and unsatisfiable ones, and solving them. Our PTN benchmark contains only
the satisfiable instances.2 There are 23 instances in this benchmark.

SN5: The instances in this benchmark are encoded from a mathematical problem called
Schur Number Five (SN5) and its variants. [16] proved the solution by encoding the
century-old problem into SAT instances, and the proof of the solution is about two
petabytes in size. Our SN5 benchmark contains 6 satisfiable instances.3

6.2 Solvers

The CnC method is implemented into the local search solvers in C++. For a local search
solver A, the solver which integrates CnC is denoted as A+cnc in our experiments. The
cnc_times parameter is set to 20, which is tuned on a training set consisting of 100 random
FCC instances, half PTN instances and all SN5 instances.

1 https://www.cs.ubc.ca/labs/beta/www-projects/SATFC/cacm_cnfs.tar.gz
2 https://www.cs.utexas.edu/~marijn/ptn/
3 https://www.cs.utexas.edu/~marijn/Schur/
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Table 1 Results of local search solvers and CnC-enhanced local search solvers on all benchmarks.

Benchmark CCAnr CCAnr+cnc ProbSAT ProbSAT+cnc Sattime Sattime+cnc YalSAT

#SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2
FCC (9879) 7878 2091.6 8110 1868.2 5407 4577.7 5477 4506.5 7054 2911.8 7078 2900.0 7136 2881.1
PTN (23) 13 4718.0 23 127.0 5 7885.0 20 2161.7 9 6790.7 18 2945.3 14 4490.3
SN5 (6) 2 7364.5 4 4969.5 0 10000.0 0 10000.0 0 10000.0 1 8708.7 0 10000.0

Table 2 Results of CCAnr+cnc and its CDCL competitors on all benchmarks.

CCAnr+cnc CaDiCaL CaDiCaL_sat Maple_LCM_Dist MapleCOMSPS Kissat Kissat_sat

#SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2 #SAT PAR2
FCC (9879) 8110 1868.2 7674 2326.9 7783 2211.9 7788 2183.2 7783 2183.0 7949 2042.8 8163 1819.1
PTN (23) 23 127.0 17 3274.2 17 3007.4 0 10000.0 1 9639.0 19 2215.7 21 1402.5
SN5 (6) 4 4969.5 0 10000.0 0 10000.0 0 10000.0 0 10000.0 0 10000.0 1 9130.7

The solvers Sattime and ProbSAT are downloaded from the website of SAT Competition
2013. For CCAnr, we used the latest version which is available online4. We include YalSAT in
our experiment, which is downloaded from the website of SAT Comptition 2017.5 Additionally,
we tested UnitWalk [18] – a typical local search solver using unit propagation.6

We also compare the best local search solver obtained by CnC (namely CCAnr+cnc)
against four state-of-the-art CDCL solvers, including MapleCOMSPS [23], Maple_LCM_Dist
[30], CaDiCaL [5] and Kissat (including Kissat_default and Kissat_sat) [6]. MapleCOMSPS
won the gold medal of Main Track of SAT Competition 2016 and the silver medal of Main
Track of SAT Competition 2017, while Maple_LCM_Dist won the gold medal of Main Track
of SAT Competition 2017 and the winner of the main track of SAT Competition 2018 is also
a version of Maple_LCM_Dist. CaDiCaL solved the most instances in the Main Track of
SAT Competition 2019. Particularly, CaDiCaL solved the most satisfiable instances in the
track. Also, Kissat_sat won the gold medal of Main Track of SAT Competition 2020. All
these CDCL solvers are downloaded from the website of SAT Competitions.

6.3 Experiment Results

All experiments were conducted on a cluster of computers with 2.10GHz Intel Xeon CPUs
and 94GB RAM under the operating system CentOS. For each instance, each solver was
performed one run, with 5000 CPU seconds as cutoff. For each solver for each benchmark,
we report the number of solved SAT instances denoted “#SAT” and the penalized run
time denoted “PAR2” (as used in SAT Competitions), where the run time of a failed run is
penalized as twice the cutoff time. The results in bold indicates the best performance for a
benchmark.

Table 1 presents the results of the local search solvers on the three benchmarks. UnitWalk
performs much worse than other solvers (solving 4597 FCC instances and none of the other
two benchmarks) and is not listed in the table. The CnC method improves local search
solvers, particularly on the PTN instances. CCAnr+cnc gives the best performance on all
the benchmarks. It solves 8110 out of 9879 FCC instances, 4 out of 6 SN5 instances and all
PTN instances, showing significantly superiority over all other local search solvers.

4 https://lcs.ios.ac.cn/~caisw/Code/CCAnr-1.1.zip
5 https://baldur.iti.kit.edu/sat-competition-2017/solvers/
6 https://logic.pdmi.ras.ru/~arist/UnitWalk/unitwalk3.tar.gz

https://lcs.ios.ac.cn/~caisw/Code/CCAnr-1.1.zip
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https://logic.pdmi.ras.ru/~arist/UnitWalk/unitwalk3.tar.gz
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We compare CCAnr+cnc with state-of-the-art CDCL solvers. Table 2 shows the results
of CCAnr+cnc and its CDCL competitors. The best CDCL solver is Kissat_sat, which
outperforms other CDCL solvers on all the benchmarks. Encouragingly, CCAnr+cnc is
able to solve more instances than the CDCL solvers on all the benchmarks, with only one
exception – CCAnr+cnc performs a bit fewer FCC instances than Kissat_sat. Particularly,
CCAnr+cnc solves four SN5 instances, while Kissat_sat solves only one SN5 instance and
other CDCL solvers fail to solve any of them. Note that these benchmarks are encoded from
real-world applications or mathematical problems of importance. Our results show that local
search solvers can be complementary to CDCL solvers in applications.

We also calculate the overhead of CnC in SLS+CnC solvers. Averaging over all instances,
the run time of CnC occupies about 1% run time of the whole process.

7 Conclusions

This work presented an effective method named construct-and-cut (CnC for short) for
generating initial assignments for local search SAT solvers. Our experiments on three
benchmarks from real-world project and mathematical problems showed that, the CnC method
can significantly improve the performance of local search SAT solvers on the benchmarks.
More encouragingly, one CnC-enhanced local search solver CCAnr+cnc outperformed state-
of-the-art CDCL solvers on these benchmarks. The source code of CCAnr+cnc is available
at https://github.com/caiswgroup/CNC-LS.

References
1 Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar Sais. Boosting local

search thanks to CDCL. In Proceedings of LPAR 2010, pages 474–488, 2010.
2 Adrian Balint and Andreas Fröhlich. Improving stochastic local search for SAT with a new

probability distribution. In Proceedings of SAT 2010, pages 10–15, 2010.
3 Adrian Balint, Michael Henn, and Oliver Gableske. A novel approach to combine a SLS- and a

DPLL-solver for the satisfiability problem. In Proceedings of SAT 2009, pages 284–297, 2009.
4 Adrian Balint and Uwe Schöning. Choosing probability distributions for stochastic local search

and the role of make versus break. In Proceedings of SAT 2012, pages 16–29, 2012.
5 Armin Biere. Splatz, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT competition

2016. In Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, pages
44–45, 2016.

6 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximilian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT competition 2020. In Proceedings of
SAT Competition 2020: Solver and Benchmark Descriptions, pages 50–53, 2020.

7 Shaowei Cai, Chuan Luo, Jinkun Lin, and Kaile Su. New local search methods for partial
MaxSAT. Artificial Intelligence, 240:1–18, 2016.

8 Shaowei Cai, Chuan Luo, and Kaile Su. CCAnr: A configuration checking based local search
solver for non-random satisfiability. In Proceedings of SAT 2015, pages 1–8, 2015.

9 Shaowei Cai, Chuan Luo, and Haochen Zhang. From decimation to local search and back: A
new approach to MaxSAT. In Proceedings of IJCAI 2017, pages 571–577, 2017.

10 Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking
using satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

11 Byron Cook, Daniel Kroening, and Natasha Sharygina. Cogent: Accurate theorem proving for
program verification. In Proceedings of CAV 2005, pages 296–300, 2005.

12 Adnan Darwiche and Knot Pipatsrisawat. Complete algorithms. In Handbook of Satisfiability,
pages 99–130. IOS Press, 2009.

13 Martin Davis, George Logemann, and Donald W. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, 1962.

CP 2021

https://github.com/caiswgroup/CNC-LS


5:10 Improving LS for Structured SAT Formulas via UP Based CnC Initialization

14 Andreas Fröhlich, Armin Biere, Christoph M. Wintersteiger, and Youssef Hamadi. Stochastic
local search for satisfiability modulo theories. In Proceedings of AAAI 2015, pages 1136–1143,
2015.

15 Oliver Gableske and Marijn Heule. EagleUP: Solving random 3-SAT using SLS with unit
propagation. In Proceedings of SAT 2011, pages 367–368, 2011.

16 Marijn J. H. Heule. Schur number five. In Proceedings AAAI 2018, pages 6598–6606, 2018.
17 Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the Boolean

Pythagorean triples problem via cube-and-conquer. In Proceedings of SAT 2016, pages 228–245,
2016.

18 Edward A. Hirsch and Arist Kojevnikov. UnitWalk: A new SAT solver that uses local
search guided by unit clause elimination. Annals of Mathematics and Artificial Intelligence,
43(1):91–111, 2005.

19 Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations & Applications.
Elsevier / Morgan Kaufmann, 2004.

20 Chu Min Li and Yu Li. Satisfying versus falsifying in local search for satisfiability. In
Proceedings of SAT 2012, pages 477–478, 2012.

21 Chu Min Li and Yu Li. Description of Sattime 2013. In Proceedings of SAT Competition 2013
: Solver and Benchmark Descriptions, pages 77–78, 2013.

22 Xiao Yu Li, Matthias F. M. Stallmann, and Franc Brglez. A local search SAT solver using an
effective switching strategy and an efficient unit propagation. In Proceedings of SAT 2003,
pages 53–68, 2003.

23 Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based
branching heuristic for SAT solvers. In Proceedings of SAT 2016, pages 123–140, 2016.

24 Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of las vegas algorithms.
Information Processing Letters, 47(4):173–180, 1993.

25 Chuan Luo, Shaowei Cai, Kaile Su, and Wenxuan Huang. CCEHC: An efficient local search
algorithm for weighted partial maximum satisfiability. Artificial Intelligence, 243:26–44, 2017.

26 Chuan Luo, Shaowei Cai, Kaile Su, and Wei Wu. Clause states based configuration checking
in local search for satisfiability. IEEE Transactions on Cybernetics, 45(5):1014–1027, 2015.

27 Chuan Luo, Shaowei Cai, Wei Wu, Zhong Jie, and Kaile Su. CCLS: An efficient local
search algorithm for weighted maximum satisfiability. IEEE Transactions on Computers,
64(7):1830–1843, 2015.

28 Chuan Luo, Shaowei Cai, Wei Wu, and Kaile Su. Double configuration checking in stochastic
local search for satisfiability. In Proceedings of AAAI 2014, pages 2703–2709, 2014.

29 Chuan Luo, Holger H. Hoos, and Shaowei Cai. PbO-CCSAT: Boosting local search for
satisfiability using programming by optimisation. In Proceedings of PPSN 2020, pages 373–389,
2020.

30 Mao Luo, Chu-Min Li, Fan Xiao, Felip Manyà, and Zhipeng Lü. An effective learnt clause
minimization approach for CDCL SAT solvers. In Proceedings of IJCAI 2017, pages 703–711,
2017.

31 Norbert Manthey. Coprocessor 2.0 – A flexible CNF simplifier – (tool presentation). In
Proceedings of SAT 2012, pages 436–441, 2012.

32 Neil Newman, Alexandre Fréchette, and Kevin Leyton-Brown. Deep optimization for spectrum
repacking. Communications of the ACM, 61(1):97–104, 2018.

33 João P. Marques Silva and Karem A. Sakallah. GRASP – A new search algorithm for
satisfiability. In Proceedings of ICCAD 1996, pages 220–227, 1996.



Unit Propagation with Stable Watches
Markus Iser #

Karlsruhe Institute of Technology (KIT), Germany

Tomáš Balyo #

CAS Software AG, Karlsruhe, Germany

Abstract
Unit propagation is the hottest path in CDCL SAT solvers, therefore the related data-structures,
algorithms and implementation details are well studied and highly optimized. State-of-the-art
implementations are based on reduced occurrence tracking with two watched literals per clause
and one blocking literal per watcher in order to further reduce the number of clause accesses. In
this paper, we show that using runtime statistics for watched literal selection can improve the
performance of state-of-the-art SAT solvers. We present a method for efficiently keeping track of
spans during which literals are satisfied and using this statistic to improve watcher selection. An
implementation of our method in the SAT solver CaDiCaL can solve more instances of the SAT
Competition 2019 and 2020 benchmark sets and is specifically strong on satisfiable cryptographic
instances.
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1 Introduction

Boolean satisfiability (SAT) solvers are used in a large variety of applications, e.g., software
and hardware verification [2], automated planning [11], or cryptography [10]. Complete
state-of-the-art SAT solvers are based on the Conflict-Driven Clause Learning (CDCL)
algorithm [8, 9]. CDCL conducts a series of decisions with subsequent unit propagation and
conflict resolution. The runtime of CDCL is dominated by the runtime of unit propagation [5].
Unit propagation is the process of inferring a new assignment from a current partial assignment
and the given set of clauses. That requires to map literals which are not satisfied by the
current partial assignment to the clauses in which they occur. One can effectively reduce the
number of clause accesses for unit-clause and conflict detection by watching only two literals
per clause [9, 3].

In this paper we propose a new method for selecting the two literals to be watched for
each clause. We introduce the notion of stable literals, i.e., literals that tend to be satisfied for
long time periods during the CDCL search. In our method, such stable literals are preferred
when selecting new watched and blocking literals.

We implemented our method by modifying the well-known state-of-the-art SAT solver
CaDiCaL [1]. Compared to the original CaDiCaL, our modified version can solve more
benchmark instances of the Main tracks of SAT Competitions 2019 and 2020 and performs
specifically well on a set of satisfiable cryptographic instances. Additionally, the two versions
are rather orthogonal in the sense that they perform well on different subsets of the benchmark
instances.
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2 Preliminaries and Related Work

A Boolean variable can take on two possible values: True and False. A literal is a Boolean
variable (positive literal) or a negation of a Boolean variable (negative literal). A clause
is a disjunction (∨) of literals and a formula is a conjunction of clauses. A clause with
only one literal is called a unit clause. A positive (resp. negative) literal is satisfied if the
corresponding variable is assigned the value True (resp. False). A clause is satisfied, if at
least one of its literals is satisfied and a formula is satisfied, if all its clauses are satisfied.

The satisfiability (SAT) problem is to determine whether a given formula has a satisfying
assignment, and if so, also find it. A key component of the CDCL algorithm is unit
propagation, which is the following process. Given a unit clause C = {l}, l has to be satisfied
in each possible model of the formula, therefore we can immediately assign l’s variable such
that l is satisfied. Next we remove each clause that contains l from the formula (since these
clauses are already satisfied) and remove l from each clause that contains l (since these
clauses cannot be satisfied by this literal anymore). Removing literals from clauses may
produce new unit clauses or an empty clause. The process is repeated until no more unit
clauses are found or until an empty clause is generated. In the latter case, the algorithm has
uncovered a conflict between the partial assignment and the formula.

Unit propagation dominates the runtime of the CDCL algorithm [5], therefore it is of
paramount importance to implement this procedure as efficiently as possible. Currently
the best known implementations of unit propagation are based on the idea of two-watched
literals [9, 3]. As long as both watched literals are unassigned or satisfied, the clause can be
ignored. When a watched literal is falsified, we must check if some of the clauses where it is
watched became unit or empty, otherwise we find a new literal to watch for those clauses.

Competitive implementations of literal watch lists store a so-called blocking literal next
to each clause pointer. The blocking literal is an arbitrary literal from the clause. If the
blocking literal is satisfied, the clause access can be skipped. Another optimization which is
used in state-of-the-art implementations is that the search for a new literal to watch does
not start at the beginning of the clause. Instead, the position of the last found watching
literal is stored in the clause and search starts from there (cycling through the beginning
when we pass by the end) [4].

Epochs in CDCL SAT solvers can be measured in several ways. The naive approach is
to measure an epoch in terms of real time, which is usually not a good idea as it hurts the
reproducibility of runtime results [7]. Epochs are better measured in terms of assignment
phases, i.e., the number of decisions, conflicts, or propagations. Recently, Biere came up with
the dedicated epoch ticks which approximates the number of accessed cache lines during
propagations [1]. In the following, an epoch n denotes the solver state in which we process
the n-th decision – the number of decisions.

3 Selecting Stable Literals to Watch

The stability of a literal l is the number of epochs in which l has been satisfied. In Section 3.1,
we show how to efficiently maintain and calculate literal stability. Our modified unit
propagation periodically prioritizes literals of high stability as watched and blocking literals.
We call this concept stable watches and explain it in Section 3.2.
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Procedure limp(Literal l).

Data: Stability S : Literals→ N
Data: Number of Decisions N

S[l]← N − S[l]

3.1 Literal Stability
The stability of a literal l denotes the total number of epochs (as specified by the total
number of decisions) in which l has been satisfied. Those epochs are given by a set of tuples{(

Ti(l), Ui(l)
)
| 0 < i ≤ n

}
of start- and stop-epochs, in which Ti(l) denotes the i-th epoch

in which l becomes True (satisfied) and Ui(l) denotes the i-th epoch in which l becomes
unassigned or unsatisfied. It is easy to see that Ui(l) ≥ Ti(l) ≥ Ui−1(l) ≥ · · · ≥ T1(l). The
stability Sn(l) of a literal l is given by Definition 1.

▶ Definition 1 (Literal Stability). Given a literal l which is satisfied in epochs
{(

T1(l), U1(l)
)
,

. . . ,
(
Tn(l), Un(l)

)}
, its stability Sn(l) is defined as follows.

Sn(l) :=
n∑

i=1

(
Ui(l)− Ti(l)

)

We can incrementally update literal stability during backtracking in an epoch Ui(l) by using
the recursive form Sn(l) =

(
Ui(l)− Ti(l)

)
+ Sn−1(l). However, this requires to additionally

keep track of epochs Ti(l) in which l gets assigned to true. By reformulating the recursive
form like in Equation 1, we can store Ti(l) as an intermediate state of Sn(l) in order to save
some cache on a hot path in the solver.

Sn(l) := Ui(l)−
(
Ti(l)− Sn−1(l)

)
(1)

In our implementation, we update Sn(l) with the dirty intermediate value Sd
n(l) (Equation 2)

when it is assigned to true and then use Sd
n(l) to calculate the new literal stability Sn(l)

when l is backtracked (Equation 3).

Sd
n(l) = Ti(l)− Sn−1(l) (2)

Sn(l) = Ui(l)− Sd
n(l) (3)

Our method for interval accumulation is specified by Procedure limp. Procedure limp is called
twice per interval, first when a literal l becomes satisfied by a taken assignment in epoch T

and again when that assignment is undone by backtracking in epoch U ≥ T . Between T and
U , literal stability S[l] is in its dirty state. After each second call to limp(l, U), S[l] is a valid
sum of intervals.

3.2 Selecting Stable Watches
Traditional implementations of the two watched literal algorithm start by watching the first
two literals in the clause and also blocking literals are initialized accordingly. During search
new watchers are found according to the order in which literals are stored. Also the blocking
literal is updated lazily during propagation.

Our approach exploits the fact that watched and blocking literal initialization starts
with the first literals in the clause and then progresses along the order of literals in the
clause. Watcher (re-)initialization takes place regularly in cleanup phases for learned clause

CP 2021
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Procedure StableWatches(Assignment A, Clauses C).

Data: Stability S : Literals→ N
Data: Value v : Literals→ {0, 1, 2}

// Cleanup Stability Values
1 for Literal l ∈ A do limp(l)

// Apply Stability-Induced Priorities
2 for Clause c ∈ C do
3 if c is not Reason Clause then
4 stable_sort(c.literals, l0 < l1 ⇐⇒ v(l0)S(l0) > v(l1)S(l1))

// Revert to Dirty State
5 for Literal l ∈ A do limp(l)

forgetting and memory defragmentation. By reordering the literals in each clause, we control
the order in which literals are considered as watching and blocking literals. For each clause,
we sort literals in a descending order according to their literal stability.

Procedure StableWatches outlines our method. It is called after cleanup and before
reattaching clauses to the watcher data-structure. Before we can use the accumulated literal
stabilities, we have to fix those values which are currently in their dirty state, and revert
their values after sorting (Lines 1 and 5). In order to protect the relative order of literals
with the same sorting value, we use stable sorting.

Since there exists a partial assignment that can falsify even the most stable literal of a
clause, we must also be careful not to watch a falsified literal. Therefore, we multiply the
stability of currently false literals by zero. We place additional weight on the stability of
a literal that is also currently satisfied by multiplying its stability by two. This was very
easy to implement based on the value function already available in CaDiCaL. The factors
are given by the value function v(l), which is as follows.

v(l) =


0 if l is false
1 if l is unassigned
2 if l is true

Then, for each clause (Line 2) which is not a reason clause (Line 3)1, we (stable-) sort its
literals in a descending order according to the value of the product of their stability and the
value function (Line 4).

4 Evaluation

We experimentally investigated the effectiveness and efficiency of our methods. Our experi-
ments were executed on a cluster of 20 compute nodes, each equipped with 32 GiB RAM
and 2 × 2.66 GHz Intel Xeon E5430 CPU. The operating system is Ubuntu 18.04.4 LTS,
Linux Kernel 5.4.0-66. We ran 2 processes per node and used a time limit of 5000 seconds
and a memory limit of 16 GiB per benchmark instance.

1 A clause can be reason for propagation in the current partial assignment, in which case literal order
carries additional semantics.
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Table 1 PAR-2 score and number of solved instances for several variants of watched literal
prioritization in Candy.

Method PAR-2 Score Solved Instances
Literal Stability 6747 152
Literal Constrainedness (Desc.) 6844 151
Variable Constrainedness (Desc.) 6920 149
Default Performance 6952 145
Variable Constrainedness (Asc.) 6954 143
Literal Constrainedness (Asc.) 7201 132

We experimented with three sets of instances. The instance sets Main-2020 (400 instances)
and Main-2019 (399 instances) correspond to the benchmark sets which were used in the Main
tracks of the respective SAT Competitions. By projecting on the instance families represented
in Main-2020, we found that our method seems specifically well suited for cryptographic
instances. Our third benchmark set Crypto is a collection of 409 cryptographic instances of
previous SAT competitions.2 Both the number of instances solved and the average runtime
with a penalty factor of two (PAR-2 score) are used to compare performance.

We also ran initial experiments with our SAT solver Candy on the instances in Main-2020.
We report on those in Section 4.1. Later, we were able to reproduce and further analyze our
results with the well-known state-of-the-art SAT solver CaDiCaL (Version 1.1.4) by Armin
Biere. We report on results for CaDiCaL with all instances in Section 4.2.

4.1 Initial Results
Literal Stability emerged as a possible explanation for what happens in our initial experiments
with (trivial) constrainedness-based watcher-priorities. Table 1 displays the preliminary
results for several types of literal priorities, which we used for establishing watched literal
priorities through recurrent watcher reinitialization in the clause forgetting intervals of
our solver Candy. In our initial experiments, we sorted clauses by variable and literal
constrainedness, both in ascending and descending order. To calculate constrainedness, we
use the well-known Jeroslow-Wang score [6].

Our experimental data shows that prioritizing watched literals by low constrainedness
leads to fundamentally worse performance than prioritizing those of high constrainedness.
Prioritizing by high variable and literal constrainedness both outperform the original im-
plementation. Prioritizing by literal stability however, shows the best performance, solving
seven more instances than the default approach.

4.2 Experimental Results
A summary of the results of our experiments with CaDiCaL and our modified version CaDiCaL
Stability is displayed in Table 2. We also included a combination of both versions that takes
the best result for each benchmark – a virtual best solver (VBS). CaDiCaL Stability solves
6 instances more in Main-2019 and 4 instances more in Main-2020. Figure 1 shows that our
approach is stronger in long solver runs.

In Main-2020, our approach is particularly strong on the station-repacking and cryptographic
families of instances. Of the 12 station-repacking instances, CaDiCaL solves 4 instances, while
CaDiCaL Stability solves 10 instances. Of the 35 cryptographic instances, CaDiCaL solves

2 Query for family = cryptography at https://gbd.iti.kit.edu/
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Figure 1 Cumulated runtimes of CaDiCaL with and without Stable Watches, and their VBS on
the benchmarks of SAT Competitions 2019 and 2020.

16 instances, while CaDiCaL Stability solves 20. Table 2 and Figure 2 show, that our
approach performs significantly better on the 409 instances in Crypto. CaDiCaL Stability
solves 13 instances more in Crypto with a significantly better PAR-2 score.

The clear winner is however VBS, a theoretical solver combining both approaches with a
perfect oracle that selects for each instance the fastest approach. This suggests that the two
CaDiCaL versions are orthogonal and would work well together in a portfolio.

Since our approach comes with the overhead of maintaining literal stability statistics,
which is done once per value assignment and again during backtracking, we measured
whether we actually speed-up unit propagation, i.e., watcher iteration. The average number
of propagations per second (PPS) over all instances in Main-2019, Main-2020 and Crypto
goes down from 1.06 million PPS for CaDiCaL to 0.99 million PPS for CaDiCaL Stability.
Also the total number of propagations goes down from 2.23 billion propagations for CaDiCaL
to 2.16 billion propagations for CaDiCaL Stability. So on average, our approach does less
propagations per second, but it also needs a lower total number of propagations to solve the
benchmark instances.

Table 2 PAR-2 score and number of solved instances of CaDiCaL, CaDiCaL Stability and their
VBS on several benchmarks.

CaDiCaL CaDiCaL Stability VBS

Main-2019 Solved 229 235 243
PAR-2 4937.9 4890.3 4581.0

Main-2020 Solved 215 219 237
PAR-2 5212.2 5221.2 4732.5

Crypto Solved 222 235 259
PAR-2 5343.5 5146.7 4593.9
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Figure 2 Cumulated Runtimes of CaDiCaL with and without Stable Watches, and their VBS on
a set of cryptographic instances aggregated from several SAT Competition benchmarks.

5 Conclusion

We showed that we can we afford the overhead of maintaining literal stability values on
the assignment level (which is a hot path). Using stability values to establish priorities
for watched literals leads to improved SAT solver performance, particularly on satisfiable
cryptographic instances. We also showed that the observed performance gain is not due to
an increased number of propagations per second but by requiring less total propagations to
solve the benchmark instances.

The internal state of the watcher data-structure determines propagation order. A partial
assignment can be conflicting for several reasons. With stable watches we break ties differently
such that we analyze different conflicts. In the presented approach, propagation-ties are
resolved in favor of clauses which are less stable (or more rarely satisfied). We could
empirically show that this helps finding solutions for hard satisfiable instances more quickly.

In the future, we expect other effective tie-breakers to be discovered and analyzed. Future
work should focus on how exactly resolution space navigation is affected by propagation order
for several types of instances. In the recent SAT Competition 2021, Kaiser and Clausecker
won a special price with their solver CaDiCaL_PriPro, which performs a different kind of
prioritized propagation.3 This is an additional indication that propagation order is important.

Our modified CaDiCaL is kind-of orthogonal to the original CaDiCaL in the sense that it
performs well on a different subset of the benchmark instances. This suggests, that combining
our approach with the standard approach to select literals to watch could be a promising
topic for future work. That might include research on hybrid heuristics or instance-specific
heuristic selection.

3 https://satcompetition.github.io/2021/downloads.html
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Abstract
This paper presents a new way to improve the performance of the SAT-based bounded model
checking problem by exploiting relevant information identified through the characteristics of the
original problem. This led us to design a new way of building interesting heuristics based on the
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Structure-based and Linear Programming heuristics and show promising results.
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1 Introduction

Computer systems are omnipresent in our daily life. These range from the simple program
that runs a microwave to the very complex software driving a nuclear power plant, passing
by our smartphones and cars. Ensuring the reliability and robustness of these systems is an
absolute necessity. Model-Checking [10] is one of the approaches devoted to this purpose. Its
goal is to prove the absence of failure, or to show a possible one.

Model-Checking is declined into several techniques [8, 6, 19]. Among all, those called
Bounded Model Checking (BMC) [5], based on Boolean satisfiability (SAT). BMC is very
used for hardware formal verification in the context of electronic design automation1, but
is also applied to many other domains. The idea is to verify that a model, restricted to
executions bounded by some integer k, satisfies its specification, given as a set of terms in a
temporal logic. In this approach, behaviors are described as a SAT problem. The memory
usage in SAT solving does not usually suffer from the well-known space explosion problem
and can handle problems with thousands of variables and constraints. The complexity here
is shifted to the solving time: SAT problems are NP-complete problems in general [28].

1 http://fmv.jku.at/hwmcc20/index.html
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These last decades, many improvements have been developed in the context of sequential
SAT solving2 [31, 2, 25, 22, 21], to name but a few. These approaches are quite generic and
are based on exploiting either dynamic information, obtained from the progress of the solving
algorithm itself (e.g., lbd [31]), or static information, derived from the underlying structure
of the SAT problem (e.g., community [2]). Little attention has been given to structural
information that can be extracted and exploited from the original problem (e.g., planning,
scheduling, cryptography, BMC, etc.).

Indeed, when reducing a BMC problem to SAT, crucial information is lost. As we will
highlight in this work, when reintegrated, this information can be a booster for the solving
process. To the best of our knowledge, this paper is the first one to exploit such insights:
existing approaches working on improving SAT-based BMC [14, 17, 33, 15, 32] either focus
on improving existing (generic) heuristics or on dividing efficiently the SAT problem.

This paper aims to propose a methodology (Section 4) to build new heuristics (Section 5).
This methodology is generic and can improve SAT-solvers for any problem with its specific
characterization. Here, we apply the proposed techniques to build efficient SAT-solvers
dedicated for BMC problems. Our results (Section 6) are promising and demonstrate the
interest of exploiting the information provided by the underlying problem.

2 Preliminaries

2.1 SAT problem

A propositional variable can have two possible values ⊤ (True) or ⊥ (False). A literal is a
propositional variable (x) or its negation (¬x). A clause ω is a finite disjunction of literals.
For a given clause ω, V (ω) denotes the set of variables composing ω. A clause with a
single literal is called unit clause. A conjunctive normal form (CNF) formula F is a finite
conjunction of clauses (by abuse of notation, F= {ω1, ω2, . . . }). For a given F , the set of its
variables is noted V . An assignment A of variables of F is a function A : V −→ {⊤, ⊥}. A is
total (complete) when all elements of V have an image by A, otherwise it is partial. For a
given formula F and an assignment A, a clause of F is satisfied when it contains at least
one literal evaluating to true regarding A. The formula F is satisfied by A iff ∀ω ∈ F , ω is
satisfied. F is said to be SAT if there is at least one assignment that makes it satisfiable. It
is defined as UNSAT otherwise.

Conflict Driven Clause Learning [34]. Conflict-Driven Clause Learning algorithm (CDCL)
is one of the main methods used to solve Satisfiability problems and is an enhancement of
the DPLL algorithm [12]. CDCL algorithm performs a backtrack search; selecting at each
node of the search tree, a decision literal which is set to a Boolean value. This assignment is
followed by an inference step that deduces and propagates some forced unit literal assignments
(procedure called unit propagation). This branching process is repeated until finding a model
or reaching a conflict. In the first case, the formula is answered to be satisfiable, and the
model is reported, whereas in the second case, a learnt clause is generated (by resolution),
following a bottom-up traversal of the implication graph [30] (it is called conflict analysis).

2 Our focus here is on CDCL-like complete algorithms [34].
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2.2 SAT-based Bounded Model Checking
Model checking [10] aims at checking whether a model satisfies a property. The model is
usually given as a program, defined in a formal language, while the property is given as
formula expressed in temporal logic (e.g., LTL [27]). A property is said to be verified if no
execution in the model can invalidate it, otherwise it is violated. To achieve this verification
a full traversal of the state-space, representing the behaviours of the model, is required.

An LTL property refers to atomic propositions that express a relation between some
variables of the model. The model checking approach usually represents the model as a
finite-state automaton called a Kripke structure [4]. Such a structure is defined by a 4-uple
K = ⟨S, s0, T, L⟩ with: S a finite set of states, s0 ∈ S an initial state, T ⊆ S × S a transition
relation, and L a labelling function that provides, for each state s ∈ S, an interpretation of
an atomic proposition a denoted by L(a). L(a) is true iff a is satisfied in s.

Bounded Model Checking (BMC) [5, 9] refers to a model checking approach where the
verification of the property is performed using a bounded traversal, i.e., a traversal of symbolic
representation of the state-space that is bounded by some integer k. Such an approach does
not require storing state space and hence, is found to be more scalable and useful [33, 16].

In SAT-based BMC, the BMC approach is reduced to solving a SAT problem. Given a
model M , an LTL property p, and a bound k, it builds a propositional formula such that the
formula is said to be satisfiable iff there exists a violation of the property (counterexample)
of maximum length k. Otherwise, it is unsatisfiable and the property is verified up to length
k. The encoding of this formula requires multiple steps.

First, it translates the model into a Boolean formula. The set of variables of this SAT
formula can be decomposed in two disjoint subsets: M and J , where M is a Boolean
representation of the original variables of the model, while J is a set of fresh variables
(junction variables) used to finalize the conversion into a Boolean formula3. Second, the
property p is also translated into a SAT formula. This conversion involves M and J
and introduces new fresh variables F . Let us denote by Mp the set of variables of M
involved in p, Jp the set of variables of J involved in p. With these definitions we can build
P = Jp ∪ Mp ∪ F , the set of the variables used to encode the property. Finally, the two
previous steps are combined in the following formula:

I(s0)
∧

T (s0, s1)
∧

· · ·
∧

T (sk−1, sk)︸ ︷︷ ︸
Model

∧
Pk︸︷︷︸

P roperty

(1)

It can be observed that both the transition relation of the model and the property have
been unrolled up to the bound k. The left-side denotes the model constraints while the
right-side is related to the property constraints. I(s0) are the initialization constraints that
verify if s0 is the the initial state of K, si represents the reachable states (in K) in i steps
using the transition relation T .

3 Related work

Most of the works on improving SAT solving focus on building heuristics to detect and
exploit relevant information during the solving process. Usually CDCL-like solvers maintain
a database of interesting learnt clauses in order to speedup the solving. Good performances of

3 For instance, a 32 bits variable will be represented as 32 Boolean variables, and the logical operators (∧,
∨, =⇒ ,. . . ) will rely on fresh variables for their representation.
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these solvers are associated to their ability to preserve interesting clauses while maintaining
a reasonable size for the database. So, the issue here is to find the best trade-off between
what is considered to be a relevant information and how much of this information must be
kept. Some of the state-of-the-art heuristics that are used in the best solvers of the world4

are described below:

Size bounded learning [13]. This approach protects learnt clauses that are sized less than
a certain threshold.

Relevant bounded learning [18]. This approach discards learnt clauses when they are no
longer relevant according to some metric. For instance, a learnt clause is considered
as not relevant if the number of its literals that are assigned (w.r.t the current global
assignment) exceeds predefined threshold.

Literal block distance (LBD) [31]. LBD is a positive integer, that is used as a learnt clause
quality metric in almost all competitive sequential CDCL-like SAT-solvers. The LBD
of a clause is the number of different decision levels on which variables of the clause
have been assigned. Hence, the LBD of a clause can change overtime and it can be
(re)computed each time the clause is fully assigned. If LBD(ω)=n, then the clause ω

spans on n propagation blocks, where each block has been propagated within the same
decision level. Intuitively, variables in a block are closely related. Learnt clauses with
lower LBD score tend to have higher quality: Glue Clauses [31] have LBD score of 2 and
are the most important type of learnt clauses.

Community structure [2]. In this approach, the formula at hand is represented as a graph.
The shape of this graph is then analyzed to extract community structure: roughly
speaking, variables belonging to the same community are more densely interconnected
than variables in different communities. Existing studies [2, 3] showed that using the
community structure to detect new learnt clauses results in an improvement of the
performance of the solver.

Symmetries [11]. SAT problems often exhibit symmetries, and not taking them into account
forces solvers to needlessly explore isomorphic parts of the search space. Symmetries can
help learning interesting clauses that the classical learning approaches fail to capture [25, 1].

translates Despite the generic character of these heuristics, they have been tuned by some
research works in the case of the BMC problem. We can cite [29, 33, 17, 32] that present a
variety of optimizations such as: variable ordering heuristics, branching heuristics, studying
the symmetry structure of the BMC formula (1). Other works went for a decomposition of the
BMC formula into simpler and independent subproblems showing promising results [14, 15].

4 Studying the characteristics of BMC problem

4.1 Intuition
The notion of what is a relevant information is quite unclear for SAT procedures. Most of
the existing techniques are generic and try to perform well on any studied formula, without
taking a real care of its origin (see Section 3). However, taking the structural information
of the original problem into account will eventually lead to an improvement of the solving
process. In this paper we explore this idea in the particular case of the BMC problem.

4 According to the results of the SAT competitions (https://satcompetition.github.io/2020/results.
html).

https://satcompetition.github.io/2020/results.html
https://satcompetition.github.io/2020/results.html
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         CP

               CJ

        CPJCPM

CM
 CMJ

CPMJ

Figure 1 The seven disjunctive classes of clauses according to the combination of variables they
handle: model variables (blue), fresh/junction variables (yellow) and property variables (red).
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Figure 2 Measures on the training benchmark showing learnt clauses usage in propagation (left)
and conflict analysis (right) phases. Each class of clauses is colored and annotated by its LBD value.

The starting point is to study the characteristics of the BMC problem. As a first insight,
one can observe that the BMC problem can be trivially divided in two parts: the model and
the property. However, when studying the learnt clauses w.r.t. this partitioning no relevant
information could be inferred. Indeed, a learnt clause usually spans on variables belonging
to both the model and the LTL property at the same time. So, we suggest here a sharper
classification based on the clause variables.

A clause can be composed of variables belonging to M, P or J . Let us denote by
CX = {ω ∈ L | ∀v ∈ V (ω), v ∈ X} the classes highlighted in Figure 1, where X is either P
(the property), M (the model), J (the fresh variables for the model), PJ (property and
fresh variables), PM(property and model variables), MJ (model and fresh variables) or
PMJ (property, model and fresh variables). We can now study the usefulness of each of
the above classes of clauses in the solving process.

4.2 Measures
Let us first precise our setup: all experiments of the paper were conducted on a benchmark of
400 SMV instances. The instances came from the SMV hardware verification problems [7], the
BEEM [26] and the RERS Challenge benchmakrs5. The SMV instances were translated into
DIMACS format for various bound values k={20, 40, 60,. . . , 4000, 6000} [20]. Each instance
includes an LTL property provided with the model (46% of Safety property, 30% Guarantee,
14% Persistence, and 10% Recurrence according to the hierarchy of Manna&Pnueli [24]).

5 https://tinyurl.com/29a4jcme

CP 2021
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Figure 3 Measures of learnt clauses usage during propagation (left) and conflict analysis (right)
phases. Blue dots denote LBD while red points depict the Pareto front of HLP strategy.

To perform our analysis, we developed a tool called BMC-tool6 that integrates NuSMV
tool [7] as a front-end and MapleCOMSPS [23] SAT-solver as a back-end. This solver is the
winner of the main track of the SAT competition 2016 and was used as core engine for the best
solvers in the last 5 years. The success of this solver relies on the management of the learnt
clauses with three different databases according to the LBD value of the clauses: core (LBD
≤ 3) for the really important ones (never deleted), tier-2 (LBD ≤ 6) for not-yet-decided
clauses, and local database for the remaining clauses. Clauses in tier-2 can be promoted to
the core database or downgraded to local database while those of local database can either
be promoted to tier-2 or permanently deleted.

We run our tool on 25% of the whole benchmark (100 instances), the so-called training
benchmark. For all instances, we logged the information related to each learnt clauses when
used in the unit propagation and conflict analysis. These information are the LBD of the
clause and its class (CX). The results are depicted in Figure 2.

The x-axis reports the cumulative mean percentage of learnt clauses for the training
benchmark and the y-axis corresponds to the cumulative mean usage percentage (left-side
for unit propagation and right-side for conflict analysis). Each point represents the used
percentage of learnt clauses of a certain LBD (from 1 to 10) for a certain class. For example,
the purple triangle with left annotation 4 shows 2.5% of learnt clauses of class PM have an
LBD≤4 and are used in 13% of the unit propagation time (resp. 16% on conflict analysis).

We observe that CP have a significant usage (around 45%) with a total coverage of
around 5% in both propagation and conflict analysis. Therefore, these clauses seem to be
good candidates for being considered as a relevant information.

Consider now Figure 3 while ignoring momentarily the red points. This figure depicts
the same information as Figure 2 but without clause classification. Here, we observe that
the default strategy for characterizing relevant information in MapleCOMSPS, i.e., LBD
≤ 3 (identified by the blue point) covers 75% (mean value between propagation and conflict
analysis curves) of utilization for a total of 11% of the learnt clauses. It appears then that
more than half of what is considered as a relevant information came from CP .

This measure comforts our thoughts that the performances of the SAT-solver are con-
ditioned by a certain class of clauses. Our fine grained classification reveals that property
clauses seem to be the more pertinent ones.

6 https://gitlab.lrde.epita.fr/akheireddine/bmctool

https://gitlab.lrde.epita.fr/akheireddine/bmctool
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5 Heuristics for BMC

Based on the previous study, we present our ideas for improving the solving of SAT-based
BMC problem. Our proposal is to identify and protect (from deletion) new sets of clauses
that are relevant for the solving of a BMC problem. We introduce for this, two new heuristics:
Structural heuristic (HS). The intuition behind this heuristic is to encourage the solver to

focus on CP clauses (probably these are used to falsify the property). To achieve this, we
augment the core database of MapleCOMSPS by a subset of CP : we take all clauses of
CP that have an LBD ≤ 5. Indeed, after this threshold, the curves of Figure 2 seem to
initiate an inflection that suggests that no more relevant information is captured.

Linear programming heuristic (HLP). This approach aims at predicting the usefulness of
each learnt clause mathematically. It determines the adequate LBD value for each class
of clauses by maximizing the total usage of learnt clauses while minimizing their number.
This is achieved by solving a linear programming system, that will provide multiple
solutions specifying the suitable value of LBD for each class.
The linear program is written such that the objective is an aggregation function of the
two above criteria. The constraints restrict the search-space to select at most one LBD
value per class of clauses (input information is captured from Figure 2). The description
of the linear system needs the introduction of the following notations:

uj
i : the percentage of learnt clauses (x-axis) with LBD≤ i of class j.

vj
i : the percentage usage of learnt clauses (y-axis) with LBD≤ i of class j.

xj
i : a Boolean variable representing the decision variable of the linear system. It takes

the value 1 if the LBD≤ i is chosen for the class of clauses j, 0 if not.
C={P , M, J , PM, PJ , MJ , PMJ } denotes the set of classes.

Hence, our modeling of the optimisation problem is as follows:

maximize fµ = −µ

O1︷ ︸︸ ︷
10∑

i=1

∑
j∈C

uj
i xj

i + (1 − µ)

O2︷ ︸︸ ︷
10∑

i=1

∑
j∈C

vj
i xj

i

subject to


10∑

i=1
xj

i ≤ 1 ∀j ∈ C //At most one LBD value per class

xj
i ∈ {0, 1} ∀i ∈ [[1; 10]], ∀j ∈ C

fµ is the aggregation function, defined as a weighted sum7, and parameterized with µ

(0 ≤ µ ≤ 1): the term O1 represents the number of learnt clauses that should minimized
and the term O2 is the used percentage that should be maximized. Then, this bi-objective
optimization problem is converted to a single maximization problem using the parameter
µ as described above. Solving this system (using data collected on the training benchmark)
with various values for µ allows to draw a Pareto front (possibly not optimal).
The Pareto front highlighted in Figure 3 (red points) is obtained by solving this system
using an increment of 0.01 for the parameter µ: each of these points corresponds to a
configuration of the form: class CP with LBD x, class CJ with LBD y, etc.
Our first observation is that the red points dominate the blue ones (representing the
LBD-based approach of MapleCOMSPS) on both graphics of Figure 3. It appears then
that we can improve the performance of the standard approach by choosing one of this

7 Other aggregation functions can be used, for example: Ordered Weighted Average, Choquet integral,. . .
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point as a basis for detecting new relevant information: red points located between blue
points tagged 3 and 4 (i.e., those with LBD≤3 and LBD≤4, respectively) are the best
candidates. They are located at the inflection on both propagation and conflict analysis
curves. Among these points, we found that the best promising one covers 83% on unit
propagation (resp. 81% on conflict analysis) for a total of 15% of learnt clauses. This
point characterizes the clauses with the following properties: LBD≤3 for all classes but
CP and CJ . These latter have the configurations LBD≤4 and LBD≤9, respectively.
Therefore, this confirms the usefulness of clauses with LBD≤3 but also identifies new
interesting ones.

6 Experimental results

All the experiments have been executed on the full benchmark presented in Section 4 on an
Intel Xeon@2.40GHz machine with 12 processors and 64 Go of memory and a time limit of
6000 seconds8. Table 1 details the results of our experiments using MapleCOMSPS with HS
or HLP heuristics . The table displays, the number of UNSAT and SAT solved instances,
the total number of solved instances, the PAR-2 metric9 used in SAT competitions, the
CTI metric10 and the cumulated time. HS and HLP don’t include pre-processing time (took
44h27) and the Pareto front computation in HLP doesn’t take more than one second.

We observe that MapleCOMSPS solves 289 instances with a PAR-2 of 423h58. Besides,
augmenting the core database to protect learnt clauses with LBD≤4 (MapleCOMSPS-
LBD≤4) seems to deteriorate the performances: 2 instances less with a PAR-2 of 429h33
(5 hours slower than the original solver). This result shows that increasing the number of
relevant clauses based entirely on the LBD cannot bring better performances.

The two next lines display the results of our heuristics. It appears that both of these
strategies perform better than state-of-the-art: MapleCOMSPS-HS solves 1 UNSAT and 2
SAT more while MapleCOMSPS-HLP solves 4 UNSAT and 2 SAT more. The PAR-2 of these
two heuristics shows a significant improvement with a gain of (at least) 6 hours.

Thus, the two presented heuristics demonstrate the importance of the information captured
by CP , since it is used by both of them: when performing the model-checking approach, a
synchronous product between the Kripke structure and the (automaton of the) property is
executed. Forcing the SAT procedure to consider property clauses will eliminate invalid paths
in the property automaton, leading to a smaller synchronized product, i.e the state-space
size is reduced efficiently. Also, it appears that HLP captures another important information
with CJ clauses: it is composed of fresh variables that make the connection between the
property and the model. Consequently, they also help to compute information related to the
synchronous product.

7 Conclusion and future work

Our journey towards building new heuristics for SAT procedures started with the observation
that the relevant information used by SAT-solvers can be refined. We proposed a generic
methodology to classify learnt clauses and we applied it to the special case of BMC. These
learnt clauses have been classified according to their meaning in the original problem which

8 For a description of our setup, detailed results and code, see https://akheireddine.github.io/
9 PAR-k is the penalised average runtime, counting each timeout as k times the running time cutoff.
10 Cumulated execution Time of the Intersection for instances solved by all solvers

https://akheireddine.github.io/
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Table 1 Comparison between state-of-the-art MapleCOMSPS solver and HS and HLP heuristics.
MapleCOMSPS-LBD≤4 uses a strategy where learnt clauses with LBD≤4 are considered as relevant.

Solver UNSAT SAT TOTAL PAR-2 CTI (279) Cumulated time

MapleCOMSPS 173 116 289 423h58 44h08 238h59

MapleCOMSPS-LBD≤4 169 118 287 429h33 43h12 241h13

MapleCOMSPS-HS 174 118 292 418h10 43h24 238h10
MapleCOMSPS-HLP 177 118 295 413h53 45h02 238h53

helped us to suggest two heuristics (HS and HLP) based on the information carried by the LTL
property. The two heuristics improve the state-of-the-art approach, with the particularity of
HS to have a structural reasoning behind. In the other hand, the procedure used to build
HLP relies on a mathematical reasoning.

Future work aims to refine the proposed classification by exploiting the specification of the
property or the synchronicity of the model. Moreover, we would like to propagate this idea
to offer new sharing strategies on parallel SAT-solvers. And finally, building a SAT-solver to
exploit exclusively structural information of the original problem is in our perspectives.
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Propositional model counting (#SAT), the problem of determining the number of satisfying assign-
ments of a propositional formula, is the archetypical #P-complete problem with a wide range of
applications in AI. In this paper, we show that integrating tree decompositions of low width into
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1 Introduction

Propositional model counting (#SAT), the problem of determining the number of satisfying
assignments of a propositional formula, is the archetypical #P-complete problem [34]. Im-
proving the scalability of state-of-the-art model counters is a challenging task, motivated by
a wide range of applications in AI, including probabilistic reasoning, planning, quantified
information flow analysis, differential cryptanalysis, and model checking [29, 5, 25, 20, 2].

Many current exact model counters rely heavily on search techniques adapted from
Boolean satisfiability (SAT) solving and employ component caching to avoid repeatedly
counting over the same residual formulas seen during the counting process. In particular,
these techniques are applied both by “search-based” exact model counters (such as Cachet,
SharpSAT and GANAK [28, 33, 30]) and “compilation-based” counters (such as c2d, minic2d,
and D4 [7, 24, 21]) in which the compilation process is based on SAT solver traces. Hence
improvements to decision heuristics in the underlying model counters have the promise of
speeding up various state-of-the-art model counters.

In this work, we propose and evaluate the effects of integrating information on tree
decompositions of CNF formulas to guide the decision heuristics in search-based exact
propositional model counters. In theory, it is known that #SAT can be solved in time
poly(|ϕ|)2w, where |ϕ| is the size of the formula and w the width of a given tree decomposition
of the primal graph of the formula ϕ. If clause learning is not employed, search-based counters

© Tuukka Korhonen and Matti Järvisalo;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 8; pp. 8:1–8:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tuukka.m.korhonen@helsinki.fi
https://tuukkakorhonen.com/
https://orcid.org/0000-0003-0861-6515
mailto:matti.jarvisalo@helsinki.fi
https://www.cs.helsinki.fi/u/mjarvisa/
https://orcid.org/0000-0003-2572-063X
https://doi.org/10.4230/LIPIcs.CP.2021.8
https://github.com/Laakeri/modelcounting-cp21
https://github.com/Laakeri/modelcounting-cp21
https://archive.softwareheritage.org/swh:1:dir:fd1a6eaa9d3ba301b7151f077f51e1da29801ffe;origin=https://github.com/Laakeri/modelcounting-cp21;visit=swh:1:snp:49a7ab123dd2b632f8ccf869033700445c419fb9;anchor=swh:1:rev:39fe67cb47f1985729ee3c185a4705d90b8cb048
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


8:2 Integrating Tree Decompositions into Model Counters

achieve this time complexity if they employ component caching and a variable selection
algorithm based on the tree decomposition [1, 6, 9]. Tree decompositions have recently
been employed in dynamic programming based model counters [12, 15, 17], and recent
exact model counters have adapted alternative graph-based techniques, including heuristic
graph partitioning algorithms [8, 21, 24] and graph centrality measures [3], for deciding
variable orderings and decision heuristics. (For more discussion, see section on Related Work.)
However, we are not aware of earlier work on integrating tree decompositions directly as a
decision heuristic component in the context of search-based propositional model counters.

In this paper, we show that, in practice, exploiting tree decompositions of low width is easy
and effective in speeding up state-of-the-art search-based exact model counters SharpSAT
and GANAK on instances with treewidth as high as 150 (or even higher). In particular,
motivating the approach through theoretical observations, we describe how to integrate tree
decomposition guidance to the decision heuristics of these model counters. We show through
extensive empirical evaluation that the tree decomposition guided modifications of SharpSAT
and GANAK noticeably outperform other state-of-the-art exact model counters, including
the counters themselves in their default settings. Beyond the empirical evidence provided in
this paper, we note that our SharpSAT-based model counter SharpSAT-TD, implementing the
ideas presented in this work, ranked first in tracks 1, 2, and 4 of Model Counting Competition
2021 (see https://mccompetition.org/).

2 Preliminaries

We consider the problem of counting the number of satisfying truth assignments (or models)
of a conjunctive normal form (CNF) propositional formula, i.e., #SAT. A CNF formula is
denoted by ϕ, its variables by V (ϕ), clauses by cls(ϕ), and variables of a clause c by V (c).
The size of a formula ϕ is |ϕ| = |V (ϕ)|+ |cls(ϕ)|. We denote by ϕ|x=1 the formula obtained
from ϕ by assigning a variable x ∈ V (ϕ) to 1 (true), i.e., the formula ϕ with x removed from
the variable set, each clause containing literal x removed, and each occurrence of ¬x in any
clause removed. The formula ϕ|x=0 is defined analogously. The formula obtained by applying
unit propagation, i.e., setting ϕ ← ϕ|x=0 whenever there is a clause (¬x) and ϕ ← ϕ|x=1
whenever there is a clause (x), is denoted by UP(ϕ). The number of models of ϕ is #(ϕ). For
any variable x it holds that #(ϕ) = #(ϕ|x=0) + #(ϕ|x=1). Note also that #(ϕ) = #(UP (ϕ)).
We denote the union of two formulas ϕ1 and ϕ2 with disjoint variable sets by ϕ1 ⊔ ϕ2. The
fact that #(ϕ1 ⊔ ϕ2) = #(ϕ1) ·#(ϕ2) allows for separately counting the number of models in
the variable-disjoint formulas ϕ1 and ϕ2 to obtain the model count of ϕ1 ⊔ ϕ2 [19].

We consider tree decompositions of primal graphs of CNF formulas (aka Gaifman graphs).
A graph G has a set of vertices V (G) and a set of edges E(G). For a vertex set X ⊆ V (G)
we denote by X2 the set of all possible edges within X. The primal graph G(ϕ) of a formula
ϕ is a graph with V (G(ϕ)) = V (ϕ) and E(G(ϕ)) =

⋃
c∈cls(ϕ) V (c)2. In words, the vertices

of the primal graph are the variables and the edges are created by inducing a clique on the
variables of each clause.

▶ Example 1. Consider the CNF formula ϕ with variables V (ϕ) = {x1, . . . , x6} and clauses
cls(ϕ) as shown in Figure 1 (left). The primal graph G(ϕ) is in Figure 1 (middle). The
vertices of G(ϕ) are the variables of ϕ and the edges of G(ϕ) are defined by the clauses of ϕ.
For example, G(ϕ) contains the edge {x1, x2} because ϕ contains the clause (x1 ∨ ¬x2 ∨ x5).

A tree is a connected graph T with |E(T )| = |V (T )| − 1. A tree decomposition [26, 4]
of a graph G is a tree T whose each node t corresponds to a bag T [t] ⊆ V (G) containing
vertices of G and which satisfies the properties

https://mccompetition.org/
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1. V (G) ⊆
⋃

t∈V (T ) T [t],
2. E(G) ⊆

⋃
t∈V (T ) T [t]2, and

3. for each v ∈ V (G), the nodes {t ∈ V (T ) | v ∈ T [t]} form a connected subtree of T .
The width of a tree decomposition T is w(T ) = maxt∈V (T ) |T [t]| − 1, and the treewidth of a
graph G is the minimum width over all tree decompositions of G. We use the convention that
one of the nodes of the tree decomposition is chosen as the root of the tree decomposition.
The root can be chosen arbitrarily. We denote by dT (t) the distance from the root to the
node t in the tree decomposition T , i.e., the depth of the node t.

▶ Example 2. Consider the CNF formula ϕ with variables V (ϕ) = {x1, . . . , x6} and clauses
cls(ϕ) as shown in Figure 1 (left). The primal graph G(ϕ) is shown in Figure 1 (middle),
and a tree decomposition T of G(ϕ) in Figure 1 (right). The bags of T are {x2, x3, x5},
{x1, x2, x5}, {x3, x5, x6}, and {x1, x4}. The width of T is 2 because the largest bag has size
3, and thus the treewidth of G(ϕ) is at most 2. Let t1 denote the node of T with the bag
T [t1] = {x2, x3, x5} and t2 the node with the bag T [t2] = {x1, x4}. If t1 is the root, then
dT (t1) = 0 and dT (t2) = 2.

3 Tree Decomposition Guided Model Counting

Consider the basic DPLL-style algorithm with component caching for model counting [1]
presented as Algorithm 1, consisting of unit propagation (Line 1), detection of disconnected
components (Line 4), component caching (cache check on Line 6, caching on Line 9), and
making decisions by selecting and assigning currently unassigned variables (Line 7).

Our focus in this work is on the decision heuristics, i.e., implementation of Line 7.
Algorithm 2 specifies the tree decomposition guided variable selection algorithm. By using
Algorithm 2 as the variable selection procedure in Algorithm 1, we obtain a DPLL-style tree
decomposition guided model counter.

▶ Example 3. Consider the run of Algorithm 1 on the formula ϕ of Figure 1 (left) using
Algorithm 2 with the tree decomposition T of Figure 1 (right), rooted on the node t1 with
the bag T [t1] = {x2, x3, x5}. In the first recursive call, the variable selected is x2 because
it is the lowest index variable in the bag of the root node. Consider a recursive call after
variable decisions x2 = 1, x3 = 1 by unit propagation, and x5 = 1. The remaining formula
has variables x1, x4, and x6, and only the clause (x1 ∨ ¬x4). On Line 4 it is partitioned to
two formulas, one with variable set {x1, x4}, and one with variable set {x6}. On a recursive
call on the former formula, the variable x1 is selected by Algorithm 2, because it is the only
variable left in the lowest-depth bag {x1, x2, x5} intersecting the variable set of the formula.

The time complexity of Algorithm 1 equipped with Algorithm 2 for variable selection is
poly(|ϕ|)2w(T ), where T is the tree decomposition given as input. This time complexity and
similar observations have been already made earlier [1, 6, 9, 27].

{(¬x2 ∨ x3),
(x3 ∨ ¬x6),
(x5 ∨ x6),
(x1 ∨ ¬x2 ∨ x5),
(x1 ∨ ¬x4)}

x2 x3x1

x5 x6x4

x2, x3, x5

x1, x2, x5 x3, x5, x6

x1, x4

Figure 1 An example formula (left), its primal graph (middle), and one of tree decompositions of
the primal graph (right).

CP 2021



8:4 Integrating Tree Decompositions into Model Counters

Algorithm 1 DPLL-style model counter.

Input : Formula ϕ

Output : The number of satisfying assignments of ϕ

1 ϕ← UP(ϕ)
2 if ∅ ∈ cls(ϕ) then return 0
3 if V (ϕ) = ∅ then return 1
4 if ϕ = ϕ1 ⊔ ϕ2 then
5 return Count(ϕ1) · Count(ϕ2)
6 if ϕ in cache then return cache[ϕ]
7 x← VariableSelect(ϕ)
8 R← Count(ϕ|x=0) + Count(ϕ|x=1)
9 cache[ϕ] ← R

10 return R

Algorithm 2 Tree decomposition guided variable selection.

Input : Formula ϕ and tree decomposition T of G(ϕ)
Output : Variable x ∈ V (ϕ)

1 t← The lowest depth node of T with |T [t] ∩ V (ϕ)| ≥ 1
2 return The variable in T [t] ∩ V (ϕ) with the lowest index

▶ Proposition 4 ([6]). If Algorithm 1 implements the variable selection of Algorithm 2, then
the number of cache entries created during Algorithm 1 is at most |V (T )|(w(T ) + 1)2w(T ).

Proof. Suppose that the execution of Algorithm 1 is at Line 7. We show that there can be at
most 2w(T ) different formulas ϕ for a fixed node t of T determined on Line 1 of Algorithm 2
and a fixed variable x returned by Algorithm 2. This implies the proposition because there
are at most |V (T )| choices for t and at most (w(T ) + 1) choices for x.

Let p be the parent node of t in T . The formula ϕ can be obtained from the original
input formula by assigning all variables in T [p] ∩ T [t] and the variables in T [t] with lower
index than x, then applying unit propagation, and then selecting the component containing
x. There are at most w(T ) such variables, so the number of choices is 2w(T ). ◀

As each recursive call of Algorithm 1 is polynomial-time, time complexity poly(|ϕ|)2w(T )

follows from Proposition 4. Although Proposition 4 does not necessarily hold when equipping
Algorithm 1 with clause learning, we will show that tree decomposition guidance provides
significant performance improvements in practice also when clause learning is employed.

4 Integrating Tree Decompositions into Model Counters

In SharpSAT [33] and GANAK [30] (a SharpSAT derivative), variable selection is based on
variable scores, maintained as an array score mapping variables to floating point numbers.
The variable selection algorithm works by selecting the variable x with the highest score(x).
The score of each variable is based on two components: it is the sum of the frequency
score of the variable and the activity score of the variable. The frequency score is the
number of occurrences of the variable in the current formula, and an activity score similar
to VSIDS in SAT solvers [23]. The resulting heuristic, score(x) = act(x) + freq(x), with
both frequency and activity is called VSADS. Further, GANAK makes use of another score
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called CacheScore for prioritizing variables whose components were not recently added to
the cache. The resulting heuristic is called CSVSADS. We implement tree decomposition
based variable selection by modifying the score array in both SharpSAT and GANAK. In
principle, implementing tree decomposition based variable selection with the score array
amounts to just setting the score of a variable x to −min{t|x∈T [t]} dT (t), where dT (t) is the
distance from the root of T to the node t. However, as we show in our experiments it is
sometimes beneficial to use hybrid scores, even though the theoretical bound will not hold in
that case. In particular, we propose the following integration of tree decomposition guidance
as a modification of VSADS into both SharpSAT and GANAK:

score(x) = act(x) + freq(x)− C min
{t|x∈T [t]}

dT (t) (1)

where C is a per-instance chosen positive constant and dT (t) is normalized to take values
between 0 and 1. As default we use C = 100 exp(n/w)/n, where n is the number of variables
and w the width of the tree decomposition. We empirically justify this choice in Section 5.

For computing tree decompositions of low width in practice, we use FlowCutter [16, 32]
FlowCutter was ranked second in the 2nd Parameterized Algorithms and Computational Ex-
periments Challenge (PACE 2017) heuristic treewidth track, and was observed to outperform
the winning implementation on large graphs [10]. It is also used in the recent DPMC model
counter [12]. FlowCutter is an anytime algorithm, meaning that we can terminate it anytime
to get the best tree decomposition computed thus far. As the root of the tree decomposition
we choose a centroid node, i.e., a node t such that each component of G(ϕ) \ T [t] has at most
|V (G(ϕ))|/2 vertices. Before computing the tree decomposition we preprocess the formula
with the standard techniques of unit propagation and failed literal elimination.

Finally, although not on the level of internal decision heuristics, we note that both c2d [7]
and minic2d [24] can take as an input a structure to control the variable ordering inside
the compiler. In particular, c2d can take a decision tree (dtree) as an input and minic2d a
variable tree (vtree) as an input. Both of these structures can be constructed from a tree
decomposition so that the variable selection algorithm of the compiler implements Algorithm 2.
For empirically evaluating the impact of tree decompositions obtained with FlowCutter on
c2d and minic2d, we construct both of these structures from a tree decomposition by placing
all variables of the root bag to the top of the tree, and recursing to the subtrees.

5 Empirical Evaluation

We provide results from an extensive empirical evaluation, comparing the impact of integrating
tree decomposition based heuristics on the runtime performance of SharpSAT, GANAK,
c2d, and minic2d. We also compare to the extend possible the performance of these four
model counters with tree decomposition heuristics to the performance of the recent model
counters D4 [21], DPMC [12], gpusat [15] and NestHDB [17]; and SharpSAT with the recently
proposed centrality-based heuristics [3]. DPMC has both a tensor and a decision diagram
based implementation. We compare to the decision diagram based implementation, as it has
been reported to perform significantly better [12]. The decision diagram based implementation
has two versions, DPMC-LG which exploits tree decompositions and DPMC-HTB, and we
compare to both of them. (DPMC-HTB is equivalent to ADDMC [11].)

As benchmarks we used 2424 instances from recent empirical evaluations of model
counters. In particular, we merged an instance set of 1952 instances from http://www.
cril.univ-artois.fr/KC/benchmarks.html used in e.g. [21, 3, 12, 14] with an instance
set of 1619 instances from https://github.com/dfremont/counting-benchmarks used
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Figure 2 Left: Empirical runtime comparison of different model counters. Right: average number
of variables in component cache hits, SharpSAT vs SharpSAT-TD.

Table 1 Pairwise comparison of original versions of SharpSAT, GANAK, c2d and minic2d against
their tree decomposition guided versions.

Family #Ins VBS VBS-O VBS-TD SharpSAT SharpSAT-TD GANAK GANAK-TD c2d c2d-TD minic2d minic2d-TD
BN-Ratio 389 387 333 387 177 385 163 386 329 345 289 330
BN-DQMR 660 629 627 629 627 629 620 629 577 593 598 584
BN-Ace 31 22 22 22 22 22 22 22 22 22 19 16
BN-other 5 4 3 4 1 2 1 2 3 4 2 2
Plan recognition 11 11 11 11 11 11 11 11 10 11 10 11
Planning-pddl 529 458 451 447 417 446 405 446 426 428 415 390
Planning-other 17 16 16 16 15 16 15 16 13 13 11 13
Circuit-iscas 132 117 117 116 112 116 109 116 110 109 109 104
Circuit-other 17 10 10 10 10 10 10 10 9 9 10 9
BMC-symb-markov 130 118 112 118 52 118 53 114 94 108 20 20
BMC-other 18 14 13 11 12 11 12 11 7 8 3 7
Symbolic-sygus 138 22 21 17 19 15 20 16 1 0 0 0
QIF-maxcount-qif 127 12 11 12 11 12 6 12 10 10 4 4
QIF-other 7 5 4 5 4 5 4 5 4 5 2 3
Handmade 68 36 36 36 36 34 35 36 31 33 33 35
Configuration 35 35 35 35 35 35 34 35 33 32 21 21
Random 104 103 103 103 103 103 103 103 101 101 37 99
Scheduling 6 0 0 0 0 0 0 0 0 0 0 0
Total 2424 1999 1925 1979 1664 1970 1623 1970 1780 1831 1583 1648

in e.g. [15, 14, 17], removing duplicates and instances found unsatisfiable using a SAT
solver. The benchmark set divides into 18 families from applications in e.g. probabilistic
reasoning, planning, model checking, synthesis [29, 25, 21]. The experiments were run
single-threaded on computers with 2.6-GHz Intel Xeon E5-2670 processors. A time limit of 2
hours and memory limit of 16 GB was used. Please consult https://github.com/Laakeri/
modelcounting-cp21 for source code and detailed data.

Figure 2(left) overviews the relative performance of the model counters (apart from gpusat
and NestHDB). SharpSAT and GANAK using the tree decomposition heuristics (*-TD)
solved the greatest number of instances (1970), resulting in state-of-the-art performance
over all the considered counters. After SharpSAT-TD and GANAK-TD, the best-performing
counters are D4, c2d-TD (i.e., the tree decomposition guided c2d), and SharpSAT using
centrality-based heuristics, solving 1880, 1831, and 1790 instances, respectively. Note that
here we allowed a fixed 900 seconds for tree decomposition computation using FlowCutter
on each instance for SharpSAT-TD, GANAK-TD, c2d-TD, and minic2d-TD (as well as
DPMC-LG; see Related Work section). This 900-second runtime is included in the results, as
can be clearly seen in Figure 2(left). However, using this relatively high number of seconds
is not necessary: when using 5, 60, 900, and 1800 seconds, respectively, the numbers of

https://github.com/Laakeri/modelcounting-cp21
https://github.com/Laakeri/modelcounting-cp21
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Table 2 Pairwise comparison grouped by width of tree decompositions used by SharpSAT-TD.

Width #Ins VBS VBS-O VBS-TD SharpSAT SharpSAT-TD GANAK GANAK-TD c2d c2d-TD minic2d minic2d-TD
≤ 20 810 810 809 810 798 810 791 810 809 810 809 810
21 . . . 30 526 525 509 525 405 524 385 524 467 489 483 451
31 . . . 50 378 307 286 303 173 302 164 302 254 266 165 185
51 . . . 100 259 164 131 155 101 152 95 153 106 117 60 71
101 . . . 150 57 27 26 27 25 26 25 27 18 23 8 13
151 . . . 200 128 115 114 115 114 115 114 115 112 110 44 108
201 . . . 300 43 31 31 27 31 26 31 26 11 13 11 7
301 ≤ 223 20 19 17 17 15 18 13 3 3 3 3
Total 2424 1999 1925 1979 1664 1970 1623 1970 1780 1831 1583 1648

Table 3 Comparison of gpusat, NestHDB, and SharpSAT-TD, grouped by width of the tree
decomposition used by SharpSAT-TD.

Width #Ins VBS gpusat NestHDB SharpSAT-TD
≤ 30 1232 1232 1232 1232 1232
31 . . . 50 21 14 1 10 14
51 . . . 100 15 10 0 7 9
101 . . . 200 18 16 0 16 16
201 . . . 266 21 11 0 8 10
267 ≤ 187 0 0 0 0
Total 1494 1283 1233 1273 1281

instances solved by SharpSAT-TD are, respectively, 1962, 1971, 1970, and 1967. In particular,
using the much lower time limit of 5 seconds would result in very much the same overall
performance for SharpSAT-TD.

Table 1 gives a per benchmark family comparison of the impact of tree decomposition
based heuristics on the number of instances solved by SharpSAT, GANAK, c2d and minic2d.
SharpSAT-TD improves significantly on SharpSAT (1970 vs 1664 solved), and similarly
GANAK-TD improves significantly on GANAK (1970 vs 1623). Furthermore, SharpSAT-TD
and GANAK-TD solve only 9 instances less that the virtual best solver VBS-TD, which is
considered to solve an instance if at least one of SharpSAT-TD, GANAK-TD, c2d-TD, and
minic2d-TD solves the instance. VBS-TD also outperforms the virtual best solver VBS-O
over the original four model counters which evidently are more different from each other than
their modifications, each using the same tree decomposition to guide the counting process;
Indeed, the difference between VBS-O and the best original model counter is 145 instances,
in contrast to the difference of 9 instance between VBS-TD and SharpSAT-TD.

The number of instances solved, with instances grouped by the width of the tree de-
composition found with FlowCutter in 900 seconds, is shown in Table 2. We observe to a
great extent consistent performance improvement for each of the four model counters up to
width 150 and at times even up to width 200. For instances of width ≤ 20, SharpSAT-TD,
GANAK-TD, c2d-TD, and minic2d-TD each solve all instances, while the original SharpSAT,
GANAK, c2d, and minic2d each fail to solve some instances.

Due to the techniques gpusat and NestHDB implement – gpusat relies on certain GPU
hardware, and NestHDB relies on a database management system – we were unable to
run them ourselves. Hence we are forced to resort to comparing our runtimes with the
empirical results provided for gpusat and NestHDB in their respective papers [15, 17] using
the benchmark instances used therein. For this indirect comparison, following [17], we
enforced a per-instance time limit of 900 s, memory limit of 16 GB, and tree decomposition
computation time limit of 60 s on SharpSAT-TD. Table 3 provides the indirect comparison
with instances grouped by the width of the tree decomposition used by SharpSAT-TD. On
this set of 1494 instances, gpusat solves 1233 instances and NestHDB solves 1273, while
SharpSAT-TD solves 1281 instances. Note that in [17] NestHDB was found to be the best

CP 2021



8:8 Integrating Tree Decompositions into Model Counters

against a range of other model counters on these benchmarks, and minic2d second-best
solving 1243 instances. Here SharpSAT-TD outperforms gpusat and NestHDB on all ranges
of width apart from ≤ 30 and [101..200], where it solves the same instances as VBS.

Finally, we shortly overview further observation on the impact of the tree decomposition
based heuristics in SharpSAT. We considered modifications of the variable selection heuristics
(Equation 1) for SharpSAT-TD. Recall that SharpSAT-TD solved 1970 instances using
the heuristic with default activity and frequency components and C determined as C =
100 exp(n/w)/n. When selecting C as 103, 107, and 100 exp(n/w), SharpSAT-TD solves
1922, 1964, and 1960 instances, respectively. We note that the choice 107 leads to the
tree decomposition based component always dominating in the equation, with activity
and frequency serving only as tiebreakers. When C = 100 exp(n/w)/n and the activity
component is removed, SharpSAT-TD solves 1965 instances, while when the frequency
component is removed SharpSAT-TD solves 1962 instances. Hence the impact of each of
these two components on their own, when including the tree decomposition component, is
relatively small. However, when both the activity and the frequency component are removed,
SharpSAT-TD solves only 1855 instances. Putting all of these observations together, we
believe that the activity and frequency components act mainly as a secondary tiebreaking
mechanism for choosing between variables in the same bag of the decomposition. Furthermore,
the impact of the choice between using activity vs frequency as the tiebreaking mechanism
appears to be small, and the primary heuristic component leading to the observed performance
improvements is indeed the tree decomposition component.

The tree decomposition based heuristics appears to have a positive impact on average
cache hit size, i.e., the number of variables of the components found to be in cache during
checks to the component cache. Intuitively, the larger the cache hits, the earlier SharpSAT
can determine the number of models in the current search branch, thereby saving time due to
the component cache. Figure 2 (right) shows average cache hit sizes reported by SharpSAT
and SharpSAT-TD on instances which both of them solved using at least 60 seconds on
search (267 instances). The tree decomposition guided variable selection increases average
cache hit size for most of the instances. (We did not observe clear effects on cache hit rates;
cache hit rates do not distinguish hits on small components from hits on large component.)

6 Related Work

The idea of exploiting low-width tree decompositions in model counters has recently gained
popularity with the model counters gpusat [15], NestHDB [17] and DPMC-LG [12] explicitly
exploiting low-width tree decompositions. In contrast to our work, gpusat, NestHDB, and
the tensor implementation of DPMC-LG exploit tree decompositions by manipulating dense
dynamic programming tables. The model counters gpusat and the tensor implementation of
DPMC-LG are “pure” dynamic programming implementations that suffer from best-case time
complexity exponential in treewidth, while NestHDB also incorporates hybrid techniques,
including falling back to SharpSAT in subproblems with high treewidth. The decision
diagram implementation of DPMC-LG uses tree decompositions via project join trees to
build an algebraic decision diagram using the CUDD package [31].

In the context of #CSP, tree decompositions have been exploited in the #BTD [13]
and #EBTD[18] backtracking algorithms. The method of exploiting tree decompositions in
#BTD and #EBTD is similar to SharpSAT-TD when selecting a high value of the constant
C, although many techniques exploited in these counters are CSP-specific.
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Instead of tree decompositions, heuristic graph partitioning is used in compilation-based
model counters: D4 uses the PaToH graph partitioner [21], c2d uses Hmetis [8], and minic2d
uses the min-fill heuristic for variable ordering [24]. GANAK introduced a variable selection
heuristic CSVSADS aiming to increase the cache hit rate by discouraging branching from
variables whose components were recently cached [30]. In the context of constraint networks,
heuristics aiming to promote decomposition into components have been evaluated in [22].

7 Conclusion

We proposed a simple approach for integrating tree decomposition guidance into the decision
heuristics of exact model counters. As a decision heuristic, the approach is directly applicable
to both unweighted and weighted model counting. The empirical results suggest that tree
decomposition guided SharpSAT dominates in performance standard exact model counters.
and provides significant performance improvements in practice.
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Abstract
Variable ordering heuristics play a central role in solving constraint satisfaction problems. In this
paper, we propose failure based variable ordering heuristics. Following the fail first principle, the new
heuristics use two aspects of failure information collected during search. The failure rate heuristics
consider the failure proportion after the propagations of assignments of variables and the failure
length heuristics consider the length of failures, which is the number of fixed variables composing a
failure. We performed a vast experiments in 41 problems with 1876 MiniZinc instances. The results
show that the failure based heuristics outperform the existing ones including activity-based search,
conflict history search, the refined weighted degree and correlation-based search. They can be new
candidates of general purpose variable ordering heuristics for black-box CSP solvers.
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1 Introduction

Constraint satisfaction problems (CSP) are a powerful framework to model and solve
combinatorial search problems occurring in various fields. The challenge in a CSP is to
determine an assignment of values to all variables that satisfies all the constraints, or otherwise,
to prove there is no such an assignment. Backtracking search is a complete method that has
been used to solve general CSPs. It performs a depth-first traversal of a search tree to solve
CSPs. At each node of the search tree, an unassigned variable is selected to assign a value.
The ordering in which the variables are assigned is crucial to the efficiency of backtracking
algorithms for solving CSPs. It is a computationally difficult task to find an optimal ordering
that results in a search tree exploring the fewest number of nodes [11], thus, the ordering is
determined by variable ordering heuristics (VOH) in practice.
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In the past decades, much effort has been done in developing efficient variable ordering
heuristics. Many VOHs have been designed according to the fail first principle that “to
succeed, try first where you are likely to fail” [6]. The aim is to first process the variables that
belong to the most difficult part of a CSP. Modern VOHs are adaptive, which learn during
search to find the variables that are most likely to cause a failure. To select the next variable
to assign a value at a search tree node, the VOHs estimate how likely a variable causing a
failure from various aspects. For instances, the minimum domain size VOH considers the
variables with the smallest domain sizes [6], the weighted degree VOH considers the variables
involved in the constraints causing more failures have a larger chance to cause a failure [2, 20],
some VOHs consider the variables involved in the constraints with higher tightness have a
larger chance to cause a failure [3, 10], the conflict history search considers the variables
involved in the constraints causing recent failures have a larger chance to cause a failure [5].

In this paper, we propose failure based variable ordering heuristics pursuing the fail first
principle from new aspects. The new VOHs do not consider which constraint leads to a
failure but which variable causes the failure. They consider the straightforward information
between an assignment of a variable and the propagation result of the assignment, failure or
success. To estimate how likely a variable causing a failure, the failure rate based heuristic
collects the information of proportion of failures caused by assignments of a variable, and
the failure length based heuristic collects the information of length of failures caused by
assignments of a variable, i.e., the depth of the search tree when a failure occurs. There is
no parameter to set in the failure based heuristics. We employ the decaying strategy of the
conflict history search to make the new VOHs favor the variables causing recent failures. The
failure based VOHs behave like the last conflict based reasoning [9], so the difference between
them is discussed. We perform experiments in the benchmark set of MiniZinc containing
1876 instances of 41 problems. Besides the naive VOHs, we compare the VOHs equiped with
a geometric fast restart strategy and last conflict based reasoning. The results show that the
failure rate based VOH with the decaying strategy solves the largest number of instances. It
outperforms the state of the arts VOHs including ABS [12], CHS [5] and dom/wdegca.cd [20]
and CRBS [18] and performs best in general.

The paper is organized as follows. Section 2 provides the background of CSPs. Some
related works are mentioned in Section 3. The failure based VOHs are introduced in Section 4.
Section 5 presents the experimental results. Finally, the conclusion is in Section 6.

2 Background

A constraint satisfaction problem (CSP) P is a triple P = ⟨X , D, C⟩, where X is a set of n
variables X ={x1, x2 ... xn}, D is a set of domains D ={dom(x1), dom(x2) ... dom(xn)},
where dom(xi) is a finite set of possible values for variable xi, and C is a set of e constraints
C={c1, c2 ... ce}. Each constraint c consists of two parts, an ordered set of variables scp(c) =
{xi1, xi2 ... xir} and a subset of the Cartesian product dom(xi1) × dom(xi2) × ... × dom(xir)
that specifies the disallowed (or allowed) combinations of values for the variables {xi1, xi2 ...
xir}. An assignment of a variable x is in the form (x = v) where v is a value in dom (x).

A solution to a CSP is an assignment of a value to each variable such that all the
constraints are satisfied. Solving a CSP P involves either finding one (or more) solution of P
or proving that P is unsatisfiable. Backtracking search performs a depth-first traversal of a
search tree to solve general CSPs. In the context of a search tree, each edge is associated
with an assignment, a node at level k is associated with a set of k assignments which are
attached to the path from the root to this node. The root node at level 0 is an empty set.
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We use PastVar to denote the set of fixed variables which have been assigned and FutVar to
denote the set of future variables which have not been assigned. At each search tree node,
a future variable is selected by a VOH and a new node is generated after the assignment
to this variable, then a propagation algorithm filtering those inconsistent values from the
domains of variables is applied. If the propagation leads to a domain wipe out, then a failure
is encountered, one or more assignments must be canceled and a backtracking occurs.

3 Related Works

Following the fail first principle, the most popular variable ordering heuristic, minimum
domain size, selects the variable with smallest domain size [6]. It has been combined with
many efficient VOHs. The dom/deg [1] and dom/ddeg [16] combine minimum domain size
with largest variable degree. The weighted degree associates a weight with each constraint,
which records the number of failures caused by the constraint [2]. It identifies the variables
involved in difficult parts of problems. Combined with minimum domain size, the dom/wdeg
has been one of the most efficient general purpose VOHs and has been used as default
VOH by some solvers, such as Choco [14]. Its variants use different strategies to update the
weights of constraints, such as constraint tightness [10] and the explanation information of a
failure [7]. Its recent refinement, wdegca.cd, combines current arity and current domains to
update the constraint weights, has been shown to outperform the classic weighted degree
heuristic [20]. The impact-based search (IBS) estimates the search space reduction after the
propagation of an assignment of a variable [15]. It prefers the variables which may lead to the
greatest search space reduction. The count-based search (CBS) considers solution densities
of constraints [13]. It prefers the variable-value pair with the largest solution density. The
activity-based search (ABS) estimates how active a variable is, e.g., how often the variable
is affected by the assignments of other variables [12]. It prefers the most active variables.
The correlation based heuristic (CRBS) measures the possibility of having conflict between
each pair of variables and estimates the degree of conflicts when choosing a variable [18]. It
prefers the variable which is estimated to causing more conflicts. The conflict history search
(CHS) considers the history of constraint failures [5]. It prefers the variables involved in
those constraints causing recent failures. Given a set of candidate VOHs, the Multi-Armed
Bandit(MAB) techniques have been used to estimate the best VOH on a CSP instance. It has
been shown that the MAB-based methods are more efficient than any single candidate VOH
[21, 19]. The last-conflict based reasoning can be combined with any VOH, called underlying
VOH. Whenever an assignment of a variable x is canceled, such as the propagation of the
assignment leads to a failure, x is stored as a last conflict variable. The strategy always
selects the last conflict variable until its assignment succeeds. It makes the next selection by
the underlying VOH if there is no last conflict variable stored.

4 Failure Based Search

The failure based variable ordering heuristics

Given a CSP, a CP solver applies a propagation algorithm F after an assignment of a variable
x. If the propagation of the assignment of a variable x leads to a failure (a domain wipeout),
then we say the failure is caused by x. Although the actual reason of the failure may contain
other assignments, we consider only the last assignment as the reason here, because only
the last assignment must be one of the reasons of the failure, whereas some of the previous
assignments may not be the reasons.
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▶ Definition 1 (Failure Rate). In the context of backtracking search, the Failure Rate of
a variable x FR(x) is failNum(x)

assignNum(x) where the failNum(x) is the total number of failures
caused by x and the assignNum(x) is the total number of x being assigned (or selected) since
the beginning of search.

The failure rate based (FRB) variable ordering heuristic collects the information of
failNum(x) and assignNum(x) to calculate the failure rate for each variable x. It selects
the variable with the largest F R(x)

|dom(x)| . For each variable x, failNum(x) and assignNum(x)
are initialized to 0.5 and 1 respectively. The initialization indicates that the default failure
rate of each variable is 50% before the failure information is collected. After the searching
starts, if a variable x leads to a failure soon, FR(x) will increase. If the variable leads to a
failure after being assigned several times, FR(x) will decrease.

▶ Definition 2 (Failure Length). If the propagation of an assignment of a variable x leads to
a failure, then the length of the failure is |PastV ar| + 1, where PastVar is the set of fixed
variables before the assignment.

Failure length is the depth of the search tree when a failure occurs. The length of a failure
caused by a variable x is denoted by |failure(x)|. The failure length based (FLB) variable
ordering heuristic associates an accumulated failure length with each variable x, denoted by
AFL(x). For each variable, AFL(x) is initialized to 0. If a failure is caused by a variable x

during search, then AFL(x) is updated as follows.

AFL(x) = AFL(x) + 1
|failure(x)| (1)

The FLB variable ordering heuristic selects the variable with the largest AF L(x)
|dom(x)| . The

heuristic prefers the variables causing more shorter failures, i.e., the variables causing failures
at higher levels of the search tree.

Modern VOHs usually use some decaying strategies to give the recent information more
priority, such as CHS and ABS. We employ the strategy of CHS to make the failure based
variable ordering heuristics prefer the variables causing recent failures. For each variable x,
the factor of the decaying strategy is defined as,

A(x) = 1
#TotalFailure − LastFailure(x) + 1 (2)

where #TotalFailure is the total number of failures detected since the beginning of search,
and LastFailure(x) stores the #TotalFailure value of the last failure caused by x.

Based on the A(x) factor, we propose a new VOH combining the FRB with A(x), namely
FRBA. We use addition to combine them here. The FRBA variable ordering heuristic selects
the variable with largest FRBA(x) defined as,

FRBA(x) = FR(x) + A(x)
|dom(x)| (3)

Similarly, we propose a new VOH combining the FLB with A(x), namely FLBA. The
AFL(x) may be much larger than A(x) and the former may obscure the latter if we use
addition here, so we use multiplication to combine them. The FLBA variable ordering
heuristic selects the one with largest FLBA(x) defined as,

FLBA(x) = AFL(x) × A(x)
|dom(x)| (4)
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In backtracking search of CSPs, CP solvers usually use the binary branching (i.e., 2-way
branching) strategy which has been shown to be more efficient than the non-binary branching
strategy [8]. With binary branching, if the propagation of an assignment (x = v, a left branch)
leads to a failure, a backtracking occurs and a propagation of the refutation (x ≠ v, a right
branch) is performed. Note that the failure based VOHs collect only the failure information
of left branches, so the failures of right branches do not affect FR(x) and AFL(x). For
A(x), although #TotalFailure counts the failures of both left branches and right branches,
LastFailure(x) is updated only after a failure of left branch is detected.

Discussion

The failure based VOHs behave like the last conflict based reasoning that tend to select the
variable causing the last failure, but the new VOHs do not strictly select the last one. We
have mentioned FR(x), AFL(x), A(x) and |dom(x)| as scores to design the new heuristics.
Given a variable x causing the last failure, we discuss how these scores change after the last
failure detected.

FR(x): FR(x) increases because failNum(x)+1
assignNum(x)+1 is always larger than failNum(x)

assignNum(x) .
AFL(x): AFL(x) is increased by 1

|failure(x)| .
A(x): If x causes the last failure, then #TotalFailure equals to LastFailure(x). A(x)
will be the largest one.
|dom(x)|: After the failure is detected, the value of the assignment of x will be removed
from dom(x), so |dom(x)| decreases.

From the analysis, we can see if x causes the last failure, then all the four scoring function
give x a score better than that before the failure. Its score was the best one, so the better
score has a large chance to be selected. Thus, both the failure rate based VOHs and the
failure length based VOHs tend to select the variable causing the last failure.

In binary branching strategy, a failure of a left branch is followed by a propagation of a
refutation. Although the propagation of the refutation does not affect FR(x) and AFL(x),
it may reduce the domains of other variables, so some other variables may have much smaller
domain sizes. In this case, the variable x gets a better score after the backtracking, but it may
not be the best one due to the propagation of the refutation. In addition, if the propagation
of the refutation leads to a failure, the search will backtrack to a higher level, then some
fixed variables with a score better than that of x may become available for branching. Thus,
the failure based VOHs do not strictly select the variable causing the last failure.

5 Experiments

The experiments were run in Choco 4.10.6 [14]. The environment is JDK8 under CentOS 6.4
with Intel Xeon CPU E7-4820@2.00GHz processor and 58 GB RAM.

To examine the robustness of the proposed VOHs, we tested the VOHs with MiniZinc
benchmark from https://github.com/MiniZinc/MiniZinc-benchmarks. Solving a prob-
lem with different modelling may get different performances, so we tested all the MiniZinc
models of CSPs. The instances are flattened offline. After eliminating some large instances
which cannot be flattened in 1 hour and the problems where infeasibility is proved at the root
node, we include 41 problems with 1876 instances of 46 MiniZinc models in the experiments.

The performance of searching for the first solution or proving unsatisfiable are measured
by CPU time in seconds. Timeout is set to 1200 seconds. We have used a random seed
0 throughout the experiments. Besides the naive version of the VOHs, we compare these
VOHs equiped with a geometric restart strategy [4, 17] and last conflict based reasoning
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strategies [9] storing one (LC-1) and five (LC-5) conflict variables respectively. The restart
strategy uses 10 as the initial cutoff of failure count and 1.1 as the growing factor. The ABS
uses its default value selector and all other VOHs use lexicographic ordering as the value
selector.

In the following tables, we present the number of instances solved (#solved) by each VOH,
the accumulated CPU time of each VOH solving the instances solved by all the compared
VOHs (all solved time, ast) and the total CPU time of each VOH solving the instances solved
by at least one of the compared VOHs (total time, tt). The integer in the brackets after ast
is the number of all solved instances, so is the one after tt. The time cost of a timeout run is
count as 1200s and we eliminated the results of the instances where all compared VOHs are
timeout. The best one in each row is in bold.

In Table 1, we compare the failure based VOHs. We have three observations from the
table. Firstly, FRBA performs better than FRB and FLBA performs better than FLB, so
the decaying strategy improves the original failure based VOHs. Secondly, FLBA performs
best when the restart strategy is not equiped, and FRBA performs best when the restart
strategy is equiped. This is because the effective FR scores may be quickly learned after
several restarts, so FRBA could make good decisions after some restarts. Finally, the VOHs
get better performance when equiped with last conflict based reasoning. In general, the
FRBA VOH solves the largest number of instances, so we use it as the representative one of
the failure based VOHs in the following experiments.

Table 1 Comparing the failure based VOHs.

FRB FRBA FLB FLBA

no
restart

LC-0
#solved 702 711 818 870
ast(596) 9,401 9,344 18,740 8,140
tt(972) 348,961 340,532 224,463 162,034

LC-1
#solved 738 741 828 879
ast(618) 11,574 12,558 22,436 15,572
tt(980) 320,280 325,257 222,613 168,985

LC-5
#solved 767 763 862 894
ast(638) 15,494 16,119 15,777 12,316
tt(1,012) 339,881 344,336 217,003 184,585

restart

LC-0
#solved 949 985 984 1000
ast(864) 21,357 11,730 19,218 15,504
tt(1,087) 201,929 162,862 160,376 145,543

LC-1
#solved 1,024 1,037 969 992
ast(911) 14,895 11,813 17,361 17,014
tt(1,094) 132,819 119,706 180,152 165,624

LC-5
#solved 1,027 1,037 958 973
ast(910) 14,676 13,990 21,305 29,482
tt(1,097) 128,496 119,595 200,505 200,291

In Table 2, we compare FRBA with the state of the art VOHs. The ABS, CHS and
dom/wdegca.cd have been implemented in Choco and we implemented the CRBS and the
proposed VOHs2. We use the default parameters for these VOHs, which are recommended in

2 The source code is available at https://github.com/lihb905/fbs/.

https://github.com/lihb905/fbs/
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the literatures [12, 5, 20, 18]. For each MiniZinc model, we calculate the rate of the number
of instances solved by each VOH to the number of instances solved by at least one VOH.
The aggregated 46 rates are shown in the solvedRates rows. The results show that, when
the restart strategy is equiped, FRBA gets the best performance. When the restart strategy
is not equiped, FRBA is competitive with the existing ones and the CHS with LC-5 solves
more instances than the other VOHs. The FRBA equiped with the restart strategy and last
conflict based reasoning solves instances of largest number and its total time cost is less than
that of the existing ones. The FRBA has the largest aggregated solved rate in most of the
rows.

Table 2 Comparing the failure based VOHs with the existing VOHs.

ABS CHS dom/wdegca.cd CRBS FRBA

no
restart

LC-0

#solved 530 665 596 616 711
ast(415) 7,104 6,306 16,860 13,007 5,603
tt(801) 350,965 194,178 274,969 250,625 135,332

solvedRates 36.65 35.96 32.31 34.4 37.47

LC-1

#solved 557 744 647 770 741
ast(427) 10,073 5,362 11,038 11,859 3,964
tt(961) 528,055 303,136 415,091 274,381 302,457

solvedRates 38.42 36.92 34.09 35.32 38.50

LC-5

#solved 583 796 704 790 763
ast(464) 10,279 9,213 18,073 17,000 6,998
tt(998) 530,479 287,299 391,992 291,255 327,536

solvedRates 39.90 38.88 36.19 35.88 38.73

restart

LC-0

#solved 630 730 700 864 985
ast(443) 9,687 9,276 22,666 18,829 8,360
tt(1,106) 618,393 492,387 536,574 356,115 185,662

solvedRates 39.82 38.49 33.39 36.88 40.48

LC-1

#solved 655 905 883 911 1,037
ast(474) 13,022 8,552 14,409 18,480 8,493
tt(1,134) 630,983 362,924 349,635 320,169 167,706

solvedRates 40.37 39.74 36.22 37.47 41.32

LC-5

#solved 674 960 929 879 1,037
ast(475) 9,618 5,810 17,482 20,766 7,935
tt(1,162) 661,177 300,729 331,411 397,650 197,595

solvedRates 40.33 40.47 37.37 37.45 40.55

It has been shown that the VOHs equiped with restart and LC-5 is the best strategy in
general, so we present the detailed results of the strategy in Table 3. The table includes
all the 46 MiniZinc models of 41 problems. The integer in the brackets after each problem
name is the total number of instances of the problem. In each cell, we present the number of
solved instances and the number in the brackets is the total time cost of the instances solved
by at least one VOH. The last row shows the numbers of problems where the corresponding
VOH performs best. To decide which VOH performs best in a problem, we give a rule that
considers the VOH solving instances of largest number as the best one. If a tie exists, we
further compare the total time cost. It is shown that, the VOHs get best performance in
different problems. Both ABS and FRBA get best performance in 13 problems, which is the
largest number.
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Table 3 Detailed results of all problems.

Problems ABS CHS dom/wdegca.cd CRBS FRBA
alpha(1) 1(0.13) 1(0.11) 1(0.17) 1(0.31) 1(0.35)

amaze2(47) 10(1,117) 7(4,820) 4(7,693) 7(4,034) 7(4,102)
amaze3(47) 45(391) 44(1,242) 44(2,393) 43(2,727) 43(3,038)

areas(4) 4(0.21) 4(0.06) 4(0.1) 4(0.08) 4(0.07)
bibd(16) 15(805) 13(2,509) 9(7,617) 15(127) 15(15)

black-hole(21) 21(24) 21(51) 21(28) 21(72) 20(1,213)
carseq(79) 23(7,795) 0(27,600) 0(27,600) 0(27,600) 0(27,600)
cars(79) 37(17,480) 10(46,048) 14(42,313) 5(54,652) 18(37,850)

CostasArray(10) 8(1,880) 7(2,683) 8(1,642) 8(1,769) 9(1,270)
step1-aes(7) 2(2,417) 3(1,882) 3(1,739) 3(1,658) 2(2,408)

debruijn-binary(11) 4(3,678) 7(1,088) 7(1,094) 7(1,180) 7(1,013)
elitserien-noseasonal(10) 10(184) 10(56) 10(26) 10(113) 10(48)

eq20(1) 1(0.05) 1(0.17) 1(0.09) 1(0.12) 1(0.04)
fillomino(20) 17(170) 16(2,372) 16(3,976) 16(2,970) 16(2,983)
golfers1(9) 6(794) 6(117) 6(1,089) 6(259) 6(142)

golfers1b(9) 6(223) 6(15) 6(20) 6(47) 6(31)
golfers2(9) 5(2,347) 5(1,338) 2(4,820) 2(5,876) 3(3,775)
kakuro(6) 6(0.18) 6(0.15) 6(0.12) 6(0.11) 6(1.38)
knights(4) 4(2.18) 4(0.61) 4(0.53) 4(1.13) 4(6.79)

langford(25) 20(119) 20(87) 20(88) 20(112) 20(616)
latin-squares-fd(7) 7(24) 6(1,291) 5(2,594) 4(3,893) 5(3,640)
latin-squares-fd2(7) 7(1.66) 7(0.91) 7(0.97) 7(1.90) 7(10)
latin-squares-lp(7) 7(161) 7(1,294) 4(3,626) 4(3,684) 6(1,909)

magicseq(9) 7(2,503) 9(386) 9(191) 7(2,408) 7(2,468)
market-split(60) 39(9,858) 33(10,567) 30(15,614) 33(10,749) 36(11,169)
mknapsack(7) 7(2,035) 5(3,299) 2(6,717) 4(3,924) 5(3,388)

nmseq(20) 9(6,293) 13(3,687) 11(5,407) 11(6,266) 14(2,290)
non(26) 21(11,151) 23(4,783) 15(17,988) 15(16,631) 24(3,847)

nsp-1(200) 56(95,939) 71(66,452) 55(78,245) 18(130,871) 114(10,801)
nsp-2(200) 6(18,424) 0(22,800) 6(19,884) 0(22,800) 13(12,459)

oocsp-racks(6) 6(898) 6(46) 6(29) 6(86) 6(45)
pentominoes-int(7) 7(252) 7(96) 7(181) 7(41) 7(193)

QCP(60) 60(4,385) 59(5,488) 55(8,914) 51(13,722) 53(11,441)
quasigroup7(10) 5(16) 5(11) 5(14) 5(38) 5(40)

queens(7) 7(1.11) 7(129) 7(108) 7(4.10) 7(1.49)
rect-packing(56) 56(56) 56(12) 56(12) 56(10.02) 56(10.24)

rect-packing-mznc2014(56) 56(54) 56(13) 56(9.16) 56(12) 56(10)
rubik(5) 4(2,298) 5(541) 1(4,826) 3(2,771) 3(2,458)
schur(3) 3(0.07) 3(0.05) 3(0.08) 3(0.06) 3(0.06)

search-stress2(1) 1(0.63) 1(0.59) 1(0.56) 1(0.46) 1(0.48)
search-stress(3) 2(3.00) 2(3.97) 2(40) 2(3.30) 2(2.91)

slow-convergence(10) 10(8.57) 10(9.39) 10(519) 10(355) 10(8.30)
solbat(39) 36(6,491) 32(10,813) 28(18,975) 24(22,157) 26(19,404)
tents(3) 3(0.33) 3(0.19) 3(0.24) 3(0.08) 3(0.07)

wwtpp-random(251) 0(168,000) 125(20,864) 133(11,650) 134(13,203) 138(5,298)
wwtpp-real(401) 7(292,879) 218(56,216) 226(33,711) 223(40,806) 232(20,576)

Sum of bests 13 10 5 5 13

In Table 4, we compare each pair of the VOHs according to the previous rule. The
number of problems where each VOH performs better is present in the table. We can see
that FRBA performs better than the others in general.
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Table 4 Comparing FRBA with the existing VOHs by pairs.

ABS FRBA CHS FRBA dom/wdegca.cd FRBA CRBS FRBA

no
restart

LC-0 21 25 20 26 17 29 19 27
LC-1 22 24 21 25 13 33 15 31
LC-5 26 20 31 15 21 25 16 30

restart
LC-0 24 22 24 22 13 33 18 28
LC-1 20 26 22 24 13 33 9 37
LC-5 21 25 23 23 18 28 15 31

The numbers of instances of each MiniZinc model vary greatly. If a VOH works well in
some models containing a large number of instances, it may get a good overall performance.
To balance the effect of instance set size, we randomly select 1876

46 = 41 instances from the
instance set of each MiniZinc model to generate a smaller benchmark set (46 is the number
of MiniZinc models). If an instance set contains less than 41 instances, we select them all.
The smaller benchmark set contains 832 instances. The results are present in Table 5. We
can see that, when the restart strategy is not equiped, FRBA clearly outperforms the others.
When the restart strategy is equiped, FRBA is competitive with the existing ones. In general,
FRBA gets the best performance in the smaller benchmark set.

Table 5 Comparing FRBA with the existing VOHs in the smaller benchmark set.

ABS CHS dom/wdegca.cd CRBS FRBA

no
restart

LC-0
#solved 451 455 420 430 478
ast(351) 6,504 5,476 15,569 11,961 4,630
tt(538) 127,769 119,427 167,554 150,743 89,434

LC-1
#solved 461 467 431 454 490
ast(360) 9,579 4,594 9,509 9,833 3,219
tt(552) 142,492 124,518 175,928 143,740 92,591

LC-5
#solved 484 491 466 461 497
ast(391) 8,600 7,692 16,355 15,180 6,156
tt(565) 121,385 110,707 148,158 148,961 104,365

restart

LC-0
#solved 505 488 427 477 521
ast(371) 7,116 8,002 22,176 12,087 7,574
tt(598) 142,153 161,329 239,873 177,064 120,197

LC-1
#solved 508 510 470 482 527
ast(389) 10,017 5,897 13,847 11,099 8,068
tt(590) 133,624 126,346 169,283 155,500 106,790

LC-5
#solved 514 525 489 480 533
ast(400) 6,316 3,890 16,542 12,876 7,399
tt(608) 150,353 124,973 176,728 181,416 122,106

6 Conclusion

In this paper, we propose failure based variable ordering heuristics for solving CSPs. The
new VOHs consider failure rate and failure length to estimate how likely an assignment of a
variable causing a failure. All the heuristic information are collected during search, so the
new heuristics are parameter-free. The experiments in the MiniZinc benchmark set show
that the failure based VOHs outperform the state of the art VOHs in general. They can be
new candidates of general purpose variable ordering heuristics for black-box CSP solvers.
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Abstract
Professional magicians employ the use of interesting properties of a deck of cards to create magical
effects. These properties were traditionally discovered through trial and error, the application of
heuristics or analytical proofs. We discuss the limitations of relying on humans for such methods and
present how professional magicians can use constraint programming as a computer-aided design tool
to search for desired properties in a deck of cards. Furthermore, we implement a solution in Python
making use of generative magic to design a new effect, demonstrating how this process broadens the
level of freedom a magician can decree to their volunteers while retaining control of the outcomes of
the magic. Finally, we demonstrate the model can be easily adapted to multiple languages.
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1 Introduction

A central problem in the performing arts of magic concerns designing new effects which are
easily reproduced while complex enough so they are not easily figured out by spectators.
Magicians traditionally use trial-and-error procedures that take time and are limited to only
specific situations such as the creation process behind Poker Night at the Improv [14]. Others
create heuristics such as the System for Arranging Cards for Any Spelling Combination [16],
but heuristics might not work under different circumstances.

Mathematically inclined magicians publish proofs of properties on a deck of cards, such
as the properties of a Faro Shuffle [10, 19, 21, 20]. Programmers create closed source code
exploring possibilities on a memorized deck as in the Poker Formulas [14].

Even after an effect is published, it might not be replicated by magicians who perform
them in other languages since many card effects use characteristics from their own cultures.
One such example is the language bias present in many spellings of card effects, such as the
value and suit in English which are fundamental parts of the Spelling a Card [16]. Other
effects use double meanings of words such as Jacks or clubs. Memorized decks such as the
Aronson Stack [1] are built around card spelling characteristics from the English language.

Moreover, nationality bias diminishes the reach of magical effects beyond the creator’s
cultural bubble. Poker is a central theme in many magical effects [23, 17, 11, 25, 15], although
many countries have their own games [22] which better represent their identities.
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Therefore, designing effects based on the properties of a deck of cards is traditionally a
time-consuming process, limited by the cultural aspects, biases and experience of a creator.

Mentalism

In mentalism, a volunteer makes n choices and the magician reveals a matching prediction [3].
While some effects allow for free choices, others will force the volunteer to a predetermined
selection. One such example is the P.A.T.E.O. force [18]. The magician displays n items
and, along with the volunteer, take turns removing items one by one. The remaining item is
always one that the magician determined ahead of time. For the magic inclined, the method
is further explained in Appendix A.

There are two hints to the volunteers that the magician is guiding them to choose a
predetermined option. First, the magician is always involved in the process of removing an
item, even if it is the volunteer’s turn. Second, the magician makes the final choice. In this
example and in the most common styles of forces, volunteers might perceive that they were
forced to make a choice, thereby ruining the entire sensation of the uncontrolled environment
the magician is trying to build.

This motivates us to ask whether there are methods to provide free choices to volunteers
while retaining control on the final result of the effect.

Our contribution

By defining and limiting the parameter space of the choices of a volunteer, we demonstrate
the application of constraint programming to control and infer results from random selections
made by such a person. Python code is provided to replicate these findings [7] and a
framework [8] was open sourced that can be used to design and generate magic under these
premises.

Outline

This paper is organized as follows: Section 1 presents the background information necessary to
understand the limitations of traditional creative magical methods. Section 2, then, examines
how some magical effects can be generated through constraint programming; following which
Section 3 briefly goes through the sample code that designs and creates such effects. Finally,
Section 4 reports on the results achieved in performing these generative magic effects and
discusses their real life usability before conclusions are presented in Section 5.

2 Controlling outcomes through constraint programming

Several spelling effects are described in the literature, where the magician deals a card as
the chosen card name is spelled. A simple version of the spelling of a freely chosen card
comprises of the following procedure.

The magician removes one blue and one red case from their pocket and places them on a
table. The magician points to the blue case and announces that it contains one prediction.
Next, they open the red one and spreads the 52 cards face down over the table, asking a
volunteer to remove one card from the spread while hiding it from the magician.

The magician puts away both the remaining 51 cards and the red deck case back into
their pocket. From the spectators’ perspective, from this moment on, there is nothing the
magician can do because both the prediction and the volunteer’s free choice have already
been made. The volunteer then reveals the chosen card was, for instance, the five of spades.
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The performer proceeds to spell the name of the mentioned card, dealing one card from
the top of the blue deck for each letter. Since the “five of spades” is spelled with 12 letters,
the magician deals 12 cards and reveals the 13th card to be the five of spades. Spreading the
other 51 cards face up, the magician reminds the volunteer that they could have chosen any
card, yet, they both chose the same five of spades.

This effect consists of two parts, the first one is a free selection from the volunteer which
turns out to be a forced card. To achieve this result, one can make use of a force red deck.
One of such decks is a one-way deck consisting of 52 cards having the same red back and the
same face, in this example, the five of spades. This self-working effect [12] is easy to perform
because it only requires the preparation of the blue deck by positioning its five of spades in
the 13th position.

Convincers and issues
To make the effect stronger, the magician can use false shuffles on both decks, such as the
Mead and Kennedy false shuffle [5]. False shuffles temporarily displace some of the cards but
end the movement with all cards in their original order prior to the shuffle.

They can follow it with false cuts, which do not change the deck order.
A third method consists in placing the five of spades at position 7 and execute controlled

shuffles, such as the Out-Faro Shuffle [19] which brings the card to the 13th position. The
Faro is described in Appendix A

Even the use of stronger convincers might not be enough for this effect as currently
presented, since the magician cannot hand the red cards to the volunteers for further
inspection. Depending on the force deck in use, it cannot even be spread face up.

Choices, control and knowledge
While the volunteer made a free choice in the previous effect, the magician controlled its result
by giving them no other option but the five of spades. The magician decided beforehand
which card would be chosen and placed it in its expected position into the deck.

The selections made by the volunteer can be understood as parameters to the magic
effect. Parameters can be randomly chosen from their own parameter space. In the example
given, there is one [1,52] space, making it a 1-parameter magic effect.

The question raised is whether magical methods exist that allow volunteers to make N
random choices over a N-dimensional parameter space while handing them real control over
the card sequence and, yet, allow the magician to force the result.

In this paper, we aim to confirm that it is indeed possible. A magician can make correct
predictions about the outcome of N random choices made by a volunteer based on a set of
items such as a 52 card deck by controlling other variables through constraint programming.

3 Constraining for freedom

Our desired effect, Freedom of Spelling, consists of attributing real freedom over the parameters
the volunteer will choose. The magician lays a blue and red case each on the table. The
red cards are removed from the deck and fanned, revealing 52 different examinable cards as
in figure 1a. They are spread face down on the table. The volunteer chooses 3 cut points
resulting in 4 packets as in figure 1c, and decides a permutation that defines the sequence in
which the packets will be put back together.

CP 2021
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(a) Original sequence of the red deck. (b) Revealing the ace of spades from the blue deck.

(c) Four piles after the selections of the volunteer.

(d) Revealing the ace of spades as it was spelled.

Figure 1 Performance of the Freedom of Spelling.

The volunteer has therefore 6 free choices and real control over the resulting card sequence.
The magician emphasizes two points. First, the volunteer has made free choices. Second,
there are 52! different combinations of a deck of cards. The magician proceeds to reveal one
single card turned face down on the blue deck, for example, the ace of spades as in figure 1b.
Spelling the “ace of spades”, the card is at the expected 12th position in the red deck which
was controlled by the volunteer as in figure 1d.

There are two parts to this effect. In the first part, the volunteer freely makes 6 choices
from a 6-dimensional parameter space. The resulting card sequence is one out of many
possibilities. The volunteers are fooled to believe that there are 52! possible sequences that
they might generate in this process while the magician has never explicitly said so. The two
phrases are disconnected but the volunteers do not perceive it due to its misdirection and
their misunderstanding of the possibilities generated by a 6-dimensional space parameter.
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The first cut is made anywhere between position 2 and 49. The second cut between the
first one and 50, the third one between the second one and 51. Finally the volunteer chooses
any of the 24 permutations of the four stacks to gather the deck back together in one stack,
which gives only a subset of all possible card sequence combinations, one in the order of 2
million possibilities.

The magician needs to know what position the volunteer has cut to. They can count the
position by spreading the cards and asking the volunteer where to cut. Another method is
to use number markings on the back of the cards as in Card Control by the Numbers [24].

The second part of the effect is to reveal that there is a card in its expected position.
If the ace of spades is in the 12th position, the magician proceeds to use an index method
to reveal the card as a supposed prediction. The method described earlier, the Invisible
Deck [2], would display the ace of spades as the single card face down.

The question we are left with is will there always be at least one card in the expected
position no matter the choice of parameters?

An unexpected way to model this problem aids in its solution. The magician has control
of two aspects of the effect: the starting deck sequence and the card to be revealed. The first
one is a set of 52 variables that start with no constraint. The card to be revealed should be
defined by the parameters chosen by the volunteer during the live performance.

Because the first part of the effect defines 6 parameters and a sequence of array operations
that are performed on the stack of cards, one can create a set of constraints that are required
in order to guarantee the existence of one card in its expected position at the end of the
process. In order to achieve it, we define the 6-dimensional parameter spaces. The 3 cut
points are defined in closed intervals, and the final sequence is defined by the first 3 values of
a permutation.

(a) cut1 ∈ [2, 49], cut2 ∈ [cut1, 50], cut3 ∈ [cut2, 51]
(b) sequence ∈ S({1, 2, 3, 4})

The second step is to extract the length of each card’s name in the language that the
effect will be performed. For instance, the ace of clubs has the length 10 while the king of
diamonds has the length 14.

Given the 6 parameters and starting with a deck numbered [1, 2, . . . , 52], one can simulate
the cuts and deck rebuilding, obtaining the final deck order. For example, cutting to the
10th, 20th and 30th card gives cut1 = 10, cut2 = 20 and cut3 = 30. Using the permutation
[3, 1, 2, 4] results in the sequence 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, . . . , 20, 31, 32, 33, 34, . . . , 51, 52.

Note that the card that ends in the 11th position is the 1, while the 2 ends at position
12. If a card spelled with 10 letters begins at position 1 it would end at the expected 11th
position.

One can now define a constraint that says the ace of clubs must start at position 1 to
end at position 11. Another constraint requires that the king of spades starts at position 3.
But those constraints do not need to hold at the same time, only one of the 52 constraints
need to be satisfied as in listing 1.

Unfortunately, this is not yet enough to generate a magic effect. Satisfying one of such
constraints gives us a set of starting deck position rules that work only for this specific point
in the parameter space. The code must explore the entire parameter space, generating a set
of 2 million constraints, each one consisting of an Or clause with 52 constraints.

Finally, adding the requirement that all variables are non-repeating integers in the space
[1,52], a solver implementation can be used to check for satisfaction and, if possible, a unique
solution that works for any set of parameters the volunteer chooses.

CP 2021
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Listing 1 List of example constraints which must have at least one satisfied.
ace of clubs starts at 1 or
two of clubs starts at 1 or
...
king of spades starts at 3

Listing 2 A function that simulates the cuts and joins.
def simulate(cuts: List[int], deck: List[int ]):

stacks = np.array([ range(cuts [0]),
range(cuts[0], cuts [1]),
range(cuts[1], cuts [2]),
range(cuts[2], 53)])

return np.concatenate(stacks [[* deck ]])

If a solution exists, the performer can use that specific order for the starting red deck,
perform false shuffles and cuts. The volunteer makes their 6 choices. The performer looks
up a table, as in Poker Formulas [14], or is hinted by a computer on which card is at the
expected position in the red deck. The magician proceeds to reveal that card face down in
the blue deck and finally spells the card in the correct position in the red one.

4 The Z3Solver solution

Starting with a deck in any order, one needs to simulate the card movements by slicing and
joining arrays. Listing 2 creates a sequence and decides where each card in the original order
of 1 to 52 ends up.

For example, a number 15 in the second position of the returned NumPy [13] array means
that the 15th card from the original deck ends up at the 2nd position of the deck.

Using Z3Solver [9], a SMT solver, 52 integer variables are created representing the starting
position of their respective cards as shown in listing 3. The first 13 variables stand for the
ace, 2, 3, ..., 10, jack, queen and king of clubs. The next 39 variables represent the same
cards in the suits of hearts, spades and diamonds.

Every card must have a constraint limiting its position to [1,52] and no two cards can
occupy the same starting position.

The next step to constrain the original deck order to the requirements of a given set of 6
parameters is to simulate the card movements with a sample deck. Then, use its output to
generate the required constraints as in listing 4.

The 52 conditions can be generated by going over each card extracting its name and
length. By using the number that finishes at the expected position in the deck array, we
define where such a card should be placed at the beginning of the effect, as in listing 5.

This allows the exploration of a single point in the parameter space, therefore, it is required
to explore the 6-dimensional discrete parameter space, invoking freedom_of_spelling and
generating a new rule for each execution as in listing 6.

Listing 3 Defining all 52 card variables.
names = map(retrieve_card_name , range(1, 53))
all_vars = list(map(z3.Int , names ))
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Listing 4 Simulates the slices, joins and return the proper constraints.
def freedom_of_spelling(all_vars:List[z3.Int], cuts:List[int],

sequence: List[int]) -> z3.Or:
deck = simulate(cuts , sequence)
return spelling_rules(all_vars , deck)

Listing 5 Card rules.
rules = []
for card in range(1, 53):

name = retrieve_card_name(card)
length = len(name.replace("␣",""))
original_position = deck[length]
rules.append(all_vars[card -1] == original_position)

return z3.Or(rules)

5 Results

The Z3Solver is unable to find a solution in less than 24 hours of runtime. The following
optimizations and variations can be implemented to make its runtime faster and this method
of magic creation more approachable to magicians without many resources.

Redesigning for a solution: multiple outs

The performer has only one out so far. For example, the “ace of spades” must be at position
12 so the magician reveals it when spelling the last letter. Such constraint can be relaxed by
allowing the performer two outs. if the “ace of spades” is at position 13, the reveal is made
after the complete spelling. The volunteers are never aware of the two possible outcomes.
The relaxed constraint says that a card with n letters can be at position n or n + 1.

Optimizing

All card names in English have length between 10 and 15. Therefore, if different starting
parameters end up with the same cards in these positions, the redundant ones are removed.

Also, although all cuts are possible, during performances, this is not true. Magicians
know that volunteers do not make their cut on the first few cards even when given a free
choice. Therefore, limiting the parameter space as follows achieves the same magical effect.
(a) cut1 ∈ [7, 21]
(b) cut2 ∈ [max(cut1, 12), 26]
(c) cut3 ∈ [max(cut2, 25), 39]
(d) sequence ∈ S({1, 2, 3, 4})

Listing 6 Exploring the 6-dimensional parameter space.
for cut1 in range(2, 49):

for cut2 in range(cut1 , 50):
for cut3 in range(cut2 , 51):

for sequence in permutations(range (4)):
cuts = (cut1 , cut2 , cut3)
rule = freedom_of_spelling(all_vars , cuts , sequence)
rules.append(rule)

CP 2021
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Table 1 Stack order for Freedom of Spelling in English, from the deck top to its face.

1 5 of hearts 14 8 of clubs 27 7 of diamonds 40 8 of spades
2 2 of diamonds 15 J of spades 28 4 of diamonds 41 K of hearts
3 10 of spades 16 3 of diamonds 29 J of hearts 42 6 of spades
4 7 of spades 17 K of spades 30 J of diamonds 43 J of clubs
5 9 of diamonds 18 A of clubs 31 9 of hearts 44 7 of hearts
6 7 of clubs 19 4 of spades 32 K of diamonds 45 3 of hearts
7 9 of clubs 20 5 of clubs 33 5 of spades 46 10 of hearts
8 8 of hearts 21 9 of spades 34 5 of diamonds 47 Q of spades
9 6 of clubs 22 Q of hearts 35 3 of clubs 48 10 of clubs
10 A of diamonds 23 10 of diamonds 36 4 of clubs 49 A of hearts
11 Q of clubs 24 4 of hearts 37 8 of diamonds 50 6 of diamonds
12 K of clubs 25 2 of hearts 38 3 of spades 51 6 of hearts
13 A of spades 26 2 of spades 39 Q of diamonds 52 2 of clubs

After optimizing, 2,049 constraints for English are created in 8 minutes and analyzed,
generating one of many sequences of the deck that satisfies the desired properties.

The entire source code was released [7] and can be found in Appendix B. A new project
was released as a library [8], allowing magicians to explore methods, create effects and share
contributions to advance the field of generative magic.

Preshow and performance

The resulting stack order, Freedom of Spelling in English, is presented in table 1. Other
solutions exist for card name length tables using different languages.

During the performance, the simulation function is run once to obtain the matching card
for the set of parameters chosen by the volunteer.

The effect was performed online in English, Korean and Portuguese by a professional
magician. In a close up presentation it is preferred to use low tech - such a clicker - to input
the position of the cuts. A smartwatch or hidden thumper can notify the magician which
the card is at its expected position. These technologies are already in use in close up magic
performances.

As a performance example, figure 1a shows the stacked deck from table 1. A volunteer
makes the first cut as in figure 2a.

Supposing the cuts are made at positions 10, 20 and 30. When the volunteer rebuilds the
stack using the sequence [3, 2, 1, 4], the resulting 10th to 15th cards can be seen in figure
2b: the jack of diamonds, queen of clubs, king of clubs, ace of spades, eight of clubs and
jack of spades. In this case, the king of clubs is at position 12, its length plus 1. Therefore,
in a second deck, the magician displays a single card face down, the king of clubs. They
spell “king of clubs” while dealing 12 cards, revealing the king of clubs as in 2c. The entire
performance with the explanation was made available [6].

6 Conclusion and further research

We presented a novel problem formulation to the design process of new effects in magic. Our
implementation proves that new magical effects can be devised and implemented through
the use of computer-aided design (CAD) frameworks. We devised and applied one effect
using constraint programming, giving the volunteers more freedom while keeping control of
the results with the magician.
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(a) Controlling the first cut of a volunteer. (b) Peeking at the rebuilt deck.

(c) Spelling to the king of clubs.

Figure 2 Simulation of a performance with parameters [10, 20, 30, 3, 2, 1, 4].

Because the code is open source, anyone can run it using a different language, therefore,
limiting some of the unintentional biases and boundaries a magical effect has due to the
identity and experience of its creator.

Further research can be done optimizing the model, using other solvers and trying to
remove the constraints from the parameter space. Other effects can be generated such as
allowing a volunteer to choose the language to be used only after the deck has been handled
by the performer.

Generative magic can be explored with other areas of mathematics and computer science.
Its ultimate research challenge is to search and catalog in programming terms the existing
effects in magic literature so that an engine can co-design new ones.
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The magician points to two of those items. The volunteer is asked to select one amongst
the two to remove. With four elements left, it is the volunteer’s turn to point to two items.
The magician selects one amongst the two and removes it. This process is repeated until
there is only one element, which will always be the prediction element – in this case, the
bottle.

For this effect to work, the magician must always select two items which do not include
the prediction. During the volunteer’s turn, if they point to two items that do not include
the prediction, the magician can remove any element. If the volunteer points to one item
and the prediction item, the magician must remove the former. Because the magician goes
first to show how it works, the number of items must be odd for the effect to work.

The Faro shuffle
Although called a shuffle, the Faro is a movement which controls the entire deck. A typical
deck of 52 cards is split into two stacks of 26 cards. Each stack is interwoven resulting
in a single stack where all even cards come from the original top and odd ones from the
original bottom. The result might be the inverse according to which card is the first one to
interweave.

The magician must practice the precise cut and interweave movements as to pretend to
be doing an uncontrolled shuffle, while in reality controlling the position of the cards.

The simplest usage of a series of Faro shuffles is to force one card into a specific target
position.

Stacked decks
Stacked decks are either partially or completely memorized and used throughout magic
performances. The cards at position 10 to 15 in the Aronson Stack are the ace of clubs, ten
of spades, five of hearts, two of diamonds, king of diamonds and seven of diamonds. All of
them are at their exact spelling position when using the English language.

Invisible deck
The invisible deck is traditionally performed by first displaying a closed deck case. After
asking a volunteer to name any card the magician opens the case and shows that there is
only one card face down. It happens to be the card named by the volunteer.

The widely used Invisible Deck can not be examined after the effect is performed because
its gimmick is easily perceived when the cards are manipulated. Michael Close’s variation [4]
does not use any gimmick and is fully examinable after the reversed card is revealed.

Invisible decks are used as finishers, to show a matching prediction. However, its usage
in Freedom of Spelling is innovative as it forces an intermediate outcome.

B Source code

The source code for generating one Freedom of Spelling deck sequence can be split into
generating the variables in listing 7 and generating the constraints and running the solver in
listing 8.
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Listing 7 Generating the deck sequence.
from itertools import permutations
from typing import List , Tuple
import numpy as np
import z3

def simulate(cuts: Tuple[int], deck: Tuple[int]):
stacks = np.array([ range(cuts [0]),

range(cuts[0], cuts [1]),
range(cuts[1], cuts [2]),
range(cuts[2], 53)])

return np.concatenate(stacks [[* deck ]])

VALUES = ["ace", "two", "three", "four", "five", "six", "seven",
"eight", "nine", "ten", "jack", "queen", "king"]

SUITS = ["clubs", "hearts", "spades", "diamonds"]

def retrieve_card_name(position ):
value = (position - 1) % 13
suit = (position - 1) // 13
return VALUES[value] + "␣of␣" + SUITS[suit]

def rules_all_cards_on_deck(all_vars: List[z3.Int]) -> z3.And:
rules = [z3.And([card >= 1, card <= 52]) for card in all_vars]
return z3.And(rules)

def freedom_of_spelling(all_vars: List[z3.Int], cuts: Tuple[int],
sequence: Tuple[int]) -> z3.Or:

deck = simulate(cuts , sequence)
return spelling_rules(all_vars , deck)

def spelling_rules(all_vars: List[z3.Int], deck: List[int]) -> z3.Or:
rules = []
for card in range(1, 53):

name = retrieve_card_name(card)
length = len(name.replace("␣", ""))
original_position = int(deck[length ])
var = all_vars[card - 1]
rules.append(var == original_position)
rules.append(var == original_position - 1)

return z3.Or(rules)

rules = set()
names = map(retrieve_card_name , range(1, 53))
all_vars = list(map(z3.Int , names ))
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Listing 8 Generating all optimized constraints.
from tqdm import tqdm
from z3 import AtMost

for cut1 in tqdm(range(7, 21)):
for cut2 in range(max(cut1 , 12), 26):

for cut3 in range(max(cut2 , 25), 39):
for sequence in permutations(range (4)):

cuts = (cut1 , cut2 , cut3)
rule = freedom_of_spelling(all_vars , cuts , sequence)
rules.add(rule)

for position in range(1, 53):
at_starting_point = [card == position for card in all_vars]
rule = AtMost (* at_starting_point , 1)
rules.add(rule)

rules.add(rules_all_cards_on_deck(all_vars ))

print(len(rules ))
print(z3.solve(rules ))
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Abstract
Electric Vehicles (EVs) are set to replace vehicles based on internal combustion engines. Path
planning and vehicle routing for EVs need to take their specific characteristics into account, such as
reduced range, long charging times, and energy recuperation. This paper investigates the importance
of vehicle dynamics parameters in energy models for EV routing, particularly in the Pickup-and-
Delivery Problem (PDP). We use Constraint Programming (CP) technology to develop a complete
PDP model with different charger technologies. We adapt realistic instances that consider vehicle
dynamics parameters such as vehicle mass, road gradient and driving speed to varying degrees. The
results of our experiments show that neglecting such fundamental vehicle dynamics parameters can
affect the feasibility of planned routes for EVs, and fewer/shorter charging visits will be planned if
we use energy-efficient paths instead of conventional shortest paths in the underlying system model.
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1 Introduction

The Pickup-and-Delivery Problem (PDP) is a well-studied problem in Constraint Program-
ming (CP) and Operations Research. PDP is a point-to-point transport problem where a
fleet of vehicles needs to serve requests for moving loads/passengers between a set of pickup
and delivery points. In this problem, transit requests are known and vehicles can start and
terminate their trips at particular depots. The solution to the PDP is a set of routes (one
route per vehicle) that satisfies both problem objectives (e.g. shortest tours) and transport
constraints (such as time windows and energy requirements).

In this study, we are interested in the PDP using Electric Vehicles (EVs). The electrifica-
tion of transport systems is a well-known and efficient practice to reduce transport emissions.
Compared to the conventional combustion-based vehicles, battery-powered vehicles are less
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dependant on fossil sources and offer higher energy efficiencies. However, limited driving
range and the lengthy charging process in EVs may require substantially different routing
decisions compared to conventional vehicles. As an example, in cases where the EV’s available
energy is not sufficient to plan point-to-point trips, charging detours need to be considered.
Hence, the transport model needs to carefully track the EVs’ energy levels to ensure the
feasibility of planned trips by possibly adding necessary charging stops.

In transport systems with EVs, energy matters can generally be studied from two aspects:
energy absorbed at charging points and energy consumed in point-to-point trips (discharging).
Depending on the required energy and also the technology used at charging points, charging
times may vary from a few minutes to several hours. A common practice to model the
charging component of the transport system is establishing a linear relationship between
energy and time [8, 16]. However, as EV chargers can adapt their power with the battery’s
remaining energy (slower charging rate in higher state of charge), linear charging models
may not be able to correctly reflect the actual charging time needed for a specific amount
of energy. To address this inaccuracy, recent studies have employed more realistic charging
profiles for their transport models to accommodate various charging technology types via
piece-wise linear approximations [15, 13].

Discharging (while driving) is the other aspect of energy matters in EVs. Similar to
charging, transport models require an energy model that appropriately accounts for energy
consumption. A common (but inaccurate) method to estimate the energy consumption of
point-to-point trips is to use a fixed energy consumption rate (measuring units of energy
per unit of distance/time) [11, 19]. This means that basic models assume shortest/fastest
point-to-point paths to also be the most energy-efficient paths. However, there are several
important parameters in vehicle dynamics that are ignored in linear consumption models,
such as driving patterns, vehicle mass and road gradients. Therefore, the estimated energy
costs obtained by using basic models are not accurate and there is always a high risk for
planned trips to be infeasible in reality. Due to the complexity of realistically estimating
the discharging energy in EVs, attempts to add some parameters of vehicle dynamics into
energy models may lead to major simplifications in the energy model such as ignoring vehicle
acceleration or neglecting changes in ground slope [9].

To better explain to what extent vehicle dynamics can affect the energy consumption in
EVs, we solved a PDP with 14 transport demands in San Francisco as depicted in Figure 1
(Right). The trip was planned using the average (fixed rate) energy consumption of the
Peugeot iOn as an EV with 16 kWh battery capacity and 100% initial energy level. As shown
in Figure 1, the EV can transport all of the passengers to their destination using less than
100% of the energy capacity (red line). Therefore, the planned trip seems feasible with the
basic (fixed-rate) energy model. But the situation changes when we recalculate the energy
requirement of the planned multi-stop trip via three other energy models that take vehicle
dynamics into account to varying degrees. As seen in Figure 1 (Left), the trip would require
more energy when passenger weights are included (blue line). Energy consumption further
increases when the ground slope is added into the energy calculation (green and yellow
curves), making the last two pickups (at a distance of 120km) infeasible with more accurate
energy models. Therefore, given the fact that trips can be planned for every possible initial
energy level, neglecting vehicle dynamics parameters can potentially result in infeasible trips.

This paper investigates the implications of adding vehicle dynamics into the EV route
planning. To this end, we establish an energy-based PDP transport model that can handle
realistic charging and discharging profiles of EVs. We use CP technology to prototype a
solver for the PDP that can deal with the new transport model. This allows us to conduct a
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Figure 1 [Coloured] Right: A Sample multi-stop trip in San Francisco, Left: Pickup and drop-off
of passengers during the trip, also energy requirement of the trip using different energy models
versus the distance travelled.

detailed study of the new model and evaluate it with a new set of realistic instances that
accounts for challenging requirements of EV energy models in two scenarios: using shortest
or energy-efficient point-to-point paths. The results of our experimental study show that it is
crucial to use more accurate transport models to avoid the risk of seriously underestimating
energy requirements. These results justify an investment into new solving technology that
can handle these accurate models efficiently.

2 Energy Consumption Models

When solving routing problems for EVs, the energy requirement of the underlying point-to-
point paths are determined based on an energy model, which determines how much energy the
vehicle will consume (or indeed recuperate) when travelling from point A to point B. Energy
models can differ dramatically in their complexity. A very basic model may estimate energy
requirements over a path long length d by simply using an average energy consumption rate
β (in Wh/100m), resulting in the simple equation E = β × d. This simplistic energy model
provides a rough approximation and does not fully take into account the main parameters in
vehicle dynamics, such as road gradient, vehicle mass or acceleration. To better understand
the importance of the vehicle dynamics parameters, Figure 2 (Right) shows changes in
energy efficiency with different road gradients and extra mass for the Peugeot iOn as a test
EV with an initial energy level of 70%. We use the realistic WLTP drive cycle2 depicted in
Figure 2 (Left). We see a slight but clear non-linear relationship between energy efficiency
and road gradient. Furthermore, the figure shows that increasing vehicle mass can either
increase or decrease energy efficiency depending on the gradient.

In positive gradients, the energy requirement of links increases with mass, but this is not
always the case in negative gradients. EVs can potentially recover part of the kinetic energy
via regenerative braking. This means that energy consumption can even be negative on
negative slopes as shown in Figure 2 (Right). If the energy requirement of a link is negative
(on negative slopes), increasing mass would contribute to recuperating more energy and,
therefore, decreased energy consumption. Figure 2 (Right) also highlights that the amount
of energy the EV can regenerate on a negative slope is much less than the energy it needs to
climb up the same gradient. This difference is mainly due to the total powertrain efficiency
and hybrid (mechanical+electric) braking strategy in EVs.

2 Worldwide Harmonised Light Vehicles Test Procedure
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Figure 2 Left: Speed profiles in the WLTP cycle, Right: Energy efficiency vs. gradient and extra
mass over WLTP for the Peugeot iOn with the average energy efficiency of 11.6 kWh/100km.

As the exact calculation of the links’ energy requirement in the PDP setting is a difficult
task, we build our energy models based on three main parameters in vehicle dynamics
that change with transport request/location. These parameters are gradient, speed profiles
(acceleration/deceleration) and extra mass. In this study, we investigate six different energy
models. Our most accurate energy model is given in Eq. (1). We call this full model Em

gv,
since it takes gradient g, speed profiles v and extra mass m into account.

Em
gv =

(
(α1,im + β1,i)g2 + (α2,im + β2,i)g + (α3,im + β3,i)

)
d (1)

In Eq. (1), Em
gv is the energy requirement (in Wh), g is the road angle (sin θ), d is the

link distance (in units of 100m) and m is the extra mass (load/passenger weights in kg).
Coefficients αi (in Wh/(100m*kg)) and βi (in Wh/100m) are parameters that depend on
the selected speed profile i and also vehicle specification. These coefficients can be obtained
using the relationship depicted in Figure 2 (Right) for every EV evaluated under a driving
pattern. Table 1 shows αi and βi values for our test EV Peugeot iOn simulated under the
speed profiles of the WLTP driving cycle (Slow, Medium, High, Extra-High) after fitting a
polynomial of degree two to the operating points obtained for each speed profile (see Figure 2
(Left) for the overall WLTP pattern). We define the energy requirement of a path to be the
aggregation of the energy requirements of all of its links.

We first define our basic energy model to be the model that just uses the EV’s average
energy efficiency, i.e. Eb = β3d. If extra mass is to be considered in the basic model, we then
have Em

b = (α3m + β3)d. Our second model incorporates road gradient g as an additional
parameter via Eg = (β1g2 + β2g + β3)d. Analogously, adding extra mass to this model yields
Em

g = ((α1m + β1)g2 + (α2m + β2)g + (α3m + β3))d. Given the nonlinear relationship in
Figure 2 (Right) for every driving pattern, our last case accounts for both gradient g and
speed v impacts on energy consumption via Egv = (β1,ig

2 + β2,ig + β3,i)d. Finally, adding
mass to this model yields our full energy model Em

gv as in Eq. (1). Table 2 shows a summary
of our energy models with and without extra mass consideration. Note that for the models
with a fixed speed profile such as Eb and Eg, we use the average energy coefficients obtained
for the concrete WLTP drive cycle (last profile in Table 1).
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Table 1 Energy specification and coefficients of the Peugeot iOn based on the profiles in WLTP.
α in Wh/(100m*kg) and β in Wh/100m.

Vehicle details Profile α1 α2 α3 β1 β2 β3

Peugeot iOn 2017 Slow 0.398 0.244 0.005 315.33 264.69 12.60
Capacity: 16 kWh Medium 0.451 0.241 0.004 381.85 262.25 10.04
Efficiency*: ∼11.6 W h

100m
High 0.526 0.249 0.004 511.05 259.70 10.36

Kerb weight: 1050 kg Extra High 0.731 0.262 0.004 734.48 293.05 13.31

Overall (avg.) 0.579 0.251 0.004 536.72 272.77 11.65

Table 2 Summary of energy models versus parameters of vehicle dynamics.

Model Parameters Without Mass Adding Mass (m)

Eb - β3d + mα3d

Eg gradient (β1g2 + β2g + β3)d + m(α1g2 + α2g + α3)d
Egv gradient, speed (β1,ig

2 + β2,ig + β3,i)d + m(α1,ig
2 + α2,ig + α3,i)d

3 EV Routing Problem

This section explores the impacts of vehicle dynamics on the PDP when EVs are operated in
the transport system. In this problem, EVs start and terminate trips at particular depots
and transit requests are known in advance. A solution to this PDP is a set of routes (one
route per vehicle) that satisfies both problem objectives (e.g. fastest/shortest tours) and
fundamental constraints such as passenger time windows [18]. Furthermore, there are other
considerations such as tracking the EVs’ energy levels and charging times to ensure route
feasibility.

The PDP model for EVs should respect the correlations between energy matters in
EVs and routing constraints in the PDP. Although Mixed-Integer Programming (MIP) is a
traditional modelling approach in routing problems, in this study, we use CP to design and
develop our PDP model as it provides a greater degree of flexibility in the way our non-linear
energy constraints are handled. For this purpose, we develop our energy-based PDP model
in MiniZinc [14].

We define each possible origin/destination location in our model to be a node with at
most one status from N={pickup, drop-off, depot, charger}. This means that we model every
transport request with a (pickup,drop-off) pair, each EV initially at a depot node, and each
charger with at least one charger node per visit (multiple nodes if more than one visit is
allowed). For the CP model of this study, we use the Successor representation to encode the
EVs’ trips. We explain this approach using an example shown in Figure 3. For the simple
trip planned in Figure 3 (Left) and the nodes’ successors (Right), we can execute the full trip
by sequentially looking up each node’s successor to obtain the sequence {1-3-2-5-1}, given
node 1 as the depot. Node 4 is not part of the trip.

Problem objective. Following the traditional objective definition in vehicle routing problems,
we aim to plan routes that are optimal in terms of total travel time, i.e., in the context of
EVs, our objective is minimising both the travel time and charging time.
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Figure 3 Left: An example trip for the successor representation, Right: Successor array.

3.1 PDP Constraints
The essential step in the PDP is keeping track of the (non-negative) trip time t at non-charger
nodes by

t[j] ≥ t[i] + ts[i] + ∆t[i, j] i ∈ N − {charger} and j = succ[i] (2)

The constraint above ensures that the service time ts of non-charger node i and also the time
required to reach succ[i] from node i is preserved in the trip time when the EV arrives at
succ[i]. We assume the point-to-point travel time matrix ∆t has already been pre-computed
and is available as input to our model. In addition, we consider a constant service time for
every node in our model (zero for depot).
In PDP with time windows, we also need to make sure that the arrival times are always
within the time limit of the transport demands, i.e, for every pickup node we have

tlow[i] ≤ t[i] ≤ tup[i] i ∈ pickup (3)

where tlow and tup are the lower and upper time limits of pickup nodes respectively. In order
to prevent long trips for every individual transport request, we limit the the travel time for
transport requests by

0 ≤ t[j] − t[i] ≤ λ × ∆t[i, j] (i, j) ∈ (pickup, dropoff ) (4)

where λ > 1 is a constant factor that scales the time required to traverse the direct route
between pickup and drop-off nodes. For example, setting λ = 2 means that the total time
each transport request spends in our EV is at most two times longer than its direct route.
The constraint above also makes sure that drop-off occurs after pickup.

Respecting the vehicle capacity is another essential step in PDP system models. That
is, given the vehicle capacity C, we need to make sure that the EV transfers at most C

passengers in every point-to-point trip:

0 ≤ u[i] ≤ C i ∈ N (5)

where the variable u[i] represents the vehicle utilisation (number of passengers) when the EV
departs from node i. Meanwhile, in order to accurately track the EVs’ loads, we have

u[j] = u[i] + ∆u[j] i ∈ N and j = succ[i] (6)

where ∆u[j] indicates the utilisation change at the successor node j (the node that will
be visited after node i in the trip). The value of ∆u is positive at pickup nodes, negative
at drop-offs and zero at other nodes. Note that since this parameter will be part of our
energy calculations, we use equality (=) in the constraint above to always have the exact
utilisation value (and more accurate energy estimates respectively) at departure. Similar to



S. Ahmadi, G. Tack, D. Harabor, and P. Kilby 11:7

the point-to-point travel time array ∆t, the ∆u array is pre-computed using the problem
specification. We can also add a constraint for vehicle utilisation at charger points. If we do
not want to have any passenger on board while charging, we simply set

u[i] = 0 i ∈ charger (7)

As an extra constraint, we use the global CP constraint subcircuit to create a set of
circuits (trips) through our Successor array. Since visiting all charging points is not necessary,
this constraint allows us to plan trips without charging visits. Figure 4 (Right) depicts
sample solution tours using this constraint when EVs are allowed to return to any of the
depots.

3.2 Energy Constraints
We now present energy constraints needed for appropriate energy tracking in the PDP for
EVs. We again use the trip sequence available in the Successor array for our energy tracking
approach. For every demand node, the available energy of the EV at its successor node is
estimated using the following constraint.

e[j] = e[i] − ∆e[i, j, k] i ∈ {pickup, dropoff } and j = succ[i] and k = u[i] (8)

Where e[j] is the arrival energy level at successor node j and the 3-dimensional array ∆e

represents the energy requirement of traversing the path between a demand location i and
its successor succ[i], with u[i] passengers in the EV. Similarly, for the depot nodes we track
energy consumption by

e[j] = einit[i] − ∆e[i, j, k] i ∈ depot and j = succ[i] and k = u[i] (9)

where einit[i] is the initial energy level of our EVs at their designated depot node i (zero for
non-depot nodes). Furthermore, as charging time depends on the available energy at nodes,
we use equality (=) in the constraints above to always have the exact energy values for our
charging time calculations. In other words, by using equality, we do not allow the model
to set arbitrarily low arrival energy values to benefit from higher charging rates (in lower
energy levels) and consequently shorter charge times. It is worth mentioning that we define
the range of our energy-based decision variables to be [0, E] where E is the energy capacity
of the EV. This means critical cases (running out of energy and overcharging) are already
considered in our CP model, i.e., for every node i we have 0 ≤ e[i] ≤ E.

We can see that adding mass (vehicle utilisation) to the PDP model increases the system
complexity, since the number of passengers in the vehicle at any location is a decision variable,
and therefore the energy requirement ∆e may no longer be constant, depending on whether
the energy model does take mass into account. Nonetheless, we can use any of the energy
models presented in Section 2 to calculate the point-to-point energy requirements in ∆e given
the fact that the upper bound on extra mass is known (the number of passengers u[i] is at
most C). In the next section, we measure the impacts of each model on the planned routes.

We now explain our charging constraints. To model charging profiles without linear
piece-wise approximation, we map each profile into an array indexed by time. Figure 4 (Left)
depicts how we discretise a sample charging profile based on a time unit. In our model, e∗[τ ]
represents the amount of energy charged in a fully discharged battery if the EV has been in
the charging station for τ units of time. Since EVs are not allowed to have negative energy
levels (or we always have 0 ≤ e∗[τ ]), we use τ as an offset for charging time tc. This means
if the EV arrives at a charging point with energy e∗

1[τ1] and departs with energy e∗
2[τ2], we

have tc = τ2 − τ1 as the charging time. Therefore, for every visited charging node i we have

e∗[τ [i]] ≤ e[i] < e∗[τ [i] + 1] i ∈ charger and τ [i] ∈ [0, Tc) (10)
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Figure 4 Left: Charging profile, Right: Sample trips using the subcircuit constraint.

where e[i] is the EV energy at arrival and τ [i] is the corresponding time offset for charger
node i. Tc is also the maximum charging time to get charged for the full energy capacity
E. Note that the constraint above looks up the closest (mapped) value to e[i] such that the
actual charging time always falls in the interval [τ, τ + 1). This means the discretisation
approach may lead to overestimating the charging time by at most one unit of time. Now,
given e∗[τ + tc] as the energy of the EV after visiting a charging node, we can set a constraint
on the energy of the EV when it arrives at a successor node via a charging node.

e[j] = e∗[τ [i] + tc[i]] − ∆e[i, j, k] i ∈ charger and j = succ[i] and k = u[i] (11)

The constraint above ensures that the energy consumption is appropriately tracked after
every charging visit, but we need to make sure that the charging time is also incorporated in
the total trip time. To this end, we first limit the charging time per charging node by

0 ≤ tc[i] ≤ Tc − τ [i] i ∈ charger (12)

where tc is the charging time and Tc is the maximum charging time (time needed to get
charged from 0 to 100% energy level). The constraint above also enforces that discharging in
charging stations is not allowed as the charging time is always non-negative.

Now we finally define the lower arrival time to successor nodes via charging nodes to be

t[j] ≥ t[i] + tc[i] + ts[i] + ∆t[i, j] i ∈ charger and j = succ[i] (13)

where t[i] is the time the EV arrives at the charging point and t[j] is the time it is at the
successor node. Furthermore, ts is the service time spent at the charging node. Note that
since different charging technologies have different charging profiles, we store our mapped
energy values in a 2-dimensional array where the other dimension determines the charging
type, i.e., we have e∗[τ [i], ϵ[i]] where ϵ[i] would be the charging type of node i. Each charging
node in our PDP model can handle one charging visit at a time. If some or all charger
locations can handle more than one charging visit at a time, we need to create multiple
charging nodes for these charging locations, each capable of handling one visit. In this case,
the model may need additional constraints for charger scheduling.

Finally, the objective is to minimise the total driving time and charging time.

Minimise (
∑
i∈N

∆t[i, succ[i]] +
∑

i∈char

tc[i]) (14)
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4 Benchmark Setup

Transport models for EVs require accurate energy estimates on the underlying point-to-point
paths. In order to examine our PDP model under realistic scenarios, a set of instances with
all the energy measures (point-to-pint energy requirements for different energy models) is
required. To this end, following the strategy used in [4], we use the GPS traces from Uber
Technologies Inc.3 to extract random realistic trips. The data file includes the GPS logs of
more than 20,000 ride-sharing trips in San Francisco (CA, USA) over one week. Furthermore,
choosing San Francisco as the test city allows us to better investigate the significance of
gradient as one of the main parameters of vehicle dynamics.

Previous works on routing problems for EVs have used (partially) synthetic datasets
and/or simplified energy models. For example, the well-known Solomon vehicle routing
benchmark [17] is a commonly used synthetic dataset that has been adapted to EVs in
[10, 16]. Since parameters in synthetic datasets are not fully realistic, they cannot perfectly
reflect all the real challenges in EVs, especially energy-related parameters such as non-linear
charging profiles and vehicle dynamics. Given the importance of energy parameters in EV
routing problems, some recent studies have tried to establish more realistic datasets by
respecting the relationships between distance, time and energy [9, 13, 4]. Nonetheless, these
datasets are still not complete enough to be used in our complete energy-based PDP model.

We now explain our strategy to generate random test cases from the Uber ride-sharing
dataset. Each line of the data file is in the following format:

<trip ID> <timestamp> <latitude> <longitude>

Every trip ID in the data file can be found in two lines, one for pickup and another for the
corresponding drop-off. We rebuild every point-to-point transport demand using the pickup
and drop-off locations (latitude, longitude). The travelled distance of trip IDs ranges from
100m to 15km, but to better analyse the energy matters in the PDP with EVs, we randomly
pick trips of 8km and longer. The Uber GPS log file contains all the necessary data for
traditional route planning models such as time and transport origin and destination, but part
of the input data to our system model still needs to be determined with extra considerations.

Time windows. For each selected trip ID, we pick the timestamp of the pickup entry (the
one with an earlier timestamp) as the desired pickup time. We then consider a 15-minute
time window for every transport demand at pickup. As an example, if the actual pickup time
of a transport request in the data file is tpu, its corresponding time window is considered to
be [tpu − 7.5min, tpu + 7.5min]. We set our time scaling factor λ to 1.5, meaning that the
trip time of each individual transport request is at most 50% longer than its direct path. We
also set 30 seconds as service time for every non-depot node.

Extra stop locations. We assume the EVs’ depot to be a location in the city area of San
Francisco. We also choose five charging locations from an online service4: three normal
and two fast-charge points (one of the normal chargers at the depot). In addition, EVs
are expected to return to the depot after serving transport demands. To prevent frequent
charging detours, we limit EVs to at most one charging visit in each trip.

3 https://github.com/dima42/uber-gps-analysis/tree/master/gpsdata
4 https://www.plugshare.com/
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Figure 5 Normal and Fast charge profiles for Peugeot iOn with 16 kWh battery capacity.

Test EV. We choose our test EV to be the Peugeot iOn, one of the commonly used EVs in
the literature with a vehicle capacity of four passengers and an energy capacity of 16 kWh [11].
We consider 75 kg for each passenger’s weight5 in our energy calculation. Figure 5 depicts the
actual non-linear charging profiles of two charging technologies (normal and fast) available
for the test vehicle of this study with the maximum charging time of five hours.

Energy coefficients. For the test EV of this study, we used an advanced (open source) EV
simulator called ADVISOR(ADvance VehIcle SimulatOR)6 to learn our energy models and
set coefficients αi and βi in Section 2. This software is developed on the engineering platform
MATLAB and is enriched with complete powertrain models. The model of each component
(such as the battery, electric machine, etc.) incorporates parameters such as all detailed
equations of vehicle dynamics, temperature profiles, efficiency maps, auxiliary loads or even
warm/cold start [1, 12]. Therefore, the selected simulator provides more accurate estimates
on energy requirements of EVs under a variety of realistic scenarios, such as transporting
different numbers of passengers on a road with a non-zero slope).

EV considerations. We assume that our EVs can use their full energy capacity, i.e., their
energy level can be 0–100% and there is no limit for them at the end of the trips. Moreover,
we assume that our EVs start their trips with 100% initial energy level.

Underlying graph. We extract the San Francisco road network from OpenStreetMap using
the Python package OSMnx [3] and enrich the graph edges of the road network with elevation
and speed data using the Bing, Mapbox, Here and TomTom APIs7.

Point-to-point paths. Given the road network of San Francisco as our underlying graph,
we propose two types of paths for our experimental analysis:
1. Shortest path: for our base approach, we consider all point-to-point paths in our problem

to be shortest path. For this purpose, we compute our first set of paths using Dijkstra’s
algorithm [6] for any (origin,destination) pair in the instance.

2. Energy-efficient path: for our second approach, we optimise all point-to-point paths for
their energy consumption, that is, instead of solving the underlying graph for time, we are
interested in a path that offers the lowest energy consumption. As the energy requirement
of links of the graph can be negative (in negative slopes), we use an adapted version of
the Bellman-Ford algorithm [2, 7] to calculate point-to-point energy-optimal paths. Our
adapted version uses the most accurate energy model presented in Section 2 (Eq. (1))
and takes the battery limits into account.

5 Based on European Directive 95/48/EC
6 http://adv-vehicle-sim.sourceforge.net/
7 www.bing.com; www.mapbox.com; developer.here.com; developer.tomtom.com

http://adv-vehicle-sim.sourceforge.net/
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Time and energy arrays. The additional required information includes the time (∆t array)
and energy (∆e array) requirements of all point-to-point paths. So far we have obtained
two sets of paths for each problem instance. In the next step, we need to determine our
time and energy arrays (resp. ∆t and ∆e) for each set. To this end, we take the resulting
paths and compute their time simply via converting the distance attribute of the links of the
paths to time using an average speed. For their energy requirement, we use all of our four
energy models presented in Section 2 and generate four energy arrays for each set of paths.
Note that we do not change the optimum paths in each set, but we recalculate the energy
requirement of the paths each time with a different approach. Creating separate energy
arrays allows us to better investigate the impacts of vehicle dynamics on our planned routes.
We also set time and energy units to 10 Wh and 30 seconds respectively.

Instance format. Each instance is presented in the format of < uv − t − n > where v is
the number of EVs, t is the number of transport requests and n is the instance variant. For
example, the instance < u1 − 10 − 2 > is our second instance with 10 transport requests and
one vehicle. We arbitrarily keep the number of the transport requests small. As finding the
optimal solution to each instance is necessary for our energy analysis, we avoid generating very
large and difficult instances. Each instance consists of the required input for our energy-based
PDP model such as time windows, utilisation at each pickup, time and energy arrays, charger
profiles and energy/time upper bounds. Our instances are publicly available 8.

5 Results and Discussion

We developed our model in MiniZinc and and evaluated that using the CP solver Chuffed [5]
as the back-end optimiser with the free search flag. We found MiniZinc MIP solvers slower for
our CP model over the instances. For each scenario of point-to-point paths, we solved all of
the instances to optimality using different energy models (resp. energy arrays). The proposed
solver could solve our difficult instances with 20 demands, five chargers and two vehicles in a
90-minute timeout on a machine with an Intel Core i7-10850H running at 2.7 GHz and with
32 GB of RAM. Regarding the computational effort, we found handling charger nodes the
main solving challenge as the charging time can be even larger than the trip time (five hours
for normal chargers). As we will see later in this section, the solver rarely plans trips that
include visits to normal chargers. As a further optimisation, we could reduce the runtime by
introducing a subset of charger nodes in multiple runs of the model to improve the objective
upper bound. For example, by removing the normal slow chargers from the list of stops we
could solve the instances much faster (usually in less than five minutes). We also found the
problem much more challenging for the solver with increased number of transport requests
and vehicles. The standard solver was unable to optimally solve our larger instance with 30
demands and three vehicles in the time limit. It is worth highlighting that we did not notice
a major difference in the runtime of the models with mass consideration (models without
mass consideration were solved slightly faster).

Tables 3 and 4 present the results of solving the PDP for the designed instances of this
study in two different scenarios. Table 3 shows the results for the first scenario with shortest
point-to-point paths, and Table 4 presents the results for the second scenario with energy-
optimum paths as an alternative. In the both tables, attribute Eb denotes that the transport
model has been evaluated with the basic energy model for point-to-point energy calculations.

8 https://bitbucket.org/s-ahmadi
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Similarly, Eg and Egv indicate the use of additional parameters gradient and speed in the
energy models. The results are shown without (left columns) and with (right columns) taking
extra mass into account. Finally, the results for our full energy model are indicated with
Em

gv with all parameters considered. We again emphasise that the point-to-point paths in
each scenario are the same for all of the models and only the energy calculation method is
different. In the energy-efficient paths scenario, the point-to-point paths were pre-computed
based on our full energy model Em

gv. Our studied parameters consist of the value of the total
driving time (tdr), total charging time (tch), energy consumed while driving (edr), energy
charged at charging nodes (ech), type of chargers used (ϵ), the ratio of the difference in
routes (ϕr = ∆R/Rb) with the routes of Eb as the base, and the energy miscalculation ratio
ϕe = ∆E/Em

gv with Em
gv as the base (complete) energy model. We calculate the ratio ∆R/Rb

by comparing the optimum Successor array against that of the base case obtained for Eb. In
addition, we define the energy error ∆E to be the difference between energy values in Em

gv

and other models (Eb, Eg etc.).
We start our analysis with the results shown in Table 3. According to the route difference

ratio, routes may vary up to 20% if we do not opt for the basic energy model in point-to-point
energy calculations. Furthermore, we can see that in all cases, the energy consumption of
tours increases when more accurate energy models are considered for our energy array. This
means the basic energy model is the least accurate model, underestimating the trips’ energy
requirement in all of the instances. Nonetheless, the table shows that the mass-based energy
model Em

b is still not as accurate as the gradient-based models Eg or Egv with both mass
and speed added. Therefore, we can conclude that the gradient in Eg has more impact on
energy consumption than mass in Em

b .
The results in Table 3 show that taking driving patterns into consideration (models Egv

and Em
gv) further increases the trips’ energy requirement. The main reason is that there are

generally more low-speed links on inner-city trips than other speed profiles, and low-speed
links require more energy than medium or high-speed profiles (see energy coefficients in
Table 1). This inefficiency is technically rooted in energy loss via frequent stop-go patterns
in inner-city trips and little energy recuperation at low speeds.

In several cases, we see that serving transport requests with more accurate energy models
is only feasible if a charging detour is planned. In other words, routes planned based on less
accurate energy models can potentially be infeasible in reality as they might not consider any
charging detour at critical energy levels. In the u1-10-1 and u2-20-3 instances, for example,
we have a case where only our full energy model Em

gv plans a route with a charging detour
while other models assume the initial energy of the EVs is sufficient for the entire trip. These
instances highlight another important observation. Although we already concluded that the
gradient and driving speed have more impact on optimal routes than mass, as our full model
Em

gv considers all parameters including extra mass, we can see that neglecting mass may lead
to planning infeasible routes even with relatively accurate energy estimates via Egv.

Our next observation is that the objective value (tdr + tch) changes when a different route
is planned (non-zero ϕr) to meet the energy limits and also every time the models introduce a
charging detour to the planned routes. For example, a 10.5-minute charging time is required
to fast charge the EV for 5.19 kWh in instance u1-10-5 using our full model Em

gv. Note that
the basic model Eb in this instance also plans a charging detour, but its estimated charging
time is almost half (4.5-minute) of the charging time planned via Em

gv. This is mainly because
of around 3.1 kWh underestimation of energy in Eb. This significant difference in charging
times means that having a charging visit in our plan does not necessarily guarantee the
feasibility of trips. Therefore, having an accurate energy model is also vital for the correct
calculation of charging times.
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Table 4 shows the results when energy-optimum paths are used for the pre-computation
of the time and energy arrays. A quick look over the values reminds us of the pattern
we observed in Table 3 for time and energy values. We see larger time and energy values
when more accurate models are employed in our PDP transport system, but there are some
meaningful differences when we compare them with the results in Table 3. Firstly, energy
efficient paths result in longer trips (larger objective values). This is mainly because of the fact
that energy-efficient point-to-point paths are normally longer than shortest paths. Secondly,
compared to the routes with shortest paths (Table 3), routes planned with energy-efficient
paths using the Eb or Em

b model consume more energy. The reason is, again, related to
having longer paths and consequently larger energy values for point-to-point paths via simple
distance based energy models. Nonetheless, if we compare the results of the tables for Eg

and Egv, the case is reversed and the impact of the gradient is revealed. Although we have
not defined any explicit energy objective for our PDP, we can see that energy-optimum paths
are actually contributing to lower energy consumption in all of our instances via our more
accurate models Eg and Egv, while making sure that all the transport requests have also
been served. We can see the same pattern for the gradient and speed-based models with
extra mass consideration, i.e., Em

g and Em
gv.

The results in Table 4 also show that energy-optimum paths via the Eg and Egv models
(and their mass-added variants) also contribute to less charging time in our instances.
Interestingly, there are even several cases where no charging visit is required if we opt for
energy optimum paths over traditional shortest paths. In instance u2-20-5 using the accurate
model Em

gv, for example, we can avoid a charging detour for 2.91 kWh extra energy in
six minutes. Comparing the time and energy values of the instance for Em

gv from the tables,
we notice that we can save 1.27 kWh by planing a route that is even 0.5 minutes faster than
the traditional time-efficient route with a charging detour. It is worth mentioning that there
is always a trade-off between total trip time and energy consumption. We can see that trips
planned using the efficient paths can be more energy-efficient and at the same time slightly
longer than trips obtained by shortest paths on average. Nevertheless, we can deduce that
fewer/shorter charging visits are required via more accurate models if energy optimum paths
are chosen and all transport request are satisfied.

The results in both tables show that the energy error ratio in an instance can be as big
as 16.3% when using the basic energy model Eb. For our gradient and speed-based energy
models Eg and Egv the error ratios are at most 8.0% and 4.9% respectively over the instances.
We also compared the average underestimation of energy in both tables for the instances
with no change in the planned route (zero ϕr), e.g. instance u1-10-6. For this instance, we
have a maximum error ratio of 11.0% in Table 3 but a smaller error in Table 4 for energy
efficient paths (7.7% for model Eb). We see that the energy error ratio of using the shortest
path is about 40% larger than that of using the energy-optimum path.

Tables 3, 4 also show the charger type used at any charging visit. According to the
results, although we have more normal chargers than fast chargers in our instances, normal
chargers are barely used in our PDP routes and fast chargers are preferred in almost all of the
charging detours. In particular, only one of the charging visits in each scenario (Tables 3,4)
uses the normal type. The likely reason for this choice is our objective to minimise the total
travel time (including charging time) knowing that normal chargers are at least four times
slower than fast chargers (see Figure 5). Therefore, slow chargers with low energy rates can
potentially be removed from the charging nodes of transport models with EVs, reducing the
routing complexity and runtime.
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Table 3 Experiment results using the shortest point-to-point paths, for every energy model (E.)
with and without mass consideration in ∆e. The results include driving time (tdr) in minutes, charge
time (tch) in minutes, energy consumed while driving (edr) in kWh, energy recharged at charger
points (ech) in kWh, charger type used (ϵ) from {normal/fast}, route difference ratio (ϕr) and energy
error (ϕe).

Without Mass Consideration With Mass Consideration

tdr tch edr ech ϵ ϕr ϕe tdr tch edr ech ϵ ϕr ϕe

Instance E. min min kWh kWh n,f % % E. min min kWh kWh n,f % %

u1-10-1 Eb 153.5 0.0 13.89 0.00 - - 14.2 Em
b 153.5 0.0 14.24 0.00 - 0.0 12.0

Eg 153.5 0.0 15.11 0.00 - 0.0 6.7 Em
g 153.5 0.0 15.67 0.00 - 0.0 3.2

Egv 153.5 0.0 15.60 0.00 - 0.0 3.6 Em
gv 153.0 1.0 16.19 0.36 f 7.7 -

u1-10-2 Eb 160.5 0.0 14.59 0.00 - - 13.9 Em
b 160.5 0.0 14.88 0.00 - 7.7 12.2

Eg 160.5 0.0 15.65 0.00 - 11.5 7.7 Em
g 161.0 1.5 16.27 0.38 f 15.4 4.0

Egv 161.5 1.5 16.38 0.60 f 15.4 3.4 Em
gv 161.5 2.5 16.95 1.06 f 15.4 -

u1-10-3 Eb 161.5 0.0 14.63 0.00 - - 15.3 Em
b 161.5 0.0 15.04 0.00 - 0.0 12.9

Eg 161.5 0.0 15.93 0.00 - 0.0 7.8 Em
g 163.5 2.0 16.78 0.83 f 7.7 2.8

Egv 163.5 1.5 16.59 0.76 f 7.7 3.9 Em
gv 163.5 3.0 17.27 1.34 f 7.7 -

u1-10-4 Eb 173.0 0.0 15.61 0.00 - - 14.2 Em
b 173.0 0.0 15.98 0.00 - 0.0 12.2

Eg 173.0 2.5 17.01 1.16 f 7.7 6.5 Em
g 173.0 3.5 17.51 1.53 f 7.7 3.7

Egv 173.0 3.5 17.68 1.68 f 7.7 2.8 Em
gv 173.0 5.0 18.19 2.31 f 7.7 -

u1-10-5 Eb 198.5 4.5 18.02 2.27 f - 14.7 Em
b 198.5 5.5 18.42 2.66 f 0.0 12.8

Eg 198.5 8.5 19.94 4.03 f 0.0 5.6 Em
g 198.5 10.0 20.42 4.42 f 0.0 3.3

Egv 198.5 10.0 20.53 4.55 f 0.0 2.8 Em
gv 199.5 10.5 21.12 5.19 f 11.5 -

u1-10-6 Eb 205.0 5.5 18.48 2.67 f - 11.0 Em
b 205.0 6.5 18.90 3.08 f 0.0 9.0

Eg 205.0 7.0 19.39 3.43 f 0.0 6.7 Em
g 205.0 8.0 19.88 3.88 f 0.0 4.3

Egv 205.0 8.5 20.23 4.28 f 0.0 2.6 Em
gv 205.0 10.0 20.77 5.00 f 0.0 -

u1-14-1 Eb 173.0 0.0 15.74 0.00 - - 15.9 Em
b 175.5 1.5 16.54 0.63 f 20.6 11.6

Eg 175.5 3.0 17.23 1.48 f 14.7 7.9 Em
g 175.5 5.0 18.11 2.35 f 14.7 3.2

Egv 175.5 4.0 17.81 1.90 f 14.7 4.8 Em
gv 175.5 5.5 18.71 2.78 f 5.8 -

u2-20-1 Eb 283.5 0.0 25.82 0.00 - - 16.3 Em
b 283.5 0.0 26.58 0.00 - 0.0 13.7

Eg 283.5 0.0 28.78 0.00 - 0.0 6.6 Em
g 284.0 0.0 30.10 0.00 - 14.9 2.3

Egv 283.5 0.0 29.54 0.00 - 0.0 4.1 Em
gv 284.5 0.0 30.81 0.00 - 6.4 -

u2-20-2 Eb 290.5 0.0 26.16 0.00 - - 14.5 Em
b 290.5 0.0 26.93 0.00 - 4.3 12.0

Eg 290.5 0.0 28.68 0.00 - 0.0 6.3 Em
g 290.5 0.0 29.67 0.00 - 4.3 3.1

Egv 290.5 0.0 29.61 0.00 - 4.3 3.3 Em
gv 290.5 0.0 30.61 0.00 - 0.0 -

u2-20-3 Eb 301.5 0.0 27.50 0.00 - - 14.5 Em
b 301.5 0.0 28.22 0.00 - 0.0 12.3

Eg 301.5 0.0 30.39 0.00 - 0.0 5.6 Em
g 301.5 0.0 31.58 0.00 - 0.0 1.8

Egv 301.5 0.0 31.21 0.00 - 0.0 3.0 Em
gv 302.0 3.0 32.18 0.68 f 12.8 -

u2-20-4 Eb 303.5 0.0 27.54 0.00 - - 14.5 Em
b 303.5 0.0 28.36 0.00 - 0.0 13.5

Eg 304.5 0.0 30.70 0.00 - 14.9 6.3 Em
g 305.0 0.0 31.91 0.00 - 4.3 2.6

Egv 305.0 0.0 31.59 0.00 - 8.5 3.6 Em
gv 303.5 3.5 32.78 1.68 f 14.9 -

u2-20-5 Eb 308.5 0.0 27.98 0.00 - - 15.7 Em
b 308.5 0.0 28.71 0.00 - 0.0 12.5

Eg 308.5 0.0 30.74 0.00 - 0.0 6.3 Em
g 309.0 1.0 31.95 0.07 n 4.3 2.7

Egv 308.5 0.0 31.47 0.00 - 0.0 4.1 Em
gv 310.5 6.0 32.82 2.91 f 17.0 -

u2-20-6 Eb 322.5 0.0 29.06 0.00 - - 15.6 Em
b 322.5 0.0 28.36 0.00 - 0.0 13.5

Eg 323.5 0.0 31.73 0.00 - 12.8 7.8 Em
g 324.0 2.5 33.02 1.23 f 19.1 4.1

Egv 324.0 2.5 32.84 1.18 f 19.1 4.6 Em
gv 324.5 5.5 34.43 2.47 f 14.9 -
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Table 4 Experiment results using the lowest energy point-to-point paths, for every energy model
(E.) with and without mass consideration in ∆e. The results include driving time (tdr) in minutes,
charge time (tch) in minutes, energy consumed while driving (edr) in kWh, energy recharged at
charger points (ech) in kWh, charger type used (ϵ) from {normal/fast}, route difference ratio (ϕr)
and energy error (ϕe).

Without Mass Consideration With Mass Consideration

tdr tch edr ech ϵ ϕr ϕe tdr tch edr ech ϵ ϕr ϕe

Instance E. min min kWh kWh n,f % % E. min min kWh kWh n,f % %

u1-10-1 Eb 155.5 0.0 14.02 0.00 - - 11.7 Em
b 155.5 0.0 14.40 0.00 - 0.0 9.3

Eg 155.5 0.0 14.74 0.00 - 0.0 7.1 Em
g 155.5 0.0 15.27 0.00 - 0.0 3.8

Egv 155.5 0.0 15.31 0.00 - 0.0 3.5 Em
gv 155.5 0.0 15.87 0.00 - 0.0 -

u1-10-2 Eb 162.5 0.0 14.74 0.00 - - 12.0 Em
b 162.5 0.0 15.07 0.00 - 0.0 10.0

Eg 162.5 0.0 15.41 0.00 - 0.0 8.0 Em
g 162.5 0.0 15.94 0.00 - 0.0 4.8

Egv 162.5 0.5 16.02 0.03 n 7.7 4.3 Em
gv 163.5 2.0 16.74 0.86 f 7.7 -

u1-10-3 Eb 162.0 0.0 14.68 0.00 - - 14.45 Em
b 162.0 0.0 15.11 0.00 - 0.0 11.9

Eg 162.0 0.0 15.79 0.00 - 0.0 8.0 Em
g 164.0 1.5 16.61 0.73 f 7.7 3.2

Egv 164.0 1.5 16.56 0.75 f 19.2 3.5 Em
gv 164.0 2.5 17.16 1.27 f 7.7 -

u1-10-4 Eb 176.0 0.0 15.86 0.00 - - 10.2 Em
b 176.5 1.0 16.29 0.37 - 7.7 7.8

Eg 176.5 1.5 16.55 0.73 f 7.7 6.3 Em
g 176.5 2.5 16.99 1.07 f 7.7 3.8

Egv 176.5 3.0 17.22 1.46 f 7.7 2.5 Em
gv 176.5 3.5 17.67 1.76 f 7.7 -

u1-10-5 Eb 201.5 4.5 18.11 2.20 f - 11.3 Em
b 201.5 5.0 18.51 2.54 f 0.0 9.3

Eg 201.5 7.0 19.26 3.40 f 11.5 5.6 Em
g 201.5 8.0 19.75 3.84 f 11.5 3.2

Egv 201.5 8.0 19.89 4.05 f 11.5 2.5 Em
gv 201.5 9.0 20.41 4.51 f 11.5 -

u1-10-6 Eb 208.0 6.0 18.83 2.84 f - 7.7 Em
b 208.0 6.5 19.25 3.25 f 0.0 5.7

Eg 208.0 7.0 19.31 3.37 f 0.0 5.4 Em
g 208.0 7.5 19.78 3.81 f 0.0 3.1

Egv 208.0 8.0 19.90 4.05 f 0.0 2.5 Em
gv 208.0 9.0 20.41 4.51 f 0.0 -

u1-14-1 Eb 177.5 1.0 16.04 0.05 - - 12.4 Em
b 179.5 2.0 16.80 0.97 f 17.6 8.2

Eg 179.5 2.5 16.96 1.05 f 8.8 7.4 Em
g 179.5 4.0 17.77 1.90 f 17.6 2.9

Egv 179.5 3.5 17.41 1.60 f 17.6 4.9 Em
gv 179.5 5.0 18.31 2.50 f 8.8 -

u2-20-1 Eb 286.5 0.0 25.99 0.00 - - 13.7 Em
b 286.5 0.00 26.77 0.00 - 0.0 11.1

Eg 286.5 0.0 28.02 0.00 - 0.0 7.0 Em
g 286.5 0.00 29.06 0.00 - 0.0 3.5

Egv 286.5 0.0 28.94 0.00 - 0.0 3.9 Em
gv 287.5 0.00 30.12 0.00 - 6.4 -

u2-20-2 Eb 291.5 0.0 26.33 0.00 - - 12.4 Em
b 292.5 0.0 27.20 0.0 - 4.3 9.5

Eg 293.5 0.0 28.00 0.00 - 8.5 6.8 Em
g 293.5 0.0 28.92 0.0 - 8.5 3.7

Egv 293.5 0.0 29.04 0.00 - 8.5 3.3 Em
gv 293.5 0.0 30.04 0.0 - 8.5 -

u2-20-3 Eb 305.5 0.0 27.86 0.00 - - 11.6 Em
b 305.5 0.0 28.58 0.00 - 0.0 9.4

Eg 305.5 0.0 29.37 0.00 - 0.0 6.9 Em
g 305.5 0.0 30.45 0.00 - 0.0 3.4

Egv 305.5 0.0 30.37 0.00 - 0.0 3.7 Em
gv 306.0 0.0 31.53 0.00 - 8.5 -

u2-20-4 Eb 304.5 0.0 27.59 0.00 - - 13.9 Em
b 304.5 0.0 28.44 0.00 - 0.0 11.2

Eg 304.5 0.0 29.72 0.00 - 0.0 7.2 Em
g 304.5 1.5 30.94 0.61 f 8.5 3.4

Egv 304.5 1.0 30.75 0.29 f 8.5 4.0 Em
gv 304.5 2.5 32.03 1.11 f 8.5 -

u2-20-5 Eb 307.0 0.0 27.81 0.00 - - 11.9 Em
b 307.0 0.0 28.60 0.00 - 0.0 9.4

Eg 307.0 0.0 29.25 0.00 - 0.0 7.3 Em
g 309.5 0.0 30.48 0.00 - 8.5 3.4

Egv 309.5 0.0 30.44 0.00 - 8.5 3.5 Em
gv 310.0 0.0 31.55 0.00 - 10.6 -

u2-20-6 Eb 325.5 0.0 29.42 0.00 - - 12.9 Em
b 325.5 0.0 30.26 0.00 - 0.0 10.4

Eg 326.5 0.0 31.32 0.00 - 8.5 7.3 Em
g 326.0 2.0 32.59 0.80 f 14.9 3.5

Egv 326.5 1.5 32.42 0.61 f 14.9 4.0 Em
gv 327.5 5.0 33.78 2.45 f 21.3 -
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6 Conclusion

This paper investigates the impacts of vehicle dynamics on routing problems with Electric
Vehicles (EVs), particularly in the Pickup-and-Delivery Problem (PDP). We developed a
model for the PDP based on six different energy calculation methods that considers parameters
of vehicle dynamics to varying degrees. The selected parameters are road gradient, extra
mass and driving patterns (speed profiles). We also developed a complete PDP system model
with charging and energy constrains and evaluated our underlying energy models under a set
of adapted realistic instances. The results indicate that the energy requirement of routes
planned for EVs can be underestimated by up to 16.3% in our instances if the fundamental
parameters of gradient, speed and mass are ignored in the energy calculations. Although
adding the mass metric into the energy calculation increases the model complexity, the results
of this study show that ignoring mass from the energy calculation of EVs can potentially
lead to infeasible trips with insufficient energy to complete the planned trip. Comparing
the impacts of parameters on routes’ energy attributes, we can see that gradient and speed
make a greater contribution to the actual energy requirement of routes than mass in our
experiment. We also investigate an alternative scenario for point-to-point paths in the PDP
by optimising underlying paths for their energy consumption. The results of experiments
on our instances show that choosing energy-optimum paths instead of traditional shortest
paths can make the planned trips more efficient in terms of energy, but slightly longer in
term of time. Nonetheless, trips planned with our alternative scenario showed better energy
efficiency and require less/shorter charging visits.

The use of a high-level, constraint-based modelling system like MiniZinc allowed us
to experiment with these different energy models without creating new dedicated solving
approaches. The results from our experiments show that a significant investment in such
new algorithms may not only be useful, but crucial in order to ensure valid and efficient
vehicle routing with EVs.

Future work could look at integrating the energy models of this study with other real-
world routing problems for EVs, for example trip planning period. For PDP, an interesting
direction is developing/adapting appropriate heuristics for our complete energy-based model,
as adding mass to the calculation increases the complexity and runtime.
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Abstract
Covering arrays have become a key piece in Combinatorial Testing. In particular, we focus on the
efficient construction of Covering Arrays with Constraints of high strength. SAT solving technology
has been proven to be well suited when solving Covering Arrays with Constraints. However, the
size of the SAT reformulations rapidly grows up with higher strengths. To this end, we present a
new incomplete algorithm that mitigates substantially memory blow-ups. The experimental results
confirm the goodness of the approach, opening avenues for new practical applications.
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1 Introduction

Imagine that we want to test a system (a circuit, a program, a cloud application, an industrial
engine, a GUI, etc.) to detect errors, bugs, or faults. The System Under Test (SUT) is
in essence a black box with a set of input parameters P which take values into a finite
domain. These input parameters are assigned to a particular value and then the SUT is run
or executed. We assume the only observable output is whether the system crashed or not.

To validate the SUT is working properly, we can simply iteratively conduct a set of tests
(assignments of values to the input parameters) and check whether the SUT is working as
expected or not. In practice, when the SUT is run, even if we do not explicitly assign a
value to a given input parameter it will take its value by default or it will be automatically
assigned following some criterion.

Notice that the number of settings (possible tests) to the input parameters (the parameter
space) is

∏
p∈P gp ∈ O

(
g|P |) (where gp is the cardinality of the domain of parameter p and

g is the cardinality of the greatest domain) what yields a combinatorial explosion and makes
unrealistic to run the SUT under all the possible tests.

Combinatorial Testing (CT) [26] techniques aim to build test suites of a reasonable size
but yet powerful enough to cover most of the errors, bugs, or faults reported to frequently
arise. The point is that, in general, the errors are caused by the interaction of a relatively
small set of the parameters [22]. Notice that a single test covers

(|P |
t

)
interactions, where t
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12:2 Building High Strength Mixed Covering Arrays with Constraints

(referred to as the strength) is the number of parameters involved in the interaction. Therefore,
every time we evaluate the SUT under a given test we implicitly check or validate

(|P |
t

)
interactions of t parameters (referred to as t-tuples).

A test suite of size N for a SUT of P parameters that covers all the t-tuples is also
known as a Covering Array CA(N ; t, P ) of strength t. The minimum N for which there
exists a CA(N ; t, P ) is referred to as the Covering Array Number CAN(t, P ). Additionally,
notice that any test suite of size < CAN(t, P ) will not cover all t-tuples, but we may be still
interested in covering the maximum number of t-tuples with the number of tests our budget
can afford.

In this paper, we show how to build Mixed Covering Arrays with Constraints (MCACs)
of high strength. The term Mixed refers to the possibility of having parameter domains of
different sizes. The term Constraints refers to the existence of some parameter interactions
that are not allowed in the system. These forbidden interactions are usually implicitly
described by a set of SUT constraints. Therefore, the tests in our test suite must satisfy the
SUT constraints. In particular, the problem of computing an MCAC of minimum length is
NP-hard [24].

There exist several greedy approaches for building MCACs, such as PICT [13] (from
Microsoft), based on the OTAT framework [11], and ACTS [10] (used by more than 4000
corporate users and universities), based on the IPOG algorithm [14]. However, they are not
well suited in terms of handling SUT constraints and will scale poorly as the complexity or
hardness of the SUT constraints grows. This is why, here, we focus on constraint programming
based approaches; particularly, we work with Satisfiability (SAT) based approaches [9].

SAT technology provides a highly competitive generic problem approach for solving
decision and optimization problems. In particular, the decision problem to be solved is
translated to the SAT problem which determines whether there is an assignment to the
Boolean variables in a propositional formula in Conjunctive Normal Form (CNF) (set of
clauses) that satisfies the formula. Additionally, optimization problems can be translated
into the Maximum Satisfiability (MaxSAT) problem which is the optimization version of the
SAT problem.

The CALOT [30] tool for building MCACs is based on an incremental SAT solving
approach which iteratively decreases the upper bound on the size of the test suite, formulating
at every iteration as a SAT problem whether there exists an MCAC of size N , till CAN(t, P )
is reached. The CALOT approach is extended by recent work in [2] where a MaxSAT
formulation based on [4] is proposed allowing the application of the new generation of
complete and incomplete MaxSAT solvers [5]. The initial upper bound for these approaches
is computed through the application of the ACTS tool.

While these approaches may be efficient enough for testing some SUTs, the size of the
SAT or MaxSAT formulas required for building MCACs rapidly grows with the number of
tests and size of SUT constraints but mostly with the strength t taken into consideration.

Regarding the number of tests and size of the SUT constraints, the SAT and MaxSAT
formulations of the mentioned approaches need to incorporate at least N copies of the SUT
constraints where N is the size of the test suite we try to build. In this sense, if the ACTS
tool is not able to provide a good enough upper bound then other strategies need to be
taken into account since the trivial upper bound, as discussed, can be unaffordable in terms
of size. There are approaches like [29] (based on SAT and the domain-dependent PICT
heuristic) and [2] (based on MaxSAT) that mitigate this problem by iteratively constructing
the test suite, i.e. adding just one single test at a time that aims to maximize the number of
interactions covered so far 1. The addition of one single test guarantees we only deal with
one copy of the SUT constraints.

1 [2] can add more than one test at each iteration.
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Regarding the strength t, the size of the SAT/MaxSAT formulas into existing approaches
is proportional to the potential number of allowed interactions, i.e. O

((|P |
t

)
· gt

)
where g is

the cardinality of the greatest domain. Typical applications use values of t = 2 and barely
t = 3. However, the more complex the SUT is, the higher the probability that faulty or buggy
interactions be caused by a larger number of parameters. Therefore, we need to consider
higher values like t = 4 and t = 5, what clearly is a bottleneck for the mentioned SAT or
MaxSAT approaches.

Finally, there are other recent Constraint Programming approaches but they focus on
t = 2 ([17, 18]) or they do not allow SUT constraints ([21]).

In this paper, we show how we can build practical higher strength MCACs through SAT
technology without incurring in memory blow-ups. In particular, we first present a new
incomplete algorithm named (Refined Build One Test – Incremental Test Suite) RBOT-its,
inspired on Algorithm 5 in [29]. RBOT-its builds the MCAC test by test and optimizes
(refines) subsets of the incremental test suite built so far by applying a MaxSAT based
approach. Then, we present another incomplete algorithm named PRBOT-its (Pool-based
Refined Build One Test – Incremental Test Suite) that iteratively builds the MCAC while
simultaneously keeping in a memory pool just a fraction of all the possible t-tuples of the
SUT fulfilling the memory size requirements.

The paper is structured as follows. In Section 2 we introduce some definitions on Covering
Arrays, SAT and MaxSAT. Section 3 shows how the CAN(t, P ) problem can be encoded
to MaxSAT. Section 4 presents the BOT-its algorithm (Build One Test – Iterative Test
Suite), an algorithm that incrementally builds MCACs test by test. Section 5 presents
the RBOT-its algorithm that uses a MaxSAT approach to improve the BOT-its algorithm.
Section 6 describes the PRBOT-its algorithm that shows how to adapt RBOT-its to operate
on low memory requirements. In Section 7 we study how these approaches compare to the
ACTS tool. Finally, in Section 8 we conclude and mention some future work.

2 Preliminaries

We introduce some definitions related to Covering Arrays and SAT technology.

▶ Definition 1. A System Under Test (SUT) model is a tuple ⟨P, φ⟩, where P is a finite
set of variables p of finite domain, called SUT parameters, and φ is a set of constraints on
P , called SUT constraints, that implicitly represents the parameterizations that the system
accepts. We denote by d(p) and gp, respectively, the domain and the cardinality domain of p.
For the sake of clarity, we will assume that the system accepts at least one parameterization.

In the following, we assume S = ⟨P, φ⟩ to be a SUT model. We will refer to P as SP ,
and to φ as Sφ.

▶ Definition 2. An assignment is a set of pairs (p, v) where p is a variable and v is a value
of the domain of p. A test case for S is a full assignment A to the variables in SP such that
A entails Sφ (i.e. A |= Sφ) . A parameter tuple of S is a subset π ⊆ SP . A value tuple of S

is a partial assignment to SP ; in particular, we refer to a value tuple of length t as a t-tuple.

▶ Definition 3. A t-tuple τ is forbidden if τ does not entail Sφ (i.e. τ |= ¬Sφ). Otherwise,
it is allowed. We refer to the set of allowed t-tuples as Ta = {τ | τ ̸|= ¬Sφ}.

▶ Definition 4. A test case υ covers a value tuple τ if both assign the same domain value
to the variables in the value tuple, i.e., υ |= τ . A test suite Υ covers a value tuple τ (i.e.,
τ ⊆ Υ) if there exist a test case υ ∈ Υ s.t. υ |= τ . We refer to υ ̸|= τ (τ ̸⊆ Υ) when a test
case (test suite) does not cover τ .

CP 2021
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▶ Definition 5. A Mixed Covering Array with Constraints (MCAC), denoted by CA(N ; t, S),
is a set of N test cases for a SUT model S such that all t-tuples are at least covered by one
test case. The term Mixed reflects that the domains of the parameters in SP are allowed to
have different cardinalities. The term Constraints reflects that Sφ is not empty 2.

▶ Definition 6. The MCAC problem is to find an MCAC of size N .

▶ Definition 7. The Covering Array Number, CAN(t, S), is the minimum N for which there
exists an MCAC CA(N ; t, S). The Covering Array Number problem is to find an MCAC of
size CAN(t, S).

▶ Definition 8. A literal is a propositional variable x or a negated propositional variable ¬x.
A clause is a disjunction of literals. A Conjunctive Normal Form (CNF) is a conjunction of
clauses.

▶ Definition 9. A weighted clause is a pair (c, w), where c is a clause and w, its weight, is a
natural number or infinity. A clause is hard if its weight is infinity (or no weight is given);
otherwise, it is soft. A Weighted Partial MaxSAT instance is a multiset of weighted clauses.

▶ Definition 10. A truth assignment for an instance ϕ is a mapping that assigns to each
propositional variable in ϕ either 0 (False) or 1 (True). A truth assignment is partial if the
mapping is not defined for all the propositional variables in ϕ.

▶ Definition 11. A truth assignment I satisfies a literal x (¬x) if I maps x to 1 (0);
otherwise, it is falsified. A truth assignment I satisfies a clause if I satisfies at least one of
its literals; otherwise, it is violated or falsified. The cost of a clause (c, w) under I is 0 if
I satisfies the clause; otherwise, it is w. Given a partial truth assignment I, a literal or a
clause is undefined if it is neither satisfied nor falsified. A clause c is a unit clause under I

if c is not satisfied by I and contains exactly one undefined literal.

▶ Definition 12. The cost of a formula ϕ under a truth assignment I, denoted by cost(I, ϕ),
is the aggregated cost of all its clauses under I.

▶ Definition 13. The Weighted Partial MaxSAT problem for an instance ϕ is to find an
assignment in which the sum of weights of the falsified soft clauses is minimal, denoted by
cost(ϕ), and all the hard clauses are satisfied. The Partial MaxSAT problem is the Weighted
Partial MaxSAT problem where all weights of soft clauses are equal. The SAT problem is the
Partial MaxSAT problem when there are no soft clauses. An instance of Weighted Partial
MaxSAT, or any of its variants, is unsatisfiable if its optimal cost is ∞. A SAT instance ϕ

is satisfiable if there is a truth assignment I, called model, such that cost(I, ϕ) = 0.

▶ Definition 14. An Exactly-One (EO) constraint is a cardinality constraint of the form∑n
i=1 li = 1 where li are propositional literals.

3 The CAN(t, S) problem as MaxSAT

In this section, we first show a SAT encoding for the MCAC problem inspired on previous
approaches [19, 20, 6, 25, 4, 30, 2]. Then, we present the MaxSAT encoding for the CAN(t, S)
problem presented in [4, 2]. Exactly One cardinality constraints are translated into CNF
through the regular encoding [1, 16].

2 Notice that the CSPLib 045 problem definition of Covering Arrays [28] does not consider SUT Constraints.
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First, we encode through variables xi,p,v that a test case i assigns value v to parameter p.
We restrict each parameter to take one value per test case as follows (where [N ] = {1, . . . , N}):∧

i∈[N ]

∧
p∈SP

∑
v∈d(p)

xi,p,v = 1 (X)

In order to enforce the SUT constraints, we convert φ to SAT3 by substituting each (p, v)
in φ by the corresponding literal on the propositional variable xi,p,v for each test case i.

∧
i∈[N ]

CNF

(
Sφ

{
¬xi,p,v

p ̸= v
,

xi,p,v

p = v

})
(SUTX)

Variables ci
τ represent that t-tuple τ is covered by test case i or by any lower test case

j, where 1 ≤ j ≤ i (equation CCX(a)). To ensure that τ will be covered by some test, we
set cN

τ to be True and c0
τ to be False (equations CCX(b) and CCX(c)). Notice that only

t-tuples that can be covered by a test case are encoded, i.e., τ ∈ Ta.∧
i∈[N ]

∧
τ∈Ta

∧
(p,v)∈τ

(ci
τ → ci−1

τ ∨ xi,p,v) (a) (CCX)

∧
τ∈Ta

cN
τ (b)

∧
τ∈Ta

(cN
τ → ¬c0

τ ) (c)

▶ Proposition 15. Let SatN,t,S
CCX be X ∧ SUTX ∧ SCCX. SatN,t,S

CCX is satisfiable iff a
CA(N ; t, S) exists.

As we can see, sets SUTX and CCX will be responsible for memory blow-ups when
dealing with a large number of tests or allowed t-tuples.

The presented SatN,t,S
CCX encoding requires an upper bound on N and a way to avoid

encoding the forbidden t-tuples. These can be extracted from any suboptimal MCAC solution.
We can take as upper bound N the number of tests of the solution and discard all the missing
t-tuples (as these will be forbidden). After that, row symmetry breaking techniques can
be applied. We can compute which is the parameter tuple of length t with the maximum
number r of t-tuples, and then fix these r t-tuples in the first r test cases. Notice that
these t-tuples are mutually exclusive and must be covered into different test cases. We will
refer to the lower bound as lb = r−1 (i.e. it is not possible to find an MCAC with r−1 tests).

This SatN,t,S
CCX encoding can be extended to a MaxSAT encoding for the CAN(t, S)

problem, as described in [2, 4]. We will use an indicator variable ui that is True iff test case
i is part of the MCAC. The objective function of the optimization problem, which aims to
minimize the number of variables ui set to True, is encoded into Partial MaxSAT by adding
the following set of soft clauses:∧

i∈[lb+2...N ]

(¬ui, 1) (SoftU)

3 We consider that φ is already in CNF format.
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Notice that we only need to use N − (lb + 1) indicator variables since we know that the
covering array will have at least lb + 1 tests. To avoid symmetries, it is also enforced that if
test case i + 1 belongs to the MCAC, so does the previous test case i:∧

i∈[lb+2...N−1]

(ui+1 → ui) (BSU)

Finally, we just need to state how variables ui are related to variables ci
τ . This constraint

reflects that if ui is False (i.e., tests ≥ i are not in the solution), then the tuple τ has to be
covered at some test below i:∧

i∈[lb+2...N ]

∧
τ∈Ta

(¬ui → ci−1
τ ) (CCU)

▶ Proposition 16. Let PMSatN,t,S,lb
CCX be SoftU∧BSU∧CCU∧SatN,t,S

CCX . If N ≥ CAN(t, S),
the optimal cost of the Partial MaxSAT instance PMSatN,t,S,lb

CCX is CAN(t, S) − (lb + 1),
otherwise it is ∞.

The main problem with these SAT and MaxSAT encodings is that their size dramatically
grows with the number of tests and t-tuples to cover. This makes the SAT-based solving
approach unpractical in real scenarios. In the next sections, we show how to avoid memory
blow-ups by describing new incomplete approaches.

4 Incremental Test Construction

To reduce the number of tests that we need to encode, the idea is to incrementally build the
test suite, test by test. Therefore, at any iteration, we just encode the SUT constraints once.

Algorithm BOT-its (Build One Test - Iterative Test Suite), which is inspired on Al-
gorithm 5 in [29], builds an MCAC by iteratively calling the BuildOneTest (BOT) algorithm
(an algorithm that greedily builds a new test, see details below). BOT-its keeps a pool p

of the t-tuples yet to cover. Then, it incrementally extends the working test suite Υ by
appending the new test υ computed by the BOT algorithm. The pool p is simplified by
erasing those t-tuples covered by υ. Finally, the algorithm returns when the pool becomes
empty.

Algorithm BOT-its Build One Test – Incremental Test Suite algorithm.

Input : SUT model S, strength t, consistency check conflict budget cb

Output : Test suite Υ
1 Υ← ∅ # Working test suite
2 p← pool with all t-tuples of S

3 sat← incremental SAT solver initialized with X and SUTX constraints
4 while p ̸= ∅ do
5 υ, p← BOT (S, p, sat, cb)
6 Υ← Υ ∪ {υ}
7 pυ ← {τ | τ ∈ p ∧ υ |= τ} # Tuples in p covered by υ

8 p← p \ pυ

9 return Υ
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Next, we show the pseudocode for the BuildOneTest (BOT) algorithm, also inspired on
Algorithm 5 in [29]. The BOT algorithm receives the pool p with the t-tuples yet to cover. In
order to build the current test, BOT uses the PICT heuristic [13] to identify the parameter
tuple (to which we refer as the PICT t-tuple) with most t-tuples in the pool. Then, it selects
one to initialize the test under construction (line 1).

Algorithm BuildOneTest (BOT) Inspired on Algorithm 5 in [29].

Input : SUT model S, Tuples pool p, SAT solver sat, consistency check conflict
budget cb

Output : A new test case υ

# All functions can access S, p and sat

1 υ ← choose τ ∈ p as in PICT s.t. consistent(τ,∞) # υ covers at least τ

2 while there exist (p, v) s.t. υ ∪ {(p, v)} covers a tuple in p and
consistent(υ ∪ {(p, v)}, cb) do

3 Choose such best (p, v) # υ ∪ {(p, v)} covers more tuples in p

4 υ ← υ ∪ {(p, v)}
5 if exists τ ∈ p s.t. τ can be covered in υ and consistent(τ, cb) then
6 choose τ ∈ p as in PICT
7 υ ← υ ∪ τ

8 go to line 2
9 υ ← amend(υ)

10 return υ, p

To make sure the PICT selection is consistent with the SUT constraints, BOT runs a
consistency check (of unlimited cb conflicts). In particular, in function consistent in BOT
auxiliary functions, a SAT solver is used to check the validity of the parameters assigned so
far with respect to the SUT constraints. The SAT instance represents the SUT constraints
and the SAT solver is executed using as assumptions the partial assignment of all the fixed
parameters in the current test. If the check fails, an unsatisfiable core is retrieved4, i.e., a
subset of the formula that is already unsatisfiable. In particular, the core contains the set of
assumptions responsible for the unsat answer. Moreover, the t-tuples in the pool subsumed
by the core are removed since these are forbidden tuples (line 4 in function consistent).
Notice that this way a lazy removal of forbidden tuples is implemented.

After the PICT selection, it iteratively selects from the set of unassigned parameters, the
pair parameter-value (p, v) that, in combination with the parameters fixed so far, covers at
least one t-tuple in the pool, preferring the one that covers most (lines 2 - 4). To preemptively
detect if the selected parameter plus the previous partial assignment is inconsistent with the
SUT constraints it calls function consistent but with a limited number of conflicts cb, since
the check can be expensive and we can not afford a full check at this point.

Whenever the above process saturates, i.e. reaches a fixpoint, and there are yet unassigned
parameters, a new t-tuple is selected as in PICT and assigned to the test. Then, the process
starts again (line 8). In this case, we also guarantee the selected tuple is consistent with the
SUT constraints running consistent function with limited conflicts budget cb.

At this point, we have heuristically built a partial test that aims to cover most of the
t-tuples in the pool, but we may not be able to extend it to a full test consistent with the
SUT constraints. Therefore, the partial test may have to be amended (line 9).

4 When cb ̸= ∞ the result of the check might be unknown.
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Algorithm BOT auxiliary functions Auxiliary functions for algorithm BOT.

# All functions can access S, p and sat

1 function consistent(τ, cb)
2 if sat.solve(τ , cb) = True then return True
3 else
4 p← p \ {τ | sat.core() ⊆ τ ∧ τ ∈ p} # p updated in place
5 return False

6 function amend(υ)
7 while not consistent(υ,∞) do
8 (p, v)← most recently fixed (p, v) in υ s.t. (p, v) ∈ sat.core()
9 υ ← υ \ {(p, v)}

10 Fix unfixed parameters in υ according to sat.model()
11 return υ

This amend process (see BOT auxiliary functions) tries to preserve the greatest slice
of the partial test that can be extended to a full test consistent with the SUT constraints
through the call to function consistent with an unlimited budget. In case the partial test is
inconsistent, to amend it, the assumptions in the core are removed in reverse chronological
order (lines 7 - 9 in function amend) till the SAT solver is able to complete the test satisfying
the SUT constraints (line 10).

When the BOT algorithm ends, it returns the new test just built υ and the input pool p

without those forbidden t-tuples that were detected (line 4 in function consistent).
The implementation of Algorithm 5 in [29], on which BOT-its and BOT algorithms are

inspired, is not available after request to the authors for reproducibility purposes. Our BOT
algorithm, apart from implementation details, differs fundamentally on function consistent.
In particular, on how we specifically conduct a consistency check with a limited number of
conflicts.

5 Refining Test Suites

In Section 4 we showed how algorithm BOT-its builds incrementally an MCAC. Notice that
the MCAC might not be optimal (i.e. it may exist a smaller MCAC) since BOT-its is a
greedy algorithm.

Taking as upper bound the size of the suboptimal MCAC provided by the BOT-its
algorithm (see Section 4) we can always try to find an smaller MCAC as described in
Section 3. Notice that depending on the number of parameters, the strength t and the
number of tests, the Partial MaxSAT encoding might be unreasonably large.

To circumvent this issue we essentially compute whether a portion of the MCAC under
construction can be refined to use fewer tests but cover the same t-tuples in the pool p. We
refer to this portion (test suite) as the window to be refined.

In this section we present algorithm RBOT-its, which is an improvement over BOT-its.
Red lines show the extensions.

In particular, we keep an sliding window of tests that starts at w.i and ends in the last
test of Υ. This window also keeps track of the t-tuples (w.p) of the pool p covered by the
window (line 11).
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Algorithm RBOT-its Refined BOT-its algorithm. Differences with BOT-its in red.

Input : SUT model S, strength t, consistency check conflict budget cb

Output : Test suite Υ
1 Υ← ∅ # Working test suite
2 p← pool with all t-tuples of S

3 sat← incremental SAT solver initialized with X and SUTX constraints
4 w.p← ∅ # Window of covered tuples
5 w.i← 0 # Window starting test index
6 while p ̸= ∅ do
7 υ, p← BOT (S, p, sat, cb)
8 Υ← Υ ∪ {υ}
9 pυ ← {τ | τ ∈ p ∧ υ |= τ} # Tuples in p covered by υ

10 p← p \ pυ

11 w.p← w.p ∪ pυ

12 while window_is_full(Υ, w) do
13 Υ, p, w ← refine(Υ, p, w)

14 Υ, p, w ← refine(Υ, p, w)
15 return Υ

We keep track of the potential memory size of the Partial MaxSAT required to refine the
window. While we hit the maximum allowed size by our system (i.e. function window_is_full
in line 12 returns true) we execute the refining process (line 13). As we will see below, the
refine process, even reducing the number of tests, it may cause to cover additional t-tuples
that were not previously in the window. The side effect is that the window may remain full
in terms of memory requirements.

Once the algorithm has covered all t-tuples in p, we apply a last refinement to the last
window to ensure that it is refined even if the window is not full (line 14).

Function refine in Refine tries to cover the same tuples covered in the window w.p but
using less tests. First, it encodes as Partial MaxSAT the problem of building a test suite with
the minimum number of tests that covers the t-tuples in the window. This can be achieved
by making use of the Partial MaxSAT encoding for the CAN(t, S) problem described in
Section 3, but taking as Ta the set of t-tuples into the window and as upper bound ub the
window size.

Then, we run a MaxSAT solver and extract the test suite induced by the solution it
reports. If the size of this test suite is smaller than the window size, we use it to replace
the window in Υ (line 5). We also update the t-tuples covered by the window, since we may
cover extra tuples px with the new tests (lines 6 - 8). Otherwise, we reduce the size of the
window by excluding the test w.i and update properly the window (lines 10 - 13).

6 Incremental Pool of t-tuples

There is yet a main practical problem with the BOT-its algorithm which is the high memory
consumption by the pool of t-tuples to be covered. In particular, when t or the number of
parameters is high enough.

In this section we present algorithm PRBOT-its, an extension of RBOT-its (see Section 5)
to avoid memory blow-ups by limiting the number of t-tuples to be considered when building
a test. Red lines show the differences respect to algorithm RBOT-its.
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Algorithm Refine Test suites refinement function.

# refine function can access S, t and b

1 function refine(Υ, p, w)
2 φ← encode(S, Υ≥w.i, w.p)
3 Υr ← solve(φ)
4 if Υr ̸= ∅ and |Υr| < |Υ≥w.i| then
5 Replace Υ≥w.i by Υr in Υ
6 px ← {τ | τ ∈ p ∧Υr |= τ}
7 p← p \ px

8 w.p← w.p ∪ px

9 else
10 υr ← test case with index w.i in Υ
11 Υ← Υ \ {υr}
12 w.p← w.p \ {τ | τ ∈ w.p ∧ υr |= τ}
13 w.i← w.i + 1
14 return Υ, p, w

This algorithm works on a partial pool p of size at most b. The pool is incrementally filled
with new pending t-tuples, to finally traverse all the t-tuples (line 8). Once the pool p is full,
the BOT algorithm is called to build a test that tries to cover as much t-tuples as possible in
p (line 9, see Section 4). Then, the algorithm proceeds as algorithm RBOT-its (lines 10 –
16). The main loop ends when the pool is empty and there are not pending tuples (unseen
tuples) to add to the pool (function unseen_tuples?). Finally, as in algorithm RBOT-its we
perform a last refinement.

BOT algorithm has been also modified in the following way. In particular, within function
consistent (called by BOT algorithm) whenever we discard forbidden tuples, we additionally
call function fill_pool after line 4 in BOT auxiliary functions, as follows:

Υ, p, w, τ ← fill_pool(Υ, p, w, τ )

The goal is to take advantage of the available extra space in the pool thanks to the
lazy detection and removal of forbidden tuples. Consequently, the call to function BOT in
algorithm PRBOT-its (line 9) is extended with the additional entry parameters Υ, w and
output parameters w, τ .

To fill the pool of t-tuples we call function fill_pool in Fill pool. This function iteratively
adds new t-tuples to the pool that are neither in Υ nor in the pool, till p is full or all t-tuples
have been processed (seen) (lines 2 – 4).

New t-tuples are selected taking into account the latest tuple seen τ by calling function
next_tuple (a total order is implicitly assumed, line 3). Notice that whether τ is a forbidden
tuple (not consistent with the SUT constraints) it is handled by the BOT algorithm into the
consistent function as previously described.

If τ was not already covered in Υ it is added to the pool p. Otherwise, if the new tuple is
in particular covered by the current window it is consequently added to the window pool
(line 6). Since the window may get full, as in previous algorithms we refine the window pool
till it is not full anymore (lines 7 – 8).
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Algorithm PRBOT-its Pool-based RBOT-its algorithm. Differences with RBOT-its in red.

Input : SUT model S, strength t, consistency check conflict budget cb, pool
budget b

Output : Test suite Υ
# All functions can access S, t and b

1 Υ← ∅ # Working test suite
2 sat← incremental SAT solver initilized with X and SUTX constraints
3 w.p← ∅ # Window of covered tuples
4 w.i← 0 # Window starting test index
5 p← ∅ # Working pool of tuples to cover
6 τ ← ∅
7 while p ̸= ∅ or unseen_tuples?(S, t, τ ) do
8 Υ, p, w, τ ← fill_pool(Υ, p, w, τ )
9 υ, p, w, τ ← BOT (S, p, sat, cb, Υ, w)

10 Υ← Υ ∪ {υ}
11 pυ ← {τ | τ ∈ p ∧ υ |= τ} # Tuples in p covered by υ

12 p← p \ pυ

13 w.p← w.p ∪ pυ

14 while window_is_full(Υ, w) do
15 Υ, p, w ← refine(Υ, p, w)

16 Υ, p, w ← refine(Υ, p, w)
17 return Υ

7 Experimental Results

In this section, we report the experimental investigation we conducted to assess the per-
formance of the approaches proposed in the preceding sections. We use a total of 58 SUT
instances, which are extracted from [12], with 5 real-world and 30 artificially generated
covering array problems, [27] with 20 real-world instances, [31] with two industrial instances
and, [29] with another industrial instance.

In Table 1 we show the information about each SUT instance. SP provides the number of
parameters and their domain (e.g. in instance Banking1, 3441 means 4 parameters of domain
3 and 1 of domain 4) and, Sφ the number of SUT constraints and their sizes (e.g. instance
Banking1 has 112 constraints that involve 5 parameters, 5112 in the table).

The environment of execution consists of a computer cluster with machines equipped
with two Intel Xeon Silver 4110 (octa-core processors at 2.1GHz, 11MB cache memory) and
96GB DDR4 main memory. All the experiments were executed with a timeout of 12h and a
limit of 12GB of RAM. We executed all the algorithms with 10 different seeds, except for
the ACTS tool (as it does not expose the seed parameter).

We use Python as a programming language and the Python framework OptiLog [3]
that provides bindings to state-of-the-art SAT solvers. For our experimentation, we use
Glucose 4.1.
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Algorithm Fill pool Fill pool function.

# fill_pool function can access S, t and b

1 function fill_pool(Υ, p, w, τ)
2 while |p| < b and unseen_tuples?(S, t, τ ) do
3 τ ← next_tuple(S, t, τ )
4 if τ ̸⊆ Υ then p← p ∪ {τ}
5 elif τ ⊆ Υ≥w.i then
6 w.p← w.p ∪ {τ}
7 while window_is_full(Υ, w) do
8 Υ, p, w ← refine(Υ, p, w)

9 return Υ, p, w, τ

We implemented our own version of BOT-its, as the implementation of Algorithm 5
described in [29] was not available from authors for reproducibility purposes5. We also found
that our implementation is not able to reproduce exactly the results reported in the original
work. In particular, we notice that in our case the sizes of the reported MCACs are just
slightly higher. Moreover, our implementation also seems to be significantly slower6. Notice
the authors used as underlying SAT solver lingeling [7] and we use Glucose 4.1, and this
may explain part of the divergence. However, this also means that if the implementation
of Algorithm 5 from [29] was available we could probably even get better results with our
algorithms RBOT-its and PRBOT-its which extend BOT-its. We set the consistency check
conflict budget cb parameter for all the BOT-its algorithms to 1 (see Section 4).

For the Refine function in algorithms RBOT-its and PRBOT-its we consider the encoding
PMSatN,t,S,lb

CCX described in Section 3. We use a custom implementation of the linear [15, 23]
MaxSAT algorithm that is able to report suboptimal solutions7, using CaDiCaL as the
underlying SAT solver [8]. We set a window size of approximately 500MB, a total time limit
for the MaxSAT solver of 180s, and a timeout of 30s between solutions (see Section 5). Notice
that this setting could be fine-tuned although we did not carry out this analysis. In previous
approaches results are provided up to t = 3, here we carry out our experiments for t = 3,
t = 4, and t = 5 which, as mentioned previously, are also of interest to many applications.

The first question we address is the impact of RBOT-its, the refined version of BOT-its,
in terms of size of the reported test suite and run time for t = 3. Moreover, we compare with
ACTS. We describe the results in Table 1 under columns tests and time, respectively. Since
all approaches are incremental construction methods, we report (under columns “%”) a lower
bound on the percentage of allowed t-tuples covered by the retrieved test suite. When the
percentage is 100 it means it was possible to build an MCAC. On the other hand, instances
that have a “-” in all columns were not able to report any test suite. As we can see, RBOT-its
is able to report better MCAC sizes than ACTS and BOT-its on 42 of the 58 instances. This
confirms the goodness of the refined approach.

The second question we address is about how much memory is consumed by the BOT-its
algorithm. In particular, we estimate the required memory to keep all the t-tuples in memory
at the same time. We consider integers of 32 bits and we exclude the memory resources

5 The tools we implemented are available in http://hardlog.udl.cat/static/doc/prbot-its/html/
index.html as well as detailed installation and execution instructions.

6 In [29] their algorithms are implemented in C programming language
7 Since RBOT-its is incomplete by nature, there is actually no need to use a complete MaxSAT solver.

http://hardlog.udl.cat/static/doc/prbot-its/html/index.html
http://hardlog.udl.cat/static/doc/prbot-its/html/index.html
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Table 1 SUT parameters domains and constraints for each instance (columns SP and Sφ) and
memory consumption for t = 3 (mem). Test suite size, percentage of tuple coverage and time for
t = 3. In bold the method with better results with the lexicographic criteria (coverage percentage,
number of tests, exhausted time). For the coverage percentage enough precision was taken into
account. Resources: 12GB memory and 12h timeout.

t = 3
SP Sφ mem ACTS BOT-its RBOT-its

inst tests % time tests % time tests % time

Cohen et al. [12]

1 28633415562 2203341 20.1MB 293 100% 4s 294.20 100% 12m 294.20 100% 1.3h
2 28633435161 21933 15.6MB 174 100% 3s 176.50 100% 6m 149.10 100% 39m
3 22742 2931 416.0kB 71 100% 1s 72.90 100% 4s 50.50 100% 5m
4 251344251 21532 3.7MB 102 100% 2s 108.10 100% 48s 81.10 100% 7m
5 215537435564 2323641 112.7MB 386 100% 14s 384 100% 1.6h 384 100% 3.3h
6 2734361 22634 8.1MB 119 100% 2s 133.20 100% 2m 98.60 100% 14m
7 22931 21332 399.7kB 35 100% 1s 39 100% 3s 28.40 100% 3m
8 210932425363 2323441 34.5MB 326 100% 5s 306.60 100% 23m 306.20 100% 1.1h
9 25731415161 23037 4.2MB 84 100% 2s 94.30 100% 44s 60 100% 4m
10 213036455264 24037 68.2MB 329 100% 9s 342.60 100% 51m 341.30 100% 2.4h
11 28434425264 22834 20.1MB 318 100% 4s 328.70 100% 13m 328.60 100% 1.4h
12 213634435163 22334 60.5MB 263 100% 7s 269.80 100% 36m 250 100% 1.6h
13 212434415262 22234 43.5MB 200 100% 7s 214.40 100% 19m 183.70 100% 1.0h
14 281354363 21332 16.3MB 244 100% 3s 244.30 100% 7m 216.30 100% 20m
15 25034415261 22032 4.1MB 173 100% 2s 180.10 100% 1m 150.90 100% 5m
16 281334261 23034 11.6MB 117 100% 3s 138.50 100% 3m 96.40 100% 9m
17 212833425163 22534 48.3MB 265 100% 6s 263.50 100% 30m 239.40 100% 1.3h
18 212732445662 2233441 59.9MB 344 100% 8s 327.20 100% 41m 327.20 100% 2.1h
19 217239495364 23835 166.3MB 373 100% 21s 385 100% 2.6h 365.50 100% 6.7h
20 213834455467 24236 94.5MB 463 100% 12s 465.60 100% 1.5h 465.60 100% 4.3h
21 27633425163 24036 13MB 235 100% 3s 235.40 100% 5m 216.50 100% 17m
22 272344162 22032 9.3MB 164 100% 2s 164.70 100% 3m 144 100% 8m
23 2253161 21332 352.7kB 48 100% 1s 55.40 100% 3s 37.30 100% 3m
24 2110325364 22534 34.5MB 341 100% 5s 337.70 100% 25m 337.70 100% 1.6h
25 211836425266 2233341 54.3MB 404 100% 7s 407.70 100% 47m 407.70 100% 2.6h
26 287314354 22834 16.8MB 207 100% 3s 205.10 100% 7m 195.30 100% 47m
27 25532425162 21733 5.1MB 204 100% 2s 210.90 100% 2m 180.50 100% 10m
28 2167316425366 23136 160.7MB 420 100% 21s 421.80 100% 2.6h 421.80 100% 4.6h
29 21343753 21933 52.4MB 154 100% 5s 156.10 100% 20m 125.70 100% 43m
30 2733343 23134 8.5MB 100 100% 2s 93.70 100% 2m 73.80 100% 14m
apache 215838445161 23314251 92.5MB 173 100% 9s 191.60 100% 36m 168.20 100% 1.7h
bugzilla 2493142 2431 2.3MB 68 100% 1s 72.20 100% 22s 49.50 100% 9m
gcc 2189310 23733 127.6MB 108 100% 10s 121 100% 43m 81.80 100% 1.4h
spins 21345 213 156.2kB 98 100% 1s 112.80 100% 2s 105.60 100% 3m
spinv 24232411 24732 4.3MB 286 100% 2s 251.70 100% 2m 238.90 100% 1.2h

Segall et al. [27]

Banking1 3441 5112 3.8kB 58 100% 2s 55.10 100% 0s 45 100% 30s
Banking2 21441 23 51.2kB 39 100% 1s 44.70 100% 0s 30 100% 3m

CommProtocol 21071 210310412524

630730812 26.0kB 49 100% 3s 50.30 100% 0s 41 100% 3m

Concurrency 25 243152 0.9kB 8 100% 1s 8 100% 0s 8 100% 0s
Healthcare1 26325161 23318 31.9kB 105 100% 1s 107.50 100% 0s 96 100% 9s
Healthcare2 253641 2136518 48.2kB 67 100% 1s 68.40 100% 0s 54.80 100% 3m
Healthcare3 21636455161 231 918.8kB 209 100% 1s 205.70 100% 15s 177.10 100% 41m
Healthcare4 21331246526171 222 2.2MB 294 100% 1s 309 100% 39s 274.90 100% 53m
Insurance 26315162111131171311 - 1.3MB 6866 100% 1s 6861.10 100% 3m 6858.40 100% 15m
NetworkMgmt 224153102111 220 189.4kB 1125 100% 1s 1107.70 100% 4s 1100.40 100% 2m
ProcessorComm1 233646 213 172.7kB 163 100% 1s 144.10 100% 2s 131.60 100% 3m
ProcessorComm2 233124852 142121 1015.3kB 161 100% 2s 169.30 100% 11s 145.50 100% 31m
Services 23345282102 338642 365.6kB 963 100% 6s 926.80 100% 13s 926.80 100% 5.7h
Storage1 21314151 495 1.8kB 25 100% 2s 25 100% 0s 25 100% 0s
Storage2 3461 - 5.1kB 74 100% 0s 71.50 100% 0s 54 100% 1s
Storage3 2931536181 238310 184.4kB 239 100% 1s 239.20 100% 3s 222 100% 9m
Storage4 253741526271101131 224 1.0MB 990 100% 1s 970.40 100% 28s 916.40 100% 15m
Storage5 253853628191102111 2151 2.1MB 1879 100% 4s 1936.10 100% 3m 1000.50 96% 12h
SystemMgmt 253451 21334 26.7kB 60 100% 1s 58.10 100% 0s 45 100% 2s
Telecom 2531425161 2113149 43.2kB 126 100% 1s 125.20 100% 0s 120 100% 5s

Yu et al. [31]

RL-A-mod 25344754657481123 11224913345 8.6MB 1132 100% 16s 1079.40 100% 4m 1069.20 100% 7.8h

RL-B-mod 283243536191

101122143201241371
18211273277

417555106462048 16.4MB 14977 100% 4m 13319.40 100% 3.1h 4954 92% 12h

Yamada et al. [29]

Company2 263484 12235389454534

62073481694 247.9kB 424 100% 15s 432.50 100% 7s 427.20 100% 54m
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required by other auxiliary data structures or by the SAT solver called within BOT-its.
Tables 1 and 2 show the result of our analysis under column mem. For t = 4 there are 20 out
of the 58 instances that would consume more than 1GB. For t = 5 the memory consumption
is greatly increased, as 23 of the 58 instances would consume more than 32GB (some of these
instances would need more than 1TB). Therefore, it is obvious we can not aim to run any
approach that explicitly considers all allowed t-tuples or tests at once under low memory
requirements.

The third question we address is whether the Pool-based versions of BOT-its and RBOT-
its are efficient compared to ACTS for t = 4 and t = 5. For both PRBOT-its and PBOT-its
(as PRBOT-its but refine is deactivated) we consider a pool budget of 1GB (1278264 tuples
for t = 4 and 721600 for t = 5). For t = 4 the combination of PBOT-its and PRBOT-its
report better sizes than ACTS and BOT-its in 35 of the 58 instances. Finally, for t = 5 we
found that ACTS and BOT-its can only report test suites for 39 and 18 instances respectively,
while PBOT-its and PRBOT-its can report test suites for all the 57 instances8.

Overall, we found that ACTS reports MCACs in 49 more instances than RBOT-its and
PRBOT-its. However, we may be observing an horizon effect, as RBOT-its and PRBOT-its
with the given resources are able to improve the results of ACTS in 89 out of 107 instances
where both these algorithms and ACTS reach 100% of coverage, where ACTS only obtains
better results in 8 (the remaining 10 are ties).

Regarding run times, ACTS is significantly faster than BOT-its, RBOT-its, PBOT-its and
PRBOT-its. However, ACTS will report the same suboptimal solution with more available
run time. In contrast, RBOT-its, and PRBOT-its can get better solutions if we increase the
timeout for the MaxSAT call related to the refining process.

A more fine grained analysis on the new methods reveals the following insights.
We observe PBOT-its subsumes BOT-its, as it can obtain an MCAC on the same instances

as BOT-its plus 23 and 7 more for t = 4 and t = 5 respectively. Regarding MCAC sizes we
observe similarities with the results reported by BOT-its. Regarding run times we found
that PBOT-its can obtain MCACs slightly faster than BOT-its.

Finally, we also note that with enough run time, RBOT-its and PRBOT-its algorithms
would subsume BOT-its and PBOT-its respectively. In particular, results show that the
refine approach can reduce the sizes on 92 out of the 106 instances where all these algorithms
are able to obtain an MCAC, while for the remaining 14 instances they report the same sizes.
In these particular cases, we observe that refine has not been able to improve the size of the
window within the given time constraints, so these results could be improved by tuning the
time limits, the MaxSAT solver’s parameters or even using a different MaxSAT solver.

To conclude this section, it seems we can confirm the goodness of the PRBOT-its algorithm.
We have shown how the refine method can be used to improve the sizes of the reported
suboptimal MCACs. Additionally, we extended the practical usage of algorithm BOT-its to
strengths higher than t = 3.

8 Conclusions and Future Work

Bugs or failures involving 4 or 5 parameters (even more) do exist and are likely to arise
in complex systems. We have provided an effective approach to compute MCACs of such
strength with low memory requirements. This low memory consumption plus the partitioning
nature of the Pool based approach opens the avenue for more practical parallelized approaches.

8 For instance Storage1 it is not possible to report an MCAC for t = 5 as it only has 4 parameters.
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Abstract
In this paper, we highlight an intriguing connection between the cryptographic attacks on Enigma’s
code and local consistency reasoning in constraint programming.

The coding challenge proposed to the students during the 2020 ACP summer school, to be
solved by constraint programming, was to decipher a message encoded using the well known Enigma
machine, with as only clue a tiny portion of the original message. A number of students quickly
crafted a model, thus nicely showcasing CP technology – as well as their own brightness. The detail
that is slightly less favorable to CP technology is that solving this model on modern hardware is
challenging, whereas the “Bombe”, an antique computing device, could solve it eighty years ago.

We argue that from a constraint programming point of vue, the key aspects of the techniques
designed by Polish and British cryptanalysts can be seen as, respectively, path consistency and
singleton arc consistency on some constraint satisfaction problems.
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1 Introduction

Enigma was a cipher machine that had been commercialised since 1923. Breaking its code
was a decisive breakthrough with a significant impact on the outcome of World War II.

The machine resembles a portable typewritter. Once configured in a particular setting
agreed upon by the sender and the receiver, it can be used to encrypt a message. When
typing with the machine, each letter is ciphered to a seemingly random letter indicated by a
light bulb. The encrypted message, or ciphertext, can be deciphered by the receiver using
his own Enigma machine. The code is indeed symmetric and typing the ciphertext with the
same machine setting yields the original message.

The Enigma code was first broken by the mathematicians Marian Rejewski, Jerzy Różycki
and Henryck Zygalski for the Polish Cipher Bureau before the war, although this method
relied on a weakness due to an operating practice that was abandoned during the war.
This knowledge on the machine, however, was shared with the allies and helped British
cryptanalysts to break the code. To this end, Alan Turing and Gordon Welchman designed
“The Bombe”, an electro-mechanical device that made it possible to decipher Enigma’s
encrypted messages until the end of the war.
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In this paper, we look back to this story from the viewpoint of constraint programming. We
first describe a constraint model to break Enigma’s code in Section 4. Given a portion of the
original message (the crib), a solution of this model represents the internal settings of Enigma
(the cryptographic key) that produced, and can decrypt, the intercepted communication.
Modelling this constraint satisfaction problem was the topic of a “hackathon” held during the
ACP summer school in 2020, and several participants managed to break Enigma’s code during
this event.1 This problem would be deceptively tricky to tackle without a rich modelling
framework, and it nicely illustrates the effectiveness of constraint programming in that
respect. However, solving this model with state-of-the-art solvers appears to be challenging,
which highlights the prowess that was solving this problem eighty years ago. Interestingly,
it appears that both methods used by the Polish Cipher Bureau or at Bletchley Park can
be equated to known concepts of consistency: Singleton Arc Consistency on the constraint
model introduced in this paper for the latter (see Section 5), and Path Consistency on some
precomputed constraints for the former (see Section 6).

2 The Constraint Satisfaction Problem and Consistency

A Constraint Satisfaction Problem (CSP) is a triple (X ,D, C) where X = {x1, . . . , xn}, is
a set of variables; D = {D(x1), . . . , D(xn)} a set of domains; and C = {c1, . . . , ct} a set of
constraints. An assignment maps2 values to variables, we write x ← v for the assignment of
value v to variable x. A constraint cj is given by a pair (S(cj), R(cj)) where S(cj) is a subset
of X , and R(cj) is |S(cj)|-ary relation, that is, a set of satisfying assignments of S(cj).

The assignment A = {x1 ← v1, . . . , xk ← vk} of the set of variables {x1, . . . , xk} is
consistent for a constraint c if and only if its projection {xi ← vi | 1 ≤ i ≤ k & xi ∈ S(c)} to
S(c) can be extended to an assignment in R(cj); Assignment A is globally consistent if and
only if it is consistent for every constraint in C; it is valid if and only if, for every variable xi,
we have vi ∈ D(xi). A solution of a CSP ⟨X ,D, C⟩ is a valid, globally consistent assignment
of X . We write D|x←v for the set of domains where x is mapped to {v} and equal to D on
all other variables, and D′ ⊆ D when ∀x ∈ X , D′(x) ⊆ D(x).

The notion of consistency is key to solving constraint satisfaction problems. We define
here three consistencies that we shall relate to historical methods for attacking Enigma’s code.
These definitions are standard generalisations to non-binary constraints. In particular, the
definition of consistency of an assignment for a constraint as its projection to the constraint’s
scope being extendable to the constraint’s relation is useful to generalize path consistency.

▶ Definition 1. A support for a constraint c is a valid and consistent assignment of S(c).

▶ Definition 2 (Arc Consistency (AC) [6]). A variable x is arc consistent (AC) with respect
to a constraint c if and only if, for each v ∈ D(x), there exists a support for c that contains
x ← v. A constraint c is AC if and only if every variable x ∈ S(c) is AC with respect to c.
A CSP (X ,D, C) is AC if and only if every constraint c ∈ C is AC.

▶ Definition 3 (Singleton Arc Consistency (SAC) [3]). An instantiation x ← v is singleton
arc consistent (SAC) if and only if there exists D′ ⊆ D|x←v such that the CSP (X ,D′, C) is
AC. A variable x is SAC if and only if, and for each v ∈ D(x), x ← v is SAC. A CSP
(X ,D, C) is SAC if and only if every variable x ∈ X is SAC.

1 https://acp-iaro-school.sciencesconf.org/
2 We use functions instead of tuples to make variable ordering irrelevant.
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▶ Definition 4 (Path Support). Given a CSP (X ,D, C) and three distinct variables x1, x2
and x3, the assignment {x3 ← v3} is a path support of assignment {x1 ← v1, x2 ← v2} for
variable x3 if and only if the assignment {x1 ← v1, x2 ← v2, x3 ← v3} is valid and globally
consistent.

▶ Definition 5 (Path Consistency (PC) [7]). An assignment {x1 ← v1, x2 ← v2} of two
variables is path consistent (PC) if and only if it has a path support for every variable.

A CSP (X ,D, C) is PC if and only if every valid and globally consistent assignment of
every pair of variables is path consistent.

Enforcing (singleton) AC on a CSP (X ,D, C) means finding the largest domain D′, in
the sense of inclusion as defined above, such that D′ ⊆ D and (X ,D′, C) is (singleton) AC.
Notice that there is a single such fix point, since the set of possible domains forms a lattice
where infimum and supremum are obtained respectively by the intersection and the union.

3 The Enigma Code

In its simplest form, Enigma’s encryption system is composed of three rotor wheels and a
reflector wheel. A rotor wheel can be seen as a simple substitution cipher whereby every letter
is mapped to a given letter, forming a permutation of the alphabet. The signal then goes
through the two other wheels, then through the reflector and finally through the three rotors
but backwards. Figure 1a illustrates, on a reduced alphabet, the rotor wheels (first three
boxes) and reflectors (last box) wiring the input keyboard to an output system composed
of lightbulbs indicating the substituted letter. In this case, pressing the key A eventually
lights the bulb E. In other words, this mechanism is a simple substitution cipher whereby the
alphabet is applied a permutation, e.g., (AE)(BD)(CF) in Figure 1a. Notice that the reflector
wheel is symmetric and antireflexive. As a result, the overall permutation is symmetric
and the same machine can therefore be used to decipher: pressing the key E lights bulb A.
Moreover, it is antireflexive: no letter is mapped to itself, which proved to be a weakness.

A
B
C
D
E
F

(a) Original rotors and reflector wiring.

A
B
C
D
E
F

(b) The same machine after one key stroke.

Figure 1 Illustration of Enigma’s rotors and reflector.

However, the feature that made Enigma such a strong cryptographic system is that rotors
are not static: they advance at every key stroke. More precisely, at every key stroke the
“fast” rotor (leftmost) advances one step. Figure 1b shows the same machine after one key
stroke. The fast rotor is shifted down by one position: the wire that was connecting B to A
nows connects A to F, and so forth. As a result, pressing the same letter A now lights bulb D.

Moreover, when the fast rotor has completed a turn and is back to its reference position,
a turnover notch is activated, and the middle rotor advances one step. Similarly, when the
middle rotor has completed a turn, the “slow” (rightmost) rotor advances one step. Figure 2
shows the same machine after 6 key strokes (the fast rotor has made a full turn and is back
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to its original position and the middle rotor has advanced 1 step), or after 95 key strokes
(the fast rotor has advanced 5 steps from its reference position, the middle rotor 3 steps and
the slow rotor 2 steps). The simple substitution cipher in the latter position is (AD)(BC)(EF).

A
B
C
D
E
F

(a) After 3 key strokes.

A
B
C
D
E
F

(b) After 95 key strokes.

Figure 2 Illustration of the same machine as in Figure 1a.

All Enigma machines shared the same set of three rotor wheels and the same reflector
wheel, however, rotors could be rearranged in any order and initialised in any position. For
instance, the daily settings could be given as “312, CSP”. In that case, on that day, the 3rd
rotor wheel would placed on the left, the 1st wheel on the middle and the 2nd wheel on the
right. Moreover, before (de)ciphering any message, the left, middle and right rotor wheels
would be positionned respectively so that the letters C, S and P showed up in some windows
designed for this purpose. Additionally, the positions of the turnover notches of the left and
middle rotor wheels, indicating the reference position at which the next rotor to the right
would advance, could also be changed. The cryptographic key shared by the sender and
receiver of the message was therefore the 3! rotor orders and the 263 rotor positions, as well
as the 262 reference positions.3 Therefore, there are 3!× 263× 262 = 72188256 possible keys.4

The first versions of the machine, commercialised in the 1920’s operated on those principles,
and hence had relatively few possible cryptographic keys. The version used by the German
military added one sophistication: a plugboard (or steckerbrett) inserted between the input
keyboard and the rotor scrambler, and also between the scrambler and the output light bulbs.
The plugboard is also a simple substitution cipher, mapping L letters to another – different –
letter, and the remaining 26− 2L to themselves. However, this further cipher could easily be
changed manually and was therefore part of the cryptographic key. For L = 10 plugs, the
number of possibilities is 150, 738, 274, 937, 250, and the total number of possible settings is
thus 158, 962, 555, 217, 826, 360, 000 and even 262 times more counting the reference positions.

Breaking the code entails finding, for a given ciphertext, the rotor settings (the choice of
rotors, their order, the reference position of the two leftmost rotors, and their initial position)
and the plugboard configuration. Those settings can be seen as the cryptographic key that one
needs to recover in order to decipher the messages. However, if every component contributes
to combinatorial number of keys, the rotor position is the most important. Indeed, the
reference positions do not affect the first letters of the message. As long as the middle rotor
does not advance, the text is unchanged. Moreover, the reference position of the first rotor
can be deduced from when the text starts being gibberish. The plugboard configuration
only affects part of the letters, for instance with six plugs, fourteen letters are not changed.
Therefore given a correct guess on the order and position for the rotors, setting up the
reference position arbitrary (say to AA) and the plugboard to the identity, would be sufficient

3 Only the left and middle rotors have a turnover notch.
4 Later versions introduced two more rotors to choose from, raising this number to 3P5 × 265 = 721882560.
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to decrypt a small portion of the message. Therefore, verifying that this guess is correct is
relatively easy, as well as deducing the reference position and the plugboard configuration.
Finally, the rotor ordering (and choice thereof) was often guessed by other means than
computation, or the attack was repeated for every possible order until it succeeded.

4 A Constraint Programming Model

In this section we introduce a constraint model that emulates the Enigma machine, and can
be used to break its code. This model assumes that the rotors and their order are known.
Since it is actually unknown, the problem might have to be solved 3! = 6 (resp. 3P5 = 60)
times for three rotor wheels (resp. three out of five).

Let ciphertext be a string of K letters; rotor be the rotor wiring, whereby rotor[j][x] is
the output letter, on input x, of rotor j in its reference position; and reflector be the reflector
wiring, whereby reflector[x] is the output of the reflector on input x. In the following, we
use N for the size of the alphabet and M for the number of rotor wheels (respectively 26
and 3 for Enigma). Moreover, we write [a, b] for the discrete interval {a, a + 1, . . . , b} and [b]
as a shortcut for [0, b− 1]. The model uses four sets of variables:

plaintext : plaintexti ∈ [N ] ∀i ∈ [K]
key : keyj ∈ [N ] ∀j ∈ [M ]
ref : refj ∈ [N ] ∀j ∈ [M − 1]

plugboard : plug[x] ∈ [N ] ∀x ∈ [N ]

The variables plaintext stand for the original message. The other variables stand for the
settings of the machine used to cipher it: the variables key stand for the rotor position (rotor
wheel j was advanced by keyj steps) the variables ref stand for the reference position of the
two leftmost rotor wheels (rotor j + 1 advances one step when rotor j returns to position
refj), and the variables plugboard stand for the plugboard connection (plug[x] is the letter
“steckered” to x by the plugboard). In a nutshell it ensures that an Enigma machine with
rotors rotor that have been setup with reference position ref , in initial position key and
with plugboard configuration plugboard ciphers plaintext to ciphertext. We use the
auxiliary variables x with xi,j ∈ [N ] ∀i ∈ [K], ∀j ∈ [2M + 2], with xi,j standing for the
output of the scrambling device j for the letter at position i in the plaintext. The scrambling
devices are ordered as explained in Section 3: plugboard first, then the three rotors, followed
by the reflector, the three rotors backwards, and finally the plugboard again. We also use
the auxiliary variables p with pi,j ∈ [K + K/N j ], ∀i ∈ [K], ∀j ∈ [M ], to represent the total
number of steps that the j + 1-th rotor wheel has advanced when reading the i + 1-th letter.
Finally, the auxiliary variables offset with, for j ∈ [2], offsetj represent the reduction in
number of steps to advance for rotor j to reach its reference position refj for the first time.5

In the reminder of the section, we will extensively use the Element constraint [4]:

▶ Definition 6 (Element). Let x = {x1, . . . , xK} be a set of variables, and k, y be two
variables. The constraint Element(x, k, y) is the pair (S, R) where the relation R contains
all assignments of S = x ∪ {k, y} satisfying the predicate xk = y.

When we write the expression “xk”, with k a variable and x = x1, . . . , xn an array of variables,
this should be read as an extra variable y constrained with Element(x, k, y). Similarly, for
any arithmetic operator ⊕ ∈ {+,−, ∗, /, mod}, the expression “x1 ⊕ x2” should be read as
an extra variable y with the constraint defined by the predicate x1 ⊕ x2 = y.

5 We include these variables for completeness, although they are often both set to the constant 0 (A).
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4.1 Forward Rotor Model

If rotor[j][x] is the letter read after going through rotor j from input x, then after advancing
k turns, the rotor produces the letter (rotor[j][(x + k) mod N ] − k) mod N on the same
input. The relation between the input letter xi,j and the output letter xi,j+1 of the forward
traversal of rotor j can therefore be encoded as follows:

pi,0 = key0 + i ∀i ∈ [K] (1)

offsetj =
{
−refj if refj ≤ keyj

N − refj otherwise
∀j ∈ [M − 1] (2)

pi,j = keyj + pi,j−1 + offsetj−1

N
∀i ∈ [K], ∀j ∈ [1, M ] (3)

xi,j+1 = (rotor[j][(xi,j + pi,j) mod N ]− pi,j) mod N ∀i ∈ [K], ∀j ∈ [M ] (4)

Constraints (1, 2 and 3) channel the auxiliary variables p, where pi,j stands for the number
of times the rotor j has turned starting for position 0 when reading the i-th letter, to the
initial positions key of the rotors and to their reference position ref via the variables offset.
Constraints (4) represent the substitution cipher used with input letter xi,j and output letter
xi,j+1: if rotor j advanced p steps, the wire that initially connected the letter α to the letter
β now connects the letter α− p to the letter β − p (modulo N = 26).

4.2 Reflector Model & Backward Rotor Model

The reflector is also a substitution cipher, but static (it does not change from a letter to
the next), symmetric (∀x, ∀y reflector[x] = y ⇐⇒ reflector[y] = x) and antireflexive
(∀x reflector[x] ̸= x). Constraints 5 model the relation between the input xi,M+1 of the
reflector (the signal corresponding to the i-th letter after going through the all rotors forward)
and its output xi,M+2 with another Element constraint. Then, the signal travels through
the rotors, but backward. Constraints 6 are similar as for the forward pass.

xi,M+1 = reflector[xi,M ] ∀i ∈ [K] (5)
xi,M+j+1 =
(rotor[j][(xi,M+j+2 + pi,M−j) mod N ]− pi,M−j) mod N ∀i ∈ [K], ∀j ∈ [M ] (6)

4.3 Plugboard Model

Finally, we need to model the plugboard of the military version. Since it is composed of L

plugs, each one connecting two letters, it is a symmetric permutation with N−2L fixed points,
i.e., it leaves N − 2L letters unchanged. Unlike the reflector (which is fully known) or the
rotors (for which the only unknowns are their positions), the plugboard is not known for the
attacker: its configuration is part of the cryptographic key to be computed during the attack.
It is encoded as a vector plugboard = ⟨plug[1], . . . , plug[N ]⟩ of variables with domain [N ]
where plug[x] stands for the letter mapped to letter x, and the following constraints:
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AllDifferent(plugboard) (7)
(plug[x] = y)⇔ (plug[y] = x) ∀x, y ∈ [N ] (8)

N∑
x=1

(plug[x] = x) = N − 2L (9)

plug[plaintexti] = xi,0 ∀i ∈ [K] (10)
plug[ciphertext[i]] = xi,2M+1 ∀i ∈ [K] (11)

Constraints (8), (9) and (9) ensure that the plugboard is in a legal configuraton by stating
that plugboard is a permutation (7); with N − 2L identities (9)6; and is symmetric (8).
Constraints (10) represent the transformation of the input by the plugboard, and Constraints
(11) the final transformation, also by the plugboard, yielding the ciphertext as output.

4.4 Breaking the Code
So far, the model introduced in this section emulates the Enigma machine: a solution stands
for a plaintext x whose cipher with message key key and plugboard plugboard is the given
ciphertext. However, there are too many consistent assignments of x, key and plugboard
to consider enumerating the solutions in order to find the original text.

In order to actually break the code, we use the same technique used by cryptanalyst
at Bletchley Park in the 1940s. We suppose that we are somehow given a “crib”, that is,
a portion of deciphered message.7 For instance, suppose that we know that the plaintext
corresponding to the portion of ciphertext IRSJYTCORS starting at position s is in fact
CONSTRAINT. Plaintext and ciphertext can therefore be aligned as shown in Table 1.

Table 1 A crib: an alignment of plaintext and ciphertext.

s s + 1 s + 2 s + 3 s + 4 s + 5 s + 6 s + 7 s + 8 s + 9

C O N S T R A I N T
I R S J Y T C O R S

Given a string of plaintext T and a string of ciphertext C such that |T| = |C| starting at
position s corresponding to a crib, we can find compatible initial rotor positions key, and
plugboard configurations plugboard, by solving the model introduced in this section8 with
K = |C|, Constraints (1–11), as well as the equalities:

plaintexti = T[i] ∀i ∈ [s, s + K] (12)

This model may have several solutions, and only one corresponds to the actual cryptographic
key. In practice, however, even small cribs can have a reasonable number of solutions, and
verifying them manually can be done by deciphering the rest of the ciphertext with the same
key. Experimental evaluations show that solving this model using standard CSP solvers is

6 The number of connections L went from 6 to 10 depending on Enigma’s versions. The equality
“plug[x] = x” is read as its natural conversion from Boolean to {0, 1}.

7 Cribs were obtained by guessing that a word or a sentence was likely to be in the message, and using
the fact that a letter is never ciphered to itself to align that portion of plaintext with the ciphertext.

8 Notice that the definition of several constraints must take into account the positional offset s.
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13:8 On How Turing and Singleton Arc Consistency Broke the Enigma Code

not trivial (see Section 7). In the two following sections, we review how the code was broken
in practice and show how those ideas can be mapped to the notion of consistency. These
observations directly lead to an efficient CP based method to break Enigma’s code.

5 Breaking Enigma’s Code: The British Method

The method developped by Alan Turing (and improved by Gordon Welchman) computes the
rotor position and the plugboard configuration used to cipher the message. It ignores the
reference positions, however, and actually fails if there was a turnover (i.e., if the middle rotor
advanced when ciphering the crib). A very advanced machine for its time, called “Bombe”
was built for that purpose at Bletchley Park. The Bombe was not only capable of quickly
simulating several rotor positions in parallel, but it could also either rule out a message key,
or (partially) compute a plugboard configuration consistent with that message key.

The method used by British cryptanalists also relied on acquiring a crib, that is, a string
T of original text aligned to a string C of same length in the ciphertext, as shown in Table 1.
A menu for the Bombe was then extracted from the crib:

▶ Definition 7 (Menu). Given a string of plaintext T and a string of ciphertext C such that
|T| = |C|, the menu obtained from matching them is a graph with one vertex per letter in
T ∪C, and an edge for each pair of matched letters T[i], C[i] labelled by their position, i.e.,
G = (T ∪C, {({T[i], C[i]}, i) | i ∈ [|T|]}). We write NG(x) = {(y, i) | ({x, y}, i) ∈ G} for
the neighborhood of letter x in the menu. Notice that it carries the edge labels.

T

S

RY

N

O

J

I

CA

0

1

23

4 5

6

7

89

Figure 3 Illustration of the Bombe’s menu from the crib in Table 1.

Figure 3 illustrates the menu extracted from the crib of Example 1.9 An edge, say ({A, C}, 6),
of the menu indicates the letter A (resp. C) at position 6 is ciphered to C (resp. A). Now,
observe that given some positions for the rotors, the Bombe can compute the scramble function
(i.e., permutation of the alphabet) Si : [N ] 7→ [N ] corresponding to the Enigma machine,
ignoring the plugboard. It is then possible to make some inference on the configuration of
the plugboard, as sketched in Figure 4. Indeed, suppose that the plugboard associates A to B.
We can compute Si(B), and in particular S6(B), let it be R. Now thanks to the crib, we know
that the cipher for A at position 6 is C, therefore the plugboard must associate R to C. This
process can be repeated starting from any edge of the menu ending in R or C, yielding more
deductions. Eventually, a contradiction might be found, or a fixed point might be reached.
This is Turing and Welchman’s inference rule, which can be formalised as follows:

▶ Definition 8 (Plugboard configuration). Let P be a collection of subsets of [N ] such that
|p| ≤ 2 ∀p ∈ P. We say that P is valid if and only if elements of P are pairwise disjoint
and contains no more than L pairs and no more than N − 2L singletons. We say that P is
complete if and only if

⋃
p∈P p = [N ]. The collection P is valid and complete if and only

if it corresponds to a legal plugboard configuration where, for every {α, β} ∈ P the letters α

and β are connected, and for every {α} ∈ P, the letter α is not changed by the plugboard.

9 For the sake of the example, we let the first index s be 0
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α β γ δ

A B? S6(B) = R C

plugboard Si plugboard

Ei

Figure 4 Illustration of Enigma’s encryption scheme: the input character (here α) is mapped to
β by the plugboard; then scrambled to γ by going through the rotors forward, the reflector and the
rotors backward; and finally mapped to δ by the plugboard.

▶ Proposition 9 (Inference rule). Let S be a scrambler (Enigma without the plugboard) and
G a menu. If P is the valid and complete plugboard configuration used during encryption of
G, then, for every {α, β} ∈ P:

for every (δ, i) ∈ NG(α), {δ, Si(β)} ∈ P, and
for every (δ, i) ∈ NG(β), {δ, Si(α)} ∈ P.

Proof. Suppose that the first rule does not hold, i.e., {α, β} ∈ P , ∃(δ, i) ∈ NG(α) such that
{δ, Si(β)} ̸∈ P. The letter α is mapped to β by the plugboard and is scrambled to Si(β).
However, since there is an edge ({α, δ}, i) in the menu, we know that the encryption setup
was such that the input letter α at position i yields letter δ. Therefore, the plugboard must
match the letters Si(β) and δ. If there is no p ∈ P such that β ∈ p, then P is not complete,
and otherwise, it is not consistent, hence a contradiction.

The second rule follows from the same reason but starting from letter β. ◀

This inference rule can be used to discard a guessed plugboard connection. The Bombe is an
electro-mechanical device that automatises this process. It is composed of several clones of
the Enigma machine, each capable of emulating the encryption of all 26 letters in parallel for
a given rotor setting, and wires for every possible plugboard connection. Given a message key
key, and a menu, the Bombe was initialised by setting up one of the clones to emulate the
scrambler Si for every edge label i in the menu. Then a connection {α, β} could be “guessed”
by sending a current flow through the corresponding wire into the Bombe. The inference rule
described in Proposition 9 would then be applied as the current flowed through the input β

of the clone Si, for each (δ, i) ∈ NG(α). The current would in turn flow to the connection
between Si(β) and δ and again to some clones of Enigma as indicated in the menu. This can
either result in a fixed point where P is closed under that rule, or yields an invalid plugboard
configuration. In the latter case, the connection {α, β} can be ruled out, and another guess
can be made. If there exists a letter for which no matching is possible, the message key is
ruled out and the same process is repeated for another message key. Otherwise, key is a
candidate key and a (partial) plugboard configuration is given by the connection in which
the current flows.

▶ Definition 10 (The Bombe method). The Bombe made it possible, starting from a tentative
connection {α, β}, to enforce the inference rule described in Proposition 9 until either it fails
(P is no longer valid), or succeeds (it does not fail and reaches a fixed point). In the former
case, the connection {α, β} can be ruled out.

The Bombe method denotes the process where, for each rotor position, every possible
plugboard connection involving a letter in the crib is ruled out if the process above fails. The
Bombe method causes a stop if and only if it reaches a fixed point where every letter can
appear in at least one connection. In that case, the current rotor position might be the correct
one (the message key) and it is checked by other means. Otherwise, this key is ruled out and
the process resume with another of the 263 positions.
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▶ Lemma 11. Let (X ,D, C) be the CSP of Section 4. If the rule of Proposition 9 deduces the
connection {δ, γ} from menu G and P = {{α, β}} then enforcing AC on (X ,D|plug[α]←β , C),
reduces the domain of plug[δ] to {γ} and of plug[γ] to {δ}.

Proof. Suppose that the rule of Proposition 9 deduces the connection {δ, γ}. We assume
first that the first rule triggered and hence (δ, i) ∈ NG(α) and Si(β) = γ.

Constraints (1 – 6) and (10 – 12) are all functional: when all but one of their variables
are fixed, the last variable has a single consistent value.

Since (δ, i) ∈ NG(α), the letter α in the plaintext of the crib is matched to δ in the
ciphertext at position i. By enforcing AC on Constraint 12, we have D(plaintexti) = {α},
and since D(plug[α]) = {β}, by enforcing AC on Constraint (10) we have D(xi,0) = {β}.

Moreover, since key is constant, so is p, by enforcing AC on Constraint (1) since only
one non-constant variable remains. As a result, enforcing AC on Constraints (4) reduces the
domains of variables xi,1, xi,2 and xi,3 to single values. The same is true for Constraint (5)
and Constraints (6). The variable xi,2M+1 is therefore assigned, and it must be to value
Si(β) = γ. Enforcing AC on Constraint (11) sets the domain of variable plug[δ] to {γ}.
Finally, Constraint (8) set the domain of plug[γ] to {δ}.

If it was the second rule that triggered, the same demonstration applies, although the
chain of propagations to consider goes in the reverse direction: from xj,2M+1 to xj,0. ◀

The implication in Lemma 11 is not an equivalence simply because in some cases, Constraints
7, 8 and 9 might trigger and more connections could then be deduced via propagation.
For instance if L = 1 and α ̸= β, then all variables in plugboard would be assigned by
propagation of Constraint 9. The following theorem is also an implication for the same
reasons, and in this case these constraints are even more likely to be relevant since the
domains are reduced while enforcing SAC.

▶ Theorem 12. If the Bombe method does not produce a stop, then enforcing singleton arc
consistency on the model described in Section 4, with the variables key assigned, also fails.

Proof. Let CN = (X ,D, C) be the CSP described in Section 4. In particular, plugboard ⊆
X , however, plaintext and key are constant under the theorem’s hypothesis.

Suppose that the Bombe method rules out a connection {α, β}. It means that the rule of
Proposition 9 produces an invalid plugboard configuration P . However, from Lemma 11 we
know that for every {α, β} ∈ P, after enforcing AC on the CSP (X ,D|plug[α]←β , C), all but
the value β (res.p α) are removed from D(plug[α]) (resp. D(plug[β])). It entails that there
exist two elements of P that are not disjoint, e.g., {α, β} ∈ P and {α, γ} ∈ P . In this case,
the corresponding domain D(plug[α]) is wiped out.

Therefore, every connection that is ruled out by the Bombe method is also ruled out by
enforcing SAC. The Bombe method fails if all the connections involving a particular letter
have been ruled out. If this happens for letter α, then the domain of the variable plug[α] is
emptied, and therefore SAC fails. ◀

The Bombe can therefore be seen as a CSP solver that branches on the variables key, and
enforces singleton arc consistency on leaves of this search tree. When SAC fails, the rotor
position corresponding to that branch is ruled out, otherwise the machine stops. Then,
the (partial) plugboard configuration is verified manually. If it cannot be extended to a
configuration that correctly deciphers the message, then this rotor position is ruled out as
well, and the Bombe resumes its search with a new assignment of key. It was therefore
important to reduce the likelihood of such false stops.
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6 Breaking Enigma’s Code: The Polish Method

The Enigma code was actually first broken, before the war, by Polish mathematicians Marian
Rejewski, Jerzy Różycki and Henryck Zygalski [5], who also succesfully reconstructed, from
partial and indirect intelligence, the Enigma machine and built mechanical devices to emulate
it. Their insights later proved essential to the British effort. Turing and Welchman’s method
relied on a crib and would guess the rotor position and the plugboard configuration used to
encrypt the message regardless of how it was chosen (in particular we shall see that this rotor
position is different to the one given in the daily settings). The method of the Polish Cipher
Bureau, on the other hand, relied on intercepting several messages sent with the same daily
settings, and would compute not directly the message key, but the daily settings.

Using repeatedly the same encryption key would be a serious security flaw. Operators
were thus instructed to randomly choose a 3-letter message key. This key (e.g., SAT) would
be encrypted twice10 using the rotor position indicated in the daily settings (e.g., the text
SATSAT would be ciphered using the key CSP to some 6-letter ciphertext). Then, the machine
would be reset to position SAT and the message woud be ciphered using that message key, and
both ciphers (6-letter prefix and text) sent in the same message. The receiver would then set
its own Enigma machine to postion CSP, decipher the prefix, reset its machine to the obtained
position SAT, and finally decrypt the message. This method still had the weakness of using
the same key (here, CSP) to encrypt all messages keys for a given day. Rejewski devised a
first method, involving a dedicated machine, the cyclometer, that partially automated the
design of a lookup table (the cards catalog) from which the daily rotor positions could easily
be found, provided several prefixes encrypted with the same daily settings [1].

The procedure was therefore upgraded: the sender chose a plaintext key besides the
message key. Then, the rotors were positioned according to the daily rotor settings shifted by
the plaintext key. In other words, the actual encryption key was equal to rotor settings +
plaintext key, where “+” stands for the modular, component-wise addition. This key was
used to encrypt the message key and it was sent in plaintext with the encrypted message.
For instance, if the rotor setting is CSP, the chosen plaintext key MIP, then the rotors would
be put in position OAE = CSP + MIP to cipher the chosen message key (say SAT). The text
SATSAT would yield, for instance, DGFAGX. Then the rotors were reset to position SAT and
the actual message was ciphered to “ciphertext”. Finally, the message sent would be:

MIP DGFAGX ciphertext

The receiver would add the plaintext key to the daily setting to recover the actual rotor
position, then, as previously, decipher the message key, reset the machine to the corresponding
rotor position and decipher the message. The difference with the previous practice, however,
was that the rotor position used to cipher the 6-letter prefix was never twice the same. The
fact that the message key was repeated twice, however, proved nonetheless to be a fatal flaw.

When rotors and plugboard are in a given configuration, Enigma corresponds to a
symmetric permutation, although the permutation changes with every letter since the rotors
advance. Let EXYZ

i stand for the permutation applied by Enigma to the i-th letter with
initial rotor position XYZ.11 Consider the prefix MIP DGFAGX and let key = {key1, key2, key3}
denote the unknown rotor setting common to all messages of a given day. We know that a

10 This practice was abandoned May 1st 1940, hence making the Polish attack irrelevant.
11 The plugboard is ignored here.
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letter (say x) is mapped to the letter D in Ekey+MIP
1 and to A in Ekey+MIP

4 . Moreover, since
Ekey+MIP

1 is symmeric, it maps A to x. Therefore, the composition Ekey+MIP
1 Ekey+MIP

4 maps D
to A and vice versa. Because the plugboard is unknown we do not learn anything from that.

However, observe that Ekey+MIP
2 Ekey+MIP

5 transforms the letter G to itself. Mathematician
Henryk Zygalski noticed that this was relevant because the plugboard changes the letter but
conserve the fixed points of permutation Ekey+MIP

2 Ekey+MIP
5 (an element unchanged by the

permutation), and because not all rotor settings have such fixed points [5].
A device, “the Bomba”,12 was designed and built by the Polish Cipher Bureau to go over

all of the 263 rotor settings, and record which settings could allow such a fixed point in one
of the three composed permutations. Only 40% of the rotor positions had a composition
fixed point. A set of 26 perforated sheets (known as the Zygalski sheets) were to be produced
for each of the 6 possible rotor orders.13 Each sheet corresponds to a letter, standing for the
first letter of the unknown rotor position, and contains a 26× 26 Boolean matrix standing
for whether the second and third letters could extend the first letter to a position allowing a
fixed point. We denote Z[α, β, γ] the fact that there is a hole at positions β, γ in the Zygalski
sheet for letter α, which is true if and only if the rotor position αβγ has a composition fixed
point (and hence may encode the two occurrences of a letter in the prefix to the same code).

Consider now a prefix MIP VNEVSX. There is a fixed point at position (1, 4), hence the
Zygalski sheets allowed some inference: one would first guess the order of the rotors and a
first letter key1 indicating the position of the first rotor. Then, let α = key1 + M. The α-th
sheet would be taken from the box standing for the chosen order. The matrix on that sheet
(shifted by I and P in the respective dimensions14) thus stands for the possible values of
key2 and key3. This narrows down the number of possibilities by 60%. Now, suppose that a
message with prefix: SMT DGFAGX is intercepted the same day. This prefix also has a fixed
point, but at position (2, 5). Therefore, the same reasoning applies, using sheet key1 +S+1 in
the same box, but shifted by M and T. The “+1” models that the fixed point is on the 2nd and
5th letters, which is equivalent to observing it on the 1st and 4th letters, however with the
position of the left rotor advanced one step. The subset of holes that allow both fixed points
is obtained by shining light through the two sheets, properly shifted and aligned. Usually, a
dozen messages including a fixed point (and as many sheets) were necessary to narrow down
the number of possibilities to either 0, in which case the guess was proven wrong; or 1, in
which case the rotor position key and the rotor order could be easily retrieved.

This method does not take the plugboard into consideration. However, since 14 letters
were not affected by the plugboard15, it is possible to reconstruct the message manually. It
also fails in case a turnover of the middle rotor happens before the end of the 6-letter prefix.

Aligning several Zygalski sheets corresponds to solving the following CSP:

▶ Definition 13 (Zygalski’s CSP). We call Zygalski’s CSP the constraint satisfaction problem
with set of variables key = {key1, key2, key3}, and for each message with plaintext key
αβγ containing a fixed point at positions (1 + i, 4 + i), a constraint given by the predicate
Z[key1 + α + i, key2 + β, key3 + γ].

▶ Theorem 14. The letter α for the position of the first rotor is refuted by the Zygalski
sheets method if and only if no pair of instantiations {key2 ← β, key3 ← γ} has key1 ← α

as path support in Zygalski’s CSP.

12 An aggregate of six Enigma machines, one for each permutations of the prefix.
13 The process was long and difficult, even with the Bomba: only 2 sets had been completed when the

invasion of Poland began, but the sheets were eventually finalized at Blechtley Park.
14 The sheets had 25 repeated rows and columns to allow for shifting modulo 26.
15 Only 6 plugs were used when the Polish began to attack Enigma.
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Proof. By definition, a hole with coordinates β, γ will let the light shine through all sheets, if
and only if {key1 ← α, key2 ← β, key3 ← γ} is consistent with every constraint of Zygalski’s
CSP, that is, if and only if key1 ← α is a path support of {key2 ← β, key3 ← γ}. ◀

The process of superimposing several Zygalski sheets corresponding to a guess of the letter α

for the position of the first rotor is an efficient method to compute the 2-tuples which have
key1 ← α as path consistent support. Moreover, since there are only three variables in the
network, if key1 ← α is a path support of {key2 ← β, key3 ← γ} then key2 ← β is a path
support of {key1 ← α, key3 ← γ} and key3 ← γ is a path support of {key1 ← α, key2 ← β}.
Therefore path consistency can be achieved by only checking the values of a single variable
in this way, there is a solution if and only there is a tuple with a path support.

Path consistency is usually only applied to binary constraints. However, the definition
we use naturally extends this consistency to non-binary constraints and in that context, the
analogy stands. For instance, consider two Zygalski sheets: one allowing the keys ABC, ADE,
BBE and BDC and one allowing the keys ABE, ADC, BBC and BDE. There is no solution, and indeed
the Zygalski CSP is not PC (e.g., the consistent and valid assignemnt {key1 ← A, key2 ← B}
cannot be extend to the third variable), yet the CSP is AC and SAC.

7 Experimental Evaluation

We ran experiments to verify the impact of SAC on this problem. The constraint model was
implemented using the toolkit Choco [8].16 To emulate the Bombe, we force the heuristic
to select the variables standing for the positions of the rotors (key) before other variables.
In the version denoted Choco+SAC, we run SAC only once these variables are all assigned.
When SAC does not fail, which corresponds to a stop of the Bombe, or in the default version
denoted Choco, we let the constraint solver either find a solution for the variables plugboard,
or prove that no solution exists for the current rotor position. For both methods we treated
every variable in ref as the constant 0 as was done in the methods we discussed previously.
Not doing so would increase the search space, and the number of solutions, by a factor 262.

In order to generate benchmark instances, we used many cribs of length 12 from wikipedia
texts that we ciphered using a random position of the rotors I, II and III of the first Enigma
machine that was introduced in 1930 [9], and a random reflector.

Fast: E K M F L G D Q V Z N T O W Y H X U S P A I B R C J
Middle: A J D K S I R U X B L H W T M C Q G Z N P Y F V O E
Slow: B D F H J L C P R T X V Z N Y E I W G A K M U S Q O
Reflector: P R Y Z L X O S Q K J E N M G A I B H W V U T F C D

We selected 260 cribs, so that we uniformly cover a range of values for the following parameters:
size of the menu (size), i.e., the number of vertices in the graph of the extracted menu and
number of cycles (#cycle). The idea is that sparse or acyclic menus produce more stops. In
particular Turing made an analysis of how many stops would occur according to the values
of these parameters [2]. Therefore, higher number of cycles and lower menu size should make
the problem easier. Moreover, we ignored menus with four or more connected components.
We average the results on instances with same size and number of cycles.

16 The source code is available here: https://gitlab.laas.fr/vantuori/sacnigma.git.
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Table 2 Results of Choco and Choco+SAC on a range of cribs.

Crib Choco Choco+SAC

#inst. #cycle size #stops #sol. #solved CPU #fail #solved CPU #fail

10 0 12 128.4 17912 3 378 388790.7 10 1197 17448.6
10 0 13 242.8 12214 7 901 1036519.1 10 922 17334.3
10 0 14 5.6 593 7 989 968841.6 10 866 17570.4
10 0 15 2.0 26 8 438 414718.2 10 607 17574.0
10 0 16 1.0 14 8 1208 1251729.9 10 813 17575.0
10 1 11 68.6 124111 5 475 542790.6 10 908 17507.5
10 1 12 156.2 33912 6 958 1435607.2 10 751 17421.3
10 1 13 1.8 1182 5 604 693048.2 10 1061 17574.2
10 1 14 1.9 166 8 606 580758.1 10 748 17574.1
10 1 15 1.0 77 8 369 350508.9 10 560 17575.0
10 1 16 1.0 40 8 1057 1239245.6 10 832 17575.0
10 2 10 18.2 165837 4 604 585009.0 9 1048 17557.8
10 2 11 63.0 45071 7 637 958325.9 10 796 17515.3
10 2 12 1.2 2141 7 476 544253.6 10 734 17574.8
10 2 13 2.0 4002 4 391 378688.0 10 793 17574.0
10 2 14 1.0 85 9 391 376638.7 10 578 17575.0
10 2 15 1.0 39 7 715 798622.9 10 755 17575.0
10 2 16 1.0 32 9 352 349036.6 10 618 17575.0
10 3 9 7.6 240639 6 437 338330.8 9 907 17573.2
10 3 10 27.7 192315 2 451 659440.0 10 1267 17551.4
10 3 11 1.1 10001 5 719 987604.6 10 959 17574.9
10 3 12 2.1 19165 4 560 679398.8 10 916 17573.9
10 3 13 1.0 341 7 341 331790.3 10 696 17575.0
10 3 14 1.0 127 9 390 359362.0 10 534 17575.0
10 3 15 1.0 486 8 358 342439.2 10 528 17575.0
10 3 16 1.0 31 9 524 513744.6 10 612 17575.0

All experiments were run on 4 cluster nodes, with Intel Xeon CPU E5-2695 v4 2.10GHz
cores running Linux Ubuntu 16.04.4. We ran both models for one hour or until completion
on every instance. We report in Table 2 the characteristics of the cribs, the average number
of solutions (#sol.), and the average number of solutions with distinct rotor positions, that
is, the number of “stops” (#stops). Then, for both methods, we report the number of
instances solved (#solved), that is, where all solutions have been enumerated within the
one hour cutoff, the average CPU time (in seconds) over solved instances (CPU) and the
average number of fails during search (#fail). We can observe that using SAC significantly
improves the model: Choco solves about 69% of the instances in less than one hour, whereas
Choco+SAC solves 99% of the instances in about 15 minutes in average. The number of fails
of Choco+SAC shows clearly that, as expected, constraint propagation does not actually cut
the search tree for the rotor positions. All of the 17576 possible keys are explored. However,
it also shows that in the few cases where SAC does not fail (the stops), virtually every
singleton arc consistent permutation of the plugboard is consistent with the crib. Indeed the
solver does not fail, and the number of solutions may become relatively large in that case.
On the other hand, the number of fails of Choco shows a more conventional picture where
plugoard configurations are ruled out by a blend of propagation and search.

The number of stops is lower than we would expect of the Bombe by about one or two
orders of magnitude for low number of cycles. This is because we count only rotor positions
for which a consistent plugboard configuration exists, whereas the Bombe stops as soon as a



V. Antuori, T. Portoleau, L. Rivière, and E. Hebrard 13:15

Figure 5 Cumulative probability to break the code in less than X seconds.

(slightly weaker form of) SAC can be enforced. Moreover, enforcing SAC on the constraint
model takes advantage of propagation of the constraints modeling the plugboard (e.g., the
AllDifferent constraint). Finally, the Bombe only takes into account the letters of the
menu, i.e., it does not check that these extra letters too must have a legal plug connection.

Interestingly, we observe that the number of solutions tends to be larger for denser and
more cyclic menus, even though the number of consistent rotor positions decreases, as we
would expect from the Bombe. It shows that there are many more consistent plugboard
configurations in this case. Overall, those parameters have a lower impact on the constraint
model as they seem to have had on the Bombe. Overall, the method Choco+SAC is not
extremely fast, but it is very robust. The graph in Figure 5 shows that in the most favorable
cases, not enforcing singleton arc consistency can be the most efficient approach.

8 Conclusion

We have shown that the method designed by Alan Turing and Gordon Welchman at Bletchley
Park to break the Enigma code has uncanny similarities with applying Singleton Arc
Consistency on a constraint satisfaction problem modeling the machine. Experiments show
that indeed, Singleton Arc Consistency significantly reduces the computation time required
to decipher a message. Moreover, the method designed by Marian Rejewski et al. before
that can also be related to achieving Path Consistency on another constraint satisfaction
problem.
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Abstract
Many state-of-the-art methods for combinatorial games rely on Monte Carlo Tree Search (MCTS)
method, coupled with machine learning techniques, and these techniques have also recently been
applied to combinatorial optimization. In this paper, we propose an efficient approach to a Travelling
Salesman Problem with time windows and capacity constraints from the automotive industry. This
approach combines the principles of MCTS to balance exploration and exploitation of the search
space and a backtracking method to explore promising branches, and to collect relevant information
on visited subtrees. This is done simply by replacing the Monte-Carlo rollouts by budget-limited
runs of a DFS method. Moreover, the evaluation of the promise of a node in the Monte-Carlo search
tree is key, and is a major difference with the case of games. For that purpose, we propose to evaluate
a node using the marginal increase of a lower bound of the objective function, weighted with an
exponential decay on the depth, in previous simulations. Finally, since the number of Monte-Carlo
rollouts and hence the confidence on the evaluation is higher towards the root of the search tree, we
propose to adjust the balance exploration/exploitation to the length of the branch. Our experiments
show that this method clearly outperforms the best known approaches for this problem.
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1 Introduction

The assembly floor of our car manufacturer partner contains several machines, each producing
a certain type of components and as many machines consuming those components. The
process of moving components across the workshop, from the point where they are produced
to the point where they are consumed is a major bottleneck for the production rate of the
plant. The resulting transportation problem can be seen as a repetitive single vehicle pickup
and delivery problem with time windows and capacity constraint. The repetitive aspect comes
from the fact that over a weekly schedule, the pickups and deliveries between the same
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pairs of machines is repeated at a given frequency, and for the same reason, both tasks are
constrained in time. Finally, the capacity comes from the specific trolleys used by operators,
which can be stacked in trains of a bounded length.

The method used in the industrial context is a large scale scheduling model solved
using local search solver. A range of approaches relying on reinforcement learning (RL)
were recently proposed in [2]. A simple stochastic branching policy (a linear model over
some problem-specific parameters) is learned via RL, and used either to guide a constraint
programming approach with rapid restarts, a constraint approach with limited discrepancy
search, or a multistart local search method. All three methods vastly outperform the
industrial method both on real and synthetic data sets.

In this paper, we introduce a new approach, combining Monte-Carlo Tree Seach (MCTS)
with budget-limited Depth First Search (DFS). MCTS was initially designed for solving AI
games [6], and, over the last few years, MCTS combined with reinforcement learning and
deep learning has enabled a breakthrough in the resolution of many combinatorial games
(such as Go, with AlphaGo and AlphaGo Zero[22, 23]). Monte-Carlo Tree Search [6] offers a
good generic strategy to tackle combinatorial problems. The expected outcome of a subtree
is evaluated via Monte-Carlo simulation: starting from an open node of the search tree, a
complete solution is built using a randomized heuristic policy. The outcome of the rollout
is back-propagated to that node and all its ancestors down to the root by computing an
average. Then, the next node to expand is selected by traversing the search tree from the
root using multi-armed bandits algorithms (e.g., Upper Confidence bounds applied to Trees,
UCT [11]) until reaching a node that has not been expanded yet. Without requiring built-in
domain knowledge, Monte-Carlo rollouts provide good guidance, and the expansion phase
gives guarantees on the compromise between exploration and exploitation. We show that
in our problem, replacing the Monte-Carlo rollouts by randomized, limited-budget DFS is
effective.

Several hybridizations with combinatorial optimization frameworks have been proposed.
MCTS has been combined with constraint programming (CP) in [13], where the simulation
phase stops at first fail, and the authors do not allow backtracking. Moreover, in order to
allow restarts, instead of keeping an evaluation of every open node, this is done on pairs
variable/value, in a way inspired by the RAVE (Rapid Action Value Estimation) heuristic
used in Go [8]. Finally, took advantage of the fact that Gecode [7] uses copying instead
of trailing, to open every search node visited during a rollout. In the field of Boolean
satisfiability (SAT), MTCS has been combined with SAT solver [17], however, in this case
without including the defining characteristics (clause learning, VSIDS, ect.) of modern
SAT solvers. In [9], the authors propose to hybridize MCTS with local search to solve
the MAX-SAT problem. They use a fixed limited-budget stochastic local search in place
of the rollouts. Finally, in [21], the UCT algorithm has been used in mixed integer linear
programming (MILP), although replacing Monte-Carlo rollouts by a lower bound obtains
with the Linear Programming (LP) relaxation.

We are not aware of MCTS approaches using DFS rollouts. However, this is closely
related to the Hybrid Best First Search (HBFS) algorithm introduced in [1] where limited
DFS is interleaved with BFS, although the choice of leaf to expand is not based on the same
principles. Besides using DFS, we propose two adaptations of MTCS method designed to be
effective on our problem, but directly applicable in any combinatorial problem.

First, since the goal of a Monte-Carlo rollout is to evaluate a single decision, and since
each subsequent heuristic decision reduces the relative impact of that first decision, we argue
that the definition of the overall reward should reflect this form of “diminishing returns”.
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Therefore, we propose to define the outcome of a rollout as the sum of the marginal increments
of the lower bound at each step, weighted by a coefficient in ]0, 1[ that exponentially decreases
with the depth. When the coefficient tends towards 1, the outcome tends towards the overall
objective value of the solution, and when it tends towards 0, the short term growth of the
lower bound weigh more and more. Observe that this scheme is generic, it only requires a
lower bound of the objective function which is monotonically non decreasing at each decision.

Second, in the multi-armed bandit algorithm, the tradeoff between exploration and
exploitation is controled by a constant factor c for the exploration term. As the tree becomes
deeper, the number of iterations of the multi-armed bandit along a branch grows. Therefore,
the probability that it will deviate from the best branch so far grows exponentially with
the depth of the branch. To offset this, we apply an exponential decay to the parameter c

towards the root, so that the likelihood of deviating at the root decreases rapidly when the
depth of the tree grows.

The paper is organized as follows. First, in Section 2 we describe the problem of routing
vehicle components in car manufacturing workshops and we give a detailed overview of the
standard MCTS algorithm in Section 3. Then, we present the novel aspects of our approach
in Section 4. Finally, we give the specific implementation details for the considered problem
in a MCTS framework in Section 5, and we report the results of extensive experiments on
both industrial and synthetic data in Section 6. These experiments show that our adaptations
of the MCTS method significantly outperforms previous methods, including the local search
approach currently used in the industry.

2 Problem Description

The industrial assembly line consists of a set of m components to be moved across a workshop,
from the point where they are produced to where they are consumed. Each component is
produced and consumed by two unique machines, and it is carried from one to the other
using four dedicated trolleys. Initially, there are two trolleys standing at the production point
and two trolleys at the consumption point. On each side, one of them is full and the other is
empty. However, the empty trolley at the production point is being filled, and the full trolley
at the consumption point is being emptied. The full trolley at the production point must be
brought to the consumption point before the initially full trolley there has been emptied,
and symmetrically, the empty trolley at the consumption point must be brought to the
production point before the initially empty trolley there has been filled. A production cycle
is the time ci taken to produce (resp. consume) component i, that is, to fill (resp. empty) a
trolley. The two pickups and the two deliveries (of empty and full trolleys) described above
must then be done whithin this time window. The end of a production cycle marks the start
of the next, hence there are ni =

⌊
H
ci

⌋
cycles over a time horizon H for the component i.

The problem is illustrated on a small example in Figure 1. In this example, there are 3
components having their own production and consumption machines, denoted by Pi and Ci

in Figure 1(a). The lines between the machines represent the routes in the assembly line.
The time cycles of each component and the time horizon (H) are given in Figure 1(b). In
this example, there are 3 time cycles for the yellow component, 4 time cycles for the red
component and 2 for the blue one.

For each component i, for each of its cycles k, there are two pickups and two deliveries:
the pickup pek

i and delivery dek
i of the empty trolley from the consumption area to the

production one, and the pickup pfk
i and delivery dfk

i of the full trolley from production
to consumption. The processing time of an operation o is denoted pto and the travel time
between operations o and o′ is denoted tto,o′ .

CP 2021
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Let O be a set of all pickup and delivery operations with |O| = n. The problem is
to compute a sequence ω : {1, . . . , n} 7→ O of the operations O, where ω(j) is the j-th
operation in the sequence, and χ = ω−1 its inverse. The sequence ω must satisfy the
following constraints:

Routing: For every 1 < j ≤ n, operation ω(j) must be given a start time sω(j) (and
end time eω(j) = sω(j) + ptω(j)) taking into account duration and travel time: sω(j) ≥
sω(j−1) + ptω(j−1) + ttω(j−1),ω(j) (and sω(1) = 0).

Time windows: An operation o occurring at period k for component i is given a release date
ro = (k − 1)ci and a due date do = kci, with ro ≤ so and eo ≤ do.

Precedences: Pickups must precede their deliveries in the same period.

χ(pfk
i ) < χ(dfk

i ) ∧ χ(pek
i ) < χ(dek

i ) ∀i ∈ [1, m] ∀k ∈ [1, ni] (1)

Train length: The operator may assemble trolleys into a train (trolleys can be extracted
out of the train in any order), so a pickup need not be directly followed by its delivery.
However, the total length of the train of trolleys must never exceed a length Tmax.

Notice that there are only two possible orderings for the four operations of a production
cycle. Indeed, since the first delivery (which can be either the full or the empty trolley since
they happen in parallel) and the second pickup take place at the same location, doing the
second pickup before the first delivery is dominated: the train will needlessly contain both a
full and an empty trolley for the same component, and this delivery will need to be done
eventually and can only incurs further time loss.

This industrial problem is a repetitive single vehicle pickup and delivery problem with
time windows and capacity constraint. In this problem, the production-consumption cycles of
each component entail a very particular structure: the four operations of each component
must take place in the same time windows and all of these operations are repeated for every
cycle. In addition, all operations are mandatory and there is no objective function for the
industrial application, instead, feasibility is hard. As a result, the efficiency of the Large
Neighborhood Search approaches proposed in [19] for such routing problems, are severely
hampered since they rely on the length of the tour as the objective to evaluate the moves and
the insertion of relaxed requests is often very constrained by the specific precedence structure.
This problem was previously introduced in [2], and both exact and heuristic methods were
proposed to solve it. These approaches rely on a fine tuned heuristic, and it was observed
for some instances that greedy dives of the solvers were able to find a solution. The main
motivation for a MCTS approach comes from this observation as the algorithm strongly rely
on greedy dives, and is entirely guided by them.

P1

C1

P2

C2

P3

C3

(a) Machines and routes in the workshop.

H

(b) Time cycles for each component.

Figure 1 Illustrative example.
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3 The Monte-Carlo Tree Search Method

In this section, we give some overview of the Monte-Carlo Tree Search method, and we
introduce notations that will be used in the following.

MCTS is a tree search heuristic method based on multi-armed bandit principles to guide
the tree expansion and to ensure a compromise between exploration and exploitation. This
method was widely studied in the context of games but also for solving optimization problems
[21, 20, 16, 14, 15, 5]. For a detailed survey on the MCTS method, the reader may refer
to [4]. In a nutshell, the MCTS method develops a search tree where a node corresponds to a
state of a given problem, with final states being solutions. Each node is associated with a set
of feasible actions leading to child nodes in the tree. The aim is to find a path from the root
node to a final state maximizing a reward. The MCTS method is based on four principles:
1. a reward can be computed at each final state;
2. a simulation process, also called rollout, is used to produce a path from a given node to a

final state (for instance based on random sampling);
3. a backpropagaton method to update node information after each new rollouts;
4. a selection mechanism, usually based on multi-armed bandit [12], for guiding the tree

expansion and insuring a compromise between exploitation (select the most promising
node) and exploration (visit different parts of the tree).

Let A be a set of actions. A state σ ∈ A∗ is a sequence of actions, and |σ| denotes its
length. We note σ|a the state reached when applying action a in state σ, A(σ) denote the
set of possible actions in state σ, and p(σ) the parent state of σ. The MCTS method stores
in memory the tree T it has already explored, and for every state σ, it stores the triplet:
⟨N(σ), P r(σ), V (σ)⟩, where N(σ) is the number of time (σ) has been visited, Pr(σ) is the
prior probability or prior preferences to choose the state σ from its parent state p(σ), and
V (σ) is the expected value of subtrees rooted at σ, and computed by averaging the outcomes
of Monte-Carlo rollouts. Notice that Pr(σ) was introduce in the MCTS in [22] but was not
in the original form of MCTS.

The algorithm iterates over the four following phases until some stopping criteria are met.

Selection

The selection phase begins at the root node of T , and finishes when we reach a node that has
not yet been explored. At each node σ ∈ T , an action is selected according to the statistics
stored in σ:

a∗ = arg max
a∈A(σ)

Ṽ (σ|a) + c ∗ U(σ|a) (2)

where Ṽ (σ|a) is the exploitation term (based on the value of node V (σ|a)), U(σ|a) is the
exploration term, and c is a parameter which represents the balance between the two terms.
This process continues from the state σ|a∗ until a non-visited node is reached , i.e. a leaf of
the subtree T .

In adversarial games, the value V of a node is the expected outcome, e.g., 1 for a win and
0 or −1 for a loss. In the context of combinatorial optimisation, however, several definitions
have been used. A first possibility is to simply store the expected objective value, although
this technique entails that rollouts must be complete, even when they are suboptimal early
on. In [16] and [14], the authors consider a solution whose objective value is within a factor
α of the best known solution as a “win” (the effective value is in [0, 1] depending on the
quality of solution) and all other outcomes as loss (0). The parameter α must therefore
be carefully chosen, and the likelihood of a positive reward decreases when the best known
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solution improves. In [13], the MCTS is frequently restarted (and hence the MCTS tree lost),
then the authors store the outcomes of the rollouts on variable/value pair instead. In this
technique the rollouts are depth first search calls stopped on the first fail, and the expected
relative failure depth is stored for each variable/value pair instantiated in the selection phase.
Finally, in [21], instead of a rollout, the lower bound of the LP relaxation is backpropagated
instead.

Observe that it is important to normalize the value V stored on the node, to make the
choice of the balance exploitation/exploration parameter c more robust. A state value σ|a
ending on the action a can be normalized in [−1, 1] as follows:

Ṽ (σ|a) =
{

2 ∗ V +−V (σ|a)
V +−V − − 1 if N(σ|a) > 0

0 otherwise
(3)

Where V + = max{V (σ|a) | a ∈ A(σ), N(σ|a) > 0} and V − = min{V (σ|a) | a ∈
A(σ), N(σ|a) > 0} are, respectively, the maximum and minimum values of any explored
sibling state.

Finally, the exploration term is [22]:

U(σ) = Pr(σ)
√

N(p(σ))
N(σ) + 1 (4)

The rationale is to select the action a that maximizes Ṽ (σ|a) plus a bonus that decreases
with each visit in order to promote exploration. The prior probability Pr(σ) biases the initial
exploration by the knowledge we have on the state. The square root term could be replaced
by a logarithmic term which is often used in MCTS, without changing this rationale.

Expansion

Let σ be the node returned by the selection procedure, during the expansion phase, for all
a ∈ A(σ), a child σ|a is added to σ and initialized its visit counter N(σ|a) with its expected
objective value V (σ|a) set to 0. If no prior probability Pr(σ|a) is available for this state, the
uniform distribution 1/|A(σ)| can be used instead.

Simulation

In the simulation phase, the state obtained by the selection phase is extended to a final state
τ via a Monte-Carlo rollout. In the context of combinatorial optimization the final state is a
feasible solution. The rollout is typically done by random sampling of the possible actions
A(σ) from state σ following a stochastic policy. For instance, one can use the probability
distribution given by Pr(σ|a) | a ∈ A(σ). Alternatively, this can be done by any randomized
greedy heuristic tailored to the problem at hand [14, 16, 20]. As mention before, hybridization
with existing technologies can take place in this phase, whether it is a linear relaxation [21],
a local search [9] or a call to a CP solver [13].

Backpropagation

Finally for each node σ traversed during the selection procedure, we update its statistics
regarding the final state τ obtained by the simulation phase:

V (σ)← V (σ) + z(τ, σ)− V (σ)
N(σ) + 1

N(σ)← N(σ) + 1
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with z(τ, σ) the outcome of the rollout τ evaluated from node σ. The first update rule allows
to maintain the average outcome of the rollouts for each node traversed during the selection
step. It is possible to change the rule to only keep the best outcome find when traversing
the node, instead of the average [21, 20]. The rationale is the same as minimax algorithms
for games, the optimistic view is that eventually search will find the best completion of a
partial solution, and therefore its expected value is closer to the best rollout than to the
average of all rollouts. However, the preferred choice may depend on the standard deviation
of the outcomes of rollouts under a given node, and on the ratio of the whole search tree
that the algorithm will eventually explore. For this reason, for larger problems, and when
the heuristic used during the rollouts is robust, the average may be better.

4 Tailoring Monte-Carlo Tree Search to Combinatorial Optimization

In this section, we introduce three modifications of standard Monte Carlo Tree Search which
we empirically found beneficial in the context of optimization problems. These modifications
are generic, in the sense that they hold outside of our industrial application, as long as we
have a lower bound computation technique for the objective function and a depth first search
procedure for the target problem.

4.1 Evaluation based on the objective function
In game playing, the outcome of a Monte-Carlo rollout may only be known when the game
ends. Typically, the rollout is given a value of 1 for a win, −1 for a loss and 0 for a draw.
Standard adaptations to combinatorial optimization are to normalize the objective value in a
way or another as described in Section 3.

When simulating long branches, however, a “mistake” on a single decision along the
branch can make the final outcome irrelevant. In fact, look-ahead methods often exhibit
diminishing returns. For instance, it was observed in Chess that the rate of wins in self-plays
between an algorithm looking k + 1 plies ahead versus the same algorithm looking k plies
ahead declines as k grows [10]. In the case of a greedy procedure, it is therefore natural to
conjecture that as the length of the branch grows, the correlation between the quality of the
initial decision and the overall outcome decreases.

In combinatorial optimization problems, however, we usually have a lower bound on the
objective that monotonically grows with every decision. Therefore, the evolution of this value
can provide a better insight into the quality of an initial decision. Let LB : A∗ 7→ R be a
lower bound on sequences of actions, with LB(σ) equals to the objective value if σ is a final
state. Then, for a given node σ we propose to evaluate a state σ′ reachable from σ as the
sum of the marginal increment of the lower bound LB in the path from σ to σ′, weighted by
an exponetially decaying coefficient γ. Hence we can define this sum recursively as follows:

z(σ′, σ) =
{

LB(σ)− LB(p(σ)) if σ′ = σ

γ|σ′|−|σ|(LB(σ′)− LB(p(σ′))) + z(p(σ′), σ) otherwise
(5)

The evaluation of a final state τ obtained by a rollout is then simply z(τ, σ) and represents
an upper bound of the optimal solution.

Algorithm 1 implements backpropagation following the reward defined in Equation 5.
This algorithm takes as an input the sequence (R) of the lower bound increments given by
the rollout, the node selected in the selection phase, and the decay rate.
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Algorithm 1 Backpropagation procedure.

Data: R : sequence of the lower bound increments, σ : selected node, γ : decay rate
1 // Sum of exponentially decaying marginal increment of the lower bound

2 val←
|R|∑
i=1

γi−1Ri

3 // Backpropagation until the root node
4 repeat
5 val← γ ∗ val + LB(σ)− LB(p(σ))
6 N(σ)← N(σ) + 1
7 V (σ)← V (σ) + val−V (σ)

N(σ)
8 σ ← p(σ)
9 until σ = Nil;

The proposed evaluation method puts more weight on the short-term impact of a decision,
wagering on it being more reliable than long term observations. For γ = 1, the score reflects
the objective value LB(τ) of the rollout, whereas greater weight is put on short-term impacts
when γ tends towards 0.

Moreover, the lower bound computations can be used during the expansion phase to
avoid expending into sequences whose objective value cannot be lower than the current upper
bound (best known solution). Thus, a node σ′ that cannot be expanded further (all potential
children nodes are suboptimal) is removed from the search tree. In that case, the information
is backpropagated along the branch that leads to this node, that is, each node σ containing
the deleted node σ′ in its subtree are updated:

V (σ)← 1
N(σ)−N(σ′) (V (σ) ∗N(σ)− V (σ′) ∗N(σ′))

and

N(σ)← N(σ)−N(σ′)

Indeed, all information contained in the deleted node is now irrelevant for the rest of the
search as it is not in the tree anymore. Then previous iterations which have passed throughout
this node should not have an impact on the future search.

Then, for the implementation of the proposed evaluation function, we should store LB(σ)
at each node σ in addition to the triplet {N(σ), P r(σ), V (σ)}.

A potential limit with this evaluation method is that it may skew search towards post-
poning actions that greatly increase the lower bound, but must eventually be done. For
instance, consider a Travelling Salesman Problem with an isolated city far away from all
other cities. Rollouts where this city is visited last will be preferred to rollouts where it
is visited early. Lower bounds that take into account the future decisions in a reasonable
way (e.g., minimum spanning tree for the travelling salesman problem, or the prehemptive
relaxation in scheduling) may prevent this phenomenon since the cost of an exceptionally
remote city or of an exceptionally large task would contribute to the lower bound anyways.
The lower bound we used in our industrial problem, however, is extremelly basic and yet
this did not seem to be an issue in our experiments.
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4.2 Dynamic Exploitation vs Exploration Balance

Since the tree grows deeper as search progresses, the likelihood to deviate from the best
branch increases. Therefore, we propose to dynamically adapt the parameter that control
the balance between exploration and exploitation, depending on the depth of the tree, in
order to promote exploitation on deeper nodes. Let td(T ) be the depth of the tree T , then
at step t of the selection phase, the exploitation/exploration coefficient will be

βtd(T )−t ∗ c (6)

with β < 1 a parameter. This mechanism has a similar effect as committing to a move at the
root node. At the root t = 0 and thus βtd(T )−t ∗ c tends towards 0 when td(T ) grows, so the
first decision is very unlikely to deviate from the most promising choice once the search tree
has sufficiently grown. Conversely, at a leaf, this term tends towards the original value c and
hence less promising – but less frequently visited – nodes will be selected more often. In the
context of games, when a move is actually made, it makes sense to forget the siblings and
parents of the corresponding state. In optimization, this mechanism has been implemented
in several approaches in order to limit the combinatorial explosion [3, 14]. Since commits
are irreversible, the algorithm is no longer complete, and budget parameters controling such
commits need to be carefully chosen. Instead, the mechanism we propose has a similar effect
but in a “smooth” way: near the root, it is more likely that the best move will be chosen,
however other states can still be reached.

4.3 Depth First Search as a rollout

Finally we propose to use a Depth First Search procedure instead of a randomized greedy
heuristic in the simulation phase. More precisely, in order to intensify the search around
promising areas, a budget is defined after a first greedy “dive” and a budget-limited DFS is
performed. For this purpose, the simulation is split into three steps:

The first step is a greedy randomized procedure from the selected node σ until a con-
tradiction is detected. This contradiction can happen because a constraint is violated,
or because the lower bound exceeds the upper bound. At this point, we define a budget
for the DFS by evaluating the current state σ′. This budget will be larger if this is a
promising state, and maximal if no contradiction was encountered (and hence a new
upper bound was found). On the other hand, if the state σ′ is not promising, then the
budget will be smaller or null.
The second step of the simulation is a DFS, from the state reached by the greedy procedure
σ′. This search is only performed on the subtree rooted at the node σ selected in the
selection phase. The DFS algorithm must be able to store the best branch discovered,
that is, the best solution or the best partial sequence according to the evaluation we
described previously.
The third step begins when the budget is consumed (or the search is complete for
the subtree rooted at the selected node σ in the selection phase). If no solution was
found during the previous step, the greedy randomized procedure is used to extend the
best branch found by the DFS to a complete solution which can be evaluated before
backpropagation.

The evaluation procedures for the states and for the budget will be detailed in Section 5
as their definitions depends on the considered problem.

CP 2021



14:10 Combining MCTS and DFS for a Car Manufactoring Workshop Scheduling Problem

5 Adaptation to the industrial Workshop Scheduling Problem

Tree model

In the search tree of the MCTS method, a state σ represents a partial sequence of operations
and the set of actions correspond to the set of operations of the routing problem described
in Section 2, i.e., actions are operations A = O. In the search tree, a sequence σ|a is the
sequence σ extended by the action (operation) a. The set of possible actions A(σ) from a
sequence σ contains every operation a such that the (partial) sequence σ|a is feasible with
respect to the constraints.

Objective function

Since our industrial application is a satisfaction problem (the existence of a tour without
delay), we need to generalize it to an optimization problem to apply MCTS as described in
Sections 3 and 4. Therefore, during the simulation phase, we relax the due date constraints
and instead we minimize the maximum tardiness:

L(σ) = max(0, max
1≤j≤|σ|

(eσ(j) − dσ(j)))

Since in this case operations can finish later than their due dates, it is necessary to make the
precedence constraints due to production cycles explicit:

max(ρ(dfk−1
i ), ρ(dek−1

i )) < min(ρ(pek
i ), ρ(pfk

i )) ∀i ∈ [1, m] ∀k ∈ [2, ni] (7)

Furthermore, during the expansion phase we do not add a child node that would violate
a due date constraint, as our primary goal is to find a solution σ without any late job, that
is, such that L(σ) = 0.

We use a trivial lower bound, which is at state σ the maximum tardiness L(σ) of the
associated partial sequence also taking into account tardiness of all pending operations.
Pending operations are all the operations that belong to a production cycle in which at
least one operation is available to extend the current sequence, ignoring the train constraint.
Therefore, Equation (5) is the sum of exponentially decaying marginal increments of the
maximum tardiness with a small look ahead.

Heuristic

For the simulation phase as well as for the probabilities of the expansion phase, we use the
heuristic tuned by reinforcement learning proposed in [2]. This heuristic is stochastic and
provides a probability distribution over the set of available operations for a given state. More
precisely, at a given state σ, each operation a ∈ A(σ) is evaluated using a fitness function
f(σ, a) defined as a linear combination of four criteria: f(σ, a) = θ⊺λ(σ, a). These criteria
λi correspond to:
1. The emergency of the operation: lst(a, σ)−max(ra, eσ(|σ|) + ttσ(|σ|),a), with lst(a, σ) the

latest starting time of the operation a in order to satisfy the due date constrains with
respect to the operations belonging to σ and the precedences constraints;

2. The travel/waiting time of the operation: max(ttσ(|σ|),a, (ra − eσ(|σ|)));
3. The (negated) length of the trolley;
4. The type of operation, equal to 1 for pickups and 0 for deliveries.
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The parameter θ is set to the proposed learned values (0.251, 0.576, 0.148, 0.023). Then, a
softmax function is applied to turn the fitness evaluation into a probability distribution for
guiding the choice of the next node in the greedy heuristic:

∀o ∈ A(σ) πθ(o | σ) = e(1−f(σ,o))/δ∑
o′∈A(σ)

e(1−f(σ,o′))/δ
(8)

where the parameter δ controls the “greedyness” of the heuristic, that is, a “low” value for δ

encourages to select the best choice with high probability, whereas a more “neutral” value of
δ produces more randomized choices. In the experiments, we will set a value of δ = 0.005 in
the simulation phase, and a value of δ = 0.1 to initialize the prior probabilities of the new
nodes in the expansion phase.

Simulation

The greedy procedures before and after the DFS simply consist in taking at random the next
operation following the probability distribution defined by equation 8.

For the DFS we define a backtrack budget between 0 and B, depending on when the first
tardiness was detected during the first dive. If the first dive finds an improving solution, then
the budget is maximum (B), in order to find other related improving solutions. Otherwise,
we rely on the rank ϕ where the lower bound became positive to define the budget. Let ϕ∗

be the highest rank for any previous solution, the backtrack budget is then:
B if ϕ ≥ ϕ∗

B( ϕ∗−ϕ
ϕ∗−α∗ϕ∗ )2 if ϕ∗ > ϕ > α ∗ ϕ∗

0 otherwise
(9)

with α ≤ 1, a threshold parameter.
During the DFS, we define a probability distribution over the children using the softmax

function of the greedy heuristic and we limit the breadth of the tree by keeping only
actions with a probability greater than 10−6, which typically leaves all but 1 to 3 children
approximately. Then, those children are sorted by their probabilities, and in order to
randomize the DFS, a random child (again, using the same probability distribution) is
swapped with the first one, to be branched on first by the DFS. As instances can be very
large, this is sufficient to keep variety in the solutions, while removing many “bad” decisions.
This is also why we rely on the backtrack count instead of the fail count to define the budget,
as a lot of nodes may have only one child. We add a geometric restart policy in the DFS
step, where the search is reset to the node selected in the selection phase. The growth
factor is reset at each MCTS iteration. At the end, the DFS returns the longest (potentially
partial) sequence for which the lower bound remains null (i.e., for as the largest number of
operations). Then, the greedy procedure is called to extend this sequence to a complete
solution.

6 Experimental Evaluation

We report in this section the results of our experiments. First, we assess the respective
impact of using the new evaluation policy, the dynamic exploration/exploitation balance and
the DFS in the simulation phase. In a second part, we compare our MCTS adaptations to
state-of-the-art methods for this problem.
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6.1 Experimental protocol
We use the same data set as in [2] composed of 120 synthetic instances. The data set is made
of four categories characterized by the number of components (15 in category A, 20 in B, 25
in C and 30 in D). Moreover, all of these categories are associated to three time horizons: a
work shift of an operator (7 hours and 15 minutes), a work day (made up of three shifts)
and a full week (6 days).

The number of components is highly correlated with hardness, and directly related to
the branching factor in the Monte-Carlo search tree. Indeed, each node has at most two
children per component (ie., from 30 children for instances of category A to 60 children for
instances of category D). In addition, the depth of the search tree grows with the number of
operations, that depends both on the time horizon and on the number of components. This
depth varies from 450 for the “shift” schedules, up to 14500 for the “weekly” schedules.

We ran every method 10 times for each of the 120 instances with a timeout of 1h. All
experiments were run on a cluster composed of Xeon E5-2695 v3 @ 2.30GHz processors.
Our methods were implemented using in C++ and compiled with GCC-8.0. The two
methods from [2] were implementd using JAVA and were run in the same conditions, and
Choco-4.10 [18] for CP.

6.2 Impact of the MCTS adaptations
In the first part of the experiments, the goal is to assess the respective impact of the proposed
adaptations for the MCTS method. We evaluated 6 different versions of the MCTS, adding
the adaptations we propose one at a time:

MCTS is the standard MCTS method without any of the proposed adaptation. This
baseline method uses the value of the objective function as the result of the rollouts, and
backpropagates this value through the tree to the root node.
MCTS+DFS is the same algorithm as MCTS except that it uses the DFS in the simulation
phase.
SEDMI is the variant of MCTS that uses the sum of exponentially decaying marginal
increments of the lower bound to evaluate the nodes.
SEDMI+DFS adds the DFS to SEDMI for the simulation phase.
SEDMI+DFS+DC extends SEDMI+DFS with the dynamic exploitation/exploration comprom-
ise.
SEDMI+SAT-DFS+DC is the variant of SEDMI+DFS+DC in which the upper bound on the
objective function is fixed to 1 in the DFS, i.e. the DFS tries to solve the satisfaction
version of the problem instead of trying to improve the global upper bound. However,
the last part of the simulation still provides a complete solution via a greedy procedure,
and hence this method also provides an upper bound.

All parameters for the proposed methods are given in Table 1. We recall that c is the
exploitation/exploration tradeoff parameter. The higher value for this parameter, the more
the MCTS will explore. Then, β is the decay rate for the adaptation of c, and γ is the decay
rate of the evaluation function. Finally, α and B are respectively the threshold parameter,
and the maximum backtrack budget for the DFS. All the values for these parameters were
chosen by preliminary experiments, and the chosen combination appears to give relatively
good overall results.

The results are shown in Table 2 and 3, in which we report the number of solved runs,
and the average maximum tardiness. For all the methods we consider that an instance is
solved if and only if the value of the objective function is null i.e. there is no tardiness.
Table 2 shows the performance of the different variants of the MCTS averaged by classes of
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Table 1 Parameters value.

c 1
β 0.995
γ 0.9977
α 0.9
B 50000

Restart (base) 100
Restart (factor) 1.2

Table 2 Comparison of the MCTS adaptations.

H
MCTS MCTS+DFS SEDMI SEDMI+DFS SEDMI+DFS+DC SEDMI+SAT-DFS+DC

#S Lmax #S Lmax #S Lmax #S Lmax #S Lmax #S Lmax

A
shift 100 0 100 0 100 0 100 0 100 0 100 0
day 90 135 90 133 90 115 90 77 100 0 98 0

week 68 1996 78 1850 70 1800 80 1839 77 1840 80 1858

B
shift 80 420 79 258 90 372 82 353 81 349 87 439
day 50 2954 54 2959 60 2522 60 2439 63 2121 70 2134

week 10 21070 29 20771 10 20572 32 20541 31 20355 36 20635

C
shift 49 1676 48 1708 40 1901 45 1727 40 1824 40 2012
day 10 9503 11 9248 10 8683 26 8656 36 8747 35 9022

week 0 64442 8 64713 0 64480 9 64584 9 64474 10 64445

D
shift 40 2154 33 2146 30 2338 33 2018 30 2304 30 2621
day 0 13659 0 13664 0 12657 0 12723 13 12225 11 12340

week 0 101474 0 101444 0 100533 0 100760 0 100954 0 100840
Average 41 18290 44 18241 42 17998 46 17976 48 17933 50 18029

instances, and by time horizons. In this table, for each method, a line corresponds to 100
runs (10 instances and 10 runs for every time horizon), then the number of solved runs is
a sum over these 100 runs. In Table 3 the same results are presented aggregated by time
horizons, and the number of solved instances is in percentage (over the 400 runs by line and
by method).

In these tables, we can see the benefit of using the DFS in the simulation phase. Using
DFS, as expected, allows the MCTS methods to solve more instances on the week horizon.
In fact, those instances are too large to be solved via rollouts only, and the DFS allows to
intensify the search on the deepest parts of the tree, that are not explored in the MCTS.
Unfortunately, the effect of the DFS is not visible on the shift horizon. We can also see the
benefit of using the sum of exponentially decaying marginal increments as node evaluation
on day and week horizons in terms of objective value. However, this adaptation slightly
degrades the performance on shorter horizon meaning that this time horizon is too short to

Table 3 Results aggregated by time horizon.

H
MCTS MCTS+DFS SEDMI SEDMI+DFS SEDMI+DFS+DC SEDMI+SAT-DFS+DC

#S Lmax #S Lmax #S Lmax #S Lmax #S Lmax #S Lmax

Shift 0.67 1063 0.65 1028 0.65 1153 0.65 1024 0.63 1119 0.64 1268
Day 0.38 6562 0.39 6501 0.40 5994 0.44 5974 0.53 5773 0.54 5874
Week 0.20 47245 0.29 47195 0.20 46846 0.30 46931 0.29 46906 0.32 46944
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take advantage of this mechanism. Overall, the combination of both mechanisms outperforms
the two versions with only one of these mechanisms. Finally, the effect of the dynamic
compromise can be seen on the day horizon. This time horizon is small, but not enough for
the MCTS to advance deep enough in the search tree to find solutions. This mechanism
forces the MCTS to explore the tree deeper and faster, and as a results, to improve the
number of solved instances.

6.3 Comparison with previous methods
For the second part of the experiments, we compare the two best MCTS methods, namely
SEDMI+DFS+DC (the method leading to the lowest objective function) and SEDMI+SAT-DFS+DC
(the method with the highest number of solved instances) to the two best methods introduced
in [2], that are both based on the stochastic branching policy described in Section 5:

CP: a constraint programming approach with rapid restarts. This method solves the
satisfaction version of the problem. As a result, it is slightly better for finding solutions
without tardiness.
GRASP: a multi-start local search procedure. This method considers the optimization
problem with relaxed due dates as in the MCTS methods, hence we can compare the
overall tardiness.

Table 4 Comparison with previous methods.

H
CP GRASP SEDMI+DFS+DC SEDMI+SAT-DFS+DC

#S #S Lmax #S Lmax #S Lmax

A
shift 90 90 10 100 0 100 0
day 90 90 193 100 0 98 0

week 80 70 2433 77 1840 80 1858

B
shift 60 60 467 81 349 87 439
day 52 46 3218 63 2121 70 2134

week 35 10 26915 31 20355 36 20635

C
shift 40 40 1941 40 1824 40 2012
day 10 10 9498 36 8747 35 9022

week 10 0 71104 9 64474 10 64445

D
shift 19 16 2677 30 2304 30 2621
day 0 0 13994 13 12225 11 12340

week 0 0 107186 0 100954 0 100840
Average 40.5 36 19969 48 17933 50 18029

The results, given in Table 4, show that overall, the proposed MCTS adaptations
outperform the CP and the local search approaches on both criteria: the number of solved
instances, and the maximum tardiness. More precisely, the dominance is clear for horizons
shift and day in terms of number of instances solved, but we can see that our method does
not outperform the CP model on the week horizon. Finally, between the CP approach and
the SEDMI+SAT-DFS+DC variant, there is a difference of 9.5% of instances solved in favor of
the latter. There is still half of the instances that are not solved to optimality. However, the
instances of the data set were randomly generated without a guarantee of satisfiability, and,
we believe that the majority of unsolved instances are not satisfiable (especially for the week
horizon).
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7 Conclusion

In this paper, we have presented and applied several variants of the Monte Carlo Tree Search
method to solve a repetitive single vehicle pickup and delivery problem with time windows
and capacity constraint, issuing from car manufacturing assembly lines. We defined a way of
evaluating the rollouts based on the growth of the lower bound of the objective function. We
also proposed an adaptation of the balance parameter between exploitation and exploration
in order to be able to solve larger instances. Moreover, we proposed an hybridization of
Monte Carlo Tree Search with Depth First Search used during the simulation phase. The
experimental evaluation demonstrates that these proposals allow us to outperform previous
approaches on the considered problem, and show the benefit of our contributions.

These three proposals, although well suited to a dedicated problem, are generic. The
next step is then to demonstrate the genericity of these Monte Carlo Tree Search variants by
considering their application to other combinatorial optimization problems. We also plan to
integrate our MCTS method in existing constraint programming solvers to take advantage of
their search tree exploration in the Depth Fisrt Search part, further reinforcing the hybrid
nature of the approach. Finally, we would like to explore further the learning aspects of the
method. Indeed, in the simulation phase, we are repeatedly dealing with similar subproblems
in different part of the tree, and the policy used in a subtree could be adjusted after each
iteration in order to have different policies adapted to different parts of the tree search.
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Abstract
Bigraphs simultaneously model the spatial and non-spatial relationships between entities, and have
been used for systems modelling in areas including biology, networking, and sensors. Temporal
evolution can be modelled through a rewriting system, driven by a matching algorithm that identifies
instances of bigraphs to be rewritten. The previous state-of-the-art matching algorithm for bigraphs
with sharing is based on Boolean satisfiability (SAT), and suffers from a large encoding that
limits scalability and makes it hard to support extensions. This work instead adapts a subgraph
isomorphism solver that is based upon constraint programming to solve the bigraph matching
problem. This approach continues to support bigraphs with sharing, is more open to other extensions
and side constraints, and improves performance by over two orders of magnitude on a range of
problem instances drawn from real-world mixed-reality, protocol, and conference models.
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1 Introduction

Bigraphs are a universal modelling formalism, used to represent both the spatial relationships
of entities and their global interactions. Since their introduction by Milner [24], they have
been used to model, amongst others: IoT/sensor systems [27, 6], Mixed-Reality systems [9],
networking protocols [10, 11], security [1], and biological systems [18]. A bigraph consists of
two graph-based structures over the same set of vertices: a place graph describing the nesting
of entities, e.g. a device within a room, and a link graph describing non-local relationships
through hyperedges, e.g. a device connected to (numerous) other devices regardless of location.
A Bigraphical Reactive System (BRS) allows bigraphs to evolve over time through a set of
reaction rules, of the form L −→ R, that find, through a matching algorithm, an instance of
bigraph L in a bigraph B and replace it with bigraph R. With a BRS, model verification is
performed either through reachability analysis over the transition system generated by the
reaction rules, or by simulation.
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Figure 1 (a) Bigraph example with Rooms, People, Computers (blue squares), Routers (clear
rectangles), and Sockets (diamonds); (b) Place graph for (a); (c) Link graph for (a), unlinked entities
not drawn; (d) Reaction rule to move people between rooms.

Efficient matching and rewriting routines are essential for practical analysis of large
models, and even small improvements per match can have significant impacts on the overall
analysis time, given the huge number of matches. In this work we show that a bigraph
matching algorithm implemented on top of a constraint programming solver for the subgraph
isomorphism problem provides a performant and extensible basis for bigraph matching. We
provide an encoding of bigraphs to graphs, in such a way that we can solve the bigraph
matching problem using a variant of the subgraph isomorphism problem (SIP) with additional
constraints. This process supports both standard bigraphs, and the bigraphs with sharing
extension. Using a set of real-world models, we show empirically that in all cases the
SIP solver outperforms the previous state-of-the-art SAT solver found in the open-source
BigraphER [26] toolkit, with a speedup of more than two orders of magnitude.

2 Background

We begin by giving the necessary background to present our contributions. In this section we
describe the concepts and theory underlying bigraphs, and then explain bigraph matching
and subgraph matching problems. The following section will explain how these matching
problems can be related.

2.1 Bigraphs
Bigraphs simultaneously model systems based on both spatial and non-local relationships
between entities. Throughout this paper we use bigraphs to refer to bigraphs with sharing,
which allow entities to have multiple parents.

Bigraphs have equivalent algebraic and diagrammatic notation. Throughout this paper
we use the diagrammatic notation when possible. An example bigraph is shown in Figure 1a.
This simple model represents people and computers within rooms and their links to specific
sockets (shown as diamonds) on a router. We use shapes and colour to denote different
entity types. Nesting and adjacency of entities represents spatial relationships, e.g. the
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person is in the first room. The green hyperlinks represent non-spatial relationships, e.g.
links between routers in different rooms. Importantly, entities have fixed arity (number of
links), e.g. sockets have arity 1, although links might not be linked elsewhere as shown by
the second to last socket.

Spatial relationships are captured by the place graph, shown in Figure 1b, that forms a
directed-acyclic-graph (DAG)1 over entities. Top-level places, shown as dashed rectangles,
are called regions that represent unknown (or empty) parent(s). The grey dashed rectangle
is called a site; similar to regions, sites represent an unknown (or empty) child bigraph.

Non-spatial relationships are captured by the link graph, shown in Figure 1c, that forms
a hypergraph over entities. Here, regions/sites are replaced by outer/inner names, i.e. they
represent (potentially) other entities on the same link. We draw outer names above the
diagrams and inner names below. A link is open if it connects to a name, and closed otherwise
(i.e. it connects only the specified entities).

Regions/sites and outer/inner names – called interfaces – allow us to build bigraphs
compositionally. That is, we can build larger bigraphs from smaller bigraphs. This is done
by placing regions into sites and connecting on like-names. For example, the bigraph in
Figure 1a accepts a bigraph with a single region and outer name y – adding it to the second
room and linking up the incoming link to the rightmost socket – and can be composed with a
bigraph with two sites (one for each region) that accepts a name x. Composition of bigraphs
is shown in more detail in Section 2.3 to describe the bigraph matching problem. We denote
the composition of bigraphs B0 and B1 as B0 ◦ B1 (placing the regions of B1 in the sites of
B0). Alternatively, we can build larger bigraphs through a tensor operation B0 ⊗ B1 that
places bigraphs side-by-side. In general, bigraphs form a specific type of symmetric monoidal
category [24], although we do not need the full power of this fact in this paper.

2.2 Bigraph Definitions
We give enough definitions for bigraphs with sharing to explain our encoding and matching
routines; full details are available elsewhere [25]. We use concrete bigraphs, where each entity
and closed link is named. Models are usually defined over abstract bigraphs that represent an
equivalence class of all bigraphs that have the same structure regardless of concrete names.
We always perform matching on concrete bigraphs so this is sufficient for our purposes.

We assume a set K of entity types (e.g. Room), an arity function ar : K → N, V a set of
entity identifiers v0, . . . , vn, E a set of link identifiers e0, . . . , en, and X a finite set of names
x, y, z, . . . , such that all names and identifiers are disjoint.

▶ Definition 1 (concrete place graph with sharing). A concrete place graph with sharing

B = (VB , ctrlB , prntB) : m → n

is a triple having m sites and n regions (treated as ordinals)2. B has a finite set VB ⊂ V of
entities, a control map ctrlB : VB → K, and a parent relation

prntB ⊆ (m ⊎ VB) × (VB ⊎ n)

that is acyclic i.e. (v, v) ̸∈ prnt+
B for any v ∈ VB, with prnt+

B the transitive closure of prnt.

1 A forest in standard bigraphs, and a DAG for sharing.
2 The function notation is used as place graphs (resp. link graphs, bigraphs) are arrows in a category

with ordinals, e.g. m, n (resp. sets of names, ordinal/name pairs) as objects.

CP 2021
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▶ Definition 2 (concrete link graph). A concrete link graph

B = (VB , EB , ctrlB , linkB) : X → Y

is a quadruple having (finite) inner name set X ⊂ X and an outer name set Y ⊂ X . B has
finite sets VB ⊂ V of entities and EB ⊂ E of links, a control map ctrlB : VB → K and a link
map

linkB : X ⊎ PB → EB ⊎ Y

where PB
def= {(v, i) | v ∈ VB , i = ar(ctrlB(v))} is the set of ports of B.

Closed links are those where the domain is restricted to PB and the image is in EB.
Otherwise they are open.

A concrete bigraph with sharing joins these two structures on VB .

▶ Definition 3 (concrete bigraph with sharing). A concrete bigraph

B = (VB , EB , ctrlB , prntB , linkB) : ⟨k, X⟩ → ⟨m, Y ⟩

consists of a concrete place graph with sharing BP = (VB , ctrlB , prntB) : k → m and a
concrete link graph BL = (VB , EB , ctrlB , linkB) : X → Y . The inner and outer interfaces of
B are ⟨k, X⟩ and ⟨m, Y ⟩, respectively.

2.3 Bigraph Matching Problem
We denote the identity bigraph over an interface I = ⟨m, X⟩ by idI : I → I. It maps names
in X to themselves and places m sites in m regions.

A Bigraphical Reactive System (BRS) allows bigraphs to evolve through a set of reaction
rules of the form L ▶R. Intuitively a reaction rule replaces an occurrence of a bigraph L

with R. An example reaction rule, allowing a person to move between rooms, is in Figure 1d.
The use of sites within the rooms allows them to contain any other entities. Reaction rules
can update both the place and link graph simultaneously as shown by the connection being
severed.

The central operation when computing over a BRS is the ability to match the left-hand-
side of a reaction rule. Matches are also used to define state predicates, i.e. as bigraph
patterns [9], and multiple matches per rewrite step are required for conditional rewriting [4].
If stochastic semantics are required [18] then the number of matches is required to correctly
normalise rates. Bigraph matching is defined formally in terms of occurrences:

▶ Definition 4 (concrete occurrence). Let P and T be two concrete bigraphs representing
a pattern and target. We say there is a concrete occurrence of P in T if there is a valid
decomposition T = C ◦ (idI ⊗ P ) ◦ D for some interface I, and concrete bigraphs C and D.
We call C the context and D the parameter. Two concrete occurrences are equal if they
differ only by a permutation or a bijective renaming on the inner interface of C and the outer
interface of D.

It is always possible to determine an abstract occurrence starting from a concrete one. In
other words, a bigraph P occurs in T (both abstract) only if an arbitrary concretisation of
P occurs in an arbitrary concretisation of T , where concretisation means the assignment of
distinct identifiers (drawn from V and E) to all entities and closed links.
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Figure 2 Example matching instance with {u0 → v0, u1 → v2, u3 → v5, u2 → v4, ea → e1}. An
alternative match with u0 → v1 is possible.

An example match through decomposition is in Figure 2. We use the same entities as
before, but this time give a concrete pattern/target bigraph with identifiers vn, un, en. The
pattern is as given, while all additional entities are placed either in the context (i.e. the Room)
or the parameter (the additional socket/person). The additional wiring of z is through the
idI component of the decomposition. Because of the ability to loop outer names back to the
parameter, for matching, we only need to consider open links and not distinguish between
inner and outer.

Treating matching as a decomposition is essential since, while it is necessary to find an
isomorphism between entities in the pattern and target graph, it is not sufficient. To have
a valid match we must also be able to form a valid context/parameter. For example, we
cannot have the same entity appear in both the context and the parameter.

Existing approaches

The first bigraph matching algorithm [15] made use of structural induction on the algebraic
representation of bigraphs in order to find a valid match through an inference system. The
algorithm supports both standard bigraphs and binding bigraphs that allow names to have
locality. A similar inductive approach was used to provide the matching algorithm for
directed bigraphs [8] that allows directed link graphs.

Like the approach we outline, other algorithms encode the bigraph matching problem as
an instance of a combinatorial search problem, allowing re-use of existing tools for efficiency.
For example, jLibBig [12], which also supports directed bigraphs, formulates matching as a
constraint satisfaction problem, while BigraphER [26] is the only implementation to support
bigraphs with sharing through the use of SAT solvers.

The closest approach to ours encodes bigraphs as ranked graphs [14]. Ranked graphs can
be seen a graphs-with-interfaces, mirroring the sites/regions/names of bigraphs. Rather than
perform the encoding only for matching, ranked graphs are used to do the rewriting (as an
instance of double-pushout graph transformation) and then the entire structure is converted
back to a bigraph. Assuming negligible encoding/decoding time, the performance of this
approach depends on the underlying graph transformation framework.

CP 2021
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2.4 Subgraph Isomorphism
The Subgraph Isomorphism Problem (SIP) is a classic NP-complete decision problem that
determines whether a pattern graph is a subgraph of (i.e. is present in) a target graph.
Because of its broad applicability, many dedicated solving algorithms exist, with the current
state of the art being the Glasgow Subgraph Solver [22]. This solver adopts a constraint
programming approach, combining inference and intelligent backtracking search, but with
special data structures and algorithms designed specifically for subgraph problems. The solver
supports variants of the problem, including non-induced and induced subgraph finding, graphs
involving directed edges, and labelling schemes defining vertex and edge compatibilities. It
can also explicitly enumerate all solutions, rather than just deciding whether one solution
exists.

Formally, the problem we will be solving is as follows. Given a pattern directed graph
G = (VG, EG), a target directed graph H = (VH , EH), and a vertex compatibility function3 ℓ :
VG × VH → {t, f}, a non-induced subgraph isomorphism with vertex compatibility constraints
from G to H is an injective mapping i : VG → VH such that edges are mapped to edges,
(u, v) ∈ EG =⇒ (i(u), i(v)) ∈ EH , and where vertex compatibility is respected, ℓ(v, i(v)) =
t ∀v ∈ VG. We wish to enumerate all such mappings.

3 Bigraph Matching as Subgraph Isomorphism

The key observation underlying our new approach is that bigraph matching instances can be
seen as a SIP problem with additional constraints to handle abstractions (regions/sites, and
names), and ensure valid decompositions (Section 2.3). Using a subgraph model rather than
a SAT model is potentially beneficial for three reasons. Firstly, subgraph solvers can carry
out stronger reasoning than SAT solvers, by using implied constraints based upon degrees
and neighbourhood degree sequences [29], cardinality [28], distances [7], and path counts
[20]. Secondly, we know how to design very good variable- and value-ordering heuristics for
graph problems [21, 5]. And thirdly, subgraph solvers can potentially deal with much larger
problem instances due to a compact representation of adjacency constraints.

However, most existing SIP solvers do not directly support hypergraphs, let alone
multiple overlaid graph structures like bigraphs. In order to use existing tools we encode the
pattern/target bigraphs into a traditional graph structure (with additional degree constraints).
This is a two step process. First we encode place graphs by removing/replacing abstractions
and then we flatten the link graphs into these encoded structures by replacing hyperedges
with cliques resulting in a single flattened graph. This flattened graph representation is
accepted by existing SIP tools, with small changes required to allow the vertex compatibility
function (encoding labelling and additional degree constraints). These are required as the
bigraph variant of SIP can be considered a special case somewhere between induced and
non-induced SIP, that is, the use of sites/regions/names swaps the matching semantics from
must have all edges matching to must have at least n edges matching. This encoding is
slightly under-constrained, however: although every bigraph matching corresponds to a
subgraph isomorphism, some subgraph isomorphisms do not give valid bigraph matchings,
and there can be multiple subgraph isomorphisms for a given bigraph matching. Rather

3 Note that this kind of compatibility scheme is more general than the typical “oxygen atoms must be
mapped to oxygen atoms, and fluorine atoms must be mapped to fluorine atoms” labelling scheme
which occurs in many applications, but nearly all subgraph isomorphism solvers can easily be modified
to support this in practice through simple unary constraints.



B. Archibald, K. Burns, C. McCreesh, and M. Sevegnani 15:7

0

A

0

1

C

1

0

A

D

0

B

1

1

C C

A

L

C

L L

R

A

L D

S L

B

S L

R

C

L

L

C

L

L

e
deg− = 3

Pattern Target Pattern Target

δ− ≥ 0
δ+ ≥ 0

δ− ≥ 0
δ+ ≥ 0

Figure 3 An illustration of a full encoding of a bigraph matching instance as a SIP instance.
Unconnected links are open.

0

A

C

0

1

B

D

1

R

A

C

S

R

B

D

S

ϕT

(a)

1

A

B

0

C

D

E 1

A

B C

D

E

0

ϕP

δ− ≥ 0
δ+ = 2

δ− ≥ 1
δ+ ≥ 0

δ− = 1
δ+ = 1

δ− = 1
δ+ ≥ 1

δ− = 1
δ+ = 0

(b)

Figure 4 (a) Example target place graph encoding – regions/sites are replaced with unmatchable
vertices (shown as R and S but have no label in the encoding). Vertices show control labels; (b)
Example pattern place graph encoding – regions/sites removed and degree constraints introduced.

than attempting to handle these details through an awkward encoding, we will instead make
use of additional constraints (Section 3.4) and projection nogoods (Section 3.5) on solutions
to obtain the desired one-to-one correspondence between solver outputs and solutions.

Importantly there is not a single encoding function between bigraphs and flattened graphs.
Instead, to allow matching constraints to be specified, we require different encoding functions
for the pattern and target graphs. A diagrammatic overview of the encodings is shown
in Figure 3. In the following sections we detail how the encodings are constructed. The
encodings are not total but are defined for all cases where matching is non-trivial – for
example, they are not designed to be used for node-free bigraphs, i.e. bigraphs containing
only hyperedges between names and/or roots/sites for example the identity bigraph.

3.1 Place Graph Encoding

The encodings take bigraphs and produce graphs (V, E) where V is a set of vertices and E a
set of edges. Additional constraints are specified with a compatibility function ℓp that we
define in Section 3.1.1.
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The target place graph

Let T P = (VT , ctrlT , prntT ) : m → n be a concrete place graph representing the target of
a matching instance. The target place graph encoding function ϕT : T P 7→ (V, E) is shown
diagrammatically in Figure 4a. Intuitively, we take the original place graph and extend it
with additional vertices for the sites and regions. Formally, the encoding produces a graph
with V = VT ⊎{ri | i ∈ n}⊎{si | i ∈ m} and E = prnt−1

T (the child relation). The site/region
vertices are added to ensure the structure is maintained, i.e. parent/child entities have correct
in/out degrees, but regions/sites are never compatible and so do not appear in mappings.

The pattern place graph

Let P P = (VP , ctrlP , prntP ) : i → j be a concrete place graph representing the pattern of a
matching instance. The pattern encoding function ϕP : P P 7→ (V, E) is shown diagrammatic-
ally in Figure 4b. Intuitively we take the original place graph and remove sites/regions as we
do not want to map abstract nodes into the target. The encoding produces a graph with
vertices V = VP , edges E = {(u, v) ∈ prnt−1

T | v /∈ i, u /∈ j}. As we still need to remember
the structure, we replace these with unary in/out degree constraints in the compatibility
function (Section 3.1.1). For sites/regions we introduce ≥ constraints to allow additional
incoming/outgoing edges, while all other entities must match in/out degrees exactly.

3.1.1 Place Compatibility Function
Additional bigraph specific constraints are handled by a place compatibility function ℓp :
VG × VH → {t, f} that specifies when a pattern-target pair is allowed in a mapping. When
defining ℓp we assume bigraph definitions such as VT , ctrlP and prntT are available for
pattern/target bigraphs. For clarity we define ℓp over bigraph nodes, e.g. u ∈ VP , although
formally ℓp is over SIP graph vertices (e.g. VG) and these are inverse-mapped into their
bigraph representation for checking compatibility.

We define ℓp as the logical conjunction of two sub-functions, i.e. ℓp(u, v) = ℓp1(u, v) ∧
ℓp2(u, v). ℓp1 ensures the bigraph controls are maintained, while ℓp2 introduces cardinality
constraints based on sites/regions.

ℓp1(u ∈ VP , v ∈ VT ) =
{

t if ctrlP (u) = ctrlT (v)
f otherwise

Simply states that entities must maintain their controls.
For ℓp2 , we assume δ− : Vp → N is the function determining the number of in-edges for

an entity ignoring regions (ordinal n), and likewise δ+ : Vp → N as the number of out-edges
of an entity ignoring sites (ordinal m)4.

We then define:

ℓp2(u ∈ VP , v ∈ VT ) =



t if prnt(u) ∩ n ̸= ∅ ∧ δ−(v) ≥ δ−(u)
t if prnt(u) ∩ n = ∅ ∧ δ−(v) = δ−(u)
t if prnt(u)−1 ∩ m ̸= ∅ ∧ δ+(v) ≥ δ+(u)
t if prnt(u)−1 ∩ m = ∅ ∧ δ+(v) = δ+(u)
f otherwise

4 As described in Definition 1, ordinals are used to represent the place graph interfaces, such that, for
example, n = 2 = {0, 1} works as an (ordered) set with two points (roots) that can connect to the wider
context.
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Figure 5 An example of flattening – links become cliques between port vertices, and closure
nodes, shown as solid green, are added for closed links.

Where m and n are the sites/regions of the pattern bigraph. The vertex compatibility
function replaces the regions/sites with the semantics of how they should be matched, e.g.
that entities connecting sites can have any number of additional children including none, but
entities without sites must match out-degrees exactly.

3.2 Link Graph Encoding

Once we have an encoded place graph we flatten the hyperedges in the link graph into it so we
can treat links as vertices in our encoded graph. The key challenge is allowing non-injective
matches for open links to cover the case where, for example, two open links are merged in
the context. Unlike the place graph encoding, link graphs are always flattened the same way
regardless of whether they are targets or patterns.

Let BL be a concrete link graph: (VB , EB , ctrlB , linkB) : X → Y , and ϕ{P,T }(DP) :
(VD, ED) be a (pattern or target) encoding of a place graph DP. We define the flattening
function ϕf : ϕ{P,T }(DP) × BL 7→ (V, E) that given an encoded place graph produces a new
flattened graph.

Intuitively flattening creates a new vertex for every port (Definition 2) in the link graph,
and connects these as a child of their corresponding entities. As arities are fixed, as is the
number of port vertices to be added. The vertex compatibility function ensures that port
nodes can only match with other port nodes in a subgraph isomorphism. As ports are treated
separately to entity nodes, they do not contribute towards the δ−, δ+ values in the place
graph encoding. Port vertices are wired based on the existing links, i.e. if they shared a link
in the bigraph they share a link in the flattened representation. However as graphs do not
support hyperedges the edges are encoded by forming a clique between the ports.

Converting links to cliques between port vertices is sufficient to encode open links. For
closed links we have the following additional constraints:
1. Closed links in the pattern cannot map to open links in the target.
2. Closed to closed link mappings can only be one-to-one and have identical connected sets.
3. Closed links in the target can still be mapped to by many open links.

We implement these constraints by adding additional closure vertices en for each closed
link clique encoding, to represent the “closing off” of these links. The closure vertex is linked
to all port nodes in a closed link clique, and we add an equal-degree constraint to each closure
node to enforce injectivity, i.e. each closed link in the pattern can only map to a single closed
link with an identical adjacency set. The encoding for a link graph featuring both open and
closed edges is shown diagrammatically in Figure 5.
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Formalising flattening

Given concrete link graph: BL : (VB , EB , ctrlB , linkB) : X → Y , and ϕ{P,T }(DP) : (VD, ED)
an encoding of a (pattern or target) place graph D (where VB = VD), we define ϕf :
ϕ{P,T }(DP) × BL 7→ (V, E). We let ÊB = {e ∈ EB | linkB(p) = e, p /∈ X} be the set of
closed links in BL, and we have V = VD ⊎ PB ⊎ ÊB , where PB are the ports of BL (defined
in Definition 2), and one closure node is added for all closed links. We re-use the bigraph
edge identifier as a vertex identifier in the flattened graph. For edges, E = ED ⊎ {(v, p) | p =
(v, i) ∈ PB}⊎{(p1, p2) | p1, p2 ∈ PB , linkB(p1) = linkB(p2)}⊎{(p, e) | e ∈ ÊB , linkB(p) = e}.
As we build edges with linkB(p1) = linkB(p2) we always get two directed edges e.g. (p1, p2)
and (p2, p1) between two linked ports, and the clique structure is constructed automatically
through this restriction to binary edges. Additional edges point port vertices to the closure
nodes for the closed link representation.

Finally we extend the vertex capability function for place graphs ℓp (Section 3.1.1) to
include extra link constraints:

ℓ(u, v) = ℓp(u, v) ∧


t if u ∈ PP ∧ v ∈ PT

t if u ∈ ÊP ∧ v ∈ ÊT ∧ deg−(u) = deg−(v)
f otherwise

This expresses that ports can only map to ports, and closure nodes can only map to closure
nodes with the exact same in degree, where deg− is the standard in-degree function.

3.3 Encoding Size
A key challenge with the existing SAT solver based algorithm is the large number of clauses
required to encode the problem. On the other hand our SIP encoding requires a modest
number of nodes and edges, with nodes growing linearly and edges quadratically (due to the
clique representation). The number of nodes and edges for a pattern and target bigraph is as
follows, where |e| = |link−1

G (e) ∩ PG| is the cardinality of a hyperedge e ∈ EG when counting
only ports.

Pattern bigraph P : ⟨i, X⟩ → ⟨j, Y ⟩

|V | = |VP | + |PP | + |ÊP |

|E| =
∑

v∈VP

δ−(v) + |PP | +
∑

e∈EP

|e| · (|e| − 1) +
∑

e∈ÊP

|e|

Target bigraph T : ⟨n, X′⟩ → ⟨m, Y ′⟩

|V | = |VT | + n + m + |PT | + |ÊT |

|E| =
∑

v∈VP

deg−(v) +
∑
s∈n

deg−(s) + |PT | +
∑

e∈ET

|e| · (|e| − 1) +
∑

e∈ÊT

|e|

3.4 Checking Constraints
To complete the encoding for standard bigraph matching, we require one additional constraint
in the case where a region may have multiple children in the pattern graph – this introduces
the rule that all of the child nodes must remain siblings relative to each resultant parent node
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Figure 6 (a) Example instance showing need for transitive closure to avoid the parameter also
appearing as a context; (b) Example instance with shared site in pattern. No matches are possible
in either example.

that substitutes the abstract region during bigraph composition. We cannot validate this
during the encoding stage due to the loss of this information from stripping regions in the
pattern graph, and as a result the returned solution set may return a superset containing false
solutions where the assigned target vertices do not share a parent. An encoding workaround
would require the underlying SIP algorithm to be able to support pattern vertices that can
encapsulate multiple target nodes in a matching assignment, however this would stray too
far from the idea that any existing SIP solver that supports direction and labelling can be
used for bigraph matching. We instead deal with this underconstrainedness by implementing
a checking constraint on top of the constraint programming model through analysis of the
input graphs and their vertex assignments whenever this case occurs – this enforces that a
solution is only valid when the set of children of each region all share the same set of parent
vertices once mapped to their corresponding target vertices. A similar constraint is also
required in the case where we wish to support bigraphs with sharing, where we consider sites
with multiple parents rather than regions with multiple children.

Similar constraints are required for the existing SAT encoding to handle the same
conditions, so although these are not implemented directly in SIP, evaluating the two
approaches against one another remains a fair comparison.

Constraints Imposed By Sharing

Our encoding in addition to the constraint described above is enough to perform matching
for Milner’s original bigraph formalism. However, bigraphs with sharing cannot be fully
supported5 without additional constraints that ensure firstly, that we do not try to form a
bigraph where a site also ends up as a region i.e. the DAG property is violated from a cycle
being introduced; and secondly that shared sites contain exactly the same elements.

5 Sharing within a pattern would be possible, but not on the interfaces.
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Figure 6a shows an example where it seems there are valid matches, but sharing leads to
an invalid context/parameter. Regardless of which of the two possible matches we choose,
the remaining vertices are captured by site 0 in the parameter. However, this same path
needs to rejoin the pattern through the context (region 1). As the same (concrete) bigraph
cannot appear in both the context and parameter at the same time, both matches are invalid.
To compute this constraint we check that no vertex in the match is transitively connected
through prnt to any vertices in the parameter, that is, you never go upwards to reach the
parameter.

Figure 6b shows the second sharing constraint, which is symmetric to the region constraint
required for the standard bigraph formalism. As the site is shared it must include only, and
all, entities shared by the two parents. In this example that means it must contain only a
single A entity. This means there is nowhere in the parameter for the additional A children
to go and so there is no match.

We implement both these constraints through analysis of the input graphs and their
vertex assignments, ensuring all solutions returned are valid. These constraints always hold
for standard bigraphs so it is safe to use them in all cases, although as an optimisation we
detect sharing and only enable them for bigraphs with sharing.

The ease of implementing sharing constraints demonstrates a further advantage of our
SIP encoding over the existing SAT algorithm: we can easily implement further variants
of the bigraph matching problem by specifying additional high-level constraints instead of
configuring the low-level set of clauses to support new conditions.

3.5 Nogood Recording
When enumerating solutions, the bigraph matching problem does not consider a permutation
of open link assignments to be a new separate solution if there already exists a solution
with the same place graph vertex and closed link assignments – this will result in the SIP
solver returning “duplicate” solutions in its solution set which, whilst still technically valid
solutions that differ in their vertex assignments, should not increment the total number
of solutions found. We thus make use of the constraint solver’s inbuilt nogood recording
functionality where we insert a nogood upon finding a new valid solution, which records the
current assignments of the place graph vertices and closure vertices such that any future
solutions found with the same set of assignments are disregarded by the solver. This ensures
that the set of solutions found by the SIP solver for an encoded bigraph matching instance
will always bijectively match the set of solutions found by existing bigraph tools.

4 Implementation and Evaluation

We implemented [3] the encoding and SIP solving process within the Glasgow Subgraph
Solver [22] due to it being the state of the art for subgraph solving. However, our approach
could be implemented using any solver which supports solution enumeration, directed graphs,
and a way of specifying vertex compatibilities.

We compare our SIP implementation to BigraphER’s existing SAT approach on systems
with dual Xeon E5-2687A v4 CPUs and 512GBytes RAM, running Ubuntu 18.04. To allow
experimenting with a large number of instances, we perform up to 30 matching problems in
parallel on the same machine. The SIP solver is compiled with GCC 7.5 while BigraphER is
compiled with OCaml 4.10, statically linked to MiniSAT [13] compiled with GCC 9.3, and
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Figure 7 Comparing the performance of the SIP, SAT, and Pseudo-Boolean (PB) approaches.
On the left, the cumulative number of instances solved over time for all three approaches. On the
right, comparing SAT and SIP on an instance by instance basis; point colour indicates the number
of solutions found, and shape the benchmark family.

then copied to the benchmarking machine. For both solvers we measure the steady-clock
time required to call the main solver function that includes generating clauses or constraints,
but not the time taken to read input files from disk.6

As an additional point of comparison we have also implemented a pseudo-Boolean variant
of the SAT algorithm, i.e. with direct cardinality constraints when encoding sites. The
implementation is through BigraphER with MiniCARD [19] as the underlying solver.

Instances are drawn from two real-world models: savannah models a mixed-reality
system [9] where children must work together in the physical world to hunt virtual impala,
and 80211 that models the 802.11 MAC protocol [11]. In each case instances are recorded
from steps to compute the full transition system of the model. Existing public datasets
contain only relatively small bigraphs due to limitations of earlier solvers, and so to test
scalability we additionally generate larger instances based on the conference call example of
Milner [24, chapter 1]. In this case we generate larger instances by not only allowing the
existing bigraph to reconfigure, e.g. for agents to join calls, but also rules that add additional
agents, computers, rooms and buildings at random. We have two variants of the conference
example conf and conf_noshare that allow/disallow sharing.

Instances use BigraphER’s text based bigraph representation, which is essentially an
adjacency matrix with additional entity type and link information. There are 11,176 matching
instances in total and we are making these freely available, along with the results in this
paper [2], to allow future comparative work. Of the 11,176 instances, 1,660 are unsatisfiable
(i.e. no rewriting can be applied). To give us confidence in our implementation, we verified
that the SAT and SIP approaches returned the same set of solutions for all of these 11,176
instances.

6 In an application context, calls to a solver would be made directly.

CP 2021



15:14 Practical Bigraphs via Subgraph Isomorphism

4.1 Performance
Figure 7a shows the cumulative number of instances that can be solved individually with a
timeout of t (x-axis), and so the curve further to the top and left shows the better solver.
The horizontal distance between the lines shows the increase in timeout required for both
solvers to solve the same number of (but not necessarily the exact same set of) instances,
and measures aggregate speedup [17]. In this case, no instance takes the SIP solver more
than 4,516ms to solve, while the SAT solver requires 820,117ms to solve its hardest instance,
giving an aggregate speedup of 181. The pseudo-Boolean solver performs similarly to SAT
especially for the harder instances, although there does seem to be a significant benefit for
smaller instances. When solving many instances, i.e. when generating a transition system,
we expect the pseudo-Boolean solver to be beneficial as it generates less clauses that would
need to be garbage collected by OCaml. As expected given the encoding, the number of SAT
clauses increases rapidly as the problem instances increase in size.

Figure 7b compares the per-instance runtime for both the SAT and SIP solver, where
any point below the mid-line implies SIP outperforms SAT for that instance; the colour of
each point gives the log of the number of solutions, with unsat instances shown in black.
We see the SIP always outperforms the SAT solver for all instances. The consistency of the
speedups seen is interesting, especially given the difference in techniques used by the two
approaches. Further experiments with non-default configurations of the Glasgow Subgraph
Solver show that for bigraph instances, neither neighbourhood degree sequence filtering
nor supplemental graph constraints make much of a difference to performance. One might
guess that perhaps all instances are computationally easy for any reasonable solver, and that
long-running instances are due to either initialisation costs or the cost of enumerating large
numbers of solutions. However, things are not this simple: some of the hardest instances
are unsatisfiable, take hundreds of thousands of decisions to solve, and spend most of their
runtime doing this search. In fact, close inspection of solver statistics suggests that the
hard unsatisfiable instances contain very many near-solutions, that fail only on the checking
constraints discussed in Section 3.4. This suggests that most of the performance gain comes
down to the smaller encoding size and faster propagation speeds of the SIP solver, rather than
any algorithmic cleverness – although there is still the risk that an insufficiently advanced
solver will perform extremely badly on some instances [21]. As future work, we intend to
investigate ways of speeding the solver up on these instances, either by using a propagating
constraint, or through generation of small conflict clauses.

Finally, although the the difference in solve time for the real-world instances, i.e. savannah
and 80211, can seem modest, when generating transition systems for verification the solve
routine can easily be called thousands of times. As such any speedup is likely to have a high
impact on total model generation time.

5 Conclusion

We have shown that the bigraph (with sharing) matching problem can be considered a
special case of the subgraph isomorphism problem with additional constraints to handle
site/regions, open/closed links and sharing. Through an encoding from bigraphs to graphs
with a vertex compatibility function, we can integrate with existing SIP solvers such as
the Glasgow Subgraph Solver. We use this to improve on the state of the art SAT-based
solver for bigraphs (with sharing), and show significant improvements to performance and
scalability including an aggregate speedup of 181 when performance is compared for over
11,000 instances.
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Future work

While the new solver already significantly outperforms the SAT approach, there is scope to
optimise further, for example using symmetry breaking to reduce the impact of cliques in
the encoding, adding further inference that exploits the structure of the labelling function,
and using propagation rather than solution checking for sharing.

We expect to see our approach integrated into BigraphER as the new default matching
algorithm, allowing a wider range of models to be efficiently manipulated.

Further afield, we wish to extend the algorithm to capture additional bigraph variants –
something that was particularly difficult to do through the low-level CNF encoding of SAT.
There are many extensions to the bigraph theory, such as local bigraphs [23] that support
locality of names, e.g. to model restriction in the π-calculus, and directed bigraphs [16].
Just as sharing introduced a small number of additional constraints, e.g. transitive closure
(Section 3.4), we believe that supporting additional bigraph extensions is possible, and
requires significantly less effort than the SAT encoding, due to high-level constraint-based
reasoning. Once extra variants are supported we will be able to perform a comparative
study with existing solvers for these variants (e.g. [12]), to learn from and share new solving
techniques.
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Abstract
This paper presents the hybrid, flexible flowshop problem with transportation times between stages,
which is an extension of an existing scheduling problem that is well-studied in the literature. We
explore different models for the problem with Constraint Programming, MILP, and local search,
and compare them on generated benchmark problems that reflect the problem of the industrial
partner. We then study two different factory layout design problems, and use the optimization tool
to understand the impact of the design choices on the solution quality.
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1 Introduction

An important category of production systems comprises hybrid flowshop environments, where
the input jobs need to be processed by different production stages, and multiple identical
machines are available at each stage. In this context, the problem consisting of finding
schedules of minimum length is a well-known NP-hard combinatorial problem, known as
Hybrid Flowshop Scheduling (HFS) [36]. An extension of this problem, which has been the
object of recent studies, is the case where a subset of the jobs are required to skip some of the
stages. This problem is usually denoted as Hybrid Flexible Flowshop Scheduling (HFF) [33].
Since many decades, the solution of HFS/HFFs problems has been fundamental to increase
efficiency of many real world manufacturing systems, related to a wide variety of production
areas like electronics [25, 10], glass [32], textile [22], packaging [1], etc.

Recently, an increasing number of production systems are structured such that the
machines are located in different buildings of the same production site, or even at separate
sites. This may occur for multiple reasons, such as the risk of contamination of materials
during some production stages. As a consequence, the machines may be located at diverse
locations, requiring a non-negligible time to transport a job from one stage to the next
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Figure 1 Logical structure of a hybrid flowshop.

one. These transportation times are known as inter-stage transportation times, in order to
make a distinction with the ones required to deliver the products or acquire raw materials.
Moreover, these transportation times are usually machine-dependent, in the sense that they
are proportional to the physical distance between the two machines involved. In this work,
we introduce the Hybrid Flexible Flowshop with Transportation Times (HFFTT), as an
extension of the HFF where inter-stage, machine-dependent transportation times are taken
into account.

The diagram depicted in Figure 1 summarizes the logical structure of a HFFTT problem,
where multiple machines are associated with each stage and each arrow connecting a couple
of machines (ma, mb) is indicating the fact that a certain time is needed to transport a job
from ma to mb. The main characteristics of the HFFTT are:

An arbitrary number of production stages are considered.
Each stage has multiple identical machines working in parallel.
All jobs are following the same production flow, with the exception that some jobs may
skip some stages.
Each job has a fixed processing time for each production stage, independent of the
machine used.
Transportation times are required to move a job from one machine of a stage to another
machine of the following stage.
The vehicles transporting the jobs are not taken into consideration, since they are
assumed to be enough to avoid any waiting delay. This is justified by the fact that current
production lines are fully automated and the schedules are defined a priori, so that the
transporters can move the jobs in time with no delays.
The objective function value is the maximum completion time, i.e. the makespan of the
schedule. The makespan is a measure of the system efficiency, it is considered in the
standard definition of the HFS and widely used in scheduling.

Other assumptions are that any machine can process only one operation at a time with no
preemption, while all jobs can be processed by only one machine at a time. All tasks are
released at time 0, setup times are negligible or can be aggregated to the jobs’ processing
times. The capacity of the buffers between stages is unlimited, there are no additional
resources needed to run a job on a machine and, finally, the processing times and the
transportation times are deterministic parameters that are known a priori.
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Surprisingly, there are no previous studies focusing exactly on this problem definition, to
the best of the authors’ knowledge. However, studies tackling similar problems are discussed
in Section 2. The HFFTT can be indicated with HFFm|tt|Cmax by means of the three field
notation, which is the most common notation used to identify scheduling problems [21].

Our motivation for studying the HFFTT lies in a real-world practical application arising
in fully-automated pharmaceutical manufacturing, where millions of lots are produced every
year. One of the authors, working for the research and development team of the firm,
provided requirements that we reproduced when we defined the problem and generated our
instances. The aim of this work is twofold. On the one hand, increasing the throughput of a
production site by a small percentage (say 1%) brings a significant economic benefit, due
to the very large volume of production. We formulate the problem in terms of Constraint
Programming (CP), Mixed Integer Linear Programming (MILP), and Local Search in order
to develop optimization approaches based on off-the-shelf solvers and test them on these
realistic scenarios.

On the other hand, the introduction of transportation times leads to another research
question, which is of particular interest for the industry partner. It consists of determining
the positions to be assigned to the machines in order to achieve a high system efficiency. Such
problem belongs to a wide category of optimization problems known as facility layout [14, 4],
with hundreds of papers published in recent years [41]. We address this challenge by using
CP-based scheduling to quantify the performances of different layouts alternatives, hence
providing insights for driving business-related decisions in the real world scenario.

The rest of this document is arranged as follows. Section 2 collocates the problem in the
state of the art, by analyzing similar scheduling problems studied in the past.

The problem admits multiple alternative formulations, which are presented and discussed
in Section 3. Section 3.2 presents a CP formulation for the HFTT. Section 3.3 discusses how
to extend the MILP formulations available in the state of the art for the HFF, in order to
take into account transportation times. Section 3.4 provides a local search procedure, which
is used to compute good feasible solutions and initialize the solvers. Section 4 describes
the computational experiments that we conducted. These experiments are performed on
realistic instances, whose structure comes from the real world scenarios discussed with the
pharmaceutical firm, as mentioned before. The instance generation and the scenarios are
discussed in Section 4.1 and Section 4.2, respectively. The computational results, describing
the performance of the proposed models, are presented in Section 4.3. Section 5 concludes
the paper.

2 Related Work

As discussed in the introduction, the HFFTT is an extension of the HFF, which is a HFS
problem where certain jobs are required to skip some production stages. The HFS is a
well-studied problem, whose literature includes many problem variants. It is NP-hard in
its general form and in most of its restrictions. As an example, the case where there is
one machine per stage is a flowshop problem, which is known to be NP-hard [20]. Some
polynomially solvable special cases are arising when some special properties and precedence
relationships are verified [13].

The reader is referred to [36] for an in-depth survey, which describes papers published
up to 2010. Another, more recent review [40] is covering the works published from 2010
to 2020, with a special focus on metaheuristic approaches. The literature of the HFF is
less rich with respect to the HFS. Four different MILP formulations are proposed in [33]
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and assessed computationally. A general discussion about the impact of including different
realistic constraints is given in [37]. The most recent metaheuristic developed for the HFF is
an iterated greedy approach based on a hyperheuristic [8]. Finally, the use of CP approaches
in HFS/HFF problems is tackled by [26] and [45]. [26] considers a HFS with multiprocessor
tasks and proposes a memetic algorithm, which uses a CP-based branch and bound algorithm
as a local search engine. [45] studies a HFF problem inspired by a real-world application,
formulates it in terms of CP and solves it utilizing Gecode.

The HFFTT is more general than the HFF and the HFS, hence it is NP-Hard as its
special cases. The HFFTT includes inter-stage, machine-dependent transportation times,
but they are not the only type of transportation times studied by the scheduling community.
In fact, the first scheduling paper taking transportation into account is [31], which dates back
to 1980, and considers purely job-dependent transportation times. The authors consider a
two-machine flowshop problem with a sufficient number of transporters, so that whenever a
job is completed on the first machine it can be transported to the second machine immediately.
Another paper [29] focuses purely on the job transportation in a HFS with two stages. Other
HFSs with some form of job transportation have been considered in other works, the reader
is referred to Section 2 of [30] for a recent and detailed review about this topic. A recent
paper [44] studies two problems where there is only one transporter in a HFS with two
stages. These problems are very close to the HFFTT, with the two main differences being
the fact that the transporter is seen as a further resource to be shared among the jobs and
the number of stages is restricted to 2. Another similar problem to the one defined in this
paper is presented in [30]. The main differences are that buffers are assumed to be finite,
there is only one transporter per stage, and the jobs are not skipping any stage. [42] deals
with another HFS with transportation times, differing from our problem because it considers
a limited number of transporters with finite capacities and because the transportation
times are purely stage-dependent, since they do not depend on the machine positions. [15]
studies a single-transporter HFS with machine eligibility where the transportation times are
not machine-dependent. The same authors propose in [16] and [17] a MILP model and a
metaheuristic for a cyclic HFS, with multiple robots devoted to perform the transportation
operations. The main difference with the HFFTT is the fact that they deal with a cyclic
problem and they use as an objective a throughput rate maximization, that is the number of
parts completed in the cycle time. [24] presents a two-centers hybrid flowshop, where the
machines of each stage are aggregated in centers. Contrarily to our problem, here only two
stages are considered and the transportation times are purely job-dependent.

Other recent works are dealing with scheduling problems with transportation times,
which consider different types of production environment, such as a groupshop [3], a flexible
jobshop [35] and a batch-flowshop [6].

A large number of studies have been devoted to the design of facility layouts in order to
improve the system productivity and/or reduce costs. However, we did not find any study
related to designing facility layouts for HFS. A survey about facility layout problems is
provided in [4], where a survey of the mathematical optimization approaches is presented.
These approaches are based on solving a variety of optimization problems, that are expressed
in terms of MILP or conic programming. In some cases, simulation and optimization
interoperate to find the best layouts. [5] presents a simulation-based genetic algorithm
encoding each single layout as a string and evaluating the performances of each layout by
means of simulation. [19] discusses the case where simulation-based optimization is used for
facility layout optimization under uncertainty. CP has been adopted to solve different types
of layout problems. An example is [39], where the authors show the effectiveness of CP for
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designing manufacturing cells. Another related study is [43], where the authors propose a
CP approach for multi-objective wind farm layout optimization. To the best of the authors’
knowledge, there are no previous studies using constraint-based scheduling for the design of
facility layouts.

3 Models

We now present different models for the selected problem, using various solver technologies.
We only explain one CP model in full detail due to space considerations.

3.1 Notation
In this section, we introduce the notation used in the different problem formulations. Let
J be a set of jobs, M be a set of machines and S be a set of production stages. Each job
j ∈ J requires a processing time pj,s to complete a stage s ∈ S. The set of all jobs that
need to be processed in stage s ∈ S is indicated with Js ⊆ J , while the stage before s ∈ S

where a job j ∈ J needs to be processed is indicated with prec(s, j). The transportation
time δm,m′ is required to move a job from machine m ∈ Ms to m′ ∈ Ms′ , where s, s′ ∈ S

and s′ is successive to s in the production system. By following the general concept used in
CP for scheduling problem including the HFS [44], we define a task as the execution of a
job at some production stage. Hence, one task per stage used is associated to each job. We
indicate the set of all tasks with T. Finally, the set of all the tasks associated with a certain
stage s ∈ S is denoted as Ts and the set of all tasks associated with a certain job j ∈ J is
denoted as Tj .

3.2 CP
For this type of scheduling problem with precedence and machine choice there are two main
choices of modelling in Constraint Programming. The first approach uses a two-dimensional
diffn [7] constraint, where the first (x) dimension represents time, and the second (y)
dimension represents the machine allocated to a task. Each task is represented by a rectangle
whose width is the duration of the task, and the height is one, while the x start position
represents the start time, and the y value indicates the machines on which it is run. This
constraint states that tasks are either scheduled on different machines, or do not overlap in
time. This type of model goes back to CHIP [12], and can be expressed in many CP systems,
we use it in our MiniZinc [34] and SICStus Prolog [9] formulations. The transport time
between two consecutive tasks of the same job is expressed by a table constraint, which
links the machine variables of the tasks to the transport time, by enumerating all possible
combinations. This provides maximum flexibility in expressing the transport time constraint,
while allowing for efficient, domain consistent constraint propagation.

The second approach uses optional interval task variables [28] to represent the machine
choices. For each task and each machine on which the task can be scheduled, there is
an optional interval variable which represents the choice whether the task is run on this
machine. Exactly one of the optional variables for a task must be selected (using an
alternative constraint), while all optional tasks on the same machine are constrained to
be non-overlapping. This model is required by IBM’s CPOptimizer [28], but can also be
expressed with MiniZinc 1. Expressing the transport time between tasks is more complex,

1 Unfortunately, the MiniZinc model with interval variables is not competitive solving even the smallest
problem instances, and is not used in the experiments.
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IBM provides a specific constraint to deal with sequence dependent setup times on the
same machine, but not for expressing transport times between consecutive tasks of the same
job on different machines. We have to link additional machine assignment variables via
presenceOf constraints to the optional tasks, and use allowedAssignments constraints to
handle the transport times, linking the machine assignment variables and the transport time
of consecutive tasks. The default search in CPOptimizer automatically switches between
different search methods during the search phase, and is, like our custom SICStus Prolog
search described below, independent of the selected time resolution.

3.2.1 Diffn Model
We now describe the first constraint model of the problem in full detail, using MiniZinc as
the description language. We first define the constants to use, and the arrays that hold the
input data. The set T is the index-set of all tasks, for every task we have the fixed duration,
the stage to which it belongs, and the set of machines on which it can run. We also have a set
P of precedence relations between tasks that will be used to set up precedence constraints.
Note that this formulation is more generic than the flowshop problem, and allows to handle
other generic scheduling problems as well.

1 include " globals .mzn";
2 % constant definitions
3 set of int:T; % tasks
4 set of int:P; % precedences between tasks
5 set of int:M; % machines
6 set of int:S; % stages
7 set of int: tuples ; % transport time table size
8 int:lb; % lower bound on the cost
9 int:ub; % upper bound on the cost

10 % constant arrays
11 array[T] of int: duration ;
12 array[T] of int:stage;
13 array[P ,1..2] of int:prec; % precedence pairs
14 array[T] of set of int: machines ; % machine domains
15 array[tuples ,1..3] of int: transportTime ;
16 % data file
17 include "data/data.dzn";

For every task, we have three variables, the start of the task, the machine on which it is run,
and the travel time from the machine of the previous task to its own machine. In addition,
we use the variable cmax as the overall cost.

1 % variables
2 array[T] of var 0.. ub:start;
3 array[T] of var M: machine ;
4 array[T] of var 0.. ub: travel ;
5 var lb .. ub:cmax;

We have five constraint types in the model. The first links the makespan variable to the
end of all tasks. The second handles the precedence constraints within a job, linking the
first to the second task by the duration of the first task, and the required travel time between
the machines used. The third constraint expresses that each task can only be run on a
specific subset of the machines. The fourth constraint is the diffn constraint for each stage,
representing the tasks as rectangles. Note that a single diffn constraint for all tasks would
suffice, but multiple constraints with disjoint subsets of tasks lead to better performance. In
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addition, a cumulative [2] constraint linking the tasks and the number of available machines
of each stage may lead to additional propagation in some systems. The final constraint
generates the table constraint for the travel times, linking the machines assigned and the
time required, via a single table of all allowed travel time combinations.

1 % constraints
2 constraint forall (i in T)
3 (cmax >= start[i]+ duration [i]);
4 constraint forall (p in P)
5 (start [prec[p ,2]] >= start [prec[p ,1]]+
6 duration [prec[p ,1]]+
7 travel [prec[p ,2]]) ;
8 constraint forall (i in T) ( machine [i] in machines [i]);
9 constraint forall (s in S)

10 (diffn ([ start[i]|i in T where stage [i]=s],
11 [ machine [i]|i in T where stage[i] = s],
12 [ duration [i]|i in T where stage [i] = s],
13 [1|i in T where stage [i] = s]));
14 constraint forall (p in P)
15 (table ([ machine [prec[p ,1]] ,
16 machine [prec[p ,2]] ,
17 travel [prec[p ,2]]] , transportTime ));
18 % solve
19 solve minimize cmax;

With the free search of Chuffed [11] we find solutions for smaller problem sizes, but it
initially finds solutions with high costs. When giving a conservative value for ub, Chuffed
spends most of its time decreasing the cost value one by one from that initial high value.
We need an alternative to find good solutions quickly, the strategy chosen will assign tasks
from left to right, fixing start and machine of the task together. Note that other strategies,
like assigning all start values before the machine assignment or vice versa, do not lead to
viable solutions, as the machine assignment determines the transport time between tasks,
and therefore has a direct effect on the start times. Conversely, if we fix the start times to
their smallest value, we remove too much flexibility in the machine assignment to complete
the assignment.

We use the priority_search annotation of Chuffed [18] to assign start and machine
together. We select a task with the smallest value in the domain of its start, and fix the start
and then the machine of the task to values in their domain. Note that the sequence here is
important to place tasks to their left-most position.

1 include " chuffed .mzn";
2

3 solve :: priority_search (start ,
4 [ int_search ([ start[i], machine [i]], input_order , indomain_min )| i

in T],
5 smallest , complete ) minimize cmax;

For the search in the SICStus Prolog [9] model, which uses the same constraints, we
define a custom search routine that iteratively increases the start time considered, and for
each time point, decides if the remaining tasks should start at this time or not. Once the
start is fixed, we try to find a machine on which the task will be run. The search times out
after a limited amount of backtracking, and restarts with a different initial task ordering,
until either the lower bound is reached, or the global time budget is exceeded.

CP 2021



16:8 The HFP with Transportation Times

3.3 MILP
The HFFTT admits multiple MILP formulations. It is possible to extend the HFF formula-
tions in [33] so that they include inter-stage transportation times. In fact, Model 1, Model
3 and Model 4 of [33] can be extended by including continuous time variables ∆j,s ∈ R+,
representing the transportation time required by job j ∈ J to reach stage s ∈ S. Analogously,
Model 2 of [33] can be adapted by including continuous time variables ∆j,s,m ∈ R+, repres-
enting the transportation time required by a job j ∈ J to reach a machine m ∈ M , belonging
to stage s ∈ S. The variables ∆j,s and ∆j,s,m need to be linked with the real transportation
times δm,m′ . This can be done by imposing that they are greater than or equal to δm,m′ ,
in the case the job j ∈ J is processed by the machines m, m′ ∈ M , which is determined by
the binary variables related to the machines’ assignments. Finally, the constraints linking
the jobs’ start and completion times at the different stages need to be modified in order to
include the transportation times.

We implemented all four adapted models and performed a set of preliminary tests, where
Model 4 yielded the best results. Hence, we focus on the modified version of Model 4. To
simplify notation, let us define a dummy stage s0 preceding all other stages, with no machines
Ms0 = ∅ and performed by all the jobs with 0 duration. The decision variables are:

xi,j,s ∈ {0, 1} equal to 1 if job i ∈ Js comes after job j ∈ Js at a certain stage s ∈ S, 0
otherwise.
yj,s,m ∈ {0, 1} equal to 1 if the job j ∈ Js is processed by machine m ∈ Ms at stage
s ∈ S ∪ {s0}, 0 otherwise.
∆j,s ∈ R+ is the inter-stage transportation time required by job j ∈ Js to reach stage
s ∈ S from the previous one.
Cj,s ∈ R+ is the completion time of job j ∈ Js in stage s ∈ S ∪ {s0}.
Cmax ∈ R+ represents the makespan.

The following formulation of the HFFTT holds:

min Cmax (1)
subject to:

Cj,s0 = 0 ∀j ∈ J (2)
yj,s0,m = 0 ∀j ∈ J, m ∈ M (3)∑
m∈Ms

yj,s,m = 1 ∀j ∈ Js, s ∈ S (4)

Cj,s ≥ Cj,prec(s,j) + pj,s + ∆j,s ∀j ∈ Js, s ∈ S (5)
Cj,s ≥ Ci,s + pj,s − Λ(3 − xj,i,s − yj,s,m − yi,s,m) ∀i ̸= j ∈ Js, s ∈ S, m ∈ Ms (6)
Ci,s ≥ Cj,s + pi,s − Λxj,i,s − Λ(2 − yj,s,m − yi,s,m) ∀i ̸= j ∈ Js, s ∈ S, m ∈ Ms (7)
Cmax ≥ Cj,s ∀j ∈ Js, s ∈ S (8)

∆j,s ≥ δm′,m(yj,s,m + yj,prec(s,j),m′ − 1) ∀m′ ∈ Mprec(s,j), m ∈ Ms, j ∈ Js, s ∈ S (9)

Please note that the parameter Λ ∈ R+ indicates a large enough real constant. Further-
more, prec(s, j) indicates the stage where j ∈ J was processed before stage s ∈ S. The
objective is to minimize the makespan (1). Constraints (2) and (3) are related to the dummy
stage, which is the first stage for all the jobs and requires no time for its completion and no
machine usage. Constraints (4) ensure each job j ∈ Js is processed by exactly one machine
at each stage s ∈ S. Constraints (5) link the completion time of a job in a stage with the



E. Armstrong, M. Garraffa, B. O’Sullivan, and H. Simonis 16:9

completion time of the same job in the previous stage. Please note that such constraints
reduce to Cj,s ≥ pj,s in the case where prec(s, j) = s0, since Cj,s0 = 0 and no time is
required to reach the first stage after s0 (∆j,s = 0). Constraints (6) and (7) determine
the completion times of the jobs in a stage, by taking into account the precedence and
the machines availability. Constraints (7) enforce that Cmax is greater than or equal to
the completion time of all the jobs at any stage. Constraints (8) link the values of the
transportation time variables with the time needed to transport each job in order to achieve
a machine at a certain stage. Please note that ∆j,s is not involved in any constraint if
prec(s, j) = s0, since Ms0 = ∅.

3.4 Dispatch Rule and Local Search

In order to evaluate the results of our models in a broader context, we also introduced two
incomplete methods of finding solutions. The Dispatch model takes the jobs in some given
order, and schedules each job in sequence, placing the tasks at the first available time, on
the first available machine. This can be done efficiently by keeping track of the allocated
time on each machine, and by considering the required precedences and travel time when
looking for the next available machine. In our system, we randomly permute the job order,
and rerun the Dispatch model repeatedly, keeping improved solutions. We stop the search
when we either reach the given lower bound, or hit a timeout limit.

We’ve added a Local Search variant of this model, by allowing swaps of two jobs and
insertion of jobs into the job sequence at a different place. When we run out of possible
moves, we restart the search with a new permuted job order, and continue until we reach the
lower bound or the time limit.

Note that neither variant uses constraints, or estimates about the achievable makespan
given a partial solution, while both rely on the simplicity of the method to evaluate many
possible job sequences.

3.5 Lower Bound Calculation

A good lower bound on the makespan can be useful to stop the search having found an
optimal solution reaching that lower bound, or to understand the remaining optimality gap
of the instances tested. We have extended the bounds in [23] to deal with the transportation
time between stages, while adding one more bound based on the job type distribution. The
following gives an intuition of the bounds used.

An obvious lower bound on the makespan is the minimum duration of any job to be
scheduled. This consists of the sum of the duration of the tasks of the different stages, and an
estimate of the transport time required between consecutive tasks. The easiest approximation
of this is using the smallest transport time between each pair of stages as an estimate, a
more complex model can use Dynamic Programming to find the shortest path from start to
finish over all machines. This job related lower bound is quite strong if the number of jobs is
small, but will become useless as the number of jobs in the schedule increases. Note that the
constraint models will infer the first version of this lower bound from the precedence and
travel time constraints, this then becomes the initial lower bound of the makespan variable.

For larger instances we can do better than this, by considering a stage based bound. If
we consider any set of tasks belonging to the same stage, we can compute a lower bound on
the overall makespan as the minimum time to start one of the tasks of the set (minStart),
the time to process all tasks in the set on the machines for that stage, and the minimum
time that is required from the end of a task in the set to the overall project end (minEnd).
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While it is clearly not possible to evaluate this bound for every subset of the tasks for each
of the stages, we can group tasks by their minStart and minEnd values.

We still have to define how to estimate the time required to process all tasks of a set on
the machines of the selected stage. Ideally, we can solve a separate bin-packing constraint to
find the best solution, but that itself is a hard problem, and therefore not really appropriate
for a lower bound. We use three lower bounds on the bin packing problem instead:

The maximum duration of any task in the set is a bound on the time required to process
all tasks of the set.
The total duration of all tasks in the set, divided by the number of available machines, is
another lower bound.
If we order the tasks of the stage by decreasing duration, then the sum of the kth and
k + 1th element of the task list is a lower bound on the total duration, if the stage has k

machines.

Finally, we consider the most common product types, for which there are multiple jobs
in the order set. When minimizing the overall makespan, these jobs are identical, and in
our test scenarios, quite common. The most common product accounts for up to 25% of
all orders. It is worthwhile to obtain a lower bound for these jobs. We consider the sub
problem of scheduling only a single product type, in that case we do not have to allow all
permutations of the jobs, since they are all identical. The solution to this simpler problem
is a valid lower bound for the overall makespan. In the selected scenarios, this bound very
rarely dominates the other bounds, but it becomes useful when the power-law distribution of
product types is changed to consider fewer, more common products.

Given these bounds, we still observe rather wide optimality gaps (up to 20%) for some
medium sized instances. Further improvements could consider:

The total surface estimate assumes that there are no other tasks that overlap the selected
period, but there may be longer tasks starting earlier that are still active at this time.
A study of energetic reasoning for the cumulative constraint [2] may be appropriate to
understand if we can apply some of the reasoning here.
Some tasks may be required to achieve the shortest minStart and shortest minEnd time
at the same time. But it may not be possible to use the same tasks for both roles, so
that more time either at the start or the end is required.
There can be a conflict between lower bounds for different stages, which require different
sets of jobs to be scheduled early to avoid loosing too much production capacity at the
start or end of the schedule. By considering multiple, non-consecutive bottleneck stages
at the same time we may be able to improve the lower bounds significantly, without
having to solve hard combinatorial sub-problems to optimality.

4 Computational Experiments

In this section we describe how we generate sample problem instances based on assumptions
on the manufacturing process, which design alternatives we want to explore, and which
results we achieve. The results allow us to understand the impact of the different models and
solving technologies, and how the factory design choices affect the overall solution quality for
different solvers. A final step, not presented here, then integrates our results with a financial
analysis of the costs and risks of the design alternatives, to help the decision making process
for the industrial partner.
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4.1 Instance Generation

We have built an instance generator for the problem, which produces fully parametrized
instances of the problem. The generated test cases will be made available as an appendix
in the final publication. In our experiments we selected some parameters to be typical of
the situation of the industrial partner, while allowing for flexibility in other parameters. All
experiments shown use 8 stages, where stage 4 and 8 can be skipped with 10% probability.
We allow 10 machines at each stage, and consider two scenarios, one, where each stage has
the same number of machines, and one where the number of machines per stage is adjusted
downwards based on the total workload for each stage. For space reasons we only report
results for the uniform machine number case. We vary the number of jobs between 20 and
400, noticing that the larger instances may require large amounts of memory for some solvers.

For machines within the same building, we consider a lane model (see Figure 2a), where
machines are arranged in a grid pattern, all machines of the same stage being placed in the
same column, and machines in the same row requiring the smallest transport time between
them. Transport time increases with the difference of the lanes in which the machines are
placed. Note that this layout design is only one of the choices in the instance generator, and
does not directly affect the models, which use a table of transport times between machines.

Each job belongs to a given job type, jobs of the same type have the same manufacturing
constraints. We select the job type based on a discrete power law (Zipf) distribution, with
exponent 1.05. This means that some products are more common than others, but many
products only have a single job in the order set. This choice corresponds to the semi-custom
production model for which the factory is being designed. The task duration is randomly
chosen within a range of 1 to 10, while the transport times vary from 1 to 9, and an
inter-building transport requires 10 time units. The instances generated are available at [38].

4.2 Scenarios

We use our models to answer two design questions, one designing the transport inside a
single factory, the other dealing with the potential split of the production between sites.

4.2.1 Reach of Transport between Stages

This problem considers the lane based layout inside a single factory as a starting point. The
question is how far the transport should reach between lanes. If each job stays within its
initial lane during production, then transport requirements are minimal, but there is little
flexibility in the scheduling. If, on the other hand, we allow transport between any two lanes,
a lot of infrastructure needs to be provided, which may or may not pay off in improved
solution quality. The result will be an understanding of how transport flexibility affects
solution quality, and if using different solvers for the experiments lead to different results.

4.2.2 Single Factory vs. Multiple Locations

Another important design question is whether it is better to have a single facility where
production is concentrated, or whether (for example) two locations should be selected. We
consider five alternatives:
1. We use a single facility where all products are made. Transport is between lanes of

consecutive stages of production within the location.
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2. Consider two facilities that run sequentially, all production of the early stages is done in
one location, the intermediate products are then moved to another location, where the
later stages of production are performed.

3. We use two facilities which run in parallel in relatively close proximity, each handling
part of the workload. Intermediate products can be moved between facilities at a (high)
inter-building transport cost.

4. Take two facilities in different geographical regions, with no intermediate product move-
ment between them. For each order, the choice of facility where it is manufactured is left
to the scheduling algorithm.

5. We choose the layout as in the previous case, but 80% of the orders are preassigned to a
facility due to customer location, only 20% of the orders can be assigned freely.

4.3 Results
We now present some results on the solution quality obtained with the different models and
solvers.

4.3.1 Selected Solvers
We compare the results for the following solver alternatives, all running on a Windows 10
laptop with i7-6920HQ CPU running at 2.90GHz, and 64 GB of memory. All solvers are
using a single core, to ease comparison. CPOptimizer and Cplex allow to use multiple cores,
while Chuffed and SICStus do not provide this functionality out of the box. Both MiniZinc
and SICStus solutions are run as separate solver processes from the main Java application.

CP Optimizer by IBM, Version 20.1.0, task interval model, default search
SICStus Prolog Version 4.3.5, diffn model, with a custom search routine
MiniZinc Chuffed, Free Search Version 2.5.5, diffn model, free search
MiniZinc Chuffed, Priority Search Version 2.5.5, diffn model, priority search on start and

machine variable
MiniZinc Cplex, Free Search Version 20.1.0, diffn model, free search
Cplex Version 20.1.0, MILP model of Section 3.3

The Dispatch Rule and Local Search solvers of Section 3.4 were implemented in Java,
and are run inside the main application.

We use a timeout of 300 seconds for each solver and each instance. The best computed
lower bound from Section 3.5 is provided to each solver, and we also provide an initial upper
bound by running the Dispatch rule solver for 10 seconds for each instance.

Both the Cplex version of the MiniZinc model, and our own MILP model of Section 3.3
were not able to improve the given upper bound within the timeout, even for the smallest
instances. This seems due to a poor initial LP relaxation, probably due to the added machine
assignment choice. This contrasts with the results in [27], where MILP models were shown
to be competitive for smaller problem instances of the job-shop problem type, where the
machine for each task is known a priori.

Table 1 shows a comparison of the different solution approaches for a sample set of
instances, ranging from 20–400 jobs.

While for the smaller instances the difference in solution quality is quite small, the
difference increase as the number of jobs increases. We can see that the initial upper bound
obtained in 10 seconds is quite good, with only modest further improvement made by the
Dispatch and Local Search solvers. CPOptimizer with its default search finds better solutions,
and is the best overall on medium sized instances, but SICStus Prolog with a custom search
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Table 1 Average Cmax Value over 25 instances dependent on size (number of jobs), 8 stages,
Lanes Transport, Zipf Exponent 1.05 Job Type Distribution, 10 machines/stage, best solver marked
in green, – indicates no solution better than upper bound found, timeout 300s.

Size
Lower
Bound

Upper
Bound

CP
Opt

Chuffed
Free

Chuffed
Priority

Dispatch
Rule

Local
Search SICStus

20 61.88 63.56 62.72 63.48 63.04 63.28 63.20 62.72
25 62.84 65.96 64.24 – 64.76 65.20 64.84 64.16
30 64.12 70.24 66.68 – 68.44 69.16 68.24 66.84
40 65.32 77.36 72.56 – 75.40 76.08 75.28 73.28
50 67.24 84.52 78.40 – 82.24 83.16 82.24 79.40

100 94.72 120.12 115.16 – 116.96 118.28 118.92 113.04
200 153.08 185.16 180.48 – 181.32 182.80 184.76 176.72
300 214.96 249.12 248.96 – 248.76 246.96 248.88 240.96
400 275.36 311.60 311.28 – – 308.76 311.40 303.16

on average provides the best solution for larger instances. The 32 bit version of SICStus used
here runs out of memory when we increase the problem size even further. The Chuffed free
search only finds a better solutions than the given upper bound for the smallest problem size,
the priority search in Chuffed scales better, but also times out for larger problem instances.

4.3.2 Scenario 1
Table 2 shows the result for a scenario with 200 jobs solved with different solvers. For each
solver, we show the average makespan for a given parameter value, as well as the percentage
increase over the best result obtained for that solver. We see that increasing the reach of
the transport improves the quality of the schedule that can be reached for all solvers except
CPOptimizer. CPOptimizer is much less affected by the transport restriction, and finds the
best solutions for the strongly constrained cases, but is not as successful for the more relaxed
cases. The custom search for SICStus finds the best solutions in the more relaxed cases,
but only finds rather poor solutions in the more restricted scenarios. Comparing the best
results for all solvers, not allowing transport beyond the initial lanes (limit 0) incurs a cost
of 4.92%, while only allowing movement to neighboring lanes (limit 1) costs 2.66% over the
unrestricted case. Note that for some instances better solutions were found by imposing a
limit on the transport.

4.3.3 Scenario 2
Figure 2 illustrates the different layout alternatives studied in Scenario 2, with the relevant
transport times indicated for one machine in stage 3, which is linked to machines in stages 4
and 5, as stage 4 is skipped for certain products. In Scenario 2a, we consider a single facility,
where the transport time between machines is determined by their distance. In Scenario
2b, there are two facilities, transport between the facilities requires a longer inter-building
transport time, marked in red. In Scenario 2c, there are two facilities working in parallel,
where jobs can be moved between the buildings, at a higher cost. This transport is not
allowed in Scenario 2d and 2e, jobs can only move between machines in the same facility.

Table 3 shows the results for a run of 25 instances with 200 jobs each for the different
layout scenarios. We concentrate on the results with SICStus, which are better than those
for the other solvers, and which differentiate the different scenarios more clearly. Splitting
the production between two facilities sequentially (Scenario 2b) increases the makespan by
4.5% on average, as every job is delayed by the long transport between the facilities. On the
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Table 2 Results for Scenario 1 – Changing transportLimit parameter for different solvers, average
Makespan over 25 instances, 8 stages, 10 machines/stage, Zipf exponent 1.05 Job Type Distribution,
average lower bound is 153.08, best average solution marked in green.

Transport Limit Between Lanes No
Solver 0 1 2 3 4 5 Limit

SICStus 204.40 184.20 180.44 178.52 177.88 177.40 177.36
% over Best 15.51 4.09 1.97 0.88 0.52 0.25
CPOptimizer 186.08 182.96 180.60 180.72 180.80 180.84 180.88
% over Best 3.89 2.14 0.83 0.89 0.94 0.96
Dispatch Rule 200.84 186.72 184.08 183.72 183.32 182.92 182.92
% over Best 9.99 2.26 0.81 0.61 0.39 0.18
Local Search 199.32 188.56 186.20 185.48 185.12 184.68 184.80
% over Best 8.21 2.37 1.09 0.69 0.50 0.26 0.33

other hand, splitting the work between two facilities in parallel has a smaller impact. If we
are still able to transport intermediate products between locations (Scenario 2c), then the
makespan increases by less than 1%. This doubles to 2% if transport between facilities is no
longer allowed in Scenario 2d. Restricting the problem further, by considering the assignment
of jobs to facility as given for 80% of the orders, causes no further degradation in result
quality. Instead, for a small number of cases, the scheduler finds an improved solution, as the
domain of the machine assignment variables is cut in half, reducing the search complexity.
We are of course not able to explore any of these search spaces completely. But the results
for the SICStus solver are statistically significant, when tested with paired t-tests. With
the exception of scenarios 2d and 2e, which cannot be distinguished, all scenarios produce
significantly different results over the generated 25 instances.

The change of the schedule quality based on the layout scenario is only one aspect in
evaluating the alternatives, other parts use customer specific data, and are not reported here.

Table 3 Results for Scenario 2 – Average Makespan over 25 instances with 200 jobs, different
Solvers, 10 machines/stage, Zipf 1.05 Job Type Distribution, average lower bound is 159.80.

Scenario
Solver Size 2a 2b 2c 2d 2e

SICStus 200 176.84 184.84 178.28 180.52 180.48
% over Best 0.00 4.52 0.81 2.08
CPOptimizer 200 184.40 190.92 186.00 183.52 183.52
% over Best 1.23 4.81 2.11 0.75
Dispatch 200 182.76 190.44 184.28 184.60 184.64
% over Best 0.00 4.20 0.83 1.01
Local Search 200 184.68 192.24 185.76 186.08 185.96
% over Best 0.13 4.23 0.72 0.89
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(a) Scenario 2a. (b) Scenario 2b.

(c) Scenario 2c. (d) Scenario 2d/e.

1 2 3 4 5 6 7 Inter Building

Facility 1 Facility 2

Figure 2 Scenario 2 - Layout Alternatives and Sample Transport Times.

5 Future Work and Conclusion

In this paper we have presented a novel variant of a hybrid, flexible flowshop problem which
adds transportation time between stages. We have explored different models for the problem,
using CP and other technologies, and compared them on a number of generated problem
instances, based on parameters given by the industrial partner. While some solvers seem
promising on small instances, several of the solvers considered failed to handle the problem
sizes required for a realistic scenario. We then considered two factory design problems and
compared the solutions obtained for different problem settings. These results can be used
to evaluate the impact of the design choices on the operational efficiency of a plant layout.
While the results obtained are very encouraging, there is still a rather big gap between the
lower bound found and the best solutions. Future work will be focused on improving the
bounds, while also considering hybridisation techniques that might allow us to find better
solutions for large problem instances. Finally, we believe that the problem of designing
optimized facility layouts, where the positions of all the machines are computed to increase
efficiency, may be of interest for future research.
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Abstract
We introduce a curriculum learning framework for challenging tasks that require a combination of
pattern recognition and combinatorial reasoning, such as single-player visual combinatorial games.
Our work harnesses Deep Reasoning Nets (DRNets) [4], a framework that combines deep learning
with constraint reasoning for unsupervised pattern demixing. We propose CLR-DRNets (pronounced
Clear-DRNets), a curriculum-learning-with-restarts framework to boost the performance of DRNets.
CLR-DRNets incrementally increase the difficulty of the training instances and use restarts, a new
model selection method that selects multiple models from the same training trajectory to learn a
set of diverse heuristics and apply them at inference time. An enhanced reasoning module is also
proposed for CLR-DRNets to improve the ability of reasoning and generalize to unseen instances.
We consider Visual Sudoku, i.e., Sudoku with hand-written digits or letters, and Visual Mixed
Sudoku, a substantially more challenging task that requires the demixing and completion of two
overlapping Visual Sudokus. We propose an enhanced reasoning module for the DRNets framework
for encoding these visual games We show how CLR-DRNets considerably outperform DRNets and
other approaches on these visual combinatorial games.
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1 Introduction

Deep learning has surpassed human-level performance on many perception tasks, ranging
from object recognition to language translation. However, these successes heavily rely on
the availability of large datasets and corresponding labels. In contrast, humans often only
have access to a few examples, and therefore they resort to meticulous reasoning about prior
knowledge to compensate for the lack of labeled data and fill in the data information gaps.
Herein we consider unsupervised or weakly supervised single-player visual combinatorial
games. Humans tackle such challenging tasks by combining pattern recognition with reasoning
about prior knowledge (the games’ rules). Visual combinatorial games capture various real-
world applications, particularly scientific data interpretation tasks, which are in general
unsupervised or weakly supervised but for which rich prior knowledge is often available [4].
Consider the case of Visual Sudoku [22], a variant of the standard Sudoku with hand-written
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Figure 1 (a) Visual Sudoku: 0 denotes the empty cell, other digits are hints. Goal: replace
the empty cells with digits from 1 to 9 to obtain a valid Sudoku, i.e., the cells in each row (blue
rectangle), column (green rectangle), and any of the nine marked 3x3 boxes (red square) have to
have all-different digits. (b) The solution to (a). (c) Visual Mixed Sudoku: 0 and O denote empty
cells. The goal is to replace the empty cells (denoted by overlapping 0 and O characters) in the
mixed Sudoku on the right with digits from 1 to 9 and letters from A to I, and obtain two valid
demixed Sudokus. Note overlapping here is the max operator. (d) The solution to (c).

digits (see Fig. 1). We solve Visual Sudokus without any Sudoku labels by combining
our perception skills, for digit recognition, with logical reasoning about Sudoku rules, to
disambiguate noisy digits and fill in the missing digits. The missing digits simulate real-
world settings in which there are missing data. Visual Mixed Sudoku (Fig. 1) is even more
challenging than Visual Sudoku as it requires identifying the missing digits or letters of two
partially filled overlapping Sudokus. Visual Mixed Sudoku involves demixing the partially
filled Sudokus and inferring the missing digits. As we show in the experimental section,
a straightforward approach for Visual Sudoku that first uses a well-trained state-of-the-
art deep-learning digit classifier and passes the digit information as input to a powerful
combinatorial solver, such as a SAT solver, does not lead to satisfactory results. Even
though the classifier has high accuracy (99.4%), it still makes mistakes and therefore, when
there are many hints in the Visual Sudoku, it is likely that the classifier will make a few
mistakes, leading to noisy data that SAT solvers cannot handle. This approach performs
even more poorly for the Visual Mixed Sudoku, given the higher probability of making
digit/letter classification mistakes due to a combination of factors (additional challenging
demixing task, lower accuracy of letter classifiers, and the fact that we double the number of
hints corresponding to the two overlapping Sudokus). Therefore an approach integrating
digit/letter recognition with reasoning about the Sudoku rules in an end-to-end fashion is
required. Deep Reasoning Networks (DRNets) [4] is a framework proposed recently that
seamlessly integrates deep learning with constraint reasoning via an interpretable latent
space, to incorporate prior knowledge (such as Sudoku rules). DRNets were shown to be
effective for unsupervised demixing tasks, such as the demixing of two solved (i.e., all the
digits filled in) overlapping Visual Sudokus. Nevertheless, DRNets have limited reasoning
generalization capabilities, in particular for completion tasks. As we will show, Visual Sudoku
and Visual Mixed Sudoku are substantially challenging for DRNets since that in addition
to the demixing task, they involve the demanding completion task that requires inferring
missing digits. Our contributions: (1) We propose CLR-DRNets (pronounced clear
DRNets), a curriculum learning framework to boost the performance of DRNets. Our
approach is inspired by how humans learn to solve complex problems, starting with easy
instances and gradually increasing the instances’ difficulty. Another intuition behind our
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approach is that the perception task is relatively easier than the reasoning task in many
visual combinatorial games. Therefore, it is crucial to carefully select a sequence of training
examples to balance the reasoning and perception tasks to prevent the model from focusing
only on the perception task. (2) We propose an enhanced reasoning module to improve
the power of reasoning and generalization to unseen data. (3) We propose restarts, a new
model selection strategy for improving the performance at test time. We note that it is
usually hard to solve a complex visual combinatorial problem in a single inference step of a
neural network. Since CLR-DRNets are trained without label supervision, only with prior
knowledge supervision (e.g., domain rules), we can still improve and customize the learned
model with respect to the specific test data by further optimizing the loss function. We also
find that the reasoning module of CLR-DRNets can learn different heuristics during training.
Thus, saving several different models from the training phase and applying each of them
during test time sequentially is really helpful. (4) We propose encodings for (4.1) Visual
Sudoku and (4.2) Visual Mixed Sudoku using the CLR-DRNets framework. and (5)
show how CLR-DRNets substantially outperform DRNets and other approaches
on these visual combinatorial games.

2 Related Work

Combining perception and reasoning. CLR-DRNets leverage Deep Reasoning Networks
(DRNets) [4]. DRNets were shown to be effective for unsupervised demixing tasks. Here we
use the DRNets framework for unsupervised visual combinatorial games, which
are more challenging reasoning tasks than demixing, and therefore we develop a
strengthened reasoning module for DRNets. Furthermore, CLR-DRNets further
boost the power of DRNets with its curriculum-learning-with-restarts approach
and generalize to unseen instances, in contrast to DRNets, designed to solve
instances. For Visual Sudoku, other approaches focus on learning the Sudoku rules from the
labeled data [1, 24, 16, 9]. For example, SATNET [22] introduces a differentiable maximum
satisfiability (MAXSAT) solver that can be incorporated with deep learning models to
capture the reasoning rules efficiently. [3] learns problem related cost functions for Constraint
Networks, which are solved with a specialized constraint solver. [18] integrates the perception
and reasoning through exposing the predicted probability to the constraint solver. However,
except for DRNets and [18], previous approaches require labeled training Sudoku data.

Curriculum learning (CL) for solving hard tasks. CL is widely used in deep reinforcement
learning [19, 7, 21]. For example, Feng et al. [7] let the model firstly learn from the easy
sub-task created from the hard original task. Then gradually increase the hardness of the
sub-task until the agent can solve the original task. Our CL method shares a similar idea but
we do not use it in a RL setting and we do not require that the easy instances are generated
by the hard instances. Some works also employ CL for deep learning [23, 12]. For instance,
Hacohen et al. [12] introduce a CL framework for image classification.

Restarts in deep learning. Restarts are widely used in the CP/SAT community (e.g., [10, 2])
and also in stochastic optimization to solve non-convex problems (e.g., [6, 8]). In the deep
learning training phase, learning rate restart [11] is proven to increase the performance.
DRNets use simple restarts, basically to randomly group different instances into one mini-
batch to compute various gradients, CLR-DRNets in addition leverage different models
acquired from one training trajectory and apply them sequentially to test (unseen) data.
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( d )

Figure 2 (a) The digit visual Sudoku instance. (b) The perception model (encoder) of CLR-
DRNets. The top blue rectangle is the latent space capturing the shape information of all possible
digits per cell. The bottom gray rectangle is the initial estimation of input digit visual Sudoku
instance only based on perception. Here we employ the heat map to represent the predicted
confidence of each cell. (c) The enhanced reasoning module of CLR-DRNets (not in the original
DRNets) consists of a modified LSTM model. It takes the initial estimation as the input, constrained
by the relaxed Sudoku rules’ loss function, computing the completion results. (d) The decoder part
leverages a pre-trained cGAN to generate all the possible digit images w.r.t the shape embeddings
of (b) per cell. We can reconstruct each cell guided by the completion results of (c). (The figure
uses 4 × 4 Sudokus for easier visualization. All our experiments are with 9 × 9 Sudokus.)

3 CLR-DRNets

We start by providing a high-level description of DRNets.[4].

DRNets. DRNets perform end-to-end unsupervised deep reasoning using a perception
module (encoder) to produce the initial estimation of the visual inputs, which are constrained
to adhere to prior knowledge via a reasoning module. The reasoning module encodes the
constraint loss function using the initial estimation. A generative decoder uses the initial
estimation of the visual inputs to generate the reconstruction of the input. DRNets solve the
problem by jointly optimizing the reconstruction loss, encouraging the reconstruction to be
similar to the input, and the constraint loss function, to enforce the domain rules.

CLR-DRNets borrow the general framework from DRNets and further strengthen it
with an enhanced reasoning module. We propose a curriculum learning framework to tackle
the difficult visual combinatorial completion tasks, which is beyond the capability of the
original DRNets. Moreover, restarts, a new model selection strategy is proposed to boost the
performance at test time. The enhanced reasoning module in CLR-DRNets is much more
powerful and allows generalization to unseen data, in contrast to DRNets. Adapting from
the DRNets [4] framework, CLR-DRNets formulate the entire process as a data-driven
optimization problem:

min
θp,θr

1
N

N∑
i=1

λpψp(fθp
(xi))︸ ︷︷ ︸

regularize the
initial estimation

+ ψr(fθr
(fθp

(xi)))︸ ︷︷ ︸
regularize the

reasoning output
new in CLR-DRNets

+ λlL(cGAN(fθr
(fθp

(xi))), xi)︸ ︷︷ ︸
regularize both the

initial estimation and the reasoning output
modified from DRNets

(1)

where fθr
and fθp

are the reasoning module and the perception module respectively, cGAN
is a pre-trained conditional generative adversarial network (cGAN)[17], xi is the i-th data
point of the input, ψp, ψr are the penalty functions of continuously relaxed constraints
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related to the perception module and the reasoning module, λp, λl are weight scalars and
L is any distance metric. In equation 1, the term labeled by “regularize both the initial
estimation and the reasoning output” is a modified version of DRNets’ original loss
function and the term labeled by “regularize the reasoning output” is completely new in
CLR-DRNets. These modified terms are associated with CLR-DRNets’ enhanced reasoning
module. Below we describe CLR-DRNets highlighting the main differences with respect to
the general DRNets framework.

CLR-DRNets. We illustrate the CLR-DRNets framework with our proposed models (see
Fig. 2) for the visual Sudoku games (Fig. 1 (a)). Similarly to DRNets, CLR-DRNets employ
two ResNets for the perception module to predict the distribution of all digits in each cell
along with the shape embedding (initial estimation). The constraints for the initial estimation
(ψp) are that the predicted digits probability distribution of each cell should converge to only
one digit.

CLR-DRNets’ enhanced reasoning module is a modified long short term memory (LSTM)
model [14] that can compute all the possible digits’ distribution for each cell, capturing the
Sudoku structure, and with sufficient power to reason about missing digits (more details
below). The constraints for the reasoning module (ψr) are the relaxed Sudoku constraint
losses, which can regularize the reasoning outputs to satisfy the Sudoku rule (more details
below).

The decoder is similar to DRNets’ and consists of a conditional Generative Adversarial
Networks (cGAN) [17] pre-trained on the prototypes, which are images of all possible single
digits. The decoder generates all possible digit images w.r.t the shape embeddings of the
initial estimation. Then per each cell, all possible digit images are remixed based on the
distribution of digits from the reasoning and the perception module. Cells that are predicted
as hints are encouraged to have a reconstructed image similar to the input image, which can
further regularize the initial estimation and the reasoning outputs.

Figure 3 Modified LSTM model. The Sudoku embedding replaces each digit of a Sudoku with
a learnable embedding. The constraint graph is a 81 × 81 matrix capturing Sudoku constraints
between every pair of cells (i.e., there is a constraint between any pair of cells in the same row, same
column, and same block). h31 goes through a fully connected layer to get the final reasoning results.

CLR-DRNets’ enhanced reasoning module. DRNets’ reasoning ability entirely relies on the
continuous relaxation of the combinatorial constraints, i.e., it converts the discrete constraints
into a differentiable loss function and solves the problem by optimizing it. However, this
reasoning method is stateless, i.e., it is difficult to generalize to unseen data. CLR-DRNets’
enhanced reasoning module employs a constraint graph and a modified LSTM (see Fig. 3)
to learn from the training examples and generalize to unseen data. The constraint graph
is a square matrix where each entry represents the constraints between these two elements.

CP 2021
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Algorithm 1 Curriculum Learning framework for solving data-driven optimization
problems.

Input: Training problem instances D, Target problem instances T , CLR-DRNets
model M , Difficulty Gap G, Hard set of constraints ψh.

Select or generate a set of instances of proper difficulty level Dtrain based on ψh;
while Dtrain is not as hard as T do

Train M using Dtrainvia optimizing equation 1 ;
do

Select/generate a harder set of instances D†
train based on Dtrain, ψ

h;
Dtrain ← D†

train;
while D†

train meets G;
end

For example, the constraint graph for a 4 × 4 Sudoku is a 16 × 16 matrix. If entry (x, y)
is one, it means the cell x and cell y are in the same row, column, or block otherwise zero.
Then the input of each LSTM block is the concatenation of the Sudoku embedding and the
multiplication of the hidden state and the constraints graph, where the Sudoku embedding
replaces each digit of a Sudoku with a learnable embedding.

Now we explain how the unsupervised differentiable Sudoku loss function is derived, using
DRNets’ continuous relaxation. The reasoning module computes the digits’ distribution
for each Sudoku’s cells and we denote the distribution of cell (i, j) as Pi,j (row i, column
j). The loss for encoding the Sudoku’s row constraint is: Lr = −

∑9
i=1 H( 1

9
∑9

j=1 Pi,j),
where H is the entropy function. Similarly, we can define the column and block constraint
loss Lc and Lb respectively. Since each cell contains one digit, the semantic constraint loss
for cells is: Lcell =

∑9
i=1

∑9
j=1 H(Pi,j). These loss functions minimize the entropy of each

cell’s digits distribution while maximizing the entropy of the average distribution of digits
in each row, column, and box, forcing the distribution of each cell to converge to one digit
while each row, column and box has different digits. Formally, the unsupervised Sudoku
constraint loss is defined as: LSudoku = λ1(Lc + Lr + Lb) + λ2Lcell, where λ1 and λ2
are weight scalars. Moreover, we show how the reconstruction loss for cell (i, j) is derived.
Denote the embeddings of cell (i, j) as zi,j [t], where t can be any possible object, e.g., t can
be digit 1 to 9 in visual Sudoku games. The predicted digit distribution from the perception
module for the cell (i, j) is P ′(i, j). Note Pi,j is defined above as the digits’ distribution
predicted by the reasoning module. These two distributions are mixed to form the Pmix(i, j)
for reconstruction: Pmix(i, j)[t] = (1− P ′(i, j)[0]) ∗ P ′(i, j)[t] + P ′(i, j)[0] ∗ P (i, j)[t], where
digit 0 represents the missing digits of the Sudoku.The reconstructed input for cell (i, j)
is: Xrecon(i, j) =

∑9
t=1 Pmix(i, j)[t] ∗ cGAN(zi,j [t]). The reconstruction loss is then defined

as Lrecon =
∑9

i=1
∑9

j=1 L(X(i, j), Xrecon(i, j)), where X is the input image and L is any
distance metric. This mixed distribution contributes to the reasoning ability of CLR-DRNets
in which the wrong perception estimation can be corrected by the reasoning outputs while
the initial estimation of images also help the reasoning module make decisions.

Note that we relax the hard discrete constraints into continuous constraint loss functions.
The different difficulty of the relaxed constraint loss functions ψr and ψp is a key challenge
for training, which could cause the optimization to focus on the easy part and converge
to some local minimum quickly. Thus, we proposed the curriculum learning to tackle the
difficulty imbalance among different losses.
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Curriculum learning for CLR-DRNets. We introduce a curriculum learning framework (see
Alg. 1) to manage the difficulty imbalance of the perception and reasoning tasks in the
data-driven optimization problem. Based on the prior knowledge and problem structure, we
can identify a set of constraints ψh that are quite hard to optimize. We can generate/find
some problems that are easier enough in terms of the hard constraints set ψh. For example,
in Visual Sudoku, completing the Sudoku is much harder than classifying digit images, so we
set ψh as the Sudoku rules. Visual Sudoku instances with many hints are easier than those
with fewer hints. A model that perfectly solves the easier instances can be easily trained.
Based on the problem structure, we define a difficulty gap G to guide the generation/selection
of instances that are slightly harder. For example, in Visual Sudoku, the difficulty gap G is
set to be 5 hints: we remove 5 hints to gradually increase the instance difficulty. We then use
these harder instances to continue training our model. This process can be repeated several
times to finally solve the instances of desired difficulty level. More details in the appendix.

CLR-DRNets’ training strategy. The success of CLR-DRNets relies on the seamless co-
operation of the perception module, the reasoning module, and the generative decoder. We
propose two training strategies for achieving this goal, different from DRNets’, since DRNets
do not have parameters for the reasoning module. Both strategies employ a pre-trained
cGAN and a pre-trained classifier. The first strategy is joint training: we train the entire
CLR-DRNets at the same time, i.e., optimizing the loss function (see equation 1) and the
gradients affect both the perception module and the reasoning module. This joint strategy
can handle the case where only noisy, e.g., handwritten, input data are available. However, for
some challenging reasoning problems, the noisy input may harm the ability of the reasoning
module. Thus, we propose a second strategy, separate training: we separately train the
reasoning module with non-noisy input (i.e., input values are known), i.e., optimizing only
the second term of the equation 1. This separate training strategy can tackle more intricate
problems, but it requires the non-noisy input training data (no labels required though).

It is challenging to generalize a single data-driven optimization model to unseen problem
instances, capturing all the logical relations across instances, given the combinatorial search
space. So we introduce restarts to remedy this issue.

Restarts, a new model selection strategy. The reasoning effort required for solving visual
combinatorial games can be huge. A single inference step of the deep learning model is
unlikely to be able to solve all the instances with different levels of difficulty. We derive
our objective function without label supervision, where the only supervision is based
on the prior knowledge, so we can still optimize our CLR-DRNets model for a few steps in
the test phase to further improve the model and customize it with respect to the test data.
Also, we observe that the accuracy metric is increasing smoothly during the training process,
but the set of training instances that can be solved varies quite a bit. Thus, we postulate
that our model is doing local search to solve the problem and the model parameters can
be loosely interpreted as heuristic of the search algorithm. Inspired by the restart scheme
broadly used by the combinatorial optimization community [10, 2], we propose a new model
selection method based on restarts (see Alg. 2). Since we have observed that we can get
very different heuristics during the training process, so the restart scheme starts by collecting
several models with top validation performance to form a model pool M . Then we start from
one model and for each unsolved test case the loss function is optimized until the instance is
solved or for a maximum of restart gap g steps, switching to the next model when all the
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Algorithm 2 Restart scheme for CLR−DRNets.

Input: Test instances T , CLR-DRNets model pools M , Restart Gap g, metric ϕ to
evaluate whether the instance is solved

idx← 0;
while T = ∅ or idx < len(M) do

m←M [idx];
for i← 1 to g do

R← m(T ); R: the solution of T .
S ← ϕ(R); S: correctly solved instances of T .
T ← T\S
update parameter of m w.r.t equation 1;

end
idx← idx+ 1;

end

instances are processed. The scheme is supposed to fine-tune the model for the underlying
test data, so the restart gap g is typically small. Thus the restart procedure takes much
fewer time compared with the training. Note that this scheme does not require labels.

4 Experiments

4.1 Visual-Sudoku
As an example of Visual Sudoku, using digits, see Fig. 1(a). We also considered Visual
Sudoku, using letters. The CLR-DRNets model for the Visual Sudoku is illustrated in
Section 3 and Fig. 2. We prepare two training sets for the digit Visual Sudoku: one contains
only noisy training data (denoted as noisy dataset), i.e., the digits of the Sudoku are images,
another consists of non-noisy training data (denoted as non-noisy dataset), i.e., the value of
digit/letter images are known. Note the training data for CLR-DRNets do not include the
solution of the Sudoku. The noisy dataset consists of seven difficulty levels: 51, 46, 42, 36,
31, 25 and 20 hints. We generate 10, 000 Visual-Sudoku instances for each difficulty level.
For the non-noisy dataset, we generate 100, 000 standard Sudoku instances with a uniform
distribution of 18 hints to 25 hints. There is no difficulty imbalance issue for non-noisy
dataset, so we do not separate the dataset based on its difficulty.

We explain our training and test settings here. For the restarts scheme, the size of the
model pool M is 100, i.e. we select and save the top 100 models in terms of the validation
performance. And the restart gap g is set to 10 steps, i.e., we move to the next model after
optimizing one model 10 steps. The metric ϕ is whether the input Sudoku is solved. Note
that we do not assign partial credits for the Sudoku solution. The loss we optimize in the
training phase and the test phase is LSudoku + λ3Lrecon. The distance metric we used for
Lrecon is L1 loss. We use Adam as the optimizer, and the learning rate is 3e− 4 (including
for restarts (test)). The weight scalars λ1 = 1.0, λ2 = 0.01 (for training and testing) and
λ3 = 0.001.

We compare our model with DRNets [4], SATNET [22], a higher-order constraint optim-
ization based approach [18] (referred to as HOCOP/HOCOP (C) where C refers to do the
model calibration on the validation set) and a Cost Function Network based approach [3]
(referred to as CFN). The learning settings of these methods are different. SATNET and
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CFN both require the solutions (labels) of the data. HOCOP and CLR-DRNets do not
require the solutions, however, HOCOP leverages a high-efficient Sudoku solver and this kind
of solver may not exist for other problems. CLR-DRNets use the fewest supervision
(no solutions (labels)) to learn to solve the problem and generalize to unseen
data. We use two test datasets. The first dataset (denoted as Davg-36hints) is SATNET’s
dataset (CNF and HOCOP also use this dataset) consisting of Sudokus with a mean of
36 hints, and the second dataset (denoted as D17hints) is formed of 1000 Sudoku with 17
hints. The CLR-DRNets model is trained on the noisy dataset (joint training) to solve the
Davg-36hints and on the non-noisy dataset (separate training) to solve the D17hints.

Table 1 The test set Sudoku accuracy on the Digit Visual Sudoku task for different approaches.

Dataset CLR-DRNets DRNets SATNET CFN HOCOP HOCOP (C) ResNet+SAT
Davg-36hints 0.996 0.81 0.632 0.763 0.929 0.996 0.821
D17hints 0.88 0 0 NA NA NA 0.918

CLR-DRNets outperform SATNET, DRNets, HOCOP and CFN on both datasets (see
Table. 1) and CLR-DRNets do not require the labels. ResNet+SAT denotes a sequential
coupling of ResNet with a SAT Solver, i.e., passing the digit classification of the input hand-
written Sudoku, using ResNet, as input to a modern SAT-Solver to get the final results. For
the dataset with an average of 36 hints, CLR-DRNets significantly surpass the performance
of ResNet+SAT since CLR-DRNets can correct some perception mistakes guided by the
Sudoku rules. Note though that CLR-DRNets do not outperform ResNet+SAT on 17 hint
instances, given the high digit accuracy of ResNet for few number of hints, which results
in high probability of perfect recognition of the input Sudoku. Nevertheless, often in many
tasks we may not get an almost-perfect perception model, which is the case of e.g., the letter
Visual Sudoku (the classifier accuracy is only 97.5%). In fact, when tested on the letter
Visual Sudokus (trained using separate training on the non-noisy dataset), CLR-DRNets
consistently outperform ResNet+SAT and DRNets for all the instances (see Fig. 4, left
panel).

Figure 4 Accuracy of CLR DNRNets, DRNets and ResNet+SAT on Letter Visual Sudoku (left)
and Visual Mixed Sudoku (right).
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Figure 5 (a) A visual mixed Sudoku instance. We use a max operator to mix two visual Sudokus.
(b) The perception module (encoder) of CLR-DRNets. The top blue rectangle is the latent space
capturing the shape information of all possible digits and letters per cell. The bottom gray rectangle
is the initial estimation of the input visual mixed Sudoku instance, only based on perception. Here
we employ a heat map to represent the predicted confidence of each cell. (c) The enhanced reasoning
module consists of a modified LSTM model. It takes the initial estimation as the input, constrained
by the relaxed Sudoku rules loss function, computing the completion results. (d) The decoder
leverages two pre-trained cGANs to generate all the possible digit and letter images w.r.t the shape
embeddings of (b) per cell. Then we can reconstruct each cell guided by the completion results of
(c). (We use 4 × 4 Sudokus for easier visualization. All our experiments are with 9 × 9 Sudokus.)

4.2 Visual Mixed Sudoku

The Visual Mixed Sudoku task is computationally more challenging than Visual Sudoku,
requiring a tighter combination between perception and reasoning. We mix (using max
operator) two Visual Sudokus (see Fig. 1(c)) to form a Visual Mixed Sudoku instance,
offsetting the digits and letters to the top left and bottom right direction by two pixels. One
Visual Sudoku consists of digits 0 to 9 (0 denotes the empty cell). The other one is formed of
letters A to J (J denotes the empty cell). All the digit images are sampled from MNIST [15]
and all the letter images are sampled from EMNIST [5]. The sizes of the training set, with
different difficulty, and test set are all 10, 000. We employ the joint training strategy to train
the CLR-DRNets model since the pre-trained classifier can only achieve an accuracy of around
90% (due to the complexity of classifying mixed digits and images). The CLR-DRNets model
for Visual Mixed Sudoku is similar to that for Visual Sudoku and its framework is illustrated
in the Fig. 5. The perception module (see Fig. 2(b)) consists of two ResNet-18 [13] models.
One model is used to generate the shape embeddings for all possible letters and digits per
cell. The other model is employed to generate the initial probability distribution of each cell.
The reasoning module (see Fig. 2(c)) consists of a modified LSTM, the same as for Visual
Sudoku. The initial probability distributions are fed into the modified LSTM to compute
the final probability distribution. The decoder (see Fig. 2(d)) consists of two cGANs (Gd for
digits and Gl for letters). The shape embeddings are fed into two cGANs to generate all the
possible letter and digit images of each cell. We formally define how we reconstruct the input
images. For each cell, denote the shape embedding as zd,0 · · · zd,9 for digits, zl,A · · · zl,J for
letters and denote the final probability distribution as Pd,0 · · ·Pd,9 for digits, Pl,A · · ·Pl,J for
letters. We reconstruct the input image as: max (

∑9
i=0 Pd,iGd(zd,i),

∑J
i=A Pl,iGl(zl,i)). We

use L1 loss as our reconstruction loss (Lrecon).
We explain our training and test settings here. For training, we separately train two

cGANs with part of the MNIST/EMNIST dataset, i.e. the digit and letter images used to
pre-train the cGAN have no intersection with the visual Sudokus’ images. The other parts
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are jointly trained through optimizing the loss function L = LSudoku + λ3Lrecon. To tackle
the different difficulty of the perception and reasoning part, we start with easy Visual Mixed
Sudoku instances, i.e., with 75 (out of 81) hints. And the following curriculum tasks are
designed as 66, 61, 56, 51, 46, 42, 36, 31 and 25 hints. For each difficulty level, we generate
10, 000 Mixed-Visual-Sudoku instances. From 25 hints to 24 hints, we observe a phase
transition property of the combinatorial search problem so we can only train our model using
instances with 25 hints. But surprisingly, the model can still generalize to harder cases (less
than 25 hints). In our experiments, we always mix two Visual Sudokus with the same number
of hints. For the restart scheme, the size of the model pool M is 20. The restart gap is 100.
The metric ϕ is to check the validity of the Sudokus’ solution. The loss function we optimized
for the restart scheme (test) is the same as for training, i.e. LSudoku +λ3Lrecon. Now we have
4 weight scalars for the Sudoku loss equation, denoted as λ1,d, λ2,d, λ1,l and λ2,l, where d
and l refer to digit and letter. We set them as λ1,d = λ1,l = 1.0, λ2,d = 0.01, λ2,l = 0.02. We
up-weight the λ2 for letters Sudoku in that recognizing letters is usually harder than digits.
λ3 is set as 0.005. These parameters are the same for training and testing. The optimizer we
selected is Adam and the learning rate is 3e− 4 in the training and 1e− 4 in the restarting
(test) phase.

CLR-DRNets’ Sudoku accuracy is significantly higher than DRNets’ and also better than
ResNet+SAT (see Fig. 4). De-mixing is very challenging for standard deep learning methods.
DRNets can only solve some easy instances (e.g., 66 hints). When the number of hints
decreases, the difficulty of the reasoning task increases comparatively to the perception task,
making it more challenging (or infeasible) for DRNets to learn the task.

4.3 Ablation Studies
The results above show that CLR-DRNets significantly outperform the baselines, due to (1)
the curriculum learning (see Alg. 1) and (2) the restart scheme (see Alg. 2). We conducted
ablation studies to analyze the contribution of the two factors and the results are showed in
the table 2. In both tasks, curriculum learning contributes the most to the improvement.
Restarts also play an important role, especially for challenging instances (17 hint Visual
Sudoku and 20 hints Visual Mixed Sudoku). We postulate that the 25 hint case is not very
hard, therefore a single model suffices.

Table 2 The test set Sudoku accuracy performance on different tasks, we report the proportion
to the CLR-DRNets’ results. r refers to the restart scheme and c refers to the curriculum learning.

Task CLR-DRNets w/o c w/o r w/o r+c
Visual Sudoku (17-hints) 1.0 0.237 0.450 0.007
Visual Mixed Sudoku (20-hints) 1.0 0.005 0.955 0.004
Visual Mixed Sudoku (25-hints) 1.0 0.009 0.472 0

4.4 Standard 17-hints Sudoku
We also evaluate CLR-DRNets on learning to solve standard Sudokus (i.e., hint values
known), supervised only by the Sudoku rules (no labeled data). We unsupervised train
it on standard Sudoku task by simply optimizing the loss function, LSudoku. The model
architecture is exactly the same as the reasoning module of Visual Sudoku, i.e. a modified
LSTM. We train our model on 100, 000 Sudoku with a uniform distribution of 18 to 25 hints.
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And test on 1, 000 Sudoku with 17 hints. We compared CLR-DRNets against RRN [20],
which is a totally supervised method also leveraging the Sudoku rules to design the model
architecture.

Table 3 Sudoku accuracy for solving 17-hint standard Sudokus.

CLR-DRNets RRN

Sudoku Accuracy 0.912 0.64

From Table 3, we can see that CLR-DRNets outperform RRN largely. Here RRN means
that we train RRN model on our training set (18–25 hints Sudoku). The reason RRN does
not perform as well as their paper is that we never let RRN see the 17 hints Sudoku in the
training phase, so RRN cannot generalize as CLR-DRNets does to the 17-hints case. The
optimizer is Adam with learning rate 1e− 3. We use a learnable embedding for each digit 0
to 9 with dimension 10. The model pool M for restart scheme is 100 and the restart gap g is
10. And the learning rate during the restart scheme is also 1e− 3.

5 Conclusions

We introduce CLR-DRNets, a curriculum-learning-with-restarts framework for DRNets, along
with an enhanced reasoning module. We demonstrate the CLR-DRNets’ effectiveness on
challenging single-player visual combinatorial games, achieving state-of-the-art performance
with weak supervision from prior knowledge (domain rules).
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A Appendix

DRNets’ continuous relaxation for discrete constraints
Here we introduce more formally how DRNets apply continuous relaxation to the discrete
constraints. The basic idea is to employ entropy to model the discrete constraints. For
example, in Sudoku, we require that each row, col, and block, is filled with different digits
(denoted as AllDiff constraints). Then for each cell, we use a probability distribution over all
the possible digits to represent the estimation of one cell. We add all the cells’ probability
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within one row, col or block, consider the best case, the summation vector should be an all-one
vector, which also means it has the highest entropy. Thus, to encourage the model’s output
to satisfy the AllDiff constraints, we maximize the entropy defined above. More formally,
use ei, i = 1 . . . n to represent the discrete variable and pi, i = 1 . . . n for the corresponding
probability distribution. Then to represent ei ̸= ej ∀i ≠ j, we can maximize the function,
H(

∑n
i=1 pi),

where H refers to the entropy. We also want to force the probability distribution to
converge to one point since each distribution actually refers to one single point (denoted
as Cardinality constraint). We can minimize the relaxed loss function to achieve this, i.e.,∑n

i=1 H(pi)
The last discrete constraint we usually use is to select k items from n candidates. This is a

little bit tricky, but we can use a hinge style loss to do that. If we want to select exactly k items
from ei, i = 1 . . . n, we can optimize this relaxed loss function, max(H(

∑n
i=1 pi)− log(k), 0).

The idea here is simple, if the entropy probability distribution summation is log(k), supported
by the Cardinality constraint, we actually selected k items from n candidates.

Once we have these powerful relaxations, we can convert a constrained optimization
problem to an unconstrained optimization problem. Consider we want to optimize the
objective function L under the constraint ϕ. Then we can firstly continuously relax the
constraint ϕ to ψ, and optimize the loss function Lrelax (Lrelax = L + λψ ), which is
approximately equal to solving the original constraint optimization problem.
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Proving that the state of a controlled nonlinear system always stays inside a time moving bubble
(or capture tube) amounts to proving the inconsistency of a set of nonlinear inequalities in the
time-state space. In practice however, even with a good intuition, it is difficult for a human to find
such a capture tube except for simple examples. In 2014, Jaulin et al. established properties that
support a new interval approach for validating a quasi capture tube, i.e. a candidate tube (with
a simple form) from which the mobile system can escape, but into which it enters again before a
given time. A quasi capture tube is easy to find in practice for a controlled system. Merging the
trajectories originated from the candidate tube yields the smallest capture tube enclosing it.

This paper proposes an interval constraint programming solver dedicated to the quasi capture
tube validation. The problem is viewed as a differential CSP where the functional variables correspond
to the state variables of the system and the constraints define system trajectories that escape from
the candidate tube “for ever”. The solver performs a branch and contract procedure for computing
the trajectories that escape from the candidate tube. If no solution is found, the quasi capture
tube is validated and, as a side effect, a corrected smallest capture tube enclosing the quasi one is
computed. The approach is experimentally validated on several examples having 2 to 5 degrees of
freedom.

2012 ACM Subject Classification Applied computing → Operations research; Mathematics of
computing → Ordinary differential equations; Mathematics of computing → Differential algebraic
equations; Mathematics of computing → Interval arithmetic; Theory of computation → Constraint
and logic programming

Keywords and phrases Constraint satisfaction problem, Interval analysis, Dynamical systems,
Contractor

Digital Object Identifier 10.4230/LIPIcs.CP.2021.18

Funding This work was supported by the French Agence Nationale de la Recherche (ANR) [grant
number ANR-16-CE33-0024].

Acknowledgements We also thank our colleagues, Alexandre Goldsztejn and Alessandro Colotti, for
the exchange of ideas and their kind help on the experiments.

© Abderahmane Bedouhene, Bertrand Neveu, Gilles Trombettoni, Luc Jaulin, and Stéphane Le Menec;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 18; pp. 18:1–18:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abderahmane.bedouhene@enpc.fr
http://imagine.enpc.fr/~bedouhea/
mailto:bertrand.neveu@enpc.fr
mailto:gilles.trombettoni@lirmm.fr
mailto:luc.jaulin@ensta-bretagne.fr
mailto:stephane.le-menec@mbda-systems.com
https://doi.org/10.4230/LIPIcs.CP.2021.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 Interval CP for Quasi Capture Tube Validation

1 Introduction

Many mobile robots such as wheeled robots, boats, or planes are described by differential
equations. For this type of robots, it is difficult to prove some properties such as the avoidance
of collisions with some moving obstacles. This is even more difficult when the initial condition
is not known exactly or when some uncertainties occur.

A Graal would be to compute a capture tube (or equivalently a positive invariant tube
[24]), i.e. a time moving “bubble” (a set-valued function associating to each time t a subset of
Rn) from which a feasible trajectory cannot escape. The definitions and properties of capture
tubes have been studied by several authors [2, 4], but the algorithms for their computation are
almost absent except in the linear case [33, 25, 11]. In the nonlinear case, approaches based
on interval analysis [19, 31] or Lipschitz assumptions [32] have also been investigated, but the
performances are poor if no propagation techniques are used. When time is discrete, efficient
algorithms are given in [35], but they cannot be extended to robotics systems described by
differential equations.

Instead, a satisfactory alternative is to present a candidate tube to a tool that could
validate whether it is a capture tube or not. This validation problem can generally be
transformed into proving the inconsistency of a constraint system by combining guaranteed
integration and Lyapunov theory [26, 36]. Unfortunately, when the system dynamics is
complex, even with a good intuition, it is difficult for a human to present a significant capture
tube because of its irregular form.

Jaulin et al. proposed in [13] an original approach based on interval analysis. The idea is
to validate a quasi capture tube, also called periodic invariant set [17], i.e. a candidate tube
(with a simple form) from which the mobile system can escape, but into which it can enter
again before a given time. Merging these trajectories with the candidate tube computes the
smallest capture tube enclosing the quasi capture one. Jaulin et al. established properties
that support this new approach, but the algorithms were not described and were validated
only on a simple pendulum example with two degrees of freedom. Their approach worked in
two steps, where the first one focused on the crossout constraints (see Section 3) while the
second step managed the other constraints.

The contribution presented in this paper is built upon those properties. Compared to
Jaulin et al. approach, the solver follows a pure CSP approach expressing the quasi capture
tube validation problem, where the domains are tubes defined recently in the Tubex-Codac
library [28, 30]. After the background in Section 2, we formally define in Section 3 the quasi
capture tube validation problem and its expression as a CSP. We then propose a Branch and
Contract solver dedicated to this problem in Section 4 and show in Section 5 how it scales
up on several problems from 2 to 5 state dimensions.

2 Background

We first provide some background about intervals, inclusion functions and contraction. We
then briefly present how intervals can be used to handle dynamical systems.

2.1 Intervals
Contrary to numerical analysis methods that work with single values, interval methods can
manage sets of values enclosed in intervals. Interval methods are known to be particularly
useful for handling nonlinear constraint systems.
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▶ Definition 1 (Interval, box, box size/diameter). An interval [xi] = [xi, xi] defines the set
of reals xi such that xi ≤ xi ≤ xi. IR denotes the set of all intervals. A box [x] denotes a
Cartesian product of intervals [x] = [x1]× ... × [xn]. The size, width or diameter of a box
[x] is given by Diam([x]) ≡ maxi(Diam([xi])) where Diam([xi]) ≡ xi − xi. The midpoint
mid([xi]) of [xi] is xi+xi

2 .

Interval arithmetic [22] has been defined to extend to IR the usual mathematical operators
over R. For instance, the interval sum is defined by [x1] + [x2] = [x1 + x2, x1 + x2]. When a
function f is a composition of elementary functions, an inclusion function [f ] of f must be
defined to ensure a conservative image computation. There are several inclusion functions.
The natural inclusion function of a real function f corresponds to the mapping of f to intervals
using interval arithmetic. For instance, the natural inclusion function [f ]N of f(x) = x(x+ 1)
in the domain [x] = [0, 1] computes [f ]N ([0, 1]) = [0, 1] · [1, 2] = [0, 2]. Another inclusion
function is based on an interval Taylor form [12].

Interval arithmetics can be used for solving the numerical CSP (NCSP), i.e. finding
solutions to an NCSP network P = (x, [x], c), where x is an n-set of variables taking their
real values in the domain [x] and c is an m-set of numerical constraints using operators
like +, −, ×, ab, exp, log, sin, etc. NCSP solvers, like Gloptlab [10] or Ibex [6] to name
a few, follow a Branch and Contract method to solve an NCSP. The branching operation
subdivides the search space by recursively bisecting variable intervals into two subintervals
and exploring both sub-boxes independently. The combinatorial nature of this tree search is
not always observed thanks to the contraction (filtering) operations applied at each node
of the search tree. Informally, a contraction applied to an NCSP instance can reduce the
variables domains without losing any solution.

A contractor used in this paper is the well-known HC4-revise [3, 21], also called forward-
backward. This contractor handles a single numerical constraint and obtains a (generally non
optimal [7]) contracted box including all the solutions of that constraint.

To contract a box w.r.t. an NCSP instance, the HC4 algorithm performs a (generalized)
AC3-like propagation loop applying iteratively the HC4-Revise procedure on each constraint
individually until a quasi fixpoint is obtained in terms of contraction.

CID-consistency [34] is a stronger consistency enforced on an NCSP. The CID algorithm
calls its VarCID procedure on all the NCSP variables for enforcing the CID-consistency.
VarCID splits a variable interval in k subintervals, and runs a contractor, such as HC4, on the
corresponding sub-boxes. The smallest box including the k sub-boxes contracted is finally
returned. The 3BCID contractor used in this paper uses a variant of the VarCID procedure.

2.2 Dynamical CSP and tubes
Intervals can also be used to handle dynamical systems that handle functional variables, also
called trajectories.

A trajectory, denoted x(·) = (x1(·), .., xn(·)), is a function from [t0, tf ] ⊂ R to Rn. The
input (argument) of x(·) is named time in this article (and denoted · or t) while the output
(image) is called state.

Interval methods can compute trajectories as solutions of a differential CSP instance.

▶ Definition 2 (Differential CSP). A differential CSP network is defined by (x(·), [x](·), c),
where x(·) is a trajectory variable of domain [x](·) and c denotes the set of differential
constraints between variables x(·).

Solving a differential CSP instance consists in finding the set of trajectories in [x](·)
satisfying c.

CP 2021
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Domains of a differential CSP network are tubes, set-valued functions associating to each
time t a subset of Rn, on which we apply contraction and bisection operations.

▶ Definition 3 (Tube [15]). A tube [x](·) : [t0, tf ]→ P(Rn) is an interval of two trajectories
[x(·),x(·)] such that ∀t ∈ [t0, tf ], x(t) ⩽ x(t). We also consider empty tubes that depict an
absence of solutions.
A trajectory x(·) belongs to the tube [x] (·) if ∀t ∈ [t0, tf ], x (t) ∈ [x] (t).

Fig. 1 illustrates a one-dimensional tube ([t0, tf ]→ P(R)) enclosing a trajectory x(·).

δ

·

[x ]( ·)

tf

t1 t3
t0

x ( ·)t0

output gate of [[ x ]](2)

slice [[x ]](2)

Figure 1 A one-dimensional tube [x](·) Courtesy of S. Rohou). In grey enclosing a random
trajectory x(·) depicted in plain line (orange). [x](·) is an interval of two functions [x(·), x(·)]. The
tube is numerically represented by a set of δ-width slices illustrated by blue boxes.

A tube is represented numerically by a set of boxes corresponding to temporal slices.
More precisely, an n-dimensional tube [x](·) with a sampling time δ > 0 is implemented as a
box-valued function which is constant for all t inside intervals [kδ, kδ + δ], k ∈ N. The box
[kδ, kδ + δ] × [x] (tk), with tk ∈ [kδ, kδ + δ], is called the kth slice of the tube [x](·) and is
denoted by [[x]](k). This implementation takes rigorously into account floating-point precision
when building a tube: computations involving [x](·) will be based on its slices, thus giving a
reliable outer approximation of the solution set. The slices may be of same width as depicted
in Fig. 1, but the tube can also be implemented with a customized temporal slicing. Finally,
we endow the definition of a slice [[x]](k) with the slice (box) envelope (blue painted in Fig. 1)
and two input/output gates [x](tk) and [x](tk+1) (black painted) that are intervals of IRn

through which trajectories are entering/leaving the slice.
Once a tube is defined, it can be handled in the same way as an interval. We can for

instance use arithmetic operations as well as function evaluations. If f is an elementary
function such as sin, cos or exp, we define f ([x](·)) as the smallest tube containing all feasible
values: f ([x](·)) =

[
{f (x(·)) | x(·) ∈ [x](·)}

]
.

The Branch & Contract algorithm presented in this paper makes choice points on
tubes [28], defined as follows and illustrated by Fig. 2.

▶ Definition 4 (Tube bisection). Let [x](·) be a tube of a trajectory x(·) defined over [t0, tf ].
Let tk be an instant in [t0, tf ], i a dimension in {1..n}, and [xi] the interval value of [xi](·)
at tk. Let mid(xi) be xi+xi

2 .
The tube bisection (tk, i) of [x](·) produces two tubes [xL](·) and [xR](·) equal to [x](·) except
at time tk, where [xL

i ] = [xi,mid(xi)] and [xR
i ] = [mid(xi), xi].

In practice, a bisection (tk, i) is applied only to a gate of the tube. For the particular problem
handled in this paper, tk will always be t0.
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tk

[x](·)

[xL](·)

[xR](·)

·

·

·

Figure 2 Illustration of a tube bisection at time tk (courtesy of S. Rohou). A gate is created
at tk and the two sub-tubes [xL](·) and [xR](·) differ only by their new created sub-gate (in bold).
Two (among an infinity) possible trajectories of the initial tube are separated by the bisection, one
belonging to [xL](·), the other belonging to [xR](·).

There exist several types of differential constraints. The problem presented in Section 3
contains only well-known ordinary differential equations (ODEs).

▶ Definition 5 (Ordinary differential equation – ODE). Consider x(·) : [t0, tf ] → Rn, its
derivative ẋ(·) : [t0, tf ]→ Rn, and an evolution function f : Rn → Rn, possibly non-linear.
An ODE is defined by: ẋ(t) = f

(
x(t), t

)
This means that for all times t in the temporal domain [t0, tf ] the derivative of the

function x depends only on the state x at time t and on the time t. An ODE can be used to
define a well-known IVP differential system or an extension.

▶ Definition 6 (IVP, interval IVP). The initial value problem (IVP) is defined by an ODE
ẋ(·) = f

(
x(·)

)
and an initial condition x(t0) = x0, where x0 is a constant in Rn.

In an interval IVP, the initial condition is bounded by a box, i.e. x(t0) ∈ [x0].

The IVP is studied for hundreds years and can be solved by numerous numerical methods,
e.g. the Euler method [5]. The interval IVP can be solved by interval analysis tools,
such as VNODE [23], CAPD [14], COSY [27] and DynIbex [8]. These solvers are also called
Guaranteed Integration (GI) solvers. GI solvers use different algorithms to rigorously integrate
the initial information over time. In particular, the CAPD tool used in our solver combines
a high-order interval Taylor form to integrate the state from an instant to a next one, and a
step limiting the wrapping effect implied by interval calculation: it encloses the solution at
gates by an envelope sharper than a box, such as rotated boxes [20].

3 Quasi Tube Capture Validation as a CSP

In automatic control, validation of stability properties of dynamical systems is an important
and difficult problem [16]. A tube G(t) is positive invariant (or a capture tube) for a dynamic
system x(.) if all the possible trajectories of x(.) remain in G(t) for ever, i.e. for every time
in the temporal domain defined.
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▶ Definition 7 (Capture tube1). Let Sf be a dynamic system defined by an ODE ẋ(t) =
f

(
x(t), t

)
. Let G(t) be a tube defined by an inequality {x(t) | g(x(t), t) ≤ 0}, where g :

Rn × R→ R is a differentiable function w.r.t. x and t.
Then:

G(t) is said to be a capture tube for Sf if: x(ti) ∈ G(ti), τ > 0 =⇒ x(ti + τ) ∈ G(ti + τ)

Conditions can be checked to validate whether a given tube is a capture tube or not.

▶ Theorem 1 (Cross-out conditions [13]). Let Sf be a dynamic system defined by ẋ(t) =
f

(
x(t), t

)
, and a tube G(t) = {x(t) | g(x(t), t) ≤ 0}. Consider the constraint system:{

(i) ∂g(x,t)
∂x .f(x, t) + ∂g(x,t)

∂t ≥ 0
(ii) g(x, t) = 0

(1)

If (1) is inconsistent (i.e., ∀x, ∀t ≥ 0, (1) has no solution), then G(t) is a capture tube.

The constraint system (1) describes the subset of Sf trajectories that escape from G(t).
If this subset is empty, it means that G(t) is a capture tube.

In [13], Jaulin et al. highlighted that it is not easy for the user to define “by hand” a
relevant capture tube of irregular form and propose rather to ask for a so-called quasi capture
tube of simple form. Informally, some trajectories can escape from a quasi capture tube, but
can enter into it again later, i.e. before a given horizon tf . Such a trajectory satisfies the
following constraints:

ẋ(t) = f(x(t), t) (x(t) is a trajectory of S)
∃t0 ∈ [t0], x(t0) satisfies (1) (x(t) exits from G(t) at t0 ∈ [t0])
∃tin ∈ ]t0, tf ] s.t. x(tin) ∈ G(tin) (x(t) goes back inside G(t) at tin)

Instead of using these constraints directly, the idea of this paper is to propose a CSP
expressing the “negation” of the quasi capture problem, and to detail a Branch & Contract
method to solve it.

▶ Definition 8 (CSP defining the quasi capture validation problem). Let Sf be a dynamic
system defined by ẋ(t) = f

(
x(t), t

)
, and a candidate tube G(t) = {x(t) | g(x(t), t) ≤ 0}.

The constraint network N = (x(.), [x(.)], c) defines the quasi capture validation problem,
where x(.) describes the system living in the domain/tube [x(.)], and c includes the three
following (vectorial) constraints:

ẋ(t) = f(x(t), t) (differential constraint)
∃t0, x(t0) satisfies (1) (cross out constraint)
∀t ∈ ]t0, tf ] g(x(t), t) > 0 (escape constraint)

The constraints model the fact that the system can escape from G(t) “for ever”, i.e.
cannot go back in G(t) before tf . If N is inconsistent, then it proves that G(t) is a quasi
capture tube.

Furthermore, consider the trajectories that satisfy the cross out constraint but violate
the escape constraint. It is straightforward to check that if the CSP has no solution, adding
these trajectories to the candidate (quasi capture) tube builds a capture tube [13].

1 For the sake of clarity, and because our application problems fall in this case, we restrict ourselves to
the case where G(t) is defined by only one inequality. The corresponding cross out constraint system is
slightly more complicated otherwise [13], but the solver presented in the next section also works on it.
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4 Branch and Contract Algorithm

In this section, we describe a branch and contract algorithm for solving the differential CSP
defined above. More precisely, Algorithm 1 computes a set OutList of tubes including all
the system trajectories that escape from the candidate tube G(t) “for ever”, i.e. at a time
greater than t0 and remaining outside G(t) until tf .

4.1 Main algorithm
The initial domain initTube is [t0, tf ]× [x], where [x] is a big or infinite box initializing the
state variables. The other input parameters are the candidate capture tube G(t), a precision
parameter on the time (timestep) and vectorial parameters ϵstart and ϵmin, that specify the
diameters of all variables at the initial gate. They are detailed further.

Algorithm 1 Branch and contract.

1 Input (G(t), initTube, t0, tf , timestep, ϵstart, ϵmin)
2 Output (OutList : list of solution tubes ; UndeterminedList : list of “small” tubes

still undetermined)
3 tubes ← {initTube}
4 while (tubes ̸= ∅) do
5 tube ← Pop(tubes)
6 (ContractionResult, tube) ← Contraction(tube, S, G(t), t0, tf , timestep, ϵstart)
7 if (ContractionResult = out) then
8 OutList ← OutList ∪ {tube}
9 else if (ContractionResult = undetermined) then

10 if Diam(tube(t0)) ≤ ϵmin then
11 UndeterminedList ← UndeterminedList ∪ {tube}
12 else
13 (tubeleft, tuberight) ← Bisect(tube, bisectionStrategy)
14 tubes← {tubeleft} ∪ {tuberight} ∪ tubes
15 end
16 else
17 /* ContractionResult = in: Nothing to do : tube is discarded because its

trajectories all enter inside G(t) at an instant in [t0, tf ] */
18 end
19 end

Algorithm 1 follows a tree search that combinatorially subdivides the initial domain
initTube into smaller tubes, in depth-first order. At each node of the search tree handling
a tube, a contraction is achieved using the three types of constraints detailed above. The
function Contraction (Line 6) returns a contracted tube and a status ContractionResult
associated to it. tube can become empty (and ContractionResult = in) if Contraction could
prove that the tube in entirely inside G(t) at an instant between t0 and tf (see Lines 16–18).
A second case occurs when tube has been detected outside G(t) after a time and until tf
(Line 7). It is not useful to subdivide tube further because all the trajectories inside tube are
solutions. Therefore tube is stored in OutList. The last case corresponds to an internal node
of the search tree and occurs when the contraction cannot decide one of the cases “in” or
“out” above (Line 9). If tube is sufficiently large (Line 12), the branching operation bisects
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tube in two sub-tubes tubeleft and tuberight and pushed them in front of tubes (depth first
order). The tube bisection is performed at the first gate (at t0) because one has the most
information at this time (cross out conditions hold). Note it is sufficient to perform all the
bisections at the same time because with an ODE an “instanciation” at one time allows one
to deduce the trajectory perfectly.

No more bisection is achieved if the tube size has reached a given precision ϵmin, and
tube is stored in a list of “undetermined” tubes (Line 11). Algorithm 1 stops when tubes is
empty. If OutList and UndeterminedList are empty, then G(t) is a quasi invariant tube for
the system S.

We detail in Algorithm 2 the different contractors applied to the current tube. tube is
first contracted by the cross out constraints (Line 3). CrossoutContraction contracts tube
at time t0 according to the cross out constraints. It calls the state-of-the-art contractors
HC4 [3] and 3BCID [18, 34] on the cross out constraint subsystem (see Section 5 describing
the experiments).

With the call to ODEEvalContraction (Line 6), we then proceed with the contraction
of the differential (ODE) constraint and the escape constraint. Note that this contraction
procedure is run only under a given level of the search tree, where, for each dimension,
the tube diameter at t0 is lower than the user parameter ϵstart. Indeed, this differential
contraction during the time window [t0, tf ] is costly and needs a relatively small input box
(initial condition) to efficiently contract tube, with the help of guaranteed integration.

Algorithm 2 Function Contraction called by Algorithm 1.

1 Function Contraction(S, G(t), tube, t0, tf , timestep, ϵstart)
2 tube ← CrossOutContraction(tube, S, G(t))
3 if (tube = ∅) then
4 ContractionResult ← in
5 else if (Diam(tube(t0)) < ϵstart) then
6 ContractionResult ← ODEEvalContraction(S, tube, G(t), t0, tf , timestep)
7 else
8 ContractionResult ← undetermined
9 end

10 return (ContractionResult, tube)
11 end

4.2 Differential contraction
White box differential contractors, e.g. the ctcDeriv and ctcEval contractors available in
the Tubex/Codac free library [29], could be used to contract tube w.r.t. the ODE and
escape constraints.

Instead, for performance reasons, we preferred to exploit a state-of-the-art guaranteed
integration (GI) tool, like VNODE-LP [23] or CAPD [14], to benefit from its optimized
internal representations. The corresponding method is described in Algorithm 3.

The ODEEvalContraction function contracts tube by integrating the ODE from t0 to
tf using the CAPD GI solver. The function GI_Simulation (Line 5) calls the GI solver
with the interval initial value tube(ti), the tube gate at time ti. The GI generally needs to
construct several gates before reaching tf , and GI_Simulation allows one to incrementally
build the next slice between ti and a computed time ti+1. By doing this integration, the
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Algorithm 3 Function ODEEvalContraction called by Algorithm 2.

1 Function ODEEvalContraction(S, tube, G(t), t0, tf , timestep)
2 ti ← t0
3 tout ←∞
4 repeat
5 (slice, ti+1) ← GI_Simulation(S, tube(ti), ti, tf )
6 (ContractionResult, tout) ← GI_Eval (slice, G(t), timestep, ti, ti+1, tout)
7 tube[ti, ti+1] ← tube[ti, ti+1] ∩ slice
8 ti ← ti+1

9 until (ti = tf ) or (ContractionResult = in)
10 if ContractionResult = in or tout ̸=∞ then
11 return ContractionResult

12 else
13 return undetermined
14 end
15 end

GI solver builds an associated high-order Taylor polynomial that can be evaluated rapidly
at any gate or subslice inside [ti, ti+1]. This is the task achieved by GI_Eval. Without
detailing, GI_Eval splits [ti, ti+1] into contiguous subslices of (time) size timestep and tests
whether tube during the studied subslice satisfies the escape (from G(t)) constraint or not.
In the latter case, the integration is interrupted (Algorithm 3 stops) and ContractionResult
is set to in. The whole tube is rejected. If a subslice satisfies the escape constraint, tout is
used to memorize the first instant where it occurs. If tout = ∞, then tout is set to ti. If
a subsequent subslice evaluation does not return out, then tout is set back to ∞. Indeed,
recall that a solution tube must satisfy the escape constraint in all times from tout to tf .
When tf is reached, only two cases are still possible. Either tube has escaped from G(t) at
tout until tf (a solution), or tube has intersected G(t) at some instants, including tf . In that
case, we cannot conclude and the result of the contraction will be undetermined. Figure (3)
summarizes the different cases described above.

1

2

tf t0

  t0     t0

tin

   tf   tf

tf

A B

DC

 t0

3

Figure 3 Different tubes built by the solver. Three particular trajectories (1), (2) and (3) are
highlighted in the figure. A: First slice satisfying the cross out constraints corresponding to the
three trajectories leaving the tube G(t). B: A tube enclosing (1) is integrated and is getting inside
G(t). C: A tube enclosing (2) is escaping from G(t). D: An undetermined tube enclosing (3): the
algorithm cannot conclude.
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Another possible case not described in the pseudo-code is when GI_Simulation fails to
compute a part of the simulation. This result is equivalent to the undetermined result since
the algorithm is not able to conclude if the tube goes inside G(t) or not. The choice of ϵstart

has a significant impact on the frequency of this “pathological” case (see experiments).

4.3 Discussion

Algorithm 1 provides two main answers. The favorable case is when the solver returns
no solution: OutList and Underdeterminedlist are empty. The algorithm is correct and
guarantees that G(t) is a quasi capture tube. Furthermore, as a side effect, by merging with
G(t) all the in tubes rejected by the algorithm, we can build the smallest (i.e., inclusion-wise
minimal) capture tube including the quasi capture tube. The second case occurs when the
solver computes a non empty OutList or Underdeterminedlist. This corresponds generally
to the computation of a non quasi capture tube but, theoretically, it is possible that a
trajectory could enter inside G(t) after tf , before tout (OutList ̸= emptyset), or during the
undetermined temporal slices. In this sense, the solver is not complete while these numerical
issues occur rarely provided tf is large enough (according to the command of the system),
and the precision size ϵmin is sufficiently small.

5 Experiments

The current section presents some results provided by an implementation of Algorithm 1 that
significantly improves a first code called Bubbibex and written to validate the pendulum
problem [1]. This new Bubbibex is implemented in C++. It uses the Ibex library [6] with the
HC4 [3] and 3BCID [18, 34] contractors for propagating the cross out conditions constraints.
It also uses the CAPD/DynSys library for the differential contractor based on guaranteed
integration [14] and the Tubex/CODAC library for tube structure [29].

Experiments have been carried out using an Intel(R) Xeon(R) CPU E3-1225 V2 at
3.20GHz. In each experiment, see Table [1], we highlight the results obtained by the solver
when we tried different values for one so-called observed parameter (ϵstart or bubble radius
or etc.).

These responses include the running time of each experiment (CPU-Time) in second, and
the number of computed tubes corresponding to the leaves of the search tree: “In” for tubes
getting inside G(t),“Und” for undetermined tubes and “Out” for tubes staying out of G(t)
at tf . These numbers are reported in the tables presenting the results of each experiment.

The simulation time of each experiment is at most tf = 100 with timestep = 0.01. The
bisection strategy used is the Maximum Diam Ratio, selecting the variable [xi] with the
greatest ratio Diam([xi])/ϵi.

▶ Remark 2. Rewriting a non autonomous ODE as an autonomous ODE adds the temporal
variable “t” to the state variables, increasing the dimension of the problem by 1. As a result,
the dimension of the vectorial parameters ϵstart and ϵmin might increase if the domain of
the temporal variable “t” defined by [t0] is not a degenerate interval (i.e. [t0 < t0]).

5.1 Pendulum

P :
{
ẋ = y

ẏ = −sin(x)− ρ.y (2)
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Table 1 Characteristics of the different experiments.

Problem Type State variables Bubble
Pendulum Non Linear 2 Static
2D Linear system Linear 2 Dynamic
Tracking Linear 2 and 3 Static and Dynamic
Pursuit game Non Linear 3 and 5 Dynamic

Let P be a dynamical system describing the motion of a pendulum, where x is the angular
position, y is the angular velocity and ρ = 0.15 the constant friction coefficient of the
pendulum. We want to find a quasi capture tube for the system P .

Table 2 Parameters of the pendulum experiment.

First gate Bubble r0 Observed parameter
x, y ∈ [−10, 10] x2 + y2 − r2

0 ≤ 0 1 ϵstart

When ϵstart={1,1} (Line 1 of Table 3), the differential contractor is not able to successfully
contract the tube. This is due to a large initial condition that prevents the guaranteed
integration from computing a solution and leads the solver to bisect the initial gate of the
tube before reaching the right precision. Having a good intuition on the parameter ϵstart

(Line 2 of Table 3) can improve the efficiency of the method. The CSP has no solution, the
studied bubble is a quasi capture tube.

Table 3 Results for pendulum system.

ϵstart ϵmin In Und Out CPU
{1,1} {0.1,0.1} 6 0 0 72.2

{0.5,0.5} {0.1, 0.1} 6 0 0 0.00734

5.2 2D linear system

R :
{
ẋ = u1
ẏ = u2

(3)

Let R be a robot described by the linear dynamical system (3) such that (x, y) is the position
and u1 = −x+ t, u2 = −y the controllers.

We want the robot to stay inside a dynamic bubble.
For bubbles with radius r0 ≥ 1.2, the solver is able to verify that they are capture tubes

(the cross-out constraint contracts to an empty domain).
Table 5 depicts the results obtained with bubbles having a constant radius r0 = 1.1,

r0 = 1 or r0 = 0.9 or a time dependent radius r0 = 1√
5 (1 + t). For instance, for [t0] = 0, we

can prove that, for r0 = 0.9, the bubble is not a quasi capture tube, but we are not able to
conclude for r0 = 1, even for a small ϵmin. It is therefore not necessary for r0 = 1 and for
r0 = 0.9 to perform the experiment for [t0] = [0, 100] since the bubble cannot be proved to
be a quasi capture tube. On the other hand, the bubble with a radius r0 = 1.1, and the
bubble with an increasing radius r0 = 1√

5 (1 + t) are quasi capture tubes for all t0 in [0, 100].
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Table 4 Parameters of the 2D linear system experiment.

First gate Bubble Observed parameter
x, y ∈ [−100, 100] (x− t)2 + (y)2 − r2

0 ≤ 0 r0

Table 5 Results for r0 = 1.1, r0 = 1, r0 = 0.9 and r0 = 1√
5 (1 + t).

r0 [t0] ϵstart ϵmin In Und Out CPU
1.1 [0, 100] {1,1,0.1} {0.1,0.1,0.01} 2048 0 0 2.6
1 0 {1,1} {0.1,0.1} 0 2 0 0.08
1 0 {1,1} {1e-8,1e-8} 0 10 0 0.91

0.9 0 {1,1} {0.1,0.1} 0 0 2 0.05
(1+t)√

5 [0, 100] {1,1,0.1} {0.1,0.1,0.01} 7 0 0 0.04

5.3 Linear tracking system
Consider the following linear dynamical system:

ẋ(t) = A(x(t)− T (t)) (4)

with x(t) the tracking system and T (t) the target.
We want to study the stability of the system (4) by finding a quasi capture tube. We will

study two cases for the system (4), one with a static bubble centered at the origin, and the
other one with a dynamic bubble centered at the target.

2D and 3D tracking systems
Consider the 2D linear system:

n = 2 : A =
[

1 3
−3 −2

]
, T (t) =

[
cos(t)
sin(2t)

]
(5)

and the 3D linear system:

n = 3, A =

 1 3 0
−3 −2 −1
0 1 −3

 , T (t) =

 cos(t)
cos(t) sin(2t)
− sin(t) sin(2t)

 (6)

Table 6 Parameters of the linear tracking system experiment.

First gate Bubble r0 Observed parameter
x1, x2 ∈ [−10, 10] x2

1 + x2
2 − r2

0 ≤ 0 2 Dim/Bubble
x1, x2 ∈ [−10, 10] (x1 − T1(t))2 + (x2 − T2(t))2 − r2

0 ≤ 0 2 Dim/Bubble
x1, x2, x3 ∈ [−10, 10] x2

1 + x2
2 + x2

3 − r2
0 ≤ 0 2 Dim/Bubble

x1, x2, x3 ∈ [−10, 10] (x1 − T1(t))2 + (x2 − T2(t))2 + (x3 − T3(t))2 − r2
0 ≤ 0 2 Dim/Bubble

Both targets, in the 2D and 3D linear systems, have a periodic pattern movement and their
period is 2π. We can then restrict the study of the stability of both systems to t0 ∈ [0, 2π]
by setting the time domain of the initial gate to [t0] = [0, 2π].
From Table 7 we can conclude that both bubbles are quasi capture tubes for the system (4).
Fig. 4 illustrates the 3D tracking system.
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Table 7 Results for both systems (2D and 3D) and both bubbles (static and dynamic).

Dim Bubble ϵstart ϵmin In Und Out CPU
2D Static {1,1,0.05} {0.1,0.1,0.01} 370 0 0 1.20
2D Dynamic {1,1,0.05} {0.1,0.1,0.01} 1021 0 0 1.65
3D Static {1,1,1,0.05} {0.1,0.1,0.1,0.01} 3290 0 0 7.10
3D Dynamic {1,1,1,0.05} {0.1,0.1,0.1,0.01} 4040 0 0 11.94

First gate

First gate

First gate
In

In

In

First gates of the cross out condition

Tube

Tube

Tube

A

C D

B

1

2
3

Figure 4 Sample of tubes of the 3D linear tracking system leaving the static bubble. The figure
illustrates the bubble and the tubes in the state dimensions. A: First gates satisfying the cross out
constraints appear in white on the spherical bubble of radius r0 = 2. The periodic target, with an
“∞” trajectory, appears in the center of the bubble. Its color is going from red at t = 0 to white at
t = 2π. B and C: Tubes (in red) getting almost immediately inside the sphere. D: Tube going far
away from the sphere and finally landing after one first unsuccessful landing trial.

5.4 Pursuit evasion game
A “pursuit evasion” game is a situation where a pursuer (P ) wants to catch an evader (E)
trying to escape from him. In the following experiment, we will present two problems based
the “pursuit evasion” game, one in the plane, and the other one in the 3D-space. The evader
(E) will be at the center of a dynamic bubble, and we want the pursuer to stay inside the
bubble in order to catch the evader. In other words, we want the bubble to be a capture
tube, or at least, a quasi capture tube.

Pursuit game on the plane
Consider the following pursuer P and evader E:

P :


ẋ = u1.cos(θ)
ẏ = u1.sin(θ)
θ̇ = u2

E :
{
xd = v.t

yd = sin(ρt) (7)

where x and y are the position and θ the heading of P .
The velocity of the pursuer and its heading are respectively controlled by u1 = ||n|| and

u2 = −K.sin(θ − θd) such that θd = atan2(n) and n is defined as follows:

n =
[
nx

ny

]
= 1
dt

[
xd − x
yd − y

]
+

[
ẋd

ẏd

]
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Table 8 Parameters of the pursuit game on the plane experiment.

First gate Bubble r0 Observed parameter
x, y ∈ [−10, 10], θ ∈ [0, 2π] (x− xd)2 + (y − yd)2 − r2

0 = 0 1 ϵh

We add the following constraint on the heading of the pursuer:

h(x, y, θ, t) = (cos(θ)− cos(θd))2 + (sin(θ)− sin(θd))2 − ϵh ≤ 0

Constants: K = 1, v = 7, ρ = 1, dt = 1

Pursuit Evasion game in the 3D-space
Let the pursuer P and the evader E:

P :


ẋ = u1.cos(θ).cos(ψ)
ẏ = u1.cos(θ).sin(ψ)
ż = u1.sin(θ)
ψ̇ = u2
θ̇ = u3

E :


xd = v.w.t

yd = v.w.sin(w.t)
zd = −v.w.cos(w.t)

(8)

where x, y and z are the position, ψ is the circular rotation speed and θ is the vertical
rotation speed of P. The controls u1 = ||n||, u2 = K(ψ − ψd) and u3 = K(θ − θd). Without
going into details, θd and ψd are defined with analytical expressions.

n =

 nx

ny

nz

 = 1
dt

 xd − x
yd − y
zd − z

 +

 ẋd

ẏd

żd


We have added the following constraints on the circular and vertical rotations of the pursuer:

h1(ψ, t) = (cos(ψ)− cos(ψd))2 + (sin(ψ)− sin(ψd))2 − ϵh ≤ 0

h2(θ, t) = (cos(θ)− cos(θd))2 + (sin(θ)− sin(θd))2 − ϵh ≤ 0

Constants: v = 2, w = 1, K = 10, dt = 1.

Table 9 Parameters of the pursuit game in the 3D-space experiment.

First gate Tube candidate r0 Observed parameter
x, y, z ∈ [−10, 10], θ, ψ ∈ [0, 2π] (x− xd)2 + (y − yd)2 + (z − zd)2 − r2

0 = 0 1 ϵh

Pursuit evasion game results
Here again, both evaders follow a periodic pattern of period 2π, so the study is restricted to
a time domain t0 ∈ [0, 2π].

When the problem scales up (in the number of the state variables, number of nonlinearities,
system stiffness, etc.), the solver faces some difficulties. We can see in Tables 10 and 11 how
varies the number of tubes computed by the solver for validating a quasi capture tube (the
reader can compare with the previous experiments). The number of tubes required can be
drastically lowered by using small values for parameter ϵh that restrict the initial heading
(resp. circular and vertical rotations) of the pursuer (see Fig. 5).
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Table 10 Results of the pursuit game on the plane show that, with a small parameter ϵh, we can
validate the quasi capture tube on the whole period of the evader.

[t0] ϵh ϵstart ϵmin In Und Out CPU
0 0.02 {0.1, 0.1, 0.1} {0.01, 0.01, 0.005} 129 0 0 1.74

[0, 2π] 0.02 {0.1, 0.1, 0.1, 0.05} {0.01, 0.01, 0.005, 0.005} 16672 0 0 585
0 0.2 {0.1,0.1,0.1} {0.01, 0.01, 0.005} 437 0 0 8.01

[0, 2π] 0.2 {0.1, 0.1, 0.1, 0.05} {0.01, 0.01, 0.005, 0.005} 105735 0 0 6561

Table 11 Results of the pursuit game in 3D-space: even for small parameter value ϵh, studying
one tenth of the period for [t0] requires a huge CPU time. On the other hand, the quasi capture
tube is then validated.

[t0] ϵh ϵstart ϵmin In Und Out CPU
0 0.1 {0.1,0.1,0.1,0.05,0.05} {0.01,0.01,0.01,0.005,0.005} 21414 0 0 590
0 0.08 {0.1, 0.1, 0.1, 0.05, 0.05} {0.01, 0.01, 0.01, 0.005, 0.005} 8128 0 0 236
0 0.0625 {0.1, 0.1, 0.1, 0.05, 0.05} {0.01, 0.01, 0.01, 0.005, 0.005} 1852 0 0 62.4
0 0.05 {0.1, 0.1, 0.1, 0.05, 0.05} {0.01, 0.01, 0.01, 0.005, 0.005} 176 0 0 11.1

[0, π
5 ] 0.05 {0.1, 0.1, 0.1, 0.05, 0.05, 0.05} {0.01, 0.01, 0.01, 0.005, 0.005, 0.005} 241103 0 0 109

A B

C D

First gates of the cross out condition

Evader 
trajectory

Evader position at [t0]

Figure 5 Pursuit evasion game in 3D-space: Illustration of the bubble and the evader trajectory
(in red) in the state dimensions. First gates satisfying the cross out constraints at [t0] = 0 appear in
white on the spherical bubble of radius r0 = 1, centered on the position of the evader at [t0] = 0. We
can notice how the number of gates varies for different values for ϵh. A: ϵh = 0.05. B: ϵh = 0.0625.
C: ϵh = 0.08. D: ϵh = 0.1

6 Conclusion

We have proposed a Branch and Contract solver dedicated to the quasi capture tube validation,
a problem for which the algorithms are almost absent. The solver is sufficiently generic to
handle different problems. The performance of the solver is based on filtering/contraction
algorithms and on the use of the guaranteed integration solver CAPD for the integration of
differential equations. We have validated the solver in different application examples scaling
from 2 to 5 state dimensions. To simplify the problem, the solver can accept additional
constraints on the command parameters. We have tried to propagate domain reductions
backward (from the escape constraint deductions to t0) with no success. Nevertheless, there
is still improvement space for future work. We could improve the shape of the capture
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tube candidate using Lyapunov approaches or parametric barrier functions [9]. We could
also improve our algorithm for computing in an auto-adaptive manner the ϵstart parameter
deciding the tube size under which it is relevant to run the guaranteed integration solver.
Finally, we could improve our software using a multi threading approach.
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Abstract
Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon
atoms) whose carbon atoms form hexagons. These molecules are widely studied both experimentally
and theoretically and can have various physicochemical properties (mechanical resistance, electronic
conductivity, . . . ) from which a lot of concrete applications are derived. These properties can rely
on the existence or absence of fragments of the molecule corresponding to a given pattern (some
patterns impose the nature of certain bonds, which has an impact on the whole electronic structure).
The exhaustive generation of families of benzenoids sharing the absence or presence of given patterns
is an important problem in chemistry, particularly in theoretical chemistry, where various methods
can be used to better understand the link between their shapes and their electronic properties.

In this paper, we show how constraint programming can help chemists to answer different
questions around this problem. To do so, we propose different models including one based on a
variant of the subgraph isomorphism problem and we generate the desired structures using Choco
solver.
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1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are hydrocarbons whose carbons are forming cycles
of different sizes. Benzenoids are a subfamily of PAHs for which all the cycles are of size 6.
Benzene, represented in Figure 1(a), is the smallest one. It is made of 6 carbon atoms
and 6 hydrogen atoms. Its carbon atoms form a hexagon (also called benzenic cycle or
benzenic ring) and each of them is linked to a hydrogen atom. Benzenoids can also be seen
as the molecules obtained by aggregating benzenic rings. For example, Figure 1(b) shows
anthracene, which contains three benzenic rings. Atoms establish bonds between themselves
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Figure 1 Examples of benzenoids: benzene (a) and anthracene (b) with their graphical represent-
ation (c) and (d), perylene (e) and a benzenoid containing two instances of the pattern deep bay (in
blue dashed) and two of instances of the pattern zigzag bay (in dotted red) (f).
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Figure 2 Coronene (a), its hexagon graph (b) and the coronenoid of size 3 (c).

which can be single or double depending on the number of electrons involved in the bond.
In a benzenoid, each carbon atom is linked either to two carbon atoms and one hydrogen
atom, or to three carbon atoms. In the following, hydrogen atoms play no role (and their
presence can be inferred if necessary). Also, they can be omitted in the representation. Thus,
a benzenoid can be represented as an undirected graph B = (V, E) in which each vertex of V

corresponds to a carbon atom and each edge of E reflects the existence of a bond between the
two corresponding carbon atoms. Note that the nature of bonds (simple or double) has no
importance for our purpose. This graph is connected, bipartite and planar. Figures 1(c) and
(d) show the graphs corresponding to benzene and anthracene. Moreover, since benzenoids
can be defined as a combination of fused benzenic rings, we consider, for each benzenoid B,
a second graph called the hexagon graph. This graph Bh = (Vh, Eh) is an undirected graph
in which each vertex corresponds to a hexagon (i.e. a benzenic ring) of B and such that two
vertices are connected by an edge if the corresponding hexagons share an edge in the graph
B. Figures 2(a)-(b) show the graph corresponding to coronene and its hexagon graph.

Benzenoids and more generally PAHs are well-studied in various fields (molecular nano-
electronics, organic synthesis, interstellar chemistry, . . . ) because of their energetic stability,
molecular structures or optical spectra. They have a wide variety of physicochemical prop-
erties depending on their size and structure. For example, they can combine a strong
mechanical resistance with high electronic conductivity. These properties can rely on the
existence or absence of fragments of the molecule corresponding to a given pattern. Some
patterns impose the nature of certain bonds, which impacts the whole electronic structure.
For instance, perylene (Figure 1(e)) can be seen as two overlapping triangles of three fused
rings with the consequence that the central bonds are essentially simple.

The controlled synthesis of PAH with tuned edges is very recent. This is a hot topic
as shown by the number of recent publications on the synthesis of such compounds in
high impact factor chemistry journals (e.g. [29, 19, 1, 6, 8, 14, 16, 31, 35]). This has
motivated many theoretical studies to better understand the impact of the edge topology
on their electronic properties. This chemistry leads to enhanced optoelectronic molecular
properties [11, 20, 24, 25, 28, 36] or magnetic properties [23, 38], which are further improved
and combined in mixed edge molecules [17, 26, 27, 37]. As recent examples, it was shown that
the addition of two extra K-regions (or armchair edges, see Figure 5(a)) to hexabenzocoronene
leads to an enhanced optical activity of the molecules with potential applications as organic
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laser materials [11]. Furthermore, PAHs with armchair edges are semiconductors with high
bands gaps whereas zigzag edges (see Figure 5(g)) lead to improved conductivity but are
fairly unstable. Thus chemists intend to design molecules with zigzag patterns at the edges
and stabilize the molecular structure with neighboring cove regions, which also lead to
higher dispersibility in solution and improved optoelectronic properties [26]. Niu et al. [26]
provide several benzenoids that chemists can synthesize and which contain such patterns.
For instance, Figure 1(f) describes one of them which contains two instances of the pattern
cove (depicted in blue dashed and called deep bay in [34]) and two instances of the pattern
zigzag (depicted in dotted red and called zigzag bay in [34]). It is thus important to be able
to exhaustively generate families of benzenoids sharing common given patterns on their edges
for a given number of fused rings.

In the literature, bespoke approaches have been proposed to generate benzenoid structures
satisfying or not some particular properties (e.g. [3]). They turn to be very efficient in practice
but are difficult to adapt to the needs of chemists. Moreover, they only consider properties
on the whole molecule. In [5], we have described a new approach based on constraint
programming (CP) which is more flexible while being competitive. More precisely, we model
the problem as an instance of the Constraint Satisfaction Problem (CSP). Remember that
a CSP instance can be defined as a triplet (X, D, C) where X = {x1, . . . , xn} is the set
of variables, D = {Dx1 , . . . , Dxn} is the set of domains, the domain Dxi being related to
the variable xi, and C = {c1, ..., ce} represents the set of the constraints which define the
interactions between the variables and describe the allowed combinations of values. For sake
of simplicity and expressivity, our model exploits graph variables (notably to represent the
hexagon graph). Graph variables have as domain a set of graphs defined by a lower bound
(a subgraph called GLB) and an upper bound (a super-graph called GUB). In [5], we used
Choco solver [13] since this library supports graph variables and its graph-related constraints
(e.g. the connected constraint [12]) and also the usual global constraints which make the
modeling easier. However, this model only handles global properties. Hence, in this paper,
we describe how to integrate the notion of pattern. Several models being possible, we study
them on the basis of the different questions that arise about patterns before comparing them
experimentally.

This paper is organized as follows. In Section 2, we recall how to generate benzenoid
structures, in particular with the help of CP. Afterward, in Section 3, we formalize the
problem we are interested in and address different questions that may be of interest for
chemists in Sections 4 to 6. Finally, we assess experimentally some models in Section 7,
before concluding in Section 8.

2 Generating Benzenoid Structures

Generating benzenoid structures which have certain structural properties (e.g. having a given
number of hexagons or having a particular structure from a graph viewpoint) is an interesting
and important problem in theoretical chemistry [9, 21, 22, 30]. This problem is a preliminary
step to the study of their chemical properties. It can be formally defined as follows: Given a
set of structural properties P , generate all the benzenoid structures satisfying the properties
of P. These properties may concern the number of carbon or hexagon atoms or particular
shapes (tree, rectangle, presence of “holes”, . . . ).

In the literature, bespoke methods have been proposed (e.g. [3]). If they are often efficient
in practice, they have the disadvantage of being difficult to adapt to the needs of chemists.
In [5], we proposed a CP model of this problem and showed how easy it is to meet the wishes
expressed by the chemists by simply adding variables and constraints. Moreover, beyond its
flexibility, this approach is relatively efficient thanks to Choco solver.

CP 2021
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We now recall the CP model allowing to generate all structures with n hexagons. It relies
on the property that any benzenoid of n hexagons can be embedded in a coronenoid of size
at most k(n) =

⌊
n
2 + 1

⌋
. A coronenoid of size k is a benzene molecule to which k − 1 crowns

of hexagons have been successively added. Coronene (see Figure 2(a)) is the coronenoid
of size 2. Figure 2(c) shows the coronenoid of size 3. We can remark that the number of
hexagons in the ith crown grows with i. Thereafter, we denote B

c(k(n))
h (where c(k(n)) stands

for coronenoid of size k(n)) the hexagon graph of the coronenoid of size k(n), nc its number
of hexagons and mc its number of edges. The hexagons and edges of B

c(k(n))
h are arbitrarily

numbered starting from 1. Figure 2 presents a possible numbering. First, in this model
(denoted M), we consider a graph variable xG to represent the hexagon graph of the desired
structure. Its domain is the set of all subgraphs between the empty graph and B

c(k(n))
h . The

use of a graph variable makes it much easier to express the connectedness of the generated
structures (as described below). We also exploit a set of nc Boolean variables {x1, . . . , xnc}.
The variable xi is set to 1 if the i-th hexagon of B

c(k(n))
h is used in xG, 0 otherwise. Similarly,

we also consider a set of mc Boolean variables yi,j . The variable yi,j is set to 1 if the edge
{i, j} of B

c(k(n))
h is used in xG, 0 otherwise.

Then, the following properties are expressed thanks to constraints:
Link between xG and xi (resp. yi,j): a channeling constraint imposes that xi = 1 ⇐⇒
xG contains the vertex i (resp. yi,j = 1 ⇐⇒ xG contains the edge {i, j}).
xG is an induced subgraph of B

c(k(n))
h : Any value of xG is not necessarily a valid hexagon

graph. To guarantee its validity, it must correspond to a subgraph of B
c(k(n))
h induced by

the vertices belonging to xG. Thus, for each edge {i, j} of B
c(k(n))
h , one adds a constraint

xi = 1 ∧ xj = 1 ⇔ yi,j = 1. In other words, the edge {i, j} exists in xG if and only if the
vertices i and j appear in xG.
The structure has n hexagons:

∑
i∈{1,...,nc}

xi = n.

The hexagon graph is connected : It is achieved by applying the connected graph constraint
on xG [12].
Six hexagons forming a cycle generate a hexagon (and not a hole): For each hexagon
u, let N(u) denotes the set of the neighbors of u in the hexagon graph. Then, for each
vertex u having 6 neighbors, the property is ensured by adding a constraint between xu

and the variables corresponding to its neighbors which imposes:
∑

v∈N(u)
xv = 6 ⇒ xu = 1.

Finally, several constraints are added in order to avoid redundancies. First, xG must have
at least one vertex on the top (resp. left) edge of B

c(k(n))
h in order to discard the symmetries

by translation. This can be achieved by posting a constraint that specifies that the sum
of the Boolean variables xi associated with the top (resp. left) edge of B

c(k(n))
h is strictly

positive. Then, one must ensure that the graph described by xG is the only representative of
its symmetry class. There are up to twelve symmetric solutions: six 60 degree rotational
symmetries combined with a possible axial symmetry. These symmetries are broken by the
constraint lex-lead [10]. For each of the twelve symmetries, one needs to add nc Boolean
variables (one per variable xi) and a total of 3.nc ternary clauses.

This model can easily be implemented with Choco solver. It can also be specialized to
take into account the needs of chemists by adding variables and/or constraints. For example,
generating structures with a tree shape (called catacondensed benzenoids) simply requires
the addition of the tree graph constraint on xG to the general model. Other properties have
been modeled in order to generate structures having a rectangular shape, possessing a hole
or being symmetrical [5].
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3 Considering Patterns

The model M, presented in [5] and recalled in Section 2, allows to express the benzenoid
structure generation problem in all its generality. If several specializations of this model
have been proposed in [5], all of them correspond to structural properties concerning the
whole molecule. These properties could thus be qualified as global. However, in some cases,
it may be useful to reason in terms of local properties that may or may not be satisfied by
some parts (called fragments) of the generated structures. In particular, among these local
properties, it is important to be able to deal with the local properties related to the edge of
the benzenoid structure.

The local properties we consider in this article can be defined by “drawing” a shape
whose basic bricks are hexagons. These hexagons can be of three different natures:

(i) The positive hexagons whose presence is required in the property,
(ii) The negative hexagons whose absence is required in the property,
(iii) The neutral hexagons whose presence or absence has no influence on the property.
If the use of positive hexagons is obvious, one can ask the question of the interest of negative
or neutral hexagons. Negative (respectively neutral) hexagons are useful, for example, to
indicate that there is nothing between two positive hexagons or to model the edge of the
benzenoid (resp. to guarantee a certain gap between two positive hexagons). In order to
represent the desired shapes, we now introduce the notion of extended hexagon graph:

▶ Definition 1 (extended hexagon graph). An extended hexagon graph is a hexagon graph
whose vertices and edges are labeled by the symbols + (for positive), − (for negative) and ◦
(for neutral) such that:

(i) Each vertex is labeled with the nature of the hexagon it represents.
(ii) An edge is labeled − if at least one of its vertices is labeled −. Otherwise, it is labeled ◦

if at least one of its vertices is labeled ◦. Otherwise, it is labeled +.
As for the hexagons (or vertices), the labels associated with the edges qualify the status that
the interaction between two hexagons must have in the local property that we wish to define.
Formally a local property can be defined by a pattern:

▶ Definition 2 (pattern). A pattern P is defined by giving a triplet (P+, P−, P◦) and an
extended hexagon graph Ph such that:

(i) P+, P− and P◦ denote the set of positive, negative and neutral hexagons respectively,
(ii) these three sets are pairwise disjoint and
(iii) Ph is a connected graph on the set of hexagons defined by P+ ∪ P− ∪ P◦.

Its order kP is the maximal length (expressed in terms of the number of edges) of the shortest
paths of Ph separating a negative or neutral hexagon from a positive hexagon.

In other words, a pattern is defined by a collection of positive, negative and neutral
hexagons whose arrangement is described by an extended hexagon graph. As an example,
Figure 3(a) shows the pattern deep bay [34] of order 1 composed of four positive hexagons
and three negative ones. The bonds (i.e. the edges of hexagons) which are at the interface
between the positive hexagons and the negative ones allow us to handle the local property of
the edge of the benzenoid depicted in blue in Figure 1(f). We finally define the notion of
pattern inclusion:

▶ Definition 3. Given a non-negative integer k, let Bk
h be the extended hexagon graph

representing the benzenoid B surrounded by k layers of negative hexagons (i.e., the extended
graph of B augmented by all negative hexagons located within distance k of a hexagon of B).

CP 2021
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Figure 3 The pattern deep bay (a), a benzenoid satisfying this pattern (b) and the “extended”
benzenoid related to its extended hexagon graph B1

h with the pattern in red (c).

A fragment F k of order k of a benzenoid B is a subset of hexagons of Bk
h whose extended

hexagon graph is connected. It satisfies the pattern P if k = kP and if there exists a bijection
that maps a positive or neutral hexagon of P to each positive hexagon of F k and maps a
negative or neutral hexagon of P to each negative hexagon of F k. A benzenoid B contains
(or includes) the pattern P if it has a fragment of order kP satisfying P .

Considering Bh or Bk
h does not change the nature of the benzenoid B. B1

h simply materializes
the vacuum around it, which is necessary for some properties. For example, the benzenoid in
Figure 3(b) (like the one in Figure 1(f)) satisfies the pattern deep bay of Figure 3(a). For
this, we must take into account the absence of hexagon at the edge of the benzenoid to
identify a suitable fragment, which is achieved thanks to its extended hexagon graph Bk

h (see
Figure 3(c)).

In this paper, we aim to generate benzenoid structures satisfying local properties expressed
thanks to the patterns introduced above. These local properties can take different forms. The
simplest one is to include a given pattern. Then, one can also be interested in generalizing the
approach by including several different patterns or a given number of times the same pattern.
On the contrary, one may also wish to exclude a given pattern. The following sections deal
with these different issues. In all cases, the idea is to generate benzenoid structures starting
from the general model M. By so doing, it follows that it is quite possible to consider both
global and local properties.

4 Generating Structures Including a Pattern

Let P be a pattern involving nP hexagons which can be positive, negative or neutral. We
arbitrarily number each hexagon of the pattern P from 1 to nP . The sets P+, P− and P◦
are then defined accordingly. In this section, we wish to model the problem of generating all
benzenoid structures having n hexagons and including the pattern P . We first consider all
the variables and constraints of the general model M to which we will add variables and
constraints to express the fact that the pattern must be present in the generated structures.
At this level, we have several possibilities depending on the point of view we consider. In
the following, we explore three tracks. The first one consists in identifying all the possible
locations of a fragment satisfying the pattern P . The second one considers the existence of a
fragment by reasoning on the neighborhood of each hexagon. Finally, the third one exploits
the proximity of our problem with the subgraph isomorphism problem.

4.1 First Model
We start with the model M and thus with a coronenoid of size k(n). In this first model
(denoted Mi1), we first identify all the possible fragments of the pattern P in this coronenoid.
Their number being in O(|c(k(n))|) = O(n2), this computation can be efficiently performed
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using rotations, axial symmetries and translations. For each of these fragments Fi, we define
the sets Fi+, Fi◦ and Fi− of its positive, neutral and negative hexagons. We associate to
each fragment Fi a Boolean variable ei such that the fragment Fi is present in the structure
under construction if ei is true. This is guaranteed via the constraint ei = 1 ⇒

∧
j∈Fi−

xj =

0 ∧
∧

j∈Fi+

xj = 1. Note that for patterns whose order is strictly positive, it is not necessary

to consider a larger coronenoid. Indeed, the fragment can be placed at the edge of the
coronenoid with negative or neutral hexagons being outside this coronenoid and, therefore,
being considered as absent. In this case, these hexagons will not be represented in Fi−, nor
in Fi, but placed in a set Fi∗. Finally, we set the sum constraint

∑
j ej = 1 to guarantee the

existence of at least one fragment satisfying the pattern P .

4.2 Second Model
In this second model (denoted Mi2), we express the existence of a fragment corresponding
to the pattern P by reasoning on the neighborhood of each hexagon. To do so, starting from
the model M, we add a variable fi per hexagon of the coronenoid of size k(n). Each variable
fi has domain {0, 1, . . . , nP }. The variable fi takes a positive value j if the hexagon i of the
coronenoid of size k(n) participates in the searched fragment as a hexagon occupying the
position j in P , 0 otherwise. Thus, the variable fi specifies whether the hexagon i is involved
in the fragment and if so to which hexagon of the pattern P it corresponds. Then, since the
generation of the benzenoid structures and the search for a fragment are done simultaneously,
we need to ensure their concordance. In particular, we must guarantee that the positive
(resp. negative) hexagons are indeed present (resp. absent) in the generated structure. As a
reminder, this structure is represented by the graph variable xG and by the Boolean variables
xi. Also, for each hexagon i of the coronenoid of size k(n), we set the following constraints:

xi = 1 ⇒ fi ∈ P+ ∪ P◦ ∪ {0} (if the hexagon i is present in xG, it is involved in the
fragment as a positive or neutral hexagons or it does not participate in the fragment),
xi = 0 ⇒ fi ∈ P− ∪ P◦ ∪ {0} (if the hexagon i is absent, it is involved in the fragment as
a negative or neutral hexagons or it does not participate in the fragment),
fi ∈ P+ ⇒ xi = 1 (if the hexagon i participates in the fragment as a positive hexagon, it
is necessarily present),
fi ∈ P− ⇒ xi = 0 (if the hexagon i participates in the fragment as a negative hexagon, it
is necessarily absent).

Next, we need to define the bijection that establishes that the constructed fragment satisfies
the pattern P . In other words, we need to guarantee that exactly nP hexagons of the
structure must correspond to nP hexagons of the pattern P . Also, for each hexagon j of
the pattern, we add the global constraint1 Count({f1, . . . , fnc}, {j}) = 1 if j ∈ P+ (≤ 1
otherwise). The value 0 is obtained in the case where a negative or neutral hexagon is
outside the coronenoid of size k(n). In other words, a part of the pattern overflows from this
coronenoid, but only for negative or neutral hexagons (which would then be absent). By
doing so, we avoid introducing additional variables (and associated constraints) to represent
the kP layers of absent hexagons used in the formal definition of fragment (see Definition 3).

The last step consists in defining the pattern itself. To do this, we consider the neighbor-
hood links between each hexagon of the pattern. A hexagon can have up to six neighboring
hexagons. For a given hexagon h, we consider its potential neighbors v1 to v6 in a clockwise

1 As a reminder, the global constraint Count(Y, V ) ⊙ k is satisfied if the number of variables of Y assigned
with a value in V satisfies the condition with respect to the operator ⊙ and the value k.
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Table 1 The compact table constraint describing the neighborhood for the pattern deep bay.

fi fv1 fv2 fv3 fv4 fv5 fv6 fi fv1 fv2 fv3 fv4 fv5 fv6

0 * * * * * * 3 1 4 6 0 0 0
1 0 2 4 3 0 0
1 2 4 3 0 0 0 4 2 5 7 6 3 1
1 4 3 0 0 0 2
1 3 0 0 0 2 4 5 0 0 0 7 4 2
1 0 0 0 2 4 3
1 0 0 2 4 3 0 6 4 7 0 0 0 3
2 0 0 5 4 1 0

7 5 0 0 0 6 4

direction, starting with the neighbor at the top right. From there, we list the different
configurations taken by the neighbors depending on which the hexagon h participates in
the fragment or not. More precisely, each configuration is a tuple composed of one integer
per neighbor. This integer is a non-zero value j if the neighbor participates in the fragment
as the hexagon j of the pattern P , 0 otherwise. For each position of the hexagon h in
the pattern P , we consider six possible configurations in order to take into account the 60°
rotations of the pattern. This is necessary to generate all the structures because the model
M imposes the existence of hexagon(s) on the top and left edges of the considered coronenoid.
Note that from a given configuration, applying a 60° rotation is equivalent to performing
a circular permutation at the tuple level. For example, in Table 1, we list all the possible
neighborhood configurations when the hexagon is in position 1 in the pattern deep bay, the
numbering of the hexagons being that of Figure 2. For the other positions, we give only
one configuration by lack of space. These configurations will be used to define the relation
associated with compact table constraints [32]. We consider one table constraint per hexagon
h of the coronenoid of size k(n) whose scope involves the variable fh and each variable fi

associated with a neighbor of h in B
c(k(n))
h . For hexagons at the edge of the coronenoid, we

keep only the rows of the table whose neighbors participating in the fragment correspond to
hexagons (whatever their nature) inside the coronenoid or to negative or neutral hexagons
outside the coronenoid. Then, we make a projection of these lines on the present neighbors
and the variable fh.

4.3 Third Model
A fragment of order k of a benzenoid B corresponds to a connected subgraph of Bk

h. Thus,
determining whether there exists a fragment satisfying a pattern P in a benzenoid B is, in
some way, the same as determining whether there exists a subgraph in BkP

h isomorphic to
Ph. However, this is not exactly the usual subgraph isomorphism problem, but one of its
variants taking into account the labeling of vertices and edges. This does not change the
complexity of the decision problem which remains NP-complete. Fortunately, we do not need
to tackle this problem because, in our approach, we will, by construction, directly produce
structures satisfying the pattern.

We now present our model Mi3 . Starting again from the general model M, we add one
variable si per hexagon of the pattern P (whatever its nature). Each variable si has domain
{1, . . . , n′

c} with n′
c the number of hexagons of the coronenoid of size k(n) + kP . We exploit

a coronenoid of size k(n) + kP , instead of k(n), because we need to surround the coronenoid
of size k(n) with kP crowns of absent hexagons. Note that this has no impact on the graph
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variable xG or on the variables xi because we are adding hexagons that are known not to be
present in the structure under consideration. The variable si has value j if the i-th hexagon
of the pattern P is the j-th hexagon of the coronenoid of size k(n) + kP . By convention,
values of j between 1 and nc correspond to hexagons present in the coronenoid of size k(n).
We then add the following constraints to express the notion of isomorphism:

Injectivity: The hexagons participating in the fragment must be pairwise different. This is
imposed thanks to the global constraint alldifferent({s1, . . . , snP

}). This also ensures
that nP hexagons of xG participate in the fragment.
Edge preservation: We must guarantee that two neighboring vertices of Ph correspond
to two neighboring vertices in the hexagon graph of the coronenoid of size k(n). Also,
for each edge {i, i′} of Ph (whatever its nature), we set a table constraint on si and si′

whose relation contains all pairs (j, j′) such that {j, j′} is an edge of the hexagon graph
of the coronenoid of size k(n) + kP .

This part of the model is inspired by the model of the subgraph isomorphism problem
presented in [18]. However, it should be noted that, in our case, the graph in which the
subgraph is searched is not known in advance, as it is the graph we wish to construct. Also, in
our model, we circumvent this difficulty by considering the hexagon graph of the coronenoid
of size k(n) + kP .

Concerning the labeling, by definition, the labeling of the edges follows from that of
the vertices. The labeling of the vertices is directly taken into account by definition of the
variables si. It only remains to express the adequacy between the labeling of the vertices
and the existence of the hexagons thanks to the following constraints:

∀i ∈ P+, ∀j ∈ {1, . . . , nc}, si = j ⇒ xj = 1 (if the positive hexagon i of P corresponds to
the hexagon j in xG, j must be present),
∀i ∈ P+, ∀j ∈ {1, . . . , nc}, xj = 0 ⇒ si ≠ j (if the hexagon j of xG is absent, it cannot
correspond to a positive hexagon i of P ),
∀i ∈ P−, ∀j ∈ {1, . . . , nc}, si = j ⇒ xj = 0 (if the negative hexagon i of P corresponds to
the hexagon j in xG, j must be absent), and
∀i ∈ P−, ∀j ∈ {1, . . . , nc}, xj = 1 ⇒ si ≠ j (if the hexagon j of xG is present, it cannot
correspond to a negative hexagon i of P ).

We now turn to the limitations of reasoning in terms of subgraph isomorphism from the
perspective of chemistry. Figures 4(a)-(b) describe two patterns based on three positive
hexagons and whose hexagon graphs are isomorphic. It turns out that the two corresponding
molecules do not have the same chemical properties. However, if we ask Choco to produce
the structures corresponding to each of these two patterns based on the model Mi3 , we will
obtain the same solutions. Also, to overcome this problem, we add a preprocessing step
before the generation of the instance to solve. This step consists in adding neutral hexagons
so that every edge of the hexagon graph of the pattern appears in at least one triangle (i.e.
a clique of size 3). A triangle in the hexagon graph represents three hexagons which are
pairwise adjacent. It thus characterizes a unique configuration (within one axial symmetry
or 60° rotation). This preprocessing can be implemented by going through the hexagons of
the initial pattern from top to bottom and from left to right. For lack of space, we do not
detail this algorithm. Figures 4(c)-(d) present the patterns thus completed related to the
patterns of Figures 4(a)-(b). Note that it is not always necessary to add neutral hexagons.
For example, the pattern deep bay remains unchanged because each edge of its hexagon
graph is already involved in at least one triangle.
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+ +

+ + + +

+ +

+◦
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◦◦

(a) (b) (c) (d)

Figure 4 The limits of reasoning in terms of subgraph isomorphism with two different patterns
(a) and (b) having isomorphic hexagon graphs. The patterns (a) and (b) after preprocessing (c)–(d).

5 Generating Structures Including Several Patterns

In this section, we are interested in generating structures containing several patterns sim-
ultaneously. Let EP = {P 1, . . . , P ℓ} be the set of these patterns. The existence of several
patterns raises the question of how they can interact with each other. We list here three
cases that make sense from a chemical point of view:
(1) Patterns can share hexagons (regardless of their nature),
(2) Patterns can share only absent hexagons (i.e. it is allowed to share the vacuum),
(3) The patterns are pairwise disjoint.
A first naive approach to solve this multi-pattern problem is to solve a collection of single
pattern problems. This would require enumerating all the single patterns that could be
constructed on the basis of the patterns in EP . But, given the combinatorics, this approach
seems to be out of the question. Therefore we propose below to adapt the models we present
in the previous section.

5.1 First Model
As usual, we start with the general model M. Then, we add, for each pattern P j of EP , a
set of variables ej

i equivalent to the variables ei for a single pattern P in the model Mi1 as
well as the associated sum constraint. Of course, this assumes to have computed in advance
all the possible fragments of each pattern of EP . This defines the model M1

m1
.

In order to obtain pairwise disjoint patterns (model M3
m1

), one must add to the model
M1

m1
the mutual exclusion clauses ej

i = 0 ∨ ej′

i′ = 0 for each pair of overlapping fragments
{F j

i , F j′

i′ } (i.e. fragments such that (F j
i+ ∪ F j

i− ∪ F j
i◦ ∪ F j

i∗) ∩ (F j′

i′+ ∪ F j′

i′− ∪ F j′

i′◦ ∪ F j′

i′∗)).
To share only vacuum (model M3

m1
), we add, to the model M1

m1
, constraints of the

form ej
i = 0 ∨ ej′

i′ = 0 as soon as F j
i and F j′

i′ can share a present hexagon (i.e. if (F j
i+ ∩

F j′

i′+) ∪ (F j
i+ ∩ F j′

i′◦) ∪ (F j
i◦ ∩ F j′

i′+) ̸= ∅)). Otherwise, if they share neutral hexagons, these
hexagons must be absent from the structure, which is ensured by posting the constraint
(ej

i = 1 ∧ ej′

i′ = 1) ⇒ xh = 0 for each hexagon h ∈ F j
i′◦ ∩ F j′

i′◦.

5.2 Second Model
We start with the general model M. Then, we add, for each pattern P j of EP , a set of
variables f j

i equivalent to the variables fi for a single pattern P in the model Mi2 as well as
all the associated constraints. However, for each table constraint defining the pattern P j ,
we introduce a Boolean variable tj into its scope. This variable is set to 1 if the associated
configuration is obtained after applying an axial symmetry on P j , 0 otherwise. Thus, the
table will list all valid configurations obtained from the pattern P j or its image by an axial
symmetry. Taking into account axial symmetries in the case of the inclusion of several
patterns is required in order to list all the possibilities of combining the patterns with each
other. Several axes of symmetries are possible. However, it is sufficient to consider only one,
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as the others can be obtained by combining with 60° rotations. The use of the variable tj

within each table constraint defining P j guarantees that globally, one exploits either the
pattern P j if tj is set to 0, or its image by axial symmetry otherwise. This avoids considering
erroneous fragments of which one part would correspond to P j and another to its image
by symmetry. Note that, in the case of a single pattern, the use of this variable tj would
only add equivalent solutions to those already produced. The model we have just described
corresponds to case (1). We denote it M1

m2
.

Then, to deal with the case (2) allowing sharing only absent hexagons, we take the
model M1

m2
and add mutual exclusion constraints for the present hexagons. This amounts

to posting the following constraint for each hexagon h of the coronenoid of size k(n):
xh = 1 ⇒ Count({f1

h , . . . , f ℓ
h}, {1 . . . , nEP

}) ≤ 1 with nEP
= max

P j∈EP

nP j . In other words, if

the hexagon h is present, it can participate in at most one fragment. We denote M2
m2

this
model.

Finally, in order to consider pairwise disjoint patterns (case (3)), we need to consider
hexagons that might be shared outside the coronenoid of size k(n). To do this, we define the
order kEP

of the set EP as the maximum order of a pattern P j of EP . Then, we consider
the model M1

m2
but in a coronenoid of size k(n) + kEP

. In other words, we add to M1
m2

a
variable f j

i per hexagon located outside the coronenoid of size k(n) and per pattern P j . Since
all hexagons are represented explicitly, the table constraints are defined taking into account
these new variables and the Count constraints of M1

m2
for negative or neutral hexagons j′

of the P j pattern are now of the form Count({f j
1 , . . . , f j

n′
c
}, {j′}) = 1. Finally, we add a

mutual exclusion constraint Count({f1
h , . . . , f ℓ

h}, {1 . . . , nEP
}) = 1 for each hexagon h of the

coronenoid of size k(n) + kEP
. We denote M3

m2
this model.

5.3 Third Model
The principle is the same as for the two previous models. For each pattern P j of EP , we add
to the model M a set of variables sj

i equivalent to the variables si used for a single pattern
P in the model Mi3 as well as all the associated constraints. By doing so, we obtain the
model M1

m3
corresponding to case (1). Since the model Mi3 depends on the order of the

considered pattern, the generated structures will have to be embedded in a coronenoid of
size k(n) + kEP

. Of course, as in Mi3 , each pattern must be preprocessed beforehand in
order to remove any ambiguity.

Then, we can extend this model to the model M3
m3

in order to take into account pairwise
disjoint patterns, by adding the mutual exclusion constraint alldifferent({s1

1, . . . , s1
nP 1 } ∪

. . . ∪ {sℓ
1, . . . , sℓ

n
P ℓ

}).
Finally, the model M2

m3
corresponding to case (2) is obtained from the model M1

m3

model, by adding the following constraints:
alldifferent({sj

i |j ∈ {1, . . . , ℓ}, i ∈ P j
+}) which expresses that the positive hexagons in

xG are pairwise disjoint,
∀j, j′ ∈ {1, . . . , ℓ}, j < j′, ∀i ∈ P j

◦ , ∀i′ ∈ P j′

◦ , sj
i = sj′

i′ ⇒ sj
i > nc ∨ Element({xz|z ∈

{1, . . . , nc}}, sj
i ) = 0)2 which expresses the fact that if two neutral hexagons designate

the same hexagon of xG, then the corresponding vertex does not appear in xG.
∀j, j′ ∈ {1, . . . ℓ}, j ̸= j′, ∀i ∈ P j

◦ , ∀i′ ∈ P j′

+ , sj
i ̸= sj′

i′ which prohibits having the same
hexagon of xG for a neutral hexagon and a positive hexagon of two different patterns.

2 As a reminder, the constraint Element(Y, j) ⊙ k is satisfied if the value of the j-th variable of Y satisfies
the condition with respect to the operator ⊙ and the value k.
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6 Others Problems About Patterns

We now turn to some related problems around patterns. First, we deal with the exclusion of
a pattern before showing how to constraint the number of occurrences of a given pattern.

6.1 Generating Structures Excluding a Pattern
We now aim to generate all the structures having n hexagons and not containing a given
pattern P . The reasoning followed for the models Mi2 and Mi3 seems to be unsuitable
because we would have to guarantee that there exists no suitable fi numbering or isomorphic
subgraph. Therefore, we follow here the same reasoning as for the model Mi1 . More precisely,
we start from the model M and add to it a variable ei per possible fragment in a coronenoid
of size k(n). Each variable ei is true if the constraint

∧
j∈Fi−

xj = 0 ∧
∧

j∈Fi+

xj = 1 is satisfied

(i.e. the fragment is present in the structure). Finally, we set a sum constraint
∑

j ej = 0.
This model is denoted M1

e1
. An equivalent formulation consists in representing directly each

fragment Fi as a nogood
∨

j∈Fi−

xj = 1 ∨
∨

j∈Fi+

xj = 0, leading to a model denoted M2
e1

.

6.2 Generating Structures by Constraining the Number of Occurrences
Some constraints on the number of occurrences of a pattern P are easy to model. For
example, to generate benzenoid structures with at least k pairwise disjoint occurrences of
the pattern P , one can use any model among the models M3

m1
, M3

m2
and M3

m3
and a set

EP consisting of k times the pattern P . Others are a bit trickier. In order to make easier
the expression of such constraints, we define a variable ne which represents the number of
occurrences of the pattern P contained in the generated structure and on which we will place
the appropriate constraints according to the needs of the chemists. The variable ne has the
domain {0, . . . , kmax} with kmax the maximum number of occurrences that the structure
can contain. By default, if no information is given as input on kmax, we take kmax =

⌊
n

|P+|

⌋
.

Once again, the approach followed in the model Mi1 seems to be the most appropriate.
Thus, starting from the model Mi1 , we integrate the variable ne. In addition to the variables
ei introduced for each possible fragment, we add a Boolean variable e′

i per fragment. The
variable e′

i is true if the fragment Fi is present in the pattern. This is ensured by adding,
for each fragment Fi the constraint

∧
j∈Fi−

xj = 0 ∧
∧

j∈Fi+

xj = 1 ⇒ e′
i = 1. Then, as some

fragments may share some hexagons, we add mutual exclusion constraints, with, for each
hexagon h, the constraint

∑
i|h∈Fi

e′
i ≥ 1 ⇒

∑
i|h∈Fi

ei = 1 (given that Fi = Fi+ ∪Fi− ∪Fi◦ ∪Fi∗).

Thus, this guarantees that if a hexagon participates simultaneously in several fragments,
only one of these fragments is considered as present. Finally, the constraint

∑
j

ej = ne allows

us to compute the number of occurrences on which we can then easily put any arithmetic
constraint. It is also possible to use this variable to find the structures maximizing the
number of occurrences of the pattern.

7 Experiments

In this section, we assess empirically the different proposed models. To this end, we consider
the eight patterns described in Figures 5(a)-(g) and Figure 3(a) from [34] and vary the
number n of hexagons present in the structures from the number of positive hexagons in
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Figure 5 The patterns used as benchmarks in addition to the pattern deep bay: armchair edge
(a), C3H3 protusion (b), C4H4 protusion (c), shallow armchair bay (d), ultra deep bay (e), zigzag
bay (f), shortened to zigzag in [26], and zigzag edge (g). Two of the four benzenoid structures of
four hexagons containing an instance of the pattern armchair edge (h) and (i). One of the three
benzenoid structures of four hexagons containing no instance of the pattern armchair edge (j).

Table 2 The number of instances which are successfully processed (#I) and the related cumulative
runtime in hours (Time) for each possible variable and value heuristics and for model Mi1 , Mi2

and Mi3 .

Mi1 Mi2 Mi3

inc desc inc desc inc desc

#I Time #I Time #I Time #I Time #I Time #I Time
dom 55 1.44 55 1.42 55 1.51 55 1.49 55 1.54 55 1.52

dom/wdeg 47 23.58 48 17.71 47 22.07 48 16.90 48 20.93 48 17.40
dom/wdegca.cd 50 12.56 55 4.85 50 15.47 50 15.35 49 16.47 50 14.76

CHS 43 27.06 41 28.97 47 23.04 48 20.69 48 20.42 48 17.43

the pattern to 9. This allows us to produce 55 instances (resp. 135) of the problem of
generating structures containing/excluding one pattern (resp. containing two patterns). Our
implementation is based on Choco (v. 4.10.7). We consider four state-of-the-art variable
ordering heuristics namely dom/wdeg [2], dom/wdegca.cd [33], CHS [15] and dom. This
latter chooses as next variable the first variable in the lexicographical ordering having the
smallest domain. Regarding the value ordering heuristic, we use the heuristics inc and desc

which choose respectively the smallest and the largest value first. The experiments are carried
out on DELL PowerEdge R440 servers with an Intel Xeon 4112 2.6 GHz processor and 32 GB
of memory. The runtime for processing an instance is limited to 2 hours. We do not compare
our approach with an existing method because, to our knowledge, no such method has been
proposed yet, probably due to the fact that this line of research has emerged recently.

First, from Table 2, we can observe that, whatever the model (among Mi1 , Mi2 and
Mi3) or the variable heuristic, the best results are generally obtained with the value heuristic
desc. This can be explained by the fact that each model mainly involves Boolean variables.
For instance, assigning 1 to a variable xi amounts to create a hexagon and so allow us to
exploit more quickly most of the constraints of the general model M. Now, regarding the
variable heuristic, the most sophisticated heuristics are not those leading to the best results.
Indeed, whatever the model, the heuristic dom turns to be the more relevant for our problem.
Moreover, as shown in Figure 6(a), dom performs better than dom/wdegca.cd (which is the
best variable heuristic after dom) on all the considered instances. This may seem surprising,
but, if we look closely at the definition of dom, we can note that it corresponds to start the
search with the hexagons located on the top edge of the coronenoid. At the same time, the
more sophisticated heuristics may be penalized by the uniformity of the problem. Finally, for
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Table 3 The number of instances which are successfully processed (#I) and the related cumulative
runtime in hours (Time) for each possible variable and value heuristics and for model M3

m1 , M3
m2

and M3
m3 .

M3
m1 M3

m2 M3
m3

inc desc inc desc inc desc

#I Time #I Time #I Time #I Time #I Time #I Time
dom 135 6.82 135 6.85 129 44.37 135 17.76 135 7.68 135 7.78

dom/wdeg 100 100.16 113 74.69 105 92.48 108 77.77 106 82.99 113 63.06
dom/wdegca.cd 121 51.45 134 25.64 93 101.77 105 81.44 96 102.07 105 79.44

CHS 85 116.19 83 120.62 86 106.24 70 136.93 108 75.84 110 66.61

given value and variable heuristics, we can note that the models often obtain close results. If
we focus our attention on dom and desc (see Figures 6(b)-(d)), Mi1 turns out to perform
slightly better than Mi2 , which itself is better than Mi3 . Maybe, this could be explained by
the fact that all the models are based on the general model M to which some variables and
constraints are added. Indeed, at the end, the models have similar numbers of constraints
while the model Mi1 requires a few more variables than the other models.

If we are now interested in the generation of structures containing two given patterns, we
can note that the observed trends in Table 3 are quite similar to those obtained for a single
pattern. Again, the value heuristic desc leads to the best results. Regarding the variable
heuristic, dom is once more the most relevant and robust one. A slight difference from the
single pattern case is that the efficiency of the other variables heuristic seems to depend on
the model we consider. Beyond, we can observe that the differences between the models,
whatever the variable heuristic, are more pronounced. Globally, the model M3

m1
turns out

to be the best one followed by the model M3
m3

while the model M3
m2

turns out to perform
worst. This is clearly visible on Figures 6(e)-(g) when considering the heuristics dom and
desc. This result seems to be correlated with the number of constraints which is twice as
large for the model M3

m2
than for M3

m1
or M3

m3
.

Regarding the exclusion of a given pattern, the trends we observe for value and variable
heuristics are similar to previous comparisons. By lack of place, we do not provide more
details. If we compare the two models M1

e1
and M2

e1
(see Figure 6(h)), it appears that

the latter is the most efficient. Using the heuristics dom and desc, both achieve the same
exploration of the search space, but the model M2

e1
does not consider additional variables

w.r.t. the general model M. Moreover, it only requires some clauses as additional constraints.
Finally, in Figure 7(b), we compare the average number of solutions (some of them are

depicted in Figures 5(i)–(j) and 7(a)) with the number of benzenoid structures depending on
the considered problem and the number n of hexagons. This figure first allows us to observe
the growth of the number of structures with n. Then, we can also notice that we have to
compute a large number of benzenoid structures. For instance, for the inclusion of a single
pattern, we have to consider about 70% of all the benzenoid structures.

8 Conclusion and Perspectives

We have presented an approach based on CP to generate exhaustively benzenoid structures
satisfying certain constraints around patterns. For this purpose, several models have been
considered and compared. The model based on the identification of all the possible locations of
a fragment turns out to be the most robust. It leads to an efficient solving while being able to
deal with several questions about patterns (inclusion or exclusion, number of occurrences, . . . ).
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Figure 6 Comparison of the variable heuristics dom and dom/wdegca.cd based on the runtime (in
seconds) for Mi1 and the value heuristic desc. Pairwise comparison of models based on the runtime
(in seconds) when using the variable heuristic dom and the value heuristic desc (b)-(h).
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Figure 7 One of the twenty-five benzenoid structures of seven hexagons containing the patterns
armchair edge and deep bay (a). Number of benzenoid structures (all) and average number of
benzenoid structures containing a given pattern (one), two given patterns (two) or excluding a given
pattern (none) (b).

In a way, we have proposed a modeling brick per issue which can be combined each other or
with global properties (e.g. those defined in [5]) depending on the needs of chemists. To our
knowledge, this work provides chemists with the first tool for generating benzenoid structures
satisfying certain conditions on their edge topology. It would be useful in validating their
theoretical models or identifying the most promising benzenoid structures before trying to
synthesize them, what are currently hot topics in chemistry.

As a consequence, a first perspective of this work will be to study its repercussions from
the viewpoint of chemistry (e.g. by generating all the structures containing some given
patterns and applying to them some theoretical chemistry tools [7, 4]). Concerning the
modeling, other forms of interaction between two patterns can be of interest to chemists (e.g.
by sharing a positive hexagon only if the two patterns do not use the same bonds). Finally,
several avenues can be explored to improve the practical efficiency of the approach.
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Abstract
Conflict Driven Clause Learning (CDCL) solvers are known to be efficient on structured instances
and manage to solve ones with a large number of variables and clauses. An important component in
such solvers is the branching heuristic which picks the next variable to branch on. In this paper, we
evaluate different strategies which combine two state-of-the-art heuristics, namely the Variable State
Independent Decaying Sum (VSIDS) and the Conflict History-Based (CHB) branching heuristic.
These strategies take advantage of the restart mechanism, which helps to deal with the heavy-tailed
phenomena in SAT, to switch between these heuristics thus ensuring a better and more diverse
exploration of the search space. Our experimental evaluation shows that combining VSIDS and
CHB using restarts achieves competitive results and even significantly outperforms both heuristics
for some chosen strategies.
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1 Introduction

Given a CNF Boolean formula ϕ, solving the Satisfiability (SAT) problem consists in
determining whether there exists an assignment of the variables which satisfies ϕ. SAT is
at the heart of many applications in different fields and is used to model a large variety of
crafted and real-world problems [33, 17, 24]. It is the first decision problem proven to be
NP-complete [16]. Nevertheless, modern solvers based on Conflict Driven Clause Learning
(CDCL) [34] manage to solve instances involving a huge number of variables and clauses.
An important component in such solvers is the branching heuristic which picks the next
variable to branch on. The Variable State Independent Decaying Sum (VSIDS) [35] has
been the dominant heuristic since its introduction two decades ago. Recently, Liang and al.
devised a new heuristic for SAT, called Conflict History-Based (CHB) branching heuristic [29],
and showed that it is competitive with VSIDS. In the last years, VSIDS and CHB have
dominated the heuristics landscape as practically all the CDCL solvers presented in recent
SAT competitions and races incorporate a variant of one of them.

In recent years, combining VSIDS and CHB has shown promising results. For instance,
the MapleCOMSPS solver, which won several medals in the 2016 and 2017 SAT competitions,
switches from VSIDS to CHB after a set amount of time, or alternates between both heuristics
by allocating the same duration of restarts to each one [31, 28]. Yet, we still lack a thorough
analysis on such strategies in the state of art as well as a comparison with new promising
methods based on machine learning in the context of SAT solving. Indeed, recent research
has also shown the relevance of machine learning in designing efficient search heuristics for
SAT [29, 30, 25] as well as for other decision problems [42, 41, 36, 13]. One of the main
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challenges is defining a heuristic which can have high performance on any considered instance.
It is well known that a heuristic can perform very well on a family of instances while failing
drastically on another. To this end, several reinforcement learning techniques can be used,
specifically under the Multi-Armed Bandit (MAB) framework, to pick an adequate heuristic
among CHB and VSIDS for each instance. These strategies also take advantage of the restart
mechanism in modern CDCL algorithms to evaluate each heuristic and choose the best one
accordingly. The evaluation is usually achieved by a reward function, which has to estimate
the efficiency of a heuristic by relying on information acquired during the runs between
restarts. In this paper, we want to compare these different strategies and, in particular, we
want to know whether incorporating strategies which switch between VSIDS and CHB can
achieve a better result than both heuristics and bring further gains to practical SAT solving.

The paper is organized as follows. An overview of CDCL algorithms is given in Section 2.
The heuristics VSIDS and CHB as well as the Multi-Armed Bandit Problem are recalled in
Section 3. Different strategies to combine VSIDS and CHB through restarts are described in
Section 4 and experimentally evaluated and compared in Section 5. Finally, we conclude and
discuss future work in Section 6.

2 Preliminaries

Let X be the set of propositional variables. A literal l is a variable x ∈ X or its negation
x. A clause is a disjunction of literals. A formula in Conjunctive Normal Form (CNF)
is a conjunction of clauses. An assignment I : X → {true, false} maps each variable to
a Boolean value and can be represented as a set of literals. A literal l is satisfied by an
assignment I if l ∈ I, else it is falsified by I. A clause is satisfied by an assignment I if at least
one of its literals is satisfied by I, otherwise it is falsified by I. A CNF formula is satisfiable
if there exists an assignment I which satisfies all its clauses, else it is unsatisfiable. Solving
the Satisfiability (SAT) problem consists in determining whether a given CNF formula is
satisfiable.

Although SAT is NP-complete [16], Conflict Driven Clause Learning [34] (CDCL) solvers
are surprisingly efficient and manage to solve instances involving a huge number of variables
and clauses. Such solvers are based on backtracking algorithms which rely on powerful branch-
ing heuristics as well as several solving techniques, namely Boolean Constraint Propagation
(BCP), clause learning and restarts among others. In each step, BCP is applied to simplify
the formula by propagating literals in unit clauses, i.e. clauses with one literal. If BCP
is no longer possible, a branching heuristic picks a variable based on information acquired
throughout the search. More importantly, when a conflict is detected, i.e. a clause is falsified
by the current assignment, the steps of the algorithm are retraced and clauses involved in
the conflict are resolved until the First Unit Implication Point (FUIP) in the implication
graph [34]. The clause produced by this process is learnt, i.e. added to the formula. This
enables to avoid revisiting an explored subspace of the search tree. Restarts are also an
important component in CDCL solvers, initially introduced to deal with the heavy-tailed
phenomena in SAT [19]. At the beginning of each restart, the solver parameters and its data
structures are reinitialized in order to start the search somewhere else in the search space
without discarding learnt clauses. There are two main restart strategies namely geometric
restarts [40] and Luby restarts [32]. Most modern CDCL solvers use Luby restarts as it was
shown that this policy outperforms geometric restarts [20].
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3 Related Work

3.1 Branching Heuristics for SAT
The branching heuristic is one of the most important components in modern CDCL solvers
and has a direct impact on their efficiency. It can be considered as a function that ranks
variables using a scoring function, updated throughout the search. In this section, we describe
two of the main state-of-the-art branching heuristics that we will consider in this work.

3.1.1 VSIDS
The Variable State Independent Decaying Sum (VSIDS) [35] has been the most used heuristic
since its introduction around two decades ago. This heuristic maintains a floating point
score for each variable, called activity and initially set to 0. When a conflict occurs, the
activity of some variables is bumped, i.e. increased by 1. Furthermore, the variable activities
are decayed periodically, usually after each conflict. More precisely, variable activities are
multiplied by a decaying factor in ]0, 1[. There are several variants of VSIDS. For instance,
MiniSat [18] bumps the activities of variables appearing in the learnt clause while Chaff [35]
does it for all the variables involved in the conflict, i.e. the resolved variables including those
in the learnt clause.

3.1.2 CHB
The Conflict History-Based (CHB) branching heuristic was recently introduced in [29]. This
heuristic based on the Exponential Recency Weighted Average (ERWA) [38] favors the
variables involved in recent conflicts as in VSIDS. CHB maintains a score (or activity) Q(x)
for each variable x, initially set to 0. The score Q(x) is updated when a variable x is branched
on, propagated, or asserted using ERWA as follows:

Q(x) = (1 − α) × Q(x) + α × r(x).

The parameter 0 < α < 1 is the step-size, initially set to 0.4 and decayed by 10−6 after every
conflict to a minimum of 0.06. r(x) is the reward value for variable x which can decrease or
increase the likelihood of picking x. Higher rewards are given to variables involved in recent
conflicts according to the following formula:

r(x) = multiplier

Conflicts − lastConflict(x) + 1 .

Conflicts denotes the number of conflicts that occurred since the beginning of the search.
lastConflict(x) is updated to the current value of Conflicts whenever x is present in the
clauses used by conflict analysis. multiplier is set to 1.0 when branching, propagating or
asserting the variable that triggered the score update lead to a conflict, else it is set to 0.9.
The idea is to give extra rewards for variables producing a conflict.

3.2 Multi-Armed Bandit Problem
A Multi-Armed Bandit (MAB) is a reinforcement learning problem consisting of an agent
and a set of candidate arms from which the agent has to choose while maximizing the
expected gain. The agent relies on information in the form of rewards given to each arm
and collected through a sequence of trials. An important dilemma in MAB is the tradeoff
between exploitation and exploration as the agent needs to explore underused arms often
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enough to have a robust feedback while also exploiting good candidates which have the
best rewards. The first MAB model, stochastic MAB, was introduced in [26] then different
policies have been devised for MAB [1, 4, 6, 38, 39]. In recent years, there was a surge of
interest in applying reinforcement learning techniques and specifically those related to MAB
in the context of SAT solving. In particular, CHB [29] and LRB [30] (a variant of CHB) are
based on ERWA [38] which is used in non-stationary MAB problems to estimate the average
rewards for each arm. Furthermore, a new approach, called Bandit Ensemble for parallel
SAT Solving (BESS), was devised in [27] to control the cooperation topology in parallel
SAT solvers, i.e. pairs of units able to exchange clauses, by relying on a MAB formalization
of the cooperation choices. MAB frameworks were also extensively used in the context of
Constraint Satisfaction Problem (CSP) solving to choose a branching heuristic among a set
of candidate ones at each node of the search tree [42] or at each restart [41, 13]. Finally,
simple bandit-driven perturbation strategies to incorporate random choices in constraint
solving with restarts were also introduced and evaluated in [36]. The MAB framework we
introduce in the context of SAT in Section 4.2 is closely related to those introduced in
[41, 36] in the sense that we also pick an adequate heuristic at each restart. In particular,
our framework is closer to the one in [36] in terms of the number of candidate heuristics
and the chosen reward function and yet it is different in the sense that we consider two
efficient state-of-the-art heuristics instead of perturbing one through random choices which
may deteriorate the efficiency of highly competitive SAT solvers.

4 Strategies to Combine VSIDS and CHB Using Restarts

In this section, we describe different strategies which take advantage of the restart mechanism
in SAT solvers to combine VSIDS and CHB. First, we describe simple strategies which are
either static or random. Then, we describe reinforcement learning strategies, in the context
of a MAB framework, which rely on information acquired through the search to choose the
most relevant heuristic at each restart.

4.1 Static and Random Strategies

Hereafter, we describe three different strategies, one of which is random while the other two
are static. These strategies are defined as follows:

Random Strategy (RDR): This strategy randomly picks a heuristic among VSIDS and
CHB at each restart with equal probabilities, i.e. each heuristic is assigned a probability
of 1

2 . This strategy is denoted RDR in contrast with RDD which randomly picks a
heuristic at each decision.
Single Switch Strategy (SS): This strategy switches from VSIDS to CHB after a set
amount of time and was used in the 2016 version of MapleCOMSPS [31]. We maintain
the threshold time in which the heuristic is switched to t

2 where t is the timeout as in [31].
Round Robin Strategy (RR): This strategy alternates between VSIDS and CHB in
the form of a round robin. This is similar to the strategy used in the latest version of
MapleCOMSPS [28]. However, since we want to consider strategies which are independent
from the restart policy and which only focus on choosing the heuristics, we do not assign
equal amounts of restart duration (in terms of number of conflicts) to each heuristic and,
instead, let the duration of restarts augment naturally with respect to the restart policy
of the solver.
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4.2 Multi-Armed Bandit Strategies

In order to use MAB strategies, we first introduce a MAB framework for SAT. Let A =
{a1, . . . , aK} be the set of arms for the MAB containing different candidate heuristics.
The trials are the runs, i.e. executions, of the backtracking algorithm between restarts.
The proposed framework selects a heuristic ai where i ∈ {1 . . . K} at each restart of the
backtracking algorithm according to two different strategies that we will describe below. To
choose an arm, MAB strategies generally rely on a reward function calculated during each
run to estimate the performance of the chosen arm. The reward function plays an important
role in the proposed framework and has a direct impact on its efficiency. We choose a reward
function that estimates the ability of a heuristic to reach conflicts quickly and efficiently. If t

denotes the current run, the reward of arm a ∈ A is calculated as follows:

rt(a) = log2(decisionst)
decidedV arst

.

decisionst and decidedV arst respectively denote the number of decisions and the number of
variables fixed by branching in the run t. Consequently, the earlier conflicts are encountered in
the search tree and the fewer variables are instantiated, the greater the assigned reward value
will be for the corresponding heuristic. rt(a) is clearly in [0, 1] since decisionst ≤ 2decidedV arst .
This reward function is adapted from the explored sub-tree measure introduced in [36].

Next, we describe strategies for MAB which belong to a family of well know strategies,
referred to as Upper Confidence Bound (UCB) [1, 5, 4]. For this family, the following
parameters are maintained for each candidate arm a ∈ A:

nt(a) is the number of times the arm a is selected during the t − 1 previous runs,
r̂t(a) is the empirical mean of the rewards of arm a over the t − 1 previous runs.

We consider two UCB strategies, UCB1 and MOSS (Minimax Optimal Strategy in the
Stochastic case). These strategies select the arm a ∈ A that respectively maximizes UCB1(a)
and MOSS(a) defined below. The left-side terms of UCB1(a) and MOSS(a) are identical
and aim to put emphasis on arms that received the highest rewards. Conversely, the right-side
terms ensure the exploration of underused arms. The main difference between UCB1 and
MOSS is that the latter also takes into account the number of arms K.

UCB1(a) = r̂t(a) +

√
4.ln(t)
nt(a)

MOSS(a) = r̂t(a) +

√
4

nt(a) ln

(
max

(
t

K.nt(a) , 1
))

Finally, a strategy for MAB is evaluated by its expected cumulative regret, i.e. the difference
between the cumulative expected value of the reward if the best arm is used at each restart
and its cumulative value for all the runs. The expected cumulative regret RT is formally
defined below, where at ∈ A denotes the arm chosen at run t and T denotes the total number
of runs. In particular, UCB1 and MOSS respectively guarantee an expected cumulative
regret no worse than O(

√
K.T. ln T ) and O(

√
K.T ) [5, 4].

RT = max
a∈A

T∑
t=1

E[rt(a)] −
T∑

t=1
E[rt(at)]
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5 Experimental Evaluation

In this section, we describe our experimental protocol and then we evaluate and compare the
different strategies presented in Section 4.

5.1 Experimental Protocol
We consider the benchmarks from the Main Track of the last three SAT Competitions/Races,
totalling to 1,200 instances. For our experiments, we use the state-of-the-art solver Kissat [10]
which won first place in the main track of the SAT Competition 2020. Note that this solver
is a condensed and improved reimplementation of the reference and competitive solver
CaDiCaL [9, 10] in C. Data provided by Armin Bierre and Marjin Heule1 show that Kissat is
highly competitive and outperforms all-time winners of SAT competitions/Races particularly
on the 2020 and 2019 Benchmarks. Kissat alternates between stable and non-stable phases as
is the case in Cadical [9], renamed to stable mode and focused mode in [10]. VSIDS is used
in stable phases which mainly target satisfiable instances. During non-stable phases targeting
unsatisfiable instances, the solver uses the Variable Move-To-Front (VMTF) heuristic [37, 12],
in which analyzed variables are moved to the front of the decision queue. It is important
to note that the only modified components of the solver are the decision component and
the restart component, i.e. all the other components as well as the default parameters of
the solver are left untouched. Even the changes to the restart component are as minimal
as possible, i.e. we maintain the phase alternation mechanism and the restart policies set
for each mode as described in [10]. Furthermore, we maintain the VSIDS variant already
implemented in Kissat, called Exponential VSIDS (EVSIDS) [8, 12], which is based on Chaff’s
where all analyzed variables are bumped after every conflict. Therefore, in the experimental
evaluation, V SIDS corresponds to default Kissat. Moreover, we augment the solver with the
heuristic CHB as specified in [29] except that we update the scores of the variables in the last
decision level after BCP. In addition, we have implemented the MAB framework specified in
Section 4 with A = {V SIDS, CHB}. The rewards for UCB1 and MOSS are both initialized
by launching each heuristic once during the first restarts. Finally, The experiments are
performed on Dell PowerEdge M620 servers with Intel Xeon Silver E5-2609 processors under
Ubuntu 18.04 with a timeout of 5,000 s for each instance.

5.2 Decisions vs Restarts
First, we would like to emphasize that taking advantage of the restart mechanism to combine
VSIDS and CHB was not an arbitrary choice. Indeed, we conducted an experiment to help us
choose the appropriate level, i.e. decisions or restarts, to combine VSIDS and CHB. To this
end, we implemented and tested the two random strategies RDD and RDR which randomly
chose a heuristic among VSIDS and CHB respectively in each decision and in each restart.
The average results (over 10 runs with different seeds) of RDD and RDR on the whole
benchmark are reported in Table 1 and indicate that RDR outperforms RDD with a gain of
more than 2% in terms of solved instances and 3.5% in terms of solving time with a penalty
of 10,000 s for unsolved instances. This is not surprising as the structures needed for VSIDS
and CHB need to be maintained and updated simultaneously which can be quite costly. On
the other hand, they are used independently in RDR during each restart, i.e. only the chosen
heuristic is used and its structures updated during the restart. Furthermore, combining both

1 Data available on http://fmv.jku.at/kissat/

http://fmv.jku.at/kissat/
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Table 1 Comparison between VSIDS, CHB, the different strategies and the VBS (over VSIDS
and CHB) in terms of the number of solved instances in Kissat. For each row, the best results
without considering the VBS are written in bold.

VSIDS CHB RDD RDR SS RR UCB1 MOSS VBS

Competition 2018
(400 instances)

SAT 160 159 160 164 163 165 167 168 169
UNSAT 111 109 109 110 113 110 110 110 113
TOTAL 271 268 268 274 276 275 277 278 282

Race 2019
(400 instances)

SAT 158 149 155 158 154 162 161 162 162
UNSAT 97 95 95 96 96 96 96 97 99
TOTAL 255 244 250 254 250 258 257 259 261

Competition 2020
(400 instances)

SAT 131 146 146 151 147 152 154 156 157
UNSAT 121 119 117 120 118 120 120 122 123
TOTAL 252 265 263 271 265 272 274 278 280

TOTAL
(1,200 instances)

SAT 449 454 461 473 464 479 482 486 488
UNSAT 329 323 321 326 327 326 326 329 335
TOTAL 778 777 782 799 791 805 808 815 823

heuristics at the decision level can cause interference and may not allow each heuristic to
conduct robust learning since they are being constantly interchanged. Surprisingly, both
versions are competitive with CHB and VSIDS. In particular, RDR outperforms them and
solves, on average, 21 additional instances (+ 2.7%) compared to the best heuristic. This is
due to randomization and diversification which help to avoid heavy tail phenomena in SAT
and which can therefore improve the performance of SAT solvers [21, 19].

5.3 Comparison of Strategies

5.3.1 Number of Solved Instances
In Table 1, we present the results in terms of solved instances for CHB and VSIDS as
standalone heuristics and for the different strategies presented in Section 4. We also include
the results of the Virtual Best Solver (VBS) over VSIDS and CHB. Before discussing the
results, we recall that “improving SAT solvers is often a cruel world. To give an idea,
improving a solver by solving at least ten more instances (on a fixed set of benchmarks
of a competition) is generally showing a critical new feature. In general, the winner of a
competition is decided based on a couple of additional solved benchmarks” [3].

The results clearly indicate that MOSS outperforms VSIDS and CHB as well as all the
other strategies. Indeed, MOSS manages to solve 37 additional instances in total (+4.8%)
compared to the best heuristic (among VSIDS and CHB). The UCB1 (resp. RR) strategy
is also competitive and manages to solve 30 (resp. 27) additional instances in total which
corresponds to an increase of 3.9% (resp. 3.5%) in terms of solved instances compared to
the best heuristic. The strategies UCB1 and RR remain comparable with a difference of
3 instances in favor of UCB1. SS also outperforms VSIDS and CHB although to a lesser
degree as it solves 13 additional instances only which is worse than RDR. If we focus on
the individual yearly benchmarks, we observe that although the overall results obtained by
VSIDS and CHB are comparable, they have different behaviours on each benchmark and
yet MOSS, UCB1 and RR manage to capture the behaviour of the best heuristic and even
outperform it on each individual benchmark. In particular, MOSS maintains its top rank
on the individual benchmarks with an average of 8 (resp. 17) additional instances for each
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one compared to the best (resp. worst) heuristic. Moreover, the results achieved by MOSS
are very close to the VBS. Indeed it achieves 99% (resp. 99.6%) of the performance of the
VBS on the whole benchmark in terms of the number of solved instances (resp. satisfiable
instances) while the best heuristic does not exceed 95% (resp. 93%).

However, it is important to note that the gain is mainly in satisfiable instances whereas, for
unsatisfiable instances, all the strategies (except RDD) remain comparable to both heuristics
and slightly outperform CHB but not VSIDS. Nevertheless, they remain competitive with
VSIDS and particularly MOSS which solves the same number of unsatisfiable instances as
VSIDS. This shows that MOSS is a robust strategy as it is able to improve the performance
globally and on each individual benchmark without decreasing it for unsatisfiable instances.
Note that the observed behaviour of these different strategies on unsatisfiable instances may
be due to different factors. First, the results in terms of unsatisfiable instances seem very
homogeneous for each year and are very close to the results obtained by the VBS as both
heuristics (resp. the best heuristic) achieve more than 96% (resp. 98%) of its performance in
terms of the number of unsatisfiable instances. Since our motivation is to bridge the gap
between the heuristics and the VBS with these strategies, it is expected that this would be
very difficult for unsatisfiable instances, for which the gap is very small already. It is also
very difficult to simultaneously improve the performance on both satisfiable and unsatisfiable
instances. Notice how SS which seems to work better for unsatisfiable instances especially in
terms of solving time (refer to Section 5.3.2) fails on satisfiable instances compared to the
three top strategies. Another possible factor for this behaviour is Kissat’s restarting policy
which alternates between the stable mode and focused mode [10]. The heuristics VSIDS
and CHB are only used in the stable mode while the focused mode targets unsatisfiable
instances. This may also help to explain the homogeneity of the results obtained by the
solver for unsatisfiable instances with respect to the different heuristics and strategies.

5.3.2 Solving Time
In this section, we want to evaluate the different strategies in terms of solving time. In
Figure 1, we represent the number of solved instances as a function of the CPU time for
VSIDS, CHB, the static and MAB strategies and the VBS on the whole benchmark. One
would think that MAB based strategies in this regard would be worse than the considered
heuristics and/or other strategies as UCB1 and MOSS need to conduct continuous exploration
in order to ensure the selection of the most adequate arm. This does not seem to be the case.
In fact, conducting exploitation with the best arm and alternating the heuristics seems to
offset this disadvantage. We observe that MOSS is the best strategy as it achieves 6.1% gain
in terms of solving time on the whole benchmark compared to the best heuristic if we give a
penalty 10,000 s to unsolved instances while UCB1, RR and SS respectively achieve a gain
of 5.7%, 5.2% and 1.7%. This gain is substantial especially considering that we are working
on the solver Kissat which won the SAT competition 2020 with a remarkable performance.

We represent in Figure 2 the number of solved satisfiable and unsatisfiable instances
separately as a function of the CPU time for VSIDS, CHB, the static and MAB strategies
and the VBS on the whole benchmark. Notice how the gap between MOSS and the VBS
(and even UCB1 and RR) narrows if we consider the satisfiable instances only. On the other
hand, these top three strategies present a small gap in terms of solving time for unsatisfiable
instances compared to the best heuristic, i.e. VSIDS, while remaining comparable to CHB.
In particular, MOSS shows better results with respect to VSIDS and SS for instances whose
solving time exceeds 4,000 s. Surprisingly, although SS seems to be the worst strategy
overall and remains globally comparable to VSIDS and CHB while achieving a slight gain
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in solving time especially on instances whose solving time exceeds 4,000 s, it achieves the
best results in terms of solving time for unsatisfiable instances and is comparable to VSIDS
and the VBS in this regard. On the other hand, RR and UCB1 achieve substantial gain
while remaining comparable to each other and with results slightly in favor of UCB1. To
provide more detailed results, we represent in Figures 3, 4 and 5 the runtime comparison
per instance with VSIDS, CHB and the VBS respectively for the top three best strategies,
i.e. MOSS, UCB1 and RR. These figures confirm the trends that we observed above. More
interesting, we can note that, for a noticeable number of instances, MOSS, UCB1 or RR lead
to a more efficient solving than the VBS. In Figure 6, we represent the runtime comparison
per instance betwenn MOSS, UCB1 and RR. These figures show that MOSS performs better
than UCB1 and RR. Surprisingly, MOSS’s results are closer to RR than UCB1. However,
we will show in Section 5.3.4 that this is consistent with the observed behaviour of MOSS.
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Figure 1 Number of solved instances as a function of CPU time for VSIDS, CHB, static and
MAB strategies and the VBS with respect to the whole benchmark.
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5.3.3 Instance Families
In order to provide a more thorough analysis, we describe in Tables 2 and 3 the results
obtained by VSIDS, CHB, static and MAB strategies and the VBS on instance families
within the benchmark [23, 22, 7]. The best strategy, i.e. MOSS, manages to rank first
in 9 different families over 39 in total (23%), e.g. Antibandwidth, Bitcoin and Stedman
Triples. Interestingly, this strategy achieves remarkable results, which are better than those
of the VBS over VSIDS and CHB, for certain families such as Logical cryptanalysis,
RPHP and Station Repacking. SS also achieves the top performance on several different
families such as Factoring, Scrambled and SHA-1 Pre-image Attack. More precisely, SS
also manages to rank on top for 9 different families which shows the interest of this strategy
even though it ranks last overall compared to RR, UCB1 and MOSS. As for UCB1, it
achieves top rank in 6 different families. In particular, its performance on the families
Hgen, CNP and Keystream Generator Cryptanalysis is noteworthy since it manages to
outperform the VBS. On the other hand, RR ranks top in only 4 instance families but this
does not necessarily reflect its overall performance since it falls slightly behind the top ranked
heuristic/strategy in other families, yet this is clearly another point in favor of UCB1 as
a comparable strategy. Finally, VSIDS and CHB are ranked first in several families which
shows that these heuristics remain robust as standalone heuristics.

5.3.4 MAB Behaviour
In this section, we focus on the behaviour of MAB strategies and particularly the use of arms.
In Figures 7 and 8, we represent the percentage of use, i.e. percentage of restarts where each
arm gets chosen respectively by UCB1 and MOSS. We observe that both strategies alternate
between the heuristics but the percentages are mainly within the interval [40%, 60%] and
are often close to 50%. MOSS seems to choose in a more balanced way between VSIDS
and CHB in comparison to UCB1 which introduces more variations in its choices. This
behaviour is consistent with the observations made in Section 5.3.1 concerning Figure 6. The
fact that the percentages are mostly within a tight interval is not surprising considering
that the number of stable restarts in Kissat, during which heuristics are used, is usually
very low. To give an idea, the average number of stable restarts performed by Kissat for
instances solved with MOSS (resp. UCB1) is 765 (resp. 771) while the median value is much
lower and amounts to 313 (resp. 338). Therefore, the obtained percentages seem adequate
especially taking into account that these strategies need to achieve a good trade-off between
exploration and exploitation. Notice the consecutive dents and bumps in Figures 7 and
8 which correspond to an homogeneous behaviour within the same instance family in the
benchmark. It is important to note that, although the behaviour of MAB strategies may
seem close to RR, this is not exactly the case. Indeed, these strategies rely on the computed
reward to choose the most relevant arm during exploitation and especially when there is a
large gap between the performance of the heuristics, whereas RR is a static strategy and
cannot adapt its choices. This helps to explain the better results of the MAB strategies not
only in terms of solved instances but also in terms of solving time and particularly in the
case of MOSS. In fact, the remarkable performance of MOSS is also due to the fact that it
takes into account the number of arms and has better regret than UCB1.

5.4 On MAB strategies and Branching Heuristics
In this section, we discuss the relevance of choosing Upper Confidence Bound strategies in the
Multi-Armed Bandit framework and VSIDS and CHB as candidate heuristics. As mentioned
in Section 3.2, many strategies were divised and theoretically studied in the context of
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MAB and can therefore be used in our framework. For instance, we can mention two other
well-know strategies for MAB: ϵ-greedy [38] and EXP3 [6]. However, these strategies are
not deterministic, i.e. there is a factor of uncertainty or probability. Therefore, unlike UCB
strategies, they cannot always guarantee top performance and may produce different results
on the same benchmark. Furthermore, UCB strategies were shown relevant and more efficient
for similar MAB frameworks in the context of CSP [36, 41, 13]. This remains true in Kissat
as we observed, through extensive experimentation, that ϵ-greedy and EXP3 perform poorly
compared to UCB strategies and remain comparable to VSIDS and CHB.

In addition, notice that the MAB framework enables the use of several heuristics. In fact,
one would argue that adding more heuristics may enable to reach more families and instances
through diversification. However, recall that modern SAT solvers, and in particular Kissat,
are highly competitive and rely on powerful heuristics to achieve impressive results. A bad
heuristic or tuning of the parameters (e.g. the restart policy settings) can greatly deteriorate
the performance of a solver. Furthermore, practically all heuristics used in modern SAT
solvers are variants of VSIDS, which has been the dominant heuristic since its introduction
in 2001 [35]. Only recently CHB has been introduced and shown competitive with VSIDS
[29]. CHB has only one variant called LRB [30] but, through extensive experimentation,
CHB turned out to be more robust with respect to different solvers and settings. The results
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reported in Table 1 also show that CHB can reach new instances (the VBS achieves a gain of
more than 5.8% in terms of solved instances) while remaining competitive and comparable
overall with respect to VSIDS in the context of a highly competitive solver such as Kissat.

5.4.1 Kissat_MAB at the SAT Competition 2021

We submitted the solver Kissat augmented with a MAB framework relying on the UCB1
strategy to the SAT competition 20212 under the name Kissat_MAB [14]. This solver won
the Main Track of the competition and managed to solve 296 instances over 400 with a gap
of 8 instances compared to the second ranked solver. Kissat_MAB also placed first in the
Main SAT and NoLimits tracks. Compared to default Kissat, which also participated in the
competition under the name Kissat_sc2021_default with several new improvements over its
last version [11], Kissat_MAB achieves better results with 9 (resp. 11) additional solved (resp.
satisfiable) instances. Furthermore, Kissat_MAB remains highly competitive on unsatisfiable
instances and comparable to default Kissat as it managed to solve 148, only 2 instances less
than Kissat_sc2021_default. Notice that this gap can clearly be narrowed or even turned in
favor of Kissat_MAB if the MOSS strategy is used as shown in our experimental evaluation.
To summarize, the results of the SAT competition 2021 seem to corroborate our experimental
study and to confirm the relevance of combining VSIDS and CHB using restarts in improving
the performance of highly competitive SAT solvers.

6 Conclusion and Future Work

In this paper, we evaluated different strategies which take advantage of the restart mechanism
to combine two state of the art heuristics, namely VSIDS and CHB. In particular, we
introduced a MAB framework for SAT and chose two known Upper Confidence Bound
strategies, called UCB1 and MOSS. These strategies rely on a reward function which
evaluates the capacity of the heuristics to reach conflicts quickly and efficiently. Our
experimental evaluation shows that VSIDS and CHB are compatible since their combination
through different strategies taking advantage of the restart mechanism is able to substantially
increase the performance of the competitive solver Kissat. In particular, the MOSS strategy
outperforms not only VSIDS and CHB but also all the other strategies. The strategies UCB1
and RR have also shown competitive results. These three strategies achieve substantial gain
in terms of solved instances, mainly satisfiable ones, and in terms of solving time. Moreover,
these strategies achieve results which are very close to the VBS over VSIDS and CHB. Our
solver Kissat_MAB won the Main track of the SAT competition 2021 and placed first in the
Main SAT and NoLimits tracks thus showing the relevance of combining VISDS and CHB
using restarts and its ability to improve the performance of highly competitive SAT solvers.

As future work, it would be interesting to refine the reward function used in MAB
strategies by relying on a combination of different criteria [15] so as to improve the MAB
framework especially with respect to unsatisfiable instances. It would also be interesting to
focus on one heuristic and try to refine it using a similar MAB framework, an approach which
was shown relevant in the context of the Constraint Satisfaction Problem (CSP) [13]. Finally,
it would be interesting to use these strategies to improve other components in modern SAT
solvers such as clause deletion [2].

2 Results and source code available on https://satcompetition.github.io/2021/.
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Abstract
Explaining decisions is at the heart of explainable AI. We investigate the computational complexity
of providing a formally-correct and minimal explanation of a decision taken by a classifier. In the
case of threshold (i.e. score-based) classifiers, we show that a complexity dichotomy follows from the
complexity dichotomy for languages of cost functions. In particular, submodular classifiers allow
tractable explanation of positive decisions, but not negative decisions (assuming P ̸=NP). This is
an example of the possible asymmetry between the complexity of explaining positive and negative
decisions of a particular classifier. Nevertheless, there are large families of classifiers for which
explaining both positive and negative decisions is tractable, such as monotone or linear classifiers.
We extend tractable cases to constrained classifiers (when there are constraints on the possible
input vectors) and to the search for contrastive rather than abductive explanations. Indeed, we
show that tractable classes coincide for abductive and contrastive explanations in the constrained or
unconstrained settings.
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1 Explanations of ML models

Recent work has shown that it is possible to apply formal reasoning to explainable AI,
thus providing formal guarantees of correctness of explanations [39, 40, 23, 24, 14, 13, 20]1.
However, scaleability quickly becomes an issue because testing the validity of an explanation
may be NP-hard, or even #P-hard. As a result, more recent work focused on investigating
classes of classifiers for which explanations can be found in polynomial time [2, 33, 1]. A
natural question is thus which other classes of classifiers allow for formal explanations to be
computed in polynomial time. This is our motivation for investigating the computational
complexity of finding explanations of decisions taken by boolean classifiers. More concretely,
the paper proposes conditions on the decision problems associated with classification functions,
which enable finding in polynomial time a so-called abductive or contrastive explanation.
Furthermore, the paper shows that several large classes of classifiers respect the proposed
conditions.

We consider a boolean classification problem with two classes K = {⊕,⊖}, defined
on a set of features (or attributes) x1, . . . , xn, which will be represented by their indices
A = {1, . . . , n}. The features can either be real-valued or categorical. For real-valued features,

1 There exist a wide range of explainable AI approaches offering no formal guarantees of correctness,
e.g. [17].
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we have λi ≤ xi ≤ µi, where λi, µi are given lower and upper bounds. For categorical
features, we have xi ∈ {1, . . . , di}. A concrete assignment to the features referenced by A is
represented by an n-dimensional vector a = (a1, . . . , an), where aj denotes the value assigned
to feature j, represented by variable xj , such that aj is taken from the domain of xj . The
set of all n-dimensional vectors denotes the feature space A.

Given a classifier with features A, the corresponding decision function is a mapping from
the feature space to the set of classes, i.e. τ : A → K. For example, for a linear classifier,
the decision function picks ⊕ if

∑
i wixi > t, and ⊖ if

∑
i wixi ≤ t, for some constants wi

(i = 1, . . . , n) and t. Given a ∈ A, with τ(a) = c, we consider the set of feature literals of the
form (xi = ai), where xi denotes a variable and ai a constant.

▶ Definition 1. A PI-explanation [39] is a subset-minimal set P ⊆ A, denoting feature
literals, i.e. feature-value pairs (taken from a), such that

∀(x ∈ A).
∧

j∈P
(xj = aj) → τ(x) = c (1)

is true.

PI-explanations are also referred to as abductive explanations [23]. PI-explanations are
analoguous to prime implicants of propositional formulae: finding subset-minimal (prime)
implicants rather than shortest implicants is interesting from a computational point of view
since deciding the existence of an implicant of size less than k is ΣP

2 -complete [43].

▶ Example 2. We consider as a running example the case of a bank which uses a function
τ to decide whether to grant a loan to a couple represented by a feature vector x =
(sal1, sal2, age1, age2), where sal1, sal2 are the salaries and age1, age2 the ages of the two
people making up the couple. Suppose that τ(x) = ⊕ if and only if (max(sal1, sal2) ≥
salmin)∧ (min(age1, age2) ≤ agemax). If a corresponds to a couple who both earn more than
salmin and both are younger than agemax, then there are four PI-explanations for τ(a) = ⊕:
{1, 3}, {1, 4}, {2, 3} and {2, 4}. For example, {1, 3} means that the first and third features
(sal1 and age1) are sufficient to explain the decision. On the other hand, if b corresponds
to a couple who both earn more than salmin and both are older than agemax, then the only
PI-explanation for τ(b) = ⊖ is {3, 4} (i.e. that they are both too old).

2 Definitions

In order to study the complexity of finding explanations, and in particular to identify tractable
cases, we need to place restrictions on the classifier τ . Let D be a set of domains. For
example, D may include all intervals of the real numbers and all finite subsets of the integers.
Let T D represent the family of functions τ : Πn

i=1Di → K where each domain Di ∈ D (i.e.
the feature space A is the Cartesian product of domains from D). We call n the arity of τ .
Recall that K = {⊖,⊕}.

We say that τ : A→ K is a F-threshold classifier if it can be represented by an objective
function f : A→ R ∪ {−∞,∞} belonging to F such that an input vector x ∈ A is classified
as positive (τ(x) = ⊕) iff f(x) is strictly greater than some threshold t, negative otherwise.
Concentrating on threshold classifiers is not really a restriction, since any binary classifier
τ : A→ {0, 1} (identifying ⊖ with 0 and ⊕ with 1) can be viewed as a threshold classifier
with f = τ and threshold t = 0. It is the choice of the family of functions F which determines
the complexity of explaining decisions.
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If F is the set of real-valued linear functions, then F-threshold classifiers are known
as linear classifiers. Similarly, we can define larger families of threshold classifiers, such as
monotone or submodular threshold-classifiers by restricting the objective function f to be
monotone or submodular. A function f is monotone if ∀x, y, x≤y implies f(x)≤ f(y);
f is submodular if ∀x, y, f(min(x, y)) + f(max(x, y)) ≤ f(x) + f(y), where min and max
are applied componentwise [16]. All linear functions are submodular but only those linear
functions whose coefficients are non-negative are monotone. Similarly, f is antitone if ∀x, y,
x ≤ y implies f(x) ≥ f(y); f is supermodular if ∀x, y, f(min(x, y)) + f(max(x, y)) ≥
f(x) + f(y); f is modular if ∀x, y, f(min(x, y)) + f(max(x, y)) = f(x) + f(y). It is worth
pointing out that all these classes of functions (linear, modular, submodular, supermodualr,
monotone, antitone) are closed under addition. Modular functions are exactly those functions
f that can be decomposed into a sum of unary functions f(x) =

∑n
i=1 fi(xi) [9]. By definition,

modular functions are both submodular and supermodular and include linear functions as a
special case.

Monotonicity [34] is a desirable property in applications where it is important to guarantee
meritocratic fairness (do not favour a less-qualified candidate) [27]. It has been imposed even
for classifiers as complex as neural networks [32].

Submodularity is a well-studied concept in Operations Research and Machine learning
whose origins can be traced back to the the notion of diminishing marginal returns studied
by Gaspard Monge [5]. It is well known that a submodular function over boolean domains
can be minimized in polynomial time [36, 31, 6]. For example, if the objective function
f is the sum of functions of pairs of variables, then minimizing f is equivalent to finding
the minimum cut in a weighted graph [8]. A polynomial-time algorithm for minimizing
a submodular function over any finite domains follows from the polynomial reduction to
boolean domains obtained by replacing each variable xi with domain {1, . . . , d} by d − 1
boolean variables xir = 1⇔ xi ≥ r (r = 1, . . . , d− 1) [9].

▶ Example 3. Consider again our example of a bank which uses a function τ to decide whether
to grant a loan to a couple represented by the feature vector x = (sal1, sal2, age1, age2).
Suppose that τ is a threshold classifier τ(x) = ⊕ ⇔ f(x) > t, where f = αf1 + βf2 + γf3
and f1(x) = max(sal1, sal2) + µ min(sal1, sal2) (where 0 ≤ µ ≤ 1), and f2(x) = 1 iff
(max(age1, age2) ≥ agemin) (and f2(x) = 0 otherwise), and f3(x) = 1 iff (min(age1, age2) ≤
agemax) (and f3(x) = 0 otherwise), where agemin, agemax and α, β, γ, µ ≥ 0 are constants.

It can be verified that f1 and f2 are both submodular and monotone, and that f3 is both
submodular and antitone. Thus (by additivity of submodularity), f is submodular but it is
neither monotone nor antitone (assuming α, β, γ > 0). On the other hand, f is monotone if
γ = 0.

We say that τ is a F-multi-threshold classifier if it can be represented by functions
fi ∈ F (i = 1, . . . , r) such that an input vector x ∈ A is classified as positive (τ(x) = ⊕) iff
(f1(x) > t1) ∧ . . . ∧ (fr(x) > tr) for some constants ti (i = 1, . . . , r). For example, if F is the
set of real-valued linear functions, then for F-multi-threshold classifiers the set of positive
examples x is a polytope.

We are specifically interested in families of classifiers T ⊆ T D which are closed under
replacing arguments by constants (sometimes known as restriction or conditioning [15]) since
this a necessary condition for the correctness of our polynomial-time algorithm. Fortunately,
this is true for most families of functions of interest. For example, a linear/monotone/sub-
modular threshold-classifier remains respectively linear/monotone/submodular if any of its
arguments are replaced by constants. For τ ∈ T D of arity n, S ⊆ {1, . . . , n} and v an
assignment to the arguments indexed by S, let τv : Πi/∈SDi → K be the function obtained

CP 2021
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from τ by fixing the arguments in S to v, i.e. for all x ∈ Πi/∈SDi, τv(x) = τ(v ∪ x). We say
that T is closed under fixing arguments if for all τ : Πn

i=1Di → K such that τ ∈ T , for all
S ⊆ {1, . . . , n} and for all v ∈ Πi∈SDi, we have τv ∈ T .

3 Tractability of finding one PI-explanation

To obtain a polynomial-time algorithm, we require that a particular decision problem
be solvable in polynomial time. For a family T ⊆ T D of boolean-valued functions, let
Tautology(T ) be the following decision problem: given a function τ ∈ T , is it true that
τ ≡ ⊕, i.e. for all x ∈ A, τ(x) = ⊕? To avoid exploring dead-end branches, our algorithm
requires the answer to this question for functions obtained by fixing a subset of the arguments
of a classifier, which is why we require that T be closed under fixing arguments.

Firstly we consider the more general case in which the only assumption we make is that
all functions in T execute in polynomial time. In this case, Tautology(T ) ∈ coNP (since a
counter-example can be verified in polynomial time). If, furthermore, T is closed under fixing
arguments, then using a greedy algorithm (as in Proposition 3.1 case (3) of [7]) we can deduce
that n calls to an NP oracle are sufficient to find a PI-explanation. In the following, we
investigate cases for which Tautology(T ) ∈ P and hence for which finding a PI-explanation
is also polynomial-time by a similar greedy algorithm.

We now state conditions which guarantee a polynomial-time algorithm to find one PI-
explanation for large classes of classifiers. The algorithm initialises P to A and greedily
deletes literals from P as long as this preserves property (1) of being an explanation.

▶ Proposition 4. If T is closed under fixing arguments and Tautology(T ) ∈ P, then for
any classifier τ ∈ T and any positively-classified input a, a PI-explanation of τ(a) = ⊕ can
be found in polynomial time.

Proof. An explanation is a set P ⊆ {1, . . . , n} such that equation (1) holds. The algorithm is a
simple greedy algorithm that initialises P to the trivial explanation {1, . . . , n} (corresponding
to the complete assignment a) and for each i ∈ P tests whether i can be deleted to leave a
valid explanation P \ {i}:

P ← {1, . . . , n}
for i = 1, . . . , n :

if P \ {i} is a valid explanation then P ← P \ {i}

Clearly, the final value P̃ of P is an explanation. Furthermore, it is minimal because if
P \ {i} was not a valid explanation for some P ⊇ P̃, then neither is P̃ \ {i}.

Let v be the partial assignment corresponding to the values aj for j ∈ P \ {i}. Testing
whether P\{i} is a valid explanation is equivalent to testing whether τv ≡ ⊕ and hence can be
performed in polynomial time since T is closed under fixing arguments and Tautology(T )
∈ P. The algorithm needs to solve exactly n instances of Tautology(T ). It follows that
one PI-explanation can be found in polynomial time. ◀

Proposition 4 can be seen as a special case of the complexity of finding maximal solutions
to problems for which the instance-solution relation is in P (Proposition 3.1 of [7]).

As we will now see, Proposition 4 applies to a large range of classifiers, such as linear,
submodular or monotone threshold-classifiers as well as multi-threshold classifiers.

Consider threshold classifiers of the form τ(x) = ⊕ iff f(x) > t, for some real-valued
objective function f ∈ F and some constant t. Then

τ ≡ ⊕ ⇔ min
x∈A

f(x) > t. (2)
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Thus, if T is the set of F-threshold classifiers, then Tautology(T ) ∈ P if functions in F
can be minimised in polynomial time. Examples of classes of functions that can be minimised
in polynomial time are the objective functions of extended linear classifiers (referred to as
XLCs) [33], monotone functions over real/integer intervals [34] and submodular functions
over finite ordered domains [31, 9].

Now consider the case of multi-threshold classifiers of the form τ(x) = ⊕ iff
∧r

i=1 fi(x) > ti,
for some real-valued functions fi ∈ F and some constants ti (i = 1, . . . , r). Then

τ ≡ ⊕ ⇔
∧r

i=1
(min

x∈A
fi(x) > ti). (3)

Thus, if T is the set of F -multi-threshold classifiers, then again we have that Tautology(T )
∈ P if each function in F can be minimised in polynomial time. For example, f1 could be
monotone, f2 submodular and the other fi linear.

We end this section by showing that a polytime tautology test is not only a sufficient but
also a necessary condition for tractabilty of finding a PI-explanation. Let PIExpl+(T ) be
the problem of finding a PI-explanation of a positive decision taken by a classifier in T .

▶ Theorem 5. If T is closed under fixing arguments, then PIExpl+(T ) ∈ FP iff
Tautology(T ) ∈ P.

Proof. The “if” part of the proof is Proposition 4. For the “only if” part, suppose that T is
closed under fixing arguments and PIExpl+(T ) ∈ FP. Let τ ∈ T . Let a be an arbitrary
choice of feature vector. Then τ is a tautology iff both τ(a) = ⊕ and the empty set is a
PI-explanation of τ(a) = ⊕. Note that in the case that the empty set is a PI-explanation, it
is necessarily the unique PI-explanation. Thus we can decide Tautology(T ) in polynomial
time. ◀

4 Explanations of negative decisions

In the previous section we exclusively studied the problem of finding an explanation of a
positive decision τ(x) = ⊕. We show in this section that the complexity of this problem
can change drastically if we require an explanation of a negative decision τ(x) = ⊖. For a
family T ⊆ T D of boolean functions, let Unsat(T ) be the following decision problem: given
a boolean function τ ∈ T , is it true that τ ≡ ⊖, i.e. for all x ∈ A, τ(x) = ⊖? By an entirely
similar proof based on a greedy algorithm, we can deduce the following proposition which
mirrors Proposition 4.

▶ Proposition 6. If T is closed under fixing arguments and Unsat(T ) ∈ P, then for any
classifier τ ∈ T and any negatively-classified input a, a PI-explanation of τ(a) = ⊖ can be
found in polynomial time.

A simple case in which all features are boolean is TDNF, the family of DNF classifiers.
Since deciding the (un)satisfiability of a DNF is trivial, we have Unsat(TDNF) ∈ P and so a
PI-explanation of a negative decision can be found in polynomial time. On the other hand,
by Theorem 5, and the co-NP-completeness of deciding whether a DNF is a tautology, a
PI-explanation of a positive decision cannot be found in polynomial time (assuming P ̸=NP).

Now consider threshold classifiers of the form τ(x) = ⊕ iff f(x) > t, for some real-valued
objective function f ∈ F and some constant t. Then

τ ≡ ⊖ ⇔ max
x∈A

f(x) ≤ t. (4)
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Thus, if T is the set of F -threshold classifiers, then Unsat(T ) ∈ P if functions in F can be
maximised in polynomial time. Examples of functions that can be maximised in polynomial
time are linear, monotone, antitone (over real/integer intervals) or supermodular functions
(over finite ordered domains). Note that submodular function maximisation cannot be
achieved in polynomial time (assuming P ̸=NP) [12].

Thus, for a given family of classifiers (such as submodular threshold classifiers), the
complexity of finding an explanation of a positive decision may be polynomial-time whereas
the complexity of finding an explanation of a negative decision may be intractable.

We end this section with a theorem that is the equivalent of Theorem 5 for negative
decisions. Let PIExpl−(T ) be the problem of finding a PI-explanation of a negative decision
taken by a classifier in T .

▶ Theorem 7. If T is closed under fixing arguments, then PIExpl−(T ) ∈ FP iff Unsat(T )
∈ P.

Proof. The “if” part of the proof is Proposition 6. For the “only if” part, suppose that T is
closed under fixing arguments and PIExpl−(T ) ∈ FP. Let τ ∈ T . Let a be an arbitrary
choice of feature vector. Then τ is a unsatisfiable iff both τ(a) = ⊖ and the empty set is a
PI-explanation of τ(a) = ⊖. Thus we can decide Unsat(T ) in polynomial time. ◀

5 Explanation of classifiers with constrained features

It may be that some constraints exist between features, so that not all vectors in A are
possible. For example, gender = male and pregnant = yes are incompatible, and clearly
we must have years_of _employment ≤ age. This affects the definition of a PI-explanation.
Suppose that there are constraints on the possible feature vectors x given by a predicate
C(x). In the context of constraints C, a PI-explanation of a decision τ(a) = c is now a
subset-minimal set P ⊆ A of feature literals such that

∀(x ∈ A).
(

C(x) ∧
∧

j∈P
(xj = aj)

)
→ τ(x) = c. (5)

▶ Example 8. Consider a medicine that doctors are allowed to prescribe to everybody who
has the flu except to pregnant women. A PI-explanation why Alice (who is pregnant) was
not prescribed the medicine is that she is pregnant; there is no need to mention that she is a
woman given the constraint that there are no pregnant men. There are two PI-explanations
why Bob was prescribed the medicine: (1) that he is not pregnant and he had the flu, (2) that
he is a man and he had the flu. Note that the rule for prescribing the medicine can be stated
without mentioning gender: prescribe to people who have the flu but are not pregnant. The
PI-explanations remain the same. In particular, the explanation (2) for Bob being prescribed
the medicine mentions gender even though this feature is not mentioned in the rule. If we
did not take into account the constraint that men cannot be pregnant, then the explanation
(2) would not be valid.

Equating ⊖ with 0 and ⊕ with 1, we have the following equivalence which follows from
equations (1), (5) and the logical equivalence C ∧A→ B ≡ A→ B ∨ ¬C

▶ Proposition 9. A PI-explanation of a classifier τ under constraints C is precisely a
PI-explanation of the unconstrained classifier τ ∨ ¬C.
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Table 1 Examples of tractable families of constrained threshold-classifiers over finite domains.

decision objective function f constraints C

positive submodular max and min-closed
positive monotone min-closed
positive antitone max-closed
negative supermodular max and min-closed
negative monotone max-closed
negative antitone min-closed

Consider a threshold classifier with objective function f under constraints C. We can
reduce to the unconstrained case by introducing the function g where

g(x) =
{

0 if C(x)
∞ if ¬C(x).

(6)

Then a PI-explanation for f(a) > t under constraints C is a PI-explanation of f(a)+g(a) > t

(in the unconstrained setting). We saw in Section 3 that finding a PI-explanation of a
positive decision taken by a threshold classifier is polynomial-time if the objective function
can be minimised in polynomial time. Thus, for example, if f + g is submodular over finite
domains, then a PI-explanation can be found in polynomial time. Assume in the following
that f is finite-valued and g is defined as in equation (6). A necessary condition for f + g to
be submodular is that g be both min-closed and max-closed [10], where min-closed means
C(x)∧C(y) ⇒ C(min(x, y)) and max-closed means C(x)∧C(y) ⇒ C(max(x, y)) [26]. Over
finite domains, the class of monotone objective functions can be extended to a maximal
tractable class of constrained minimisation problems by adding min-closed constraints and
the class of antitone objective functions can be extended to a maximal tractable class by
adding max-closed constraints [9].

As we have already seen, explanations of positive and negative decisions may have
very different complexities. Indeed, a PI-explanation for f(a) ≤ t under constraints C

is a PI-explanation of f(a) − g(a) ≤ t (in the unconstrained setting). The sign of g has
changed so that the inequality is satisfied whenever g is infinite. As we saw in Section 4, a
PI-explanation of a negative decision of a threshold classifier can be found in polynomial
time if the objective function can be maximised in polynomial time. Thus, for example, if
f − g is a supermodular function (over finite domains), then a PI-explanation can be found
in polynomial time. A necessary condition for f − g to be supermodular is that g be both
min-closed and max-closed [10]. For the class of monotone functions f , the maximisation of
f − g is tractable if the relations C (corresponding to the functions g) are max-closed, and
for the class of antitone functions f , the maximisation of f − g is tractable if the relations C

are min-closed [9].
This allows us to identify the tractable families of constrained threshold-classifiers listed

in Table 1.

6 Contrastive explanations

PI-explanations are also known as abductive explanations, since they are answers to the
question “Why is τ(a) = c?” A contrastive explanation [35, 22, 21] is an answer to a different
question: “Why is it not the case that τ(a) ̸= c”? It gives a set of features which if changed
in a can lead to a change of class. Contrastive explanations tend to be be smaller than
abductive explanations and hence can be easier to interpret by a human user [35].
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▶ Definition 10. Given that τ(a) = c, a contrastive explanation is a subset-minimal set
S ⊆ A such that

∃(x ∈ A).
((∧

j /∈S
(xj = aj)

)
∧ τ(x) ̸= c

)
. (7)

If τ ≡ c, then there is no contrastive explanation of τ(a) = c.

▶ Example 11. Consider the classifier studied in Example 2: a bank uses a function τ , given
by τ(x) = ⊕ if and only if (max(sal1, sal2) ≥ salmin)∧ (min(age1, age2) ≤ agemax), to decide
whether to grant a loan to a couple represented by a feature vector x = (sal1, sal2, age1, age2).
If a corresponds to a couple who both earn more than salmin and both are younger than
agemax, then the contrastive explanations of the decision τ(a) = ⊕ are {1, 2} and {3, 4}. If
b corresponds to a couple who both earn more than salmin but both are older than agemax,
then the contrastive explanations of the decision τ(b) = ⊖ are {3} and {4}.

Let Invalid(T ) be the following decision problem: given a boolean function τ ∈ T , does
there exists x ∈ A such that τ(x) = ⊖. Similarly, let Sat(T ) be the problem: given a boolean
function τ ∈ T , does there exists x ∈ A such that τ(x) = ⊕. The following proposition is
the contrastive equivalent of Proposition 4 and Proposition 6.

▶ Proposition 12. Suppose that T is closed under fixing arguments. If Invalid(T ) ∈ P,
then for any classifier τ ∈ T and any a such that τ(a) = ⊕, a contrastive explanation of
τ(a) = ⊕ can be found in polynomial time. If Sat(T ) ∈ P, then for any classifier τ ∈ T and
any a such that τ(a) = ⊖, a contrastive explanation of τ(a) = ⊖ can be found in polynomial
time.

Proof. We say that S can lead to a class change if equation (7) holds. The algorithm is
analogous to the algorithm for PI-explanations. It requires n tests of equation (7) to find a
contrastive explanation:

S ← {1, . . . , n}
if S cannot lead to a class change then report that no CXp exists ;
for i = 1, . . . , n :

if S \ {i} can lead to a class change then S ← S \ {i}

Testing whether S can lead to a class change from ⊕ is a test of invalidity (after fixing
features in A \ S), whereas testing whether S can lead to a class change from ⊖ is a test of
satisfiability (after fixing features in A \ S). Thus, the above algorithm finds a contrastive
explanation of τ(a) = c in polynomial time if Invalid(T ) ∈ P (in the case c = ⊕) or Sat(T )
∈ P (in the case c = ⊖). ◀

For threshold classifiers of the form τ(x) = ⊕ iff f(x) > t, invalidity corresponds to
minx∈A f(x) ≤ t and satisfiability corresponds to maxx∈A f(x) > t. Thus, if T is the set of
F -threshold classifiers, then Invalid(T ) ∈ P if functions in F can be minimised in polynomial
time and Sat(T ) ∈ P if functions in F can be maximised in polynomial time.

Let CExpl+(T ) (respectively, CExpl−(T )) be the problem of finding a contrastive
explanation of a positive (negative) decision taken by a classifier in T or determining that
no contrastive explanation exists. The following theorem follows from Proposition 12 and
the fact that deciding the existence of a contrastive explanation of τ(a) = c is equivalent to
deciding ¬(τ ≡ c).

▶ Theorem 13. If T is closed under fixing arguments, then CExpl+(T ) ∈ FP iff Invalid(T )
∈ P, and CExpl−(T ) ∈ FP iff Sat(T ) ∈ P.
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In the context of of constraints C, a contrastive explanation of a decision τ(a) = c is now
a subset-minimal set S ⊆ A of feature literals such that

∃(x ∈ A).
((∧

j /∈S
(xj = aj)

)
∧ τ(x) ̸= c ∧ C(x)

)
. (8)

Equating ⊖ with 0 and ⊕ with 1, and using the logical equivalence ¬B ∧ C ≡ ¬(B ∨ ¬C),
we have the following proposition.

▶ Proposition 14. A contrastive explanation of a classifier τ under constraints C is precisely
a contrastive explanation of the unconstrained classifier τ ∨ ¬C.

In the case of constrained threshold classifiers, with objective function f and threshold t,
let g be as defined by equation (6). Then testing invalidity under constraints C is equivalent
to determining whether minx∈A(f(x) + g(x)) ≤ t and testing satisfiability is equivalent to
determining whether maxx∈A(f(x)− g(x)) > t. It follows that the tractable cases for finding
contrastive explanations or PI-explanations are identical. Example are shown in Table 1,
where, in both cases, the decision corresponds to the original decision (i.e. the value of τ(a)).

In fact, from Theorem 5, Theorem 7, Theorem 13, Proposition 9 and Proposition 14,
we can deduce the following theorem which says that tractable classes of finding abductive
or contrastive explanations coincide. It follows from the fact that Invalid(T ) ∈ P iff
Tautology(T ) ∈ P and that Sat(T ) ∈ P iff Unsat(T ) ∈ P (since a problem is in P iff its
complement is in P).

▶ Theorem 15. In the unconstrained or constrained setting, if T is closed under fixing argu-
ments, PIExpl+(T ) ∈ FP iff CExpl+(T ) ∈ FP, and PIExpl−(T ) ∈ FP iff CExpl−(T )
∈ FP.

7 A language dichotomy for threshold classifiers

We consider threshold classifiers over finite (i.e. categorical) domains whose objective function
can be decomposed into functions of bounded arity:

f(x) =
∑m

i=1
fi(x[σi]) (9)

where each σi (the scope on which the function fi is applied) is a list of indices from {1, . . . , n}
and x[σi] is the projection of the vector x on these indices. Given a set (language) L of
functions, we denote by TL the set of threshold classifiers whose objective function f is the
sum of functions fi ∈ L. Recall that PIExpl+(TL) is the problem of finding a PI-explanation
of a positive decision taken by a classifier in TL.

Cost Function Networks (CFNs) (also known as Valued Constraint Satisfaction Problems)
are defined by sets of functions fi (and their associated scopes) over finite domains whose
sum f (given by equation (9)) is an objective function to be minimized [11]. CFNs are a
generic framework covering many well-studied optimisation problems. For example, Bayesian
networks can be transformed into CFNs after taking logarithms of probabilities [11]. Let
CFN(L) denote the problem of determining, given an objective function f of the form given
in equation (9) where each fi ∈ L, together with a real constant t, whether

min f(x) ≤ t.

A technical point is that, due to the necessarily bounded precision of the values of functions,
this is equivalent to the problem of determining, given f and t ∈ R, whether min f(x) is
strictly less than t.
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The complexity of CFN(L) has been extensively studied for finite languages (i.e. languages
L such that |L| is finite). It is now known that there is a dichotomy: depending on the
language L, CFN(L) is either in P or is NP-complete. This result was known for languages
of finite-valued cost-functions [41] and the dichotomy for the more general case, in which
costs can be infinite, follows from the recently-discovered language dichotomy for constraint
satisfaction problems [4, 44, 29, 30]. The following proposition will lead us to a similar
dichotomy for explaining decisions.

▶ Proposition 16. Let L be a set of non-negative functions closed under fixing arguments.
Then PIExpl+(TL) is in FP if and only if CFN(L) is in P.

Proof. If L is closed under fixing arguments, then so is TL. The “if” part of the proof follows
directly from Proposition 4 and the subsequent discussion in Section 3, so we concentrate on
the “only if” part.

By Theorem 5 we know that if PIExpl+(TL) ∈ FP then Tautology(TL) ∈ P.
Tautology(TL) is the problem of determining, for a function f expressible as the sum of
functions fi ∈ L (as in equation (9)) and a constant t, whether f(x) > t for all x ∈ A. This
is the complement of CFN(L) which is the problem of determining whether minx∈A f(x) ≤ t.
Hence, if Tautology(TL) ∈ P then CFN(L) ∈ P, which completes the proof. ◀

We now consider constrained classifiers. Let Γ be a language of constraint relations. For
each constraint relation in Γ we can construct a corresponding {0,∞}-valued function g, as
given by equation (6). Let CΓ denote the set of all such {0,∞}-valued functions for relations
in Γ. Then L ∪ CΓ can be viewed as a language of cost functions. Let ConPIExpl+(TL, Γ)
(respecively, ConPIExpl−(TL, Γ)) denote the problem of finding one PI-explanation of a
positive (negative) decision taken by a classifier in TL under a finite set of constraints from Γ.

▶ Proposition 17. Let L be a set of non-negative functions closed under fixing arguments
and Γ a finite set of constraint relations. Then ConPIExpl+(TL, Γ) is in FP if and only if
CFN(L ∪ CΓ) is in P.

Proof. We know from the discussion in Section 5 that ConPIExpl+(TL, Γ) is equivalent to
PIExpl+(TL∪CΓ). Thus the result follows immediately from Proposition 16. ◀

We now consider finding explanations for negative decisions. Although, as we will show,
there is again a dichotomy, it is not the same since in this case we are studying a (constrained)
maximisation problem rather than a (constrained) minimisation problem. Given a finite
language L of real-valued functions, all bounded above by B ∈ R, let Linv denote the set
{B − f : f ∈ L}. Clearly, maximising a sum of functions from L is equivalent to minimising
a sum of functions from Linv.

▶ Proposition 18. Let L be a set of non-negative finite-valued functions closed under fixing
arguments. Then PIExpl−(TL) is in FP if and only if CFN(Linv) is in P.

Proof. The “if” part follows from Proposition 6 and the subsequent discussion in Section 4.
For the “only if” part, we know from Theorem 7 that if PIExpl−(TL) is in FP then Unsat(TL)
is in P. Unsat(TL) is the problem of determining, for a function f expressible as the sum
of m functions fi ∈ L and a constant t, whether f(x) ≤ t for all x ∈ A. This is equivalent
to determining whether mB − f(x) ≥ mB − t for all x ∈ A. This is the complement of
the problem of determining whether min(mB − f) < t′ (for t′ = mB − t). This is precisely
CFN(Linv). Hence, if Unsat(TL) ∈ P, then CFN(Linv) ∈ P, which completes the proof. ◀

We now generalise this result to constrained classifiers.
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▶ Proposition 19. Let L be a set of non-negative functions closed under fixing arguments
and Γ a finite set of constraint relations. Then ConPIExpl−(TL, Γ) is in FP if and only if
CFN(Linv ∪ CΓ) is in P.

Proof. It is easy to see that ConPIExpl−(TL, Γ) is equivalent to ConPIExpl+(TLinv , Γ).
Thus the result follows immediately from Proposition 17. ◀

Given the known P/NP-complete dichotomy for CFN(L) for finite languages L, discussed
above, we can immediately deduce the following theorem.

▶ Theorem 20. Let L be a finite language of non-negative functions closed under fix-
ing arguments and Γ a finite set of constraint relations. Then each of PIExpl+(TL),
ConPIExpl+(TL, Γ), PIExpl−(TL), ConPIExpl−(TL, Γ) is either in FP or is NP-hard.

Indeed, by Theorem 15, we have an identical dichotomy result for contrastive explanations.

8 Diversity of explanations

We have concentrated up until now on the problem of finding a single explanation. This
is because the problem of finding all explanations has the obvious disadvantage that the
number of explanations may be exponential. For example, in a first-past-the-post election in
which a A wins with m ≥ k out of the n = 2k − 1 votes cast, and each vote is considered as
a feature, there are Ck

m PI-explanations for this victory; for a candidate B who lost with
only p ≤ k votes, there are Ck−p

n−p contrastive explanations for why they did not win.
Rather than providing a single explanation to the user or listing all explanations, we can

envisage providing a relatively small number of diverse explanations. A similar strategy of
finding a number of diverse good-quality solutions to a Weighted Constraint Satisfaction
Problem has been used successfully in computational protein design [37], among other
examples [18, 19, 25].

An obvious measure of diversity of a set of explanations {S1, . . . , Sk} is the minimum
Hamming distance |Si∆Sj | between pairs of distinct explanations Si, Sj , where ∆ is the
symmetric difference operator between two sets. This leads to the following computational
problem.

k-Div-PIExpl+: Given a binary classifier τ : A→ {⊖,⊕}, a positively-classified input a
and an integer m, find k PI-explanations S1, . . . , Sk of τ(a) = ⊕ such that for all i, j such
that 1 ≤ i < j ≤ k, |Si∆Sj | ≥ m.

The definitions for negatively-classified inputs a (k-Div-PIExpl−) and/or for contrastive
explanations (k-Div-CExpl+, k-Div-CExpl−) are entirely similar. Since Hamming distance
is a submodular function, one might hope that there would be interesting tractable classes.
Unfortunately, since we are, in a sense, maximising this distance rather than minimising it,
these four problems turn out to be NP-hard even in the simplest non-trivial case.

▶ Proposition 21. Even in the case of k = 2 and for a linear classifier τ over domains of
size 2, the following four problems are NP-hard: (a) k-Div-PIExpl+, (b) k-Div-PIExpl−,
(c) k-Div-CExpl+, (d) k-Div-CExpl−.

Proof.
(a) Without loss of generality, we suppose that the domains Di (i = 1, . . . , n) are all {0, 1}

and τ(x) = ⊕ iff
∑n

i=1 αixi > t. We prove NP-hardness for the particular case in which
a = (1, . . . , 1) and the values t, α1, . . . , αn are strictly positive integers which satisfy the
following inequalities:
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α1 ≤ · · · ≤ αm < αm+1 ≤ · · · ≤ αn (10)
m∑

i=1
αi + 2

n∑
i=m+1

αi = 2(t + 1). (11)

To solve 2-Div-PIExpl+ we require sets S1, S2 ⊆ {1, . . . , n} satisfying (1) |S1∆S2| ≥ m

and (2) S1, S2 are minimal (for inclusion) sets such that the minimum value of
∑n

i=1 αixi

is at least t + 1 for inputs x with xi = ai = 1 for all i ∈ Sj (j = 1, 2). Since the values
αi are positive, the minimum is attained when xi = 0 for all i /∈ Sj , and so this is
equivalent to∑

i∈Sj

αi ≥ t + 1 (j = 1, 2). (12)

Summing these two inequalities (for j = 1, 2) gives∑
i∈S1

αi +
∑
i∈S2

αi ≥ 2(t + 1). (13)

Since, by (10), we have αr < αs for r ≤ m < s, and |S1∆S2| ≥ m, we know that the left
hand side of the sum in equation (13) is at most equal to the left hand side of equation
(11), which is equal to 2(t + 1). It follows that we actually have equality in inequality (13)
and S1∆S2 = {1, . . . , m} and S1 ∩S2 = {m + 1, . . . , n}. Equality in (13) implies that we
must also have equality in the inequalities (12) for j = 1, 2. Equality implies minimality
for subset inclusion since all weights αi are strictly positive. Denoting t + 1−

∑n
i=m+1 αi

by T and Sj ∩ {1, . . . , m} by Pj (for j = 1, 2), we can deduce that we require a partition
P1, P2 of {1, . . . , m} such that∑

i∈P1

αi = T =
∑
i∈P2

αi.

This is precisely the partition problem which is well known to be NP-complete [28]. It
follows that k-Div-PIExpl+ is NP-hard.

(b) We consider the same linear classifier τ as in case (a), except that equation (11) is
replaced by

∑m
i=1 αi = 2t, and this time we consider the vector a = (0, . . . , 0) which is

classified negatively by τ . To solve k-Div-PIExpl−, we require two sets S1, S2 such that
(1) |S1∆S2| ≥ m and (2) S1, S2 are minimal (for inclusion) sets such that

∑
i/∈Sj

αi ≤ t

(j = 1, 2). Given equation (10), this can only be attained when S1∆S2 = {1, . . . , m} and
S1 ∩ S2 = {m + 1, . . . , n}, so that

∑
i/∈S1

αi =
∑

i/∈S2
α2 = t. Thus, we need to find two

sets Pj = {1, . . . , n} \ Sj (j = 1, 2) which partition {1, . . . , m} and such that∑
i∈P1

αi = t =
∑
i∈P2

αi

Thus, again we have a polynomial reduction from the partition problem. Hence k-Div-
PIExpl− is NP-hard.

(c) Consider the same linear classifier τ as in case (b), but this time a = (1, . . . , 1). To
solve k-Div-CExpl+, we require two sets S1, S2 ⊆ {1, . . . , n} such that

∑
i/∈Sj

αi ≤ t

(j = 1, 2) and |S1∆S2| ≥ m. Since this is exactly the same problem encountered in case
(b), we can again deduce NP-hardness.
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(d) Consider the same linear classifier τ as in case (a), but with a = (0, . . . , 0). To solve
k-Div-CExpl−, we require S1, S2 ⊆ {1, . . . , n} such that

∑
i∈Sj

αi ≥ t + 1 (j = 1, 2)
and |S1∆S2| ≥ m. Since this is exactly the problem encountered in case (a), we can
again deduce NP-hardness. ◀

It is well known that the partition problem is one of the easiest NP-hard problems
to solve in practice [38]. Thus, Proposition 21 precludes (assuming P ̸=NP) a worst-case
polynomial-time algorithm for finding a diverse set of explanations, but leaves the door open
to the existence of practically-efficient algorithms.

9 Absolute explanations

Given a classifier we may want to have an absolute (global) explanation for a given class c,
rather than an explanation specific to a particular decision. This answers questions of the
type “Why can a customer be granted (or refused) a loan”. An absolute explanation is a
minimal but arbitrary partial assignment to the features that guarantees that the output of
the classifier τ will be the class c [24]. It does not depend on a concrete input instance but
rather the entire feature space.

A literal is an assignment of a value to a feature which we can write in the form (xi = u)
or simply as the pair ⟨i, u⟩ where i ∈ A and u belongs to Di the domain of feature i. A
set of literals U is well-defined if each feature i occurs at most once in U . For simplicity of
presentation, we implicitly assume from now on that all subsets of literals are well-defined.
This means that each subset of literals U corresponds to a partial assignment a to some
subset of features P ⊆ A. This allows us to equate U with the pair ⟨P , a⟩.

▶ Definition 22. Given a classifier τ , an absolute explanation (XP) for a class c is a
subset-minimal set of literals U = ⟨P , a⟩ such that

∀(x ∈ A).
∧

j∈P
(xj = aj) → τ(x) = c (14)

is true.

Equation (14) is identical to equation (1) in the definition of a PI-explanation, the
difference being that an XP is a set of literals rather than a set of features. A subtle
difference between PI-explanations and XP’s is that whereas a PI-explanation always exists,
since we are given an instance a such that τ(a) = c, an XP may not exist (which corresponds
to the case when τ never takes the value c).

Associating a set of literals with the term corresponding to their conjunction, we can
observe that a model τ is logically equivalent to the disjunction of the absolute explanations
for the class ⊕. This observation shows that, in the case of finite domains, a black-box model
can in theory be reconstructed from its absolute explanations.

Another global notion, dual to the notion of absolute explanation, is that of a counter-
example [24]. This is an answer to questions such as “Why can a customer not be granted a
loan”.

▶ Definition 23. Given a classifier τ , a counterexample (CEx) for a class c is a subset-
minimal set of literals U = ⟨P , a⟩ such that

∀(x ∈ A).
∧

j∈P
(xj = aj) → τ(x) ̸= c (15)

is true.
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Clearly, in the case of binary classifiers with K = {⊖,⊕}, a counterexample for class ⊕
(⊖) is an absolute explanation of class ⊖ (⊕). Analogously to the fact, observed above, that
a model τ is logically equivalent to the disjunction of the absolute explanations for the class
⊕, it is also logically equivalent to the conjunction of the negations of the counterexamples
of the class ⊕.

▶ Example 24. We return to the function τ used by a bank to decide whether to grant a
loan to a couple represented by a feature vector x = (sal1, sal2, age1, age2), as in Example 2:
τ(x) = ⊕ if and only if (max(sal1, sal2) ≥ salmin) ∧ (min(age1, age2) ≤ agemax). If s0 ≥
salmin > s1, s2 and a0 ≤ agemax, then {⟨1, s0⟩, ⟨3, a0⟩} is an XP of a positive decision (and a
CEx of a negative decision) whereas {⟨1, s1⟩, ⟨2, s2⟩} is an XP of a negative decision (and a
CEx of a positive decision).

Despite the similarity between the definitions of PI-explanations and absolute explanations,
the complexity of finding one XP is not the same as the complexity of finding one PI-
explanation. This is due to the fact that we are not given a specific instance, but rather
a class c, and we actually have to find an instance which belongs to class c. Let XP+(T )
(respectively, XP−(T )) be the problem of finding an absolute explanation of a positive
(negative) decision taken by a classifier in T (or returning “none” if none exists).

▶ Theorem 25. If T is closed under fixing arguments, and domains of all features are finite,
then XP+(T ) ∈ FP iff Sat(T ) ∈ P and Tautology(T ) ∈ P.

Proof. For the “if” part, it is sufficient to give a polynomial-time algorithm. Consider τ ∈ T .
A call to Sat(T ) tells us whether or not an XP exists. In the case that an XP exists, we can
find an instance a such that τ(a) = ⊕ by the following incremental algorithm.

Initialise a to the empty assignment ;
for i = 1, . . . , n :

for each value d ∈ Di

extend a by assigning ai = d;
if τa is satisfiable then exit the inner for loop;

The partial assignment a is initialised to the empty assignment and successively, for each
feature i, at most |Di| calls to Sat(T ) are sufficient to find a value for ai which extends the
present partial assignment so that τa remains satisfiable. The final value of a is a complete
assignment such that τ(a) = ⊕. Since Tautology(T ) ∈ P, by Proposition 4 we can find
a PI-explanation P of τ(a) = ⊕ in polynomial time. Then ⟨P , a[P]⟩ is necessarily an XP,
where a[P] is the partial assignment of a on features P.

For the “only if” part, an XP exists iff τ ̸≡ ⊖ and is non-empty iff τ ̸≡ ⊕. Hence, a
polynomial-time algorithm for XP+(T ) necessarily decides both Sat(T ) and Tautology(T )
in polynomial time. ◀

▶ Corollary 26. If T is closed under fixing arguments, and domains of all features are finite,
then XP−(T ) ∈ FP iff Sat(T ) ∈ P and Tautology(T ) ∈ P.

Proof. First, observe that an absolute explanation (XP) of a negative decision taken by a
classifier τ is an XP of a positive decision taken by the classifier τ . To complete the proof, it
suffices to notice that τ is satisfiable iff τ is not a tautology (and τ is a tautology iff τ is not
satisfiable). So, by Theorem 25, XP−(T ) ∈ FP iff Sat(T ) ∈ P and Tautology(T ) ∈ P. ◀
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For a family T of threshold classifiers, Theorem 25 implies that XP+(T ) ∈ FP iff
the corresponding family of objective functions can be both minimized and maximized
in polynomial time. Examples are monotone functions and modular functions. Modular
functions, which by definition are both submodular and supermodular, are separable (i.e.
expressible as the sum of unary functions on the features) [42].

In the case of constrained classifiers we have the following proposition which follows
directly from Proposition 9.

▶ Proposition 27. An absolute explanation (XP) of a classifier τ under constraints C is
precisely an XP of the unconstrained classifier τ ∨ ¬C.

With f the objective function of the threshold classifier τ and g the function, given by
Equation 6, associated with the constraints C, Tautology(T ) corresponds to minimizing
f + g and Sat(T ) corresponds to maximizing f − g. By Theorem 25 together with the
discussion above and in Section 5, XP+(T ) is tractable for objective functions f which are
either modular, monotone or antitone and constraint relations C which are both min and
max-closed.

10 Discussion and Conclusion

We have investigated the complexity of finding one subset-minimal abductive or contrastive
explanation for different families of classifiers.

There remain many interesting open questions:
Since, as yet, there is no known characterisation of the complexity of cost-function
languages over infinite domains, the complexity of classifiers with real-valued features is
still an open problem.
We have investigated the problem of finding a subset-minimal explanation. The problem
of finding a cardinality-minimum explanation is naturally harder [39, 3] even though
it has been observed that there is often not a significant difference between the size of
subset-minimal and cardinality-minimum explanations [23]. It is known that the problem
of finding a cardinality-minimum explanation is NP-hard for decision trees [3] and is
tractable for linear classifiers [33]. It is an open theoretical question whether there are
any other interesting tractable cases.
Instead of searching for one explanation, we may want to find many explanations.
Unfortunately, the fact that a greedy algorithm can find one explanation in polynomial
time provides no guarantee that explanations can be enumerated in polynomial delay.
Again, for linear classifiers, there is a polynomial-delay algorithm for enumerating PI-
explanations [33], and it is an open question is whether this is true for other families of
classifiers. It is known to be false for monotone classifiers (assuming P ̸=NP) [34].
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1 Introduction

In the classic stable marriage problem, we are given a bipartite graph, where the two sets of
vertices represent men and women, respectively. Each vertex has a strictly ordered preference
list over his or her possible partners. A matching is stable if it is not blocked by any edge,
that is, no man-woman pair exists who are mutually inclined to abandon their partners and
marry each other. Stable matchings were first formally defined in the seminal paper of Gale
and Shapley [20], who introduced the terminology based on marriage that since then became
wide-spread. The notion was then extended to non-bipartite graphs by Irving [27]. Variants
of stable matching problems are widely used in employer allocation markets [44], university
admission decisions [3, 7], campus housing assignments [8, 42] and bandwidth allocation [19].
Typically, the aim is to solve the decision problem on whether a stable matching exists, or
even to solve an optimisation problem considering different fairness notions among stable
matchings, such as egalitarian, minimum-regret, or sex-equal.

A natural generalisation of the problem, as suggested by Knuth in his influential book [31],
is to extend the two-sided stable marriage problem to three sets of agents. Two input variants
of this extension have been defined in the literature. In the first variant, called the 3-gender
stable marriage problem (3gsm) problem [2, 38], each agent has a preference list over the
n2 pairs of agents from the other two sets, assuming that each agent set contains n agents.
Another way of generalising stable matching to three agent sets is the 3-dimensional stable
matching problem with cyclic preferences (3dsm-cyc) [38], in which agents from the first
set only have preferences over agents from the second set, agents from the second set only
have preferences over agents from the third set, and agents from the third set only have
preferences over agents from the first set. In both problem variants, the aim is to find a
matching that does not admit a blocking triple, where a blocking triple can have slightly
different definitions depending on whether the preference lists contain ties or whether a strict
improvement for all agents is required. We explore these different notions in Section 1.1.

1.1 3-dimensional stable matching
In the 3gsm problem variant, the default stability notion is called weak stability, according
to which a blocking triple is defined as a set of three agents, all of whom would strictly
improve their current match if they would form a triple in the solution. Deciding whether
a stable matching exists in a given instance is NP-complete even if the preference lists are
complete [38, 47]. A highly restricted preference structure was later identified that allows for
a polynomial-time algorithm for the same decision problem [12]. Research then evolved in
the direction of preference lists with ties, which gives rise to four different stability definitions,
namely weak, strong, super, and ultra stability, and in the direction of consistent preferences,
which is a naturally restricted preference domain [26].

The derived research results appear to be more diverse when it comes to the 3dsm-cyc
problem variant. Firstly, two stability notions have been investigated: weak and strong. A
weakly stable matching does not admit a blocking triple such that all three agents would
improve, while according to strong stability, a triple already blocks if at least one of its
agents improves, and the others in the triple remain equally satisfied. Biró and McDermid [5]
showed that deciding whether a weakly stable matching exists is NP-complete if preference
lists are allowed to be incomplete, and that the same complexity result holds for strong
stability even with complete lists. However, the combination of complete lists and weak
stability proved to be extremely challenging to solve.
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For this setting, Boros et al. [6] proved that each 3dsm-cyc instance admits a weakly
stable matching for n ≤ 3, where n is the size of each vertex set in the tripartition. Eriksson
et al. [15] later extended this result to n ≤ 4. Additionally, Pashkovich and Poirrier [41]
further proved that not only one, but at least two stable matchings exist for each instance
with n = 5. By this time, the conjecture on the guaranteed existence of a weakly stable
matching in 3dsm-cyc with complete lists became one of the most riveting open questions
in the matching under preferences literature [31, 33, 50]. Surprisingly, Lam and Plaxton [32]
recently disproved this conjecture by showing that weakly stable matchings for 3dsm-cyc
need not exist for an arbitrary n, moreover, it is NP-complete to determine whether a given
3dsm-cyc instance with complete lists admits a weakly stable matching.

Application-oriented research has focused on the so-called “3-sided matching with cyclic
and size preferences” problem, defined by Cui and Jia [11]. They modeled three-sided
networking services, such as frameworks connecting users, data sources, and servers. In their
setting, users have identical preferences over data sources, data sources have preferences
over servers based on the transferred data, and servers have preferences over users. The
characterising feature of this variant is that a triple might contain more than one user, as
servers aim at maximizing the number of users assigned to them. This feature clearly differ-
entiates the problem from the classic 3dsm-cyc setting. Building upon this work, Panchal
and Sharma [40] provided a distributed algorithm that finds a stable solution. Raveendran
et al. [43] tested resource allocation in Network Function Virtualisation. They demonstrated
the superior performance of the proposed cyclic stable matching framework in terms of data
rates and user satisfaction, compared to a centralised random allocation approach.

1.2 Constraint Programming approaches for finding stable matchings
Gent et al. [22] were the first to propose Constraint Programming (CP) models for the
classic stable marriage problem. They showed that it is possible to obtain man-optimal and
woman-optimal stable matchings immediately from the solution by enforcing Arc Consistency
(AC). Later, Unsworth and Prosser [48, 49] presented a binary constraint for the the same
problem and showed that their encoding is better in terms of space and time when compared
to Gent et al.’s approach. They also investigated sex-equal stable matchings in their studies.

The next milestone was reached by Manlove et al. [34], who proposed three CP models
for the Hospital / Residents problem (HR), which is the many-to-one generalisation of the
stable marriage problem. They also explored side constraints for their models such as the
case with forbidden pairs, residents who may form groups, or residents who may swap their
hospitals. The existing research shows that CP models for the stable marriage problem with
incomplete lists and for HR are tractable [22, 34]. O’Malley further explored CP models in
his thesis for the stable marriage problem, and presented four constraint models [39]. Later
on, Siala and O’Sullivan [45] improved the cloned model of Manlove et al. [34] by using a
global constraint that achieves Bound Consistency in linear time.

In 2012 Eirinakis et al. [14] used the poset graph of rotations to enumerate all solutions
of HR, and presented an improved version to the direct CP model of Manlove et al. [34].
Subsequently, Siala and O’Sullivan [46] used the rotation poset to model stable matchings as
SAT formulation for all three types of problems: one-to-one, one-to-many, and many-to-many.
They presented empirical results for finding sex-equal stable matchings, and showed that
their approach outperforms the model presented in their previous paper [45]. Additionally,
Drummond et al. [13] used SAT encoding for finding stable matchings that include couples.

To the best of our knowledge, CP or SAT models for 3-dimensional stable matchings
have not been studied before.

CP 2021
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2 Preliminaries

In this section we introduce the terminology and notation for the problem variants we will
study. First we formalise the 3dsm-cyc problem and define the two known stability concepts
for it. Then, we define three standard fairness notions that were constructed to distinguish
balanced stable solutions on bipartite and non-bipartite stable matching instances.

2.1 3-dimensional stable matching with cyclic preferences
Input and output. Formally, a 3dsm-cyc instance is defined over three disjoint sets of
agents of size n, denoted by A = {a1, . . . , an}, B = {b1, . . . , bn}, and C = {c1, . . . , cn}. A
matching M corresponds to a disjoint set of triples, where each triple, denoted by (ai, bj , ck),
contains exactly one agent from each agent set. Each agent is equipped with her own
preferences in the input. The cyclic property of the preferences means the following: each
agent in A has a strict and complete preference list over the agents in B, each agent in B has
a strict and complete preference list over the agents in C, and finally, each agent in C has a
strict and complete preference list over the agents in A. These preferences are captured by
the rank function, where rankai(bj) is the position of agent bj in the preference list of ai,
from 1 if bj is ai’s most preferred agent to n if bj is ai’s least preferred agent.

Preferences over triples. The preference relation of an agent on possible triples can be
derived naturally from the preference list of this agent. Agent ai is indifferent between
triples (ai, bj , ck1) and (ai, bj , ck2), since she only has preferences over the agents in B and
the same agent bj appears in both triples. However, when comparing triples (ai, bj1 , ck1) and
(ai, bj2 , ck2), where bj1 ̸= bj2 , ai prefers the first triple if rankai

(bj1) < rankai
(bj2), and she

prefers the second triple otherwise. The preference relation is defined analogously for agents
in B and C as well.

Weak and strong stability. A triple t = (ai, bj , ck) is said to be a strongly blocking triple
to matching M if each of ai, bj , and ck prefer t to their respective triples in M . Practically,
this means that ai, bj , and ck could abandon their triples to form triple t on their own, and
each of them would be strictly better off in t than in M . If a matching M does not admit
any strongly blocking triple, then M is called a weakly stable matching. Similarly, a triple
t = (ai, bj , ck) is called a weakly blocking triple if at least two agents in the triple prefer t to
their triple in M , while the third agent does not prefer her triple in M to t. This means that
at least two agents in the triple can improve their situation by switching to t, while the third
agent does not mind the change. A matching that does not admit any weakly blocking triple
is referred as strongly stable. By definition, strongly stable matchings are also weakly stable,
but not the other way round. Observe that it is impossible to construct a triple t that keeps
exactly two agents of a triple equally satisfied, while making the third agent happier, since
the earlier two agents need to keep their partners to reach this, which then already defines
the triple as one already in M .

2.2 Fair stable solutions
In this paper, we translate some standard fairness notions from the classic stable marriage
problem to 3dsm-cyc. In most stable matching problems, several stable solutions might be
present, which gives way to choosing a fair or balanced one among them. We now review the
most prevalent fairness notions in such decisions [25, 29, 33, 10].
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Egalitarian stable matchings. Possibly the most natural way to define a good stable
matching is captured by the notion of egalitarian stable matchings. Each agent’s satisfaction
can be measured by how high she ranks her partner in the matching. In order to gain a
comprehensive measure, we sum up those ranks for all matched agents. A stable matching is
called egalitarian, if it minimises this sum among all stable matchings. Finding an egalitarian
stable matching in the classic stable marriage problem can be done in polynomial time [28, 24],
while it is NP-hard, but 2-approximable if the underlying instance is non-bipartite [17, 18].
An egalitarian stable matching in a 3dsm-cyc instance is defined as the extreme point of
the following function.

min
M is a stable matching

 ∑
(ai,bj ,ck)∈M

rankai
(bj) + rankbj

(ck) + rankck
(ai)

 (1)

Minimum regret stable matchings. Another popular fairness notion, called minimum regret
stable matching, intuitively maximises the satisfaction of the least satisfied person in the
instance. In this context, each agent’s regret is measured by how high she ranks her partner
in the matching – the larger this rank is, the more regret she experiences. The regret of
matching M is defined as the largest regret in the instance, i.e. the worst rank that appears
in the matching. Finding a minimum regret stable matching can be done in polynomial time
both in bipartite and non-bipartite instances [23, 24]. A minimum regret stable matching in
a 3dsm-cyc instance is defined as the extreme point of the following function.

min
M is a stable matching

{
max

(ai,bj ,ck)∈M

{
rankai

(bj), rankbj
(ck), rankck

(ai)
}}

(2)

Sex-equal stable matchings. A third condition is called sex-equality, which aims at reaching
the same satisfaction level of each agent set. The satisfaction of a set of agents is measured
by summing up the satisfaction level, that is, the rank of the matching partner, of each
agent in the set. In the classic stable marriage setting, a sex-equal stable matching minimises
the difference between the satisfaction level of the two sets. Finding a sex-equal stable
matching is NP-hard in those instances [30, 35]. Even though the notion cannot be defined
for non-bipartite instances, it translates readily to 3dsm-cyc instances. The difference of
satisfaction level between any two of the three agent sets can be computed exactly as in
the classic stable marriage setting. Then, the sum of the three pairwise differences must
be minimised. We define a sex-equal stable matching as the extreme point of the following
function.

min
M is a stable matching

{ ∣∣∣∣∣∣
∑

(ai,bj ,ck)∈M

rankai
(bj) − rankbj

(ck)

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑

(ai,bj ,ck)∈M

rankbj
(ck) − rankck

(ai)

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑

(ai,bj ,ck)∈M

rankck
(ai) − rankai

(bj)

∣∣∣∣∣∣
}

(3)
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2.3 Our contribution
This paper is the first to model 3-dimensional stable matchings, specifically the 3dsm-cyc
problem, including its optimisation variants using side constraints. We propose the following
CP models to find a stable matching in the 3dsm-cyc problem: div (divided agent sets),
uni (unified agent sets), and hs (hitting set). We implement each one of the models under
both weak and strong stability. For the div and uni models, we investigate two kinds of
domain values: one based on the unique identifiers of the agents themselves, referred as
agent-based (agents), and the other based on the ranks of agents in one’s preference list,
referred as rank-based (ranks). We first use the models to find any satisfying solution to a
given 3dsm-cyc instance. Subsequently, we extend all models to optimisation variants under
different fairness criteria and conclude with some empirical findings.

3 Methodology

In this section we present the details of our five proposed models. For each model, we propose
the mandatory matching and stability constraints. We also propose how to model the fairness
constraints for different optimisation versions. Furthermore, if we identified any, we state the
redundant constraints that help the models with better pruning the search space.

3.1 Agent-based DIV model
The div-agents model consists of 3n variables X = {x1, . . . , xn}, Y = {y1, . . . , yn}, and
Z = {z1, . . . , zn}, where the domain of each variable v is set as D(v) = {1, . . . , n}. For
agent-based domain values, assigning xi = j (respectively yi = j, or zi = j) corresponds to
matching ai to bj (respectively bi to cj , or ci to aj). A stable matching M , if any exists, is
found by using the following constraints.

(matching) For all 1 ≤ i, j, k ≤ n, we add the constraint xi = j ∧ yj = k ⇒ zk = i. This
is to ensure that each solution corresponds to a feasible, if not stable, matching.
(stability) Under weak stability, for all 1 ≤ i, j, k ≤ n, and for all i′, j′, k′ such that
ai prefers bj to bj′ , bj prefers ck to ck′ and ck prefers ai to ai′ we add the constraint
xi ̸= j′ ∨ yj ̸= k′ ∨ zk ̸= i′. This is to ensure that there is no strongly blocking triple.
When solving the problem under strong stability, the condition to post the constraint
becomes: ai prefers bj to bj′ or j′ = j, and bj prefers ck to ck′ or k′ = k, and ck prefers
ai to ai′ or i′ = i, and i′ ̸= i ∨ j′ ≠ j ∨ k′ ̸= k. Here, as well as in the other models, the
difference between weak and strong stability constraints is that the latter also cover the
case when exactly two agents of a potential blocking triple are matched together.
(redundancy) For all 1 ≤ i, j, k ≤ n, we add the constraint yj = k ∧ zk = i ⇒ xi = j.
(redundancy) For all 1 ≤ i, j, k ≤ n, we add the constraint zk = i ∧ xi = j ⇒ yj = k.
(redundancy) We add AllDifferent(X) and AllDifferent(Y ) and AllDiffer-
ent(Z) to ensure each agent has exactly one partner from each set.
(optimisation) When solving a fair version of the problem, we add a constraint to minimise
the objective in one of the following ways, depending on which notion of fairness is desired:

For egalitarian M , we model Eqn. 1 as:
∑

(rankai
(bj) + rankbj

(ck) + rank ck(ai)) for
all i, j, k such that xi = j ∧ yj = k ∧ zk = i.
For minimum regret M , we model Eqn. 2 as: max(max(rankai(bj), rankbj (ck),
rank ck(ai))) for all i, j, k such that xi = j ∧ yj = k ∧ zk = i.
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For sex-equal M , we model Eqn. 3 as:
∣∣SA − SB

∣∣ +
∣∣SB − SC

∣∣ +
∣∣SC − SA

∣∣ where
SA =

∑
(rankai

(bj)) for all i, j such that xi = j, SB =
∑

(rankbj
(ck)) for all j, k such

that yj = k, and SC =
∑

(rankck
(ai)) for all k, i such that zk = i.

3.2 Rank-based DIV model
Variables and domains are the same in the rank-based div model (div-ranks) as they are in
the agent-based div model (div-agents), but this time assigning xi = j (respectively yi = j,
or zi = j) corresponds to matching ai to her jth preferred agent (respectively bi to her jth

preferred agent, or ci to her jth preferred agent), who might be different from bj . A stable
matching M , if any exists, is found by using the following constraints.

(matching) For all 1 ≤ i, j, k ≤ n, we add the constraint xi = rankai(bj) ∧ yj =
rankbj

(ck) ⇒ zk = rankck
(ai). This is to ensure that each solution corresponds to a

feasible, if not stable, matching.
(stability) Under weak stability, for all 1 ≤ i, j, k ≤ n, we add the constraint xi ≤
rankai(bj) ∨ yj ≤ rankbj (ck) ∨ zk ≤ rankck

(ai). This is to ensure that there is no strongly
blocking triple. When solving the problem under strong stability, the inequalities are
strict but the following part is added to each disjunction: ∨(xi = rankai

(bj) ∧ yj =
rankbj

(ck) ∧ zk = rankck
(ai)).

(redundancy) For all 1 ≤ i, j, k ≤ n, we add the constraint yj = rankbj (ck) ∧ zk =
rankck

(ai) ⇒ xk = rankai
(bj).

(redundancy) For all 1 ≤ i, j, k ≤ n, we add the constraint zk = rankck
(ai) ∧ xi =

rankai
(bj) ⇒ yj = rankbj

(ck).
(optimisation) We add a constraint to minimise the objective in one of the following ways,
depending on which notion of fairness is desired:

For egalitarian M , we model Eqn. 1 as:
∑n

i=1(xi + yi + zi).
For minimum regret M , we model Eqn. 2 as: max(max(xi, yi, zi)) for all 1 ≤ i ≤ n.
For sex-equal M , we model Eqn. 3 as:

∣∣SA − SB

∣∣ +
∣∣SB − SC

∣∣ +
∣∣SC − SA

∣∣ where
SA =

∑n
i=1(xi), SB =

∑n
j=1(yj), and SC =

∑n
k=1(zk).

Note that, as opposed to agent-based domains, there are no AllDifferent constraints
in rank-based models. The reason for this is that with rank-based domains it is possible for
two agents in the same agent set to be assigned the same value, for example if they both got
assigned to their most preferred agent.

3.3 Agent-based UNI model
The uni-agents model consists of n variables X = {x1, . . . , xn}, where the domain of each
variable v is set as D(v) = {(1, 1), . . . , (1, n), (2, 1), . . . , (n, n)}. Each tuple domain variable
is implemented as an integer domain variable by representing the tuple (j, k) with the integer
(j − 1)n + k. For agent-based domain values, assigning (j, k) to xi corresponds to having the
triple (ai, bj , ck) in the matching. A stable matching M , if any exists, is found by using the
following constraints.

In both the current and following subsections, we denote by xi,B and xi,C respectively
the first and second elements of the pair assigned to xi.

(matching) For all 1 ≤ i < i′ ≤ n, we add the constraint xi,B ̸= xi′,B ∧ xi,C ̸= xi′,C . This
is to ensure that each solution corresponds to a feasible, if not stable, matching.
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(stability) Under weak stability, for all 1 ≤ i, j, k ≤ n, for all 1 ≤ i′, i′′, j′, k′ ≤ n such
that ai prefers bj to bj′ , bj prefers ck to ck′ and ck prefers ai to ai′ , we add the constraint
(xi,B ̸= j′) ∨ (xi′′ ̸= (j, k′)) ∨ (xi′,C ̸= k). This is to ensure that no triple is blocking.
Because in UNI only the agents from A have their own associated variables, determining
whether bj was assigned to ck′ requires checking for each agent ai′′ from A whether both
bj and ck′ were assigned to ai′′ . This is the reason for the additional index i′′. When
solving the problem under strong stability, the condition to post the constraint becomes:
ai prefers bj to bj′ or j′ = j, and bj prefers ck to ck′ or k′ = k, and ck prefers ai to ai′ or
i′ = i, and i′ ̸= i ∨ j′ ̸= j ∨ k′ ̸= k.
(redundancy) We impose the constraint AllDifferent(X).
(redundancy) Denote by F (i) the set of tuples that have an agent i as their first element,
and S(i) the tuples that have i as their second. Then, for all agents ∀i ∈ n we have∑

j∈F (i) Count(j, X) = 1 and
∑

j∈S(i) Count(j, X) = 1.
(optimisation) We add a constraint to minimise the objective in one of the following ways,
depending on which notion of fairness is desired:

For egalitarian M , we model Eqn. 1 as:
∑n

i=1(rankai
(bxi,B

) + rankbxi,B
(cxi,C

) +
rankcxi,C

(ai)).
For minimum regret M , we model Eqn. 2 as: max(max( rankai(bxi,B

),
rankbxi,B

(cxi,C
), rankcxi,C

(ai))) for all 1 ≤ i ≤ n.
For sex-equal M , we model Eqn. 3 as:

∣∣SA − SB

∣∣ +
∣∣SB − SC

∣∣ +
∣∣SC − SA

∣∣ where SA =∑n
i=1(rankai

(bxi,B
)), SB =

∑n
i=1(rankbxi,B

(cxi,C
)), and SC =

∑n
i=1(rankcxi,C

(ai)).

3.4 Rank-based UNI model
Variables and domains are implemented the same in the rank-based uni model (uni-ranks)
as they are in the agent-based uni model (uni-agents), but this time assigning (j, k) to xi

corresponds to matching ai to her jth preferred agent from B, and matching the latter to
her kth preferred agent from C. A stable matching M , if any exists, is found by using the
following constraints.

(matching) For all 1 ≤ i < i′ ≤ n, we add the constraint prefai
(xi,B) ̸= prefai′ (xi′,B) ∧

prefprefai
(xi,B)(xi,C) ̸= prefprefa

i′ (xi′,B)(xi′,C), where prefai
(r) (respectively prefbj

(r),
or prefck

(r)) represents the agent b ∈ B (respectively c ∈ C, or a ∈ A) such that
rankai

(b) = r (respectively rankbj
(c) = r, or rankck

(a) = r). This is to ensure that each
solution corresponds to a feasible, if not stable, matching.
(stability) Under weak stability for all 1 ≤ i, j, k ≤ n, for all 1 ≤ i′, i′′, j′′ ≤ n such
that ck strictly prefers ai to ai′ , we add the constraint (xi,B ≤ rankai

(bj)) ∨ (xi′′,B ̸=
rankai′′ (bj)) ∨ (xi′′,C ≤ rankbj

(ck)) ∨ (xi′ ̸= (rankai′ (bj′′), rankbj′′ (ck))). This is to ensure
that no triple is blocking. When solving the problem under strong stability, ck’s preference
of ai to ai′ is not strict (i′ can be equal to i) but the two inequalities are, and to each
disjunction is added the following part: ∨(xi = (rankai(bj), rankbj (ck))).
(optimisation) We add a constraint to minimise the objective in one of the following ways,
depending on which notion of fairness is desired:

For egalitarian M , we model Eqn. 1 as:
∑n

i=1(xi,B +xi,C +rankprefprefai
(xi,B )(xi,C )(ai)).

For minimum regret M , we model Eqn. 2 as: max(max(xi,B , xi,C ,

rankprefprefai
(xi,B )(xi,C )(ai))) for all 1 ≤ i ≤ n.

For sex-equal M , we model Eqn. 3 as:
∣∣SA − SB

∣∣ +
∣∣SB − SC

∣∣ +
∣∣SC − SA

∣∣ where
SA =

∑n
i=1(xi,B), SB =

∑n
i=1(xi,C), and SC =

∑n
i=1(rankprefprefai

(xi,B )(xi,C )(ai)).
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3.5 HS model
In the hs model, let T be the set of all possible triples as {(1, 1, 1), (1, 1, 2), . . . , (n, n, n)}.
Without loss of generality, assume that the triples in T are ordered, so ti ∈ T refers to the
ith triple of T . Given a triple t ∈ T , we denote by BT (t) all the triples in T that prevent t

from becoming a blocking triple given the preferences. Then, finding a stable matching is
equivalent to finding a hitting set of the non-blocking triples in T .

Let M be a set variable whose upper bound is {i : ti ∈ T}.
(matching) Ensure that each agent from each set is matched by having:

∀a ∈ A :
∑

ti∈T :a∈ti
(i ∈ M) = 1;

∀b ∈ B :
∑

ti∈T :b∈ti
(i ∈ M) = 1;

∀c ∈ C :
∑

ti∈T :c∈ti
(i ∈ M) = 1.

(stability) The stable matching is a hitting set of the non-blocking triples: ∀tj ∈ T :
M ∩ {i : ti ∈ BT (tj)} ̸= ∅. The type of stability is addressed in the computation of the
BT sets. The model as such is not concerned with this aspect.

In this model, M is constrained to be a set of triples representing the stable matching as
defined in Section 2.2, so egalitarian M , minimum regret M , and sex-equal M are defined as
in Equations 1, 2, and 3 respectively.

In the actual implementation, M is represented in terms of an array of n3 Boolean
variables, where each variable refers to the inclusion/exclusion of the corresponding tuple in
the mapping.

4 Experiments

We performed our experiments on machines with Intel(R) Xeon(R) CPU with 2.40GHz
running on Ubuntu 18.04. Our initial experiments on small instances comparing all models
are performed using Gecode 6.3.0 [21]. Then, we conduct further experiments by using
our best performing models for larger instances on a constraint solver based on lazy-clause
generation, namely Chuffed 0.10.4. [9]. For div and uni models, instances were first processed
by MiniZinc 2.5.5 [37] before being given to the solvers. The hs model has been directly
encoded using Gecode 6.2.0. In Section 4.1 we describe the datasets in use. Then, in
Sections 4.2 and 4.3 we compare the proposed models.

4.1 Dataset description
For every size n present in our experiments, we generated 100 instances with n agents in
each agent set and a complete list for each agent. Half of these instances are random and the
other half have some or all of the preferences based on master lists. Master list instances are
instances where the preference lists of all agents in the same agent set are identical. Master
lists provide a natural way to represent the fact that in practice agent preferences are often
not independent. Examples of real-life applications of master lists occur in resident matching
programs [4], dormitory room assignments [42], cooperative download applications such as
BitTorrent [1], and 3-sided networking services [11]. The detailed distribution of the 100
instances generated for each size is as follows:

Random: 50 random instances from uniform distribution.
ML_oneset: 20 instances where the preference lists of the agents in one of the agent
sets are based on master lists, and the preference lists of the agents in the other two
agent sets are random.
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ML_1swap: 15 instances, where each agent set has a randomly chosen master list that
all agents in the set follow. Then, we randomly choose two agents from each agent’s
preference list, and swap their positions.
ML_2swaps: 15 instances, where each agent set has a randomly chosen master list
that all agents in the set follow. First, we randomly choose two agents from each agent’s
preference list, and swap their positions. Subsequently, we randomly choose two more
agents from each list such that the new agents were not involved in the first swap, then
we swap their positions.

Note that neither the type of stability (weak or strong) nor the fairness objective is part
of the preferences themselves. For this reason, the 100 instances generated for each size n

are used for both types of stability and for all satisfiability and optimisation versions.
We did not consider instances where all preference lists in all three sets are exact

master lists, because the complete set of stable matchings for these instances is known [16].
ML_oneset instances always have a strongly stable matching (Lemma 1), but, contrary to the
case with master lists in all three sets, not all solutions have been characterised. Therefore
there is value in modelling fairness versions of the problem for instances with this structure.

4.2 Model comparison
In this section, we first test each one of our five models (i.e. hs, div-agents, div-ranks,
uni-agents, and uni-ranks) using different heuristic search strategies on small instances in
Gecode to find out which strategy performs best. In Gecode experiments, we did not use
extra propagation techniques such as lazy clause generation or restarts. Considering that
the hs model is implemented in Gecode, and not all search strategies are common to both
Gecode and MiniZinc, for a fair comparison between all five models we used indomain_min
(assigning the smallest value in the domain) and indomain_max (assigning the largest value
in the domain) strategies combined with a search on variables in the given order. The former
is referred as nonemin, and the latter as nonemax. Additionally, we further tested the div
and uni models using alternative built-in search strategies that exist in MiniZinc, notably
indomain_split, a heuristic that bisects a variable’s domain then tries the lower half before
trying the upper one. We observed that a strategy that is based on choosing the variable
with the smallest domain size using indomain_min results in the best performance for div
model, while using indomain_split instead of indomain_min leads to the best performance
for uni model. We refer to these as failmin and failsplit strategies, respectively. Therefore,
all the remaining results and plots were obtained by running hs with nonemax strategy,
div-agents and div-ranks with failmin, and uni-agents and uni-ranks with failsplit.

During the experiments, we used a time-limit of 10 minutes for each instance. Considering
the huge number of all combinations of different parameters in each model, we adapted a
look-ahead approach for our tests, i.e. we started performing tests on all models using small
instances n = 4. Then, we incremented the n for each model that has the potential to be the
best. If a model times out on most of the instances for a given combination of parameters,
we do not test it further on these instances.

We use notched boxplots [36] in Figures 1, 2, 3, and 4. Figure 1 presents a comparison of
total time required by all five models on instances of size 5 ≤ n ≤ 11 under weak stability
solved using Gecode. The first insight gained is that the hs model handles the instances
of small sizes very well. When we examine performance based on the dataset generation
methods, we observe that usually a weakly stable matching for the instances in Random
is found faster than other datasets when using Gecode. Additionally we observe that the
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Figure 1 A comparison of total time spent by all models under weak stability using Gecode.

models require more time to solve the instances in ML_1swap for satisfiability, egalitarian,
and minimum regret versions. On the other hand, for the sex-equal version of the problem,
ML_oneset is the most challenging dataset for all models. We conclude from this figure that
hs is the best model when dealing with small instances under weak stability using Gecode.

Figure 2 demonstrates the results obtained from the same datasets under strong stability.
Note that the problem model for finding a matching under weak stability is a relaxed version
of the model under strong stability. However, it is interesting to observe from the experiments
that, on average, strongly stable matchings are found faster than their weak counterpart.
We can clearly observe this behaviour on Figure 2. All models except div-agents were
able to solve all satisfiable instances of size between 4 ≤ n ≤ 11 within the given time
limit. Therefore, in order to provide more insight into the performance of models, we use a
larger scale, i.e. {4, 8, 12, 16, 20} in Figure 2. Under strong stability, we clearly observe that
hs and div-ranks scale better when compared to the other models. For instance, for the
satisfiability problem with size n = 8, both hs and div-ranks quickly solve all the instances.
However, both uni-agents and uni-ranks require longer time than hs and div-ranks, whereas
div-agents fails to solve many instances within the given time-limit. Both uni and hs follow
the same commitment approach (group commitment). We believe this is hampering their
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Figure 2 A comparison of total time spent by all models under strong stability using Gecode.

scalability as there are fewer solutions in the strong stability case, which increases the chances
of making wrong choices thus leading to higher penalties in the case of group commitment
as we have to undo the three pairings. Considering that the time performance of uni models
and div-agents are considerably worse for 4 ≤ n ≤ 12 when compared to others, we decided
to discard them from further experiments. hs is not performing that bad, but its scalability
is affected by the computation of the BT sets. The size of each BT set is O(n3), which is a
remarkable overhead when dealing with big instances. We elaborate more on this limitation
in the next section. Therefore, we conclude from this figure that div-ranks is the most
efficient model when working with large n under strong stability using Gecode.

Note that hs was implemented in Gecode directly because it is cheaper to carry out the
computation of the BT sets in C++ than in MiniZinc. However, this decision does not put
the other models in a disadvantageous position since the main contribution to the running
time comes from the solving time and in all cases the solving phase is carried out in C++.

In addition to the Gecode experiments, we tested our four models div-agents, div-ranks,
uni-agents, and uni-ranks on Chuffed. Chuffed is the state-of-the art lazy clause solver
that performs propagation by recording the reasons of propagation at each step. This helps
with efficiently creating nogoods during the search and avoiding failures. Note that due to
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Figure 3 A comparison of total time spent by all models except hs under weak stability using
Chuffed.

implementing the hs model directly in Gecode, our Chuffed experiment results do not include
the performance of the hs model. Figure 3 presents a comparison of div-agents, div-ranks,
uni-agents, and uni-ranks models on instances of size 5 ≤ n ≤ 11 under weak stability. In
these plots, we can clearly observe that div-ranks model has an advantage over the others in
terms of total time required to complete the experiments. It is interesting to observe that
contrasting with the findings of Gecode experiments in Figure 1, where div-agents seems
to have an analogous performance with div-ranks, if not better, we observe in Figure 3
that div-ranks has a clear advantage over div-agents when using Chuffed. We believe this
shows that div-ranks benefits greatly from nogood learning. Additionally, using Figure 3,
we can verify our previous observation about ML_oneset being a more challenging dataset
generation method for the sex-equal variant under weak stability.

Lastly, Figure 4 demonstrates a comparison of div-agents, div-ranks, uni-agents, and uni-
ranks models on instances of size 5 ≤ n ≤ 11 under strong stability. A very straightforward
intuition of these tests is that the uni-agents and uni-ranks models are not able to scale well
to larger instances. On the other hand, we observe that div-agents handles an increase in
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Figure 4 A comparison of total time spent by all models except hs under strong stability using
Chuffed.

the number of agents better than the uni models, but it still performs worse than div-ranks
when n ≥ 9. Considering the stable and rapid performance of div-ranks using Chuffed and
also combining this with our observation on Figure 2, we conclude that the div-ranks model
is the best one to solve 3dsm-cyc under strong stability.

4.3 Scalability

Considering div-ranks is the best performing model in the majority of cases, we performed
further experiments using this model on instances with n ∈ {20, 23, 26, 29, 32, 35, 40, 45, 50, 60,

70, 80, 90, 100, 110, 120, 130}.
Figure 5 presents a comparison of the median total time required by div-ranks using

failmin strategy on all four datasets both under weak and strong stability. An interesting
insight from this figure is that all four problem variants (i.e. satisfiability, egalitarian, minimum
regret, and sex-equal) result in similar performances under strong stability, where instances
in Random require the longest time to be solved and ML_oneset requires the least. However,
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Figure 5 An overview of the performance of div-ranks using Chuffed under both weak and strong
stability when solving problem instances of different sizes for each dataset.

we cannot make such a generalisation for weakly stable matchings. For instance, ML_oneset
dataset is the most challenging dataset for the sex-equal problem variant, but it is also the
least challenging for the minimum regret variant under weak stability.

5 Conclusion and future work

We proposed a collection of Constraint Programming models to solve the 3-dimensional
stable matching problem with cyclic preferences (3dsm-cyc) using both strong and weak
stability notions. Additionally, we extended some well-known fairness notions (egalitarian,
minimum regret, and sex-equal) to 3dsm-cyc. The five proposed models are fundamentally
different from each other in terms of their commitment (individual or group), and also their
domain values (agents or ranks). Our experiments show that nogood learning benefits some
models more than others. An unexpected observation is that strong stability turns out to
be easier to solve than weak stability. Following a comprehensive empirical evaluation, we
conclude that the performances of the proposed models differ with respect to the type of
stability and dataset generation method.

The models proposed can be easily adapted to take advantage of the good performance
of strong stability by first trying to find a strongly stable matching. Other future work could
extend our models to more types of instances, for example by allowing preference lists to
be incomplete. One could also look at other redundant constraints in order to best take
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advantage of the properties that some instances exhibit with regard to fairness objectives.
We remarked that hs pays a high price for the generation of the BT sets but it is possible to
generate the sets by demand instead of doing it eagerly.
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a1 chooses her first choice agent in B, who then chooses her first choice agent in C. This
triple is removed from the instance. Then we iterate the same starting with a2, who chooses
her first choice among agents in B not yet removed, and so on. Let us relabel agents in B

and C so that triples (ai, bi, ci) form the output matching of this algorithm.
First observe that an agent ai can only prefer an agent bj to her partner in M if j < i.

Similarly, ai prefers bi to all agents with j > i. These observations hold for agents bi and ci as
well. Each weakly blocking triple thus must include a decrease in the variable index where the
strict preference occurs, and simultaneously can contain no decrease in the index elsewhere,
because this would make the corresponding agent less satisfied as she was in M . ◀
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1 Introduction

In the weighted constraint satisfaction problem (WCSP) we maximize the sum of (weight)
functions over many discrete variables, where each function depends only on a (usually
small) subset of the variables. A popular approach to tackle this NP-hard combinatorial
optimization problem is via its linear programming (LP) relaxation [21, 32, 30, 29, 20, 1].
The dual of this LP relaxation minimizes an upper bound on the WCSP optimal value over
reparametrizations (also known as equivalence-preserving transformations) of the original
WCSP instance. For large instances this is done only approximately, by methods based on
block-coordinate descent [16, 14, 27, 28, 32, 17] or constraint propagation [5, 18, 32, 19].
Fixed points of these methods are characterized by a local consistency of the CSP formed by
the active tuples (to be defined later) of the transformed WCSP [32, 16, 14, 5, 27].
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This approach is limited in that it cannot enforce an arbitrary level of local consistency,
unless new weight functions are introduced. Namely, it can achieve at most pairwise
consistency [33, 34], which for binary WCSPs reduces to arc consistency (reparametrized
WCSP corresponding to global optima of the dual LP relaxation have been called optimally
soft arc consistent in [6, 5]).

In this paper, we study a different LP formulation of the WCSP, which was proposed
in [17] but never pursued later. It differs from the above mentioned basic LP relaxation
and does not belong to the known hierarchy of LP relaxations obtained by introducing new
weight functions of higher arities [24, 33, 19, 1] (which leads to a fine-grained version of the
Sherali-Adams hierarchy [22] for the WCSP). Our LP formulation again minimizes the upper
bound on the WCSP optimal value, but this time over super-reparametrizations of the initial
WCSP instance. Its remarkable feature is that it allows using almost arbitrary (up to some
technical assumptions) constraint propagation techniques to improve the bound, without
introducing new weight functions. On the other hand, it may neither preserve the value of
the individual assignments nor the set of optimal assignments, but it nevertheless provides a
valid, and possibly tighter, bound on the WCSP optimal value.

2 Notation

For clarity of presentation, we will consider only binary WCSPs with finite weights. However,
it would be straightforward to generalize the approach described in the paper to WCSPs of
any arity and with some weights infinite (i.e., including hard constraints).

Let V be a finite set of variables and D a finite domain of each variable. An assignment
x ∈ DV assigns2 a value xi ∈ D to each variable i ∈ V . Let E ⊆

(
V
2
)

be a set of variable
pairs, so that (V, E) is an undirected graph. The weighted constraint satisfaction problem
(WCSP) seeks to maximize the function

F (x |f) =
∑
i∈V

fi(xi) +
∑

{i,j}∈E

fij(xi, xj) (1)

over all assignments x ∈ DV . Here, fi : D → R and fij : D2 → R (where we assume that
fij(k, l) = fji(l, k)) are weight functions, whose values together form a vector f ∈ RT where

T = { (i, k) | i ∈ V, k ∈ D }︸ ︷︷ ︸
V ×D

∪ { {(i, k), (j, l)} | {i, j} ∈ E, k, l ∈ D } (2)

is a set of tuples. For t ∈ T , we denote ft = fi(k) if t = (i, k) ∈ V × D, and ft = fij(k, l) =
fji(l, k) if t = {(i, k), (j, l)} ∈ T − (V × D). The WCSP instance is defined by (D, V, E, f).
However, as the structure (D, V, E) will be the same throughout the paper, we will refer to
WCSP instances only as f (thus, we identify WCSP instances with vectors f ∈ RT ).

We say that an assignment x ∈ DV uses a tuple t = (i, k) if xi = k, and x uses a tuple
t = {(i, k), (j, l)} if xi = k and xj = l. In the constraint satisfaction problem (CSP), we are
given a set A ⊆ T of allowed tuples (while the tuples T − A are called forbidden) and look for
an assignment x (a solution to the CSP) that uses only the allowed tuples, i.e., (i, xi) ∈ A

for all i ∈ V and {(i, xi), (j, xj)} ∈ A for all {i, j} ∈ E. The CSP is satisfiable if it has a
solution. The CSP instance is defined by (D, V, E, A) but, as (D, V, E) will be always the
same, we will refer to it only as A (i.e., we identify CSP instances with subsets of T ).

2 As usual, DV denotes the set of all mappings from V to D, so x ∈ DV is the same as x : V → D.
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For a tuple t ∈ T , we denote

U(t) =
{

{ (i, k′) | k′ ∈ D } if t = (i, k)
{ {(i, k′), (j, l′)} | k′, l′ ∈ D } if t = {(i, k), (j, l)}

so that, e.g., for all i ∈ V and k, k′ ∈ D we have U((i, k)) = U((i, k′)). By

U = { U(t) | t ∈ T } = { {(i, k) | k ∈ D} | i ∈ V } ∪ { {{(i, k), (j, l)} | k, l ∈ D} | {i, j} ∈ E }

we denote the natural partition of T into |V | + |E| subsets. Clearly, any assignment uses
exactly one tuple from each set U ∈ U .

For a CSP A ⊆ T and t ∈ T , we denote A|t = A − (U(t) − {t}). That is, x is a solution
to CSP A|t if and only if x is a solution to CSP A and x uses tuple t. E.g., in A|(i,k) we
search for solutions x to CSP A satisfying xi = k (this is often denoted also as A|xi=k).

3 Bounding the WCSP Optimal Value

We define the function B : RT → R by

B(f) =
∑
i∈V

max
k∈D

fi(k) +
∑

{i,j}∈E

max
k,l∈D

fij(k, l) =
∑
U∈U

max
t∈U

ft. (3)

For f ∈ RT , we call a tuple t ∈ T active if ft = maxt′∈U(t) ft′ . Thus, a tuple t = (i, k) ∈ T

is active if fi(k) = maxk′∈D fi(k′), and a tuple t = {(i, k), (j, l)} ∈ T is active if fij(k, l) =
maxk′,l′∈D fij(k′, l′). The set of all tuples that are active for f is denoted3 by A∗(f) ⊆ T .

▶ Theorem 1 ([32]). For every WCSP f ∈ RT and every assignment x ∈ DV we have:
(a) B(f) ≥ F (x |f),
(b) B(f) = F (x |f) if and only if x is a solution to CSP A∗(f).

Proof. (a) can be checked by comparing expressions (1) and (3) term by term.
(b) says that B(f) = F (x |f) if and only if assignment x uses only the active tuples of f .

This is again straightforward from (1) and (3). ◀

Theorem 1 says that B(f) is an upper bound on the WCSP optimal value. Moreover, it
shows that B(f) = F (x |f) implies that x is a maximizer of the WCSP objective (1).

3.1 Minimizing the Upper Bound by Reparametrizations
If WCSPs f, g ∈ RT satisfy F (x |f) = F (x |g) for all x ∈ DV , we say that f is a
reparametrization of g (or equivalent to g or an equivalence-preserving transformation
of g) [16, 30, 21, 32, 33, 20, 6, 5, 28]. As the function F (x |f) is linear in f for every x,
equality F (x |f) = F (x |g) can be written as F (x |f −g) = 0. Linearity of F (x | ·) also implies
that the set { h ∈ RT | F (x |h) = 0 ∀x ∈ DV } is a subspace4 of RT .

3 The set of active tuples A∗(f) corresponds to the notion of Bool(f) in [5]. The characteristic vector of
the set A∗(f) was denoted f̄ in [27, 32], ⌈f⌉ in [33], and mi[f ] in [20].

4 For binary WCSPs with a connected graph (V, E), this subspace can be parametrized as hi(k) =∑
j|{i,j}∈E

φij(k) and hij(k, l) = −φij(k) − φji(l) where φij , φji : D → R, {i, j} ∈ E, are arbitrary
unary weight functions [32, Theorem 3]. For WCSPs of any arity, see [33, §3.2].
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Given a WCSP g ∈ RT , this suggests to minimize the upper bound on its optimal value
maxx F (x |g) by reparametrizations:

min
f∈RT

B(f) subject to F (x |f) = F (x |g) ∀x ∈ DV . (4)

Although this problem has an exponential number of constraints, its feasible set is an affine
subspace of RT and thus the number of constraints can be reduced to polynomial. Using the
well-known trick, the problem can be transformed to a linear program5, which is the dual LP
relaxation of the WCSP g [21, 32, 20]. WCSPs f optimal for (4) have been called optimally
soft arc consistent (OSAC) in [6, 5]. If any optimal solution f to (4) satisfies B(f) = F (x |f)
for some x, the LP relaxation is tight. Otherwise, B(f) is only a strict upper bound on the
optimal value of WCSP g.

3.2 Minimizing the Upper Bound by Super-Reparametrizations
If WCSPs f, g ∈ RT satisfy F (x |f) ≥ F (x |g) (that is, F (x | f − g) ≥ 0) for all x ∈ DV , we
say that f is a super-reparametrization6 of g. The set { h ∈ RT | F (x |h) ≥ 0 ∀x ∈ DV } is a
polyhedral convex cone. Following [17], we consider the problem

min
f∈RT

B(f) subject to F (x |f) ≥ F (x |g) ∀x ∈ DV . (5)

▶ Theorem 2 ([17]). The optimal value of problem (5) is maxx∈DV F (x |g).

Proof. By Theorem 1(a), every feasible f satisfies

B(f) ≥ F (x |f) ≥ F (x |g) ∀x ∈ DV . (6)

Denoting F ∗ = maxx F (x |g), this implies B(f) ≥ F ∗. To see that this bound is attained,
consider f defined by ft = F ∗/(|V | + |E|) for all t ∈ T . It can be checked from (1) and (3)
that B(f) = F (x |f) = F ∗ for all x, so f is feasible and optimal. ◀

Theorem 2 says that any feasible solution f to (5) yields an upper bound B(f) on the
optimal value of WCSP g, which is attained if f is optimal for (5). Thus, finding a global
optimum of (5) in fact means solving the WCSP g. This is not surprising, as the complexity
of the WCSP is hidden in the exponential set of constraints of (5).

▶ Theorem 3. Let g ∈ RT . Let f ∈ RT be feasible for (5). Then f is optimal for (5) if and
only if CSP A∗(f) has a solution x satisfying F (x |f) = F (x |g).

Proof. By (6) and Theorem 2, a feasible f is optimal if and only if B(f) = F (x |f) = F (x |g)
for some x. The claim now follows from Theorem 1. ◀

Next, we state a useful corollary of Theorem 3.

▶ Theorem 4. Let g ∈ RT . CSP A∗(g) is unsatisfiable if and only if there exists h ∈ RT

such that B(g + h) < B(g) and F (x |h) ≥ 0 for all x ∈ DV .

5 Namely, by introducing auxiliary variables zU ∈ R, problem (4) is equivalent to minimizing
∑

U∈U zU

subject to zU ≥ ft ∀U ∈ U , t ∈ U and F (x |f) = F (x |g) ∀x ∈ DV , which is a linear program.
6 They are called sup-reparametrizations in [23] and virtual potentials in [17].
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Proof. Theorem 3 in particular says that problem (5) attains its optimum at f = g if and
only if A∗(g) is satisfiable. That is, A∗(g) is unsatisfiable if and only if there exists f ∈ RT

such that B(f) < B(g) and F (x |f) − F (x |g) = F (x |f − g) ≥ 0 for all x. Substituting
h = f − g yields the desired claim. ◀

We will refer to vector h in Theorem 4 as a certificate of unsatisfiability of CSP A∗(g)
for g. Note that “for g” is important because h depends not only on the set A∗(g) but also
on the vector g itself. We will discuss this in more detail later on in §3.2.1.

3.2.1 Iterative Scheme
Given a feasible solution f to (5), we call a vector h ∈ RT an improving vector if vector
f ′ = f + h is feasible for (5) and B(f ′) < B(f). Clearly, an improving vector exists if and
only if f is not optimal for (5). Theorem 3 says that for f to be optimal, it is necessary
(but not sufficient) that CSP A∗(f) is satisfiable. Therefore, if A∗(f) is unsatisfiable, there
exists an improving vector. Any certificate h of unsatisfiability of A∗(f) for f (i.e., h satisfies
B(f + h) < B(f) and F (x |h) ≥ 0 for all x) is such an improving vector: indeed, f ′ = f + h

is feasible for (5) because F (x |f ′) = F (x |f) + F (x |h) ≥ F (x |f) ≥ F (x |g) for all x.
This suggests an iterative scheme to progressively improve feasible solutions to (5):

initialize f := g and then repeat this iteration (see Figure 1 in the appendix for an example):
1. If CSP A∗(f) is satisfiable, stop. Otherwise, find a certificate h of unsatisfiability of A∗(f)

for f .
2. Update f := f + h.

Recall that satisfiability of A∗(f) is not sufficient for optimality of f , as we are neglecting
the (difficult) condition F (x |f) = F (x |g) in Theorem 3. Consequently, in Step 1 we are able
to generate only improving vectors h satisfying F (x |h) ≥ 0 for all x, while general improving
vectors (as defined above) need to satisfy only F (x |f + h) ≥ F (x |g) for all x. The former
condition implies the latter but not vice versa. Therefore, fixed points of the algorithm are
local minima of problem (5), in the sense that a fixed point cannot be improved by moving
in any direction h satisfying the former condition (but possibly can be improved by moving
in a direction h satisfying the latter condition).

During the algorithm, this manifests itself as follows. At any time, f satisfies (6), hence
also B(f) ≥ maxx F (x |f) ≥ maxx F (x |g). In every iteration, B(f) decreases and the
number maxx F (x |f) increases or does not change (due to F (x |h) ≥ 0 for all x). When
these two numbers meet, A∗(f) becomes satisfiable by Theorem 1 and the algorithm stops.
Monotonic increase of maxx F (x |f) can be seen as “greediness” of the algorithm: if we
could generate general improving vectors, maxx F (x |f) could also decrease. Any increase of
maxx F (x |f) is undesirable because the bound B(f) will never be able to get below it.

Due to this greediness, the achievable (i.e., after possible convergence) gap B(f) −
maxx F (x |g) critically depends on the “quality” of the certificates h. For a given f , there
can be many certificates h of unsatisfiability of A∗(f) for f . Good certificates are those for
which the difference maxx F (x |f + h) − maxx F (x |f) ≥ 0 is small (ideally zero). Intuitively,
this means F (x |h) should be zero for most of the assignments x and small for the remaining
assignments. In turn, one heuristic for this is to keep vector h sparse7.

7 Sparsity of h is not the whole answer, though, because, e.g., vectors h satisfying F (x |h) = 0 for all x
can be dense, according to Footnote 4.
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So far, we supposed that in Step 1 of the algorithm we were always able to decide if CSP
A∗(f) is satisfiable. This is unrealistic because the CSP is NP-complete. But the approach
remains applicable even if we detect unsatisfiability of A∗(f) (and provide a certificate h)
only sometimes, e.g., using constraint propagation. Then the iterative scheme becomes:
1. Attempt to prove that CSP A∗(f) is unsatisfiable. If we succeed, find a certificate h of

unsatisfiability of A∗(f) for f . If we fail, stop.
2. Update f := f + h.
In this case, the fixed points of the algorithm will be even weaker local minima of problem (5),
but they nevertheless might be still non-trivial and useful.

In the rest of the paper we develop this approach in detail. More precisely, we will
compute an improving vector h in two steps: first (in §4) we compute an improving direction
d ∈ RT from A∗(f) using constraint propagation, and then (in §5) we compute a suitable
step length α > 0 such that h = αd. This is because from the CSP A∗(f) alone it is possible
to obtain only improving directions, while the step α depends also on f .8

Relation to Existing Approaches

The Augmenting DAG algorithm [18, 32] and the VAC algorithm [5] are (up to the precise
way of computing the certificates h) an example of the described approach, which uses arc
consistency to prove unsatisfiability of A∗(f). In this favorable case, there exist certificates h

that satisfy F (x |h) = 0 for all x, so we are in fact solving (4) rather than (5). For stronger
local consistencies such certificates in general do not exist (i.e., F (x |h) > 0 for some x).

The algorithm proposed in [17] can be also seen as an example of our approach. It
interleaves iterations using arc consistency (in fact, the Augmenting DAG algorithm) and
iterations using cycle consistency.

As an alternative to our approach, stronger local consistencies can be achieved by
introducing new weight functions (of possibly higher arity) into the WCSP objective (1) and
minimizing an upper bound by reparametrizations, as in [24, 1, 33, 34, 19]. In our particular
case, after updating f := f + h we could introduce9 a weight function with scope formed
by the variables of all tuples t ∈ T with ht ̸= 0. In this view, our approach can be seen as
enforcing stronger local consistencies but omitting these compensatory higher-order weight
functions, thus saving memory.

Finally, the described approach can be seen as an example of the primal-dual approach [12]
to optimize linear programs using constraint propagation.

4 Deactivating Directions

Here we describe a special kind of directions, deactivating directions (this name will be
justified in §5). Under additional conditions, these directions certify unsatisfiability of a CSP.

▶ Definition 5. Let A ⊆ T and S ⊆ A, S ̸= ∅. An S-deactivating direction for CSP A is a
vector d ∈ RT satisfying
(a) dt < 0 for all t ∈ S,
(b) dt = 0 for all t ∈ A − S,
(c) F (x |d) ≥ 0 for all x ∈ DV . ⌟

Note that for fixed A and S, all S-deactivating directions for A form a convex cone.

8 It follows from Theorem 4, 6, and 15 that a CSP A ⊆ T is unsatisfiable if and only if there is a
direction d ∈ RT such that (i) F (x |d) ≥ 0 for all x and (ii) for every f ∈ RT such that A = A∗(f) there
exists α > 0 such that B(f + αd) < B(f).

9 Notice that such an added weight function would not increase the bound (3) since its weights are
non-positive due to the fact that it needs to decrease the value for some assignments.
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▶ Theorem 6. Let A ⊆ T and S ⊆ A, S ̸= ∅. An S-deactivating direction d ∈ RT for A

exists if and only if CSP A|t has no solution for any t ∈ S.

Proof. For one direction, we proceed by contradiction. Let d be an S-deactivating direction
for A and let x∗ be a solution to A that uses at least one tuple from S. By (1), we have
F (x∗ |d) < 0 because dt = 0 for all t ∈ A − S by condition (b) in Definition 5 and dt∗ < 0
for all t∗ ∈ S by condition (a). This contradicts condition (c).

For the other direction, if CSP A|t has no solution for any t ∈ S, sets S and P = T − A

satisfy Property 7, so an S-deactivating direction exists by Theorem 8 (given below). ◀

Suppose d ∈ RT is an S-deactivating direction for A ⊆ T . If for some U ∈ U it holds that
(A − S) ∩ U = ∅ (equivalently10, A ∩ U ⊆ S) then, by Theorem 6, CSP A is unsatisfiable
because (as noted in §2) every assignment uses exactly one tuple from every set from U . In
that case, d certifies unsatisfiability of CSP A.11

4.1 Obtaining Deactivating Directions Using Constraint Propagation
Although the CSP is NP-complete, satisfiability of some CSPs can be disproved in polynomial
time by constraint propagation. This is an iterative method, which in each iteration infers
that certain tuples of a given CSP instance are not used by any solution and forbids these
tuples. In contrast to usual usage of constraint propagation, we require that in every iteration
it also provides an S-deactivating direction for the set of tuples S it forbids. By Theorem 6,
such a direction always exists.

We will argue that finding an S-deactivating direction for a CSP A is not harder than
infering that A|t has no solution for any t ∈ S. Formally, we consider an algorithm (such as
a constraint propagation method) satisfying the following property:

▶ Property 7. The algorithm takes a set A ⊆ T on input and returns sets S ⊆ A

and P ⊆ T − A such that CSP (T − P )|t is unsatisfiable for every t ∈ S. ⌟

The condition in Property 7 is equivalent to requiring that for any CSP A′ where all
tuples from P are forbidden (i.e., A′ ⊆ T − P ), A′|t is unsatisfiable for all t ∈ S.12 Note that
this implies that CSP A|t is unsatisfiable for all t ∈ S due to A ⊆ T − P .

Returning S = ∅ indicates that the algorithm is not able to forbid any tuple. In addition,
the algorithm provides a “proof” set P ⊆ T − A which can be interpreted as a set of tuples
which are needed to verify that A|t is unsatisfiable for each t ∈ S. It is natural that P is a
subset of forbidden tuples since such tuples suffice to disprove satisfiability of a CSP.

▶ Theorem 8. Let A ⊆ T . If an algorithm satisfying Property 7 takes A on input and
returns sets S, P with S ̸= ∅, then d ∈ RT defined as 13

dt =


−1 if t ∈ S

|{U ∈ U | U ∩ S ̸= ∅}| if t ∈ P

0 otherwise
(7)

is S-deactivating for A.

10 Indeed, for any A, S, U ⊆ T we have (A − S) ∩ U = ∅ ⇐⇒ A ∩ U ⊆ S. We will use this equivalence
repeatedly in the sequel.

11 Let us emphasise that this is different from the certificate of unsatisfiability of CSP A∗(f) for f (in
the sense of Theorem 4) because deactivating directions do not contain the step length. Following
Footnote 8, the step length can be computed for any WCSP f with A∗(f) = A using Theorem 15.

12 This holds due to A ⊆ T − P and the fact that if A′ is unsatisfiable, then any A ⊆ A′ is unsatisfiable.
13 |{U ∈ U | U ∩ S ≠ ∅}| is the number of scopes in U which contain at least one tuple from S. In other

words, every assignment uses at most |{U ∈ U | U ∩ S ̸= ∅}| tuples from S.
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Proof. Conditions (a) and (b) of Definition 5 are clearly satisfied and it only remains to
show that F (x |d) ≥ 0 ∀x ∈ DV . We proceed by contradiction: let x∗ ∈ DV such that
F (x∗ |d) < 0. Denote m = |{U ∈ U | U ∩ S ≠ ∅}. Necessarily, x∗ uses at least one tuple
t∗ ∈ S (otherwise, F (x∗ |d) would not be negative). Additionally, x∗ does not use any tuple
from P . The reason is that every x uses exactly one tuple from each set U ∈ U , so it can
use at most m tuples t with dt = −1. If at least one tuple from P was used, we would have
F (x |d) ≥ 0 by (7).

Since x∗ uses only tuples from the set T − P , it is a solution to CSP T − P . But x∗ uses
at least one tuple t∗ ∈ S, i.e., (T − P )|t∗ is satisfiable, which contradicts Property 7. ◀

Note that Property 7 can be easily satisfied by any algorithm which prunes the CSP search
space by forbidding tuples which are not used in any solution. Such tuples form the set S and
set P can always be trivially chosen as P = T − A. Unfortunately, deactivating direction (7)
calculated using P = T − A would have many positive components. Consequently, an update
of weights along such deactivating direction may substantially increase the values F (x |f),
which is undesirable as explained in §3.2.1.

Ideally, P should be as small as possible because then the deactivating directions do not
increase the weights much and thus allow subsequent improvement of the bound. Though
finding the smallest set P satisfying Property 7 is probably intractable14, in practice we can
often easily find a small such set. E.g., P can simply be the set of forbidden tuples which
the algorithm needed to visit to make its decision. Alternatively, it may only be necessary to
check the support of some tuple to forbid it. Importantly, P need not be the same for each
CSP instance, even for a fixed level of local consistency. For example, if the arc consistency
closure of A is empty, then A is unsatisfiable, but a domain wipe-out may occur sooner or
later depending on A, which affects which tuples needed to be visited.

We will now give examples of deactivating directions corresponding to well-known con-
sistency conditions.

▶ Example 9. Let us consider arc consistency (AC). A CSP A is arc consistent if the
equivalence15 (i, k) ∈ A ⇐⇒

∨
l∈D({(i, k), (j, l)} ∈ A) holds for all {i, j} ∈ E, k ∈ D.

Let k ∈ D and {i, j} ∈ E. If (i, k) ∈ A and {(i, k), (j, l)} /∈ A for all l ∈ D, the AC
propagator infers that A|(i,k) is unsatisfiable and forbids the tuple (i, k), that is, returns
S = {(i, k)}. An S-deactivating direction d for A can be in this case simply

dt =


−1 if t = (i, k)
1 if t ∈ {{(i, k), (j, l)} | l ∈ D}
0 otherwise

(8)

because to forbid the tuple (i, k), it sufficed to verify that {(i, k), (j, l)} /∈ A for all l ∈ D.
Thus, P = {{(i, k), (j, l)} | l ∈ D}.

For the other case, let k ∈ D and {i, j} ∈ E. If (i, k) /∈ A, AC propagator forbids tuples
S = {{(i, k), (j, l)} | l ∈ D} ∩ A based on P = {(i, k)}. In this particular case, it is a good
idea to choose an S-deactivating direction d for A as

14 Set P is related (but not equivalent) to an unsatisfiable core of CSP A|t. Finding a minimal unsatisfiable
core is a “highly intractable problem” [15].

15 Note, for convenience we use a slightly unusual definition of arc consistency, allowing to restrict not
only domains but also constraint relations.
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dt =


−1 if t ∈ {{(i, k), (j, l)}) | l ∈ D}
1 if t = (i, k)
0 otherwise

. (9)

Notice that all the binary tuples are set to −1 in (9), instead of just the tuples S as in (7).
Although (7) would also provide an S-deactivating direction, it is better to use (9) because
both directions d defined by (8) and (9) satisfy F (x |d) = 0 for all x. Thus, WCSPs g

and g + αd are equivalent16 for any α ∈ R which is desirable (see §3.2.1). ⌟

▶ Example 10. We now consider cycle consistency as defined in [17].17 Let C be a (polyno-
mially sized) set of cycles in the graph (V, E). A CSP A is cycle consistent if for each tuple
(i, k) ∈ A ∩ (V × D) and each cycle C ∈ C that passes through node i ∈ V , there exists an
assignment x with xi = k that uses only allowed tuples in cycle C. It can be shown that
the cycle repair procedure in [17] in fact constructs a deactivating direction whenever an
inconsistent cycle is found. Moreover, the constructed direction in this case coincides with (7)
for a suitable set P which contains a subset of the forbidden tuples within the cycle. ⌟

▶ Example 11. Recall that a CSP A is singleton arc consistent (SAC) if for every tuple t =
(i, k) ∈ A∩ (V ×D), the CSP A|t has a non-empty arc-consistency closure. Good (i.e., sparse)
deactivating directions for SAC can be obtained as follows. For some (i, k) ∈ A ∩ (V × D),
we enforce arc consistency of CSP A|(i,k), during which we store the causes for forbidding
each tuple. If A|(i,k) is found to have an empty AC closure, we backtrack and identify only
those tuples which were necessary to prove the empty AC closure. These tuples form the
set P . The deactivating direction is then constructed as in Theorem 8 with S = {(i, k)}.
Note that SAC does not have bounded support as many other kinds of local consistencies [3],
so the size of P can be significantly different for different CSP instances. ⌟

4.2 Composing Deactivating Directions
Recall that constraint propagation iteratively forbids some tuples of a given CSP A ⊆ T , until
it is no longer able to forbid any tuple or it becomes explicit that the CSP is unsatisfiable.
The latter happens if all tuples of some set U ∈ U become forbidden18 (i.e., U ∩ A = ∅),
because (as noted in §2) every assignment uses exactly one tuple from every set from U .

Formally, consider a propagation rule to enforce a local consistency condition Φ, such that
if CSP A is not Φ-consistent then it finds a non-empty set S ⊆ A of tuples to forbid and an
S-deactivating direction19 for A. This rule is applied to the given CSP iteratively, each time
forbidding a different set of tuples. This is outlined in Algorithm 1, which stores the generated
sets Sr of tuples being forbidden and the corresponding Sr-deactivating directions dr. Note
that, by line 4 of the algorithm, Ar = A −

⋃r−1
q=0 Sq for every r = 0, . . . , s + 1.

The generated sequence of Sr-deactivating directions dr for Ar can be composed into a
single

( ⋃s
q=0 Sq

)
-deactivating direction for A using the following composition rule (the proof

is given in the appendix):

16 Such reparametrizations correspond to soft arc consistency operations extend and project in [5].
17 This is different from cyclic consistency as defined in [4]. E.g., reparametrizations are sufficient to

enforce cyclic consistency, whereas super-reparametrizations are needed for cycle consistency.
18 If U = {(i, k) | k ∈ D} for some i ∈ V , this is often called “domain wipe-out”.
19 The deactivating direction can be constructed in any way, e.g. (but not necessarily) using Theorem 8.
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Algorithm 1 Propagation phase: given a CSP A ⊆ T , propagation is applied to A while
deactivating directions are stored.

1 Initialize s := 0, A0 := A

2 while As is not Φ-consistent do
3 Find set Ss ⊆ As and an Ss-deactivating direction ds for As.
4 As+1 := As − Ss

5 if ∃U ∈ U : U ∩ As+1 = ∅ then
6 return unsatisfiable, (Ar)s+1

r=0, (Sr)s
r=0, (dr)s

r=0

7 s := s + 1
8 return possibly satisfiable

Algorithm 2 Composition phase: the sequences (Sr)s
r=0 and (dr)s

r=0 generated by Algorithm 1
for given R ⊆ {0, ..., s}, R ̸= ∅ are composed to an M -deactivating direction d′ for A.

1 Initialize r := max R, d′ := dr, M := Sr.
2 while r > 0 do
3 r := r − 1
4 if r ∈ R or ∃t ∈ Sr : d′

t ̸= 0 then
5 d′ := d′ + δdr (where δ is given by (10) where d, S are replaced by dr, Sr)
6 M := M ∪ Sr

7 return d′, M

▶ Proposition 12. Let A ⊆ T and S, S′ ⊆ A where S ∩ S′ = ∅. Let d be an S-deactivating
direction for A. Let d′ be an S′-deactivating direction for A − S. Let

δ =
{

0 if d′
t ≤ −1 for all t ∈ S,

max{ (−1 − d′
t)/dt | t ∈ S, d′

t > −1 } otherwise.
(10)

Then d′′ = d′ + δd is an (S ∪ S′)-deactivating direction for A.

Proposition 12 allows us to combine Sr-deactivating direction dr for Ar = Ar−1 − Sr−1
with Sr−1-deactivating direction dr−1 for Ar−1 into a single (Sr−1 ∪Sr)-deactivating direction
for Ar−1. By induction, we are able to gradually build a

(⋃s
q=0 Sq

)
-deactivating direction

for A, which certifies unsatisfiability of A whenever Algorithm 1 returns “unsatisfiable”.
However, it is not always needed to construct a full

(⋃s
q=0 Sq

)
-deactivating direction

as not every step of the propagator is necessary to prove unsatisfiability. Instead, one can
choose any U ∈ U such that U ∩ As+1 = ∅ (equivalent to U ∩

(
A −

⋃s
q=0 Sq

)
= ∅, i.e,

U ∩ A ⊆
⋃s

q=0 Sq) and construct an M -deactivating direction for a (possibly smaller) set
M ⊆

⋃s
q=0 Sq, so that U ∩ A ⊆ M . Such direction still certifies unsatisfiability of A and can

be sparser than a
(⋃s

q=0 Sq

)
-deactivating direction, which is desirable as explained in §3.2.1.

This is outlined in Algorithm 2, which composes only a subsequence of directions given
by the set R ⊆ {0, ..., s} and constructs an M -deactivating direction where M ⊇

⋃
r∈R Sr.

Although Algorithm 2 is applicable for any set R, in our case R is obtained by first choosing
any U ∈ U such that U ∩(A−

⋃s
q=0 Sq) = ∅ and then setting R = {r ∈ {0, ..., s} | Sr ∩U ≠ ∅},

so that U ∩ (A − M) = ∅ due to U ∩ A ⊆
⋃

r∈R Sr ⊆ M . Correctness of Algorithm 2 is given
by the following theorem, whose proof is given in the appendix.
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▶ Theorem 13. Algorithm 2 returns an M -deactivating direction d′ for A with M ⊇
⋃

r∈R Sr.

▶ Remark 14. This is similar to what the VAC [5] or Augmenting DAG algorithm [18, 32]
do for arc consistency. To attempt to disprove satisfiability of CSP A∗(f), these algorithms
enforce AC of A∗(f), during which the causes for forbidding tuples are stored. If the AC
closure of A∗(f) is found empty (which corresponds to U ∩ As+1 = ∅ for some U ∈ U), these
algorithms do not iterate through all previously forbidden tuples but only trace back the
causes for forbidding the elements of the wiped-out domain (here, the elements of U). ⌟

5 Line Search and the Final Algorithm

In §4 we showed how to construct an S-deactivating direction d ∈ RT for a CSP A, which
certifies unsatisfiability of A whenever A ∩ U ⊆ S (i.e., (A − S) ∩ U = ∅) for some U ∈ U .
For a WCSP f ∈ RT , to obtain a certificate h ∈ RT of unsatisfiability of CSP A∗(f) for f in
the sense of Theorem 4, we need a step length α > 0 so that h = αd, as mentioned in §3.2.1.
The step length is obtained using the following (somewhat more general) result, whose proof
is given in the appendix.

▶ Theorem 15. Let f ∈ RT . Let d be an S-deactivating direction for A∗(f). Denote20

β = min{ (maxt∈U(t′) ft − ft′)/dt′ | t′ ∈ T, dt′ > 0 },

γ = min{ (ft − ft′)/(dt′ − dt) | U ∈ U , A∗(f) ∩ U ⊆ S, t ∈ U ∩ S, t′ ∈ U − S, dt′ > dt }.

Then β, γ > 0 and for every U ∈ U and α ∈ R, WCSP f ′ = f + αd satisfies:
(a) If A∗(f) ∩ U ̸⊆ S and 0 ≤ α ≤ β, then maxt∈U f ′

t = maxt∈U ft.
(b) If A∗(f) ∩ U ⊆ S and 0 < α ≤ min{β, γ}, then maxt∈U f ′

t < maxt∈U ft.
(c) If A∗(f) ∩ U ̸⊆ S and 0 < α < β, then A∗(f ′) ∩ U = (A∗(f) − S) ∩ U .

If d is an S-deactivating direction for CSP A∗(f) and for all U ∈ U we have A∗(f)∩U ̸⊆ S

then, by Theorem 15(a,c), there is α > 0 such that f ′ = f + αd satisfies B(f ′) = B(f) and
A∗(f ′) = A∗(f) − S. This justifies why such direction d is called S-deactivating: a suitable
update of f along this direction makes tuples S inactive for f .

▶ Remark 16. This might suggest that to improve the current bound B(f), we need not use
Algorithm 2 to construct an S′-deactivating direction d′ such that A∗(f) ∩ U ⊆ S′ for some
U ∈ U , but instead perform steps using the intermediate Sr-deactivating directions dr to
create a sequence fr+1 = fr + αrdr satisfying B(f0) = B(f1) = · · · = B(fs) > B(fs+1).
Unfortunately, it is hard to make this work reliably as there are many choices for the
intermediate step sizes 0 < αr < βr. We empirically found Algorithm 3 to be preferable. ⌟

If d is an S-deactivating direction for A∗(f) and for some U ∈ U we have A∗(f) ∩ U ⊆ S,
then, by Theorem 15(a,b), there is α > 0 such that f ′ = f + αd satisfies B(f ′) < B(f). Thus,
h = αd is a certificate of unsatisfiability of A∗(f) for f in the sense of Theorem 4.

20 β is always defined: by Definition 5 we have F (x |d) ≥ 0 for all x, hence ∃t : dt < 0 ⇒ ∃t′ : dt′ > 0.
γ is defined and needed only in (b), where we assume that U ∩ A∗(f) ⊆ S for some U ∈ U .
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Algorithm 3 The final algorithm to iteratively improve feasible solutions to (5) (i.e., an upper
bound on the optimal value of WCSP g).

1 Initialize f := g.
2 while Algorithm 1 returns “unsatisfiable” on A∗(f) do
3 Generate sequences (Ar)s+1

r=0, (Sr)s
r=0, (dr)s

r=0 by Algorithm 1.
4 Let U ∈ U : U ∩ As+1 = ∅ and set R := {r ∈ {0, ..., s} | Sr ∩ U ̸= ∅}.
5 Compute M -deactivating direction d′ using Algorithm 2.
6 Update f := f + min{β, γ}d′ following Theorem 15.
7 return B(f)

Theorem 15 also proposes a possible (not necessarily optimal21) step size α. This allows
us to formulate, in Algorithm 3, the iterative scheme outlined in §3.2.1. First, constraint
propagation is applied to CSP A∗(f) by Algorithm 1 until either A∗(f) is proved unsatisfiable
or no more propagation is possible. In the latter case, the algorithm halts and returns B(f) as
the best achieved upper bound on the optimal value of WCSP g. Otherwise, if A∗(f) is proved
unsatisfiable, we choose U ∈ U such that U ∩ As+1 = ∅, i.e., A∗(f) ∩ U ⊆

⋃s
r=0 Sr (which

exists since Algorithm 1 returned “unsatisfiable”), define R so that U ∩ A∗(f) ⊆
⋃

r∈R Sr,
and compute an M -deactivating direction d′ where M ⊇

⋃
r∈R Sr using Theorem 13. Since

A∗(f) ∩ U ⊆ M , we can update WCSP f using Theorem 15. Consequently, the bound B(f)
strictly improves after each update on line 6.

In Algorithm 3 we additionally used a heuristic analogous to capacity scaling in network
flow algorithms. We replace the active tuples A∗(f) with “almost” active (θ-active) tuples
A∗

θ(f) =
{

t ∈ T | ft ≥ maxt′∈U(t) ft′ − θ
}

for some threshold θ > 0.22 This forces the
algorithm to disprove satisfiability using tuples which are far from active, thus hopefully
leading to larger step sizes and faster decrease of the bound. Initially θ is set to a high value
and whenever we are unable to disprove satisfiability of A∗

θ(f), the current θ is decreased as
θ := θ/10. The process continues until θ becomes very small.23

6 Experiments

We implemented two versions of Algorithm 3 (incl. capacity scaling), differing in the local
consistency used to attempt to disprove satisfiability of CSP A∗(f):

Virtual singleton arc consistency via super-reparametrizations (VSAC-SR) 24 uses
singleton arc consistency. Precisely, we alternate between AC and SAC propagators:
whenever a tuple (i, k) is removed by SAC, we step back to enforcing AC until no more
AC propagations are possible, and repeat.

21 Finding an optimal step size (i.e., exact line search) would require finding a global minimum of the
univariate convex piecewise-affine function α 7→ B(f + αd). As this would be too expensive for large
instances, we find only a sub-optimal step size: we find the first break (i.e., non-differentiable) point
of the function with a lower objective. This step size is decreased to β if γ > β so that no maximum
increases. This is analogous to the first-hit strategy in [11, §3.1.4].

22 This is similar to the notion of Boolθ(f) in [5, §11.1], tolerance δ in [12, §4.2], and miϵ[f ] in [20, §6.2.4].
23 Precisely, we initialized θ = maxk,l gij(k, l)−mink,l gij(k, l)+maxk gi′ (k)−mink gi′ (k) where {i, j} ∈ E

and i′ ∈ V is the edge and variable with the lowest index (based on indexing in the input instance).
The terminating condition was θ ≤ 10−6.

24 In analogy to [5, 19], let us call a WCSP instance f virtual X-consistent (e.g., virtual AC or virtual RPC)
if A∗(f) has a non-empty X-consistency closure. Then, a virtual X-consistency algorithm naturally
refers to an algorithm to transform a given WCSP instance to a virtual X-consistent WCSP instance.
In the VAC algorithm, this transformation is equivalence-preserving, i.e., a reparametrization. But in
our case, it is a super-reparametrization, which is why we call our algorithm VSAC-SR.
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Virtual cycle consistency via super-reparametrizations (VCC-SR) is the same as VSAC-SR
except that SAC is replaced by CC.25 Though our implementation is different than [17] (we
compose deactivating directions rather than alternate between the cycle-repair procedure
and the Augmenting DAG algorithm), it has the same fixed points.

The procedures for generating deactivating directions for AC, SAC and CC were implemented
as described in Examples 9, 11, and 10. In SAC and CC it is useful to step back to AC
whenever possible since, as described in §4.1, deactivating directions of AC correspond to
reparametrizations and thus avoid increasing the values of individual assignments, which is
beneficial as discussed in §3.2.1.

We compared the bounds calculated by VSAC-SR and VCC-SR with the bounds provided
by EDAC [9], VAC [5], pseudo-triangles (option -t=8000 in toulbar2, adds up to 8 GB
of ternary weight functions), PIC, EDPIC, maxRPC, and EDmaxRPC [19] which are
implemented in toulbar2 [26].

We did the comparison on the Cost Function Library benchmark [8]. Due to limited
computation resources, we used only the smallest 16500 instances (out of 18132). Of these,
we omitted instances containing weight functions of arity 3 or higher. Moreover, to avoid
easy instances, we omitted instances that were solved by VAC without search (i.e., toulbar2
with options -A -bt=0 found an optimal solution). Overall, 5371 instances were left for our
comparison.

For each instance and each method, we only calculated the upper bound and did not
do any search. For each instance and method, we computed the normalized bound Bw−Bm

Bw−Bb

where Bm is the bound computed by the method for the instance and Bw resp. Bb is the
worst resp. best bound for the instance among all the methods. Thus, the best bound26

transforms to 1 and the worst bound to 0, i.e., greater is better.
For 26 instances, at least one method was not able to finish in the prespecified 1 hour limit.

These timed-out methods were omitted from the calculation of the normalized bounds for these
instances. From the point of view of the method, the instance was not incorporated into the
average of the normalized bounds of this particular method. We note that implementations
of VSAC-SR and VCC-SR provide a bound when terminated at any time, whereas the
implementations of the other methods provide a bound only when they are left to finish.27

The results in Table 1 show that no method is best for all instance groups, instead each
method is suitable for a different group. However, VSAC-SR performed best for most groups
and otherwise was not much worse than the other strong consistency methods. VSAC-SR
seems particularly good at spinglass_maxcut [25], planning [7] and qplib [13] instances.
Taking the overall unweighted average of group averages (giving the same importance to
each group), VSAC-SR achieved the greatest average value. We also evaluated the ratio
to worst bound, Bm/Bw, for instances with Bw ̸= 0; the results were qualitatively the
same: VSAC-SR again achieved the best overall average of 3.93 (or 4.15 if only groups with
≥ 5 instances are considered) compared to second-best pseudo-triangles with 2.71 (or 2.84).

25 We chose the cycles in VCC-SR as follows: if 2|E|/|V | ≤ 5 (i.e, average degree of the nodes is at most 5),
then all cycles of length 3 and 4 present in the graph (V, E) are used. If 2|E|/|V | ≤ 10, then all cycles
of length 3 present in the graph are used. If 2|E|/|V | > 10 or the above method did not result in any
cycles, we use all fundamental cycles w.r.t. a spanning tree of the graph (V, E). No additional edges are
added to the graph. Note, [17] experimented with grid graphs (where 4-cycles and 6-cycles of the grid
were used) and complete graphs (where 3-cycles were used).

26 To avoid numerical precision issues, bounds Bm within Bb ± 10−4Bb or Bb ± 0.01 are also normalized
to 1. If Bw = Bb, then the normalized bounds for all methods are equal to 1 on this instance.

27 Time-out happened 5, 2, 3, 6, and 24 times for pseudo-triangles, PIC, EDPIC, maxRPC, and EDmaxRPC,
respectively. This did not affect the results much as there were 5731 instances in total.
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The runtimes (on a laptop with i7-4710MQ processor at 2.5 GHz and 16GB RAM) are
reported in Table 2. Again, the results are group-dependent and one can observe that the
methods explore different trade-offs between bound quality and runtime. However, the strong
consistencies are comparable in terms of runtime on average, except for pseudo-triangles
which are faster but need significantly more memory.

Since both VSAC-SR and VCC-SR start by enforcing VAC (i.e., making A∗(f) arc
consistent by reparametrizations), before running these methods we used toulbar2 to re-
parametrize the input WCSP instance to a VAC state (because a specialized algorithm
is faster than the more general Algorithm 3). Besides this, we did no more attempts to
fine-tune our implementation for efficiency. Thus, the set A∗(f) was always calculated by
iterating through all tuples. SAC was checked on all active tuples without warm-starting or
using any faster SAC algorithm than SAC1 [2, 10]. Perhaps most importantly, we did not
implement inter-iteration warm-starting as in [31, 11], i.e., after updating the weights on
line 6 of Algorithm 3, some deactivating directions in the sequence which were not used to
compose the improving direction may be preserved for the next iteration instead of being
computed from scratch. Except for computing deactivating vectors, the code was the same
for VSAC-SR and VCC-SR. We implemented everything in Java.

7 Concluding Remarks

We have proposed a method to compute upper bounds on the (maximization version of) WCSP.
The WCSP is formulated as a linear program with an exponential number of constraints,
whose feasible solutions are super-reparametrizations of the input WCSP instance (i.e.,
WCSP instances with the same structure and greater or equal objective values). Whenever
the CSP formed by the active (i.e., maximal in their weight functions) tuples of a feasible
WCSP instance is unsatisfiable, there exists an improving direction (in fact, a certificate
of unsatisfiability of this CSP) for the linear program. As this approach provides only a
subset of all possible improving directions, it can be seen as a local search. We showed how
these improving directions can be generated by constraint propagation (or, more generally,
by other methods to prove unsatisfiability of a CSP).

Special cases of our approach are the VAC / Augmenting DAG algorithm [5, 18, 32] which
uses arc consistency and the algorithm in [17] which uses cycle consistency. We have newly
implemented the approach for singleton arc consistency, resulting in VSAC-SR algorithm.
When compared to existing soft local consistency methods on a public dataset, VSAC-SR
provides comparable or better bounds for many instances.

The approach can be straightforwardly extended to WCSPs with different domain sizes,
weight functions of any arities, and some weights equal to minus infinity (i.e., some constraints
being hard). Note in particular that SAC is not restricted to binary CSPs. Of course, further
experiments would be needed to evaluate the quality of the bounds in this case.

Our approach in general requires to store all the weights of the super-reparametrized
WCSP instance. This may be a drawback when the domains are large and/or the weight
functions are not given explicitly as a table of values but rather by an algorithm (oracle).

We expect our improved bounds to be useful to prune the search space during branch-
and-bound search, when solving WCSP instances to optimality. However, we have done
no experiments with this, so it is open whether during search the tighter bounds would
outweigh the higher complexity of the algorithm. We leave this for the future research. Our
approach can be also useful to solve more WCSP instances even without search (similarly
as the VAC algorithm solves all supermodular WCSPs without search) or, given a suitable
primal heuristic, to solve WCSP instances approximately.
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Table 1 Results on instances from Cost Function Library: Average normalized bounds.
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/biqmaclib/ 157 0.02 0.11 0.90 0.22 0.92 0.83 0.81 0.79 0.81
/crafted/academics/ 8 0.88 0.88 0.97 0.95 0.88 0.88 0.88 0.88 1.00
/crafted/auction/paths/ 420 0.00 0.09 0.91 0.35 0.99 0.45 0.68 0.64 0.57
/crafted/auction/regions/ 411 0.00 0.05 0.99 0.10 0.98 0.08 0.18 0.23 0.13
/crafted/auction/scheduling/ 419 0.00 0.02 1.00 0.09 0.80 0.41 0.38 0.41 0.24
/crafted/coloring/ 33 0.94 0.94 0.99 0.97 0.98 1.00 1.00 1.00 0.99
/crafted/feedback/ 6 0.00 0.00 0.54 0.58 0.71 0.49 0.53 0.51 0.72
/crafted/kbtree/ 1800 0.25 0.29 0.60 0.67 0.80 0.73 0.81 0.76 0.89
/crafted/maxclique/dimacs_maxclique/ 49 0.06 0.24 0.98 0.39 0.87 0.39 0.50 0.51 0.55
/crafted/maxcut/spinglass_maxcut/unweighted/ 5 0.00 0.00 1.00 0.42 0.15 0.15 0.15 0.15 0.15
/crafted/maxcut/spinglass_maxcut/weighted/ 5 0.00 0.00 1.00 0.38 0.17 0.17 0.17 0.17 0.17
/crafted/modularity/ 6 0.17 0.19 0.38 0.25 0.99 0.96 0.94 0.96 0.97
/crafted/planning/ 65 0.00 0.54 0.94 0.72 0.32 0.07 0.09 0.07 0.17
/crafted/sumcoloring/ 43 0.04 0.15 0.47 0.50 0.81 0.53 0.63 0.64 0.61
/crafted/warehouses/ 49 0.35 0.99 1.00 0.99 0.35 0.42 0.42 0.42 0.42
/qaplib/ 5 0.40 0.40 0.40 0.41 0.99 0.97 0.97 0.98 0.97
/qplib/ 23 0.00 0.10 0.96 0.38 0.27 0.25 0.25 0.24 0.25
/random/maxcsp/completeloose/ 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
/random/maxcsp/completetight/ 50 0.00 0.12 0.57 0.72 0.88 0.94 0.99 0.69 0.76
/random/maxcsp/denseloose/ 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
/random/maxcsp/densetight/ 50 0.02 0.14 0.52 1.00 0.68 0.48 0.49 0.52 0.60
/random/maxcsp/sparseloose/ 90 0.96 0.96 1.00 0.96 0.96 0.96 0.96 0.96 0.96
/random/maxcsp/sparsetight/ 50 0.01 0.12 0.54 1.00 0.64 0.40 0.40 0.43 0.51
/random/maxcut/random_maxcut/ 400 0.00 0.00 0.77 0.13 0.95 0.98 0.98 0.97 0.99
/random/mincut/ 500 0.09 1.00 1.00 1.00 0.10 0.10 0.10 0.10 0.10
/random/randomksat/ 493 0.01 0.02 0.75 0.22 0.95 0.91 0.89 0.86 0.87
/random/wqueens/ 6 0.00 0.52 0.96 0.94 0.48 0.12 0.29 0.13 0.72
/real/celar/ 23 0.00 0.05 0.08 0.16 0.97 0.66 0.66 0.78 0.95
/real/maxclique/protein_maxclique/ 1 0.00 0.00 1.00 0.03 0.93 0.04 0.04 0.08 0.04
/real/spot5/ 1 0.00 0.08 1.00 0.49 1.00 0.74 0.66 0.41 0.74
/real/tagsnp/tagsnp_r0.5/ 23 0.04 0.86 0.95 0.86 0.31 0.31 0.33 0.29 0.46
/real/tagsnp/tagsnp_r0.8/ 80 0.13 0.66 0.91 0.68 0.29 0.39 0.38 0.33 0.47
Average over all groups 5371 0.20 0.36 0.82 0.58 0.72 0.56 0.58 0.56 0.62
Average over groups with ≥ 5 instances 5369 0.21 0.38 0.80 0.60 0.71 0.57 0.59 0.58 0.63

Table 2 Results on instances from Cost Function Library: Average CPU time in seconds.
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/biqmaclib/ 157 0.11 0.12 180.07 34.60 83.25 1240.00 1241.29 1242.16 1271.86
/crafted/academics/ 8 0.11 0.11 28.61 1.04 29.08 121.44 120.86 108.08 104.47
/crafted/auction/paths/ 420 0.04 0.04 1.96 0.83 1.92 0.19 0.23 0.48 0.64
/crafted/auction/regions/ 411 0.20 0.32 32.14 9.45 673.42 49.85 51.37 102.61 110.48
/crafted/auction/scheduling/ 419 0.10 0.12 16.22 2.03 49.85 26.90 26.89 32.06 32.30
/crafted/coloring/ 33 0.09 0.10 4.99 1.40 0.20 545.50 545.50 545.51 545.50
/crafted/feedback/ 6 0.70 0.70 3588.39 3600.11 11.64 1860.89 1874.08 1875.93 1873.07
/crafted/kbtree/ 1800 0.02 0.02 3.13 11.25 0.10 0.04 0.05 0.06 0.07
/crafted/maxclique/dimacs_maxclique/ 49 0.71 1.32 279.08 126.90 955.60 1345.67 1342.14 1429.73 1428.12
/crafted/maxcut/spinglass_maxcut/unweighted/ 5 0.02 0.02 0.82 0.44 0.02 0.01 0.01 0.01 0.01
/crafted/maxcut/spinglass_maxcut/weighted/ 5 0.02 0.02 1.09 0.53 0.02 0.01 0.01 0.01 0.01
/crafted/modularity/ 6 0.19 0.29 1023.48 127.39 66.25 706.30 783.02 741.91 1442.57
/crafted/planning/ 65 0.16 0.29 638.85 60.62 7.41 0.93 0.96 2.33 4.73
/crafted/sumcoloring/ 43 1.29 1.94 727.49 963.61 255.72 1508.37 1508.36 1509.34 1512.68
/crafted/warehouses/ 49 4.10 9.48 735.80 735.83 4.09 29.48 29.54 28.80 29.82
/qaplib/ 5 0.08 0.09 119.05 278.53 7.38 1448.63 1444.95 1450.09 1449.22
/qplib/ 23 0.13 0.14 255.85 43.11 195.32 626.25 626.24 626.27 626.36
/random/maxcsp/completeloose/ 50 0.06 0.06 1.31 0.16 0.48 0.09 0.10 0.19 0.18
/random/maxcsp/completetight/ 50 0.02 0.03 6.35 12.68 0.47 0.21 0.25 0.31 0.33
/random/maxcsp/denseloose/ 50 0.02 0.02 166.78 0.06 0.11 0.03 0.03 0.03 0.03
/random/maxcsp/densetight/ 50 0.02 0.02 4.20 17.38 0.10 0.06 0.07 0.07 0.08
/random/maxcsp/sparseloose/ 90 0.03 0.03 611.38 0.05 0.06 0.04 0.04 0.04 0.04
/random/maxcsp/sparsetight/ 50 0.02 0.02 11.00 9.74 0.06 0.04 0.05 0.05 0.05
/random/maxcut/random_maxcut/ 400 0.01 0.01 0.73 0.15 0.04 0.03 0.03 0.05 0.07
/random/mincut/ 500 1.09 2.43 14.40 86.22 1.12 0.88 0.87 0.87 0.87
/random/randomksat/ 493 0.02 0.02 3.42 0.17 0.13 0.07 0.10 0.16 0.31
/random/wqueens/ 6 1.33 1.49 992.85 502.42 644.87 1800.15 1800.20 1800.18 1800.60
/real/celar/ 23 0.27 0.28 1798.51 2972.69 66.56 300.76 219.91 495.26 1066.87
/real/maxclique/protein_maxclique/ 1 0.26 0.44 25.24 6.77 1196.62 114.62 114.99 215.30 220.81
/real/spot5/ 1 0.01 0.01 0.62 0.08 0.11 0.03 0.03 0.04 0.04
/real/tagsnp/tagsnp_r0.5/ 23 4.83 378.77 3338.53 2897.83 239.38 3155.96 3148.66 3172.58 3295.19
/real/tagsnp/tagsnp_r0.8/ 80 1.52 22.82 1239.73 858.83 90.05 195.12 206.76 359.55 409.88
Average over all groups 5371 0.55 13.17 495.38 417.59 143.17 471.21 471.49 491.88 538.35
Average over groups with ≥ 5 instances 5369 0.58 14.04 527.54 445.20 112.82 498.80 499.08 517.49 566.88
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(c) WCSP f +h, B(f +h) < B(f).

Figure 1 Example of a single iteration of the scheme. Variables (elements of V ) are depicted as
rounded rectangles, tuples (elements of T ) as circles and line segments, and weights ft are written
next to the circles and line segments. Black circles and solid lines depict active tuples, dashed lines
depict inactive tuples.
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Proof of Proposition 12. First, if d′
t ≤ −1 for all t ∈ S, then d′′ = d′ satisfies the required

condition immediately. Otherwise, δ > 0 since dt < 0 for all t ∈ S by definition and
−1 − d′

t < 0 due to d′
t > −1 in definition of δ. We will show that d′′ satisfies the conditions

in Definition 5.
For t ∈ S with d′

t ≤ −1, d′′
t = d′

t + δdt < d′
t ≤ −1 because δdt ≤ 0. If t ∈ S and d′

t > −1,
then δ ≥ (−1 − d′

t)/dt, so d′′
t = d′

t + δdt ≤ −1. Summarizing, we have d′′
t < 0 for all t ∈ S.

For t ∈ S′, d′
t < 0 and dt = 0 holds by definition due to S′ ⊆ A − S, thus d′′

t = d′
t + δdt =

d′
t < 0 which together with the previous paragraph yields condition (a).

Due to A − S ⊇ (A − S) − S′ = A − (S ∪ S′), for any t ∈ A − (S ∪ S′) we have dt = 0
and d′

t = 0, which implies d′′
t = d′ + δd = 0, thus verifying condition (b).

To show (c): for any x ∈ DV , F (x |d′′) = F (x |d′) + δF (x |d) ≥ 0 by δ ≥ 0. ◀

Proof of Theorem 13. The fact that M ⊇
⋃

r∈R Sr is obvious due to Smax R ⊆ M by
initialization on line 1 and Sr ⊆ M for any r ∈ R, r < max R because in such case the
update on line 6 is performed.

It remains to show that d′ is M -deactivating, which we will do by induction. We claim that
vector d′ is always M -deactivating direction for Ar on line 2 and M -deactivating direction
for Ar+1 on line 4.

Initially we have d′ = dr, so d′ is Sr-deactivating (i.e., M -deactivating since M = Sr

before the loop is entered) for Ar. Also, when vector d′ is first queried on line 4, r decreased
by 1 due to update on line 3, so d′ is M -deactivating for Ar+1. The required property thus
holds when the condition on line 4 is first queried with r = max R − 1.

We proceed with the inductive step. If the condition on line 4 is not satisfied, then
necessarily d′

t = 0 for all t ∈ Sr. So, if d′ is M -deactivating for Ar+1, then it is also
M -deactivating for Ar = Ar+1 ∪ Sr, as can be seen from Definition 5.

If the condition on line 4 is satisfied, d′ is M -deactivating for Ar+1 before the update
on lines 5-6. Since Ar+1 = Ar − Sr and dr is Sr-deactivating for Ar, Proposition 12 can be
applied to dr and d′ to obtain an (M ∪ Sr)-deactivating direction for Ar. After updating M

on line 6, it becomes M -deactivating for Ar.
Eventually, when r = 0, d′ is M -deactivating for A0 = A by line 1 in Algorithm 1. ◀

Proof of Theorem 15. We have β > 0 because dt′ > 0 implies t′ is an inactive tuple, so
maxt∈U(t′) ft > ft′ . We have γ > 0 because in ft − ft′ tuple t is always active and t′ is
inactive, hence ft > ft′ .

To prove (a), let A∗(f) ∩ U ̸⊆ S, so there is t∗ ∈ U such that t∗ ∈ A∗(f) and t∗ /∈ S.
Hence, by Definition 5, dt∗ = 0 and value maxt∈U f ′

t does not decrease for any α since
f ′

t∗ = ft∗ + αdt∗ = ft∗ . To show that the maximum does not increase, consider a tuple t′ ∈ U

such that dt′ > 0 (due to α ≥ 0, tuples with dt′ ≤ 0 can not increase the maximum). It
follows that α ≤ β ≤ (maxt∈U ft − ft′)/dt′ , so f ′

t′ = ft′ + dt′α ≤ maxt∈U ft.
To prove (b), let A∗(f) ∩ U ⊆ S. For all t ∈ U ∩ S, we have f ′

t = ft + αdt < ft by dt < 0
and α > 0, i.e., maxt∈U∩S f ′

t < maxt∈U∩S ft. We proceed to show that f ′
t ≤ maxt′∈U∩S f ′

t′

for every t′ ∈ U − S. Let t∗ ∈ U ∩ S satisfy f ′
t∗ = maxt∈U∩S f ′

t . If dt′ > dt∗ , α ≤ γ ≤
(ft∗ − ft′)/(dt′ − dt∗) implies f ′

t∗ = ft∗ + αdt∗ ≥ ft′ + αdt′ = f ′
t′ . If dt′ ≤ dt∗ , then also

αdt′ ≤ αdt∗ and f ′
t′ = ft′ + αdt′ ≤ ft∗ + αdt∗ = f ′

t∗ holds for any α ≥ 0 since ft′ < ft∗ . As a
result, maxt′∈U−S f ′

t′ ≤ maxt∈U∩S f ′
t < maxt∈U∩S ft = maxt∈U ft.

To prove (c), let A∗(f) ∩ U ̸⊆ S. Following (a), we have maxt∈U ft = maxt∈U f ′
t . If

t ∈ (A∗(f) − S) ∩ U , then dt = 0 and such tuples remain active by f ′
t = ft. Tuples

t ∈ S ∩ U become inactive since f ′
t = ft + dtα < ft = maxt′∈U ft′ by dt < 0 and α > 0.

Tuples t /∈ A∗(f) either satisfy dt ≤ 0 and can not become active or satisfy dt > 0 and by
α < β ≤ (maxt′∈U ft′ − ft)/dt, f ′

t = ft + dtα < maxt′∈U ft′ , so t /∈ A∗(f ′). ◀
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Abstract
Propositional model counting (MC) and its extensions as well as applications in the area of
probabilistic reasoning have received renewed attention in recent years. As a result, also the need for
quickly solving counting-based problems with automated solvers is critical for certain areas. In this
paper, we present experiments evaluating various techniques in order to improve the performance
of parallel model counting on general purpose graphics processing units (GPGPUs). Thereby, we
mainly consider engineering efficient algorithms for model counting on GPGPUs that utilize the
treewidth of a propositional formula by means of dynamic programming. The combination of
our techniques results in the solver GPUSAT3, which is based on the programming framework
Cuda that –compared to other frameworks– shows superior extensibility and driver support. When
combining all findings of this work, we show that GPUSAT3 not only solves more instances of the
recent Model Counting Competition 2020 (MCC 2020) than existing GPGPU-based systems, but
also solves those significantly faster. A portfolio with one of the best solvers of MCC 2020 and
GPUSAT3 solves 19% more instances than the former alone in less than half of the runtime.
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1 Introduction

Counting problems have perceived increasing interest in recent years. One of these problems
that is well-studied is MC, which aims at counting the number of satisfying assignments of a
given propositional formula. In fact, MC is canonical [3, 46] for the complexity class #P
and there are a list of applications and variants thereof. Among those variants, extensions
of the problem have been studied that involve, e.g., projecting satisfying assignments to
certain variables or weighting variables, which enables applications like quantitative reasoning
via Bayesian networks and other structures, e.g., [48, 9, 14]. Interestingly, there are also
intensive studies focusing on approximation variants of MC, e.g., [7, 18, 6], whose goal is to
approximate the number of satisfying assignments within a certain approximation factor.

© Johannes K. Fichte, Markus Hecher, and Valentin Roland;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 24; pp. 24:1–24:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:johannes.fichte@tu-dresden.de
https://orcid.org/0000-0002-8681-7470
mailto:hecher@dbai.tuwien.ac.at
https://orcid.org/0000-0003-0131-6771
mailto:valentin.roland@tu-dresden.de
https://doi.org/10.4230/LIPIcs.CP.2021.24
https://zenodo.org/record/5539470
https://github.com/daajoe/GPUSAT/releases/tag/v3.000-pre
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 Parallel Model Counting with CUDA

There are a list of solvers stemming from different technologies and approaches. These
solvers have been pushed towards their limits with the help of a dedicated competition [22] for
model counting. Among the different approaches, powerful solvers emerged based on caching,
knowledge compilation, and parameterized complexity, e.g., [11, 51, 42, 47, 12, 44, 39, 49, 15].
Notably, for model counting, also techniques for parallel solving proved successful [5, 40].
Among those parallel solvers there are also solvers [28, 29] that utilize modern consumer
general purpose graphics processing units (GPGPUs). Those existing GPGPU-based imple-
mentations are based on dynamic programming on a tree decomposition of different graph
representations of a propositional formula. One particular graph representation [47], namely
the so-called primal graph representation1, proved successful since it is employed in the
latest GPGPU-based implementation for MC, referred to by GPUSAT2 [29], but also in
other solvers [8, 34, 27, 15, 16]. In this work, we take up this idea and systematically study
improvements from the perspective of algorithm engineering in order to significantly speed up
counting models of a propositional formula on GPGPUs. Our approach is an implementation
that follows the existing implementation GPUSAT2, but we use the GPGPU framework
Cuda instead of OpenCL since Cuda enables a more detailed and systematic performance
analysis and hardware monitoring capabilities.

Contributions. We present a novel system GPUSAT32 that comprises the following new
techniques and contributions. (i) We introduce a new clause representation, called compact
clause form (CCF), that allows us to check whether a partial assignment satisfies a clause by
only two binary bit operations that can be efficiently implemented in hardware. (ii) Then,
we enhance dynamic programming, which is designed to combine results (tables) of “local”
computations, by global caching. Thereby we maintain a global cache on the GPGPU that is
shared among different local tables in order to prevent copy overhead between the GPGPU
memory and main memory (RAM) whenever possible. (iii) Further, we show the benefit
of Cuda framework tuning, where we focus on quantifying the effect of pinned memory,
a technique designed for reducing transfer overhead between GPGPU memory and RAM.
(iv) Finally, we perform a study over existing libraries for computing tree decompositions in
order to quantify the effect of those decomposers on the actual solving performance. These
techniques and variants are systematically analyzed and presented individually. Then, the
performance results involving the full system GPUSAT3 is given at the end. For the sake of
presentation, related work is discussed in-place where suitable and applicable.

2 Preliminaries

Let α be a bit vector ⟨b0, . . . , bn−1⟩, which is a sequence consisting of n many bits that are
integers between 0 and 1. Then, we refer to the i-th bit for position 0 ≤ i < n by αi := bi.
We use the bit-wise XOR operator ⊕ and the bit-wise AND operator & in the usual meaning.
Further, we define the integer value of α by val(α) :=

∑
0≤i≤n−1 2i · αi.

Propositional Satisfiability (SAT)

A literal is a propositional variable x or its negation ¬x. A clause is a finite set of literals,
interpreted as the disjunction of these literals. A (CNF) formula is a finite set of clauses,
interpreted as a conjunction of the clauses. Let F be a formula. Then, we refer to a

1 The primal graph of a propositional formula distinguishes as vertices the variables of the formula and
there is an edge between two variables, whenever those variables appear together in at least one clause.

2 GPUSAT3 including benchmark data [26] is open source; available at github.com/vroland/GPUSAT.

https://github.com/vroland/GPUSAT
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set S ⊆ F by a sub-formula (of F ). For a clause c ∈ F , let var(c) consist of all variables
occurring in c and var(F ) :=

⋃
c∈F var(c). Without loss of generality, we assume for

every c ∈ F that |c| = |var(c)|, i.e., no variable appears twice in a clause. An assignment
(over V ⊆ var(F )) is a mapping A : V → {0, 1}. The formula F [A] under A is obtained by
removing all clauses from F that contain a literal set to 1 by A and removing from remaining
clauses all literals set to 0 by A. An assignment A is satisfying if F [A] = ∅. The problem
MC asks to count the number of satisfying assignments over var(F ) of a formula F .

▶ Example 1. Consider the formula F := {c1, c2, c3} with c1 := a∨b∨¬c, c2 := ¬b∨¬a, and
c3 := a ∨ ¬d. Then, A1 := {a 7→ 1, b 7→ 0} and A2 := {a 7→ 0, c 7→ 0, d 7→ 0} are satisfying,
i.e., F [A1] = F [A2] = ∅. In total, there are 7 satisfying assignments over {a, b, c, d} of F .

Tree Decompositions (TDs), Treewidth, and Dynamic Programming

A tree decomposition (TD) of a given graph G is a pair T = (T, χ) where T is a rooted tree
and χ is a mapping which assigns to each node t ∈ V (T ) a set χ(t) ⊆ V (G), called bag, such
that: (i) V (G) =

⋃
t∈V (T ) χ(t) and E(G) ⊆ { {u, v} | t ∈ V (T ), {u, v} ⊆ χ(t) }; and (ii) for

each r, s, t ∈ V (T ), such that s lies on the path from r to t, we have χ(r) ∩ χ(t) ⊆ χ(s). We
let width(T ) := maxt∈V (T ) |χ(t)| − 1. The treewidth tw(G) of G is the minimum width(T )
over all TDs T of G. The primal graph GF [47] of a formula F has as vertices its variables
and two variables are joined by an edge if they occur together in a clause of F . For brevity, we
refer by treewidth of a formula to the treewidth of its primal graph. For a given node t ∈ T of
the primal graph GF , we let Ft := { c | c ∈ F, var(c) ⊆ χ(t) } be the clauses entirely covered
by χ(t). The formula F≤s denotes the union over all Ft for all descendant nodes t ∈ V (T )
of s. In other words, F≤s is the sub-formula of F containing all clauses entirely covered by a
bag χ(s) for s and any of its descendant nodes.

▶ Example 2. Recall F from Example 1. From the primal graph PF of F a TD T of PF with
nodes t1, t2, t3 can be constructed, where t3 with χ(t3) = {a} joins t1, t2 with χ(t1) = {a, b, c}
and χ(t2) = {a, d}. Intuitively, T allows to evaluate F in parts. So, when evaluating F = F≤t3 ,
we split into F≤t1 and F≤t2 , which refer to {c1, c2} and {c3}, respectively.

A solver based on dynamic programming for formulas evaluates the input formula F in
parts along a given TD of the primal graph GF . For each node t of the TD, results are
usually stored in a table τt. The approach works in four steps as follows:
1. Construct the primal graph GF of the input formula F .
2. Heuristically compute a tree decomposition T = (T, χ) of the primal graph GF .
3. Traverse the nodes in V (T ) in post-order. Thereby, at every node t, run an algorithm

for computing table τt. This algorithm takes as input the bag χ(t), the sub-formula Ft,
and previously computed tables for the child nodes of t. Such a table τt comprises rows
of the form ⟨A, c⟩, where A : χ(t) → {0, 1} is an assignment and c is an integer used
for counting. Each row ⟨A, c⟩ indicates that there are c many satisfying assignments
over var(F≤t) of F≤t that extend A. These pairs are carefully maintained for all the
different types of nodes; for details we refer to the literature [47, 29].

4. Print the model count by interpreting the result τn for the root n of T .
The worst-case runtime of such an algorithm for model counting is in O(2kkdN), where
k denotes the width of the primal graph, N refers to the number of nodes in the tree
decomposition, and d denotes the maximum number of occurrences in the clauses of the
input formula F over all variables of F [47].
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General Purpose Graphics Processing Units (GPGPUs)

General purpose computing on graphics processing units (GPGPU ) is the practice of ex-
ploiting the massively parallel computing capabilities of graphics cards for non-graphical
and scientific applications. Historically, graphics hardware and drivers have been built with
only graphics rendering pipelines in mind [52]. But with a growing demand for accelerating
data-parallel programs, GPGPU frameworks like Cuda and OpenCL emerged. These
offer APIs for writing GPGPU programs (functions) without relying on graphics primitives.
Although frameworks aim to make programming applications for CPU and GPGPU more
seamless, their memory spaces and instructions are distinct: While the CPU can access the
host memory (RAM) and executes the host program, the GPGPU can only access GPGPU
memory (GPGPU RAM) and execute functions called kernels. The functionality of Cuda
and OpenCL largely overlaps. However, OpenCL is standardized and supports running
CPUs as well. In contrast, Cuda is a proprietary platform for NVIDIA GPGPUs only, but
Cuda is often perceived as a more mature ecosystem. This comprises tools like profilers and
runtime checkers, learning resources, but also driver support.

Dynamic Programming With GPGPUs. Dynamic programming as described above is
implemented in the solver GPUSAT2 [29], which heavily uses OpenCL and introduces
a framework for efficiently solving MC in parallel on GPGPUs. For GPUSAT2, besides
a simple implementation of storing tables via a fixed pre-allocated memory block, called
Array data structure, the authors have proposed an advanced data structure, referred to
by Tree, which is a binary search tree that can be manipulated in parallel by the GPGPU.
This solver also provides a heuristic that is used internally in order to decide whether to use
Array or Tree based on a tree decomposition width threshold.

Benchmarks

In order to systematically analyze performance, we use the following instances and hardware.

Benchmark Instances. We use the 200 instances of track 1 (private and public) of the 1st
International Competition on Model Counting (MCC 2020) [22] as the MCC2020-Track1
benchmark. For our final evaluation, we additionally incorporate the instances of track 2 of
MCC 2020 with variable weights stripped, making them unweighted. The 400 instances of
this combined benchmark set are referred to as MCC2020-Track1+2.

Benchmark Hardware. We run benchmarks on three different machines. Server: 2x Intel
Xeon Silver 4112@2.60GHz 128GB RAM, NVIDIA GeForce GTX 1180 8GB GPGPU RAM,
Ubuntu 18.04 LTS, Cuda 9.1.85. Desktop: Intel Core i7-9700@3.00GHz 16GB RAM,
NVIDIA Quadro RTX 4000 8GB GPGPU RAM, Ubuntu 18.04 LTS, Cuda 11.0. Cluster:
Cluster of 44 nodes; 2x Intel Xeon E5-2680v3@2.50GHz, 256GB RAM, RHEL 7.9.

Server is used for running full benchmarks with various decomposers, as it provides
an environment that is not shared with other users and enough memory resources. For
detailed profiling, Desktop is employed due to the availability of a more current driver and
local access to the machine. Cluster is chosen for comparing different tree decomposition
libraries since it provides the resources needed to finish a massive amount of runs quickly.
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3 Algorithm Engineering and Hardware Utilization

While the existing GPGPU-based system GPUSAT2 delivers decent performance compared
with state-of-the-art model counters, a number of possible improvements as well as hardware-
specific potentials are left unexplored. In this section, we outline several algorithmic as
well as implementation-specific improvements for Step 3 of dynamic programming on tree
decompositions as defined in the preliminaries. We then systematically evaluate the impact
of these improvements, which finally leads to a new system GPUSAT3. Since GPUSAT3 is
based on Cuda, we can leverage tools and suitable workflows for a systematic analysis.

Next, we introduce a compact representation of clauses as bit vectors that allows us
to efficiently check for satisfiability on GPGPU hardware. Then, we describe a global
caching scheme for result tables such that GPUSAT3 avoids superfluous transfers between
host memory (RAM) and GPGPU memory (VRAM). Lastly, we show that using the so-
called pinned memory of Cuda, while introducing some overhead, benefits performance by
increasing data transfer speed between host and GPGPU.

Compact Clause Form (CCF)

Clearly we cannot hope that GPUSAT3 solves instances of arbitrarily large treewidth. Since
GPUSAT3 is based on dynamic programming aiming for utilizing reasonably small treewidth,
we therefore restrict ourselves to instances below a reasonable threshold like treewidth 64.
This allows us to build a clause data structure that is more optimized for satisfiability testing
on GPGPUs. Assume a formula F , a TD T = (T, χ) of GF , and a node t of T .

Interestingly, every clause c ∈ Ft can then be represented with two bit vectors, namely
an occurrence vector occ and a sign vector sign, which both combined correspond to the
compact clause form (CCF) of c. To the end of defining this compact representation, let
idx : χ(t) → {0, . . . , |χ(t)|−1} be a bijective function that assigns each variable v ∈ χ(t) a
positional index from 0 to the number |χ(t)|−1 of variables minus one, thereby adhering to
some fixed total ordering of variables in χ(t). Since idx is bijective, we denote the inverse
of idx by idx−1. Then, the occurrence vector occ(c) for c is a sequence consisting of |χ(t)|
many bits such that whenever v ∈ var(c), the corresponding bit occ(c)idx(v) is set to 1 (and
to 0 otherwise). The sign vector sign(c) for c is of the same form as the occurrence vector
such that sign(c)idx(v) is set to 1 whenever ¬v ∈ c. Otherwise, bit sign(c)idx(v) is set to 0.

In order to test if an assignment satisfies a set of clauses in CCF, assignments must be in
a compact representation as well. Let A be an assignment over χ(t). Then, we compactly
represent A as an assignment vector A⃗ such that the i-th bit A⃗i of A for 0 ≤ i < |χ(t)|
corresponds to the truth value of the variable at position i in A, i.e., A⃗i = A(idx−1(i)).

▶ Proposition 3 (Correctness of CCF). Assume a formula F , a TD T = (T, χ) of GF as well
as a node t of T . Let further c ∈ Ft be a clause and A be any assignment over variables χ(t).

Then, A satisfies c if and only if val((A⃗ ⊕ sign(c)) & occ(c)) ≥ 1, where ⊕ and & denotes
the bit-wise XOR and AND operator, respectively.

▶ Example 4. Consider the clauses from Ex. 1: c1 = a∨b∨¬c, c2 = ¬b∨¬a, and c3 = a∨¬d.
Observe that for the given total ordering ⟨a, b, c, d⟩, there is only one unique positional index
function idx, defined by idx(a) := 0, idx(b) := 1, idx(c) := 2, and idx(d) := 3. Then,
the corresponding bit vectors are occ(c1) = 1110, occ(c2) = 1100, occ(c3) = 1001 and sign
vectors are sign(c1) = 0010, sign(c2) = 1100, sign(c3) = 0001.
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Now, let us check the assignment A = {a 7→ 0, b 7→ 1, c 7→ 0, d 7→ 1}. In bit vector
representation, this corresponds to A⃗ = 0101. For c1, we have that (A⃗ ⊕ sign(c1)) & occ(c1) =
(0101 ⊕ 0010)&1110 = 0110. Since val(0110) = 6 ≥ 1, A satisfies c1. Conversely, (A⃗ ⊕
sign(c3) & occ(c3) = (0101 ⊕ 0001)&1001 = 0000 indicates that A does not satisfy c3.

Observe that if we restrict ourselves to instances of treewidth below 64, the length of all
involved vectors discussed above is bounded by 64 as well. So, testing if a truth assignment
satisfies a clause can be efficiently implemented using 64-bit integers and bit-wise logic
operators on top. More concretely, a satisfiability check can be implemented on any 64-bit
hardware by only using one bit-wise XOR and one bit-wise AND operation for each clause
in Ft. Interestingly, both occurrence and sign vectors can be computed once per TD node t

and clause in Ft before actually invoking the GPGPU.
By carefully choosing the variable ordering (idx), we can ensure that the unique id of each

parallel GPGPU computation unit performing such checks is a prefix of the assignment vector
A. Consequently, the assignments tested in a single such computation unit only differs by a
few of their least significant bits, allowing the assignment vector to be efficiently constructed
by combining the unique id with a counter variable.

Achieving a form of parallelism using bit-wise instructions was used in the context
of SAT solving [35]. There, a single instruction operates on multi-bit variable values
representing multiple assignments. In our #SAT solver, multiple instruction operate on
multiple assignments where each thread works on exactly one assignment. We obtain the
assignments immediately from the thread id. Our compact representation of clauses minimizes
thread divergence by taking a constant number of instructions for varying number of literals
in a clause. In fact, small thread divergence is important for effective performance when
running massive parallel execution on the GPGPU and low overhead of the used caches.

Reducing GPGPU Copy Overhead via Global Caching
In the preliminaries, we outline a model counting algorithm based on dynamic programming.
The implementation in GPUSAT3 contains some steps that are performed on the GPGPU
and others on the host. Thus, for each node in the tree decomposition, one or more kernels
are executed which compute a table associated with the current node. Intuitively, if a kernel
invocation uses a table produced by a previous kernel, this data can remain in VRAM and
does not have to be copied to the host. If ideally VRAM was unlimited, no intermediate
memory transfers to the host memory (RAM) would be needed, except for the final result.
However, when tables become too large to store in VRAM alongside the next table, tables
are divided into multiple table chunks per node in order to make solving such nodes feasible.
Table chunks that are not currently needed are moved to main (host) memory, which is
typically larger than the available VRAM.

Copying tables from and back to the VRAM can take a significant portion of the overall
execution time. This leads to the idea of global caching: GPUSAT3 tries to keep whole
tables or table chunks in a cache that is managed globally, in the sense that it potentially
contains tables for several tree decomposition nodes at the same time. Thus, in the case that
some or all child tables chunks already reside in VRAM when solving a node, i.e., they are
cached, GPUSAT3 does not need to transfer them from host memory for solving. After
a kernel execution, the result is left in the cache if the table is needed later in the solving
process. More precisely, GPUSAT3 prefers to not transfer table chunks to the RAM until
solving is completed; instead tracking a repository of chunks in VRAM.
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Figure 1 Histogram of percentages of GPGPU runtime spent on data transfers (memcpy) grouped
in steps of 10% without global caching, using either Tree or Array data structure.

A chunk is deleted from the cache if (a) it is either no longer needed for solving subsequent
nodes or (b) the VRAM is used otherwise. The latter (b) is the case if a new table needs
more VRAM than available. In this scenario, all cache entries are evicted, since as much
VRAM as possible is needed for solving the current node. This effectively degrades the cache
to a local one, as only the currently needed table chunks can be kept. However, if tables are
in relation to the available VRAM sufficiently small, the algorithm can benefit from keeping
tables from both branches of a join node in the VRAM during the traversal. Ideally, this
prevents intermediate transfers from the VRAM to host memory, except for the final results.

Evaluation. To investigate the need for global caching, we analyze the following hypothesis.

▶ Hypothesis 1. GPUSAT3 spends large portions of runtime on GPGPU data transfers.

To evaluate Hypothesis 1, we use the nvprof profiler to determine how much GPGPU
runtime is spent for copying data to and from the GPGPU. We relate this time to the
total time spent in GPGPU functions during the solver run, as recorded by nvprof. This
represents the proportion of GPGPU runtime spent on data transfers instead of kernel
executions. For small instances, this ratio may not be representative, as their data structures
are typically very small. Constant costs like runtime initialization and memory allocation
could further distort the results in such cases. Consequently, we only consider instances with
a total solver runtime of at least 5s in one of the configurations. In each following comparison,
only instances successfully solved by both compared configurations are included.

First, we compare this ratio for GPUSAT3 with caching and pinned memory disabled
for both the Array and Tree data structures, executed on Desktop with an arbitrary
but fixed decomposition seed. Pinned memory is a technique to speed up data transfers
between GPGPU and host, which is disabled here and will be explained in more detail in the
next subsection. MCC2020-Track1 with a timeout of 600s is chosen as it contains many
instances with sufficient treewidth to necessitate transfers between GPGPU and host memory.
This allows us to get a baseline for the cost of data transfers without any optimizations. In
Fig. 1, we show the distribution of GPGPU runtime in data transfers among the applicable
instances of MCC2020-Track1 as a histogram. Clear differences are visible between the
Tree and Array data structures: With Tree, two clusters are visible at ≤ 20% and
50% − 70%. No instance uses more than 70% of GPGPU runtime in memcpy. With Array,
at least 60% is used, with the highest number of instances spending 80% − 90%. Based on
this experiment, we can confirm that a large portion of runtime is taken up by data transfers,
assuming most work is done on the GPGPU. The Tree structure results in smaller relative
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Figure 2 Histograms of percentages of GPGPU runtime spent in memcpy with and without
caching. Only instances of MCC2020-Track1 which are solved in both configurations with a
runtime of at least 5s in one are considered. Results are given for the Array and Tree data
structure, (left) and (right), respectively.

transfer times than using Array. This could be due to their smaller average size [29], longer
kernel runtimes or a combination of both. Nevertheless, a large portion of instances spend a
proportion of at least 40%, as well.

To alleviate this issue, we propose global caching as described above. In order to evaluate
the effectiveness of our global cache, which avoids data transfers and reuses (cached) tables
within the GPGPU memory, we consider the following hypothesis.

▶ Hypothesis 2. Caching reduces the proportion of time GPUSAT3 spends on data transfers.

We assess Hypothesis 2 with the same method as previously used for Hypothesis 1, where
we run GPUSAT3 for both data structures, with and without caching. The results are
presented in Fig. 2, which confirms this hypothesis: Considering the Array configuration,
the number of instances spending 80%−90% in memcpy is greatly reduced, many presumably
shifting to the 70% − 80% bucket. Interestingly, while without caching no instance spent less
than 60% of its runtime on data transfers, a number of instances achieves using less than
10% with caching. In these cases, global caching avoids most transfers altogether. This is
in-line with our expectations: While the usefulness of the global cache is degraded when
all GPGPU memory is needed for solving, instances which mostly produce small tables can
benefit significantly. With the Tree data structure, we see a similar trend of instances
spending less time in memcpy. However, the effect is not as strong as with Array. Again,
we believe this is due to the Tree already using GPGPU memory more efficiently, leading
to smaller transfers which take less time relative to kernel executions.

The Effect of Cuda Pinned Memory
To speed up data transfer between host memory and GPGPU memory, the Cuda driver offers
an API that allows the use of pinned memory pages (also known as page-locked memory)
when allocating host memory [43, 10]. Pinned memory pages reside in a fixed physical
location of the host memory and cannot be moved, e.g., swapped out, by the operating
system (OS). This guarantee allows the Cuda driver to perform data transfers to and from
these regions through its direct memory access (DMA) engine. Through DMA hardware,
neither the CPU, nor the OS are involved in transferring data. So, no checks for the validity
of memory pages through the OS kernel are needed, since physical page locations are fixed.

Pinned memory has already been utilized in the literature. Quirem et al. [45] implement
a GPGPU-accelerated version of an algorithm used in the HMMER framework [30] for
identifying homologous protein sequences using Cuda. The authors report a 20% speed
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Figure 3 Histograms of percentages of GPGPU runtime spent on data transfers (memcpy) grouped
in steps of 10%, with and without pinned memory. Only instances of MCC2020-Track1 which are
solved in both configurations with a runtime of at least 5s in one are considered. Results are given
for both the Array (left) data structure as well as the Tree (right) data structure.

up by using pinned memory. Similarly, Fatica [20] demonstrates significant performance
improvements for LINPACK with pinned memory. However, allocating pinned memory incurs
additional overhead compared to regular allocations of main memory [32]. Additionally, if
a large portion of the physical system memory is pinned, overall performance is degraded.
Moreover, when using pinned memory, the Cuda driver enforces a shared virtual address
space for allocations in host memory and GPGPU memory, which is referred to as Cuda
Unified Memory. Aside from pinned memory, this feature is used for handling data transfers
between CPU and GPGPU memory implicitly by the driver, as a convenience for the
programmer. Consequently, the overhead of unified memory applies as well. Jarzabek et
al. [37] investigated the performance of unified memory, overall finding it to have only a
small impact. Nevertheless, especially many small allocations increased the performance
overhead. We mitigate the performance degradation of repeatedly allocating and freeing
pinned memory by employing a so-called sub-allocator. This sub-allocator is responsible for
caching pinned memory allocations, handing out memory allocations from an existing pool
and only allocating additional memory when needed [36].

Evaluation

We evaluate the potential for performance improvements through achieving faster data
transfers which is counteracted by the additional overhead of pinned memory allocation.

The Potential of Pinned Memory. As a first step, we consider the potential speedup of
pinned memory without considering the cost for its allocation.

▶ Hypothesis 3. With pinned memory, GPUSAT3 reduces the proportion of time spent on
copying data to and from the GPGPU.

In order to analyze this hypothesis, we measure the proportion of time the GPGPU
spends for memory transfers with and without pinned memory for both the Array and
Tree data structures. The experiment is conducted on Desktop with a maximal runtime
of 600s for each instance of MCC2020-Track1. Chunk caching, i.e., leaving solution data
in GPGPU memory if possible, is disabled to measure the impact of pinned memory in
isolation. The results are shown in Fig. 3 as histograms of the ratio of GPGPU runtime used
for copying memory to the total GPGPU runtime, given in percent. We apply the same
criteria for selecting instances for the comparison as in Sect. 3. For the Array data structure
(left), we see that without pinned memory, most memory transfers take up as much as 80%
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to 90% of the GPGPU runtime on some instances. All instances spend at least 60% for
copying memory by means of memcpy. With pinned memory, the majority consumes around
50% to 60% GPGPU runtime for copying, some less, with at most ≈ 80%. When using the
Tree data structure (right) and no pinned memory, the proportion is generally lower and
corresponds to the baseline distribution established in Fig. 1. With pinned memory, the
distribution shifts to spend significantly less time in memcpy. Additionally, many instances
have a copy to execution time ratio below 10%, while no instance has more than 50%. In
conclusion, we see that pinned memory reduces the time used for data transfers significantly
regardless of data structure. The smaller size of the Tree data structure compared to Array
results in a smaller proportion of GPGPU runtime spent copying.

The Benefit of Pinned Memory. For the benefit of faster memory transfers to result in
improved solver performance, it needs to outweigh the overhead of pinned memory allocation.

▶ Hypothesis 4. Employing pinned memory decreases the runtime of the solver GPUSAT3.

To test this hypothesis, we consider the runtime for the instances of MCC2020-Track1
with and without pinned memory. We run GPUSAT3 for both the Array and the Tree
data structure on MCC2020-Track1 for up to 600s on Server. Global caching is enabled
to determine if pinned memory further improves solver runtime on top of caching. In Fig. 4,
we compare the differences in runtime on a per-instance basis with an arbitrary but fixed
decomposition seed. For instances where the runtime differs by more than ≥ 1% of the
unpinned runtime, the difference is marked by an arrow as described in the figure caption.

With both the Array and Tree data structures, especially long-running instances
benefit from pinned memory, while the allocation overhead amounts to an overall longer
runtime on small instances. The configuration using the Array data structure (left) benefits
more from pinned memory on instances with long runtimes compared to the Tree (right)
configuration. We attribute this to the capability of the Tree structure to grow as needed,
leading to smaller transfers than with the Array data structure on average. Conversely,
the size of Arrays grows with the number of variables in a node regardless of its solution
count. Moreover, fewer small instances are negatively impacted by pinned memory when
using Tree, presumably because of smaller allocations incurring less overhead.

Overall, we have shown that pinned memory can speed up the solving process for instances
where large memory transfers are needed. For small instances and depending on the data
structure, its additional allocation overhead can outweigh the faster transfer times however.
By comparing the improvement in data transfer times seen in Fig. 3 with overall solver
performance in Fig. 4, we see that this mostly translates to improvements in runtime for
larger instances, where the sub-allocator can serve most allocations. Thus, the addition of
pinned memory is beneficial in most cases, although using the Tree data structure often
mitigates the need for large memory transfers, lessening the impact of pinned memory.

4 The Influence of Decomposition Libraries

In this section, we focus on Step 2 of the dynamic programming approach, as defined in
the preliminaries. Thereby, we compare several available implementations for finding tree
decompositions and their effect on solver runtime in order to efficiently employ these libraries.
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Figure 4 Comparison of runtime over the instances of the MCC2020-Track1 data set with
and without pinned memory. Downward (green) arrows denote an improvement in runtime with
pinned memory, upward (red) arrows indicate a longer runtime with pinned memory. Results for
the Array and Tree data structure are given (left) and (right) respectively.

Finding Tree Decompositions

Quickly finding a tree decomposition with a small width is crucial for the performance of
GPUSAT3. Utilizing a tree decomposition of smaller width not only improves worst-case
runtime of our algorithm, but also exponentially decreases memory requirements. This
is paramount for the practical efficiency: Once certain tables do not fit into the GPGPU
memory, larger chunks of data have to be swapped to the host memory (RAM), thereby
increasing processing time. Inconveniently, finding the treewidth of a graph represents a
NP-hard problem itself [2]. An algorithm for obtaining tree decompositions of small, bounded
width in linear time has been developed, but its runtime complexity contains constant factors
too large for practical use [4]. To the best of our knowledge, there are no practically feasible,
fast algorithms with such low time complexity. Thus, the time spent on finding a tree
decomposition of low treewidth and running the dynamic programming algorithm must be
balanced. To find a suitable decomposer for computing tree decompositions we compared the
3 top-ranked submissions to the heuristic competition of track A of the “Parameterized Algo-
rithms and Computational Experiments Challenge” in 2017 (Pace17) [13]: tamaki by Keitaro
Makii, Hiromu Ohtsuka, Takuto Sato, Hisao Tamaki (Meiji University), github.com/TCS-
Meiji/PACE2017-TrackA, flowcutter [50] by Ben Strasser (Karlsruhe Institute of Technology),
and htd [1] by Michael Abseher, Nysret Musliu, Stefan Woltran (TU Wien). As a first step,
we compare the obtained widths and speed of the three decomposers above.

▶ Hypothesis 5. Given a long processing time, the rank by best decomposition width reflects
the placement in Pace17 in MCC2020-Track1: 1. tamaki, 2. flowcutter, and 3. htd.

In Fig. 5 (left), we compare the lowest width found by the implementations in 600s for
the MCC2020-Track1 instances on Cluster. For each instance and each decomposer, we
obtain 10 decompositions with varying seeds. In the following analysis, the best result of these
runs is considered. Although flowcutter ranked better than htd in Pace17, it consistently
produces higher widths than htd and tamaki in our benchmark. Note however, that we
use the more recent htd 1.2. The decomposer tamaki generates lower widths than htd for
most instances, with some outliers. For small widths up to ≈ 30, the difference between
htd and tamaki is noticeable but small for most instances. With wider widths, flowcutter
performs much worse than htd and tamaki. Overall, the relative performance of htd and
tamaki matches our expectations of Hypothesis 5. However, flowcutter performs significantly
worse than its competitors, which might be due to the size and structure of our instances.
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Figure 5 Best decomposition width for MCC2020-Track1 instances of different implementations;
ordered by asc. best width. The plots show the widths obtained after 600s (left) and 15s (right).

As htd was chosen in GPUSAT2 for being fast, we suspect the above results to change
when restricting the implementations to shorter runtimes. Thus, we repeat the above
analysis in Fig. 5 (right), but consider the respective best result found after only 15 seconds.
GPUSAT3 with htd usually takes less than one second for computing the tree decomposition
for most solvable instances of MCC2020-Track1. Nonetheless, we believe that 15s would
be a realistic time budget for implementations that cannot be tightly integrated into the
solver as a library. Compared with Fig. 5 (left), we see the advantage of tamaki over htd
shrinking. For some instances, htd produces smaller decompositions than tamaki, which
generates either a very wide or no decomposition at all. Decomposer flowcutter still produces
the widest decompositions for most instances. Consequently, tamaki generates the best results
for most instances, even with constrained time. However, there are cases where only htd
produces a decomposition of usable width. Since the advantage of tamaki is small at low
runtimes and htd is available as a C++ library, we keep it as the primary implementation
in GPUSAT3 for convenience. In the future, a portfolio of implementations with a tuned
heuristic of the time spent searching for a decomposition could yield better results [17].

The Performance Impact of Decompositions
Recall that we have already investigated the benefit of finding tree decompositions of small
width, based on worst-case time and space bounds. To justify this claim, we now explore the
performance impact of the chosen tree decomposition during solving in practice.

▶ Hypothesis 6. The solving time of GPUSAT3 strongly correlates with the decomposition
width and only to a lesser extent depends on the instance.

We investigate the connection of decomposition width and solving time by creating a set of
different tree decompositions for select instances. To find suitable instances, we first compute
10 tree decompositions per instance of MCC2020-Track1 with each of the implementations:
tamaki, flowcutter and htd. Each run is allowed 600s of wall clock time on Cluster. From
MCC2020-Track1, we select a subset of instances where we find at least one decomposition
with a width between 25 and 35. These bounds are chosen because instances with a width
larger than 35 are mostly unsolvable on our hardware. Conversely, if the decomposition
width is too low, the solving process is usually very fast and dominated by set-up time. Thus,
measuring runtime differences is not meaningful outside of this range. By applying this
criterion, we obtain a set of 62 instances for our evaluation. Then, we measure the solving
time for each decomposition of the selected instances with GPUSAT3 on Server. The
version of GPUSAT3 used in this experiment already includes the improvements introduced
in the course of this paper. For each instance, 10 decompositions are obtained by each
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Figure 6 GPUSAT3 solving time ts in seconds by decomposition width w (left) and by instance
(right). On the left, runs of the same instance are colored in the same color, but different instances
may have the same color. On the right, instances are ordered by their respective lowest decomposition
width, which is marked as a dashed grey line.

decomposer, amounting to 1860 decompositions in total. Since we are interested in the
behaviour of the GPGPU solving algorithm rather than overall runtime compared to other
solvers, we use the time spent in the solving step as reported by GPUSAT3. This time is
referred to by solving time and excludes parsing and preprocessing steps.

In Fig. 6 (left), we show the results of this experiment as a plot of solving time and
decomposition width, colored by instance. We observe a general trend of increasing solving
time with larger decomposition width. Moreover, the plot can be roughly divided in three
sections: Up to a width of ≈ 22, the solving time consistently stays below one second, without
major variations for different widths. For widths between ≈ 23 and ≈ 38, solving time
correlates with decomposition width. However, large differences in solving time occur among
decompositions of equal widths, sometimes by multiple orders of magnitude. For larger
decompositions, all runs either time out or exhaust the resources of Server, which is also
shown as a timeout. This observation supports our focus on instances with decompositions
of widths between 25 and 35 for this experiment: The runtime for small decompositions is
dominated by set-up costs and parallel GPGPU resources are not saturated, thus it does not
vary significantly. For decompositions of high width, resource and time limits are quickly
exceeded. While this experiment clearly demonstrates a correlation between decomposition
width and solving time as indicated by theoretical bounds, there is a large spread of runtimes
for decompositions of the same width. For example, runtimes for the width 28 span from
sub-1s to almost 100s. When looking at the distribution of instances, which are indicated
by color, we see that runs of the same instance often form clusters. Through the different
marker symbols, we see that distinct clusters of the same color mostly originate from different
composers. Conversely, most clusters only contain runs of one decomposer and instance.
This indicates that the variance in runtime is low for the same instance and decomposer.
However, this view does not immediately reveal solving times of all runs of the same instance.

Thus, we visualize this perspective in Fig. 6 (right). The plot shows solving times for
every generated decomposition of each instance as specified in the figure caption. Similarly
to the by-width perspective Fig. 6 (left), runtimes for decompositions generated by the
same decomposer often appear clustered. However, this effect appears less pronounced for
decompositions generated by flowcutter. For many instances, tamaki appears to generate the
best-performing decompositions. This is in line with our findings above. Some instances,
especially those of smaller width, show very similar runtimes for all decompositions. However,
in most cases, runtimes are clearly separated for the decomposers. As instances are sorted by
their best generated decomposition width, a trend of increasing runtime with width is visible.
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This indicates that the width of a decomposition is a better predictor for solver runtime
than the given instance, as stated in Hypothesis 6. Nonetheless, runtimes vary among
decompositions of the same width, so treewidth is not the sole estimate for instance hardness
of GPUSAT3. Thus, detailed structural studies are left for further research, cf. [41].

5 Overall Results

Next, we evaluate the combined result of the presented techniques above by comparing the
performance of GPUSAT3 to GPUSAT2, d4 [39], c2d [11], nus-bareganak [22], and
ganak [49]. The systems d4, c2d, and nus-bareganak are among the best solvers of
the Model Counting Competition 2020 [22] (MCC 2020). At time of submission, the full
instance set of the 2021 competition was not publicly available [21]. d4 and c2d are based on
knowledge compilation, while nus-bareganak is a portfolio of solvers: First, they run the
B+E preprocessor [38], followed by ganak. If ganak does not produce a result in a chosen
timeout, ApproxMC [7] is used. As no external preprocessing is used with the other solvers,
pure ganak is included for reference. We run all solvers for up to 1800s for each instance of
MCC2020-Track1+2 on Server. All solvers are used in their default configuration: c2d
and d4 ran with flags to enable counting, otherwise no additional arguments where supplied.
The number of solved instances, ordered by instance runtime, is shown in Fig. 7 (right).

The total number of solved instances per solver is listed in Tab. 1. For low runtimes,
GPUSAT3 establishes a clear lead over the other solvers. Given more time, GPUSAT2
approaches GPUSAT3 and d4, c2d surpass GPUSAT3. nus-bareganak delivers similar
performance to c2d until ApproxMC is used, where it surpasses the other solvers. Note that
the results of ApproxMC are within ±30% of the correct count with 80% probability [7].

In practice, not only the number of eventually solved instances is relevant, but also the
time in which they are solved. Thus, we define a baseline set of benchmarks, which are the
instances that are solved by all solvers except pure ganak, thereby enabling meaningful
comparisons of solving time. ganak is excluded to maintain a meaningful baseline set
size. Tab. 1 lists the accumulated runtime for each solver, for 50%, 90%, 95% and 100% of
instances of both the baseline set and all of a solver’s respective solved instances. When
comparing with respect to the baseline set, we obtain an 8x speedup in accumulated runtime
of GPUSAT3 over GPUSAT2, 11x over c2d, and over 10x speedup over nus-bareganak.
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Table 1 Solved instances and accumulated runtimes for the fastest n% of solved instances for
each surveyed solver. In the second row for each solver, accumulated runtime is compared with
respect to a baseline set of 161 instances, which are solved by all except ganak. ⋆ the portfolio
includes an approximate solver, for more details see above.

Solver # inst.
∑

t 100%
∑

t 95%
∑

t 90%
∑

t 50%

GPUSAT2 229 5:56:06 3:05:47 1:51:28 0:09:13
. . . on baseline 161 2:26:36 1:00:06 0:36:32 0:06:38

GPUSAT3 247 3:05:58 0:43:40 0:27:12 0:07:01
. . . on baseline 161 0:18:08 0:13:00 0:11:03 0:04:51

d4 256 1 day, 2:30:28 20:57:09 16:39:14 1:59:09
. . . on baseline 161 15:54:58 12:09:37 9:21:47 0:53:41

c2d 265 12:25:56 8:20:19 6:21:38 0:39:15
. . . on baseline 161 3:29:07 2:16:12 1:40:38 0:13:16

nus-bareganak 351⋆ 1 day, 21:47:59 1 day, 14:21:25 1 day, 7:41:05 1:33:55
. . . on baseline 161 3:12:16 1:57:25 1:30:17 0:17:53

ganak 161 11:26:48 9:05:15 7:28:31 0:53:24

GPUSAT3+d4 304 7:36:44 3:36:43 1:58:31 0:09:05
. . . on baseline 161 0:18:08 0:13:00 0:11:03 0:04:51

GPUSAT3+c2d 309 8:45:15 4:30:15 2:35:57 0:09:23
. . . on baseline 161 0:18:08 0:13:00 0:11:03 0:04:51

To combine the capability of d4 and c2d with the speed of GPUSAT3, we define the
portfolios GPUSAT3+d4 and GPUSAT3+c2d to use GPUSAT3 for instances with a
decomposition width of ≤ 35 and d4 resp. c2d otherwise. The time to calculate the width
is negligible and therefore not included in the runtime of instances solved with the portfolio
solvers. To generate the decomposition we use htd as used in GPUSAT3. As shown in
Tab. 1, the portfolio solvers are very successful: Not only do they solve significantly more
instances than d4 and c2d alone, but accomplish this in significantly less accumulated
runtime. As expected, GPUSAT3+d4 and GPUSAT3+c2d achieve the same performance
on the baseline set as GPUSAT3, which overall either solves instances extremely fast or fails.
With the availability of advanced hardware with larger GPGPU memory, we expect that
due to global caching, GPUSAT3 solves instances that currently reach a timeout. External
preprocessing as used in nus-bareganak could further improve the results, cf. [29].

6 Conclusion and Future Work

Efficiently solving problems related to propositional model counting is critical for a range
of applications such as probabilistic reasoning. To accelerate solving, the massively par-
allel computing capabilities of general purpose GPUs (GPGPUs) can be leveraged by a
dynamic programming based algorithm. Our system GPUSAT3 builds on top of ideas
from GPUSAT2, where we implement algorithmic improvements and techniques for better
hardware utilization. We describe a new, hardware-friendly compact clause form, a global
caching strategy, as well as pinned memory, and systematically evaluate impacts on solving
performance. Additionally, we survey a range of libraries for generating tree decompositions
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and show their performance impact as well. Compared to GPUSAT2, our overall results
show that GPUSAT3 solves all instances faster, sometimes by an order of magnitude. While
GPUSAT3 is designed for bounded treewidth, it complements d4 and c2d in a portfolio
approach; significantly enhancing the overall performance compared to the individual solvers.

In the future, we plan on migrating portions of the solver code to GPGPU kernel code.
Additionally, we are interested in the scalability of GPUSAT3 when using multiple GPGPUs.
To the best of our knowledge, currently there is no way to limit the number of parallel compute
cores a program can utilize, preventing such experiments with a single device. Alternatives
include frequency and voltage scaling [31] and dynamic transformation to a CPU program [19],
both options have probably different scaling characteristics than the addition of parallel
compute cores. Furthermore, techniques used in other dynamic programming based solvers
such as addmc [15] could be brought to the GPGPU. Conversely, integrating GPUSAT3
into other solvers for solving sub-problems of small treewidth might be beneficial. Finally,
GPGPU-based approaches might be applicable to formalisms such as argumentation [23],
logic programming [33], or description logics [24], despite strong theoretical limits [25].
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Abstract
In this paper, we revisit the approach to empirical experiments for combinatorial solvers. We provide
a brief survey on tools that can help to make empirical work easier. We illustrate origins of uncertainty
in modern hardware and show how strong the influence of certain aspects of modern hardware and
its experimental setup can be in an actual experimental evaluation. More specifically, there can be
situations where (i) two different researchers run a reasonable-looking experiment comparing the
same solvers and come to different conclusions and (ii) one researcher runs the same experiment
twice on the same hardware and reaches different conclusions based upon how the hardware is
configured and used. We investigate these situations from a hardware perspective. Furthermore, we
provide an overview on standard measures, detailed explanations on effects, potential errors, and
biased suggestions for useful tools. Alongside the tools, we discuss their feasibility as experiments
often run on clusters to which the experimentalist has only limited access. Our work sheds light on
a number of benchmarking-related issues which could be considered to be folklore or even myths.
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1 Introduction

“Why trust science?” is the title of a recent popular science book by Naomi Oreskes [74]. We
can ask the same question of combinatorial sciences, algorithms, and evaluations: Why trust
an empirical experiment? Roughly speaking, in science, we try to understand why things
happen in the real world and investigate them with the help of scientific methods. One
important aspect to make an empirical evaluation trustworthy is reproducibility. This topic
has been the subject of much recent scrutiny, with some arguing there is a reproducibility
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crisis in areas fields of computer science [33, 31] and even a replicability crisis in other scientific
fields of research [81]. Luckily in combinatorial problem solving, replicability is often already
indirectly addressed in public challenges, which many combinatorial solving communities
organize in order to foster implementations and evaluations [47, 82, 80, 83, 86, 20, 21]. The
challenges provide a place for empirical evaluations, feature shared benchmarks, and support
long-term heritage [3, 17, 22, 54]. It is therefore often assumed that everything should be
judged with respect to these benchmarks or latest solvers [5]. However, benchmarks featured
in competitions are not necessarily robust [40, 49] and might bias towards existing solving
approaches and heuristics. On that account, one can argue that non-competitive evaluations
are quite helpful for papers that are orthogonal to classical improvements over one particular
solving technique or algorithm [19, 30]. There, one can often see a strong focus on algorithm
engineering and their evaluation [63], which might not always be desired from a theoretical
perspective. In particular, it makes reproducibility far less obvious than one would expect from
theory. While reproducibility initiatives are becoming fashionable [73, 59], aspects are often
left out in practical algorithm engineering and when testing combinatorial implementations:
(i) the test-setup is not given (no protocol) or error prone (no failure analysis/considerations),
(ii) modern hardware is simplified to the von-Neumann model (Princeton architecture) [87]
and considered deterministic, and (iii) underlying software is neglected.

In this work, we summarize a list of topics to consider that might be folklore to an
experienced engineer, but are often only mentioned between the lines while being crucial to
actual reproducibility (Section 2.1). We include a list of system and environment parameters
that are impactful when carrying out empirical work (Section 2.3). We summarize useful
tools and list practical problems that repeatedly occur when experimenting (Sections 3.1,
3.2, and 3.3). In the main part of our paper, we provide an initial list of issues caused by
modern consumer hardware that can have a notable impact if setup and configurations are
not carefully designed (Table 1). We show by example that one can achieve different results
in the number of solved instances ranging from 5%–40% on the same hardware, depending
on the setup (Experiment 1, Table 3). This could suggest that it is not always meaningful to
only prefer solvers that beat the “best” solver, but to aim for clean benchmark settings and
elaborate discussions that highlight both the solver’s advantages and disadvantages.

Related Works. There are various works that address aspects of reproducibility [3, 7, 8, 15,
16, 56, 79, 94, 98] and experimental design [39, 63, 71], including micro-benchmarking, which
requires special attention in terms of statistical analysis [42], [71, Ch.8]. Previous works
neglected effects of modern parallel hardware on experimenting and some aspects have only
been addressed in the background by the community. We put attention on certain issues
arising on modern machines, updating outdated assumptions on measures, and illustrating
how certain problems can be omitted. In the sequel, we revisit some of these related works.

2 Evaluating Combinatorial Algorithms

Natural sciences have a long tradition in designing experiments (DOE). Practical experiments
date back to the ancient Greek philosophers such as Thales and Anaximenes with empirically
verifiable ideas. There, methodology is key and has a long tradition with formal approaches
existing since the late 1920s [25, 26]. Methodology not only involves the experiment itself,
but also observation, measurement, and the design of test aiming to reduce external influence.
Already in 1995, Hooker [39] discussed challenges in competitive evaluations of heuristics. A
variety of these challenges are still of relevance in today’s combinatorial solving community.
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In particular, emphasis on competitions tells which algorithms/implementations are better,
but not why; this remains a particularly big challenge in the SAT community [27, 91]. If
a novel implementation wins, it is accepted; otherwise, it is considered as failure, resulting
in a high incentive to find the best possible parameter settings. The challenge of designing
an experiment (DOE) has meanwhile been addressed by a more experimental community
in broad guides [63] or algorithm engineering works [71]. In contrast, theoretical computer
scientists often neglect environmental considerations due to the assumption that modern
hardware behaves similar to simplified mathematical machine models [90] or classical hardware
models [93]. Unfortunately, this is no longer the case for modern architectures. There is a
list of concepts and external influences that can interfere, some of which are discussed below.

2.1 Repeatability, Replicability, and Reproducibility
When conducting a study or experiment, a central goal is to reduce inconsistencies between
theoretical descriptions and actual experiments. Three major principles play a central role:
repeatability, replicability, and reproducibility. Unsurprisingly, these topics are also critically
discussed in other scientific fields [65] and sometimes confused with each other.

Repeatability requires repeating a computation by the same researcher with the same
equipment at reliably the same result. The main purpose is often to estimate random
errors inherent in any observation. When evaluating combinatorial solvers, repeatability
translates to running the same solver with the same configuration on a given instance multiple
times, maybe even on different hardware. Some publicly accessible evaluation platforms
for combinatorial competitions address repeatability to a certain extent, as for example,
StarExec [84] and Optil.io [94]. Effective tools to measure and control the execution of
combinatorial solvers are runsolver [79] and BenchExec [7, 8].

Replicability, sometimes also called method reproducibility, refers to the principle that if
an experiment is replicated by independent researchers with access to the original artifacts
and same methodology, that then outcomes are the same with high confidence. When
evaluating combinatorial solvers, replicability translates to running the same solver with the
same configuration and instance on a different system by independent researchers, which is
sometimes also called recomputability. Relevant aspects relate to works such as the Heritage
projects [3, 16, 15], which preserve access to old solvers and making sources accessible
to a broad community, or Singularity, which aims for easy an setup on high-performance
computing (HPC) systems with few prerequisites on the environment [56, 98]. Another
initiative (Guix) aims for a dedicated Linux distribution that provides highly stable system
dependency configurations [1, 96]. Already in 2013, the recomputation manifesto postulated
that one can only build on previous work if it can properly be replicated as a first step [28].
In addition, it makes research more efficient, similarly to how high quality publications
can benefit other researchers. In contrast, some researchers argue that replicability is not
worth considering, since sharing all artifacts is a non-trivial activity, which in consequence
wastes efforts of the researchers [18]. Still, replicability is getting solid attention within the
experimental algorithmics community [73], since it supports quality assurance.

Reproducibility aims for being able to obtain the same outcome using artifacts, which
independent researchers develop without help of the original authors. When evaluating
combinatorial solvers reproducibility roughly refers to another group constructing a second
solver that implements the same algorithmic ideas. For example, Knuth re-implemented SAT
algorithms from several epochs [52]. More experimental directions are investigations into
robustness of benchmark sets and their evaluation measures [49]. Reproducibility can also
be interpreted fairly vaguely [32]. Interestingly, the literature on experimental setup [63] and
algorithm engineering [71] already contains a variety of suggestions to obtain reproducibility.
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Repeatability and to some extent also replicability are the focus of our paper. Our aim
is to make researchers aware of potential problems caused by modern computer systems,
illustrate how to detect and reduce them without spending hours of debugging or over-
valuing small improvements. Before we go into details, we briefly discuss principles and
tools that support both repeatability and replicability. Since recent works on reproducibility
provide various helpful suggestions on replicability in terms of environment [75], we focus
only on aspects that might degrade long-term repeatability and replicability, resulting in
over-engineering or over-tooling. We argue in favour of reviving an old Unix philosophy:
build simple, short, clear, modular, and extensible code [64] both for the actual solver as
well as the evaluation. Always keep dependencies low and provide a statically linked binary
along with your code [89, 60] or a simple virtual environment to reproduce dependencies if
you use interpreted languages. Even if the source code does not compile with newer versions,
binary compatibility is mostly maintained for decades. The primary focus of container-based
solutions, such as Singularity [56], is current accessibility of scientific computing software
that requires extensive libraries and complex environments. It is quite useful if the software
is widely used, requires complicated setup on high performance computing environments, and
is continuously maintained. Container-based solutions can also be useful for building source
code on old operating systems [3]. However, they introduce additional dependencies, increase
conceptual complexity, can have notable runtime overhead under certain conditions [100],
require additional work for a proper setup (both hosts as well as containers), and increase
chances that the software does not out run of the box in 3 years. A practical observation
illustrates this quite well: already since 2010, a meta software (Vagrant) tries to wrap
providers such as VirtualBox, Hyper-V, Docker, VMWare, or AWS. While virtualization can
be tempting to use, chances are high that some of these providers upgrade functionality or
disappear entirely resulting in useless migration efforts.

2.2 An Experiment

In the beginning of Section 2, we stated classical experimental viewpoints: fixed solver or
fixed instance set. In contrast, we take a third perspective by fixing both the instance
set and the solver and focus on differences in hardware configurations. Therefore, we turn
our attention to a recent experiment on SAT solvers (time leap challenge) [22]. We repeat
the experiment with the solver CaDiCal on other hardware to investigate side effects of
experimental setup and hardware. Also, we use set-asp-gauss as instances, which contains
200 publicly available SAT instances from a variety of domains with increasing practical
hardness [40]1. We take a timeout of 900 seconds, but would like to point out that recent
SAT competitions restrict the total runtime over all instances to 5,000 seconds. We run
experiments on the following environments: Comet Lake (i7 Gen10): Intel i7-10710U
4.7 GHz, Linux 5.4.0-72-generic, Ubuntu 20.04; Haswell (Xeon Gen4): 2x Intel Xeon
E5-2680v3 CPUs, Linux 3.10.0-1062, RHEL 7.7; Rome (Zen2): 2x AMD EPYC 7702,
Linux 3.10.0-1062, RHEL 7.7; and Skylake (Xeon Gen6): Xeon Silver 4112 CPU, Linux
version 4.15.0-91, Mint 19. We explicitly include cheap mobile hardware by using a Comet
Lake (i7 Gen10) CPU, since not every group can afford expensive server hardware or spend
valuable research time on setting up stable experiments on a cluster.

1 The benchmark set is available for download at https://www.cs.uni-potsdam.de/wv/projects/sets/
set-industrial-09-12-gauss.tar.xz

https://www.cs.uni-potsdam.de/wv/projects/sets/set-industrial-09-12-gauss.tar.xz
https://www.cs.uni-potsdam.de/wv/projects/sets/set-industrial-09-12-gauss.tar.xz


J. K. Fichte, M. Hecher, C. McCreesh, and A. Shahab 25:5

Table 1 Number of solved instances out of 200 SAT instances running the solver CaDiCal on
varying platforms. Column s(15) contains the number of solved instances when timeout is 15 minutes;
f and p refer to the CPU frequency in GHz and number of solvers running in parallel, respectively.
The t column contains the total runtime in hours for all instances solved within 15 minutes.

Processor (CPU) f p s(15) t[h]

Skylake 3.0 1 190 5.12
Haswell 3.3 1 189 3.89
Rome 3.4 1 190 3.79
Comet Lake 4.7 1 191 3.81
Comet Lake 4.7 6 189 6.13
Comet Lake 4.7 12 176 7.18

Table 1 illustrates the results of the experiment on varying hardware. Unsurprisingly, the
modern hardware running at 4.7 GHz solves the most instances. Somewhat unexpected is
that two potentially faster processors solve fewer instances. Namely, the Rome CPU which
is faster than the Skylake CPU solves fewer instances and similarly the Haswell solves fewer
instances than the Skylake. Since both processors are different generations one might expect
that the AMD CPU is simply slower. While the 5% fewer solved instances might seem not
much comparing the results to the ones of the time leap challenge, it would mean that a
ten year old solver solves almost the same number of instances on a modern hardware as
CaDiCal on very recent hardware. Below, we explain that this is clearly not the case and
illustrate details of the experimental setup that contribute to the low number of solved
instances. In contrast, when comparing the number of solved instances for the Comet Lake
configurations, it is obvious to an experienced reader that while the Comet Lake CPU
exposes 12 software cores, due to multithreading (MT) only 6 physical cores are available.
Still, when using all physical cores, we have more than 30% higher runtime, which can be
particularly problematic when comparing to settings that prefer total runtime as measure. To
avoid this, we could simply not run solvers in parallel; however, this seems quite impractical
and inefficient. In the following sections, we clear up which problems in the setup may have
caused the differences and illustrate how to avoid such issues.

2.3 Uncertainty on Modern Hardware
Modern processors can do many calculations at the same time by using multiple cores on each
processor and each core also has built-in a certain parallelism. While this can be exploited
explicitly in terms of parallel programming frameworks, some features are already done by
on-board circuits or firmware, which is a low level software layer between the CPU hardware
and the operating system. Compile time optimizations such as automated parallel execution
optimization and cache performance optimization [4] can then automatically employ specific
features. For example, loop optimization tries to automatically rewrite loops in programs such
that the loop can be executed in parallel on multiprocessor systems. Scheduling splits loops
so that they can run concurrently on multiple processors. Vectorization optimizes for running
many loop iterations on parallel hardware that supports single instruction multiple data
(SIMD). Therefore, instead of processing a single element of a vector N times, m elements
of a vector are processed simultaneously N/m times. In fact, modern CPUs have so-called
vector instruction sets such as SSE, AVX, NEON, or SVE depending on the architecture,
which makes them SIMD hardware. Loop vectorization can have a significant impact on
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the runtime due to effects on pipeline synchronization or data-movement timing. Usually,
dependency analysis tries to optimize these operations. But depending on the compiler
(GCC, Intel, or LLVM) different runtimes of the resulting binary can be observed [92].

Processor specific features add to less pre-calculable behavior. Turbo Boost, which was
introduced around 2008, allows to dynamically overclock the CPU if the operating system
requests the highest performance state of the processor [66]. Thermal design power (TDP),
which was established around 2012, allows to scale the power (energy transfer rate) variably
between 50W and 155W [70] to save energy depending on the system load. In particular, this
is active on laptop systems that are not connected to an electrical outlet or if certain system
sensors detect high temperature. Turbo Boost 2.0 was introduced around 2011 and it uses
time windows with different levels of power limits, so that a processor can boost its frequency
beyond its thermal design power, which can thus only be maintained for a few seconds without
destroying the CPU [2]. Huge Pages, which were increased to 1GB, can reduce the overhead
of virtual memory translations by using larger virtual memory page sizes which increases the
effective size of caches in the memory pipeline [24]. Branch prediction, whose early forms
already date back to the 1980s in SPARC or MIPS [68], speculates on the condition that
most likely occurs if a conditional operation is run. Modern CPUs have a quite sophisticated
branch prediction system, which executes potential operations in parallel [48]. The CPU
can then complete an operation ahead of time if it made a good guess and significantly
speed up the computation. This often depends on how frequently the same operation is used.
Otherwise, if the branch predictor guessed wrong, the CPU executes the other branch of
operation with some delay, which can be longer than expected as modern processors tend to
have quite long pipelines so that the misprediction delay is between 10 and 20 clock cycles.
The situation gets more complicated when substantial architectural bugs are mitigated or
patched, as this can notably slow down the total system performance [58, 53].

Clearly, we need practical empirical evaluations of algorithms and techniques and often-
times it is not useful to just restrict an evaluation to existing benchmarks used in competitions,
if they even exists. But just the “complications” or, more formally, source for an error in mea-
surement mentioned above, could make the outcome of an experiment far less deterministic
than one would expect. For that reason, we suggest a more rigorous process when evaluating
implementations, including the understanding of measurements and effects of potential errors
on the outcome as well as approaches to reduce unexpected and not entirely deterministic
effects. In a way, the following sections provide a modern perspective on simple measures
(runtime) that incorporate state-of-the-art in hardware and operating system technology.

3 Measurements and Hardware Effects

In the following, we discuss measurements used when evaluating runtime of empirical work.
Along with the measures, we recap useful measuring and controlling tools. Since most of the
tools are highly specific to the kernel in the used operating system, we restrict ourselves to
recent versions of Linux and widely used distributions thereof.

3.1 Runtime
When evaluating algorithms, a central question is how long its implementation actually runs
on the input data (runtime). There are five main measures that are interesting in this context:
real-time, user-time, system-time, CPU-usage, and system load. The real-time, frequently
just called wallclock time, measures the elapsed time between start and end of a considered
program (method entry and exit). In contrast, CPU-time measures the actual amount of



J. K. Fichte, M. Hecher, C. McCreesh, and A. Shahab 25:7

time for which a CPU was used when executing a program. More precisely, the user-time
measures how much CPU-time was utilized and system-time how much the operating system
has used the CPU-time due to system calls by the considered program. Both measures
neglect waiting times for input/output (I/O) operations or entering a low-power mode due
to energy saving or thermal reasons. There are more detailed time measures on time spent in
user/kernel space, idle, waiting for disk, handling interrupts, or waiting for external resources
if the system runs on a hypervisor. CPU-usage considers the ratio of CPU-time to the
CPU capacity as a percentage. It allows for estimating how busy a system is, to quantify
how processors are shared between other programs. The system load indicates how many
programs have been waiting for resources, e.g., a value of 0.05 means that 0.05 processes
were waiting for resources. The system load is often given as load average which states the
last average of a fixed period of time; by default, system tools report three time periods (1, 5,
and 15 minutes). If the load average goes above the number of physical CPUs on the system,
a program has to idle and wait for free resources on the CPU.

Suggested Measure for Runtime. When measuring runtime, the obvious measure is to
use elapsed time, so as to measure the real-time of a program. However, when setting
an experiment, we aim to (i) reduce external influences, (ii) conduct reasonable failure
analysis, or (iii) use an alternative measure in the worst-case. Real-time can be unreliable
on sequential systems as a program can be influenced by other programs running on the
system and the program competes on resources with the operating system. For that reason,
dated guides on experimenting suggested to run a clean system and obtain a magic overhead
factor, which follows Direction (ii) replacing an expected failure analysis. More recent guides,
follow Direction (iii) and suggest to use CPU-time [63, 71], mainly arguing that real-time
minus unwanted external interruption should roughly equal used CPU-time when evaluating
sequential combinatorial solvers that use a CPU close to 100%. However, we believe that the
best approach for an experimental setup is always to follow Direction (i) and reduce external
influences. Suggestions on CPU-time are outdated as modern hardware is inherently parallel.
Even small single-board computers such as the Raspberry Pi have multi-core processors.
This allows to run programs and the operating system simply in parallel. Still, CPU-time
might prove useful to estimate a degree of parallelism or debug unexpected behavior.

Expected Errors. Real-time is measured by an internal clock of the computer. Nowadays,
hardware clocks are still not very accurate. Expected time drifts are about one second
per day [95], which is often negligible for standard experiments as micro-benchmarking is
anyways rarely meaningful. But, time drift can be far higher, for example, when system
load is very high [72] and systems run within virtual machine guests [44, 6, 85]. Since
modern cryptography still requires exact system times, all state-of-the-art operating systems
synchronize the system clock frequently. Unfortunately, many widely used tools do not
incorporate time drifts and corrections by time synchronization utilities. Thus, if time drifts
are high (virtual machines) or a misconfiguration of the synchronization service occurs,
measures can be completely unreliable. Note that we can expect difference between CPU-
time and real-time in cases where heavy or slow access to storage occurs, slow network
is involved, or unexpected parallel execution happens. However, this should be ground
to investigate details and either eliminate problems in the experimental setup or update
problematic program parts, if possible. A classical example occurs when using the ILP solver
CPLEX, which sets by default a number of threads equal to the number of cores or 32 threads
(whichever number is smaller). An issue, which can especially happen when measuring
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CPU-time, is due to the operating system and specific tooling. Namely, a program starts
multiple processes, e.g., the program calls a SAT solver, but the monitoring tool captures
only one process.

Tools to Measure Runtime. A standard system tool is GNU time [50], which provides CPU-
time, real-time, and CPU usage of an executed program when run with the command-line
flag -v. Note that time refers to a function in the Linux shell whereas GNU time can be
found at /usr/bin/time. GNU time suffers from issues with time skew. A compact, free, and
open source tool with extended functionality is runsolver [79]. It can be easily compiled
and requires only few additional packages, but also suffers from issues with time skew. An
extensive monitoring tool is perf, which is available in the linux kernel since version 2.6.31
(2009) [101]. Perf provides statistical profiling of the entire system when run with flag stat.
It is easy to use and well documented, but requires installation of an additional package,
an additional kernel module, and setting kernel security parameters (perf_event_paranoid,
nmi_watchdog) [55, 61]. However, perf is usually available on maintained HPC environments.

Restricting Runtime. Oftentimes when running experiments, we are interested in setting
an upper bound on the runtime, let the program run until this time, then terminate
and measure how many inputs have been solved successfully. Classical tools to impose
a timeout are timeout [11], prlimit [13], and ulimit (obsolete [88]). These tools use a
kernel function (timer_create) to register a timer. The tools notify the considered program
about the occurred timeout by sending a signal to terminate the program, but only to the
started program that is responsible to handle potentially started children (entire process
hierarchy). For that reason, these tools are often useless or require to build additional
wrapper scripts when running academic code, which often omit proper signal handling. A
popular tool in the research community that circumvents these problems is the already
above mentioned tool Runsolver [79], which uses a sampling based approach. It monitors
and terminates the entire hierarchy of processes started by the tested program. However,
signals are sent to child processes first, which may need additional exception handling in the
tested program. Furthermore, the sampling-based approach may cause measurable overhead
in used resources. runexec is modern and thorough tool for imposing detailed runtime
restrictions. It can be found within the larger framework for reliable benchmarking and
resource measurement (BenchExec) [14]. runexec uses kernel control groups (cgroups) to
limit resources [46, 36]. Cgroups are precise, but cause a certain overhead and are fairly quite
hard to use manually. Unfortunately, BenchExec does not directly support commonly used
schedulers in HPC environments (except AWS), requires administrative privileges during
setup, specially configured privileges at runtime, and fairly new distributions and kernels. It
is only widely available on Ubuntu or systems running kernels of version at least 5.11.

Suggested Tooling. In principle, we find runexec quite helpful when restricting runtime.
It is reliable and has very helpful features such as warning the user about unexpected
high system loads. However, it has strong requirements, both in terms of privileges and
dependencies, and can be hard to setup, especially in combination with existing cluster
scheduling systems. GNU time and timeout are both system tools available out of the box.
Though, when using timeout we require additional tools (e.g., pstree) and a bit of scripting
to handle an entire process hierarchy. Still, both tools might be the best choice if only
standard system resources are available and no libraries can be installed. For older systems
that are well-maintained or where additional libraries can be installed, we suggest runsolver

/usr/bin/time
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(enforcement) in combination with perf (measurement). Both tools keep setup and handling
at a minimum. Issues on potential time-skew and sampling-based issues are minimized and
more detailed statistics (memory) can be outputted if needed. However, using this tooling
requires to check carefully if the system is over-committed or if runsolver terminated a
program too late. If required kernel modules or security parameters for perf cannot be
installed/set, runsolver in combination with GNU time can be a reasonable alternative.

3.2 CPUs and Scaling

Modern hardware has features to dynamically overclock the CPU, which then can run at
high frequency for a short period of time (Turbo Boost). Frequency scaling can save energy
(Thermal power design) when processes do not require full capabilities of the system. These
features can significantly impact performance and uncertainty on modern hardware [34].
We provide a brief experiment in Section 3.3 to illustrate effects. Within the operating
system, the concept is known as dynamic CPU frequency scaling or CPU throttling, which
allows a processor to run at frequency that is not its maximum frequency to conserve power
or to save the CPU from overheating if the frequency is beyond its thermally save base
frequency. In fact, modern operating systems have options to manually set performance
states. In Linux, the CPU frequency scaling (CPUFreq) subsystem is responsible for scaling.
It consists of three layers, namely, the core, scaling governors, and scaling drivers [97].
Available capabilities to modify the CPU frequency depend on the available hardware and
driver [97]. A scaling governor implements a scaling algorithm to estimate the required CPU
capacity [12]. However, minimum and maximum frequency can also be fixed by modifying
kernel values. Specifications of modern CPUs detail the safe operating temperature (Thermal
Velocity Boost Temperature) that still allows to boost the cores to their maximum frequency.

Tools to Modify the CPU Frequency. The tool cpupower provides functions to gather
information about the physical CPU and set the scaling frequency. The flag frequency-
info lists supported limits, activated governor, and current frequency. The tool turbostat
allows to obtain extended information about base frequency, the maximum frequency, and
the maximum turbo frequency depending on how many cores are active. The program
frequency-set allows to set the maximum and minimum scaling frequency using flags -u
and -d, respectively. However, the values can also be manually read/set in the kernel by
modifying a text file. The turbo needs to be manually modified depending on the driver [97].
The current frequency can be tested explicitly by running the command: perf stat -e
cycles -I 1000 cat /dev/urandom > /dev/null.

Revisiting the Experiment. With the knowledge of frequency scaling at hand, we focus
our attention to Table 2. There, we state runtime results and number of solved instances in
dependence of platform and CPU frequency. More precisely, the maximum CPU frequency
and the chosen frequency scaling. Obviously, the runtime and number of solved instances
significantly depends on the frequency scaling of the CPU, which already explains why
CPUs that permit a higher frequency show less solved instances. From the number of solved
instances for Comet Lake (i7 Gen10) CPU and Coppermine (PIII) CPU, we can also
see that an increase in CPU frequency alone is clearly not the reason for modern solvers
running faster on modern hardware than on old hardware.

CP 2021



25:10 Complications for Computational Experiments from Modern Processors

Table 2 Number of solved SAT instances running the solver CaDiCal on varying platforms.
Column s(x) contains the solved instances when the runtime is cut off after x minutes. fa, fe, and
p refer to the available and effective frequency of the CPU in GHz and number of solvers running in
parallel, respectively. The t[h] column contains the total runtime in hours for all instances solved
within 15 minutes. We enforced limits using kernel governor parameters. Frequencies marked by ⋆

are CPU base-frequencies. † we could not enforce frequencies due to administrative restrictions.
For Coppermine (PIII), we directly list the results by Fichte et al. [22].

Processor fa fe p s(15) t[h]

Coppermine 0.5 0.5 1 98 8.93
Comet Lake 4.7 0.5 1 160 9.99
Comet Lake 4.7 ⋆0.8 1 174 9.09
Comet Lake 4.7 1.5 1 177 7.12
Comet Lake 4.7 2.0 1 189 5.13

Processor fa fe p s(15) t[h]

Haswell 3.3 ⋆2.5 1 189 3.89
Skylake 3.0 †3.0 1 190 5.12
Comet Lake 4.7 3.9 1 191 3.81
Rome 3.4 2.0 1 190 3.79

Suggested Setup. When handling thermal management for experiments, one usually bal-
ances between three objectives (i) stability and repeatability of the experiment; (iia) maximum
speed vs (iib) throughput; and (iii) low effort or no access to thermal management func-
tions of the operating system while aiming to balance (i) and (ii). If we focus our setup
on Objective (i), a conservative choice is to set the CPU frequency to its base frequency
and limit the parallel processes according to available NUMA regions. Then, the thermal
management has limited effects on an experiment. Running the same experiment another
system, where the CPU frequency was fixed to the same value and where the memory layout
is comparable, shows similar results for CPU-intensive solvers. Such an approach could
simplify certain aspects of repeatability. However, then the number of solved instances is
lower than the actual capabilities of the hardware, the experiment takes longer, and fewer
instances are solved. If we balance towards Objective (iia) obtaining maximum speed of
the individual solvers, we ignore thermal management, run at maximum speed, and execute
all runs sequentially. However, then throughput is low, only a low number of instances are
solved, and vasts of resources on typical server CPUs are wasted. If we balance towards
Objective (iib) obtaining maximum throughput during the experiment, we run a number of
solvers in parallel for which there is low effect on the turbo frequency. We can obtain the
value by the tool turbostat. For example, a turbo frequency of 3.9GHz might be acceptable
over 4.7GHz if 4 additional solvers can be run in parallel. In fact, one could also simply
try to repeat the experiments often to avoid balancing between Objective (iia) and (iib),
which would however often require plenty of resources. If we are in Situation (i) with no
access to modify the CPU thermal management capabilities or we just want to keep tuning
efforts low while still having a reasonable throughput at low solving time, we can just test
a reasonable setup. We lookup the thermal velocity boost (TVB) temperature, e.g., [45].
Then, we execute a run with parallel solvers and sample CPU temperature. After evaluating
several parallel runs, we favor a configuration where the median temperature is below the
TVB temperature and the maximum temperature rarely exceeds TVB temperature.

3.3 CPUs and Parallel Execution

In the 2000s, the end of Moore’s law [69] seemed near as CPU frequency improvements for
silicon-based chips started to slow down [9, 78]. Parallel computation started to compensate
for this trend and multi-core hardware found its way into consumer computers around
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2004. In 2021, parallel hardware is widespread, for example, standard desktop hardware
regularly has 8 cores (Intel i9 or Apple M1) or 12 cores (AMD Ryzen) and server systems
go up to 64 cores (AMD Rome) or even 128 cores (Ampere Altra) per CPU where multiple
sockets are possible. Still, parallel solving is rare in combinatorial communities such as SAT
solving [35, 62] or beyond [23]. So a common question that arises in empirical problem
solving is whether one can execute sequential solvers meaningful in parallel and speed-up the
solution of the overall set of considered instances for an empirical experiment. While it clearly
makes sense to carry out an experiment in parallel, one needs some background understanding
on the hardware architecture of multi-core systems and on how to gather information about
the actual system on which experiments are run. Modern systems with multiple processors on
multiple sockets and processors that have multiple cores use a special memory design, namely
Non-uniform memory access (NUMA). There, access time to RAM depends on the memory
location relative to the physical core. Each processor is directly connect to separate memory;
access to “remote” RAM is still possible, but the requests are much slower since they pass
through the CPU that controls the local RAM. If the operating system supports NUMA and
the user is aware of the NUMA layout of the used system, the hardware architecture can
help to eliminate performance degeneration that can occur due to allocation of RAM that is
associated with another socket [37, 57]. The effect can be measurable, if consecutive pages
are used by exactly one process as done in combinatorial solving. NUMA hardware layout
also effects the cache hierarchy (L1, L2, often L3) and address translation buffers (TLB).
Recall that caches can have a measurable effect on effectiveness of combinatorial solvers [24].

Evidently, if running an experiment a modern operating system does not solely execute the
program under test. It runs function of the operating system itself, events from the hardware
such as input from disk, network, user-interfaces or output to graphics devices. Further,
programs or functions to control or monitor the program under test are running. These
functions might interrupt the execution of the program under test and are often triggered by
a mechanism called interrupt. In system programming an interrupt service routine (ISR)
handles a specific interrupt condition and is often associated with system drivers or system
calls. A common urban legend among students in the combinatorial solving community
is that interrupt handling happens on CPU Core 0 (monarch core) and hence no solver
should be scheduled on Core 0. However, this is only true when booting the system when
firmware hands over control to the operating system kernel. Then, only one core is running,
which usually is Core 0, takes on all ISR handling, initializes the system and starts all other
cores. In old operating systems load was not distributed to other cores by default and hence
the core that started the system would handle all ISRs. However, since version 2.4 Linux
supports a concept called SMP affinity, which allows to distribute interrupt handling [67].
The actual balancing and distribution of hardware interrupts over multiple cores is then
done by a system process, namely irqbalance [41]. Depending on the Linux distribution the
balancing is done one-shot at system start, during runtime, or entirely omitted. Nonetheless,
it might be helpful to understand the configured system behavior [76].

Tooling for Information on the CPU. Often, we need information on the CPU as starting
point for setting up parallel execution of an experiment. Linux reports information on the
CPU in the proc filesystem as text (/proc/cpuinfo) [10]. Among the information is data
about the CPU model, microcode, available cores, and instruction sets. The tool lscpu,
which is part of util-linux in most distributions, reports more details on the CPU such as
architecture, cache sizes, number of sockets, number of virtual or physical cores, number
of threads per core, details on NUMA regions, and active flags. More detailed information
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on NUMA regions can be obtained by running the tool numactl with flag –hardware, using
lscpu, or by manually listing details in the cpulist. Note that NUMA regions and core
numbering can be a bit tricky as cores and NUMA regions are often not in consecutive order.

Restricting NUMA, CPU, and IRQ affinity. When running a program on a multicore
system, the scheduler in the operating system decides on which core the program runs. In
principle, this depends on the current load and on a memory placement policy of the system.
Some enterprise distributions have automated processes running (numad), which automatically
estimate or balance NUMA affinity. Primary benefits are reported for long-running processes
with high resource load, but degeneration for continuous unpredictable memory access
patterns. The core and allowed memory regions can also be manually restricted. The tool
numactl provides functionalities to force the execution of a program to certain NUMA nodes
or cores, including strict settings [51]. The tool runsolver, which we already mentioned
above, allows for setting the NUMA and CPU affinity. On modern distributions, these
settings can also be set when running a program by systemd. Literature on manually tuning
NUMA regions and CPU affinity reports both positive and negative effects, but less than 5%
performance gain on full core CPU loads [38, 43]. Hence, detailed manual tuning might have
a far less effect than what is usually anticipated within the community. Since combinatorial
solvers often rely on fast access to caches, it might be more important to ensure that caches
are accidentally shared between several running solvers. In principle, the IRQ affinity can be
managed manually by setting dedicated flags for the system service irqbalance. However,
time might be better spent on avoiding over-committing CPUs.

Suggested Tooling and Setup. Experiments that involve measuring runtime need exclusive
access to the machine on which experiments are run, i.e., no other software interferes in the
background (e.g., running a system update, database, file server, browser, GUI with visual
effects) and no other users access the system in the meantime. If the hardware is used for
other purposes, runtime differences of 30% and more are common. If an experiment runs on
an HPC environment, a uniform configuration is indispensable, i.e., all nodes have the same
CPU, microcode, and memory layout. The number of scheduled solver resources should never
equal the number of cores on the system, since almost all combinatorial solvers use CPU(s) at
full load and operating system and measurement tools require a certain overhead. If NUMA
layout details are missing, one can take a rough estimate. Assume that controlling and
monitoring software as well as the operating system need one core per tested program, add
the expected number of occupied cores of the tested solver, and for a safe buffer multiply the
result by two. However, a better approach is to gather detailed information and test whether
an anticipated setup is stable. Information on the available CPUs and NUMA regions can
be obtained by using the tools lscpu and numactl. Modern operating systems implement
NUMA scheduling already well. However, it is still important to report details of the system
within logs of the experiments. If manual NUMA region enforcement is needed, each running
solver should only access the NUMA region on which it is pinned to [77]. Solvers requiring
fast caches should not be scheduled in parallel on cores sharing L1 and L2 cache.

Effects of Parallel Runs, CPU Scaling, and Timeouts in Practice

In the previous section, we listed complications that may occur from technical specifications
of modern processors and techniques present in modern operating systems. Next, we present
a detailed experiment on parallel execution of solvers incorporating effects of actual processor
frequency, stability of parallel runs, thermal issues, in combination with runtime and number
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Table 3 Overview on frequency scaling, thermal observations, and the number of solved instances
(out of 200) on an Intel Comet Lake (i7 Gen10) processor for different number of parallel runs
of the solver CaDiCal. The column “p” refers to an upper bound on the number of instances that
are solved in parallel and “tr[h]” refers to the total runtime of the experiment in hours. While
the maximum CPU frequency is 4.7 GHz, the column “fo” states the observed frequency in GHz
and fstd to its standard deviation. Column “θo” lists the observed CPU temperature; θmax to the
maximum temperature in ◦C. The column “s(x)” contains the number of solved instances when
the runtime is cut off after x minutes. The column “ts” refers to the total runtime (real-time) of
the solved instances in hours at maximum runtime of 1500s for each instance. Finally, “s5k” how
many instances can be solved in 5000s if instances are ordered by hardness and each run has at most
1500s. We used a simple python wrapper to start the parallel runs.

p tr[h] fo[GHz] fstd θo[◦C] θmax s(1) s(5) s(10) s(15) s(25) ts[h] s5k

1 7.37 3.90 0.26 53.4 64.0 132 179 190 191 193 4.43 161
2 4.06 3.69 0.29 60.8 72.5 125 179 189 191 193 4.97 158
4 2.49 3.30 0.28 74.2 92.0 120 175 183 190 192 5.74 150
6 1.85 2.95 0.30 76.6 94.5 111 171 181 189 191 6.68 142
8 1.77 2.81 0.46 74.5 94.0 98 160 176 183 190 8.28 131

10 1.77 2.71 0.57 74.0 92.0 88 155 174 181 189 9.66 123

12 1.59 2.59 0.51 87.0 72.5 75 145 171 176 187 10.82 117
14 1.47 2.51 0.28 91.5 72.5 70 140 162 174 184 11.17 111

of solved instances. We specify the setup, used measures, and common expectations of which
some might be contradictory. In order to obtain a better view on effects of timeouts, we
increase the maximum runtime per instance to 1500 seconds.

▶ Experiment 1 (Parallel Runs). We investigate complications of solving multiple instances
in parallel with one sequential SAT solver on a fixed hardware.

Setup: solve 200 instances by one SAT solver (CaDiCal) on Comet Lake (i7 Gen10),
maximum runtime per instance (timeout) 1500 seconds.

Measures: Runtime (real-time) [h], number of solved instances, temperature (median
of sampling each 1s the average temperature over all cores) [ ◦C], and CPU
frequency (median of sampling each 1s the average over all cores) [GHz].

Expectation 1a: Solving should never be executed in parallel on one machine as the
runtime and number of solved instances significantly differ otherwise.

Expectation 1b: Full parallel capabilities should be employed as long as runtime and
number of solved instances remains similar.

Expectation 2: Relying on multithreading degrades runtime.
Expectation 3: Measures are stable over small runtime changes.

Observations. Results of the first experiment are illustrated in Table 3. The number of
solved instances for 1, 5, 10, 15, and 25 minutes provide an overview on how many instances
can be solved quickly. Unsurprisingly, the total runtime of an experiment depends on the
number of parallel processes running. More precisely, the total runtime of the experiment
varies between 7.37 hours and 1.77 hours when running 1 or 10 instances in parallel. Just
by running 4 instances in parallel instead of 1 we cut runtime down to 33% of the original
runtime and still to 55% for 2 instances. However, the total real-time of the solved instances
varies between 4.43 hours and 5.74 hours (23%). The number of solved instances varies by
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Figure 1 Illustration of the CPU frequency scaling when running the sequential solver CaDiCal
on the considered instance set by solving in parallel 1 instance (upper) and 8 instances (lower).

2% at 25 minutes and 5% at 15 minutes, 13% at 5 minutes, and 33% at 1 minute timeout.
When comparing the effect on the measure how many instances can be solved within 5000s,
we obtain a notable 24% decrease. Surprisingly, the median CPU frequency never reached
4.7GHz even when running only one instance. The actual frequency reduced significantly
when more instances are running. Figure 1 illustrates the changes of the CPU frequency over
time for 1 and 8 instances solved in parallel. We see that the frequency is hardly consistent
and increases significantly as soon as most instances are finished and less processes run in
parallel. When using multiple cores, the median CPU temperature increases significantly and
may even spike (94◦C) close to the maximum operating temperature of the CPU (100◦C).

Interpretation. On the considered set of instances, the number of solved instances and
real-time over all solved instances decreases with an increasing number of instances run in
parallel. The effect is particularly high, if the timeout was set very low or if the measure is
number of instances solved within 5000s. This is not entirely surprising, since instances in
the considered set were selected by Hoos et al. [40] using a distribution of instance hardness
leading to many instances of medium hardness and a few easy and hard instances. Then, if
the considered timeout is low, a small constant improvement by hardware effects can increase
the number of solved instances notably. In contrast, there is only a 2% difference between
number of solved instances when timeouts are higher. The measure of solved instances within
5000s is particularly runtime dependent and hence configuration of the experimental setup
has notable effects. Regarding runtime, we can see that the real-time over all solved instances
almost doubles when running almost as many instances as cores are available. However,
the entire experiment finishes significantly faster, i.e., about 24% of the original runtime.
Surprisingly, the CPU frequency was far below the potential 4.7GHz. If we check more
details on the specification of the Comet Lake (i7 Gen10) CPU or by running the tool
turbostat, we observe that the maximum frequency of the CPU is only 3.9GHz if 6 cores
are active, i.e., not explicitly suspended. While our considered system has 12 MT cores, it
has only 6 physical cores. Hence, we observe a measurable degeneration in number of solved
instances when running more instances in parallel than present physical cores are present.
When considering runtime, we observe a considerable increase when more than 2 instances
run in parallel, as CPU frequency measurably drops and temperature increases significantly.
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Outcome. After summarizing observations and interpretation of our experiment, we briefly
evaluate phrased expectations from above. In theory, we would expect that Expectation 1a is
true for real-time and number of solved instances within 5000s, which is also quite sensitive
for runtime influences. Indeed, there is a measurable influence in runtime, but only slightly
decrease in number of solved instances, while the experiment finishes much faster. If we
take higher timeout, the number of parallel executions affects the runtime only if already
known rough estimates are exceeded. Still, the number of parallel executions is influenced
by throttling of the processor. Expectation 1b clearly does not hold. All measures are
influenced by a higher system load and hence by solving several instances in parallel. While
we can confirm Expectation 3 in the experiment, multithreading is not the only reason.
Clearly, already when using all available cores runtime and number of solved degenerate.
Unfortunately, our experiment does not fulfill Expectation 3. All considered measures are
influenced by parallel execution. Especially, limiting the total solving time is prone to
hardware effects and might accidentally over-highlight constant runtime improvements. Since
the frequency is also not stable when running only one instance, fixing the frequency might
be a reasonable approach during experimenting. However, if the base-frequency is exceeded,
a stable frequency should be estimated and experimentally verified before comparing runtime
and number of solved instances with multiple solvers. In our case, operating the CPU at
fixed 3GHz showed stable frequency results when running 1–2 instances in parallel. Under
the light of the mentioned complications, we fear that a single measure incorporating runtime,
number of solved instances, and a cutoff time is problematic if setup is neglected.

3.4 Input/Output
Input and output performance, I/O for short, talks about read or write operations involving
a storage device. On a desktop computer storage is usually restricted to local disks. On
cluster environments, nodes have access to a central storage over network, fast temporary
storage (over network), and local disks. Here, a variety of different topics are involved, for
example, hardware (storage arrays/network), network protocols, and file systems, which can
make it inherently complicated. Therefore, we provide only a brief and simple suggestion:
keep external influence as low a possible. When reading input and writing output, use a
shared memory file system (shm) to avoid external overhead. Before starting the solver under
test, input files are copied in-memory. Then, measuring runtime starts when executing the
solver, which takes as input the temporary files on the memory and outputs only to a shared
memory file system. The measurement ends when the solver is terminated and afterwards
temporary files are copied to the permanent storage and deleted from the temporary storage.
This approach minimizes side effects from slow network devices and avoids side effects that
may occur with large files and system file caches, especially when running multiple solvers
on the same input. However, if files are too large or solvers need the entire RAM, temporary
in-memory cannot be used and fast local disks (e.g., NVMe) can provide an alternative.

4 Conclusion

Empirical evaluations are essential to confirm observations in algorithmics and combinatorics
beyond theory. Many evaluations typically focus on comparing runtimes and number of
solved instances, since both measures are easy targets for comparison and probably roughly
reflect needs of end users. However, the number of solved instances is sensitive to the chosen
benchmark, so one has to be cautious about it. Playing devils advocate, we can even ask to
what extent runtime is even a meaningful measure on modern hardware. If one solver is a
factor of ten faster than another, we are fairly confident in it, but does modern hardware
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allow for accurate comparisons at a range of, say, 10%, which might be the contribution of
an individual feature or optimization towards the hardware? Similar to experimental physics,
we can simply repeat an experiment often or repeat in different environments. However,
in combinatorial solving this is not always possible if many solvers need to be tested or a
reasonably high number of hard instances have to be considered. Hence, we believe that an
experimental setup should still be carried out thoroughly. Future work could consider up to
what extent certain aspects can be neglected and how repetition can circumvent minor issues.
In fact, our work only explains and illustrates certain complications from modern hardware
to make researchers aware of potential issues. In a way, we also show that complications do
not just concern CPU frequency, but also the experimental setup (timeouts, cutoffs, parallel
running processes). Clearly, there is no reason to forbid the use of certain platforms, if we
are aware of complications. On the meta level, we believe that clearly marking strengths and
weaknesses of solvers provides more insights than finding scenarios where one solver is best.

An interesting question for future research is the boarder topic of SIMD and branch
prediction, which could affect repeatability, replicability, and reproducibility. Both features
are quite relevant for how a good solver author can write code, but it is unclear whether
they can even change the overall results when comparing two solvers. In practice, one could
maybe investigate issues by taking different versions of a CPU (or different firmware).

Further, we think that papers presenting experimental evaluations could provide a simple
benchmark protocol as appendix, similar to literature as part of reproducibility work. Best
practices and checklists could be developed in a community effort after thorough discussions
and more detailed works. This can also include detailed guides or suggested configurations for
standard cluster schedulers such as Slurm [99]. Having a list of common parameters to report
or even practical tools could prevent manual repetitive labor. Thereby, we leave room for
actual scientific questions, e.g., why implementations are efficient for certain domains [91, 29].

Finally, our experiments focused on consumer hardware, detailed investigations with
server hardware are interesting for future investigations to confine limits of parallel execution.
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Abstract
High-performance Computing (HPC) systems have become essential instruments in our modern
society. As they get closer to exascale performance, HPC systems become larger in size and more
heterogeneous in their computing resources. With recent advances in AI, HPC systems are also
increasingly being used for applications that employ many short jobs with strict timing requirements.
HPC job dispatchers need to therefore adopt techniques to go beyond the capabilities of those
developed for small or homogeneous systems, or for traditional compute-intensive applications. In
this paper, we present a job dispatcher suitable for today’s large and heterogeneous systems running
modern applications. Unlike its predecessors, our dispatcher solves the entire dispatching problem
using Constraint Programming (CP) with a model size independent of the system size. Experimental
results based on a simulation study show that our approach can bring about significant performance
gains over the existing CP-based dispatchers in a large or heterogeneous system.
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1 Introduction

Motivations

High Performance Computing (HPC) is the application of supercomputers to solve complex
computational problems, which has become indispensable for scientific progress, industrial
competitiveness, economic growth and quality of life in our modern society [18, 22]. An HPC
system is a network of computing nodes, each containing several powerful CPUs and a large
pool of memory. The world’s fastest systems today can reach hundreds of petaFLOPs (1015

floating-point operations per second) and they are expected to reach soon the exaFLOP level
(1018 FLOPs) [16]. Indeed, today’s most powerful system Fugaku has recently increased
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Figure 1 Eurora, KIT ForHLR II and top 500 HPC systems of June 2021.

its performance on a mixed-precision HPC-AI benchmark to 2 exaFLOPs.1 In their march
towards this elevated performance, HPC systems are getting larger in size and becoming
more heterogeneous in their computing resources in an effort to keep the power consumption
at bay. Figure 1 shows in blue dots the size of today’s top 500 systems1 and their number of
CPU cores and co-processor cores (with the green triangles referring to the top 3 systems).
The majority of these systems have thousands of nodes with tens and hundreds of thousands
of CPU cores in total. Around 30% of them employ energy-efficient accelerators such as
GPUs and Many Integrated Cores (MICs), in addition to the traditional CPUs and memory.
The number of co-processor cores are above ten thousand in most of such systems.

Central to the efficiency and the Quality-of-Service (QoS) of an HPC system is the job
dispatcher which decides the jobs to run next among those waiting in the queue (scheduling)
and on which resources to run them (allocation). This is an on-line decision making problem
because the process is repeated periodically as new jobs arrive to the system while some
previously dispatched jobs are still running. Traditionally, HPC job dispatchers have been
designed for compute-intensive jobs requiring days to complete. There is an increasing trend
where HPC systems are being used for modern applications that employ many short jobs
(< 1 h), such as data analytics as data is being streamed from a monitored system [23].
In such application scenarios, response times are critical for acceptable user experience,
hence job dispatchers need to rapidly process a large number of short jobs in making on-line
decisions. Though optimal dispatching is a critical requirement in HPC systems, the on-line
job dispatching is an NP-hard optimization problem [5].

In this paper, we propose an on-line job dispatcher suitable for today’s large and hetero-
geneous HPC systems running modern applications. Differently from the existing techniques
based on heuristic algorithms [11, 27], we exploit the power of Constraint Programming
(CP), which has a long track record of success in job scheduling and resource allocation
problems [2]. While past work had already used CP in this context, the focus was on small
or homogeneous systems where the nodes have only CPUs and memory.

Related work

The first CP-based HPC dispatcher was introduced in [3] and shown to obtain better solutions
compared to a Priority Rule-Based (PRB) dispatcher [9, 15], which is widely adopted in
commercial HPC workload management systems such as Altair PBS Professional [1] and
SLURM Workload Manager [25]. The dispatcher was later embedded as a plug-in within
the software framework of PBS professional [8]. Another CP-based dispatcher with the
additional feature of limiting system power consumption was presented in [7, 6] and proved
to outperform a PRB dispatcher on the instances with tight power capping values.

1 https://www.top500.org

https://www.top500.org
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Subsequently, [13] presented two CP-based on-line job dispatchers for HPC systems,
which we here refer to as PCP’19 and HCP’19. They were built on the previous CP-based
dispatchers [3, 7] and redesigned for satisfying the challenges of systems running modern
applications that employ many short jobs and that have strict timing requirements. A
simulation study [13] based on a workload trace collected from an heterogeneous system
Eurora [10] reveals that PCP’19 and HCP’19 yield substantial improvements over the original
dispatchers [3, 7] and provide a better QoS compared to Eurora’s dispatcher [17], which is a
part of PBS Professional.

PCP’19 and HCP’19 are, however, not designed for today’s large and heterogeneous
systems. In PCP’19, the number of decision variables in the CP model increases proportionally
to the number of nodes and the possible allocations of jobs in each node. Figure 1 shows
where the Eurora system stands compared to today’s top 500 systems. As we will show in
our experimental results, PCP’19 cannot be used in a larger system like KIT ForHLR II2,
whose size is comparable to that of the majority of the top systems.

In HCP’19 instead, the problem is decoupled into scheduling and allocation problems.
Only the scheduling problem is addressed using CP, and this is done without representing
the nodes in the model by treating the resources of the same type across all nodes as a
pool of resources. The allocation problem is then solved with a heuristic algorithm using
the best-fit strategy [24], while fixing any inconsistencies introduced during scheduling due
to the absence of the nodes in the model. The decoupled approach drops the number of
decision variables dramatically compared to PCP’19, enabling HCP’19 to scale to larger
systems. However, it mainly suits to homogeneous systems where all the nodes have only
CPUs and memory, and thus the actual node of an allocated resource is not relevant. In an
heterogeneous system, on the contrary, some nodes contain scarce resource types, such as
GPUs and MICs, and allocating their CPUs carelessly (i.e., to jobs that do not need any of
GPUs and MICs) may cause resource fragmentation [20]. The decoupled approach therefore
may result in several iterations between scheduling and allocation in an heterogeneous system,
decreasing the dispatching performance, as we will show in our experimental results with
Eurora. The advantages of tackling the entire problem using CP, as was done in PCP’19,
are that scheduling and allocations decisions are made jointly and that with the presence of
nodes in the model, allocation strategies dedicated for heterogeneous systems [20] can be
encoded as constraints.

Contributions

We exploit the strengths of PCP’19 and HCP’19 to overcome their limitations. We tackle
the entire dispatching problem using CP, and to do that we present a new allocation model
where the number of variables is system size independent. We combine this model with the
scheduling model common to PCP’19 and HCP’19, and showcase the practical value of our
approach. Our contributions are (i) a new HPC application domain emerging from today’s
large and heterogeneous systems to push the limits of complete methods for optimization, (ii)
a novel CP-based online job dispatcher (PCP’21) suitable for such systems (iii) experimental
evidence of the benefits of PCP’21 over PCP’19 and HCP’19 supported by a simulation
study based on workload traces collected from the Eurora and KIT ForHLR II systems.

2 https://www.scc.kit.edu/dienste/forhlr2.php
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Organization

The rest of the paper is organized as follows. In Section 2, we introduce the on-line job
dispatching problem in HPC systems, and describe briefly the CP scheduling and allocation
models of PCP’19 as we will later use the same scheduling model in PCP’21 and contrast
the allocation model with ours. In Section 3, we present our new CP allocation model and
search algorithm. In Sections 4 and 5, we detail our simulation study and present our results.
We conclude and describe the future work in Section 6.

2 Formal Background

2.1 On-line job dispatching problem in HPC systems
A job is a user request in an HPC system and consists of the execution of a computational
application over the system resources. A set of jobs is a workload. A job has a name, required
resource types (cores, memory, etc) to run the corresponding application, and an expected
duration which is the maximum time it is allowed to execute on the system. An HPC system
typically receives multiple jobs simultaneously from different users and places them in a
queue together with the other waiting jobs (if there are any). The waiting time of a job is
the time interval during which the job remains in the queue until its execution time.

An HPC system has N nodes, with each node n ∈ N having a capacity capn,r for each
resource type r ∈ R. Each job i in the queue Q has an arrival time qi, maximum number
of requested nodes rni and a demand reqi,r giving the amount of resources required from r

during its expected duration di. The resource request of i is distributed among rni identical
job units, preserving for each one reqi,r/rni amount of resources from r, thus allowing to
execute the rni job units in parallel. Job units can be tasks that are spanned across multiple
nodes and that communicate between them during their entire execution (for instance an
MPI job). A specific resource can be used by one job unit only. We have rni = 1 for serial
jobs and rni > 1 for parallel jobs. The units of a job can be allocated on the same or different
nodes, depending on the system availability. On-line job dispatching takes place at a specific
time t for (a subset of) the queued jobs Q. The on-line job dispatching problem at a time t

consists in scheduling each job i by assigning it a start time si ≥ t, and allocating i to the
requested resources during its expected duration di, such that the capacity constraints are
satisfied: at any time in the schedule, the capacity capn,r of a resource r is not exceeded
by the total demand reqi,r of the jobs i allocated on it, taking into account the presence of
jobs already in execution. The objective is to dispatch in the best possible way according
a measure of QoS, such as with minimum waiting times si − qi or the slowdown ( si−qi+di

di
)

for the jobs, which is directly perceived by the HPC users. A solution to the problem is a
dispatching decision. Once the problem is solved, only the jobs with si = t are dispatched.
The remaining jobs with si > t are queued again with their original qi. During execution, a
job exceeding its expected duration is killed. It is the workload management system that
decides the dispatching time t and the subsequent dispatching times.

2.2 PCP’19 dispatcher
Scheduling model

The scheduling problem is modeled using Conditional Interval Variables (CIVs) [19]. A CIV
τi ∈ τ represents a job i and defines the time interval during which i runs. At a dispatching
time t, there may already be jobs in execution which were previously scheduled and allocated.
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We refer to such jobs as running jobs. The scheduling model considers in the τ variables both
the running jobs and a subset Q̄ ⊆ Q of the queued jobs that can start execution as of time
t. The properties s(τi) and d(τi) correspond respectively to the start time and the duration
of the job i. All job units of a job i start at the same time, therefore they share the same
τi. Since the actual runtime (real) duration dr

i of a running or queued job i is unknown at
the modeling time, PCP’19 uses an expected duration di for d(τi), which is supplied by a job
duration prediction method. For the queued jobs, we have d(τi) = di. For the running jobs
instead, d(τi) = max(1, s(τi) + di − t) taking into account the possibility that di < dr

i due to
underestimation. While the start time of the running jobs have already been decided, the
queued jobs have s(τi) ∈ [t, eoh], where eoh is the end of the worst-case makespan calculated
as t +

∑
τi

d(τi).
The capacity constraints are enforced via cumulative([s(τi)], [d(τi)], [reqi,r], T capr), for

all n ∈ N and for all r ∈ R, with Tcapr =
∑N

n capn,r. The objective function minimizes
the total job slowdown

∑
τi

s(τi)−qi+d(τi)
d(τi) . The search for solutions focuses on the jobs with

highest priority where the priority of a job i is its slowdown t−qi+d(τi)
d(τi) at the dispatching

time t. We note that HCP’19 uses the same scheduling model and search.

Allocation model

The allocation model replicates each τi variable pi,n times for each n ∈ N , where pi,n =
min(rni, minr∈R ⌊ capn,r

reqi,r/rni
⌋) giving the minimum times a job unit can fit on n. The variable

ui,n,j represents a possible allocation of a job unit j of i on node n and has s(ui,n,j) = s(τi)
and d(ui,n,j) = d(τi). To define the allocation, the model relies on the execution state
property (x) of CIVs. We have x(ui,n,j) ∈ [0, 1], meaning that it can be present or not in
the solution. Instead for the scheduling variables we have x(τi) = 1 because all of them
need to be scheduled and thus be present in the solution. The model uses the alternative
constraint [19] to restrict the number of variables in ∪n∈N [x(ui,n,j)] present in the solution
to be the maximum number of requested nodes rni, that is

∑
n∈N

∑
j x(ui,n,j) = rni with

s(τi) = s(ui,n,j) iff x(ui,n,j) = 1. Additionally, the capacity constraints are enforced for each
n ∈ N and for each r ∈ R as cumulative([s(ui,n,j)], [d(ui,n,j)], [reqi,r/rn], capn,r).

A drawback of this model is its number of variables. While the scheduling model has |Q̄|
variables, the allocation model has

∑
i∈Q̄

∑
n∈N pi,n variables, which increases proportionally

to N (i.e., system size). A minimum of 1 + |N | variables are needed to model a serial job.
Parallel jobs will require even more variables which may create difficulty in large systems
with many parallel jobs.

3 PCP’21: a New CP-based Job Dispatcher

Our dispatcher PCP’21 imports the scheduling model, the objective function and the job
priorities of PCP’19 and contains a new allocation model with |Q̄| +

∑
i∈Q̄ rni ∗ |R| variables,

which is system size independent. The number of variables thus depends on the number
of resource types (which is a small value) multiplied by the sum of the requested nodes
(which is usually much smaller than the system size) of all jobs in Q̄ (which is a fixed value).
Next, we present the allocation model and describe how we search on the scheduling and the
allocation variables.
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Figure 2 Representation of an example system.

t + 1t

Figure 3 Allocation of some jobs on the example system at a dispatching time t.

Allocation model

In this new model, we represent the system in a way to emphasize the resources instead
of the nodes as in the previous model. We consider all the resources of a certain type r in
an ordered array by following the sequence of the nodes. This is exemplified in Figure 2
which represents a system with 4 nodes. Each node has 4 cores and 4 units of memory. The
first two nodes have 2 GPUs, and the next two has 2 MICs. The array labelled as GPU,
for instance, lists all the GPU resources available in the system. There are in total 2 ∗ 2
GPUs, the first two in the array are from the first node, the third and the forth from the
second node. An array position refers to a specific resource of type r in a node n, which is
highlighted with a colour and a number in Figure 2.

Let us assume that, at a dispatching time t, a job J1 is still running, and three more jobs
J2, J3, J4 are extracted from the queue. As for their resource requests, let us assume that J1
requires 3 memory units, 1 GPU and 1 core; J2 4 memory units, 2 GPUs and 2 cores; J3 2
memory units and 8 cores via two job units J3,1 and J3,2; and J4 1 memory unit, 1 MIC and
1 core. Figure 3 shows a possible allocation of these jobs in the system after a dispatcher
call at time t. The running job J1 is allocated to the minimum positions available in the
arrays corresponding to the requested resource types, hence it is allocated in node 1 (the
first available node), occupying the first 3 memory, the first GPU and the first core positions
in the corresponding arrays. Since J2 requires two GPUs, it is allocated in the second node,
occupying all the memory and GPU and the first two core positions in the green parts of the
resp. arrays. The job units of J3 do not fit in the same node, so they are equally distributed
to the next two nodes, each occupying the first memory and all the core positions of the
yellow and orange parts of the resp. arrays. As for J4, it can be allocated only in the last
two nodes, because it needs an MIC. As the cores of these nodes are all occupied, J4 cannot
be allocated and is postponed to the next dispatching time t + 1.

Following this representation, we model the positions of a job unit j of a queued job i on
a resource type r via the variables yi,r,j . As we also need to represent the time during which
the allocation is valid, we use a two-dimensional box to model an allocation, as depicted in
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resource 𝒓

time

𝒚 𝒊 , 𝒓 , 𝒋 +
𝒓𝒆𝒒 𝒊 ,𝒓

𝒓 𝒏𝒊
− 𝟏

𝒚 𝒊 , 𝒓 , 𝒋

𝒔(𝝉 𝒊 ) 𝒔 𝝉𝒊 + 𝒅(𝝉 𝒊 )

𝑻𝒄𝒂 𝒑𝒓
yi,r,j Mem MIC GPU Core
J1 1 - 1 1
J2 5 - 3 5

J3,1 9 - - 9
J3,2 13 - - 13
J4 - - - -

Figure 4 Modelling the allocation of a job unit j of a job i on a resource type r (left), and the
assignment of the yi,r,j variables at time t in the example allocation (right).

Figure 4 (left). The y-axis gives the available positions and the x-axis gives the time interval
during which the resource is consumed. The vertices of the box are defined by the variables
in the origin: s(τi) which is the starting time of the job i and yi,r,j which is the starting
position of the allocation. The box spans from the origin by the expected duration d(τi) in
the x-axis, instead in the y-axis by reqi,r/rni which is the required resource amount. As for
the domains, we have D(yi,r,j) = [1, T capr], where Tcapr =

∑
n∈N capn,r. The domain of

the starting time is the same as in the scheduling model, that is D(s(τi)) = [t, eoh].
Figure 4 (right) shows the assignment of the yi,r,j variables at time t in our example

allocation. Take for instance J2 which has one job unit (itself) and requires 4 memory units,
2 GPU and 2 cores. As we saw in Figure 3, it occupies in the Memory array the 5th to the
9th positions, in the GPU array the 3rd to the 5th, and in the Core array the 5th to the 7th.
Consequently, the corresponding yi,r,j variables are assigned to the starting positions 5, 3
and 5, and the relative boxes span in the y-axis to the last positions 9, 5, and 7, respectively.

We also need to model the running jobs. To a job unit j of a job i on a resource type r,
which was previously assigned the resources of a certain node, we now assign the minimum
available position among those that refer to the same node. We have already exemplified
this with J1 in Figure 3. These resources are allocated to i during its d(τi). If multiple job
units are assigned to the same node, the resources are occupied consecutively, leaving the
higher indices free.

To enforce that a resource is used by one job unit only, we forbid the
boxes to overlap via the diffn constraint [4]. For each r ∈ R, we have
diffn([s(τi)] , [d(τi)] , [yi,r,j ] , [reqi,r/rni]). As the domain size of the yi,r,j variables depends
on the system size and can be large, we add implied constraints to shrink them. They
are the classical cumulative constraints used together with a diffn constraint in pack-
ing problems, as was also done in [4]: cumulative([s(τi)], [d(τi)], [reqi,r/rni], T capr) and
cumulative([yi,r,j ], [reqi,r/rni], [s(τi)], eoh). Given that the jobs units of jobs with rni > 1
have identical resource requests, their allocations are symmetric. We post an ordering
constraint on the positions of the jobs unit of a job i on a resource type r to break symmetry:
yi,r,j < yi,r,j+1 It is a strict ordering as the position variables take different values.

Finally, we need additional constraints to guarantee that certain allocations are in the
same node. For that, we utilize a mapping array mapr for each resource type r, which is
based on the system representation introduced earlier. The positions of mapr correspond to
the available resources, indexed by 1 to Tcapr =

∑
n∈N capn,r, and each value in the array is

a number corresponding to a node. To ensure that the allocated resources of a job unit are
in the same node, we post an element constraint, which indexes an array with a variable,
as element(mapr1 , yi,r1,j) = element(mapr2 , yi,r2,j) ∀r1, r2 ∈ R̂, where R̂ is the set of the
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requested resource types of the job unit j of job i. We use the element constraint also to
enforce that the positions spanning from yi,r,j to yi,r,j +(reqi,r/rni)−1 refer to the same node:
element(mapr, yi,r,j) = element(mapr, yi,r,j + (reqi,r/rni) − 1) ∀r ∈ R̂ iff reqi,r/rni > 0.

Search

Similarly to PCP’19 and HCP’19, we use a custom search algorithm derived from the
schedule-or-postpone algorithm [21] to search on the scheduling variables s(τi). At each
decision node, we select the job i whose priority is highest and that can start first, and
assign to s(τi) its earliest start time min(s(τi)). Note that the priorities are calculated once
statically at the dispatching time t before search starts.

Differently from PCP’19 and HCP’19, we interleave the scheduling and the allocation
assignments of a selected job i. After assigning a scheduling variable s(τi), we search on the
allocation variables [yi,r,j ] of i. We start with the resource r which has the lowest availability
at time t. Then we search on [yi,r,j ] in lexicographical order and assign them their minimum
values min(yi,r,j), which guarantees consistency with the symmetry breaking constraints on
the allocation variables.

Even though we have designed PCP’21 for systems engaged with heterogeneous workloads,
an heterogeneous system may as well receive a workload with homogeneous resource requests
(i.e., only CPU and memory) which creates symmetry among the requested resources. We
adapt the search algorithm to break symmetry in such a scenario as follows. After a resource
allocation attempt for a job i, if the search fails or wants to find a better solution, it backtracks
to the scheduling variable s(τi), as opposed to backtracking within the [yi,r,j ] variables.

Following PCP’19 and HCP’19, search is bounded by a time limit δ due to the problem
complexity. Thus, the best solution returned within the limit is the dispatching decision. If,
however, no satisfiability answer is obtained within the limit, the time limit is extended to
2 ∗ δ, as opposed to restarting search with the new time limit 2 ∗ δ as was done in PCP’19
and HCP’19. This procedure continues until the time limit reaches δmax. We suspend the
search if the solution quality did not change after k consecutive time limit extensions.

4 Experimental Study

To evaluate the significance of our approach, we conducted an experimental study by
simulating on-line job submission to two HPC systems. We dispatched jobs using PCP’21,
PCP’19, HCP’19, and sought answers to the following questions: (1) how do the dispatchers
compare when they are engaged in a workload with heterogeneous resource requests? (2)
can PCP’19 and PCP’21 scale to a large system? As we said earlier, an heterogeneous
system may as well receive a workload with homogeneous resource requests. We thus sought
an answer also to the following question: (3) how much do we lose by using PCP’21 for a
workload with homogeneous resource requests compared to using HCP’19 which is more
suitable for an homogeneous system? Before we present the answers in Section 5, we describe
in this section the ingredients of our experimental study.

HPC systems and workload datasets

Our study is based on two different workload traces collected from two different HPC systems.
The first system is the Eurora [10], which was in production at CINECA datacenter in Italy
until 2015. With 64 nodes, the system size is small compared to the current trend (see
Figure 1), but the architecture is heterogeneous with each node containing 2 octa-core CPUs,
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16 GB memory, and two of GPU or MIC. To answer the first question, we use the workload
dataset with which PCP’19 and HCP’19 were tested in [13]. It consists of logs over 400,000
jobs submitted during the time period March 2014–August 2015 and is dominated by short
jobs, making up 93.14% of all the jobs. As for resource requests, 22.8% of the jobs require
only CPU and memory while 77.2% need in addition one of GPU or MIC.

The second system is the KIT ForHLR II2, located at Karlsruhe Institue of Technology
in Germany. We use this system to answer the second question because it has 1,173 nodes,
a size comparable to the current trend (see Figure 1). 1,152 of these nodes are thin, each
equipped with 20 cores and 64 GB memory, and the remaining 21 are fat each containing 48
cores, 4 GPUs, and 1 TB memory. Even though a small fraction of the nodes contain GPUs,
we use a workload with homogeneous resource requests to answer also the third question.
The workload dataset is available on-line. 3 It contains logs for 114,355 jobs submitted
during the time period June 2016–January 2018. All the jobs require only CPU and memory,
and 66.26% of them are short (< 1h).

Job duration prediction

We derived the expected durations di of jobs via three prediction methods. The first is a
data-driven heuristic first proposed in [14] and later was shown to work well with PCP’19
and HCP’19 when simulating the Eurora dataset [13]. The heuristic constructs job profiles
from the workload. Prediction is based on the observation that jobs with similar profiles
have the same duration for long periods of time. For each job, the heuristic searches for the
last job with a similar profile, and uses its duration to predict the duration of the new one.
Each user is analyzed separately. The similar profile is identified using a set of rules. If all
rules fail, then the user-declared wall-time is taken as the predicted duration. In all cases,
the prediction is capped by the wall-time.

Despite being a valid alternative, this method relies on job names, a type of data omitted
in the KIT ForHLR II and some other public datasets. We thus employed a second heuristic
method that uses the run times of the last two jobs to predict the duration of the next
job [26]. In both methods, the predictions are calculated on-line during the simulation and
the knowledge base is updated upon job termination. The last prediction method is an
oracle which gives the actual runtime (real) durations dr

i and provides a baseline during the
simulation of both datasets.

Simulation

We used the AccaSim workload management system simulator [12] to simulate the HPC
systems with their workload datasets. Each job submission is simulated by using its available
data, for instance, the owner, the requested resources, and the real duration, the execution
command or the name of the application executed. AccaSim uses the real duration to
simulate the job execution during its entire duration. Therefore job duration prediction
errors do not affect the running time of the jobs with respect to the real workload data. The
dispatchers are implemented using the AccaSim directives to allow them to generate the
dispatching decisions during the system simulation.

3 https://www.cse.huji.ac.il/labs/parallel/workload/logs.html
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Table 1 Times obtained from the Eurora system.

Dispatcher Avg. disp. time [ms] Total sim. time [s]
HCP’19-D 392 208,231
PCP’19-D 511 271,586
PCP’21-D 209 111,373
HCP’19-R 357 189,522
PCP’19-R 469 249,367
PCP’21-R 256 136,401

Experimental settings

As a CP modelling and solving toolkit, we customized Google OR-Tools4 7.3 by implementing
the alternative constraint and the proposed search algorithm and by making visible some
variables of the solver, and ported it to Python 3.6 to implement PCP’21 in AccaSim. As for
PCP’19 and HCP’19, we used their publicly available implementations5, and carried over
their parameters m = 100, δ = 1s, δmax = 16s, k = 2. For the simulation of the KIT ForHLR
II workload, which has only homogeneous resource requests, we adapted the search algorithm
of PCP’21 to break symmetry among the requested resources as described in Section 3. We
refer to this version of PCP’21 as PCP’21s in the experimental results. All experiments were
performed on a CentOS machine equipped with Intel Xeon CPU E5-2640 Processor and
16GB of RAM. The source code is publicly available at https://git.io/fjia1.

5 Experimental Results

In this section, we show our experimental results. In each simulation, we compare the
dispatchers’ performance (in Tables 1 and 2) in terms of (i) the average CPU time spent
in generating a dispatching decision over all dispatcher invocations, including the time for
modeling the dispatching problem instance and searching for a solution, and (ii) the total
simulation time from the first job submission until the last job completion. We also compare
the dispatchers’ QoS (in Figures 5 and 10) in terms of the average slowdown and waiting
times of the jobs. To refer to a dispatcher using a certain job duration prediction method,
we append -D, -L2 or -R to the name of the dispatcher for the data-driven heuristic, the
last-two heuristic and the real duration, respectively.

5.1 Simulation of the Eurora workload
We remind that we simulate a system like Eurora to compare all the dispatchers when they
are engaged in a workload with heterogeneous resource requests. All the dispatchers complete
the simulation. Comparing their performance in Table 1, we can clearly see the benefits
of using PCP’21. With the decoupled approach of HCP’19, the performance drops almost
by half (around 47%) when using -D. We observe a further performance decrease (around
59%) with PCP’19, which could be attributed to its higher number of decisions variables.
PCP’21 is the most efficient dispatcher also when using -R, with gains around 28% and 45%
compared to HCP’19 and PCP’19, resp.

4 https://developers.google.com/optimization/
5 https://git.io/fjia1

https://git.io/fjia1
https://developers.google.com/optimization/
https://git.io/fjia1
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Figure 5 Average and error bars showing one std. deviation of slowdown and waiting times [s]
obtained from the Eurora system.

As for the quality of decisions, we observe in Figure 5 that all dispatchers return better
solutions than Eurora’s PBS dispatcher. Among the CP-based dispatchers, PCP’21 results in
the best average slowdown and a substantial decrease in the error when using -D. Otherwise,
the dispatchers have similar (low) slowdown values when using -R and have similar waiting
times when using either of job duration prediction methods.

As a side comment, we note in Table 1 that PCP’21-D performs better than PCP’21-R.
Looking at Figure 5, however, we see that PCP’21-R finds better solutions than PCP’21-D
within the time limit. In the instances of -D, jobs have similar durations (due to the way the
data-driven prediction method works), instead in the instances of -R, jobs have a more diverse
duration. The -R instances tend to be more difficult and take longer to solve, especially with
PCP’21-R which uses the expected durations also in the allocation model.

Additional analysis is needed in order to quantify the reduction in the number of decision
variables obtained by going from PCP’19 to PCP’21. During the simulation of an HPC
system and its workload data, all dispatchers start with the same dispatching instance, but
then they schedule and allocate jobs diversely. This in turn leads to different jobs running
on different resources of the system as well as to different jobs waiting in the queue in the
next dispatching time. We cannot therefore compare the dispatchers’ model size on the
distinct instances they entail throughout the simulation period. To analyze the dispatchers
on the same instances, we saved the instances created during the simulation of the Eurora
workload while using PCP’19-D and PCP’19-R as a dispatcher. Each instance is created
when the simulator calls the corresponding dispatcher, and the instance is described by the
queued jobs, the running jobs and their specific allocation on the system. We obtained in
total 624,569 instances.

Figure 6 shows the ratio of the number of decision variables between PCP’21 and PCP’19
versus the percentage of the instances. For all instances, the ratio is below 0.1, proving the
significance of the new allocation model. To confirm the impact on the search performance,
we give in Figures 7 and 8, the ratio of the dispatching time and the number of fails. We
note that while some instances are solved to optimality, some instances hit the time limit
but even in that case PCP’19 and PCP’21 extend the time limit differently, as was described
in Section 3. For almost all the instances, the ratio of the dispatching time is between 1 and
0.01, and the ratio of the number of fails is between 0.1 and 0, supporting the direct effect of
model size on the dispatcher performance. In Figure 9, we show the ratio of the dispatching
time versus the ratio of the number of fails for each individual instance. 93% and 88% of the
instances fall into the region where both ratios are between 0 and 1 when using -D and -R,
respectively.
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Figure 8 Ratio of the #fails between PCP’21 and PCP’19 on the individual Eurora instances.

We also analyzed the ratio of the quality of the dispatching decisions. The results (not
shown here) are in line with those shown in Figure 5. The ratio is 1 for the vast majority of
the instances.

5.2 Simulation of the KIT ForHLR II workload

We remind that we simulate a system like KIT ForHLR II to observe whether PCP’19 and
PCP’21 can scale to a large system. We do it so by using a workload with homogeneous
resource requests, because an heterogeneous system may as well receive an homogeneous
workload and in that case we want to quantify any possible loss with respect to HCP’19
which is more suitable for an homogeneous system. We experiment with both PCP’21 and
PCP’21s to see the importance of symmetry breaking with an homogeneous workload.
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Figure 9 Ratio of the dispatching time (x-axis) vs ratio of the #fails (y-axis) between PCP’21
and PCP’19 on the individual Eurora instances.

Table 2 Times obtained from the KIT ForHLR II system.

Dispatcher Avg. disp. time [ms] Total sim. time [s]
HCP’19-L2 278 56,083
PCP’19-L2 ∞ ∞
PCP’21-L2 493 99,590

PCP’21s-L2 334 67,471
HCP’19-R 269 54,289
PCP’19-R ∞ ∞
PCP’21-R 476 96,030

PCP’21s-R 342 69,094
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Figure 10 Average and error bars showing one std. deviation of slowdown and waiting times [s]
obtained from the KIT ForHLR II system.

PCP’19 cannot complete the simulation for several days. At some point in time, it stops
dispatching, even if new jobs are entering in the queue and the system is empty with all
its resources available. This is because PCP’19 cannot handle certain dispatching instances
within the available time limit and blocks the current and the next dispatching decisions.
Instead PCP’21 and PCP’21s complete the simulation, as can be seen in Table 2, confirming
its advantage to PCP’19 in a large system. We observe in the table that symmetry breaking
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is crucial with an homogeneous workload. PCP’21s significantly reduces the total simulation
time and average dispatching time compared to PCP’21. The performance of PCP’21s is
not too far from that of HCP’19. The performance gap is around 27% and 20% when using
-R and -D, resp. We can see in Figure 10 that in terms of the QoS, the dispatchers behave
almost identically.

5.3 Discussion
We showed that when dispatching an Eurora workload dominated by short jobs with het-
erogeneous resource requests, PCP’21 is more efficient than the other dispatchers by 28%
to 59%. While PCP’21 can scale to a large system like KIT ForHLR II, PCP’19 cannot.
This is probably due to the high number of decision variables in the allocation model of
PCP’19. Additional experiments on the individual Eurora instances generated by PCP’19
confirmed that PCP’21 substantially reduces the number of variables, the dispatching time,
and the number of fails. We also argued that an heterogeneous system may as well receive
an homogeneous workload. We showed that when dispatching a KIT ForHLR II workload
dominated by short jobs with homogeneous resources requests, the use of an adapted version
of the search algorithm that breaks symmetry among the identical resources is crucial. With
this version of PCP’21(called PCP’21s), the performance loss relative to HCP’19 is limited
to 27%. Our results thus provide evidence for the significance of our approach in dispatcher
performance in a large or heterogeneous system running modern applications.

While we have used real data representing the workload of modern systems and applica-
tions, our conclusions are based on a simulation study which is restricted by the capabilities
of the simulator. For instance, AccaSim does not add the dispatching time to the waiting
times of jobs. This seems to be the reason why we have not observed noteworthy gains with
PCP’21 in the QoS. In a real system, jobs’ waiting time (and slowdown) would increase
during dispatching time, therefore dispatcher performance would directly affect the QoS.

6 Conclusions and Future Work

Constraint Programming (CP) has been been successfully applied to solve the on-line job
dispatching problem in HPC systems [3, 7] including those running modern applications [13].
We argued that the limitations of the available CP-based job dispatchers may hinder their
practical use in today’s systems that are becoming larger in size and more heterogeneous
in their computing resources. In an attempt to bring CP closer to a deployed application,
we presented a new CP-based on-line job dispatcher for HPC systems (PCP’21). Unlike its
predecessors, PCP’21 solves the entire problem using CP and its model size is independent
of the system size. Experimental results based on a simulation study show that our approach
can bring about significant performance gains over the existing dispatchers in a large or
heterogeneous system.

In future work, we will devise and experiment with a meta-dispatcher that can switch
between PCP’21 and HCP’19 depending on the workload type. Moreover, we will investigate
the impact of performance in the QoS of a dispatcher by adapting the simulator to take
into account the dispatching time in the calculation of the job waiting time. To improve the
dispatcher performance further, we will study breaking the symmetry among the identical
nodes (i.e. the nodes that have the same resource availability at a dispatching time t) and
dominance breaking during search. We will also investigate whether large neighbourhood
search can be beneficial. Towards our objective to deploy and evaluate a CP-based dispatcher
in a real system, we plan to encode as constraints the allocation strategies proposed for
heterogeneous systems [20].
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Abstract
The video games industry generates billions of dollars in sales every year. Video games can offer
increasingly complex gaming experiences, with gigantic (but consistent) open worlds, thanks to
larger and larger teams of developers and artists. In this paper, we propose a constraint-based
approach for procedural dungeon generation in an open world/universe context, in order to provide
players with consistent, open worlds with an excellent quality of storytelling. Thanks to a global
description capturing all the possible rooms and situations of a given dungeon, our approach allows
enumerating variations of this global pattern, which can then be presented to the player for more
diversity. We formalise this problem in constraint programming by exploiting a graph abstraction of
the dungeon pattern structure. Every path of the graph represents a possible variation matching a
given set of constraints. We introduce a new propagator extending the “connected” graph constraint,
which allows considering directed graphs with cycles. We show that thanks to this model and the
proposed new propagator, it is possible to handle scenarios at the forefront of the game industry
(AAA+ games). We demonstrate that our approach outperforms non-specialised solutions consisting
of filtering only the relevant solutions a posteriori. We then conclude and offer several exciting
perspectives raised by this approach to the Dungeon Variations Problem.
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1 Introduction

The video game industry is an important economic sector, generating billions of dollars each
year, at the forefront of innovation. Since the appearance of the first games in the 1970s,
the landscape of this industry has changed dramatically. Video games are now produced by
large teams of artists and developers, offering photo-realistic graphics, exciting and complex
scenarios, with a constantly improved degree of simulation.

One of the biggest challenges of the gaming industry is to be able to build open worlds,
in which users must feel free and where a huge number of actions are possible for them.
Generating such a world without the final intervention of a Level Designer (LD) to validate
the level is still a dream: a single inconsistent game level can quickly shatter the reputation
of a game, possibly costing millions of dollars. The role of LD is to ensure the consistency
of all playable levels, and the interest of every level w.r.t the overall scenario. The formal
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Figure 1 A source dungeon. Figure 2 Some variations of the source dun-
geon (Figure 1). In green, the rooms and corridors
preserved in the variations.

verification of generated levels will probably play an important role in the future of the
gaming industry, but, for now, it is still impossible. Instead of formally verify the properties of
the generated levels a posteriori, we propose, in this article, to enforce the desired properties
of generated levels by construction. This work is developed in collaboration with an AAA+
video game studio.

Intuitively, in the proposed approach, an LD produces what we call a source dungeon,
which contains a set of rooms connected by corridors. Each room has its properties and areas
identified for possible situations (fights, treasures, ...). The Dungeon Variations Problem is
the problem of generating an appropriate variation of the source dungeon by disabling a
subset of initial rooms and corridors so that the remaining set of rooms matches a given set
of constraints (e.g. at least one entrance, at least a given number of monsters on any path).
The consistency of a source dungeon can also be validated by generating a variation taking
into account all rooms as well as corridors.

While this approach does not yet fully address the global problem of procedural content
generation [19], it opens up a challenging new field for constraint programming. Additionally,
it allows level designers to check the consistency and quality of dungeon variations before
delivering the game. We formally specify the Dungeon Variations Problem in Section 2 and
describe it as a constraint programming problem using the graph constraint connected in
Section 3. We then introduce, in Section 4, a new propagator extending this constraint
(connected+) which takes into account directed graphs with cycles. In the experimental part
(Section 5), we show that this propagator offers a spectacular improvement over a more naive
filtering approach. Before concluding, we propose a list of interesting research topics, which
could extend our work and have an important impact for the video game industry, providing
novel challenges for constraint programming.
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2 The Dungeon Variations Problem

2.1 Motivations

Our goal is to provide a game creation assistant tool for level designers (LD). This tool should
provide LD an efficient way of building level variations to fill the open world at distinct
places. This is a restricted view of the more general problem of procedural game generation,
the aim of which is to guarantee high-quality automatic content generations. In these games,
each level must be consistent with the narrative and the user’s progression, which is not yet
possible with fully autonomous level generation solutions. Delivering an AAA+ game with
an unplayable level, or an inconsistent story can have dramatic effects in terms of images
and costs for the responsible game studio. In order to reach the best possible quality, each
level is handcrafted and validated by a LD guaranteeing a precise purpose of this level in
the overall story. Our approach is thus not to generate levels from scratch but to propose
variations (with guaranteed properties) of a dungeon pattern designed by an artist. All the
variations have, by design, a strong story consistency (monsters, possible quests, ...).

We call dungeon source the original design (see for instance a very simple example of
such a design Figure 1). This dungeon contains rooms with properties (in practice, the
concept of rooms can be misleading: a room can be composed of a set of areas which will be
considered as a whole block). A room can be an entry (a connection from the outside), an
exit (a connection to the outside). Rooms can also have a set of tags to encode gameplay
situations, design, or any other optional set up. The set of rooms that the user can explore
and the situations (e.g. rewards, fights) encountered is called the flow. It is a common
practice in level designing to add final rooms to dungeons to allow side quests or optional
explorations. These final rooms, which are dead-end rooms (other than the hallway leading
to them), usually contain treasures, keys, special items or monsters, but do not block the
player. They are important for players because, in addition to optional rewards, final rooms
offers a non-linear way of exploring the dungeon, which is a crucial aspect for the positive
perception of levels by players. It should be noted that the connections between the rooms
are directed (a door can be one-way access, the player can fall from one room to another, ...).

The goal of the Dungeon Variations Problem is to generate a coherent subset of rooms
from the source dungeon satisfying some constraints (see for instance Figure 2). The first set
of constraints is structural: each set of rooms must be playable (all rooms are connected,
we have at least one entry and one exit), and the final rooms must be tagged as such (the
role of the LD is typically to be able to check the interest of final rooms). The second set
of constraints are configuration constraints, which are optional and can be defined by the
user: some special rooms can be forced to be active, entry, exit or final in the solution. Our
tool will have to offer, within a reasonable time (a few seconds), interesting variants to the
LD, as illustrated, for example, Figure 2. The LD will set some tags defining the desired
solutions to explore and will be able to navigate through a number of variations.

Procedural Generation of levels and flows is not new [6,17, 18]. However, as pointed out
in these references, systems are not yet mature to be autonomous and AAA+ studios are
only using them in very restricted subareas of game creations. Moreover, none of these works
has the potential to reach the level of quality expected in our context. To the best of our
knowledge, no previous work is able to handle both the dungeon generation (structure of the
dungeon) and the story itself (which is a cornerstone of our work, and will be ensured by the
definition of the source dungeon). As described in the next section, we propose to tackle this
problem by defining it as a graph problem. The connectivity property will be guaranteed by
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a new extension of the graph constraint [5, 14] adapted to our problem. To illustrate this
formalisation, Figures 3 and 4 show simplified versions of a graph-encoding of two generated
variations used in production.
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Figure 3 Two generated variations of a source dungeon used in production for a AAA+ video
game (for clarity sake, we did not represent oriented edges in this example). We can see the
differences between the two variations on the use of final rooms and alternative paths. The blue
node 0 is both the entry and the exit of this level. Nodes and edges in red are not kept in each
variation.

2.2 Related Works
Most work on constraints and graphs (e.g. [3, 4, 8, 11, 15]) generally consider one source node
and one objective node with path/circuit problem. Unfortunately, we cannot rely directly on
these works. They are either not applicable or too constrained: by definition, the path (or
circuit) problem force the edges to be used only once, which is not relevant in our case. In
addition, we have to consider the fact that the graphs are directed, and each variation can
have a lot of source nodes (inputs) as well as several objective nodes (outputs). Of course, in
our case, a node can be an entry and an exit at the same time1, which is another argument
to develop a novel approach. It is more classical, in state-of-the-art approaches, to suppose
that entries and exit nodes are distinct (e.g., in path constraint [7]). Using the reachable
constraint from every entry will unfortunately introduce a prohibitive overhead. It is also
important to note, at this point, that we are not yet trying to optimise the paths in any way.
We plan to do this as part of a further work by, for example, considering path optimisation
of optimal objects placements [11]. It may also be important to optimise the flow in many
additional ways, for example, by optimising a constraint-based formalisation of the fun as
perceived by the player, or by optimising the hardware cost of rendering the scenes during
the flow in order to guarantee a graphical performances.

3 CP model of the Dungeon Variations Problem

In this section, we formulate the problem as a constraint satisfaction problem. The constraints
are presented in natural language at first, then in clausal and set form (Table 1).

1 In practice, in real-world problems, this often happens.
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Figure 4 The two variations of Figure 3 with the remaining edges and nodes, reported for
simplicity. The blue node 0 is both the entry and the exit of this level.

3.1 Model Variables
Let n be the number of nodes in the pattern (numbered from 0 to n− 1). The connections
(e.g. corridors) between the nodes are identified by node numbers (e.g. Cij is a connection
from node i to node j). We use six arrays of size n to model the problem: Four arrays of
booleans entries, exits, actives and finals which indicates, respectively, if a node is
an entry, an exit, if it is active and if it is final. Two arrays sumToNode and sumFromNode
which respectively counts the number of connections entering each node and leaving each
node. To encode the connections between rooms, we use an n× n adjacency matrix C that
can indicate the active edges (connections) of the graph since the nodes can have multiple
successors. Arrays sumToNode and sumFromNode are defined using sum constraints. We also
avoid multiple corridors between the same rooms. Such a tricky variation, when needed, can
be handled at another level (e.g. on top of a variation that admits two connected rooms
allowing multiple connections). To prevent trivial loops, our CP model must also block the
diagonal of the adjacency matrix C.

Formally, the problem can be expressed as a graph problem in a fairly simple way: let
G(V, E) be a graph with V ⊂ N represents the rooms and E ⊂ {(i, j) | i, j ∈ V ∧ i ̸= j} the
corridors. The goal of the Dungeon Variations Problem is to generate a graph G′(V ′, E′)
with V ′ ⊂ V and E′ ⊂ E with additional constraints encoding the fact that the variation is
playable. Note that actives ≡ V ′. The sets entries, exists and finals are subsets of V ′.

3.2 Model Constraints
The constraints of the model ensure the consistency of each variation, given in natural
language in the following list (see Table 1 for the clausal and set form). These constraints
are expressed as intention constraints in the XCSP3 model [1]:
(1) If a node is an entry, it must be active.
(2) If a node is an exit, it must be active.
(3) If a node is final, it must be active.
(4) If a node is an entry, it cannot be final.
(5) If a node is an exit, it cannot be final.
(6) If a connection is used, then the associated nodes must be active.
(7) If a node is active, at least one connection must go to (or leave from) this node.
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Table 1 Constraints in clausal and set form. Note that the clausal form, lines 8-11, can be
encoded as a single set constraint.

Clausal form Set form

1 entriesi = 0 ∨ activesi = 1 i ∈ entries⇒ i ∈ V ′

2 exitsi = 0 ∨ activesi = 1 i ∈ exits⇒ i ∈ V ′

3 finalsi = 0 ∨ activesi = 1 i ∈ finals⇒ i ∈ V ′

4 entriesi = 0 ∨ finalsi = 0 entries ∩ finals = ∅
5 exitsi = 0 ∨ finalsi = 0 exits ∩ finals = ∅
6 Cij = 0 ∨ (activesi = 1 ∧ activesj = 1) (i, j) ∈ E′ ⇒ {i, j} ∈ V ′

7 activesi = 0 ∨ sumFromNodei > 0 i ∈ V ′ ⇒ ∃j | ((i, j) ∈ E′ ∨ (j, i) ∈ E′)
∨sumToNodei > 0

8 finalsi = 0 ∨ sumToNodei = 1 i ∈ finals⇔ ∃!j | ({(i, j), (j, i)} ⊂ E′)
9 finalsi = 0 ∨ sumFromNodei = 1 See 8.

10 finalsi = 0 ∨ Cij = 0 ∨ Cji = 1 See 8.
11 finalsi = 0 ∨ Cij = 1 ∨ Cji = 0 See 8.
12 Cij = 0 ∨ Cji = 0 ∨ sumToNodei ̸= 1 {(i, j), (j, i)} ⊂ E′ ∧ ∀k |{(i, k)} ∈ E′| = 1

∨sumF romNodei ̸= 1 ∨ finalsi = 1 ∧ ∀k |{(k, i)} ∈ E′| = 1⇒ i ∈ finals

(8) If a node is final, then one and only one connection must go to this node.
(9) If a node is final, then one and only one connection must leave from this node.

(10) If a node i is final and one connection goes from i to j then a must go from j to i.
(11) If a node i is final and one connection goes from j to i then a must go from i to j.
(12) If there is a round trip between two nodes i and j and there is only one connection to i

and from i, then the node i must be final.

The above set of constraints allows to specify the structure of the desired variations
(the problem of unconnected solutions will be discussed in the next section). Note that the
management of final rooms is covered by lines 8 to 11. It ensures that the player can return
to the main path from a dead-end, possibly corresponding to a secondary quest. This set
of constraints (lines 8–11) is encoded as a single constraint when using the set-based form,
Table 1.

Some other constraints, called configuration constraints, are also allowed in the proposed
tool, but not reported here for simplicity (for instance, the tool allows the LD to limit the
number of inputs, outputs, active and final rooms). It is also necessary that our tool allows
the user to force specific parts to be active (or not) in all the generated variants (for instance,
the LD may activate or deactivate certain parts of the source dungeon depending on where
the variation will be placed on the map, for instance). The user can also deactivate a subset
of corridors to explore the corresponding variations (for instance, some corridors may require
the user to use some items/capacities that may not be available at all steps of the overall
story). Likewise, it is possible to give control over situations (and therefore over the dungeon
flow) by limiting the number of rooms with some given tags. For example, if we have 8 rooms
marked as a combat room in a source dungeon, an LD may want to generate a variation with
only 3 of them. To handle these limits easily, we can create a sum constraint on the active
property of the tagged rooms. We do not further describe this part of the model since it is
covered by a classical constraint-based approach and can be handled as soon as the overall
problem is tackled by CP.
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Figure 5 The graph displayed on the left represents a source dungeon (or a variation) with two
entries (nodes A and G) and one exit (node B). We can see that the node H is not accessible
and will be filtered by the constraint introduced in Section 3.2. A cul-de-sac is also present in this
dungeon (nodes C and D). Indeed, when entering node C, a player would be stuck inside the two
rooms without any possibility to escape this “trap”. This kind of cul-de-sac is not filtered by the
structural constraints and are not welcome in the resulting variations. The goal of the connected+
constraint is to filter these cases and obtain the dungeon displayed on the right.

4 The Connected Constraint Extended

As mentioned before, we need to make sure that our variations are connected to satisfy all
the constraints. We can ensure this in two different ways. (1) We may verify each solution,
afterwards, with an ad hoc algorithm (this is a classic approach in video games: the levels
generated can be tested subsequently by algorithms, bots and/or humans) or, (2) we may
force any proposed variation to be correct by construction, filtering out partial solutions as
soon as possible when looking for variations. Let us recall here that the goal of our approach
is to help the LD navigating through the possible alternatives as easily as possible. Being able
to guarantee that each proposed solution has certain properties by construction is, therefore,
a crucial element. Figure 5 shows a very simple example of the connected+ constraint we
propose, in practice.

The approach we propose is a two-level propagator that first relies on a simple implement-
ation of the constraint connected [5] on the undirected version of the graph (Algorithm 1).
Then, another level of filtering is added (Algorithm 4 and 3) to guarantee the validity of
the paths. The connected constraint guarantees that we do not have disjoint dungeons but
does not consider directed graphs. We, therefore, have no guarantee that the dungeon is
playable (i.e. all nodes are accessible from the entrances, in particular, the exit nodes). To
overcome this problem, we introduce an algorithm to find paths from each entry to at least
one exit (this algorithm can be extended in many ways, for instance to handle the size of the
paths, whether they are constrained or not, or to obtain information (average length, etc.)).
For this reason, the propagator need to know the values of the entries and exits arrays.

Algorithm 1 starts from an active node (line 2, the selectActiveNode() function selects
an active node in the graph, i.e. a node x such that activesx = 1, or returns an empty set
if no active node is found). Then, it follows each connection by considering the undirected
version of the graph (line 12). From line 3 to 7, if we do not find any active node, we need
to check the consistency of the graph. Indeed, if some of the nodes are not yet decided (i.e.
their Boolean domain size is 2), the constraint is consistent since we cannot filter anything.
Otherwise, an inconsistency is detected if all the nodes are marked inactive (lines 4–5). Until
the stack is empty, we mark the current node (line 11) and add its neighbours to the stack
(line 12). When the stack is empty, Algorithm 2 is called to filter the nodes and to check
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Algorithm 1 connected(): Boolean.

1 seen← {∅};
2 stack ← selectActiveNode();

3 if stack = ∅ then
4 if {node s.t. |dom(activesnode)| = 2} = ∅ then
5 return false ; // conflict detected

6 else
7 return true;

8 while stack ̸= ∅ do
9 current← pop(stack);

10 if current ̸∈ seen then
11 seen← seen ∪ current;
12 stack ← stack ∪ {x s.t. activesx ̸= 0 ∧ (Ccurrent,x ̸= 0 ∨ Cx,current ̸= 0)};

13 return removeUnseen(seen);

Algorithm 2 removeUnseen(seen : Set of nodes) : Boolean.

1 foreach node ̸∈ seen do
2 if |dom(activesnode)| = 1 ∧ activesnode = 1 then
3 return false; // conflict detected

4 activesnode ← 0;
5 return true;

the consistency of the constraints. In fact, for each node that we did not see in the search
of Algorithm 1 (therefore not connected to the considered graph), we must set their active
value to 0. A conflict is identified when an already decided active node is processed.

After running Algorithm 2, the undirected graph is guaranteed to be connected. Now, we
need to check the directed paths from each entry node and identify the unreachable nodes to
disable them. We formally introduce Algorithms 4 and 3 to manage the directed graph.

Algorithm 3 checks that there is a path between each entry and at least one exit node.
Three sets are used: seen, possible and kept. These sets contain, respectively, the nodes
that have been seen, the nodes in a possibly valid path (i.e. which reach an exit) from the
considered entry, as well as the nodes which are kept if no conflict is detected before the end
of the algorithm. The graph is then traversed from each potential entry using Algorithm 4
(line 6). If the considered entry is valid, it is counted (line 7); otherwise, it is marked as
invalid following a consistency test (line 9 to 11). If no valid entry is found (lines 13 and 14),
a conflict is raised. We then call Algorithm 2 (line 15) to filter the nodes that have not been
kept (and possibly detect a conflict).

Algorithm 4 (called on line 6 of Algorithm 3) is used to test the validity of a node provided
as a parameter (node). First, the node to be tested is added to the seen and possible sets
(lines 2 and 3). Then, if the node is already in the set of nodes to keep kept or if this node is
a possible exit, then it is marked as valid and kept (lines 4 to 6). It should be noted that the
search is not stopped when a node (or more particularly an entry) is found valid since we
want to mark all the nodes reachable from the node which is currently considered. The main
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Algorithm 3 checkPaths(G : the graph) : Boolean.

1 seen← {∅};
2 possible← {∅};
3 kept← {∅};
4 nbV alidEntries← 0;

5 foreach node s.t. entriesnode ̸= 0 ∧ activesnode ̸= 0 do
6 if isValidNode(node, seen, possible, kept) then
7 nbV alidEntries← nbV alidEntries + 1
8 else
9 if entriesnode = 1 then

10 return false; // conflict detected

11 entriesnode ← 0
12 possible← {∅};

13 if nbV alidEntries = 0 then
14 return false; // conflict detected

15 return removeUnseen(kept);

Algorithm 4 isValidNode(node : a node, seen, possible, kept : node sets) : Boolean.

1 valid← false;
2 seen← seen ∪ {node};
3 possible← possible ∪ {node};

4 if node ∈ kept ∨ exitsnode ̸= 0 then
5 valid← true;
6 kept← kept ∪ possible;

7 foreach a s.t. activesnode ̸= 0 ∧ Cnode,a ̸= 0 do
8 if a ∈ kept then
9 valid← true;

10 kept← kept ∪ possible;
11 else if a ̸∈ seen then
12 if isValidNode(a, seen, possible, kept) then
13 valid← true;

14 possible← possible \ {node};
15 return valid;

loop (lines 7 to 13) allows considering the children of the node considered (node). Indeed,
like line 12 of Algorithm 1, we add the neighbours of the current node without considering
the undirected case this time. For each of the children a, that are not deactivated, two cases
are possible:
1. a is already in the set of kept nodes (kept) (lines 8 to 10). This implies that node is

valid because it joins a path already validated previously. The path of the possible nodes
is therefore kept (line 10).
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Algorithm 5 propagate() : Boolean.

1 return connected() && checkPaths();

2. a has never been explored (lines 11 to 13). Algorithm 4 is therefore called recursively to
test the validity of a (as well as that of node if a is valid 2).

Finally, before returning the validity of the original node (node), it is removed from the
possible set (line 14).

The connected+ propagator (Algorithm 5) first applies the connected algorithm (Al-
gorithm 1), and if no conflict occurs, then the paths are checked (Algorithm 3).

5 Experiments

We implemented the algorithms in the Nacre [9] solver to evaluate them. The XCSP3 team
kindly provided us with an alternative version of the official parser to manage our new global
constraint.

The experiments were performed on a computer with a 6-core processor clocked at 3.70
GHz (Intel i7-8700K) with 32GB of RAM. We used the complete search method (MAC) of
the Nacre solver without restarts to count the solutions found3.

The experiments are divided into three parts. The first one presents a real-world use case
called the 1,000 dungeons. It is a simple scenario that illustrate how our tool can be used in
practice, on a simple use case. This “finalised” proof of concept was used to demonstrate
the practical interest of our approach to the AAA+ game studio we collaborated with for
this study. Indeed, generating a large number of variations from a few source patterns lets
us quickly fill the world with many high-quality playgrounds. The second part shows the
performances of our approach against the previously used one (the a posteriori method
used in the AAA+ game studio) on a real-world source dungeon. Our procedure generates
only valid variations for an insignificant overhead compared to the one without the global
constraint. In the last part, we present a source dungeon generator, based on a structured
problem random generator, to evaluate our approach to more dungeons. This generator
allows us to conclude on the usefulness and performances of our procedure in different cases.

5.1 The 1,000 Dungeons Experiment
The 1,000 dungeons experiment is a proof of concept developed in the AAA+ video game
studio with which we collaborated to show the practical interest of our approach. It
corresponds to a finalised tool, build on top of many other internal tools. In this experiment,
we generated, from three source patterns, 1, 000 variations. The structural constraints of the
model are the ones presented in Section 3.2. The configuration constraints for the computed
variations are set up as follows: between 3 and 12 rooms; at most 3 final rooms; one treasure
in a final room; and between 3 and 8 fights.

Figure 6 shows a sneak peek of the generated dungeons. We can distinguish the different
source patterns used as input. The green and golden rooms are kept in the variation; the
golden ones are the final rooms. The crossed swords point out a fight room, and the cup
shows a treasure room.

2 It is not necessary to replicate line 10 after line 13 if a and node are valid, this has already been done
in the call at line 12.

3 ./nacre_mini_release DUNGEON.xml -complete -sols=X
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Figure 6 A sneak peek of the 1, 000 dungeons experiment using 3 source dungeons that shows
the integration of our CP model and propagator in a production tool for a AAA+ video game.

This proof of concept shows that our approach could be useful to quickly fill a world
with a lot of different variations or to train bots (e.g., for exploration, for fights). It also
illustrates how variants of the same source dungeon could be very different in practice. Most
of the considered dungeons Figure 6 will be perceived as different levels by the player. To
increase the player’s feeling of visiting different levels, for this experiment, we adapted our
tool to avoid close variations. We generated much more variations and selected distant
ones in the search tree (choosing one solution every fifty solutions, during the backtrack
search, allowed us to increase the chances of increasing the diversity, as shown on the random
selection of some computed variations, Figure 6). To further expand this work and ensure
the generation of a relevant set of variations from one (or more) source dungeon in these
kinds of experiment, one could use some metrics (mission linearity, map linearity, leniency
and path redundancy [12, 16, 17], for example) to score each variation. The use of additional
tags (for instance by specifying the textures of the walls, the positions of furniture and items)
are another way of enforcing the novelty feeling by the player. Improving our tool to take
this kind of new constraints is easy with CP and will be discussed in the last section.
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Table 2 Data from experiments on the real-world instance considered, with 3, 019 variables and
11, 169 when expressed as a XCSP3 instance. The last column shows how many variations are valid
over the number of variations produced by the given method. As discussed in the text, only a small
fraction of generated variations are valid when the connected+ propagator is not used.

#Variations Method Time (seconds) #Conflicts #Valid Variations

W/o GC 2.7 15 0100 Connected+ 2.78 173 100
W/o GC 4.33 130 01,000 Connected+ 5.42 1,462 1,000
W/o GC 21.72 820 24810,000 Connected+ 32.23 11,781 10,000

5.2 Study of a real-world Instance

To evaluate our approach against the standard a posteriori method, we used a real-world
source dungeon taken from an actual game level. The source dungeon used for this experiment
has 52 nodes, 58 connections, 7 possible entrances, 7 possible exits, and 30 possible final
rooms. Even though this problem seems small, it is already difficult and represents real
problems well (mainly between 40 and 60 nodes, up to about 100 nodes for larger ones). The
XCSP3 instance associated to this problem has 3, 019 variables and 11, 169 constraints (1
more for the graph constraint connected+).

We evaluate the two approaches on generating 100, 1, 000 and 10, 000 variations, respect-
ively. The number of variants seems large (a typical shipped game will never contain so many
variations) but the goal of our tool is to give the LD as many variations as possible for them
to pick up the most interesting ones. It is thus expected that our tool will have to handle
such large sets of variations. We may have to score each variation (according to the metrics
mentioned, for instance, in section 5.1), and to list them for the LD.

The first approach (W/o GC in Table 2) does not use the new global constraint. The
second one (Connected+ in Table 2) uses the new global constraint and computes exactly the
number of variations specified (since they are all valid). The search stops when the specified
number of variations is found (but not necessarily valid ones for the W/o GC approach).

In Table 2, we can check that, as expected, having the graph checker as a built-in
propagator only produces valid variations for the price of small overhead. We conducted
further experiments to measure how many variations the method W/o GC would have to
compute in order to obtain 100 valid variations. We found that 5, 390 solutions would have
to be computed (in 7.63 seconds with 542 conflicts, to be compared with the 2.78 seconds of
our approach, with only 173 conflicts). We also tried to compute 1, 000 valid variations with
the W/o GC method but, after hitting the 2, 400 seconds timeout, it generated less than 300
valid variations for this instance. This has to be compared with our approach, that allows to
generate 1, 000 valid variations in 5.42 seconds.

This clearly shows the interest of our global constraint. It is now possible to produce a
tool allowing a real time exploration of many variants, to rank them and change the desired
tags almost on the fly. This was clearly not even possible with the previous approach.
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5.3 Small-World Random Generated Instances
In order to generalise our findings, we propose a deeper experimental analyse thanks to
a random instance generator (https://bit.ly/3xSXK2B), available for further works to
compare with (our previous problems are unfortunately not publicly available). To kept the
random generated graphs interesting and close to real-world problems, designed by humans,
our generator is based on the Watts–Strogatz model [10] adapted for directed graphs [13].
This model produces graphs with small-world properties; it allows us to simulate real-world
instances (e.g., with local clustering) and not random graph with uniform structure only.
The model takes the number of nodes of the graph we want to generate N , the mean degree
K of the graph and some special probability parameters (detailed below, these are reals
between 0 and 1). The associated algorithm is composed of two parts:
1. construct a ring lattice (a graph of N nodes each connected to K neighbours) ;
2. rewire some edges following a probability p.

As mentioned before, in our case, the algorithm is modified to handle directed graphs
(Section 3.2 of [13]). The first step remains the same, but the connections are set both ways.
The second step uses another probability d to choose if only one way is rewired or both. We
also randomly select nodes to be entries and exits. Our generator takes a few parameters:
1. n, the number of nodes of the graph;
2. k, the number of edges by nodes for the ring lattice;
3. a, the access density (percentage of entries and exits);
4. d, the probability for reciprocal edges during rewiring steps;
5. p, the probability of edge rewiring;
6. s, a seed can be specified for reproducibility.

This generator builds the structure of a source dungeon and does not propose to (ran-
domly) generate the configuration constraints. Indeed, choosing and generating a realistic
configuration is another work by itself.

We generated 100 instances4 from 10 nodes to 100 nodes with a step of 10 (10 instances
for each step). The generation tool is called with the following default parameters: 20%
accesses density (a parameter; 20% of nodes are entries and 20% of nodes are exits); 20%
chance for reciprocal edges (d parameter); 20% chance for rewiring (p parameter); and finally,
k, the number of edges by nodes for the ring lattice, is 40% of n, the number of nodes of the
graph.

The results of the two methods (W/o GC and Connected+) on the 100 generated instances
are reported Table 3. As we have done in the previous experiment, we evaluate the two
methods on the generation of 100, 1, 000 and 10, 000 variations. The data presented in the
Table are the computation time (in seconds) and the number of valid variations generated.
For each of the metrics, the minimum, maximum, median and mean are shown. This allows us
to show the behaviour on the easier (usually fewer nodes in the graph) and harder instances.

This last experiment, based on 300 runs for each method (each run generating many
variations, with a total of more than 2 millions variations generated), confirms the conclusions
on the previous real-world instance:

the overhead due to the addition of our global constraint connected+ constraint is very
small;

4 We used a script with the following parameters to generate the instances presented in Table 3:
./genDungeons.sh 10 100 10 10 0.
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Table 3 Data from experiments on the Watts-Stragatz small-world random instances. Each
reported number summarises 100 points, 10 points per increasing size of 10 to 100 (see text).

#Var Method Time (sec) #Valid Variations
Min Max Med. Mean Min Max Med. Mean

100 W/o GC 0.13 23.42 6.28 7.57 0 46 24 22.7
Connected+ 0.14 25.94 6.3 7.62 100 100 100 100

W/o GC 0.27 27.48 7.7 9.07 0 380 173 166.741,000 Connected+ 0.39 29.15 7.91 9.37 1K 1K 1K 1K
W/o GC 1.89 57.58 20.39 22.7 0 4798 1,244 1,578.4510,000 Connected+ 2.56 66.45 24.31 26.68 10K 10K 10K 10K

the variation problem, and the use of classical graph constraint, generates a very large
number of non valid solutions;
the median time obtained by our approach makes it possible to use it in an on-line
manner, to help LD navigating and sorting the solutions. This is not possible with an
approach based on existing constraints.

6 Conclusion & Perspectives

We have presented a new problem of industrial importance for constraint programming,
the Dungeon Variations Problem, and proposed a first approach to tackle it, based on the
introduction of a new global constraint with its propagator. Our solution is already used in
pre-production as an internal support tool for Levels Designers, supported by the XCSP3
model and the Nacre solver. There is, of course, still rooms for improvements, but we believe
our approach has already proven its usefulness and its practical interest for the studio. It is
a pragmatic and efficient solution to help Levels Designers in their daily work for the gaming
industry.

We are, of course, planning to expand this work in several ways. We can use metrics
(mission linearity, map linearity, leniency and path redundancy [12,16,17], for example) to
score each variation to generate a relevant set of variations from a source dungeon. These
metrics could be used for the optimisation version (COP) of the Dungeon Variations Problem,
allowing more control over the dungeons generated (an LD often plays on the linearity of the
flow). Using an approach similar to [2], we could find paths where the dungeon structure is
made using some data (or approximations): time or hardness to complete a fight or a puzzle,
for example. We could then build levels based on difficulty or time.

We could also enrich the model with different constraints to provide more control and
automation for the Dungeon Variations Problem (for example, considering the orientation of
the room, allowing its rotation). We can also think of models of rooms and connections (for
example, a connection can be a hallway, a window, a breakable wall). We can also extend
graph constraints to handle distance constraints (e.g., between accesses, from entrances to
combat rooms). A final improvement would be to consider qualitative constraint networks
(QCN ) to manage the relative positions of the different rooms and connections, allowing an
LD to specify the topological constraints of the connections from the dungeon to the outside.

A long-term goal of our work is to generate levels on the fly, based on each user experience
and preferences, with strong guarantees. We believe that this work is the first step in this
direction.
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Abstract
Maximum satisfiability (MaxSAT) is a viable approach to solving NP-hard optimization problems.
In the realm of core-guided MaxSAT solving – one of the most effective MaxSAT solving paradigms
today – algorithmic variants employing so-called soft cardinality constraints have proven very
effective. In this work, we propose to combine weight-aware core extraction (WCE) – a recently
proposed approach that enables relaxing multiple cores instead of a single one during iterations of
core-guided search – with a novel form of structure sharing in the cardinality-based core relaxation
steps performed in core-guided MaxSAT solvers. In particular, the proposed form of structure sharing
is enabled by WCE, which has so-far not been widely integrated to MaxSAT solvers, and allows
for introducing fewer variables and clauses during the MaxSAT solving process. Our results show
that the proposed techniques allow for avoiding potential overheads in the context of soft cardinality
constraint based core-guided MaxSAT solving both in theory and in practice. In particular, the
combination of WCE and structure sharing improves the runtime performance of a state-of-the-art
core-guided MaxSAT solver implementing the central OLL algorithm.
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1 Introduction

Maximum satisfiability (MaxSAT) [8, 19] has in recent years developed into a noteworthy
declarative Boolean optimization paradigm, with successful applications in various NP-hard
industrial problem domains and artificial intelligence applications (see e.g. [8] and references
therein).

So-called core-guided MaxSAT algorithms form one of the most central MaxSAT solving
paradigms today [15, 26, 25, 28, 12, 18, 5, 27, 4]. The core-guided approach consists of
iteratively extracting unsatisfiable cores, i.e., inconsistent subsets of soft constraints, using a
Boolean satisfiability (SAT) solver, and at each iteration transforming the MaxSAT instance
to include knowledge of the new unsatisfiable cores. This transformation involves compiling
the cores into the instance via additional cardinality constraints. A key aspect in which the
various core-guided algorithm differ is how exactly the transformations are performed. The
use of so-called soft cardinality constraints [1, 28, 26] has recently proven to be a particularly
effective approach to core-guided MaxSAT solving [7, 6].
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In this work, we focus on improving and understanding core-guided MaxSAT algorithms
through fine-grained changes to the way the transformations at each iteration are performed
and realized. Here we focus in particular on realizing the proposed improvements and
understanding their effects in the context of OLL [26, 1], which gives one of the currently
most successful MaxSAT solving approaches through its implementation in the RC2 MaxSAT
solver [18], and arguably represents the current state of the art in complete core-guided
MaxSAT solving. That said, the techniques proposed in this work are also applicable in
the context of other current and foreseeable variants of the core-guided approach using soft
cardinality constraints; we will more shortly provide evidence on this with an implementation
of the PMRES [28] core-guided algorithm, in addition to OLL.

Our main contributions are centered around and build on the recently proposed approach
of weight-aware core extraction (WCE) [11]. In short, WCE enables relaxing multiple cores
instead of a single one during iterations of core-guided search by exploiting soft clause weights
in weighted MaxSAT instances, and can be viewed as an extension of work on computing
lower bounds for MaxSAT [16, 20].

As our main contribution, we propose a novel form of structure sharing in the cardinality-
based core transformation steps performed in core-guided MaxSAT solvers. The proposed form
of structure sharing is enabled by WCE. While WCE has so-far not been widely integrated
to MaxSAT solvers, its combination with the here proposed structure sharing approach
provides performance improvements to RC2, as we will empirically show. Syntactically,
the structure sharing approach allows for introducing fewer variables and clauses during
the MaxSAT solving process, which alleviates to an extent issues resulting from iteratively
performing core transformation steps which in turn results in the working formulas of the
algorithm increasing in size beyond the capabilities of modern SAT solvers. Here we note
that, while so-called incremental cardinality constraints have been proposed and are applied
in core-guided MaxSAT solvers [25, 24, 23] with the goal of keeping the working formulas
smaller by more carefully introducing necessary parts of cardinality constraint encodings,
the structure sharing approach we propose is a conceptually different technique. Structure
sharing focuses of sharing substructures of multiple cores extracted via WCE during a
single iteration of core-guided search. Furthermore, as we will show, shared substructures
obtained via structure sharing allow for a more careful introduction of equivalence in the
core transformations steps.

By a careful implementation on top of the state-of-the-art RC2 MaxSAT solver, we
demonstrate that structure sharing and refined equivalences, combined with WCE, improves
the runtime performance of RC2 on standard weighted MaxSAT benchmarks from MaxSAT
Evaluations. Complementing the main practical contributions, we also provide a theoretical
analysis of on the impact of integrating WCE into the OLL algorithm, more specifically on
the effect that WCE has on the number of core extractions needed for termination and the
sizes of cores extracted (as well as its potential drawbacks).

2 Maximum Satisfiability

A literal l is a Boolean variable x or its negation ¬x, the negation of a variable satisfies
¬¬x = x. A clause C is disjunction (or set) of literals and a CNF formula F is a conjunction
(or set) of clauses. A truth assignment τ maps Boolean variables to 0 (false) and 1 (true).
τ is extended to literals l, clauses C and formulas F , respectively, by τ(¬l) = 1 − τ(l),
τ(C) = max{τ(l) | l ∈ C} and τ(F ) = min{τ(C) | C ∈ F}. An assignment τ is a model of
F if τ(F ) = 1. A formula is satisfiable if it has model, and otherwise unsatisfiable.
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A MaxSAT instance F consists of two CNF formulas, the set of hard clauses hard(F)
and the set of soft clauses soft(F), and a weight function w : soft(F) → N that assigns
a positive weight to each soft clause. An assignment τ is a solution to F if it satisfies
the hard clauses. The cost COST(F , τ) of τ is the sum of the weights of the soft clauses
it falsifies, i.e. COST(F , τ) =

∑
C∈soft(F)(1 − τ(C))w(C). A solution τ is optimal if

COST(F , τ) ≤ COST(F , τ ′) for all solutions τ ′ to F . The cost COST(F) of an instance
F is the cost of its optimal solutions. In the rest of this paper, we assume all MaxSAT
instances have solutions, i.e. that hard(F) is satisfiable. In practice, the implementations of
core-guided MaxSAT algorithms that we are aware off check this assumption by invoking a
SAT solver on the hard clauses prior to search.

To simplify the discussion we will assume that every Ci ∈ soft(F) is of form (¬bi) for a
variable bi. The assumption can be made without loss of generality since one can always
transform any soft clause C ∈ soft(F) into the hard clause C ∨ b and the soft clause (¬b)
with w((¬b)) = w(C). A variable b for which (¬b) ∈ soft(F) is a blocking variable. Let
B(F) be the set of all blocking variables of F . As setting b = 1 falsifies the soft clause
(¬b), we can refer to soft clauses and blocking variables interchangeably, and extend the
weight function w to blocking variables by w(b) = w((¬b)). The cost of a solution τ is then
COST(F , τ) =

∑
b∈B(F) τ(b)w(b). For a set B ⊂ B(F) we let minw(B) = min{w(b) | b ∈ B}

be the smallest weight of the variables in B.
A central concept in modern MaxSAT solving is that of a (an unsatisfiable) core. Given a

MaxSAT instance F , a set κ ⊆ soft(F) is a core if the formula hard(F)∧κ is unsatisfiable.
As each soft clause is a unit clause containing the negation of a blocking variable, this implies
that any solution to F sets b = 1 for at least one b ∈ B(F) for which (¬b) ∈ κ. Hence we
often view a core as a set of blocking variables (or a clause) {b | (¬b) ∈ κ} that is entailed by
hard(F). A core κ is minimal (an MUS) if hard(F) ∧ κs is satisfiable for all κs ⊂ κ.

▶ Example 1. Let n and r be two integers with 0 < r < n, and Fn,r a MaxSAT instance
such that hard(Fn,r) contains clauses equivalent to

∑n
i=1 bi ≥ r and B(Fn,r) = {b1, . . . , bn}.

In words, the clauses of Fn,r enforce that at least r soft clauses should be falsified (recall
that assigning a blocking variable b to 1 corresponds to falsifying a soft clause). Assuming
w(bi) = 1 for all i = 1 . . . n, any solution τ that sets exactly r variables in B(Fn,r) to 1 and
the rest to 0 is an optimal solution to Fn,r and has COST(Fn,r, τ) = COST(Fn,r) = r.
Any κ ⊂ B(Fn,r) that contains at least n− r + 1 variables is a core. In order to see this note
that since r blocking variables need to be set to 1 – or equivalently r soft clauses need to
be falsified – by any solution, it follows that any subset of blocking variables with at least
(n− r + 1) variables has to contain at least 1 that is set to 1 by any solution. The MUSes of
Fn,r are the subsets of B(Fn,r) that contain exactly n− r + 1 variables.

Unit propagation is the main form of constraint propagation applied in CDCL SAT
solvers. Consider a clause C = {l1, . . . , ln} and assume the value of li has been fixed to 0 for
all i = 1, . . . , n− 1. Then in order for C to be satisfied, the value of the literal ln needs to
be fixed to 1. We say that ln = 1 is (unit) propagated by the clause C and the assignments
li = 0 for i = 1, . . . , n−1. CDCL SAT solvers perform unit propagation whenever the current
partial assignment sets all but one literal from a clause to false (0).

3 MaxSAT by Soft Cardinality Constraints

Our main focus is on the OLL algorithm, which is one of the most successful core-guided
MaxSAT solving approaches using so-called soft cardinality constraints. Algorithm 1 repres-
ents a generic abstraction of the core-guided approach using soft cardinality constraints to
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Algorithm 1 CG, a generic view on core-guided MaxSAT solving with soft cardinality
constraints.

Input: A MaxSAT instance F
Output: An optimal solution τ to F

1 begin
2 F1 ← F
3 for i = 1, . . . do
4 (res, κ, τ)← Extract-Core(F i,B(F i))
5 if res=”satisfiable” then return τ

6 wκ ← minw(κ)
7 for b ∈ κ do
8 w(b)← w(b)− wκ

9 F i+1 ← F i ∪Relax(κ, wκ)

MaxSAT solving. When invoked on an instance F , the algorithm begins by initializing a
working instance F1 to F on Line 2. Then the main search loop (Lines 3-9) is started. In
each iteration of the loop, a core of the current working instance F i is extracted on Line 4
using the assumption interface of the underlying SAT solver [14]. In Algorithm 1 the use
of the SAT solver is abstracted into the function Extract-Core that takes as input the
current instance and its blocking variables (to use as assumptions). The function returns a
triple (res, κ, τ). If res = ”satisfiable” then τ is an assignment satifying hard(F i) that sets
τ(b) = 0 for each b ∈ B(F i). Such τ has COST(F i, τ) = 0 and will be optimal for both F i

and F , so Algorithm 1 terminates and returns it (Line 5).
If the SAT solver instead reports unsatisfiable, it will return a core κ of F i expressed as a

subset of B(F i) (i.e. as a clause over blocking variables). Next, the variables in κ are refined
(Lines 6-8). During refinement, the weight of each blocking variable b ∈ κ is lowered by
minw(κ). An important intuition here is that at least one of the variables in κ will have its
weight set to 0, and will thus not be treated as a blocking variable in subsequent iterations.
Refining the blocking variables essentially corresponds to clause cloning via assumptions
(see, e.g., [11, 3, 21]), a common way for core-guided MaxSAT solvers to take soft clause
weights into account.

After refining the blocking variables, the core κ is relaxed on Line 9 via the function
Relax. Core-guided MaxSAT algorithms differ mainly in the specifics of the Relax function.
For each κ of F i, at least one variable in κ needs to be assigned to 1 by any optimal solution
to F i. Essentially all instantiations of Relax we are aware of relax the instance by adding
new clauses and blocking variables to F that allow, in a controlled way, a single blocking
variable in κ to be set to 1 in subsequent iterations. In this work we focus especially on the
transformation used by the OLL core-guided MaxSAT algorithm [26, 1], defined as follows.

▶ Definition 2. Given (κ, w) = ({b1, . . . , bn}, w), OLL implements Relax by adding
O(n log n) new variables and O(n2) new clauses corresponding to (

∑n
k=1 bk ≥ (i + 1))→ bκ

i

for i = 1, . . . , n− 1. Each bκ
i is a new blocking variable of weight w.

An informal argument for the correctness of OLL, i.e., the fact that the final assignment
returned by it will be an optimal solution to F , is as follows (a formal argument can be
found in [26]). Since κ is a core of F i, any optimal solution of F i will assign at least one
b ∈ κ to 1 (i.e., falsify at least one (¬b) ∈ κ on the clause-level). During refinement, at
least one blocking variable will have its weight lowered to 0 and will not be considered a
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blocking variable in subsequent iterations. This means that the SAT solver is free to assign
it to 1 in subsequent iterations. At the same time, the clauses added by Relax (detailed in
Definition 2) enforce that for any k > 1 number of blocking variables in κ assigned to 1, k− 1
of the new blocking variables will also be unit propagated to 1, thus incurring more cost. In
other words, the OLL relaxation allows one – but only one – of the blocking variables in κ to
incur cost “for free” in subsequent iterations.

In the rest of the paper we use the name OLL to refer to Algorithm 1 with Relax
instantiated as in Definition 2.

4 Structure Sharing for Improving Core-Guided MaxSAT Solvers

In this section we present structure sharing, the main contribution of this work. Structure
sharing is a technique that enables more compact core relaxation steps within the OLL
algorithm. In addition to requiring fewer clauses, we will also demonstrate that core
relaxation with structure sharing enables more propagation in the underlying SAT solver
during subsequent iterations.

We begin by discussing the totalizer encoding for cardinality constraints [9], a common
way of realizing the OLL algorithm, and weight-aware core extraction [11], a refinement to
the standard way in which OLL extracts cores. Both of these are central for understanding
structure sharing.

4.1 The Totalizer Encoding of Cardinality Constraints
For our purposes, a totalizer T (V ) over a set V = {v1, . . . , vn} of variables is a satisfiable CNF
formula that defines a set O(V ) = {o0, . . . , on−1} of output variables. Informally speaking,
the output variables count the number of input variables set to true by assignments satisfying
T (V ). More precisely, if τ satisfies T (V ), then τ(ok) = 1 if and only if

∑
v∈V τ(v) ≥ k + 1.

A common way of realizing the OLL algorithm – used for example in the state-of-the-art
solver RC2 – is to relax a core κ by adding a totalizer T (κ) to the instance and treating the
output variables of T (κ) as blocking variables in subsequent iterations, i.e., setting bκ

i = oi.
T (κ) can be viewed as a tree with |κ| leaves each associated with a distinct variable

of κ. As an example, Figure 1 (left) gives the tree representation of the totalizer T (κ)
over κ = {b1, b2, b3, b4}. The root of the tree is associated with the output variables of the
totalizer, i.e., the new blocking variables added when relaxing κ. Notice that since that the
definition of a core implies that at least one variable in κ is set to true by any solution, the
output variable bκ

0 of T (κ) is often omitted in realizations of OLL, including RC2.
The non-leaf internal nodes are associated with the so-called linking variables of T (κ) used

in the encoding of the semantics of the output variables. For an internal node D of a totalizer
T (κ), let S(D) ⊂ κ be the set of variables associated with the leaves of the subtree rooted
at D. The linking variables {dS(D)

0 , . . . , d
S(D)
|S(D)|−1} associated with D count the number

of variables of S(D) set to true by a satisfying assignment τ of T (κ). More precisely, if
τ satisfies T (κ), then τ(dS(D)

k ) = 1 if and only if
∑

b∈S(D) τ(b) ≥ k + 1. Essentially, the
linking variables of a totalizer can be viewed as the output variables of a sub-totalizer built
over S(D).

Consider a totalizer T (κ) and one of its output variable bκ
k . We say that the constraints

encoding
(∑

b∈κ b ≥ k + 1
)
→ bκ

k are the implication constraints of bκ
k . Analogously, we

say that the constraints encoding bκ
k →

(∑
b∈κ b ≥ k + 1

)
are the equivalence constraints

of bκ
k . The terminology is extended to linking variables d

S(D)
k ; the implication constraints
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Figure 1 The structure of totalizers built when relaxing cores {b1, b2, b3, b4} (left) and
{b3, b4, b5, b6} (right).
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Figure 2 Left: The structure of totalizers when relaxing the cores {b1, b2, b3, b4} and {b3, b4, b5, b6}
with structure sharing. Right: An alternative totalizer for relaxing {b1, b2, b3, b4}.

of d
S(D)
k encode

(∑
b∈S(D) b ≥ k + 1

)
→ d

S(D)
k and the equivalence constraints encode

d
S(D)
k →

(∑
b∈S(D) b ≥ k + 1

)
. The implication and equivalence constraints of the entire

T (κ) are then the implication and equivalence constraints of each of its output and linking
variables.

It is fairly straight-forward to show that for a realization of OLL that makes use of
totalizers, it is sufficient to add only the implication constraints of the totalizers that relax
cores. In fact – to the best of our understanding – most realizations of OLL that use totalizers
do not add equivalence constraints when relaxing cores at all. The motivation for leaving out
the equivalence clauses is to keep the size of the working instance smaller. While redundant in
the context of computing optimal solutions of MaxSAT instances, the equivalence constraints
of totalizers can however enable additional propagations in the SAT solver during subsequent
iterations.

▶ Example 3. Consider the two totalizer structures T (κ1) and T (κ2), depicted on the left
and right sides of Figure 1, respectively. Assume that we fix bκ1

1 = b5 = 1 and b2 = 0. The
implication clause (¬b5 ∨ e

{b5,b6}
0 ) of T (κ2) then propagates e

{b5,b6}
0 = 1. This is the the only

propagation that happens due to the implication constraints. The equivalence constraints of
T (κ1) additionally propagate d

{b1,b2}
1 = 0 due to the clause (¬d

{b1,b2}
1 ∨ b2) and d

{b3,b4}
0 = 1

due to the clause (¬bκ1
1 ∨ d

{b1,b2}
1 ∨ d

{b3,b4}
0 ).

4.2 Weight-Aware Core Extraction
Weight-aware core extraction (WCE) is an essential techniques towards structure sharing
as proposed in this work. Originally proposed for the PMRES [28] core-guided MaxSAT
algorithm in [11], WCE enables the extraction of multiple cores during a single iteration of
core-guided MaxSAT solving by using information on clause weights during core extraction.

Algorithm 2 details the generic abstraction CG discussed in Section 3 extended with
WCE. In short, the algorithm delays the core-relaxation steps as long as possible. When
a core κ is obtained, the blocking variables in κ are refined as before. However, instead of
immediately invoking Relax, CG+WCE instead stores (κ, minw(κ)) in a set K and invokes
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Algorithm 2 CG+WCE: CG with WCE.

Input: A MaxSAT instance F
Output: An optimal solution τ to F

1 begin
2 F1 ← F
3 for i = 1, . . . do
4 K ← ∅
5 while true do
6 (res, κ, τ)← Extract-Core(F i,B(F i))
7 if res=”satisfiable” then break
8 wκ ← minw(κ)
9 for b ∈ κ do

10 w(b)← w(b)− wκ

11 K ← K ∪ {(κ, wκ)}
12 if K = ∅ then return τ

13 F i+1 ← F i ∪
⋃

(κ,wκ)∈K Relax(κ, wκ)

the SAT solver again. Recall that the weight of at least one of the blocking variables in κ

will be lowered to 0 during variable refinement so it will not be treated as a blocking variable
in subsequent iterations. In other words, the next call to Extract-Core is guaranteed to
either obtain a new core, or report the instance to be satisfiable. When no new cores can be
found (i.e. the solver reports satisfiable) the algorithm relaxes all cores stored in K before
reriterating. Termination occurs when no new cores can be found between two relaxation
steps, that is when K = ∅ on line 12.

While WCE was shown to be effective for PMRES in [11], currently we are unaware of
any implementations of OLL that would make use of WCE. However, as we will discuss next,
WCE is instrumental in enabling structure sharing.

4.3 Structure Sharing for OLL
With the necessary background on totalizers and WCE in place, we turn to detailing structure
sharing. In order to motivate structure sharing we consider what happens when several,
possibly overlapping, cores are extracted and relaxed by OLL. In particular, consider an
instance F with hard(F) = {(b1 ∨ b2 ∨ b3 ∨ b4), (b3 ∨ b4 ∨ b5 ∨ b6)}, B(F) = {b1, . . . , b6},
w(b1) = w(b2) = w(b5) = w(b6) = 1 and w(b3) = w(b4) = 2. The two cores of F that are
important for our discussion are κ1 = {b1, b2, b3, b4} and κ2 = {b3, b4, b5, b6}. Note that since
2 = w(b3) = w(b4) > minw(κ1) = minw(κ2) = 1, both cores can be extracted by OLL.
Figure 1 depicts two totalizers T (κ1) and T (κ2) that can be built when OLL relaxes κ1 and
κ2. A key motivation for structure sharing is that both of these trees contain an internal
node D for which S(D) = {b3, b4}. As a consequence, the working instance obtained after
relaxing both cores contains separate clauses defining the linking variables d

S(D)
0 and d

S(D)
1

and e
S(D)
0 and e

S(D)
1 , even though the semantics of them are exactly the same.

By structure sharing in this example, we refer to sharing the subtree with the leaves
{b3, b4} between both T (κ1) and T (κ2), resulting in the structure depicted in Figure 2
(left). Generally, correctness of structure sharing follows from the fact that it does not
alter the semantics of the new blocking variables added in core relaxation. In addition to
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decreasing the size of the working instance (for example, the structures depicted in Figure 1
require in total 24 clauses while the equivalent single structure shown in Figure 2 (left) only
requires 21) structure sharing can also both decrease the number of – essentially unnecessary
– propagations that the SAT solver does in subsequent iterations, as well as increase the
number of further propagations. For an example of the former, note that when the two
totalizers are disjoint (as in Figure 1), fixing one of the variables in {b3, b4} to 1 propagates
both d

S(D)
0 = 1 and e

S(D)
0 = 1. In contrast, with structure sharing (Figure 2, left) only the

variable d
S(D)
0 = 1 is propagated. For an example of the latter, consider the following.

▶ Example 4. Consider the shared totalizer structure depicted in Figure 2 and assume again
the fixings bκ1

1 = b5 = 1 and b2 = 0. Similarly to Example 3, these propagate d
{b5,b6}
0 =

d
{b3,b4}
0 = 1. However, in this structure, the implication clause (¬d

{b3,b4}
0 ∨ ¬d

{b5,b6}
0 ∨ bκ2

1 )
also propagates bκ2

1 = 1. We emphasize that bκ2
1 = 1 can not be derived by unit propagation

alone in the disjoint structures depicted in Figure 1.

Recall that, while the implication constraints of totalizers are needed in order to compute
an optimal solution to a MaxSAT instance, the equivalence constraints are not. Instead,
there is an inherent-trade off between the number of equivalence clauses that are added,
and the number of additional propagations they enable. While extra propagations have
the potential of speeding up subsequent SAT solver calls, adding too many clauses may
instead end up slowing down the solver. Structure sharing seeks to limit the number of
equivalence clauses added by identifying which ones of them are most likely to result in
additional propagation. Example 4 offers some intuition on this. Note that propagating
bκ2

1 = 1 in the shared subtree does not require all of the equivalence constraints of the
structure. Instead, the equivalence constraints of all nodes except for the ones in the subtree
rooted at d

{b3,b4}
0 , d

{b3,b4}
1 suffice. We detail the realization of structure sharing and the

selective addition of equivalence constraints in the next section.

▶ Remark 5. We shortly note the distinguishing features of structure sharing as proposed
to related recently proposed techniques from the literature. The iterative encoding of
totalizers [23] allows for extending a single totalizer with more inputs. While commonly
used in MaxSAT algorithms that extend cardinality constraints during search (such as
MSU3 [3, 22]), in constrast to structure sharing, the iterative encoding it is not applicable
to OLL or PMRES. The WPM3 core-guided MaxSAT algorithm [5] uses the semantics of
blocking variables introduced during core relaxations to maintain knowledge of the global
core structure in order to obtain a better encoding of any core containing blocking variables
introduced in previous relaxation steps. However, in contrast to structure sharing, WPM3
does not maintain knowledge of blocking variables potentially being found in multiple cores.
If a set of previously relaxed blocking variables are extracted as part of a core, the structure
introduced by WPM3 will be disjoint from the structure introduced when originally relaxing
the variables. In this sense structure sharing as we propose it here is orthogonal to the ideas
of WPM3. Indeed, structure sharing and WCE could be integrated into WPM3 as well and
appears interesting future work. The abstract cores technique proposed in the context of
the implicit hitting set (IHS) approach to MaxSAT [10] also aims to build totalizers with
variables that often appear in cores together being assigned to the same subtree. However,
the abstraction sets over which totalisers are built in the abstract cores technique are not
overlapping. In that sense, the way totalisers are used in the abstract cores technique
resembles more closely the incremental encoding. Finally, the idea of sharing structure with
the aim of obtaining more effective representations of weight rules (tightly connected to
pseudo-Boolean constraints) in the context of answer set programming was explored in [13].
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4.4 Realizing Structure Sharing
Structure sharing is realized in an OLL algorithm making use of WCE with a greedy procedure.
Given a set K of cores to be relaxed, the procedure maintains a collection S of sets of blocking
variables initialized to K and proceeds iteratively. In each iteration the sets in S are compared
pairwise in order to find a maximal subset M of blocking variables shared by two sets in S.
After finding such M , the set S is refined by: i) adding a pointer s→M for each s ∈ S for
which M ⊆ s, ii) removing the variables of M from every set s ∈ S for which M ⊆ s and
iii) adding M to S. Finally, a totalizer is built for every set in S and linked following the
pointers, i.e., if there is a pointer a→ b for a, b ∈ S, then T (b) is linked as a subtree to T (a).

We note that the use of WCE is central in enabling structure sharing. This is due to the
fact that there are several possible totalizer structures for a core. Figure 2 (right) depicts
another possible structure of T (κ1) (from before) that does not include any subtrees that
can be shared with T (κ2) in Figure 1 (nor with any other possible structure of T (κ2)). The
existence of different choices of equivalent totalizer structures makes it very difficult – if not
impossible – to realize structure sharing without WCE. As an example, assume that OLL
without WCE is invoked on F and the core κ1 is extracted first. After refining the blocking
variables, a totalizer T (κ1) is built and added to the working instance. At this point, there is
no obvious reason to prefer either one of the structures depicted in Figure 1 left or Figure 2
(right) for building T (κ1); however, only the tree in Figure 1 enables structure sharing.

Selective Addition of Equivalences
After building shared totalizer structures for a set of cores, we next select which equivalence
constraints should be included in the working instance. Intuitively, the aim is to add – in
some sense – useful equivalence constraints that enable propagation without inflating the
size of the working instance beyond the capabilities of modern SAT solvers.

Example 4 provides more intuition. The additional propagation enabled by structure
sharing follows from the outputs of shared structures being propagated to 1. Furthermore, such
outputs are propagated to 1 due to either (i) the implication constraints of the substructure
itself (which have to be included anyway) or (ii) the equivalence constraints of the rest of
the structure.

More generally, we propose to selectively include equivalence constraints by looping over
the leaves of the structure – which are treated as roots of a subtree containing a single node –
and the roots of any shared subtrees. For each node two values are computed: 1) the number
of decisions needed before the equivalence constraints would propagate the shared variable to
true; the decisions are either setting some leaves outside the subtree to false, or setting the
output variables of the structure to true, and 2) the (estimated) total number of equivalence
clauses for the nodes outside of the subtree, which is quadratic in the number of leaves in
the structure outside of the subtree. If both of these numbers are below some user given
parameter, we include the equivalence constraints of all variables outside of the subtree.
Even in structures with shared subtrees both values are computed w.r.t. the totalizer tree
corresponding to a single core.

▶ Example 6. Consider the shared structure in Figure 2 and the root of the shared subtree
corresponding to the variables d

{b3,b4}
0 , d

{b3,b4}
1 . Assume that OLL has managed to derive

the unit clause (bκ1
1 ), i.e. fix bκ1

1 = 1. This could happen for example via the so-called
core-exhaustion heuristic [18]. In order for the equivalence constraints of the structure
corresponding to κ1 to propagate d

{b3,b4}
0 = 1 one more decision is needed, either b1 = 0,

b2 = 0 or bκ1
2 = 1. Similarly, in order for the equivalence constraints to propagate d

{b3,b4}
1 = 1
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two additional decisions are needed, one of the following four sets of alternatives: (i)
b1 = b2 = 0, (ii) bκ1

2 = 1 ∧ b1 = 0, (iii) bκ1
2 = 1 ∧ b2 = 0, or (iv) bκ1

2 = bκ1
3 = 1. As for the the

estimated number of equivalence clauses for the nodes outside of the subtree; in this case
there are two leaves outside of the subtree (b1, b2) so the estimate is 4 constraints.

Similarly, in order for the equivalence constraints of the structure corresponding to
κ2 to propagate d

{b3,b4}
0 = 1, two decisions are needed. One of the following four sets of

alternatives: (i) b5 = b6 = 0, (ii) bκ2
1 = 1∧ b5 = 0, (iii) bκ2

1 = 1∧ b6 = 0, or (iv) bκ2
1 = bκ2

2 = 1.
For propagating d

{b3,b4}
1 = 1 three decisions are needed, one of the following four sets of

alternatives: (i) b5 = b6 = 0∧ bκ2
1 = 1, (ii) bκ2

1 = bκ2
2 = 1∧ b5 = 0, (iii) bκ2

1 = bκ2
2 = 1∧ b6 = 0,

(iv) bκ2
1 = bκ2

2 = bκ2
3 = 1. This structure also has two leaves outside of the shared tree (b5, b6),

so the estimated number of added equivalence constraints is again 4.

5 Empirical Evaluation

We evaluate the impact of WCE and structure sharing on OLL. For the evaluation, we
extending the state-of-the-art RC2 MaxSAT solver [18] implementation of OLL with WCE
and structure sharing, using the RC2 version that performed best in MaxSAT Evaluation 2020.
The implementation is available online at: https://bitbucket.org/coreo-group/cgss/.

More specifically, we compare the following solvers:
RC2: the original RC2 solver from MaxSAT Evaluation 2020.
RC2*: our RC2 refactorization with a reimplementation of totalizers geared towards
implementing WCE and structure sharing (SS).
RC2*+WCE: RC2* extended with WCE.
RC2*+WCE+SS: RC2*+WCE extended with SS and selective addition of equival-
ences.

In the implementation of SS, we stop the greedy procedure for computing shareable struc-
tures once the set M containing overlapping blocking variables has |M | < 16. Furthermore,
for RC2*+WCE+SS we only add equivalence constraints of a node in a shared subtree if
doing so adds at most 50 clauses and at most 50 decisions are needed in order for the variable
to be propagated to 1. All of these parameter values were chosen based on preliminary
experimentation.

As benchmarks we used the combined set of 1033 weighted MaxSAT instances from
the complete tracks of MaxSAT Evaluation 2019 and 2020. The experiments were run
single-threaded using 2.6-GHz Intel Xeon E5-2670 processors. A per-instance time limit of
3600 seconds and a memory limit of 32GB was enforced.

Figure 3 (top) shows the effect of WCE and structure sharing on RC2. First, we observe
that our refactorization RC2* actually improves on the performance of RC2, improving on
the number of solved instances from 745 to 752. Employing WCE and SS allows for solving
the greatest number of 761 instances (RC2*+WCE+SS). The marginal impact of SS is
significant, as employing WCE alone allows for solving 756 instances (RC2*+WCE) (As a
side-note, to the best of our understanding, this is the first time that WCE is integrated to
OLL and shown to provide performance improvements).

For more details on impact of SS and in particular the idea of selective addition of
equivalences, consider Figure 3 (bottom). First recall that RC2*+WCE+SS employs
selective addition of equivalence. Now, RC2*+EQ, RC2*+WCE+EQ correspond to
RC2* and RC2*+WCE, respectively, which add all equivalence constraints of each totalizer
when relaxing cores. The solver RC2*+WCE+SS+EQ corresponds the modification of
RC2*+WCE+SS that adds all equivalence constraints of each totalizer. Somewhat

https://bitbucket.org/coreo-group/cgss/
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Table 1 Detailed comparison of RC2*, RC2*+WCE and RC2*+WCE+SS per benchmark domain.

Benchmark family RC2* RC2*+WCE RC2*+WCE+SS
solved PAR-2 solved PAR-2 solved PAR-2

wpms 3 18.12 3 19.68 3 18.18
dalculus 27 21.15 27 21.50 27 21.26
MLIC 5 58737.43 5 57821.14 5 57885.03
causal-discovery 18 62988.31 18 61955.50 19 56543.76
relational-inference 5 26912.08 5 27023.60 5 26886.39
tcp 20 23698.21 20 26803.44 19 30008.36
protein_ins 11 738.45 11 697.47 11 564.86
staff-scheduling 2 74402.74 2 74108.37 2 73207.89
planning 4 1.69 4 1.85 4 1.82
scSequencing 19 80608.19 19 80678.55 19 80650.86
ParametricRBAC 32 59118.70 32 59603.27 32 59639.39
InterpretableClassifiers 7 36057.44 7 36062.51 7 36056.42
auc_paths 8 910.97 8 310.29 8 396.19
csg_2020 30 231.39 30 277.10 30 230.93
scp 10 953.63 10 610.38 10 496.72
preference_planning 16 236.30 16 372.53 16 403.98
pseudoBoolean 8 7201.04 8 7201.07 8 7201.07
lisbon-wedding 6 131107.84 6 131112.42 6 133287.46
frb 19 175.57 19 1501.58 19 2168.53
qcp 9 5.04 9 5.05 9 5.05
log 3 43204.83 3 43202.23 3 43201.83
miplib 2 43294.76 2 43320.13 2 43297.22
warehouses 8 217.34 8 154.79 8 69.18
haplotyping-pedigrees 29 691.74 29 733.20 29 668.02
min-width 8 240055.37 8 238353.95 8 237878.82
drmx-atmostk 17 516.92 17 675.43 17 443.45
upgradeability 19 111.14 19 126.34 19 110.18
correlation-clustering 10 96843.58 11 89478.17 11 90682.68
maxcut 0 43200.00 0 43200.00 0 43200.00
packup 5 30.83 5 30.59 5 28.12
abstraction-refinement 11 9251.50 11 10153.65 11 8655.52
railroad_sc 0 43200.00 0 43200.00 0 43200.00
security-witness 30 10481.58 30 9973.36 30 9291.70
rna-alignment 23 99.31 23 133.67 23 100.90
drmx-cryptogen 17 2432.11 17 2541.40 17 2456.42
CSG 10 294.89 10 315.85 10 329.77
css-refactoring 11 179.67 11 243.71 11 166.37
Security-CriticalCyber 39 232.85 39 262.01 39 235.87
ramsey 2 93978.71 2 94221.14 3 89300.00
railroad_scheduling 0 57600.00 0 57600.00 0 57600.00
wcsp 21 7.39 21 6.95 21 7.07
set-covering 9 14668.38 9 14795.22 9 14719.04
max-realizability 25 47187.54 26 40544.80 26 40382.86
MinWeightDomSet 0 50400.00 0 50400.00 0 50400.00
BTBNSL 7 123625.64 8 118890.94 8 118397.70
auc_regions 6 9280.05 6 9315.44 7 1749.98
mpe 24 38815.48 26 23566.10 27 17579.18
max-prob-min-cuts 30 113.40 30 131.24 30 114.82
hs-timetabling 2 83441.11 2 82579.77 2 83541.69
metro 27 3971.78 27 3713.86 27 3833.46
timetabling 14 60924.14 15 56410.41 15 55920.20
spot5 8 22237.25 9 15141.17 8 21657.60
wcnf_gz 8 64828.57 8 64847.09 8 64841.45
up-up98 6 15.90 6 16.55 6 14.97
scpnr 0 14400.00 0 14400.00 0 14400.00
dimacs_mod 1 86516.74 1 86589.22 1 86609.38
af-synthesis 17 59316.18 15 65557.61 15 66009.69
railway-transport 2 23206.20 1 28971.47 1 28948.40
RBAC 9 154220.94 7 166452.75 8 160087.41
shiftdesign 16 6726.73 16 8060.46 16 6949.01
auctions 11 34949.24 13 21297.08 15 4909.61
binaryNN 4 12465.98 4 12696.34 4 12413.52
dir 2 8171.10 2 7317.87 2 7373.82
SUM 752 2169531.16 756 2135809.26 761 2097451.06
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Figure 3 Top: The effect of WCE and structure sharing (SS) on OLL.
Bottom: Effect of equivalence constraints on the different variants of OLL.

surprisingly, adding all equivalence constraints to the totalizers in RC2* actually increases
performance in our evaluation: RC2*+EQ solves 756 instances. In contrast, including all
equivalence constraints into RC2*+WCE degrades performance, RC2*+WCE+EQ solves
754 instances. Furthermore, RC2*+WCE+SS+EQ exhibits slightly weaker performance
than RC2*+WCE+SS, solving in total 760 instances.

Further detailed results are provided in Table 1. Here we detail for each of the 63
benchmark domains within the benchmark set, the number of instances solved and the
PAR-2 score (i.e. cumulative runtimes, with timeouts penalized by a factor of 2) of RC2*,
RC2*+WCE and RC2*+WCE+SS. We observe that RC2*+WCE+SS solves the
greatest number of instances in 5 domains and obtains the best (lowest) PAR-2 score in
22 further domains, achieving overall a PAR-2 score that is ∼ 98% of the PAR-2 score of
RC2*+WCE and ∼ 96% of the PAR-2 score of RC2*.

Figure 4 demonstrates the relative number of variables and clauses added during the
solving process. In more detail, Figure 4 (top) provides a comparison of the the relative
of implication constraints added during solving by RC2*+WCE and RC2*+WCE+SS.
Here the height of the bar at a x-axis value p gives the number of instances for which the
number of implication constraints introduced by RC2*+WCE+SS was p% of the number
of implication constraints introduced by RC2*+WCE. We observe that structure sharing
indeed decreases the number of implication constraints added on a significant number of
instances. At times RC2*+WCE+SS adds less than 20% of the implication constraints
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Figure 4 Impact of structure sharing on the number of implication clauses (top) and the number
of variables (middle); impact of selective addition of equivalences on the number of equivalence
constraints (bottom).

added by RC2*+WCE. Figure 4 (middle) analogously provides the relative number of
variables introduced. We again observe that for many benchmark instances the working
instance of RC2*+WCE+SS contains fewer variables than the one of RC2*+WCE.
Finally, Figure 4 (bottom) provides the relative number of equivalence constraints introduced
by RC2*+WCE+SS and RC2*+WCE+SS+EQ. We observe that selective addition of
equivalences introduces fewer clauses in many instances, which together with the runtime
results presented in Figure 3 (bottom) suggests that the technique achieves the desideratum of
introducing fewer equivalence clauses without sacrificing the potential benefits (for example,
in the form of additional propagations).

Finally, we note that structure sharing is a general technique and not limited to the OLL
algorithm. In order to demonstrate this, we reimplemented the PMRES algorithm in the
same framework as RC2 (based on PySAT [17]). Figure 5 demonstrates the effect of WCE
and structure sharing on the PMRES algorithm. We observe that both WCE and SS have a
significant positive impact on the performance of PMRES, improving from 674 instances
solved by the base algorithm to 679 when extended with WCE and further improving the
number of solved instanced to 693 when extended by SS.
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Figure 5 The effect of WCE and structure sharing (SS) on PMRES.

6 Analysis on the Impact of WCE on OLL

Finally, complementing the empirical observations on the impact of WCE on OLL, we provide
theoretical insights into the effects of weight-aware core extraction on the OLL algorithm.
In particular, while the original paper proposing WCE [11] demonstrated its effectiveness
on the PMRES algorithm in practice, it did not provide insight into the effect that WCE
can have on core-guided MaxSAT algorithms on a theoretical level. In this section, we show
that WCE can both decrease, and increase the number of iterations required by the OLL
algorithm, depending on the instance. (We note that these observations extend to PMRES
in a relatively straightforward way.)

In the following, let OLL be Algorithm 1 with Relax instantiated according to Defini-
tion 2 and OLL+WCE the OLL algorithm extended with WCE.

The following observation will be useful in the analysis.

▶ Observation 7. Invoke Algorithm 1 on instance F . Assume that (κ1, . . . , κn) is the sequence
of cores extracted after n iterations. Then

∑n
i=1 minw(κi) ≤ COST(F). Furthermore,

equality holds only if Algorithm 1 terminates after relaxing all of the cores.

In other words, cores extracted by Algorithm 1 provide a lower bound on the optimal cost,
and the algorithm terminates only when that lower bound equals the optimal cost.

Observation 7 forms the basis for a heuristic that is employed by most implementations
of core-guided MaxSAT solvers that we are aware of. We say that Algorithm 1 uses bounds
if it maintains a lower bound LB – computed using Observation 7 – on the optimal cost of
the instance F being solved. As soon as any solution τ is obtained, its cost COST(F , τ) is
compared to the lower bound. If LB = COST(F , τ), the algorithm immediately terminates,
without invoking Relax. In our setting, intermediate solutions are only obtained by
OLL+WCE. In practice, implementations of OLL also obtain non-optimal solutions during
search via the so-called stratification [2] heuristic.

WCE can allow Algorithm 1 using bounds to terminate without relaxing any cores.
Consider an instance Fn with B(Fn) = {b1, . . . , bn+3} that contains the clauses (bi ∨ bn+2)
for i = 1 . . . n + 1 and (bn+1 ∨ bn+3). Assume that w(bi) = 1 for i = 1 . . . (n + 1), (n + 3)
and w(bn+2) = n + 2. This instance has one optimal solution τ of cost COST(Fn, τ) =
COST(Fn) = n + 1 that sets τ(bi) = 1 for i = 1 . . . (n + 1) and τ(bn+2) = τ(bn+3) = 0.

▶ Proposition 8. Algorithm 1 extracts n + 1 cores when computing an optimal solution
to Fn.
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Figure 6 Structure of Fn in Observations 12 and 13. The ellipses and rectangles illustrate the
clauses.

Proof (Sketch). The result follows from the fact that any core κ extracted by Algorithm 1
on Fn must have minw(κ) = 1. This by Observation 7 implies that termination occurs only
after n + 1 cores have been extracted. ◀

▶ Proposition 9. OLL+WCE using bounds can terminate without relaxing any cores when
invoked on Fn.

Proof. Let the first core extracted be {bn+1, bn+2}. The weight of both bn+1 and bn+2 is
then lowered by 1 before invoking the SAT solver again. In the second iteration, the set
B(F1) contains {b1, . . . , bn, bn+2, bn+3}. Assume that the algorithm continues in a similar
manner, iteratively extracting a core of the form {bi, bn+2} for each i = 1 . . . (n + 1). Each
extracted core κ will have minw(κ) = 1, so at this point LB = n + 1. In the next SAT solver
call B(F1) = {bn+2, bn+3} so the solver is invoked assuming bn+2 = bn+3 = 0. The instance is
satisfied by an assignment τ that sets τ(bi) = 1 for i = 1 . . . (n+1) and τ(bn+2) = τ(bn+3) = 0.
This solution has COST(Fn, τ) = n + 1 = LB so OLL+WCE terminates without invoking
the function Relax. ◀

We thereby arrive at the following.

▶ Theorem 10. There is a family of MaxSAT instances Fn with |B(Fn)| = O(n) on which
OLL using bounds is guaranteed to relax n cores, while OLL+WCE using bounds can
terminate without relaxing any cores.

In other words, there are instances on which the core relaxation steps of Algorithm 1 are
redundant. In addition to (unnecessarily) increasing the size of the working instance, the
redundant core relaxation steps can also increase the size of the MUSes of the working
instance.

▶ Observation 11. Invoke OLL on Fn and assume that the first core extracted is κ =
{bn+1, bn+2}, (the same as in the proof of Proposition 9). After refining the set of blocking vari-
ables and relaxing κ, the next working instance F2 has B(F2) = {b1, . . . , bn, bn+2, bn+3, bκ

1},
where bκ

1 is the new blocking variable introduced by Relax. The set {b1, bn+3, bκ
1} is an MUS

of F2 of size 3, i.e., larger than any of the MUSes of Fn. Note that all MUSes of Fn are of
size 2 and that Algorithm 1 only extracts MUSes of Fn in the proof of Proposition 9.

So far we have shown that WCE can lower the number invocations of Relax of Al-
gorithm 1, thus decreasing the complexity of the working instance which alleviates a main
bottleneck of core-guided MaxSAT solvers. However, we can also identify that WCE
may also increase the number iterations. In the following, consider the instance Fn with
hard(Fn) = {(bi

1 ∨ bi
2), (bi

1 ∨ bx), (bi
2 ∨ bx) | i = 1 . . . n} ∪ {(b1

1 ∨ b1
2 ∨ b2

1 ∨ b2
2 ∨ · · · ∨ bn

1 ∨ bn
2 )},

B(Fn) = {bx} ∪ {bi
1, bi

2 | i = 1 . . . n} and w(bi
1) = n, w(bi

2) = n + 1 for i = 1 . . . n as well as
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w(bx) = n. The optimal cost of the instance is COST(Fn) = n2 + n and an example of an
optimal solution τ sets τ(b1

1) = τ(b2
1) = . . . = τ(bn

1 ) = τ(bx) = 1 and τ(bj
2) = 0 for j = 1 . . . n.

The structure of Fn is shown in Figure 6.

▶ Observation 12. Invoke OLL using bounds on Fn. Assume that the first core extracted
is κ1 = {bi

1, bi
2 | i = 1 . . . n} with minw(κ1) = n. After the first invokation of Relax, the

working instance F2 has B(F2) = {bi
2 | i = 1 . . . n}∪{bx}∪{bκ1

1 , . . . , bκ1
2n−1}. In the next n−1

iterations, the algorithm can extract and relax the cores κ2 = {bκ1
1 }, . . . , κn = {bκ1

n−1} and
finally the core κn+1 = {bκ1

n , bx}, all having minw(κi) = n. As
∑n

i=1 minw(κi) = n2 + n =
COST(Fn) the algorithm will terminate after relaxing all n + 1 of these cores.

▶ Observation 13. Invoke OLL+WCE using bounds on Fn. Assume that the first core
extracted is κ1 = {bi

1, bi
2 | i = 1 . . . n} with minw(κ1) = n. After refining the blocking

variables, the instance will have B(F1) = {bi
2 | i = 1 . . . n} ∪ {bx} with w(bi

2) = 1 for all
i = 1 . . . n and w(bx) = n. There are still n more cores of the form κi = {bi

2, bx} with
minw(κi) = 1 to extract before the Relax function is invoked. Notice that these cores can
be extracted in any order. At this point, n + 1 cores (κ1, . . . , κn+1) have been extracted. Since∑n+1

i=1 minw(κi) = 2n < n2 + n (for n > 1), the algorithm does not terminate on the next
SAT solver call; in particular, the algorithm needs to extract more than n + 1 cores before
terminating.

Thereby we arrive at the following.

▶ Theorem 14. For every n ∈ N, there is a MaxSAT instance Fn with |B(Fn)| = O(n),
and a core κ of Fn such that if κ is the first core extracted, then (i) OLL can terminate
after extracting and relaxing in total n + 1 cores, while (ii) OLL+WCE has to extract at
least n + 2 cores before terminating.

7 Conclusions

The exact details of the transformations steps, which compile a newly extracted unsatisfiable
core into the current working instance, are a key to efficient core-guided MaxSAT solving,
and this is also where the various existing core-guided MaxSAT algorithms differ. We
proposed a novel form of structure sharing that can be applied within the core extraction
steps, aiming at speeding up runtimes of the core-guided approach as well as avoiding
unnecessary introduction of additional variables and clauses to the working instances during
iterations of the algorithms. In contrast to earlier approaches to lowering the number of
introduced variables and clauses via incremental cardinality constraints, structure sharing is
an intrinsically different approach. In particular, it builds on weight-aware core extraction,
which allows for extracting multiple cores during a single iteration from weighted MaxSAT
instances, and exploits shared substructures among cores for structure sharing. Putting
structure sharing into practice in a state-of-the-art core-guided MaxSAT solver, we showed
that structure sharing in combinations with WCE provides empirical runtime improvements.
In addition to these main contributions, we also provided a theoretical analysis of the worst
and best case impact of WCE on the central OLL MaxSAT algorithm.
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Abstract
In CP, the most efficient model solving the TSP is the Weighted Circuit Constraint (WCC) combined
with the k-cutset constraint. The WCC is mainly based on the edges cost of a given graph whereas
the k-cutset constraint is a structural constraint. Specifically, for each cutset in a graph, the k-cutset
constraint imposes that the size of the cutset is greater than or equal to two. In addition, any
solution contains an even number of elements from this cutset. Isoart and Régin introduced an
algorithm for this constraint. Unfortunately, their approach leads to a time complexity growing
with the size of the considered cutsets, i.e. with k. Thus, they introduced an algorithm with a
quadratic complexity dealing with k lower or equal to three. In this paper, we introduce a linear
time algorithm for any k based on a DFS checking the consistency of this constraint and performing
its filtering. Experimental results show that the size of most of the k-cutsets is lower or equal than 3.
In addition, since the time complexity is improved, our algorithm also improves the solving times.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases k-Cutset, TSP, Linear algorithm, Constraint

Digital Object Identifier 10.4230/LIPIcs.CP.2021.29

Funding This work has been supported by the 3IA Côte d’Azur with the reference number ANR-19-
P3IA-0002.

1 Introduction

The Traveling Salesman Problem (TSP) is a fundamental graph theory problem. It consists
in finding a minimum cost cycle in a graph visiting all nodes. The TSP appeared in numerous
domains such as biology with genome sequencing, industry with scan chains and electronic
component drilling problems, positioning of very large telescopes, data clustering, scheduling
problems and many others. The applications of TSP make it as fundamental as interesting:
it is often an underlying problem of real-world problems.

Like many real-world problems, the search for the existence of a TSP is NP-Complete
and finding the optimal one is NP-Hard. Thus, all classical methods designed for solving
NP-Hard problems have been tried (MIP, CP, SAT, . . .).

In order to solve the optimization version of the TSP without side constraints, the most
efficient method is based on MIP: the so-called specialized solver Concorde [1]. It is mainly
based on an LP relaxation of the TSP obtained by relaxing the integrity and the subtour
constraints in combination with structural cutting planes. Indeed, a large number of cutting
plane algorithms correct the structural defects of the LP relaxation lower bound. Simple
ones such as imposing the 2-connectivity of a graph, and more complex ones such as the
so-called Comb inequalities. Nevertheless, no polynomial time algorithm is known at this
time to detect whether a graph does not violate a Comb inequality. Thus, a large number
of polynomial algorithms have been developed in order to consider only particular cases of
Comb inequalities [4, 6, 3, 13].
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29:2 A Linear Time Algorithm for the k-Cutset Constraint

However, it appears that a TSP is often combined with other constraints. For instance,
precedence constraints, TSPTW where there is a time window to visit a node. Thus, Concorde
can no longer be used for these problems and CP becomes a good candidate because it is
more robust to side constraints. The most efficient method at this time solving the TSP in
CP is the Weighted Circuit Constraint (WCC) [2] in combination with the structural k-cutset
constraint [10]. The optimization part of the WCC is based on the Lagrangian Relaxation
(LR) of Held and Karp [8, 9]. The lower bound of the LR is computed by selecting a node x

with its two lowest cost neighbors and a minimum spanning tree in the graph without x,
i.e. a 1-tree. If we find a minimum 1-tree such that all its nodes have exactly two neighbors,
then an optimal solution is obtained. Thus, the 1-tree is derived through the LR process
until an optimal solution is obtained. Unfortunately, solving optimally the TSP with a LR
can be extremely slow. The WCC integrates filtering algorithms based on the edge costs, the
1-tree cost and a degree constraint on the nodes. With this model, Benchimol et al. were
able to obtain a competitive method with Concorde for problems with less than 100 nodes.
In addition, the integration of the k-cutset constraint improved the competitiveness of this
method. The idea of this constraint is that each cutset of a graph must contain at least two
edges and any solution contains an even number of elements from this cutset. Actually, the
CP model is based on a single graph variable with mandatory and optional edges. Thus, the
k-cutset constraint tries to detect inconsistency in mandatory edges and to filter optional
edges.

Figure 1 Graph kroA150 from TSPLib [14] while solving in a CP solver. K1 is a 2-cutset and
K2 is a 4-cutset.

For instance, we show two k-cutsets in the graph of Figure 1. The 2-cutset K1 contains 2
edges and the 4-cutset K2 contains 4 edges.

Isoart and Régin [10] introduced a quadratic algorithm for the k-cutset constraint checking
the consistency and performing some filtering operations. It is based on a 2-edge-connected
subgraph and Tsin’s algorithm [18]. Note that their algorithm only handle k ≤ 3. This
limitation is set because the number of k-cutsets in a graph is exponential: this corresponds
to all possible partitions of the graph nodes, i.e. 2n. However, we are not interested in all of
them. The ones we are interested in are the k-cutsets containing k or k− 1 mandatory edges
in the graph. In addition, there are at most n mandatory edges in any TSP solution.

In this paper, we show that it is sufficient to study a set of k-cutsets lower than or equal
to n in order to obtain a complete filtering. Moreover, we introduce a linear time algorithm
for the k-cutset constraint for any k.
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This article is organized as follows: first, we recall some concepts of graph theory. Then,
we introduce the TSP in CP with the k-cutset constraint. Next, we define a new linear time
algorithm for the k-cutset constraint. Finally, we discuss some experiments and we conclude.

2 Preliminaries

2.1 Definitions
The definitions about graph theory are taken from Tarjan’s book [17].

A directed graph or digraph G = (X, U) consists of a node set X and an arc set U ,
where every arc (xi, xj) is an ordered pair of distinct nodes. We note X(G) the set of nodes
of G such that n = |X(G)| and U(G) the set of arcs of G such that m = |U(G)|. In addition,
U(i) is the set of adjacent edges of i. The cost of an arc is a value associated with the arc.
An undirected graph is a digraph such that for each arc (xi, xj) ∈ U , (xi, xj) = (xj , xi).
A multigraph is a digraph such that it can exist arcs that are not unique. If G1 = (X1, U1)
and G2 = (X2, U2) are graphs, both undirected or both directed, G1 is a subgraph of
G2 if X1 ⊆ X2 and U1 ⊆ U2. A path from node x1 to node xt in G is a list of nodes
[x1, . . . , xt] such that (xi, xi+1) is an arc for i ∈ [1..k − 1]. The path contains node xi for
i ∈ [1..k] and arc (xi, xi+1) for i ∈ [1..k − 1]. The path is simple if all its nodes are distinct.
The path is a cycle if k > 1 and x1 = xt. A cycle is Hamiltonian if [x1, . . . , xk−1] is a
simple path and contains every node of X. The cost of a path p, denoted by w(p), is the
sum of the costs of the arcs contained in p. For a graph G, a solution to the traveling
salesman problem (TSP) in G is a Hamiltonian cycle HC ∈ G minimizing w(HC). An
undirected graph G is connected if there is a path between each pair of nodes, otherwise it
is disconnected. The maximum connected subgraphs of G are its connected components.
A k-edge-connected graph is a graph in which there is no edges set of cardinality strictly
less than k disconnecting the graph. A tree is a connected graph without a cycle. A tree
T = (X ′, U ′) is a spanning tree of G if X ′ = X and U ′ ⊆ U . The U ′ edges are the tree
edges T and the U − U ′ edges are the non-tree edges T . A minimum spanning tree
T = (X ′, U ′) is a spanning tree minimizing the cost of the tree edges. A bridge is an edge
such that its removal increases the number of connected components. A partition (S, T ) of
the nodes of G such that S ⊆ X and T = X−S is a cut. The set of edges (xi, xj) ∈ U having
xi ∈ S and xj ∈ T is the cutset of the (S, T ) cut. A k-cutset is a cutset of cardinality k.

2.2 TSP in CP
The current best CP method solving the TSP is a combination of the Weighted Circuit
Constraint (WCC) [2] and the structural constraint k-cutset [10]. The WCC is mainly based
on the 1-tree Lagrangian Relaxation (LR) of Held and Karp [8, 9]. Intuitively, the LR derives
a lower bound of the TSP (here, the 1-tree) until a solution of the TSP is found. A 1-tree
is a minimum spanning tree in G = (X − {x}, U) such that x ∈ X is connected by its two
nearest neighbors to the minimum spanning tree. Thus, a 1-tree covers the whole graph
with n edges and a single cycle. In addition, if the 1-tree satisfies the degree constraint
(each node of the 1-tree has exactly two neighbors), then the 1-tree is an optimal solution
of the TSP. Therefore, the goal is to minimize the number of nodes that violate the degree
constraint in the 1-tree. To do so, this constraint is integrated into the objective function
and a Lagrangian multiplier πi is associated to each node i. Let di be the degree of the node
i in the 1-tree. For each node i of the graph, if di < 2, then πi is decreased. Otherwise, if
di > 2, then πi is increased. Next, the edge cost w((i, j)) is modified such that w′((i, j)) is
the modified cost and w′((i, j)) = w((i, j)) + πi + πj . Finally, we obtain an optimal solution
of the TSP by computing a succession of 1-trees and modifying the edge costs.

CP 2021
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However, experiments shown a very slow convergence toward the optimal solution. Thus,
the WCC integrates the following filtering algorithms based on the costs:

If an edge e does not belong to any 1-tree with cost smaller than a given upper bound,
then e can be safely deleted.
If an edge e belongs to all 1-trees with cost smaller than a given upper bound, then e is
mandatory.

In addition, the WCC integrates a structural constraint imposing that each node has
exactly two neighbors, i.e. the degree constraint.

Next, for each cutset of size k, the k-cutset constraint imposes that an even number of
edges is mandatory. In practice, the study is limited to k ≤ 3 because the given algorithm
has a complexity growing with k. In addition, the interaction of the filtering algorithms
and the convergence of the Lagrangian relaxation is not straightforward. Thus, Isoart and
Régin [11] introduced an adaptive method in order to improve overall solving times.

About the search strategy, it consists in making a binary search where a left branch is an
edge assignment and a right branch is an edge removal. More precisely, we use the search
strategy LCFirst of Fages et al. [5] which is an interpretation of Last Conflict heuristics [7, 12]
for graph variables. It selects one edge in the graph according to a heuristic and keeps
branching on one extremity of this edge until the extremity is exhausted. Note that it keeps
branching even if a backtrack occurs. Thus, it is a highly dynamic search strategy that learns
from previous choices. Moreover, most of the search strategies are much more efficient (up
to an order of magnitude) when LCFirst is used. In practice, we observe that using LCFirst
strongly interferes with the Lagrangian relaxation and filtering algorithms.

In addition, the WCC uses a single undirected graph variable G = (X, M, O) where all
nodes are mandatory. Without loss of generality, we note O the set of optional edges, M the
set of mandatory edges such that O ∪M = U and O ∩M = ∅. In addition, M is a growing
set and O is a shrinking set. Since we search for a solution of the TSP, when a solution is
found, |M | = n and O = ∅.

2.3 The k-cutset constraint
We previously said that the purpose of the k-cutset constraint is to ensure for each cutset
in G = (X, M, O) that a strictly positive and even number of edges are mandatory in any
solution. To do so, Isoart and Régin [10] have shown the following proposition:

▶ Proposition 1. Given K a k-cutset, then any Hamiltonian cycle C contains an even and
strictly positive number of edges from K.

Since G contains mandatory and optional edges, a k-cutset of G can be partitioned into
two disjoint subsets of O and M . Therefore, we note a k-cutset K = (M ′, O′) of G such that
M ′ ⊂M and O′ ⊂ O.

▶ Definition 2. For each k-cutset K = (M ′, O′), the k-cutset constraint ensure that |M ′|+
|O′| ≥ 2 and |M ′| is even if O′ = ∅.

From Definition 2, we can therefore define the following consistency checks:

▶ Corollary 3. If there is a k-cutset in G such that k < 2, then there is no solution for
TSP(G).

▶ Corollary 4. If there is a k-cutset in G containing k mandatory edges such that k is odd,
then there is no solution for TSP(G).
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In addition, we can define from Definition 2 the following filtering rules:

▶ Corollary 5. Given a 2-cutset K = (M ′, O′) in G. Then, the edges of O′ must become
mandatory (M ←M + O′).

▶ Corollary 6. If there is a k-cutset K in G containing k − 1 mandatory edges such that k

is odd, then the non-mandatory edge e of K can be safely deleted (O ← O − {e}).

▶ Corollary 7. If there is a k-cutset K in G containing k − 1 mandatory edges such that k

is even, then the non-mandatory edge e of K must become mandatory (M ←M + {e}).

Therefore, Corollary 3 and 4 allow checking the consistency, Corollary 5 and 7 allow
finding mandatory edges, Corollary 6 allows removing edges.

Figure 2 Representation of the graph from Figure 1 with mandatory edges (blue) and optional
edges (dark). The two k-cutsets K1 and K2 are displayed in red.

For instance, we can deduce in Figure 2 that for the 2-cutset K1, all the K1 edges become
mandatory by Corollary 5 or 7. Moreover, the 4-cutset K2 is valid because the k-cutset
constraint is consistent (K2 contains only mandatory edges and |K2| = 4 is even).

▶ Definition 8. A k-cutset K = (M ′, O′) is failing if |M ′| = k and k is odd.

▶ Definition 9. A k-cutset K = (M ′, O′) is prunable if k > 1 and |M ′| = k− 1 and |O′| = 1.

In order to find failing and prunable k-cutsets, Isoart and Régin [10] have developed an
algorithm in O(n(n + m)). It finds all the k-cutsets such that k ≤ 2 and all the 3-cutsets
K = (M ′, O′) such that |M ′| > 0. For k = 1 and k = 2, they use the non-trivial Tsin’s
algorithm [18] finding all cutsets of size smaller than or equal to 2 in a graph using a DFS in
O(n+m). For 3-cutsets K = (M ′, O′) such that |M ′| > 0 in G = (X, U), the main idea is the
following: for each mandatory edge em, we look for the 2-cutsets in G = (X, M − {em}, O).
Since there are at most n mandatory edges in a TSP solution, this leads to a time complexity in
O(n(n+m)). In addition, they give some practical improvements greatly reducing the number
of considered mandatory edges em. For instance, they suggest using a 2-edge-connected
subgraph of G minimizing the number of mandatory edges since all the 3-cutsets have at least
2 edges in this subgraph. Thus, it leads to the following algorithm: for each mandatory edge
em in the 2-edge-connected subgraph, we look for the 2-cutsets in G = (X, M − {em}, O).

Therefore, Corollary 3 and 5 are checked with Tsin’s algorithm in O(n+m). Corollary 4, 6
and 7 are checked for k ≤ 3 in O(n(n+m)) with the algorithm described above. Finally, they
have shown that the use of the k-cutset constraint allows reducing the number of backtracks
by an order of magnitude with static strategies. Moreover, a gain of about a factor of 2 in
solving times is obtained.

CP 2021
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In the next section, we will introduce an algorithm enforcing the k-cutset constraint
(i.e. checking Corollary 3, 4, 5, 6 and 7) for all k in O(n + m).

3 A linear time algorithm

▶ Definition 10. A mandatory path of G is a path p = [x1, ..., xk] in G such that for each
i ∈ [1, k − 1], the edge (xi, xi+1) is mandatory.

▶ Definition 11. A path-merged graph Gp−m of G is the graph G such that for each
mandatory path p = [x1, ..., xk] of G and k > 2, the nodes from x2 to xk−1 are removed and
a mandatory edge (x1, xk) is added.

▶ Definition 12. Given X ′ a set of nodes. The merge of X ′ is a mapping from all nodes of
X ′ to a single node.

▶ Definition 13. Given Gp−m = (Xp−m, Mp−m, O) a path-merged graph. A merged graph
Gm of Gp−m is the multigraph Gp−m such that each connected component of the subgraph
Gopt = (Xp−m, ∅, O) of Gp−m are merged.

▶ Definition 14. Given Gp−m = (Xp−m, Mp−m, O) a path-merged graph. A 2-merged
graph G2 −m of Gp−m is the multigraph Gp−m such that each 2-edge-connected component
of the subgraph Gopt = (Xp−m, ∅, O) of Gp−m are merged.
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Figure 3 Given G a 2-edge-connected graph. Gp−m is the path-merged graph of G such that the
mandatory paths are p1 = [A, J, H] and p2 = [B, K, D]. Gm is the merged graph of Gp−m. G2−m is
the 2-merged graph of Gp−m.

For instance, Figure 3 shows an example of Definition 11, 13 and 14.
Without loss of generality, we will consider that G is connected. In addition, we will

use Gp−m = (Xp−m, Mp−m, O) the path merged graph of G, Gm = (Xm, Mm, ∅) the merged
graph of Gm and Gopt = (Xp−m, ∅, O) the subgraph Gp−m containing only optional edges.
Each removed nodes of G in Gp−m are connected with exactly two mandatory edges (thanks
to the degree constraint of the WCC) and each path is replaced by a single mandatory edge.
Therefore, we will often consider Gp−m instead of G.

3.1 Consistency Check
In order to determine whether G is consistent with the k-cutset constraint, we must check
Corollary 3 and Corollary 4. We can check Corollary 3 with Tarjan’s algorithm [16]. Using a
DFS, it finds all the bridges of a graph (i.e. the 1-cutsets) in O(n + m). Checking Corollary 4
requires to check for the existence of a failing k-cutset. We will show that it can be done in
linear time with Proposition 16.
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▶ Definition 15. Given X ′ a set of nodes. We note M+(X ′) = {(i, j)|(i, j) ∈M, i ∈ X ′, j ̸∈
X ′} the set of outoing mandatory edges of X’ in M.

▶ Proposition 16. There is no failing k-cutset in Gp−m if and only if there is no connected
component X ′ in Gopt such that |M+(X ′)| is odd.

Proof. We note (i) there is no failing k-cutset in Gp−m and (ii) there is no connected
component X ′ in Gopt such that |M+(X ′)| is odd.

(i)⇒ (ii) By definition, if there is no failing k-cutset in G, then there is no connected
component X ′ in Gopt such that |M+(X ′)| is odd.

(i)⇐ (ii) If a non-empty k-cutset K cuts a connected component of Gopt, then K contains
optional edges since Gopt is the graph of optional edges. Therefore, a k-cutset containing
only mandatory edges cannot cut a connected component of Gopt. Then, the failing k-cutsets
are obtained by partitioning the connected components of Gopt in Gp−m, i.e. all the k-cutsets
of the merged graph.

For each S ⊂ Xm, the cutset size of the cut (S, Xm − S) can be computed as follows: (1)
make the sum of the number of adjacent edges of each node of S, then (2) subtract twice the
number of edges (i, j) such that i and j belong to S (an edge connecting two nodes of S is
counted twice in (1)). Since we consider that (ii) is true, the sum obtained by (1) is even.
(2) substract an even number to the sum obtained by (1). Therefore, the cutset size is even
and there is no failing k-cutset in Gp−m. ◀

Figure 4 Representation of Gopt such that G is the graph of Figure 2.

For instance, in Figure 4, we notice that there are two connected components connected
by 4 mandatory paths in Figure 2, so the k-cutset constraint is consistent with the graph of
Figure 2. In addition, if we consider Gm of Figure 3, there is no failing k-cutset and each
node has an even number of adjacent edges.

Then, we can describe an algorithm. First, compute the connected components of
Gopt. Then, for each mandatory edge of M having its two endpoints in two different
connected components of Gopt, we increase the number of mandatory outgoing edges for
these connected components. Finally, we iterate on the connected components. If there is
a connected component with an odd number of mandatory outgoing edges, then there is a
failing k-cutset in G. The computation of the connected components of Gopt can be done in
O(n + m) with a DFS. The iteration over the mandatory edges of M can be done in O(n).
The check of the number mandatory outgoing edges for the connected components can be
done in O(n). Thus, we can test the consistency of the k-cutset constraint in O(n + m).

CP 2021
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3.2 Pruning
Corollary 5, 6 and 7 define filtering rules for the k-cutset constraint. First, Corollary 5 can
be enforced with Tsin’s algorithm [18]. It performs a single DFS in order to find all the
2-cutsets in a given graph, so it has a time complexity in O(n + m).

In order to enforce Corollary 6 and 7, we need a method finding all k-cutsets having
exactly k − 1 mandatory edges, i.e. the prunable k-cutsets. Given a prunable k-cutset
K = (M ′, O′) of G. If M ′ is removed, then the edge of O′ is a bridge of G since |O′| = 1.
Formally, we define it in Proposition 17. We will exploit those bridges in order to enforce
Corollary 6 and 7.

▶ Proposition 17. If K = (M ′, O′) is a prunable k-cutset of G, then the edge of O′ is a
bridge in G′ = (X, M −M ′, O).

Proof. A prunable k-cutset K = (M ′, O′) contains exactly k − 1 mandatory edges and 1
optional edge. Thus, removing the k − 1 mandatory edges in G transform K in a 1-cutset,
i.e. in a bridge. ◀

▶ Corollary 18. If K = (M ′, O′) is a prunable k-cutset of G, then the edge of O′ is a bridge
in Gopt.

Proof. For each prunable k-cutset K = (M ′, O′), M ′ ⊆M . Thus, from Proposition 17, the
edge of O′ is a bridge in G′ = (X, ∅, O). Therefore, it is a bridge in Gopt = (Xp−m, ∅, O). ◀

From Corollary 18, we find the edges belonging to some prunable k-cutsets in G by
searching for bridges in Gopt. It can be done with Tarjan’s DFS algorithm [16] in O(n + m).
Next, we must determine for each bridge whether it should be deleted or become mandatory.
We therefore need to retrieve the set of prunable k-cutsets that contain each bridge.

Without loss of generality, we will consider that G is 2-edge-connected, i.e. G is connected
and bridgeless. Note that it can be checked in O(n + m) with Tarjan’s algorithm [16]. In
addition, we note Xi(G′) the connected component of G′ containing the node i.

▶ Proposition 19. Given e ∈ O a bridge in the connected component X ′ of Gopt connecting
(X1, X ′ −X1). Then, the k-cutset K = (M+(X1), {e}) is a prunable k-cutset of G.

Proof. In order to disconnect X1 in G, the edges having exactly one end in X1 must be
removed, i.e. the k-cutset K = (M ′, O′) of (X1, X − X1). It means M ′ = M+(X1) and
O′ = O+(X1). Since e ∈ O is the bridge in X ′ of Gopt connecting (X1, X ′ −X1), O′ = {e}.
Otherwise, e is not a bridge in Gopt. Finally, G is 2-edge connected, then |M ′| > 0. Thus, K

is a prunable k-cutset of G. ◀

▶ Proposition 20. Given e ∈ O a bridge in Gopt and a prunable k-cutset K ′ = (M ′, {e}). If
there are no failing k-cutsets in G, then there are no prunable k-cutsets K ′′ such that the
pruning of e with K ′ and K ′′ is different.

Proof. For any k-cutset K ′′ = (M ′′, {e}) such that M ′ ̸= M ′′, we can build a k-cutset
K ′′′ = (M ′ ∪M ′′, ∅) containing only mandatory edges. In addition, if K ′′′ is not a cutset,
then e is not a bridge for M ′ or M ′′. If K ′′′ is not a failing k-cutset, then M ′ ∪M ′′ is even.
Therefore, M ′ and M ′′ are either even or odd. Thus, if there are no failing k-cutsets in
G, then there are no prunable k-cutsets K ′′ such that the pruning of e with K ′ and K ′′ is
different. ◀
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From Proposition 19 and 20, we can describe a first algorithm: for each bridge of the
connected component X ′ of Gopt connecting (X1, X ′ −X1), count the number of mandatory
edges having one end in X1 and the other in X−X1. If there is an even number of mandatory
edges, then delete e. Otherwise, add e to the mandatory edges. Thus, for each bridge, we
parse at most all the mandatory edges. There is at most n − 1 bridge in a graph and at
most n mandatory edges. Therefore, this algorithm finds all the prunable k-cutsets in O(n2).
Next, we will show how to improve this algorithm in order to obtain a linear time complexity.
However, note that this algorithm is already much better than the one of the state of the
art [10] because we find the k-cutsets for all k with a better time complexity.

A

B

C D

E

G1

Figure 5 G1 represents the 2-merged graph of the path-merged graph of Figure 2. Blue edges
are mandatory paths and dark edges are bridges.

In Figure 5, the 2-merged graph of Figure 2, we notice that some prunable k-cutsets
are much simpler than others to find. Indeed, for (A, B) there are two prunable k-cutsets:
K1 = (M1, {(A, B)}) where M1 = {(A, E), (A, E)} and K2 = (M2, {(A, B)}) where M2 =
{(B, E), (D, E)}. In order to find M1, we can simply search for the mandatory edges having
one end in A and the other in {B, C, D, E}. In order to find M2, we have to search for
the mandatory edges having one end in {B, C, D} and the other in {A, E}. The difference
between M1 and M2 is that we can simply find M1 by considering the mandatory edges with
exactly one end in a single component. Thus, if for each bridge there is such a prunable
k-cutset, then we simply have to count the number of outgoing mandatory edges of each
2-edge-connected components of Gopt in G. It leads to an algorithm with a linear time
complexity. Unfortunately, this algorithm may not handle all the prunable k-cutsets. For
instance, there are two prunable k-cutsets containing (B, C): K3 = (M3, {(B, C)}) such
that M3 = {(D, E)} and K4 = (M4, {(B, C)}) such that M4 = {(B, E), (A, E), (A, E)}. In
that case, we cannot simply look at the neighbors of B or C to find the prunable k-cutsets
containing (B, C). Indeed, B and C have more than one optional neighbor. It means that the
bridge (B, C) disconnect Gopt in ({A, B}, {C, D}). Therefore, both connected components
are not 2-edge-connected. Thus, we show in Corollary 21 that for a bridge e connecting
(X1, X2) in Gopt, if X1 (resp. X2) is 2-edge-connected, then it exists a prunable k-cutset
containing e and all the mandatory edges having exactly one end in X1 (resp. X2).

▶ Corollary 21. Given X ′ a connected component of Gopt. If e ∈ O is a bridge in X ′ of
Gopt connecting (X1, X ′ −X1) such that X1 is 2-edge-connected, then there is a prunable
k-cutset K = (M+(X1), {e}).

Proof. Immediate from Proposition 19. ◀

The advantage of Corollary 21 over Proposition 19 is that the 2-edge-connected component
X1 of Corollary 21 are disjoint nodes sets. Thus, parsing the neighbors of the 2-edge-
connected components consider at most twice the total number of mandatory edges whereas
Proposition 19 can reconsider for each component all the mandatory edges of the 2-merged
graph. We will use this idea in order to obtain a linear time algorithm.

CP 2021



29:10 A Linear Time Algorithm for the k-Cutset Constraint

In Figure 5, all the k-cutsets formed by the neighborhood of a component are: KA =
({(A, E), (A, E)}, {(A, B)}), KB = ({(B, E)}, {(B, A), (B, C)}), KC = (∅, {(C, B), (C, D)})
and KD = ({(D, E)}, {(D, C)}). Among them, KA and KD are prunable k-cutsets, then
we can immediately deduce for K1 that (A, B) is deleted (by Corollary 6) and for KD

that (D, C) becomes mandatory (by Corollary 5 or 7). If we update the k-cutsets we have:
KA = ({(A, E), (A, E)}, ∅}), KB = ({(B, E)}, {(B, C)}), KC = ({(C, D)}, {(C, B)}) and
KD = ({(D, E), (D, C)}, ∅). We notice that both KB and KC become prunable k-cutsets.
Thus, (C, B) becomes mandatory for both KB and KC (by Corollary 5 or 7). Finally, all
bridges of G1 have been solved.

Note that the subgraph of optional edges of the 2-merged graph can be more sophisticated
than a simple path of bridges edges: it can be a tree. However, it cannot exist a cycle in
this subgraph since the 2-edges-connected components are merged in the 2-merged graph.
For example, (1) of Figure 6 shows a 2-merged graph such that the subgraph of optional
edges is not a single path. We note that (1) is rooted in A and each node of the set of
nodes S = {B, F, G, H, I, J} has exactly one optional neighbor. Thus, we can start by
applying Corollary 21 on S, i.e. the leaves of the tree. Leaves are always valid candidates for
Corollary 21 because they have no optional child and a single optional parent. Then, either
there are no more leaves and therefore there are no more prunable k-cutsets or there are
leaves and we can apply Corollary 21 to these leaves. Finally, we suggest to recursively apply
this process until there are no more leaves in the tree. A sketch of the algorithm is:

Find bridges of G with the DFS-based Tarjan’s algorithm.
Mark the 2-edge-connected components in postorder, i.e. the order of a node is set when
it is backtracked in the DFS.
For each mandatory edge (i, j), increase the number of outgoing mandatory edges of the
2-edge-connected component of i and j.
Iterate over the 2-edge-connected components Ci of the 2-merged graph with the defined
postorder and prune the bridge connected to Ci.
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B C

D E

F G H I J

(1)

A

B C

D E

F G H I J

(2)

A

B C

D E

F G H I J

(3)

A

B C

D E

F G H I J

(4)

A

B C

D E

F G H I J

(5)
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F G H I J
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(7)

A
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F G H I J

(8)

A
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F G H I J

(9)

A

B C

D E

F G H I J
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Figure 6 Example of an execution of the k-cutset pruning algorithm on the graph (1). Blue
edges are mandatory paths, dark edges are bridges. The red node is the current 2-edge-connected
component of the algorithm step.

For instance, Figure 6 shows an execution of the algorithm in a 2-merged graph. Tarjan’s
algorithm allows us to create the 2-merged graph where black edges are bridges and blue edges
are mandatory edges. In this tree, the postorder traversal is {B, F, G, D, H, I, J, E, C, A}.
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Note that the postorder is used to guarantee that for each node considered in the execution
of the algorithm, all its children have already been pruned. From (1) to (10), we show the
iteration over the 2-edge-connected components Ci marked as red nodes. Finally, finding the
bridges is performed in O(n + m), parsing the mandatory edges is performed in O(n) and
parsing the 2-edge-connected components is performed in O(n). Thus, our algorithm finds
the prunable k-cutsets for all k in O(n + m). Algorithm 1 is a possible implementation.

It takes as input G = (X, M, O). We note CC the set of connected components in Gopt

and 2CC the set of 2-edge-connected components in Gopt such that 2CCi is the 2-edge-
connected component containing the node i. First, we start by searching the bridges with
Tarjan’s algorithm based on a DFS in order to build CC and 2CC. Within the DFS, 2CC is
constructed with respect to the postorder tree traversal. Thus, iterating on 2CC, we obtain
the postorder tree traversal of the 2-merged graph of G. In Tarjan’s algorithm, a 2-edge
connected component C is found when a bridge e is found. Thus, we associate e with C

by setting C.bridge=e. For instance, in (1) of Figure 6, each node is a 2-edge-connected
component knowing its parent, i.e. a bridge. Thus, the only node having no parent is the
root node and all the other nodes have a single parent that is an optional edge.

Secondly, we count the number of outgoing mandatory edges for each connected component
of CC and for each 2-edge-connected component of 2CC. We then consider the connected
components C ∈ CC such that |C| > 1. If |C| = 1, then C has two adjacent mandatory
edges and C contains a single node. Thus, considering C such that |C| > 1 is equivalent of
considering the path-merged graph of G. In addition, we know that each node i of C has
at most one adjacent mandatory edge (i, j). Therefore, |M(i)| ≤ 1. Otherwise, the node i

would not belong to C. We note M(i).firstEdge() the first edge in the list of the adjacent
mandatory edges of i. Since we are looking for the outgoing mandatory edges, we only
consider the nodes with M(i) = 1. If j is an outgoing edge of C, then we increase the number
of outgoing mandatory edges of C noted M+(C). If i and j do not belong to the same
2-edge-connected component, then we increase the number of outgoing mandatory edges
of 2CCi noted M+(2CCi) (M+(2CCj) is increased when the node j is considered by the
foreach). Note that we can check if the node i belongs to the nodes set C ′ with the funtion
C ′.isIn(i). In (1) of Figure 6, there is a single connected component C so M+(C) = 0.
However, there are 10 2-edge-connected components ({A, B, C, D, E, F, G, H, I, J}). For
example, M+(2CCA) = 1 and M+(2CCB) = 3. Afterwards, we check the consistency. If
there is C ∈ CC such that M+(C) is odd, then there is a failing k-cutset and we return
False. In (1) of Figure 6, there is no C ∈ CC such that M+(C) is odd, so (1) is consistent
with the k-cutset constraint.

Thirdly, we perform the pruning step. We iterate on all the 2-edge connected components
C of 2CC. We note (i, j) the bridge associated to C. If M+(C) is odd, then (i, j) becomes
mandatory (i.e. it is added to M) and M+(2CCi) and M+(2CCj) are increased by 1. Whether
M+(C) is even or odd, (i, j) is removed from O. Indeed, if the edge becomes mandatory, then
it must not be in the set of the optional edges. For instance, in (1) of Figure 6, we consider the
node B and the bridge (B, A). Note that in (1), M+(2CCA) = 1 and M+(2CCB) = 3. Since
M+(2CCB) is odd, (B, A) becomes mandatory and M+(2CCA) = 2 and M+(2CCB) = 4.
Next, we consider the node F and its bridge (F, D). M+(2CCF ) = 2 so (F, D) is removed
and M+(2CCF ) remains unchanged. Then, we repeat this process until (10). We note that
the nodes are chosen in the postorder.

CP 2021



29:12 A Linear Time Algorithm for the k-Cutset Constraint

Algorithm 1 Perform the consistency check and the pruning of k-cutset constraint.

1 k-cutset (G = (X, M, O))
Input: A graph G=(X,M,O).
Output: A boolean specifying whether G contains a failing k-cutset
// CC : connected components of G−M (Gopt)
// 2CC : postorder 2-edge-connected components of G−M (Gopt)

2 computeBridgesDFS(G−M, CC, 2CC) ;
3 foreach connected components C ∈ CC do
4 if |C| > 1 then
5 foreach node i ∈ C do
6 if |M(i)| = 1 then
7 (i, j)←M(i).firstEdge();
8 if not C.isIn(j) then
9 M+(C)←M+(C) + 1;

10 if not 2CCi.isIn(j) then
11 M+(2CCi)←M+(2CCi) + 1;

// Consistency check
12 foreach connected components C ∈ CC do
13 if M+(C) is odd then return False ;

// Pruning
14 foreach 2-edge-connected components C ∈ 2CC do
15 if C.bridge ̸= nil then
16 (i, j)← C.bridge;
17 if M+(C) is odd then
18 M+(2CCi)←M+(2CCi) + 1;
19 M+(2CCj)←M+(2CCj) + 1;
20 M ←M + (i, j);
21 O ← O − (i, j);

22 return True;

4 Experiments

The algorithms have been implemented in Java 11 in a locally developed constraint program-
ming solver. The experiments were performed on Clear Linux with an Intel Xeon E5-2696v2
and 64 GB of RAM. The instances are from the TSPLib [14], a library of reference graphs
for the TSP. We rerun experiments ran in Isoart and Régin [10] and exclude instances solved
in less than two seconds. We also include some harder instances. The name of each instance
is suffixed by its number of nodes. In our implementation, the TSP is modeled by the WCC
using the CP-based LR configuration introduced in Isoart and Régin [11]. We note “state of
the art” the TSP model with the state of the art k-cutset algorithm and “linear full k-cutset”
the TSP model with our algorithm. The search strategy used is LCFirst with the heuristic
minDeltaDeg [5] which is also the state of the art. Given e = (i, j) an edge, minDeltaDeg
selects the edge with the minimum difference between the sum of the number of optional
neighbors of i and j and the sum of the number of mandatory neighbors of i and j. Thus, we
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compare linear full k-cutset and the state of the art. We give the number of backtracks (#bk)
and the solving time in seconds in arrays for the k-cutset constraint with different search
strategies. In addition, we set a timeout t.o. of 100,000 seconds. All considered instances are
symmetric graphs.

Table 1 General results comparing the state of the art and linear full k-cutset.

Instance (1) State of the art (2) Linear full k-cutset Ratio (1)/(2)
time(s) #bk time(s) #bk time(s) #bk

kroB100 5.4 4,816 3.6 3,308 1.5 1.5
kroE100 2.3 1,804 2.4 2,212 0.9 0.8

pr124 2.8 1,856 3.5 2,482 0.8 0.7
pr136 20.4 18,684 20.0 21,446 1.0 0.9

kroA150 6.1 4,164 4.1 2,798 1.5 1.5
kroB150 262.6 247,574 153.6 154,002 1.7 1.6

si175 288.5 301,102 280.8 358,676 1.0 0.8
rat195 38.5 24,274 37.8 27,512 1.0 0.9
d198 14.0 7,192 8.6 4,782 1.6 1.5

kroA200 401.0 237,806 323.7 200,392 1.2 1.2
kroB200 127.8 87,296 135.9 109,322 0.9 0.8
tsp225 121.5 65,002 139.3 89,946 0.9 0.7
gr229 227.0 166,378 139.8 114,434 1.6 1.5
gil262 5,230.2 2,254,728 2,970.7 1,711,410 1.8 1.3
pr264 4.7 690 4.9 642 0.9 1.1
a280 7.0 2,372 6.6 2,484 1.1 1.0

lin318 32.9 7,834 11.0 3,456 3.0 2.3
gr431 1,724.8 265,698 1,358.6 247,090 1.3 1.1

pcb442 15,081.5 4,130,580 16,490.1 5,555,756 0.9 0.7
d493 95,916.6 13,478,616 69,247.1 11,346,180 1.4 1.2
mean 5,975.8 1,065,423.3 4,567.1 997,916.5 1.3 1.1

Table 1 shows the solving times and backtrack numbers for the state of the art and the
linear full k-cutset. A ratio column display both solving times and backtrack numbers gain
for the linear full k-cutset. For most instances, we observe a gain in backtrack numbers and
solving times. Otherwise, the results are quite close to the state of the art results. Indeed,
we observe an average gain in solving time of 30% and 10% in backtracks. On average, the
state of the art runs in 178 backtracks per seconds while linear full k-cutset runs in 219
backtracks per seconds. The low backtrack number gain suggests that most of the cutsets
are in fact k-cutsets with k ≤ 3, and therefore the state of the art algorithm already finds
most of the cutsets.

Nevertheless, the TSP model includes a Lagrangian relaxation and the relation between
the filtering algorithms and the Lagrangian relaxation is not clear [15, 11]. Moreover, the
LCFirst minDeltaDeg search strategy is extremely dynamic. Thus, in order to have a better
understanding of the impact of the linear full k-cutset, we compare it with the static search
strategy maxCost, i.e. edges are selected by decreasing costs.

In Table 2, we observe a gain on all instances that are both solved by (1) and (2), the
solving is therefore much more stable. In addition, we observe that the instance gil262
timeout in the state of the art. Excluding it, we obtain an average gain of 80% in solving time

CP 2021



29:14 A Linear Time Algorithm for the k-Cutset Constraint

Table 2 General results of the static search strategy maxCost comparing the state of the art (1)
with our algorithm (2).

Instance (1) State of the art (2) Linear full k-cutset Ratio (1)/(2)
time(s) #bk time(s) #bk time(s) #bk

kroB100 7.7 7,640 6.1 7,056 1.3 1.1
kroE100 10.6 11,328 6.3 6,136 1.7 1.8

pr124 1.3 316 1.1 294 1.1 1.1
pr136 101.5 86,860 73.4 86,094 1.4 1.0

kroA150 57.7 55,940 46.7 49,016 1.2 1.1
kroB150 408.1 344,440 314.2 299,728 1.3 1.1

si175 4,168.6 4,661,506 3,190.8 4,305,208 1.3 1.1
rat195 486.1 372,438 364.0 358,936 1.3 1.0
d198 71.9 52,618 50.2 41,432 1.4 1.3

kroA200 3,111.1 1,944,312 1,813.5 1,209,136 1.7 1.6
kroB200 491.3 333,440 376.7 303,318 1.3 1.1
tsp225 15,252.7 11,579,074 10,224.3 9,209,292 1.5 1.3
gr229 2,349.7 1,955,538 1,591.3 1,607,300 1.5 1.2
gil262 t.o. t.o. 70,450.6 36,507,156 ≥1.2
pr264 7.5 902 6.7 748 1.1 1.2
a280 46.9 20,380 9.6 4,024 4.9 5.1

lin318 65.0 21,292 14.4 5,934 4.5 3.6

and 60% in backtracks. Thus, this shows that the impact of considering k-cutsets for any k

is useful for the performance. In addition, these results suggest that LCFirst minDeltaDeg
fills a part of the lack of structural constraints in the TSP model in CP.

In Table 3, we study the size of the founded k-cutsets in linear full k-cutset with LCFirst
minDeltaDeg. We can observe that the mean size the founded k-cutsets is 3. It confirms the
fact that the state of the art algorithm already finds a large part of the k-cutsets. However,
larger k-cutsets exist: the average number of maximum size of the k-cutsets is 14.1. This
is why we obtain a more interesting backtrack gain than the state of the art whereas the
average k-cutset size is 3.

Finally, our linear full k-cutset algorithm is simple to implement and allows us to obtain
an improvement of the solving times and the number of backtracks.

5 Conclusion

In this paper, we have introduced a new linear time algorithm checking the k-cutset constraint
for any k. Experiments have shown that our algorithm leads to an improvement of solving
times. Moreover, we have shown that on average most of the cutsets are of size 3 even if we
found some much larger cutsets. We hope that other structural constraints will be integrated
into the WCC: they make the CP competitive in the same way that Comb inequalities make
the MIP efficient.
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Table 3 Comparison of mean and max k-cutsets size.

Instance k-cutsets size
mean max

kroB100 2.63 7
kroE100 2.72 7

pr124 2.50 10
pr136 2.57 14

kroA150 2.86 8
kroB150 2.21 11

si175 2.63 13
rat195 4.77 26
d198 2.40 13

kroA200 2.79 10
kroB200 2.96 13
tsp225 2.93 13
gr229 3.08 14
gil262 2.55 17
pr264 2.48 25
a280 3.31 9

lin318 5.47 14
gr431 2.45 16

pcb442 3.53 24
d493 2.43 26
mean 3.0 14.5
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Abstract
The LKH algorithm based on k-opt is an extremely efficient algorithm solving the TSP. Given a
non-optimal tour in a graph, the idea of k-opt is to iteratively swap k edges of this tour in order to
find a shorter tour. However, the optimality of a tour cannot be proved with this method. In that
case, exact solving methods such as CP can be used. The CP model is based on a graph variable
with mandatory and optional edges. Through branch-and-bound and filtering algorithms, the set of
mandatory edges will be modified. In this paper, we introduce a new constraint to the CP model
named mandatory Hamiltonian path constraint searching for k-opt in the mandatory Hamiltonian
paths. Experiments have shown that the mandatory Hamiltonian path constraint allows us to gain
on average a factor of 3 on the solving time. In addition, we have been able to solve some instances
that remain unsolved with the state of the art CP solver with a 1 week time out.
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1 Introduction

The Traveling Salesman Problem (TSP) is a widely studied graph theory problem with a
simple statement: find a minimum cost cycle in a graph visiting all nodes. Unfortunately,
solving a TSP is not as easy as stating it: finding the optimal solution of the TSP is NP-Hard.

Heuristics allow one to find non-proved optimal solutions of the TSP in reasonable solving
times. The most efficient heuristic solving the TSP is the Lin-Kernighan-Helsgaun (LKH)
algorithm [17, 12]. It starts from a tour that is not optimal and iteratively improves the
tour with one of the most popular tour improvement algorithms: the local search algorithm
k-opt [18]. It consists in finding k edges in a given tour such that swapping them create a
cheaper tour. Unfortunately, the k-opt algorithm has a time complexity in O(nk) such that
n is the number of nodes in a graph. In order to obtain an efficient algorithm, they suggest
many improvements such as using a variable k and not considering all the swaps of size k

but only the most “promising” swaps.
Exact algorithms allow one to find optimal solutions of the TSP. In practice, they are

usually much slower than heuristics because of the optimality proof. The most efficient
method solving the “pure” TSP is the specialized solver Concorde [1] based on MIP methods.
It is mainly based on the relaxation of the integrity and subtour constraints of the TSP
model. In addition, the cutting plane method [5] is used in order to correct structural
defects of the intermediate solutions obtained by this relaxation. It proceeds by iteratively
generating constraints that are violated by the solution of the relaxed problem. Among
them, there are the well-known Comb inequalities. However, no polynomial time algorithm
is known at this time to detect whether a solution of the relaxed problem violates a Comb
inequality. Therefore, many polynomial time algorithms have been developed in order
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to handle particular cases [6, 8, 4, 16]. In addition, Concorde embed other sophisticated
techniques such as local cuts. Note that Concorde outperforms the other exact solving
methods when considering large graphs. However, CP method is competitive with Concorde
for small-medium size graphs [2]. In addition, a TSP is often combined with other constraints.
For instance, precedence constraints, TSPTW where there is a time window to visit a node.
For these problems, Concorde is not well suited whereas the CP method is a good candidate
because it is more robust to side constraints. Nowadays, the most efficient method solving the
TSP in CP is the Weighted Circuit Constraint (WCC) [2] in combination with the structural
k-cutset constraint [13]. The optimization part of the WCC is based on the Lagrangian
Relaxation (LR) of Held and Karp [10, 11]. The lower bound of the LR is computed by
selecting a node x with its two lowest cost neighbors and a minimum spanning tree in the
graph without x, i.e. it is a 1-tree. If a minimum 1-tree is found such that all its nodes
have exactly two neighbors, then an optimal solution is obtained. Thus, the 1-tree is derived
through the LR process until an optimal solution is obtained. However, optimally solving the
TSP with a LR only can be extremely slow. Thus, the WCC integrates filtering algorithms
based on the cost of the edges, the 1-tree cost and a degree constraint on the nodes. In
addition, the k-cutset constraint is based on the graph structure. It considers the cutsets
of the graph containing k mandatory edges and deduces structural filtering. In contrast
to heuristic methods, the CP method does not improve a tour but builds an optimal tour.
Indeed, the CP model imposes some edges through a branch and bound. Those edges, named
mandatory edges, can form paths. Therefore, the purpose of the CP method is to find a
tour going through these edges. However, finding an optimal solution can be impossible.
For instance, it happens when a path is not itself optimal. Thus, it finds solutions that are
suboptimal.

In this paper, we define the mandatory Hamiltonian path constraint that uses the k-opt
algorithm on the mandatory paths. More precisely, let us define p, a path composed of
mandatory edges going from s to t through a set of nodes X ′. If p can be improved by
another path p′ going from s to t through X ′, then p cannot belong to an optimal solution.
In addition, we define a filtering algorithm removing edges: if a path can be improved when
an edge is added to it, then it cannot exist an optimal solution simultaneously containing
that path and that edge.

This article is organized as follows: first, we recall some concepts of graph theory. Then, we
introduce the TSP in CP with the k-cutset constraint and the tour improvement algorithms.
Next, we define the mandatory Hamiltonian path constraint and its incremental version.
Finally, we discuss some experiments and we conclude.

2 Preliminaries

2.1 Definitions
The definitions of graph theory are taken from Tarjan’s book [21].

A directed graph or digraph G = (X, U) consists of a node set X and an arc set U ,
where every arc (xi, xj) is an ordered pair of distinct nodes. We note X(G) the set of nodes
of G such that n = |X(G)| and U(G) the set of arcs of G such that m = |U(G)|. In addition,
U(i) is the set of adjacent edges of i. The cost of an arc is a value associated with the arc.
An undirected graph is a digraph such that for each arc (xi, xj) ∈ U , (xi, xj) = (xj , xi).
If G1 = (X1, U1) and G2 = (X2, U2) are graphs, both undirected or both directed, G1 is a
subgraph of G2 if X1 ⊆ X2 and U1 ⊆ U2. A path from node x1 to node xt in G is a list of
nodes [x1, . . . , xt] such that (xi, xi+1) is an arc for i ∈ [1..k − 1]. The path contains node
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xi for i ∈ [1..k] and arc (xi, xi+1) for i ∈ [1..k − 1]. The path is simple if all its nodes are
distinct. The path is a cycle if k > 1 and x1 = xt. A cycle is Hamiltonian if [x1, . . . , xk−1]
is a simple path and contains every node of X. The cost of a path p, denoted by w(p), is
the sum of the costs of the arcs contained in p. For a graph G, a solution to the traveling
salesman problem (TSP) in G is a Hamiltonian cycle HC ∈ G minimizing w(HC). An
undirected graph G is connected if there is a path between each pair of nodes, otherwise it
is disconnected. The maximum connected subgraphs of G are its connected components.
A tree is a connected graph without a cycle. A tree T = (X ′, U ′) is a spanning tree
of G if X ′ = X and U ′ ⊆ U . The U ′ edges are the tree edges T and the U − U ′ edges
are the non-tree edges T . A minimum spanning tree T = (X ′, U ′) is a spanning tree
minimizing the cost of the tree edges. A partition (S, T ) of the nodes of G such that S ⊆ X

and T = X − S is a cut. The set of edges (xi, xj) ∈ U having xi ∈ S and xj ∈ T is the
cutset of the (S, T ) cut. A k-cutset is a cutset of cardinality k.

2.2 TSP in CP
The current best CP method solving the TSP is a combination of the Weighted Circuit
Constraint (WCC) [2] and the structural constraint k-cutset [13]. The WCC is mainly based
on the 1-tree Lagrangian Relaxation (LR) of Held and Karp [10, 11]. Intuitively, the LR
derives a lower bound of the TSP (here, the 1-tree) until a solution of the TSP is found. A
1-tree is a minimum spanning tree in G = (X − {x}, U) such that x ∈ X is connected by
its two nearest neighbors to the minimum spanning tree. Thus, a 1-tree covers the whole
graph with n edges and a single cycle. In addition, if the 1-tree satisfies the degree constraint
(each node of the 1-tree has exactly two neighbors), then the 1-tree is an optimal solution
of the TSP. Therefore, the goal is to minimize the number of nodes that violate the degree
constraint in the 1-tree. To do so, this constraint is integrated into the objective function
and a Lagrangian multiplier πi is associated to each node i. Let di be the degree of the node
i in the 1-tree. For each node i of the graph, if di < 2, then πi is decreased. Otherwise, if
di > 2, then πi is increased. Next, the edge cost w((i, j)) is modified such that w′((i, j)) is
the modified cost and w′((i, j)) = w((i, j)) + πi + πj . Finally, we obtain an optimal solution
of the TSP by computing a succession of 1-trees and modifying the edge costs.

However, experiments shown a very slow convergence toward the optimal solution. Thus,
the WCC integrates the following filtering algorithms based on the costs:

If an edge e does not belong to any 1-tree with cost smaller than a given upper bound,
then e can be safely deleted.
If an edge e belongs to all 1-trees with cost smaller than a given upper bound, then e is
mandatory.

Moreover, the WCC integrates a structural constraint imposing that each node has exactly
two neighbors (the degree constraint).

Next, for each cutset of size k, the k-cutset constraint imposes that an even number of
edges is mandatory. In practice, the study is limited to k ≤ 3 since the given algorithm has
a complexity growing with k. In addition, the interaction of the filtering algorithms and the
convergence of the Lagrangian relaxation is not straightforward. Thus, Isoart and Régin [14]
introduced an adaptive method in order to improve the overall solving times.

About the search strategy, it consists in making a binary search where a left branch is an
edge assignment and a right branch is an edge removal. More precisely, we use the search
strategy LCFirst of Fages et al. [7] which is an interpretation of Last Conflict heuristics [9, 15]
for graph variables. It selects one edge in the graph according to a heuristic and keeps
branching on one extremity of this edge until the extremity is exhausted. Note that it keeps
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branching even if a backtrack occurs. Thus, it is a highly dynamic search strategy that learns
from previous choices. Moreover, most of the search strategies are much more efficient (up
to an order of magnitude) when LCFirst is used. In practice, we observe that using LCFirst
strongly interferes with the Lagrangian relaxation and filtering algorithms.

In addition, the WCC uses a single undirected graph variable where all nodes are
mandatory. Without loss of generality, we note O the set of optional edges, M the set of
mandatory edges and D the set of deleted edges such that O ∪M ∪ D = U , O ∩M = ∅,
O ∩D = ∅ and M ∩D = ∅. Thus, the purpose of the CP is to find a TSP in the input graph
Ginit = (X, M, O) such that M is a growing set and O is a shrinking set. When a solution is
found, |M | = n and O = ∅.

For the sake of clarity, we define Gsolve = (X, M ′, O′) the current graph such that
M ⊆ M ′ ⊆ (O ∪M) and O′ ⊆ O. In addition, we define Gsolve the graph Ginit modified
by the search strategy and the filtering algorithms and Gmand = (X, M ′, ∅) the graph of
mandatory edges. If not specified, we will use these notations and data structures in the
next sections.

2.3 Tour improvement algorithms
In order to find a TSP, a tour improvement algorithm takes as input a tour and iteratively
tries to improve it. The most popular tour improvement algorithms are the local search
algorithms 2-opt and 3-opt.

x1 x2

y2 y1

Figure 1 An example of 2-opt. The circle represents a tour and the dashed lines are the suggested
move for the pair of edges ((x1, x2), (y1, y2)).

The idea of 2-opt is pretty simple. Given a tour T , for each pair of edges (e1, e2) in T ,
if replacing (e1, e2) by another pair of edges (e3, e4) of T leads to a connected and shorter
tour, then we can replace (e1, e2) with (e3, e4) in T . We name such a replacing procedure a
move. Note that some heuristics are looking for the best improving move before applying
the replacement of a move. In addition, for each pair of edges, there is only one move
reconnecting the graph that is not the null move. The iteration on pairs leads to a time
complexity in O(n2). Figure 1 shows an example where e1 = (x1, x2), e2 = (y1, y2) and the
move is e3 = (x1, y1), e4 = (x2, y2).

For the 3-opt algorithm, instead of choosing pair of edges, we choose a triplet of edges
and, as for 2-opt, we search for moves reducing the overall cost of the tour. In that case,
there are seven ways to reconnect the graph. Note that three of them are simple 2-opt (that
is a combination with one edge of the triplet not moved). Thus, 3-opt allows checking more
sophisticated combination than 2-opt and then can potentially find better moves. However,
it leads to an algorithm with a time complexity in O(n3). Figure 2 shows an example of all
3-opt moves that are not 2-opt.
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x1 x2

y1

y2z1

z2

x1 x2
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z2

x1 x2

y1
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x1 x2

y1

y2z1

z2

Figure 2 An example of 3-opt. The circle represents a tour and the dashed lines are the suggested
move for the triplet of edges ((x1, x2), (y1, y2), (z1, z2)).

Naturally, the 2-opt and the 3-opt algorithms can be generalized to the k-opt algorithm
with a time complexity in O(nk). Experiments have shown that increasing the value of k

improves the quality of the tours but slows down solving times. Thus, some methods [19, 3]
consider some 3-opt and/or 4-opt, but not all, in order to reduce the time complexity and
speed up the solving times.

Moreover, Lin and Kernighan suggested to use a variable k while solving [17] in order
to include larger moves. The algorithm is therefore more complex but it greatly improves
the results (tour quality and solving times). To do so, they suggested several rules. First,
they are looking for the most promising permutations only. Next, they allow improving
k-opt moves that can be built from a sequence of 2-opt moves such that some moves do
not improve the tour. These moves are much more complex and provide better moves than
a simple run of the 2-opt algorithm. In order to make this algorithm extremely efficient,
Helsgaun [12] has remarkably refined most of the rules given by Lin and Kernighan [17].
Nowadays, the Lin-Kernighan-Helsgaun algorithm is considered as one of the most efficient
heuristic solving the TSP and therefore it is embedded in most of the exact methods.

In this paper, we integrate 2-opt and 3-opt concepts into CP. Unlike tour improvement
algorithms, the CP model does not have a tour to improve. However, the CP model has
mandatory edges that can form paths and try to find a tour going through these paths. We
then search for 2-opt and 3-opt in the paths of mandatory edges.

3 Mandatory Hamiltonian path constraint

We note M ′(i) (resp. O′(i)) the set of mandatory (resp. optional) edges having i for extremity
in M ′ (resp. O′). For each node i, |M ′(i)| ≤ 2 because of the degree constraint. Thus, the
mandatory edges form disjoint paths. Without loss of generality, we assume that the current
assignment of the Gsolve is consistent with the degree constraint.

▶ Definition 1. A mandatory Hamiltonian path p is a path such that p is a Hamiltonian
path in a subgraph of Gsolve and for each edge e = (xi, xi+1) of p, e ∈M ′.

We note p1 = [x1, x2, . . . , xt] a mandatory Hamiltonian path of Gsolve.

3.1 Consistency Check
In this section, we will study the existence of optimal solutions in Gsolve.

▶ Definition 2. An alternative path p2 = [x′
1, x′

2, . . . , x′
t] of p1 is a permutation of the

nodes of p1 such that p1 ̸= p2, x1 = x′
1, xt = x′

t and for each i ∈ [1, k − 1], (x′
i, x′

i+1) ∈ U .

Figure 3 shows an example of an alternative path. Thus, an alternative path can be
composed of edges in M ∪O ∪D, i.e. in U .
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x3 x4

x1 x2
1

10

1 10

1

1
x3 x4

x1 x2

Figure 3 The left graph is a subgraph of Ginit. The blue edges are from M , they form a
mandatory Hamiltonian path going from x3 to x4. The dashed edges are from D (the deleted edges).
The right graph is an alternative path of the left graph.

▶ Definition 3. The mandatory Hamiltonian path p1 is minimal if and only if there is no
alternative path p2 of p1 such that w(p2) < w(p1).

In Figure 3, the mandatory Hamiltonian path is not minimal. The right graph represents
an alternative path with a cost of 4 whereas the mandatory Hamiltonian path has a cost of
12. The idea is to search for a non-minimal mandatory Hamiltonian path p2 in the connected
components of Gmand = (X, M ′, ∅). In Proposition 4, we show that if such a path p2 exists,
then the cost of the TSP in Gsolve = (X, M ′, O′) is greater than the cost of the TSP in
Ginit = (X, M, O).

▶ Proposition 4. If there is a mandatory Hamiltonian path p1 that is not minimal, then p1
cannot belong to any solution of TSP (Ginit).

Proof. Given w(TSP (Ginit + p1)) the cost of TSP (Ginit) such that p1 is in the solution. If
there is no solution for TSP (Ginit + p1), then p1 cannot belong to any solution TSP (Ginit).
Otherwise, if p1 is not minimal, then there is an alternative path p2 of p1 such that w(p2) <

w(p1). Thus, w(TSP (Ginit + p2)) < w(TSP (Ginit + p1)) and therefore p1 cannot belong to
any TSP (Ginit). ◀

In the context of a CP solver, if there is a mandatory Hamiltonian path p that is not
minimal, then from Proposition 4 we can trigger a failure because the current solution is
not minimal. Moreover, it raises a question: how do we verify if a mandatory Hamiltonian
path is minimal? A first algorithm consists in checking all the possible permutations for
each mandatory Hamiltonian path. Unfortunately, checking all the permutations leads to
an impractical algorithm. However, a large number of heuristics improving tours have been
designed. Among them, there are the ones introduced in Subsection 2.3. Thus, we can use
any of these heuristics on the mandatory Hamiltonian paths. If it finds an improvement,
then a mandatory Hamiltonian path is not minimal and therefore we can trigger a failure.

In this paper, we use k-opt heuristics as tour improvement since they are very efficient
and easy to implement. In Section 4, we will show that 2-opt and 3-opt are enough in order
to obtain good results.

▶ Definition 5. Given the set of mandatory Hamiltonian paths P and an integer k. For
each mandatory Hamiltonian path p ∈ P , the mandatory Hamiltonian path constraint ensure
that there is no alternative path p′ obtained by swapping k edges of p such that w(p′) < w(p).

Therefore, we define the mandatory Hamiltonian path constraint in Definition 5 such
that if its consistency is not verified, then we trigger a failure.
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Algorithm 1 Consistency check of the mandatory Hamiltonian paths.

1 ConsistencyCheck (Ginit, Gmand, k)
Input: The initial graph Ginit, the graph of mandatory edges Gmand and an

integer k.
Output: A Boolean specifying whether Gmand contains a mandatory

Hamiltonian path that is not minimal.
2 P ← computeMandatoryHamiltonianPaths(Gmand) ;
3 foreach path p ∈ P do
4 if k-optPath(Ginit, p) then
5 return False ;

6 return True ;

In Algorithm 1, we introduce an implementation of the algorithm checking the consistency
of the mandatory Hamiltonian path constraint. We assume that k-optPath(Ginit, p) returns
true if and only if the mandatory Hamiltonian path constraint with the given k is consistent.
Internally, k-optPath(Ginit, p) uses a k-opt heuristic. Then, for each mandatory Hamiltonian
path p, we run k-optPath(Ginit, p) in O(|p|k).

▶ Proposition 6. Given P the set of mandatory Hamiltonian paths. Then,
∑

p∈P |p| ≤ n

and |P | ≤ n.

Proof. By definition, each node can only be contained in one mandatory Hamiltonian path
and there are n nodes in Gsolve. Thus,

∑
p∈P |p| ≤ n. In addition, if each node is contained

in a different path, then there are n paths and then therefore |P | ≤ n. ◀

Each p of P are disjoint. From Proposition 6, the sum of |p| for all p ∈ P is lower or
equal to n. Finally, the time complexity of Algorithm 1 is in O(

∑
p∈P |p|k) < O(nk).

3.2 Filtering algorithm
In this section, we will consider that the consistency has been checked. An edge e = (xt, xi)
is a successor of p1 and an edge e = (xi, x1) is a predecessor of p1. In addition, we note
xi + p1 = [xi, x1, x2, . . . , xt] and p1 + xi = [x1, x2, . . . , xt, xi].

From Proposition 4, we have the two following corollaries:

▶ Corollary 7. For each edge e ∈ O′ such that e is a predecessor of p1, if i + p1 is not a
minimal mandatory Hamiltonian path, then e cannot belong to any solution of TSP (Gsolve).

▶ Corollary 8. For each edge e ∈ O′ such that e is a successor of p1, if p1 + i is not a
minimal mandatory Hamiltonian path, then e cannot belong to any solution of TSP (Gsolve).

Thus, in order to define a filtering algorithm we are interested in the minimality of p1 + i

and i+p1. If the minimality of p1 has already been checked, then we can avoid all permutations
only containing the elements of p1. We impose i to be in the considered permutations and we
look for permutations of size (k− 1) in p1. Then, for a mandatory Hamiltonian path p and a
single successor or predecessor, we can filter the edge in O(|p|k−1) < O(nk−1). Performing
the filtering for all predecessors and successors of p can be done in O(|O′(p)||p|k−1) < O(nk).
From Proposition 6, there can be at most n paths and the sum of the size of all paths is
smaller than or equal to n. Thus, from Corollary 7 and 8 a we can filter the edges of all paths
with a complexity in O(nk+1). Note that the number of checked permutations in practice is
much smaller.
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A mandatory Hamiltonian path p1 can have a successor or a predecessor e connecting
another mandatory Hamiltonian path p2. Then, adding e to the solution leads to a minimality
check in p1 + p2. We can then extend the two previous corollaries:

▶ Corollary 9. For each edge e = (xi, x1) ∈ O′(x1), if it exists p2 = [x′
1, x′

2, . . . , x′
t] a

mandatory Hamiltonian path of Gsolve such that xi = x′
t and p2 + p1 is not a minimal

mandatory Hamiltonian path, then e cannot belongs to any TSP (Gsolve).

▶ Corollary 10. For each edge e = (xi, xt) ∈ O′(xt), if it exists p2 = [x′
1, x′

2, . . . , x′
t] a

mandatory Hamiltonian path of Gsolve such that xi = x′
1 and p1 + p2 is not a minimal

mandatory Hamiltonian path, then e cannot belongs to any TSP (Gsolve).

Given a mandatory Hamiltonian path p2 of Gsolve connected to p1 with e ∈ O′. Then, we
have to check if p1 + p2 is minimal in order to determine whether e can be in a solution of
TSP (Gsolve). It can be done with Corollary 9 and 10 in O((|p1|+|p2|)k−|p1|k−|p2|k) < O(nk).
The number of predecessors and successors of p1 is at most 2n. If P (p1) is the set of mandatory
Hamiltonian paths such that each path of P (p1) is connected to p1 with a successor or a
predecessor of p1, then the filtering on p1 can be done in O(

∑
p2∈P (p1)(|p1|+ |p2|)k − |p1|k −

|p2|k) < O(nk+1). Given P the set of mandatory Hamiltonian paths. The filtering for
all paths of P can be done in O(

∑
p1∈P

∑
p2∈P (p1)(|p1|+ |p2|)k − |p1|k − |p2|k) < O(nk+2).

Algorithm 2 is a possible implementation.
For the sake of clarity, we will use the following notations in the algorithms:
P : contains all the mandatory Hamiltonian paths of the graph Gsolve.
P [i]: if there is a path p containing the node i, then it returns p. Otherwise, it returns i.
p.first(): returns the first node of the path p.
p.last(): returns the last node of the path p.

Algorithm 2 Filtering algorithm for the mandatory Hamiltonian paths.

1 Filter (Ginit, Gsolve = (X, M ′, O′), P, k)
Input: The initial graph Ginit, a graph Gsolve, the set of mandatory

Hamiltonian paths P and an integer k.
2 foreach p1 = [x1, x2, . . . , xt] ∈ P do
3 foreach edge e = (x1, j) ∈ O′(x1) do
4 p2 ← P (j) ;
5 if p2.last() ̸= j then reverse(p2);
6 if (p1 = p2 and |M ′| ̸= n− 1) or k-optPath(Ginit, p2, p1) then
7 O′ ← O′ − e ;

8 foreach edge e = (xt, j) ∈ O′(xt) do
9 p2 ← P (j) ;

10 if p2.first() ̸= j then reverse(p2);
11 if (p1 = p2 and |M ′| ̸= n− 1) or k-optPath(Ginit, p1, p2) then
12 O′ ← O′ − e ;

Given P the set of the mandatory Hamiltonian paths. For each path p1 ∈ P , we perform
the filtering on all the predecessor and successor e of p1. We note p2 the path connected to p1
by e (p2 can be a single node). In addition, we note k-optPath(graph, p1, p2) the k-optPath
algorithm considering the permutations of p1 + p2 such that each permutation contains at
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least one element of p1 and at least one element of p2. When two paths are merged, they
must be in the right order. If p2 must be inserted in front of p1, then the node j must be the
last node of p2. Otherwise, j must be the first node of p2. Thus, p2 is reversed if needed.
Note that we can save the reversed path in order to avoid redundant computations. If an
improvement is found when p1 and p2 are merged, then from Corollary 9 or 10 the edge e

cannot belong to a solution of TSP (Gsolve) and therefore e is removed from the optional
edges of Gsolve. In addition, if p1 = p2 and |M ′| ̸= n − 1, then it exists an edge e = (i, j)
such that i and j belong to the same mandatory Hamiltonian path and therefore the edge
close a cycle with a size lower than n. Thus, adding e to the solution creates a sub-cycle and
then e is removed from the optional edges of Gsolve.

3.3 Maintenance during the search
In this section, we will consider the incremental aspect of this constraint, i.e. the consistency
of this constraint or its filtering when some edges become mandatory or deleted. Moreover,
we will consider the restoration of the data structures introduced for the incremental aspect
when a backtrack occurs. In this study, an edge can be deleted or an edge becomes mandatory.

▶ Proposition 11. Given G′ = (X, M ′, O′′) such that O′′ ⊆ O′. If p1 is minimal, then p is
minimal in G′.

Proof. The graph G′ is the graph Gsolve such that some edges are deleted. By definition,
the deleted edges are in D and the alternative paths can contain edges of D. Thus, if p1 is
minimal, then p is minimal in G′. ◀

From Proposition 11, if we know that all the mandatory Hamiltonian paths of Gsolve are
minimal and then some edges are removed, then the mandatory Hamiltonian paths of Gsolve

remain minimal. In addition, removing some edges does not change the result of the filtering
algorithm since new alternative paths cannot be created from removal. Thus, the consistency
test and the filtering algorithm are only triggered when there are new mandatory edges.

In the following algorithms, we use the following data structures:
candidates: a stack of graph nodes such that the nodes are adjacent to edges that can be
filtered.
deltaMand: a set of the new mandatory edges since the last call of the constraint for the
current search node.

3.3.1 Consistency check
When an edge e becomes mandatory, there are three cases:

e is not connected to any path and therefore e creates a new path only containing its
two endpoints. Note that a mandatory Hamiltonian path with two nodes is necessarily
minimal.
e is connected to a mandatory Hamiltonian path p and therefore p and e are merged in a
not necessarily minimal mandatory Hamiltonian path because new alternative paths may
exist.
e is connected to two mandatory Hamiltonian paths p1 and p2 and therefore p1 and
p2 are merged in a not necessarily minimal mandatory Hamiltonian path because new
alternative paths may exist.

Thus, for consistency check, we only consider the paths that must be merged. In addition,
given a new mandatory edge e connecting p1 and p2, we note p3 the merged path of p1 and
p2. When two paths are merged, we assume that the minimality check has been performed
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on the two paths. Therefore, when the k-optPath algorithm is checking the minimality for
the path p3, it can avoid the permutations containing either only elements of p1 or only
elements of p2. Then, we consider the permutations that contain at least one element of p1
and at least one element of p2.

In Algorithm 3, we give a possible implementation of the incremental algorithm checking
the minimality of the mandatory Hamiltonian paths. For each edge (i, j) newly mandatory,
we have p1 and p2 the mandatory Hamiltonian paths such that i and j are respectively an
extremity of p1 and p2. Therefore, the edge (i, j) merge p1 and p2 and p1 and/or p2 are
accordingly reversed. Note that the candidates stack is filled for the filtering algorithm.
Then, we run the k-optPath algorithm in order to find alternative paths in p1 + p2. Note
that we only consider permutations such that each permutation contains at least one element
of p1 and at least one element of p2. Finally, if no alternative path is found, p1 + p2 is a
minimal mandatory Hamiltonian path and we merge p1 and p2 in P . Otherwise, we return
False and a failure is triggered.

Algorithm 3 Incremental minimality check of the mandatory Hamiltonian paths.

1 IncrementalConsistencyCheck (Ginit, P, deltaMand, candidates, k)
Input: The initial graph Ginit, the set of mandatory Hamiltonian paths P , the

set of new mandatory edges deltaMand, candidates a filtering used stack
and an integer k.

Output: A Boolean specifying whether P contains a mandatory Hamiltonian
path that is not minimal.

2 foreach (i, j) ∈ deltaMand do
3 p1 ← P [i] ;
4 p2 ← P [j] ;
5 if p1.last() ̸= i then reverse(p1);
6 if p2.first() ̸= j then reverse(p2);
7 candidates.push(p1.first()) ;
8 candidates.push(p2.last()) ;
9 if k-optPath(Ginit, p1, p2) then

10 return False ;
// merge p1 and p2 in P

11 merge(P, p1, p2) ;
12 return True ;

The overall time complexity of Algorithm 3 is O(
∑

(i,j)∈deltaMand(|P [i]| + |P [j]|)k −
|P [i]|k − |P [j]|k) < O(nk). Note that Algorithm 1 has a time complexity in O(

∑
p∈P |p|k) <

O(nk) when all paths are already merged which is equivalent to O(
∑

(i,j)∈deltaMand(|P [i]|+
|P [j]|)k) if paths are not merged. Thus, the incremental algorithm improves the time
complexity for checking the minimality of the mandatory Hamiltonian paths.

3.3.2 Filtering algorithm
When an edge e becomes mandatory, we have the same three cases as for the consistency
check. Thus, we will only consider the merged mandatory Hamiltonian paths in the previous
consistency check. More precisely, we will only consider the neighborhood of the first node
and the last node of these paths.
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Algorithm 4 is a possible implementation of an incremental algorithm performing the
filtering. First, we iterate on candidates. Every time two paths are merged in Algorithm 3,
the first and last nodes of the merged path are pushed in candidates. Thus, candidates

contains the first node and last nodes of all merged paths. In addition, candidates may
contain some nodes that are “intermediate” merged paths. For example, merging p1 and
p2 results in p3 such that p3.first() = x and p3.last() = y. Then, x and y are pushed in
candidates. Merging p3 with p4 results in p5 such that p5.first() = x′ and p5.last() = y′.
Then, x′ and y′ are pushed in candidates. However, x and y still are in candidates while x

or y is no longer the first node or the last node of a merged path. Then, while iterations on
candidates, we need to avoid these nodes. Finally, if a node i is an endpoint of a mandatory
Hamiltonian path, then we check in the neighborhood of the node i (same as for Algorithm 2).

Algorithm 4 Incremental filtering of the mandatory Hamiltonian paths.

1 IncrFiltering (Ginit, Gsolve = (X, M ′, O′), P, candidates, k)
Input: The initial graph Ginit, a graph Gsolve, the set of mandatory

Hamiltonian paths P , the stack of nodes to consider for the filtering
candidates and an integer k.

2 while candidates.isNotEmpty() do
3 i← candidates.pop() ;
4 p1 ← P [i] ;
5 if i = p1.first() or i = p1.last() then
6 foreach edge e = (i, j) ∈ O′(i) do
7 p2 ← P [j] ;
8 if p1.last() ̸= i then reverse(p1);
9 if p2.first() ̸= j then reverse(p2);

10 if (p1 = p2 and |M ′| ̸= n− 1) or k-optPath(Ginit, p1, p2) then
11 O′ ← O′ − e ;

If P (i) is the set of mandatory Hamiltonian paths such that each path of P (i) is connected
with a successor or a predecessor of P [i], then the time complexity of Algorithm 4 is in
O(

∑
i∈candidates

∑
p2∈P (i)(|P [i]|+ |p2|)k − |P [i]|k − |p2|k)) < O(nk+2).

3.3.3 Restoration

In order to save more computations, we maintain the set P of mandatory Hamiltonian paths.
When a backtrack occurs, the difference between the backtracked state and the current
state is that some mandatory edges could have been found and therefore some mandatory
Hamiltonian paths of P could have been merged. Thus, in order to restore P , the merged
mandatory Hamiltonian paths should be split. To do so, we define a stack S such that S

contains the added mandatory edges from the root to the current state. In addition, we
save the size of the stack for each open search node. Then, when a backtrack occurs, we
iteratively pop the mandatory e edges of S until the wanted size is obtained. For each e, we
split the mandatory Hamiltonian path in P containing e.
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4 Experiments

The algorithms have been implemented in Java 11 in a locally developed constraint program-
ming solver. The experiments were performed on Clear Linux with an Intel Xeon E5-2696v2
and 64 GB of RAM. The instances are from the TSPLib [20], a library of reference graphs
for the TSP. We rerun experiments ran in Isoart and Régin [13] and exclude instances solved
in less than two seconds by the state of the art. In addition, we tried some harder instances
from the TSPLib and selected those that did not have reached a time out t.o. by both the
state of the art and our method. Note that we set t.o. to 1 week, that is 604,800 seconds.
The name of each instance is suffixed by its number of nodes. In our implementation, the
TSP is modeled by the WCC using the CP-based LR configuration introduced in Isoart
and Régin [14]. We note “state of the art” the TSP model introduced in Subsection 2.2,
“MHP 2-opt” the state of the art combined with the mandatory Hamiltonian path constraint
searching for 2-opt and “MHP 3-opt” the state of the art combined with the mandatory
Hamiltonian path constraint searching for 3-opt. The search strategy used is LCFirst with
the heuristic minDeltaDeg [7] which is also the state of the art. Given e = (i, j) an edge,
minDeltaDeg selects the edge with the minimum difference between the sum of the number
of optional neighbors of i and j and the sum of the number of mandatory neighbors of i

and j. Thus, we compare our constraint and the state of the art through the number of
backtracks (#bk) and the solving times in seconds in arrays. All considered instances are
symmetric graphs. If not specified, we use the implementation given in Algorithm 3 and 4.

Table 1 shows the solving times and the number of backtracks for the state of the art
solving method and with 2-opt and 3-opt added to it. In addition, we display a ratio column
in order to show the gain factor for each instance by using 2-opt and 3-opt.

For the state of the art, we notice that 4 instances over 32 have reached the time out.
For the mandatory Hamiltonian path constraint combined with 2-opt, we notice that only 2
of the 4 instances have reached the time out. Indeed, pr299 is solved in 9,640s and rd400
is solved in 28,122s with 2-opt whereas they remain unsolved in 604,800s with the state of
the art.

Most of the time, we notice that the use of 2-opt allows us to improve the solving times.
For example, ali535 is improved by a factor of 3.5 in solving time and by a factor of 3.7 in
backtracks. Some problems have higher gain factors: d493 gains a factor 6 in solving time
and a factor 4.9 in backtracks. Moreover, only pr124 has a degraded solving time when using
2-opt: 2.8s vs 3.3s. Note that there is gain in backtracks 1856 vs 1700.

The mandatory Hamiltonian path constraint combined with 3-opt allow us to obtain an
additional improvement to the use of 2-opt only. Indeed, 3-opt can be slower than 2-opt
in terms of backtracks/second but it greatly reduce the number of backtracks. Note that
this configuration solve all the considered instances. Indeed, pr299 is solved in 3,039s, pr493
is solved in 170,127s, rd400 is solved in 12,352s and u574 is solved in 198,693s with the
mandatory Hamiltonian path constraint combined with 3-opt whereas they remain unsolved
in 604,800s with the state of the art. We thus obtain great improvement factors on the
solving times: > 199 for pr299, > 3.6 for pr493, > 49 for rd400 and > 3 for u574. In addition,
some instances are solved much faster with 3-opt than with 2-opt: gr666 is solved in 303.293s
with the state of the art, 64,391s with 2-opt and 21,853s with 3-opt. Some other instances
are solved with almost the same number of backtracks for 2-opt and 3-opt: for ali535 with
2-opt there is 3,148,626bk and there is 3,178,482bk with 3-opt. However, it has a slower
solving time with 2-opt than with 3-opt: 24,367s vs 35,026s. This can be due to several
reasons: the extra cost of using an algorithm in O(n3) compared to an algorithm in O(n2).
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Table 1 General results comparing the mandatory Hamiltonian path constraint combined with
2-opt or 3-opt and the state of the art.

State of the art (1) MHP 2-opt (2) ratio (1)/(2) MHP 3-opt (3) ratio (1)/(3)
time(s) #bk time(s) #bk time #bk time(s) #bk time(s) #bk

a280 7.0 2,372 6.5 2,182 1.1 1.1 10.8 3,134 0.6 0.8
ali535 84,929.1 11,747,704 24,367.5 3,148,626 3.5 3.7 35,026.0 3,178,482 2.4 3.7
ch150 2.9 1,526 2.1 644 1.4 2.4 1.7 392 1.7 3.9
d198 14.0 7,192 12.6 6,062 1.1 1.2 10.4 3,694 1.4 1.9
d493 95,916.6 13,478,616 15,931.0 2,778,780 6.0 4.9 31,162.1 1,877,298 3.1 7.2
gil262 5,230.2 2,254,728 3,804.8 1,710,410 1.4 1.3 3,833.3 1,501,756 1.4 1.5
gr137 3.4 1,910 1.7 706 2.0 2.7 1.5 518 2.2 3.7
gr202 2.4 886 2.0 600 1.2 1.5 2.3 448 1.0 2.0
gr229 227.0 166,378 64.6 44,696 3.5 3.7 59.1 33,336 3.8 5.0
gr431 1,724.8 265,698 494.8 68,432 3.5 3.9 556.3 65,100 3.1 4.1
gr666 303,293.4 28,432,754 64,390.7 5,168,402 4.7 5.5 24,853.1 1,721,794 12.2 16.5

kroA100 2.0 1,270 1.2 438 1.7 2.9 1.3 458 1.6 2.8
kroA150 6.1 4,164 5.2 3,374 1.2 1.2 3.9 1,814 1.6 2.3
kroA200 401.0 237,806 63.8 33,166 6.3 7.2 68.2 34,058 5.9 7.0
kroB100 5.4 4,816 2.8 2,164 1.9 2.2 1.7 972 3.2 5.0
kroB150 262.6 247,574 30.5 23,296 8.6 10.6 21.7 16,012 12.1 15.5
kroB200 127.8 87,296 34.5 21,060 3.7 4.1 15.8 8,140 8.1 10.7
kroC100 2.0 1,470 1.1 346 1.8 4.2 1.1 334 1.8 4.4
kroE100 2.3 1,804 1.6 782 1.4 2.3 1.6 824 1.4 2.2
lin318 32.9 7,834 8.7 1,944 3.8 4.0 10.1 2,018 3.3 3.9
pr124 2.8 1,856 3.3 1,700 0.8 1.1 2.3 1,142 1.2 1.6
pr136 20.4 18,684 16.2 13,886 1.3 1.3 13.1 8,598 1.6 2.2
pr144 2.3 1,036 1.8 628 1.3 1.6 1.9 594 1.2 1.7
pr264 4.7 690 4.9 508 1.0 1.4 5.1 524 0.9 1.3
pr299 t.o. t.o. 9,640.5 2,710,230 > 62.7 - 3,038.7 805,344 > 199.0 -
pr439 t.o. t.o. t.o. t.o. - - 170,127.1 35,750,706 > 3.6 -
rat195 38.5 24,274 17.9 10,286 2.2 2.4 17.8 8,560 2.2 2.8
rd400 t.o. t.o. 28,121.1 6,524,576 > 21.5 - 12,351.9 2,507,272 > 49.0 -
si175 288.5 301,102 204.5 197,968 1.4 1.5 342.6 275,870 0.8 1.1

tsp225 121.5 65,002 116.8 59,688 1.0 1.1 51.4 24,042 2.4 2.7
u574 t.o. t.o. t.o. t.o. - - 198,962.7 28,269,058 > 3.0 -

The Lagrangian relaxation can also be impacted by the filtered edges. However, since 3-opt
solves more problems than 2-opt and that on average (if we do not consider the instances the
instances that have reached the time out) we obtain a gain of a factor of 2.5 for 2-opt and 3
for 3-opt over the state of the art. Thus, we will consider the version with 3-opt. Note that
we also could use some other heuristics such as 2.5-opt that compute 2-opt and some 3-opt.
The improvement over the number of backtracks is not as much important as for the 3-opt
method but the number of backtracks per second is higher. In practice, we have observed on
average a 10% difference on the solving times between 3-opt and 2.5-opt.

In Table 2, we show the impact of the use of the incremental version of the mandatory
Hamiltonian path constraint on some instances of Table 1. On this instance set, the
incremental version is on average 33% faster than the non-incremental one. With the
incremental version, the solving times of somes instances such as d198 are improved of 8%
whereas for other instances such as gr229 the solving times are improved of 50%. Thus,
the benefit of avoiding recalculations may be interesting for this constraint due to the time
complexity of the k-opt algorithm.

In Table 3, we are interested in the use of k-opt algorithms with k greater than 3. For
the number of backtracks, we notice that on average 4-opt is more efficient than 3-opt which
is more efficient than 2-opt. In addition, 4-opt and 5-opt achieve similar results. However,
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Table 2 Comparison of solving times for the non-incremental and the incremental version of the
mandatory Hamiltonian path constraint.

(1) 3-opt
not incremental

(2) 3-opt
incremental

ratio
(1) / (2)

time(s) time(s) time
a280 16.2 10.8 1.49
d198 11.2 10.4 1.08
gr229 90.8 59.1 1.53

kroA200 75.1 68.2 1.10
pr136 19.5 13.1 1.49
rat195 22.5 17.8 1.26
mean 39.22 29.92 1.33

Table 3 Comparison of solving times for mandatory Hamiltonian path constraint with 2-opt,
3-opt, 4-opt and 5-opt.

2-opt 3-opt 4-opt 5-opt
time(s) #bk time(s) #bk time(s) #bk time(s) #bk

a280 6.5 2,182 10.8 3,134 132.0 3,386 41,884.8 3,386
ch150 2.1 644 1.7 392 3.0 392 246.9 392
d198 12.6 6,062 10.4 3,694 32.3 3,694 4,839.9 3,694
gr229 64.6 44,696 59.1 33,336 97.4 23,930 11,001.2 26,036

kroA200 63.8 33,166 68.2 34,058 71.1 31,050 1,450.7 31,050
pr136 16.2 13,886 13.1 8,598 54.5 6,496 8,183.5 6,496
rat195 17.9 10,286 17.8 8,560 56.9 10,192 5,816.3 10,192
mean 26.2 15,846.0 25.9 13,110.3 63.9 11,305.7 10,489.0 11,606.6

the use of 4-opt and 5-opt degrades the solving times compared to 2-opt and 3-opt. Indeed,
for 4-opt we observe a loss of a factor greater than 2. For 5-opt, we observe a loss of a factor
greater than 400. Thus, the solving times and number of backtracks trade-off is not good
when k > 3.

In Table 4, we show the gap between the MIP solver Concorde [1] and the state of the art
CP solving method with the mandatory Hamiltonian path constraint with 3-opt. Note that
the results for Concorde are obtained on our machine. For the small sized instances, we notice
that our method is competitive with Concorde. Indeed, small sized instances such as att48 are
solved in 0.14s with Concorde whereas we solved it in 0.03s. For medium sized instances such
as rat195, we can see a slight degradation of the results: Concorde solved it in 8.73s whereas
we solved it in 17.82s. However, the solving times are still comparable. Unfortunately, our
method starts to slowing down for larger instances. For example, rd400 is solved in 20.6s
with Concorde whereas it is solved in 12,351.85s with our method. Nevertheless, in [2], the
solving time ratio with Concorde of kroC100 is about 1000, here it is only 3.1. Thus, we
hope that same improvement factors will be obtained for larger instances in future works.

5 Conclusion

In this paper, we introduced a new constraint based on the k-opt algorithm, named mandatory
Hamiltonian path constraint, into to the TSP model in CP. We also introduced an incremental
version of this constraint. Experiments have shown that the use of this constraint leads to an
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Table 4 Comparison of the solving times and the number of backtracks for mandatory Hamiltonian
path constraint with 3-opt and Concorde.

Concorde 3-opt ratio
time(s) #bk time(s) #bk time

gr24 0.02 0 0.00 2 0.0
att48 0.14 0 0.03 6 0.2
eil51 0.07 0 0.05 32 0.8
st70 0.12 0 0.14 70 1.1

kroC100 0.35 0 1.08 334 3.1
bier127 0.31 0 0.28 60 0.9
gr137 1.32 0 1.55 518 1.2
ch150 0.93 0 1.73 392 1.9
si175 3.58 2 342.64 275,870 95.8

rat195 8.73 6 17.82 8,560 2.0
gr202 2.92 0 2.30 448 0.8
lin318 2.59 0 10.12 2,018 3.9
ali535 6.72 0 35,025.96 3,178,482 5215.3
d493 47.17 4 31,162.09 1,877,298 660.6
rd400 20.60 8 12,351.85 2,507,272 599.7

improvement of at least a factor of 3 in solving times. In addition, it shown that the use of
3-opt is well suited for our constraint. Moreover, we have been able to solve some instances
that remains unsolved with the state of the art CP model. The k-opt algorithm is embedded
in most of the solving methods of the TSP and therefore now in the CP. In future work, we
will study an extension of this constraint not only considering the mandatory Hamiltonian
paths but the mandatory cutsets in the graph.
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Abstract
The paper introduces the Seesaw algorithm, which explores the Pareto frontier of two given functions.
The algorithm is complete and generalizes the well-known implicit hitting set paradigm. The
first given function determines a cost of a hitting set and is optimized by an exact solver. The
second, called the oracle function, is treated as a black-box. This approach is particularly useful
in the optimization of functions that are impossible to encode into an exact solver. We show the
effectiveness of the algorithm in the context of static solver portfolio selection.

The existing implicit hitting set paradigm is applied to cost function and an oracle predicate.
Hence, the Seesaw algorithm generalizes this by enabling the oracle to be a function. The paper
identifies two independent preconditions that guarantee the correctness of the algorithm. This opens
a number of avenues for future research into the possible instantiations of the algorithm, depending
on the cost and oracle functions used.
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1 Introduction

Given a set of constraints, solving MaxSAT means finding a subset of given constraints
under two different criteria: 1) the set must be the smallest possible 2) removing these
constraints makes the whole set satisfiable. These two criteria go against each other because
the fewer constraints we remove, the less likely we are to obtain satisfiability. In their
seminal work, Davies and Bacchus [4] observe that MaxSAT can be solved by gradually
enumerating the sets that any solution must intersect with, i.e., the solution is a hitting set
of the enumerated sets. To guarantee that the smallest possible set is found, the algorithm
only considers the smallest hitting sets. This style of solving is called the implicit hitting
set algorithm. Implicit Hitting Set solving approaches have their roots in the 1980s in the
theory of diagnosis [32,33]. Since then, implicit hitting set solving and hitting set duality
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have been successfully applied to many different problems including problems that are not
necessarily in NP [6, 8, 15–17, 26, 27, 31, 35, 38]. Implicit hitting set approaches follow the
common pattern: find a set of the minimal cost that satisfies a certain predicate. In the
case of MaxSAT, the cost is the cardinality of the removed set and the predicate is the
satisfiability of its complement.

This paper makes a crucial observation: It is possible to extend the implicit hitting set
algorithm beyond predicates.

We show that it is possible to generalize the algorithm to minimize the cost under an
objective function. We call this function the oracle function. This means that we are
facing a multi-objective optimization problem with two objectives: cost and oracle. Since
the objectives typically go against each other, it is generally impossible to point to a single
best solution. However, we focus on Pareto-optimal solutions, which are solutions where
improving either of the objectives requires worsening the other. The existing framework
defined over predicates [16,17,27, 35] is subsumed by our approach because a predicate can
be cast as a function that only returns either 0 or 1. Note that in the predicate-setting there
are at most two Pareto-optimal solutions.

Why is this generalization useful? Consider the problem of selecting a good set of solvers,
henceforth a solver-portfolio, for a given set of benchmarks. The selection of this set is guided
by two criteria:
1. The solver-portfolio must be as small as possible, i.e., we want to use the minimum

possible set of solvers.
2. The solver-portfolio’s runtime in the benchmarks must be the best possible, i.e., the

inclusion of more solvers means better runtime of the portfolio.
Again we have two optimization criteria going against each other and that is why our
framework becomes useful in this context. In practice, we are mainly interested in the best
portfolio of fixed size k; this can be tackled by the Seesaw algorithm. The fact that the
oracle function in the algorithm is treated in a black-box fashion is also important in this
context. This is because the possible ways of measuring the runtime of a solver-portfolio can
typically be complex and inconvenient, or even impossible, to encode in traditional exact
solvers within available resources. While this alone is already an important example, similar
problems often appear in practice, e.g. selecting a good set of tests for a particular software
system.

The paper has the following main contributions.
The Seesaw Algorithm is introduced, which extends the implicit hitting set paradigm
to calculate Pareto-optimal solutions over given cost and oracle functions.
Two independent preconditions for the algorithm’s correctness are identified.
The algorithm is implemented and evaluated on optimization of solver portfolios and
strategies of real-world portfolio systems.

2 Preliminaries

Standard notions and notation for propositional logic are assumed [37]. A literal is a Boolean
variable (x) or its negation (denoted ¬x); a clause is a disjunction of literals. A formula is in
conjunctive normal form (CNF) if it is a conjunction of clauses.

For a CNF ϕ a subset of its clauses ψ ⊆ ϕ is called a maximal satisfiable set (MSS) of ϕ
if ψ is satisfiable and there is no ψ′ such that ψ ⊊ ψ′ and ψ′ is satisfiable. Conversely, ψ ⊆ ϕ
is called a minimal correction set (MCS) of ϕ if ϕ∖ ψ is satisfiable and there is no ψ′ such



M. Janota, A. Morgado, J. Fragoso Santos, and V. Manquinho 31:3

that ψ′ ⊊ ψ and ϕ∖ ψ′ is satisfiable. For a CNF ϕ a subset of its clauses ψ ⊆ ϕ is called a
minimal unsatisfiable set (MUS) of ϕ if ψ is unsatisfiable and there is no ψ′ such that ψ′ ⊊ ψ

and ψ′ is unsatisfiable.
The Maximum Satisfiability (MaxSAT) problem is the task of finding the smallest possible

correction set, or, equivalently finding the largest maximum satisfiable set, of a given ϕ.

2.1 Functions and Predicates
▶ Definition 1 (monotone). A function f : 2U → R is monotone if and only if for any
S ⊆ S′ ⊆ U it holds that f(S) ≤ f(S′).

▶ Definition 2 (anti-monotone). A function f : 2U → R is anti-monotone if and only if for
any S ⊆ S′ ⊆ U it holds that f(S) ≥ f(S′).

▶ Definition 3 (strictly (anti-)monotone). A function f : 2U → R is strictly (anti-)monotone
if and only if for any S ⊊ S′ ⊆ U it holds that f(S) < f(S′). (respectively, f(S) > f(S′)).

For the purpose of this paper, we treat a predicate as a special case of a function that always
returns either 0 or 1 representing false and true, respectively. In the context of propositional
satisfiability, two predicates have special importance. Given a set of clauses S, the predicate
SAT(S) is true, if and only if S is satisfiable. Conversely, the predicate UNSAT(S) is true, if
and only if S is unsatisfiable. The predicate SAT is monotone and the predicate UNSAT is
anti-monotone, but the predicates are not strictly monotone/anti-monotone. The cardinality
function, |S| is strictly monotone.

▶ Definition 4 (Hitting sets). Let Γ ⊆ 2U be a set of sets over some universe U . A set H ⊆ U
is called a hitting set of Γ if H has a nonempty intersection with every set of Γ. We write
HS(Γ) for the set of all hitting sets of Γ.

For an objective function f : 2U → R, a hitting set is f -minimal if it minimizes f over
the set of all hitting sets.

2.2 Multi-objective Optimization
Throughout the paper we assume that any optimization function should be minimized. Under
multiple optimization criteria, Pareto optimal solutions are such that improving any criterion
means worsening some other. This idea is formalized by the following definitions.

▶ Definition 5 (dominates). Let O = {f1, . . . , fl} be a set of functions with domain D and
range R. We say that x ∈ D dominates x′ ∈ D, if and only if for all f ∈ O it holds that
f(x) ≤ f(x′), and, there exists an f ∈ O such that f(x) < f(x′). If x dominates x′, we write
x ≺ x′.

▶ Definition 6 (Pareto-optimal). Let O = {f1, . . . , fl} be a set of functions with domain D

and range R. We say that x ∈ D is Pareto optimal if and only if there does not exist any
other x′ ∈ D dominating x.

▶ Definition 7 (Pareto frontier). For some set of optimization functions O, the Pareto frontier
is the set of all Pareto-optimal individuals.

Note that even though this section refers to multi-objective optimization on a set of l
functions, in this paper we consider optimizing 2 objective functions.
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g f

(a) cost g at minimum.

g f

(b) oracle f at minimum relative
to minimum cost g.

g f

(c) minimum cost g relative to
minimum oracle f .

Figure 1 Phases of the seesaw movement.

3 The Seesaw Algorithm

We are given two objective functions cost and oracle, denoted as g and f , respectively. Both
functions are defined over sets of sets of some universe U . We assume that we are able to
minimize the cost function g using a dedicated solver, such as MaxSAT, or Integer Linear
Programming (ILP) solver. The oracle function f is used as a black box.

The overall objective is to find the Pareto frontier of {g, f}. For this purpose we introduce
the Seesaw Algorithm. The algorithm enables exploring the Pareto frontier using the implicit
hitting set paradigm, as long as the functions fulfill certain properties, which are investigated
later on. The algorithm is any-time in the sense that it may be stopped before the whole
Pareto frontier is explored. The stopping criterion depends on the concrete problem at hand.

As a visual aid consider a seesaw where the middle is not completely rigid (Figure 1).
This means that it is sometimes possible to push down one of the ends without the other
one going immediately up. The height of each of the two ends represents the value of the
two respective objective functions. Our algorithm traces the movement of this seesaw and
we are at the liberty of stopping whenever we like.

Since the preference is to minimize both functions, we can imagine that there is a child
sitting on either of the ends being pulled down towards the optimum by gravity. The
movement is such that first there is only a child on the cost-end (g), and then someone places
a heavier child on the oracle-end (f).

Figure 1 illustrates some notable phases of the movement. In the beginning, the cost
function g is all the way down at its absolute minimum (Figure 1a). After that, the oracle
function f starts being pushed down, which eventually causes f to reach its minimum point
provided that g is maintained at its minimum (Figure 1b). This is the first Pareto-optimal
point that the algorithm visits. After this phase, the cost function g leaves the ground and
starts increasing, while the oracle function f continues to decrease. The movement terminates
once f reaches its absolute minimum, meaning the seesaw hits the ground on the right-hand
side (Figure 1c). This is the last Pareto-optimal point that the algorithm visits.

Let us look at a concrete example. Consider a MaxSAT problem defined by some
unsatisfiable CNF ϕ. The objective is to find a smallest S ⊆ ϕ such that ϕ ∖ S becomes
satisfiable. On the left-hand side of the seesaw we have the cost function g = |S|, and on the
right-hand side we have the oracle function as the unsatisfiability predicate over ϕ∖ S (i.e.,
f = UNSAT(ϕ∖ S)). This means that if the cost g is all the way down, S is necessarily the
empty set, which sends the f side to its maximum value, value 1, because UNSAT(ϕ ∖ ∅)
is true. Since the oracle f can only give two possible values (0 and 1), the initial phase
coincides with the middle phase. The last phase corresponds to the solution of the MaxSAT
problem: The unsatisfiability predicate became false and the size of S is the smallest possible
under this condition, i.e. for this problem, the solution is obtained once Phase 3 is reached.
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Algorithm 1 The Seesaw Algorithm.

1 Hbest ← ⊥ // best candidate so far
2 Γ← ∅ // set of collected cores
3 while true do
4 H ← argminH∈HS(Γ)g(H) // find g-minimal hitting set
5 if H = ⊥ or stopping criterion then
6 return Hbest

7 if f(H) < f(Hbest) then // f upper bound bound improvement
8 Hbest ← H

9 Γ← Γ ∪ {extractCore(H, f(Hbest), f)} // calculate new core

Let us highlight several important properties of this concrete example. The cost-side g
of the seesaw is easy to optimize (push down), because we have good solvers to optimize
for cardinality. However, the oracle-side f represents some complex problem (satisfiability)
over which we have lesser control. We follow this pattern for the rest of the paper, the cost
function g may be optimized by a dedicated solver, e.g. MaxSAT, whereas the oracle function
f is only queried for its value in a black-box fashion. In practice, however, for concrete
applications, it of course makes sense to take advantage of whatever we know about the
problem and try to steer the algorithm towards a faster improvement of the value of the
oracle.

3.1 Formalizing the Algorithm
Algorithm 1 shows the pseudocode for the algorithm. The algorithm goes through a sequence
of sets called candidates, which determine the current values of the objectives g and f . The
essence of the algorithm is to improve the value of the oracle f while at the same time
maintaining the smallest possible cost g. This is done by adding necessary conditions for the
value of the oracle f to improve. Each of these conditions is recorded in the form of a set
called core.

Throughout the course of the algorithm, all the cores are being accumulated in the
variable Γ and the candidate is always chosen to be a hitting set of Γ. Hence, a core is
defined as a set that any candidate improving on the value of f must necessarily intersect
with, i.e., we say that the candidate “hits” all the accumulated cores.

▶ Definition 8 (core). Given an upper bound v ∈ R, a set κ ⊆ U is called a core if all
H ′ ⊆ U with f(H ′) < v intersect with κ.

In each iteration of the algorithm, first a new candidate (a hitting set of Γ) is calculated
and a new core is added by invoking a dedicated function extractCore. New candidates are
calculated by taking some g-minimal hitting set of Γ. Since this alone is NP-hard, a dedicated
solver for the task is applied.

The concrete implementation of the function extractCore depends on the task at hand.
However, two important properties need to be guaranteed by the function: 1) The returned
set must prevent the current candidate solution from being found again. 2) The returned set
must be a core. The first property guarantees termination and the second property guarantees
that the algorithm does not exclude from search any candidates that might improve on the
current value of the oracle function f .
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Let us introduce definitions formalizing these properties. For the current candidate be
excluded from further search, the set returned by extractCore must be a complement of the
current candidate; otherwise, the current candidate continues to hit all cores of Γ.

▶ Definition 9 (H-blocking set). Given H ⊆ U a set κ ⊆ U is called H-blocking if
κ ⊆ (U ∖H).

Whenever the current candidate is being blocked, we have to take some care as not to
also block future candidates that improve the value of the oracle f . How can it happen that
a future candidate is excluded from future search even if it improves on the value of f? Each
candidate is a hitting set of the current set of cores Γ and once a candidate stops being a
hitting set of Γ, immediately, any subset of the candidate also stops being a hitting set of Γ.
This is an inherent property of hitting sets and it fundamentally influences the properties
and requirements of the algorithm and therefore we note this in the following observation.

▶ Observation 10. If H is not a hitting set of some set Γ, then any subset H ′ ⊆ H is also
not a hitting set of Γ.

Due to this property of hitting sets, we may only block a candidate if we are sure that
none of its subsets improve on the value of the oracle function f . We refer to this as careful
blocking, anchored in the following definition.

▶ Definition 11 (careful blocking). Given a candidate H ⊆ U , with v = f(H), a set κ carefully
blocks H, if and only if, κ ⊆ (U ∖H) and for all H ′ ⊆ U ∖κ it holds that f(H ′) ≥ v.

▶ Observation 12. Given a candidate H ⊆ U , any set κ that carefully blocks H is a core.

To summarize the discussion so far, in each iteration of Algorithm 1 the new set added
to Γ must be chosen as a complement of the current candidate but at the same time, this
can only be done if it is guaranteed that no subset of the current candidate improves on the
value of the oracle function. In general, such a core may not exist. The following section
investigates two separate sufficient conditions for this existence.

3.2 Conditions for Careful Blocking
We identify two independent and sufficient conditions.

1. g is strictly monotone, or
2. f is anti-monotone

This means that the algorithm behaves correctly if the cost function g strictly prefers
smaller sets, or, if the oracle function f prefers larger sets (non-strictly). We remark that
Saikko et al. [35] only identifies the first of the two conditions in the context of oracles being
predicates; since our framework is more general, both conditions apply also to predicates.

While either of the condition is sufficient, both may hold in some instantiations of the
framework. For instance, in the case of MaxSAT, the function |H| is strictly monotone, and
UNSAT(ϕ∖H) is anti-monotone.

In contrast, let us consider the task of finding an unsatisfiable set of some fixed cardinality
k ∈ N. This implies minimizing the cost function g(H) ≜ (k ̸= |H|) (effectively maximizing
k = |H|). The oracle function is SAT(H) (effectively maximizing UNSAT(H)). In this
situation, the cost function (predicate) is neither monotone nor anti-monotone, whereas the
oracle function is anti-monotone.
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Under either of the conditions, the weakest possible way of extracting cores is to calculate
the complement of the current candidate hitting set, i.e.,

extractCorew(H, v, f) ≜ U ∖H.

Such a set is blocking the candidate H and we will also see that it is blocking the candidate
carefully (Definition 11) whenever either of the two above conditions is satisfied. However,
this default version of core extraction is way too weak since it effectively enumerates all
possible sets. In the case of anti-monotone oracles, we show that we can significantly improve
on that. Let us now look at these two conditions separately.

3.2.1 Strictly monotone cost g

▶ Proposition 13. If g is strictly monotone and H is some candidate calculated throughout
the course of the algorithm as a hitting set of Γ. Then any H ′ ⊊ H is not a hitting set of Γ.

Proof. By contradiction assume that H ′ is a hitting set of Γ. Since g is strictly monotone,
g(H ′) < g(H), which is a contradiction because H is a g-minimal hitting set of Γ. ◀

▶ Corollary 14. If g is strictly monotone, then any H can be carefully blocked.

We observe that the requirement of strict monotonicity is tight. The requirement of g
being monotone does not constitute a sufficient condition as shown by the following example.

▶ Example 15. Let U = {a} and f(∅) = 1, f({a}) = 3. Let g be constantly 0. Hence, both
g and f are monotone. Since the algorithm may choose the first candidate arbitrarily, let us
assume that it is {a}, the complement of which is the empty set and therefore the algorithm
terminates even though the optimum of g has not been reached.

3.2.2 Anti-Monotone oracle f

For an anti-monotone f core extraction extractCoream is calculated as follows:
1. Non-deterministically choose H ′ a subset-maximal such that H ⊆ H ′ and f(H ′) ≥ v
2. return κ ≜ U ∖H ′.

To calculate subset maximal H ′ we refer to the monotone predicates framework [34].

▶ Proposition 16. Let f be anti-monotone and κ ≜ extractCoream(H, v, f). Then κ carefully
blocks H.

Proof. Since f is anti-monotone, any subset of D ⊆ H ′ will either have the same value of
f or worse. Hence, it cannot possibly improve f . This means that any solution strictly
improving f is not be a subset of H ′, i.e. it must have an intersection with U ∖H ′. ◀

▶ Corollary 17. If f is anti-monotone, then any H can be carefully blocked for any given
upper bound v.
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Figure 2 Behavior of the algorithm with respect to the Pareto frontier.

3.3 Properties
Figure 2 illustrates how the algorithm behaves in relation to the Pareto frontier of the two
functions g and f . Most notably, the algorithm visits all the Pareto-optimal points in the
order of the g function. However, some non-Pareto points may be visited in between. After
the search has reached the optimal value of the oracle function, there are no guarantees on
the obtained values. All candidates obtained after this stage are said to be in limbo. Ideally,
we stop the algorithm before this stage, i.e., ideally, the limbo is empty.

Let us highlight some important properties of Figure 2. It starts with g being at the
absolute minimum and f at some arbitrary value. After two iterations the first Pareto-optimal
point is reached, where f is optimal under the condition that the cost is still minimal. Once
the cost worsens, the process starts again, by looking for the next Pareto-optimal point with
the smallest cost.

A special situation arises when the absolute minimum of f has been reached in the eighth
iteration. In terms of the seesaw paradigm, this means that the oracle-end of the seesaw has
hit the ground. After this happens, all bets are off because there are no more candidates
that could possibly improve on the value of the oracle function. This means that in fact,
any core is valid at this point. In particular, the algorithm may add the empty core and
immediately terminate. However, for general implementation of the function extractCore,
we do not know if such property is guaranteed. Hence, the algorithm may hopelessly try
to improve on the best possible value until it runs out of possible candidates (candidates
must necessarily run out because the space is finite). We show that for core extraction
extractCoream, for anti-monotone oracle, the limbo is empty.

In the remainder of the section we focus on proving these properties. The first observation
that we make is that the value of g cannot possibly improve over time because the set of
possible hitting sets gradually diminishes. This means that the value of g criterion behaves
anti-monotonically even if the function itself is not.

▶ Proposition 18 (worsening of g). Let H,H ′ be two candidates so that H was found in an
earlier iteration than H ′. Then, g(H ′) ≥ g(H).

Proof. Let Γ,Γ′ be the sets of cores used to calculate H,H ′, respectively. Since Γ only
grows over time, the set of possible hitting sets of Γ only diminishes. More precisely,
since Γ ⊊ Γ′, it must necessarily hold that HS(Γ′) ⊆ HS(Γ). From which, necessarily,
ming(HS(Γ′)) ≥ ming(HS(Γ)). ◀
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▶ Proposition 19. The Seesaw algorithm visits all the Pareto-optimal points of {g, f}.
Further, the points are visited in the increasing value of the function g.

Proof sketch. Let P be the set of all Pareto-optimal points that have not yet been visited
and let HP be the most recent Pareto-optimal point found. By induction we show that all
elements of P are hitting sets of the current Γ and we have g(H ′

P ) > g(HP ) for all H ′
P ∈ P .

The hypothesis is trivially true at the beginning because Γ is empty.
From the induction hypothesis and Proposition 18, all the points in P have a larger or

equal value of g than g(HP ). Consequently, they also have a lower value of f as otherwise
they would be dominated by HP , i.e., we have g(H ′

P ) > g(HP ), f(H ′
P ) < f(HP ) for H ′

P ∈ P .
Since the algorithm only carefully blocks candidates (Definition 11), none of the hitting sets
from P will be blocked from future search unless visited. Since candidates are always chosen
to be g-minimal, the point from P to be first visited must be the one with the lowest value
of g. ◀

▶ Proposition 20. For anti-monotone f and extractCoream defined as above, there are no
candidates in limbo.

Proof. Let H be such that the value of f reached its maximum, meaning that f(H) ≤ f(H ′)
for any f(H ′). The procedure extractCoream goes on adding elements to H while the value of
f does not improve but that never happens and therefore the procedure results in calculating
H ′ as U , whose complement is the empty core. Once the empty core is added to Γ, the
algorithm terminates because there are no more hitting sets. ◀

4 Experimental Evaluation

The presented Seesaw algorithm is particularly suitable for problems where the optimization
function (oracle) is difficult to encode into an exact optimization solver. The problem we
choose here is the selection of a portfolio of solvers, or configurations of solvers, out of a
large set. There exist approaches that apply machine learning to predict the best solver, or a
collection of solvers, per instance, e.g., SATzilla [42] or CPHydra [29], cf. [24]. In practice,
however, solvers often employ a static portfolio and this is also the setting we consider for
our experimental evaluation.

The problem is specified as a set of solvers U = S1, . . . , Sn and a set of instances I on
which the solvers were run. For an instance i ∈ I, we write S(i) for the runtime of the solver
S on this instance. If the solver does not solve the instance, S(i) is some fixed penalty. In
competitions, the penalty is typically chosen according to the PAR2 definition, which gives a
constant penalty equal to the double of the time limit [1]. We refer to the sum of the values
S(i) across all instances as the PAR2 score of the solver. The aim is to calculate a subset
of the solvers so that their PAR2 score is the smallest, when the solvers are run in parallel.
More specifically, for a set of solvers H ⊆ U the oracle value is defined as follows.∑

i∈I
min
S∈H

S(i) (1)

The oracle function is anti-monotone. Indeed, since solvers are run in parallel, when a
new solver is added, the total score can only decrease or remain the same. The problem is
a generalization of the classical set-cover problem [9]. For the cost function, there are two
natural choices.
1. Define cost as the cardinality of the candidate, i.e., g(H) ≜ |H|.
2. Define cost as the predicate |H| = k for some fixed integer k ∈ 1..| U |,

i.e., g(H) ≜ (1 if |H| = k else 0).
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Figure 3 Pairs of values of g, f , for the SMT data set outlining a portion of the Pareto front.

In the case of cost function 1, the algorithm will explore all the Pareto front, given enough
resources (see Figure 2). In the case of cost function 2, the algorithm will search for the
optimal portfolio of cardinality k with respect to the PAR2 score as defined by equation (1).

Experimental Data
We use two data sets kindly provided by researchers in the corresponding field. The first
is collected when exploring strategies for quantifier handling in the satisfiability modulo
theories (SMT) solver CVC4 [2]. This exploration is motivated by the search for a set of
strategies that the solver is to use in the SMT competition. This data set counts 50 different
solvers and 75815 instances. We call this the SMT dataset.

The second data set is from the research on automated theorem provers (ATP), where
a large body of strategies was considered. These were collected as follows. The various
E Prover [36] configurations were invented specifically for first-order translation of Mizar
Mathematical Library [41] by various methods. Specifically, they come: (1) from the E’s
auto-schedule mode, (2) from the system BliStrTune [19] for targeted invention of theorem
proving strategies, and finally (3) from various experiments with clause selection guidance
system ENIGMA [18, 20] which is based on machine learning. This data set counts 156
different solvers and 57880 instances. We call this the ATP dataset.

Observe that both data sets have a large number of instances, which incurs a large
encoding of the oracle function if encoded explicitly. However, in the Seesaw framework, the
function is only calculated on demand programmatically.

Evaluation
We have implemented Seesaw (Algorithm 1) in C++, using the Gurobi [11] solver to solve
the integer linear programming subproblems. We considered two versions of the algorithm,
in one of the versions Gurobi is used incrementally and in the other non-incrementally,
which means all constraints need to be reloaded each time the solver is called. We also
implemented a brute-force solution of the problem, which simply enumerates all possible
subsets of cardinality k. Further, we implemented a direct encoding into Gurobi. However,
the direct encoding into Gurobi reached memory limit in all the benchmarks and therefore
was not able to solve any of the considered problems.
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(a) Portfolio size 7, i.e. k = 7.
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(b) Portfolio size 16, i.e. k = 16.
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(c) Portfolio size 39, i.e. k = 39.
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(d) Portfolio size 78, i.e. k = 78.

Figure 4 Example runs of the Seesaw algorithm for fixed portfolio size for the ATP data set.

As an additional optimization, when minimizing cores, we shuffle the elements randomly
as to increase diversity in cores and therefore increase the size of the minimal hitting set.
All the experiments were performed on servers with Intel(R) Xeon(R) CPU at 2.60GHz, 24
cores, 64GB RAM.

We first consider the setting where the cost function is simply the cardinality of the
selected portfolio, for the first data set (SMT). The algorithm was run for 5 hours, and the
worst cost reached was 7, i.e., the algorithm found all Pareto optimal points for cardinality 1..7.
The run of Seesaw is plotted in Figure 3. Each pair cost (g), oracle (f) is represented by a
point. Points marked with a star in dark red, correspond to Pareto points; Pareto sub-optimal
points are rendered as green circles. The faded grey line, connects the points by the order in
which the points are discovered (starting with a point in bottom, and stops in a point in the
upper side of the plot). Observe that this figure is analogous to Figure 2.

We consider the ATP data set for fixed cardinality of the portfolio. The time limit for
the algorithm was set to 600 seconds.

Since we were only able to prove optimal values for cardinalities 2 and 3, we focus here on
the best value obtained by the different approaches. Figures 4a–4d show the evolution of the
objective value in time for 4 different cardinalities of the portfolio (7 ≈ 5%| U |, 16 ≈ 10%| U |,
39 ≈ 25%| U |, 78 ≈ 50%| U |). The red dashed line delimits the best value achieved amongst
the solvers.
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Table 1 Best values achieved on samples of ATP for different cardinalities.

sample cardinality (k) seesaw-no-incr seesaw-incr brute-force

1 k = 5 2814287 2814191 2822009
1 k = 13 2764882 2764196 2760229
1 k = 25 2735018 2740535 2738386
2 k = 5 2821306 2823459 2824569
2 k = 13 2765332 2763383 2771172
2 k = 25 2730132 2729146 2732681
3 k = 5 2818798 2818174 2819918
3 k = 13 2765479 2763187 2767774
3 k = 25 2730116 2732724 2728360
4 k = 5 2827634 2830806 2825306
4 k = 13 2773371 2768368 2774381
4 k = 25 2737996 2738524 2745392
5 k = 5 2827598 2823750 2833257
5 k = 13 2756893 2763900 2775798
5 k = 25 2732700 2732124 2738979

First thing to observe is that there is a tendency of finding a good solution at the beginning
and only improve it a little bit in the long run. From an user perspective, it means that
running the algorithm longer has drastically diminishing returns.

This is quite noticeable in k = 78, where none of the approaches is able to improve on
the value found in the first 2 minutes. Even though the non-incremental version spends
much more time on reloading the constraints into Gurobi, it is not necessarily worse (see for
instance k = 39). This suggests that the right choice of cores is the crucial ingredient in the
algorithm. Indeed, in the case of k = 78, the incremental version found a better solution in
the first 50 iterations then the non-incremental version after 5000 iterations.

In k = 7 and k = 16 all the approaches are gravitating to the same value and therefore
it is possible that we are getting close to the optimal value. However, proving that the
value is optimal appears to be extremely hard. Note that already

(156
16

)
≈ 3 × 1021 and(156

78
)
≈ 6× 1045.

To complement these results, we also sample the ATP dataset into 5 different subsets
of size 50. The obtained results are presented in Table 1. For each considered sample and
cardinality of the portfolio, the table shows the best value found by the different approaches.
In the majority of cases, the Seesaw algorithm finds the best value. However, in some cases
it is outperformed by brute-force. This can be explained by the fact that brute-force is able
to explore much more many candidates and in some cases it may hit a good one by chance.
This suggests that it would be beneficial to design a hybrid approach in order to preserve
the intelligence of Seesaw but also cover more ground.

5 Related Work

5.1 Implicit Hitting sets
The implicit hitting set (IHS) approach has been successfully used in the highly competitive
MaxSAT solver MaxHS [4,5]. The idea here stems from the fact that any minimal correction
set is a hitting set of all MUSes. Hence, if we enumerated all MUSes, the smallest corrections
set would be obtained by calculating the minimum hitting set of those. However, the number
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of MUSes may be exponential and therefore rather than enumerating all of them, MaxHS
enumerates them one by one and it tests whether a correction set is obtained by picking one
of the minimum hitting sets of the MUSes enumerated so far.

From the point of view of complexity theory, solving the minimum hitting set problem
(MHSP) is as difficult as solving MaxSAT. However, in practice, it has been observed that
state-of-the-art integer linear programming solvers perform well on MHSP. This is supported
by theoretical results that show that MHSP is intractable for propositional resolution [23].

Moreno-Centeno and Karp introduce a general framework for solving NP-complete
problems by the implicit hitting set paradigm and apply it to a number of problems [27].
Saikko et al. extend this framework further and observe that it is not limited to problems in
NP [35]. In both aforementioned frameworks, the search for the minimal hitting set is guided
by an oracle predicate, which effectively determines if the search should stop. The framework
presented here generalizes all of the above by considering an oracle function rather than just
a predicate. Predicates are seen as functions that either return 0 or 1. We further generalize
the precondition of the algorithm by demonstrating that the algorithm does not require the
cost function to be strictly monotone, as required by Saikko et al., as long as the oracle
predicate/function is anti-monotone.

There is a large body of research on the use of oracles and problem decomposition. We
highlight the most relevant works. The IHS-based approaches bear similarity with the
Bender’s decomposition [3] in the sense that the problem is decomposed in two different
functions. Moreover, Bender’s decomposition is not restricted to linear programming and it
has been generalized to other optimization problems [10,12]. Monotone predicates play a
special role in our framework, which have been studied extensively in the context of SAT [34].
Our generalization of the IHS paradigm is analogous to the generalization of decision problems
to function problems, such as NP to FNP [30]. Nadel employs SAT solver as an oracle in
approximate optimization, similar to Walk-SAT but using SAT in each step [28].

5.2 Quantified Boolean Formulas (QBF)
In parallel to IHS, similar approaches were developed in QBF based on the AReQS
paradigm [21, 22], which was further extended to QBF under optimization [14, 17]. It
can be shown that this approach in fact reduces to IHS for certain QBF problems.

For illustration, consider the smallest MUS problem. The problem is specified by a set of
clauses C1, . . . , Cn on variables from some set X. The QBF formulation introduces selector
variables s1, . . . , sn and the formula ∃s1, . . . , sn∀X

∨
i∈[n](si ∧ ¬Ci). The formula expresses

that there is a selection of clauses, determined by the selector variables, so that for any
assignment to the X variables there is at least one clause that is falsified.

The task is to find a satisfying assignment for this QBF that sets to true the fewest selector
variables. In the optimization AReQS paradigm, the solver collects assignments to X, each of
these assignments is substituted into the formula, which results in the disjunction of selector
variables of falsified clauses. Minimization is then performed gradually on the set of these
disjunctions, which in fact correspond to cores in IHS. This was observed by Ignatiev et al.,
who carefully implement a specialized algorithm for the smallest MUS problem [16].

5.3 Multi-Objective Optimization
A large body of work exists on Multi-Objective Combinatorial Optimization (MOCO) and
Multi-Objective Mathematical Programming (MOMP) [13,40]. Multi-objective optimization
is typically concerned with different strategies of navigating the Pareto frontier based on
user preferences. In our setting, the way the Pareto frontier is navigated is implicit since we
treat the oracle function in a black-box fashion.
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Multi-objective optimization has also been studied in the context of SAT. Dedicated
algorithms exist for solving MaxSAT under lexicographic preferences [25]. Pareto frontier
has been explored by calculating minimal correction sets (MCSes) [39]. These approaches,
however, are not immediately applicable if the functions are not encodable as propositional
constraints.

A large body of work exists on the invention of good solver portfolios. These techniques
rely on the combination of machine learning and constraints solving [24].

6 Conclusions and Future Work

The paper introduces and studies the Seesaw algorithm, which enables exploring the Pareto
frontier using the implicit hitting set paradigm. The main strength of the algorithm is that
it enables combining exact and black-box optimization. The algorithm receives as input two
functions (cost and oracle), where cost is optimized exactly by a dedicated solver (e.g. ILP,
MaxSAT), whereas the oracle is used in a black-box fashion.

The algorithm generalizes the existing implicit hitting set paradigm on predicates to
functions. Implicit hitting sets on predicates were extensively studied in the last decade [4,
14, 16, 27, 35]. Interestingly, the framework is known to be applicable in problems that go
beyond NP, which immediately implies that Seesaw algorithm also goes beyond NP; it is an
open question of how to precisely characterize the complexity of the algorithm depending on
the oracle used.

In our implementation we have used the commercial Gurobi solver [11]; in the future we
aim to evaluate a larger set of solvers, such as MaxSAT or modern pseudo-Boolean solvers [7].

The novel Seesaw framework opens a number of opportunities for exact specialized
optimization in various domains. We have demonstrated that the framework is readily usable
in the context of optimizing solver portfolios and strategies. Furthermore, we aim to apply
the algorithm to systematically explore the efficiency of test-quality measures.
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Abstract
A backdoor in a finite-domain CSP instance is a set of variables where each possible instantiation
moves the instance into a polynomial-time solvable class. Backdoors have found many applications
in artificial intelligence and elsewhere, and the algorithmic problem of finding such backdoors has
consequently been intensively studied. Sioutis and Janhunen (KI, 2019) have proposed a generalised
backdoor concept suitable for infinite-domain CSP instances over binary constraints. We generalise
their concept into a large class of CSPs that allow for higher-arity constraints. We show that
this kind of infinite-domain backdoors have many of the positive computational properties that
finite-domain backdoors have: the associated computational problems are fixed-parameter tractable
whenever the underlying constraint language is finite. On the other hand, we show that infinite
languages make the problems considerably harder.
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1 Introduction

The constraint satisfaction problem (CSP) is the widely studied combinatorial problem of
determining whether a set of constraints admits at least one solution. It is common to
parameterise this problem by a set of relations (a constraint language) which determines the
allowed types of constraints, and by choosing different languages one can model different
types of problems. Finite-domain languages e.g. makes it possible to formulate Boolean
satisfiability problems and coloring problems while infinite-domain languages are frequently
used to e.g. model classical qualitative reasoning problems in artificial intelligence such as
Allen’s interval algebra and the region-connection calculus (RCC). Under the lens of classical
complexity a substantial amount is known: every finite-domain CSP is either tractable or
is NP-complete [5, 34], and for infinite domains there exists a wealth of dichotomy results
separating tractable from intractable cases [1].
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The vast expressibility of infinite-domain CSPs makes the search for efficient solution
methods extremely worthwhile. While worst-case complexity results indicate that many
interesting problems should be insurmountably hard to solve, they are nevertheless solved in
practice on a regular basis. The discrepancy between theory and practice is often explained
by the existence of “hidden structure” in real-world problems [15]. If such a hidden structure
exists in CSPs, then it may be exploited and offer a way of constructing improved constraint
solvers. To this end, backdoors have been proposed as a concrete way of exploiting this
structure. A backdoor represents a “short cut” to solving a hard problem instance and may
be seen as a measurement for how close a problem instance is to being polynomial-time
solvable [23]. The existence of a backdoor then allows one to solve a hard problem by
brute forcing solutions to the (hopefully small) backdoor and then solving the resulting
problems in polynomial time. This approach has been highly successful: applications can
be found in e.g. (quantified) propositional satisfiability [29, 30], abductive reasoning [28],
argumentation [8], planning [24], logic [26], and answer set programming [10]. Williams et
al. [33] argue that backdoors may explain why SAT solvers occasionally fail to solve randomly
generated instances with only a handful of variables but succeed in solving real-world instances
containing thousands of variables. This argument appears increasingly relevant since modern
SAT solvers frequently handle real-world instances with millions of variables. Might it be
possible to make similar headway for infinite-domain CSP solvers? For example, can solvers
in qualitative reasoning (see, e.g., Section 3.3 in [9]) be analysed in a backdoor setting? Or
are the various problems under consideration so different that a general backdoor definition
does not make sense?

We attack the problem from a general angle and propose a backdoor notion applicable
to virtually all infinite-domain CSPs of practical and theoretical interest. Our departure
is a recent paper by Sioutis and Janhunen [32] where backdoors are studied for qualitative
constraint networks (which corresponds to CSPs over certain restricted sets of binary relations).
We begin in Section 3 by showing why the finite-domain definition of backdoors is inapplicable
in the infinite-domain setting and then continue by presenting our alternative definition,
based on the idea of defining a backdoor with respect to relationships between variables
rather than individual variables (which is the basis for the finite-domain definition [13]). We
consider CSPs with respect to a fixed set of binary1 basic relations, e.g. the basic relation
in RCC-5, and then consider constraint languages definable by (not necessarily binary)
first-order formulas over the basic relations. In this setting we then define a backdoor as
a set of tuples of variables so that once the relationship between these variables are fixed,
the resulting problem belongs to a given tractable class. If we contrast our approach with
that of Sioutis and Janhunen [32], then our method is applicable to CSPs over relations of
arbitrarily high arity, and we require only mild, technical assumptions on the set of binary
basic relations. Crucially, Sioutis and Janhunen [32] do not consider the computational
complexity of any backdoor related problems, and thus do not obtain any algorithmic results.

One of the most important properties of finite-domain backdoors is that they have
desirable computational properties. Unsurprisingly, backdoor detection is NP-hard under the
viewpoint of classical complexity, even for severely restricted cases. However, the situation
changes if we adopt a parameterized complexity view. Here, the idea is to approach hard
computational problems by characterizing problem parameters that can be expected to
be small in applications, and then design algorithms polynomial in input size combined
with a super-polynomial dependence on the parameter. We say that a problem is fixed-

1 The generalisation to higher-arity relations is straightforward.
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parameter tractable if its running time is bounded by f(p) · nO(1) where n is the instance
size, p the parameter, and f is a computable function. The good news is then that the
backdoor detection/evaluation problem for finite-domain CSPs with a fixed finite and tractable
constraint language, is fixed-parameter tractable (fpt) when parameterized by the size p of
the backdoor [14], i.e. solvable in f(p) · nO(1) time where n is instance size. However, if the
constraint language is not finite, the basic computational problems become W[2]-hard [6].
Thus, if the backdoor size is reasonably small, which we expect for many real-world instances
with hidden structure, backdoors can both be found efficiently and be used to simplify the
original problem. So-called XP algorithms with a running time bounded by npoly(p) are
polynomial-time when p is fixed, too. However, since p appears in the exponent, they become
impractical when large instances are considered, and fpt algorithms are thus considered
significantly better. If the constraint language is infinite, then the detection problem is not
fixed-parameter tractable in general and the complexity landscape becomes more complex.
Note that if the detection problem is not efficiently solvable, then the complexity of the
evaluation problem is of minor importance.

While there are profound differences between finite- and infinite-domain CSPs, many
important properties of backdoors fortunately remain valid when switching to the world of
infinite domains. We construct algorithms (Section 4) for backdoor detection and evaluation
showing that these problems are fixed-parameter tractable (with respect to the size of the
backdoor) for infinite-domain CSPs based on finite constraint languages. Many CSPs studied
in practice fulfill this condition and our algorithms are directly applicable to such problems.
Algorithms for the corresponding finite-domain problems are based on enumeration of domain
values. This is clearly not possible when handling infinite-domain CSPs, so our algorithms
enumerate other kinds of objects, which introduces certain technical difficulties. Once we
leave the safe confinement of finite languages the situation changes drastically (Section 5).
We prove that the backdoor detection problem is W[2]-hard for infinite languages, making it
unlikely to be fixed-parameter tractable. Importantly, our W[2]-hardness result is applicable
to all infinite-domain CSPs where constraints are represented by first-order formulas over
a fixed relational structure, meaning that it is not possible to circumvent this difficulty
by targeting other classes of problems. Hence, while some cases of hardness are expected,
given earlier results for satisfiability and finite-domain CSPs [15], it is perhaps less obvious
that essentially all infinite-domain CSPs exhibit the same source of hardness. Again, these
negative results are not restricted to specific problems and instead show a general difficulty
in applying backdoors over infinite constraint languages. We conclude the paper with a
discussion concerning future research directions (Section 6).

Throughout, some proofs have been moved to the appendix, and the affected statements
are marked with an asterisk (∗).

2 Preliminaries

2.1 Relations and Formulas
A relational structure over a set of values D (a domain) is a tuple (D; R1, . . . , Rm) where each
Ri is a (finitary) relation over D. For simplicity we do not distinguish between the signature
of a relational structure and its relations. Assume that R contains binary relations over the
domain D. We say that the relations in R are jointly exhaustive (JE) if

⋃
R = D2, and that

they are pairwise disjoint (PD) if R ∩ R′ = ∅ for all distinct R, R′ ∈ R. Additionally, a
constraint language which is both JE and PD is said to be JEPD.
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Let φ(x1, . . . , xn) be a first-order formula (with equality) over free variables x1, . . . , xn over
a relational structure Γ = (D; R1, . . . , Rm). We write Sol(φ(x1, . . . , xn)) for the set of models
of φ(x1, . . . , xn) with respect to x1, . . . , xn, i.e., (d1, . . . , dn) ∈ Sol(φ(x1, . . . , xn)) if and only
if (D; R1, . . . , Rm) |= φ(d1, . . . , dn), and we use the notation R(x1, . . . , xn) ≡ φ(x1, . . . , xn)
to define R as Sol(φ(x1, . . . , xn)). In this case, we say that R is first-order definable (fo-
definable) in Γ. In addition to first-order logic, we sometimes use the quantifier-free (qffo),
the primitive positive (pp), and the quantifier-free primitive positive (qfpp) fragments. The
qffo fragment consists of all formulas without quantifiers, the pp fragment consists of formulas
that are built using existential quantifiers, conjunction and equality, and the qfpp consists
of quantifier-free pp formulas. We lift the notion of definability to these fragments in the
obvious way. It is important to note that if R is pp-definable in Γ, then R is not necessarily
qfpp-definable in Γ even if Γ admits quantifier elimination.

If the structure Γ admits quantifier elimination (i.e. every first-order formula has a
logically equivalent formula without quantifiers), then fo-definability coincides with qffo-
definability. This is sometimes relevant in the sequel since our results are mostly based
on qffo-definability. There is a large number of structures admitting quantifier elimination
and interesting examples are presented in every standard textbook on model theory, cf.
Hodges [17]. Well-known examples include Allen’s interval algebra (under the standard
representation via intervals in Q) and the spatial formalisms RCC-5 and RCC-8 (under
the model-theoretically pleasant representation suggested by Bodirsky & Wölfl [4]). Some
general quantifier elimination results that are highly relevant for computer science and AI
are discussed in Bodirsky [1, Sec. 4.3.1].

2.2 The Constraint Satisfaction Problem
Turning to computability, a constraint language, or simply language, over a domain D is a set
of relations ΓD over D. The constraint satisfaction problem over a constraint language ΓD

(CSP(ΓD)) is then the computational problem of determining whether a set of constraints
over ΓD admits at least one satisfying assignment.

CSP(ΓD)
Input: A tuple (V, C) where V is a set of variables and C a set of constraints

of the form R(x1, . . . , xk), where R ∈ ΓD and x1, . . . , xk ∈ V .
Question: Does there exists a satisfying assignment to (V, C), i.e., a function

f : V → D such that (f(x1), . . . , f(xk)) ∈ R for each constraint
R(x1, . . . , xK) ∈ C?

We write Sol(I) for the set of all satisfying assignments to a CSP(Γ) instance I. Finite-
domain constraints admit a simple representation obtained by explicitly listing all tuples
in the involved relation. For infinite domain CSPs, it is frequently assumed that Γ is a
first-order reduct of an underlying relational structure R, i.e., each R ∈ Γ is fo-definable in
R. Whenever R admits quantifier elimination, then we can always work with the qffo reduct
where each R ∈ Γ is qffo-definable in R.

▶ Example 1. An equality language is a first-order reduct of a structure (D; ∅) where D

is a countably infinite domain. Each literal in a first-order formula over this structure is
either of the form x = y, or x ̸= y ≡ ¬(x = y). The structure (D; ∅) admits quantifier
elimination so every first-order reduct can be viewed as a qffo reduct. For example, if we let
S be defined via the formula (x = y ∧ x ̸= z) ∨ (x ̸= y ∧ y = z) then CSP({S}) is known to
be NP-complete [3]. On the other hand, CSP({=, ̸=}) is well-known to be tractable.
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DR(X, Y )

Figure 1 Illustration of the basic relations of RCC-5 with two-dimensional disks.

A temporal language is a first-order reduct of (Q; <). The structure (Q; <) admits
quantifier elimination so it is sufficient to consider qffo reducts. For example, the betweenness
relation (Betw) can be defined via the formula (x < y ∧ y < z) ∨ (z < y ∧ y < x), and the
resulting CSP is well-known to be NP-complete, due to Bodirsky & Kára [3].

It will occasionally be useful to assume that the underlying relational structure is JEPD.
Clearly, neither (N; ∅), nor (Q; <) are JEPD, but they can easily be expanded to satisfy the
JEPD condition by (1) adding the converse of each relation, and (2) adding the complement
of each relation. Thus, an equality language can be defined as a first-order reduct of (N; =, ̸=),
and a temporal language as a first-order reduct of (Q; =, <, >). More ideas for transforming
non-JEPD languages into JEPD languages can be found in [2, Sec. 4.2].

Constraint languages in this framework also capture many problems of particular interest
in artificial intelligence. For example, consider the region connection calculus with the 5 basic
relations Θ = {DR, PO, PP, PP−1, EQ} (RCC-5). See Figure 1 for a visualisation of these
relations. In the traditional formulation of this calculus one then allows unions of the basic
relations, which (for two regions X and Y ) e.g. allows us to express that X is a proper part of
Y or X and Y are equal. This relation can easily be defined via the (quantifier-free) first-order
formula (xPPy) ∨ (xEQy). Hence, if we let Θ∨= be the constraint language consisting of all
unions of basic relations in Θ, then Θ∨= is a qffo reduct of Θ.

2.3 Parameterized Complexity
To analyse complexity of CSPs we use the framework of parameterized complexity [7, 11]
where the run-time of an algorithm is studied with respect to a parameter p ∈ N and the input
size n. Given an instance I of some computational problem, we let ||I|| denote the bit-size
of I. Many important CSPs are NP-hard on general instances and are regarded as being
theoretically intractable. However, realistic problem instances are not chosen arbitrarily and
they often contain structure that can be exploited for solving the instance efficiently. The idea
behind parameterized analysis is that the parameter describes the structure of the instance
in a computationally meaningful way. The result is a fine-grained complexity analysis that is
more relevant to real-world problems while still admitting a rigorous theoretical treatment
including, for instance, algorithmic performance guarantees.

The most favourable complexity class is FPT (fixed-parameter tractable) which contains
all problems that can be decided in f(p) · nO(1) time, where f is a computable function.
However, parameterised complexity offers strong theoretical evidence that inclusion in FPT
is highly unlikely for some problem, e.g. those that are hard for the class W[1]. The latter
contains all problems that admit many-to-one reductions from the Parameterised Clique
problem, which asks whether a graph has a clique of size p, where p is the parameter, and
the reduction runs in fixed-parameter time with respect to p.

We will prove that certain problems are not in FPT and this requires some machinery.
A parameterized problem is, formally speaking, a subset of Σ∗ × N where Σ is the input
alphabet. Reductions between parameterized problems need to take the parameter into
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account. To this end, we will use parameterized reductions (or fpt-reductions). Let L1 and
L2 denote parameterized problems with L1 ⊆ Σ∗

1 × N and L2 ⊆ Σ∗
2 × N. A parameterized

reduction from L1 to L2 is a mapping P : Σ∗
1 × N → Σ∗

2 × N such that (1) (x, k) ∈ L1 if and
only if P ((x, k)) ∈ L2, (2) the mapping can be computed by an fpt-algorithm with respect
to the parameter k, and (3) there is a computable function g : N → N such that for all
(x, k) ∈ L1 if (x′, k′) = P ((x, k)), then k′ ≤ g(k). The class W[1] contains all problems that
are fpt-reducible to Independent Set when parameterized by the size of the solution, i.e. the
number of vertices in the independent set. Showing W[1]-hardness (by an fpt-reduction)
for a problem rules out the existence of a fixed-parameter algorithm under the standard
assumption FPT ̸= W[1].

3 Backdoors

This section is devoted to the motivation behind and the introduction of a general backdoor
concept for CSPs.

3.1 Motivation
We begin by recapitulating the standard definition of backdoors for finite-domain CSPs. Let
α : X → D be an assignment. For a k-ary constraint c = R(x1, . . . , xk) we denote by c|α
the constraint over the relation R0 and with scope X0 obtained from c as follows: R0 is
obtained from R by (1) removing (d1, . . . , dk) from R if there exists 1 ≤ i ≤ k such that
xi ∈ X and α(xi) ̸= di, and (2) removing from all remaining tuples all coordinates di with
xi ∈ X. The scope X0 is obtained from x1, . . . , xk by removing every xi ∈ X. For a set C of
constraints we define C|α as {c|α : c ∈ C}. We now have everything in place to define the
standard notion of a (strong) backdoor, in the context of Boolean satisfiability problems and
finite-domain CSPs.

▶ Definition 2 ([13, 33]). Let H be a set of CSP instances. A H-backdoor for a CSP(ΓD)
instance (V, C) is a set B ⊆ V where (V \ B, C|α) ∈ H for each α : B → D.

In practice, H is typically defined as a polynomial-time solvable subclass of CSP and one
is thus interested in finding a backdoor into the tractable class H. If the CSP instance I has
a backdoor of size k, then it can be solved in |D|k · poly(||I||) time. This is an exponential
running time with the advantageous feature that it is exponential not in the instance size
||I||, but in the domain size and backdoor set size only.

▶ Example 3. Let us first see why Definition 2 is less impactful for infinite-domain CSPs.
Naturally, the most obvious problem is that one, even for a fixed B ⊆ V , need to consider
infinitely many functions α : V → D, and there is thus no general argument which resolves
the backdoor evaluation problem. However, even for a fixed assignment α : V → D we may
run into severe problems. Consider a single equality constraint of the form (x = y) and an
assignment α where α(x) = 0 but where α is not defined on y. Then (x = y)|α = {(0)}, i.e.,
the constant 0 relation, which is not an equality relation. Similarly, consider a constraint
XrY where r is a basic relation in RCC-5. Regardless of r, assigning a fixed region to X

but not to Y results in a CSP instance which is not included in any tractable subclass of
RCC-5 (and is not even an RCC-5 instance).

Hence, the usual definition of a backdoor fails to compensate for a fundamental difference
between finite and infinite-domain CSPs: that assignments to variables are typically much
less important than the relation between variables.
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3.2 Basic Definitions and Examples
Recall that we in the infinite setting are mainly interested in CSP(Γ) problems where each
relation in Γ is qffo-definable over a fixed relational structure R. Hence, in the backdoor
setting we obtain three components: a relational structure R and two qffo reducts S and T
over R, where CSP(S) is the (likely NP-hard) problem which we want to solve by finding a
backdoor to the (likely tractable) problem CSP(T ). Additionally, we will assume that R
only consists of binary JEPD relations and that the equality relation is qffo-definable in R.

▶ Definition 4. Let R = (D; R1, R2, . . . ) be a relational structure where the relations are
binary and JEPD, the equality relation on D is qffo-definable in R, and let S and T be two
qffo reducts of R. We say that [S, T , R] is a language triple and we refer to

S as the source language,
T as the target language, and
R as the base language.

Note that S and T may contain non-binary relations even though R only contains binary
relations. One should note that all concepts work equivalently well for higher arity relations
in R but it complicates the presentation. Also note that the equality relation needs to
be qffo-definable in R since this relation is always available in first-order formulas. An
alternative way is to require that the equality relation is a member of R but this assumption
is stronger than is needed for our purposes (see Example 8 for an example).

We begin by describing how constraints can be simplified in the presence of a partial
assignment of relations from R to pairs of variables.

▶ Definition 5. Let [S, T , R] be a language triple and let (V, C) be an instance of CSP(S).
Say that a partial mapping α : B → R for B ⊆ V 2 is consistent if the CSP(R) instance

(V, {R(x, y) | x, y ∈ V , α(x, y) is defined, R = α(x, y)})

is satisfiable. We define a reduced constraint with respect to a consistent α as:

R(x1, . . . , xk)|α = R(x1, . . . , xk) ∧
∧

α(xi,xj)=S,xi,xj∈{x1,...,xk}

S(xi, xj).

Next, we describe how reduced constraints can be translated to the target language. Let
[S, T , R] be a language triple and let a ∈ N ∪ {∞} equal sup{i | R ∈ S has arity i}. Let

S = {Sol(R(x1, . . . , xk)|α) | R ∈ S, α : {x1, . . . , xk}2 → R}

and

T = {φ(x1, . . . , xk) | k ≤ a, φ(x1, . . . , xk) is a qfpp-definition over T }.

We interpret these two sets as follows. Each mapping α : {x1, . . . , xk}2 → R applied to
a constraint R(x1, . . . , xk) results in a (potentially) simplified constraint R(x1, . . . , xk)|α,
which might or might not be expressible via a CSP(T ) instance. Then the condition that
Sol(R(x1, . . . , xk)|α) ∈ S is qfpp-definable over S simply means that the set of models of the
constraint R(x1, . . . , xk)|α can be defined as the set of models of a CSP(S) instance. Thus,
the set S represents all possible simplifications of constraints (with respect to S) and the set
T represents all possibilities of expressing constraints (up to a fixed arity) by the language T .
Crucially, note that S and T are finite whenever S and T are finite. With the help of the two
sets S and T we then define the following method for translating (simplified) S-constraints
into T -constraints.
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▶ Definition 6. A simplification map is a partial mapping Σ from S to T such that for every
R ∈ S: Σ(R) = φ(x1, . . . , xk) if R(x1, . . . , xk) ≡ φ(x1, . . . , xk) for some φ(x1, . . . , xk) ∈ T,
and is undefined otherwise.

We typically say that a simplification map goes from the source language S to the target
language T even though it technically speaking is a map from S to T. Note that if S and T are
both finite, then there always exists a simplification map of finite size, and one may without
loss of generality assume that it is possible to access the map in constant time. We will take
a closer look at the computation of simplification maps for finite language in Section 4.1. If
S is infinite, then the situation changes significantly. First of all, a simplification map has an
infinite number of inputs and we cannot assume that it is possible to access it in constant
time. We need, however, always assume that it can be accessed in polynomial time. Another
problem is that we have no general way of computing simplification maps so they need to be
constructed on a case-by-case basis.

▶ Definition 7. Let [S, T , R] be a language triple, and let Σ be a simplification map from
S to T . For an instance (V, C) of CSP(S) we say that B ⊆ V 2 is a backdoor if, for every
consistent α : B → R, Σ(R(x1, . . . , xk)|α) is defined for every constraint R(x1, . . . , xk) ∈ C.

Before turning to computational aspects of finding and using backdoors, let us continue
by providing additional examples, starting with finite-domain languages.

▶ Example 8. Let D = {1, . . . , d} for some d ∈ N and define the relational structure
D = (D; Rij | 1 ≤ i, j ≤ d) where Rij = {(i, j)}. This structure consists of binary JEPD
relations and the equality relation on D is qffo-definable in D via

x =D y ≡ R11(x, y) ∨ R22(x, y) ∨ · · · ∨ Rdd(x, y).

Note that any constraint language Γ with domain D can be viewed as a first-order reduct
over D. Hence, a backdoor in the style of Definition 2 is a special case of Definition 7,
meaning that our backdoor notion is not merely an adaptation of the finite-domain concept,
but a strict generalisation, since we allow arbitrary binary relations (and not only unary
relations) in the underlying relational structure.

▶ Example 9. Consider equality languages, i.e. languages that are fo-definable over the base
structure (N; =, ̸=). Recall the NP-hard ternary relation S from Example 1 and consider a
simplification map Σ with respect to the tractable target language {=, ̸=}. Note that we
cannot simplify an arbitrary constraint S(x, y, z), but that we can simplify S(x, y, z)|α if
(e.g.) α(x, y) is ’=’, or if α(x, y) is ̸=. Let (V, C) be an instance of CSP({S}). Consider
the set B = {(x, y) | S(x, y, z) ∈ C} ⊆ V 2. We claim that B is a backdoor with respect to
{=, ̸=}. Let α : B → {=, ̸=}, and consider an arbitrary constraint S(x, y, z) ∈ C. Clearly,
(x, y) ∈ B. Then, regardless of the relation between x and y, the constraint can be removed
and replaced by {=, ̸=}-constraints.

▶ Example 10. Recall the definitions of Θ and Θ∨= for RCC-5 from Section 2. Consider
a reduced constraint R|α(x, y) with respect to an instance (V, C) of CSP(Θ∨=), a set
B ⊆ V 2, and a function α : B → Θ. If (x, y) ∈ B (or, symmetrically, (y, x) ∈ B) then
R(x, y) ∧ (α(x, y))(x, y) is (1) unsatisfiable if α(x, y) ∩ R = ∅, or (2) equivalent to α(x, y).
Hence, the simplification map in this case either outputs an unsatisfiable CSP(Θ) instance
or replaces the constraints with the equivalent constraint over a basic relation. This results
in an O(5|B|) · poly(||I||) time algorithm for RCC-5, which can slightly be improved to
O(4|B|)·poly(||I||) with the observation that only the trivial relation (DR∪PO∪PP∪PP−1∪EQ)
contains all the five basic relations.
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We now have a working backdoor definition for infinite-domain CSPs, but it remains to
show that they actually simplify CSP solving, and that they can be found efficiently. We
study such computational aspects in the following section.

4 Algorithms for Finite Languages

This section is divided into three parts where we analyse various computational problems
associated with backdoors.

4.1 Computing Simplification Maps
We discussed (in Section 3.2) the fact that a simplification map S → T always exists when S
and T are finite languages. How to compute such a map is an interesting question in its own
right. In the finite-domain case, the computation is straightforward (albeit time-consuming)
since one can enumerate all solutions to a CSP instance in finite time. This is clearly not
possible when the domain is infinite. Thus, we introduce a method that circumvents this
difficulty by enumerating other objects than concrete solutions.

Assume that [S, T , R] is a language triple. We first make the following observation
concerning relations that are qffo-defined in some binary and JEPD relational structure R
(for additional details, see e.g. Sec. 2.2. in Lagerkvist & Jonsson [19]). If R is qffo-defined in
R, then it can be defined by a DNF R-formula that involves only positive (i.e. negation-free)
atomic formulas of type R(x̄), where R is a relation in R: every atomic formula ¬R(x, y)
can be replaced by∨

S∈R\{R}

S(x, y)

and the resulting formula being transformed back to DNF.
Let I = (V, C) denote an arbitrary instance of, for instance, CSP(S). An R-certificate

for I is a satisfiable instance C = (V, C ′) of CSP(R) that implies every constraint in C, i.e.
for every R(v1, . . . , vk) in C, there is a clause in the definition of this constraint (as a DNF
R-formula) such that all literals in this clause are in C ′. It is not difficult to see that I has a
solution if and only if I admits an R-certificate (see, for instance, Theorem 6 by Jonsson and
Lagerkvist [19] for a similar result). Hence, we will sometimes also say that an R-certificate
C of a CSP(S) instance I satisfies I. We will additionally use complete certificates: a CSP(·)
instance is complete if it contains a constraint over every 2-tuple of (not necessarily distinct)
variables, and a certificate is complete if it is a complete instance of CSP(·).

▶ Example 11. Consider the structure (Q; <, >, =), i.e. the rationals under the nat-
ural ordering. Let B = {(x, y, z) ∈ Q3 | x < y < z ∨ z < y < x}. Let I =
({x, y, z, w} | {B(x, y, z), B(y, z, w)}) be an instance of CSP({B}). The instance I is sat-
isfiable and this is witnessed by the solution f(x) = 0, f(y) = 1, f(z) = 2, f(w) = 3. A
certificate for this instance is {x < y, y < z, z < w} and a complete certificate is

x < y, x < z, x < w, y < z, y < w, z < w,

y > x, z > x, w > x, z > y, w > y, w > z,

x = x, y = y, z = z, w = w.

We first show that satisfiable CSP instances always have complete certificates under fairly
general conditions. Furthermore, every solution is covered by at least one such certificate.
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▶ Lemma 12. (∗) Assume R is JEPD and that Γ is qffo-definable in R. An instance (V, C)
of CSP(Γ) has a solution f : V → D if and only if there exists a complete R-certificate for I

that has solution f .

We use the previous lemma for proving that two instances Is and It have the same
solutions if and only if they admit the same complete certificates.

▶ Lemma 13. (∗) Let [S, T , R] be a language triple such that S, T , and R are finite. Given
instances Is = (V, C) of CSP(S) and It = (V, C ′) of CSP(T ), the following are equivalent:

1. Sol(Is) = Sol(It) and
2. Is and It have the same set of complete R-certificates.

Finally, we present our method for computing simplification maps.

▶ Lemma 14. (∗) Let X be the set of language triples [S, T , R] that enjoy the following
properties:
1. S, T , and R are finite and
2. CSP(R) is decidable.

The problem of constructing simplification maps for members of X is computable.

4.2 Backdoor Evaluation
We begin by studying the complexity of the following problem, which intuitively, says to
which degree the existence of a backdoor helps to solve the original problem.

[S, T , R]-Backdoor Evaluation
Input: A CSP instance (V, C) of CSP(S) and a backdoor B ⊆ V 2 into

CSP(T ).
Question: Is (V, C) satisfiable?

Clearly, [S, T , R]-backdoor evaluation is in many cases NP-hard: simply pick a
language S such that CSP(S) is NP-hard. Note that one, strictly speaking, is not forced to
use the backdoor when solving the [S, T , R]-Backdoor Evaluation problem, but if the
size of the backdoor is sufficiently small then we may be able to solve the instance faster via
the backdoor. Indeed, as we will now prove, the problem is in FPT for finite languages when
parameterised by the size of the backdoor.

▶ Theorem 15. [S, T , R]-Backdoor Evaluation is in FPT when parameterised by the
size of the backdoor, if S, T , and R are finite and CSP(T ) and CSP(R) are tractable.

Proof. Let Σ: S → T be a simplification map that has been computed off-line, let I = (V, C)
be an instance of CSP(S), let B ⊆ V 2 be a backdoor of size k, and let m = |R|. Then, we
claim that I is satisfiable if and only if there is a consistent assignment α : B → R such that
the CSP(T ) instance I|α = (V, {Σ(c|α) | c ∈ C}) is satisfiable.

Forward direction. Assume that I is satisfiable. Since R is JEPD, and since S is qffo-
definable in R, we know from Lemma 12 that I admits a complete certificate (V, Ĉ). For every
pair (x, y) ∈ B then define α to agree with the complete certificate (V, Ĉ), i.e., α(x, y) = S

for S(x, y) ∈ Ĉ. Naturally, α is consistent since (V, Ĉ) is a complete certificate for I, and
since B is a backdoor set it also follows that the CSP(T ) instance (V, {Σ(c|α) | c ∈ C) is
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well-defined. Pick an arbitrary constraint Σ(R(x1, . . . , xar(R))|α). It follows (1) that (V, Ĉ)
satisfies R(x1, . . . , xar(R)), and (2) that if α(xi, xj) = S for xi, xj ∈ {x1, . . . , xar(R)} then
(V, Ĉ) satisfies S(xi, xj), meaning that (V, Ĉ) satisfies

R(x1, . . . , xar(R)) ∧
∧

α(xi,xj)=S,xi,xj∈{x1,...,xar(R)}

S(xi, xj),

and hence also Σ(R(x1, . . . , xar(R))|α), since Σ is a simplification map.

Backward direction. Assume that there exists a consistent α : B → R such that (V, {Σ(c|α) |
c ∈ C}) is satisfiable, and let (V, Ĉ) be a complete certificate witnessing this. Naturally,
for any pair (x, y) ∈ B it must then hold that S(x, y) ∈ Ĉ for α(x, y) = S, since (V, Ĉ)
could not be a complete certificate otherwise. Pick a constraint R(x1, . . . , xar(R)) ∈ C, and
let Σ(R(x1, . . . , xar(R))|α) ≡ φ(x1, . . . xar(R)) for some φ(x1, . . . , xar(R)) ∈ T. It follows that
(V, Ĉ) satisfies

φ(x1, . . . , xar(R))

and since

Sol(φ(x1, . . . , xar(R))) = Sol(R(x1, . . . , xar(R))|α)

it furthermore follows that R(x1, . . . , xar(R))|α must be satisfied, too. However, since

R(x1, . . . , xar(R))|α ≡ R(x1, . . . , xar(R)) ∧
∧

α(xi,xj)=S,xi,xj∈{x1,...,xar(R)}

S(xi, xj),

and since every constraint S(xi, xj) is clearly satisfied, it must also be the case that (V, Ĉ) is
a complete certificate of I.

Put together, it thus suffices to enumerate all mk choices for α and to check whether α

is consistent and whether I|α is satisfiable. CSP(R) is tractable so checking whether α is
consistent can be done in polynomial time. Moreover, using the simplification map Σ, we
can reduce I|α to an instance of CSP(T ), which can be solved in polynomial-time. The total
running time is O(mk · poly(||I|||). ◀

4.3 Backdoor Detection
Theorem 15 implies that small backdoors are desirable since they can be used to solve CSP
problems faster. Therefore, let us now turn to the problem of finding backdoors. The basic
backdoor detection problem is defined as follows.

[S, T , R]-Backdoor Detection
Input: A CSP instance (V, C) of CSP(S) and an integer k.
Question: Does (V, C) have a backdoor B into T of size at most k? (and if so

output such a backdoor)

The problem is easily seen to be NP-hard even when S and T are finite; we will provide
a proof of this in Corollary 20. We will now prove that the problem can be solved efficiently
if the size of the backdoor is sufficiently small.

▶ Theorem 16. [S, T , R]-Backdoor Detection is in FPT when parameterized by k, if S,
T and R are finite, and CSP(T ) and CSP(R) are tractable.
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Proof. Let I = ((V, C), k) be an instance of [S, T , R]-Backdoor Detection, let a be the
maximum arity of any constraint of I, and let Σ be a simplification map from S to T which
we assume has been computed off-line. We solve ((V, C), k) using a bounded depth search
tree algorithm as follows.

We construct a search tree T , for which every node is labeled by a set B ⊆ V 2 of size at
most k. Additionally, every leaf node has a second label, which is either Yes or No. T is
defined inductively as follows. The root of T is labeled by the empty set. Furthermore, if t is
a node of T , whose first label is B, then the children of t in T are obtained as follows. If for
every consistent assignment α : B → R, where R = {R1, . . . , Rm}, and every c ∈ C, we have
that Σ(c|α) is defined, then B is a backdoor into T of size at most k and therefore t becomes
a leaf node, whose second label is Yes. Otherwise, i.e., if there is a consistent assignment
α : B → R and a constraint c ∈ C such that Σ(c|α) is not defined, we distinguish two cases:
(1) |B| = k, then t becomes a leaf node, whose second label is No, and (2) |B| < k, then
for every pair p of variables in the scope of c with p /∈ B, t has a child whose first label is
B ∪ {p}.

If T has a leaf node, whose second label is Yes, then the algorithm returns the first label
of that leaf node. Otherwise the algorithm return No. This completes the description of the
algorithm.

We now show the correctness of the algorithm. First, suppose the search tree T built by
the algorithm has a leaf node t whose second label is Yes. Here, the algorithm returns the
first label, say B of t. By definition, we obtain that B is a backdoor into T of size at most k.

Now consider the case where the algorithm returns No. We need to show that there is
no backdoor set B into T with |B| ≤ k. Assume, for the sake of contradiction that such a
set B exists.

Observe that if T has a leaf node t whose first label is a set B′ with B′ ⊆ B, then the
second label of t must be Yes. This is because, either |B′| < k in which case the second label
of t must be Yes, or |B′| = k in which case B′ = B and by the definition of B it follows
that the second label of t must be Yes.

It hence remains to show that T has a leaf node whose first label is a set B′ with B′ ⊆ B.
This will complete the proof about the correctness of the algorithm. We will show a slightly
stronger statement, namely, that for every natural number ℓ, either T has a leaf whose first
label is contained in B or T has an inner node of distance exactly ℓ from the root whose first
label is contained in B. We show the latter by induction on ℓ.

The claim obviously holds for ℓ = 0. So assume that T contains a node t at distance ℓ

from the root of T whose first label, say B′, is a subset of B. If t is a leaf node of T , then
the claim is shown. Otherwise, there is a consistent assignment α′ : B′ → R and a constraint
c ∈ C such that Σ(c|α′) is not defined.

Let α : B → R be any consistent assignment of the pairs in B that agrees with α′ on the
pairs in B′. Then, Σ(c|α) is defined because B is a backdoor set into T . By definition of the
search tree T , t has a child t′ for every pair p of variables in the scope of some constraint
c ∈ C such that Σ(c|α′) is not defined. We claim that B contains at least one pair of variables
within the scope of c. Indeed, suppose not. Then Σ(c|α) = Σ(c|α′) and this contradicts our
assumption that Σ(c|α) is defined. This concludes our proof concerning the correctness of
the algorithm.

The running time of the algorithm is obtained as follows. Let T be a search tree obtained
by the algorithm. Then the running time of the depth-bounded search tree algorithm is
O(|V (T )|) times the maximum time that is spend on any node of T . Since the number of
children of any node of T is bounded by

(
a
2
)

(recall that a is the maximum arity of any
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constraint of (V, C)) and the longest path from the root of T to some leaf of T is bounded by
k + 1, we obtain that |V (T )| ≤ O((

(
a
2
)
)k+1). Furthermore, the time required for any node

t of T is at most O(mk|C| · poly(||I||) (where the polynomial factors stems from checking
whether α is consistent). Therefore we obtain O((

(
a
2
)
)k+1mk|C|) as the total run-time of

the algorithm showing that [S, T , R]-Backdoor Detection is FPT when parameterized
by k. ◀

5 Hardness Results for Infinite Languages

Our positive FPT results are mainly restricted to finite languages. In Section 5.1, we
investigate how the situation differs for infinite languages, and will see that finiteness is not
merely a simplifying assumption, but in many cases absolutely crucial for tractability. We
remind the reader that if the source language is infinite, then there are an infinite number of
possible inputs for the simplificaton map, and this implies that it is not necessarily accessible
in polynomial time. However, we will see that simplification maps with good computational
properties do exist in certain cases. Even under this assumption, we prove that the backdoor
detection problem is in general W[2]-hard. We do not study the backdoor evaluation problem
since the hardness of backdoor detection makes the evaluation problem less interesting.

5.1 Hardness of Backdoor Detection
We begin by establishing the existence of a relation which turns out to be useful as a gadget
in the forthcoming hardness reduction. For every k ≥ 2, we let the k-ary equality relation
Rk be defined as follows:

Rk(x1, . . . , xk) ≡
∧

i, j, l, m ∈ [k] with i ̸= j and l ̸= m

(xi ̸= xj ∨ xl = xm)

▶ Lemma 17. (∗) The following holds for every k ≥ 2.
1. Rk(x1, . . . , xk) cannot be written as a conjunction of binary equality relations xi = xj

and xi ̸= xj, and
2. for every pair i, j with 1 ≤ i < j ≤ k and every assignment α of (xi, xj) to {(xi =

xj , xi ̸= xj)}, it holds that Rk ∧ α((xi, xj)) can be written as a conjunction of binary
equality relations.

Moreover, the definition of Rk can be computed in time k4.

Let Se = {Ri | i ≥ 1} where Ri is defined as in Lemma 17 and let Te = {=, ̸=}. Note
that both Se and Te are equality languages so they are qffo reducts of Re = {=, ̸=}. We
first verify that Se, despite being infinite, admits a straightforward simplification map to the
target language Te = {=, ̸=}.

▶ Lemma 18. (∗) There is a simplification map Σe from Se to Te that can be accessed in
polynomial time.

Our reduction is based on the following problem.

Hitting Set
Input: A finite set U , a family F of subsets of U , and an integer k ≥ 0.
Question: Is there a set S ⊆ U of size at most k such that S ∩ F ≠ ∅ for every

F ∈ F?
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Hitting Set is NP-hard even if the sets in F are restricted to sets of size 2: in this case,
the problem is simply the Vertex Cover problem. Furthermore, Hitting Set is W[2]-hard
when parameterized by k [7] but this does not hold if the sets in F have size bounded by
some constant.

▶ Theorem 19. [Se, Te, Re]-backdoor detection is W[2]-hard when parameterised by the
size of the backdoor.

Proof. We give a parameterized reduction from the Hitting Set problem. Given an instance
(U, F , k) of Hitting set, let (V, C) be the CSP(Se) instance with V = U ∪ {n} having one
constraint CF for every F ∈ F , whose scope is F ∪ {n} and whose relation is R|F |+1 (as
defined in connection with Lemma 17). This can easily be accomplished in polynomial time.
Next, we verify that (U, F , k) has a hitting set of size at most k if and only if (V, C) has a
backdoor set of size at most k into CSP(Te).

Forward direction. Let S be a hitting set for F . We claim that B = {(n, s)|s ∈ S} is a
backdoor set into CSP(Te). Because S is a hitting set for F , B contains at least two variables
from the scope of every constraint in C. Let α : B → {=, ≠} be an arbitrary consistent
assignment. Arbitrarily choose a constraint Rk(x1, . . . , xk) in C. By the construction of the
simplification map (Lemma 18), it follows that Σe(Rk(x1, . . . , xk)|α) is defined so B is indeed
a backdoor.

Backward direction. Let B be a backdoor set for (V, C) into CSP(Te). Note first that
we can assume that b = (x, n) or b = (n, x) for every b ∈ B. To see this, note that if this
is not the case for some b ∈ B, then we can replace one of the variables in b with n, while
still obtaining a backdoor set, since it is sufficient to fix a single relation between pairs of
variables in Rk in order to simplify to CSP(Te). We claim that (

⋃
b∈B b) \ {n} is a hitting set

for F . This is clearly the case because for every constraint in C, there must be at least one
pair b ∈ B such that both variables in b are in the scope of the constraint. Otherwise, there
would exist a constraint whose simplification is the constraint itself, and such a constraint
cannot be expressed as a conjunction of {=, ̸=} constraints, due to the first condition of
Lemma 17. ◀

One may note that CSP(Se) is polynomial-time solvable and that the [Se, Te, Re]-
backdoor detection problem is thus computationally harder than the CSP problem
that we attempt to solve with the backdoor approach. This indicates that the backdoor
approach must be used with care and it is, in particular, important to know the computa-
tional complexity of the CSPs under consideration. Certainly, there are also examples of
infinite source languages with an NP-hard CSP such that backdoor detection is W[2]-hard.
For instance, let S ′

e = S ∪ {S} where S is the relation defined in Example 1 – it follows
immediately that CSP(S ′

e) is NP-hard. Furthermore, it is not hard to verify that Lemma 18
can be extended to the source language S ′

e so the proof of Theorem 19 implies W[2]-hardness
of [S ′

e, Te, Re]-backdoor detection, too.
Finally, we can now answer the question (that was raised in Section 4.3) concerning the

complexity of [S, T , R]-backdoor detection when S and T are finite. By observing that
the reduction employed in Theorem 19 is a polynomial-time reduction from Hitting Set and
using the fact that Hitting Set is NP-hard even if all sets have size at most 2, we obtain the
following result.

▶ Corollary 20. The problem [{R3}, Te, Se]-Backdoor Detection is NP-hard.
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6 Concluding Remarks

We have generalised the backdoor concept to CSPs over infinite domains and we have
presented parameterized complexity results for infinite-domain backdoors. Interestingly,
despite being a strict generalisation of finite-domain backdoors, both backdoor detection
and evaluation turned out to be in FPT. Hence, the backdoor paradigm is applicable to
infinite-domain CSPs, and, importantly, it is indeed possible to have a uniform backdoor
definition (rather than having different definitions for equality languages, temporal languages,
RCC-5, and so on). Let us now discuss a few different directions for future research.

Backdoor detection and evaluation for infinite languages

Our results show that there is a significant difference between problems based on finite
constraint languages and those that are based on infinite languages. The backdoor detection
and evaluation problems are fixed-parameter tractable when the languages are finite. In the
case of infinite languages, we know that the backdoor detection problem is W[2]-hard for
certain choices of languages. This raises the following question: for which infinite source
languages is backdoor detection fixed-parameter tractable? This question is probably very
hard to answer in its full generality so it needs to be narrowed down in a suitable way. A
possible approach is to begin by studying this problem for equality languages.

Broader tractable classes

Recent advances concerning backdoor sets for SAT and finite-domain CSP provide a rather
large number of promising and important research directions for future work. For instance,
Gaspers et al. [13] have introduced the idea of so-called hetereogenous backdoor sets, i.e.
backdoor sets into the disjoint union of more than one base language, and Ganian et al. [12]
have exploited the idea that if variables in the backdoor set separate the instance into several
independent components, then the instance can still be solved efficiently as long as each
component is in some tractable base class. Both of these approaches significantly enhance the
power and/or generality of the backdoor approach for finite-domain CSP and there is a good
chance that these concepts can also be lifted to infinite-domain CSPs. Another promising
direction for future research is the use of decision trees (or the even more general concept of
backdoor DNFs) for representing backdoors [27, 31]. Here the idea is to use decision trees or
backdoor DNFs as a compact representation of all (partial) assignments of the variables in
the backdoor set. This can lead to a much more efficient algorithm for backdoor evaluation
since instead of considering all assignments of the backdoor variables, one only needs to
consider a potentially much smaller set of partial assignments of those variables that (1) cover
all possible assignments and (2) for each partial assignment the reduced instance is in the
base class. It has been shown that this approach may lead to an exponential improvement of
the backdoor evaluation problem in certain cases, and it has been verified experimentally
that these kinds of backdoors may be substantially smaller than the standard ones [27, 31].

Another direction is to drop the requirement that backdoors move the instance to a
polynomial-time solvable class – it may be sufficient that the class is solvable in, say, single-
exponential 2O(n) time. This can lead to substantial speedups when considering CSPs that
are not solvable in 2O(n) time. Natural classes of this kind are known to exist under the
exponential-time hypothesis [20], and concrete examples are given by certain extensions of
Allen’s algebra that are not solvable in 2o(n log n) time.
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The complexity of simplifying constraints

We have presented an algorithm for constructing simplification maps that works under the
condition that the source and target languages are finite. However, we have no general
method for computing simplification maps for infinite languages. It seems conceivable
that the computation of simplification maps is an undecidable problem and proving this is
an interesting research direction. However, could it still make sense to allow suboptimal
simplification maps which are oblivious to certain types of constraints, but which can be
computed more efficiently? Or simplification maps where not all entries are polynomial time
accessible? Thus, the general problem which we want to solve is, given a relation represented
by a first-order formula over R (i.e., corresponding to a simplified constraint) we wish to
determine whether it is possible to find a CSP(T ) instance whose set of models coincides with
this relation. This problem is in the literature known as an inverse constraint satisfaction
problem over a constraint language T (Inv-CSP(T )), and may be defined as follows.

Inv-CSP(T , R)
Input: A relation R (represented by an fo-formula over R).
Question: Can R be defined as the set of models of a CSP(T ) instance?

We are thus interested in finding polynomial-time solvable cases of this problem, since
this would imply the existence of an efficiently computable simplification map to T even if
the source language is infinite. The Inv-CSP problem has been fully classified for the Boolean
domain [22, 25], but little is known for arbitrary finite domains, and even less has been
established for the infinite case. We suspect that obtaining such a complexity classification
is a very hard problem even for restricted language classes such as equality languages. One
of the reasons for this is the very liberal way that the input is represented. If one changes
the representation, then a complexity classification may be easier to obtain. A plausible
way of doing this is to restrict ourselves to ω-categorical base structures. The concept of
ω-categoricity plays a key role in the study of complexity aspects of CSPs [1], but it is
also important from an AI perspective [16, 18, 21]. Examples of such structures include all
structures with a finite domain and many relevant infinite-domain structures such as (N; =),
(Q; <), and the standard structures underlying formalisms such as Allen’s algebra and RCC.
For ω-categorical base structures R, each fo-definable relation R can be partitioned into a
finite number of equivalence classes with respect to the automorphism group of R, and this
gives a much more restricted way of representing the input. We leave this as an interesting
future research project.
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A Additional Proofs for Section 4

A.1 Proof of Lemma 12
Proof. Let I = (V, C) be an arbitrary instance of CSP(Γ).

Assume C = (V, Ĉ) is a complete R-certificate for I with a solution f : V → D. The certi-
ficate C = (V, Ĉ) implies every constraint in C. Arbitrarily choose a constraint R(v1, . . . , vk)
in C. There is a clause in the definition of this constraint (viewed as a DNF R-formula)
such that all literals in this clause are in Ĉ. This implies that (f(v1), . . . , f(vk)) ∈ R since
f is a solution to C. We conclude that f is a solution to I since R(v1, . . . , vk) was chosen
arbitrarily.

Assume f : V → D is a solution to I. We know that R is JEPD. We construct a complete
certificate C = (V, Ĉ) such that f is a solution to C. Consider a 2-tuple of (not necessarily
distinct) variables (v, v′) where {v, v′} ⊆ V . The tuple (f(v), f(v′)) appears in exactly one
relation R in R since R is JEPD. Add the constraint R(v, v′) to Ĉ. Do the same thing for
all 2-tuples of variables. The resulting instance C is complete and it is satisfiable since f is a
valid solution. ◀

A.2 Proof of Lemma 13
Proof. Arbitrarily choose an instance Is = (V, Cs) of CSP(S) and an instance It = (V, Ct)
of CSP(T ).

Assume that Is and It have the same set of complete R-certificates. Arbitrarily choose
a solution f : V → D to Is that is not a solution to It (the other direction is analogous).
There is a complete R-certificate C for Is such that f is a solution to C by Lemma 12. We
know that C is a certificate for It so Lemma 12 implies that f is a solution to It, too. This
leads to a contradiction.

Assume that Is and It have the same set of solutions. Assume C is a complete R-certificate
for Is but not for It (the other way round is analogous). By Lemma 12, every solution to C is
a solution to Is. Since Is and It have the same set of solutions, C is a complete R-certificate
for It, too, which leads to a contradiction. ◀

A.3 Proof of Lemma 14
Proof. Arbitrarily choose [S, T , R] in X. Recall the definitions of S and T that were
made in connection with Definition 6. Arbitrarily choose a relation R ∈ S with arity k

and define Is = (V, C) = ({v1, . . . , vk}, {R(v1, . . . , vk)}). Given a k-ary formula φ ∈ T, let
It = (V, φ(v1, . . . , vk)). Then, the following are equivalent

https://doi.org/10.1145/3402029
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(a) Sol(Is) = Sol(It),
(b) Is and It have the same set of complete R-certificates
by Property 1 combined with Lemma 13. Property 2 implies that condition (a) is decidable:
there is a straightforward algorithm based on enumerating all complete R-certificates. Com-
pute every possible complete R-certificate on the variables in V and check whether Is and
It are equisatisfiable on these certificates. Recall that checking if a certificate implies the
constraints in Is and It is a decidable problem since CSP(R) is decidable. This procedure
can be performed in a finite number of steps since the number of complete R-certificates on
variable set V is finite.

With this in mind, there is an algorithm that computes a simplification map Σ: S → T . Ar-
bitrarily choose a k-ary relation R in S and let Is = (V, Cs) = ({v1, . . . , vk}, {R(v1, . . . , vk)}).
Enumerate all It = (V, φ(v1, . . . , vk)) where φ ∈ T is k-ary. If there exists an It that satisfies
condition (a), then let Σ(R) = φ, and, otherwise, let Σ(R) be undefined. We know that
testing condition (a) is decidable by Property 2 and we know that S and T are finite sets, so
Σ can be computed in a finite number of steps. ◀

B Additional Proofs for Section 5.1

B.1 Proof of Lemma 17
Proof. For proving the first statement, we begin by showing that (a1, . . . , ak) ∈ Rk if either
(1) a1 = a2 = . . . = ak or (2) ai ̸= aj for every i and j with i ≠ j. Assume this is not the case.
Then there are i, j, m, l ∈ [k] with i ̸= j and m ̸= l such that ai = aj and al ̸= am. But then
the term (xi ≠ xj ∨ xl = xm) in the definition of Rk is not satisfied by (a1, . . . , ak). Now,
consider a conjunction ϕ of atomic formulas from the set {Ri(xi, xj) | Ri ∈ {=, ̸=}, i, j ∈ [k]}.
If each atomic formula in ϕ is of the type xi = xj , then the models of ϕ cannot correctly
define Rk: ϕ is not satisfied by any assignment where all variables are assigned distinct
values. Similarly, if there exists an atomic formula of the type xi ≠ xj in ϕ, then ϕ cannot
be satisfied by an assignment where all variables are assigned the same value. Hence, Rk

cannot be defined as a conjunction of binary equality constraints.
For the second statement, let α be an assignment of a pair (xi, xj) to either xi ≠ xj or

xi = xj . We observe the following.
if α(xi, xj) = (xi = xj), then Rk(x1, . . . , xk) ∧ α(xi, xj) is logically equivalent to the
formula (x1 = x2) ∧ (x1 = x3) ∧ . . . ∧ (x1 = xk). The definition of Rk contains the clauses
(xi ̸= xj ∨ xl = xm) for all 1 ≤ l ≠ m ≤ k. Since xi ̸= xj does not hold due to α(xi, xj),
it follows that all variables must be assigned the same value.
if α(xi, xj) = (xi ≠ xj), then Rk(x1, . . . , xk) ∧ α(xi, xj) is logically equivalent to the
conjunction of (xi ̸= xj) for every i, j ∈ [k] where i ̸= j. The definition of Rk contains
the clauses (xi ̸= xj ∨ xl = xm) for all 1 ≤ l ̸= m ≤ k. Since xi = xj does not hold due
to α(xi, xj), it follows that all variables must be assigned distinct values.

We finally note that the definition of Rk can easily be computed in k4 time so Rk satisfies
the statement of the lemma. ◀

B.2 Proof of Lemma 18
Proof. Consider Σe(Rk(x1, . . . , xk)|α). If |{x1, . . . , xk}| < k, then we may (without loss of
generality) assume that we want to compute Σe(Rk(x1, x1, x2 . . . , xk−1)|α). This is equivalent
to computing Σe(Rk(x1, y, x2, . . . , xk−)|α) where y is a fresh variable and α is extended to
α′ so that α′(x1, y) implies x1 = y. Then, we map Σ(Rk(x1, y, . . . , xk)|α′) to a suitable
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CSP(Te) instance as prescribed by Lemma 17. Assume instead that |{x1, . . . , xk}| = k. We
let Σe(Rk(x1, . . . , xk)|α) be undefined if α(xi, xj) is not defined for any distinct xi, xj ∈
{x1, . . . , xk} – this is justified by Lemma 17. Otherwise, we map Σ(Rk(x1, . . . , xk)|α) to a
suitable CSP(Te) instance as prescribed by Lemma 17. We conclude the proof by noting that
these computations are easy to perform in polynomial time so Σe is trivially polynomial-time
accessible. ◀
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than those seen in training. Our controlled experiments provide the first principled investigation into
such zero-shot generalization, revealing that extrapolating beyond training data requires rethinking
the neural combinatorial optimization pipeline, from network layers and learning paradigms to
evaluation protocols.
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1 Introduction

NP-hard combinatorial optimization problems are the family of integer constrained optimiza-
tion problems which are intractable to solve optimally at large scales. Robust approximation
algorithms to popular problems have immense practical applications and are the backbone of
modern industries. Among combinatorial problems, the 2D Euclidean Travelling Salesman
Problem (TSP) has been the most intensely studied NP-hard graph problem in the Operations
Research (OR) community, with applications in logistics, genetics and scheduling [31]. TSP
is intractable to solve optimally above thousands of nodes for modern computers [2]. In
practice, the Concorde TSP solver [1] uses linear programming with carefully handcrafted
heuristics to find solutions up to tens of thousands of nodes, but with prohibitive execution
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Figure 1 Computational challenges of learning large scale TSP. We compare three
identical autoregressive GNN-based models trained on 12.8 Million TSP instances via reinforcement
learning. We plot average optimality gap to the Concorde solver on 1,280 held-out TSP200 instances
vs. number of training samples (left) and wall clock time (right) during the learning process.
Training on large TSP200 from scratch is intractable and sample inefficient. Active Search [4], which
learns to directly overfit to the 1,280 held-out samples, further demonstrates the computational
challenge of memorizing very few TSP200 instances. Comparatively, learning efficiently from trivial
TSP20-TSP50 allows models to better generalize to TSP200 in a zero-shot manner, indicating
positive knowledge transfer from small to large graphs. Performance can further improve via rapid
finetuning on 1.28 Million TSP200 instances or by Active Search. Within our computational budget,
a simple non-learnt furthest insertion heuristic still outperforms all models. Precise experimental
setup is described in Appendix A.

times.1 Besides, the development of problem-specific OR solvers such as Concorde for novel
or under-studied problems arising in scientific discovery [43] or computer architecture [37]
requires significant time and specialized knowledge.

An alternate approach by the Machine Learning community is to develop generic learning
algorithms which can be trained to solve any combinatorial problem directly from problem
instances themselves [5]. Using classical problems such as TSP, Minimum Vertex Cover
and Boolean Satisfiability as benchmarks, recent end-to-end approaches [28, 46, 33] leverage
advances in graph representation learning [29, 19] and have shown competitive performance
with OR solvers on trivially small problem instances up to few hundreds of nodes. Once
trained, approximate solvers based on Graph Neural Networks (GNNs) have significantly
favorable time complexity than their OR counterparts, making them highly desirable for
real-time decision-making problems such as TSP and the associated class of Vehicle Routing
Problems (VRPs).

1.1 Motivation
Scaling end-to-end approaches to practical and real-world instances is still an open question [5]
as the training phase of state-of-the-art models on large graphs is extremely time-consuming.
For graphs larger than few hundreds of nodes, the gap between GNN-based solvers and
simple non-learnt heuristics is especially evident for routing problems like TSP [28, 30].

As an illustration, Figure 1 presents the computational challenge of learning TSP on 200-
node graphs (TSP200) in terms of both sample efficiency and wall clock time. Surprisingly,
it is difficult to outperform a simple insertion heuristic when directly training on 12.8 Million
TSP200 samples for 500 hours on university-scale hardware.

1 The largest TSP solved by Concorde to date has 109,399 nodes with a total running time of 7.5 months.
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We advocate for an alternative to expensive large-scale training: learning efficiently from
trivially small TSP and transferring the learnt policy to larger graphs in a zero-shot fashion or
via fast finetuning. Thus, identifying promising inductive biases, architectures and learning
paradigms that enable such zero-shot generalization to large and more complex instances is
a key concern for training practical solvers for real-world problems.

1.2 Contributions
Towards end-to-end learning of scale-invariant TSP solvers, we unify several state-of-the-art
architectures and learning paradigms [40, 30, 12, 27] into one experimental pipeline and
provide the first principled investigation on zero-shot generalization to large instances. Our
findings suggest that learning scale-invariant TSP solvers requires rethinking the status quo
of neural combinatorial optimization to explicitly account for generalization:

The prevalent evaluation paradigm overshadows models’ poor generalization capabilities
by measuring performance on fixed or trivially small TSP sizes.
Generalization performance of GNN aggregation functions and normalization schemes
benefits from explicit redesigns which account for shifting graph distributions, and can be
further boosted by enforcing regularities such as constant graph diameters when defining
problems using graphs.
Autoregressive decoding enforces a sequential inductive bias which improves generalization
over non-autoregressive models, but is costly in terms of inference time.
Models trained with supervision are more amenable to post-hoc search, while reinforcement
learning approaches scale better with more computation as they do not rely on labelled
data.

We open-source our framework and datasets2 to encourage the community to go beyond
evaluating performance on fixed TSP sizes, develop more expressive and scale-invariant
GNNs, as well as study transfer learning for combinatorial problems.

2 Related Work

Neural Combinatorial Optimization. In a recent survey, Bengio et al. [5] identified three
broad approaches to leveraging machine learning for combinatorial optimization problems:
learning alongside optimization algorithms [18, 8], learning to configure optimization al-
gorithms [55, 14], and end-to-end learning to approximately solve optimization problems,
a.k.a. neural combinatorial optimization [53, 4].

State-of-the-art end-to-end approaches for TSP use Graph Neural Networks (GNNs) [29,
19] and sequence-to-sequence learning [48] to construct approximate solutions directly from
problem instances. Architectures for TSP can be classified as: (1) autoregressive approaches,
which build solutions in a step-by-step fashion [28, 12, 30, 35]; and (2) non-autoregressive
models, which produce the solution in one shot [40, 39, 27]. Models can be trained to
imitate optimal solvers via supervised learning or by minimizing the length of TSP tours via
reinforcement learning.

Other classical problems tackled by similar architectures include Vehicle Routing [38, 9],
Maximum Cut [28], Minimum Vertex Cover [33], Boolean Satisfiability [46, 62], and Graph
Coloring [23]. Using TSP as an illustration, we present a unified pipeline for characterizing
neural combinatorial optimization architectures in Section 3.

2 https://github.com/chaitjo/learning-tsp
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Notably, TSP has emerged as a challenging testbed for neural combinatorial optimization.
Whereas generalization to problem instances larger and more complex than those seen in
training has at least partially been demonstrated on non-sequential problems such as SAT,
MaxCut, and MVC [28, 33, 46], the same architectures do not show strong generalization for
TSP [30, 27].

Combinatorial Optimization and GNNs. From the perspective of graph representation
learning, algorithmic and combinatorial problems have recently been used to characterize
the expressive power of GNNs [44]. An emerging line of work on learning to execute local
graph algorithms [51] has lead to the development of provably more expressive GNNs [10]
and improved understanding of their generalization capability [60, 61]. Towards tackling
realistic and large-scale combinatorial problems, this paper aims to quantify the limitations of
prevalent GNN architectures and learning paradigms via zero-shot generalization to problems
larger than those seen during training.

Novel Applications. Advances on classical combinatorial problems have shown promising
results in downstream applications to novel or under-studied optimization problems in
the physical sciences [20, 47] and computer architecture [36, 41], where the development
of exact solvers is expensive and intractable. For example, autoregressive architectures
provide a strong inductive bias for device placement optimization problems [37, 65], while
non-autoregressive models [7] are competitive with autoregressive approaches [26, 63] for
molecule generation tasks.

3 Neural Combinatorial Optimization Pipeline

Many NP-hard problems can be formulated as sequential decision making tasks on graphs
due to their highly structured nature. Towards a controlled study of neural combinatorial
optimization, we unify recent ideas [40, 30, 12, 27] via a five stage end-to-end pipeline
illustrated in Figure 2. Our discussion focuses on the Travelling Salesman Problem (TSP),
but the pipeline presented is generic and can be extended to characterize modern architectures
for several NP-hard graph problems.

3.1 Problem Definition
The 2D Euclidean TSP is defined as follows: “Given a set of cities and the distances between
each pair of cities, what is the shortest possible route that visits each city and returns to the
origin city?" Formally, given a fully-connected input graph of n cities (nodes) in the two
dimensional unit square S = {xi}n

i=1 where each xi ∈ [0, 1]2, we aim to find a permutation
of the nodes π, termed a tour, that visits each node once and has the minimum total length,
defined as:

L(π|s) = ∥xπn
− xπ1∥2 +

n−1∑
i=1

∥xπi
− xπi+1∥2, (1)

where ∥ · ∥2 denotes the ℓ2 norm.

Graph Sparsification. Classically, TSP is defined on fully-connected graphs. Graph sparsi-
fication heuristics based on k-nearest neighbors aim to reduce TSP graphs, enabling models
to scale up to large instances where pairwise computation for all nodes is intractable [28]
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Input Cities Fully-connected Graph Sparse Graph

Sparsific-
ation

Heuristic

(a) Problem Definition: TSP is formulated via a fully-connected graph of cities/nodes. The graph can
be sparsified via heuristics such as k-nearest neighbors.

Initial Node Embeddings Message-passing GNN Embedder Updated Node Embeddings

(b) Graph Embedding: Embeddings for each graph node are obtained using a Graph Neural Network
encoder. At each layer, nodes gather features from their neighbors to represent local graph structure via
recursive message passing.

Final Node Embeddings

Link Prediction
MLP Decoder 

(Non-AR)

Probabilistic Prediction Discrete Solution

Graph
Search

(c) Solution Decoding & Search: Probabilities are assigned to each node for belonging to the solution
set, either independent of one-another (i.e. Non-autoregressive decoding) or conditionally through graph
traversal (i.e. Autoregressive decoding). The predicted probabilities are converted into discrete decisions
through classical graph search techniques such as greedy search or beam search.

Figure 2 End-to-end neural combinatorial optimization pipeline: The entire model in
trained end-to-end via imitating an optimal solver (i.e. supervised learning) or through minimizing
a cost function (i.e. reinforcement learning).
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or learn faster by reducing the search space [27]. Notably, problem-specific graph reduction
techniques have proven effective for out-of-distribution generalization to larger graphs for
other NP-hard problems such as MVC and SAT [33].

Fixed size vs. variable size graphs. Most work on learning for TSP has focused on training
with a fixed graph size [4, 30], likely due to ease of implementation. Learning from multiple
graph sizes naturally enables better generalization within training size ranges, but its impact
on generalization to larger TSP instances remains to be analyzed.

3.2 Graph Embedding

A Graph Neural Network (GNN) encoder computes d-dimensional representations for each
node in the input TSP graph. At each layer, nodes gather features from their neighbors to
represent local graph structure via recursive message passing [19]. Stacking L layers allows
the network to build representations from the L-hop neighborhood of each node. Let hℓ

i and
eℓ

ij denote respectively the node and edge feature at layer ℓ associated with node i and edge
ij. We define the feature at the next layer via an anisotropic message passing scheme using
an edge gating mechanism [6]:

hℓ+1
i = hℓ

i + ReLU
(

Norm
(

U ℓhℓ
i + Aggrj∈Ni

(
σ(eℓ

ij) ⊙ V ℓhℓ
j

)))
, (2)

eℓ+1
ij = eℓ

ij + ReLU
(

Norm
(

Aℓeℓ
ij + Bℓhℓ

i + Cℓhℓ
j

))
, (3)

where U ℓ, V ℓ, Aℓ, Bℓ, Cℓ ∈ Rd×d are learnable parameters, Norm denotes the normalization
layer (BatchNorm [25], LayerNorm [3]), Aggr represents the neighborhood aggregation
function (Sum, Mean or Max), σ is the sigmoid function, and ⊙ is the Hadamard product.
As inputs hℓ=0

i and eℓ=0
ij , we use d-dimensional linear projections of the node coordinate xi

and the euclidean distance ∥xi − xj∥2, respectively.

Anisotropic Neighborhood Aggregation. We make the aggregation function anisotropic
or directional via a dense attention mechanism which scales the neighborhood features
hj , ∀j ∈ Ni, using edge gates σ(eij). Anisotropic and attention-based GNNs such as Graph
Attention Networks [50] and Gated Graph ConvNets [6] have been shown to outperform
isotropic Graph ConvNets [29] across several challenging domains [13], including TSP [30, 27].

3.3 Solution Decoding

Non-autoregressive Decoding (NAR). Consider TSP as a link prediction task: each edge
may belong/not belong to the optimal TSP solution independent of one another [40]. We
define the edge predictor as a two layer MLP on the node embeddings produced by the final
GNN encoder layer L, following Joshi et al. [27]. For adjacent nodes i and j, we compute
the unnormalized edge logits:

p̂ij = W2

(
ReLU

(
W1

( [
hG, hL

i , hL
j

] )))
, where hG = 1

n

n∑
i=0

hL
i , (4)

W1 ∈ R3d×d, W2 ∈ Rd×2, and [·, ·, ·] is the concatenation operator. The logits p̂ij are
converted to probabilities over each edge pij via a softmax.



C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:7

Autoregressive Decoding (AR). Although NAR decoders are fast as they produce pre-
dictions in one shot, they ignore the sequential ordering of TSP tours. Autoregressive
decoders, based on attention [12, 30] or recurrent neural networks [53, 35], explicitly model
this sequential inductive bias through step-by-step graph traversal.

We follow the attention decoder from Kool et al. [30], which starts from a random node
and outputs a probability distribution over its neighbors at each step. Greedy search is used
to perform the traversal over n time steps and masking enforces constraints such as not
visiting previously visited nodes.

At time step t at node i, the decoder builds a context ĥC
i for the partial tour π′

t′ , generated
at time t′ < t, by packing together the graph embedding hG and the embeddings of the
first and last node in the partial tour: ĥC

i = WC

[
hG, hL

π′
t−1

, hL
π′

1

]
, where WC ∈ R3d×d and

learned placeholders are used for hL
π′

t−1
and hL

π′
1

at t = 1. The context ĥC
i is then refined via

a standard Multi-Head Attention (MHA) operation [49] over the node embeddings:

hC
i = MHA

(
Q = ĥC

i , K = {hL
1 , . . . , hL

n}, V = {hL
1 , . . . , hL

n}
)

, (5)

where Q, K, V are inputs to the M -headed MHA (M = 8). The unnormalized logits for
each edge eij are computed via a final attention mechanism between the context hC

i and the
embedding hj :

p̂ij =

C · tanh
(

(WQhC
i )T ·(WK hL

j )√
d

)
if j ̸= πt′ ∀t′ < t

−∞ otherwise.

(6)

The tanh is used to maintain the value of the logits within [−C, C] (C = 10) [4]. The logits
p̂ij at the current node i are converted to probabilities pij via a softmax over all edges.

Inductive Biases. NAR approaches, which make predictions over edges independently of
one-another, have shown strong out-of-distribution generalization for non-sequential problems
such as SAT and MVC [33]. On the other hand, AR decoders come with the sequential/tour
constraint built-in and are the default choice for routing problems [30]. Although both
approaches have shown close to optimal performance on fixed and small TSP sizes under
different experimental settings, it is important to fairly compare which inductive biases are
most useful for generalization.

3.4 Solution Search
Greedy Search. For AR decoding, the predicted probabilities at node i are used to select
the edge to travel along at the current step via sampling from the probability distribution pi

or greedily selecting the most probable edge pij , i.e. greedy search. Since NAR decoders
directly output probabilities over all edges independent of one-another, we can obtain valid
TSP tours using greedy search to traverse the graph starting from a random node and
masking previously visited nodes. Thus, the probability of a partial tour π′ can be formulated
as p(π′) =

∏
j′∼i′∈π′ pi′j′ , where each node j′ follows node i′.

Beam Search and Sampling. During inference, we can increase the capacity of greedy
search via limited width breadth-first beam search, which maintains the b most probable
tours during decoding. Similarly, we can sample b solutions from the learnt policy and
select the shortest tour among them. Naturally, searching longer, with more sophisticated

CP 2021
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techniques [16, 58], or sampling more solutions allows trading off run time for solution
quality. However, it has been noted that using large b for search/sampling or local search
during inference may overshadow an architecture’s inability to generalize [15]. To better
understand generalization, we focus on using greedy search and beam search/sampling with
small b = 128.

3.5 Policy Learning
Supervised Learning. Models can be trained end-to-end via imitating an optimal solver at
each step (i.e. supervised learning). For models with NAR decoders, the edge predictions
are linked to the ground-truth TSP tour by minimizing the binary cross-entropy loss for each
edge [40, 27]. For AR architectures, at each step, we minimize the cross-entropy loss between
the predicted probability distribution over all edges leaving the current node and the next
node from the groundtruth tour, following Vinyals et al. [53]. We use teacher-forcing to
stabilize training [57].

Reinforcement Learning. Reinforcement learning is a elegant alternative in the absence of
groundtruth solutions, as is often the case for understudied combinatorial problems. Models
can be trained by minimizing problem-specific cost functions (the tour length in the case of
TSP) via policy gradient algorithms [4, 30] or Q-Learning [28]. We focus on policy gradient
methods due to their simplicity, and define the loss for an instance s parameterized by the
model θ as L(θ|s) = Epθ(π|s) [L(π)], the expectation of the tour length L(π), where pθ(π|s)
is the probability distribution from which we sample to obtain the tour π|s. We use the
REINFORCE gradient estimator [56] to minimize L:

∇L(θ|s) = Epθ(π|s) [(L(π) − b(s)) ∇ log pθ(π|s)] , (7)

where the baseline b(s) reduces gradient variance. Our experiments compare standard critic
network baselines [4, 12] and the greedy rollout baseline proposed by Kool et al. [30].

4 Experiments

4.1 Controlled Experiment Setup
We design controlled experiments to probe the unified pipeline described in Section 3 in order
to identify inductive biases, architectures and learning paradigms that promote zero-shot
generalization. We focus on learning efficiently from small problem instances (TSP20-50)
and measure generalization to a wider range of sizes, including large instances which are
intractable to learn from (e.g. TSP200). We aim to fairly compare state-of-the-art ideas in
terms of model capacity and training data, and expect models with good inductive biases
for TSP to: (1) learn trivially small TSPs without hundreds of millions of training samples
and model parameters; and (2) generalize reasonably well across smaller and larger instances
than those seen in training. To quantify “good” generalization, we additionally evaluate our
models against a simple, non-learnt furthest insertion heuristic baseline [30].

Training Datasets. Our experiments focus on learning from variable TSP20-50 graphs. We
also compare to training on fixed graph sizes TSP20, TSP50, TSP100, which have been the
default choice in TSP literature. In the supervised learning paradigm, we generate a training
set of 1,280,000 TSP samples and groundtruth tours using Concorde. Models are trained
using the Adam optimizer for 10 epochs with a batch size of 128 and a fixed learning rate



C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:9

50 100 150 200
TSP Size

0

5

10

15

20

25

30

35
Op

tim
al

ity
 G

ap
 (%

)
Training Size
TSP20
TSP50
TSP100
TSP200
TSP20-50
Insertion Heuristic

Figure 3 Learning from various TSP
sizes. The prevalent protocol of evaluation
on training sizes overshadows brittle out-of-
distribution performance to larger and smaller
graphs.
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Figure 4 Impact of graph sparsification.
Maintaining a constant graph diameter across
TSP sizes leads to better generalization on larger
problems than using full graphs.

1e−4. For reinforcement learning, models are trained for 100 epochs on 128,000 TSP samples
which are randomly generated for each epoch (without optimal solutions) with the same
batch size and learning rate. Thus, both learning paradigms see 12,800,000 TSP samples in
total. Considering that TSP20-50 are trivial in terms of complexity as they can be solved by
simpler non-learnt heuristics, training good solvers at this scale should ideally not require
millions of instances.

Model Hyperparameters. For models with AR decoders, we use 3 GNN encoder layers
followed by the attention decoder head, setting hidden dimension d = 128. For NAR
models, we use the same hidden dimension and opt for 4 GNN encoder layers followed by
the edge predictor. This results in approximately 350,000 trainable parameters for each
model, irrespective of decoder type. Unless specified, most experiments use our best model
configuration: AR decoding scheme and Graph ConvNet encoder with Max aggregation and
BatchNorm (with batch statistics). All models are trained via supervised learning except
when comparing learning paradigms.

Evaluation. We compare models on a held-out test set of 25,600 TSP samples, consisting of
1,280 samples each of TSP10, TSP20, . . . , TSP200. Our evaluation metric is the optimality
gap w.r.t. the Concorde solver, i.e. the average percentage ratio of predicted tour lengths
relative to optimal tour lengths. To compare design choices among identical models, we plot
line graphs of the optimality gap as TSP size increases (along with a 99%-ile confidence
interval) using beam search with a width of 128. Compared to previous work which evaluated
models on fixed problem sizes [4, 12, 30], our evaluation protocol identifies not only those
models that perform well on training sizes, but also those that generalize better than
non-learnt heuristics for large instances which are intractable to train on.

4.2 Does learning from variable graphs help generalization?
We train five identical models on fully connected graphs of instances from TSP20, TSP50,
TSP100, TSP200 and variable TSP20-50. The line plots of optimality gap across TSP sizes
in Figure 3 indicates that learning from variable TSP sizes helps models retain performance
across the range of graph sizes seen during training (TSP20-50). Variable graph training

CP 2021
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Figure 5 Impact of GNN aggregation
functions. For larger graphs, aggregation func-
tions that are agnostic to node degree (Mean
and Max) are able to outperform theoretically
more expressive aggregators.
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Figure 6 Impact of normalization
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compared to training solely on the maximum sized instances (TSP50) leads to marginal gains
on small instances but, somewhat counter-intuitively, does not enable better generalization
to larger problems. Learning from small TSP20 is unable to generalize to large sizes while
TSP100 models generalize poorly to trivially easy sizes, suggesting that the prevalent protocol
of evaluation on training sizes [30, 27] overshadows brittle out-of-distribution performance.

Training on TSP200 graphs is intractable within our computational budget, see Figure 1.
TSP100 is the only model which generalizes better to large TSP200 than the non-learnt
baseline. However, training on TSP100 can also be prohibitively expensive: one epoch takes
approximately 8 hours (TSP100) vs. 2 hours (TSP20-50) (details in Appendix B). For rapid
experimentation, we train efficiently on variable TSP20-50 for the rest of our study.

4.3 What is the best graph sparsification heuristic?
Figure 4 compares full graph training to the following heuristics: (1) Fixed node degree
across graph sizes, via connecting each node in TSPn to its k-nearest neighbors, enabling
GNNs layers to specialize to constant degree k; and (2) Fixed graph diameter across
graph sizes, via connecting each node in TSPn to its n × k%-nearest neighbors, ensuring
that the same number of message passing steps are required to diffuse information across
both small and large graphs.

Although both sparsification techniques lead to faster convergence on training instance
sizes, we find that only approach (2) leads to better generalization on larger problems than
using full graphs. Consequently, all further experiments use approach (2) to operate on sparse
20%-nearest neighbors graphs. Our results also suggest that developing more principled
graph reduction techniques beyond simple k-nearest neighbors for augmenting learning-based
approaches may be a promising direction.

4.4 What is the relationship between GNN aggregation functions and
normalization layers?

In Figure 5, we compare identical models with anisotropic Sum, Mean and Max aggregation
functions. As baselines, we consider the Transformer encoder on full graphs [12, 30] as well
as a structure-agnostic MLP on each node, which can be instantiated by not using any
aggregation function in Eq.(2), i.e. hℓ+1

i = hℓ
i + ReLU

(
Norm

(
U ℓhℓ

i

))
.
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Figure 7 Comparing AR and NAR de-
coders. Sequential decoding is a powerful in-
ductive bias for TSP as it enables significantly
better generalization, even in the absence of
graph structure (MLP encoders).
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Figure 8 Inference time for various de-
coders. One-shot NAR decoding is significantly
faster than sequential AR, especially when re-
embedding the graph at each decoding step [28].

We find that the choice of GNN aggregation function does not have an impact when
evaluating models within the training size range TSP20-50. As we tackle larger graphs,
GNNs with aggregation functions that are agnostic to node degree (Mean and Max) are
able to outperform Transformers and MLPs. Importantly, the theoretically more expressive
Sum aggregator [59] generalizes worse than structure-agnostic MLPs, as it cannot handle
the distribution shift in node degree and neighborhood statistics across graph sizes, leading
to unstable or exploding node embeddings [51]. We use the Max aggregator in further
experiments, as it generalizes well for both AR and NAR decoders (not shown).

We also experiment with the following normalization schemes: (1) standard BatchNorm
which learns mean and variance from training data, as well as (2) BatchNorm with batch
statistics; and (3) LayerNorm, which normalizes at the embedding dimension instead of
across the batch. Figure 6 indicates that BatchNorm with batch statistics and LayerNorm
are able to better account for changing statistics across different graph sizes. Standard
BatchNorm generalizes worse than not doing any normalization, thus our other experiments
use BatchNorm with batch statistics.

Poor performance on large graphs than those seen during training can be explained
by unstable node and graph-level representations due to the choice of aggregation and
normalization schemes. Using Max aggregators and BatchNorm with batch statistics are
temporary hacks to overcome the failure of the current architectural components. Overall,
our results suggest that inference beyond training sizes will require the development of
expressive GNN mechanisms that are able to leverage global graph topology [17, 52] while
being invariant to distribution shift [32].

4.5 Which decoder has a better inductive bias for TSP?
Figure 7 compares NAR and AR decoders for identical models. To isolate the impact
of the decoder’s inductive bias without the inductive bias imposed by GNNs, we also
show Transformer encoders on full graphs as well as structure-agnostic MLPs. Within our
experimental setup, AR decoders are able to fit the training data as well as generalize
significantly better than NAR decoders, indicating that sequential decoding is powerful for
TSP even without graph information.
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Figure 9 Comparing solution search set-
tings. Under greedy decoding, RL demonstrates
better performance and generalization. Con-
versely, SL models improve over their RL counter-
parts when performing beam search or sampling.
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Figure 10 Impact of increasing beam
width. Teacher-forcing during SL leads to poor
generalization under greedy decoding, but makes
the probability distribution more amenable to
beam search.

Conversely, NAR architectures are a poor inductive bias as they require significantly more
computation to perform competitively to AR decoders. For instance, recent work [40, 27] used
more than 30 layers with over 10 Million parameters. We believe that such overparameterized
networks are able to memorize all patterns for small TSP training sizes [64], but the learnt
policy is unable to generalize beyond training graph sizes. At the same time, when compared
fairly within the same experimental settings, NAR decoders are significantly faster than AR
decoders described in Section 3.3 as well as those which re-embed the graph at each decoding
step [28], see Figure 8.

4.6 How does the learning paradigms impact the search phase?
Identical models are trained via supervised learning (SL) and reinforcement learning (RL)
(We show only the greedy rollout baseline for clarity.). Figure 9 illustrates that, when using
greedy decoding during inference, RL models perform better on the training size as well as on
larger graphs. Conversely, SL models improve over their RL counterparts when performing
beam search or sampling.

In Appendix D, we find that the rollout baseline, which encourages better greedy behaviour,
leads to the model making very confident predictions about selecting the next node at each
decoding step, even out of training size range. In contrast, SL models are trained with teacher
forcing, i.e. imitating the optimal solver at each step instead of using their own prediction.
This results in less confident predictions and poor greedy decoding, but makes the probability
distribution more amenable to beam search and sampling, as shown in Figure 10. Our results
advocate for tighter coupling between the training and inference phase of learning-driven
TSP solvers, mirroring recent findings in generative models for text [21].

4.7 Which learning paradigm scales better?
Our experiments till this point have focused on isolating the impact of various pipeline
components on zero-shot generalization under limited computation. At the same time, recent
results on natural language have highlighted the power of large scale pre-training for effective
transfer learning [42]. To better understand the impact of learning paradigms when scaling
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Figure 11 Scaling computation and parameters for SL and RL-trained models. All
models are trained on TSP20-50. We plot optimality gap on 1,280 held-out samples of both TSP50
(performance on training size) and TSP100 (out-of-distribution generalization) under greedy decoding.
Note that SL models are less amenable than RL models to greedy search. RL models are able to
keep improving their performance within as well as outside of training size range with more data.
On the other hand, SL performance is bottlenecked by the need for optimal groundtruth solutions.

computation, we double the model parameters (up to 750,000) and train on tens times more
data (12.8M samples) for AR architectures. We monitor optimality gap on the training size
range (TSP20-50) as well as a larger size (TSP100) vs. the number of training samples.

In Figure 11, we see that increasing model capacity leads to better learning. Notably, RL
models, which train on unique randomly generated samples throughout, are able to keep
improving their performance within as well as outside of training size range as they see more
samples. On the other hand, SL is bottlenecked by the need for optimal groundtruth solutions:
SL models iterate over the same 1.28M unique labelled samples and stop improving at a
point. Beyond favorable inductive biases, distributed and sample-efficient RL algorithms [45]
may be a key ingredient for learning from larger TSPs beyond tens of nodes.

5 Conclusion

Learning-driven solvers for combinatorial problems such as the Travelling Salesman Problem
have shown promising results for trivially small instances up to a few hundred nodes. However,
scaling such end-to-end learning approaches to real-world instances is still an open question
as training on large graphs is extremely time-consuming. As a motivating example, we have
demonstrated that state-of-the-art techniques are unable to outperform simple insertion
heuristics on TSP beyond 200 nodes when trained on university-scale hardware.

This paper advocates for an alternative to expensive large-scale training: the generalization
gap between end-to-end approaches and insertion heuristics can be brought closer by training
models efficiently from trivially small TSP and transferring the learnt policy to larger graphs
in a zero-shot fashion or via fast fine-tuning. Thus, identifying promising inductive biases,
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architectures and learning paradigms that enable such zero-shot generalization to large
and more complex instances is a key concern for developing practical solvers for real-world
combinatorial problems.

We perform the first principled investigation into zero-shot generalization for learning
large scale TSP, unifying state-of-the-art architectures and learning paradigms into one
experimental pipeline. Our findings suggest that key design choices such as Graph Neural
Network layers, normalization schemes, graph sparsification, and learning paradigms need to
be explicitly re-designed to consider out-of-distribution generalization.

Future work can tackle generalization to large-scale problem instances in the following ways:
(1) GNN architectures which are sufficiently expressive beyond simple max/mean aggregation
functions, while at the same time incorporating inductive biases which account for the shifting
graph degree distribution and statistics that characterize larger scale combinatorial problems.
(2) Novel learning paradigms which focus on generalization, e.g. this work explored zero-shot
generalization to larger problems, but the logical next step is to fine-tune the model on a small
number of larger problems. Thus, it will be interesting to explore fine-tuning/generalization
as a meta-learning problem, wherein the goal is to train model parameters specifically for
fast adaptation and fine-tuning to new data distributions and problem sizes.
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A Additional Context for Figure 1: Computational challenges of
learning large scale TSP

Experimental Setup. In Figure 1, we illustrate the computational challenges of learning
large scale TSP by comparing three identical models trained on 12.8 Million TSP instances
via reinforcement learning. Our experimental setup largely follows Section 4.1. All models
use identical configurations: autoregressive decoding and Graph ConvNet encoder with
Max aggregation and LayerNorm. The TSP20-50 model is trained using the greedy rollout
baseline [30] and the Adam optimizer with batch size 128 and learning rate 1e − 4. Direct
training, active search and finetuning on TSP200 samples is done using learning rate 1e − 5,
as we found larger learning rates to be unstable. During active search and finetuning, we use
an exponential moving average baseline, as recommended by Bello et al. [4].

Furthest Insertion Baseline. We characterize “good” generalization across our experiments
by the well-known furthest insertion heuristic, which constructively builds a solution/partial
tour π′ by inserting node i between tour nodes j1, j2 ∈ π′ such that the distance from node i

to its nearest tour node j1 is maximized. The Appendix of Kool et al. [30] provides a detailed
description of insertion heuristic approaches.
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We motivate our work by showing that learning from large TSP200 is intractable on
university-scale hardware, and that efficient pre-training on trivial TSP20-50 enables models
to better generalize to TSP200 in a zero-shot manner. Within our computational budget,
furthest insertion still outperforms our best models. At the same time, we are not claiming
that it is impossible to outperform insertion heuristics with current approaches: reinforcement
learning-driven approaches will only continue to improve performance with more computation,
training data and sample efficient learning algorithms. We want to use simple non-learnt
baselines to motivate the development of better architectures, learning paradigms and
evaluation protocols for neural combinatorial optimization.

Routing Problems and Generalization. It is worth mentioning why we chose to study TSP in
particular. Firstly, TSP has stood the test of time in terms of relevance and continues to serve
as an engine of discovery for general purpose techniques in applied mathematics [11, 34, 22].

TSP and associated routing problems have also emerged as a challenging testbed for
learning-driven approaches to combinatorial optimization. Whereas generalization to problem
instances larger and more complex than those seen in training has at least partially been
demonstrated on non-sequential problems such as SAT, MaxCut, Minimum Vertex Cover [28,
33, 46]3, the same architectures do not show strong generalization for TSP. For example,
furthest insertion heuristics outperforms or are competitive with state-of-the-art approaches
for TSP above tens of nodes, see Figure D.1.(e, f) from Khalil et al. [28] or Figure 5 from
Kool et al. [30], despite using more computation and data than our controlled study.

B Hardware and Timings

Fairly timing research code can be difficult due to differences in libraries used, hardware
configurations and programmer skill. In Table 1, we report approximate total training
time and inference time across TSP sizes for the model setup described in Section 4.1. All
experiments were implemented in PyTorch and run on an Intel Xeon CPU E5-2690 v4 server
and four Nvidia 1080Ti GPUs. Four experiments were run on the server at any given time
(each using a single GPU). Training time may vary based on server load, thus we report the
lowest training time across several runs in Table 1.

We experimented with improving the latency of GNN-based models by using graph
machine learning libraries such as DGL [54]. DGL requires graphs to be prepared as sparse
library-specific data objects, which significantly boosts the inference speed of GNNs. However,
using DGL had a negative impact on the speed of the rest of our pipeline (batched data
preparation, decoders, beam search). This issue is especially amplified for reinforcement
learning, where we constantly generate new random datasets at each epoch. For now, we
present timings and results with pure PyTorch code. We confirm that results are consistent
with using DGL, but decided against it in order to run a large volume of experiments for
more comprehensive analysis.

C Datasets

We generate 2D Euclidean TSP instances of varying sizes and complexities as graphs of
n node locations sampled uniformly in the unit square S = {xi}n

i=1 and xi ∈ [0, 1]2. For
supervised learning, we generate a training set of 1,280,000 samples each for TSP20, TSP50,

3 It is worth noting that classical algorithmic and symbolic components such as graph reduction, sophist-
icated tree search as well as post-hoc local search have been pivotal and complementary to GNNs in
enabling such generalization [33].



C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent 33:19

Table 1 Approximate training time (12.8M samples) and inference time (1,280 samples) across
TSP sizes and search settings for SL and RL-trained models. GS : Greedy search, BS128 : beam
search with width 128, S128 : sampling 128 solutions. RL training uses the rollout baseline and
timing includes the time taken to update the baseline after each 128,000 samples.

Graph Size Training Time Inference Time
SL RL GS BS128 S128

TSP20 4h 24m 8h 02m 2.62s 7.06s 63.37s
TSP20-50 9h 49m 15h 47m - - -

TSP50 16h 11m 40h 29m 7.45s 29.09s 86.48s
TSP100 68h 34m 108h 30m 19.04s 98.26s 180.30s
TSP200 - 495h 55m 54.88s 372.09s 479.37s

TSP100, and TSP20-50. The groundtruth tours are obtained using the Concorde solver [1].
For reinforcement learning, 128,000 samples are randomly generated for each epoch (without
optimal solutions). We compare models on a held-out test set of 25,600 TSP samples and
their corresponding optimal tours, consisting of 1,280 instances each of TSP10, TSP20, . . . ,
TSP200. We release all dataset files as well as the associated scripts to produce TSP datasets
of arbitrarily large sizes along with our open-source codebase.

D Learning Paradigms and Amenity to Search

Figure 10 demonstrate that SL models are more amenable to beam search and sampling, but
are outperformed by RL-rollout models under greedy search. In Figure 12, we investigate
the impact of learning paradigms on probability distributions by plotting histograms of
the probabilities of greedy selections during inference across TSP sizes for identical models
trained with SL and RL. We find that the rollout baseline, which encourages better greedy
behaviour, leads to the model making very confident predictions about selecting the next
node at each decoding step, even beyond training size range. In contrast, SL models are
trained with teacher forcing, i.e. imitating the optimal solver at each step instead of using
their own prediction. This results in less confident predictions and poor greedy decoding, but
makes the probability distribution more amenable to beam search and sampling techniques.

We understand this phenomenon as follows: More confident predictions (Figure 12b) do
not automatically imply better solutions. However, sampling repeatedly or maintaining the
top-b most probable solutions from such distributions is likely to contain very similar tours.
On the other hand, less sharp distributions (Figure 12a) are likely to yield more diverse tours
with increasing b. This may result in comparatively better optimality gap, especially for
TSP sizes larger than those seen in training.

Probability of Greedy Selection

TSP Size

(a) Supervised Learning

Probability of Greedy Selection

TSP Size

(b) Reinforcement Learning

Figure 12 Histograms of greedy selection probabilities (x-axis) across TSP sizes (y-axis).
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E Visualizing Model Predictions

As a final note, we present a visualization tool for generating model predictions and heatmaps
of TSP instances, see Figures 13 and 14. We advocate for the development of more prin-
cipled approaches to neural combinatorial optimization, e.g. along with model predictions,
visualizing the reduce costs for each edge (obtained using the Gurobi solver [24]) may help
debug and improve learning-driven approaches in the future.

Figure 13 Prediction visualization for TSP20.

Figure 14 Prediction visualization for TSP50.
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Figure 15 Prediction visualization for TSP200.
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Abstract
We propose a novel constraint-based approach to graph generation. Our approach utilizes the
interaction between a CDCL SAT solver and a special symmetry propagator where the SAT solver
runs on an encoding of the desired graph property. The symmetry propagator checks partially
generated graphs for minimality w.r.t. a lexicographic ordering during the solving process. This
approach has several advantages over a static symmetry breaking: (i) symmetries are detected early
in the generation process, (ii) symmetry breaking is seamlessly integrated into the CDCL procedure,
and (iii) the propagator can perform a complete symmetry breaking without causing a prohibitively
large initial encoding. We instantiate our approach by generating extremal graphs with certain
restrictions in terms of girth and diameter. With our approach, we could confirm the Simon-Murty
Conjecture (1979) on diameter-2-critical graphs for graphs up to 18 vertices.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Mathematics of computing → Extremal graph theory

Keywords and phrases symmetry breaking, SAT encodings, graph generation, combinatorial search,
extremal graphs, CDCL

Digital Object Identifier 10.4230/LIPIcs.CP.2021.34

Supplementary Material Software (Source Code): https://doi.org/10.5281/zenodo.5170575

Funding The authors acknowledge the support from the Austrian Science Fund (FWF), project
P32441, and from the Vienna Science and Technology Fund (WWTF), project ICT19-065.

1 Introduction

Many challenging problems in Combinatorics can be stated as the question of whether a
graph with a particular property exists. A common approach to such problems is to use
a tool like Nauty [29] to generate all connected graphs up to isomorphism with a given
number n of vertices and to check each of them for the desired property. However, up to
isomorphism, already for n = 11 there are over a billion connected graphs, so this method
quickly approaches its limit.

As demonstrated by Codish et al. [10], constraint-based graph generation offers a com-
pelling alternative approach. The graph property is expressed in terms of constraints, and
further constraints expressing a static symmetry break are added. The latter constraints are
based on a lexicographic ordering of solution graphs and exclude some graphs that are not
minimal for this ordering. This approach has the advantage that the graph property is taken
into account already during the generation process. However, a complete symmetry breaking
requires a prohibitively large encoding size. Therefore, one needs to confine only to a partial
check, e.g., that swapping two vertices doesn’t yield a lexicographically smaller graph.

We propose the novel approach SAT modulo Symmetries (SMS) to constraint-based
graph generation. SMS utilizes the interaction between a CDCL1 SAT solver and a special
propagator excluding lexicographically non-minimal graphs during the search. Thus, in
contrast to static symmetry breaking, the minimality check is not added to the encoding but
is carried out dynamically by the symmetry propagator.

1 Conflict-Driven Clause Learning is the predominantly leading algorithmic paradigm for state-of-the-art
SAT solvers [28].
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The symmetry propagator is called from within a CDCL-based SAT solver already when
only a few of the graph’s edges are determined. For this purpose, we introduce partially
defined graphs, the corresponding lexicographic ordering, and the algorithm MinCheck
that checks their minimality. If the symmetry propagator detects the current partially
defined graph is not minimal, clauses are learned and added to the solver’s collection of
clauses. On partially defined graphs, the minimality check is not guaranteed to be complete,
but eventually, when all edges are determined, it performs a complete minimality check.
Consequently, we can guarantee that all generated graphs are minimal and unique up to
isomorphism. MinCheck also detects, in some cases, whether the current partially defined
graph implies under minimality the existence or non-existence of further edges. This is done
without increasing the encoding size. When the minimality check reveals that the current
partially defined graph isn’t minimal, this conflict is analyzed, and a suitable clause is added
to the solver; also when an implied edge is detected, a unit clause is added.

We implemented a prototype version of SMS and tested it on two prominent problems
from Extremal Graph Theory [6]. The first asks for graphs with a prescribed minimum girth
(length of a shortest cycle) and the largest number of edges. The second asks for graphs whose
diameter (largest distance between any two vertices) is 2 but decreases when any edge is
deleted. Both are fundamental problems that have been studied for many decades [6, 14, 27].
We could verify some extremal numbers for the girth problem, and confirm the Simon-Murty
Conjecture [7] on diameter-2-critical graphs with up to 18 vertices, improving upon the
known bound of 11.

Our experimental results show that SMS exhibits an encouraging performance, particularly
on unsatisfiable instances. We developed the testing algorithm MinCheck from scratch,
since existing methods based on various other forms of graph canonization cannot handle
partially defined graphs [29]. The check often takes a significant amount of the solving time;
here, we see ample room for improvement. However, the time which SMS spends on the SAT
solving itself is significantly reduced in comparison to a static symmetry breaking.

Related Work

Dynamic symmetry breaking in the broader sense, where symmetry breaking constraints or
clauses are added during the search, has a long history, see, e.g., [3, 13, 15, 21, 32]. More
recently, this has also been combined with nogood (or clause) learning [9, 12, 34], using
the fact that if a new clause/nogood is learned, and the symmetries of the problem are
known, then one can propagate and learn further clauses/nogoods. Metin et al. [30] explored
another way of dynamically utilizing symmetries in the context of SAT by considering the
lexicographic order on the assignments themselves; the symmetries are computed by external
tools or provided by the user before the SAT-solving and are then taken into account by
the solver. Equipping a SAT solver with a special-purpose propagator has been explored
before, e.g., by Liffiton and Maglalang [25] for cardinality constraints and by Gebser et
al. [18] for digraph acyclicity. The SAT Modulo Theory (SMT) framework uses a similar
approach, where the SAT solver interacts with a theory solver, which provides propagators
for a first-order logic theory [5].

2 Preliminaries

Graphs. All considered graphs are undirected and simple (i.e., without parallel edges or
self-loops). A graph G consists of set V (G) of vertices and a set E(G) of edges; we denote the
edge between vertices u, v ∈ V (G) by uv or equivalently vu. We write G − e for the graph
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obtained from G by deleting the edge e and G − v for the graph obtained from G by deleting
the vertex v. Gn denotes the class of all graphs G with V (G) = {1, . . . , n}. AG denotes the
adjacency matrix of a graph G ∈ Gn where the element at row v and column u, denoted by
AG[v][u], is 1 if vu ∈ E and 0 otherwise. AG[v] denotes the v-th row of AG. Sn denotes the
set of all permutations over {1, . . . , n}.

Graphs G1, G2 ∈ Gn are isomorphic if there is a permutation π ∈ Sn such that for all
1 ≤ u < v ≤ n we have uv ∈ E(G1) if and only if π(u)π(v) ∈ E(G2). π(G) denotes the
graph obtained from G ∈ Gn by the permutation π ∈ Sn, where E(π(G)) = { π(u)π(v) : uv ∈
E(G) }. The total order ⪯ is defined for G, H ∈ Gn by setting G ⪯ H if and only if
AG[1]AG[2] . . . AG[n] is lexicographically smaller or equal to AH [1]AH [2] . . . AH [n]. G is
lexicographically smaller than H (in symbols G ≺ H) if G ⪯ H and G ̸= H. G ∈ Gn is
lexicographically minimal or ⪯-minimal if G ⪯ π(G) for every π ∈ Sn.

We will also consider the lexicographic ordering of pairs of vertices from {1, . . . , n} where
(v1, v2) < (u1, u2) if and only if either (i) v1 < u1 or (ii) v1 = u1 and v2 < u2. We observe that
A[v1][v2] occurs before A[u1][u2] in an adjacency matrix A if and only if (v1, v2) < (u1, u2).
We will say, that a vertex pair is more important than another if the vertex pair is smaller by
this order. Similarly, we will say that an entry A[v1][v2] of the adjacency matrix A is more
important than A[u1][u2] if (v1, v2) < (u1, u2).

▶ Observation 1. Let G, H ∈ Gn. Then G ≺ H if and only if there are 1 ≤ i, j ≤ n such
that AG[i][j] = 0, AH [i][j] = 1, and for all more important pairs of vertices (i′, j′) the values
of the adjacency matrices are equal, i.e., AG[i′][j′] = AH [i′][j′].

Formulas and Satisfiability. A literal is a propositional variable or negated propositional
variable. A clause is a disjunction of literals. A formula in Conjunctive Normal Form
(CNF) is a conjunction of clauses. A (partial) assignment is a function f : X → {true,
false} defined on a set X of propositional variables. For a variable x /∈ X we say that f is
undefined. Assignments extend to literals in an obvious way. A model of a CNF formula F is
an assignment f defined on the variables of F such that each clause of F contains a literal
that is set to true by f . A clause containing a single literal is unity clause.

3 Dynamic Symmetry Breaking in SMS

This section presents our method for dramatically reducing the search space for finding all
graphs in Gn modulo isomorphism, that satisfy a given property. As we deal with graphs from
Gn for some fixed n, we will use CNF formulas that contain all the propositional variables
ev,u, for v < u, which are true if the edge vu is present in the implicitly represented graph.
Hence, we can extract a graph from a model of the formula.

Our aim is to decide during the CDCL SAT solver’s run whether the current partial
assignment can be extended to a model, such that the represented graph is ⪯-minimal.
For this purpose we consider partially defined graphs, since during solving we don’t know
the final graph yet. A partially defined graph is a graph G where E(G) is split into two
disjoint sets D(G) and U(G). D(G) contains the defined edges, U(G) contains the undefined
edges. A (fully defined) graph is a partially defined graph G with U(G) = ∅. Similarly
to Gn, let Pn denote the class of all partially defined graphs G with V (G) = {1, . . . , n}.
Analogously to the adjacency matrix of a fully defined graph, we define the adjacency
matrix AG of a partially defined graph G ∈ Pn as follows: AG[v1][v2] = 1 if v1v2 ∈ D(G),
AG[v1][v2] = ⋆ if v1v2 ∈ U(G), and AG[v1][v2] = 0 otherwise. From a partial assignment
f : X → {true, false} we can extract the partially defined graph G with V (G) = {1, . . . , n},
D(G) = { ij : ei,j ∈ X, f(ei,j) = true } and U(G) = { ij : ei,j /∈ X }.
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A partially defined graph G ∈ Pn can be extended to a graph H ∈ Gn if D(G) ⊆ E(H) ⊆
D(G) ∪ U(G). We write X (G) for the set of all graphs to which G can be extended. A
partially defined graph G ∈ Pn is ⪯-minimal if X (G) contains a ⪯-minimal graph.

A permutation π ∈ Sn is a witness of the non-⪯-minimality of G ∈ Pn if π(H) ≺ H for
all H ∈ X (G); observe that in that case G cannot be ⪯-minimal.

Let G ∈ Pn, π ∈ Sn, and (i, j) a vertex pair. We say (i, j) is (G, π)-equal if
AH [i][j] = Aπ(H)[i][j] for all H ∈ X (G) (i.e., (i, j) ∈ {(π(i), π(j)), (π(j), π(i))}, or AG[i][j] =
Aπ(G)[i][j] ̸= ⋆ ), and (i, j) is (G, π)-critical if (AG[i][j], Aπ(G)[i][j]) ∈ {(1, 0), (⋆, 0), (1, ⋆)}.

Next we will introduce indicator pairs, which will be of crucial importance for checking
whether a partially defined graph is ⪯-minimal. For G ∈ Pn and π ∈ Sn the vertex pair
(i, j) is a (G, π)-indicator pair if (i, j) is (G, π)-critical and for every (i′, j′) < (i, j) with
i′ < j′ at least one of the three cases holds: (i) (i′, j′) ∈ {(π(i′), π(j′)), (π(j′), π(i′))}, or (ii)
AG[i′][j′] = 1, or (iii) Aπ(G)[i′][j′] = 0. A (G, π)-indicator pair (i, j) is a strict (G, π)-indicator
pair if AG[i][j] = 1 and Aπ(G)[i][j] = 0. A partially defined graph G ∈ Pn is constraining if
there is a (G, π)-indicator pair for some π ∈ Sn.

▶ Proposition 2. Let G ∈ Pn. If there is a strict (G, π)-indicator pair for some π ∈ Sn then
G is not ⪯-minimal. Furthermore, if G is fully defined and not ⪯-minimal, then there is a
strict (G, π)-indicator pair for some π ∈ Sn.

Proof. Let G ∈ Pn and (i, j) be a strict (G, π)-indicator pair. For the sake of a contradiction,
assume that G is ⪯-minimal. By definition, there is a fully defined graph H ∈ X (G) which
is ⪯-minimal. First, we show by induction over all more important vertex pairs (i′, j′) than
(i, j) (including i′ > j′) that AH [i′][j′] = Aπ(H)[i′][j′]. We distinguish five cases.
1. If i′ > j′ then (j′, i′) < (i′, j′) hence AH [i′][j′] = AH [j′][i′] = Aπ(H)[j′][i′] = Aπ(H)[i′][j′]

holds by induction hypothesis.
2. If (i′, j′) = (π(i′), π(j′)) then Aπ(H)[i′][j′] = AH [π−1(i′)][π−1(j′)] = AH [i′][j′] holds.
3. If (i′, j′) = (π(j′), π(i′)) then Aπ(H)[i′][j′] = AH [π−1(i′)][π−1(j′)] = AH [j′][i′] = AH [i′][j′]

holds.
4. If AG[i′][j′] = 1 then AH [i′][j′] = 1. By induction hypothesis, Aπ(H)[i′′][j′′] = AH [i′′][j′′]

holds for all more import vertex pairs (i′′, j′′) than (i′, j′). Hence also Aπ(H)[i′][j′] = 1
must hold, otherwise Observation 1 would be violated, so AH [i′][j′] = Aπ(H)[i′][j′].

5. If Aπ(G)[i′][j′] = 0 then Aπ(H)[i′][j′] = 0. Again, by induction hypothesis, Aπ(H)[i′′][j′′] =
AH [i′′][j′′] holds for all more import vertex pairs (i′′, j′′) than (i′, j′). Hence also
AH [i′][j′] = 0 must hold, otherwise Observation 1 would be violated, so AH [i′][j′] =
Aπ(H)[i′][j′].

So, we know that Aπ(H)[i′][j′] = AH [i′][j′] for all more important vertex pairs (i′, j′) than
(i, j) and therefore, by Observation 1, H cannot be ⪯-minimal, consequently G cannot be
⪯-minimal in contradiction to our assumption.

For the second part of the proposition, let G be an arbitrary, non-⪯-minimal, fully
defined graph. Then, by definition of ⪯-minimality, there is a π ∈ Sn such that π(G) < G.
Due to Observation 1, we know that there is a vertex pair (i, j) such that AG[i][j] = 1,
Aπ(G)[i][j] = 0, and Aπ(G)[i′][j′] = AG[i′][j′] for all more important pairs (i′, j′) than (i, j),
hence either AG[i][j] = 1 or Aπ(G)[i][j] = 0, so (i, j) is a strict (G, π)-indicator pair. ◀

▶ Observation 3. Let G ∈ Pn, H ∈ X (G) a ⪯-minimal graph, and (i, j) a (G, π)-indicator
pair for some π ∈ Sn. Then AH [i][j] = Aπ(H)[i][j].

Observation 3 states that if (i, j) is a (G, π)-indicator pair and AG[i][j] = 1 then we can
imply that Aπ(H)[i][j] = 1 for every ⪯-minimal graph H ∈ X (G), and if Aπ(G)[i][j] = 0 then
we can imply that AH [i][j] = 0.
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A key component for the symmetry propagator that we use within SMS is an algorithm
that tests whether the partially defined graph G ∈ Pn as represented by the current partial
assignment is ⪯-minimal, i.e., whether it can be extended to a ⪯-minimal fully defined graph.
Performing this test is computationally hard in the worst case. For example, finding the
lexicographically smallest isomorphic graph is known to be NP-hard [2].

We restrict our search for permutations π with a (G, π)-indicator pair. In the worst case,
this test still requires considering all the n! permutations of the vertices. However, we use
a more sophisticated approach that exploits the partially defined graph’s structure which
often allows us to avoid the consideration of most of the permutations. Whenever during
search, SMS has a new partial assignment which updates the partially defined graph G, it
calls MinCheck(G) which searches for an indicator pair. If a (G, π)-indicator pair is found,
it extracts a clause representing the reason why G isn’t ⪯-minimal or why a certain edge
must be present or cannot be present in any ⪯-minimal extension of G.

We integrate this procedure into the conflict-driven clause learning algorithm (CDCL).
Whenever the CDCL algorithm assigns an edge variable a truth value, we check the ⪯-mini-
mality of the current partially defined graph G and add a clause if necessary. For efficiency,
some minimality checks may be skipped. If the added clause is invalidated by the current
partial assignment, then the current partial assignment must be discarded and the solver
backtracks. Otherwise, the clause is a unit clause, so a literal can be propagated by Boolean
constraint propagation. All the created clauses are added as learned clauses to the solver, so
the solver’s clause-deletion policy can discard them if they aren’t needed anymore.

Below we present the MinCheck algorithm in detail.

3.1 Minimality Check
Our minimality test is based on the concept of a generalized ordered partition (GOP)
of V = {1, . . . , n}, which is a list of triples P = [(V1, l1, u1), . . . , (Vk, lk, uk)] such that
V1 ∪ · · · ∪ Vk = V , Vi, Vj are disjoint for 1 ≤ i < j ≤ n, ui, li ∈ {1, . . . , n}, ui + 1 = li+1 for
1 ≤ i ≤ k − 1 , and |Vi| = ui − li + 1. Let f be the mapping that indicates to which set each
vertex belongs to, i.e., f(v) = i if and only if v ∈ Vi. Then we associate with a GOP P the
set of permutations Perm(P ) = { π ∈ Sn : lf(v) ≤ π(v) ≤ uf(v) for all v ∈ V }; i.e., the GOP
gives a range for each vertex to which it can potentially be mapped.

Next we describe the algorithm MinCheck. The input for the initial call of MinCheck
is a partially defined graph G ∈ Pn. The idea is to start with the GOP P = [(V, 1, n)] and
refine it until we have found a (G, π)-indicator pair with some π represented by the GOP or
can conclude that no such indicator pair exists. Therefore, we recursively assign a vertex v to
r, i.e., π(v) = r for all π ∈ Perm(P ), starting with r = 1 and adapt the GOP correspondingly
by splitting up the triples (Vi, li, ui) into multiple triples if necessary.

We use a recursive procedure MinCheck with the following input: a partially defined
graph G ∈ Pn, a GOP P = [(V1, l1, u1), . . . , (Vk, lk, uk)], and a row r ∈ {1, . . . , n}. For
all j < r we have |Vj | = 1, in other words, all the vertices which are mapped to the first
r − 1 vertices are already fixed. Furthermore, we will see that all pairs up to (r − 1, n) are
(G, π)-equal for all π ∈ Perm(P ). If r = n we return nil.

Now we choose a v ∈ Vr: we adapt the GOP P to a GOP Pv such that π(r) = v for
all permutations represented by Pv and split up all triples (Vi, li, ui) with i ≥ r (in the
order they occur in the list) such that also the current row, (i.e., all pairs (r, j) with j > r)
are (G, π)-equal for all permutations π represented by the GOP Pv or until we have found
an indicator pair. In the former case, we call MinCheck(G, Pv, r + 1) with the adapted
GOP Pv and return an indicator pair if found; otherwise we backtrack. If every choice of
v ∈ Vr returned no indicator pair, then we return nil.

CP 2021



34:6 SAT Modulo Symmetries for Graph Generation

Before we stipulate how to split the triples in more detail, we mention some preconditions
for MinCheck which will allow us to argue that the preconditions are also satisfied at
recursive calls. The preconditions are as follows:
P1 The vertices which are mapped to the first r − 1 vertices are already determined, i.e.,

|Vi| = 1 for every i < r.
P2 For every permutation π ∈ Perm(P ) every pair (i′, j′) with i′ < j′, i′ < r is equal under

π.
P3 For every π ∈ Sn \ Perm(P ) with π(k) ∈ Vk for k < r, there is some pair (i′, j′) with

i′ < j′, i′ < r which is not (G, π)-equal and is more important than any (G, π)-critical
vertex pair, hence there is no (G, π)-indicator pair.

First, we split (Vr, lr, ur) into ({v}, lr, lr) and (Vr \ {v}, lr + 1, ur), so π(v) = r for all
π ∈ Perm(Pv). For each (Vi, li, ui), i ∈ {r, . . . , n}, we apply the following steps, where V 0

i :=
{ u ∈ Vi : AG[v][u] = 0 }, V ⋆

i := { u ∈ Vi : AG[v][u] = ⋆ }, and V 1
i := { u ∈ Vi : AG[v][u] = 1 }.

(Some special care is needed for i = r since it was already split, so we use (Vr \ {v}, lr + 1, ur)
instead of (Vr, lr, ur)):
1. We split (Vi, li, ui) into the triples (V 0

i , li, li + |V 0
i | − 1) and (V ⋆

i ∪ V 1
i , li + |V 0

i |, ui); this
ensures that the vertices not adjacent to v are mapped to the smallest vertices possible
without violating the previous GOP.

2. If the set J = { u : AG[r][u] ̸= 0, li ≤ u < li + |V 0
i | } ̸= ∅, then we put j = min J and (r, j)

is a (G, π)-indicator pair for every π ∈ Perm(Pv). Otherwise AG[r][u] = Aπ(G)[r][u] = 0
for every π ∈ Perm(Pv), hence Preconditions 2 and 3 hold up to all more important pairs
than (r, li + |V 0

i |).
3. Now we iterate over the remaining indexes p ∈ [li + |V 0

i |, . . . , ui]. We distinguish between
three cases:
a. AG[r][p] = ⋆: Because all vertices from V 0

i are mapped to smaller vertices than
p, the only way to guarantee that the pair is equal (or critical) is to ensure that
(r, p) ∈ {(π(r), π(p)), (π(r), π(p))}. In all other cases condition 2 does not hold up to
all pairs including (r, p) . This can only be the case if

v = r and p ∈ V ⋆
i , then we must split (V ⋆

i ∪ V 1
i , p, ui) into the triples ({p}, p, p) and

(V ⋆
i \ {p} ∪ V 1

i , p + 1, ui) and remove p from V ⋆
i , or

v = p and r ∈ V ⋆
i , then we must split (V ⋆

i ∪ V 1
i , p, ui) into the triples ({r}, p, p) and

(V ⋆
i \ {r} ∪ V 1

i , p + 1, ui) and remove r from V ⋆
i

In all other cases, we backtrack.
b. If AG[r][p] = 0 we backtrack, since Aπ(G)[r][p] ̸= 0 for every π ∈ Perm(Pv).
c. If AG[r][p] = 1, we again distinguish three cases:

If V ⋆
i ̸= ∅ then we split (V ⋆

i ∪ V 1
i , p, ui) into the triples (V ⋆

i , p, p + |V ⋆
i | − 1) and

(V 1
i , p + |V ⋆

i |, ui) so (r, p) is a (G, π)-indicator pair for all π ∈ Perm(Pv).
If V ⋆

i = ∅ and AG[r][p′] ̸= 1 for some p′ ∈ {p, . . . , ui}, then we backtrack.
If V ⋆

i = ∅ and AG[r][p′] = 1 for all p′ ∈ {p, . . . , ui} then AG[r][p′] = Aπ(G)[r][p′] for
all π ∈ Perm(Pv). So, all more important pairs up to (r, ui) are (G, π)-equal for all
π ∈ Perm(Pv).

One of the steps 1–3 will either produce an indicator pair or cause a backtrack to another
v ∈ Vr. If all choices v ∈ Vr have been exhausted unsuccessfully, we return nil.

▶ Lemma 4. Let G ∈ Pn and r ∈ {1, . . . , n}. If the Preconditions P1–P3 are satisfied,
MinCheck(G, [(V1, l1, u1), . . . , (Vk, lk, uk)], r) will return a permutation π with π(u) ∈ Vu for
u < r and a (G, π)-indicator pair if such a permutation and indicator pair exists; otherwise
the procedure returns nil.
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Proof. In MinCheck, we only backtrack if we can ensure, that (i) there is no indicator pair
with π(u) ∈ Vu for u < r and π(v) = r and (ii) whenever we find an indicator pair, we return
it immediately. Precondition 2 ensures in all cases that it is indeed an indicator pair and
Precondition 3 that we do not loose any potential candidates. Since the preconditions are
satisfied for recursive calls, the lemma follows by induction. ◀

We can now put the above auxiliary results together and establish the MinCheck
algorithm’s correctness and the fact that it performs a complete minimality check on fully
defined graphs.

▶ Theorem 5. Let G ∈ Pn. If G is constraining, then MinCheck(G) returns a permutation π

and a (G, π)-indicator pair; otherwise MinCheck(G) returns nil.

Proof. MinCheck(G, [(V, 1, n)], 1) is called at the beginning, hence the proposition is true
due to Lemma 4, since Sn = Perm([(V, 1, n)]) and all preconditions are satisfied. ◀

Finally, we present how to extract a suitable clause from a partially defined graph G ∈ Pn

and a (G, π)-indicator pair (i, j).
Let S = { (i′, j′) : (i′, j′) ∈ {(π(i′), π(j′)), (π(j′), π(i′))} }, S1 = { (i′, j′) : (i′, j′) <

(i, j), i′ < j′, AG[i][j] = 1, (i′, j′) ̸∈ S } and S2 = { (i′, j′) : (i′, j′) < (i, j), i′ < j′, Aπ(G)[i][j] =
0, (i′, j′) ̸∈ S }. Then∨

(i′,j′)∈S1

¬ei′,j′

∨
(i′,j′)∈S2

eπ−1(i′),π−1(j′) ∨ ¬ei,j ∨ eπ−1(i),π−1(j)

is the resulting clause, which we add as learned clause. By Proposition 2, this clause must be
satisfied by every assignment which represents a ⪯-minimal graph. We would like to stress
that the created clause is satisfied by every partial assignment representing a ⪯-minimal graph;
hence, the correctness of the symmetry breaking is independent of the found permutations
and indicator pairs.

4 Static Symmetry Breaking

For comparison, we describe the static symmetry breaking approach, which is essentially
the “improved lexicographic break” proposed by Codish et al. [10]. The SAT solver runs
on a CNF formula F ∧ M , where F encodes the properties of the graph sought for, and M

encodes a minimality property. A complete symmetry breaking would require a prohibitively
large encoding size. Therefore, M just ensures that swapping any two vertices does not lead
to a lexicographically smaller graph (if it would, the current graph can’t be ⪯-minimal).

Swapping two vertices i, j leads to swapping in the adjacency matrix the elements A[i][k]
with A[j][k] and A[k][i] with A[k][j], respectively, for k ∈ {1, . . . , n} \ {i, j}. All the other
entries of the matrix will not change, because the diagonal only contains zeros and we have
A[i][j] = A[j][i]. So we have to check whether swapping the entries does not lead to a
⪯-smaller graph. Following [10], we define an order on the rows A[i] and A[j], by setting
A[i] <i,j A[j] if and only if A[i] is lexicographically smaller than A[j] while ignoring the i-th
and j-th elements in both rows.

▶ Proposition 6 ([10]). If G ∈ Gn is ⪯-minimal, then AG[i] ≤i,j AG[j] for all 1 ≤ i < j ≤ n.

We can now define the formula M for the static symmetry break as∧
1≤i<j≤n

∧
k∈{1,...,n}\{i,j}

( ∧
l∈{1,...,k}\{i,j}

(ei,l ↔ ej,l) → (ei,k → ej,k)
)

.
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Instead of this direct SAT encoding, Codish et al. [10] used the solver BEE to encode the
property stated in Proposition 6. BEE [31] compiles finite domain constraints to SAT while
additionally applying transformations to simplify the encoding and optimize it.

5 Prototype Implementation and Experimental Setup

In this section, we will describe our experimental setup and some implementation details. As
the SAT solver, we use Clingo [19, 20], an ASP solver containing a complete state-of-the-art
CDCL SAT solver. Clingo comes with a C interface that supports rapid prototyping for
developing custom propagators. We used Clingo’s C-interface to integrate our implementation
of MinCheck into the solver. Our implementation is available at Zenodo [24].

The parameter frequency allows us to balance the time spent on the minimality check
and the time spent by the SAT solver itself. If frequency has the value 1/q, then MinCheck
is called only every q-th time an edge variable has been assigned.

Our experiments are run on a computer with Intel Xeon E5540 at 2.53 GHz, 24 GB RAM,
under Ubuntu 18.04. We use Clingo 5.5.0 and all tests are executed with a single thread.

6 Extremal Graphs with Required Girth

A prominent research topic in Extremal Graph Theory [6] is the study of extremal graphs
(i.e., graphs with the largest possible number of edges) on n vertices that exclude a given
family F of graphs as subgraphs. EX(n, F) denotes the class of extremal graphs with that
property, and ex(n, F) denotes the number of edges of the graphs in EX(n, F). The special
case, where F = Ck, the family of cycles up to length k, has received much attention; for
convenience, we write fk(n) = ex(n, Ck). The girth of a graph G is the length of a shortest
cycle in G (or ∞ if G is acyclic). Hence EX(n, Ck) contains precisely the edge-maximal
graphs of girth > k. The base case of k = 3 has been settled over a century ago by Mantel’s
Theorem [27]: f3(n) = ex(n, C3) = ⌊n2/4⌋, where EX(n, F) contains precisely the complete
bipartite graph K⌈n/2⌉,⌊n/2⌋. For the general case k > 3, however, no closed formula is known,
and researchers have tried to compute fk(n) for small values of k [1, 10, 17, 35, 36], or at
least provide lower and upper bounds.

Next, we describe a SAT encoding that produces for given integers n, m, k a propositional
CNF formula F (n, m, k). The formula is satisfiable if and only if there is a graph G ∈
EX(n, Ck) with m edges, and where we can construct G from the satisfying assignment. We
will then evaluate the formula with our SMS-solver and report the experimental results.

6.1 Encoding
We state a useful result before we present the encoding for F (n, m, k) where δG and ∆G

denote the minimum and maximum degree of a graph G, respectively.

▶ Lemma 7 ([17]). If G is a graph of girth ≥ 5 with n vertices and m edges, then n ≥
1 + ∆G · δG ≥ 1 + δ2

G, δG ≥ m − f4(n − 1), and ∆G · n ≥ 2m.

In particular, this applies to all graphs in EX(n, Ck) for k ≥ 4. We also use the obvious
inequality δGn ≤ 2m, which follows from the Handshaking Lemma, to discard some cases.

According to Lemma 7, we can compute for each pair n, m the set In,m of possible intervals
[a, b] such that for each graph G with n vertices and m edges, we have a ≤ δG ≤ ∆G ≤ b for
some [a, b] ∈ I. We can add to F (n, m, k) suitable cardinality constraints that ensure that
vertex degrees belong to one of the intervals.
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To guarantee that the resulting graph has girth > k, we use two methods: a basic one
and an improved one. The basic method explicitly forbids that any subset of up to k vertices
forms a cycle. The set of all possible cycles of length k can be described with some basic
symmetry breaking as follows:

Ck = { (v1, . . . , vk) ∈ {1, . . . , n}k : i ̸= j → vi ̸= vj , v1 = min{v1, . . . , vk}, v2 < vk }.

Taking v1 as the minimum fixes a particular rotation of the cycle, requiring v2 < vk fixes an
orientation of the cycle. Now we add for each element of Ck the constraint that one edge of
the corresponding cycle must not be present:∧

(v1,...,vk)∈Ck

(¬ev1,v2 ∨ ¬ev2,v3 ∨ · · · ∨ ¬evk−1,vk
∨ ¬evk,v1).

For k ≤ 4 this is a workable solution, but the improved method scales better for larger k. It
is based on the following observation where distG(u, v) denotes the length of a shortest path
between vertices u and v in graph G.

▶ Observation 8. A shortest cycle in a graph G containing the edge uv ∈ E(G) has length
distG−uv(u, v) + 1.

Hence, we can enforce that for every edge uv, distG−uv(u, v) + 1 ≥ g for a required girth g.
Therefore, we start at vertex i and mark all vertices adjacent to i in G − ij. In the next step,
we additionally mark all vertices which are adjacent to already marked vertices. This will be
repeated g − 2 times. If at the end the vertex j is marked, the girth is smaller than desired.

For the concrete encoding, we introduce propositional variables reachedi,j,k,s for represent-
ing that vertex k can be reached in s steps from vertex i in the graph G − ij. Consequently

reachedi,j,k,1 = ei,k for k ∈ {1, . . . , n} \ {i, j} and
reachedi,j,k,s =

∨
l∈V (G)\{k}

(el,k ∧ reachedi,j,l,s−1) for s ∈ {2, . . . , g − 2}, k ∈ {1, . . . , n} \ {i}.

If at any point vertex j is reached, the girth restriction is invalidated. Hence we can use the
following encoding:

girth =
∧
i<j

g−2∧
s=2

(¬reachedi,j,j,s ∨ ¬ei,j).

We further improve this encoding. If we start checking whether a vertex v is part of a cycle
smaller than the given girth, i.e, we check whether distG−uv + 1 ≥ g for all vu ∈ E, then v

cannot be on a cycle which is shorter than the girth g. So for all subsequent vertices v′ > v,
we only consider the graph G − v. This yields the following final encoding:

reachedi,j,k,1 = ei,k for k ∈ {i + 1, . . . , n} \ {j} and
reachedi,j,k,s =

∨
l∈V (G)\{k}

(el,k ∧ reachedi,j,l,s−1) for s ∈ {2, . . . , g − 2}, k ∈ {i + 1, . . . , n}.

6.2 Results
We computed fk(n) for k ∈ {4, 5, 6}, and thereby verified known results [1, 10]. For fixed k

and n we run SMS on the formulas F (n, fk(n), k) and F (n, fk(n) + 1, k); we performed
separate runs for all the intervals in In,m where m donates the number of edges. The first
formula must be satisfiable for at least one interval in In,fk(n) while the second must be
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unsatisfiable for every interval in In,fk(n)+1. In some cases, we didn’t need to compute
F (n, fk(n) + 1, k), since already the bounds from Lemma 7 show the non-existence of a graph
with fk(n) + 1 edges.

In general, for fixed k and n we run SMS on F (n, m, k) for different values of m, starting
from a lower bound obtained by Lemma 7. As long as F (n, m, k) is satisfiable, we increment
m by one and repeat until we arrive at a value for which F (n, m, k) is unsatisfiable or we
can apply Lemma 7. Then we know that fk(n) = m − 1.

Table 1 shows our results for k = 4 and n ∈ {15, . . . , 28}. We use the basic method to
encode the girth requirement and choose a frequency of 1/5. For all tables in the current
section, the runtimes are given in seconds; for SMS we provide in parenthesis the fraction of
the total time spent for the minimality check. The columns labeled sat give the minimal
time over all intervals in In,m; the columns labeled unsat give the maximum. An entry
n/a indicates that the unsatisfiability check is covered by Lemma 7; t.o. indicates that the
timeout of 4 hours has been reached without producing a result.

Table 1 Results for f4(n).

sat unsat

n f4(n) SMS Static SMS Static
15 26 0.11(67%) 1.26(0.30) n/a n/a
16 28 0.07(59%) 0.56(0.61) 0.91(71%) 529.42(32.20)
17 31 0.13(66%) 0.58(0.48) n/a n/a
18 34 0.08(53%) 2.80(0.60) n/a n/a
19 38 0.11(53%) 1.06(0.57) n/a n/a
20 41 2.41(73%) 2457.85(161.41) n/a n/a
21 44 0.20(61%) 1.90(151.84) 0.98(72%) 7319.96(1019.41)
22 47 1.28(72%) 3.44(16.69) 11.74(74%) t.o.(t.o.)
23 50 2.95(79%) 1.58(367.83) 177.11(75%) t.o.(t.o.)
24 54 30.91(74%) 638.37(80.74) n/a n/a
25 57 193.68(72%) 204.00(655.66) t.o. t.o.(t.o.)
26 61 74.63(74%) t.o.(168.90) n/a n/a
27 65 1270.38(68%) t.o.(193.44) n/a n/a
28 68 37.84(75%) t.o.(t.o.) t.o. t.o.(t.o.)

We would like to emphasize that the purpose of the experiments is not to identify which
algorithm is the fastest but rather to gain insights into the potential of a dynamic symmetry
breaking for graph generation. We provide for reference the running times of our encoding of
the static symmetry breaking (columns labeled Static) and the times reported by Codish
et al. [10] with their “improved lexicographic break” (given in parentheses) for the same
problems. This is not meant as a direct comparison, as the results by Codish et al. [10] have
been run on different hardware, but just to give a rough idea on the order of magnitude the
two approaches take. It is not completely clear how Codish et al. combined runtimes over
all intervals In,m into one single result. This has no impact on the unsat-times, because for
those there is only a single interval in In,m.

We can see that SMS is significantly faster for the unsatisfiable instances. For example,
SMS determines the unsatisfiable case for n = 22 quickly, although the static approach
reached the timeout. SMS could also establish the unsatisfiability case for n = 23. We see
that SMS uses a large fraction of the time for the minimality check. Therefore, a speedup
for the check would have a significant impact on the runtime.
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Table 2 Results for f5(n) and f6(n).

n f5(n) sat unsat f6(n) sat unsat
15 22 0.25(15%) 5.40(14%) 18 0.24(6%) 3.28(9%)
16 24 0.25(9%) 0.66(15%) 20 0.60(8%) n/a
17 26 0.59(15%) 1.56(13%) 22 1.14(9%) n/a
18 29 0.54(15%) n/a 23 1.09(8%) 61.35(5%)
19 31 9.30(11%) 8.12(9%) 25 2.34(6%) n/a
20 34 13.08(9%) n/a 27 2.36(7%) n/a
21 36 3.87(9%) 97.16(6%) 29 11.33(5%) n/a
22 39 22.49(7%) n/a 31 16.37(4%) n/a
23 42 9.49(7%) n/a 33 10.46(5%) n/a
24 45 56.01(6%) n/a 36 3.59(5%) n/a
25 48 50.55(6%) n/a 37 17.84(4%) t.o.
26 52 21.08(6%) n/a 39 12.05(5%) 174.83(3%)
27 53 40.13(5%) t.o. 41 217.73(3%) 449.78(3%)
28 56 25.35(5%) 376.81(5%) 43 4961.74(2%) 1245.43(3%)

Table 3 Results for different frequencies.

frequency n = 27 (sat) n = 23 (unsat)
1/1 t.o. 240.00(94.25%)
1/2 2514.35(85.55%) 140.06(88.67%)
1/5 1293.92(67.36%) 103.72(72.46%)
1/10 208.26(51.44%) 96.99(50.79%)
1/20 782.71(30.03%) 125.25(29.45%)
1/50 636.99(12.72%) 243.30(13.63%)
1/100 4454.68(5.23%) 214.43(6.51%)
1/200 3860.19(2.80%) 608.77(3.06%)
1/500 t.o. 774.36(0.97%)
1/1000 t.o. 1103.35(0.46%)

Codish et al. [10] used some further methods to improve their results, i.e., they included
embedded stars in their graphs, leading to a significant speedup. We do not use these
improvements in our experiments.

Next, we report on results for computing fk(n) for k ∈ {5, 6}. For these cases, we used
the girth-constraints based on edge-removal from Section 6.1. In these experiments, we see
that far less time is spent on the minimality check than in the previous experiments, although
there we had a frequency of 1/5. Most likely, the reason is the additionally created variables
for the girth-constraints, because the minimality check is only called when a variable ei,j is
assigned. The results are shown in Table 2.

Table 3 shows the influence of the parameter frequency on SMS’s performance. For this
analysis, we took the unsatisfiable case for f4(23) with the degree interval [4, 5] and the
satisfiable case for f4(27) with the degree interval [4, 6].

Interestingly, the frequency shows a very clear pattern. Up to a frequency of 1/10, the
runtime decreases and then increases again. The reason seems to be the high fraction of the
time spent in MinCheck for a high frequency and possibly the increased number of added
clauses.

CP 2021



34:12 SAT Modulo Symmetries for Graph Generation

7 Application: Diameter-2-Critical Graphs

The diameter of a graph G is the largest distance among all pairs of vertices in G, where the
distance of two vertices is the length of a shortest path between them. A disconnected graph
has diameter ∞. A graph is diameter-d-critical if its diameter is d, but the deletion of any
edge decreases the diameter. The study of extremal properties of graphs with prescribed
diameter has been initiated by Erdős and Rényi in the early 1960s [14] and has been the
subject of intensive research. An important topic in the field is the characterization of
diameter-d-critical graphs [7, 8, 23, 26]. An intriguing open problem is whether the Simon-
Murty Conjecture [7] holds, which states that if G is a diameter-2-critical graph with n

vertices and m edges, then m ≤ ⌊n2/4⌋, with equality precisely for the complete bipartite
graph K⌈n/2⌉,⌊n/2⌋ (i.e., similar to Mantel’s Theorem mentioned above).

Using the list of non-isomorphic graphs generated with Nauty [29], Radosavljević and
Živković [33] computed all diameter-2-critical graphs with up to 10 vertices. Also, Dailly et
al. [11] report on a “computer search” for graphs with up to 11 vertices, focusing on graphs
with a certain number of edges. With SMS we were able to extend these results to graphs
with 12 vertices. The basis for this computation is a SAT encoding that produces for given
integers n and m a propositional CNF formula D2(n, m) which is satisfiable if and only
if there is a diameter-2-critical graph G with n vertices and m edges. As above, one can
construct G from the satisfying assignment.

7.1 Encoding
Equivalently to the above definition, a graph is diameter-2-critical if and only if (i) its
diameter is at most 2 and (ii) when any edge is deleted, the diameter is larger than 2. We
observe that property (i) allows graphs with diameter one, i.e., complete graphs. However,
after deleting any edge, the diameter would still be at most 2 for n > 3, which violates
property (ii).

Our encoding of D2(n, m) handles both properties separately. To encode property (i),
we use∧

1≤i<j≤n

(
ei,j ∨

∨
1≤k≤n

(ei,k ∧ ej,k)
)
.

For property (ii), we first define a subformula N(i, j, c) which encodes that vertices i and j

have exactly c common neighbors, so N(i, j, c) ↔ |{ k ∈ V : ei,k ∧ ej,k }| = c. We can use
cardinality constraints to encode this (see, e.g., [4]) or directly use features of the ASP solver
Clingo to express the cardinality constraints. With the help of this subformula, we can
encode property (ii) as follows:∧

1≤i<j≤n

ei,j →
(

N(i, j, 0) ∨
∨

1≤k≤n

(
ei,k ∧ N(j, k, 1)

)
∨

∨
1≤k≤n

(
ej,k ∧ N(i, k, 1)

))
.

If N(i, j, 0) is satisfiable, then distG−ij(i, j) > 2; in the other cases, either distG−ij(j, k) > 2
or distG−ij(i, k) > 2.

7.2 Results
We use the encoding D2(n, m) to enumerate all ⪯-minimal, diameter-2-critical graphs in Gn.
Therefore, we run SMS repeatedly; each time we find a new graph, we explicitly exclude it
from the search space until no further graph is found. Additionally, we abort the minimality
check after a certain number of steps, because there are some rare cases, where the check
takes far too long. We us a frequency of 1/5.
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Table 4 shows the results of this computation. Column #-sol gives the number of solutions
found; column time gives the runtime in seconds; as above, the percentage of the runtime
that has been spent for the minimality check is given in parenthesis. Column Static gives
the number of solutions found with the static symmetry breaking method, without filtering
isomorphic solutions. The static version could not find all solutions for n = 12 within 4
hours.

Table 4 Results for generating all diameter-2-critical graphs with n ≤ 10.

SMS Static

n #-sol time #-sol time
3 1 0.11(0%) 1 0.01
4 2 0.11(1%) 2 0.01
5 3 0.12(4%) 4 0.02
6 5 0.15(12%) 11 0.05
7 10 0.26(40%) 32 0.14
8 30 0.83(67%) 163 0.82
9 103 2.53(73%) 1018 6.62
10 519 10.00(63%) 9727 149.20
11 3746 80.47(47%) 133316 9214.83
12 40866 1338.09(33%) t.o. t.o.

When using a cutoff within SMS, we cannot guarantee that all the resulting graphs are
unique up to isomorphism. Nevertheless, a check with Nauty showed that indeed all the
computed graphs are unique. The number of solutions for n ∈ {11, 12}, stated in boldface,
were unknown, as this goes beyond a generate-and-test approach.

Checking the computed graphs, we could confirm the Simon-Murty Conjecture for graphs
with up to 12 vertices. By a minor adaption of the encoding, i.e., enforcing that the number
of edges is ≥ ⌊n2/4⌋, we could extend this to n = 13. If we know the degree of the vertices in
advance, we can create an initial GOP for the minimality check, such that only vertices with
the same degree can be permuted. So, we can use SMS for every possible combination of
vertex degrees. Trivially, all cases where a vertex has degree 1 can be excluded. Additionally,
we can use the following theorem by Fan [16] to discard further combinations in advance
(dG(v) denotes the degree of vertex v in G):

▶ Theorem 9 ([16]). If G is a diameter-2-critical with n vertices and m edges, then∑
v∈V (G) dG(v)2 ≤ 4

15 n3. If n ≤ 24 or n = 26, then m ≤ ⌊n2/4⌋.

Consequently, since
∑

v∈V (G) dG(v) = 2m, Theorem 9 limits the combinations of vertex
degrees. Adding these degree constraints, we could confirm the conjecture for n ∈ {14, . . . , 17}.
For the case n = 18, we used an additional theorem to further restrict the combinations:

▶ Theorem 10 ([22]). If G is a diameter-2-critical with n vertices and maximum degree
≥ 0.7 · n, then G has fewer than ⌊n2/4⌋ edges.

We give some details on the computation in Table 5.

▶ Corollary 11. The Simon-Murty Conjecture holds for graphs with up to 18 vertices.
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Table 5 Confirming the Simon-Murty Conjecture for n ∈ {14, . . . , 18}. Column n denotes the
number of vertices, column #-comb the number of degree combinations, max-time the maximal
runtime of a single combination, and total-time the accumulated runtime over all combinations. All
times are given in seconds.

n total time max-time #-comb
14 14512 131 1021
15 156116 604 4319
16 923660 2847 6494
17 11700237 19582 24067
18 46612962 216384 12974*

8 Conclusion

We presented SMS, a novel approach for SAT-based graph generation that utilizes dynamic
symmetry breaking. A key ingredient of SMS is the concept of partially defined graphs and
an algorithm that checks the lexicographical minimality of such graphs. We evaluated a
prototype implementation of SMS on two showcase problems from Extremal Graph Theory,
related to the graph invariants girth and diameter, respectively. We compared SMS with
static symmetry breaking. We used the same encoding for the graph property and the same
underlying SAT solver for both approaches. We think that this double strategy might be of
independent interest, as it supports comparing the very same SAT-encoding on both methods.
The experiments show encouraging results for SMS, in particular on unsatisfiable instances.
As a side effect of our experiments on diameter-2-critical graphs, we could compute some
values that haven’t been known before and confirm the Simon-Murty Conjecture for graphs
with up to 18 vertices.

We see several avenues for improving SMS in the future. An obvious area for improvement
is the minimality check, where we currently use a relatively simple algorithm written from
scratch. This leaves much room for improvement for algorithm design and engineering.
The parameter frequency which controls the calls to the minimality check is currently a
static parameter that stays constant for an entire SMS run. Here, dynamic changes of this
parameter that depend on the current state of the solving progress could significantly increase
the efficiency of SMS.
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Abstract
It is increasingly recognized that automated decision making systems cannot be black boxes: users
require insight into the reasons that decisions are made. Explainable AI (XAI) has developed a
number of approaches to this challenge, including the framework of counterfactual explanations
where an explanation takes the form of the minimal change to the world required for a user’s
desired decisions to be made. Building on recent work, we show that for a user query specifying
an assignment to a subset of variables, a counterfactual explanation can be found using inverse
optimization. Thus, we develop inverse constraint programming (CP): to our knowledge, the first
definition and treatment of inverse optimization in constraint programming. We modify a cutting
plane algorithm for inverse mixed-integer programming (MIP), resulting in both pure and hybrid
inverse CP algorithms. We evaluate the performance of these algorithms in generating counterfactual
explanations for two combinatorial optimization problems: the 0-1 knapsack problem and single
machine scheduling with release dates. Our numerical experiments show that a MIP-CP hybrid
approach extended with a novel early stopping criteria can substantially out-perform a MIP approach
particularly when CP is the state of the art for the underlying optimization problem.
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1 Introduction

As automated decision making systems continue to make high-impact decisions [9], the
need to provide insight into why decisions were made has become crucial. Black box
solvers are becoming less and less acceptable. In fact, recent EU legislation [19] argues
that users substantially affected by an automated decision have a right to an explanation.
As a consequence, there has been a surge of research aimed at explaining algorithmic
decisions to users, particularly in machine learning (ML) [3]. In contrast, in constraint
programming (CP) and mathematical programming, work on explaining decisions has been
more limited, with the majority of explainability research focused on explaining infeasibility
through the identification of minimal sets of infeasible constraints [11, 5]. We introduce
new techniques based on counterfactual explanations to explain optimal decisions made by
discrete constraint-based optimization systems.

For example, consider a manufacturer placing several orders for part deliveries, specifying
priority values on each order. After seeing the initial schedule, the manufacturer wants an
explanation. They ask “Why was the schedule not different? Why is order A not delivered
in two days, and B in five days?”
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We address such questions using counterfactual explanations, which present the questioner
with the minimal change to the world required for the hypothetical situation described in their
query to have occurred. In previous work [16], we formalized a counterfactual explanation as
an optimization problem, which we showed to be a generalization of inverse optimization [13].
We then developed solution methods for single variable questions and explanations.

In this paper, we present the first multi-variate counterfactual explanation approach for
discrete optimization systems with linear objectives, showing that we can harness inverse
optimization algorithms when the questioner is interested in a partial assignment of decision
variables, such as in the delivery example above. In Section 3, we formulate this kind of
explanation as a Partial Assignment Nearest Counterfactual Explanation (PA-NCE) problem.
In Section 4, we prove that the PA-NCE can be solved in two steps by first finding an optimal
solution to the original decision problem with the addition of the user’s assignments and
then solving an inverse optimization problem.

We then turn our attention to discrete inverse optimization algorithms, used for the
second stage of generating explanations but also applicable to other inverse problems. In
Section 5 we develop three new inverse algorithms by modifying an existing mixed integer
programming (MIP) cutting plane algorithm [26] to use CP. This results in one pure inverse
CP algorithm and two MIP-CP hybrids. To our knowledge, this marks the first use of CP
for inverse optimization. We also introduce a novel early stopping criteria, showing it is
beneficial for inverse CP. We then show through numerical experiments in Sections 6 – 8
that a hybrid MIP-CP approach extended with our early stopping criteria can outperform
alternatives when CP is state-of-the-art for the initial problem. The final sections discuss
limitations and related work.

2 Background

2.1 Counterfactual Explanations

In a counterfactual explanation [25], a user would like to know why a set of facts c led to
a decision x. They first ask a contrastive question “Why was the decision x and not x̄?”
A counterfactual explanation presents the user with an alternative set of facts d, typically
minimally different from the initial facts c, which would have resulted in decision x̄. The term
counterfactual (meaning contrary to the facts) refers to the observation that neither x̄ nor d
were present in the initial (or, factual) context, and originates in studies of counterfactual
reasoning [8]. An advantage of using counterfactual explanations for automated decision
making systems is that the user is not required to understand the inner workings of the
algorithm; a significant benefit for interacting with complex solvers. Further, explicitly
presenting a user with a set of facts that would have led to a different outcome not only helps
them understand the decision, but also empowers them to contest or act to change it [25].

As in the Explainable AI (XAI) literature [18], we refer to a counterfactual decision x̄

specified by a user as a foil. In the formulation developed in our previous work [16], the user
is interested in multiple counterfactual decisions, implicitly described by a foil set, a feasible
set, Xψ. We studied the question “Why was the decision x and not one of the decisions in
Xψ?”, and defined the problem of generating explanations to such questions as the Nearest
Counterfactual Explanation (NCE) problem.
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2.2 Nearest Counterfactual Explanation (NCE)
In a standard (or forward) optimization problem ⟨c, f,X⟩, the purpose is to find values for
decision vector x ∈ X ⊆ Rn given a parameter vector c ∈ C ⊆ Rn which optimize an objective
function f : C × X −→ R. For a minimization objective, the goal is to find an optimal x∗

so that f(c, x∗) = minx{f(c, x) : x ∈ X}. In this paper, we focus on problems with linear
objectives and either binary decision variables, x ∈ {0, 1}n, or integer decision variables,
x ∈ Nn0 . If f is omitted from a forward problem ⟨c,X⟩, it is assumed that f(c, x) = cTx.

The Nearest Counterfactual Explanation (NCE) problem [16] starts with x∗, an optimal
solution to the forward problem ⟨c, f,X⟩ for which the user requires an explanation. Spe-
cifically, the user wants an explanation of why the solution did not also satisfy an additional
set of constraints, not initially captured in X. Let these additional constraints describe a
feasible set ψ ⊆ Rn and be called foil constraints, and assume that x∗ /∈ ψ. For example, if a
user asks “Why was I not scheduled to receive my COVID-19 vaccine in April rather than
June?”, the foil constraints restrict the vaccination appointment to be in April.

The user is interested in those solutions in the intersection of X and ψ and described by
the foil set: Xψ = X ∩ ψ. The counterfactual question asked by the user is then “Why is the
solution x∗ and not one of the foils in Xψ?”

The explanation problem is to find the minimal change to the initial parameter vector c
which would make a foil in Xψ optimal for the forward problem. If d ∈ C is the modified
parameter vector, where C can be used to express any restrictions on the feasible values of d,
and || · || is some norm, the NCE problem ⟨c, C, f, ψ,X, || · ||⟩ [16] is

min
d∈C

||d− c|| (1)

s.t. min
x∈Xψ

f(d, x) = min
x∈X

f(d, x). (2)

Throughout this paper, we use an L1 norm, and assume that none of the parameters in c

are present in the constraints that define the feasible set X, meaning that our explanations
only involve changes to objective parameters, and not constraint parameters.

We previously showed that the NCE is a generalization of inverse optimization, proposing
that, for many problems, inverse optimization algorithms may applied [16]. However, we did
not develop inverse optimization approaches, instead considering a restricted set of problems
where only one parameter is allowed to change and inverse optimization is unnecessary. Our
work here lifts this single variable restriction and develops a method to generate multi-variate
explanations using full inverse optimization.

2.3 Inverse Optimization
While forward optimization seeks a variable assignment that satisfies a set of constraints and
optimizes an objective function, inverse optimization tries to find the minimal change in the
objective function such that a given feasible variable assignment is optimal. Given a forward
problem ⟨c, f,X⟩, and a feasible solution xd ∈ X, the inverse optimization problem is to find
the minimal modification to the parameter vector c so that xd becomes optimal [6].

As in the NCE, if d ∈ C is the modified parameter vector, then the inverse optimization
problem ⟨c, C, f, xd, X, || · ||1⟩ is

min
d∈C

||d− c||1 (3)

s.t. f(d, xd) = min
x∈X

f(d, x). (4)
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The NCE is a generalization of the inverse optimization problem. In the latter, we find
the values of d which make a single given solution optimal, while in the former, we find a d
such that a set of solutions contains an optimal one.

Inverse Mixed Integer Programming. Much of the work in inverse optimization has focused
on inverse linear optimization, where the forward problem is a linear program [13]. The work
on inverse mixed integer optimization is relatively sparse with a cutting plane algorithm,
InvLP-MIP , being the standard solution technique [26]. In Section 5, we modify this algorithm
to use CP and an early stopping criteria. InvLP-MIP is an iterative, two-level approach
where a master problem searches for a d that minimizes ||d− c||1 such that xd is at least as
good as all currently known forward solutions. Then, the subproblem attempts to generate
a new forward solution that is better than xd for the current d vector. If no such forward
solution exists, the current d vector is optimal. Otherwise, the improving solution is added
to the known forward solution set and the master is re-solved in the next iteration.

Formally, based on Wang [26], we are given a forward mixed-integer program ⟨c,X⟩
where X = {x ∈ R+ : Ax ≤ b, xI ∈ N0} with A ∈ Rk×n, b ∈ Rk, and I ⊆ {1, ..., n}, a known
solution xd, and feasible set C for parameter values. The L1 norm objective of the inverse
problem is linearized using g, h ∈ Rn+, such that c− d = g − h. Intuitively, the magnitude of
the change to the parameter ci is represented by gi if it is negative and hi if it is positive.
Any d for which the forward problem ⟨d,X⟩ is unbounded can be avoided by adding the
constraint AT y ≥ d, y ∈ Rk, ensuring that d results in a feasible dual. Let S0 be the, initially
empty, set of known feasible solutions to the forward problem. The master problem MP is:

min
y,g,h

g + h (5)

s.t AT y ≥ c− g + h (6)
(c− g + h)Txd ≤ (c− g + h)Tx0 ∀x0 ∈ S0 (7)
g, h ∈ Rn, y ∈ Rk, (c− g + h) ∈ C (8)

Constraint (7) forces the objective value of xd to be at least as good as any known solution.
The optimal solution from the master problem d∗ = (c− g∗ + h∗) is used to construct the
subproblem SP ⟨d∗, X⟩: minx{d∗Tx : x ∈ X}. The complete algorithm is:

▶ Definition 1 (Algorithm: InvLP-MIP [26]).
1. Initialize S0 = ∅.
2. Solve MP to obtain d∗ = (c− g∗ + h∗).
3. Solve SP ⟨d∗, X⟩ to get optimal solution x0. If d∗Txd ≤ d∗Tx0, stop: d∗ is optimal for

the inverse problem. Otherwise, update S0 = S0 ∪ {x0} and return to step 2.

3 Problem Formulation

We now formulate a class of counterfactual explanation problems that can be solved with the
help of inverse optimization. In particular, we explore the case when the user’s contrastive
question specifies a set of assignments to a subset of decision variables.

3.1 Example: Explaining a Delivery Schedule
Recall our delivery example where clients place a set of orders, specifying a priority level for
each order. Expressed as an optimization problem, let the decision variables x ∈ X ⊆ Nn0
represent the delivery dates for each order, and the objective coefficients c ∈ C ∈ Nn0 represent
order priorities. Let the scheduling problem ⟨c,X⟩ be to minimize the priority weighted
delivery dates, that is, to find minx∈X c

Tx.
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Upon seeing the initial optimal schedule x∗, one of the clients asks “Why was order A
not scheduled to arrive in two days, and B in five days?” As we did in the NCE, we use this
question to formulate a set of foil constraints, in this case giving ψ = {x : xA = 2, xB = 5}.
Observe that these foil constraints take the form of assignments to a subset of variables.

In an NCE, the explanation takes the form of changes to objective parameters c; in this
example, the order priorities. However, an explanation that could include changes to any
order priority ci, i ∈ {1, ..., n}, might not be very useful to our client. While our client is
able to increase the priorities of their own orders by paying more, they have no control or
knowledge of orders from other clients. Furthermore, it may be important to protect the
privacy of other clients. Finally, our client may only want an explanation for a subset of
their own orders. For these reasons, we assume that our client is primarily interested in an
explanation involving changes only to the order priorities associated with the deliveries in
their question, cA and cB . Such an explanation might look like: “If you increase the delivery
priorities of part A from a Level 1 to a Level 3 (for $50 extra), and part B from a Level 1 to
a Level 4 ($30 extra), the parts will be delivered on the dates you specified.”

3.2 The Partial Assignment NCE
We now formulate a specific NCE problem to model cases such as our delivery example. We
begin with a contrastive question from a user who is interested in a subset of m variables
xi, i ∈ M ⊆ {1, ..., n}, m = |M|, and desires to know why they were not assigned to specific
values, xpi , i ∈ M. We use this question to formulate the partial assignment foil constraints,
giving ψ = {x : xi = xpi ∀ i ∈ M}.

The user desires an explanation in terms of only changes to the parameters ci, i ∈ M
associated with the variables in the subset M. The motivation for this is similar to the
delivery example: explanations containing parameters associated with other users may not be
useful or secure, and, additionally, this restriction allows the questioner to isolate a specific
subset of variables. In an NCE, the feasible values for the modified parameters d are defined
by the feasible set C, so we can require any parameters not in M to retain their initial values
by setting C = {d : dj = cj ∀ j ∈ MC}, where MC = {1, ..., n} \ M.

▶ Definition 2 (Partial Assignment Nearest Counterfactual Explanation (PA-NCE)). The Partial
Assignment NCE is an NCE ⟨f, c, C, X, || · ||, ψ⟩ in which ψ = {x : xi = xpi ∀ i ∈ M} where
M ⊆ {1, ..., n}, xp ∈ Rm, m = |M|, C = {d : di = ci ∀ i ∈ MC}, and MC = {1, ..., n} \ M.

4 Theoretical Results

Both the NCE and inverse optimization aim to find a minimally perturbed d ∈ C; the former
such that a set of solutions Xψ contains an optimal solution and the latter such that a
particular solution xd is optimal. For a PA-NCE with a linear objective, we show that there
exists an xψ ∈ Xψ which is optimal for any feasible d ∈ C. In particular, we prove that such
an xψ is given by an optimal solution to the initial forward problem plus the foil constraints,
⟨c,Xψ⟩. This result implies that we can solve a PA-NCE in two steps: first, solving ⟨c,Xψ⟩
to find xψ, and then solving the analogous inverse optimization problem with xd = xψ.

▶ Theorem 3. The Partial Assignment NCE ⟨c, C, cTx,X, || · ||1, ψ⟩ is equivalent to the
Inverse Optimization Problem ⟨c, C, cTx, xd, X, || · ||1⟩ with xd ∈ arg min{cTx : x ∈ Xψ}.

Proof. Observe that the NCE and Inverse Optimization problems differ only by the left-hand
sides of Constraints (2) and (4). To show the two problems are equivalent, it is sufficient to
show that
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f(d, xd) = dTxd = min
x

{dTx : x ∈ Xψ}, ∀d ∈ C. (9)

From the optimality of xd to the problem ⟨c,Xψ⟩ and by separating the objective into the
contributions from the variables i ∈ M and the variables j ∈ MC ,

cTxd =
∑
i∈M

cix
d
i +

∑
j∈MC

cjx
d
j ≤

∑
i∈M

cixi +
∑
j∈MC

cjxj , ∀x ∈ Xψ. (10)

The form of the foil constraint set ψ requires that xpi = xdi = xi for all i ∈ M, so∑
i∈MC

cjx
d
j ≤

∑
i∈MC

cjxj , ∀x ∈ Xψ. (11)

Due to the constraints in C from Definition 2, dj = cj for j ∈ MC , so the above inequality is
valid for all values of d ∈ C. Further, because the values of xi, i ∈ M, are identical in all
foils, the contributions from the components in M are also equivalent given a value of d.
Adding this contribution to both sides, we get∑

i∈M
dix

d
i +

∑
i∈MC

cjx
d
j ≤

∑
i∈M

dixi +
∑
i∈MC

cjxj , ∀x ∈ Xψ, ∀d ∈ C. (12)

Thus dTxd ≤ dTx for all x ∈ Xψ and all d ∈ C, satisfying (9) and completing the proof. ◀

All our results continue to hold if the user specifies a full assignment of variables xp ∈ Rn
instead of a partial one, so that MC = ∅. In this case, the foil set is a singleton, Xψ = {xp},
so we can skip the first step of finding the optimal foil and proceed directly to the inverse
problem with xd = xp.

5 Inverse Constraint Programming

In order to generate counterfactual explanations for constraint programs, we are interested
in solving the PA-NCE for problems in which the forward problem is a constraint program.
Given the connection shown above between the PA-NCE and inverse optimization, we can
solve the PA-NCE by solving the forward problem using CP to find an optimal foil and then
by formulating the inverse optimization problem as a constraint program. For the latter, we
adopt the InvLP-MIP [26] approach, generalizing it to CP.

Due to the discrete nature of CP, we are primarily interested in problems where the
objective coefficients are integral, c, d ∈ Nn0 , which are also more difficult for MIP based
inverse optimization than problems with continuous cost coefficients. Let MPd∈Nn0 be an
MP with the constraint g, h ∈ Rn+ in (8) replaced with g, h ∈ Nn0 . Such a master problem
can no longer use LP, but can be formulated and solved using MIP. We call the variation of
InvLP-MIP which uses MIP for the master problem InvMIP-MIP .

We can also formulate both the master and subproblems with CP. Let an MPd∈Nn0 model
defined using CP be called MPCP and an SP model ⟨d∗, X⟩ defined using CP be called
SPCP . Examples for specific problems are provided in Section 6. We call InvCP-CP the
algorithm which solves these models using CP and follows the cutting plane approach of
InvLP-MIP. To our knowledge, this is the first use of CP for inverse optimization.

▶ Definition 4 (InvCP-CP). Follow steps 1-3 in InvLP-MIP, using CP to solve MPCP and
SPCP , instead of using LP and MIP to solve MP and SP, respectively.
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Algorithm 1 InvMIP-MIP(ESC).

1 Inputs : c, C, γ, xd, X

2 Step 1: Initialize S0 ← ∅
3 Step 2: Solve MPd∈Nn0 to get optimal solution d∗

4 Step 3: while TRUE:
5 get next feasible solution xi to SP ⟨d∗, X⟩
6 if d∗T xi ≤ d∗T xd:
7 if xi optimal :
8 if d∗T xi == d∗T xd:
9 Stop. d∗ is optimal to the inverse problem .

10 else:
11 Update S0 ← S0 ∪ {xi}
12 go to step 2
13 else:
14 if d∗T xi < d∗T xd:
15 if cumulative time spent in SP ≥ γ:
16 Update S0 ← S0 ∪ {xi}
17 go to step 2

Duality. A general consideration of duality and unbounded objectives is beyond our scope,
however most constraint programs involve finite domains and therefore have bounded ob-
jectives. In such cases, the dual constraints (6) in the master problem are unnecessary.
If unbounded objectives could exist, it may not always be possible to formulate the dual
constraints using CP; we have not yet developed a way to deal with this case. We show in
Section 6 that the problems in our experiments are guaranteed to have bounded objectives.

5.1 Hybrid Approaches
In addition to a pure inverse CP algorithm, we also define hybrid inverse algorithms which
use both MIP and CP. Specifically, we define InvMIP-CP as the algorithm that solves
the master problem MPd∈Nn0 with MIP, and the subproblem SPCP with CP. Similarly, we
define InvCP-MIP as the algorithm that solves the master problem MPCP with CP, and the
subproblem SP with MIP.

5.2 Early Stopping Criteria
In each of the above inverse algorithms, the subproblem is solved to optimality at every
iteration and its optimal solution x0 is added to the master. However, if a feasible, but not
necessarily optimal solution xf has been found which gives a better objective value than the
foil, d∗Txf < d∗Txd, then a valid cut can be generated by adding xf to S0. While a better
forward solution may yield a stronger cut in the master, we may wish to balance the strength
and computational expense of a new cut by implementing an early stopping criteria: if a
such a solution xf is found in a given iteration, we can stop solving the SP after γ seconds.

We define our early stopping criteria (ESC) algorithm in Algorithm 1 using InvMIP-MIP
as a base. It can be applied to each of the inverse algorithms discussed above. In line (5) the
solver returns a feasible solution which is not worse than the previous one. The time in the
SP (line 15) refers to the time since the most recent master solution was found.
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6 Models

We test our counterfactual explanation approach for two forward problems: the 0-1 knapsack
(KP) and single machine scheduling with release dates, 1|rj |

∑
wjCj . The KP was selected

because it is NP-complete [20], has a simple structure, and is easy to understand. While it is
of practical importance, including as part of many more complex problems, its simplicity (yet
NP-completeness) allowed us to develop our methods before moving to more complex hard
combinatorial problems. The scheduling problem was selected because CP often performs
well in scheduling, matching a potential use case for CP based explanation techniques
(i.e. explainable scheduling). It is also a relatively simple (though strongly NP-Hard [17])
scheduling problem to test our methods on. Both problems have finite domains and are
therefore guaranteed to have a bounded objective.

6.1 0-1 Knapsack Problem
In the 0-1 KP, we are given a set of n ∈ N items, a profit vector c ∈ Nn0 , a weight vector
w ∈ Nn0 , and a knapsack capacity W ∈ N0. The objective of the 0-1 KP is to maximize the
sum of the profits of the items that are included in the knapsack, without having the sum of
the weights of those items exceed W .

CP Model. The CP model uses a packing global constraint, specifically binPackingCapa
[12]. The first argument of this constraint is a set of bins, with each bin ⟨l,Wl⟩ associated
with an index l ∈ N0 and a capacity Wl ∈ N. The second argument is a set of items, with
each item ⟨xi, wi⟩ corresponding to decision variable xi ∈ N0 identifying which container
the item is placed in and an item weight wi ∈ N. The constraint ensures that all items are
placed in a container such that the sum of item weights in any container does not exceed its
capacity. The CP model for 0-1 KP is

max cTx (13)
s.t. binPackingCapa({⟨0,∞⟩, ⟨1,W ⟩}, {⟨xi, wi⟩|i ∈ {1, ..., n}}) (14)

x ∈ {0, 1}n. (15)

The choice of whether to place an item in container 1 or container 0 is equivalent to the
decision of including or excluding that item in the knapsack, respectively.

MIP Model. Let x ∈ {0, 1}n be a decision vector where xi = 1 if an item is included in the
knapsack and 0 otherwise. The MIP model is

min
x

{cTx : wTx ≤ W,x ∈ {0, 1}n}. (16)

6.2 Single Machine Scheduling with Release Dates, 1|rj| ∑
wjCj

In the 1|rj |
∑
wjCj problem, we are given n ∈ N jobs, with each job i ∈ {1, ..., n} having

a processing time pi ∈ N, a weight1 ci ∈ N, and a release date ri ∈ N. The objective is to
minimize the weighted sum of completion times of all jobs given that no two jobs can be
processed at the same time, no jobs can start before their release dates, and no jobs can be
interrupted (no preemption).

1 This problem is typically defined with w representing the job weights. To be consistent with our notation,
we replace w with c, though we continue to refer to the problem by its typical name, 1|rj |

∑
wjCj .
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CP Model. We represent the jobs with a set of interval variables {Ii} ∀ i ∈ {1, ..., n},
defined with the notation intervalV ar(pi, [si, ei]), where the possible values of Ii are the
intervals {[si, ei) : si, ei ∈ N0, si + pi = ei}. The model is

min
n∑
i=1

ciei (17)

s.t. NoOverlap({I1, ..., In}) ∀ i ∈ {1, ..., n} (18)
si ≥ ri ∀ i ∈ {1, ..., n} (19)
Ii = intervalV ar(pi, [si, ei]) ∀ i ∈ {1, ..., n}. (20)

Constraint (18) is the NoOverlap global constraint that forces jobs to be processed one
at a time. Constraints (19) ensure that jobs do not start before they are released.

Time-Indexed MIP Model. As several MIP formulations exist for 1|rj |
∑
wjCj , we use a

time-indexed formulation due to its strong performance over a variety of instances [15]. Let
xi,t ∈ {0, 1} be a binary decision variable which is 1 if job i is scheduled to start at time t,
and 0 otherwise. With T as the time horizon, an upper bound on latest completion time of
any job, the model is

min
n∑
i=1

T−pi∑
t=0

ci(t+ pi)xi,t (21)

s.t.
T−pi∑
t=0

xi,t = 1 ∀ i ∈ {1, ..., n} (22)

n∑
i=1

t∑
s=max(0,t−pi+1)

xi,s ≤ 1 ∀ t = 0, 1, ..., T − 1 (23)

ri−1∑
t=0

xi,t = 0 ∀ i ∈ {1, ..., n} (24)

xi,t ∈ {0, 1} ∀ i ∈ {1, ..., n}, ∀ t ∈ 1, ..., T − 1. (25)

Constraints (22) force each job to start exactly once. Constraints (23) ensure no two jobs
are processed at the same time. Finally, constraints (24) enforce the release dates.

7 Experimental Setup

The goal of our experiments is to test the generation of counterfactual explanations for the
PA-NCE. We do this by solving an initial forward problem, generating a user query, and
solving the resulting PA-NCE, focusing on the latter.

7.1 Problem Instance Generation
To generate PA-NCE instances, we create and solve a forward problem instance and then
generate a set of foil constraints that form the user query.

0-1 KP Instances. Each forward problem consists of n ∈ {20, 30, 40} items. For all instances,
profit ci and weight wi are both drawn independently from the random uniform distribution
[1, R] with R = 1000. The knapsack capacity is W = max{⌊P

∑n
i=1 wi⌋, R}, with P = 0.5.

Each instance was solved to produce an optimal solution, x∗.
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To generate the user query, m ∈ {5, 10, 15} items were randomly selected from {1, ..., n}
to create the set M. Each user assignment xpi , i ∈ M was set to the opposite value of x∗

i :
0 if x∗

i = 1 and 1 if x∗
i = 0. We obtain Xψ by adding the corresponding set of assignment

constraints xi = xpi , ∀i ∈ M, to the original constraint set X for MIP and CP, respectively.
Recall that in the PA-NCE, any restrictions on the feasible values of the modified parameters
d are expressed through the feasible set C. In addition to specifying that only the parameters
di, i ∈ M, can change, we also add the constraint d ∈ Nn0 . We generated 20 problem instances
for each combination of (n,m).

This instance generation procedure may result in an infeasible query if M forces the
knapsack to contain items that exceed its capacity. In this case, a new random set M was
generated until a non-empty foil set Xψ was found.

1|rj|
∑

wjCj Instances. Forward instances of size n = {5, 10, 15} were generated with the
random uniform distributions pi ∈ [10, 100], ci ∈ [1, 10], and ri ∈ [0, ⌊qP ⌋], where q = 0.4
and P =

∑n
i=1 pi. The time horizon T was calculated as T = ⌊qP ⌋ + P . We generate 20

instances for each value of (n,m), with tuple values given in Section 8.
The generation of a feasible set of foil constraints to assign the start times of a subset of

jobs is non-trivial for this problem. In an optimal solution for a given complete sequence of
jobs, all jobs are left-shifted subject to the release time constraints. Therefore, an arbitrarily
chosen start time for a job will not form part of an optimal solution unless it happens to
be equal to the job’s release date or to the completion time of another job in some optimal
sequence. Following the simple query generation approach used with the knapsack problem
is therefore likely to result in many infeasible explanation problems.

Therefore, to generate instances more likely to have feasible explanations, we follow a
different approach, although the infeasibility of some PA-NCEs remains an issue (see Section
9). We create a random permutation (ai)i∈M of m jobs in a randomly chosen subset M. We
then solve the original forward problem to optimality, constraining the jobs in M to follow
the selected permutation. Finally, we select the start times in the user query to be the start
times of the jobs in M from this solution.

Specifically, the constraints added to the forward problem were, for CP,

endBeforeStart(Ij , Ii) ∀ i, j ∈ M, ai > aj , (26)

which forces the end ej of interval variable Ij to be less than or equal to the start si of
interval variable Ii, ej ≤ si. For MIP, the constraints added were

T−pj∑
t=0

txj,t <

T−pi∑
t=0

txi,t ∀ i, j ∈ M, ai > aj . (27)

Finally, we add d ∈ Nn = {1, 2, ...}n as one of the constraints that define C in the PA-NCE,
restricting the modified weights to be positive integers.

7.2 PA-NCE Solution
Having generated our PA-NCE instances, ⟨cTx, c, C, X, || · ||1, ψ⟩, we solve them using our
two-step approach (Section 4): first finding the optimal foil xψ by solving ⟨c,Xψ⟩, and then
solving the corresponding inverse problem using xψ as the known solution. We test two
groups of algorithms, based on whether the forward problems were solved with CP or with
MIP. Notice that there are multiple forward problems involved in solving each PA-NCE
instance. First, there is the optimal foil problem ⟨c,Xψ⟩. Then, each iteration of the inverse
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(a) 0-1 KP. (b) Single Machine Scheduling.

Figure 1 PA-NCE Mean Solve Times.

algorithm uses a new d to solve a subproblem ⟨d,X⟩. We refer to the algorithms that use
CP for these forward problems as forward CP based, and the algorithms that use MIP for
these forward problems as forward MIP based.

For each of these two algorithm groups, we tested three inverse algorithms. The first
used CP in the master problem, while the second used MIP. The third inverse algorithm
applied the ESC to the subproblem when MIP was used for the master. We name the
complete two-step algorithms by first specifying the technique used to solve the optimal
foil problem (CP or MIP), and then specifying the inverse algorithm. For example, we
call CP/InvMIP-CP the algorithm that uses CP to find the optimal foil (step one) and
InvMIP-CP to solve the inverse problem (step two). We tested six such two-step algorithms
in total.

We also track the performance of CP and MIP for the initial forward problem ⟨c,X⟩.
While this is part of instance generation and not explanation generation, it is a useful proxy
for the performance of the solvers in the subproblem in the inverse algorithms. Additionally,
for all inverse algorithms, we take advantage of having an initial forward solution x∗ to
initialize the set of known solutions as S0 = {x∗}.

7.3 Computational Details
All two-stage algorithms were run for a global time limit tmax of 300 seconds (for both stages
together). If a PA-NCE instance was not solved within the global time limit, then tmax was
recorded as the solve time. For all inverse algorithms that used the ESC, the subproblem
time limit γ was set to 1 second. The MIP solver used was ILOG CPLEX V12.10 and the
CP solver was ILOG CPOptimizer V12.10. Experiments were run on a single core of a 2.5
GHz Intel Core i7-6500U CPU and all reported times are CPU times.

8 Experimental Results

Overall Performance. Figure 1 shows the solution times for the two-stage algorithms
for PA-NCEs and Figure 2 the solution times for the optimal foil problem and the initial
forward problem – note the log-scale on the y-axes. For the 0-1 KP, the MIP/InvMIP-MIP
and MIP/InvMIP-MIP(ESC) algorithms are by far the most effective, likely due to the
strong MIP performance for the forward problem. As mentioned, initial forward problem
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(a) 0-1 KP. (b) Single Machine Scheduling.

Figure 2 Mean Solve Times for Initial Forward and Optimal Foil Problems.

performance, shown in Figure 2a, is a good proxy for subproblem performance. This result
is not surprising given that MIP solvers are typically very good at working with knapsack
constraints.

For single-machine scheduling, the best performing algorithm overall is CP/InvMIP-
CP(ESC), partly due to the superiority of CP over MIP on the forward problem for instances
with n ≤ 10 (Figure 2b). However, for instances with n = 15, the success of CP/InvMIP-
CP(ESC) is due to the ESC modification, as demonstrated by its improvement over the
unmodified CP/InvMIP-CP algorithm in Figure 1b.

Early Stopping Criteria. For both problems, the early stopping criteria was clearly beneficial
for the forward CP based algorithm, InvMIP-CP, when n was sufficiently large. It had no
effect for smaller problems, because when a subproblem is solved to optimality within γ

seconds, the ESC is never met. Interestingly, the ESC did not produce improvements the
forward MIP based algorithm, InvMIP-MIP. Recall that the motivation behind the ESC
was to avoid solving the SP to optimality at each iteration. We speculate that the ESC
improves InvMIP-CP because it prevents CP from spending an excessive amount of time
proving that the subproblem solution is optimal. In contrast, we speculate that much less
time is spent proving subproblem optimality in InvMIP-MIP .

CP for Master Problem. When CP is used to solve the master problem, performance
is very poor: CP/InvCP-CP and MIP/InvCP-MIP both reached the time limit on most
instances (Figure 2a and 2b). The simple linear structure of the master problem lends itself
particularly well to MIP solving. However, we anticipate that CP may be useful in the master
problem for more complex explanation problems, for example to express more complicated
constraints on C, providing more control over how the objective parameters are allowed to
change.

Instance Breakdown. Tables 1 and 2 provide more detailed data on the performance of the
two-stage algorithms in terms of the number of instances solved optimally, proved infeasible,
and timed-out. There were a large number of infeasible PA-NCEs for larger scheduling
instances even with our approach for generating feasible foils. Even though these instances
have feasible foils by construction, there is no guarantee that a cost vector exists that makes
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Table 1 Number of 0-1 KP PA-NCE Solutions Optimal (O) and Timeout (T). Algorithm names
are split into the first (optimal foil) and second (inverse) stage components.

Foil CP MIP
Alg
Inv CP-CP MIP-CP MIP-CP CP-MIP MIP-MIP MIP-MIP
Alg (ESC) (ESC)

n m O T O T O T O T O T O T
20 5 1 19 20 0 20 0 1 19 20 0 20 0

10 0 20 20 0 20 0 0 20 20 0 20 0
15 0 20 20 0 20 0 0 20 20 0 20 0

30 5 0 20 20 0 20 0 0 20 20 0 20 0
10 0 20 19 1 20 0 0 20 20 0 20 0
15 0 20 14 6 20 0 0 20 20 0 20 0

40 5 3 17 11 9 18 2 3 17 20 0 20 0
10 0 20 1 19 15 5 0 20 20 0 20 0
15 0 20 2 18 10 10 0 20 20 0 20 0

Table 2 Number of 1|rj |
∑

wjCj PA-NCE Solutions: Optimal (O), Infeasible (I), Timeout (T).
Algorithm names are split into the first (optimal foil) and second (inverse) stage components.

Foil CP MIP
Alg
Inv CP-CP MIP-CP MIP-CP CP-MIP MIP-MIP MIP-MIP
Alg (ESC) (ESC)

n m O I T O I T O I T O I T O I T O I T
5 2 19 0 1 19 1 0 19 1 0 19 0 1 19 1 0 19 1 0

3 12 0 8 18 2 0 18 2 0 12 0 8 18 2 0 18 2 0
4 9 0 11 15 5 0 15 5 0 9 0 11 15 5 0 15 5 0

10 4 5 0 15 12 8 0 12 8 0 5 0 15 12 8 0 12 8 0
6 0 0 20 5 15 0 5 15 0 0 0 20 5 15 0 5 15 0
8 0 0 20 4 16 0 4 16 0 0 0 20 4 16 0 4 16 0

15 4 3 0 17 6 8 6 7 12 1 4 0 16 8 12 0 8 12 0
6 0 0 20 0 11 9 3 15 2 0 0 20 4 15 1 5 14 1
8 0 0 20 1 12 7 1 18 1 0 0 20 2 16 2 2 17 1

the foil optimal. This issue is discussed further in Section 9. In contrast, no instances were
infeasible for the inverse knapsack problems as any inverse 0-1 KP has a feasible solution in
which any items which are not included in the knapsack by xd have their profits set to 0.

Optimal Foil Problem. Results for finding the optimal foil are included in Figures 2a and
2b. Similar to most initial problems, MIP performed better for KP while CP performed
better for scheduling.

9 Discussion and Limitations

This paper develops methods to find nearest counterfactual explanations for a class of
optimization problems and user queries and introduces inverse constraint programming as
part of the solution methodology. Here we address the limitations of our approaches.

Counterfactual explanations are independent of the algorithmic decision making process
as they identify changes in the problem that would result in the user’s specifications being
met. However, they require that the changeable parameters are meaningful to the user. If
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this is not the case, then the user requires a higher level explanation of why those parameters
are used and how their factual values were derived: questions that touch on ethics, fairness,
and the broader human system surrounding the optimization problem [16].

Our approach cannot generate nearest counterfactual explanations for foil sets described
by more expressive constraints, as defined in the general NCE. The core challenge is that
the constraints admit a set of solutions and the NCE seeks a cost vector such that any one
of those solutions is optimal. As far as we are aware, there exist no inverse optimization
approaches to such generalizations. We were able to solve the PA-NCE because Theorem 3
guarantees the existence of an optimal foil and so standard inverse optimization can be used.
As the NCE is a bi-level optimization problem, one direction for future work on the more
general problem is to investigate techniques from discrete bi-level optimization [22].

Similarly, the NCE definition and our approach are limited to counterfactual values for
parameters in the objective function. Clearly, a user may want explanations in terms of
changes to constraints. The challenge is that such changes modify the feasible set of the
forward problem, complicating the inverse optimization formulation. We are not aware of any
general inverse combinatorial optimization approaches that can handle changes to constraint
parameters, though formulations have been investigated for specific inverse problems [27].
One direction for work on such problems may be to combine the approach here with existing
work in CP on explaining infeasibilities (Section 10). In continuous optimization, inverse
methods allowing changes to constraint parameters exist for linear programs [4].

In our formulation, a counterfactual query is an assignment of a subset of variables. How-
ever, we required that an explanation consist only of changes to the parameters corresponding
to the variables in the user query. While we argued above that such a restriction is often
useful due to parameter relevance and privacy, without it Theorem 3 does not hold and our
solution approach does not work. The challenge, as above, is that without this restriction, the
NCE requires finding a parameter vector such that any one of a set of solutions is optimal.

Finally, as described in Section 7.1 and shown in Table 2, the restrictions of PA-NCE may
make it difficult to generate queries with a feasible explanation. From a user’s perspective,
just as with forward optimization, a result that says that there is no world in which the
user’s decisions are possible is not particularly helpful. As far as we are aware this issue
has not been addressed in the broader literature of counterfactual explanations. However,
the generalization noted above of allowing constraint coefficients to change may be worth
pursuing for this challenge as well.

In spite of these limitations, the work in this paper substantially extends the scope of
counterfactual explanations for optimization-based decisions from a counterfactual query
on a single variable to queries on some or all variables, albeit with a restricted query form.
Furthermore, for the first time we have defined inverse constraint programming and solved
such problems through an adaptation and extension of work in inverse integer programming.

10 Related Work

We build directly on our previous work [16], which formulates the NCE and proposes the
connection to inverse combinatorial optimization. However, that work does not develop
an inverse optimization based solution approach, relying on the restriction that the query
must be a linear constraint over a single variable. This restriction allows NCEs with binary
decision variables to be solved in closed form given the solution to a modified problem, and
with binary search over a series of modified problems when the decision variables are integers.



A. Korikov and J. C. Beck 35:15

In ML, there has been a significant amount of research on counterfactual explanations for
classifiers [24], with highly influential work by Wachter et al. [25]. Although still nascent,
the work has already developed more advanced concepts such as diverse counterfactual
explanations [21] which could be extended to counterfactual explanations for optimization.

In AI Planning, a counterfactual explanation approach has been adopted in a number of
contexts, for instance to enumerate the shared properties of all possible counterfactual plans [7]
and to identify the differences between counterfactual plans and factual plans [10]. Further,
Brandao and Maggazzeni [2] recently used inverse optimization to generate explanations for
path planning, for which there exists a polynomial inverse algorithm.

In CP, the majority of work on explanations has focused on explaining infeasibility with
work on optimality being sparse [11]. To our knowledge there have been no attempts to explain
optimality using counterfactual explanations. For constraint satisfaction problems which are
solveable with inference only (no search), Sqalli and Freuder [23] generated explanations by
tracing the inference steps, and observed that, for the logic puzzles used in their experiments,
these explanations were very similar to those generated by humans. Subsequent research has
built on this approach [1] while acknowledging the limitation that, for problems that also
require search, tracing solver steps does not currently provide understandable explanations.

Explanation of infeasibility in CP has largely dealt with finding minimal sets of unsatis-
fiable constraints [14], and a parallel literature exists in mathematical programming [5]. We
have previously proposed [16] that such explanations could also be viewed as counterfactuals
(i.e., a set of constraints that must change) but this connection has not been developed.
Freuder [11] provides a recent discussion and overview of explainability in CP.

11 Conclusion

Counterfactual explanations answer a user query asking why, given a set of facts, an initial
decision did not satisfy some desired characteristics. The explanation is a hypothetical set of
facts that would have satisfied the user’s characteristics. Because they do not require the user
to understand the inner workings of increasingly complex and uninterpretable algorithms,
counterfactual explanations are drawing considerable research attention in AI. We build
on recent work on counterfactual explanations for discrete optimization by introducing
multi-variate explanation problems and solving them with the help of inverse optimization.

When a user is interested in an alternative, partial set of variable assignments, we show
how to generate an explanation in terms of changes to the objective parameters associated
with those variables. A counterfactual explanation can be found by first solving the original
problem with the addition of the user’s partial assignment constraints, and then solving a
corresponding inverse optimization problem. We solve the inverse problem with constraint
programming through a modification of an existing MIP cutting plane algorithm to develop
both pure and hybrid inverse constraint programming algorithms. In addition, we develop
a novel early stopping criteria that significantly improves inverse CP on larger problem
instances. Finally, through numerical experiments we demonstrate our solution approaches
for the 0-1 knapsack problem and a single machine scheduling problem, and show that
a hybrid MIP-CP approach can achieve superior performance compared to a pure MIP
approach, particularly when CP is state of the art for the underlying optimization problem.
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Abstract
Efficient production scheduling is an important application area of constraint-based optimization
techniques. Problem domains like flow- and job-shop scheduling have been extensive study targets,
and solving approaches range from complete and local search to machine learning methods. In this
paper, we devise and compare constraint-based optimization techniques for scheduling specialized
manufacturing processes in the build-to-print business. The goal is to allocate production equipment
such that customer orders are completed in time as good as possible, while respecting machine
capacities and minimizing extra shifts required to resolve bottlenecks. To this end, we furnish
several approaches for scheduling pending production tasks to one or more workdays for performing
them. First, we propose a greedy custom algorithm that allows for quickly screening the effects of
altering resource demands and availabilities. Moreover, we take advantage of such greedy solutions
to parameterize and warm-start the optimization performed by integer linear programming (ILP)
and constraint programming (CP) solvers on corresponding problem formulations. Our empirical
evaluation is based on production data by Kostwein Holding GmbH, a worldwide supplier in the
build-to-print business, and thus demonstrates the industrial applicability of our scheduling methods.
We also present a user-friendly web interface for feeding the underlying solvers with customer order
and equipment data, graphically displaying computed schedules, and facilitating the investigation of
changed resource demands and availabilities, e.g., due to updating orders or including extra shifts.
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1 Introduction

High customization and flexibility of modern production processes increase the need for
efficient and performant scheduling methods in order to optimize the utilization of required
equipment and resources [13]. Well-studied problem domains like flow- and job-shop schedul-
ing [7, 19, 24], or even tardiness minimization for jobs running on a single machine [11],
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turn out to be NP-hard [23]. This elevated complexity makes constraint-based optimization
techniques based on integer linear programming (ILP) [4], constraint programming (CP) [22],
answer set programming (ASP) [17], or Boolean satisfiability (SAT) [5] attractive means for
tackling scheduling tasks, while problem size and specifics of industrial domains necessitate
customizations when adapting such solving methods from lab to real-world environments [14].

Industrial domains impose particular challenges due to irregularities and exceptions, such
as maintenance downtimes or extra shifts, uncertainties and variances, e.g., due to machine
breakdowns or manual handling times, as well as dynamics and policies, as evolving from
production order updates or customer service duties. While ILP and CP solvers proved to
be highly effective on benchmark scheduling problems [3, 9, 18, 21], which refer to abstract
domain models that do not incorporate the specifics encountered in industrial practice,
local dispatching [16], machine learning [25], and metaheuristic methods [27] are devised for
reactive decision making but cannot guarantee (near-)optimal quality of online schedules.

In this paper, we devise and empirically study optimization techniques for scheduling
specialized manufacturing processes of Kostwein Holding GmbH in the build-to-print business.
Unlike with large-scale assembly line production, each product is made and customized
to order, and lot size one is a frequent scenario. This goes along with the manual steps
of preparing machines and tools for particular production tasks in order to process daily
work plans at the discretion of experienced engineers. Hence, scheduling consists of deciding
which production tasks shall be performed at each workday such that resource bottlenecks
are projectively avoided and customer orders are completed in time as good as possible.
Moreover, we have to take dynamic factors like varying processing times and production
order updates into account, which can make schedules obsolete and necessitate quick changes.

In order to address these challenges, we furnish several approaches for scheduling pending
production tasks to one or more workdays, considering that long processes may exceed daily
machine capacities, for performing them. The four main contributions of our work are:

We provide an abstract formulation of our production scheduling problem from industry
and contribute an instance set based on real production data.
We propose a greedy custom algorithm as well as ILP and CP models, enabling constraint
optimization by state-of-the-art ILP and CP solvers like Gurobi1 and Google OR-tools2.
We empirically investigate our scheduling methods in realistic setups and show that
constraint-based optimization is highly beneficial for further improving greedy solutions.
We present a user-friendly web interface for launching solvers and inspecting their results
to facilitate rescheduling, e.g., with updated orders or extra shifts, and decision making.

As a result, we demonstrate the practical applicability of our scheduling methods to instances
of industrial size and relevance. In particular, our devised techniques support a timely
reaction to deviations, such as process delays and customer order updates, as well as an
upfront identification of resource bottlenecks, thus assisting production managers to take
appropriate measures like increasing machine capacities by including extra shifts or delegating
some of the pending production tasks to external suppliers.

The rest of this paper is organized as follows. Section 2 introduces an abstract formulation
of the production scheduling problem at Kostwein Holding GmbH. In Section 3, we present
a greedy custom algorithm as well as ILP and CP models for solving the problem. We
evaluate the devised techniques on instances extracted from real production data in Section 4.
Section 5 describes the web interface used to deploy our scheduling methods in industrial
practice. Finally, conclusions and future work are discussed in Section 6.

1 https://www.gurobi.com/products/gurobi-optimizer/
2 https://developers.google.com/optimization/

https://www.gurobi.com/products/gurobi-optimizer/
https://developers.google.com/optimization/
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2 Problem formulation

The specialized manufacturing processes at Kostwein Holding GmbH go along with manual
steps like preparing machines and tools for particular production tasks, where experienced
engineers organize the workflows at their operating units. Given such independent and
non-prescribed task execution, fine-grained sequencing of tasks competing for a resource,
e.g., performed in flow- and job-shop scheduling, is out of scope and scheduling consists of
deciding which of the pending production tasks shall be performed at each workday within
the available machine capacities. The overall goal is thus to balance the workload of machines
over several weeks from a global perspective such that bottlenecks are projectively avoided,
customer orders can be completed in time, and as few additional resources as possible have
to be utilized otherwise, e.g., by including extra shifts or delegating pending tasks to external
suppliers. In the following, we formally specify the application scenario we are dealing with.

We consider a set M of machines and a set J of jobs, where each job j ∈ J is a sequence
tj
1, . . . , tj

nj
of tasks to be successively performed on days denoted by integers D = {0, . . . , h}.

Every job j has an associated earliest start day ej ∈ D such that 1 ≤ ej , a deadline dj ∈ D,
and a weight wj ∈ N used for penalizing tardiness. While day 0 can be viewed as the date
of today and is admitted as deadline for jobs that should have been accomplished already,
the positive earliest start days express that tasks require some lead time and can only be
scheduled from tomorrow on or even later, e.g., in case raw materials need to be supplied first.
The machines m ∈ M are characterized by daily capacities qm,k ∈ Q+ ∪ {0} for 1 ≤ k ≤ h,
where qm,k = 0 means that m is unavailable on day k, such as on weekends or maintenance.

Each task t = tj
i of some job j ∈ J is further characterized by the following attributes:

the machine mt ∈ M to be used for processing t,
the processing time pt ∈ Q+ required for performing t,
the number gt ∈ N of gap days that must lie in-between the day of performing t = tj

i and
tj
i−1 if 1 < i ≤ nj , while we take gt = 0 as fixed when t = tj

1 has no preceding task, and
a coupling flag ct ∈ {0, 1}, where ct = 1 indicates that t = tj

i has to be performed directly
after tj

i−1 for 1 < i ≤ nj , while ct = 0 does not impose any such condition and is always
the case when t = tj

1.

Note that the machine to process a task is fixed, which reflects that specialized products
are customized to order, so that the specification of jobs may involve CAD design as well as
CNC programming and task allocation cannot easily be automated or adjusted. The possible
gap days between a task and its predecessor are included to leave time for intermediate steps
like specialized processes performed by external suppliers or transports between separate
manufacturing sites. In general, we assume that operating units organize their daily work
independently in order to perform their pending tasks efficiently, which precludes specific
assumptions about the sequencing of tasks on a machine and time slots of processing within
a day. Hence, a task t = tj

i must be performed gt + 1 or more days later than its predecessor
tj
i−1 (if any) and cannot be scheduled to the same day. On the other hand, the coupling

flag ct = 1 expresses that there must not be any delay between processing tj
i−1 and tj

i , apart
from days k ∈ D such that qmt,k = 0 signals unavailability of the machine mt. We use
such coupling for modeling long production tasks that exceed the daily capacity of their
machine and are thus broken up into parts to be processed directly after each other, which
circumvents unintended and inoperative preemptive scheduling of (long) tasks.

A schedule is an assignment a : T → D of tasks T = {tj
i | j ∈ J, 1 ≤ i ≤ nj} to days such

that, for every job j, 1 < i ≤ nj , and t = tj
i , we have that
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ej ≤ a(tj
1),

a(tj
i−1) + gt < a(tj

i ), and
if ct = 1, qmt,k = 0 for each day k ∈ D with a(tj

i−1) < k < a(tj
i ),

while the capacities qm,k of machines m ∈ M for days 1 ≤ k ≤ h have to be respected, i.e.,∑
t∈T,mt=m,a(t)=k pt ≤ qm,k must hold. That is, machine capacities, earliest start days of

jobs, and requirements about the days between successive tasks impose hard constraints
on feasible schedules. Clearly, the scheduling horizon h, i.e., the number of days to which
tasks can be scheduled, must be large enough to allow for allocating all tasks within the
available machine capacities, and in Section 3.1 we present a greedy algorithm to determine
a sufficient horizon. Also note that the rational numbers for processing times and machine
capacities are merely considered for a convenient representation of timeframes, e.g., in terms
of fractions of hours or minutes, while they can always be scaled to integers without loss
of precision, so that off-the-shelf ILP and CP solvers can be applied to the corresponding
models described in Section 3.2 and Section 3.3.

The deadlines dj and weights wj for jobs j ∈ J are used to assess the quality of schedules
by a weighted sum

∑
j∈J,a(tj

nj
)>dj

wj ·
(
ω · (a(tj

nj
) − dj) + ω′) subject to penalties ω, ω′ ∈ N

per day a job is delayed or per delayed job, respectively. Both penalties are multiplied by
job weights to incorporate priorities, the lower the weighted sum the better the quality of
a schedule is, and the numbers taken for ω and ω′ allow for balancing specific objectives
obtained when either penalty is set to zero: if ω′ = 0, the total weighted tardiness of a
schedule is to be minimized, or the weights of delayed jobs should be minimal in case ω = 0.

Our scheduling problem is a specific version of the Resource-Constrained Project Schedul-
ing Problem (RCPSP) [15], which considers the scheduling of activities under precedence
and resource constraints such that particular objectives are optimized. The broad RCPSP
framework embraces plenty problem variants with diverse features and solving approaches
proposed in the literature. Our application can here be categorized as a single-mode [8],
partially renewable [6], cumulative [20] resource allocation task with release dates and dead-
lines [10] subject to time-based objectives [2]. Machine unavailability days, usually standing
for weekends or bank holidays, constitute a specific phenomenon of our scenario leading to
variable time periods from start to completion for long production tasks, which we model by
splitting tasks stretching over several days up into several coupled parts.

2.1 Example
Table 1 provides the input parameters of an example problem instance with four jobs
and three machines. The earliest start days ej , deadlines dj , and weights wj of the jobs
j ∈ {1, 2, 3, 4} are listed in Table 1a, showing that the first job cannot be started before
day 2 and the others immediately on the first workday. Considering a horizon of five days,
the daily machine capacities are given in Table 1b. Note that the positive capacities qm,k

for m ∈ {1, 2, 3} are uniform, i.e., q1,k = 8, q2,k = 20, and q3,k = 4, while qm,k = 0 signals
unavailability of a machine m on day k otherwise. Currently we build on such uniform
capacity patterns for production scheduling at Kostwein Holding GmbH, since we statically
split long processes into coupled tasks such that the processing time of all but the last part
amounts to the uniform capacity of the allocated machine. The tasks t1

1 and t1
2 of the first job,

listed together with the other jobs’ tasks in Table 1c, constitute a corresponding example,
where both tasks are to be processed by machine 1, the processing time 8 of t1

1 matches
q1,1 = q1,2 = q1,4 = q1,5 = 8, and ct = 1 for t = t1

2 indicates that the second part obtained
by splitting a long task of 10 time units is coupled. Clearly, a coupled task like t = t1

2
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Table 1 Input parameters of an example problem instance.

(a) Earliest start days, deadlines, and
weights of jobs.

Job Earliest Deadline Weight
j ej dj wj

1 2 4 3
2 1 4 2
3 1 2 2
4 1 1 2

(b) Daily capacities of machines.

Machine Day 1 2 3 4 5
m qm,1 qm,2 qm,3 qm,4 qm,5

1 8 8 0 8 8
2 20 0 0 20 20
3 4 4 4 4 4

(c) Machines, processing times, and requirements of production tasks.

Job Task Machine Processing time Gap days Coupled
j t mt pt gt ct

1 1 1 8 0 0
1 2 1 2 0 1
2 1 2 10 0 0
2 2 1 2 0 0
2 3 3 3 1 0
3 1 2 0.5 0 0
4 1 3 2.5 0 0

always comes with gt = 0 gap days, as conflicting requirements to postpone and proceed
with processing t would be imposed otherwise. Unlike that, gt = 1 for t = t2

3, i.e., the third
task of the second job, means that at least one day must lie in-between performing t2

2 and t2
3,

e.g., for transport to a different manufacturing site.
Partial schedules considering only the first or second job, respectively, are displayed in

Figure 1a. Regarding the first job and its two coupled tasks in the upper part, t1
1 is scheduled

to the earliest start day e1 = 2 and occupies the full capacity q1,2 = 8 of machine 1 on day 2.
The coupled task t1

2 must be scheduled to the next day on which machine 1 is available,
which is day 4 in view of q1,3 = 0, and 6 time units of q1,4 = 8 are left for processing any
other jobs’ tasks by machine 1 on the same day. Turning to the second job and its three tasks
in the lower part, t2

1 is scheduled to day e2 = 1 and utilizes half of the capacity q2,1 = 20
of machine 2. The successor task t2

2 is processed by machine 1 directly on the next day 2,
occupying 2 time units of the capacity q1,2 = 8. Given the gap days gt = 1 for the remaining
task t = t2

3, the earliest day for performing t2
3 is 4, and it takes 3 time units of the capacity

q3,4 = 4 of machine 3. Scheduling t2
3 to day 4 is required for finishing the second job within

its deadline d2 = 4, while a penalty weighted by w2 = 2 would apply if delaying t2
3 to day 5.

An entire schedule for the example instance in Table 1 is shown in Figure 1b. Here
the three tasks of the second job are scheduled as discussed before, so that the second job
is finished within its deadline. The short tasks t3

1 and t4
1 of the third and fourth job are

additionally processed by machine 2 or 3, respectively, on the earliest start day e3 = e4 = 1.
This is possible because the sum of processing times 10 and 0.5 of t2

1 and t3
1 stays within

the capacity q2,1 = 20 of machine 2, and q3,1 = 4 also yields the availability of machine 3 to
process t4

1 for the required 2.5 time units. Different from the previous partial schedule for the
first job, its first task t1

1 cannot be scheduled to day 2 anymore because t2
2 takes part of the

capacity q1,2 = 8 of machine 1, while the full capacity would be required for processing t1
1.

Given that machine 1 is only available again on day 4, t1
1 is performed then, and its coupled

task t1
2 on the next day 5. That is, the first job is finished one day later than its deadline

d1 = 4, which in view of the weight w1 = 3 leads to the quality 3 ·(ω ·(5−4)+ω′) = 3 ·(ω +ω′)
w.r.t. the penalties ω, ω′ of the schedule displayed in Figure 1b.
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Job 2 Day 1 Day 2 Day 3 Day 4 Day 5

Machine 1 / 8 / 8 / 0 / 8 / 8

Machine 2 / 20 / 0 / 0 / 20 / 20

Machine 3 / 4 / 4 / 4 / 4 / 4

10

2

3

one rest day 
before
task three

Job 1 Day 1 Day 2 Day 3 Day 4 Day 5

Machine 1 / 8 / 8 / 0 / 8 / 8

Machine 2 / 20 / 0 / 0 / 20 / 20

Machine 3 / 4 / 4 / 4 / 4 / 4

8              / 8 2
earliest start 
is day two coupling

(a) Scheduling two jobs separately based on earliest availability of machines.

All jobs Day 1 Day 2 Day 3 Day 4 Day 5

Machine 1 / 8 / 8 / 0 / 8 / 8

Machine 2 / 20 / 0 / 0 / 20 / 20

Machine 3 / 4 / 4 / 4 / 4 / 4

8              / 8 2

10

2

32.5

(b) Schedule assigning the tasks of all four jobs to workdays.

Figure 1 Schedules for the example instance in Table 1.

3 Solving approaches

Our main goal is to utilize constraint optimization for solving the production scheduling
problem specified in the previous section. This, however, requires the choice of a sufficient
horizon in terms of workdays, so that all jobs can be scheduled and their tardiness inspected
in order to assess the solution quality. To this end, we start by proposing a greedy algorithm
able to quickly produce a sensible custom solution. Beyond the option to timely screen
the effects of and react to deviations in resource availabilities and demands, we use greedy
solutions to derive a feasible scheduling horizon along with strict limits on the completion of
jobs. Exhaustive optimization can then be performed by applying state-of-the-art solvers
to the ILP and CP models also presented in this section, where greedy solutions help to
warm-start the optimization and converge to high-quality schedules in shorter solving time.

3.1 Greedy algorithm
We have devised a greedy algorithm to heuristically determine a sensible custom solution
that yields a feasible scheduling horizon and can also be used to parameterize the constraint
optimization performed by ILP and CP solvers. The basic idea is to proceed day by
day to greedily schedule pending tasks, whose predecessors (if any) have been processed
before, according to some priority until all tasks are scheduled. Letting a(tj

0) = ej − 1 and
f j

i =
∑

i<i′≤nj ,t′=tj

i′
(gt′ + 1) for each job j ∈ J and 1 ≤ i ≤ nj , the priority function we use

for pending tasks t = tj
i and days k ∈ N is calculated as follows:

priority(tj
i , k) =


−∞ if k ≤ a(tj

i−1) + gt

∞ if a(tj
i−1) + gt < k and ct = 1

wj · ω+ω′

exp(dj−(k+fj
i

)) if a(tj
i−1) + gt < k, ct = 0, and k + f j

i ≤ dj

wj · ω
exp(nj−i+1) otherwise
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Algorithm 1 Greedy task scheduling.

T ← {tj
1 | j ∈ J};

k ← 0;
while T ̸= ∅ do

k ← k + 1;
S ← list of tasks t ∈ T in decreasing order of priority(t, k);
foreach t ∈ S such that priority(t, k) ̸= −∞ do

if pt ≤ qmt,k then
a(t)← k;
qmt,k ← qmt,k − pt;
T ← T \ {t};
if i < nj for t = tj

i then T ← T ∪ {tj
i+1};

end
end

end

The distinguished priority −∞ is taken for (successor) tasks t that cannot be scheduled
to the day k in view of the (positive) number gt of required gap days. In turn, a coupled
successor task t for which ct = 1 must be scheduled to the next day on which its allocated
machine is available, and in this case we use the distinguished priority ∞.

When no hard constraints forbid or force t = tj
i to be scheduled, we approximate the

feasibility of finishing the job j within its deadline dj according to the condition k + f j
i ≤ dj ,

which applies if and only if the gap days and workdays needed for successor tasks of t are still
left after the day k. If so, we optimistically assume the availability of allocated machines and
consider the sum ω + ω′ of penalties as cost to safe by processing t on day k. To also reflect
the criticality of jobs, we reduce this cost exponentially based on the number dj − (k + f j

i )
of remaining buffer days by which pending tasks of j can be further postponed within the
deadline dj . The outcome is then scaled by the weight wj to incorporate the importance of j.

The case that remains is that the job j can certainly not be finished within its deadline dj ,
so that the penalty wj · ω′ applies no matter whether t = tj

i is scheduled to day k or later.
This means that only the penalty ω is of further interest, we reduce it exponentially according
to the number nj − i + 1 of pending tasks of j, and again scale the outcome by the weight wj .
Among jobs that will certainly be delayed, the priority calculation thus prefers those with
fewer remaining tasks, which are presumably easier to complete soon. Arguably, such a
scheme may seem unbalanced and at risk to delay jobs needing more work for even longer,
but our empirical investigation of greedy heuristics led to best schedules with the described
prioritization strategy, and constraint optimization later goes for improvements.

Algorithm 1 outlines our greedy method by pseudo-code, whose central part is to traverse
the pending tasks t ∈ T per day k in decreasing order of priority. When the daily capacity
qmt,k of the allocated machine mt suffices to process t, we schedule t and subtract its
processing time pt from the machine capacity before checking whether other tasks of lower
priority can be performed in addition. If a scheduled task t = tj

i has the successor tj
i+1,

the latter is added to the set T of pending tasks and can be processed from day k + 1 on,
where the greedy scheduling proceeds when no further task can be performed within the
available machine capacities on day k. Given our assumption of uniform positive capacities
for days on which machines are available, the splitting of longer tasks into coupled parts with
processing times up the capacity of their allocated machine, and weekly repeating machine
capacity patterns (except for occasional holidays, maintenance, or extra shifts), Algorithm 1
will eventually succeed to schedule all tasks and thus yield a sufficient scheduling horizon.
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Reconsidering our example instance discussed in Section 2.1, all tasks that can be processed
on day 1, i.e., t2

1, t3
1, and t4

1, are scheduled greedily, as shown in Figure 1b. The pending tasks
on day 2, which matches the earliest start e1 = 2 of job 1, are T = {t1

1, t2
2}, both tasks compete

for machine 1, and we have to inspect their priorities to decide whether to process t1
1 or t2

2.
As displayed in Figure 1a, it is feasible to finish both tasks within their common deadline
d1 = d2 = 4, so that we have to consider the gap days and workdays needed for successor tasks:
f1

1 = 0 + 1 = 1 and f2
2 = 1 + 1 = 2 in view of t1

2 or t2
3, respectively. Together with the weights

w1 = 3 and w2 = 2, this yields priority(t1
1, 2) = 3 · (ω +ω′)/e ≤ 2 · (ω +ω′)/1 = priority(t2

2, 2),
where the priority of t2

2 for day 2 is strictly greater whenever ω + ω′ ̸= 0. Hence, we greedily
schedule t2

2 to day 2, and then the remaining tasks t1
1, t1

2, and t2
3 to the next days on which

they can be processed w.r.t. the availability of machine 1 and the gap day required before t2
3.

This reproduces the schedule shown in Figure 1b by means of our greedy scheduling strategy.

3.2 ILP model
In order to fix a feasible scheduling horizon to be investigated by means of constraint-
based optimization techniques, we take advantage of the greedy solution determined by
our heuristic strategy. For each job j ∈ J , we restrict the processing of its tasks to the
latest day rj = a(tj

nj
) + b, where a(tj

nj
) is the completion day of j in the greedy solution

and b ∈ N is some constant. This yields the range from the earliest start day ej until rj

as period of workdays to which tasks of j can possibly be scheduled, and globally leads to
h = max{rj | j ∈ J} as sufficient scheduling horizon. For our experiments in Section 4,
we use b = 10 to admit up to 10 days later job completion than in the greedy solution,
with the hope that any such local degradations allow for schedules of better overall quality.
Notably, restricting the range of days for performing jobs based on the greedy solution
avoids infeasibility due to enforcing too tight deadlines and may also benefit optimization
performance by not overstretching the scheduling horizon in view of potentially far deadlines.
Moreover, the derived range rj implies lj = max{0, rj − dj} as limit on the number of days
by which a job j can be delayed beyond its deadline dj in the worst case.

Our ILP model for task scheduling is shown in Figure 2, starting with a summary of
instance parameters as introduced in Section 2, augmented by auxiliary functions um mapping
a day k to the number of days up to k on which the machine m ∈ M is available, the range
rj for job j ∈ J derived from a greedy solution, and its limit lj on delayed completion. The
decision variables include Booleans atj

i
,k to indicate that the task tj

i is scheduled to a day k

in the period from the earliest start ej to the range rj of its job j, a numerical variable zj

whose natural value up to lj provides the delay days of j, and a Boolean z′
j signaling that

the completion of j is delayed by at least one day. Hence, the objective function (7) matches
the weighted sum

∑
j∈J,a(tj

nj
)>dj

wj ·
(
ω · (a(tj

nj
) − dj) + ω′) subject to penalties ω, ω′ ∈ N.

The first constraint (1) expresses that each task tj
i must be scheduled to exactly one day

between the earliest start ej and range rj of j. Daily machine capacities qm,k are checked by
the constraint (2), making sure that the sum of processing times pt over all tasks t processed
by machine m on day k does not exceed qm,k. The constraint (3) addresses the gap days gtj

i

that must lie in-between the predecessor tj
i−1 and a task tj

i with 1 < i. For example, we obtain∑
1≤k≤5 k · at2

2,k + 1 <
∑

1≤k≤5 k · at2
3,k for the tasks t2

2 and t2
3 of the instance discussed in

Section 2.1, where gt2
3

= 1 indicates that t2
3 cannot be scheduled directly to the next day after

performing t2
2. Coupled tasks tj

i−1 and tj
i are handled by the constraint (4), requiring that tj

i is
processed on the next day such that its allocated machine mtj

i
is available, where coefficients

um
t

j
i

(k) map the availability days k of mtj
i

to consecutive natural numbers. Regarding
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Parameters

k ∈ D \ {0} day / set of days
m ∈M machine / set of machines

qm,k ∈ Q+ ∪ {0} capacity of machine m for day k

j ∈ J job / set of jobs
ej ∈ D \ {0} earliest start day of job j

dj ∈ D deadline of job j

wj ∈ N weight of job j in objective function

tj
i ∈ T i-th task of job j / set of tasks

mt ∈M allocated machine of task t

pt ∈ Q+ processing time of task t

gt ∈ N gap days of task t

ct ∈ {0, 1} coupling flag of task t

ω, ω′ penalty for each delay day / each delayed job
um : D → D function defined by k 7→ |{1 ≤ k′ ≤ k | qm,k′ ̸= 0}|
rj ∈ D \ {0} range specifying the latest day to complete job j

lj ∈ N limit on the delay days of job j beyond its deadline dj

Decision variables

a
t

j
i

,k
∈ {0, 1} 1 if task tj

i is scheduled to day k with ej ≤ k ≤ rj , 0 otherwise

zj ∈ {0, . . . , lj} delay days of job j, limited by lj

z′
j ∈ {0, 1} 1 if job j is delayed, 0 otherwise

Constraints∑
k∈D\{0} a

t
j
i

,k
= 1 ∀tj

i ∈ T task assignment (1)∑
t∈T,mt=m

pt · at,k ≤ qm,k ∀m ∈M, ∀k ∈ D \ {0} machine capacities (2)∑
k∈D\{0} k · a

t
j
i−1,k

+ g
t

j
i

<
∑

k∈D\{0} k · a
t

j
i

,k
∀tj

i ∈ T, 1 < i gap days (3)∑
k∈D\{0} um

t
j
i

(k) · a
t

j
i−1,k

+ 1 =
∑

k∈D\{0} um
t

j
i

(k) · a
t

j
i

,k
∀tj

i ∈ T, c
t

j
i

= 1 coupled tasks (4)∑
k∈D\{0} k · a

t
j
nj

,k
− dj ≤ zj ∀j ∈ J delay days (5)

zj ≤ lj · z′
j ∀j ∈ J delayed jobs (6)

Objective function

min ω ·
∑

j∈J
wj · zj + ω′ ·

∑
j∈J

wj · z′
j weighted sum of delay days and delayed jobs (7)

Figure 2 ILP model for task scheduling.

the coupled tasks t1
1 and t1

2 of our example in Section 2.1, this scheme gives the constraint
1 ·at1

1,1 +2 ·at1
1,2 +2 ·at1

1,3 +3 ·at1
1,4 +4 ·at1

1,5 +1 = 1 ·at1
2,1 +2 ·at1

2,2 +2 ·at1
2,3 +3 ·at1

2,4 +4 ·at1
2,5,

in which the coefficients do not increase for day 3 in view of the unavailability of machine
mt1

2
= mt1

1
= 1. The remaining constraints (5) and (6) impose lower bounds on the variables

zj and z′
j , reflecting the delay days or delayed completion, respectively, of a job j. For

the first job of the instance in Section 2.1 with its deadline d1 = 4, we obtain the specific

CP 2021



36:10 Constraint Optimization for Workload Balancing

constraints
∑

1≤k≤5 k · at1
2,k − 4 ≤ z1 and z1 ≤ 1 · z′

1. This necessitates z1 = z′
1 = 1 when

at1
2,5 signals that the last task t1

2 of the job is processed on day 5, as done according to the
schedule in Figure 1b, so that the cost 3 · (ω + ω′) is included in the objective function (7).
Any further constraints imposing upper bounds and thus fixing the values of zj and z′

j would
be redundant, since minimization of the objective function also aims at assigning smallest
feasible values and optimal solutions for the ILP model in Figure 2 readily give best schedules.

Recalling the role of a greedy solution, we use it for restricting the days to process
jobs, thus reducing the representation size of our ILP model and targeting solvers towards
better schedules in the neighborhood of the greedy solution, while even better schedules
that entirely differ may be excluded. Given the high complexity of our industrial scheduling
domain with thousands of tasks to be scheduled over several weeks, as empirically studied in
Section 4, we make this trade-off and do not insist on schedules of theoretically best quality.
However, we observed that admitting up to 10 days later job completion than in the greedy
solution gives loose ranges for our instances, where constraint optimization yields schedules
such that by far most jobs are completed earlier than in the greedy solution. The quality
of schedules obtainable in reasonable solving time is also higher than with further relaxed
ranges that increase likewise the representation size and the search space of instances. That
is, we could not empirically confirm potential theoretical advantages due to extended limits
on the completion of jobs, and thus up to 10 more days than in the greedy solution appear
sufficiently cautious to us. Moreover, our experiments demonstrate that warm-starting solvers
with a greedy solution, giving an initial hint on promising task assignments, significantly
improves their optimization performance.

3.3 CP model

Given that linear constraints over finite-domain variables are supported by CP solvers (and
rational coefficients can be scaled to integers without loss of precision), our CP model for task
scheduling is primarily a syntactic reformulation of the constraints and objective function in
Figure 2. However, rather than taking Booleans atj

i
,k to represent that a task tj

i is scheduled
to day k, we use interval variables atj

i
with associated duration 1 within the period from

the earliest start ej to the range rj of the job j. This enables a convenient modeling of the
constraint (2) for machine capacities in terms of the cumulative global constraint [12]. Since
cumulative assumes the capacity qm,k of a machine m ∈ M to be the same on each day k in
the scheduling horizon, we use the uniform positive capacity on availability days of m as
constant threshold, and model unavailability on a day k by adding a fixed task t taking the
full capacity of m as processing time pt. The solutions and objective function values then
correspond one-to-one between our ILP and CP models, where either a Boolean atj

i
,k or a

variable assignment atj
i

= k indicates the day k for performing a task tj
i .

Our motivation for devising two models of similar functionality is that decision variables,
linear constraints, and objective functions can be conveniently expressed in both formats, so
the extra effort for modeling is modest, while the respective state-of-the-art solvers feature
complementary constraint-based optimization techniques. A major advantage of ILP solvers
is the estimation of solution quality based on the duality gap to relaxed real-valued solutions
for a model [1]. Support of global constraints with dedicated propagation methods is a
particular strength of CP solvers, where we make use of cumulative to limit machine capacities
more compactly than by separate linear constraints for each day in the scheduling horizon.
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4 Experimental analysis

We empirically evaluate the optimization performance and solution quality achieved with
our scheduling methods on problem instances extracted from production data by Kostwein
Holding GmbH, operating in the build-to-print business. The used instance sets and solver
settings are described first, and then we present the results of our empirical evaluation.

4.1 Experimental setup
The production data supplied by Kostwein Holding GmbH contains a complete list of customer
orders taken as snapshot from the company’s ERP system. While these orders may have
substantial lead times with planned delivery dates several months ahead, the workflows can
possibly change during the production process due to customer requests, and new orders
regularly come in between one data export and another. Hence, a production schedule
incorporating all present orders will have a horizon of several months, yet be subject to
revision in a few days at latest, so that filtering orders and their planned workflows to focus
on a shorter scheduling horizon up to a few weeks is advisable in practice. A list of daily
machine capacities constitutes the second kind of input, which usually follow a weekly pattern
apart from bank holidays, planned maintenance, and occasionally extra shifts on weekends to
manage peak loads. This matches our current assumption of uniform machine capacities on
availability days in order to split long tasks into coupled parts occupying a machine for days.

The problem instances for our experiments are based on six customer order lists along
with production workflows exported at different weeks. Following the idea that schedules
should focus on the near to mid-term future, we extracted the jobs whose earliest start days
lie within the next two, four, or six weeks, respectively, thus obtaining three instance sets
with six realistic scenarios of roughly same size in each. In fact, the extracted jobs amount
to about 6000 tasks per 2-weeks period, so that the average number of tasks to be scheduled
is around 6000, 12000, or 18000 depending on the instance set.

In preliminary experiments, we compared the ILP solvers Gurobi1 and IBM CPLEX
Optimizer3 as well as the CP solvers Google OR-tools2 and IBM ILOG CP Optimizer4.
Both the two ILP and the two CP solvers showed comparable performance on small problem
instances, with a slight tendency in favor of Gurobi or Google OR-tools, respectively, when the
instance size grows. We thus run Gurobi and Google OR-tools in our systematic experiments.

We conducted our experiments on a machine equipped with two Intel Xeon 6138 CPUs,
providing 40 cores and offering 80 parallel threads. While Google OR-tools (version 8.2.8710)
is configured to exploit all 80 threads, Gurobi (version 9.1.1) runs 32 threads, which is the
default recommended by the developers, as more threads can in some cases deteriorate the
optimization performance. The penalties for each delay day or delayed job, respectively, are
fixed to ω = 1 and ω′ = 3, so that entirely avoiding a delay counts more than reducing the
delay length just by single days. Aiming at few delayed jobs makes practical sense because
the delays point out bottlenecks that may a posteriori be resolved by including extra shifts
or delegating critical production tasks to external suppliers. We report average objective
function values along with the standard deviation relative to greedy solutions, determined by
means of the heuristic algorithm in Section 3.1, for time limits of 120, 600, and 1800 seconds
when the solvers are warm-started with greedy solutions. Without warm-start, we restrict

3 https://www.ibm.com/analytics/cplex-optimizer/
4 https://www.ibm.com/analytics/cplex-cp-optimizer/
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Table 2 Objective function values relative to the greedy solution for warm-started solvers with
120s, 600s, and 1800s solving time limit, based on six instances per number of weeks, where respective
gaps are additionally given for ILP. Results without warm-start, for 1800s solving time limit, include
the number of instances for which a solution was found. No run terminated before the time limit.

Weeks
Greedy CP (solved by Google OR-tools)

Time limit, start N/A 120s, warm 600s, warm 1800s, warm 1800s, no warm
Number of tasks Objective Objective Objective Solved

2 6543 ± 1020 1.00 0.84 ± 0.04 0.65 ± 0.08 0.53 ± 0.11 0.59 ± 0.11 5
4 12204 ± 1128 1.00 0.96 ± 0.01 0.87 ± 0.03 0.78 ± 0.03 - 0
6 17387 ± 455 1.00 0.98 ± 0.00 0.94 ± 0.01 0.89 ± 0.02 - 0

Weeks
ILP (solved by Gurobi)

120s, warm 600s, warm 1800s, warm 1800s, no warm
Objective Gap Objective Gap Objective Gap Objective Solved

2 0.55 ± 0.11 0.40 ± 0.18 0.41 ± 0.16 0.25 ± 0.10 0.35 ± 0.18 0.18 ± 0.08 2.00 ± 0.00 1
4 0.88 ± 0.08 0.55 ± 0.13 0.73 ± 0.03 0.43 ± 0.09 0.66 ± 0.07 0.25 ± 0.10 - 0
6 1.00 ± 0.02 0.60 ± 0.05 0.99 ± 0.03 0.55 ± 0.05 0.99 ± 0.03 0.52 ± 0.05 - 0

the comparison to 1800 seconds because the optimization performance declines dramatically
and plenty runs do not even return a feasible solution within the solving time limit. For the
ILP solver Gurobi, which reports the duality gap to relaxed real-valued solutions, we also
indicate average gaps and the standard deviation relative to the quality of greedy solutions.
Our instance sets and instructions for running the compared solvers are available in the
supplementary material.

4.2 Experimental results
Table 2 summarizes the results of our empirical evaluation. The instance sets based on jobs
with the earliest start day up to two, four, or six weeks in the future are listed in separate
rows, and average objective function values together with further measurements (where
applicable) for solvers and their setups are given in respective columns. The average number
of tasks for the instance sets including jobs starting differently many weeks ahead is provided
first, and the normalized quality 1.00 of greedy solutions is then indicated for reference.

For both the CP solver Google OR-tools and the ILP solver Gurobi, where results for
the latter are displayed below the former, we observe that the solution quality improves
substantially with increasing solving time limit when the solvers are warm-started with
greedy solutions. However, Gurobi has a significant edge on Google OR-tools for the instance
sets with jobs starting up to two or four weeks ahead, yielding 18% and 12% better quality
of schedules relative to the greedy solution with 1800s time limit for both solvers. These
percentages increase even more when shorter solving time limits are taken, such as 29%
difference between the best solutions of Gurobi and Google OR-tools in 120s for the 2-weeks
instances, and still 14% in 600s for the 4-weeks instances. Unlike that, Google OR-tools
performs better than Gurobi on the 6-weeks instances, where its solutions are of 10% better
quality with 1800s time limit. We checked that Gurobi here deals with roughly 500,000
linear constraints, and we conjecture that the handling of the cumulative global constraint
by Google OR-tools is advantageous for instances of such large size. The box plot of average
objective function values in Figure 3 also illustrates these clear trends visually.

Regarding the duality gaps provided by Gurobi, they range from 18% for 2-weeks instances
to 52% for 6-weeks instances, so that the best schedules found within 1800s solving time
limit cannot be claimed optimal, but constitute a trade-off between solving time and solution
quality. This indicates that provably optimal schedules for our instances of industrial size
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2 weeks 4 weeks 6 weeks

Figure 3 Plotted objective function values for ILP and CP solvers relative to the greedy solution.

are beyond reach, and compromises have to be made. Limiting the considered jobs to those
starting at most two to four weeks in the future already yields substantial improvements by
the ILP solver Gurobi in comparison to greedy solutions deemed sensible. Moreover, the
poor results of Gurobi and Google OR-tools without warm-start in Table 2, whose runs fail
to return any feasible solution except for some 2-weeks instances, emphasize that a heuristic
algorithm and constraint-based optimization techniques form a worthwhile combination to
come to high-quality schedules in reasonable solving time.

5 Web interface

The presented scheduling methods are integrated as back-ends of a web application, whose
user interface is illustrated in Figure 4, supporting the analysis of production planning
scenarios at Kostwein Holding GmbH. To this end, production managers can upload customer
order lists including the workflows of manufacturing processes exported from the company’s
ERP system. A second file provides the daily machine capacities by calendar dates, and the
screenshot in Figure 4a indicates such input files in the upper left menu.

Before running solvers to compute schedules, the jobs can be filtered based on their
earliest start days or deadlines to restrict the scope of the considered problem instance. As
displayed in Figure 4a, our web interface allows for visually inspecting instance properties like
the length distribution of tasks to be scheduled and the accumulated workloads of machines,
which is helpful to spot critical resources and potential bottlenecks independently of specific
production schedules. For example, peak loads of the allocated machines may be rebalanced
by modifying the planned workflows and delegating tasks to alternative resources able to
process them, or extra shifts on weekends may be included to temporarily increase the
machine capacity and compensate the additional working hours by free days at another time.
Taking appropriate measures to rebalance high workloads requires specific human experience
about the involved manufacturing processes and can thus not be performed automatically in
a meaningful way, yet our web application aims to support decision making by facilitating
the exploration of possible scenarios like, e.g., the effects of increasing machine capacities.

Once a problem instance has been configured, the main functionality, however, consists
of picking back-end solvers and settings to perform the task scheduling. In particular, the
penalties ω and ω′ for delay days or delayed jobs, respectively, can be adjusted, solving time
limits be fixed, and for Gurobi also a duality gap below which the optimization is stopped can
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(a) Machine loads. (b) Visualization of greedy schedule.

Figure 4 User interface of the web application.

be given. As the experiments in Section 4 show, warm-starting Gurobi or Google OR-tools
with a greedy solution virtually always benefits their optimization performance, so that the
list of solver settings to launch one after the other, which can be compiled through the web
interface, should usually include the warm-start option in each of its entries.

While solvers are run, our interface provides feedback about the optimization progress,
including the objective function value of the best solution found so far and also the current
duality gap for Gurobi. When a run is finished, the best schedule found can be visualized by
a day chart, as exemplarily shown for a greedy solution in Figure 4b. Here the machines are
sorted in decreasing order of their workloads, recurring idle periods of two days represent
weekends, yet idleness of highly loaded machines on other days is presumably due to
shortcomings of our greedy strategy and can be improved by constraint-based optimization.
While the day charts give an overview of the distribution of machine workloads, the detailed
schedules with the days for performing each task are available as editable spreadsheets.

We are currently about to deploy the web application at Kostwein Holding GmbH on a
regular basis, with two main use cases in mind: strategic production scheduling for several
weeks, resembling the scopes of the 2-weeks and 4-weeks instance sets in Section 4, to be run
over night as well as reactive rescheduling during a day, where the number of jobs to consider
will be much smaller to give quick feedback and possibly even optimal short-term schedules.

6 Conclusion

Our paper presents an industrial production scheduling problem and proposes three dedicated
solving methods. We have devised a greedy algorithm to come up with a feasible custom
solution quickly. Constraint optimization by state-of-the-art solvers can benefit the production
scheduling process based on the provided ILP and CP models. Notably, we consult greedy
solutions to derive feasible ranges of days for performing production tasks, while the deadlines
given for jobs may be too tight for allocating all tasks within the available machine capacities.
The deadlines are used to assess the quality of schedules in terms of delay days and delayed
jobs, where production managers can then decide on measures to resolve resource bottlenecks.

Regarding the optimization performance, our experiments on problem instances of indus-
trial size and relevance indicate that provably optimal schedules for thousands of production
tasks are beyond reach. Nevertheless, the ILP solver Gurobi and the CP solver Google
OR-tools successfully exploit the hints by greedy solutions taken to warm-start them and
then manage to substantially improve the solution quality in reasonable solving time. While
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some care must be taken about the representation size of instances, where around 12000
tasks in our 4-weeks instance set constitute a limit that should better not be exceeded, our
empirical results demonstrate the clear advantages of combining a greedy algorithm with
constraint-based optimization techniques. The synergy of the greedy and constraint-based
methods thus proves to be a practically successful approach. Also taking into account that
customer orders and production schedules are frequently subject to revision in our application
scenario, longer scheduling horizons than considered in our experiments are of little practical
interest, so that the developed scheduling methods scale well to realistic problem sizes.

For applying our scheduling methods in industrial practice, we have developed a user-
friendly web interface through which production data and machine capacity profiles can be
uploaded and filtered to conveniently specify problem instances. The interface also allows
for configuring the penalties used within the objective function for assessing the quality
of solutions as well as parameterizing the solvers to run for the optimization of schedules.
Both instance properties and returned production schedules can be visually inspected for an
accumulated overview of their key features. Since appropriate measures to resolve resource
bottlenecks, such as increasing machine capacities, reallocating or delegating tasks, require
expert knowledge that is beyond the scope of production scheduling, the web interface is
meant to support production managers in exploring possible scenarios and making decisions.

We are currently in the trial phase of confronting our web application regularly with
the real production data at Kostwein Holding GmbH, where the evaluation is performed
by business experts who are not supposed to need in-depth understanding of the supplied
solving methods. The goal is to gather user experience and practical feedback whether the
provided functionality and performance are serviceable in the production scheduling process
and help to complete customer orders without running into resource bottlenecks. In this
respect, our scheduling methods and the encapsulating web application contribute prototypes
for experimentation and the further refinement of requirements, where a few immediately
compelling directions of future work are discussed in the remainder of this paper.

6.1 Future work
There are a number of opportunities to improve the performance and extend the applicability
of the presented scheduling methods. The first consideration is that our greedy algorithm is
still ad hoc and based on limited experiments with a handful of heuristics. Arguably, the
instances of our scheduling problem are related to each other, as rescheduling with partially
overlapping jobs is frequently needed in practice. Hence, there is a good chance that machine
learning methods can be trained to typical resource demands and availabilities, and thus
lead to better custom solutions than our greedy algorithm with manually selected heuristics.
As one particularly promising approach, we are investigating natural evolution strategies [26]
for training neural networks to provide the priority for greedy task scheduling. It is then an
interesting question we did not explore yet whether warm-starting ILP and CP solvers with
feasible solutions of better quality further improves their optimization performance.

Long production tasks that occupy a machine for several days are currently split into
coupled parts with fixed processing times, based on the assumption of uniform machine
capacities on availability days. This working hypothesis has been adopted to keep the initial
modeling approaches simple, yet sacrifices flexibility regarding the machine capacity profiles
that can be handled properly. Extending our constraint models to support a dynamic splitting
mechanism, where the number and processing times of coupled tasks adjust to the available
machine capacities, may allow for addressing richer application scenarios. For example, such
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features would enable an automatic allocation of extra shifts declared as optional in the
input, e.g., for switching between one- and two-shift operation modes based on demands,
which at the moment requires the separate inspection of eligible machine capacity profiles.

A third direction of future work for tuning the optimization performance and achieving
tighter (near-)optimality guarantees in terms of a small duality gap is to study worthwhile
problem decompositions. For example, we may narrow down constraint-based optimization
to tasks processed by highly loaded machines and use gap days as abstractions of skipped
tasks. The abstracted tasks would then be inserted again in a post-processing phase.
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We introduce the Oven Scheduling Problem (OSP), a new parallel batch scheduling problem that
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highly energy-intensive and thus the main objective, besides finishing jobs on time, is to minimize
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37:2 Minimizing Batch Processing Time for an Oven Scheduling Problem

1 Introduction

In the electronics industry, many components need to undergo a hardening process which is
performed in specialised heat treatment ovens. As running these ovens is a highly energy-
intensive task, it is advantageous to group multiple jobs that produce compatible components
into batches for simultaneous processing. However, creating an efficient oven schedule is a
complex task as several cost objectives related to oven processing time, job tardiness, setup
costs and setup times need to be minimized. Furthermore, a multitude of constraints that
impose restrictions on the availability, capacity, and eligibility of ovens have to be considered.
Due to the inherent complexity of the problem and the large number of jobs that usually
have to be batched in real-life scheduling scenarios, efficient automated solution methods are
thus needed to find optimized schedules.

Over the last three decades, a wealth of scientific papers investigated batch scheduling
problems. Several early problem variants using single machine and parallel machine settings
were categorized in [19] and shown to be NP-hard; a more recent literature review can be
found in [15]. Batch scheduling problems share the common goal that jobs are processed
simultaneously in batches in order to increase efficiency. Besides this common goal, a variety
of different problems with unique constraints and solution objectives arise from different
applications in the chemical, aeronautical, electronic and steel-producing industry where
batch processing machines can appear in the form of autoclaves [13], ovens [12] or kilns [25].

For example, a just-in-time batch scheduling problem that aims to minimize tardiness
and earliness objectives has been recently investigated in [18]. Another recent study [25]
introduced a batch scheduling problem from the steel industry that includes setup times,
release times, as well as due date constraints. Furthermore, a complex two-phase batch
scheduling problem from the composites manufacturing industry has been solved with the
use of CP and hybrid techniques [20].

Exact methods used for finding optimal schedules on batch processing machines involve
dynamic programming [2] for the simplest variants as well as CP- and mixed integer pro-
gramming (MIP) models. CP-models have e.g. been proposed in [13] and in [10], where
both publications consider batch scheduling on a single machine with non-identical job sizes
and due dates but without release dates. A novel arc-flow based CP-model for minimizing
makespan on parallel batch processing machines was recently proposed in [21]. Branch-
and-Bound [1] and Branch-and-Price [17] methods have been investigated as well. As the
majority of batch scheduling problems are N P-hard, exact methods are often not capable of
solving large instances within a reasonable time-limit and thus (meta-)heuristic techniques are
designed in addition. These range from GRASP approaches [6] and variable neighbourhood
search [3], over genetic algorithms [14, 5], ant colony optimization [4] and particle swarm
optimization [26] to simulated annealing [7].

In this paper, we introduce the Oven Scheduling Problem (OSP), which is a new real-life
batch scheduling problem from the area of electronic component manufacturing. The OSP
defines a unique combination of cumulative batch processing time, tardiness, setup cost,
and setup time objectives that needs to be minimized. To the best of our knowledge, this
objective has not been studied previously in batch scheduling problems. Furthermore, we
take special requirements of the manufacturing industry into account. Thus, the problem
considers specialized constraints concerning the availability of ovens as well as constraints
regarding oven capacity, oven eligibility and job compatibility.
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The main contributions of this paper are:
We introduce and formally specify a new real-life batch scheduling problem.
We propose solver independent CP- and ILP-models that can be utilized with state-of-
the-art solver technology to provide an exact solution approach. In addition we provide
on OPL-model for CP Optimizer using interval variables.
To generate a large instance set, we introduce an innovative multi-parameter random
instance generation procedure.
We provide a construction heuristic that can be used to quickly obtain feasible solutions.
All our solution methods are extensively evaluated through a series of benchmark experi-
ments, including the evaluation of several search strategies and a warm-start approach.
For a sample of 80 benchmark instances, we obtain optimal results for 37 instances, and
provide upper bounds on the objective for all instances.

In the following, we first provide a description of the OSP (Section 2) before we introduce
the CP model (Section 3). Then we present alternative models and search strategies
(Section 4). Afterwards, we introduce a random instance generator and the construction
heuristic (Section 5). Finally, we present and discuss experimental results (Section 6).

2 Description of the Oven Scheduling Problem (OSP)

The OSP consists in creating a feasible assignment of jobs to batches and in finding an
optimal schedule of these batches on a set of ovens, which we refer to as machines in the
remainder of the paper.

Jobs that are assigned to the same batch need to have the same attribute; in the context
of heat treatment this can be thought of as the temperature at which components need to
be processed. Moreover, a batch cannot start before the release date of any job assigned to
this batch. The batch processing time may not be shorter than the minimal processing time
of any assigned job and must not be longer then any job’s maximal processing time, as this
could damage the produced components. Every job can only be assigned to a set of eligible
machines and machines are further only available during machine-dependent availability
intervals. Moreover, machines have a maximal capacity, which may not be exceeded by the
cumulative size of jobs in a single batch. When determining the start and processing times
of batches, setup times between consecutive batches must also be taken into account. Setup
times depend on the ordered pair of attributes of the jobs in the respective batches and
are independent of the machine assignments. In the context of heat treatment, this can be
thought of as the time required to switch from one temperature to another.

The main objective of the OSP is to minimize the cumulative batch processing time, total
setup times and setup costs, as well as the number of tardy jobs. As the minimization of
job tardiness usually has the highest priority in practice, the tardiness objective is weighted
higher than the other objectives.

In practice the cumulative batch processing time should be minimized as the cost of
running an oven depends merely on the processing time of the entire oven batch and not
on the number of jobs within a batch. Therefore, running an oven containing a single small
order incurs the same costs as running the oven filled to its maximal capacity.

Furthermore, we note that setup costs and setup times are not necessarily correlated. In
fact, cooling down an oven from a high to a low temperature might not incur any (energy)
costs, but still might require a certain amount of processing time. Setup costs can also
capture costs related to personnel involved in the setup operation.

CP 2021
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Using the three-field notation introduced by Graham et. al. [8], the OSP can be classified
as P̃ |rj , d̄j , maxtj , bi, STsd,b, SCsd,b, Ej , Avm|obj, where Ej stands for eligible machines and
Avm for availability of machines. A more formal description of the problem constraints and
the objective function obj is given in Section 3.

As shown by Uzsoy [22], minimizing makespan on a single batch processing machine is
an N P-hard problem. It follows that the OSP is N P-hard as well, as minimizing makespan
on a single batch processing machine can easily be expressed within an instance of the OSP.

2.1 Instance parameters of the OSP
An instance of the OSP consists of a set M = {1, . . . , k} of machines, a set J = {1, . . . , n} of
jobs and a set A = {1, . . . , a} of attributes as well as the length l ∈ N of the scheduling horizon.
Every machine m ∈ M has a maximum capacity cm and machine availability is further
specified in the form of time intervals [as(m, i), ae(m, i)] ⊆ [0, l] where as(m, i) denotes the
start- and ae(m, i) the endtime of the i-th interval on machine m. W.l.o.g. we assume that
every machine has the same number of availability intervals and denote this number by I

where some of these intervals might be empty (i.e. as(m, i) = ae(m, i)). Moreover, availability
intervals have to be sorted in increasing order (i.e. as(m, i) ≤ ae(m, i) ≤ as(m, i + 1)] for all
i ≤ I − 1).

Every job j ∈ J is specified by the following list of properties:
A set of eligible machines Ej ⊆ M.
An earliest start time (or release time) etj ∈ N with 0 ≤ etj < l.
A latest end time (or due date) ltj ∈ N with etj < ltj ≤ l.
A minimal processing time mintj ∈ N with minT ≤ mintj ≤ maxT , where minT > 0 is
the overall minimum and maxT ≤ l is the overall maximum processing time.
A maximal processing time maxtj ∈ N with mintj ≤ maxtj ≤ maxT .
A size sj ∈ N.
An attribute aj ∈ {1, . . . , a}.

Moreover, an (a×a)-matrix of setup times st = (st(ai, aj))1≤ai,aj≤a and an (a×a)-matrix
of setup costs sc = (sc(ai, aj))1≤ai,aj≤a are given to denote the setup times (resp. costs)
incurred between a batch using attribute ai and a subsequent batch using attribute aj . Setup
times (resp. costs) are integers in the range [0, maxST ] (resp. [0, maxSC ]), where maxST ≤ l

(resp. maxSC ∈ N) denotes the maximal setup time (resp. maximal setup cost). Note that
these matrices are not necessarily symmetric.

2.2 Example instance with six jobs
Consider the following example for an OSP instance consisting of six jobs, two attributes, two
machines and a scheduling horizon of length l = 15. The instance parameters are summarized
in the following tables and matrices:

Machine M1 M2

cm 100 150
Availability
intervals [as, ae]

[0,6]
[8,14]

[2,10]
[11, 14]

st =
(

1 2
3 1

)
sc =

(
0 20
10 0

)

Job j 1 2 3 4 5 6
Ej M1 M1 M1 M1

M2 M2 M2 M2

etj 2 0 0 3 0 2
ltj 10 10 20 20 20
mintj 3 3 3 5 5 5
maxtj 3 5 5 8 8 10
sj 40 60 30 50 50 50
aj 2 2 1 1 1 1
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Machine 1

Job 3
a3= 1

Job 2
a2= 2

Job 1
a1= 2 setup

t=0 t=8 t=15

Job 4
a4 = 1

Job 5
a5 = 1

Job 6
a6= 1

t=0 t=10 t=15

Machine 2

Figure 1 An optimal solution to the OSP for a small example problem.

An optimal2 solution of this instance consists of three batches and is visualised in Figure 1.
In this visualisation, the dark grey areas correspond to time intervals for which the machine
is not available, the gray rectangle before the second batch on machine 1 is the setup time
between the first and second batch and the dashed lines represent the machine capacities.

3 CP-model for the OSP

In this section we provide a formal definition of the OSP that will also serve as CP-model.
We first explain how batches are modeled and afterwards define decision variables, objective
function, and the set of constraints.

In the worst case we need as many batches as there are jobs; we thus define the set of
potential batches as B = {B1,1, . . . , B1,n, . . . , Bk,1, . . . , Bk,n} to model up to n batches for
machines 1 to k. In order to break symmetries in the model, we further enforce that batches
are sorted in ascending order of their start times and empty batches are scheduled at the
end. That is, Bm,b+1 is the batch following immediately after batch Bm,b on machine m for
b ≤ n − 1. Clearly, at most n of the k · n potential batches will actually be used and the rest
will remain empty.

3.1 Variables

We define the following decision variables:
Machine assigned to job: Mj ∈ M ∀j ∈ J
Batch number assigned to job:3 Bj ∈ [n] ∀j ∈ J
Start times of batches: Sm,b ∈ [0, l] ⊂ N ∀m ∈ M ∀b ∈ [n]
Processing times of batches: Pm,b ∈ [0, maxT ] ⊂ N ∀m ∈ M ∀b ∈ [n]

Note that Mj and Bj determine to which batch job j is assigned (B(Mj),(Bj)).
We additionally define the following auxiliary variables:

Attribute of batch: Am,b ∈ [a] ∀m ∈ M ∀b ∈ [n]
Availability interval for batch: Im,b ∈ [I] ∀m ∈ M ∀b ∈ [n]
Number of batches per machine: bm ∈ [n] ∀m ∈ M

2 This solution is optimal with respect to weights α = 4, β = γ = 1 and δ = 100 as defined in Section 3.2.
3 Throughout the paper, we write [n] for the interval of integers {1, . . . , n}.
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3.2 Objective function
The objective function consists of four components: the cumulative batch processing time
across all machines p, the number of tardy jobs t, the cumulative setup times st and the
cumulative setup costs sc:

p =
∑

m∈M,1≤b≤n

Pm,b t =
∣∣{j ∈ J : SMj ,Bj + PMj ,Bj > ltj

}∣∣
st =

∑
m∈M

1≤b≤bm−1

st(Am,b, Am,b+1) sc =
∑

m∈M
1≤b≤bm−1

sc(Am,b, Am,b+1) (1)

Normalization of cost components. In practice it is important to define an objective
function that is highly flexible and configurable. We thus decided in consultation with
our industrial partner to define the objective function as a linear combination of the four
components. Therefore, the components p, st, sc and t need to be normalized to p̃, s̃t, s̃c

and t̃ ∈ [0, 1]:

p̃ = p

avgt · n
with avgt =

⌈∑
j∈J mintj

n

⌉
t̃ = t

n

s̃t = st

max(maxST , 1) · n
s̃c = sc

max(maxSC , 1) · n

(2)

In the worst case, every batch processes a single job. In this case the total batch processing
time is n times the average job processing time avgt. The setup times and costs are bounded
by the maximum setup time resp. cost multiplied with the number of jobs.4 We take the
maximum of 1 and maxST resp. maxSC since it is possible that maxST = 0 or maxSC = 0.
The number of tardy jobs is clearly bounded by the total number of jobs.

Finally, the objective function obj is a linear combination of the four normalized compo-
nents:

obj = (α · p̃ + β · s̃t + γ · s̃c + δ · t̃)/(α + β + γ + δ) ∈ [0, 1] ⊂ R (3)

where the weights α, β, γ and δ take integer values. Together with our industrial partner,
we chose the default values to be α = 4, β = 1, γ = 1, and δ = 100, which captures the
requirements of typical practical scheduling applications.

Integer-valued objective. As some state-of-the-art CP solvers can only handle integer
domains, we propose an alternative objective function obj′, where we additionally multiply
p̃, s̃t, s̃c, and t̃ by the number of jobs and the least common multiple of avgt, maxST and
maxSC :

obj′ = C · n · (α + β + γ + δ) · obj ∈ N

= α · C

avgt
· p + β · C

max(maxST , 1) · st + γ · C

max(maxSC , 1) · sc + δ · C · t, (4)

where C = lcm(avgt, max(maxST , 1), max(maxSC , 1)).

Preliminary experiments using the MIP solver Gurobi showed that using obj and obj′ both
lead to similar results. We therefore used only obj′ in our final experimental evaluation.

4 Actually, st ≤ (n − 1) · maxST and sc ≤ (n − 1) · maxSC since no setup is necessary before the first
batch. However, we want to keep the least common multiple of the denominators in equation (2) small
in favor of the definition of obj′.



M.-L. Lackner, C. Mrkvicka, N. Musliu, D. Walkiewicz, and F. Winter 37:7

3.3 Constraints
In what follows, we formally define the constraints of the OSP using a high-level CP modeling
notation. Most of these constraints can directly be handled by CP solvers, however we
implicitly make use of constraint reification to express conditional sums and additionally use
the maximum global constraint. Furthermore, we implicitly utilize the element constraint to
use variables as array indices.

Jobs may not start before their earliest start time: SMj ,Bj
≥ etj ∀j ∈ J .

Batch processing times must lie between the minimal and maximal processing time of all
assigned jobs:

Pm,b = max(mintj : j ∈ J with Bj = b ∧ Mj = m) ∀m ∈ M, b ∈ [bm]
PMj ,Bj

≤ maxtj ∀j ∈ J

Batches on the same machine may not overlap and setup times must be considered
between consecutive batches:

Sm,b + Pm,b + st(Am,b,Am,b+1) ≤ Sm,b+1 ∀b ∈ [bm − 1],

Batches and the preceding setup times must lie entirely within one machine availability
interval. In practice an interval for which a machine is unavailable can also represent a
period for which the personnel required for the setup and running of ovens is unavailable.
Therefore, setup times also need to fall completely within the associated availability
interval. This is modeled with auxiliary variables Im,b which encode in which availability
interval batch Bm,b lies:

Im,b = max(i ∈ [I] : Sm,b ≥ as(m, i)) ∀m ∈ M∀b ∈ [b]
Sm,b + Pm,b ≤ ae(m, Im,b) ∀m ∈ M∀b ∈ [bm]
Sm,b − st(Am,b−1,Am,b) ≥ as(m, Im,b) ∀m ∈ M, ∀b ∈ {2, . . . , bm}.

Total batch size must be less than machine capacity:∑
j∈J :Mj=m∧Bj=b

sj ≤ cm ∀m ∈ M with bm > 0, ∀b ∈ [bm]

Jobs in one batch must have the same attribute, which we model with auxiliary variables
Am,b to set the attribute of a batch: AMj ,Bj = aj ∀j ∈ J .

The assigned machine must be eligible for a job: Mj ∈ Ej ∀j ∈ J .

Set the number of batches per machine variables: bMj ≥ Bj ∀j ∈ J
Set variables for empty batches (i.e. batches Bm,b with b > bm):

Sm,b = l Pm,b = 0 Am,b = 1 Im,b = I ∀m ∈ M, bm < b ≤ n

4 Alternative models and search strategies

4.1 ILP-model for the OSP
We propose a ILP-formulation, where batches are modeled similarly as in the CP-model
(Bm,b with m ∈ M, b ∈ [n]), but we use a different set of decision variables: Binary variables
Xm,b,j encode whether job j is assigned to batch Bm,b (Xm,b,j = 1 ⇔ (Bj = b ∧ Mj = m)),
and integer variables Sm,b and Pm,b encode the start and processing times of batches.
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To handle empty batches, we define an additional attribute with value 0 and extend the
matrices of setup times s̄t and setup costs s̄c so that no costs occur when transitioning from
an arbitrary batch to an empty batch: s̄t(ai, aj) = s̄c(ai, aj) = 0 if ai = 0 or aj=0. Moreover,
we add a machine availability interval [l, l] of length 0 to the list of availability intervals so
that empty batches can be scheduled for this interval (the maximum number of intervals per
machine therefore becomes I + 1). We then model the problem as follows:5

Min. obj’ = α̃ · p + β̃ · st + γ̃ · sc + δ̃ · t, where (5)

p =
∑

m∈M
1≤b≤n

Pm,b, t =
∑

j∈J ,m∈M
1≤b≤n

Tm,b,j ,

st =
∑

m∈M
1≤b≤n−1

stm,b, sc =
∑

m∈M
1≤b≤n−1

scm,b,

s.t.
∑

m∈M,1≤b≤n
Xm,b,j = 1 ∀j (6)∑

m∈Ej ,1≤b≤n
Xm,b,j = 1 ∀j (7)

Sm,b ≥ etj · Xm,b,j ∀m, ∀b, ∀j (8)
mintj · Xm,b,j ≤ Pm,b ∧
Pm,b ≤ maxtj · Xm,b,j + maxT · (1 − Xm,b,j) ∀m, ∀b, ∀j (9)
Sm,b+1 ≥ Sm,b + Pm,b + stm,b ∀m, ∀b ≤ n − 1 (10)∑

j∈J
sj · Xm,b,j ≤ cm ∀m, ∀b (11)

aj · Xm,b,j ≤ Am,b ∧
Am,b ≤ aj · Xm,b,j + a · (1 − Xm,b,j) ∀m, ∀b, ∀j (12)
as(m, i) · Im,b,i ≤ Sm,b ∧
Sm,b ≤ ae(m, i) · Im,b,i + l · (1 − Im,b,i) ∀m, ∀b, ∀i (13)∑

1≤i≤I+1
Im,b,i = 1 ∀m, ∀b (14)

as(m, i) · Im,b,i ≤ Sm,b − stm,b−1 ∀m, ∀b ≥ 2, ∀i (15)
s.t.Sm,b + Pm,b ≤ ae(m, i) · Im,b,i + l · (1 − Im,b,i) ∀m, ∀b, ∀i (16)

Tm,b,j ≤ Xm,b,j ∀j, ∀m, ∀b (17)
Sm,b + Pm,b ≤ (Xm,b,j − Tm,b,j) · (ltj − l) + l ∀j, ∀m, ∀b (18)
Sm,b + Pm,b + (1 − Tm,b,j) · (l + 1) > ltj ∀j, ∀m, ∀b (19)∑

j∈J
Xm,b,j ≥ 1 − Em,b ∀m, ∀b (20)

Xm,b,j ≤ 1 − Em,b ∀m, ∀b, ∀j (21)
Sm,b ≥ l · Em,b ∀m, ∀b (22)
Pm,b <= maxT · (1 − Em,b) ∀m, ∀b (23)
Em,b <= Im,b,I+1 ∀m, ∀b (24)
Am,b <= a · (1 − Em,b) ∀m, ∀b (25)
Em,b <= Em,b+1 ∀m, ∀b ≤ n − 1 (26)

5 If not stated otherwise, ∀m is short for ∀m ∈ M, ∀b for ∀b ∈ [1, n], ∀i for ∀i ∈ [1, I + 1] and ∀j for
∀j ∈ J .
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stm,b = st(Am,b, Am,b+1) ∀m, ∀b ≤ n − 1 (27)
scm,b = sc(Am,b, Am,b+1) ∀m, ∀b ≤ n − 1 (28)
Xm,b,j ∈ {0, 1}, Sm,b ∈ [0, l], Pm,b ∈ [0, maxT ],
Am,b ∈ [0, a] , Im,b,i ∈ {0, 1}, Em,b ∈ {0, 1},

stm,b ∈ [0, maxST ], scm,b ∈ [0, maxSC ] ∀m, ∀b, ∀j (29)

The weights of the objective function (5) are as described in equation (4) in Section 3.2.
Constraint (6) ensures that every job is assigned to exactly one batch. Moreover, constraint (7)
ensures that jobs can only be assigned to eligible machines. Constraint (8) specifies that a
batch may not start before the earliest start of any job in the batch. The processing time of a
batch is constrained by equations (9). Constraint (10) imposes additional restrictions on the
starting times and ensures that the correct setup times are considered between consecutive
batches. Constraint (11) ensures that the machine capacities are not exceeded for any
batch.Constraint (12) ensures that jobs in the same batch have the same attribute. The
binary auxiliary variables Im,b,i in constraint (13) encode whether batch Bm,b is scheduled
within the i-th availability interval [as(m, i), ae(m, i)] of machine m. Therefore, if Im,b,i = 1,
it must hold that as(m, i) ≤ Sm,b ≤ ae(m, i). The redundant constraint (14) ensures that
every batch is scheduled within exactly one availability interval. Constraints (15) and (16)
ensure that the entire processing time of batch Bm,b as well as the preceding setup times
stm,b−1 (see (27)) lie within a single availability interval.

The binary auxiliary variables Tj,m,b encode whether job j in batch Bm,b finishes after its
latest end date and is used to calculate the number of tardy jobs t. Constraint (17) ensures
that Tj,m,b = 1 is only possible if job j is assigned to batch Bm,b. If Tj,m,b = 0, job j must
finish before ltj (Constraint (18)) and if Tj,m,b = 1, it must hold that Sm,b + Pm,b > ltj

(Constraint (19)). The binary variables Em,b in equations (20) to (26) encode whether batch
Bm,b is empty or not. Constraints (20) and (21) ensure that Em,b = 1 iff no job is scheduled
for batch Bm,b. The constraints (22) to (24) set the start times, processing times, availability
intervals, and attributes for empty batches. Moreover, in order to break symmetries, the list
of batches (Bm,b)1≤b≤n per machine m ∈ M is sorted so that all non-empty batches appear
first (constraint (26)). Constraint (27) defines the setup times stm,b and (28) the setup costs
scm,b between consecutive batches on the same machine. Finally, equation (29) defines the
domains of all decision and helper variables.

We further investigated an alternative CP model using the Optimization Programming
Language (OPL) [23]. More details for this alternative model can be found in Appendix A.

4.2 Programmed Search Strategies

We evaluated the performance of our models with the use of several programmed search
strategies, which are based on variable- and value selection heuristics. For our experiments, we
implemented the search strategies directly in the MiniZinc language using search annotations.
Variable Ordering: In our implemented search strategies we select at first an auxiliary

variable that captures the total number of batches. For this variable we always use a
minimum value first heuristic to encourage the solver to look for low cost solutions early
in the search. Afterwards, we sequentially select decision variables related to a job by
assigning the associated batch, machine, batch start time, and batch duration for the job
(i.e., B1, M1, S(M1,B1), P(M1,B1), . . . , B|J |, M|J |, S(M|J |,B|J |), P(M|J |,B|J |)).
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Variable Selection Heuristics: We use three different variable selection strategies on the set
of decision variables that are related to job assignments: input order (select variables
based on the specified order), smallest (select variables that have the smallest values in
their domain first, break ties by the specified order), and first fail (select variables that
have the smallest domains first, break ties by the specified order).

Value Selection Heuristics: We experimented with two different value selection heuristics
for the set of variables which is related to job assignments: min (the smallest value from
a variable domain is assigned first), and split (the variable domain is bisected to first
exclude the upper half of the domain).

Evaluated Search Strategies: Using the previously defined heuristics we evaluated 8 different
programmed search strategies:
1. default: Use the solver’s default search strategy.
2. search1 : Assign number of batches first, then continue with the solver’s default strategy.
3. search2 : Assign number of batches first, then continue with input order and min value

selection on the job variables.
4. search3 : Assign number of batches first, then continue with smallest and min value

selection on the job variables.
5. search4 : Assign number of batches first, then continue with first fail and min value

selection on the job variables.
6. search5 : Assign number of batches first, then continue with input order and split value

selection on the job variables.
7. search6 : Assign number of batches first, then continue with smallest and split value

selection on the job variables.
8. search7 : Assign number of batches first, then continue with first fail and split value

selection on the job variables.

5 Random instance generator and construction heuristic

5.1 Construction of random instances
The random instance generator we propose is based on random instance generation procedures
for related problems from the literature [14, 24]. However, as the existing variants were
designed for batch scheduling problems which neither include machine eligibility constraints,
machine availability times nor setup costs and times, the random generation of the associated
instance parameters is a novel contribution of this paper. The list of parameters for this
instance generator is given in Table 1.

Jobs. The list of n jobs is generated as follows. First, for every job j, the minimal processing
time mintj is chosen using a discrete uniform distribution U(1, maxT ). For the maximum
processing time, there are two options: either there is no upper limit on the processing time
of jobs (max_time = false), in which case the maximum processing time is set to maxT

for all jobs. Or, if max_time = true, the maximum processing time for a job is chosen
using a discrete uniform distribution U(mintj , maxT ). Next, the earliest start and latest end
times are determined for every job. The earliest start time etj is chosen similarly as in [24]
according to a discrete uniform distribution U(0, ⌈ρ · Z⌉) where ρ ∈ [0, 1] and Z =

∑
mintj

is the total processing time of all jobs. If ρ = 0, all jobs are available right at the beginning
and as ρ grows, the jobs are released over a longer interval. The latest end time ltj is chosen
as in [14] according to ltj = etj + ⌊U(1, ϕ) · mintj⌋ where ϕ ≥ 1. If ϕ = 1, the latest end time
is equal to the sum of the earliest start time and the minimum processing time, meaning that
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Table 1 List of parameters of the random instance generator.

Name Description Values
Parameters relating to jobs
n number of jobs 10, 25, 50, 100
maxT overall maximum processing time 10, 100
max_time true if jobs have a max. processing time true, false
ρ determines spread of earliest start times 0.1, 0.5
ϕ determines time from earliest start to latest end of job 2, 5
σ determines number of eligible machines per job 0.2, 0.5
s maximum job size 5, 20
Parameters relating to attributes
a number of attributes 2, 5
s_time
= s_cost

type of setup-time matrix
type of setup-cost matrix

constant, arbitrary,
realistic, symmetric

Parameters relating to machines
k number of machines 2, 5
minC = s lower bound for max. machine capacity (=max. job size) 5, 20
maxC upper bound for maximum machine capacity 20, 100
τ lower bound for the fraction of time machines are available 0.25, 0.75
maxI max. number of availability intervals 5

all jobs must be processed immediately in order to finish on time. As ϕ grows, more time
is given for every job to be completed and tardy jobs are less likely. Regarding the set of
eligible machines for a job, one machine is chosen at random among all machines. Additional
machines are then added to this set with probability σ each. The size sj and attribute aj

of a job are both chosen at random between 1 and the maximum job size s or number of
attributes respectively.

Attributes. The setup times and setup costs matrices can be of four different types: Constant,
arbitrary, realistic and symmetric. For the type “constant”, setup times/costs are all equal to
a randomly chosen constant between 0 and ⌈maxT /4⌉. For the type “arbitrary”, every entry
is chosen independently at random between 1 and ⌈maxT /4⌉. For the type “realistic”, setup
times/costs between two batches of the same attribute are lower and are chosen independently
at random between 0 and ⌈maxT /8⌉, whereas setup times/costs between different attributes
are higher and are chosen between ⌈maxT /8⌉ + 1 and ⌈maxT /4⌉. For the type “symmetric”
a symmetric matrix is generated with random entries between 0 and ⌈maxT /4⌉.

Machines. The maximum machine capacity cm is randomly chosen between minC and
maxC where the lower bound minC is set to the maximum job size s to ensure that every
job fits into every machine. For the machine availability times, we first fix the length of the
scheduling horizon l. If we assume that every job is processed in a batch of its own and that
all jobs are processed on the same machine, the total runtime is at most equal to the sum of
all processing times Z plus n times the maximal setup time maxst. The parameter τ ∈ (0, 1]
is a lower bound for the fraction of time that every machine is available. Thus, if maxet is
the latest earliest start time, all jobs should – on average – be finished at time

l = maxet + ⌈(Z + n · maxst)/(τ)⌉
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which we use to set the length of the scheduling horizon. Note that if the latest end date of
a job is greater than this upper bound we simply use it instead. Now, for every one of the k

machines, we pick the number of availability intervals I randomly between 1 and maxI . Every
interval [starti, endi] should be long enough to accommodate at least a single job with minimal
processing time minT = min(mintj : j ∈ J ) (plus the necessary setup times). Thus, the
minimum distance between two interval start times starti and starti+1 is d = minT + maxst.
We first pick the start time start1 of the first interval: In order to guarantee that every
machine is available at least a fraction τ of the time, 0 ≤ start1 ≤ ⌊l · (1 − τ)⌋ must hold and
in order to leave enough time for all availability intervals, it has to hold start1 ≤ l − I · d.
Next, for the start times of the remaining intervals, we pick I − 1 random integers between
(start1 + d) and (l − d) that are at least d apart. Finally, we determine the end time endi of
the i-th interval:

endi = starti + max(d, ⌈U(τ, 1) · (starti+1 − starti)⌉)

5.2 Construction heuristic
We designed a simple construction heuristic that finds initial solutions for instances of our
problem The heuristic starts at time 0. At every time step, the list of currently available
machines and the list of remaining jobs that have already been released and can be processed
on one of the machines is generated. Among these jobs, the one with the earliest due date is
chosen and assigned to one of the machines if it fits into an availability interval. Once a job
is scheduled, the algorithm adds other jobs that are currently available to the same batch if
the job’s attributes and maximal processing time as well as the machine’s capacity allows so.
If no job can be scheduled, the time is increased by one and the above procedure is repeated
until the end of the scheduling horizon is reached or all jobs have been scheduled.

6 Experimental evaluation

Using our random instance generator, we created a large set of benchmark instances to
evaluate the performance of our proposed models. First, we executed the random generator
once for every possible configuration of the 15 parameter values specified in Table 1. Thereby
we produced 1024 instances for each of the 16 combinations of the parameters n, k and
a. Then we randomly selected 5 instances from every set of 1024 instances, creating a set
of 80 instances which we used throughout our experiments. This set thus consists of 20
instances each with 10 (instances 1-20), 20 (21-40), 50 (41-60) and 100 jobs (61-80). All
benchmark instances turn out to be satisfiable and solvable by the construction heuristic
described in Section 5.2. This reflects our real-life industrial application, for which feasible
solutions usually can be found heuristically and the main aim is to find cost-minimal schedules.
Furthermore, note that in the particular real-life application scheduling scenarios consisting
of roughly 50 jobs are considered to be the average use case.

We implemented both the CP- and ILP-model presented in Sections 3 and 4.1 using the
high-level constraint modeling language MiniZinc [16] and used recent versions of Chuffed,
OR-Tools, CP Optimizer and Gurobi. For Chuffed, OR-Tools and Gurobi, we used all 7 search
strategies described in Section 4.2 and compared them with the solvers default search strategy
(for CP Optimizer, search strategies are currently not supported by MiniZinc). For Chuffed,
we activated the free search parameter which allows the solver to interleave between the given
search strategy and its default search. Furthermore, we investigated a warm-start approach
with Gurobi (for the other solvers, warm-start is currently not supported by MiniZinc): the
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construction heuristic described in Section 5.2 was used to find an initial solution which
was then provided to the model. Finally, the OPL-model presented in Section A was run
using CP Optimizer in IBM ILOG CPLEX Studio. This results in a total of 53 different
combinations of models, solvers and search strategies per instance; the time limit for every
one of these combinations was set to one hour per instance. Experiments were run on single
cores, using a computing cluster with 10 identical nodes, each having 24 cores, an Intel(R)
Xeon(R) CPU E5–2650 v4 @ 2.20GHz and 252 GB RAM.

In the following we summarize our findings.6 Table 2 provides an overview of the final
results produced on the 80 benchmark instances with all evaluated methods. Based on initial
experiments with different search strategies we selected the following search strategies solver
pairings in the final experiments: chuffed-cp with search3, chuffed-ilp with search2, ortools-cp
with search6, ortools-ilp with search2, and for all other solvers we used the default search
strategy. The first column in each row denotes the evaluated solver and model. From left to
right, columns 2–5 display: the number of solved instances, the number of instances where
overall best cost results could be achieved, the number of obtained optimal solutions and the
number of optimality proofs. Column 6 shows the number of fastest proofs. Columns 7–10
further present information for the 13 instances for which all solvers could deliver optimality
proofs: The average number of nodes visited in the search process, the average runtime, the
standard deviation of the number of visited nodes, and the standard deviation of the runtime.

Table 2 Overview of the final computational results based on 80 benchmark instances. Columns
marked with * are based on the subset of instances for which all solvers could prove optimality.

solver solved best opt proof fastest avg nd* avg rt* std nd* std rt*

chuffed-cp 66 25 24 14 1 3.87E+05 134.5 8.94E+05 240
chuffed-ilp 67 24 24 14 0 3.69E+05 259.8 7.75E+05 467.6
ortools-cp 72 20 20 20 0 n/a 47.2 n/a 48.5
ortools-ilp 78 20 20 20 0 n/a 12 n/a 11.9
cpopt-cp 64 37 32 14 0 3.25E+06 158.1 3.86E+06 201.1
cpopt-ilp 69 40 33 13 0 1.17E+07 487.9 1.20E+07 535.4
gurobi-cp 46 36 32 25 0 5.01E+02 30.7 4.43E+02 56.3
gurobi-ilp 65 52 37 32 23 4.74E+02 2.3 1.03E+03 3.1
gurobi-cp-ws 80 37 34 25 1 4.26E+02 26 4.04E+02 39.3
gurobi-ilp-ws 80 66 37 36 12 3.14E+02 2 5.07E+02 2.6
opl 51 22 22 19 0 1.05E+06 49.1 9.75E+05 57.3

Finding solutions. The warm-start approach for Gurobi finds solutions for all 80 instances.
Even without warm-start, ortools-ilp was capable of finding solutions for 78 instances (72 for
ortools-cp), followed by cpopt-ilp (69 instances) and chuffed-ilp (67 instances). Regarding
the quality of found solutions, the best results were achieved by gurobi-ilp-ws (66 best
results), followed by gurobi-ilp (52 best results). With cpopt-ilp and cpopt-cp as well as
gurobi-cp-ws and gurobi-cp, best results could be achieved for roughly half of the instance set.

6 The entire benchmark set as well as the detailed experimental results and the MiniZinc code are publicly
available at https://cdlab-artis.dbai.tuwien.ac.at/papers/ovenscheduling/.
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Figure 2 Comparison of proof times.

Finding optimal solutions. Using all evaluated methods, optimal solutions could be found
for 37 instances: all instances with 10 jobs, 14 instances with 20 jobs, 2 with 50 jobs and
one with 100 jobs. Most optimality proofs were provided by Gurobi (36 proofs with the
ILP-model), followed by OR-Tools (20 proofs) and OPL (19 proofs). Even though cpopt-ilp
(cpopt-cp) could only provide 13 (14) optimality proofs, it did find 33 (32) optimal solutions;
chuffed-cp (chuffed-ilp) provided 14 optimality proofs and could find 24 optimal solutions.
Figure 2 takes a closer look at the 13 instances for which all evaluated methods provided
optimal solutions within the runtime limit (instances 1–7, 9, 10, 12, 15, 17 and 19) and
compares the relative proof times for these instances. To calculate the relative proof time
for an instance, we divide the absolute proof time by the overall fastest absolute proof time
for that instance. Gurobi and OR-Tools deliver fastest proofs and outperform Chuffed and
CP Optimizer; the OPL model lies in between. Moreover, it can be noted that Gurobi and
OR-Tools perform best with the ILP-model, whereas Chuffed and CP Optimizer can provide
faster proofs with the CP model.

Optimality gap. Figure 3 visualizes the overall smallest optimality gap per instance. That
is, if s(I) is the objective value of the overall best solution found (i.e., the minimal solution
cost) and b(I) is the best (i.e. maximal) dual bound found by Gurobi for instance I, the
optimality gap is given by g(I) = 1 − b(I)/s(I). The optimality gap generally increases with
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Figure 3 Overall smallest optimality gap per instance.

the number of jobs per instance: while the dual bounds are tight for all instances with 10
jobs and for most instances with 20 jobs, this is no longer the case for instances with 50 or
100 jobs. However, the size of the optimality gap is not purely determined by the number
of jobs; there are 15 instances with 50 jobs or more for which the optimality gap is less than 1%.
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Search strategies. The results of the comparison of search strategies for chuffed-cp, chuffed-
ilp, ortools-cp and ortools-ilp can be found in Table 3. The first column in each row denotes
the evaluated search strategy and the following columns contain the respective numbers
of solved instances, best solution results and optimality proofs achieved by each search
strategy in comparison to all other search strategies with the same solver. We can see that

Table 3 Comparison of 8 search strategies for CP- and ILP-models with Chuffed and OR-Tools.

search chuffed-cp chuffed-ilp ortools-cp ortools-ilp
strategy solved best proof solved best proof solved best proof solved best proof

default 49 22 10 41 20 10 38 26 20 21 20 20
search1 64 27 14 64 22 14 37 27 20 25 22 20
search2 64 32 14 67 25 14 71 27 19 78 31 20
search3 66 29 14 64 25 13 71 33 20 78 31 20
search4 65 30 14 64 28 13 72 30 19 78 31 20
search5 65 30 14 67 24 14 70 28 19 78 31 20
search6 64 26 14 66 26 14 72 34 20 78 31 20
search7 65 32 14 65 24 14 71 31 19 78 31 20

using search strategies could greatly improve the number of solved instances for all four
compared methods. The improvement was most significant for ortools-ilp, which could solve
only 21 instances with the default strategy and 78 instances with search strategies 2–7 (all
instances except 77 and 80). For Chuffed, all search strategies had a comparable impact on
the number of solved instances. The number of best solutions found (in comparison to the
other search/model configurations with the same solver) could be improved as well for all four
methods; again, the most notable improvement was for ortools-ilp and search strategies 2–7
(20 vs. 31 best solutions). For Chuffed, the number of provided optimality proofs could also
be improved using the suggested search strategies. Experiments were also run for gurobi-ilp
and gurobi-cp with all search strategies, but no significant differences could be observed for
this solver.

Warm-start with Gurobi. The construction heuristic could find feasible solutions for all 80
instances within few seconds. Warm-starting Gurobi with these initial solutions obtained
bounds for all instances. Figure 4 allows a comparison of the solution quality per instance
for the construction heuristic, gurobi-ilp and gurobi-ilp-ws. The heuristic solution could be
improved by gurobi-ilp-ws for all 80 instances, thus providing 15 more results than gurobi-ilp.
For 12 instances for which gurobi-ilp had previously found solutions, warm-starting could
improve the solution quality. For 6 instances warm-starting led to a lower solution quality.
Concerning optimality proofs, gurobi-ilp-ws was slightly worse than gurobi-ilp (32 vs. 36
proofs). To sum up, even though warm-starting found solutions that were better than those
found by the heuristic, using this approach was not always advantageous.

7 Conclusion

In this paper, we introduced and formally defined the Oven Scheduling Problem and provide
new instances for this problem. We propose CP- and ILP-models and investigate various
search strategies. Using our models as well as a warm-start approach, we were able to find
feasible solutions for all 80 benchmark instances. Provably optimal solutions could be found
for nearly half of the instance set and for 50 of the 80 instances, the best optimality gap is
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Figure 4 Solution quality per instance using the construction heuristic, gurobi-ilp without warm-
start and gurobi-ilp-ws with the heuristically constructed solution for warm-start.

less than 1%. Overall, the best results could be achieved with Gurobi and OR-Tools for the
ILP-model. Varying the search strategy had a major impact on the performance of the CP
solvers Chuffed and Gurobi. To further improve the solution quality for large instances, we
plan to develop meta-heuristic strategies based on local search or large neighborhood search.
Moreover, in order to explain which parameters cause instances to be hard, an in-depth
instance space analysis could be conducted.
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A Alternative CP model using OPL

In addition to the solver independent models presented in sections 3 and 4.1, we developed
an alternative CP model for IBM ILOG CPLEX Studio, since CP Optimizer is particularly
well suited for scheduling problems [11]. This model is written using the Optimization
Programming Language (OPL) [23] and makes use of interval variables for batches and
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setup times between batches. It is based on the ILP model described in Section 4.1.7 In
the following, we briefly describe the decision variables and constraints that differ from the
ILP model;8 for an introduction to the used CP Optimizer concepts see [9]. We use optional
interval variables for batches:

interval Bm,b optional ⊆ [0, l] size ∈ [minT , maxT ] intensity avm ∀m ∈ M ∀b ∈ [n].

Batches are optional since not all k × n batches will actually be used: Depending on whether
any jobs are assigned to a batch or not, the batch interval variable will be present or absent.
The intensity function avm encodes the machine availability times and is modeled using
intensity step functions; avm(t) = 100 if machine m is available at time t and avm(t) = 0
otherwise. Setup times between batches are also modelled using optional interval variables:

interval stm,b optional ⊆ [0, l] size ∈ [0, maxST ] intensity avm ∀m ∈ M ∀b ∈ [n − 1].

Besides these interval variables, we use the same decision variables as in Section 4.1: Xm,b,j ∈
0, 1 to encode whether job j is assigned to batch Bm,b, Am,b ∈ [0, a] for the attribute of
batch Bm,b and scm,b for setup costs.

The following constraints are used for the batch and setup time interval variables:
presenceOf ensures that a batch is present iff some job is assigned to it. Similarly, setup
times are present iff the preceding and following batch are present.
endBeforeStart is used to enforce the order of batches and setup times on the same
machine and endAtStart is used to schedule setup times exactly before the following
batch.
startOf restricts the start time of batches to be after the earliest start date of any
assigned job and lengthOf is used to enforce that batch processing times lie between the
minimal and maximal processing time for every assigned job
noOverlap is used as a redundant constraint to ensure that batches on the same machine
do not overlap
forbidExtent is used to guarantee that batches and setup times are scheduled entirely
within one machine availability interval: whenever Bm,b or stm,b is present, it cannot
overlap a point t where avm(t) = 0.

7 We based the OPL model on our ILP model as it turned out that using CP Optimizer as solver via
MiniZinc delivers particularly good results with the ILP model, see the results in Section 6.

8 The full model will be made available on our website once this paper has been accepted for publication.
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1 Introduction

The Maximum satisfiability problem (MaxSAT) is an optimization version of a well-studied
and canonical NP-Complete problem, the satisfiability problem (SAT). Although SAT and
MaxSAT share many aspects, solving MaxSAT is much harder than solving SAT in practice.
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Indeed, since several clauses can be falsified in an optimal MaxSAT solution, some fundamental
SAT techniques such as unit propagation cannot be used in MaxSAT as they are used in
SAT. Despite this difficulty, huge efforts made by researchers make it possible nowadays to
solve many interesting real-world and academic NP-hard optimization problems encoded as
MaxSAT instances [11, 26]. For this reason, MaxSAT has attracted increasing interest from
the academy and industry in recent years.

As for many NP-hard problems, algorithms for MaxSAT are divided into two categories:
exact algorithms, which return optimal solutions and prove their optimality; and heuristic
algorithms, which quickly find solutions of good quality without guaranteeing their optimality.
This paper will focus on exact algorithms for (unweighted) MaxSAT.

We roughly distinguish two types of exact algorithms for MaxSAT: branch-and-bound
(BnB) algorithms [26], which directly tackle MaxSAT with a bounding procedure, but
without unit propagation and clause learning; and SAT-based algorithms [11], which transform
MaxSAT into a sequence of SAT instances and call a CDCL (Conflict-Driven Clause Learning)
SAT solver to solve them. The performance of SAT-based MaxSAT algorithms is usually
much better than BnB MaxSAT solvers in solving many real-world NP-hard optimization
problems, because they indirectly exploit clause learning via the SAT solver. Unfortunately,
it is hard for a BnB solver to exploit clause learning. In a CDCL SAT solver, a backtracking
happens only when a clause is falsified, from which a sequence of resolution steps is performed
to learn a clause explaining the backtracking. However, a BnB MaxSAT solver also need to
backtrack when it computes a lower bound equal to the upper bound. In this case, no clause
is explicitly falsified, making it hard to learn a clause. Probably because of this difficulty,
there has been no advance allowing to significantly speed up BnB MaxSAT solvers in recent
years, as illustrated by their absence in the annual MaxSAT Evaluation since 2017.

In this paper, we propose an original approach that allows a BnB MaxSAT solver to learn
a clause when it computes a lower bound equal to the upper bound, together with a new
bounding procedure, because the one in current BnB MaxSAT solvers is not adequate for large
instances. This approach is implemented in a new BnB MaxSAT solver, called MaxCDCL,
that combines the new bounding procedure and clause learning. The experimental results
show that MaxCDCL is ranked among the top 5 solvers of the 15 solvers that participated
in the 2020 MaxSAT Evaluation, solving a number of instances that other solvers cannot
solve. Furthermore, MaxCDCL, when combined with the best existing solvers, solves the
highest number of instances of the MaxSAT Evaluations.

Combining clause learning and BnB, as clause learning itself, belongs to the general
framework consisting in explaining a failure in the search to avoid the same failure in
the future. In other fields such as Pseudo-Boolean Optimization (PBO), there are also
works in this framework (e.g. [17]). The general framework is not hard to understand.
However, making it effective for solving a particular problem such as SAT or MaxSAT is quite
challenging, because this requires a deep understanding of the problem and the related solving
techniques. So, one important contribution of our work is that we found a configuration and
an efficient implementation of this configuration allowing to make the combination of clause
learning and BnB effective for MaxSAT, as presented in this paper.

More importantly, our results refute a prevailing opinion in the field stating that, although
BnB is a powerful technique that has successfully been used to solve many combinatorial
optimization problems, it is not so useful for MaxSAT. Indeed, as the first BnB MaxSAT
solver successfully exploiting clause learning, MaxCDCL opens promising research directions.

This paper is organized as follows: Section 2 presents the preliminaries. Section 3 reviews
state-of-the-art MaxSAT solvers. Section 4 describes MaxCDCL. Section 5 empirically
evaluates and analyzes MaxCDCL. Section 6 concludes.
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2 Preliminaries

A propositional variable x can take values 0 or 1 (false or true). A literal is a variable x or
its negation ¬x. A clause is a disjunction of k literals l1 ∨ · · · ∨ lk. A propositional formula
in Conjunctive Normal Form (CNF) is a conjunction (or a set) of m clauses c1, . . . , cm. An
assignment of truth values to the propositional variables satisfies a literal x if x = 1, and
satisfies a literal ¬x if x = 0. A literal x or ¬x is assigned if x is assigned a value, otherwise
it is free. An assignment is complete if all the variables are assigned a value, otherwise it is
partial. A (partial) assignment is usually represented by a (sub)set of satisfied literals. A
clause is satisfied if at least one of its literals is satisfied. A CNF is satisfied if all its clauses
are satisfied. The Boolean satisfiability (SAT) problem for a CNF ϕ is to determine whether
there exists an assignment that satisfies ϕ.

MaxSAT is the problem of finding an assignment that satisfies the maximum number of
clauses in a given multiset of clauses. In partial MaxSAT, there are hard and soft clauses,
and the goal is to satisfy all the hard clauses and the maximum number of soft clauses. In
weighted (partial) MaxSAT, each soft clause has a cost to pay if it is violated. This paper
will focus exclusively on unweighted (partial) MaxSAT.

The state-of-the-art SAT solvers implement the CDCL algorithm. CDCL alternates a
search phase, where literals are assigned until either a solution or a conflict is found, and
a learning phase, which is executed after finding a conflict in order to learn a new clause.
Unit Propagation (UP) is the main inference rule applied during the search: If there is a unit
clause {l} in ϕ, literal l must be satisfied (i.e., set to 1). Then, any clause containing l is
removed from ϕ, and all the occurrences of ¬l in clauses of ϕ are (implicitly) removed. UP is
applied during the search until an empty clause (conflict) is found or no unit clause exists in
ϕ. If UP finishes without finding a conflict, a new literal is picked following a heuristic and
is set to 1 (we make a decision), and UP is applied again. If all the variables are assigned
without finding a conflict, ϕ is satisfiable. The decision level of an assigned literal is the
number of decisions made before being assigned. When a conflict is found, a conflict analysis
is performed on the implication graph to derive a new clause explaining the conflict.

Figure 1 shows an example of implication graph. It is a directed acyclic graph where each
node represents an assignment l@dl, where l is a literal set to 1 and dl is its decision level.
The negations of the literals of incoming edges of a node l@ld represent the reason (clause)
why UP has set l = 1. For instance, node x12@5 is propagated due to clause ¬x6 ∨¬x4 ∨ x12
(i.e., x6 ∧ x4 → x12), given that x4 and x6 have been set to 1. A node without incoming
edges represents a decision. All decisions are painted in grey, and the last one is dashed. A
conflicting clause is represented by incoming edges to □; in this example, clause ¬x3 ∨ ¬x35.
A Unique Implication Point (UIP) is a node of the implication graph that belongs to all
paths from the last decision to the conflict. Figure 1 contains three UIPs: the last decision
x4, and literals x13 and x25. The most used learning schema in CDCL SAT solvers is called
first UIP (1UIP), guided by the closest UIP to the conflict in the implication graph.

When a conflict is found in the decision level dl (i.e., dl decisions were made before the
conflict is found), a node in the decision level dl is said active if it is not the 1UIP but is in a
path from the 1UIP to the conflict. In other words, the active nodes are those nodes that
allow to reach the conflict from the 1UIP in the decision level dl. For example, in Figure 1, a
conflict is found in the decision level 5, and x3@5 and x35@5 are active nodes. The 1UIP
learning schema identifies, in each path from a node in a decision level lower than dl to an
active node, the last literal in the lower decision level. The new learnt clause is composed of
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x6@1

x4@5

x8@2

x12@5

¬x27@5
x13@5 x25@5

x5@3
x3@5

x35@5

x1@4 ¬x11@4

1UIP

Figure 1 Example of implication graph.

the negation of these literals and the 1UIP. For instance, in Figure 1, clause ¬x8 ∨x11 ∨¬x25
is learnt, because there are two paths from lower decision levels to an active node, in which
x8 and ¬x11 are the last literals in lower decision levels, respectively.

The learnt clause explains the conflict: when all its literals are falsified, unit propagation
reproduces the implication graph to derive the same conflict. So, adding the learnt clause
prevents the same conflict in the future search. After learning a clause, CDCL backtracks
to the second highest decision level of the learnt clause (level 4 in the above example).
Unsatisfiability is determined when a conflict is found at decision level 0.

3 Related Work

A major difference between MaxSAT and SAT solvers is that each clause must be satisfied in
a SAT solution while a soft clause can be falsified in an optimal MaxSAT solution, making
MaxSAT much harder to solve than SAT in practice. Despite this, the MaxSAT community
has made huge efforts to implement exact MaxSAT solvers with impressive performance
over the last decade [11, 26]. On the other hand, heuristic MaxSAT algorithms such as
SatLike [25] have also been proposed.

Roughly speaking, we find two main groups of exact MaxSAT solvers: branch-and-bound
(BnB) and SAT-based solvers. BnB MaxSAT solvers implement the branch-and-bound
scheme and incorporate a lookahead procedure that detects inconsistent subsets of soft
clauses by applying unit propagation and computes a lower bound [26]. They also apply some
inference rules at each node of the search tree. Representative BnB solvers are MaxSatz [30],
MiniMaxSat [20], Ahmaxsat [1, 14] and Akmaxsat [24]. Closely related to MaxSAT, we can
find BnB solvers for the Weighted Constraint Satisfaction Problem (WCSP). Recently, it was
presented a technique to improve BnB WCSP solving by avoiding branching on variables
which are unlikely to increase the lower bound [43].

SAT-based MaxSAT solvers proceed by reformulating the MaxSAT optimization problem
into a sequence of SAT decision problems [11]. These solvers could still be divided into
three subgroups: model-guided, core-guided and Minimum Hitting Sets (MHS-)guided.
Model-guided approaches reduce to SAT the problem of deciding whether there exists an
assignment for the MaxSAT instance with a cost less than or equal to a certain k, and
successively decrease k until an unsatisfiable SAT instance is found. Among such solvers
we find SAT4J-Maxsat [12], QMaxSat [23, 44], Open-WBO [37] or Pacose [40]. Core-guided
and MHS-guided approaches consider a MaxSAT instance as a SAT instance and call a
CDCL SAT solver to identify an unsatisfiable subset of soft clauses, called a core. Then, they
relax this core and solve the relaxed instance with a CDCL SAT solver to identify another
core, repeating this process until deriving a satisfiable instance. The difference between
them is that core-guided solvers relax a core using cardinality constraints, while MHS-guided
solvers remove one clause from each detected core so that the number of different clauses
removed from the cores is minimized by solving a minimum hitting set instance with an
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integer programming solver. The most representative core-guided solvers include msu1.2 [36],
WBO [35], Open-WBO [37], WPM1 [3], PM2 [5], WPM2 [4], WPM3 [6], Eva [39], RC2 [21],
and the most representative MHS-guided solvers include MHS [41] and MaxHS [8, 10, 15, 16].
Core-guided search has also been extended to constraint programming [19].

A common point of SAT-based MaxSAT solvers is that they indirectly exploit the clause
learning technique by repeatedly calling a CDCL SAT solver. Unfortunately, it is hard
for BnB solvers to exploit clause learning, which might explain their poor performance on
real-world optimization problems. We are aware of only one tentative in [2]: when the
number of falsified soft clauses reaches the upper bound, the falsification of these soft clauses
is analyzed to learn a clause. Nevertheless, no clause is learnt when the lookahead procedure
returns a lower bound equal to the upper bound, and the reported results are not competitive.

4 MaxCDCL: A BnB Algorithm Using CDCL for MaxSAT

This section first presents the general structure of MaxCDCL, and then the different com-
ponents of our approach implemented in MaxCDCL.

4.1 General Structure of MaxCDCL

We distinguish between hard and soft conflicts in the MaxSAT context. A hard conflict
occurs when the current partial assignment falsifies a hard clause. Given an upper bound
UB, a soft conflict occurs when the current partial assignment cannot be extended to a
complete one falsifying fewer than UB soft clauses. A CDCL SAT solver only considers
hard conflicts, learns a hard clause from each hard conflict and backtracks. A BnB CDCL
MaxSAT solver extends the CDCL SAT solver by also learning a hard clause from each
discovered soft conflict and backtracks. Algorithm 1 depicts such a BnB CDCL MaxSAT
solver called MaxCDCL.

Given a MaxSAT instance with a set of hard clauses and a set of soft clauses, MaxCDCL
works with H and S, where H contains the hard clauses and S contains a new literal y for
each soft clause sc after adding the hard clauses encoding y ↔ sc to H. We call such y

soft literal, because it represents a soft clause (i.e., a soft literal is satisfied if and only if
the corresponding soft clause is satisfied). To solve the MaxSAT instance, MaxCDCL is
repeatedly called with UB= 20, 21, 22, 23, . . . without exceeding |S| + 1 or UBf + 1 where
UBf is a feasible upper bound computed by a heuristic solver with a short cutoff. This
process stops when it obtains an assignment satisfying all clauses in H and falsifying fewer
than UB soft literals in S. After that, MaxCDCL is repeatedly called with UB set to the
number of falsified soft literals in the previous call, until no better solution can be found.

MaxCDCL is like a CDCL SAT solver except for two points. First, when UP does not
falsify any hard clause in the UPLA procedure, it calls, under certain condition, a lookahead
(LA) procedure to compute a lower bound |cores| of the number of soft literals that will be
falsified if the current partial assignment is extended. If a soft conflict is discovered, i.e., if
|falseS|+ |cores| ≥UB, it is analyzed to learn a clause for backtracking. Second, if no soft
conflict is discovered, but it is discovered that the falsification of any free soft literal y not
used in |cores| would result in a soft conflict, y is satisfied by a procedure called hardening.

Note that model-guided MaxSAT solvers also set a UB in their search. However, they do
not compute a lower bound to discover soft conflicts as MaxCDCL. Consequently, MaxCDCL
is able to backtrack much earlier than model-guided MaxSAT solvers for a given UB. See the
next subsection for details and illustrative examples.
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Algorithm 1 MaxCDCL(H, S,UB), a generic CDCL procedure with lookahead for
MaxSAT.

Input: H: a set of hard clauses, S: a set of soft literals, UB: an upper bound.
Output: |falseS|, where falseS is the set of falsified soft literals, if |falseS| <UB;

or UB otherwise
1 begin
2 while true do
3 currentLevel ← 0; /* start or restart search */
4 while true do
5 (cl, falseS, cores, reasons)← UPLA(H, S, UB, currentLevel);
6 if cl is a falsified hard clause or |falseS|+ |cores| ≥UB then
7 if currentLevel = 0 then
8 return UB;
9 else

10 newLearntClause← analyze(cl, falseS, reasons);
11 level← the second highest level in newLearntClause;
12 backtrackTo(level);
13 currentLevel ← level;

14 else
15 if all variables are assigned then
16 return |falseS|;
17 else if |falseS|+ |cores| = UB−1 then
18 hardening();
19 else if restart condition is satisfied then
20 backtrackTo(0);
21 break; /* restart */
22 else
23 currentLevel++;
24 H ← H ∪ {l} where l is a free literal selected using a heuristic;

4.2 Combining Lookahead and Clause Learning

A subset of soft literals Si = {y1, . . . , y|Si|} is inconsistent if they cannot be simultaneously
satisfied. This inconsistency can be represented by the hard clause ¬y1 ∨ · · · ∨ ¬y|Si|. Note
that |Si| can be 1. If the inconsistency is independent of any partial assignment, the subset
is called a global core. Otherwise, the inconsistency is implied by a subset of literals and
the inconsistent subset of soft literals is called a local core. The core-guided or MHS-guided
SAT-based MaxSAT solvers only detect global cores to relax them, while our approach
detects local cores, given a partial assignment, to discover a soft conflict.

▶ Example 1. Let H = {¬y1∨x1∨¬x2,¬x1∨¬x3∨¬x4, ¬y2∨x3,¬y3∨x5}, where y1, y2 and
y3 are soft literals. If no variable is assigned, all soft literals can be simultaneously satisfied.
So, no global core exists. However, if the current partial assignment is {x2 = 1, x4 = 1}, the
subset of soft literals {y1, y2} is a local core implied by the partial assignment. We write the
implication by H ∪ {x2, x4} → ¬y1 ∨ ¬y2.
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Proposition 2 provides the foundation of our approach in the general case.

▶ Proposition 2. Let H be a set of hard clauses, S = {y1, . . . , y|S|} be the set of all
soft literals, k be an integer, and Li = {li1, . . . , li|Li|} (1 ≤ i ≤ k) be a set of literals.
If, for every i (1 ≤ i ≤ k), H ∪ Li implies a local core Si = {zi1, . . . , zi|Si|} ⊂ S (i.e.,
H ∪ Li → ¬zi1 ∨ · · · ∨ ¬zi|Si|), and Si and Sj are disjoint for any j ̸= i such that 1 ≤ j ≤ k,
then every assignment that satisfies H ∪ {¬y1 + · · · + ¬y|S| < k} also satisfies the clause
¬l11 ∨ · · · ∨ ¬l1|L1| ∨ · · · ∨ ¬lk1 ∨ · · · ∨ ¬lk|Lk|.

Proof. It is easy to see that H ∪ L1 ∪ · · · ∪ Lk implies (¬z11 ∨ · · · ∨ ¬z1|S1|) ∧ · · · ∧ (¬zk1 ∨
· · · ∨ ¬zk|Sk|), meaning that H ∪ L1 ∪ · · · ∪ Lk falsifies the constraint ¬y1 + · · ·+ ¬y|S| < k,
because each clause ¬zi1∨· · ·∨¬zi|Si| implies at least one different falsified soft literal. Hence,
any assignment satisfying H ∪ {¬y1 + · · · + ¬y|S| < k} must falsify at least one literal in
L1∪· · ·∪Lk, and satisfy the clause ¬l11∨· · ·∨¬l1|L1|∨· · ·∨¬lk1∨· · ·∨¬lk|Lk|. Note that we
use “z” (instead “y”) to denote a soft literal in a local core to avoid complex subscripts. ◀

Given a partial assignment F of H, the application of Proposition 2 consists in first
detecting a local core Si and then identifying the smallest Li ⊂ F such that H ∪Li implies Si.
We call Li the reason of Si. If k is the current upper bound UB and k disjoint local cores are
detected, a soft conflict is discovered, and the clause ¬l11∨· · ·∨¬l1|L1|∨· · ·∨¬lk1∨· · ·∨¬lk|Lk|,
which is implied by H∪{¬y1+· · ·+¬y|S| < k} and is falsified by the current partial assignment,
can be considered by an implicit clause explaining the soft conflict. This clause can be further
analyzed using the 1UIP schema in line 10 of Algorithm 1 to learn a clause to be explicitly
added to H to prevent the same soft conflict in the future as in the hard conflict case.

The detection of a local core Si is implemented by using UP in a lookahead procedure as
in existing BnB MaxSAT solvers [27, 28, 29]. The advantage of this procedure is that Si is
minimal w.r.t. UP, in the sense that UP cannot detect any local core that is a proper subset
of Si under the same partial assignment [27], which is essential for our approach, because
MaxCDCL needs to learn clauses of good quality from the detected local cores. Recall that
BnB MaxSAT solvers detect disjoint local cores but do not explain them. When a soft
conflict is discovered, they simply backtrack without learning a hard clause from the soft
conflict, which is very different from MaxCDCL.

Concretely, MaxCDCL calls Algorithm 2 at decision level dl with a partial assignment F ,
under which the already falsified soft literals are stored in a set named falseS. The lookahead
procedure starts at line 5 in Algorithm 2 when no hard conflict is found, and terminates at
line 10 or line 24. This procedure proceeds in decision level dl+1 by maintaining a set of
detected local cores (cores). Every iteration of the loop (line 8) propagates a free soft literal
y not occurring in cores, until a clause h in H is falsified or a soft literal sl not occurring in
cores is falsified (line 13). These unit propagations construct an implication graph G. The
propagated free soft literals y1, y2, . . . in the loop can be seen as temporary assumptions at
decision level dl+1 that have no incoming edge in G.

Inspecting G, let z1, . . . , zb be the subset of literals y1, y2, . . . at level dl+1 and without
incoming edge, from which there is a path to h or to ¬sl. Then, {z1, . . . , zb} (resp.
{z1, . . . , zb, sl}) is a local core Si implied by the partial assignment F at decision level
dl. Based on G, we can also define Li as the set containing, from each path to h (resp. ¬sl),
the last literal assigned before level dl + 1. Clearly, H ∪ Li implies ¬z1 ∨ . . . ∨ ¬zb (resp.
¬z1 ∨ . . . ∨ ¬zb ∨ ¬sl).

Note that each already falsified soft literal y in falseS constitutes a local core Si={y} not
in cores, implied by H ∪ {¬y} (i.e. Li={¬y}). Therefore, when k = |falseS|+ |cores| = UB
in MaxCDCL, we have UB disjoint local cores. According to Proposition 2, ¬l11 ∨ · · · ∨
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Algorithm 2 UPLA(H, S, UB, dl), Unit propagation followed by lookahead.

Input: H: a set of hard clauses, S: a set of soft literals, UB: an upper bound, dl:
the current decision level.

Output: cl: a hard clause; falseS: the set of falsified soft literals; cores: a set of
disjoint local cores; reasons: a set of literals that are reasons of cores

1 begin
2 (cl, falseS)← UP(H);
3 if cl is a falsified hard clause or |falseS| ≥ UB or the condition to lookahead is

not satisfied then
4 return (cl, falseS, ∅, ∅);
5 H ′ ← H; F ← {¬l|l is falsified in H};
6 reasons← ∅; cores← ∅; S′ ← ∅;
7 Increase the decision level to dl + 1;
8 while true do
9 if all soft literals of S either are non-free or occur in cores then

10 return (cl, falseS, cores, reasons);
11 Let y be a free soft literal not occurring in cores;
12 H ← H ∪ {y}; S′ ← S′ ∪ {y};
13 (h, sl)← UPforLA(H) ;
14 if h is a falsified hard clause or sl a falsified soft literal not in cores then
15 if h is a falsified hard clause then
16 core← {l|l ∈ S′ and l has no incoming edge and

there is a path from l to h in the implication graph};
17 else
18 core← {sl} ∪ {l|l ∈ S′ and l has no incoming edge and

there is a path from l to ¬sl in the implication graph};
19 reason← {l|l ∈ F and there is a path from l to h or ¬sl

in the implication graph, and the literal next to l in the path is
of decision level dl + 1};

20 cores← cores ∪ {core};
21 reasons← reasons ∪ reason;
22 H ← H ′; S′ ← ∅; /*Cancel UP done by lookahead*/
23 if |cores|+ |falseS| ≥ UB then
24 return (cl, falseS, cores, reasons);

¬l1|L1| ∨ · · · ∨¬lk1 ∨¬lk2 ∨ · · · ∨¬lk|Lk| could be considered as an implicit clause in H , which
is falsified by the current partial assignment and is analyzed using the 1UIP schema in line 10
of Algorithm 1 to learn a clause as in the hard conflict case.

▶ Example 3. Let y1, . . . , y7 be soft literals, and let H be formed by

¬y1 ∨ y2 ∨ ¬x2 ¬y2 ∨ ¬x3 ∨ ¬x4 ¬y2 ∨ ¬y5 ∨ x6 ¬x1 ∨ x4 ¬y3 ∨ x3
¬x6 ∨ ¬x5 ∨ y6 ¬y6 ∨ ¬x2 ∨ x7 ¬x7 ∨ ¬y6 ¬y4 ∨ x8 ¬y7 ∨ x9

If no variable is assigned, all soft literals can be simultaneously satisfied. So, no global core
exists. Let the current partial assignment be {y7=0, x2=1, x1=1, x4=1, x5=1}, where x4 is
propagated due to ¬x1 ∨ x4, and the other literals have been decided. Hence falseS = {y7}
and the current decision level is 4. Let also UB=3. We show how Algorithm 2 detects cores

and reaches UB by propagating the free soft literals y1, . . . , y6, by means of Figure 2.
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Figure 2 Implication graphs involved in the detection of cores in Example 3. Grey nodes represent
decisions or assumptions, and dashed nodes represent assignments made in the lookahead process.

After propagating y1, y2 is satisfied and y3 is falsified. Hence sl=y3 is detected, the
implication graph in Figure 2A is obtained, looking at which core={y1, y3} will be identified
at line 18 with reason={x2, x4}, because there are paths from x2 and x4 to ¬y3, and the
next literals to x2 and x4 in the paths are from decision level 5.

Note that since y2 is not in cores, it can be used to detect new cores. After propagating
y2, y4, y5, the implication graph of Figure 2B is obtained, and a conflicting clause h={¬x7 ∨
¬y6} is detected. Then, core={y2, y5} is detected at line 16 with reason={x2, x5}.

Since |cores| + |falseS| = 2 + 1 = UB, a soft conflict is found at line 23, with
reasons={x2, x4, x5,¬y7}. According to Proposition 2, clause ¬x2 ∨ ¬x4 ∨ ¬x5 ∨ y7 is
implied by H ∪ {¬y1 + · · ·+ ¬y|S| < 3}, which is falsified at decision level 4, and hence can
be analysed with the 1UIP scheme at level 4 to learn a new clause and backtrack. Note that
a model-guided MaxSAT solver would not discover this soft conflict at this stage, because
UB=3 but only one soft literal is falsified.

Proposition 2 also provides the basis for hardening. If k = |falseS|+ |cores| = UB−1,
for each free soft literal z not in the k local cores, H ∪ {¬z} implies a new local core {z}.
The hardening procedure (line 18 in Algorithm 1) satisfies z with the reason z ∨ ¬l11 ∨
· · · ∨ ¬l1|L1| ∨ · · · ∨ ¬lk1 ∨ · · · ∨ ¬lk|Lk|. Note that this hardening satisfies a fundamental
requirement of CDCL SAT solvers: except the decision (i.e., branching) variables, the value
of every variable must be explicitly associated with a reason. In contrast, although existing
BnB MaxSAT solvers also implement hardening, no reason is associated with the hardening.

Let m = |H| + |S|. UP is in O(m) for detecting one local core. Since the lookahead
procedure detects at most UB cores, its whole complexity is in O(m×UB).

4.3 A Probing Strategy for Lookahead

Existing BnB MaxSAT solvers usually tackle random or crafted instances of limited size and
look ahead at each branch. However, such a treatment might be too costly and useless for
large instances. If the lower bound is not tight enough to prune the current branch, the time
spent to compute the lower bound is lost. When k = UB−|falseS|, the lookahead procedure
has to detect k disjoint local cores to be successful. Generally, the greater the value of k, the
lower the probability of lookahead to be successful.

MaxCDCL uses a probing strategy to determine if lookahead has to be applied at the
current branch. With probability p, where p is a parameter intuitively fixed to 0.01, lookahead
is applied for probing purpose. The mean avgp and the standard deviation devp of the
number of detected disjoint local cores in a successful probing lookahead are computed (not
shown here due to the lack of space) to select the branches where lookahead is applied.
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Inspired by the 68-95-99.7 rule in statistics, which says that the values within one (two,
three) standard deviation of the mean account for about 68% (95%, 99.7%) of a normal data
set, we reasonably assume that the number of cores detected in a successful lookahead is
probably lower than avgp + coef ∗ devp when coef = 3. So, lookahead is not applied at the
current branch when k > avgp + coef ∗ devp. However, since the probing may not get exact
information and the values may not follow a perfect normal distribution, coef is dynamically
adjusted to maintain the success rate of lookahead between lowRate and highRate, where
lowRate and highRate are parameters intuitively fixed to 0.6 and 0.75, respectively.

Concretely, coef is initialized to 2 for each UB. At each probing, if the success rate of
lookahead since the last probing is greater than highRate, it is increased by 0.1; and if it is
lower than lowRate, it is decreased by 0.1. There are no lower and upper bounds on coef .
When it is too low so that no lookahead is performed between two probings, it is reset to 2.

4.4 Soft literal ordering in lookahead
Existing BnB MaxSAT solvers such as MaxSatz usually propagate soft unit clauses in the
ordering these clauses become unit, or in their ordering in the input formula when detecting
disjoint cores [28]. MaxCDCL propagates first the soft literals in the cores detected in the
previous lookahead. We use this ordering for two intuitive reasons.

Before backtracking, a local core detected in the previous lookahead remains to be a core.
Re-detecting a previous local core allows to obtain a possibly smaller local core due to
additional assignments.
After backtracking, re-detecting local cores in the previous soft conflict may allow to
detect a new soft conflict sharing many local cores with the previous conflict. In this way,
the clauses learnt from consecutive soft conflicts allow to intensify the search, because
the clause learnt from a soft conflict is derived from the reasons of the detected cores.

The quality of a clause learnt from a soft conflict highly depends on the detected cores,
which in turn highly depends on the soft literal ordering. How to improve the quality of the
learnt clause by further improving the soft literal ordering definitely deserves future study.

4.5 Improving the VSIDS heuristic by lookahead
When there is no unit clause, a CDCL SAT solver chooses a free literal l using a decision
heuristic, satisfies l and then performs unit propagation. VSIDS [38] is one of the widely
used decision heuristics: it initializes the score of each variable to 0, and then at each conflict,
it increases the score of each variable in a path to the conflict in the implication graph
by var_inc, where var_inc is initialized to 1 and, after each conflict, it is divided by a
parameter usually set to 0.95 to give more importance to the next conflict. Note that VSIDS
is a heuristic based on lookback, because it is based on the conflicts in the past.

VSIDS is also used in MaxCDCL by increasing the score of a variable in a soft or hard
conflict as in a CDCL SAT solver, but is modified as follows by taking lookahead into account.
Every time the lookahead procedure detects a local core, the score of the variables encountered
when identifying the reason of the core (see Subsection 4.2) is increased by var_inc × γ,
where γ is a discount-rate parameter as in reinforcement learning, and is empirically fixed to
0.1. The intuition of this modification is the following. A soft conflict is derived when UB
local cores are detected. So a variable contributing to many local cores should be favoured to
reach a soft conflict as early as possible. However, a local core represents only a component
of a future possible soft conflict but not a soft conflict for sure. So the increase of the score
of a variable contributing to a core should be discounted by γ.
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4.6 Implementation of MaxCDCL
Since MaxCDCL can be considered as an extension of a CDCL SAT solver, it is implemented
on top of the CDCL SAT solver MapleCOMSPS_LRB [32], winner of the application track
of SAT competition 2016. We chose MapleCOMSPS_LRB because it was one of the best
SAT solvers with deterministic behavior when we started this work in 2017. Nevertheless,
some of the recent advances in SAT solving are incorporated, including1:

The approach from [31, 34] is applied to minimize the learnt clauses.
The clause size reduction with the all-UIP learning technique from [18] is applied to
reduce the clauses learnt from soft conflicts. This technique is particularly useful for
MaxCDCL, because a clause learnt from a soft conflict is usually longer than a clause
learnt from a hard conflict. The all-UIP technique allows to significantly reduce the size
of a clause learnt from a soft conflict.
The learnt clause management technique proposed in [22] is incorporated into MaxCDCL,
allowing more learnt clauses to be kept in the clause database.

In addition, let S = {y1, . . . , y|S|} be the set of all soft literals. When |S|× (UB−1) ≤ 104,
the sequential SAT encoding [42] of the cardinality constraint ¬y1 + ¬y2 + · · ·+ ¬y|S| <UB
is added to the input instance before starting the search. MaxCDCL alternates LRB phases
and VSIDS phases for its search as MapleCOMSPS_LRB, using the LRB heuristic and
the VSIDS heuristic modified as in subsection 4.5, respectively. Each phase is limited to a
number of unit propagations specified by the parameter phaseLength, which is initialized to
2× 107 and is doubled every cycle of LRB phase and VSIDS phase. In the VSIDS phase, the
glucose restart strategy [7] is used; in the LRB phase, the Luby restart strategy [33] is used.

We plan to implement MaxCDCL on top of Kissat [13], the winner of the SAT2020
competition, which might further improve its performance.

5 Experimental Evaluation

We report on an experimental investigation to assess the performance of MaxCDCL. We
ran all experiments with Intel Xeon CPUs E5-2680@2.40GHz under Linux with 32GB of
memory, using the following benchmark sets, unless otherwise stated:

MSE19∪20: The union of all the instances used in the complete unweighted track of the
MaxSAT Evaluations (MSE) 2019 and 2020, a total of 1000 distinct instances.
MC: A subset of the Master Collection of instances from the MaxSAT evaluations held until
2019 2. It contains 16080 unweighted (partial) MaxSAT instances, classified into 51 families
and 76 subfamilies. MC includes all the instances of the 63 subfamilies having 100 instances
or less, and the first 100 instances as they occur in the natural order in each of the remaining
13 subfamilies, considering a total of 3614 instances. This selection provides a simple,
deterministic and objective criterion that does not favor any solver; and the experiments can
be easily reproduced. MC contains 726 instances that also belong to MSE19∪20.

The cutoff time is one hour (3600s) per instance as in the MaxSAT Evaluation. For
MaxCDCL and its variants, this includes 60 seconds to find a feasible upper bound UBf

with SatLike (version 3.0). Note that MaxCDCL and its variants do not start the search

1 The source code of MaxCDCL is available at https://home.mis.u-picardie.fr/~cli/EnglishPage.
html

2 https://www.cs.toronto.edu/maxsat-lib/maxsat-instances/master-set/unweighted/
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Table 1 Comparison of MaxCDCL with its variants for MSE19∪20 (left) and MC (right).

#solv avg
MaxCDCL\LA 505 255s
MaxCDCL\harden 664 281s
MaxCDCLalwaysLA 681 249s
MaxCDCLioLA 704 268s
MaxCDCL\VSIDSbyLA 724 268s
MaxCDCL 734 256s

#solv avg
2183 194s
2878 194s
2962 193s
2963 168s
3003 165s
3022 156s

from UB=UBf , but from UB=20, then 21, 22, . . . , until a feasible solution is found or 2i >

UBf . In the latter case, UB is set to UBf + 1. Then, UB is gradually decreased until no
better solution can be found (see Section 4.1).

The experiments are presented as follows. Firstly, we analyse the impact of the components
implemented in MaxCDCL. Secondly, we compare the performance of MaxCDCL with that
of the top 5 solvers in MSE2020. Thirdly, we show the complementarity of MaxCDCL with
the top 5 solvers by comparing the number of instances solved using a portfolio solver with
and without MaxCDCL. Finally, we compare MaxCDCL with a state-of-the-art BnB solver.

5.1 MaxCDCL Components
Table 1 compares MaxCDCL with the following variants:

MaxCDCL\LA. MaxCDCL without lookahead, i.e. the condition to lookahead is never
satisfied in line 3 of Algorithm 2. Note that after finding a feasible UB, MaxCDCL\LA
performs linear SAT-UNSAT search as a model-guided SAT-based MaxSAT solver.

MaxCDCL\harden. MaxCDCL without hardening (i.e., lines 17 and 18 in Algorithm 1 are
removed).

MaxCDCLalwaysLA. MaxCDCL that looks ahead at every branch, i.e., the condition to
lookahead is always satisfied in line 3 of Algorithm 2.

MaxCDCLioLA. MaxCDCL that, when detecting cores in lookahead, always propagates the
soft literals in the ordering as the corresponding soft clauses occur in the input instance.

MaxCDCL\VSIDSbyLA. MaxCDCL that does not increase the VSIDS score of the variables
contributing to a local core detected in lookahead as described in Subsection 4.5.

In Table 1, columns “#solv” give the number of solved instances and columns “avg” give
the mean time in seconds (including the 60s used by SatLike) needed to solve these instances.
These results indicate that a careful configuration combining clause learning and BnB is
crucial for the performance of MaxCDCL, including: hardening based on local core detection
and clause learning, the selective and adaptive application of lookahead and the ordering to
propagate the soft literals when detecting local cores, because the absence of any of these
components makes a significant number of instances out of reach of MaxCDCL. Without
this configuration, MaxCDCL\LA solves 229 instances less than MaxCDCL in MES19∪20
and 839 instances less than MaxCDCL in MC. Note that although the hardening of a soft
literal requires a distinct learnt clause, it does not increase the total memory usage, because
it allows to avoid many learnt clauses by reducing search space.

Recall that the most fundamental feature of MaxCDCL is the clause learning from soft
conflicts. We computed the average length of a clause learnt from a soft (hard) conflict for
each solved instance by MaxCDCL in MSE19∪20, and found that the median average length
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Table 2 Results for MSE19∪20 (left) and MC (right) with top 5 solvers.

#solv avg #uniq #win
MaxHS 769 177s 11 36
EvalMaxSAT 759 129s 1 43
UWrMaxSAT 745 128s 3 42
RC2-B 728 164s 0 62
Open-WBO 695 157s 3 71
MaxCDCL 734 256s 16 –

#solv avg #uniq #win
3037 85.5s 26 116
3002 69.7s 4 147
2969 51.6s 7 141
2948 70.1s 1 173
2906 89.7s 4 190
3022 156s 67 –

of a clause learnt from a soft (hard) conflict is 23.67 (19.2) among the 734 instances solved in
the set. Note that the learnt clause length averaged across the 734 instances does not make
sense because it is biased by few instances with very long learnt clause length.

In addition, the comparison of MaxCDCL with MaxCDCL\VSIDSbyLA suggests that the
VSIDS heuristic might be improved by lookahead, indicating a promising research direction.

To complete the subsection, we mention the impact of two other components of MaxCDCL:
(1) the local search by SatLike in preprocessing to compute a feasible UB allows MaxCDCL
to solve 8 more instances in MSE19∪20; (2) the sequential cardinality constraint encoding is
applied to about the 20% of the instances in MSE19∪20 for at least one UB, helping solve
39 extra instances in MSE from highly symmetric problems such as drmx-at-most-k.

5.2 Comparison with the top 5 Solvers in MSE2020
A total of 15 solvers competed in the complete unweighted track of MSE2020 [9]. We consider
the top 5 solvers: MaxHS (mhs in short), which is MHS-guided; EvalMaxSAT (eval in short),
RC2-B (rc2 in short) and open-wbo-res-mergesat-v2 (Open-WBO or owbo in short), which
are core-guided; and UWrMaxSAT (uwr in short), which combines both core-guided and
model-guided solving. We executed the versions used in MSE2020 in all the experiments.

Table 2 shows the results for MSE19∪20 and MC, respectively. Column “#uniq” has the
number of instances that were only solved by the solver in the row. Column “#win” has the
number of instances solved by MaxCDCL but not by the solver in the row.

We observe that MaxCDCL solves more instances than two top 5 solvers in MSE19∪20
and four top 5 solvers in MC. More importantly, MaxCDCL solves a significant number of
instances that other solvers cannot solve. For example, MaxCDCL solves 116 instances in MC
that MaxHS does not solve. If we consider all the solvers together, there is also a significant
number of instances solved by MaxCDCL that no other solver is able to solve: 16 instances
in MSE19∪20 and 67 instances in MC that mainly come from the subfamilies MaxClique,
MaxCut and UAQ. These results show that the existing MaxSAT solvers, especially the
model-guided and core-guided ones, are able to solve similar kinds of instances. Nevertheless,
MaxCDCL has the potential to solve new kinds of instances that are not solvable with the
current MaxSAT techniques. It is important to note that MaxCDCL is far from being as
optimized as the other solvers, which are the result of a process of continuous improvements
since more than ten years.

5.3 Combining MaxCDCL with existing solvers
Given two deterministic solvers X and Y and a time limit T to solve an NP-hard problem
such as MaxSAT, the simplest way to try to solve more instances than X and Y alone within
the time limit T is to combine X and Y by running X within the time limit T/2, and then
Y from scratch within the remaining time T/2 if the instance is not solved by X.
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Table 3 Results for MSE19∪20 (left) and MC (right). The entry in cell (X, Y ) for X ̸= Y is the
number of instances solved by running solver X for 1800 seconds, and then solver Y from scratch
for 1800 seconds if the instance is not solved by X. The entry in cell (X, X) (in the diagonal in
grey) is the number of instances solved by running solver X for 1800 seconds. Column X in the last
row recalls the results of solver X with 3600 seconds. The best results are in bold.

m
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mhs 747 777 777 770 763 785
eval 777 745 760 751 760 786
uwr 777 760 730 745 746 774
rc2 770 751 745 713 745 778
owbo 763 760 746 745 675 746
mcdcl 785 786 774 778 746 711
3600s 769 759 745 728 695 734
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3009 3068 3073 3056 3049 3130
3068 2972 3019 2986 3013 3126
3073 3019 2951 3000 2998 3098
3056 2986 3000 2921 2981 3105
3049 3013 2998 2981 2865 3076

3130 3126 3098 3105 3076 2992
3037 3002 2969 2948 2906 3022

Table 3 shows the results of all possible pairwise combinations of the top 5 solvers and
MaxCDCL (mcdcl) in MSE2020 for T = 3600s. Each cell (X, Y ) for X ̸= Y contains the
number of instances solved by running solver X for 1800s and then solver Y from scratch
for 1800s in MSE19∪20 (left) and MC (right). Each cell (X, X) (in the diagonal in grey)
contains the number of instances solved by X in 1800s. Column X in the last row recalls the
results of X with 3600 seconds. Combining any of the top 5 solvers with MaxCDCL solves
more instances than this solver and MaxCDCL alone within 3600s, while this is not always
true when combining two top 5 solvers. For example, combining MaxHS and Open-WBO
solves 763 instances in MSE19∪20 within 3600s, while MaxHS alone solves 769 instances
within 3600s. This shows that MaxCDCL is more complementary with the top 5 solvers
than other solvers.

More importantly, MaxCDCL combined with the top 2 solvers, MaxHS and EvalMaxSAT,
solves the highest numbers (785 and 786) of instances in MSE19∪20. This result is significantly
better than that of MaxHS or EvalMaxSAT alone, and the best combination without
MaxCDCL solves only 777 instances. The results are even more striking in MC, where the
worst combination of MaxCDCL with a top 5 solver is better than any other combination not
including MaxCDCL, and combining MaxHS and MaxCDCL gives the best results, solving
93 instances more than the previous best result achieved by MaxHS alone, and 57 instances
more than the best combination without MaxCDCL.

Figure 3 shows cactus plots comparing the best two combinations of solvers with Max-
CDCL, the best two combinations without MaxCDCL, as well as the best two mono-solvers,
for MSE19∪20 (left) and MC (right). Other solvers and combinations are excluded for
readability reasons. For any time T (0 < T ≤ 3600s), a curve gives the number of instances
solved by a mono-solver or a combination of two solvers within T , where the number of
instances solved by a combination X-Y of solvers X and Y within T is the number of instances
solved by running X for T/2, and then Y for T/2. The solving time of a combination X-Y of
solvers X and Y for an instance is twice the minimum solving time among X and Y . This
simulates a parallel execution of X and Y by alternating them in small time periods. The
plots clearly show the advantage of combining an existing solver with MaxCDCL, allowing
to solve the highest number of instances within 3600s, and the advantage becomes greater as
the running time is increased.
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Figure 3 Cactus plots of the best two combinations with MaxCDCL (mcdcl in short), the best
two without MaxCDCL, and the best two mono-solvers for MSE19∪20 (left) and MC (right). For
each point (N, T ) in a curve for a mono-solver X, N is the number of instances solved by X in
T seconds; and for each point (N, T ) in a curve for a combination X-Y of solvers X and Y , N

is the number of instances solved by running X for T/2 seconds followed by running Y for T/2
seconds. The names of the solvers and combinations are listed in the order of the highest points of
the corresponding curves from left to right for readability.

Table 4 Results for MSE16 and MSE19∪20.

ahmaxsat MaxCDCL
#ins #solv avg #solv avg #win

M
SE

16

ms_ran 454 259 744s 27 1535s 0
ms_craf 402 230 33.0s 47 324s 0
ms_in 55 0 - 37 413s 37
pms_ran 210 209 148s 141 772s 0
pms_craf 678 369 242s 645 126s 276
pms_in 601 183 515s 512 178s 330

MSE19∪20 1000 270 422s 734 256s 481

5.4 Comparison with a BnB Solver
We compare MaxCDCL with ahmaxsat, which was the best BnB solver in the last MaxSAT
evaluation (MSE2016) in which BnB solvers competed. We use the MSE2016 instances of
the categories MaxSAT (ms) and partial MaxSAT (pms). Each category has random (ran),
crafted (craf), and industrial (in) instances. Thus, we consider a total of 6 families.

The results are shown in Table 4, where the number of instances for each family is given
in column “#ins”. We observe that ahmaxsat solves more random and non-partial crafted
instances. A learnt clause for these instances with randomness and limited size usually
contains most of the variables of the instances and is hardly useful. So, the higher use of
lower bounding methods and the lack of clause learning in ahmaxsat are adequate for them,
and the higher use of lower bounding methods (like in MaxCDCLalwaysLA) does not improve
MaxCDCL for them because of clause learning. However, ahmaxsat has poor performance
on other instances. Instead, MaxCDCL solves a much higher number of such instances.

6 Conclusion

We described MaxCDCL, a MaxSAT solver that combines, for the first time to the best of
our knowledge, branch and bound and clause learning. The main differences of MaxCDCL
with existing SAT-based MaxSAT solvers are the following:
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SAT-based MaxSAT solvers use a CDCL SAT solver as a black box and do not interfere
in the internal operations of the SAT solver when solving an instance, while MaxCDCL
itself can be considered a SAT solver extended to handle soft conflicts.
Both MaxCDCL and model-guided MaxSAT solvers have an upper bound UB−1 of
the number of soft clauses that can be falsified. The difference lies in how to exploit
this UB. Let falseS denote the set of already falsified soft clauses. On the one hand,
model-guided MaxSAT solvers call a SAT solver after encoding UB into CNF. If no hard
clause is falsified, the SAT solver backtracks only after |falseS| ≥ UB, because no clause
encoding UB is falsified if |falseS| < UB. On the other hand, MaxCDCL computes a
lower bound LB of the number of soft clauses that will be falsified (but not yet falsified),
and backtracks as soon as LB+|falseS| ≥ UB. Thus, MaxCDCL is able to backtrack
much earlier than model-guided MaxSAT solvers.
MaxCDCL, core-guided or MHS-guided MaxSAT solvers all identify cores. However, a
core-guided or MHS-guided MaxSAT solver only identifies global cores (i.e., the cores
that do not depend on any partial assignment) in order to relax them, while MaxCDCL
detects local cores by using UP under a partial assignment to derive a soft conflict for
learning a clause and backtracking early. Note that identifying a global core is NP-hard,
while detecting a local core by applying UP is polynomial.

The extensive experimentation conducted shows that MaxCDCL is ranked among the top
5 exact MaxSAT solvers in the 2020 MaxSAT evaluation. Furthermore, it solves a significant
number of instances that other solvers cannot solve, suggesting that combining branch and
bound and clause learning has the potential to solve new kinds of instances that are not
solvable with current MaxSAT techniques. More importantly, combining MaxCDCL with
the existing solvers allows to solve the highest number of MaxSAT instances.

Detailed analyses indicate that the performance of MaxCDCL comes from a careful
configuration combining clause learning and BnB, including hardening based on local core
detection and clause learning, the selective and adaptive application of lookahead, and the
ordering to propagate the soft literals when detecting local cores.

We believe that the proposed approach opens new and promising research directions,
including for example: (1) improving the quality of the clauses learnt from soft conflicts by
designing new soft literal orderings in lookahead; (2) exploiting the relationship of SAT and
MaxSAT for improving SAT and MaxSAT solving; (3) adapting the approach of MaxCDCL to
other problems such as pseudo-Boolean optimization and Max-CSP; (4) extending MaxCDCL
to weighted MaxSAT, in which each soft clause is weighted. In the extension of MaxCDCL
to weighted MaxSAT, each soft clause is represented by a weighted soft literal. A local core
detected by lookahead is weighted by the minimum soft literal weight it contains, and other
weights are split to be used in other core detections. When the total weight of all detected
local cores reaches UB, a soft conflict is discovered. The challenge here is that there can
be more local cores to detect than in the unweighted case. Thus, the clause learnt from a
soft conflict can be longer. Special strategies in clause and soft literal ordering should be
designed to learn shorter clauses from soft conflicts.
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1 Introduction

Given an undirected connected graph G = (V, E), a set D ⊆ V forming a connected subgraph
in G is called a connected dominating set (CDS) if each vertex in V either belongs to D or
is adjacent to at least one vertex in D. The minimum connected dominating set (MCDS)
problem is to find a CDS with the minimum size. MCDS is a well-known combinatorial
optimization problem with important applications [1, 14].

MCDS assumes that vertices are equally important. However, this assumption fails to
hold in many real world scenarios where each vertex is associated with various types of
weights. A specific application is to model heterogenous networks [22] where each vertex
generates different cost (e.g., energy consumption and communication delay). The paradigm
of handling such vertex weighted graph refers to an important generalization of MCDS, i.e.,
minimum weighted connected dominating set (MWCDS) problem, aiming to find a CDS with
the minimum total weight. The MWCDS is used to form a low-cost network backbone for
communication applications where the cost usually represents the power consumption rate
or corresponding security coefficient of backbones [27, 28]. Moreover, MWCDS has other
applications in biological networks [16] and generating pictorial storylines [23]

1.1 Related Work
MWCDS is a classic NP-hard problem, meaning that there are no polynomial-time algorithms
for the MWCDS problem, unless NP=P. Although MCDS is widely studied and many
specialized algorithms have already been proposed to solve MCDS on graphs with different
sizes, these MCDS algorithms [9, 18, 11, 13] cannot be directly used to deal with the MWCDS
problem because they fail to consider the weight information and structure characteristics.

Because of its NP-hardness, much of the research effort in the past decade has focused
on obtaining a good MWCDS solution within a reasonable time. In the literature, two types
of algorithms are mainly distinguished for MWCDS, i.e., approximation algorithms and
meta-heuristic algorithms. The approximation algorithms can find approximate solutions
with provable guaranteed approximation ratio, but they usually have poor performance in
practice, especially in massive graphs. Representative approximation algorithms for MWCDS
mainly used centralized methods [2, 29] or distributed methods [5, 21]. According to the
literature, the current best meta-heuristic algorithm for MWCDS is ACO-RVNS [3] based on
ant colony optimization and reduced variable neighborhood search.

1.2 Our Contributions
Previous MWCDS algorithms performed well for classic benchmarks, but they had poor
performance on massive graphs. In this paper, to further improve the performance of
MWCDS on both classic and massive graphs, we propose a nested local search framework
called NestedLS, including three phases, i.e., vertices swapping phase, tree reconstruction
phase and solution restart phase. Based on the framework, we design two novel ideas by
utilizing previous search information.

First, we propose the restart based smoothing mechanism (ReSmooth), which can be
viewed as a diversification method. In order to escape from a local optima, ReSmooth

restarts the algorithm by reconstructing a new solution during the solution restart phase.
During the reconstruction process, two kinds of previous search information (w.r.t, non-
dominated information and best solution information) are inherited to guide the algorithm
to the promising search space, resulting in a new inheriting scoring function, denoted as
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scoreinher. Moreover, after a few restart operations, the initial solution may converge. To
address this, we propose a smoothing mechanism based on the repeating rate of solution to
further diversify the search spaces.

The second and more important idea is the inner-layer local search method (InnerSearch).
Although an efficient tree-based connectivity maintenance method (TBC) proposed by Li [13]
used the spanning tree to maintain the candidate removal set, it cannot utilize search
information when constructing the spanning tree. In order to enlarge the candidate removal
set, the InnerSearch is applied to reconstruct the spanning tree by modelling it as a weighted
max-leaf spanning tree problem (WMST). Meanwhile, based on three novel intuitions of
WMST, the corresponding vertex selection rule is proposed to guide the InnerSearch to
construct the spanning tree and further improve it by a local search procedure.

These proposed ideas can be generally applied to other heuristic algorithms. Specifically,
InnerSearch is a general method for maintaining the connectivity constraint when dealing
with massive graphs, and ReSmooth provides a novel diversification scheme for restart-based
heuristic algorithms.

Extensive experiments are carried out to evaluate NestedLS on classic benchmarks and
massive graphs. Experimental results indicate that NestedLS outperforms other state-of-the-
art MWCDS heuristic algorithms on most instances, and confirm the effectiveness of two
novel ideas.

2 Preliminaries

Let G = (V, E, w) be a weighted graph where V is the set of vertices, E is the set of edges and
each vertex v ∈ V is associated with a positive weight w(v). For a vertex v, its neighborhood
is NG(v) = {u ∈ V |{u, v} ∈ E}, and its closed neighborhood is NG[v] = NG(v) ∪ {v}. The
degree of a vertex v, denoted as dG(v), is defined as |NG(v)|, and ∆G is the maximum
number of dG(v) for ∀v ∈ V . Given a vertex set S ⊆ V , NG(S) =

⋃
v∈S NG(v) \ S and

NG[S] =
⋃

v∈S NG[v] stands for the neighborhood and closed neighborhood of S, respectively.
G[S] = (VS , ES) is a subgraph in G induced by S such that VS = S and ES consists of all
the edges in E whose endpoints are in S. A weighted graph G is connected when it has at
least one vertex and there is a path between every pair of vertices.

▶ Definition 1. Given a weighted connected graph G, a vertex in G is an articulation vertex
iff removing it, together with the edges connected to it, disconnects the graph. The articulation
vertex set of G is denoted as art(G).

Given a vertex set D ⊆ V , a vertex v ∈ V is dominated by D if v ∈ NG[D], and is
non-dominated otherwise. We use D ⊆ V to denote a candidate solution and the weight
of D is w(D) =

∑
v∈D w(v). unDomG(D) = V \ NG[D] denotes a subset of vertices in

G non-dominated by D. If G[D] is connected and D dominates all vertices in V , D is a
connected dominating set (CDS). The minimum weighted connected dominating set problem
(MWCDS) is to find a CDS with the minimum total weight.

2.1 Review of Scoring Function for MWCDS
The frequency based scoring function scoref is recently proposed by Wang et al. [26]. Each
vertex v ∈ V has a property: frequency, denoted as freq[v]. It works as follows: 1) at first,
freq[v]=1 for ∀v ∈ V ; 2) at the end of each iteration of local search, freq[v]=freq[v] + 1 for
each non-dominated vertex. If u ∈ D, scoref (u)=−

∑
v∈C1(u) freq[v]/w(u), and otherwise

scoref (u)=
∑

v∈C2(u) freq[v]/w(u), where C1(u) is the set of dominated vertices that would
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become non-dominated by removing u from D and C2(u) is the set of non-dominated vertices
that would become dominated by adding u to D. Moreover, considering that age 2 is usually
used to break ties for diversification, the selection rule is described as follows.

Selection Rule: Select the added or removed vertex with the greatest scoref , breaking ties
by preferring the one with the greatest age.

2.2 Review of TBC
For combinatorial optimization problem with connectivity constraint, a key factor to the
performance is the connectivity maintenance methods, especially for massive graphs. To
tackle it, a tree-based connectivity maintenance called TBC method was proposed [13],
inspired by spanning trees. Given a candidate solution D, a spanning tree T of G[D] and
its corresponding leaf set LS(T ) are maintained during the search process. Each vertex
v ∈ LS(T ) is allowed to be removed from D, while all other vertices are forbidden to be
removed. Details for TBC can refer to [13].

3 The NestedLS Algorithm

In this section, we propose an algorithm for solving MWCDS called NestedLS.
The pseudo code of NestedLS is presented in Algorithm 1. On a top level, NestedLS

works as follows. After the initialization, a loop (lines 3–18) is executed until a given time
limit is reached, and the best solution is finally returned (line 19). Each iteration of the
loop consists of three phases, namely vertices swapping phase, tree reconstruction phase and
solution restart phase. At the first phase (lines 4–12), the candidate solution is updated
by swapping vertices. In the second phase (lines 13–14), the spanning tree is periodically
updated for diversification. During the third phase (lines 15–18), the candidate solution and
corresponding spanning tree are rebuilt if the algorithm falls into the local optima.

Before detailed description, we first introduce some notations and definitions. In
NestedLS, NoImproveStep denotes the number of consecutive iterations without improve-
ment. MaxNoImprove and TreeNoImprove denote the parameters for reconstructing the
solution and the spanning tree respectively. D, D∗ and Dlast denote the current candidate
solution, the best solution and the previous solution after last construction, respectively.
During the search process, two candidate selection subsets are maintained as follows.

(1) The candidate subset for addition is defined as candAdd(D) = NG(D) ∩
NG(unDomG(D)), where NG(D) contains vertices maintaining connectivity and
NG(unDomG(D)) is adjacent to the non-dominated vertex set. To avoid visiting previous
candidate solutions, we use the CC2 strategy [26] to further restrain candAdd(D).

(2) The candidate subset for removal is denoted as candRem(D). If |D| < κ, candRem(D) =
D \ art(G[D]) where art(G[D]) is calculated by Tarjan’s algorithm [10]. Otherwise, TBC
is adopted and candRem(D) = LS(T ). To overcome the cycling problem, the tabu
method [8] is applied to exclude those just added vertices from candRem(D) for the
next tt iterations. In our work, tt = 5 + rand(10) and κ = 100.

Now we describe the NestedLS algorithm in detail.

2 The age of a vertex v is the number of steps that have occurred since v last changed its state.
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Algorithm 1 The NestedLS algorithm.

Input: A weighted graph G = (V, E, w), the cutoff time
Output: The best obtained solution D∗

1 D := D∗ := Dlast := ReSmooth(∅, V );
2 T := InnerSearch(G[D]) and NoImproveStep := 1;
3 while timeElapse < cutoff do
4 for i := 1 to neighborSize do
5 choose vertex u ∈ candRem(D) using selection rule and D := D \ {u};
6 while |unDomG(D)| ̸= 0 and w(D) < w(D∗) do
7 choose vertex v ∈ candAdd(D) using selection rule and D := D ∪ {v};
8 if D is a feasible solution then
9 D∗ := D and NoImproveStep := 1;

10 else
11 freq[v] := freq[v] + 1, for ∀v ∈ unDomG(D);
12 NoImproveStep := NoImproveStep + 1;
13 if NoImproveStep%TreeNoImprove == 0 then
14 T := InnerSearch(G[D]);
15 if NoImproveStep > MaxNoImprove then
16 NoImproveStep := 1;
17 D := Dlast := ReSmooth(Dlast, D∗);
18 T := InnerSearch(G[D]);

19 return D∗;

In the beginning, D, D∗ and Dlast are initialized by the ReSmooth procedure (line 1)
which will be discussed in Section 4. The corresponding spanning tree T is built by a novel
inner-layer local search, which will be introduced in Section 5, and NoImproveStep is set to
1 (line 2).

In the vertices swapping phase, neighborSize vertices are first chosen from candRem(D)
using the selection rule. Then, vertices v ∈ candAdd(D) are added via the selection rule,
until there are no non-dominated vertices or w(D) ≥ w(D∗). During this process, the total
weight of current candidate solution stays below the best value.

Thus, after swapping vertices, if a feasible solution is obtained, indicating that a better
solution is found, then D∗ and NoImproveStep are updated (line 9). Otherwise, the
corresponding freq values and NoImproveStep are increased by one (lines 10–12).

In the tree reconstruction phase, if the condition is satisfied (line 13), then T will be
reconstructed accordingly (line 14).

In the solution restart phase, when NoImproveStep exceeds MaxNoImprove, meaning
that the algorithm falls into the local optima, NoImproveStep is reset and the candidate
solution D and Dlast are reconstructed (lines 16–17). Then, the spanning tree T is rebuilt
accordingly (line 18).

4 Restart Based Smoothing Mechanism

In the solution restart phase of NestedLS, an important component is called restart based
smoothing mechanism (ReSmooth), which restarts the algorithm by constructing a new
solution when falling into the local optima.
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4.1 Inheriting Scoring Function

In the solution restart phase, starting from an empty candidate set, vertices are iteratively
added to the candidate solution by some strategy, until its weight exceeds the best solution
or all vertices are dominated. During this phase, if a pure random procedure is applied to
generate an initial solution, the initial solution will fail to inherit previous search information.
This may make the algorithm deviate from the promising search space and thus degrade the
convergence rate of local search.

To hand this issue, two kinds of search information need to be considered.
The first information is the accumulated non-dominated information, represented by

scoref . The second essential information is “the high-quality solution”, from which the
vertices should be selected with higher priority than others. To make full use of the two
kinds of search information above, we define a novel scoring function called inheriting scoring
function, denoted as scoreinher as follows.

scoreinher(v) =
{

scoref (v) × β, v /∈ D∗ ∪ Dlast_best

scoref (v), v ∈ D∗ ∪ Dlast_best

In the above equation, “the high-quality solution” refers to D∗ and Dlast_best which denotes
the solution dominating most vertices since last solution restart phase. If all vertices are
dominated by Dlast_best, then Dlast_best is equal to D∗. Parameter β denotes the penalty
coefficient. Based on this scoring function, we propose the novel selection rule.
Inheriting-Based Selection Rule: Choose the vertex with the greatest scoreinher value,

breaking ties randomly.

4.2 Smoothing Mechanism

We observe that the initial candidate solution may converge after several solution restart
phases. The main reason is that freq values of some vertices accumulate to a large amount,
leading the algorithm to follow the previous search trajectory and then explore some recently
visited search spaces.

To avoid such phenomenon, freq should be smoothed when the initial solutions converge.
Thus, NestedLS employs a weight smoothing scheme which resembles SWT [4] in some
respect. First, we introduce the Jaccard index [12] to illustrate the repeating rate of solutions.

▶ Definition 2. The repeating rate between the initial solution of last restart Dlast and D is
defined by the Jaccard index: J(D, Dlast) = |D ∩ Dlast|/|D ∪ Dlast|.

When J(D, Dlast) exceeds a threshold MaxRepeat, indicating that the initial solutions
converge, the freq values of all vertices are smoothed as follows.

freq[v] = ρ · freq[v] + (1 − ρ) · freq, ∀v ∈ V

where freq is the average value of freq and ρ is the smoothing parameter. After smoothing
all freq values, score values will be updated accordingly. Experiments on classic benchmark
show that the average repeating rate without smoothing is on average 0.69 after calling
the ReSmooth 100 times, which confirms that without the smoothing method, the initial
candidate solution may converge.
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Algorithm 2 ReSmooth(Dlast,D∗).

Input: The solution after last construction Dlast, D∗

Output: A restart candidate solution D

1 choose a random node v ∈ V and D := {v};
2 while |unDomG(D)| ̸= 0 and w(D) < w(D∗) do
3 choose v ∈ candAdd(D) based on Inheriting-based Selection Rule and

D := D ∪ {v};
4 if J(D, Dlast) > MaxRepeat then
5 freq[v] = ρ · freq[v] + (1 − ρ) · freq, for ∀v ∈ V ;
6 return D;

4.3 The ReSmooth Algorithm
The ReSmooth is described in Algorithm 2. A random vertex is first added into the empty
candidate solution (line 1). Then, vertices are chosen to the candidate solution D based
on the inheriting-based selection rule, until all vertices are dominated, or the weight of D

exceeds that of the best solution ever (lines 2–3). The freq values are smoothed if the
repeating rate exceeds the threshold MaxRepeat (lines 4–5). Finally, the restart candidate
solution D is returned (line 6).

5 Inner-layer local search

In the tree reconstruction and solution restart phases when handling massive graphs, in order
to enlarge candRem, an important component called inner-layer local search InnerSearch

is proposed to rebuild a corresponding spanning tree. Also, it can be modelled as a weighted
max-leaf spanning tree problem, which is an interesting version of classic spanning tree
problem [7].

For current solution D, G[D]=(VD, ED) and T denote its subgraph and corresponding
spanning tree. LS(T ) is the leaf set of T , which serves as candRem(D), while TS(T ) =
D \ LS(T ) denotes the trunk set where vertices are forbidden to be removed during the
vertices swapping phase.

5.1 Motivation for Inner-layer Local Search
Before constructing a new spanning tree, we first formally define the weighted max-leaf
spanning tree problem (WMST).

▶ Definition 3. Given a graph G = (V, E, w), the weighted max-leaf spanning tree problem is
to find a spanning tree of G with the maximum total weight of leaf set, that is, the minimum
total weight of trunk set.

For any spanning tree T of solution D, its trunk set TS(T ) is connected and connects
to all leaf vertices in LS(T ). Thus, WMST can be converted to find a MWCDS of G[D],
serving as the trunk set TS(T ). We propose an InnerSearch method to construct a CDS
as TS(T ), and then further improve its quality by the local search procedure. To define
the scoring function for obtaining TS(T ), we propose three intuitions whose importance is
displayed in descending order.
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(1) The first intuition is that there should be more candidate removal vertices to enlarge
the search space. Moreover, vertices with large weight value should be more likely to be
removed to lower w(D). During the vertices swapping phase, CandRem(D) = LS(T )
when solving massive graphs. In order to implement the above intuition, there should
be more leaf vertices, and vertices with large weight values should be maintained in
LS(T ). Specifically, we employ a simplified version of scoref as the main scoring function
of solving WMST, denoted as score

′

f with respect to TS(T ). Given a graph G[D], if
u ∈ TS(T ), score

′

f (u) = −|C1(u)|/w(u) and otherwise score
′

f (u) = |C2(u)|/w(u), where
C1(u) and C2(u) have already been defined in Section 2.2.

(2) Our second intuition is that vertices which intensively degrade the quality of D if deleted,
should be forbidden to be removed, and thus they should be excluded from leaf set. To
achieve it, the direct way is that the scoref of leaf vertices should be higher, while the
scoref of trunk vertices should be lower. This means that vertices with lower scoref are
preferred to be left in TS(T ).

(3) The third intuition is that the leaf set should differ from previous ones, so that the
algorithm can have more different removing options. To achieve this, vertices with higher
exchanging frequency of operations (i.e., to be moved during the vertices swapping),
denoted as scoree, are preferred to be left in the trunk set. Since those vertices are
frequently set as leaf vertices since last construction, leaving them in the trunk set can
make the leaf set differ from the previous one.

It is important to notice that during the InnerSearch procedure, the score
′

f values will
be dynamically updated, while the corresponding scoref values keep unchanged because the
corresponding scoref is based on D that remains unchanged in this procedure. For v ∈ D,
scoref (v) is always no larger than 0. Based on these three intuitions, we propose the novel
selection rule for constructing TS(T ) as follows.
WMST Selection Rule: Select an added (or removed) vertex with the greatest score

′

f ,
breaking ties by picking one with the highest (or lowest) |scoref | value. Further ties are
broken by choosing one with the highest (or lowest) scoree.

5.2 The InnerSearch Algorithm

The pseudo code of InnerSearch is shown in Algorithm 3. The algorithm first constructs a
CDS of G[D] called D′, serving as the trunk set of G[D], by greedily adding vertices until it
becomes a feasible solution (lines 1–3), similar to the ReSmooth procedure, and then the
spanning tree T ′ of D′ is built by breadth first search (line 5). The loop iterates until it
fails to find a better solution within MaxNoImproveInner steps (line 6). During each loop,
local search is applied by iteratively swapping vertices based on the WMST selection rule to
improve D′ (lines 7–10). At the end of each loop, the corresponding spanning tree T ′ needs
to be updated (line 11). After the loop, the spanning tree T of D is constructed by adding
the remaining vertices in D \ D′ to T ′ by using the adding rule of TBC method [13] (line 15).
At last, the new spanning tree T is returned (line 16).

Note that to lower the complexity, the best solution during InnerSearch is not recorded,
and an approximated best solution D′ is obtained by setting MaxNoImproveInner to a small
value. In InnerSearch, the complexity of each iteration (lines 6–14) is O(neighborSize ∗
∆G[D]), while the complexity of remaining parts is O(|VD| ∗ ∆G[D] + |ED|). Since D only
accounts for 13.07% of vertices of the original graph on average, InnerSearch can be seen
as a lightweight local search procedure, compared to Algorithm 1.
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Algorithm 3 InnerSearch(G[D]).

Input: a subgraph G[D] induced by candidate solution D

Output: a spanning tree T of G[D]
1 choose a random vertex v ∈ G[D] and D′ := {v};
2 while |unDomG[D](D′)| ̸= 0 do
3 choose vertex v ∈ NG[D](D′) using WMST selection rule and D′ := D′ ∪ {v};
4 MinWeight := w(D′) and InnerStep := 1;
5 construct a spanning tree T ′ of D′;
6 while InnerStep < MaxNoImproveInner do
7 for i := 1 to neighborSize do
8 choose vertex u ∈ LS(T ′) using WMST selection rule and D′ := D′ \ {u};
9 while |unDomG[D](D′)| ̸= 0 do

10 choose vertex v ∈ candAdd(D′) using WMST selection rule and
D′ := D′ ∪ {v};

11 update the spanning tree T ′ based on D′;
12 if w(D′) < MinWeight then
13 MinWeight := w(D′) and InnerStep := 1;
14 else InnerStep := InnerStep + 1 ;
15 construct T where TS(T ) = T ′ and LS(T ) = D \ D′;
16 return T ;

6 Experimental Results

6.1 Experiment Preliminaries

Extensive experiments are carried out to evaluate the performance of NestedLS, compared
with four state-of-the-art heuristic algorithms, including HGA [6], PBIG [6], ACO-RVNS [3]
and ACO-e, which was modified by the author of ACO-RVNS, specialized for massive graphs.
Since the source or binary codes of HGA and PBIG were not available, we reimplemented and
then compared to them. The source code of ACO-RVNS and ACO-e were kindly provided by
authors. The data structure of all competitors was modified for massive graphs. Specifically,
the adjacency list are applied to store the graph information. NestedLS and its competitors
were implemented in C++ and compiled by g++ with ‘-O3’. All experiments were run on a
server with Intel Xeon CPU E7-8850 v2 2.30GHz with 2048GB RAM under Ubuntu 16.04.5.
All algorithms were executed 10 times with random seeds from 1 to 10 on each instance
independently. The cutoff time was set to 1000 seconds for the classic benchmarks, and 5000
seconds for massive graphs. We report the best size (min) and average size (avg) of the
solution found by each algorithm. The bold values indicate the best solution among all the
algorithms.

The parameters of NestedLS are tuned by irace [15]. We select 40 graphs randomly
from all benchmarks, and irace was applied for 5000 s with a budget of 10000 applications.
The chosen values of parameters are presented in Table 1. Moreover, the parameters of all
competitors are also tuned by irace, and our re-implementation versions can obtain similar
performance as the original papers, which confirms their effectiveness and efficiency.

We evaluate NestedLS on 5 benchmarks, including 2 classic benchmarks in the literature
and 3 massive benchmarks.
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Table 1 Parameter tuning.

Parameter Domain Chosen value

neighborSize {1,3,5} 3
MaxNoImprove {10000,50000,100000} 100000
MaxNoImproveInner {1000,5000} 1000
T reeNoImprove {5000,10000} 10000
MaxRepeat {0.1,0.3,0.5} 0.3
ρ {0.3,0.7} 0.7
β {0.5,0.7,0.9} 0.7

Table 2 Experiment results on the first classic benchmark. The averaged value of min (min)
and the number of connected instances with the same size (#inst) are reported for each family.

Instance #inst NestedLS PBIG ACO-e ACO-RVNS HGA Instance #inst NestedLS PBIG ACO-e ACO-RVNS HGA
Family min min min min min Family min min min min min

TYPEI V800E10000 1 2059 2080 2111 2076 2442
V250E750 7 2833 2850.3 2836.4 2833 3068.1 V1000E5000 1 6538 6762 6652 6668 7281
V250E1000 9 2038 2056.8 2039.1 2038 2227.8 V1000E10000 1 2989 3013 3052 3029 3531
V250E2000 10 965.9 974 968.7 965.9 1090.3 V1000E15000 1 2164 2178 2189 2189 2434
V250E3000 10 650.4 653.1 653 650.4 744.3 V1000E20000 1 1612 1639 1645 1616 1800
V250E5000 10 390.2 392.3 391.5 390.9 433.9 TYPEII
V300E750 2 4272.5 4242.4 4283.5 4272.5 4449.5 V250E750 6 877.5 896.5 877.5 876.8 924.7
V300E1000 9 3067.9 3111 3076.2 3068.2 3315.4 V250E1000 9 953.7 956.2 958 953.9 1014.6
V300E2000 10 1439.4 1457.5 1444.7 1439.4 1639.4 V250E2000 10 1159.9 1161.7 1163.6 1159.9 1272.9
V300E3000 10 936.1 942.2 939.5 936.3 1066.4 V250E5000 10 1469.8 1471.9 1471.8 1469.8 1601.5
V300E5000 10 555.1 561.1 557.6 556.9 634.9 V300E750 1 974 981 979 974 999
V500E2000 1 4179 4239 4183 4182 4579 V300E1000 9 1037.7 1054.6 1040.6 1037.7 1092.6
V500E5000 1 1565 1571 1580 1565 1748 V300E2000 10 1276.3 1287.6 1279.4 1276.4 1395.6
V500E10000 1 852 852 868 852 922 V300E5000 10 1612.9 1618.9 1613 1612.9 1882.5
V800E5000 1 4178 4321 4223 4205 4740

The first classic benchmark originally from [19] is classified into Type I (96 instances)
and Type II (65 instances). There are a few unconnected graphs in the benchmark, and we
choose to ignore them. The second classic benchmark (20 instances) is originally generated
in [6]. To save space, we do not report the results on graphs with less than 250 vertices
where NestedLS always performs best. In total, we selected 181 classic instances.

A total of 118 massive real-world graphs are selected from the Network Data Repository
(NDR) [17] and Stanford Large Network Dataset Collection (SNAP)3, as well as large
instances from the 10th DIMACS implementation challenge (DIMACS10)4. Due to space
limitations, we only report results on graphs from the SNAP and DIMACS10 benchmarks
with at least 30,000 vertices and graphs from the NDR benchmark with more than 100,000
vertices and more than 1,000,000 edges. Hence, we picked 22, 31 and 65 graphs in SNAP,
DIMACS10, and NDR, respectively. To obtain the corresponding weighted instances, we
used the same method as in previous works [24, 25]: for the ith vertex vi, w(vi)=(i mod
200)+1.

3 http://snap.stanford.edu/data
4 https://www.cc.gatech.edu/dimacs10/

http://snap.stanford.edu/data
https://www.cc.gatech.edu/dimacs10/
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Table 3 Experiment results on the second classic benchmark.

Instance NestedLS PBIG ACO-e ACO-RVNS HGA
min(avg) min min(avg) min(avg) min

V250E500 4464(4464) 4585 4464(4479.6) 4464(4469.2) 4716.1
V250E1000 2203.5(2203.5) 2228 2227.4(2227.5) 2211.8(2213.1) 2389
V250E1500 1365.7(1365.7) 1384 1365.7(1365.7) 1365.7(1365.7) 1548.1
V250E2000 1020.3(1020.3) 1044.9 1020.3(1026.7) 1020.3(1020.3) 1104.9
V250E2500 822.1(822.1) 822.1 822.1(822.1) 822.1(822.1) 960.3
V500E1000 8636.7(8637.1) 8837.3 8646.69(8679.2) 8637.2(8648) 9444.3
V500E2000 4256(4256) 4352 4296.1(4340) 4277.9(4294.4) 4693.7
V500E3000 2867.2(2867.3) 2915.8 2895.1(2927.8) 2875.7(2875.7) 3256.9
V500E4000 2145.7(2145.7) 2164.3 2157.1(2176.6) 2157.1(2170.2) 2434.5
V500E5000 1531.6(1531.6) 1538 1531.6(1541.8) 1531.6(1531.6) 1766.5
V750E1500 13894.9(13903.7) 14298.5 14042.2(14101.7) 13984.6(14031.4) 15491.2
V750E3000 6106.7(6110.9) 6250.9 6209.7(6252.7) 6154.6(6173.3) 6979.4
V750E4500 4244.4(4244.4) 4383.5 4330.6(4398.8) 4308.7(4328.1) 4674.7
V750E6000 3151.7(3152.9) 3188.9 3167.7(3180.1) 3163.1(3163.1) 3505.6
V750E7500 2401.8(2402.5) 2435 2451.2(2469) 2434.1(2434.7) 2744.8
V1000E2000 17745.5(17768.1) 18235.3 17838.3(17922.3) 17845(17889.3) 19786.5
V1000E4000 8222.8(8222.8) 8453.3 8328.6(8360.6) 8319.7(8335.8) 9532
V1000E6000 5247.9(5250.4) 5341.9 5332(5372.1) 5301.2(5319.2) 5938.7
V1000E8000 3906.2(3910.7) 3983.5 3955.5(4012.7) 3931.1(3956.5) 4465.1
V1000E10000 3106.6(3108.7) 3154.8 3187.2(3201.3) 3119.2(3150.9) 3683.4

6.2 Results on Classic Benchmarks

Results on classic benchmarks are reported in Tables 2 and 3. NestedLS is better than
all competitors, except for V250E750, indicating its robustness. The average run time of
NestedLS on some instances where it can generate the same solution quality (i.e., same
minimal and average values) as PBIG, ACO-e and ACO-RVNS is 16.3 s, 27.3 s and 11.6 s,
respectively, while that of competitors is 5.2 s, 87 s and 15 s.

6.3 Results on Massive Graphs

Note that ACO-RVNS and HGA fail to find a solution on most massive instances, mainly due
to their high complexity heuristics (i.e., RVNS and Minimize functions). Thus, we mainly
report the results of NestedLS, PBIG and ACO-e on Tables 4 and 5. NestedLS significantly
outperforms all competitors on most instances, with only 8 exceptions. Moreover, NestedLS
can solve all the 118 instances within the time limit, while PBIG, ACO-e, ACO-RVNS and
HGA can only solve 103, 47, 19 and 13 instances, respectively. Among all the instances
solvable by NestedLS and a corresponding competitor, the best solution obtained by NestedLS
is on average 4.18%, 1.37%, 1.08% and 1.39% better than that found by PBIG, ACO-e,
ACO-RVNS and HGA, respectively. Since the weight value can amount to 108 on some
massive graphs, they are significant improvements.
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Table 4 Experiment results on SNAP and DIMACS10 benchmarks. If an algorithm fails to find
a solution within the cutoff time, it is indicated by “N/A”.

Instance NestedLS PBIG ACO-e
min(avg) min(avg) min(avg)

Amazon0302 3607951(3628251.9) 3898308(3903172) 3702466(3702466)
Amazon0312 4201432(4215293.4) 4397464(4402398.5) N/A
Amazon0505 4383032(4393754.3) 4576088(4579237) N/A
Amazon0601 3780727(3792534.5) 3987798(3989201.8) N/A
Cit-HepPh 247185(247337.8) 255517(255731) 253099(253493.8)
Cit-HepTh 256033(256647.4) 263235(263496.3) 260885(261364)
cit-Patents 59497255(59657281.8) 64161977(64167456) N/A
Email-EuAll 228890(228936.4) 228935(228954) 228951(228975.5)
p2p-Gnutella04 210746(210813.7) 211570(211610.5) 211153(211304.3)
p2p-Gnutella25 451125(451178.5) 451333(451426.5) 451056(451208.4)
p2p-Gnutella30 711958(712177.5) 712094(712192.5) 711915(712066.5)
p2p-Gnutella31 1262834(1263059.3) 1262095(1262181.3) 1262676(1262869.1)
Slashdot0811 1460128(1460346.5) 1461470(1461546.8) 1461427(1461427)
Slashdot0902 1580606(1580816.2) 1583119(1583276.5) 1582395(1582395)
soc-Epinions1 1663107(1663222.1) 1663776(1663911.3) 1664085(1664085)
web-BerkStan 2936734(2939268.8) 2987292(2989303.8) 2934995(2934995)
web-Google 7864164(7868993.6) 7985154(7985584) N/A
web-NotreDame 2495507(2496448.9) 2519655(2520284) 2497288(2497288)
web-Stanford 980121(980582.7) 1007522(1008040.5) 987255(987255)
Wiki-Vote 107222(107227.9) 107222(107223.5) 107234(107249.3)
WikiTalk 3478539(3478544.5) 3478560(3478579) N/A
333SP 95311299(96023116.9) 104222969(104222969) N/A
as-22july06 193529(193542.3) 193557(193560.8) 193562(193581.1)
audikw1 544788(546375.8) 645510(646619.3) 561656(561656)
belgium.osm 117292752(117713316.1) N/A N/A
cage15 18904266(18939673.7) 22288856(22296289.5) N/A
caidaRouterLevel 4324957(4327477.8) 4376005(4377893.3) N/A
citationCiteseer 4434164(4439087.7) 4525350(4527033.5) 4466529(4466529)
cnr-2000 2443499(2444996) 2457027(2457309.8) 2449713(2449713)
coAuthorsCiteseer 3701461(3702751.2) 3717505(3718382.5) N/A
coAuthorsDBLP 4738187(4739697.2) 4765060(4765668.3) 4749845(4749845)
cond-mat-2005 482173(482484.3) 487804(488072) 486812(487278.3)
coPapersCiteseer 2840116(2848253.2) 2928376(2929221) N/A
coPapersDBLP 3779813(3790462.5) 3883208(3885354) N/A
ecology1 37169194(37512291.1) 40995892(41068701.3) N/A
eu-2005 3186216(3187215.3) 3212190(3212849.5) 3193332(3193332)
G_n_pin_pout 706058(707810.3) 793613(797417.8) 745885(745885)
in-2004 8493855(8495948.8) 8540255(8542346.3) N/A
kron...logn16 369629(369629) 370490(370553.5) 370386(370495.5)
ldoor 2130615(2131629.9) 2607563(2615331.8) N/A
luxembourg.osm 9954051(9955957.2) 10123554(10232006.8) N/A
pref...Attachment 544964(545494.2) 582867(583472.8) 564066(564066)
rgg_n_2_17_s0 1143351(1145682.7) 1411146(1422660.5) 1194638(1194638)
rgg_n_2_19_s0 3619945(3623934.4) 4882585(4902738) N/A
rgg_n_2_20_s0 6597646(6612833.5) 9305396(9391407.5) N/A
rgg_n_2_21_s0 12315149(12359474.8) 17639374(17775821.8) N/A
rgg_n_2_22_s0 27505305(27607164.4) 33784024(34175561.5) N/A
rgg_n_2_23_s0 50168656(63767170.7) N/A N/A
smallworld 1218021(1221583.3) 1311258(1312652.3) 1281937(1281937)
uk-2002 114212809(117625999.3) 113849945(113854708.5) N/A
wave 975601(978701.5) 1082203(1083760) 999481(999481)



B. Li, K. Wang, Y. Wang, and S. Cai 39:13

Table 5 Experiment results on NDR benchmark. If an algorithm fails to find a solution within
the cutoff time, it is indicated by “N/A”.

Instance NestedLS PBIG ACO-e
min(avg) min(avg) min(avg)

bn-human...1-bg 231444(232173.4) 248647(248983.5) 234886(234886)
bn-human...2-bg 193908(194530.6) 206436(206702) 197614(197614)
ca-coauthors-dblp 3780154(3790227.3) 3883208(3885354) N/A
ca-dblp-2012 4898659(4900170.1) 4931550(4932246.8) 4912016(4912016)
ca-hollywood-2009 4196974(4208205.8) 4484581(4485353.5) N/A
channel...b050 33862787(33944666) 37854483(37974114) N/A
dbpedia-link 153458727(153739853.3) 154088350(154089188) N/A
delaunay_n22 95435272(95559053.8) 104855386(105650155.3) N/A
delaunay_n23 188365284(188544203.8) N/A N/A
delaunay_n24 379521881(408693281.8) N/A N/A
friendster 63527982(63557140.7) 64653832(64656091.5) N/A
hugebubbles-00020 970833598(1202159141.6) N/A N/A
hugetrace-00010 554859414(566474478.5) N/A N/A
hugetrace-00020 731497084(792040454.8) N/A N/A
inf-europe_osm 5092357075(5094787915.4) N/A N/A
inf-germany_osm 941456751(942923953.3) N/A N/A
inf-road-usa 2375849346(2377787146.5) N/A N/A
inf-roadNet-CA 92151724(92854875.3) 98142433(98369828.5) N/A
inf-roadNet-PA 50457051(50693249.2) 54112058(54182813.5) N/A
rec-dating 1137467(1137484.5) 1138910(1139023.8) 1138531(1138531)
rec-epinions 826618(826642.9) 831768(832227) 829707(829707)
rec-libimseti-dir 1209219(1209288.3) 1213842(1214225) 1212387(1212387)
rgg_n_2_23_s0 50329249(50441454.7) N/A N/A
rgg_n_2_24_s0 518533632(713025008.5) N/A N/A
rt-retweet-crawl 8119952(8120894.8) 8112459(8112605.3) N/A
sc-ldoor 2148767(2153395.2) 2608260(2628863.8) N/A
sc-msdoor 853236(854334.5) 1006625(1011167) N/A
sc-pwtk 441580(442377.9) 602802(605173.5) 451326(451326)
sc-rel9 12466895(12494110.1) 13371415(13373856.3) N/A
sc-shipsec1 587596(589711.3) 673591(675410.8) 607640(607640)
sc-shipsec5 737132(741136.8) 840811(849266) 762199(762199)
soc-buzznet 8275(8275) 8373(8381.5) 8337(8386.8)
soc-delicious 5684064(5685039.5) 5689449(5689994.5) 5683212(5683212)
soc-digg 6884347(6888681.2) 6906274(6906978.3) N/A
soc-dogster 2343228(2344555.2) 2373262(2373356) 2352360(2352360)
soc-flickr-und 29310795(29333534) 29701624(29702432) N/A
soc-flixster 9190111(9190239.9) 9189919(9190039.3) N/A
soc-FourSquare 6055451(6058625.3) 6063201(6064206) 6062299(6062299)
soc-lastfm 6747994(6748217.7) 6748666(6748975.3) N/A
soc-livejournal 80381637(80396298.8) 83450152(83455918.8) N/A
soc-...-user-groups 109130362(109143584) 109708034(109708334) N/A
soc-LiveMocha 106551(106560.2) 108182(108286.5) 107712(107846.8)
soc-ljournal-2008 103641550(103684264.4) 105872796(105877923.8) N/A
soc-orkut 8377576(8436848.5) 9246155(9249442.5) N/A
soc-orkut-dir 7371792(7388939.2) 8257778(8260096.8) N/A
soc-pokec 18650680(18678287.5) 19938844(19941250) N/A
soc-sinaweibo 5894908130(5894908130) N/A N/A
soc-twitter-higgs 1160854(1161304) 1184020(1185051.3) 1170510(1170510)
soc-youtube 9898687(9900778.7) 9936591(9937572.8) N/A
soc-youtube-snap 23382235(23384447.6) 23408462(23585903.3) N/A
socfb-A-anon 19919414(19952815.8) 20350881(20351694.5) N/A
socfb-B-anon 18669945(18697816.9) 18997889(18999053) N/A
socfb-uci-uni 5866001161(5866001161) N/A N/A
tech-as-skitter 17726432(17747980.9) 18668301(18669829) N/A
tech-ip 2283(2283.5) 2986(3010) 2484(2484)
twitter_mpi 56327895(56337886.8) 56435803(56436632) N/A
web-arabic-2005 2017151(2017601.7) 2021106(2022620) 2021129(2021129)
web-baidu-baike 25951517(25969911.1) 26457056(26457712.3) N/A
web-it-2004 3464760(3464814.9) 3465855(3465914) N/A
web-uk-2005 170958(170958) 170958(170958.8) 170958(170958)
web-wikipedia_link 17428644(17452302.6) 17888836(17889610.3) N/A
web-wikipedia-growth 10192627(10212490.8) 10592826(10594605.3) N/A
web-wikipedia2009 37603865(37659492.6) 38742158(38746820.3) N/A
wikipedia_link_en 21240536(21242706.8) 21362465(21363129.3) N/A
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6.4 Effectiveness of Proposed Strategies

To confirm the effectiveness of ReSmooth, we compare NestedLS with its modified versions
where NoSmooth does not use this strategy and adopt previous weight smoothing mechanisms
SWT and PAWS from [4] and [20], respectively.

The excellent results of NestedLS on massive graphs are mainly due to the inner-layer
local search. To confirm its effectiveness, five modified versions are proposed for comparison
as follows.

To confirm the overall effectiveness of inner-layer local search, Alg1 replaces inner-layer
local search with breadth first search to construct the spanning tree for the current
candidate solution, as the traditional construction method in [13].

To confirm the effectiveness of the scoring function in inner-layer local search, Alg2
and Alg3 modifies inner-layer local search by not applying the second and third scoring
criterion respectively.

To confirm the effectiveness of WMST selection rule, Alg4 adopts the same selection rule
mentioned as in Section 2.

To confirm that local search can improve the quality of the spanning tree, Alg5 constructs
the spanning tree without improving it by local search.

The results are shown in Tables 6 and 7. We report the number of instances where
NestedLS finds better (worse) solutions than its modified versions, denoted as #better
(#worse). The results shown in Table 6 confirm that ReSmooth is effective on both classic
and massive graphs, and the results shown in Table 7 validate the effectiveness of inner-layer
local search on massive graphs.

Table 6 Effectiveness of ReSmooth.

Classic SNAP DIMACS NDR

vs. NoSmooth #better 59 16 20 37
#worse 0 3 5 21

vs. SWT #better 50 17 19 43
#worse 0 0 5 14

vs. PAWS #better 14 15 25 52
#worse 3 6 5 10

Table 7 Effectiveness of InnerSearch.

vs. Alg1 vs. Alg2 vs. Alg3 vs. Alg4 vs. Alg5

SNAP #better 17 16 15 19 15
#worse 4 5 0 2 6

DIMACS #better 27 22 18 26 23
#worse 2 8 11 3 6

NDR #better 41 41 50 56 48
#worse 17 20 11 5 12
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7 Conclusion

We proposed a local search algorithm NestedLS for MWCDS based on two main ideas,
including the restart based smoothing mechanism and the inner-layer local search method.
Experiments on classic benchmarks and massive graphs showed its superiority over previous
algorithms for MWCDS.

Two proposed ideas can be generally applied to other heuristic algorithms. Specifically,
the inner-layer local search method is a general method for maintaining the connectivity
constraint when dealing with massive graphs. It contributes to constraint programming by
providing not only a better strategy of maintaining the connectivity constraint when dealing
with massive instances, but also insights for future study on the connectivity constraints. In
addition, the restart based smoothing mechanism provides a novel diversification scheme for
restart-based heuristic algorithms.
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Abstract
When designing a new symmetric block cipher, it is necessary to evaluate its robustness against
differential attacks. This is done by computing Truncated Differential Characteristics (TDCs) that
provide bounds on the complexity of these attacks. TDCs are often computed by using declarative
approaches such as CP (Constraint Programming), SAT, or ILP (Integer Linear Programming).
However, designing accurate and efficient models for these solvers is a difficult, error-prone and
time-consuming task, and it requires advanced skills on both symmetric cryptography and solvers.

In this paper, we describe a tool for automatically generating these models, called Tagada (Tool
for Automatic Generation of Abstraction-based Differential Attacks). The input of Tagada is an
operational description of the cipher by means of black-box operators and bipartite Directed Acyclic
Graphs (DAGs). Given this description, we show how to automatically generate constraints that
model operator semantics, and how to generate MiniZinc models. We experimentally evaluate our
approach on two different kinds of differential attacks (e.g., single-key and related-key) and four
different symmetric block ciphers (e.g., the AES (Advanced Encryption Standard), Craft, Midori,
and Skinny). We show that our automatically generated models are competitive with state-of-the-art
approaches. These automatically generated models constitute a new benchmark composed of eight
optimization problems and eight enumeration problems, with instances of increasing size in each
problem. We experimentally compare CP, SAT, and ILP solvers on this new benchmark.
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1 Introduction

Symmetric cryptography provides algorithms for ciphering a text given a secret key. Differ-
ential cryptanalysis is a well-known attack technique that aims at checking if the key can
be guessed by introducing differences and studying their propagation during the ciphering
process [6]. To evaluate the robustness of a new ciphering algorithm towards differential
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attacks, we compute Truncated Differential Characteristics (TDCs) as initially proposed by
Knudsen in [20], where sequences of bits are abstracted by Boolean values in order to locate
differences (without computing their exact values). We first solve an optimization problem
(called Step1-opt) that aims at finding a TDC that has a minimal number of differences that
pass through non-linear operators. This provides bounds on the complexity of differential
attacks, and in some cases these bounds are large enough to ensure security. When bounds
are not large enough, we have to solve an enumeration problem (called Step1-enum) that
aims at finding all TDCs that have a given number of differences that pass through non-linear
operators. Finally, for each enumerated TDC, we have to compute a Maximum Differential
Characteristic (MDC), i.e., find difference values that have the largest probability given their
positions identified in the TDC. MDCs are then used to design attacks. Computing an
MDC given a TDC is a problem that is efficiently tackled by CP solvers (thanks to table
constraints) [16]. Step1-opt and Step1-enum are much more challenging problems. They
may be solved by using declarative approaches such as CP (Constraint Programming), SAT,
or ILP (Integer Linear Programming) [11]. However, designing accurate and efficient models
for these solvers is a difficult, error-prone and time-consuming task, and it requires advanced
skills in both symmetric cryptography and combinatorial optimization.

Contributions and Overview of the Paper

In this paper, we describe a tool (called Tagada) that automatically generates MiniZinc
models for solving Step1-opt and Step1-enum problems given a cipher description. In
Section 2, we introduce a unifying framework for describing symmetric block ciphers by
means of elementary operators and bipartite Directed Acyclic Graphs (DAGs) that specify
how these operators are combined. In Section 3, we formally define Step1-opt and Step1-enum
problems, and we describe existing approaches for solving these problems.

In Section 4, we describe the input format of Tagada which is based on the framework
introduced in Section 2. Operator semantics are specified by functions which may be black
boxes extracted from an existing implementation of the cipher. The DAG is specified in a
JSON file. As the creation of this file may be tedious, Tagada includes a set of functions
for easing its generation. Tagada also includes a function for automatically transforming
the input description into an operational cipher. Hence, the correctness of the description is
tested by comparing the outputs of the automatically generated cipher with the outputs of
the original implementation of the cipher.

In Section 5, we describe how Tagada automatically generates MiniZinc [21] models for
computing TDCs. One key point is to define constraints associated with operators. In existing
models, these constraints have been crafted by researchers, and some of these constraints
require to have advanced knowledge on both symmetric cryptography and mathematical
modelling. We show how to automatically generate these constraints from the functions that
describe operator semantics. We also automatically improve models by both enriching and
shaving the DAG.

In Section 6, we experimentally evaluate these models for two kinds of differential attacks,
i.e., single-key and related-key, and four ciphering algorithms, i.e., the AES, Craft, Midori
and Skinny. We report results obtained with ILP, SAT and CP solvers. We also compare the
automatically generated models with state-of-the-art hand-crafted models, and we show that
Tagada models are competitive with them.
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Notations

We denote [n, m] the set of all integer values ranging from n to m. Sequences of bits are
denoted by x, y, z, . . . (possibly sub-scripted). The length of a sequence x is denoted #x.
The bitwise xor operator is denoted ⊕. Tuples are denoted t (possibly sub-scripted), and
the arity of a tuple t is denoted #t. We denote [0, 1]k∗p the set of all possible tuples of k-bit
sequences of arity p. Given two tuples of bit sequences t = (y1, . . . , yn) and t′ = (y′

1, . . . , y′
n),

we denote t ⊕ t′ the tuple corresponding to (y1 ⊕ y′
1, . . . , yn ⊕ y′

n).

2 Unifying Description of Symmetric Block Ciphers

The best-known symmetric block cipher is the AES (Advanced Encryption Standard),
which is the standard for block ciphers since 2001 [12]. There exist many other symmetric
block ciphers, that have been designed for previous competitions or the ongoing lightweight
cryptography standardization competition organized by the NIST (National Institute of
Standards and Technology). Some ciphers are designed for devices with limited computational
resources, for example: Craft [5], Deoxys [19], Gift [2], Midori [1], Present [8], Skinny [4],
Simon and Speck [3].

As our goal is to design a generic tool that automatically generates a model for computing
TDCs from the description of a cipher, we describe these ciphers in a unified way, by means of
DAGs. This unifying description is our first step towards automatic differential cryptanalysis.

2.1 Ciphering Operators
The encryption of a plaintext is achieved by applying elementary ciphering operators. Each
operator o has a tuple of input parameters denoted tin(o) and a tuple of output parameters
denoted tout(o) such that each parameter is a bit sequence, i.e., tin(o) = (x1, . . . , x#tin(o))
and tout(o) = (y1, . . . , y#tout(o)) = o(x1, . . . , x#tin(o)). Without loss of generality, we assume
that all bit sequences have the same length k (if this is not the case, we may split sequences
so that they all have the same length). Typically, k = 8 (resp. k = 4) and k-bit sequences
correspond to bytes (resp. nibbles).

▶ Example 1. The AES uses four elementary operators that operate on bytes (i.e., k = 8):
xor, such that tin(xor) = (x1, x2), tout(xor) = (y1), and y1 = x1 ⊕ x2;
ShiftRows, denoted SRs with s ∈ [0, 3], such that tin(SRs) = (x1, x2, x3, x4), tout(SRs) =
(y1, y2, y3, y4), and ∀i ∈ [1, 4], yi = x1+(i+s)%4 where % is the modulo operation (in other
words, SRs simply shifts the positions of the four input bytes);
MixColumns, denoted MC, such that tin(MC) = (x1, x2, x3, x4), tout(MC) = (y1, y2, y3,

y4), and ∀i ∈ [1, 4], yi = (Mi,1 ⊗ x1) ⊕ (Mi,2 ⊗ x2) ⊕ (Mi,3 ⊗ x3) ⊕ (Mi,4 ⊗ x4) where Mi,j

are constant coefficients, and ⊗ is a finite field multiplication;
SubBytes, denoted S, such that tin(S) = (x1), tout(S) = (y1), and y1 is obtained from x1
by using a substitution that is represented by a look-up table, called S-Box.

More generally, there are two main categories of operators that ensure two main concepts
identified by Shannon in [24]: Non-linear operators that ensure confusion, and linear operators
that ensure diffusion. Non-linear operators are either S-Boxes (like the AES SubBytes) or
non-linear arithmetic operations (like in ARX1 structures). The most common linear

1 ARX schemes use only modular Addition, Rotation and xor.
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operations used in symmetric ciphers are: multiplication by a MDS (Maximum Distance
Separable) matrix (like the AES MixColumns), bit permutations, xor and rotation (like
the AES ShiftRows). Every linear operator o satisfies the following property: ∀t, t′ ∈
[0, 1]k∗#tin(o), o(t) ⊕ o(t′) = o(t ⊕ t′).

2.2 Description of a Cipher with a DAG
Given a plaintext and a key, a cipher returns a ciphertext. The plaintext and the key are
bit-sequences, and we assume that they have been split into k-bit sequences. The ciphertext
is computed by applying operators, and this process may be described by a DAG that
contains two different kinds of vertices denoted P and O, respectively: each vertex in P

corresponds to a parameter and is a k-bit sequence, whereas each vertex in O corresponds to
an operator. Arcs connect operators to their input and output parameters: the predecessors
(resp. successors) of an operator o are denoted pred(o) (resp. succ(o)) and they correspond
to input (resp. output) parameters. As parameters are ordered, pred(o) and succ(o) are
tuples (instead of sets) and the order is represented by arc labels: an incoming arc (x, o)
(resp. outgoing arc (o, x)) is labelled with i ∈ [1, #tin(o)] (resp. i ∈ [1, #tout(o)]), meaning
that x is the ith input (resp. output) parameter in pred(o) (resp. succ(o)).

Some input parameters have no predecessor in the DAG. These input parameters either
correspond to k-bit sequences that are resulting from the plaintext or the key, or to constant
values. The set of input parameters that are constant values is denoted C.

Most ciphers are iterative processes composed of r rounds. This round decomposition
does not appear in the DAG as it is not necessary for automatically generating models.

▶ Example 2. We display in Fig. 1 the DAG that describes the first AES round.

3 Optimization and Enumeration of TDCs

We first define MDCs in Section 3.1; then we define TDCs in Section 3.2; and finally, we
define the two problems addressed in this paper, Step1-opt and Step1-enum, in Section 3.3.

3.1 Maximum Differential Characteristics
To design differential attacks, we study the propagation of differences during the ciphering
process. To introduce differences in a k-bit sequence x, we xor it with another k-bit sequence
x′, and we denote δx the resulting differential sequence, i.e., δx = x ⊕ x′. When δx = 0,
there is no difference (i.e., x = x′) whereas when δx ̸= 0 there are differences (i.e., x ̸= x′).
Similarly, we denote δt the differential tuple obtained by xoring the elements of the two
tuples t and t′, i.e., δt = t ⊕ t′. By abuse of language, we say that a tuple δt is equal to 0
whenever all its elements are equal to 0, i.e., δt does not contain differences.

Given an operator o, some input/output differences are more likely to occur than others,
and this is quantified by means of differential probabilities.

▶ Definition 3 (Differential probability of an operator). The probability that an operator o
transforms an input difference δtin into an output difference δtout is

po(δtout |δtin) = #{(t, t′) ∈ [0, 1]k∗#tin(o) × [0, 1]k∗#tin(o) : δtin = t ⊕ t′ ∧ δtout = o(t) ⊕ o(t′)}
2k∗#tin(o)

This probability is equal to 0 or 1 for linear operators. More precisely, for any linear
operator o, po(δtout |δtin) = 1 if o(δtin) = δtout and po(δtout |δtin) = 0 otherwise. This
comes from the fact that for any linear operator o and any input parameters t and t′,
o(t) ⊕ o(t′) = o(t ⊕ t′).
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Figure 1 DAG of the first round of the AES for 128-bit keys. Bytes are represented with squares,
and operators with circles. The input key and plaintext have 128 bits and are split into 16 bytes
colored in blue and green, respectively. Yellow squares correspond to the text state after one
encryption round. Pink squares correspond to the first round sub-key and are obtained from the
blue squares by applying operations which are not displayed to avoid overloading the figure (these
operations are: 16 xors, 4 SubBytes, and 1 xor with a constant).

When an operator o is not linear, po may be different from 0 and 1 and the only case
where po(δtout |δtin)=1 is when δtin =δtout =0. In all other cases, it is strictly smaller than 1.

▶ Example 4. For the AES, all operators but SubBytes are linear. For SubBytes, the
probability pS(δtout |δtin) belongs to {0, 2−6, 2−7, 1}.

Let us now formally define what is an MDC.

▶ Definition 5 (MDC). Given a DAG that describes a cipher, a differential characteristic
is a function δ : P \ C → [0, 1]k that associates a differential sequence δxi with every non-
constant parameter xi ∈ P \ C. The probability of a differential characteristic is obtained by
multiplying, for each operator o ∈ O, the probability po(δsucc(o)|δpred(o)) where δt denotes
the tuple obtained by replacing every parameter xi that occurs in t by δxi if xi ∈ P \ C, and
by 0 if xi ∈ C.

An MDC is a differential characteristic with maximum probability.

3.2 Truncated Differential Characteristics
MDCs are usually computed in two steps, as initially proposed by Knudsen in [20]: First, we
search for TDCs, and then we compute MDCs associated with TDCs.

A TDC is a solution to an abstract problem. More precisely, the abstraction of a k-bit
differential sequence δx is a Boolean value denoted ∆X such that ∆X = 1 iff δx contains a
difference, i.e., δx ̸= 0. Similarly, the abstraction of a differential tuple δt = (δx1, . . . , δxi)
is the Boolean tuple ∆t = (∆x1, . . . , ∆xi) such that ∆xj is the abstraction of δxj for each
j ∈ [1, i].

CP 2021



40:6 Automatic Generation of Declarative Models For Differential Cryptanalysis

▶ Definition 6 (TDC). Given a bipartite DAG that describes a cipher, a TDC is a function
∆ : P \ C → {0, 1} that associates a Boolean value ∆xi with every non-constant parameter
xi ∈ P \ C.

A concretization of a TDC ∆ is a differential characteristic δ such that, for each non-
constant parameter x ∈ P \ C, ∆x = 0 ⇔ δx = 0. ∆ is concretizable if it has at least one
concretization, the probability of which is different from 0.

Finding a concretization of a TDC that has a maximal probability (or proving that the
TDC cannot be concretized) is efficiently tackled by CP solvers thanks to table constraints
(see, e.g., [16]). However, there exists an exponential number of candidate TDCs with respect
to the number of non-constant parameters in P \ C. Hence, the key point for an efficient
solution process is to reduce as much as possible the number of candidate TDCs. This is
done by adding constraints that prevent the generation of non concretizable TDCs as much
as possible, without removing any concretizable TDC.

▶ Example 7 (xor). If δy1 = δx1 ⊕ δx2, then it is not possible to have only one sequence
in {δx1, δx2, δy1} which contains a difference. Therefore, we can add the constraint ∆x1 +
∆x2 + ∆y1 ̸= 1 for each xor operator.

▶ Example 8 (MC). There is no straightforward constraint that may be associated with
MC as knowing which input parameters contain differences is not enough to know which
output parameters contain differences: To answer this question, we must know the exact
values of the input differences. However, MC usually satisfies the MDS property [25] that
relates the number of input differences with the number of output differences. The exact
definition of this relation depends on the constant coefficients Mi,j . For the AES, this relation
is: among the four input differences δx1, . . . , δx4 and the four output differences δy1, . . . , δy4,
either all differences are equal to 0, or at least five of them are different from 0. Hence, we
can add the constraint

∑4
i=1 ∆Xi + ∆Yi ∈ {0, 5, 6, 7, 8} for each MC operator.

▶ Example 9 (SRs). SRs simply moves bytes. Therefore, we can add an equality constraint
between the corresponding Boolean variables, i.e., ∀i ∈ [1, 4], ∆yi = ∆x1+(i+s)%4.

▶ Example 10 (S). S is not linear, and we cannot deterministically compute the output
difference δy1 given the input difference δx1. However, as the look-up table is a bijection, we
know that δx1 = 0 ⇔ δy1 = 0. Therefore, we can add the constraint ∆x1 = ∆y1 for each S

operator.

3.3 Definition of Step1-opt and Step1-enum Problems
As the probability po(δtout |δtin) associated with a non-linear operator o is equal to 1 whenever
δtout = δtin = 0 whereas it is very small otherwise (e.g., smaller than or equal to 2−6 for
the AES Sbox), we can compute an upper bound on an MDC by computing a lower bound
on the number of active non-linear operators in a TDC, where an operator is said to be
active whenever its input/output differential tuples are different from 0. More precisely, let
s(∆) be the number of active non-linear operators in a TDC ∆ (i.e., s(∆) = #{o ∈ O :
o is not linear ∧ δpred(o) ̸= 0}), and let s∗ be the minimal value of s(∆) for all possible
TDCs ∆. If the maximal probability of an active non-linear operator is equal to p, then
the probability of an MDC is upper bounded by ps∗ . For example, for the AES this upper
bound is 2−6·s∗ . In some cases, this upper bound is small enough to ensure the security of
the cipher with respect to differential attacks, and it is not necessary to actually compute
MDCs. Most papers that introduce new ciphering algorithms demonstrate the security of
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their cipher with respect to differential attacks only by computing this upper bound (e.g., [5]).
When the upper bound ps∗ is large enough to allow mounting differential attacks, we have to
enumerate all possible TDCs that have a given number of active non-linear operators, and
we have to search for an MDC for each of these TDCs.

Step1-opt is the problem that aims at computing s∗ whereas Step1-enum is the problem
that aims at enumerating all TDCs that have a given number of active non-linear operators.

There exist different kinds of differential attacks, depending on where differences can be
injected. In this paper, we consider Single-key attacks, where differences are only injected in
the clear text (i.e., for each k-bit sequence xi coming from the input key, we have ∆xi = 0),
and Related-key attacks, where differences can be injected in both the plaintext and the key.

3.4 Existing Approaches for Solving Step1-opt and Step1-enum
Two dedicated approaches have been proposed to solve these problems: An approach based
on dynamic programming (e.g., for AES [13] and Skinny [11]), and an approach based on
Branch & Bound (e.g., for AES [7]). The dynamic programming approach is rather efficient,
but it runs out of memory for large instances (e.g., when the key has more than 128 bits
for the AES); the Branch & Bound approach has no memory issue but needs weeks to solve
middle size instances and cannot be used to solve all instances within a reasonable amount
of time.

Also, ILP, CP, or SAT are commonly used to solve Step1-opt and Step1-enum: on
Skinny [11], Craft [18], Deoxys [26, 10], AES [23, 16], and Midori [15], for example.

While ILP/CP/SAT approaches require less programming work than dedicated ones,
they still require designing mathematical models. In particular, it is necessary to find
constraints that limit the number of non concretizable TDCs as much as possible, and this
can be time-consuming. In this paper, we present an automatic way to generate models for
Step1-opt and Step1-enum.

4 Description of a Symmetric Block Cipher with Tagada

The DAG associated with a cipher (see Section 2) must be described in a JSON file. This
file first specifies a list of parameters such that each parameter has one attribute, i.e., its
name (which must be unique). Then, it specifies a list of operators such that each operator
has three attributes, i.e., its list of input parameters, its list of output parameters, and its
UID (a unique identifier) that must correspond to an executable function.

▶ Example 11 (JSON representation of a xor followed by a SubBytes).
{ "parameters": [ {"name": "X00"}, {"name": "K00"}, {"name: "ARK00"}, {"name": "S00"} ],

"operators": [ {"uid": "xor_2_1", "in": ["X00", "K00"], "out": ["ARK00"]},
{"uid": "s_1_1", "in": ["ARK00"], "out": ["S00"]}] }

The UIDs xor_2_1 and s_1_1 correspond to computable functions: xor_2_1 reads two k-bit
sequences and outputs their xor, and s_1_1 reads one k-bit sequence and returns the
substitution associated with it according to the S-Box.

Some patterns may be repeated in the DAG. For example, let us consider the DAG describing
the first round of the AES displayed in Fig. 1. At the top level of this DAG, there are 16 xors
which correspond to the AddRoundKey (ARK) step, where each byte of the text (in blue) is
xored with the corresponding byte of the key (in green). As it is tedious to write 16 times
the JSON representation of one xor operation, Tagada provides functions corresponding to
meta-operators, where a meta-operator is a classical combination of operators.
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▶ Example 12 (ARK meta-operator). The ARK meta-operator has 3 groups of parameters:
the first group corresponds to the 16 input text bytes; the second to the 16 input key
bytes; and the third to the 16 output parameters. This meta-operator generates the JSON
description of 16 xors such that each xor has two input parameters coming from the first
and the second group, and one output parameter from the third group.

These meta-operators strongly simplify the definition of the JSON file. For example, the
JSON file corresponding to 4 rounds of the AES contains 364 parameters and 288 operators.
This file is generated by approximately 100 lines of code when using meta-operators.

To test the JSON file, Tagada provides a function that has three input parameters,
i.e., a JSON file F describing a cipher, a plaintext X and a key K, and that returns the
ciphertext obtained when ciphering X with K according to F (this computation is done by
performing a topological sort to order DAG operators, and applying operators in this order).
This function allows us to test the correctness of the JSON file with the initialization vectors,
i.e., a set of (key, plaintext, ciphertext) triples that are usually provided by cipher authors to
validate that implementations are correct. Moreover, these vectors are mandatory for the
authors of all candidates to NIST’s competitions.

5 Automatic Generation of Models with Tagada

We show how Tagada automatically generates state-of-the-art MiniZinc models for solving
Step1-opt and Step1-enum problems given JSON files that describe ciphers. This is done
in four steps: (i) generation of constraints from the black boxes associated with operators
(Section 5.1); (ii) simplification of the DAG (Section 5.2); (iii) extension of the DAG
(Section 5.3); and (iv) generation of the model from the DAG and the constraints (Section 5.4).

5.1 Automatic Generation of Constraints
As pointed out in Section 3.2, the key point for an efficient process is to tighten the abstraction
to prevent as much as possible the generation of non concretizable TDCs. For non-linear
operators, we add a constraint to ensure that ∆x1 = ∆y1 where x1 is the input parameter
and y1 is the output parameter because δx1 = 0 ⇔ δy1 = 0 for all non-linear operators.

For linear operators, we have to add constraints and, in all existing works, these constraints
have been manually derived from a careful analysis of operators, as illustrated in Ex. 7 to 9.
While this has lead to efficient models, this was also time-consuming and error-prone. Hence,
we propose to automatically generate table constraints for which domain consistency can be
efficiently achieved. Tables are generated by using the functions that provide operational
definitions of these operators. More precisely, the constraint associated with an operator o is
the relation Ro of arity #tin(o) + #tout(o) which contains every boolean tuple corresponding
to possible difference positions for the input/output parameters of o. As o(t)⊕o(t′) = o(t⊕ t′)
for any t, t′ ∈ [0, 1]k∗#tin(o), we can build Ro from the black-box definition of o as follows.

▶ Definition 13 (Relation Ro associated with an operator o).
Ro = {(∆(x1), . . . , ∆(x#tin(o)), ∆(y1), . . . , ∆(y#tout(o))) : ∃(x1, . . . , x#tin(o)) ∈ [0, 1]k∗#tin(o),

(y1, . . . , ytout(o)) = o(x1, . . . , x#tin(o))} where ∀x ∈ [0, 1]k, ∆(x) denotes the Boolean abstrac-
tion of x, i.e., ∆(x) = 0 ⇔ x = 0.

To compute this relation, we must (i) enumerate every possible k-bit sequence for
every input parameter of o; (ii) for each enumerated combination of input parameters,
call o to compute output parameter values; and (iii) compute the abstract Boolean values
∆(xi) and ∆(yj) from their corresponding concrete values xi and yj . Hence, the time
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complexity for building Ro is O(t · 2k·#tin(o)) where t is the time complexity of o. Moreover,
k is either equal to 4 or 8, and the number of input parameters, #tin(o), is usually very
small: #tin(o) is always smaller than or equal to four for all ciphers we are aware of.
Hence, the relation is rather quickly computed. In the worst case, the relation contains all
possible binary tuples of arity #tin(o) + #tout(o). Hence, the space complexity of Ro is
O((#tin(o) + #tout(o)) · 2#tin(o)+#tout(o)).

Note that the relation is computed only once for each black box (identified by its UID),
even if the operator is used more than once in the DAG. Also, some operators are shared by
multiple ciphers (such as xor which is used by all ciphers). In this case, we only need to
compute the relation once, and we can memorize it for future usage.

▶ Example 14 (Rxor). The relation associated with xor contains all triples (∆(x1), ∆(x2),
∆(x1 ⊕x2)) such that x1, x2 ∈ [0, 1]k. We obtain the following relation: Rxor = {0, 0, 0), (0, 1,

1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}. Note that the constraint (∆x1, ∆x2, ∆y1) ∈ Rxor has exactly
the same semantics as the constraint ∆x1 + ∆x2 + ∆y1 ≠ 1 which is usually added to model
xors in Step1-opt and Step1-enum models.

▶ Example 15 (RMC). The relation associated with MC contains all tuples (∆(x1), ∆(x2),
∆(x3), ∆(x4), ∆(y1), ∆(y2), ∆(y3), ∆(y4)) such that ∀i ∈ [1, 4], yi = (Mi,1 ⊗ x1) ⊕ (Mi,2 ⊗
x2) ⊕ (Mi,3 ⊗ x3) ⊕ (Mi,4 ⊗ x4). This relation, for the AES MixColumns, contains 102 tuples
and has exactly the same semantics as the constraint associated with the famous MDS
property, i.e., it contains only tuples such that the number of 1s belongs to {0, 5, 6, 7, 8}.

5.2 Simplification of the DAG
Before generating a MiniZinc model from the DAG, we simplify it by applying shaving rules
that are described in this section. Each rule removes one or more vertices (and their incident
edges), and rules are iteratively applied until reaching a fixed point.

Rule 1: Merging Equal Parameters

When building a relation Ro from the black box that defines o, we can search for every couple
of input/output parameters (xi, yj) with i ∈ [1, #tin(o)] and j ∈ [1, #tout(o)] such that xi is
always equal to yi: before starting the construction of the relation, we initialize a Boolean
variable eqxi,yj

to true; then, for each generated tuple of input parameters, if xi ̸= yj we set
eqxi,yj

to false. This does not change the time complexity for building the relation.
We use a list Leq to store all couples of parameter vertices that are related by an equality

relation. Before starting the shaving process, Leq is initialized by traversing the DAG: for
each operator vertex o and each couple of parameter vertices (xi, yj) ∈ pred(o) × succ(o), if
eqxi,yj

= true, we add (xi, yj) to Leq. Rule 1 is triggered whenever Leq is not empty, and it
is defined as follows.

▶ Definition 16 (Rule 1). If Leq ̸= ∅, then (i) compute equivalence classes corresponding
to all binary equality relations contained in Leq (using a union-find data structure) and
reinitialize Leq to the empty set, (ii) merge all vertices of the DAG that belong to a same
equivalence class, and (iii) remove every operator vertex that is no longer connected to a
parameter vertex.

▶ Example 17 (SRs). When building the relation RSRs
, we infer that eqxi,yj

is true whenever
j = 1 + (i + s)%4. When considering the DAG displayed in Fig. 1, this allows us to merge
each of the four predecessors of SRs vertices with its corresponding successor and, finally, to
remove each SRs vertex.
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Rule 2: Suppressing Constant Parameters

When an operator vertex o has an input parameter xi that has a constant value c, then this
parameter is replaced with 0 in the differential characteristic because c ⊕ c = 0 (see Def. 3)
and, therefore, it can be removed from the DAG. Moreover, if all input parameters of o are
constants, its outputs are also constants and o can be removed from the DAG.

We use a list LC to store all parameter vertices that have constant values. Before starting
the shaving process, LC is initialized with the set C of constant parameters. Rule 2 is
triggered whenever LC is not empty, and it is defined as follows.
▶ Definition 18 (Rule 2). If LC ̸= ∅, then repeat the three following steps until LC = ∅:

(i) choose one operator vertex o such that pred(o) ∩ Lc ̸= ∅;
(ii) remove from the DAG and from LC every parameter vertex xi ∈ LC ∩ pred(o);
(iii) if pred(o) = ∅, then remove o from the DAG and add every parameter vertex in succ(o)

to LC , else update the relation Ro and update Leq if new equality relations can be
inferred;

▶ Example 19 (xor with a constant value). Let us consider a xor operator with one output
parameter y1 and two input parameters x1 and x2 such that x1 is a constant (i.e., x1 ∈ C).
This operator is used in the key schedule of the AES, for example. In this case, x1 is removed
from the DAG, the relation associated with this operator becomes {(0, 0), (1, 1)}, and we
add the couple (x2, y1) to the list Leq.

Rule 3: Suppressing Free Parameters

When an output parameter vertex x has no successor and its predecessor o is a linear operator,
then we can remove both o and x from the DAG because we can deterministically compute
the output difference δx of o given the differences of all input parameters of o.

Similarly, when an input parameter vertex x has no predecessor, and it has only one
successor which is a linear operator, we can also remove both o and x from the DAG because
we can deterministically compute the input difference δx of o given the differences of all
other input parameters of o and the difference of its output parameter.

More formally, Rule 3 is defined as follows.
▶ Definition 20 (Rule 3). If there exists a parameter vertex x such that the out-degree of x

is equal to 0 and the predecessor of x is a linear operator, then remove x and the predecessor
of x from the DAG.

If there exists a parameter vertex x such that the in-degree of x is equal to 0, the out-degree
of x is equal to 1, and the successor of x is a linear operator, then remove x and the successor
of x from the DAG.

▶ Example 21. Let us consider the DAG displayed in Fig. 1. Every yellow vertex has no
successor and its predecessor is a linear operator (i.e., a xor). Hence, we can remove all
yellow vertices, and all xor operators that are predecessors of yellow vertices.

Also, every green vertex (corresponding to one byte of the plaintext) has no predecessor
and one successor which is a linear operator (i.e., a xor). Hence, we can remove all green
vertices, and all xor operators that are successors of green vertices.

Note that we cannot remove vertices that precede S operators, though they have no more
predecessors once we have removed xor operators that succeeded green vertices, because S

is not linear. The shaved DAG obtained from the DAG of Fig. 1 after applying Rules 1, 2,
and 3 is displayed in Fig. 2. We do not apply the shaving rules on vertices associated with
the key vertices (in blue and pink) as we have not displayed the operator vertices that are
used to compute pink vertices from blue ones in Fig. 1.
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Figure 2 Shaved DAG obtained from the DAG of Fig. 1 after applying Rules 1, 2, and 3.

5.3 Extension of the DAG

A basic CP model may be generated from the shaved DAG (this will be explained in
Section 5.4). However, the resulting model is often not tight enough, i.e., the bound provided
by Step1-opt is smaller than the actual value and/or many solutions of Step1-enum cannot
be concretized into differential characteristics with strictly positive probabilities. In this
section, we show how to tighten this model by extending the DAG.

5.3.1 Generation of New Vertices and Edges from Existing Operators

In [17, 16, 23], Step1-opt and Step1-enum models are tightened by exploiting the fact that,
if t1 = MC(t2) and t3 = MC(t4) (where t1, t2, t3, and t4 are tuples of arity 4), then
t1 ⊕ t3 = MC(t2 ⊕ t4). As a consequence, the MDS property also holds on t1 ⊕ t3 and t2 ⊕ t4,
i.e., the number of k-bit sequences in t1 ⊕ t3 and t2 ⊕ t4 that are different from 0 is either
equal to 0 or strictly greater than 4. Hence, a new variable (called diff variable in [16]) is
added for each parameter of each couple of MC operators. These diff variables are related
with initial parameters by adding xor constraints. Finally, constraints that ensure the MDS
property are added for these new diff variables.

In Tagada, we generalize this idea to all linear operators. Indeed, for any kind of linear
operator identified by its UID u, we have u(t1) ⊕ u(t2) = u(t1 ⊕ t2). Therefore, for each
pair of operator vertices o1, o2 ∈ O such that the UID of o1 and o2 is u, we can add a new
operator vertex whose UID is u and whose input and output parameter vertices are obtained
by xoring input and output parameter vertices of o1 and o2. More precisely, let pred(o1) =
(x1,1, . . . , x1,#tin(u)), succ(o1) = (y1,1, . . . , y1,#tout(u)), pred(o2) = (x2,1, . . . , x2,#tin(u)), and
succ(o2) = (y2,1, . . . , y2,#tout(u)). We extend the DAG as follows:

For each i ∈ [1, #tin(u)], we add a new parameter vertex x3,i corresponding to the result
of xoring x1,i and x2,i, i.e., we add a new xor vertex whose predecessors are x1,i and
x2,i and whose successor is x3,i;
For each j ∈ [1, #tout(u)], we add a new parameter vertex y3,j corresponding to the result
of xoring y1,j and y2,j , i.e., we add a new xor vertex whose predecessors are x1,i and
x2,i and whose successor is x3,i;
We add a new operator vertex o3 such that the UID of o3 is u, the predecessors of o3 are
x3,1, . . . , x3,#tin(u), and the successors of o3 are y3,1, . . . , y3,#tout(u).

This may be done for each kind of linear operator except xor (as this is useless in this case).
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As this step may drastically increase the size of the DAG, it is optional, and the user can
choose the kind of linear operator that should be considered for this step.

5.3.2 Generation of New XORs

xor equations may be combined to generate new equations. For example, consider two xor
equations: a ⊕ b ⊕ c = 0, and b ⊕ c ⊕ d = 0. By xoring these two equations, we obtain a
new equation a ⊕ d = 0. This new equation is redundant when computing MDCs, but it
tightens the abstraction when computing TDCs. Indeed, let ∆i be the boolean abstraction of
each k-bit sequence i ∈ {a, b, c, d}. If we only post the two constraints (∆a, ∆b, ∆c) ∈ Rxor

and (∆b, ∆c, ∆d) ∈ Rxor (where Rxor is the relation defined in Ex. 14), then it is possible
to assign ∆a, ∆b, and ∆c to 1, and ∆d to 0 because (1, 1, 1) ∈ Rxor and (1, 1, 0) ∈ Rxor.
However, if we add the constraint (∆a, ∆d) ∈ {(0, 0), (1, 1)}, then this assignment is no
longer consistent.

This trick was introduced in [16] for the AES, but it has been limited to xors that occur
in the key schedule. In Tagada, we generalize it to all xors. Let adj(o) = pred(o) ∪ succ(o)
be the set of input and output parameters of an operator vertex o. For each couple of operator
vertices (o1, o2) such that both o1 and o2 are xors that share at least one common parameter
(i.e., adj(o1 ) ∩ adj(o2 ) ̸= ∅), we compute the set S = (adj(o1) ∪ adj(o2)) \ (adj(o1) ∩ adj(o2))
(corresponding to parameters that are adjacent to o1 or o2 but not to both o1 and o2). If
S does not contain more than nmax parameters, then we add a new operator vertex o3 to
the DAG, and we add an edge between each parameter vertex in S and o. This process is
recursively applied, until no more vertex can be added.

nmax is a given integer value that is used to control the growth of the DAG: when nmax = 0,
no new xor operator is added to the DAG; the larger nmax, the more xor operators are
added.

For all possible values of #S ∈ [0, nmax], we have to generate the relation associated with
a xor of #S parameters, as described in Section 5.1. Also, we infer equality relations and
apply Rule 1 (as described in Section 5.2) to merge vertices of the DAG that belong to a
same equivalence class.

5.4 Generation of the MiniZinc Model from the DAG

Given a DAG, we generate a MiniZinc model as follows:

We declare a Boolean variable ∆x for each parameter vertex x of the DAG;

We add a constraint ∆(prec(o), succ(o)) ∈ Ro for each operator vertex o (where ∆(prec(o),
succ(o)) is the tuple of Boolean variables associated with parameters in prec(o) and
succ(o));

We declare an integer variable s which corresponds to the number of active non-linear
operators in the TDC, and we add a constraint s =

∑
x∈NL ∆x where NL contains the

set of parameter vertices that are predecessors of a non-linear operator vertex.
For Step1-opt, the goal is to minimize s, and we add the constraint s ≥ 1 because TDCs
must contain at least one active non-linear operator. For Step1-enum, s is assigned to the
number of active non-linear operators, and the goal is to enumerate all solutions.
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Table 1 Model performance summary of Picat-SAT on the 35 Midori instances, 25 AES instances,
56 SKINNY instances and 38 CRAFT instances, for different values of nmax ranging from 0 to 5.
The 6 first (resp. last) rows give results without (resp. with) selecting MC. #d corresponds to the
number of instances where the model is not tight enough. When #d=0, we report the number of
instances that are solved within 1 hour for Step1-opt (#o) and Step1-enum (#e), and we highlight
the best values. We report – when models have not been generated because DAGs are too large.

Midori (35) AES (25) SKINNY (56) CRAFT (38)
model #d #o #e #d #o #e #d #o #e #d #o #e
nmax=0 18 12 0 24 22 0 38 38
nmax=1 18 12 0 25 22 0 38 38
nmax=2 18 12 0 25 22 0 38 38
nmax=3 18 12 0 25 22 0 38 38
nmax=4 18 12 0 24 22 0 38 38
nmax=5 – – – 12 – – – – – –
nmax=0 MC 18 12 – – – 0 38 38
nmax=1 MC 18 12 – – – 0 38 38
nmax=2 MC 18 12 – – – 0 38 38
nmax=3 MC 18 12 – – – 0 38 38
nmax=4 MC 0 35 34 0 23 21 – – – 0 37 37
nmax=5 MC – – – 0 24 21 – – – – – –

6 Experimental Results

We performed all experiments on a PC with a Xeon Gold 5118 (2.30 GHz) with 24 cores and
32 GB of RAM. Each experiment used only one thread, and we ran 20 of them in parallel to
speed up the computations. All the source-code and results are available online 2 3.

We consider four symmetric block ciphers for which there exist recent differential crypt-
analysis results, i.e., the AES [16], Midori [14], Skinny [11], and Craft [18]. For each cipher,
there are different instances that are obtained by considering either single-key or related-key
attacks, by changing the size of the key for related-key attacks of ciphers that have different
key lengths (i.e., 64 and 128 for Midori, 128, 192, and 256 for the AES), and by changing the
number r of rounds of the ciphering process, starting from r = 3 up to the largest value for r

considered in the literature. We obtain 35 (resp. 25, 56, and 38) instances for Midori (resp.
the AES, Skinny, and Craft). Finally, for each instance, we solve two different problems, i.e.,
Step1-opt and Step1-enum. Hence, our benchmark contains 308 instances.

Tagada has a parameter nmax that is used to control the maximum size of new generated
xor equations (see Section 5.3.2). It is also possible to select the linear operators for which
we infer new vertices and edges as explained in Section 5.3.1. In the four considered ciphers,
the only linear operator that can be selected is MC as SR is removed during the DAG
shaving step. Increasing nmax and/or selecting MC tightens the abstraction, but it also
increases the number of variables and constraints in the generated model.

In Table 1, we report the number of instances for which the generated model is not tight
enough (i.e., the bound computed by Step1-opt is smaller than the best known bound) for
different values of nmax and with or without selecting MC. This shows us that the best

2 Tagada: https://gitlab.limos.fr/iia_lulibral/tagada/
3 models and results: https://gitlab.limos.fr/iia_lulibral/experiment-results
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Figure 3 CPU time of Picat-SAT, Chuffed and Gurobi on the model generated by Tagada for
Midori instances when nmax = 4 and MC is selected (top plot for Step1-opt and bottom plot for
Step1-enum). State-of-the art is the handcrafted model of [14] run with Picat-SAT.
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Figure 4 CPU time of Picat-SAT, Chuffed and Gurobi on the model generated by Tagada for
AES instances when nmax = 5 and MC is selected (top plot for Step1-opt and bottom plot for
Step1-enum). State-of-the art is the handcrafted model of [16] run with Picat-SAT.

parameter setting depends on the cipher: For Midori and the AES, it is necessary to select
MC and to set nmax to a value larger than or equal to 4 to generate a model that is tight
enough for all instances; For Skinny and Craft, the generated model is tight enough even
when nmax = 0 and MC is not selected.

In Table 1, we also report the number of instances that are solved within one hour of
CPU time by Picat-SAT [27] whenever the model is tight enough (it is meaningless to report
these results when models are not tight enough, as they do not solve the same problem).
When increasing nmax, the model has more constraints, and the number of new constraints
grows exponentially with nmax. In [16] and [14], this parameter has been fixed to 4 for the
handcrafted models, and this seems to be a rather good setting. However, for the AES,
one more instance is solved when increasing nmax to 5, and for Skinny one more instance
is solved when decreasing nmax to 3. For Midori, Skinny and Craft, when nmax = 5 the
number of new constraints is so large that we have not run the resulting models. As models
are automatically generated by Tagada, the user can easily fiddle with parameters to find
the settings that generate the tightest and most efficient models for a cipher.

In Fig. 3 to 6, we display results, on a per-instance basis, and for three different kinds of
solvers, i.e. Picat-SAT [27] (that generates a SAT instance from the MiniZinc model and
uses Lingeling to solve it), Gurobi [22] (which is an ILP solver), and Chuffed [9] (which is
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a CP solver with lazy clause generation). For these figures, we report results for the best
parameter setting for each cipher, i.e., nmax = 4 and MC is selected for Midori, nmax = 5
and MC is selected for the AES, nmax = 0 and MC is not selected for Skinny and Craft.
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Figure 5 CPU time of Picat-SAT, Chuffed and Gurobi on the model generated by Tagada
for Skinny when nmax = 0 and MC is not selected (top plot for Step1-opt and bottom plot for
Step1-enum).
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Figure 6 CPU time of Picat-SAT, Chuffed and Gurobi on the model generated by Tagada
for Craft when nmax = 0 and MC is not selected (top plot for Step1-opt and bottom plot for
Step1-enum).

Picat-SAT is usually more efficient than Chuffed and Gurobi. However, Chuffed is often
faster on small instances, and Gurobi is the best performing solver on many Craft instances.

The MiniZinc models for the AES and Midori described in [16] and [14] are publicly
available, and we compare our automatically generated models with these handcrafted models
(we only report results with Picat-SAT in this case as this is the best performing solver).
However, for instances of AES-192 we do not report results obtained with the model of [16]
because it does not solve the same problem: for these instances, the model of [16] does not
integrate in the objective function the S-boxes of the last round, which is an error of this
model for this particular case. For both Midori and the AES, models automatically generated
with Tagada are competitive with state-of-the-art handcrafted models. The largest Midori
instances (when the key has 128 bits and the number of rounds is greater than 17) cannot be
solved within one hour by the model of [14] whereas the Tagada model solves them. This
is remarkable because it takes weeks/months for a researcher to design these handcrafted
models. Moreover, with Tagada we can check that the description of the cipher is correct
(as explained in Section 4), and the model is automatically generated from this description
without any human action (except parameter selection).

CP 2021
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For Skinny, the most efficient approach is a dedicated dynamic program [11]. However,
this approach consumes huge amounts of memory (more than 700 GB of RAM). In [11], a
MiniZinc model is also described, and results obtained with Picat-SAT are reported. The
number of instances solved by this approach within one hour on a server composed of 2×AMD
EPYC7742 64-Core is the same as with our Tagada model when using Picat-SAT, i.e., 22.

Finally, for Craft, [5] only reports optimal solutions of Step1-opt and does not report
CPU times. Our Tagada model has found the same solutions as those of [5].

7 Conclusion

In this article, we present Tagada, a tool for automatically generating MiniZinc models for
solving differential cryptanalysis problems given the description of a symmetric block cipher.
The description is based on a unifying framework, i.e., a DAG that describes how operators
are combined and black-boxes that give an operational definition of operators.

This description allows us to perform a correctness verification using initialization vectors
and comparing the behavior of our implementation with reference implementations found in
the literature, limiting the possible bugs.

Then, for each black box operator, we perform an exhaustive search of its input and output
values to infer a relation that represents a provably optimal abstraction for this operator.
The DAG is further modified by removing some parts that are not useful for differential
attacks, and by adding new operators that tighten the model. Finally, the MiniZinc model is
generated from the relations and the DAG.

We experimentally compare automatically generated models with state-of-the-art ap-
proaches on four ciphers (Midori, AES, Skinny, Craft) and on two types of attacks (Single-Key
and Related-Key). For all scenarios, our models find the same solutions as hand-crafted
models, and they have similar running times.

While the models generated by Tagada have the same tightness and performance as
state-of-the-art hand-crafted models, MIP/CP/SAT solvers still struggle to solve the largest
instances. Recently, some ad-hoc dynamic programming algorithms have been proposed (for
instance, on Skinny [11]), and show better scale-up properties though they have high space
complexities. Hence, we plan to study the possibility of integrating dynamic programming
approaches within Tagada.

Also, we plan to integrate other differential attacks than single-key and related-key (i.e.,
related-tweak, related-tweakey and boomerang attacks), and to extend Tagada so that it
also generates models for computing MDCs given TDCs. Of course, we will use Tagada to
analyze the recent ten finalists of NIST’s competition, as there is a need to provide quickly
differential attacks (or prove the robustness of the cipher against these attacks).
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Abstract
Complete search algorithms are important methods for solving Distributed Constraint Optimization
Problems (DCOPs), which generally utilize bounds to prune the search space. However, obtaining
high-quality lower bounds is quite expensive since it requires each agent to collect more information
aside from its local knowledge, which would cause tremendous traffic overheads. Instead of bothering
for bounds, we propose a Bound-Independent Pruning (BIP) technique for existing tree-based
complete search algorithms, which can independently reduce the search space only by exploiting
local knowledge. Specifically, BIP enables each agent to determine a subspace containing the optimal
solution only from its local constraints along with running contexts, which can be further exploited
by any search strategies. Furthermore, we present an acceptability testing mechanism to tailor
existing tree-based complete search algorithms to search the remaining space returned by BIP
when they hold inconsistent contexts. Finally, we prove the correctness of our technique and the
experimental results show that BIP can significantly speed up state-of-the-art tree-based complete
search algorithms on various standard benchmarks.
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1 Introduction

Distributed Constraint Optimization Problems (DCOPs) [14, 10] are a fundamental framework
for coordinated and cooperative multi-agent systems. They have been widely deployed in
many real applications such as sensor network [8], task scheduling [18, 26], smart grid [11]
and many others.
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Incomplete algorithms for DCOPs [18, 28, 17, 9, 22, 21] aim to rapidly find a good solution
at an acceptable overhead, while complete algorithms guarantee to find the optimal one
by employing either inference or search to systematically explore the entire solution space.
DPOP [23] and Action−GDL [27] are typical inference-based complete algorithms which
perform dynamic-programming to solve a DCOP. However, they require a linear number
of messages of exponential size. MB-DPOP and its variant [25, 5] proposed to trade the
number of messages for smaller size of message. DPOP with function filtering [3] exploits
utility bounds to reduce the size of message, where agents need to collect projected utilities
to establish utility bounds.

On the other hand, search-based complete algorithms perform distributed backtrack
searches and have a linear size of messages but an exponential number of messages. Tree-
based complete search algorithms are the most popular ones among them and normally utilize
bounds to prune the search space. Some work has been done to tailor centralized pruning
techniques such as soft arc consistency [6] to tighten lower bounds in a distributed setting.
BnB-ADOPT+-AC/FDAC [12] proposed to get strong lower bounds via arc consistency
(AC) and full directional arc consistency (FDAC) levels of soft arc consistency. However,
stronger consistency levels require agents to know more information about other agents to
plan sequences of soft arc consistency operations, which would compromise privacy and cause
tremendous communication overheads. Besides, PT-FB [16] builds tight lower bounds via a
forward bounding procedure which requires cost estimates from neighbors. ADOPT-BDP [1],
DJAO [15] and PT-ISABB [7] came out to perform an approximation inference to acquire
tighter lower bounds in the preprocessing phase. Recently, HS-CAI [4] was proposed to
tighten lower bounds by executing the context-based inference iteratively. Like soft arc
consistency, these methods also need to collect more information aside from local knowledge
and thus lead to traffic overheads inevitably.

In a nutshell, the existing pruning techniques for DCOPs are bound-dependent and
require collecting more information to obtain tight bounds. Different from them, we present a
novel pruning technique independent of bounds and dispensing with information collection to
accelerate existing tree-based complete search algorithms. More specifically, our contributions
are listed as follows.

We present a Bound-Independent Pruning (BIP) technique for existing tree-based complete
search algorithms, which utilizes local constraints and running contexts to cut down the
search space independently.
We further introduce an acceptability testing mechanism (ATM) to filter out unacceptable
search results produced by existing tree-based complete search algorithms when enforcing
BIP under the inconsistent contexts.
We theoretically show the correctness of BIP and ATM, and the experimental results
demonstrate that BIP substantially improves state-of-the-art tree-based complete search
algorithms on all the metrics in most cases.

2 Background

In this section, we introduce the preliminaries including DCOPs, pseudo tree and tree-based
complete search algorithms.

2.1 Distributed Constraint Optimization Problems
A distributed constraint optimization problem [19] can be formalized by a tuple ⟨A, X, D, F ⟩
where
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(a) Constraint graph.

xi

xj 0 1 2

0 2 3 0
1 3 2 1
2 5 5 6

(b) Constraint matrix. (c) Pseudo tree.

Figure 1 An example of a DCOP and its pseudo tree.

A = {a1, a2, ..., an} is a set of agents.
X = {x1, x2, ..., xm} is a set of variables.
D = {D1, D2, ..., Dm} is a set of finite and discrete domains, where each variable xi takes a
value assignment in Di. Here, we denote the maximal domain size as dmax = maxai∈A |Di|.
F = {f1, f2, ..., fq} is a set of constraint functions, where each constraint fi : Di1 ×
· · ·Dik

→ R⩾0 specifies the non-negative cost for each combination of xi1 , ..., xik
.

For the sake of simplicity, we assume that each agent controls exactly one variable (i.e.,
n = m) and all constraint functions are binary (i.e., fij : Di ×Dj → R⩾0). Thus, the term
agent and variable can be used interchangeably. An optimal solution to a DCOP is an
assignment to all the variables such that the total cost is minimized. That is,

X∗ = arg min
di∈Di,dj∈Dj

∑
fij∈F

fij(xi = di, xj = dj)

A DCOP can be visualized by a constraint graph where the nodes denote agents and the
edges denote constraints. Figure 1 (a) gives a DCOP with four variables and four constraints.
For simplicity, the domain size of each variable is three and all the constraints are identical
as shown in Fig. 1 (b) where i < j.

2.2 Pseudo Tree
A pseudo tree is a partial ordered arrangement to a constraint graph and can be generated by
depth-first search traversal, where different branches are independent from each other and its
constraints are categorized into tree edges and pseudo edges (i.e., non-tree edges). According
to the relative positions in a pseudo tree, the neighbors of an agent ai connected by tree
edges are categorized into its parent P (ai) and children C(ai), while the ones connected by
pseudo edges are denoted as its pseudo parents PP (ai) and pseudo children PC(ai). For
succinctness, we also denote all its (pseudo) parents as AP (ai) = PP (ai) ∪ {P (ai)}, all its
(pseudo) children as CD(ai) = C(ai) ∪ PC(ai), its ancestors as Anc(ai) and its descendants
as Desc(ai). Besides, we denote the set of ancestors who share constraints with ai and its
descendants as Sep(ai) [24]. Figure 1 (c) gives a possible pseudo tree deriving from Fig. 1 (a)
where tree edges and pseudo edges are denoted by solid and dashed lines, respectively.

2.3 Tree-based Complete Search Algorithms
Tree-based complete search algorithms perform a systematic search on a pseudo tree. Specific-
ally, each agent ai traverses the subtree rooted at itself under the running context Contexti

(i.e., the assignment to Sep(ai)) and avoids expanding suboptimal branches by exploiting
the bounds including the lower and upper bounds of its subproblem (i.e., LBi and UBi), the
ones of its subproblem given its value di ∈ Di (i.e., LBi(di) and UBi(di)) and the ones of its
subproblem given its value di ∈ Di for its child ac ∈ C(ai) (i.e., lbc

i (di) and ubc
i (di)).

CP 2021



41:4 A Bound-Independent Pruning Technique

According to the way that agents update their assignments, tree-based complete search
algorithms can be classified as synchronous or asynchronous. Synchronous algorithms
constrain the agents’ decisions to follow a particular order. As a result, only when ai

and its descendants have thoroughly explored its subproblem given Contexti, it reports its
search results including LBi and UBi (here, LBi = UBi = opti if Contexti is feasible and
LBi = UBi =∞ otherwise, and opti is the optimal solution cost of the subproblem) if it is a
non-root agent; otherwise, it finds the optimal solution. In contrast, asynchronous ones allow
agents to update their assignments solely based on their local view of their subproblems and
report their search results including LBi and UBi (here, LBi ≤ opti ≤ UBi) continually.
Once the root agent ai has LBi = UBi, the optimal solution is found.

Next, we will take PT-FB and BnB-ADOPT for example to describe the concrete
implementation of synchronous and asynchronous tree-based complete search algorithms,
respectively. In PT-FB, each agent ai explores its subproblem by sequentially expanding
Contexti via sending CPA messages2 to its children, and reports its search results via a
UB message3 once exhausting its domain. When receiving a UB message including LBc

and UBc from ac, ai updates lbc
i (di) and ubc

i (di) with LBc and UBc, respectively. As for
BnB-ADOPT, each agent ai explores its subproblem by constantly informing its current
value to its constrained descendants via VALUE messages4 and reporting its search results
including LBi and UBi to its parent via a COST message2. Similarly to PT-FB, once
receiving a COST message including LBc and UBc from ac, ai updates lbc

i (di) and ubc
i (di)

with LBc and UBc, respectively. Afterwards, it updates LBi(di) and UBi(di), and then
updates LBi and UBi according to the following equations.

LBi = min
di∈Di

{LBi(di)} (1)

UBi = min
di∈Di

{UBi(di)} (2)

3 Proposed Method

In this section, we propose a Bound-Independent Pruning (BIP) technique for existing
tree-based complete search algorithms, where each agent solely exploits its local constraints
and running contexts to confirm a subspace containing the optimal solution and thereby
obtains pruned domains for itself and its children under the current context. We further
introduce an acceptability testing mechanism to tailor existing tree-based complete search
algorithms to match BIP when they hold inconsistent contexts. Before elaborating on BIP,
we first introduce some terms, definitions and their related properties used in this paper.

▶ Definition 1 (dims). Let U be a cost table, dims(U) is the set of variables involved in U .

DU = ×xi∈dims(U)Di is the set of all value combinations of dims(U). Given xi ∈
dims(U), DU

−i = ×xj∈dims(U)\{xi}Dj is the set of all value combinations of dims(U) except
xi. Particularly, we specify DU

−i = {∅} when dims(U)\ {xi} = ∅.
Take f12 in Fig. 1(b) for example. We have dims(f12) = {x1, x2} and Df12

−2 =
{((x1, 0)), ((x1, 1)), ((x1, 2))}.

2 A CPA message contains the Current Partial Assignment of the sending agent and all its ancestors.
3 A UB (COST) message contains the results of a solution found to the sending agent’s sub-problem.
4 A VALUE message contains the value assignment of the sending agent.
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▶ Definition 2 (POS). Given d−i ∈ DU
−i, di ∈ Di is a Primary Optimal Support (POS)

for d−i on U , denoted by posU (d−i), iff U(di, d−i) = mind′
i
∈Di

U(d′
i, d−i) (ties are broken

alphabetically).

Consider f12. When d−2 = ((x1, 2)), we have posf12(d−2)=0 since f12(d−2, x2 = 0) =
f12(d−2, x2 = 1) < f12(d−2, x2 = 2) and 0 precedes 1.

According to Definition 2, we can obtain a subset of DU , denoted by SU
i , by Eq. (3).

SU
i =

{
(di, d−i)

∣∣di = posU (d−i), ∀d−i ∈ DU
−i

}
(3)

Considering f12 again, we have Sf12
2 = {((x2, 2), (x1, 0)), ((x2, 2), (x1, 1)), ((x2, 0), (x1, 2))}.

▶ Definition 3 (Join). Let U, U ′ be two cost tables, the join of U and U ′, denoted by U ⊗U ′,
is a relation defined over DU⊗U ′ = ×xi∈dims(U)∪dims(U ′)Di such that

(U ⊗ U ′) (d) = U
(
d[dims(U)]

)
+ U ′ (

d[dims(U ′)]
)

, ∀d ∈ DU⊗U ′

where d[dims(U)] and d[dims(U ′)] are slices of d along dims(U) and dims(U ′), respectively.

Next, we give the following properties of SU
i , based on which BIP is presented.

▶ Property 4. There exists at least one element in SU
i leading to the optimal cost in U .

That is, ∃d ∈ SU
i , s.t. U(d) = mind′∈DU U(d′).

Proof. Assume that ∀d ∈ SU
i , U(d) > U(d∗) where d∗ = (d∗

i , d∗
−i) is the optimal solution.

According to Definition 2, we have ∃d′
i ∈ Di, s.t. d′

i = posU (d∗
−i) and thus U(d′

i, d∗
−i) =

U (d∗). Furthermore, we have (d′
i, d∗

−i) ∈ SU
i by Eq. (3). That is, (d′

i, d∗
−i) ∈ SU

i and
U(d′

i, d∗
−i) = U(d∗) which contradicts the assumption. Thus, Property 4 is proved. ◀

▶ Property 5. Given two cost tables U and U ′, SU
i = SU ′

i if

U = U ′ ⊗ U ′′ (4)

where dims(U ′′) ⊆ dims(U ′)\ {xi} and xi ∈ dims(U ′).

Proof. Firstly, we prove that U(di, d−i) − U(d′
i, d−i) = U ′(di, d−i) − U ′(d′

i, d−i), ∀di, d′
i ∈

Di, d−i ∈ DU
−i.

According to Eq. (4), we have dims(U ′) = dims(U) and xi ∈ dims(U). Thus, for all
di, d′

i ∈ Di and d−i ∈ DU
−i, we have

U(di, d−i)− U(d′
i, d−i)

= (U ′(di, d−i) + U ′′(d−i[dims(U ′′)]))− (U ′(d′
i, d−i) + U ′′(d−i[dims(U ′′)]))

= U ′(di, d−i)− U ′(d′
i, d−i) (5)

Next, we prove that given d−i ∈ DU
−i and di ∈ Di, U(di, d−i) = mind′

i
∈Di

U(d′
i, d−i) if

U ′(di, d−i) = mind′
i
∈Di

U ′(d′
i, d−i).

Assume that ∃d′
i ∈ Di, s.t. U(di, d−i) > U(d′

i, d−i). Since U ′(di, d−i) = mind′
i
∈Di

U ′(d′
i,

d−i), we have U ′(di, d−i) ⩽ U ′(d′
i, d−i), ∀d′

i ∈ Di. Further, we have U(di, d−i) ⩽ U(d′
i, d−i),

∀d′
i ∈ Di by Eq. (5), which is contradictory to the assumption. Thus, the conclusion holds.
Based on the above conclusion and Definition 2, we have

posU (d−i) = posU ′(d−i) (6)

Therefore, we can conclude SU
i = SU ′

i based on Eqs. (3) and (6), and thereby Property 5 is
proved. ◀
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According to Property 5, we can readily obtain SU
i from U ′ if U and U ′ satisfy Eq. (4).

Namely, we can derive the desired subspace of a table from its subtable which includes its
partial information if they satisfy Eq. (4). Look into a DCOP. Given its pseudo tree and
a running context, if U ′ and U are respectively instantiated to the combination cost table
of local constraints at an agent ai and the combination cost table of all constraints in the
subproblem rooted at itself after eliminating Desc(ai)\CD(ai), we find that they still satisfy
Eq. (4) (see Lemma 7 for detail). Accordingly, each agent ai can confirm the subspace
containing the optimal solution like SU

i from its local constraints under the running context.
Hereby, we propose BIP for tree-based complete search algorithms.

3.1 Bound-Independent Pruning(BIP) Technique
BIP aims to enable each agent ai to exclude some elements in DUi\SUi

i to prune the search
space as possible under the current context in light of Property 4 and 5. Here, Ui is the
combination of all local constraints at ai under Contexti. Formally,

Ui = cd−costi ⊗ ap−costi (7)

cd−costi = ⊗aj∈CD(ai)fij (8)

ap−costi =
∑

aj∈AP (ai)fij (Contexti(xj)) (9)

where cd−costi is the combination of all constraints between ai and CD(ai) and ap−costi is
the sum of all constraints between ai and AP (ai) under the current context.

Theoretically, all the elements in DUi\SUi
i should be pruned. However, it is hard to

do since pruning some elements requires the joint implementation by CD(ai) at different
branches which search their subspace independently in existing tree-based complete search
algorithms. Therefore, we choose to prune some elements from DUi\SUi

i , which only involves
ai or the joint implementation by ai and its child. Specifically, ai removes DVi computed
by Eq. (10) from its domain (i.e., Di). For each value di ∈ Di\DVi, ai suggests its child
ac ∈ C(ai) to remove DV c

i (di) computed by Eq. (11) from the domain of ac (i.e., Dc).

DVi = {di ∈ Di|(di, d−i) ∈ DUi\SUi
i , ∀d−i ∈ DUi

−i} (10)

DV c
i (di) = {dc ∈ Dc|(di, dc, d−(i,c)) ∈ DUi\SUi

i , ∀d−(i,c) ∈ DUi

−(i,c)}, ac ∈ C(ai) (11)

Here, DUi

−(i,c) = ×xj∈dims(Ui)\{xi,xc}Dj .
Take a2 in Fig. 1(c) for example. Given Context2 = {(x1, 0)}, we have U2 = f12(x1 =

0) ⊗ f23 ⊗ f24 as shown in Fig. 2 where all the elements in SU2
2 are highlighted in bold.

We have DV2 = {2} according to Eq. (10), and DV 3
2 (1) = {0, 2} according to Eq. (11).

Similarly, we have DV 3
2 (0) = ∅, DV 4

2 (0) = ∅ and DV 4
2 (1) = {0, 2}. Accordingly, a2 obtains

all the removed elements shown in gray.
Since DV i

P (ai)(Contexti(P (ai))) can be piggybacked by a CPA or VALUE message from
P (ai) and DVi is computed by itself, ai can obtain the pruned domain Domi by:

Domi = Di\(DVi ∪DV i
P (ai)(Contexti(P (ai)))) (12)

Algorithm 1 gives the sketch of calculating Domi for both synchronous and asynchronous
tree-based complete search algorithms when enforcing BIP. Each agent ai computes cd−costi

firstly (line 1). Afterwards, it calculates DVi and DV c
i (di) by calling Compute−DV s() and
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(a) x2 = 0. (b) x2 = 1. (c) x2 = 2.

Figure 2 U2 under Context2 = {(x1, 0)}.

Algorithm 1 Calculating Domi for ai.

When Initialization:
1 compute cd−costi according to Eq. (7)
2 if ai is the root then
3 Compute−DVs()
4 compute Domi according to Eq. (12)

When received a CPA or VALUE from P (ai):
5 Compute−DVs()
6 compute Domi according to Eq. (12)

When sending a CPA or VALUE to ac ∈ C(ai):
7 attach DV c

i (di) to the CPA or VALUE message
Function Compute−DVs():

8 DVi ← Di

9 DV c
i (di)← Dc ,∀ di ∈ Di, ac ∈ C(ai)

10 foreach d−i ∈ DUi
−i do

11 di = posUi
(d−i)

12 DVi ← DVi\{di}
13 DV c

i (di)← DV c
i (di)\d−i[xc], ∀ac ∈ C(ai)

Domi according to Eq. (12) if it is the root (lines 2–4, 8–13) or receiving a CPA or VALUE
message from P (ai) (line 5–6), and attaches DV c

i (di) to the message when forwarding a CPA
or VALUE message to ac (line 7). Compute−DV s() performs the following steps to obtain
DVi and DV c

i (di). Firstly, each agent ai initializes DVi to Di and DV c
i (di) to Dc for each

di ∈ Di and ac ∈ Dc (lines 8-9). Then, ai traverses Ui to filter out elements from DVi and
DV c

i (di) if they do not satisfy Eq. (10) and (11) (lines 10–13), respectively.

3.2 An Example for BIP
We take Fig. 1 as an example to trace BIP runing on a tree-based synchronous search
algorithm. Table 1 shows the variable update for BIP in the first three cycles. For the sake
of simplicity, we omit the variable update for the search algorithm.

Cycle 1: After constructing a pseudo tree shown in Fig. 1(c), the root agent a1 computes
U1 = f12 ⊗ f13, and then calls Compute−DV s() to get DV1 and DV 2

1 (d1) for itself and
its child a2, respectively. Afterwards, it computes Dom1 = D1\DV1 = {0, 1} and sends
{(x1, 0)} and DV 2

1 (0) = ∅ to its child a2 via a CPA message. (Assume that a1 takes its
feasible assignment(x1, 0).)

a1 → a2 : CPA({(x1, 0)}, DV 2
1 (0))
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Table 1 The trace of assignments to the variables of BIP.
 

      

      

      

      

      

Cycle 2: When a2 receives the CPA message from a1, it computes U2 = f12(x1 = 0) ⊗
f23⊗ f24, calls Compute−DV s() to get DV2, DV 3

2 (d2) and DV 4
2 (d2) for itself, a3 and a4,

respectively, and then computes Dom2 = D2\(DV2 ∪DV 2
1 (0)) = {0, 1}. Next, a2 takes

its feasible assignment(x2, 1) and sends a CPA message containing {(x1, 0), (x2, 1)} and
DV 3

2 (1) to a3 and a CPA message containing {(x1, 0), (x2, 1)} and DV 4
2 (1) to a4.

a2 → a3 : CPA({(x1, 0), (x2, 1)}, DV 3
2 (1))

a2 → a4 : CPA({(x1, 0), (x2, 1)}, DV 4
2 (1))

Cycle 3: Upon receipt of the CPA message from a2, a3 computes DV3 by calling
Compute−DV s() 5, and gets Dom3 = D3\(DV3 ∪DV 3

2 (1)) = ∅ which means Context3
can not lead to the optimal solution and should be changed. Therefore, it backtracks to
its parent a2 with an infinity cost. a4 performs the same as a3.

3.3 Acceptability Testing Mechanism(ATM)
For existing tree-based complete search algorithms, each agent ai explores its subproblem
conditioned on Contexti. When enforcing BIP, ai needs to exploit Domi which is computed
under the assignments to AP (ai) and AP (P (ai)) according to Eqs. (10) - (12). However, the
assignment to AP (P (ai))\Sep(ai) is not contained in Contexti. Consequently, ai is searching
under its running context while AP (P (ai))\Sep(ai) may change their values, which is very
common in asynchronous algorithms. In the case, ai’s search results might be unacceptable.
There exist two naïve solutions to the issue. The one is to expand the running context of ai

from the assignment of Sep(ai) to the ones of Sep(ai) ∪AP (P (ai)). The other is to remove
DV i

P (ai)(Contexti(P (ai))) from Eq. (12). Unfortunately, the former could result in more
frequent changes of running contexts and thus severely degrade the original algorithms while
the latter could lead to missing opportunities to prune the search space.

Instead of changing the running context or BIP, we propose ATM to filter out unacceptable
search results to ensure the completeness of the original algorithms when the inconsistent
contexts happen. Specifically, for ai and its child ac, when AP (ai)\Sep(ac) change their
values, ac has to exploit new Domc, which puts ac’s search results under its old Domc at
risk of unacceptability. For clarity, we denote the old Domc and the new Domc as Domc(di)
and Dom′

c(di) for a given di, respectively. We introduce the following rules to determine if
ac’s search results under Domc(di) (i.e., lbc

i (di) and ubc
i (di)) are acceptable or not.

5 Note that Compute−DV s() is also applied to leaves since we specify DU
−i = {∅} when dims(U)\ {xi} = ∅.
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Rule 1: lbc
i (di) is acceptable under Dom′

c(di) if Dom′
c(di) ⊆ Domc(di); otherwise,

discarded.
Rule 2: ubc

i (di) is acceptable under Dom′
c(di) if Dom′

c(di) ⊇ Domc(di); otherwise,
discarded.

Next, we will prove the correction of the two rules.

▶ Proposition 6. Given di, lbc
i (di) produced under Domc(di) is acceptable under Dom′

i(di) if
Dom′

c(di) ⊆ Domc(di), and ubc
i (di) produced under Domc(di) is acceptable under Dom′

i(di)
if Dom′

c(di) ⊇ Domc(di).

Proof. Let LB′
c and UB′

c be the search results of ac under Dom′
c(di), and opt′

c be the optimal
cost of ac’s subproblem under Dom′

c(di). To prove the proposition, we only need to prove
that lbc

i (di) ≤ LB′
c if Dom′

c(di) ⊆ Domc(di) and ubc
i (di) ≥ UB′

c if Dom′
c(di) ⊇ Domc(di)

since LB′
c ≤ opt′

c ≤ UB′
c. Next, we will firstly prove lbc

i (di) ≤ LB′
c if Dom′

c(di) ⊆ Domc(di).
As LB′

c is the search result under Dom′
c(di), according to Eq. (1), we have

LB′
c = mindc∈Dom′

c(di) {LBc(dc)}

Since lbc
i (di) = LBc (LBc is actually obtained under Domc(di)) and Dom′

c(di) ⊆
Domc(di), we have

lbc
i (di) = mindc∈Domc(di) {LBc(dc)}

= mindc∈(Domc(di)\Dom′
c(di))∪Dom′

c(di) {LBc(dc)}
= min( min

dc∈Dom′
c(di)

LBc(dc), min
dc∈Domc(di)\Dom′

c(di)
LBc(dc))

= min(LB′
c, min

dc∈Domc(di)\Dom′
c(di)

LBc(dc)) ⩽ LB′
c

Similarly, we can conclude ubc
i (di) ≥ UB′

c if Domc(di) ⊆ Dom′
c(di). Thus, Proposition 6

is proved. ◀

To execute Rule 1 and 2, ai needs to obtain Domc(di) and Dom′
c(di). Here, Domc(di)

can be piggybacked by a COST message from ac and Dom′
c(di) can be obtained by:

Dom′
c(di) = Dc\(DVc ∪DV c

i (di))

where DV c
i (di) is computed by ai based on Eq. (11) and DVc can also be piggybacked by a

COST message from ac. When the search results are unacceptable, ai attaches a Boolean
variable ReqCostc

i (di) to the VALUE message to request a COST message from ac.

VALUE(ai, di, ID, TH, DV c
i (di), ReqCostc

i (di))
COST(ai, contexti, LBi, UBi, ThReq, Domi, DVi)

Figure 3 Messages of BnB-ADOPT+ when enforcing BIP.

Algorithm 2 presents the sketch of acceptability testing mechanism for BnB-ADOPT+ [13]
(i.e., a version of BnB-ADOPT which removes most of the redundant messages) when enforcing
BIP. Here, we attach Domi and DVi to a COST message, and DV c

i (di) and ReqCostc
i (di) to

a VALUE message. Figure 3 shows the modified messages where the attached items are bold.
Accordingly, we make the following adjustment in processing VALUE and COST messages.
Upon receipt of a COST message from its child or a VALUE message from its parent, ai

needs to check if the search results LBc and UBc are acceptable by Rule 1 and 2 (lines 14–24,
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Algorithm 2 Acceptability testing mechanism for ai.

When received a COST from ac ∈ C(ai):
14 if Contexti is compatible with Contextc then
15 di = Contextc(ai)
16 if meet Rule 1 for ac then
17 lbc

i (di)← max{lbc
i (di), LBc}

18 if meet Rule 2 for ac then
19 if Domc = ∅ then
20 ubc

i (di)←∞
21 else
22 ubc

i (di)← min{ubc
i (di), UBc}

23 if not meet Rule 1 or Rule 2 for ac then
24 ReqCostc

i (di)← true

When received a VALUE from P (ai):
25 if Contexti is compatible with Contextc then
26 foreach ac ∈ C(ai), di ∈ Di do
27 if not meet Rule 1 for ac then
28 lbc

i (di)← 0,
29 if not meet Rule 2 for ac then
30 ubc

i (di)←∞,
31 if not meet Rule 1 or Rule 2 for ac then
32 ReqCostc

i (di)← true

When sending a VALUE to ac ∈ C(ai):
33 if ReqCostc

i (di) = true then
34 attach ReqCostc

i (di) to the VALUE to request a COST from ac

35 ReqCostc
i (di)← false

When sending a COST to P(ai):
36 if Domi = ∅ then
37 LBi ←∞
38 UBi ←∞

25–32). If LBc and UBc are unacceptable, ai sets ReqCostc
i (di) to true to request the latest

search results of ac by a VALUE message to ac (lines 33–35). Besides, ai sets its lower and
upper bounds to infinity and sends them to its parent by a COST message if Domi = ∅
(lines 36-38).

3.4 Tradeoff

When deploying BIP into existing tree-based complete search algorithms, each agent ai

needs to store its cost table cd−costi which requires the memory consumption of d
|CD(ai)|+1
max .

Thus, we introduce a parameter k to specify the maximum memory budget (i.e., dk
max) for

each agent and only the agents with |CD(ai)|+ 1 < k can perform BIP. Hereby, we trade
pruning efficiency for memory consumption. In addition, we allocate the remaining memory
(i.e., d

k−|CD(ai)|−1
max ) to store DVi and DV c

i (di) to avoid repeated computation, where least
recently used (LRU) policy is used to replace the old entry with the lasted one.
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3.5 Complexity
When applied to existing tree-based complete search algorithms, BIP does not introduce any
new messages, and only adds some extra attachments which only require linear memory to
forwarding messages. Specifically, we attach DV c

i (di) to a CPA message for synchronous
tree-based algorithms, DV c

i (di) and ReqCostc
i (di) to a VALUE message and Domi and DVi

to a COST message for asynchronous tree-based algorithms.
As for the memory consumption of each agent ai, it is O(|Di|) if |CD(ai)|+ 1 > k since

ai does not need to perform BIP and thus only stores Domi. Otherwise, it is O(dk
max) for

synchronous tree-based algorithms and O(dk
max + |C(ai)|d2

max) for asynchronous tree-based
algorithms. Here, dk

max is the memory consumption as mentioned in Subsection 3.4 and the
memory of |C(ai)|d2

max is used for storing Dom′
c(di) and DVc(di) when performing ATM.

For each agent ai, it needs to traverse Ui whose size is O(d|CD(ai)|+1
max ) to compute

SUi
i . Then, it can obtain DVi and DV c

i (di) for each ac ∈ C(ai) by enumerating each
element in SUi

i whose size is d
|CD(ai)|
max . Thus, the overall computational complexity of ai is

O(d|CD(ai)|+1
max + (1 + |C(ai)|)d|CD(ai)|

max )

4 Theoretical Results

In the section, we prove the correction of BIP. Firstly, we will prove Eq. (4) can be suitable
for DCOPs.

Given a DCOP and its pseudo tree, let us consider the following three cost tables regarding
the subproblem rooted at ai under the current context Contexti. Ui is the combination of
all local constraints with ai and computed by Eq. (7). U irr

i is the combination cost table of
all constraints without ai in the subproblem. That is,

U irr
i = ⊗aj∈Desc(ai)(⊗ak∈AP (aj)\(Sep(ai)∪{ai})fjk

⊗(⊗ak∈AP (aj)∩Sep(ai)fjk(Contexti(xk)))) (13)

Usub
i is the combination cost table of all constraints in ai’s subproblem after eliminating

Desc(ai)\CD(ai). That is,

Usub
i = minDesc(ai)\CD(ai)(Ui ⊗ U irr

i ) (14)

▶ Lemma 7. U ′′ = minDesc(ai)\CD(ai) U irr
i is a cost table such that Usub

i = Ui ⊗ U ′′ and
dims(U ′′) ⊆ dims(Ui)\ {xi}.

Proof. According to Eq. (14), we have

Usub
i = minDesc(ai)\CD(ai)(Ui ⊗ U irr

i )
= Ui ⊗minDesc(ai)\CD(ai)U

irr
i

The equation from the first step to the second step holds since dims(Ui) = CD(xi) ∪ {xi}
according to Eq. (7) and (CD(xi) ∪ {xi}) ∩ (Desc(ai)\CD(ai)) = ∅. Further, according to
Eq. (13), we have dims(U irr

i ) = Desc(ai) and thus dims(U ′′) ⊆ dims(Ui)\ {xi}. Therefore,
Lemma 7 is proved. ◀

▶ Lemma 8. There exists at least one element in SUi
i that can be extended to the optimal

solution of ai’s subproblem.
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Proof. According to Property 4, we have ∃d ∈ S
Usub

i
i , s.t. Usub

i (d) = min
d′∈D

Usub
i

Usub
i (d′).

Further, according to Lemma 7 and Property 5, we have SUi
i = S

Usub
i

i and ∃d ∈ SUi
i , s.t.

Usub
i (d) = min

d′∈D
Usub

i
Usub

i (d′). Therefore, we can conclude that the optimal solution of
the subproblem rooted at ai is the join of d and the optimal assignment to Desc(ai)\CD(ai)
from Eq. (14). Thus, Lemma 8 is proved. ◀

▶ Theorem 9. There exists an optimal solution in the remaining space returned by BIP.

Proof. For any given context Contexti, there exists one element in SUi
i that can be extended

to the optimal solution of the subproblem rooted at ai according to Lemma 8, and BIP
does not prune any elements in SUi

i according to Eqs. (10) and (11). Thus, Theorem 9 is
proved. ◀

5 Empirical Evaluation

5.1 Experimental Configuration
In order to demonstrate its effect on distributed search, BIP is applied to BnB-ADOPT+-
FDAC, PT-FB and HS-CAI, named BnB-ADOPT+-FDAC+BIP, PT-FB+BIP and HS-
CAI+BIP, respectively. In our experiments, we will compare these BIP-based algorithms
with their originals and RMB-DPOP [5] on two types of problems, i.e., random DCOPs
and scale-free networks. RMB-DPOP is the latest best-performing algorithm in the DPOP
family. We consider four configurations, and the first two are sparse and dense configurations
for ramdom DCOPs. In more detail, we set the graph density to 0.2, the domain size to 3
and the number of agents varying from 22 to 32 for the sparse configuration, and the graph
density to 0.5, the domain size to 3 and the number of agents varying from 14 to 24 for
the dense configuration. The third configuration is the random DCOPs with 22 agents, the
graph density of 0.2 and the domain size varying from 3 to 8. In the fourth configuration, we
consider the scale-free networks whose degree distribution follows a power law. We generate
the instances by BA model [2], where we set the number of agents to 26, the domain size to
3 and m0 to 10, and vary m1 from 2 to 8.

In our experiments, we use the number of messages (Msgs) and network load (NL, i.e., the
size of total information exchanged) to measure the traffic overheads, and the NCLOs [20] to
measure the hardware-independent runtime where the logical operations in the inference and
the search are accesses to utilities and constraint checks, respectively. In order to capture
the computation overhead introduced by BIP, the accesses to Ui, DVi and DV c

i (di) are also
counted into the NCLOs for the BIP-based algorithms. For each experiment, we generate 50
instances randomly with the integer constraint costs in the range of 0 to 100, and report the
average over all instances. Moreover, we choose k = 4 and k = 8 as the low and high memory
budget for HS-CAI, RMB-DPOP and BIP, respectively. For fairness, we set the memory
for BIP to be the same as the one for HS-CAI (i.e., O(|C (ai) |dk

max) ). The experiments are
conducted on an i7-7820x workstation with 32GB of memory and we set the timeout to 30
minutes for each algorithm.

5.2 Experimental Results
Figure 4 presents the experimental results under different numbers of agents on the sparse
configuration, and the corresponding improvement over the originals is displayed in the first
two rows of Table 2 where the numbers greater than zero are shown in bold. It can be seen
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Figure 4 Performance comparison under different numbers of agents on the sparse configuration.

Table 2 The improvement of the BIP-based algorithms over their respective originals.

that the BIP-based algorithms exhibit a great advantage on all the metrics in most cases
and the advantage expands as k increases. This is because more agents performing BIP
can lead to better pruning efficiency under larger k. Moreover, the BIP-based algorithms
can scale up to larger problems when k = 4 and their scalability is further enhanced when
k = 8. In more detail, BnB-ADOPT+-FDAC can only solve problems with the number
of agents no greater than 24, and ADOPT+-FDAC+BIP can scale up to 26 and 28 when
k = 4 and k = 8, respectively. The similar phenomenon can be found from PT-FB+BIP
and HS-CAI(k = 4)+BIP(k = 4). In addition, RMB-DPOP has a great advantage over
the search algorithms on the number of messages, but performs worse than all the search
algorithms except BnB-ADOPT+-FDAC and BnB-ADOPT+-FDAC+BIP(k = 4) in terms
of the NCLOs. Besides, when k = 8, HS-CAI is superior to RMB-DPOP in terms of the
network load in most cases and HS-CAI+BIP greatly expands the superiority of HS-CAI
over RMB-DPOP.

Figure 5 presents the experimental results under different numbers of agents on the dense
configuration, and the third and fourth rows of Table 2 show the corresponding improvement
over the originals. It can be seen that the BIP-based algorithms also perform better than
their originals in terms of both the number of messages and network load. However, the

6 In the sparse configuration, HS-CAI+BIP is superior to HS-CAI on the NCLOs and the superiority
expands as the number of agents increases when the number of agents is greater than 26.

7 In the configuration of varying domain size, we set the number of agents to 22 and HS-CAI+BIP is
inferior to HS-CAI on the NCLOs, while HS-CAI+BIP will be superior to HS-CAI on this metric when
the number of agents is greater than 26, which can be seen from Figure 4(c).
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Figure 5 Performance comparison under different numbers of agents on the dense configuration.

gaps narrow compared to the ones on the sparse configuration. This is because less agents
at the high positions of the pseudo-tree perform BIP on the dense configuration, which
impairs pruning efficiency. In addition, BIP does not always perform well in terms of the
NCLOs on the dense configuration. That is because the computational consumption of BIP
is exponential to the number of (pseudo) children of an agent and there are more agents
with a large number of (pseudo) children in the dense configuration. Compared to the search
algorithms, the performance of RMB-DPOP is similar to the one on the sparse configuration.
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Figure 6 Performance comparison under different domain sizes.

Figure 6 presents the experimental results under different domain sizes, and the corres-
ponding improvement over the originals can be found in the fifth and sixth rows of Table 2.
We can see that BIP still works well when facing the problems with larger domain size.
However, the improvement gaps narrow as the domain size increases. This is because the
proportion of values pruned out by BIP reduces at large domain size. In addition, the
BIP-based algorithms can solve the problems with larger domain size than their originals. In
more detail, PT-FB can not solve the problems with the domain size greater than 5, while
PT-FB+BIP can scale up to the ones with the domain size of 6 when k = 4, and further to
the ones with the domain size of 7 when k = 8. When facing the problems with larger domain
size, the performance of RMB-DPOP is similar to the one in the first two configurations.
It is worth noting that the number of messages of RMB-DPOP(k = 8) holds steady as the
domain size increases. That is because under this configuration, it performs just like DPOP
where the number of messages is linear to the number of agents.

Figure 7 presents the experimental results on scale-free networks and the seventh and
eighth rows of Table 2 show the corresponding improvement over the originals. It can be
seen that the BIP-based algorithms exhibit a great advantage over their originals on all
the metrics in most cases and the advantage expands as k increases, which is similar to
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Figure 7 Performance comparison on scale-free networks.

the results on random DCOPs. In addition, when k = 8, both BnB-ADOPT+-FDAC+BIP
and PT-FB+BIP can scale up to the problems with larger m1 than their originals. The
performance of RMB-DPOP is similar to the one on random DCOPs.

From Table 2, we can see that BIP can improve the tree-based complete search algorithms
in terms of both the number of messages and network load in all the experimental configur-
ations. This is because BIP can significantly reduce the search space without introducing
any new messages, and only adds some extra attachments which only require linear memory
to forwarding messages. Thus, BIP is well suited for some real-world applications that
are equipped with devices with the limited memory and desire for lower communication
overheads. In addition, BIP can greatly improve the search-based algorithms under the
sparse configuration on all the metrics. Thus, BIP is also well suited for solving the real-world
applications with low graph density.

6 Conclusion

Complete search algorithms for DCOPs depend solely on bounds to prune the search space.
However, obtaining strong lower bounds come at a high price. The paper presents a novel
pruning technique named BIP which can independently reduce the search space only by
means of local knowledge and running contexts. To the best of our knowledge, BIP is the
first pruning technique independent of bounds for tree-based complete search algorithms to
solve a DCOP. Moreover, our proposed BIP can be easily applied to any existing tree-based
complete search algorithms for DCOPs with minor modifications. We theoretically prove the
correctness of our technique and our empirical evaluation confirms its great superiority. It is
worth noting that our proposed BIP is not specific to tree-based complete search algorithms
for DCOPs and can be easily adapted to other backtracking search algorithms for distributed
and centralized optimization problems.
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Abstract
The traditional Capacitated Vehicle Routing Problem (CVRP) minimizes the total distance of the
routes under the capacity constraints of the vehicles. But more often, the objective involves multiple
criteria including not only the total distance of the tour but also other factors such as travel costs,
travel time, and fuel consumption. Moreover, in reality, there are numerous implicit preferences
ingrained in the minds of the route planners and the drivers. Drivers, for instance, have familiarity
with certain neighborhoods and knowledge of the state of roads, and often consider the best places
for rest and lunch breaks. This knowledge is difficult to formulate and balance when operational
routing decisions have to be made.

This motivates us to learn the implicit preferences from past solutions and to incorporate
these learned preferences in the optimization process. These preferences are in the form of arc
probabilities, i.e., the more preferred a route is, the higher is the joint probability. The novelty
of this work is the use of a neural network model to estimate the arc probabilities, which allows
for additional features and automatic parameter estimation. This first requires identifying suitable
features, neural architectures and loss functions, taking into account that there is typically few data
available. We investigate the difference with a prior weighted Markov counting approach, and study
the applicability of neural networks in this setting.
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1 Introduction

Although the Vehicle Routing Problem (VRP) and its many variants have been extensively
studied in the literature, the “theoretical optimal” solution often does not meet the expect-
ations of the route planners and the drivers. This is because in real-life operations, the
acceptability of a route is dependent not only on distance, travel time or fuel consumption,
which have been studied in the literature, but also on multiple factors which are difficult to
put in the objective function. A study by [2] has revealed that local drivers prefer routes
that are not optimal in terms of travel time or cost. The drivers take into account several
factors which are not in the objective function such as traffic congestion and availability of
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parking and fuel stations. This highlights the necessity of preference-based routing where the
objective is to minimize the travel cost as perceived by the drivers and the planners. To put
it another way, we can see it as maximizing the utility of the drivers and the planners.

In this work, we propose VRP solutions which are acceptable to the route planners and
the drivers. We start from the setting studied in [1], which proposes the maximum likelihood
routing. Maximum likelihood routing considers the transition probabilities between the stops
as revealed preferences of the drivers and the planners and finds the maximum utility route
by maximizing the joint transition probabilities. To estimate the transition probabilities, [1]
uses a Markov counting approach which enumerates the past solutions for each realized route.
Their approach uses only the past solutions for probabilities estimation but cannot make
use of contextual features such as day of week. We extend their framework to use a neural
network model to estimate the transition probabilities before finding the route by applying
maximum likelihood routing. The motivation behind using the neural network model is
to generate a better estimation of the cost vector by using historical as well as contextual
information in the neural network model.

We start with a neural network model which is trained using both contextual information
and past solutions. We also include the Markov prediction as a feature in the neural
network and observe improvement in the solution quality. Finally, we choose a parsimonious
architecture in order to avoid overfitting and with this we are able to outperform [1].

Contributions.
We formulate the challenge of neural network-based learning of hidden preferences from
moderately sized data, in a way that is compatible with existing VRP solvers.
We investigate different features and architectures for such a neural network, more
specifically arc-based linear models combined into per-node probabilistic estimates.
We investigate how we can combine the Markov model and neural network, e.g., by
considering the Markov predictions as an input to the neural network model.
We propose two loss functions that allow for gradient-descent learning: one based on
standard multi-class losses and another based on decision-focused learning that incorporate
the VRP solving into the loss function.

2 Related Work

The VRP [3] has been studied with its many different variations. Traditional VRP minimizes
a tangible objective such as operational costs [10], travel time [13], fuel consumption or
carbon emission [26, 19]. Although multiple aspects of the assignment schedules of the drivers
such as route balancing [14] have been studied, learning and optimizing drivers’ preferences
has recently received increasing attention.

The preferences of the drivers can be considered by including them in the objective
function. This can be treated in a multi-objective VRP [11] setting, such as forming an
objective function as a weighted sum or finding the set of Pareto optimal solutions based
on standard multi-objective evolutionary algorithms [21]. However, the preferences of the
drivers are implicit [22] and in most cases, explicit formalization of these preferences is not
possible in practice.

Authors in [1] tackled the problem from a different perspective: they introduce a weighted
Markov model to learn the preferences. This approach avoids the explicit specification of the
preference constraints and the implicit sub-objectives. The Markovian model is built using
preferences learned from past solutions, which the planners have constructed by modifying
solutions given by off-the-self solvers. Contrary to their work, we use a neural network model
to learn the drivers’ preferences, allowing a more flexible and general framework.
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Learning preferences for drivers have been focused mainly in the setting of one single
origin and destination. TRIP [15] leverages past GPS data to learn drivers’ preferences
by comparing the ratios of the drivers’ travel time to the average travel time, and with
that, it generates routes that mimic the ones chosen by the drivers. The approach in [6]
also deduces driving preferences from GPS traces and models them into the weights of a
linear programming formulation, which is then optimized to generate new route suggestions.
The authors in [8] are able to enhance the quality of the solutions by considering different
routing preferences that vary depending on the contexts. While we do not provide an explicit
representation of the preferences, we assume that the preferences can be expressed in terms
of probabilities (or utilities) of the arcs in the graph.

Decision-focused learning [25, 5], which combines gradient-based neural network and
optimization into a single framework, has recently received much attention in operations
research. In this setup, the outputs of the neural network are fed into the optimization
module as one of the inputs. The novelty of this approach is that it trains the neural network
model while considering the objective value in the optimization problem. Decision-focused
learning of submodular optimization problems, zero-sum games and SAT problems have
been studied in [25, 17, 24] respectively. The approach proposed by [20] also combines a
neural network model with any given optimization oracle via “implicit interpolation”. Ours
is the first work which uses this framework for learning preferences in the context of vehicle
routing.

3 Preliminaries

3.1 Problem Description
In this work, we are interested in the route planning process of an actual small transportation
company. The route planners in the company are responsible for organizing tours for a fleet
of vehicles in order to deliver goods to the customers. Although they use a commercial route
optimization software to produce routes that are optimal in terms of route length and travel
time, they are hardly satisfied with the solutions. Solutions have to be modified to come up
with a tour which is acceptable to the planners, drivers, and other stakeholders. In this way,
the planners are implicitly optimizing the utilities of all those involved.

One way to approach this problem is to explicitly define the set of objectives. However,
it is nearly impossible to model such personal preferences. We observe that the planners
start from past realized routes because they require minimal modifications compared to the
“theoretical optimal” routes. Therefore, in a way, the past solutions capture the preferences
(or the utilities) of the planners and the drivers. Our objective in this work is to learn the
latent preferences of the drivers and the route planners for vehicle routing using a neural
network model and propose tours which are acceptable to the planners. More specifically, we
will focus on learning preferences at the arc level. We consider the transition probabilities as
revealed preferences. We use neural network to output the transition probabilities between
every pair of nodes. The advantage of this formulation is that we can use the negative log
probability in place of a traditional travel cost in any existing VRP solver.

Challenges. A machine learning model learns from training instances. In our case with the
company data, each instance is realized in a day. However, due to functional and operational
reasons, tours are not organized each day. Putting that into perspective, it would take more
than 6 months to collect only 180 training instances. Consequently, we are not in a state
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to use a neural network model trained with thousands of training instances. Hence, we
have to be particularly careful about using a neural network model with a large number of
parameters, as such network is prone to overfitting with small data.

Another challenge in this case is that not all customers raise a demand request with equal
frequency. In fact, some customers have daily requests, whereas others raise requests only
once or twice in a month. Depending on which set of customers raise a request, there can
be considerable changes in the tour. We also observe a weekly pattern in the tours, i.e.,
tours of one weekday are different from the other days but very similar to those from the
same weekday of the previous weeks. Therefore, learning the weekly patterns from a limited
number of weeks poses another challenge.

3.2 Formalization
We begin by formalizing the objective and the data structures. Formally, on a given day t,
St is the set of stops to be served by a number mt of homogeneous vehicles. We represent
St .= {0, 1, . . . , n}, where 0 represents the depot, and the other nodes represent the customers.
Let At define the set of all arcs in St.

We call xt a routing with respect to St with mt homogeneous vehicles, if xt contains a
set of at most mt tours in St with each tour starting from and ending at the depot 0 and
each node in St is visited exactly once to satisfy its demand request. Additionally, a feasible
routing should ensure that the total demand allocated to each vehicle does not exceed its
capacity Q. Let Xmt

St denote all feasible routings of mt vehicles over St. The objective in
standard CVRP is to minimize the total travel costs of the routing. We remark that the
depot is fixed and always present but the set of stops St changes from one day to another as
not all customers raise a demand request each day.

For learning the preferences from past data, we are given a dataset H = {(St, zt, Xt)}T
t=1.

Each instance in the dataset is a tuple where t is a timestamp, St is the set of stops served
at t, Xt denotes the actual preferred routing created by the planners, and zt are feature
variables such as the demand of each stop, the number of vehicles used, the day of the week,
or some other known parameters. Hereafter, we will use the symbols without the suffix t to
avoid notational complexity.

3.3 Transition Probabilities
Explicit specification of the preferences of the drivers and the planners would result in a
complex model with a large number of parameters to tune. Instead, in this paper, we use the
framework of [1], which captures the preferences of the route planners and the drivers using
transition probabilities. In more formal terms, we learn a model which assigns probabilities
to all the arcs within the network. Our hope is that these transition probabilities subsume
the hidden preferences of the route planners and the drivers. Formally, we learn Pr(r|s)
which denotes the probability of the next stop being r, conditional on the current stop s. We
remark that the transition probability would be a function of some temporal and contextual
attributes including but not limited to the traditional cost measures.

3.4 Maximum Likelihood Routing
Once the probabilities are learned, we follow the methodology of [1] to find the most likely
routing from the set of all feasible routings. We call the routing with the highest probability
the maximum likelihood routing (MLE routing). Formally,

max
x∈X m

S

∏
(s→r)∈x

Pr(r|s). (1)
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In order to identify the MLE routing, we solve an optimization problem whose feasible region
is defined by the following standard CVRP constraints [23].∑

r∈V, r ̸=s

xsr = 1 s ∈ S (2)

∑
s∈V, s̸=r

xsr = 1 r ∈ S (3)

n∑
r=1

x0r = m (4)

if xsr = 1 ⇒ us + qr = ur (s, r) ∈ A : t ̸= 0, s ̸= 0 (5)
qs ≤ us ≤ Q s ∈ S\{0} (6)
xsr ∈ {0, 1} (s, r) ∈ A. (7)

(2) and (3) ensure that each customer is served by exactly one vehicle. (5) performs subtour
elimination. (6) ensures that the vehicle capacity is respected. We remark that in (4), we use
the equality constraint because in practice, the company must use all the available vehicles.
The only modification from the standard CVRP is that instead of minimizing the distance,
we maximize the joint probability. To transform the product in the objective function into a
sum, we consider log probabilities in the objective function and minimize the following:

min
x

∑
(s,r) ∈ A

−log Pr(r|s)xsr (8)

In the subsequent discussions, the (s, r)-th entry of matrix P would contain Pr(r|s).

3.5 Transition Probability Estimation by Markov Counting
The goal of the Markov Counting approach is to estimate all the conditional probabilities
Pr(r|s) over the set of all stops in the data: Sall =

⋃
t St. From conditional probability theory,

we have:

Pr(r|s) = Pr(s→ r)
Pr(s) , (9)

where Pr(s) =
∑

u Pr(s → u). By defining the frequency of a transition (s → r) in the
historical dataset H as fsr =

∑
tJ (s→ r ∈ Xt) K, where J · K equals 1 if the statement inside

the bracket is true and 0 otherwise, the conditional probabilities from the dataset can be
estimated by:

Pr(r|s) = fsr∑
u fsu

. (10)

We point out that with this formulation, we can solve the standard CVRP which minimizes
the distance if we replace Pr(r|s) by a distance-based probability Prdist(r|s):

Prdist(r|s) = e−dsr∑
u e−dsu

. (11)

The transition probability matrix construction algorithm presented in [1] makes use of
weighing schemes, where a variable weight wt is defined for each historical instance in H. This
weight varies according to the properties of the tuple (St, zt, Xt). Giving varying weights to
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each historical instance affects the way the transition frequencies are counted, hence each
weighing scheme results in a different transition matrix. Exponential weighing is one of the
most used scheme, where instances far-off in the past receive decaying weights. Therefore, in
our experiments, we will compare our approach with the Markov model with the exponential
weighing scheme.

4 Learning the Transition Probabilities Using Neural Network

One limitation of the Markov counting approach introduced in section 3.5 is that it only uses
past data to arrive at the probabilities. We want the transition probabilities to be a function
of other attributes such as the day of week and the distances between stops, among others.
This is the motivation behind using a neural network model.

Neural networks are made of interconnected units called neurons. A single neuron takes a
series of inputs z0, ..., zn and returns an output o as a function of the inputs o = f(

∑
wizi),

or in matrix form o = f(Wz), where f is an activation function and wi’s are the weights.
Many choices for the activation function exist – sigmoid, ReLU, tanh are some of the widely
used activation functions. A network consists of several layers, and multiple neurons are
stacked in each layer where the inputs are connected to each neuron. The output of the
layer can be conveniently described in matrix form as o = f(Wz). Here, each row of W

corresponds to each neuron. The dimension of output o is controlled by the dimension of
matrix W . In a multilayer network, the subsequent layers use the outputs of the preceding
layers as inputs. Obviously, the designer has the option to transform the output between
two layers.

A multilayer neural network is considered as a universal function approximator [16],
which tries to learn the functional relationship between the output and the input. To do
so, the parameters of the neural network must be learned using training data. This is done
by backpropagating the loss between the predicted output and the target output. During
backpropagation, the derivative of the final loss with respect to the weights is computed
and then the weights are updated by gradient descent. The choice of the loss function is
dependent on the problem at hand. For a multiclass classification approach, categorical cross
entropy loss is the preferred choice.

We propose to learn the transition probabilities between the stops from the historical data
using a neural network. For a single day t, we have (St, zt, Xt) as explained in section 3.5.

Feature variables. We want the predicted probabilities to be a function of the feature
variables. Different types of features can be considered: time-lagged temporal features,
features related to the set of stops to be served (St), the distance between the stops and
contextual features such as day of week, number of vehicles. The motivation behind using
the time-lagged solutions as features is to learn from past solutions. We define the look
back period (L) as the maximum number of past observations considered in our model. The
motivation of this look back period is two-fold: 1. it allows us to model the fact that past
observations lose their relevance over time, and 2. to avoid problems of over-fitting due to
lack of observations. We can also consider the output of the Markov counting model as a
feature, as it subsumes past information. Moreover, this can be computed easily on the fly.

From this discussion, it is evident that some of the features are specific to an arc. This
includes the time-lagged features, the distances and the Markov probabilities. On the other
hand, features such as day of week and stops to be served are the same across all the stops.
All of these are considered as an input to the neural network in Figure 1.
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Figure 1 Neural network architecture to estimate transition probbailities from a source node s.

Architecture of the neural network. Our goal is to build a network that estimates the
transition probabilities for each arc (s, r) ∈ A. We have |A|×|A| distance features, L×|A|×|A|
time lagged features and |K| number of contextual features. Because of limited data, our
aim is to build a parsimonious network with as few parameters as possible.

Authors in [1] propose a linear combination of Markov probabilities (Eq. 10) and distance-
based probabilities (Eq. 11), P t = ωP t

Markov + (1 − ω)P t
dist. Essentially, this approach

considers these two factors while computing the probabilities. Furthermore, this can be
extended to more number of feature variables in general. The advantage of using a neural
network is that it learns the weights of the linear combination itself.

The final layer of the proposed architecture in Figure 1 performs this linear combination.
This linear layer outputs unnormalized scores and a softmax operation upon these would
result in the probabilities. As the outputs are unnormalized scores, so should be the inputs
and that is why we log-transform the Markov probabilities. The distance based probabilities
are arrived by considering the softmax of the distances from the source stop s.

We treat the categorical features such as day of week and stops to be served, by passing
them to embedding layers before feeding them to the linear layer. The embedding layer
computes dense vector representations of the categorical variables. The numerical feature
variables such as the number of vehicles are passed directly to the final layer.

We treat the time-lagged solutions between (s, r) by considering linear combinations of L

previous solutions of (s, r). The first linear layer considers past solutions of the look back
period as inputs and its output is a score based on that. Thus, the stop which has been
chosen more often as the next stop, would be assigned a higher score. We remark that there
are other ways to treat time-lagged variables such as LSTM [7], but they might be prone to
overfitting because they have a large number of parameters.
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Algorithm 1 Transition probability estimation from source stop s.

Input :
Historical solutions up to day T: {(St, zt, Xt)}T

t=1
s: the source stop

1 active days ←− list of days where s is active
2 Model.initialize();
3 for t in active days do
4 xt

(s) ← Xt[s, :] // target solution

5 Pastt
(s) ← {Xt′ [s, :]|t′ ∈ active days[-(look back period):] }

6 if length(active days) < look back period then
7 Fill the remaining days with equiprobable probabilities vector
8 end

9 Ht ←
(

zt
(s), Pastt

(s)

)
10 for training epochs do
11 P̂ t[s, :]← Model.Predict(Ht)
12 L← Cross Entropy(P̂ t[s, :], xt

(s))
13 Update Model by backpropagating ∇P̂ t(L)
14 end
15 end

The final linear layer outputs a score between s and a destination node. So essentially,
there are |A| number of such linear layers. The use of neural network gives us the flexibility
to use separate weights for the linear layers of every destination node. Obviously, this may
result in overfitting as the number of parameters increase.

Other than the contextual features, which are the same for all (s, r), the other inputs to
the linear layer are specific to (s, r) and so is the output. We use a separate model for
each source node s and each of them generates transition probabilities from the source
node to all the other nodes.

Algorithm. Algorithm 1 proposes a training scheme for estimating probabilities from a
single source stop s to the others. We use all the features including the time-lagged solutions
day t, to estimate the transition probabilities on day t. This past data (Pastt

(s)) is obtained
by extracting the corresponding row from the incidence matrix. As the training is for s, we
only consider the next stop visited after it in the past. Hence, we formulate it as a multiclass
classification problem, where the classes are the possible next stops and the objective is to
classify them correctly. We use different models for different stops and while training the
model for a stop s, we only consider past days where s was served. For any stop that does
not have enough past data, to fill the look back period, the remainder of the look back
period are filled with uniform distribution over the set of possible next stops.

Loss function. We formulate the learning problem as a multiclass classification task. The
classification problem is to identify the next stop after s. While training we do not consider
any VRP constraints, i.e., the transition probabilities of all the stops can be nonzero regardless
of whether they are active or not. Once the neural network predicts the transition probability
vector p(s), we compute the cross entropy loss with respect to the actual solution x(s).

L(p(s), x(s)) = −
∑
u∈V

xsu log(psu) (12)
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Algorithm 2 Evaluation of Maximum Likelihood Routing.

Input : ST +1, zT +1, {Xt}T +1
t=1

1 for each stop s in ST +1 do
2 active days ←− list of days s is active
3 Model ← Algorithm 1 ({(St, zt, Xt)}T

t=1, s) // Model training
4 if length(active days) ≥ look back period then
5 PastT

(s) ← {XT ′ [s, :]|T ′ ∈ active days[-(look back period):] }
6 end
7 else
8 PastT

(s) ← {XT ′ [s, :]|T ′ ∈ active days }
9 end

10 HT +1 ←
(

zT +1
(s) , PastT +1

(s)

)
11 Model ←− Model dictionary [s]
12 P̂ T +1[s,:] ←− Model.predict(HT +1)
13 end
14 MLE Routing (−log(P T +1)); Compare with XT +1

Finally this loss is backpropagated to update the parameters of the neural network.
Algorithm 2 shows how we utilize the estimated transition probabilities to come up with
the maximum likelihood solutions. Once we train the models for each stop using the data
available until day T, we use it for routing on day T + 1. To do so, first we estimate the
transition probabilities for each stop using the trained models. The (s, r)-th entry of the
matrix P̂ contains the estimated transition probability of going from stop s stop r. Then
using the estimated transition probability matrix P̂ , we solve the maximum likelihood routing
problem.

5 Decision Focused Learning

The approaches proposed so far consider the prediction of the transition probabilities and the
VRP optimization separately. Such approaches can be viewed as two-stage approaches [4],
where a neural network model is separately trained to estimate the unknown coefficients of
an optimization problem.

One drawback of such a two-stage approach is the neural network model fails to incorporate
information from the optimization problem. As the neural network model is trained without
regard for the downstream optimization problem, the loss function fails to consider the
impact of the predicted coefficients on the final objective value of the optimization problem.

Decision focused learning approaches [5, 25], on the other hand, consider how effective
the predicted values are to solve the optimization problem and is trained with respect to the
optimization task loss rather than a prediction loss such as cross entropy loss.

In Algorithm 3 we show our implementation of the decision focused learning approach
for this problem. We implement the methodology of [20] to differentiate a combinatorial
optimization problem with linear objective.
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Algorithm 3 Decision Focused Learning Algorithm.

Input : Historic solutions till days T: {(st, zt, Xt)}T
t=1

1 for training epochs do
2 for t in 1 to T do
3 for each stop s in ST +1 do
4 xt

(s) ← Xt[s, :]
5 Pastt

(s) ← {Xt′ [s, :]|t′ ∈ active days ∧ |Pastt
(s)| ≤ lookback period}

6 Ht ←
(

zt
(s), Pastt

(s)

)
7 P̂ t[s, :]← Model(s).P redict(Ht)
8 end
9 π̂ ← −log(P̂ t)

10 X̂t ← MLE Routing(π)
11 L← sum(ReLU(Xt − X̂t))
12 π̃ ← π̂ − λ dL

dX̂t

13 X̃ ← MLE Routing(π̃)
14 ∇π(L)← − 1

λ [X̂t − X̃]
15 for each stop s in ST +1 do

16 Model(s).backpropagate
(
∇π(L)[s, :]

)
17 end
18 end
19 end

They consider an optimization problem minX∈χ f(π, X) with a linear objective. X̂∗(π̂)
is the solution by using predicted π̂ and the final optimization task loss is L(X∗(π), X̂∗(π̂)).
The gradient of this task loss with respect to π̂ is the following

∇π̂L(X∗(π), X̂∗(π̂)) = − 1
λ

[X̂∗(π̂)− X̃∗(π̃)] (13)

where π̃ is a perturbation around the predicted π̂, given by

π̃ = π̂ + λ
dL(X∗(π), X̂∗(π̂))

dX̂∗(π̂)
(14)

In our setting, π is the matrix of negative log probability vectors i.e. π = − log(P ), and X

is the resulted routing. The final task is to minimize the difference between the actual route
and the proposed route. So a suitable choice for the task loss is to consider arc difference,
the number of arcs present in the actual solution but not in the predicted solution. Formally,

L(X∗(π), X̂∗(π̂)) = Sum(ReLU(X∗(π)− X̂∗(π̂))) =
∑

(i,j)∈dim(X)

max
(
xij − x̂ij , 0

)
(15)

here Sum is the summation of all the elements of the matrix. The derivative of L can be
computed s follows

dL(X∗(π), X̂∗(π̂))
dX̂∗(π̂)

=
{
−1 if x̂ij < xij

0 otherwise
∀(i, j) ∈ dim(X̂∗) (16)
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If we consider a squared loss instead of the ReLU, we replace max
(
xij − x̂ij , 0

)
with(

xij − x̂ij

)2. In this case the derivative would be

dL(X∗(π), X̂∗(π̂))
dX̂∗(π̂)

=


−2 if x̂ij < xij

2 if x̂ij > xij

0 otherwise
∀(i, j) ∈ dim(X̂∗) (17)

Intuitively, if i → j is present in X, but not in X̂, then we lower πij by λ and with this
generate a new solution with. A scaled difference between these two solutions is the gradient
with respect to π.

6 Experimental Evaluation

6.1 Evaluation Criteria
We are interested in how the MLE routing solutions differ from the used routes. To do so,
we evaluate the performance using the following two evaluation measures.

Arc Difference (AD). measures the number of arcs traveled in the actual solution but not
in the MLE routing solution. It is calculated by taking the set difference of the arc sets of
the test and predicted solutions. The percentage is computed by dividing AD by the total
number of arcs in the whole routing.

Route Difference (RD). indicates the number of stops that were incorrectly assigned to
a different route. Intuitively, RD may be interpreted as an estimate of how many moves
between routes are necessary when modifying the predicted MLE solution to match the
actual routing. To compute RD, the pair of routes with the smallest difference in stops is
greedily selected without replacement. The total number of incorrectly assigned stops is
considered as RD. The percentage is computed by dividing RD by the total number of stops
in the whole routing.

We also present the cross entropy (CE) loss as the neural network models are trained
with respect to this criterion.

6.2 Data Description
For empirical evaluation1, we use actual historical data from a logistics company to compare
the performance of our proposed approaches against the Markov model presented in [1].
The data consists of 201 daily routings collected in a span of 39 weeks. It has 73 unique
customers, each representing a node other than the depot. In each instance, an average of 31
stops are serviced by an average of 8 vehicles. We group the instances by day of the week,
giving us an average of 29 instances per weekday. In training and testing the models, we
used a 75%-25% split while ensuring that we have exactly 7 testing instances per weekday.
We use a rolling window model for valuation, where the lookback period remains fixed and
counts backwards from the most recent observation.

In Table 3, we present the percentage AD and RD of the Markov approaches on the
test instances for each day of week. The Markov (allday) approach arrives on the transition

1 The code and the anonymised data are available at https://github.com/JayMan91/
CP2021-Data-Driven-VRP.
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probability by considering all past days. On the contrary, the Markov (weekday) approach
considers only those past instances which occurred on the same day of week as the evaluation
instances. Both the approaches use Eq. (10) to compute the probabilities. We can see in
Table 3 that Markov (allday) performs better on the weekdays, but its result worsens on the
weekends. Due to the operational characteristics of the company, the number of customers,
number of available vehicles, and hence the routing decisions tend to be highly dependent
on the day-of-week. So there is a strong influence of the day on the probabilities. Probably,
this is why [1] preferred the Markov (weekday) approach. The motivation behind the neural
network approach is that it can consider the day of week as feature, so that we do not have
to compute the probability separately for each day. Moreover, other feature variables can
easily be passed into the neural network.

In our experiment we consider the following feature variables to predict the transition
probabilities− a. day of week, b. the set of stops to be served, c. distance between the
stops, d. number of available vehicles, e. routings used in the past, f. transition probabilities
computed by Markov (weekday).

6.3 Experimental Results
In this section, we will address the following research questions

Choice of the feature variables and the network architecture in a systematic way
Compare the quality of predictions of the neural network trained with respect to the CE
loss with that of Markov counting approach
The effectiveness of a decision focused approach, which trains the network to directly
minimize AD

6.3.1 Choice of Network Architecture and Feature Variables
As mentioned in Section 4, there are many choices for the network architecture and because
of limited data we are careful to avoid overfitting.2 In Table 1, we first present the impact
of feature variables on the quality of predictions. We show the cross entropy loss on both
training and test data and AD and RD on test data. We point out that the network presented
in Figure 1 results in the lowest training loss among them. On the other hand, a network only
with Markov probabilities as input lowers test loss and lower AD, RD. A network without
the time-lagged data has even lower CE loss on the test instances and lowest AD and RD
suggesting that past information is already subsumed in the Markov probabilities, making
the time-lagged information redundant. The Markov probabilities along with the contextual
information seem to be the right choice for the feature variables.

In the lower section of Table 1, we present two alternative architecture choices. The first
one replaces the linear layer of the lagged solutions with an LSTM. The second one has
different weights for different destination stops in the final layer in Figure 1.

It shows that using different weights for different destination stops results in lowest
training CE loss. But this model clearly overfits, as the performance is poor on the test data.
The LSTM model seems to improve on CE loss but not on AD and RD measures. So overall,
the model without the past data results in lowest CE loss as well as lowest AD and RD.
This model has the Markov probabilities as input, and the past information carried by this
probability.

2 We use Pytorch [18] and Gurobi [9] for neural network and VRP models respectively.
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Table 1 Investigation into feature variables and architectures.

Model Training CE Test CE AD AD (%) RD RD(%)

Experiment on feature variables

Neural Net 2.14 1.10 6.27 19.80 4.57 18.04
Neural Net
(without past data) 2.48 1.04 5.68 18.04 4.30 17.02

Neural Net
(without weekday) 2.14 1.09 6.24 19.75 4.59 18.03

Neural Net
(without stop information) 2.20 1.13 6.28 19.86 4.56 17.97

Neural Net
(without distance) 2.20 1.10 6.18 19.54 4.46 17.62

Neural Net
(without Markov probabilities) 2.43 1.49 7.99 26.26 5.32 21.38

Neural Net
(only Markov probabilities) 2.58 1.07 5.95 18.85 4.29 16.93

Experiment on architecture choice

LSTM 2.22 1.01 6.35 20.10 4.49 17.75
Linear Layer
different for each stop 1.37 1.82 7.21 22.81 4.74 18.57

6.3.2 Neural Network Predictions

Table 2 Comparison of Neural Network with Markov Counting (Actual Distance is 413 km.)

CE loss Arc Difference (AD) Route Difference (RD) Distance
(km.)

Absolute Percent Absolute Percent

Markov
(allday) 2.77 10.33 35.69 6.29 25.75 424

Markov
(weekday) 2.44 5.86 18.55 4.39 17.26 418

Neural
Net 1.04 5.68 18.04 4.30 17.02 414

Conventional
VRP 11.90 21.47 73.14 11.65 46.93 366

The last section suggests to consider a network without the lagged variables for this task.
Next, we compare the quality of predictions of this model shown to that of Markov counting
approach. We present the average of CE loss, AD, RD between the actual solutions and
generated solution on test instances in Table 2. We also present the distance of the solutions
of these approaches. We point out in Table 2 that a neural network model results in lower
CE loss, which is expected as the model is trained with that objective. Moreover, we also
observe lower AD and RD with this model. We also present results of a conventional VRP
algorithm, which is the best in terms of total distance covered, but clearly very far off from
the preferred solution. Table 3 presents this comparison in more detail, where we evaluate for
each day of week separately. Although we do not need to train the neural network separately
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Table 3 Daywise Analysis of Arc Difference and Route Difference.

Arc Difference(%) Route Difference(%)

Markov
(allday)

Markov
(weekday)

Neural
Net

Markov
(allday)

Markov
(weekday)

Neural
Net

Monday 51.53 23.62 23.62 27.98 21.75 21.25
Tuesday 24.96 25.61 25.82 29.15 28.87 30.85
Wednesday 19.61 21.30 20.48 17.96 15.12 14.61
Thursday 24.89 22.86 21.17 19.75 18.63 17.08
Friday 19.18 19.38 18.08 13.74 13.19 11.54
Saturday 51.59 0.00 0.00 25.21 0.00 0.00
Sunday 58.09 17.08 17.11 46.48 23.23 23.82

Overall 35.69 18.55 18.04 25.75 17.26 17.02

for each day of week, by considering the Markov probabilities as inputs, it is able to generate
predictions which result in lower AD and RD. This demonstrates the advantage of the neural
network approach, which can consider multiple inputs, contextual as well as temporal, in a
single framework.

Figures 2 to 6 illustrate our approach for one instance. Figures 3 and 4 present the learned
transition probabilities and Figures 5 and 6 show the MLE routing of Markov weekday and
neural net respectively.

6.3.3 Decision Focused Learning
Next, we experiment with the decision focused learning approach introduced in section 5. We
use the same neural network architecture but trained with arc difference as the loss function,
and the loss backpropagted through a corresponding subgradient (Eq. (16)). We present the

Table 4 AD and RD with Decision Focused Learning.

CE loss
(test) Arc Difference (AD) Route Difference (RD) Distance

(km.)

Absolute Percent Absolute Percent

Relu
loss 2.77 13.76 45.96 9.51 38.54 434

Squared
loss 3.97 13.31 44.27 9.10 37.14 436

solution quality of this approach in Table 4. We can see, it fails to generate lower AD and
RD on the test instances. In fact, we observe AD reducing on training instances but not on
test instances, suggesting a case of overfitting. Only 152 instances is not enough to train a
complex model like this. So the poor quality can be attributed to limited amount of data.

7 Conclusion

We presented a neural network model which learns the transition probabilities between stops
in a CVRP setting. With these transition probabilities, we solve the MLE routing problem
instead of the conventional VRP. The resulting solution is able to mimic the solution preferred
by the route planners and drivers. In this way, we are able to include the preferences of the
planners and the drivers implicitly in the VRP solution.
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Figure 2 Human-made
solution
.

Figure 3 Learned proba-
bilities (Markov)
.

Figure 4 Learned proba-
bilities (NN)
.

Figure 5 Markov
solution.

Figure 6 NN
solution.

We extend on the work of [1]. The novelty of our approach is to use a neural network
model to estimate the probabilities. Key developments are the use of an arc-based architecture
to control the number of trainable parameters, and the identification of the standard cross-
entropy classification loss as a suitable (and cheap to compute) proxy loss for training. This
leads us to develop a general framework for such problem setting, which has the flexibility of
taking contextual features including the output of [1] into consideration. By considering the
contextual features in a principled way, our approach marginally outperforms [1], emphasising
the advantage of a generic approach.

We also use a decision focused learning approach which directly trains the neural network
to minimize the final objective of minimizing the difference between the generated solution
and the preferred solution. Although this approach considers the structure of the VRP
optimization problem, our results show that it fails to generate good quality solutions in the
test data. We believe it is due to the limited number of training instances.

Our methodology relies on the presence of recurrent stops in our training set. Future
research will aim to extend our methodology to learn preferences over non-recurring stops. It
will also be interesting to investigate loss functions that include the structure of the CVRP
tackling the challenges of the scalability.
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A Experiment Setup

We use Pytorch [18] and Gurobi [9] for neural network and VRP models respectively. We
use Adam optimizer [12] implementation of Pytorch. The hyperparameters of each setup is
detailed below.

Table 5 Hyperparameters Configuration (For all experiments the embedding dimension of weekday
and stop feature are 6 and 40 respectively).

Learning
rate Epochs

Neural Net 0.1 50
Neural Net
(without past data) 0.1 100

Neural Net
(without weekday) 0.1 50

Neural Net
(without stop information) 0.1 100

Neural Net
(without distance) 0.1 100

Neural Net
(without Markov probabilities) 0.1 100

Neural Net
(only Markov probabilities) 0.1 100

LSTM 0.1 50
Linear Layer
different for stops 0.01 100
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Abstract
Empirical performance evaluations, in competitions and scientific publications, play a major role
in improving the state of the art in solving many automated reasoning problems, including SAT,
CSP and Bayesian network structure learning (BNSL). To empirically demonstrate the merit of a
new solver usually requires extensive experiments, with computational costs of CPU years. This
not only makes it difficult for researchers with limited access to computational resources to test
their ideas and publish their work, but also consumes large amounts of energy. We propose an
approach for comparing the performance of two algorithms: by performing runs on carefully chosen
instances, we obtain a probabilistic statement on which algorithm performs best, trading off between
the computational cost of running algorithms and the confidence in the result. We describe a set of
methods for this purpose and evaluate their efficacy on diverse datasets from SAT, CSP and BNSL.
On all these datasets, most of our approaches were able to choose the correct algorithm with about
95% accuracy, while using less than a third of the CPU time required for a full comparison; the best
methods reach this level of accuracy within less than 15% of the CPU time for a full comparison.
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1 Introduction

The amount of computational resources required to assess empirically whether a new auto-
mated reasoning algorithm exceeds state-of-the-art performance is growing as our ability
to run experiments on challenging benchmark instances expands. From the evaluation of
early algorithms against the human ability to solve given instances by hand [7] to extensive
competitions requiring CPU years to determine a winner [10, 24, 30], the demands for
computational power have grown along with the ability of state-of-the-art solvers to tackle
larger instances. Moreover, each published idea is often the result of a number of unsuccessful
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attempts, which developers either evaluated on a small set of instances, without a principled
way of knowing how representative this evaluation has been, or in a more extensive way,
implying days of CPU times.

This growth comes at a cost. By requiring large amounts of computational resources for
compelling performance comparisons, the community restricts the ability of researchers with
limited access to such resources to evaluate their ideas and publish their work. The energy
consumption of such computations is also an increasing concern. Our work addresses this
issue by proposing principled statistical methods to decide earlier when to stop running a
less promising solver.

We introduce the per-set efficient algorithm selection problem (PSEAS): Given two
algorithms, an incumbent Ainc and a challenger Ach, and a set of problem instances I, how
can we minimise the computational resources (here: CPU time) required to determine, at a
required level of confidence, whether Ach performs better than Ainc on I?

We are not aware of any prior work on this fundamental problem, but methods for
addressing variants of it are used in several contexts. This includes, for example, general-
purpose algorithm configurators, which compare the performance of several configurations
of a single algorithm. While most configurators, such as SMAC [14] or ParamILS [15],
simply look at the difference between their objective functions, the racing-based configurator
irace [20], inspired by prior racing procedures from machine learning [22], addresses the
problem of statistical confidence using a statistical test. However, all of them sample the
instances uniformly at random. Other related work comes from the area of per-instance
algorithm selection, for which Gent et al. [8] introduced a discrimination measure that we
adapted to our context.

We describe five methods for selecting on which instances to run the competing algorithms,
and three methods for deciding when to stop the evaluation. We compare the 15 resulting
approaches on four benchmarks for classic computational problems: the propositional satis-
fiability problem (SAT), the constraint satisfaction problem (CSP) and Bayesian network
structure learning (BNSL). On these datasets, our approaches can determine the better-
performing algorithm with up to 98% accuracy, while using less than a third of the CPU time
required for a full comparison, and the best methods achieve this level of accuracy within
less than 15% of the CPU time for an exhaustive comparison.

The remainder of this paper is organised as follows: In Section 2, we introduce the PSEAS
problem and present related work, and in Section 3, we describe methods for solving it.
Section 4 presents implementation details and the datasets used in our experiments. Section 5
explains some of our design choices with experimental results, and the results from our main
series of experiments are reported in Section 6. Finally, in Section 7, we draw some general
conclusions and discuss future work.

2 Background and related work

The PSEAS problem formalises the following question: How to compare a new solver against
the state of the art with as little computational power as possible? More specifically, how
to select on which instances to run the new algorithm to do this comparison and on which
criterion can this comparison be stopped if one algorithm performs significantly better than
the other? The PSEAS problem or small variations of it also appears in competitions, where
it could be used to disqualify low performing algorithms, or in algorithm configurators to
abandon less promising configurations faster. For simplicity, we consider an algorithm as a
method or solver with fixed parameter values and the state of the art as a single algorithm.
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To answer these questions, we suppose that we have prior knowledge about the performance
of the state-of-the-art algorithm, features describing the problem instances and performance
samples or performance distributions on those instances.

Definition of the per-set efficient algorithm selection problem (PSEAS)

We let I denote the set of instances, Tcut ∈ R+ the cutoff threshold, m the performance
metric that evaluates an algorithm on an instance, and c the cost function that evaluates the
cost of running an algorithm on an instance. We consider two algorithms: the incumbent
Ainc and the challenger Ach, and assume that the cost c(Ainc, I) and performance m(Ainc, I)
of running Ainc on an instance I is known for all instances, whereas these quantities are
unknown on all instances for Ach. This assumption is consistent with the fact that Ainc

represents the state of the art, hence can be assumed to have been evaluated on many
problems. The problem is to determine which of the two algorithms performs best according
to
∑

I∈I m(Ach, I) while running Ach only on a subset Irun ⊂ I that minimises the cost∑
I∈Irun

c(Ach, I).

Scope of this work

We pose A+ = A
⋃

{Ach} where A is a set of algorithms containing Ainc and providing
background knowledge. Unless stated otherwise, we write I for an instance in I and A for
an algorithm in A. For simplicity we consider the algorithms to be deterministic, hence for
an algorithm A ∈ A+, we define the running time as rt(A, I) ∈ [0, Tcut] for an instance I.
We define m(A, I) = c(A, I) = rt(A, I): the running time of an algorithm is considered as a
proxy for the energy cost of running it.

The performance of an algorithm is the sum on all instances of the running times
bounded by a fixed cutoff time. It is consistent with the typical performance metric used
in programming competitions, the Penalised Average Running time (PAR), which penalises
algorithms that do not solve an instance before the cutoff time by assigning them the score
of α times the cutoff time, for a constant α.

Some methods we describe rely on background knowledge about the set of instances. The
required knowledge varies from one to another but is similar to the one used in the algorithm
selection problem and thus readily accessible. We consider the following ways of specifying
the background knowledge:

Sample-based: for each instance I and algorithm A we have the running time rt(A, I) of
A on I.
Feature-based: for each instance I we have a feature vector fI .
Statistics-based : for each instance I we have a prior in the form of a probability distribution
δI over [0, Tcut], expressing that δI(t) is the probability that Ach solves the instance I at
time t. In practice, we obtain this prior by fitting a distribution to the running times
of A.

Note that above, A ̸= Ach, the background knowledge that is based on other algorithms.
The implicit assumption is that running times of algorithms from A and feature vectors of
the instances are both predictive of the running times of Ach: for instance, if all algorithms
in A solve an instance I very quickly, then so should Ach. In other words Ach is expected to
have similar behaviour as the algorithms in A. Similarly, if two feature vectors fI and fI′ are
close for two instances I, I ′, then their running times should be close. These assumptions are
prominently made in running-time prediction such as in Hutter et al. [16] and per-instance
algorithm configuration (see e.g. Kerschke et al. [17]). In other words, the key insights and
mathematical formalisation of our work are using the background knowledge described above
to evaluate the expected performance of Ach.
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Related work

To the best of our knowledge, the problem we address has not been studied as such in the
literature. However, similar questions appear in other settings.

In the early SAT Competitions (see e.g. the 2002 competition [27]), the competition
consisted of two stages: first they ran all the solvers on a subset of instances to extract the
top solvers, then the latter were run on all instances. The selection was done by experts: we
propose to address this problem in an automated manner on a solver pair basis.

In the context of instance generation for CP problems, Gent et al. [8] propose a way to
define how discriminating an instance is in order to generate instances for model selection
based on samples of running times. This method does not answer our aim to reduce the
running time but could lead to choose relevant instances. Thus, we included it in our
experiments with a minor change to account for running time minimisation.

When we decide on which instance to run our algorithm, a score is assigned to each
instance (see Section 3) which relates to the fitness functions used in evolutionary algorithms.
At the time of writing, we found no published method that could be easily applied to our
problem.1

For algorithm configuration (see e.g. Hoos [11]), which tries to find a set of parameter
that optimises the performances of a configurable algorithm, comparing the performance
of two configurations is a key element. SMAC and ROAR [14], as well as irace [20], pick
uniformly at random the instances on which they run it, without considering prior knowledge
they gathered. Racing procedures like irace are based on prior work from Maron and
Moore [22] which aimed at comparing many machine learning models on a subset of test
points to estimate their accuracy with a certain statistical confidence. In this line of work,
irace requires evidence in the form of a statistical test to decide when to stop running a less
promising configuration. SMAC and ROAR on the other hand compare the raw performance
metric. We included the statistical test from irace in our experiments.

Our problem is also related to the per-instance algorithm selection problem (see e.g.
Kerschke et al. [17]) in which one tries to know on which algorithm a specific instance should
be run to be solved with the best possible performance. There are key differences that prevent
us from using selection algorithms; typically their problem comes with prior knowledge in
the form of instances features, that we do not always assume to have, and running time of
the algorithms on other instances, which we do not have available for the new algorithm.
Also, our main goal is to reduce the time needed to evaluate which one is the best.

Finally, there is a significant link with problems tackled by active learning methods [29],
in particular the pool-based selective sampling problem, that tries to decide which instance
among a set of unlabeled instances should be evaluated next. Those methods are aimed
at a machine learning model and the choice of an instance is based on the impact it may
have on the model (e.g. reducing its variance or expected error). In this work we limit our
investigation to model-free methods.

3 Instance Selection and Discrimination Methods for PSEAS

Our goal is to define a strategy that sequentially chooses the instances on which to run
Ach and decides if the evidence so far gives sufficient confidence to stop the comparative
evaluation. Algorithm 1 formalises this iterative process using a score-based approach: each

1 We cover the recently published work of Bossek & Wagner [5] in Appendix B.
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instance is assigned a score, which may be updated along the comparison to – intuitively –
reflect the interest in running this instance. There are two main components in this algorithm:
one for score computation (lines 2, 4, 7, see Section 3.1) and one for confidence (lines 1, 3, 6,
see Section 3.2). The score enables to choose the best instance to run whereas the confidence
tells when to stop the comparison. These two components will be explained in more details
later.

Algorithm 1 Determine which of Ainc, Ach performs best on I with a confidence threshold of
Cthres; Ccurrent is the current confidence and depends on Ainc, Itorun are the instances on which
Ach has not been run.

1: set Itorun = I and Ccurrent = 0
2: compute score(I) for all I ∈ I
3: while Ccurrent < Cthres do
4: pick I∗ ∈ argmaxI∈Itorun

score(I) and remove I∗ from Itorun

5: evaluate rt(Ach, I∗)
6: update Ccurrent

7: update score(I) for I ∈ Itorun

8: end while
9: return best performing algorithm from (Ainc, Ach)

Strategy evaluation

We consider two metrics for evaluating strategies: the cost and the accuracy.
We measure the computational effort (which we want to minimise) as the ratio of the

total running time for instances in Irun, the set of instances on which Ach has been run
by the strategy, over the total running time over all instances; this results in a number
between 0 and 1. Note that the goal is not to minimise the number of instances Ach is run
on, but rather the total running time of Ach on these instances. To evaluate our strategy,
we determine this cost over many ordered pairs of algorithms (Ainc, Ach) and consider the
median. Formally, for a set of ordered pairs P:

cost(P) = median

(∑I∈I\Itorun
rt(Ach, I)∑

I∈I rt(Ach, I)

)
(Ainc,Ach)∈P

 ,

where Itorun are the instances that have not been run by the strategy during its execution,
as defined in Algorithm 1. We note that cost(P) only depends on Ach, since Ainc is assumed
to have already been run.

We measure the accuracy of a strategy (which we want to maximise), as the ratio of
correct guesses made by the strategy when deciding which algorithm from an ordered pair of
algorithms (Ainc, Ach) performs best. Formally, for a set of ordered pairs P:

accuracy(P) =
∑

(Ainc,Ach)∈P 1{Âbest=Abest}

|P|
,

where Abest is the true best performing algorithm in (Ach, Ainc), and Âbest is the best
algorithm given by the strategy. Our definition of accuracy uses the mean, since the median
over the results of the indicator function would produce too limited a range of results to be
useful for comparing strategies.
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We note that the choice made in line 4 of Algorithm 1 aims at balancing the effects of two
contradicting goals. The instance selection component tries to minimise the computational
effort by deciding on which instances to run Ach, based on a score given to each instance. The
discrimination component decides, based on the data gathered so far, whether the expected
accuracy, or confidence, is high enough to stop the comparison.

3.1 The instance selection component
With the aim of minimising the overall computational effort, our algorithm iteratively chooses
the most relevant instance, according to a score (lines 2 and 7 in Algorithm 1). Instances
with the highest score are expected to be the most relevant ones (i.e. intuitively giving the
most information at the lowest cost).

Baseline: Uniform random sampling

As a baseline, we use a random sampling approach. In our algorithm, this corresponds to
giving the same score to all instances, and thus to a uniform random choice at each iteration.

The discrimination-based selection method

This sample-based method is inspired by Gent et al. [8]; they developed it as a way to find
optimal parameters of instances in an instance selection method for automated constraint
model selection. The intuition is to choose the most discriminating instances first. Let
ρ > 1 be a constant; an algorithm A is ρ-dominated on an instance I if there exists another
algorithm A′ such that rt(A′, I) ≤ ρ · rt(A, I). The discrimination quality of an instance I,
denoted G(I), is the fraction of algorithms that are ρ-dominated on this instance. Using this
measure as-is would not take into account our goal of minimising the running time, so we
divide the discrimination quality by the mean running time of the instance. The obtained
score only needs to be computed once:

score(I) = G(I)
mean[(rt(A, I))A∈A] .

The variance-based selection method

This statistics-based method uses the intuition that the most interesting instances are the
ones most likely to have very different running times for Ainc and Ach. For each instance I

we have a prior δI , which is the running time distribution of Ach. We want to choose an
instance with the highest variance argmaxI∈Itorun

V(δI). As for the discrimination-based
selection method, since we want to minimise the running time we divide by the mean running
time of the instance. The obtained score only needs to be computed once:

score(I) = V(δI)
E[δI ] .

The information-based selection method

This statistics-based method is based on a similar intuition as the previous method. We are
interested in instances from which we gain as much information as possible; the variance is
only one (natural) indicator of this information. Following this approach, we can also estimate
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the information gained from a specific instance. The concrete information we are after2 is
given by the discrete random variable stating that Ach is better than Ainc, formally defined
as sign(∆tot). Let ∆I be the random variable defined as ∆I := rt(Ach, I) − rt(Ainc, I); we
compute the expected information brought by ∆I ; hence the information gain is defined as
follows for I ∈ I:

IGI(sign(∆tot)) := EeI ∼∆i
[DKL(P+i || P )] with

P = sign(∆tot)|∀J ∈ Irun, ∆J = eJ

P+i = sign(∆tot)|∀J ∈ Irun, ∆J = eJ , ∆I = eI

where DKL is the Kullback–Leibler divergence, with the eJ being realizations of the ∆J since
the difference for the instances in Irun is known.

As for the previous method, to balance information and running time, we divide by the
expected running time, and therefore use the following score function, which we update at
each iteration:

score(I) = IGI(sign(∆tot))
E[δI ] .

The feature-based selection method

In this feature-based and statistics-based method, we assume that for each instance I, we
have a feature vector fI ∈ Rn in some dimension n. The implicit assumption is that features
are predictive of the running times of Ach. We proceed in two steps:

Constructing a distance metric d : Rn × Rn → R≥0, such that if d(f, f ′) is small, then
two instances with features f and f ′ have similar running times.
Assigning a score to each instance I ∈ Itorun.

Constructing a distance metric. The objective is to define a distance predictive of the
running times; to this end, we introduce a weight for instance features, represented by a
weight vector θ ∈ Rn. Let us consider distances of the form:

dθ(fI , fJ) =

√√√√ n∑
x=1

(θ(x) · (fI(x) − fJ(x)))2
.

Intuitively, for a feature x, the parameter θ(x) determines the importance of x in predicting
the running times. Let us write mI for the median time over all algorithms on instance I.
We optimise over θ by considering:

θ∗ ∈ argmin
θ∈Rn

∑
I,J∈I

(dθ(fI , fJ)2 − |mI − mJ |)2;

i.e., dθ∗ is the best distance in this family for predicting differences in median running time.
The parameter vector θ∗ is the solution of a non-negative ordinary least square optimisation
problem and can therefore be computed efficiently [18]. Note that the space complexity is
quadratic in the number of instances and linear in the feature space dimension.

2 See Section 3.2 for one possible expression of this concrete information: the variable ∆tot.
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Assigning a score. Given a distance metric d, we now define a score for a given problem
instance. Here, it is convenient to minimise rather than maximise the following quantity
with respect to d:

S(I) =
∑

J /∈Itorun

rt(Ach, J)
d(fI , fJ) +

∑
J∈Itorun

E[δJ ]
d(fI , fJ) and score(I) = 1

S(I) .

The score is updated at each iteration. In all previous methods, the score of an instance
I only uses the information on I; the strength of this method is to gather and weight
information over all instances. Indeed, the score of I is a weighted average over all running
time predictions, meaning E[δJ ] when J ∈ Itorun and rt(Ach, J) otherwise, and the prediction
for J contributes to the prediction of I up to the multiplicative factor 1

d(fI ,fJ ) .

3.2 The discrimination component
The discrimination component aims at estimating the accuracy of the current decision of
which among Ainc and Ach performs best. However, this measure can never be accessed, since
the complete data is not available. Hence we introduce the expected accuracy, or confidence,
as a proxy for accuracy. We note that this is not an expectation in the statistical sense.
The confidence has a different meaning and is computed differently for each discrimination
method, as explained later. It provides a measure of the current state of the strategy. When
the confidence reaches a threshold Cthres (line 3 of Algorithm 1), the strategy stops and
returns the algorithm evaluated as being the best.

Baseline: Subset method

As a baseline, we use a fixed-size subset of instances: we fix γ ∈ [0; 1] and decide to stop
when Ach has been run on ⌊γ|I|⌋ instances3. The confidence for this method is 0 until all
instances of the subset have been executed then the confidence is 1.

Wilcoxon test

There is a large body of literature on statistical tests, and many of them can be used in the
context of racing algorithms [3]. For instance, the F-Race [2] algorithm uses a Friedman
two-way analysis of variance by ranks. However, this test concerns a family of candidates,
while here, we are interested in an ordered pair of algorithms. When only two configurations
remain, the F-Race algorithm switches to a Wilcoxon matched-pairs signed-ranks test [6],
because it is more powerful and data-efficient than the Friedman test in that scenario [26].

The test we want to apply should satisfy the following requirements: it should be
nonparametric, it should be applicable to paired data. Such a test would not need any
background knowledge. We chose the Wilcoxon test because it satisfies our requirement while
exploiting other properties of our data: data is measured on an interval scale, the differences
(between running times) are symmetric and the magnitudes of the differences between our
paired data is exploited. This test assumes that running times are independent and the two
samples are mutually independent, that is not truly the case; however, we find that assuming
independence is a good first approximation. This test is only based on observed data, it does
not take into account the remaining instances. Through hypothesis testing we can find out

3 Note that this does not ensure a ratio of γ for the total running time, as the total running time of Ach

over all instances is not available and therefore cannot be used for discrimination.
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when there is enough evidence to stop, at which point the best algorithm is the one with the
lowest mean running time. In this case, our confidence threshold Cthres is compared to the
p-value of the alternative two-sided hypothesis. Let us note that other statistical tests, such
as the Mann-Whitney U test, the permutation test, the Kolmogorov-Smirnov test, or the
paired t-test do not satisfy our assumptions.

The distribution-based discrimination method

This method requires statistics-based background knowledge. Let us consider the following
random variable computing the difference in performances:

∆tot =
∑

i∈Irun

rt(Ach, I) − rt(Ainc, I)︸ ︷︷ ︸
constant

+
∑

I∈Itorun

rt(Ach, I)︸ ︷︷ ︸
random variable

− rt(Ainc, I)︸ ︷︷ ︸
constant

.

We are interested in determining the sign of ∆tot, meaning which of the two algorithms
performs best. For a fixed confidence threshold Cthres = 1 − ε, we estimate P(∆tot > 0) and
stop if:

P(∆tot > 0) ≥ 1 − ε, in which case Ach performs worse than Ainc,
or P(∆tot > 0) ≤ ε, meaning P(∆tot ≤ 0) ≥ 1 − ε, i.e. Ach performs better than Ainc.

The confidence is P(∆tot > 0) for the former case and 1 −P(∆tot > 0) for the latter. Looking
at the definition of the random variable ∆tot, its probability law can be described using
translations and convolutions of the distributions (δI)I∈Itorun . In practice, many natural
classes of distributions (for instance Gaussian and Cauchy distributions) are closed under
translations and convolutions, so P(∆tot > 0) can be effectively computed or approximated.

Because running times are positive and algorithms are stopped when they reach the cutoff
time Tcut, the running times are bounded. A distribution matching this behaviour would be
a truncated distribution, but most are not closed under convolution, which we have stated
above as a necessary property, so they cannot be used directly. Nevertheless, the sum of the
bounds on individual running times can be used as bounds for ∆tot, which we can model as
a truncated distribution. For heavy-tailed distributions, such as the Cauchy distribution, the
confidence is higher with a truncated distribution than without, as impossible cases are not
taken into account, enabling to stop earlier.

4 Experimental setup

To empirically evaluate our approaches, we implemented them and ran them on all ordered
pairs of algorithms from well-known benchmark scenarios.

4.1 Datasets
We use ASlib [4], a benchmark library for algorithm selection that contains datasets from
competitions for various challenging problems, including Boolean satisfiability and constraint
programming. It provides very relevant data on which our strategies can be tested, because
such problems are the typical use-case scenario that we envisioned.

From ASlib, we use three datasets: the CSP MiniZinc 2016 (20 algorithms, 100 instances)
dataset, which comprises performance data from the 2016 MiniZinc Challenge (’Free Search’
Category) [19, 28]; the BNSL 2016 (8 algorithms, 1178 instances) dataset [21] from Bayesian
Network structure learning; the SAT18 (37 algorithms, 353 instances) dataset, which consists
of performance data from the EXP track of the 2018 SAT Competition [10]; and, to account
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Table 1 Discrimination difficulty of our datasets according to our metric.

Dataset CSP MiniZinc BNSL SAT 18 SAT 20

Mean 59.74 9.363 2458 78.88
Median 3.28 1.15 9.65 5.51

Top-3 mean 24.7 77.5 47.7 49.9

for more recent advances in SAT, we created the SAT20 (67 algorithms, 400 instances)
dataset from the results of the main track of the 2020 SAT Competition [1]. Those datasets
were chosen to cover a broad range of prominent problems and instance sets.

For our feature-based approaches, we decided to replace missing features by the mean
value, as done by Hutter et al. [16]. Hence, no information can be extracted from such
instances from a distributional point of view.

Discrimination difficulty

To get a sense of how difficult it is to discriminate between the algorithms from each dataset, we
introduce a measure of difficulty based on how different the algorithms behave on our set of in-
stances. We propose to use the following ratio: Ddiscr(Ainc, Ach) =

∑
I∈I

median[(rt(A,I))A∈A]∣∣∑
I∈I

rt(Ach,I)−rt(Ainc,I)
∣∣ .

This measure has been chosen, because it grows when the two algorithms have similar per-
formance, and it is invariant under scaling, so that the difficulty remains the same if running
times are multiplied by a constant factor. It is also symmetric: exchanging Ainc and Ach

leads to the same result.
In Table 1, we report the mean difficulty, the median difficulty over all pairs and the mean

difficulty of the subset of the best 3 algorithms for all of our datasets. Based on this measure,
we expect it to be easy to discriminate between algorithms from BNSL, while SAT18 should
provide a bigger challenge. The large discrepancy between the mean and median value, seen
for SAT18 in particular, is caused by small groups of algorithms with very close performances.
Pairs of algorithms from those groups usually have very high difficulty, reaching up to a
million for SAT18, which affects the mean.

4.2 Implementation details
Our implementation is available on GitHub (see supplementary materials).

To estimate the parameter of running time distributions, we use maximum likelihood
estimation; and we use a Cauchy distribution for the distribution-based discrimination
method, as motivated in Section 5.2. For the timeout correction, the seed was set to 0.

For the random instance selection method, the seed was also set to 0. The parameter
ρ for the discrimination-based selection method was set to 1.2. For the information-based
method, we use the expression of ∆tot defined for the distribution-based method, and to
compute the expected value, which is an integral, we use Simpson’s rule.

For the Wilcoxon discrimination method, Conover [6] recommends at least 20 samples;
however, this would represent up to 20% of our instance for the CSP Minizinc dataset.
Thus, we decided to follow irace [20], which requires 5 samples in a context similar to
ours. We found no significant performance change between different methods for managing
zero differences, when paired data from both population is equal, as such we report the
performance using Pratt’s method [23].
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5 Estimation of the running time distribution

Our approach relies heavily on our ability to estimate the distribution of running times of
algorithms on the instances. This distribution is used in 3 out of the 5 instance selection
methods and one of our 3 discrimination methods. As such, the choice of the distribution
could significantly impact the performance of those strategies. Fitting a distribution on our
data requires us to decide how to handle the cutoff time and which distribution to use.

We note that when predicting a running time, a log transformation is typically used [12, 16].
This transformation showcases better performance for predicting running times, because
running times distributions tend to be heavy-tailed as shown in the work of Gomes et al. [9].
Since in our case we are mostly interested in predicting the mean or the sum over instances,
we do not apply this log transformation.

5.1 Handling censored running times

As explained in the problem definition, after a given cutoff time Tcut, the given algorithm is
stopped. Running times are thus right-censored, which limits our ability to estimate the true
distribution.

Our method for handling time-outs is based on the one proposed by Hutter et al. [13],
which itself is based on a prior work from Schmee & Hahn [25]. The resulting algorithm is
Algorithm 2 for instance I, with parameters M ∈ N and tmax ∈ R+.

Algorithm 2 Correcting timeouts for a sample (tI,A)A∈A.

1: fit Distribution on (tI,A)A∈A without the timeouts
2: set N to the number of timeouts in (tI,A)A∈A and n to 0
3: while not converged do
4: set S to M · N + n samples from Distribution then increment n

5: for k = 1 to N do
6: set qk to quantile k

N+1 of S

7: replace timeout k with min(qk, tmax) in (tI,A)A∈A
8: end for
9: fit Distribution on (tI,A)A∈A

10: end while
11: return Distribution and (tI,A)A∈A

There is a slight difference from the original algorithm, in the fact that at each iteration,
we increment the number of samples used to enable convergence when there is a majority
of timeouts on an instance. The parameter M enables to reduce the sampling variance; it
is most important on instances with many timeouts. The parameter tmax prevents overly
large variations of the samples. There are two steps in this algorithm: first we estimate
the parameters of the distribution, second we replace the timeouts in the sample. They are
repeated until convergence, when the estimated parameters of the distribution are stable. We
decided to stop, when the squared difference between the parameters between two iterations
is less or equal to 1. Schmee & Hahn [25] use the mean instead of the quantiles of a sample;
however, heavy-tailed distributions such as the Cauchy distribution have an undefined mean.
We chose to use the sampling approach used by Hutter et al. [13] which enabled them to
translate the incertitude and improved the likelihood for their random forest models.
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Table 2 Median log likelihood of Maximum Likelihood Estimation for Levy and Cauchy distribu-
tions over the instances of each dataset. The highest likelihood for each dataset is shown in boldface.

CSP MiniZinc BNSL SAT 18 SAT 20

Levy -129.6 -58.08 -299.7 -573.5
Cauchy -107.5 -62.88 -183.8 -364.9

5.2 Choosing a distribution
What is the distribution satisfying the imposed constraints that gives the best performances?

In practice, since only a set of running times are provided, the distribution parameters
must be estimated. We explained how the parameters were estimated in practice in Section 4.2,
where here, we explain our choice of distribution. This choice can be motivated by choosing
the best candidate distribution that has the lowest error on the set of all instances.

Since many running time distributions are heavy-tailed, we tested two heavy tailed
distributions on our four datasets. We report on Table 2 the median log likelihood for each
distribution; the parameters of these distributions were estimated using maximum likelihood
estimation. The Cauchy distribution provides a clear advantage over the Levy distribution.
The only case in which the Levy distribution yields a higher likelihood shows a much smaller
difference between the two distributions.

6 Experiments

We designed and conducted extensive experiments, in order to answer the following questions:
Q1 – Can our strategies reduce the CPU time required for evaluating a new algorithm?
Q2 – How do the selection methods affect the accuracy of the strategies?
Q3 – Can our strategies discriminate well between top ranking algorithms?

A run consists of selecting an ordered pair (Ach, Ainc) and running the strategy. On each
run, all strategies have to compare the same Ach and Ainc. In all of our experiments, we ran
all of our strategies on each ordered pair of a given dataset.

6.1 General Performance Comparison
To answer Q1, we plotted our strategies in Figure 1, with a target confidence threshold
Cthres = 0.95 (see Algorithm 1). For each of them, the y-axis shows accuracy (in percent)
and the x-axis the median time used over all ordered pairs of algorithms, as defined in
Section 3. As this corresponds to a multi-objective setup, we highlight the Pareto fronts
induced by our results. This does not imply that we can produce a strategy that follows the
Pareto front between points; however, by changing the confidence threshold Cthres, we can
obtain local curves around the performance of each strategy (see Section 6.2). Note that
while we show the performance of our strategies without applying a penalty for timeouts,
using penalty coefficients from [|1; 10|] did not affect our findings.

On all datasets, we observe that our random baseline (random sampling a subset of 20%
of the instances) shows rather strong performance, with 89% to 100% accuracy for about
20% running time. Further investigation (see Section 6.2) shows that the accuracy of the
random baseline increases steeply as we add more instances, until reaching about 20% of the
instances, after which the increase in accuracy is substantially slower. Thus increasing the
amount of instances does not lead to significantly higher accuracy. Moreover, more than half
of the time, this strategy takes 17 to 22% of the running time, which means that the running
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times of the instances follow a distribution such that they are as many easy instances as
hard ones.We expect that this behaviour is linked to the nature of the competition datasets
we are using; instances were gathered by experts to be representative and to show various
levels of difficulty. We also note that the BNSL dataset, which is the one that gives the
largest advantage to the random baseline, contains very few instances that are not solved
within the cutoff time. Choosing these instances incurs a high penalty, because they offer no
new information for deciding between the two algorithms, while using up a large amount of
running time (see Appendix A).

On all datasets we see that the Wilcoxon method is superior and reaches the desired
accuracy in less than 15% of the time; it thus represents the left-hand side of our Pareto
front. The subset baseline uses consistently around 20% of the time but hardly reaches
90% accuracy on the hardest dataset; it contributes to the Pareto front only for BNSL. The
distribution-based method tends to be more conservative and run longer but often reaches
higher accuracies than the desired Cthres and thus marks the right-hand side of our Pareto
front on our two SAT scenarios; however, it performs very poorly on BNSL, which is the
scenario with the least background knowledge due to its low number of algorithms.

The instance selection methods do not show such a clear pattern. We notice, however, that
the information-based method lies near or on the Pareto front when combined with Wilcoxon,
whereas the discrimination-based and variance-based methods show strong performance when
used in combination with distribution-based discrimination.

The evaluated strategies reach up to 95.5% accuracy using 8.21% of the time on the
MiniZinc dataset, 95.6% accuracy using 12.3% of the time on SAT18, and 97.1% accuracy
using 4.96% of the time on SAT20. For the BNSL dataset, we observed a surprising 100%
accuracy while using only 0.0001% of the time using the discrimination-based selection with
Wilcoxon discrimination that is hidden behind on Figure 1b, running a median number of 6
instances. The observed performance of our strategies is consistent with the ranking of the
datasets according to our difficulty metric (see Table 1 in Section 4) for the distribution-based
methods, but not for Wilcoxon, where SAT20 should have been harder than MiniZinc.
Overall, in the worst-case, we manage to save 87.6% of CPU time while being 95.6% accurate
and in the best case, we saved 95.0% of CPU time while being 97.1% accurate.

6.2 Accuracy over time
To answer Q2, we ran our strategies without stopping criterion, measuring regularly the
percentage of accuracy and the time spent running Ach. Figure 2 shows the accuracy (in
percent) of the Wilcoxon and distribution-based discrimination methods on all our datasets.

Unlike Figure 1, which did not show any clear pattern regarding the instance selection
methods, this analysis reveals two groups of methods. On all but the BNSL dataset, the
information-based, variance-based and discrimination-based selection methods lead to a very
high accuracy after 55 to 60% running time. This is consistent with the ratio of instances for
which most algorithms time out, thus providing little discriminatory power. The feature-
based method shows the lowest accuracy, and the random sampling comes in second to last
after 40% of the running time.

The BNSL dataset is different, due to a low number of timeouts and large performance
differences between the algorithms. In this case, randomly sampling instances offers very good
accuracy after a few instances. None of the selection methods offers a clear advantage, because
all instances provide evidence towards the algorithm performing best. This suggests that
on easy datasets, the random method is a good choice, while on harder datasets containing
instances that are not solved within the given cutoff time, more sophisticated selection
methods can save running time.
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(b) BNSL 2016.
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(c) SAT 18.
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(d) SAT 20.

Figure 1 Accuracy over median running time. y-axis: percentage over all ordered pairs of
algorithms in the dataset. x-axis: the time spent running the new algorithm.

6.3 Top ranking

To answer our last question, we decided to keep the top 10 ranking algorithms of the SAT20
dataset and use our strategies on this new dataset; this reflects that fact that often, the
primary interest is in discriminating between top-ranking algorithms, be it to compare a new
algorithm to the state of the art or to discriminate between the winners of a competition. As
per our difficulty measure introduced in Section 4.1, the mean difficulty of the dataset thus
obtained is 163, and the median is 22, which is higher than for any of our other datasets.
Furthermore, the number of algorithms is reduced, which should reduce the performance
of our methods based on prior knowledge. We report the results in Figure 3 analogous to
what was done in Section 6.1; for comparative purposes, we also plot the performances on
the full SAT20 dataset. The performance of the subset method decreases by more than
10% in accuracy. The distribution-based discrimination method requires more time for
this subset, and the discrimination-based selection method drops out of the Pareto front.
Because they require prior knowledge, these methods encounter difficulties with this more
challenging dataset. The Wilcoxon method is least affected, since it is does not depend on
prior knowledge; consequently, 3 out of the 4 strategies on the Pareto front use this method.
The selection methods in combination with the Wilcoxon test are affected in different ways.
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(b) BNSL 2016.
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(c) SAT 18.
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(d) SAT 20.

Figure 2 Accuracy over running time used. y-axis: percentage over all ordered pairs of algorithms
in the dataset. x-axis: time spent running the new algorithm.

The information-based and variance-based approaches lead to a quick but less accurate
decision, while random sampling leads to a slower decision, achieving 94.4% accuracy for
37.0% of running time.

In this experiment, which compares algorithms with similarly good performance, the
information-based method using the Wilcoxon test suffers less than the other strategies, both
in terms of cost and accuracy. All other methods lead to either high cost or poor accuracy.

7 Conclusions and future work

In this work, we have investigated methods for reducing the computational effort required for
comparing the performance of two automated reasoning algorithms, while gathering sufficient
statistical evidence to correctly identify the solver that performs better on a given set of
problem instances. We defined the per-set efficient algorithm selection problem (PSEAS) in
Section 2. We studied the case in which the performance of a given algorithm is evaluated
based on its running time on a set of instances. We described a set of strategies in Section 3,
inspired by related problems from the literature and by novel considerations, and tested
these on four datasets covering SAT, CSP and structure learning in Bayesian networks. Our
experimental evaluation in Section 6 shows that on these datasets, some of our strategies
consistently return the correct answer with at least 95% accuracy, while using less than 15%
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(a) SAT 20, full Dataset, 67 algorithms.
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(b) SAT 20, top-10 algorithms.

Figure 3 Accuracy over running time used for the full and reduced SAT20 datasets. y-axis:
percentage over all ordered algorithms’ pairs in the dataset. x-axis: time spent running the new
algorithm.

of the CPU time it would take to run the full comparison. In particular, using a Wilcoxon
test to decide when to stop, while deciding the next instance to run based on the expected
amount of information it can provide, is consistently near or among the best-performing
approaches.

A finer-grained analysis of our instance selection methods (see Section 6.2) provides addi-
tional insights. We found that deciding on which instance to run based on its discrimination
power, following the work of Gent et al. [8]), or simply on a notion of running time variance,
has the potential to reduce the time required to take a decision when a significant fraction of
the given instances are difficult.

Furthermore, we tested our methods on a smaller but more challenging set of algorithms,
keeping the 10 best algorithms of the SAT20 competition. While the overall performance is
lower than on the full dataset, the Wilcoxon method still reaches an accuracy of 94.4% in
37.0% of the overall running time. Overall, we found that for easy datasets, which discriminate
very different algorithms on instances that can be solved quickly, random sampling offers
good performance, but when facing hard instances or comparing well performing algorithms,
it is beneficial to use more sophisticated methods.

In future work, it would be interesting to consider randomised algorithms. Incorporating
empirical performance models [16] such as the ones used in algorithm configuration [14]
and algorithm selection [31] could also open new avenues, e.g., involving the use of active
learning methods. Finally, while the scope of our work presented here has been limited to
comparing two algorithms, one interesting area of future work is focused extensions to many
algorithms, in order to devise principles mechanisms for running competitions and other
large-scale performance comparisons more efficiently.
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(b) BNSL 2016.
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(c) SAT 18.
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(d) SAT 20.

Figure 4 Number of instances run over running time used. y-axis: number of instances run.
x-axis: time spent running the new algorithm.

B The ranking-based selection method

B.1 The instance selection method

The ranking-based selection method is a sample-based method, inspired by Bossek & Wag-
ner [5], who developed the explicit-ranking method as a fitness function for evolutionary
algorithms, in order to generate instances that follow a given ranking. Their ranking is a
lexicographical order, maximising three criteria in sequence: first, the similarity between the
algorithms’ ranking on the instance and the overall ranking, then two quantities that describe
how different the running times of the algorithms are on this instance. The intuition is that
given the samples, there is a ranking of algorithms over all instances; we want instances
that are good at predicting this ranking – that is, instances on which the algorithms have
a ranking closest to the overall ranking. Furthermore, we would also like that given two
instances that have the same ranking, the instance that has the highest variance in running
times between algorithms is chosen first.

In our case, the desired ranking is the ranking of algorithms with respect to their total
performance. We associate each algorithm of A with an integer, and introduce the desired
ranking π, such that π(j) is the jth best performing algorithm. Then, for a given instance I,
we can define the good pairs as GI = {(j, j + 1) | rt(Aπ(j), I) ≤ rt(Aπ(j+1), I)} and the bad
pairs as Bi = {(j, j + 1) | rt(Aπ(j), I) > rt(Aπ(j+1), I)}. The order in which the instances
are run is the lexicographical order of the scoring function over instances:

score(I) = (|GI |, fB(I)
median[(rt(A, I))A∈A] ,

fG(I)
median[(rt(A, I))A∈A] ),
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Figure 5 Percentage of accuracy with over median running time for the ranking-based selector.
The Pareto front represents the front obtained from our results in Section 6.1. y-axis: percentage
over all ordered pairs of algorithms in the dataset. x-axis: time spent running the new algorithm.

where

fB(I) =
∑

(j,j+1)∈BI

(rt(Aπ(j+1), I) − rt(Aπ(j), I))

fG(I) =
{∑

(j,j+1)∈GI
(rt(Aπ(j+1), I) − rt(Aπ(j), I)) if |GI | > 0

−∞ else.

As a normalisation step in the context of running time minimisation, we divided the original
fB and fG by the median running time, which was not done by Bossek & Wagner [5]. The
score is computed once in the beginning of Algorithm 1 and does not need to be updated at
line 7.

B.2 Experimental results
Figure 5 shows the performance of the ranking-based selection methods combined with
the three discrimination methods described in Section 3.2 (Wilcoxon, distribution-based
and subset) on the CSP MiniZinc and on the SAT20 datasets. The results are presented
the same manner as those in Section 6.1 and compared to the Pareto front obtained from
the results of the methods presented there. As seen in the figure, in all but one case, the
ranking-based approach is dominated in terms of performance by our methods discussed
earlier. The one exception was observed on the SAT20 dataset, where combined with the
Wilcoxon discrimination method, the ranking-based approach exhibits very short running
time, but low accuracy, and thus shows performance to the lower left of our previously
observed Pareto front. On the CSP MiniZinc dataset, the same combination of methods
achieves good accuracy at the cost of high running time.

C Bias analysis

To better understand the behaviour of the discrimination component, we investigated the
confidence achieved by our discrimination strategy. This should be correlated with the
accuracy of the outcome (as described in Section 3.2). To test this, we ran our strategies,
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without stopping criterion, measuring regularly the percentage of accuracy with respect to
the confidence level of the discrimination component. Figure 6 shows the percentage of
confidence over the accuracy for the distribution-based discrimination method. The black
line indicates the desired behaviour where confidence is equal to accuracy. Points above this
line represent overconfidence, while points below the line reflect underconfidence.

The discriminator starts, after one instance, with a confidence level of 90% for MiniZinc
and 78% for SAT20, while the accuracy is around 75% in both cases. On CSP MiniZinc, it
stays highly overconfident until the end, though the gap between confidence and accuracy
diminishes. On SAT 20, confidence changes with accuracy, although we observe a tendency for
underconfidence, except for the feature-based instance selector. This confidence discrepancy
is clearly dependent on the dataset and does not seem correlated with our difficulty measure
of the dataset.

Compared to the general performance from Figure 1, the closer the strategies are to
correctly estimating the accuracy around our criterion of 95% of confidence, the better they
perform.
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Figure 6 Percentage of confidence with respect to percentage of accuracy of the distribution-based
discrimination for all instance-selection methods. y-axis: percentage of confidence over all ordered
pairs of algorithms in the dataset. x-axis: percentage of accuracy over all ordered pairs of algorithms
in the dataset.
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Abstract
Recent advances in solvers for the Boolean satisfiability (SAT) based optimization paradigm of
maximum satisfiability (MaxSAT) have turned MaxSAT into a viable approach to finding provably
optimal solutions for various types of hard optimization problems. In various types of real-world
problem settings, a sequence of related optimization problems need to solved. This calls for studying
ways of enabling incremental computations in MaxSAT, with the hope of speeding up the overall
computation times. However, current state-of-the-art MaxSAT solvers offer no or limited forms of
incrementality. In this work, we study ways of enabling incremental computations in the context of
the implicit hitting set (IHS) approach to MaxSAT solving, as both one of the key MaxSAT solving
approaches today and a relatively well-suited candidate for extending to incremental computations.
In particular, motivated by several recent applications of MaxSAT in the context of interpretability
in machine learning calling for this type of incrementality, we focus on enabling incrementality in
IHS under changes to the objective function coefficients (i.e., to the weights of soft clauses). To this
end, we explain to what extent different search techniques applied in IHS-based MaxSAT solving can
and cannot be adapted to this incremental setting. As practical result, we develop an incremental
version of an IHS MaxSAT solver, and show it provides significant runtime improvements in recent
application settings which can benefit from incrementality but in which MaxSAT solvers have so-far
been applied only non-incrementally, i.e., by calling a MaxSAT solver from scratch after each change
to the problem instance at hand.
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1 Introduction

Maximum satisfiability (MaxSAT) constitutes today a viable approach to solving various
types of NP-hard real-world optimization problems (see [6] for a recent survey). This is in
particular due to various recent algorithmic advances applied in readily-available MaxSAT
solvers. Iteratively solving a series of decision problems with Boolean satisfiability solvers
gives a basis for most if not all current state-of-the-art MaxSAT solvers [4, 5]. MaxSAT
solvers make heavy use of the incremental APIs of SAT solvers [13], through which SAT
solvers can provide explanations as unsatisfiable subsets of soft constraints (i.e., unsatisfiable
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cores). Two main paradigms adhering to this framework are the core-guided approach
(see e.g. [24, 23, 25, 1, 2, 17]) and the implicit hitting set (IHS) approach [11, 12, 10, 29].
In the core-guided approach, cores iteratively obtained from the SAT solvers are used for
transforming the original MaxSAT instance in a controlled way so that, once satisfiability is
achieved, any satisfying truth assignment reported by the SAT solver constitutes an optimal
solution to the original MaxSAT instance. The IHS approach, on the other hand, leaves
the original MaxSAT instance unchanged, and computes at each iteration a hitting set of
the so-far accumulated set of cores. In the next SAT solver call, the soft clauses contained
in the most recently computed hitting set are ignored. This loop is continued essentially
(i.e., ignoring various search techniques applied in actual solver implementations of the IHS
approach) until the SAT solver returns a satisfying truth assignment.

Both of these SAT-based MaxSAT solving paradigms make heavy use of incremental
computations on the level of the SAT solver. However, enabling incremental computations
on the actual MaxSAT solving level, i.e., gearing MaxSAT solvers towards solving sequences
of related MaxSAT instances without restarting search for each instance, remains today an
underdeveloped research direction. Indeed, MaxSAT solvers offer little for such incremental
settings, with the exception of a few solver implementations offering an API for adding
hard and soft clauses in-between the MaxSAT solver calls [29, 17]. This kind of incremental
solving has been further investigated in the context of core-guided solving by adaptively
restarting the solver when the quality of the cores degrades [30]. Note that, while so-called
incremental cardinality constraints have been proposed and are applied in core-guided
MaxSAT solvers [22, 21, 20], this notion refers to incrementality on the SAT-level within the
core transformations in the core-guided approach rather than incrementality on the level of
MaxSAT, i.e., in incrementally solving a sequence of MaxSAT instances. The lack of support
for more generic forms of incrementality on the level of MaxSAT is indeed problematic: various
types of recent real-world applications of MaxSAT solvers [19, 9, 33, 27] could evidently
benefit in terms of runtime improvements with the help of incremental computations, but
currently have to resort to calling a MaxSAT solver from scratch for each instance that needs
to be solved towards finding an optimal solution to the problem at hand.

In this work, we make progress on enabling incremental computations on the MaxSAT
level. Specifically, we focus on enabling incrementality in problem settings constituting of
solving a sequence of MaxSAT instances which differ from each other in the weights of the soft
clauses in the instances. In particular, we consider the general setting where the soft clause
weights of the next instance in the sequence are adaptively assigned based on the previous
instances in the sequence and the optimal solutions found to those instances. Interestingly,
this form of incrementality can be identified to be intrinsically present in various application
settings of MaxSAT in the context of interpretable machine learning [18, 15, 16, 32] (though
various other types of application settings can naturally be imagined), but is not supported
by any of the state-of-the-art MaxSAT solvers.

Specifically, we focus on enabling incrementality under changing soft clause weights in the
context of the IHS approach to MaxSAT solving. The IHS approach is particularly appealing
for incrementality due to the very fact that the solving process does not essentially alter
(through core transformations, as in the core-guided approach) the original MaxSAT instance.
This allows for ensuring that cores between different MaxSAT instances under changing
weights can be reused across the different instances and hence need not be re-computed from
scratch. However, the various intricate search techniques and optimizations implemented in
the state-of-the-art IHS MaxSAT solver MaxHS make adapting the solver for incremental
computations under changing weights a non-trivial task in practice. To this end, we describe
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in detail the search techniques that can and cannot be applied in incremental computations
under changing soft clause weights, and provide a first IHS solver implementation supporting
incrementality under changing weights, building on MaxHS. Most concretely, we apply this
incremental adaptation of MaxHS to two recent applications of MaxSAT solving in the
context of interpretable machine learning, namely, decision tree boosting and decision set
learning, identifying that both of these problem settings could at least in principle benefit
in terms of overall runtimes of incremental computations under changing weights. Indeed,
we show that our adaptation of MaxHS supporting incrementality under changing weights
provides significant runtime improvements compared to a current version of (non-incremental)
MaxSAT, despite the fact that not all performance-optimizing techniques applied in the
non-incremental version can be applied by the incremental adaptation.

2 Maximum Satisfiability

For a Boolean variable x, there are two literals x and ¬x. A clause C is disjunction of
literals, viewed as a set, and a (CNF) formula F is a conjunction of clauses, again viewed as
a set. A truth assignment τ maps Boolean variables to 1 (true) or 0 (false). The semantics
of truth assignments are extended to literals l, clauses C and formulas F in the standard
way: τ(¬l) = 1 − τ(l), τ(C) = max{τ(l) | l ∈ C} and τ(F ) = min{τ(C) | C ∈ F}. An
assignment τ is a model of a formula F if τ(F ) = 1. A formula F is satisfiable if it has a
model, otherwise it is unsatisfiable.

An instance F of (weighted partial) MaxSAT consists of two CNF formulas, the hard
clauses H(F) and the soft clauses S(F), and a weight function w(F) : S(F) → R+ that
assigns a positive weight to all soft clauses. When the instance F is clear from context,
we use H, S and w to denote H(F), S(F) and w(F), respectively. A model τ of H is a
solution to F . We assume that MaxSAT instances have at least one solution, i.e., that H is
satisfiable. A solution τ to F has cost cost(F , τ) =

∑
C∈S w(C)(1− τ(C)), i.e., the sum of

weights of the soft clauses it falsifies. A solution τ is optimal if cost(F , τ) ≤ cost(F , τ ′)
holds for all solutions τ ′ of F . We denote the cost of the optimal solutions to F by cost(F).
When convenient, we treat a solution τ as the set of literals the assignment satisfies, i.e, as
τ = {l | τ(l) = 1}.

In order to simplify notation we will assume that each soft clause C ∈ S is a unit
soft clause containing a negation of a variable, i.e., C = (¬b). This assumption can be
made without loss of generality as any soft clause C ∈ S can be transformed into the hard
clause C ∨ b and the soft clause (¬b) with w((¬b)) = w(C) where b is a new variable. A
variable b that appears in a soft clause (¬b) ∈ S is a blocking variable; we denote the set
of blocking variables of F by B(F). As assigning a blocking variable b = 1 corresponds to
falsifying the corresponding soft clause (¬b), we treat blocking variables and soft clauses
interchangeably, and extend the weight function w to blocking variables by w(b) = w((¬b))
and to sets Bs ⊂ B(F) by cost(F , Bs) =

∑
b∈Bs

w(b). The cost of a solution τ is then
cost(F , τ) =

∑
b∈B(F) τ(b)w(b).

The IHS algorithm for computing optimal MaxSAT solutions, focused on in this work,
makes use of so-called (unsatisfiable) cores of MaxSAT instances. A core κ ⊂ S is a set of
soft clauses that is unsatisfiable together with the hard clauses. As each soft clause C ∈ κ is
a negation of a variable C = (¬b), the fact that H ∧ κ = H ∧

∧
(¬b)∈κ(¬b) is unsatisfiable

implies that any solution to F assigns b = 1 for at least one (¬b) ∈ κ. Thus a core can
be expressed as the clause {b | (¬b) ∈ κ} that is entailed by H, i.e., a clause over blocking
variables that is satisfied by all solutions to F . Note that κ can also be expressed as the
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Algorithm 1 IHS for MaxSAT.

1 IHS(F)
Input: An instance F = (H, S, w)
Output: An optimal solution τ

2 lb ← 0; ub ←∞;
3 τbest ← ∅; C ← ∅;
4 while (true) do
5 hs← Min-Hs(B(F), C);
6 lb = cost(F , hs);
7 if (lb = ub) then break;
8 (K, τ)← Extract-Cores(H,B(F), hs);
9 if (cost(F , τ) < ub) then

τbest ← τ ; ub ← cost(F , τ);
10 if (lb = ub) then return τbest ;
11 C ← C ∪K;

minimize
∑

b∈B(F)

w(b) · b

subject to∑
b∈κ b ≥ 1 ∀κ ∈ C

b ∈ {0, 1} ∀b ∈ B(F)

Figure 1 An integer program for
computing a hitting set over a set C
of cores of an instance F .

linear inequality
∑

(¬b)∈κ b ≥ 1. We will mostly treat cores as clauses over (or sets of)
blocking variables. Given a set C of cores, a hitting set hs ⊂ B(F) is a set of blocking
variables that has non-empty intersection with each κ ∈ C. A hitting set hs is minimum-cost
if cost(F , hs) ≤ cost(F , hs′) holds for all hitting sets over C. IHS-based algorithms to
MaxSAT rely on the well-known fact that hitting sets over sets of cores provide lower bounds
on the optimal cost of instances.

▶ Proposition 1. Let hs be a minimum-cost hitting set over a set C of cores of an instance
F . Then cost(F , hs) ≤ cost(F).

An important remark to make here for understanding the IHS approach to MaxSAT solving
is that Proposition 1 holds for any set of cores of an instance. For an minimum-cost hitting
set hs over the set C of all cores of F , it holds that cost(F , hs) = cost(F) and there is a
solution τ to F that sets all blocking variables not in hs to 0.

▶ Example 2. Consider the MaxSAT instance F with H = {(b1 ∨ bX), (b2 ∨ bX), (b3 ∨ bX)}
and B(F) = {b1, b2, b3, bX} with w1(b1) = w1(b2) = w1(b3) = 1 and w1(bX) = 2. An optimal
solution τ1 to F is τ1 = {¬b1,¬b2,¬b3, bX} and has cost(F , τ) = cost(F) = 2. The instance
has three subset-minimal cores (MUSes): κ1 = {b1, bX}, κ2 = {b2, bX} and κ3 = {b3, bX}.
For a set C = {κ1, κ2} of cores, an example minimum-cost hitting set hs1 is {bX} which
has cost(F , hs1) = 2 ≤ cost(F). If we instead have w2(b1) = w2(b2) = w2(b3) = 1 and
w2(bX) = 4, then an optimal solution τ2 is τ2 = {b1, b2, b3,¬b4} and has cost(F , τ2) = 3.
Now a minimum-cost hitting set hs2 over C is hs2 = {b1, b2} which has cost(F , hs2) = 2.
Notice that changing weights can significantly alter the minimum-cost hitting sets. Specifically,
hs1 is not minimum-cost w.r.t. w2 while hs2 is also a minimum-cost hitting set w.r.t. w1

3 The Implicit Hitting Set Approach to MaxSAT Solving

Algorithm 1 details IHS, the implicit hitting set algorithm to computing an optimal solution
to a single MaxSAT instance F . In short, the algorithm decouples MaxSAT solving into
separate core extraction (the Extract-Cores subroutine) and an optimization step (the
Min-Hs subroutine). The core extraction makes use of a SAT solver to extract an increasing
number of cores, which are stored in the set C. As a by-product, the procedure also computes a
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solution τ to F . The solution allows refining the upper bound ub on cost(F), i.e., comparing
cost(F , τ) to the known upper bound ub and updating it if the new solution has lower
cost. The optimization steps compute a minimum-cost hitting set hs over the set C of cores
extracted so far using an IP solver. By Proposition 1 the cost cost(F , hs) of such a set is a
lower bound lb on cost(F). IHS terminates once lb = ub and returns τbest , the solution for
which cost(F , τbest) = ub, which is guaranteed to be an optimal solution.

In more detail, when invoked on an instance F , IHS begins by initializing the lower bound
lb to 0, the upper bound ub to ∞, the best known model τbest to ∅ and a set C of cores of
F (represented as sets of blocking variables) to ∅ (Lines 2-3). Then the main search loop
(Line 4-11) is started. During each iteration of the loop, a hitting set hs over C is computed on
Line 5 by solving the integer program detailed in Figure 1 via the procedure Min-Hs(B(F), C).
The procedure returns a minimum-cost set of blocking variables hs that contains at least
one variable from each κ ∈ C, i.e., a minimum-cost hitting set over C. The cost cost(F , hs)
of the set is then used to update the lower bound lb on cost(F) on Line 6. Since no cores
are removed from C during the execution of IHS, cost(F , hs) is non-decreasing over the
iterations.

After updating the lower bound, the termination criteria is checked on Line 7. If the
known upper bound matches the known lower bound, the algorithm terminates and returns
the current best solution τbest . Otherwise, the core extraction step Extract-Cores is invoked
on Line 8. The procedure uses a SAT solver iteratively in order to extract previously unseen
cores of F in the form of a disjoint set K of cores s.t. each κ ∈ K is a subset of B(F)\hs. The
cores are extracted using the assumption interface offered by most modern SAT solvers [13, 8]
that allows inputting a CNF formula F and a set A of assumptions in the form of literals.
The SAT solver then solves the formula F ∧

∧
l∈A(l) and returns either (i) a model τ of F

that sets τ(l) = 1 for all l ∈ A or (ii) a subset As ⊂ A such that F ∧
∧

l∈As
(l) is unsatisfiable

(which is equivalent to F entailing the clause {¬l | l ∈ As}).
Extract-Cores invokes the internal SAT solver on the hard clauses H under the as-

sumptions {¬b | b ∈ B(F) \ hs}. If the SAT solver reports unsatisfiability, the subset of
assumptions returned by the SAT solver corresponds to a core of F . The literals in the
core are then removed from the assumptions and the SAT solver reiterated. The procedure
terminates when K is a maximal set of disjoint cores over B(F) \ hs and returns K and τ ,
the final model returned by the SAT solver that satisfies the hard clauses and all soft clauses
that are not in hs nor any of the cores in K.

Since τ satisfies H, it is a solution to F . Thus its cost cost(F , τ) is compared to the
current upper bound ub and updated if needed on Line 9. If the new bounds match, the
algorithm terminates on Line 10. Otherwise, the new cores in K are added to C and the loop
reiterated. An important intuition here is that all cores in K are disjoint from the hitting set
hs and are thus not hit by hs. Adding the new cores to C results in hs not being a hitting
set over C in subsequent iterations. With this intuition. the termination of IHS follows by
the finite number of cores and hitting sets of F . A detailed argument for the correctness of
IHS can be found in [3].

▶ Example 3. Invoke IHS on the instance F from Example 2 with w(F) = w1. In the
first iteration, the set C of cores is empty, so Min-Hs returns an empty hitting set hs = ∅
which does not allow increasing the lower bound. At this point 0 = lb < ∞ = ub so IHS
does not terminate but instead moves on to Extract-Cores to extract a disjoint set of cores
over B(F) \ hs = {b1, b2, b3, bX}. There are a number of different possibilities that could be
returned. However, all of them contain at most one core that contains at least one of the
variables b1, b2 or b3. Say Extract-Cores returns K = {b1, bX} and τ = {¬b1,¬b2,¬b3, bX}.
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Since cost(F , τ) = 2 < ∞ = ub the upper bound is updated to 2 and the best model
τbest is set to τ . At this point, IHS has found an optimal solution to F . However, since
lb = 0 ̸= 2 = ub the algorithm does not terminate, but instead augments C with {b1, bX} and
reiterates. Informally speaking, the optimality of τbest has not been proven yet.

In the next iteration Min-Hs is invoked with C = {{b1, bX}}. There exists one minimum-
cost hitting set hs = {b1} over C. This hitting set allows refining lb = 1 and Extract-Cores
to extract one more core that is a subset of B(F) \ hs = {b2, b3, bX}, say {b2, bX}. In
the next iteration, Min-Hs computes either hs = {b1, b2} or hs = {bX}. In both cases
lb = cost(F , hs) = 2 = ub so the algorithm terminates, and returns τbest .

We end this section by discussing abstract cores, a recently proposed improvement to
IHS [8]. In short, an abstract core is a compact representation of a large – potentially
exponential – number of regular cores that the IHS algorithm can reason with more efficiently.
In more detail, an abstraction set ab ⊂ B(F) is a subset of n blocking variables that are
augmented with count variables ab.c[1] . . . ab.c[n]. Informally speaking, the count variables
count the number of variables in ab set to true. More precisely, the definition of the count
variable ab.c[k] is the constraint ab.c[i]↔

∑
b∈ab b ≥ i. An abstract core of an instance F

w.r.t. a collection AB of abstraction sets is then clause κ that: (i) contains only blocking
variables or count variables and (ii) is entailed by the conjunction of hard clauses of F and
the definitions of count variables. Following [8] we require that all of the blocking variables
assigned to the same abstraction set ab have the same weight. This allows the count variables
of ab to have well-defined weights; each count variable of ab being assigned to 1 corresponds
to one more b ∈ ab also being assigned to 1, incurring w(b) more cost.

For some intuition on their usefulness, note that an abstract core κ containing a count
variable ab.c[i] corresponds to

( |ab|
|ab|−i+1

)
non-abstract cores where the count variable ab.c[i]

variable is exchanged with any subset of ab containing |ab| − i + 1 elements. More details
can be found in [8].

An IHS algorithm using abstract cores, ihs-abscores, extracts both abstract and regular
cores during search. Additionally it maintains and dynamically updates a collection AB of
abstraction sets over which the abstract cores are then extracted. The abstraction sets are
computed based on a graph G that initially has the blocking variables as nodes and an edge
between any two variables with the same weight that have been found in a core together.
The weight of each edge in G between the nodes n1 and n2 is the number of times that the
variables corresponding to n1 and n2 have appeared in cores together. The abstraction sets
are then computed by clustering G and using the clusters as abstraction sets. The intuition
here is that we wish two variables that often appear in cores together (and are as such in
some sense related) to be included in the same abstraction set. During search the quality of
the abstraction sets in AB are monitored. If the extracted (abstract) cores are not driving up
the lb computed by the optimizer (Min-Hs), then the graph G is reclustered by merging the
nodes in the current clusters and then re-clustering the graph. Note that after re-clustering,
one single node in G might correspond to several blocking variables of F .

4 MaxSAT with Changing Weights

We move on to our proposal for extending the IHS approach to MaxSAT for computing
optimal solutions to MaxSAT instances under changing weights. After formulating in more
detail the incremental problem setting we consider, we will describe an extension of IHS
capable of solving sequences of MaxSAT instances with different weights in an incremental
fashion.
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Algorithm 2 IHS-INC for computing optimal solutions to k different instances of different
weights.

1 IHS-INC(F , next-w, k)
2 C ← ∅ AB← ∅;
3 τbest ← SAT(H(F));
4 for i = 1, . . . , k do
5 if i > 1 then w(F) = next-w();
6 deactivate-abs(AB, w(F));
7 ub ← cost(F , τbest);
8 τbest ← ihs-abscores(F , C, AB, ub);
9 output τbest ;

4.1 Problem Formulation
Given a MaxSAT instance F and k different weights wi for the soft clauses in F , our objective
is to compute k solutions τ1 . . . τk to F such that each τi is an optimal solution w.r.t. the
weights wi. We do not put any requirements on how the weights are computed. Our solution
algorithm solves the problem sequentially. In particular, the ith weights wi can depend on
the optimal solutions τ1 . . . τi−1 computed in previous iterations. More formally, we assume
that the first weights w1 are given as part of the input and abstract the computation of all
other weights to a black-box oracle next-w that is assumed to have access to all information
(optimal solutions, previous weights, etc.) from previous iterations.

4.2 Incremental IHS for MaxSAT with Changing Weights
Algorithm 2 details IHS-INC, an extension of the IHS algorithm ihs-abscores with abstract
cores, for solving a MaxSAT instance F under k different weight functions. The algorithm
takes as input the instance F , a function next-w for computing the weight functions used in
subsequent iterations and k, the number of iterations required. After initializing a set C of
cores and a set AB of abstraction sets on Line 2 as well as obtaining an initial solution τbest
by invoking a SAT solver on the hard clauses of F on Line 3, the algorithm enters its main
search loop (Lines 4-9).

In each iteration of the loop, the algorithm computes an optimal model w.r.t. the ith
weights. Each iteration starts with the new weights being obtained on Line 5 and an
initial upper bound ub computed from the current best model τbest on Line 7. In the first
iteration, τbest will be the model obtained by checking the satisfiability of the hard clauses (on
Line 3). In subsequent iterations, τbest will be the optimal model computed in the previous
iteration. Afterwards, an optimal model w.r.t. the current weights is computed using the
function ihs-abscores implementing the IHS algorithm with abstract cores for computing
one optimal solution to the instance.

A central fact to note in IHS-INC is that – on every iteration except the first one –
ihs-abscores is invoked with a set C of cores and AB of abstraction sets that are non-empty.
Indeed, all of the cores and abstract cores that are computed during previous iterations are
preserved and used in subsequent iterations as well. Similarly, as many abstraction sets as
possible are also preserved between iterations. Recall that ihs-abscores assumes that all
blocking variables assigned to the same abstraction set ab have the same weight. As the
weights of blocking variables can change between iterations, we stop extracting new abstract
cores over ab if the weights of the blocking variables in ab are changed to be unequal. More
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precisely, we say that an abstraction set ab is valid if w(bi) = w(bj) holds for any bi, bj ∈ ab.
In Algorithm 2 the deactivate-abs method loops over the set AB to check which ones are
not valid anymore. The ihs-abscores method then only extracts abstract cores over valid
abstraction sets. However, since the definition of an abstract core is independent from the
weights of blocking variables, abstract cores containing count variables in an invalid ab are
still preserved and used in subsequent iterations, the definitions of count variables of invalid
abstraction sets are kept in the SAT and IP solvers. We also allow blocking variables from
invalid abstraction sets to be assigned to other abstraction sets in later iterations. More
specifically, the blocking variables from invalid abstraction sets are reintroduced into the
graph and allowed to be clustered in later iterations.

The correctness of IHS-INC follows from the fact that the definition of a core and an
abstract core depends only on the clauses in F , and the clauses defining count variables.
Neither of these change between iterations so all of the cores computed in previous iterations
can be kept in subsequent ones.
▶ Example 4. Invoke IHS-INC on the instance F from Example 2 and assume the weight
function w1 for the first instance in a sequence of instance to be solved. To keep the example
simple, we also assume that no abstraction sets or abstract cores are used in the execution.

Assume that the initial SAT solver call on Line 3 on the clauses of F obtains a model
τbest = {b1, b2, b3,¬bX} and an initial upper bound ub = cost(F , τbest) = 3. The algorithm
then invokes ihs-abscores with C = ∅ and ub = 3. As ihs-abscores without abstract cores
corresponds exactly to IHS detailed in Algorithm 1, Example 3 details one possible execution
when solving F . After that execution, the procedure returns τbest = {¬b1,¬b2,¬b3, bX} and
updates C = {{b1, bX}, {b2, bX}}.

Assume then that the weights of F are updated to w2 as detailed in Example 2. The new
weights are then used to update the upper bound to cost(F , τbest) = 4 before ihs-abscores
is invoked again. In the first iteration of the search loop of ihs-abscores, the set C already
contains two cores. As such Min-Hs returns the minimum-cost hitting set hs = {b1, b2} and
updates lb = cost(F , hs) = 2. Afterwards, Extract-Cores extracts the core {b3, bX} and
returns (for example) the solution τ = {b1, b2, b3,¬bX}. This solution has cost(F , τ) = 3,
so the ub and τbest is updated. In the next iteration, Min-Hs computes the hitting set
hs = {b1, b2, b3} which has cost(F , hs) = 3 and allows the algorithm to terminate.

Example 4 demonstrates how IHS-INC is able to solve the second iteration just by
extracting one more core. In contrast, it can be shown that restarting the search from scratch
(i.e., invoking IHS) results in at least 3 cores being extracted when solving F with w(F) = w2
from Example 2.

4.3 Realizing IHS-INC
On an abstract level, as demonstrated by Algorithm 2, IHS-INC is relatively straightforward
to implement given a procedure for ihs-abscores. However, in reality, the engineering
aspects are less trivial. We continue by detailing our implementation which is built on top of
MaxHS [11, 8], a state-of-the-art IHS MaxSAT solver. In practice this requires several changes
to the underlying data structures and procedures of MaxHS, especially those concerning the
internal representation of soft clauses and their weights.

4.3.1 Handling Weight Changes
Our goal is to provide an API function changeWeight(i,w) which can be called incrementally
to change the weight of the ith input soft clause to w ≥ 0. The necessary changes to MaxHS
are applied to the following components.
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WCNF Simplification

Before solving, MaxHS performs a series of simplifications to the input instance. In particular,
after simplifying, the list of soft clauses is not in general equal to the soft clauses of the
input instance1; since some soft clauses are removed due to either always being satisfied or
impossible to satisfy given the hard clauses, and some soft clauses are merged. In order to
have access to changeWeight(i,w), we implement a mapping currentIndex which takes an
index of the original soft clauses as input, and returns either: (a) an index of the internal
list of the soft clauses (note that since some soft clauses have been merged, the same index
may correspond to several indices of the input instance), (b) SAT if the soft clause has been
removed since it is implied by the hard clauses or (c) UNSAT if the soft clause has been
removed because it is unsatisfiable given the hard clauses. Furthermore, we also keep track
of all preimages of this map in order to perform updates to it correctly. After simplifying,
currentIndex will remain constant. During simplification, MaxHS also computes baseCost
as the sum of the weights of soft clauses which cannot be satisfied, and totalWeight as the
sum of the weights of soft clauses remaining after simplification. These numbers may also
naturally change due to changing weights of the original instance.

In more detail, the simplification procedures are the following:
Hardening of soft clauses. MaxHS checks the input weights of the soft clauses and
determines whether some soft clauses can be hardened due to their high weight. Since
in our setting such a high weight may change to an arbitrarily low one, this feature is
disabled.
Unit hard clauses and equalities. MaxHS performs unit propagation over the hard clauses,
checks for equalities implied by the hard clauses, and performs pure literal elimination.
Although these procedures do not concern the weights, they may modify the original
list of soft clauses. In particular, a soft clause may be satisfied due to e.g. containing a
literal which has been assigned to true via unit propagation, in which case the soft clause
is removed; we update currentIndex by setting the corresponding index to SAT. If a soft
clause becomes empty due to e.g. containing only literals which have been assigned to
false via unit propagation, it is removed and baseCost is updated; we update currentIndex
by setting the corresponding index to UNSAT. Finally, tautologies are removed; for a
(tautological) soft clause we set the corresponding index to SAT.
Contradictory unit clauses. If there is a pair of contradictory unit clauses one of which is
soft and the other is hard, the soft clause is falsified, so we update currentIndex by setting
its index to UNSAT. If there is a pair of contradictory soft unit clauses, the base-version
of MaxHS would only preserve the clause with higher weight, setting its new weight
as the difference and incrementing baseCost with the smaller weight. In our setting we
need to preserve both; we additionally set the new weight of the lower-weight clause to
zero, and keep track of such contradictory unit soft clauses within the contradictoryUnit
datastructure. In particular, MaxHS initializes blocking variables in such a way that
unit soft clauses are used as blocking variables, and new variables are declared only for
non-unit softs. In contrast, we declare new blocking variables for unit soft clauses for
which contradictoryUnit is true.
Duplicate clauses. If there is a pair of duplicate clauses with a hard clause and a soft clause,
the soft clause is subsumed by the hard clause. In this case, we update currentIndex at
the corresponding index to SAT. If there is a duplicate of two soft clauses, they are joined
into one by setting the weight as the sum of the two weights. We update currentIndex by
setting the index of the removed soft clause to the same index as the preserved one.

1 Note that, in contrast to the pseudocode, MaxHS does not assume that every soft clause is a unit
negation of a blocking variable. Instead the solver maintains the full clause and declares a blocking
variable for it internally.
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Algorithm 3 Procedure for changing the weight of the ith soft clause to w.

1 changeWeight(i, w)
2 δ ← w − originalWeights[i];
3 if currentIndex[i] = UNSAT then
4 baseCost← baseCost + δ;
5 else if currentIndex[i] = SAT then
6 return;
7 else
8 if contradictoryUnit[currentIndex[i]] then
9 resolve unit softs;

10 else
11 totalWeight← totalWeight + δ;
12 weights[currentIndex[i]]← weights[currentIndex[i]] + δ;
13 originalWeights[i]← w;
14 update CPLEX;

Flipping literals. If there is a unit soft clause with a positive literal, that literal is flipped
in the instance in order to use it as a blocking variable (so that setting the blocking
variable to true incurs the cost of the soft clause). We only do this in the case that the
soft clause does not have a contradictory unit soft clause.

Note that hardening of soft clauses is disabled since it may change the set of cores of the
instance being solved and lead to IHS-INC computing cores that are not valid to preserve
between iterations.

▶ Example 5. Consider the instance F with H = {(b1 ∨ b2)} and B(F) = {b1, b2} with
w(b1) = 1 and w(b2) = 10. During hardening, MaxHS invokes a SAT solver on H in hopes
of finding a good model that allows hardening of soft clauses. Assume that the model τ =
{b1,¬b2} is computed. Since cost(F , τ) = 1 < w(b2) MaxHS concludes that the soft clause
(¬b2) can be hardened and invokes ihs-abscores on the instance FH = {(b1 ∨ b2), (¬b2)}
with B(FH) = {b1}. While the optimal solutions of both F and FH are the same, the set of
cores are not, κH = {b1} is an example of a core of FH that is not a core of F . In other
words, κH could not in general be preserved between the iterations of IHS-INC as it is not a
core of any instance where (¬b2) can not be hardened.

CPLEX Interface

The underlying IP solver CPLEX, used for solving the hitting set problems, has to be updated
between iterations with the new sequence of weights. We implement this within the CPLEX
interface of MaxHS by using CPXXchgcoef2 to change the coefficient of the objective function
corresponding to the weight of a blocking variable. This update is performed only if the
corresponding blocking variable exists in CPLEX.

The resulting procedure for changeWeight(i,w)is detailed as Algorithm 3. We compute δ

as the difference between the new weight w and the current weight stored in originalWeights[i]
(line 2). If currentIndex[i] is UNSAT, it suffices to increment baseCost by δ (lines 3 and 4). If
currentIndex[i] is SAT, we simply do nothing (lines 5 and 6). Otherwise currentIndex[i] contains
the index of the corresponding internal soft clause. Now, if this internal soft clause has a

2 https://www.ibm.com/docs/en/icos/12.10.0?topic=c-cpxxchgcoef-cpxchgcoef

https://www.ibm.com/docs/en/icos/12.10.0?topic=c-cpxxchgcoef-cpxchgcoef
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contradictory unit clause, we resolve these two unit soft clauses (lines 8 and 9). Otherwise, we
increment totalWeight and the internal weight weights[currentIndex[i]] by δ (lines 11 and 12).
Finally, we set originalWeights[i] to the new weight w (line 13) and perform the necessary
updates to CPLEX (line 14).

4.3.2 Weight-based Reasoning
In addition to correctly taking into account the simplification procedure and updating the
IP solver, during solving MaxHS performs weight-based reasoning, which either has to be
disabled or reimplemented by taking into account that weights may potentially change. These
reasoning procedures are the following.

Reduced Cost Fixing

MaxHS considers the linear programming (LP) relaxation of the hitting set problem, and
using so-called reduced costs corresponding to the optimal solution of the LP, determines
whether a soft clause can be hardened [3]. In particular, this is determined via the optimal
cost of the LP, the reduced cost corresponding to the blocking variable, and the cost of a
feasible solution to the MaxSAT problem. After changing weights, all of these numbers may
change arbitrarily. Hence, it is clear that soft clauses hardened due to reduced cost fixing
may invalidate the current instance and alter the set of cores the instance (recall the earlier
discussion on hardening). Due to this, reduced cost fixing is disabled.

Abstract Cores: Graph and Totalizers

Recall that in order to determine which blocking variables occur in cores often together,
MaxHS constructs a weighted undirected graph based on the accumulated cores [8]. Nodes
of this graph correspond to partitions of the set of blocking variables, and weights of the
edges between nodes to how many times the blocking variables occur together in a core. In
particular, it is assumed that blocking variables within a node and in adjacent nodes have
the same weight. In order to preserve these invariants, if a node contains several blocking
variables which now have different weights, the node is removed from the graph. Similarly, if
the incident nodes of an edge contain blocking variables with different weights, the edge is
removed from the graph.

In order to encode cardinality constraints over count variables corresponding to abstract
cores, MaxHS makes use of totalizers [7]. It is assumed that blocking variables used as inputs
of a totalizer have the same weight. Furthermore, each totalizer is assigned this weight in
order to compute new lower bounds. In order to preserve this invariant, we check which
totalizers contain inputs whose weights have changed. If all weights have changed to the
same new weight, we simply reset the current weight of the totalizer to the new weight.
If weights are different, the totalizer is invalid, so it is removed, and so are all totalizers
containing a subset of the inputs of the totalizer.

4.3.3 Solving Procedure
With all of this in place, for solving the instance at iteration i > 1 we recompute the sum of
the weights of soft clauses known to be satisfiable from the existing model in the SAT solver
(τbest in Algorithm 2) – this weight is used to determine the upper bound by subtracting it
from totalWeight. Furthermore, we recompute the sum of the weights of blocking variables
that are fixed to true by the SAT solver, and set the lower bound to this number. After
reinitializing the graph and totalizers related to abstract cores, we may solve the updated
instance as usual.
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In addition to the techniques discussed in this section, our implementation of IHS-INC
also makes use of a number of previously proposed heuristics for extracting a large number
(hundreds) of cores from each hitting set [12, 10, 28]. The techniques that have not been
discussed in this section are all sound to keep between iterations. Recall that, as long as a
core extraction heuristic computes a set of blocking variables that is a core of the current
instance, the same set will be a core in subsequent iterations as well.

5 Experimental Evaluation

In this section we provide an empirical evaluation comparing MaxHS (MaxSAT evaluation
2020 version3) to our implementation of IHS-INC built on top of MaxHS. The non-incremental
MaxHS is run with default parameters, with all its optimizations including hardening of soft
clauses during simplification and in the form of reduced cost fixing enabled.

All experiments were run on 2.60-GHz Intel Xeon E5-2670 8-core machines with 64GB
memory and CentOS 7. We set a per-instance time limit of 7200 seconds (2 hours) and a
memory limit of 16 GB. Specifically, the 7200-second time limit is for solving a single instance
n times with n different weights w1, . . . , wn. For both the incremental and non-incremental
solver, we record the solving time tk of each iteration k. The kth iteration (as well as all
subsequent ones) is considered as a timeout if

∑k
i=1 ti > 7200 seconds.

We consider two different recently-proposed methods for learning interpretable classifiers,
namely decision trees and decision rules, via MaxSAT. The input for both scenarios is a
dataset (Xi, yi), i = 1, . . . , n, of binary examples Xi ∈ {0, 1}m and classes yi ∈ {0, 1}. Each
coordinate j = 1, . . . , m of an example Xi = (x1

i , . . . , xm
i ) is called a feature. The goal is to

learn a binary classifier (a function mapping each example in the feature space {0, 1}m to a
class in {0, 1}) which minimizes the training error consisting of the number of misclassified
examples in the input dataset. In the context of changing weights, we consider two different
methods designed to avoid overfitting. For decision trees, AdaBoost [16] is an algorithm
where a sequence of shallow decision trees are learned by iteratively changing the weights of
the examples in the training set. For decision rules, we include a regularizing term to the
objective function which also enforces the sparsity of the resulting rule [18], and iteratively
vary the value of the regularization parameter.

5.1 Case Study 1: MaxSAT for Boosting Decision Trees
Decision trees are classifiers with the structure of a full binary tree for binarized data. Leaf
nodes are associated with a particular class (in our setting, 0 or 1), and non-leaf nodes
with a feature j = 1, . . . , m. An example X = (x1, . . . , xm) is classified by starting from the
root node, checking the value of xj for the feature j associated to the node, and proceeding
recursively to the left child if xj = 0 and to the right child if xj = 1. The class is then
determined by the leaf node which terminates the recursion.

We consider the MaxSAT encoding for learning a decision tree of depth at most U [16],
based on a SAT encoding for learning a decision tree with exactly N nodes [26]. In addition
to variables and hard clauses for encoding the structure of a valid binary tree, its depth,
and the classification of the training data, the MaxSAT encoding has variables bi for each
example Xi with the interpretation that bi is true if and only if example Xi is classified
correctly. The objective is then to minimize the training error via unit-weight soft clauses (bi)
for each example Xi. An instance formed from a dataset with n examples and m features
has O(n + m) variables, O(n + m) hard clauses of length O(m), and n unit soft clauses.

3 https://maxsat-evaluations.github.io/2020/descriptions.html
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Table 1 Statistics on MaxSAT instances used for AdaBoost.

Minimum Maximum Average Median
Number of variables 2129 26396 8310.4 7768

Number of hard clauses 8176 96382 30343.8 26772
Literals in hard clauses 38524 5342964 718654.9 211629

Average length of hard clauses 3.45476 70.1593 16.4 10.3187
Number of soft clauses 27 6473 803.6 342

In particular, here we focus on the implementation of AdaBoost [14], an ensemble method
where multiple weak classifiers (in this context, shallow decision trees) are trained and then
combined into a single classifier via a weighted voting scheme. This is achieved via changing
the weights of the soft clauses iteratively [16]. In more detail, after learning a decision tree,
the weight w(bi) for each i = 1, . . . , n is updated via

ŵ(bi) = w(bi) · fi∑n
j=1 w(bj) · fj

where fi = exp(−α) if the ith example was classified correctly and exp(α) otherwise,
α = 1

2 ln( 1−ε
ε ), and ε is the training error. As long as ε < 0.5, this raises the weight

of incorrectly classified examples and lowers the weight of correctly classified examples.
Intuitively, the following decision tree will consider that misclassified examples are more
important than correctly classified ones. Then, weights are discretized by setting

w(bi) = round
(

ŵ(bi)
minj=1,...,n ŵ(bj)

)
.

In other words, if an example is classified correctly at each iteration, its corresponding weight
will remain constant 1 due to discretization. If an example is classified incorrectly at each
iteration, its weight will grow exponentially.

In contrast to using an incomplete MaxSAT solver by starting it from scratch at each
iteration [16], we consider solving each iteration exactly in an incremental fashion. For
benchmarks, we take the 15 datasets used in [16] (which were downloaded from CP4IM4

and discretized5). For the exact number of examples and the number of features in these
instances, we refer the reader to [16, Table 1]. For each dataset, we generated different
training sets by taking 20%, 30%, . . . , 80% of the available data, resulting in 105 training
sets. We set the maximum depth to U = 2 and used 21 iterations for AdaBoost. Detailed
statistics on the resulting MaxSAT instances are provided in Table 1.

The results are summarized in Figure 2, where each point is a single iteration, the x-axis
is the CPU time-consumed by our implementation, and the y-axis is the CPU time-consumed
by MaxHS. Points are colored by the iteration number: the higher the iteration number,
the more yellow the point (and the lower, the more blue). We clearly see that almost all
lower iterations take approximately the equal amount of time, with a few more timeouts
exhibited by our implementation than by MaxHS (four points on the right border of the plot).
However, for higher iterations, we see a clear improvement from using the incremental version

4 https://dtai.cs.kuleuven.be/CP4IM/datasets/
5 https://gepgitlab.laas.fr/hhu/maxsat-decision-trees
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Figure 2 Incremental vs. non-incremental
MaxHS for AdaBoost. Each point is an iteration.
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Figure 3 Incremental vs. non-incremental
MaxHS for AdaBoost on example datasets.

of MaxHS. In particular, some iterations which take 100 seconds to solve using MaxHS are
now solved in a matter of seconds, and MaxHS exhibits a significant number of timeouts
which are solved using the incremental version (points on the upper border of the plot).6

Dataset specific examples of how the runtimes of non-incremental and incremental MaxHS
differ when iterating over the sequences of instances the datasets give rise to are provided
in Figure 3. We observe that for almost all iterations, the performance of the incremental
version is significantly better than that of the standard non-incremental MaxHS. This is the
case in particular for the later iteration; evidently, incremental computations start paying off
noticeably after solving the first few instances in the sequence.

5.2 Case Study 2: MaxSAT for Learning Decision Rules
Decision rules are classifiers which take the simple and interpretable form of if-then-else
rules. Here we consider MLIC [18], a framework for learning decision rules via MaxSAT, in
particular decision rules where the implicant is a CNF formula R over the features containing
exactly K clauses, and the consenquent is simply “class is 1”. In addition to minimizing
the training error, the goal is to learn sparse decision rules. Sparsity of the learned rules
is enforced by a regularizing term. In particular, the objective is to minimize λ|ER|+ ∥R∥,
where |ER| is the number of misclassified examples and ∥R∥ is the number of literals in
R. The choice of the regularization parameter7 λ > 0 is a difficult task. A simple method
for choosing λ is to perform an exhaustive grid search over an interval and choosing the
λ that minimizes e.g. the cross-validated error. Note the form of the objective function,
namely minimizing the linear combination of an error and a regularizing term, is very general,
and interestingly similar MaxSAT-based methods for learning sparse decision sets [32] and
lists [31] also share a similar objective.

6 We also tried using the previous optimal solution to calculate an initial UB in non-incremental MaxHS,
but did not observe any significant performance improvements. Note that MaxHS only terminates
when the upper bound equals the lower bound, even given an optimal solution, MaxHS has to prove its
optimality by extracting cores which yield a hitting set of the same cost.

7 Note that, unlike is typically the case, the role of λ in [18] is the weight of the error term, not the
sparsity term (which is in fact the regularizer). The sparsity term has coefficient 1/λ.
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Table 2 Data on MaxSAT instances used for MLIC.

Minimum Maximum Average Median
Number of variables 182 183105 26122.9 2339.5

Number of hard clauses 523 49086727 3792656.9 47721
Literals in hard clauses 1473 120037762 9765213.2 216129

Average length of hard clauses 2.21576 132 15.8 2.5
Number of soft clauses 157 48139 8224.0 1627.5

The MaxSAT encoding has variables bj
k for each clause index k = 1, . . . , K and each

feature j = 1, . . . , m, and variables ηi for each example Xi. Here bj
k is assigned to true if and

only if feature j occurs in the kth clause, and ηi is assigned to true if and only if example Xi

is classified incorrectly. In addition to hard clauses encoding the semantics, soft clauses (¬ηi)
with unit weights and (¬bj

k) with weight λ are used to encode the objective function. An
instance resulting from encoding a dataset with n examples and m features has O(n + m)
variables, O(n + m) hard clauses with length O(m), and O(n + m) unit soft clauses.

Following [18], we consider computing the optimal decision rules for λ = 0.25, 0.5, . . . , 5.0,
in this exact order. As we start from a low value of λ, the iterative procedure first learns
decision rules that are more sparse and less attention is given to correct classification, and
as λ is incremented, more importance is given to classifying the examples correctly than to
sparsity. We use the same 10 datasets (from the UCI repository8) which were discretized via
adapting the script provided by the MLIC repository9. For the exact number of examples and
the number of features, we refer the reader to [18, Table 1]. For each dataset, we generated
training sets by taking 10%, 20%, . . . , 90% of the available data, resulting in 90 different
training sets. We learned CNF rules consisting of K = 2, 3 clauses (as instances with K = 1
clauses were observed to be solved directly using the IP solver due to all constraints being
seeded into CPLEX). This gave rise to 180 different runs each with 20 iterations. Detailed
statistics on the MaxSAT instances are provided in Table 2.

Our results are summarized in Figure 4, where each point corresponds to a single iteration,
the x-axis is the CPU time of the incremental version, the y-axis is the CPU time of basic
MaxHS, and points are colored by the iteration number. We observe a very clear improvement
in favor of the incremental version, especially for higher iterations. MaxHS also exhibits a
significant number of timeouts for iterations that are solved using the incremental version.

Dataset specific examples of how the runtimes of non-incremental and incremental MaxHS
differ when iterating over the sequences of instances the datasets give rise to are provided in
Figure 5, with the value of lambda (corresponding to the iteration) on the x-axis and the
CPU time on the y-axis. While we observe some variation in the runtime for both solvers, e.g.
the iterations corresponding to λ = 1.25, 2.25, are slower to solve, the incremental version is
clearly faster on most iterations. Some instances are significantly easier, essentially trivial,
to solve using the incremental version compared to the non-incremental solver; the bottom
plot in Figure 5 provides such an example.

8 https://archive.ics.uci.edu/ml/
9 https://github.com/meelgroup/MLIC/tree/MLIC
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Figure 4 Incremental vs. non-incremental
MaxHS for MLIC. Each point is an iteration.
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Figure 5 Incremental vs. non-incremental
MaxHS for MLIC on example datasets.

6 Conclusions

Various types of real-world optimization problems, requiring solving a sequence of related
problem instances, call for solvers that can make use of incremental computations across
the instances. Motivated by recent applications of MaxSAT solvers, we adapted one of
the key MaxSAT solving approaches – the implicit hitting set approach – to cope with
incrementality under changes to the weights of soft clauses. While it is seemingly simple to
adapt a rudimentary version of the IHS approach to deal with this type of incrementality, the
various search techniques applied in MaxHS, a state-of-the-art IHS MaxSAT solver, make such
adaptations non-trivial. In particular, we explained which search techniques can and cannot
be adapted for incremental computations under changing weights. Taking these observations
into practice, we adapted MaxHS to support incrementality under changing soft clause
weights. Using two recent real-world applications of MaxSAT in the context of interpretable
machine learning as examples, we showed that the incremental version of MaxHS provides
significant runtime improvements over MaxHS (despite all of the performance-improving
optimizations used in the non-incremental version) when solving sequences of MaxSAT
instances with adaptively changing weights. As future work, we aim to generalize the
framework further to allow e.g. efficiently altering the set of hard and soft clauses between
iterations without increasing the sizes of extracted cores or hitting set instances met.
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Abstract
We introduce a new Multi-Agent Path Finding (MAPF) problem which is motivated by an industrial
application. Given a fleet of robots that move on a workspace that may contain static obstacles, we
must find paths from their current positions to a set of destinations, and the goal is to minimise the
length of the longest path. The originality of our problem comes from the fact that each robot is
attached with a cable to an anchor point, and that robots are not able to cross these cables.

We formally define the Non-Crossing MAPF (NC-MAPF) problem and show how to compute
lower and upper bounds by solving well known assignment problems. We introduce a Variable Neigh-
bourhood Search (VNS) approach for improving the upper bound, and a Constraint Programming
(CP) model for solving the problem to optimality. We experimentally evaluate these approaches on
randomly generated instances.
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1 Introduction

Multi-agent path finding (MAPF) is a very active research topic which has important applic-
ations for robotics in industrial contexts (e.g., transport in fulfillment centers, autonomous
tug robots). In this paper we consider an extension of MAPF for tethered robots, i.e., robots
attached with flexible cables to anchor points, allowing them to have continuous access to
fluids such as energy or water, for example. This is the case for our industrial partner in a
European project1 where a fleet of mobile robots is used for inspecting and cleaning large
structures. Each robot has a cable which is kept taut between its anchor point and its
current position by a system that pulls on the cable when the robot moves back. The main
difficulty with these tethered robots comes from the fact that robots are not able to cross
cables. Hence, this paper introduces the Non-Crossing MAPF (NC-MAPF) problem which
aims at finding paths such that robots never have to cross cables.

1 H2020 project BugWright2: Autonomous Robotic Inspection and Maintenance on Ship Hulls and Storage
Tanks, 2020-24
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Related work
In classic MAPF, agents move in a discretized environment (a grid or a graph). The goal is
to find a plan for moving all agents from their initial locations to target locations so that no
two agents share a same location (grid cell, graph node, or graph edge) at a same moment.
Typically, a plan is a sequence of actions for each agent, where an action is either “move to
an adjacent location” or “wait at the current location”.

There are two main MAPF variants depending on whether each agent has a known
target, or there is a set of targets and each agent must be first assigned to a target before
searching for a plan. This latter variant, called anonymous MAPF, is more general and also
more difficult as the search space is increased. There are two main objective functions, i.e.,
minimise the makespan, corresponding to the latest arrival time of an agent to its target, or
minimise the sum of all travel times. In both cases, the problem is N P-hard [18].

MAPF problems are usually solved by using Conflict Based Search (CBS) approaches
[15] which are two-level approaches: at the low level, paths are searched (while satisfying
constraints added at the high level); and at the high level, path conflicts are resolved. CBS
has been extended to agents with a specific geometric shape and volume (e.g., [9, 17]) and to
convoys (agents that occupy a sequence of nodes and their connecting edges) [16]. These
MAPF variants share some similarities with NC-MAPF as a tethered robot may be viewed
as a robot which has a very long body corresponding to its cable.

However, CBS is not suited to solve NC-MAPF because this approach is efficient when
conflicts are easily resolved by applying small changes to paths (e.g., waiting for a location
to be freed or getting around an occupied location). This is not the case for NC-MAPF. For
example, let us consider the case of two paths π1 (from an anchor point a1 to a target t1)
and π2 (from a2 to t2) such that the cables cross at some point x. To solve this conflict,
a first possibility is to ask the first robot to wait just before reaching x while the second
robot continues its path from x to d2, achieves its task on d2, and returns back to x, thus
removing the cable from x and allowing the first robot to continue its path from x to d1. As
robots usually have to achieve long duration tasks, this way of resolving conflicts dramatically
increases the makespan. A second possibility is to search for new paths such that cables do
not cross, but this cannot be done by applying small changes to the paths and this problem
may have no solution in some cases.

In the robotics literature, few works have investigated path planning for tethered robots.
In most cases, cables may be pushed and bent by robots (e.g., [6, 19]), which is not possible in
our industrial context. As far as we know, none has considered a case similar to our problem
where (i) robots cannot cross neither push or bent cables, (ii) paths cannot be sequentialized
(i.e., a robot cannot wait for another robot to have achieved its task and returned back to its
anchor point), and (iii) robots do not have assigned targets (anonymous MAPF).

Contributions and outline of the paper
In Section 2, we introduce notations and define the workspace on which robots evolve. This
workspace is continuous, and we show in Section 3 how to reformulate our problem in a
discrete visibility graph.

In Section 4, we first consider the case where the workspace has no obstacle. We show
that the NC-MAPF problem without obstacle is a special kind of assignment problem in a
bipartite graph, and we show how to efficiently compute lower and upper bounds by solving
well known assignment problems. We also introduce a Variable Neighbourhood Search (VNS)
approach, to improve the upper bound, and a Constraint Programming (CP) model, to
compute the optimal solution.
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In Section 5, we consider the case where the workspace has obstacles. We prove that
optimal solutions of assignment problems still provide bounds in this case. We also show
that the optimal solution of the NC-MAPF problem may contain some paths that are not
shortest paths. Hence, we introduce an approach for enumerating all relevant paths and,
finally, we introduce a CP model for computing the optimal solution.

In Sections 4 and 5, we report experimental results on randomly generated instances and
show that our approach scales well enough to solve realistic instances within a few seconds.

2 Definition of the workspace and notations

Robots move on a 2 dimensional workspace W ⊂ R2. This workspace is defined by a bounding
polygon B and a set O of obstacles: every obstacle in O is a polygon within B, and W is
composed of every point in B that does not belong to an obstacle in O. Without loss of
generality, we assume that B is convex: if the bounding polygon is not convex, then we can
compute its convex hull B and add to O the obstacle corresponding to the difference between
the bounding polygon and B. We denote VO the set of vertices of obstacles in O, and we
assume that these vertices belong to W (and, therefore, obstacle boundaries belong to W ).

Given two points u, v ∈ W , we denote uv the straight line segment that joins u to v, and
|uv| the Euclidean distance between u and v (i.e., |uv| is the length of uv). We say that a
segment crosses an obstacle if uv ̸⊂ W . Given two segments uv and u′v′, we say that they
are incident if they have one common endpoint (i.e., |{u, v} ∩ {u′, v′}| = 1), and we say that
they cross if they share one point (called the crossing point) which is not an endpoint (i.e.,
{u, v} ∩ {u′, v′} = ∅ and uv ∩ u′v′ ̸= ∅).

A chain of incident segments u0u1, u1u2, . . . , ui−1ui is represented by the sequence π =
⟨u0, u1, u2, . . . , ui⟩. The length of this chain of segments is denoted |π| and is the sum of the
lengths of its segments, i.e., |π| =

∑i
j=1 |uj−1uj |.

We denote [x, y] the set of all integer values ranging between x and y.

3 Definition of the NC-MAPF Problem

We consider an anonymous MAPF problem with a set of n robots such that each robot is
attached with a flexible cable to an anchor point in W , and a set of n destinations. The goal
is to find a path in W for each robot from its anchor point to a different destination so that
the longest path is minimised and robots never have to cross cables.

As the workspace W is continuous, there exists an infinite number of paths from an
anchor point a to a destination d. However, as each cable is kept taut, the number of different
cable positions that start from a and end on d is finite (provided that we forbid infinite
loops). More precisely, the cable position associated with a robot path from a to d is a chain
of incident segments ⟨u0, u1, . . . , ui⟩ such that (i) u0 = a and ui = d, (ii) no segment crosses
an obstacle, and (iii) every internal point is an obstacle vertex, i.e., ∀j ∈ [1, i − 1], uj ∈ VO.

As the length of a robot path cannot be smaller than the length of its cable position, we
can simplify our problem by assuming that the path of a robot is its cable position. Hence,
we search for paths in a visibility graph [10] defined in Def. 1 and illustrated in Fig. 1.

▶ Definition 1 (Visibility graph [10]). The visibility graph associated with a workspace W , a
set of anchor points A and a set of destinations D is the directed graph G = (V, E) such that
vertices are either points of A and D or obstacle vertices, i.e., V = A ∪ D ∪ VO, and edges
correspond to segments that do not cross obstacles, i.e., E = {(u, v) ∈ (A∪VO)×(D∪VO)|uv ⊂
W}. The graph is directed because edges from destinations to anchor points are forbidden.

CP 2021
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In Def. 1, we implicitly assume that robots are points, which is an acceptable approxima-
tion when the actual size of robots is very small compared to the size of obstacles (which is
the case in our industrial application). This definition may be extended to the case where
robot shapes are approximated by circles with non null radius in a straightforward way by
growing obstacles (see [10] for details).

A path in the visibility graph G is a sequence of vertices ⟨u0, . . . , ui⟩ such that (uj−1, uj) ∈
E, ∀j ∈ [1, i]. This path also corresponds to a chain of segments and its length is the sum of
the lengths of its segments. We only consider elementary paths, i.e., a vertex cannot occur
more than once in a path. Indeed, if a path is not elementary, then it can be replaced by a
shorter elementary path obtained by removing its cycles.

Two paths are homotopic is there exists a continuous deformation between them without
crossing obstacles [2], and a taut path is the shortest path of a homotopy class. For example,
in the workspace of Fig. 1, all paths starting from the anchor point a1 (point 1 in blue),
passing between O1 and O2 and then between O1 and O3, and finally reaching the destination
d1 (point 1 in red) are homotopic. Let x be the bottom-left vertex of O1, y its bottom-
right vertex, z the top-left vertex of O3, and t the top-right vertex of O2. The paths
π = ⟨a1, x, y, z, d1⟩ and π′ = ⟨a1, x, t, z, d1⟩ are homotopic. π is taut because it is the shortest
path of its homotopy class. π′ is not taut because it is longer than π.

We say that a path is self-crossing if it contains two crossing segments. We say that two
paths π and π′ are crossing either if π contains a segment that crosses a segment of π′, or if
π contains two incident segments uv and vw and π′ contains two incident segments u′v′ and
v′w′ such that v = v′ and uw crosses u′w′. However, two non crossing paths may share some
vertices or some segments, as illustrated in Fig. 1(c). Indeed, as robots are small and cables
are thin, a robot can slightly push the cable of another robot without crossing its cable. For
example, if the black robot (starting from 3) in Fig. 1(c) arrives on the vertex of obstacle O4
before the blue robot (starting from 4) then, when the blue robot arrives on this vertex, it
can slightly push the black cable to continue its path between O4 and the black cable.

Let us now formally define our problem.

(a) (b) (c)

Figure 1 (a): Example of workspace W with four anchor points (in blue) and four destinations
(in red). (b): Visibility graph with paths that are not solution of the NC-MAPF because the green
path crosses the pink path and the black path crosses the blue path. Besides, the black path is not
taut. (c): Visibility graph with paths that are solution of the NC-MAPF, even though the green
and pink paths share a segment, and the black and blue paths share a vertex.
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▶ Definition 2 (NC-MAPF problem). Given a workspace W , a set A of n anchor points
and a set D of n destinations such that every point in A ∪ D belongs to W , the goal of the
NC-MAPF problem is to find n paths in the visibility graph G associated with W , A, and
D such that (i) every path is taut, (ii) every path starts on a different anchor point of A,
(iii) every path ends on a different destination of D, (iv) no path is self-crossing, (v) no two
paths are crossing, and (vi) the length of the longest path is minimal.

4 NC-MAPF problem without obstacles

In this section, we consider the case where the set O of obstacles is empty. In this case,
VO = ∅ and the visibility graph G is the complete bipartite graph such that V = A ∪ D and
E = A × D (every edge of E is included in W as the bounding polygon is convex).

In Section 4.1, we show how to compute lower and upper bounds by solving well known
assignment problems. In Section 4.2, we show how to improve the upper bound by performing
variable neighbourhood search. In Section 4.3, we introduce a CP model and, in Section 4.4,
we experimentally evaluate these approaches.

4.1 Computation of bounds by solving assignment problems
An assignment problem aims at finding a one-to-one matching between tasks and agents [3, 13].
In our context, tasks correspond to destinations and agents to robots, and a matching is a
bijection m : A → D. We say that an edge (a, d) of the visibility graph G is selected whenever
m(a) = d. The NC-MAPF problem without obstacles is a special case of assignment problem:

there is an additional constraint that ensures that no two selected edges cross, i.e.,
∀{ai, aj} ⊆ A, aim(ai) ∩ ajm(aj) = ∅;
there is an objective function that aims at minimising the maximal cost of a selected
edge, i.e., maxai∈A |aim(ai)|.

There exists many other assignment problems [3, 13]. The most well known one is the
Linear Sum Assignment Problem (LSAP) that aims at minimising the sum of the costs of
the selected edges. The LSAP can be solved in polynomial time (e.g., by the Hungarian
algorithm [7]). Interestingly, the solution of the LSAP cannot have crossing edges whenever
edge costs are defined by Euclidean distances [14]. Indeed, if two selected edges cross, then
we can obtain a better assignment by swapping their destinations so that the two edges no
longer cross. Hence, the solution of the LSAP provides an upper bound to the NC-MAPF
problem without obstacles.

The assignment problem that aims at minimising the maximal cost of a selected edge
is known as the Linear Bottleneck Assignment Problem (LBAP), and this problem can
also be solved in polynomial time (e.g., by adapting the Hungarian algorithm). However,
when adding the constraint that the selected edges must not cross, the problem becomes
N P-hard [4]. Hence, the solution of the LBAP provides a lower bound to the NC-MAPF
problem without obstacles.

4.2 Variable Neighbourhood Search
The upper bound computed by solving a LSAP may be tightened by performing local search.
We consider a basic VNS framework [11] described below.

The neighbourhood of a matching m contains every non crossing matching obtained by
permuting the destinations of k anchor points, and it is explored in O(

(
n−1
k−1

)
· k!): we

first search for the longest edge (a, m(a)); then, we enumerate subsets of A \ {a} that

CP 2021
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contain k − 1 anchor points and, for each subset (to which a is added), we consider every
permutation of the destinations without crossing edges, until finding a permutation whose
longest edge is smaller than (a, m(a)).
k is initialised to 2, and the search is started from the matching computed by solving the
LSAP. We iteratively perform improving moves, by replacing the current matching with
one of its neighbours that has a shorter longest edge. When we reach a locally optimal
matching (that cannot be improved by permuting the destinations associated with k

anchor points), we increase k. When an improving move is performed, k is reset to 2.
The search is stopped either when a given time limit l is reached or when k becomes
greater than a given upper bound kmax. (In the classical VNS framework, the current
solution is perturbated and k is reset to its lowest possible value when k becomes greater
than its upper bound kmax. We do not consider this perturbation phase here.)

4.3 Constraint Programming Model
Finally, let us introduce a CP model for the NC-MAPF problem without obstacles. Without
loss of generality, we assume that all edge lengths have integer values: if this is not the case,
then we can multiply every length by a given constant factor c > 1 and then round it to the
closest integer value so that for each couple of edges ((u, v), (u′, v′)) such that |uv| < |u′v′|,
we have round(c ∗ |uv|) < round(c ∗ |u′v′|). In this case, the optimal solution of the integer
problem is also an optimal solution of the original problem.

Let ub be an upper bound to the optimal solution. The variables are:
an integer variable xi is associated with every anchor point ai ∈ A, and the domain
of this variable contains every destination that is within a distance of ub from ai, i.e.,
D(xi) = {d ∈ D : |aid| < ub};
an integer variable y represents the maximal length of a selected edge.

The constraints are:
for each pair of anchor points {ai, aj} ⊆ A, we post a table constraint (xi, xj) ∈ Tij where
Tij is the table that contains every couple (d, d′) ∈ D(xi) × D(xj) such that d ̸= d′ and
the segment aid does not cross the segment ajd′;
for each anchor point ai ∈ A, we post the constraint y ≥ |aixi|;
we post an allDifferent({xi : ai ∈ A}) constraint. This constraint is redundant as
table constraints prevent assigning a same value to two different xi variables. However,
preliminary experiments have shown us that this improves the solution process for a wide
majority of instances.

The goal is to minimise y.

4.4 Experimental evaluation
We evaluate our algorithms on randomly generated instances. For all instances, the bounding
polygon is the square B = [0, 200]2. To generate an instance with n robots, we randomly
generate n anchor points and n destinations that all belong to B and such that the distance
between two points is always larger than 4. For each value of n, we generate 50 different
instances and report average results on these instances for all figures and tables.

We consider the following approaches:
LB refers to the computation of a lower bound by solving an LBAP (see Section 4.1).
UBi with i ∈ {1, 3, 5, 7} refers to the computation of an upper bound by first solving an
LSAP (see Section 4.1) and then improving it by VNS with l = 60 seconds and kmax = i

(see Section 4.2). Note that when i = 1, VNS is immediately stopped as k is initialised to
2 and the search is stopped when k becomes greater than kmax.
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Figure 2 Left: Evolution of the optimal makespan (Opt), the lower bound (LB) and upper
bounds (UBi with i ∈ {1, 3, 5, 7}) when increasing the number n of robots. Right: Evolution of the
gap to optimality (in percentage) with respect to time for UBiCP with i ∈ {1, 3, 5, 7}, on average
for the 50 instances with n = 50 robots.

UBiCP refers to the sequential combination of UBi, for computing an upper bound ub,
and CP (with the model described in Section 4.3) for computing the optimal solution.

LB and UBi are implemented in Python. The CP model is implemented in MiniZinc [12]
and solved with Chuffed [5]. All experiments are run on an Intel Core Intel Xeon E5-2623v3
of 3.0GHz×16 with 32GB of RAM.

On the left part of Fig. 2, we compare the optimal makespan with the lower bound
computed by LB, and upper bounds computed by UBi with i ∈ {1, 3, 5, 7}. We observe that
the optimal makespan decreases as the number n of robots increases. Indeed, when n gets
larger, anchor and destination points tend to be located more densely and this makes it
easier to assign anchor points to closer destinations. LB is always strictly smaller than the
optimal makespan, i.e., the solution of the LBAP always contains crossing segments.

UB1 corresponds to the solution of the LSAP, and this upper bound is much larger than
the optimal makespan. VNS strongly decreases this upper bound, and the larger kmax the
smaller the bound. Note that when kmax ≥ n, VNS actually finds the optimal makespan as
it explores all possible permutations of the n destinations (provided that we do not limit
time, i.e., l = ∞). Hence, when n = 5, the solution of UB5 is equal to the optimal makespan.

However, if UBi finds smaller bounds when increasing i, it also needs more time. This
is shown on the right part of Fig. 2, for instances that have n = 50 robots. We display the
evolution of the average gap to optimality in percentage (i.e., s−s∗

s∗ where s∗ is the optimal
makespan and s is the current makespan) with respect to CPU time. For UB1CP, the upper
bound ub is very quickly computed by solving the LSAP, but it is 38% as large as the optimal
makespan. ub is used to filter variable domains of xi variables. However, as ub is not very
tight, the construction of the table Tij for every couple of variables (xi, xj) is time consuming.
This construction phase corresponds to the horizontal part of the curve. Once the CP model
has been constructed, Chuffed finds better solutions and finally proves optimality. When
increasing kmax , the time spent by VNS to improve ub increases but, as a counterpart, the
time spent to build the CP model and the time spent by Chuffed to solve it also decreases.

Table 1 allows us to study scale-up properties when increasing the number n of robots.
The time spent by UBi (t1) strongly increases when i increases: from 0.008s when i = 1 to
more than 16s when i = 7 for n = 60. This was expected as the time complexity of VNS
is exponential with respect to kmax . The time limit l = 60s is never reached by VNS when

CP 2021



45:8 Solving the Non-Crossing MAPF with CP

Table 1 Scale-up properties with respect to the number n of robots. For each n ∈ {20, . . . , 60},
we report CPU times of UBiCP (in seconds), for i ∈ {1, 3, 5, 7}: t1 is the time spent to solve the
LSAP and improve the upper bound with VNS when kmax = i and l = 60s; t2 is the time to generate
the MiniZinc model; t3 is the time spent by Chuffed; ttot = t1 + t2 + t3 is the total time (in blue
when minimal). Chuffed is limited to 3600s and the time of a run is set to 3600 when this limit is
reached. In this case, t3 is a lower bound of the actual time (and we display ≥ before the time).

n UB1CP UB3CP UB5CP UB7CP
t1 t2 t3 ttot t1 t2 t3 ttot t1 t2 t3 ttot t1 t2 t3 ttot

20 0.001 0.4 0.1 0.5 0.01 0.2 0.1 0.3 0.0 0.2 0.1 0.3 0.8 0.2 0.1 1.1
30 0.002 1.4 ≥35.4 36.9 0.01 0.9 0.4 1.3 0.1 0.6 0.1 0.9 2.3 0.6 0.2 3.1
40 0.004 3.4 12.4 15.8 0.02 2.1 1.4 3.5 0.3 1.8 0.6 2.6 7.2 1.6 0.5 9.2
50 0.003 6.7 ≥127.2 133.9 0.03 4.1 13.6 17.7 0.5 3.1 7.5 11.1 7.6 2.8 7.7 18.2
60 0.008 16.8 ≥529.3 546.1 0.06 9.4 ≥197.6 207.4 1.3 6.1 27.0 34.4 16.8 5.7 25.5 48.1

Figure 3 The solution displayed on the left only uses shortest paths, and its makespan is larger
than the solution displayed on the right (the green right path is longer than the black path).

i ≤ 5 whereas it is reached when i = 7: for 7 (resp. 1 and 1) instances when n = 60 (resp.
50 and 40). However, when increasing i, UBi computes better bounds and this reduces the
time needed to generate the model (t2) and to solve it (t3). When i = 1, the time limit of
3600s is reached by Chuffed for 6 (resp. 1 and 1) instances when n = 60 (resp. 50 and 30).
It is also reached once when i = 3 and n = 60. A good compromise is observed with UB5CP.

5 NC-MAPF problem with obstacles

Let us now consider the case where the workspace contains obstacles. In this case, the
visibility graph is no longer a bipartite graph, and a path from an anchor point to a destination
may contain more than one edge. Besides, with the existence of obstacles, there might exist
more than one possible path, even when restricting our attention to paths in the visibility
graph, and an optimal solution may contain paths that are not shortest paths, as illustrated
in Fig. 3. As a consequence, our problem is no longer a simple bipartite matching problem:
we must not only choose a different destination for each anchor point, but also choose paths.

The number of paths between two points grows exponentially with respect to the number
of obstacles. However, if we have an upper bound on the maximal length of a path, we can
reduce the number of paths. Hence, we show how to compute upper bounds on the makespan
in Section 5.1. In Section 5.2, we show how to compute all relevant paths. In Section 5.3, we
describe a CP model and in Section 5.4 we experimentally evaluate our approach.



X. Peng, C. Solnon, and O. Simonin 45:9

(a) (b)

(c) (d)

Figure 4 Top (Case 1): πi (in red) and πj (in blue) contain two crossing segments uivi and ujvj .
(a): uivj and ujvi (in green) do not cross obstacles and |uivj | + |ujvi| < [uivi| + |ujvj |. (b): uivj

and ujvi (dotted lines) cross obstacles but πij = ⟨ui, p, vj⟩ and πji = ⟨uj , n, m, vi⟩ (in green) do
not cross obstacles and |πij | + |πji| < |uivi| + |ujvj |. Bottom (Case 2): πi (in red) and πj (in blue)
cross at a common vertex. (c): By swapping wi and wj we obtain non crossing paths which are
not shortest paths (|⟨uj , p, wi⟩| < |uj , v, wi⟩|). (d): By swapping wi and wj we obtain non crossing
paths that have the same length.

5.1 Computation of bounds
When there are obstacles, the visibility graph G associated with W , A and D is no longer a
bipartite graph. However, we can build a bipartite graph G′ = (V ′, E′) such that V ′ = A ∪ D

and E′ = A × D, and define the cost of an edge (a, d) ∈ E′ as the length of the shortest path
from a to d in G. In this case, we can compute a lower bound by solving the LBAP in G′.

Let us now show that we can also compute an upper bound by solving the LSAP in G′,
as a straightforward consequence of the following theorem.

▶ Theorem 3. Let m : A → D be an optimal solution of the LSAP in G′ and, for each
anchor point ai ∈ A, let πi be the shortest path that connects ai to m(ai) in the visibility
graph. For each pair of different anchor points {ai, aj} ⊆ A, either πi and πj are not crossing,
or they can be replaced by two non crossing paths π′

i and π′
j such that |πi| + |πj | = |π′

i| + |π′
j |.

Proof. Let us suppose that there exist two crossing paths πi and πj . There are two cases to
consider, depending on whether πi and πj contain two crossing segments or not.
Case 1: πi and πj contain two crossing segments uivi and ujvj . Let us show that this implies

that m does not minimise the sum of the selected edge costs. There are two sub-cases to
consider.
Subcase a: uivj and ujvi do not cross obstacles, as illustrated in Fig. 4a.

Let πp
i (resp. πs

i ) be the prefix (resp. suffix) of πi that precedes (resp. succeeds)
uivi, i.e., πi = πp

i · ⟨ui, vi⟩ · πs
i where · denotes path concatenation. Similarly, let

πj = πp
j · ⟨uj , vj⟩ · πs

j . Let x be the crossing point between uivi and ujvj . We have:

|uivi| = |uix| + |xvi| and |ujvj | = |ujx| + |xvj |. (1)

CP 2021



45:10 Solving the Non-Crossing MAPF with CP

The triangle inequality implies that

|uivj | < |uix| + |xvj | and |ujvi| < |ujx| + |xvi|. (2)

From Eq. (1) and (2), we infer that

|uivj | + |ujvi| < |uivi| + |ujvj |. (3)

When swapping vi and vj , πi and πj are replaced by the two paths π′
i = πp

i · ⟨ui, vj⟩ ·πs
j

and π′
j = πp

j · ⟨uj , vi⟩ · πs
i . From Eq. (3), we have |π′

i| + |π′
j | < |πi| + |πj |. This is in

contradiction with the fact that m minimises the sum of the costs of the selected edges
in G′ as the costs of edges (ai, m(aj)) and (aj , m(ai)) in G′ are smaller than or equal
to |π′

i| and |π′
j |, respectively (they may be strictly smaller if π′

i or π′
j are not shortest

paths in G).
Subcase b: uivj and ujvi cross obstacles, as illustrated in Fig. 4b.

In this case, we cannot simply exchange the two crossing segments to obtain two non
crossing paths. However, let πij be the path from ui to vj corresponding to the convex
hull of all vertices that belong to the triangle defined by ui, vj and x. This path is
displayed in green in Fig. 4b. We can show that |πij | < |uix| + |xvj | by recursively
exploiting the triangle inequality (see [1]). Similarly, there exists a path πji between
uj and vi such that |πji| < |ujx| + |xvi|. Therefore, |πij | + |πji| < |uivi| + |ujvj |. Like
in Subcase a, this is in contradiction with the fact that m minimises the sum of the
costs of the selected edges in G′.

Case 2: πi and πj do not contain crossing segments but they cross at some vertex v. Let π be
the longest path that is common to both πi and πj , i.e., πi = πp

i ·π ·πs
i and πj = πp

j ·π ·πs
j .

We can exchange πs
i and πs

j to obtain two paths π′
i = πp

i · π · πs
j and π′

j = πp
j · π · πs

i .
There are two sub-cases to consider.
Subcase c: π′

i and/or π′
j are not shortest paths, as illustrated in Fig. 4c. In this case, we

can obtain a better assignment by matching ai with m(aj) and aj with m(ai). This is
in contradiction with the fact that m is the optimal assignment.

Subcase d: π′
i and π′

j are shortest paths, as illustrated in Fig. 4d. In this case, we can
obtain an assignment which has the same cost as m by matching ai with m(aj) and
aj with m(ai), and π′

i and π′
j no longer cross at vertex v. If they cross at some other

vertex, we can recursively apply the same reasoning to either show that π′
i and π′

j are
not shortest paths and exhibit a contradiction (Subcase c), or show that there exist
two non crossing paths that have the same length as π′

i and π′
j (Subcase d). ◀

Hence, we can compute an upper bound by solving the LSAP in the bipartite graph G′.
If some paths are crossing in the optimal solution, then we can exchange sub-paths in the
crossing paths in order to obtain a solution with no crossing paths (and the same objective
function value), as explained in Subcase d of Theo. 3.

Like for the NC-MAPF without obstacles, this upper bound may be improved by VNS, as
explained in Section 4.2. We only have to adapt the procedure that explores the neighbourhood
of a matching, in order to check that permutations do not contain crossing paths (instead of
crossing edges). Note that this test is done in quadratic time with respect to the number of
edges in a path (whereas it is done in constant time when there is no obstacle).
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5.2 Relevant paths enumeration
The non crossing assignment in G′ that minimises the makespan may not be the optimal
solution of the original problem as edges of G′ correspond to shortest paths, and as the
optimal solution may use non shortest paths. To find the optimal solution, for each couple
(a, d) ∈ A × D, we must consider all relevant paths from a to d in the visibility graph G,
where a path π is relevant if it satisfies the three following constraints:
(C1) Given an upper bound ub on the optimal makespan (or on the maximal length of the

cable anchored at a), π must be shorter than ub, i.e., |π| < ub;
(C2) π must be elementary and not self-crossing;
(C3) π must be a taut path (as defined in Section 3).
Before enumerating all relevant paths, we remove from the visibility graph every edge that
cannot belong to a taut path, thus obtaining the reduced visibility graph [8]. Then, all
relevant paths starting from an anchor point a are enumerated by performing a depth first
search starting from a, and pruning branches whenever a constraint is violated. To check
constraint (C3), we perform a local geometric test in constant time.

5.3 Constraint Programming Model
Let ub be an upper bound to the optimal solution, and let P be the set of relevant paths
as defined in the previous section (paths in P are numbered from 1 to #P ). For each
path π ∈ P , o(π), d(π), and l(π) denote the origin, the destination, and the length of π,
respectively. The CP model has the following variables:

an integer variable xi is associated with every anchor point ai ∈ A, and its domain contains
every destination that may be reached from ai, i.e., D(xi) = {d(π) : π ∈ P ∧ o(π) = ai};
an integer variable zi is associated with every anchor point ai ∈ A, and its domain is the
set of all paths starting from ai, i.e., D(zi) = {π ∈ P : o(π) = ai};
an integer variable y represents the maximal length of a selected path.

The constraints are:
for each pair of anchor points {ai, aj} ⊆ A, we post a table constraint (zi, zj) ∈ Tij where
Tij is the table that contains every couple (π, π′) ∈ D(zi) × D(z′

i) such that d(π) ̸= d(π′)
and path π does not cross path π′;
for each anchor point ai ∈ A, we post the constraint y ≥ l(zi);
we channel xi and zi variables by posting xi = d(zi) and we post an
allDifferent({xi : ai ∈ A}) constraint. This constraint is redundant as table constraints
prevent selecting two paths that have a same destination. However, preliminary exper-
iments have shown us that this improves the solution process for a wide majority of
instances.

The goal is to minimise y.

5.4 Experimental evaluation
Like in the case where there is no obstacle, we consider a bounding polygon B = [0, 200]2.
We introduce a parameter m to set the number of obstacles. For each obstacle, we randomly
generate the coordinates of its lower left corner (x, y) ∈ [0, 160]2 and the coordinates of its
upper right corner (x′, y′) such that x + 1 ≤ x′ ≤ x + 40 and y + 1 ≤ y′ ≤ y + 40, while
ensuring that the distance between two obstacles is larger than 10. We consider 4 maps with
m = 5, 10, 15, 20 which are displayed in Fig. 5.

We consider two different kinds of distributions for generating anchor points and destina-
tions, in order to study the impact of this distribution on solution hardness:
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Figure 5 Workspace when m ∈ {5, 10, 15, 20} (obstacles are displayed in green).

Figure 6 Evolution of the optimal makespan (Opt), the lower bound (LB) and upper bounds
(UB, with i ∈ {1, 3, 5, 7}) when increasing the number of obstacles from 5 to 20. Left: U instances
(with n = 40). Right: B instances (with n = 20).

Uniform (U): anchor points and destinations are randomly generated in W according to a
uniform distribution;

Bipartite (B): anchor points (resp. destinations) are randomly generated on the left (resp.
right) part of W , by constraining their abscissa to be smaller than 60 (resp. greater
than 140).

For U instances, we set the number of robots n to 40, whereas for B instances it is set to 20
because these instances are harder, as explained later. For each value of m and each kind of
distribution, we have generated 30 instances.

In Fig. 6, we display the optimal makespan, the lower bound computed by LB, and
upper bounds computed by UBi with i ∈ {1, 3, 5, 7}, for U and B instances. In both cases,
we observe that the number of obstacles has no significant effect on the optimal makespan.
However, the optimal makespan is much smaller for U instances than for B instances: For U
instances, it is smaller than 80 whereas for B instances it is close to 180. This was expected
as anchor points are constrained to be far from destinations in B instances.

For U instances, UB1 is much larger than UB3 which is always larger than UB5. UB5
and UB7 have close values, and UB7 is also close to the optimal solution. Results are
quite different for B instances, where UB1 and UB7 have very close values. In other words,
VNS does not improve much the upper bound for B instances, whatever the value of kmax.
However, the optimal solution is much smaller than the upper bounds computed by UBi.
This means that for B instances we more often need to use non shortest paths to improve
the solution than for U instances (remember that VNS only considers shortest paths).

In Fig. 7, we display the evolution of the gap to optimality (in percentage) with respect
to time, and in Tables 2 and 3 we display the time spent by each step of the solving process.
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Figure 7 Evolution of the gap to optimality (in percentage) with respect to time for UBiCP with
i ∈ {1, 3, 5, 7}, on average for 30 instances. Top left: U instances with m = 5. Top right: U instances
with m = 20. Bottom left: B instances with m = 5. Bottom right: B instances with m = 20.

For U instances, LSAP is rather long to solve (see row t1 in the tables): around 3s when
m = 5, and 13s when m = 20. This comes from the fact that the function that decides
whether two paths are crossing or not has a quadratic time complexity with respect to the
number of vertices in the paths, and this number increases when increasing the number
of obstacles. UB3CP, UB5CP, and UB7CP improve the upper bound computed by LSAP
with VNS, and we observe a quick drop of the curves. Then, we observe an horizontal part
which corresponds to the time needed to enumerate all relevant paths and to generate the
CP model. The time needed to enumerate all paths (t3) strongly increases when increasing
the number of obstacles. This was expected as the number of paths grows with respect to
the number of obstacles. t3 slightly decreases when increasing kmax because the smaller
the bound computed with VNS, the less relevant paths (see row RP). The time needed
to generate the CP model (t4) decreases when increasing kmax (because this decreases the
number of relevant paths) and it increases when increasing m (because this increases the
number of vertices in a path and, therefore, the time needed to decide whether two paths are
crossing). Finally, after the horizontal part (corresponding to t3 and t4), the curves drop
again because CP improves the bound. As expected, the time needed by CP to compute the
optimal solution (t5) decreases when increasing kmax (because the initial bound is smaller,
and therefore tables are smaller), and it increases when increasing the number of obstacles
(because this increases the number of relevant paths).

Now, let us look at B instances. These instances only have n = 20 robots (instead of 40
for U instances) because they are harder. This comes from the fact that the bound computed
by UBi is much larger, as seen in Fig. 6. This increases the number of relevant paths, as seen
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Table 2 Results of UBiCP with i ∈ {1, 3, 5, 7} for U instances with n = 40 and m ∈ {5, 10, 15, 20}
(average on 30 instances). t1 = time to solve the LSAP; t2 = time of VNS when kmax = i; t3 = time
to enumerate all relevant paths for each anchor-destination pair; t4 = time to generate the CP model;
t5 = time to solve the CP model; ttot = t1 + t2 + t3 + t4 + t5; IM = number of Improving Moves for
VNS; RP = maximum number of Relevant Paths between an anchor point and a destination.

UB1CP UB3CP UB5CP UB7CP
m 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
t1 2.8 5.9 9.4 13.0 2.8 5.8 9.3 12.8 2.8 5.9 9.3 12.9 2.8 5.9 9.3 12.9
t2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.1 0.2 0.3 8.7 4.8 5.5 7.3
t3 4.4 10.2 21.5 33.7 3.9 8.5 14.5 21.6 3.7 8.0 14.7 21.1 3.4 7.9 14.2 20.7
t4 5.4 9.7 39.3 75.6 3.2 3.0 4.0 8.4 2.0 2.0 4.4 7.0 1.2 1.8 3.4 6.7
t5 122.5 23.2 47.6 184.3 2.5 7.6 1.1 9.1 1.3 0.3 1.3 0.8 0.4 0.3 1.7 0.8
ttot 135.1 49.0 117.8 306.5 12.3 24.9 29.1 51.8 10.0 16.3 30.0 42.0 16.6 20.6 34.2 48.3
IM 0 0 0 0 1.4 4.0 1.7 2.0 2.6 4.0 3.4 3.8 4.6 4.6 4.4 4.6
RP 2.5 2.8 3.9 4.7 2.2 2.4 3.1 3.0 2.0 2.2 2.8 2.7 1.9 2.6 2.6 2.5

Table 3 Results of UBiCP with i ∈ {1, 3, 5, 7} for B instances with n = 20 and m ∈ {5, 10, 15, 20}.

UB1CP UB3CP UB5CP UB7CP
m 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
t1 0.8 1.6 2.6 3.5 0.8 1.6 2.6 3.6 1.0 1.6 2.6 3.5 1.0 1.6 2.6 3.6
t2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.5 0.5 0.6 45.7 41.7 37.6 50.6
t3 3.5 12.2 42.0 96.2 3.4 11.8 40.2 95.5 4.2 12.0 40.4 93.6 4.3 12.0 40.5 93.6
t4 15.6 32.4 94.6 339.6 13.8 27.6 81.2 329.0 16.4 28.3 79.1 315.9 16.7 28.2 78.9 317.6
t5 0.4 0.7 1.6 5.6 0.4 0.6 1.3 5.3 0.5 0.6 1.3 5.0 0.4 0.6 1.3 5.1
ttot 20.3 46.9 140.7 445.2 18.4 41.6 125.3 433.4 22.6 43.0 123.8 418.7 68.1 84.0 160.9 470.4
IM 0 0 0 0 0.3 0.2 0.3 0.2 0.4 0.3 0.3 0.2 0.4 0.3 0.3 0.2
RP 6.8 8.0 13.3 23.3 6.4 7.8 12.6 22.9 6.3 7.8 12.4 22.7 6.4 7.8 12.4 22.7

when looking at row RP: when m = 20, this number is larger than 20 for B instances whereas
it is smaller than 5 for U instances. Also the number of vertices in a path increases. Hence,
the time needed to enumerate all relevant paths (t3) is much larger for B instances than for U
instances (e.g., when m = 20 and kmax = 7, 94s for B and 21s for U). Also, the time needed
to generate the CP model (t4) is much larger (e.g., when m = 20 and kmax = 7, 318s for B

and 7s for U). However, the time spent by VNS (t2) is much smaller (e.g., when m = 20
and kmax = 7, 4s for B instead of 13s for U) because n is twice as small for B than for U.
Finally, the time needed to solve the CP model increases when increasing m, but it does
not decrease when increasing kmax. This comes from the fact that VNS does not improve
much the upper bound, whatever the value of kmax (as seen in Fig. 6). Row IM displays the
number of improving moves performed by VNS, and we observe that this number is close to
0 for B instances.

For both B and U instances, we observe a good compromise between the time spent by
VNS to improve the bound, and the time spent to enumerate relevant paths, build the CP
model and solve it when kmax ∈ {3, 5}.

As observed on row RP of Tables 2 and 3, the number of relevant paths being searched
for each anchor/destination pair increases as m gets larger. Theoretically, this number
exponentially grows with the number of obstacles. When the optimal makespan is small and
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Table 4 Impact of the parameter p on the time needed to enumerate relevant paths (t3), to
generate the CP model (t4), and to solve it (t5), and on the gap to optimality (in percentage) for B
instances when kmax = 5 and m = 20.

p=1 p=2 p=4 p=8 p=16 no limit
t3 0.0 65.5 76.6 87.1 93.2 93.6
t4 1.9 8.2 34.4 121.7 265.5 315.9
t5 0.1 0.2 0.6 2.2 4.1 5.0
ttot = t1 + t2 + t3 + t4 + t5 6.9 78.0 115.8 215.1 367.9 418.7
gap to optimality 10.8% 5.9% 0.9% 0.0% 0.0% 0.0%

the upper bound computed by VNS is close enough to it, the actual number of relevant paths
is rather small (e.g., smaller than 3 for U instances when kmax ≥ 5). However, for B instances,
this number is greater than 20 when m = 20, and the time needed to enumerate these paths
and generate the CP model becomes greater than 400s. To overcome this problem, we can
introduce a parameter p and limit the number of relevant paths to p (keeping the p best
ones whenever the number of relevant paths is greater than p). Of course, in this case we no
longer guarantee optimality as it may happen that the optimal solution uses a path that
has been discarded. In table 4 we display the results of UB5CP for different values of p on
B instances when m = 20. Not surprisingly t2, t3, t4 are all reduced as p decreases, while
the average gap to optimality increases up to more than 10% for p = 1. In our experiment,
p = 8 ensures that an optimal solution can always be found, and divides by 2 the total time.

6 Conclusion

We have introduced a new MAPF problem which is motivated by an industrial application
where tethered robots cannot cross cables. We have shown that we can compute feasible
solutions that provide upper bounds in polynomial time, by solving LSAPs, even when the
workspace has obstacles. We have also introduced a VNS approach that improves the feasible
solution of LSAP by iteratively permuting k destinations, and a CP model that solves the
problem to optimality. Finally, we have proposed to sequentially combine VNS and CP, thus
allowing us to use the upper bound computed by VNS to filter domains.

Experimental results on randomly generated instances have shown us that the number
of obstacles has a strong impact on the solving time. When there is no obstacle, there is
exactly one path between every origin/destination pair of points, and this path is a straight
line segment. When increasing the number of obstacles, the number of paths between two
points grows exponentially, even when limiting our attention to taut paths. Hence, it is
important to have good upper bounds on the optimal solution in order to reduce the number
of candidate paths. Also, when increasing the number of obstacles, the number of vertices in
a path increases linearly, and this has an impact on the time needed to decide whether two
paths are crossing or not.

We have reported experiments on randomly generated instances that allow us to control
the number of obstacles and the number of robots. We have considered two models for
generating anchor and destination points, and we have observed that the distribution of the
points has a strong influence on the solution process. In particular, when anchor points and
destinations are constrained to belong to two opposite sides of the workspace, this increases
the hardness of the problem because this increases the makespan and, therefore, the number
of relevant paths and the number of vertices in a path. We have introduced a parameter to
control the number of paths and the solving time, at the price of the loss of optimality.

CP 2021



45:16 Solving the Non-Crossing MAPF with CP

For future work, we plan to investigate other solving approaches, such as Tabu search
or Integer Linear Programming. Also, we want to extend the work to non-point agents by
considering robots with a body, generating complementary constraints on their motions and
their cables. This will allow to deal with industrial and robotics applications.
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1 Introduction

Many application problems require reasoning about reachability, including road network
design [10], in-building access control [19, 16] and ecosystem management [6]. In each case,
paths must be ensured or denied between sets of locations. Often there are further constraints
on the lengths of those paths. For example, in buildings, from every location there must exist
an accessible path to a fire escape of less than a specified limit [9], while physical security
may require protected assets to be kept at least a minimum distance away from unauthorised
users [11]. In some cases, solutions may need to be dynamic, responding to movements
of either assets, hazards, or users in order to maintain the reachability requirements. In
each case, the problem can be considered as sub-graph design, enabling or disabling edges
in a larger graph. Some applications have optimisation criteria, including minimising the
number of edges (e.g. maintenance cost), or minimising sums of path lengths (e.g. expected
travel distance). In this paper, we model the problems in constraint programming, including
constraints on reachability and on path length.

Constraint-based graph design for reachability has been studied before [21, 20, 8, 4, 1],
including constraints on the costs of paths [22, 5]. However, these papers focus on positive
constraints, requiring paths between pairs of nodes. Little attention has been paid to the
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interaction of positive and negative constraints. The interaction of the two makes the
problem significantly more complex, and we show that determining whether a graph contains
a subgraph that satisfies mixed positive and negative reachability constraints is NP-complete.
To incorporate the restrictions on path length, we introduce length-bound reachability
constraints, and to support large sets of constrained pairs, we implement propagation based
on upper and lower bounds on all-pairs shortest paths. We evaluate our constraints on
random instances based on road networks, and consider both decision and optimisation
problems. We compare to the Dreachable constraint [4], and we show significantly faster
runtimes for decision problems and orders of magnitude improvement in costs for time-limited
optimisation problems.

In the remainder of the paper, we briefly summarise related work, and we then establish
the problem complexity of mixed positive and negative reachability sub-graph design. We
describe the length bound reachability constraint, including transitive closure and dominators.
Finally, we present the empirical evaluation, showing the behaviour of different versions of
the constraints on random problems.

2 Related Work

Reachability constraints [20, 4] enforce a graph variable to specify a graph that contains paths
between designated vertices. Path constraints [22, 7, 4] enforce a graph variable to represent a
path in the graph between two specified vertices, including in some cases bounds on the path
lengths [22, 5]. Our interest is in being able to express both positive and negative reachability
– that is, to deny connections between some vertex pairs, while enforcing connections between
others. Reachability can be expressed in terms of path constraints by having a path constraint
for each positive pair, and a negated path constraint for each negative pair. However, having
one constraint for each reachability pair leads to redundant computation as the constraints
do not share information on their selected paths. For instance, if a path constraint enforcing
reachability from i to j discovers that i must reach k, the other path constraints cannot take
advantage of that knowledge because they only communicate via the decision variables. That
is, not only are the space and time complexity of path constraints higher, but the level of
pruning achieved is much less than could be expected from a single global constraint that
incorporate all positive and negative reachability constraints on the same graph. One-to-many
(e.g., [8, 4]) and many-to-many (e.g., [20, 1]) approaches have been proposed to mitigate
redundancy and improve pruning when handling several reachability constraints. However,
their focus is still on positive reachability constraints rather than on the combination of both
positive and negative reachability constraints. We are not aware of any research handling
simultaneous positive and negative reachability constraints.

3 Positive and Negative Reachability Constraints

In this section we describe the input and the output of the problems we study, and then
establish the complexity of the core problem.

3.1 Input and Output
Input. We have the following input:

A directed graph G = (V, E), where each edge e ∈ E has an integer cost ec
1.

1 We use the terms cost and length interchangeably.
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A set of positive reachability constraints (PRC). A prc ∈ PRC is represented with a
tuple (i, j, λ) meaning that there is at least one path from i to j in the resulting graph
whose cost is less than or equal to λ.
A set of negative reachability constraints (NRC). An nrc ∈ NRC is represented with a
tuple (i, j, λ) meaning that there is no path from i to j in the resulting graph whose
length is less than λ.

In what follows we may omit λ in a positive reachability constraints if there is no bound
on the length of the path from i to j. Similarly, we may omit it in a negative reachability
constraint if all paths from i to j are to be denied.
Output. We consider three possible outputs:

Obj 1. Find G′ subgraph of G where all prcs and nrcs are respected.
Obj 2. Find G′ subgraph of G where all prcs and nrcs are respected, and the sum of
the costs of edges of G′ is minimised.
Obj 3. Find G′ subgraph of G where all prcs and nrcs are respected, and the sum of
the costs of the shortest paths in G′ connecting the vertices in the prcs is minimised.

3.2 Complexity of length-bound reachability constraint problems
In this section section we discuss the complexity of the decision problems involved in
length-bound reachability constraint problems.

3.2.1 Positive and negative reachability constraints
If we only have positive reachability constraints (i.e., NRC = ∅), checking whether the set of
reachability constraints in PRC is satisfiable is straightforward: we just just need to check
the existence of a path for every positive reachability constraint. The case where we only
have negative reachability constraints is trivial since a totally unconnected graph would
satisfy all of them. However, a mix of positive and negative reachability constraints is more
challenging. Let us formally define the problem as follows:

▶ Definition 1 (The Positive and Negative Reachability Constraints problem (PNRC )). Given
a directed graph G, a set of unbounded positive reachability constraints PRC , and a set of
unbounded negative reachability constraints NRC , is there a sub graph G′ of G that satisfies
all constraints in PRC and NRC?

▶ Theorem 2. PNRC is NP complete

Proof. First, we show PNRC is in NP. We use G′ as the certificate, and run Floyd Warshall [3]
on it to get the lengths of all-pairs shortest paths. If there is no path between two vertices,
it returns ∞ as the length. For each (s, t) ∈ PRC , check that the length of their path is less
than ∞; for each (p, q) ∈ NRC , check that the length is equal to ∞. This is polynomial.

We now give a reduction from 3SAT [12] to PNRC. We map a SAT instance to a directed
graph (following the approach in [15]) with reachability constraints. We start with a SAT
instance

∧n
i=1 xi1 ∨ xi2 ∨ xi3, where each xij is a literal (i.e., it is either a variable or a

negation of a variable), and construct a directed graph G = (V, E), where the vertices are
associated with levels from 0 to n + 1.

1. Create vertices s, t ∈ V . s is the only vertex at level 0. t is the only one at level n + 1.
2. Now create a vertex for each literal, add them to V, and assign the vertices for literals of

clause i to level i. That is, the three vertices of level i are xi1, xi2, and xi3.
3. Add to E a directed edge from s to each vertex of level 1.

CP 2021
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4. For each level i from 1 to n − 1, add to E an edge from each vertex of level i to each
vertex of level i + 1.

5. Add to E a directed edge from each vertex of level n to t.

To ensure that the SAT instance is satisfied, we add a positive reachability constraint
from s to t. A path from s to t represents an assignment of values to the Boolean variables
in the literals represented by the vertices in the path. That is, it assigns 1 to the Boolean
variable if the literal is positive and 0 otherwise. A path from s to t satisfies all the clauses,
and it is consistent if it does not assign two different values to the same variable. To ensure
that the assignment to the SAT instance is consistent we add negative reachability constraints
as follows. For any two vertices xij and xkl (i < k) representing literals that negate each
other, we must ensure that one is not reachable from each other. Since the directed edges
only ascend the levels, we only need to add (xij , xkl) to NRC .

We now show that the SAT instance is satisfiable if and only if there is a subgraph of G
that satisfies the constraints. If the SAT instance has a solution, then from it pick one TRUE
literal in each clause. These literals define a path from s to t in the graph (so satisfies the prc
in the PNRC instance). We select those vertices (literals) and edges as G′. There cannot be
any conflicting literals selected (since it is a 3SAT solution), and so no nrc can be violated,
and so the PNRC instance has a solution. If the PNRC instance has a solution, there is an
s-t path. This path has one TRUE literal in each clause. The graph obeys the nrcs, and we
have not added reachability, so there can be no conflicting literals in the path. Every 3SAT
variable not yet determined is then set to 0. This is a solution to the SAT instance.

Finally, we show that the construction is polynomial. If there are m clauses in the 3SAT
instance, then there are n = 3 ∗ m occurrences of literals. Each clause is processed in turn,
building each layer in the graph, with one vertex per occurrence of a literal. For each vertex,
we add incoming edges from the vertices in the previous layer, which is 3 + 3 ∗ (n − 3) + 3
edges. We add one prc for (s, t). For the nrcs, each time we add a vertex to the graph, we
sweep through the previous clauses and their literals. For each previous literal that negates
the current one we add an nrc between the corresponding previous vertex and the current
vertex. That requires O(n2) checks and additions of nrcs. ◀

3.2.2 Positive and negative reachability constraints with bounds on the
length of the paths

As the problem is already NP-complete without considering bounds on the lengths of the
paths, it follows that it is also NP-complete when considering bounds. Note, however, that
what makes the problem hard is the interaction between positive and negative constraints.
If NRC = ∅, the decision problem reduces to checking the lengths of the shortest paths for
every pair of vertices in PRC . As mentioned in the previous section, we are also interested in
minimising the sum of the costs of the selected edges and minimising the sum of the costs of
the paths connecting the vertices in PRC . Both optimisation problem are clearly NP-Hard
as both involve solving decision problems that are NP-complete.

4 CP approaches

In this section we present three approaches to model and solve the problem. G refers to the
input graph, and G′ refers to the resulting graph. In each model we separate the constraints
into two groups: essential and redundant. Essential constraints are required for the solution
to be sound. Redundant constraints are added to reduce the search space.
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4.1 Common variables
The models presented have the following common variables:

We associate a Boolean variable bee with edge e. bee = 1 means e ∈ G′

Each pair of vertices (i, j) is associated with a Boolean variable br . br ij = 1 means i

reaches j in G′

We have an integer variable epe per edge e. This variable represents the penalty associated
with the edge, which is dependent on the selection of the edge. More precisely, epe is
either equal to ec if ec ∈ G′ or ∞ if ec ̸∈ G′.
Each pair of vertices (i, j) is associated with an integer variable pc, which represents the
cost of the shortest path from i to j. That is, pcij is either equal to the shortest path
cost from i to j in G′ or ∞ if there is no path in G′ going from i to j.

4.2 The length-bound reachability constraint (LBRC)
All constraints are essential in this approach. This approach relies on the connection between
the reachability of vertex j from a vertex i and the shortest path from i to j. If there is no
path from i to j then we define the length of the shortest path to be ∞.

The PRC constraints are modelled in terms of the pc variables:

(i, j, λ) ∈ PRC ⇒ pcij ≤ λ (1)

The NRC constraints are modelled in terms of the pc variables:

(i, j, λ) ∈ NRC ⇒ pcij ≥ λ (2)

The cost of the shortest path to a reachable node is less than ∞:

br ij = 1 ⇔ pcij < ∞ (3)

The penalty of an edge e is either the cost of the edge, if the edge is selected, or ∞:

beij = 1 ⇔ epe = ec (4)

The cost of the shortest path from i to j must be the edge (i, j) or, for some in-neighbour
x of j, a shortest path from i to x followed by the edge (x, j):

pcij = min({ep⟨i,j⟩} ∪ {pcix + ep⟨x,j⟩|x ∈ in(j)}) (5)

where in(j) refers to the incoming neighbours of j, and for each pair (i, j), we have
1 + |in(j)| cost variables. This maintain bounds on the costs of the shortest paths, and as
edges are denied or enforced, the bounds are updated and propagated.

We define the length-bound reachability constraint (LBRC) as the constraint that keeps
variables be, ep, pc, and br consistent in the way described above. More formally,

▶ Definition 3.

LBRC (be, ep, pc, br) ≡ (i, j, λ) ∈ PRC ⇒ pcij < λ ∧
(i, j, λ) ∈ NRC ⇒ pcij ≥ λ ∧
br ij = 1 ⇔ pcij < ∞ ∧
beij = 1 ⇔ epe = ec ∧
pcij = min({ep⟨i,j⟩} ∪ {pcix + ep⟨x,j⟩|x ∈ V })

CP 2021
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Figure 1 A simple directed graph with vertex 4 dominating vertex 7 on paths from vertex 1.

4.3 The length-bound reachability constraint with Transitive closure
(LBRC+TC)

Consider the graph in Figure 1, and assume that we have:

br17 = 0 ∧ br14 = 1 ∧ br47 = 1

These reachability constraints are unsatisfiable. However we cannot detect that unsatis-
faction by pure propagation with LBRC. Notice that:

br14 = 1 ⇒ pc14 < ∞
⇒ (ep12 + ep24 < ∞) ∨ (ep13 + ep34 < ∞)

Similarly, we have that:

br47 = 1 ⇒ pc47 < ∞
⇒ (ep45 + ep57 < ∞) ∨ (ep46 + ep67 < ∞)

And we also have that:
br17 = 0 ⇒ pc17 = ∞

⇒ pc15 + ep57 = ∞
⇒ pc16 + ep67 = ∞

However, we cannot go any further since both pc15 and pe57 can be set to ∞ (i.e., we
have a disjunction). We have the same situation with pc16 and pe67 . The propagators
behind these sum constraints will just wait until one of the variables become less than ∞ to
set the other variable to ∞, or until one of the variables becomes ∞ to declare entailment.

In order to address this lack of propagation, in addition to the essential constraints of
LBRC we add redundant constraints implementing the transitive closure of the output graph:

br ij = 1 ∧ br jk = 1 ⇒ br ik = 1 (6)

Taking into account these redundant constraints, we have that br17 = 0 implies br14 =
0 ∨ br47 = 0 , which is in direct contradiction with br14 = 1 ∧ br47 = 1 .

4.4 The length-bound reachability constraint with Dominators
(LBRC+Dom)

Consider again the graph in Figure 1. Suppose now that we have:

br17 = 1 ∧ br14 = 0

These two constraints are clearly unsatisfiable given the structure of the graph. However,
we cannot detect that unsatisfiability just by pure propagation with LBRC+TC. To do that
we need to take into account that all paths from vertex 1 to vertex 7 go through vertex 4.

In this approach we use a constraint from [20], which relies on the notion of dominators:
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▶ Definition 4. Given a directed graph G = (V, E), and vertices i, j, k ∈ V , j is a dominator
of k with respect to i if all paths from i to k in G go through j

For Figure 1 we see that vertex 4 is a dominator of vertex 7 with respect to vertex 1.

▶ Definition 5. The DomReach(be, dom, br) constraint holds iff br represents the transitive
closure of G′,the graph represented by be, and dom is a 3D array representing the dominators
of G′, i.e., domijk = 1 iff j is a dominator of k with respect to i in G′.

We implemented the DomReach constraint following the same ideas of [20], with two
main differences. First, we omit the pruning rules associated with the relation between the
graph and its transitive closure, as we achieve this through the implementation of Equation 5.
Second, we maintain dominators from all sources. In [20], the focus is on computing a single
path with mandatory nodes, but in our case reachability constraints could involve all possible
sources, which justify maintaining dominators from all sources.

We replace Constraint 6 in LBRC+TC with the following constraints:

One DomReach constraint to enforce the transitive closure and the dominator relation:

DomReach(be, dom, br) (7)

For all i, j, k:

(domijk = 1 ∧ br ik = 1 ) ⇒ (brij = 1 ∧ br jk = 1 ) (8)

With these redundant constraints, we have that br17 = 1 and dom147 = 1 implies
br14 = 1 , which contradicts br14 = 0 .

5 Dreachable approach

We can also model unbounded positive reachability constraints using Dreachable [4].

▶ Definition 6. The Dreachable(G, s, G∗) constraint holds iff G∗ is a subgraph of G such
that all vertices and edges of G∗ are reachable from s in G∗.

The (unbounded) PRC constraints are modelled in terms of the br variables:

(i, j, _) ∈ PRC ⇒ br ij = 1 (9)

The (unbounded) NRC constraints are modelled in terms of the br variables:

(i, j, _) ∈ NRC ⇒ br ij = 0 (10)

One Dreachable constraint per source in PRC is posted:

∀i ∈ sources(PRC ) : Dreachable(G, i, Gi) (11)

where Gi is equal to the projection of G′ (the output graph) on the vertices that are
reachable from i, i.e., G′[{j|br ij = 1}].
The transitive closured is enforced:

br ij = 1 ∧ br jk = 1 ⇒ br ik = 1 (12)

Note that in this model the transitive closure constraints are essential to ensure that the
negative reachability constraints are respected.

In [4] it is stated that dominators are used in Dreachable to deal with cases like the one
in Section 4.4, so this approach should achieve the same level as pruning of LBRC+Dom.
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6 Empirical Evaluation

We performed our experiments on machines with Intel(R) Xeon(R) CPU with 2.40GHz
running on Ubuntu 18.04. The version of Minizinc [17] used in the experiments is 2.5.3, which
comes with Gecode [13] 6.3.0 and Chuffed [2] 0.10.4. LBRC, LBRC+TC and LBRC+Dom
were implemented directly in Gecode 6.2.0. However, LBRC was also implemented in Minizinc
to be able to compare the same model in both Chuffed and Gecode.

Figure 2 An instance of 40 vertices, 14 positive reachability constraints (coloured in green) and 1
negative reachability constraint (coloured in red).

6.1 Instances
The graphs considered in the evaluation are planar graphs extracted from a real-world road
network generated using the GIS-F2E tool [14]. The generated road network has 137626
nodes and 194996 (undirected) links. From this network we randomly select subgraphs
by choosing a random node and running Breadth First Search from that node, stopping
the search when reaching the specified number of nodes for the subgraph. The approaches
evaluated are based on directed graphs so the undirected graphs are converted to directed
graphs by adding symmetric edges. One instance is shown in Figure 2. In what follows we
use G to refer to the directed version of the generated road network.

The instances are characterised in terms of the following features:
size: the number of nodes of the graph. The set of sizes considered is {20, 24, 28, 32, 36, 40}.
We randomly select a subgraph of size vertices from G. For each size, we generate 10
graphs for the experiments in Figures 3, 4 and 5, and 100 for the other experiments.
Cs: the percentage of selected constraints. For each graph we randomly select Cs% of
the possible pairs. Each pair denotes a positive or negative reachability constraint.
(pos, neg): the ratio of positive and negative reachability constraints. For each set of
selected reachability constraints, pos% are labelled as positive and neg% as negative.
(pb, nb): the bounds on the positive and negative reachability constraints. Let maxp be
the maximum of the lengths of the shortest paths between the positive reachability pairs.
All positive reachability constraints are subject to an upper bound of maxp×(1 +pb/100 ).
maxn is the maximum of the lengths of the shortest paths between the negative reachability
pairs, and all negative reachabililty constraints have a lower bound of maxn×(1 +nb/100 ).
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Figure 3 Performance of LBRC in Gecode. Instances are classified as satisfiable (sat), unsatisfiable
(usat), and unknown (unk).

For example, consider the case where size = 40 , Cs = 1 , and (pos, neg) = (50 , 50 ), with
no length bounds. There are 40 × 39 = 1560 possible pairs. We randomly choose 1% of the
pairs, which amounts to 16 (after rounding up). Of these 16 pairs, 8 (50%) are labelled as
positive reachability constraints, and 8 are labelled as negative reachability constraints.

The first set of experiments, whose results are shown in Figures 3 and 4, correspond
to using LBRC on all the instances with both Gecode and Chuffed via Minizinc. We were
interested in real-time solutions for our application, therefore we set the objective to the
minimisation of path lengths (Obj 3), and the timeout to 120 seconds. These experiments let
us assess the role that the features described play in the difficulty of solving the instances. A
high Cs value usually led to trivially unsatisfiable instances, so we focused on small values.
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Figure 4 Performance of LBRC in Chuffed. Instances are classified as satisfiable (sat), unsatisfiable
(usat), and unknown (unk).

The behaviour of Gecode was extreme: in most cases either it solved the instances very
quickly or did not solve them at all. In particular, unsatisfiable instances are challenging for
Gecode. Chuffed was better at dealing with the unsatisfiable instances, but its performance
was inferior when dealing with satisfiable cases.

We note that a small number of negative reachability constraints are enough to create
challenging instances. For example, when size = 40 , Cs = 1 , and (pos, neg) = (95 , 5 ), there
is only one negative reachability constraint, but most of the instances in this class remained
unsolved. We focus on this case in further experiments.
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Figure 5 Performance of LBRC on length-bound instances. Instances are classified as satisfiable
(sat), unsatisfiable (usat), and unknown (unk).

In Figure 5 we show the impact of the path-length bounds on the runtime for the instances
of size = 40 , Cs = 1 , and (pos, neg) ∈ {(5 , 95 ), (25 , 75 ), (50 , 50 ), (75 , 25 ), (95 , 5 )}. For
both pb and nb we consider values in {0, 20, 40, 60, 80, 100}, where pb = 0 means that the
positive constraint is unbounded, and nb = 0 means that all paths are denied. While there
is not much change when varying nb, we observe that the instances tend to get harder when
increasing pb.

6.2 Performance of the different LBRC versions
In this section we consider the different versions of the length-bound reachability constraint:
LBRC, LBRC+TC, and LBRC+Dom. We created 100 graphs of 40 vertices, and for each
graph we generated an instance of this class (i.e., where Cs = 1 , and (pos, neg) = (95 , 5 ))
without length bounds. Figure 2 shows one of these instances. As the purpose is to assess the
additional pruning obtained by the use of explicit transitive closure and dominators, we focus
on the decision problem. The decision variables are the be variables as the determination
of these variables fully determines the other variables. For each of the approaches we are
considering two variable orderings: setting the variable to its minimum value in the domain
first (min), and setting the variable to its maximum value in the domain first (max). Notice
that min corresponds to excluding the corresponding edge from the set of edges of the output
graph and max to adding it to the set. In what follows we refer to the approaches obtained
when considering the variable orderings as LBRCmin, LBRCmax, LBRCtcMin, LBRCtcMax,
LBRCdomMin and LBRCdomMax.

The results of the tests are shown in Figure 6, where Figure 6a refers to the running
time, Figure 6b to the number of failures, and Figure 6c to the number of instances that
the approach could not solve. The first thing to remark is the gain in pruning when we use
LBRC+TC and LBRC+Dom, which positively affects the running time. We also observe
that LBRC and LBRC+TC are more sensitive to the variable ordering than LBRC+Dom.
Better results are observed with max when using LBRC+TC and LBRC+Dom. We believe
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Figure 6 Comparing different versions of the length-bound reachability constraint. The box plots
in Figures 6a and 6b show median, inter-quartile range (IQR), bounds of +/− 1.5*IQR beyond the
box, and outliers, using the DataFrame.boxplot function of Pandas[18].

this is because there is more opportunity for the transitive closure rule to play a role as
we have more edges. As LBRC does not have the transitive closure pruning, adding edges
first actually leads to poorer performance as there are more chances of getting trapped in
unsatisfiable cases that are easily detectable by the transitive closure rule. When comparing
the performance of the approaches using min we see that LBRCtcMin is almost as good
as LBRCmin and LBRCdomMin performs much better than both of them, in particular if
we look at the number of unsolved instances (see Figure 6c). The advantage of reasoning
about dominators is clear, since vertices may become dominators when we take the decision
of removing an edge. As discussed in the next section, min is useful when optimising the
sum of the cost of the edges of the output graph, so it is important to perform well with min.
Similarly, max brings us closer to the optimal solution when minimising the sum of the costs
of the paths since the more edges the more chances to connect vertices through the shortest
paths. On the easy instances, LBRC perform better than the other two approaches since the
overhead of the transitive closure and dominator pruning is not justified. As LBRC+Dom
is the best version of the length-bound reachability constraint, we restrict attention to this
version for the remaining experiments.

6.3 LBRC+Dom vs Dreachable

We now compare our LBRC+Dom approach against the Dreachable approach of Section 5.
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Figure 7 LBRC+Dom vs Dreachable - Decision benchmarks on positive and negative reachability
constraints.

6.3.1 Positive and Negative Reachability Constraints
We revisit the instances from Section 6.2. We consider both the decision problem (see
Figure 7) and the minimisation of the sum of the costs of the edges of the output graph (see
Figure 8). In these experiments we also considered the default search strategy for Chuffed
(DreachDef), which is not documented, but led to better results.

The results of the decision problem show that our LBRC+Dom approach is able to find
solution faster because we are failing much less. Even though [4] states that dominators are
used in the implementation of the Dreachable constraints, it is not clear that is happening
in the version provided by Minizinc. Still it is important to mention that DreachMax did
manage to close slightly more instances than both LBRCdomMin and LBRCdomMax (see
Figure 7c).

The results of the optimisation problem follow the same trend observed in the decision
case with respect to the number of failures. However, both approaches ended timing out
in most of the cases. Despite that, LBRC+Dom approach managed to get better costs in
general. This was mostly due to the good performance observed when using min, which
tends to minimise the sum of the costs of the edges by selecting fewer edges. It is important
to note that in Chuffed we are using both restarts and nogood learning, while in Gecode we
have disabled those options. We expect to improve our results even further when considering
these options in Gecode.

6.3.2 Positive Reachability Constraints
As mentioned before, if there is no negative reachability constraint, satisfying a set of positive
reachability constraints is straightforward. However, if there is an upper bound on the
sum of the costs of the selected edges, the problem is NP-complete [1]. This makes the
corresponding optimisation problem, i.e., satisfying the set of positive reachability constraints
while minimising the sum of the costs of the selected edges, challenging.
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Figure 8 LBRC+Dom vs Dreachable – Optimisation benchmarks on positive and negative
reachability constraints.
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Figure 9 LBRC+Dom vs Dreachable – Optimisation benchmarks on positive reachability con-
straints.

We have created a new set of instances following the same procedure as above, except
instead of randomly selecting a set of pairs, we follow the approach of [1] and randomly select
a subset of vertices that are to be fully connected, i.e., for each pair of vertices in this set
there should be a path in both directions. Figure 9 shows the results for 100 graphs of 20
vertices. In each case we randomly selected 8 vertices to be fully connected.

The LBRC+Dom approach is outperformed by the Dreachable approach in these instances.
Not only does it prove optimality for most of the instances, but it has significantly lower
runtime. The main issue with the LBRC+Dom approach has to do with proving optimality.
As it can be observed in Figure 9b, the costs obtained by the LBRC approach are very close
to the ones obtained by the Dreachable approach but it spends most of the time trying to
prove optimality.

7 Conclusions and Future Work

Many practical applications impose positive and negative constraints on reachability, further
enhanced with upper and lower bound on the minimum cost paths between pairs of nodes.
We have shown that the interaction between positive and negative reachability constraints
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leads to complex problems. We have proposed three approaches to modelling these problem
as a global constraint on graph variables, which differ on the level of pruning achieved,
and demonstrated empirically that the additional pruning plays a key role in solving the
problems. We have also studied the dependency between the level of pruning and the search
strategy and concluded that the convenience of the search strategy depends on the level of
pruning. We have compared our best approach with an existing state of the art approach
and shown that when both positive and negative reachability constraints are present, our
best approach, incorporating propagation on the transitive closure and dominators, allows
significantly lower runtimes, and significantly lower costs for time-limited solving. On the
other hand, for problems with only positive reachability constraints, the existing Dreachable
constraint is significantly faster.

We believe the improvement offered by the new constraint can be increased by incorpor-
ating nogood learning techniques and restarts. Our primary focus in this paper has been on
the interaction of positive and negative reachability constraints. Future work will focus on
pruning rules to get tighter bounds for the cost, to make the new constraint more competitive
in cases where the complexity is driven by the bound on the cost.
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Abstract
Propositional satisfiability (SAT) solvers are deemed to be among the most efficient reasoners,
which have been successfully used in a wide range of practical applications. As this contrasts the
well-known NP-completeness of SAT, a number of attempts have been made in the recent past to
assess the hardness of propositional formulas in conjunctive normal form (CNF). The present paper
proposes a CNF formula hardness measure which is close in conceptual meaning to the one based
on Backdoor set notion: in both cases some subset B of variables in a CNF formula is used to
define the hardness of the formula w.r.t. this set. In contrast to the backdoor measure, the new
measure does not demand the polynomial decidability of CNF formulas obtained when substituting
assignments of variables from B to the original formula. To estimate this measure the paper suggests
an adaptive (ε, δ)-approximation probabilistic algorithm. The problem of looking for the subset of
variables which provides the minimal hardness value is reduced to optimization of a pseudo-Boolean
black-box function. We apply evolutionary algorithms to this problem and demonstrate applicability
of proposed notions and techniques to tests from several families of unsatisfiable CNF formulas.
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1 Introduction

Modern Boolean Satisfiability Problem (SAT) solving algorithms are de-facto a standard
computational instrument used in many application domains including symbolic verification,
software testing, bioinformatics, combinatorics, and cryptanalysis [10]. SAT solvers work with
Boolean formulas, most often written in Conjunctive Normal Form (CNF). If determining

© Alexander Semenov, Daniil Chivilikhin, Artem Pavlenko, Ilya Otpuschennikov, Vladimir Ulyantsev,
and Alexey Ignatiev;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 47; pp. 47:1–47:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:biclop.rambler@yandex.ru
mailto:chivdan@itmo.ru
mailto:alpavlenko@itmo.ru
mailto:otilya@yandex.ru
mailto:ulyantsev@itmo.ru
mailto:alexey.ignatiev@monash.edu
https://doi.org/10.4230/LIPIcs.CP.2021.47
https://github.com/ctlab/EvoGuess
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


47:2 Evaluating the Hardness of SAT Instances

satisfiability of a CNF formula takes a SAT solver more than a preallocated amount of time,
a natural question to ask is how hard this formula is for this specific solver? Hereinafter, it
is convenient for us to follow the notation of [2] and use the concept of hardness of a SAT
instance.

For some SAT solving algorithms and some families of formulas their hardness can be
estimated analytically [1, 6, 7, 13,15,31,55,56]. However, to our best knowledge, the general
case of the problem of estimating the hardness of a formula w.r.t. to practical SAT solving
algorithms is yet to be resolved. The main reason for this is that a state-of-the-art SAT
solver is a complicated piece of software, whose behavior depends on a vast number of
various parameters [33,34]. Smallest changes of parameter values may drastically affect the
observable characteristics of the SAT solving process, e.g., the number of unit propagations
or backtracks. This phenomenon is known as heavy-tailed behavior [30]. If a SAT solver
demonstrates such behavior for a concrete CNF formula, then estimating how hard the
formula is for this solver is hardly feasible with the existing methods, or such estimates
will be extremely inaccurate. In light of the myriads of practical applications of modern
SAT solvers, it is of unquestionable importance to propose a universal hardness measure for
arbitrary CNF formulas that could be used in practice for any SAT solver.

Prior work proposed a few hardness measures of Boolean formulas w.r.t. specific SAT
solving algorithms. One of the best-studied approaches estimates parameters of the search
tree generated by the algorithm. This class of measures includes space complexity of tree-like
resolution [27, 40], width of formula [27], and space of formula [2]. For some families of
CNF formulas, e.g. pigeonhole principle formulas [18], such measures may be estimated
analytically. However and as far as we know, there is no computationally efficient way of
estimating any of said measures for an arbitrary CNF formula.

Another approach to estimating formula hardness builds on the concept of a strong
backdoor set (SBS) introduced in [59]. An SBS is a subset of the set of variables of a CNF
formula such that any assignment of the variables from this subset makes the whole formula
polynomially decidable. Clearly, the set of all variables in the formula comprises a trivial
SBS. If for formula C there exists a non-trivial SBS B w.r.t. some polynomial-time algorithm
P , e.g. unit propagation [24], then the hardness of this formula w.r.t. B and P may be
estimated as poly(|C|) · 2|B|. Thus, the notion of SBS gives us a way of estimating the
hardness of a formula based on two main components: the strong backdoor set itself and the
polynomial-time algorithm used for solving weakened SAT instances. Sadly, for an arbitrary
Boolean formula there is no guarantee that a relatively small SBS exists. To check if a given
set B of variables in formula C is an SBS, one has to run the algorithm P on all (in the worst
case) 2|B| CNF instances derived from C by substituting all possible assignments to the
variables of B. The algorithm for solving SAT using backdoors described in [59] enumerates
all subsets of the set of variables of a target CNF formula by iteratively increasing their size.

In this paper, we propose a novel hardness measure of an arbitrary CNF formula w.r.t.
an arbitrary deterministic complete SAT solving algorithm, which may be estimated by
applying standard methods of black-box optimization. Conceptually, the suggested hardness
measure is in some sense similar to the aforementioned SBS-based hardness measure. For
an arbitrary CNF formula over the set X of variables the proposed approach also uses two
components: 1) a set B ∈ 2X , and 2) an arbitrary complete but, most importantly, not
necessarily polynomial SAT solving algorithm A.

The proposed decomposition hardness (or d-hardness) is defined for an arbitrary CNF
formula C. More specifically, we first introduce measure µB,A(C) expressing the hardness of
formula C w.r.t. a concrete set B ∈ 2X and a concrete deterministic complete SAT solving
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algorithm A. Second, the d-hardness of C is defined as the minimum of µB,A(C) over all
possible sets B. To estimate µB,A(C) in practice, we propose an adaptive probabilistic
(ε, δ)-approximation algorithm. This algorithm uses ideas close to the ones from [36], and is
based on the Monte Carlo method. But in contrast to many similar approaches, the proposed
algorithm can adaptively tune the random sample size to achieve the required accuracy of
µB,A(C) estimation. By estimating µB,A(C) with this algorithm we can reduce the problem
of evaluating d-hardness of an arbitrary formula C to optimization of a stochastic pseudo-
Boolean fitness function [22]. The latter problem is solved with approaches traditionally
used in black-box optimization: namely, evolutionary algorithms [11,41].

To illustrate the usefulness of the d-hardness concept suppose that we have some extremely
hard CNF formula C. Consider the two following approaches. First, launch a SAT solver on
C and wait as long as needed to decide satisfiability of C. There is no guarantee that the
process will finish in any reasonable amount of time. Second, run algorithms that assess the
d-hardness proposed in this article. After a fixed amount of time, say, 12 hours, we will get
some set B ∈ 2X and a corresponding d-hardness estimate. By means of suggested methods
one can compare different CNF formulas in the sense of their d-hardness.

Concrete contributions of this paper are the following.
1. We propose a new measure of hardness for a CNF formula w.r.t. an arbitrary complete

deterministic SAT solving algorithm, and prove its theoretical soundness.
2. We develop an adaptive (ε, δ)-approximation algorithm for estimating this measure.
3. We conduct an experimental evaluation that demonstrates practical applicability of the

proposed measure.

2 Preliminaries

Recall that Boolean variables have values from {0, 1}. A Boolean variable x and its negation
¬x are called literals. Literals x and ¬x are called complementary. A clause is a disjunction
of literals, which does not include complementary ones. A Boolean formula in CNF is a
conjunction of different clauses. Let C be an arbitrary CNF formula and X, |X| = k be
the set of variables encountered in C. An arbitrary total function α : X → {0, 1} defines an
assignment of variables from X. For an arbitrary assignment α the interpretation of formula
C on α and the substitution of α to C are defined in a standard way, see e.g. [16]. Thus,
a Boolean function fC : {0, 1}k → {0, 1} is defined. Assignment α ∈ {0, 1}k : fC(α) = 1 is
called a satisfying assignment for C. If a satisfying assignment exists for C, formula C is
called satisfiable. Otherwise, C is called unsatisfiable.

As in many other works on proof complexity and hardness of Boolean formulas, formulas
are assumed to be in conjunctive normal form (CNF) and unsatisfiable, see e.g. [2, 18,55],
etc. It is justified by the fact that for the majority of satisfiable instances (especially with a
large number of satisfying assignments) it is possible that the algorithm will get “lucky” and
come across a short satisfiability certificate. This is not possible with unsatisfiable instances.

Let C be an unsatisfiable CNF formula over the set of variables X. For an arbitrary set
B ⊆ X, denote the set of all possible assignments to variables of B as {0, 1}|B|. Following [59],
for an arbitrary β ∈ {0, 1}|B| denote C[β/B] the CNF formula derived from C by substitution
of the assignment β of variables B and consequent simplification of the resulting formula.

▶ Definition 1 (Williams et al. [59]). Set B ⊆ X is called a strong backdoor set (SBS) for C

w.r.t. a polynomial-time algorithm P if for any β ∈ {0, 1}|B| the CNF formula C[β/B] is
reported by P to be unsatisfiable.
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The article [2] studied a number of approaches to estimating hardness of Boolean formulas
in CNF, and the main attention was paid to several similar tree-like metrics. However,
for us the particular value are the conclusions made in [2] about the possibility to assess
the hardness of a CNF formula using SBS. The following definition suggests itself as a
consequence of the analysis of results from [2]. In fact, it uses SBS to evaluate the hardness
of an arbitrary CNF formula and reduces this problem to an optimization problem.

▶ Definition 2 (b-hardness). Let C be an arbitrary unsatisfiable CNF formula and B be
an arbitrary SBS for C w.r.t. polynomial-time algorithm P . Denote the total runtime of
P on CNF formulas C[β/B] for all β ∈ {0, 1}|B| by µB,P (C). The backdoor-hardness (or
b-hardness) of C w.r.t. P is specified as µP (C) = minB∈2X µB,P (C), where the minimum is
taken among all possible SBSes for C w.r.t. P .

In [59], an algorithm for solving SAT using SBS is described: it enumerates sets B ∈ 2X

by gradually increasing their cardinality. If for CNF formula C there exists a small-sized SBS,
this algorithm may be quite efficient. Its complexity for an arbitrary C in the assumption
that an SBS B exists such that |B| < k/2 is

O

p(|C|) ·

(
2k√
|B|

)|B|
 , (1)

where k = |X|, p(·) is some polynomial and |C| is the length of the binary encoding of C.

3 d-hardness: Decomposition Hardness of CNF Formula

There are two evident barriers for practical application of the b-hardness notion. First, to
prove that an arbitrary B ∈ 2X is an SBS we have to construct (in the worst case) CNF
formulas C[β/B] for all β ∈ {0, 1}|B|. Second, the algorithm of [59] enumerates sets B of
increasing cardinality (|B| = 1, 2, . . .). Taking into account (1) we can conclude that if,
e.g., the minimal backdoor B has cardinality |B| = 20 and k = 100, finding B with the
aforementioned enumeration algorithm is unrealistic. A similar issue arises for the tree-like
metric of hardness described in [2], where for formula refutation a variant of Beame-Pitassi
algorithm [5] is used.

In this section we introduce a new hardness measure for CNF formulas. When formulating
the main concept we pursue the next two goals: 1) to avoid the barriers referred above, and 2)
to suggest a measure that can be used for any complete SAT solving algorithm, considering
it as a black-box function. Let us begin from the following definition.

▶ Definition 3. For an arbitrary CNF formula C over the set of variables X consider any set
B, B ∈ 2X , and let A be an arbitrary deterministic complete SAT solving algorithm. Define
the hardness of C w.r.t. B and A as µB,A(C) =

∑
β∈{0,1}|B| tA(C[β/B]), where tA(C[β/B])

is the running time of A on CNF formula C[β/B].

The value tA(C[β/B]) may be expressed in any appropriate units. For example, if A

is a solver based on Conflict-Driven Clause Learning (CDCL) [42], tA(C[β/B]) may be
defined as the number of unit clause propagations made by A in the process of proving the
unsatisfiability of C[β/B]. Let us emphasize, that unlike P from Definition 2, in the general
case A is not a polynomial-time algorithm. The following definition arises by analogy with
the concept of b-hardness.

▶ Definition 4 (d-hardness). The decomposition hardness (or d-hardness) µA(C) of CNF
formula C w.r.t algorithm A is defined as:

µA(C) = min
B∈2X

µB,A(C).
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The main question in the context of these definitions is as follows: is there a practical
way to estimate the values µB,A(C) and µA(C)? Below we give a positive answer to this
question harnessing the idea from [50]: expressing µB,A(C) via a special random variable
with finite expected value and variance.

Let C be an arbitrary CNF formula over the set of variables X and A be an arbitrary
deterministic complete SAT solving algorithm. Consider an arbitrary B ∈ 2X and specify
a uniform distribution on {0, 1}|B|. Define a random variable ξB in the following way:
for any β ∈ {0, 1}|B| the value of ξB equals to the running time of algorithm A on CNF
formula C[β/B]. Since algorithm A is complete, the random variable ξB has spectrum
S(ξB) = {ξ1, . . . , ξM }, where ξi : 0 < ξi < ∞, i ∈ {1, . . . , M}, and ξB has the following
probabilistic distribution:

P (ξB) =
{ s1

2|B| , . . . ,
sM

2|B|

}
,

where by si, i ∈ {1, ..., M} we denote the number of such β ∈ {0, 1}|B| that ξB has the value
ξi. From the above, random variable ξB has an expected value E[ξB ]: 0 < E[ξB ] < ∞. It is
not hard to verify the correctness of the following expressions:

∑
β∈{0,1}|B|

tA(C[β/B]) =
M∑

i=1
ξi · si = 2|B| ·

M∑
i=1

ξi · si

2|B| .

From the above, we can conclude that

µB,A(C) = 2|B| · E[ξB ]. (2)

The equation (2) is quite important because it expresses µB,A(C) via finite expected
value of some random variable and, hence, allows estimating the value using the Monte Carlo
method [43]. In more detail, our nearest goal is to construct such an evaluation µ̃B,A(C) of
the value µB,A(C) that for any fixed ε > 0, δ > 0 the following condition holds:

Pr[(1 − ε) · µB,A(C) ≤ µ̃B,A(C) ≤ (1 + ε) · µB,A(C)] ≥ 1 − δ. (3)

Parameters ε and 1 − δ from (3) in a number of similar cases are named tolerance and
confidence level, respectively.

Now, fix some natural number N . Given C, B, and A, let us carry out N independent
observations of random variable ξB introduced above. We may consider these N observations
as one observation of N independent random variables with the same probability distribution
(remind, that we assume A to be deterministic). Denote these random variables ξ1, . . . , ξN .
Define µ̃B,A(C) as:

µ̃B,A(C) = 2|B|

N
·

N∑
j=1

ξj . (4)

The sense of the fact that will be established below is close to one of the so-called zero-one
estimator theorem from [36], but in our case ξB is not a Bernoulli variable and we cannot
avoid the presence of V ar(ξB) in the resulting lower bound for N .

▶ Theorem 1. Let C be an arbitrary CNF formula over variables X, A be a deterministic
complete SAT solving algorithm, and B be an arbitrary subset of X. Then for µ̃B,A(C)
specified by (4) and for any ε > 0, δ > 0, the condition (3) holds for any N > V ar(ξB)

ε2·δ·E2[ξB ] .

CP 2021



47:6 Evaluating the Hardness of SAT Instances

Proof. Due to the assumptions on A, the random variable ξB has a finite expected value
E[ξB ] > 0 and finite variance V ar(ξB). If V ar(ξB) = 0 then S(ξB) = {a}, where a is some
constant: a > 0. In this case the claim of the theorem is trivially satisfied. Below let us
assume that V ar(ξB) > 0. Next we use the Chebyshev’s inequality [28]:

Pr
[
|ζ − E[ζ]| ≤ k ·

√
V ar(ζ)

]
≥ 1 − 1

k2 (5)

which holds for any k > 0 and any arbitrary random variable ζ such that V ar(ζ) > 0. Fix an
arbitrary ε > 0 and select k such that k ·

√
V ar(ζ) = ε · E[ξ]. With this in mind, transform

(5) to the following form:

Pr [|ζ − E[ζ]| ≤ ε · E[ζ]] ≥ 1 − V ar(ζ)
ε2 · E2[ζ] . (6)

Due to considering N independent observations of ξB as a single observation of N independent
random variables with the same distribution the following holds: E[ξ1] = . . . = E[ξN ] = E[ξB ],
V ar(ξ1) = . . . = V ar(ξN ) = V ar(ξB). Consider the random variable ζ =

∑N
j=1 ξj . If we

apply inequality (6) to it we get (taking into account elementary transformations):

Pr
[
(1 − ε) · E[ξB ] ≤ 1

N ·
∑N

j=1 ξj ≤ (1 + ε) · E[ξB ]
]

≥ 1 − V ar(ξB)
ε2·N ·E2[ξB ] . (7)

With respect to (2) and (4), the last inequality may be rewritten as:

Pr [(1 − ε) · µB,A(C) ≤ µ̃B,A(C) ≤ (1 + ε) · µB,A(C)] ≥ 1 − V ar(ξB)
ε2·N ·E2[ξB ] . (8)

The validity of Theorem 1 directly follows from (8). ◀

4 Estimation of d-Hardness via Evolutionary Optimization Algorithms

As follows from the results of the previous section, for exact calculation of d-hardness of an
arbitrary CNF formula C it is required to find the set B with the minimum value of µB,A(C)
over all B ∈ 2X . For any B, instead of trying out all vectors β ∈ {0, 1}|B| as is necessary
when we work with the b-hardness concept, we may compute the estimation µ̃B,A(C) using
the following Monte Carlo scheme:

let us carry out N independent observations of random variable ξB : ξ1, . . . , ξN ;
calculate the value µ̃B,A(C) specified by (4).

Due to Theorem 1, µ̃B,A(C) is an (ε, δ)-approximation of µB,A(C) for a proper value of N .

4.1 (ε, δ)-approximation algorithm for d-hardness estimation
In theory, since E[ξB ] and V ar(ξB) are finite, we can estimate µB,A(C) with any accuracy
specified beforehand. However, it may be not achievable for real cases: for example, when
V ar(ξB) is too large. Therefore, in experiments when selecting N to achieve the required
values of ε and δ we have to replace E[ξB ] and V ar(ξB) with their statistical counterparts.
This practice is generally accepted in mathematical statistics. In the experimental part we
will give a number of examples when the estimates obtained in this way are accurate enough.

Following e.g. [58] we use for estimating E[ξB] the sample mean ξB, constructed for a

concrete random sample ξ1, . . . , ξN : ξB = 1
N ·

N∑
j=1

ξj . The unbiased sample variance is used

to estimate V ar(ξB): s2(ξB) = 1
N−1 ·

N∑
j=1

(ξj − ξB)2. Taking into account Theorem 1, for

some fixed ε and δ, we select any such N that the following condition holds:

N >
s2(ξB)

ε2 · δ · (ξB)2
. (9)
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More concretely, we use the following variant of this approach. At the starting point we
choose some relatively small N (say, N = 100), construct a random sample and calculate ξB

and s2(ξB). Using fixed values of ε and δ (say, ε = 0.1, δ = 0.05) we check if condition (9) is
satisfied. If not, we augment our current random sample by N new observations of ξB , thus
doubling the random sample size; after this we recalculate ξB and s2(ξB). These steps are
repeated until condition (9) is satisfied.

Note that in the general case we cannot efficiently calculate the value of ξB (and,
accordingly, µ̃B,A(C)): for example, for B of a small cardinality this problem may be
comparable in complexity with solving SAT for the initial CNF formula C. However, most
importantly, there always exists such a set B that for any β ∈ {0, 1}|B| the corresponding
value of ξB is calculated efficiently, e.g. in the case when B = X. Another example in
this context is when B is some Strong Unit Propagation Backdoor Set (SUPBS): a type of
backdoor in which the unit propagation rule is used as the polynomial algorithm P [59].

The next important point is that unlike the algorithm from [59] or the Beam-Pitassi
algorithm, we apply computational schemes used in metaheuristic optimization [41] to find a
set B with a good value of µ̃B,A(C). In such schemes, the objective function (fitness function)
is calculated efficiently at some starting point, and then attempts are made to consistently
improve the values of this function in other points of the search space w.r.t. some general
search strategy, e.g. local search [14] or evolutionary algorithms [41].

So, in the context of all the concepts introduced above, let B0 = {x0
1, . . . , x0

n}, B0 ⊆ X

be an initial subset for which µ̃B0,A(C) can be calculated efficiently (e.g. B0 = X or B0 is
some SUPBS). We will look for B with a good value of µ̃B,A(C) as some B ∈ 2B0 . Define B

using a Boolean vector λB ∈ {0, 1}n, assuming that λi = 1 if x0
i ∈ B and λi = 0 if x0

i /∈ B,
λB = (λ1, . . . , λn). Fix N and consider the multivalued function

FA,C,N : {0, 1}n → R+ (10)

defined as follows: for vector λB ∈ {0, 1}n we build the set B, then we generate (in accordance
with a uniform distribution on {0, 1}|B|) vectors βj ∈ {0, 1}|B|, j ∈ {1, . . . , N} and, using
these vectors as a random sample, construct corresponding values of ξB : ξ1, . . . , ξN . Then
the value of function (10) for λB is 2|B|

N

∑N
j=1 ξj . Note that in the general case for different

random samples the values of (10) can differ, thus this function is multivalued.

4.2 Used evolutionary optimization algorithms
In the experimental part of the article we use evolutionary algorithms for optimizing func-
tion (10): in more detail, we apply an algorithm from the family of (1 + 1) Fast Evolutionary
Algorithms, (1 + 1) FEA [23] with parameter β, and one special modification of a genetic
algorithm. Below we give a brief description of these algorithms.

First, consider the ordinary (1 + 1) Evolutionary Algorithm (EA) [44]. It uses the
simplest implementation of the concept of random mutation: one random mutation of an
arbitrary α ∈ {0, 1}n is implemented by a series of n independent Bernoulli trials with
success probability p = 1/n. If i ∈ {1, . . . , n} is the index of a successful trial, then the
i-th bit in α is flipped. The (1 + 1) EA has an extremely high worst-case complexity [25],
but demonstrates good results in many practical cases. As mentioned in [57], this is mostly
because on average (1 + 1) EA behaves similarly to the Hill Climbing algorithm [49] (for a
single random mutation, the expected value of the number of flipped bits equals one), but
with a non-zero probability can move from α to any point in {0, 1}n.

There are ways of reducing the worst-case estimation of (1 + 1) EA if we imply the
complexity measure proposed in [25]. One of these ways is changing the mutation rate in
the original (1 + 1) EA. The (1 + 1) FEAβ described in [23] is a good example. The core of
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this algorithm is the so-called heavy-tailed mutation operator: it flips bits of the considered
Boolean vector with probability Λ/n (instead of 1/n in standard (1 + 1) EA), where Λ is the
value of a random variable with Power-law distribution Dβ

n/2 with parameter β [23]. The
worst-case estimation of this algorithm is O(nβ · 2n) instead of nn for the original (1 + 1)
EA. In computational experiments we used the (1 + 1) FEAβ with parameter β = 3, because
it is the minimal integer value of this parameter for which the expected value of the number
of flipped bits tends to some constant with the increase of n: according to [23], this constant
is approximately 1.3685.

We also experimented with generating a new vector λB on the basis of several existing
vectors, using a special variant of a genetic algorithm which was used in [47]. Several vectors
λB with already calculated values of the considered objective function (10) form a population
in terms of the genetic algorithm [41]. In one iteration, the new population (offspring) is
formed from the current one.

Denote the current population as Pcur and the new population as Pnew, |Pcur| = |Pnew| = R

for some fixed R. Let Pcur = {λB1 , . . . , λBR
}. Pcur is associated with a distribution

Dcur = {p1, . . . , pR}, where

pi = 1/FA,C,N (λBi
)

R∑
j=1

(
1/FA,C,N (λBj

)
) , i ∈ {1, . . . , R}.

To form the new population Pnew, we first select G individuals from Pcur w.r.t. the distribution
Dcur, and apply the standard two-point crossover [41]. Second, we select H individuals
from Pcur with respect to the distribution Dcur without changes. Finally, we apply to each
G + H selected individuals the standard (1 + 1) random mutation, flipping each bit with
probability 1/n. We ensure G + H = R and compute the value of the objective function
for new individuals in Pnew. Then, we choose R best individuals from Pcur ∪ Pnew, and the
resulting set becomes Pcur for the next iteration. In the experiments, we used R = 8 and
G = 4.

5 Experimental Evaluation

Here we demonstrate that the proposed approach allows practically estimating the d-hardness
of unsatisfiable CNF formulas with sufficiently high precision. As concrete examples, we
consider equivalence checking encodings and crafted tests. For the value of tA(C[β/B]) we
select the number of unit propagations made by algorithm A while solving CNF formula
C[β/B]. This choice, in contrast with using solving time, together with fixing the random
seed of the solver, facilitates reproducibility of our results. We also show that sometimes
our approach discovers sets B that may be used to solve SAT formulas in parallel with
super-linear speedup.

5.1 Benchmarks
We consider two classes of CNF formulas or tests. The first class is comprised of so-called
crafted tests. These are synthetic tests, constructed with the aim to generate formulas that
are as hard as possible with as few variables as possible.

Quite a few generators of such tests are available. In this work we used the sgen
generator [54] version 6. Only unsatisfiable instances were generated using sgen, instances
are denoted sgenseed

#variables, describing the number of variables in the CNF formula and the
random seed used to generate it, e.g. sgen101

150. Search for the set B with the minimal value
of function (10) was done on the entire set of variables of the CNF formula.
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We also considered a class of tests related to equivalence checking [39]. Consider two
Boolean circuits S1 and S2 over any complete basis, e.g. {¬, ∧}. We assume that each circuit
has n inputs and m outputs. Thus, circuits S1 and S2 define functions

f1 : {0, 1}n → {0, 1}m, f2 : {0, 1}n → {0, 1}m

respectively. We need to prove that f1 ∼= f2 (pointwise equality), in this case the circuits S1
and S2 are equivalent (S1 ∼= S2). It is known [38] that this problem can be efficiently (in
time linear of the number of elements in S1 and S2) reduced to SAT for a CNF formula C:
S1 ∼= S2 if and only if C is unsatisfiable. CNF formula C is constructed from circuits S1 and
S2 using Tseitin transformations [55]. Bits of vectors from {0, 1}n are encoded with variables
forming the set X in = {x1, . . . , xn}, associated with inputs of S1 and S2.

The CNF formula constructed in this way exhibits the following important property. For
a Boolean variable x and an arbitrary α ∈ {0, 1} let us denote by lα(x) the literal ¬x if α = 0
and literal x if α = 1. Consider an arbitrary α = (α1, . . . , αn), αi ∈ {0, 1}, i ∈ {1, . . . , n}
and the following CNF formula:

lα1(x1) ∧ . . . ∧ lαn(xn) ∧ C. (11)

It is known (see e.g. [8]) that (un)satisfiability of formula C can be determined by solely
applying exhaustive unit propagation to CNF formulas (11) obtained across all possible
assignments α ∈ {0, 1}|Xin|. In other words, set X in is a SUPBS for C. Then from the above
it follows that we can search for B with a good value of µB,A(C) among the subsets of X in.
For this purpose we will launch a methaheuristic search minimizing the function (10) on the
Boolean hypercube {0, 1}|Xin|.

We applied the described approach to equivalence checking of circuits S1, S2 representing
two different algorithms which perform sorting of any d l-bit natural numbers. We con-
sidered the following sorting algorithms: bubble sorting, selection sorting [20], and pancake
sorting [29]. Corresponding SAT encodings can be constructed using any software applied in
symbolic verification, e.g. CBMC [17]; in this work we use Transalg [46, 51], which better
suits our purposes. We conducted a substantial amount of experiments where equivalence
of such circuits was checked. Below we present a few of these results. The SAT instances
are denoted by BvSl,d, BvPl,d, and PvSl,d for Bubble vs Selection, Bubble vs Pancake, and
Pancake vs Selection, respectively.

5.2 Experimental setup and implementation details
The proposed approach has been implemented in Python, using PySAT [35] for SAT solving
with backend solvers Glucose 3 [3] and CaDiCaL [9], referred to as g3 and cd respectively. The
implementation of black-box optimization makes use of distributed computation. Experiments
were run on a computing cluster using up to 5 nodes, each node includes two 18-core Intel
Xeon E5-2695 2.1 GHz processors and 128 GB of RAM. Each experiment consisted of
estimation optimization phase (looking for a set B with minimal estimation value µ̃B,A(C))
and estimation checking phase (exact calculation of µB,A(C)). We used the evolutionary
algorithms described above for traversing across the search space. We denote the (1+1) FEA3
algorithm as “FEA”, and the Genetic Algorithm from [47] as “GA”. For calculating the value
µ̃B,A(C) the adaptive probabilistic (ε, δ)-algorithm presented above was applied. For each B

such that |B| ≤ 9 we directly calculated µB,A(C) instead of its estimation µ̃B,A(C). In each
case the optimization process of function (10) was run with a time limit of 12 hours, using
confidence level 1 − δ = 0.95. Depending on the concrete CNF formula, we used different
values of N ranging from 500 to 40000.
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The goal of estimation checking was to assess the efficiency of the decomposition using
the found set B. To achieve this we solved instances C[β/B] for all β ∈ {0, 1}|B| for several
described benchmarks (in cases when |B| ≤ 17), and thus calculated the exact value µB,A(C).

5.3 Main experimental results on d-hardness estimation
As mentioned above, we have performed a substantial amount of experiments on different
SAT formulas. Here we only report on experiments with tests whose dimensionality allows
explicitly checking the precision of resulting d-hardness estimations by exact calculation
of µB,A(C). In the experiments with formula PvS4,7 we found with our algorithm sets B

consisting of three and fewer variables. In order to evaluate the quality of the corresponding
decompositions we traversed through all possible sets B of sizes 1, 2, and 3. The corresponding
problems are relatively simple, however, to solve them all we used about 3 days of runtime
of a single cluster node (36 cores of Intel Xeon E5-2695) in total. Note that finding a set
via solving an optimization problem for function (10) took up to 12 hours. The results are
presented in Fig. 1 in the form of boxplot diagrams (whiskers span is 1.5 of interquartile
range). The lower bound (in the number of propagations) of the diagrams corresponds to the
best (smallest) value of function µB,A(C) over all possible B: |B| ∈ {1, 2, 3}. For several sets
with the best values of µB,A(C) found by the proposed approach, these values are represented
in the diagram: red dots correspond to sets found by FEA and blue crosses to the ones
found by GA. Note that in every case our algorithms managed to find a set B for which the
value of µB,A(C) is between the zeroth and first quartiles of the distribution depicted by the
diagram. This proves that our algorithms can find good sets B.
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Figure 1 Boxplots for µB,A(C) of all sets B for CNF formula PvS4,7, |B| ≤ 3 and solvers g3 (top)
and cd (bottom), and examples of found estimations: our approach allows finding sets B allowing
near-optimal hardness estimations.

Table 1 shows experimental results for several SAT instances. For each instance, SAT
solver, and evolutionary algorithm, the table shows the cardinality of the found set B, the
value µB,A(C), and the decomposition rate rB,A(C) calculated as µB,A(C)/tA(C). Note that
in most cases rB,A(C) is smaller than one, and thus, in these cases the corresponding slicing
of formula C using the found set B yields a super-linear speedup when weakened formulas
are solved in parallel. Also note that for equivalence checking tests PvS4,7, BvS4,7, BvP4,7
search was done over SUPBSes consisting of 4 × 7 = 28 variables. For sgen search was done
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Table 1 d-hardness estimations for different CNF formulas: most of the found sets B have
decomposition rate rB,A(C) = µB,A(C)/tA(C) < 1, making it possible to solve the 2|B| weakened
CNF formulas in parallel with super-linear speedup.

Instance |X| Solver A Algorithm |B| µB,A/103 rB,A

PvS4,7 3244

g3 FEA 3 2,190,213 0.792
g3 FEA 4 2,250,504 0.814
g3 GA 5 3,319,314 1.201
g3 GA 6 3,333,915 1.206
cd FEA 3 595,695 1.043

sgen1001
150 150

g3 FEA 5 101,371 0.424
cd FEA 6 244,191 0.763
g3 GA 6 114,821 0.480
cd GA 7 247,947 0.775

sgen101
150 150 g3 FEA 8 122,796 0.438

cd GA 7 131,557 0.470

sgen200
150 150 g3 GA 7 151,275 0.569

cd GA 6 229,705 0.541

BvS4,7 2134 g3 GA 3 460,944 1.140
g3 FEA 3 449,325 1.112

BvP4,7 2060 g3 FEA 3 726,080 1.049
g3 GA 3 771,521 1.115

over the entire set X. Overall, we see that FEA performs slightly better than GA in terms
of resulting rB,A(C) values. We can partially explain this by the fact that the GA uses more
computational resources in one iteration in comparison with FEA.

We also performed experiments on searching for non-trivial SUPBSes in the sense of [59]
among subsets of X in for the PvS4,7 example. Essentially, we implemented a variant of
the algorithm from [59], enumerating subsets of X in (|X in| = 28) of gradually increasing
cardinality. If for some B ∈ 2Xin the algorithm found such an assignment β ∈ {0, 1}|B|

that the application of the unit propagation rule to C[β/B] was not enough to decide the
satisfiability of C[β/B], we concluded that B is not a SUPBS, and switched to the next
candidate set B. As a result of these experiments, we have confirmed that for PvS4,7 there is
no such SUPBS B that B ⊂ X in (except X in itself).

In all experiments we used the technique of dynamic adaptation of sample size described
in Section 4.1. The plots in Fig. 2 show the dependence of ε on the iteration number for the
instance sgen1001

150 : the purple plot does not adapt N (the initial value of N is 5000), while
the blue, yellow, and green plots may increase N by up to a factor of two, four, and eight
respectively. One may notice that the described strategy allows keeping ε below 0.1 most of
the time, until finally the set B becomes small enough for switching to direct computation of
µB,A(C), thus reducing ε to zero.

We also studied the accuracy of our estimation µ̃B,A(C) with respect to its exact value
µB,A(C). For this purpose we considered several intermediate sets B found by our approach
for the PvS4,7 formula and SAT solver g3. For each B we first calculated µB,A(C) by
solving all 2|B| weakened CNF formulas. Second, we calculated µ̃B,A(C) using a sample
size N = 1

100 2|B|, and repeated this calculation 100 times with different random samples.
The result is a distribution of values of µ̃B,A(C). In Fig. 3 we depict these distributions
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Figure 2 Dependence of ε from iteration number for sgen1001
150 and g3: when N may be increased

up to a factor of eight, the value of ε is below 0.1 most of the time.
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Figure 3 Accuracy of µ̃B,A(C) for PvS4,7 and g3: distributions of estimation values µ̃B,A(C)
remain within 10% of the exact value µB,A(C).

by boxplots for sets with |B| ∈ {17, 16, . . . , 11}, in the order they were discovered by the
evolutionary algorithm. Fig. 3 also shows with the dotted line the exact value µB,A(C) for
each backdoor, and the +/- 10% interval around the exact value with dashed lines. As we
can see, the distributions of µ̃B,A(C) values remain within 10% of the exact value µB,A(C).
Also, most importantly, the median value of µ̃B,A(C) for each set B is almost exactly equal
to the exact value µB,A(C) (the dotted line goes through horizontal lines in boxplots that
depict the medians). This indicates that the approximation is quite accurate: if for set B

the value of µ̃B,A(C) is calculated once (as done during the optimization process), there is a
high chance that the result will be very close to µB,A(C).

5.4 Hardness deviation of weakened CNF formulas

If hardness of weakened formulas differs drastically, one cannot achieve good speedup when
solving them in parallel: if, e.g., solving one weakened formula requires, say, 95% of all
propagations, then it would not be possible to get even a speedup that is linear in the number
of used parallel threads. Thus, in order to use the sets B found by the proposed approach
for parallel SAT solving, the corresponding sub-problems (weakened CNF formulas) need to
be roughly equally hard. To check if the found sets B have this desired property, we have
performed an experimental study regarding the variation of hardness of sub-problems.

More specifically, we measured the relative standard deviation of hardness of all 2|B|

sub-problems for each set B considered in Fig. 3 for CNF formula PvS4,7 and SAT solver g3,
and also for sets B of sizes from 12 to 20 for CNF formula sgen200

150 and solver g3. Results
are presented in Fig. 4 and Fig. 5 respectively.

As seen from the plots, for PvS4,7 the relative standard deviation of sub-problem hardness
does not exceed 0.003%, and for sgen200

150 it is within 0.3%. This indicates that for these
instances the weakened CNF formulas derived from the corresponding sets B are more or
less of equal hardness, so there would be no issues during parallel solving.
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Figure 4 Relative standard deviation of sub-problem hardness for several sets B found for PvS4,7

and g3.
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Figure 5 Relative standard deviation of sub-problem hardness for several sets B found for sgen200
150

and g3.

5.5 Speedup in parallel solving
Here we show some results on solving the original CNF formulas in parallel by means of
solving all 2|B| weakened formulas derived from the set B generated by our approach. Table 2
shows values of speedup for several CNF formulas and sets B measured for 1..36 parallel
threads. The speedup was evaluated as follows. In case of a single thread the speedup
is 1/rB,A(C), where rB,A(C) is the decomposition rate defined above. In case of q, q ≥ 2
threads we first accumulated the total number of propagations made by A at each thread.
Then we took the maximum value of the number of propagations across all threads and
divide tA(C) by this value to compute the speedup. Thus, in the latter case we take into
account the situation, when some threads have finished their work earlier than the others.
Note that in the majority of cases, the speedup is indeed super-linear.

Of course, our approach does not and cannot guarantee that the speedup will be super-
linear or even linear: apart from the set B itself, it depends on the properties of the CNF
formula, the used strategy of parallel task distribution. However, practical results illustrated
in Table 2 give reason to be optimistic.

5.6 Correspondence between the number of unit propagations and
solving time

As noted above, in this paper for the value of tA(C[β/B]) we select the number of unit
propagations made by algorithm A while solving CNF formula C[β/B]. The reason for
choosing this metric instead of just the running time (in seconds) is that the propagations
metric is independent of the hardware platform, and the results can be replicated easily.
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Table 2 Speedup when using set B to solve weakened CNF formulas on a single core and in
parallel (using 2..36 threads).

Instance |B| Solver 1 thread 2 threads 4 threads 8 threads 16 threads 32 threads 36 threads

sgen101
150

8 g3 2.3 4.6 8.8 16.8 31.3 37.0 37.0
13 cd 1.9 3.9 7.7 14.9 29.4 56.9 62.6

sgen200
150 8 g3 1.6 3.3 6.2 12.2 22.3 29.9 29.9

sgen200
150

8 g3 1.8 3.6 7.1 13.3 25.5 36.2 36.2
7 g3 2.2 4.4 8.5 15.8 28.0 28.8 28.8
8 cd 1.3 2.6 5.0 9.6 19.1 22.8 22.8
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Figure 6 Accuracy of µ̃B,A(C) for PvS4,7 and g3, where tA(C[β/B]) is the running time of the
SAT solver in seconds: values of time and unit propagations are sufficiently, though not ideally,
correlated.

However, in a practical application we would be interested in sets B that provide a
speedup not only in the number of propagations, but also in terms of the running time.
Therefore, we replicated results depicted in Fig. 3, measuring tA(C) and tA(C[β/B]) in
seconds (for a single thread).

Results are depicted in Fig. 6. Let us compare this plot with Fig. 3. Ideally (if the
number of unit propagations exactly correlates with solving time), these plots should be
quite the same, except for absolute values of propagations and time. Here, instead, we
see that sometimes a decreased value of µ̃B,A(C) (and also µB,A(C) for that matter) when
tA(C[β/B]) is measured in propagations corresponds to slightly increased values of µ̃B,A(C)
and µB,A(C) when tA(C[β/B]) is measured in seconds: for example, this is the case for pairs
(|B| = 16, |B| = 15) and (|B| = 12, |B| = 11). Despite this, the main trends of both plots
are the same, indicating that when estimating the decomposition hardness the number of
unit propagations can be considered as an adequate deterministic analog of a SAT solver
running time.

6 Related Work

There have been a number of attempts to define hardness measures of Boolean formulas.
Some of them are purely theoretical, others can be used in practical applications. For the
most part, existing works appeal to the peculiarities of specific algorithms and do not consider
the SAT solver as a black-box function, as it is done in our approach.

The relationship between the various measures of hardness is demonstrated in [2]. The
key motivation for our work was the idea from [2] to determine the hardness of a Boolean
formula, starting from the concept of the Backdoor Set introduced in [59]. This measure
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(b-hardness) is determined only for Strong Backdoor Sets (SBS) of the function. The value
of b-hardness on a particular SBS is equal to the total time required to solve all formulas
obtained from the original CNF formula when partitioning it according to this SBS. Also
recall that the b-hardness definition implies that weakened formulas are solved in polynomial
time.

In our case, unlike [2] and [59], we use an arbitrary set of Boolean variables and an
arbitrary (not necessarily polynomial) complete algorithm for solving SAT. In all other aspects
our definition of decomposition hardness is similar to the definition of backdoor hardness.
Actually, similar ideas have been used to evaluate the effectiveness of SAT Partitionings,
mainly as applied to formulas arising in algebraic cryptanalysis: see e.g. [21, 26, 37, 50, 53, 60],
etc. However, we emphasize that we are not aware of any works in which these ideas would be
used to specify and estimate hardness of CNF formulas in general. Also, none of mentioned
papers consider accuracy of obtained estimates or ways of improving this accuracy (such as
our (ε, δ)-algorithm).

7 Discussion & Conclusion

Let us emphasize again that for any CNF formula there always exists such a set B that
µ̃B,A(C) can be calculated efficiently. Thus, for any extremely hard CNF formula we can
always obtain some d-hardness estimation. It can be useful in cases when it is necessary to
understand whether there is any practical sense in trying to solve the corresponding problem.
One can argue that the accuracy of such estimates is questionable (e.g. due to transition from
expectation and variance to their statistical counterparts), but our computational results
show that they quite often turn to be accurate in practice. Sometimes, obtained preliminary
estimates are not precise, but the resulting set B can give a very efficient decomposition
(with rate rB,A < 1).

As shown above, the cases when rB,A < 1 are quite frequent in the studied classes of
tests. In such a situation solving all CNF formulas C[β/B] is cheaper than solving the
original CNF formula without decomposition. Thus, if B has reasonable size, we may use a
distributed computational platform to solve all weakened CNF formulas in parallel, and the
corresponding speedup will be super-linear.

Recall that in this paper we only addressed hardness estimation for unsatisfiable CNF
formulas. In the case of satisfiable formulas our estimation measure does not provide good
accuracy guarantees: if a formula has many satisfying assignments, the SAT solving algorithm
can get “lucky” or “unlucky”, which would require other estimation measures, e.g. such as
the one proposed in [52].

In conclusion, in this paper we have proposed a novel approach to evaluating the hardness
of unsatisfiable SAT formulas w.r.t. a deterministic SAT solver. The new hardness measure,
d-hardness, is computed w.r.t. a subset B of formula’s variables, and corresponds to the
minimal total computation effort needed to solve 2|B| weakened CNF formulas across all
possible subsets B. To illustrate the practical applicability of the new measure we proposed
and developed an adaptive probabilistic (ε, δ)-approximation algorithm based on evolutionary
optimization and demonstrated its effectiveness on tests from several families of SAT formulas.

We believe that the concept which lies in the base of the decomposition hardness can be
useful in SAT solving strategies aimed at hard SAT instances. In the future, we plan to use
the ideas which are close to the ones considered above to estimate the usefulness of cubes in
the context of the Cube and Conquer approach [32].
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Finally, although the paper argues that decomposition hardness can be effectively es-
timated with respect to any complete deterministic SAT solving algorithm, the presented
experimental study focuses solely on a few SAT solvers based on conflict-driven clause
learning (CDCL) [42]. As a result and given that the proof system of CDCL is known to be
as strong as general resolution [4, 48], an interesting line of future work will be to extend the
proposed ideas to existing algorithms that build on the proof systems strictly stronger than
resolution, including cutting planes [19,45] and dual-rail based MaxSAT [12], among others.
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Abstract
We study the problem of training a roster of engineers, who are scheduled to respond to service calls
that require a set of skills, and where engineers and calls have different locations. Both training
an engineer in a skill and sending an engineer to respond a non-local service call incur a cost.
Alternatively, a local contractor can be hired. The problem consists in training engineers in skills so
that the quality of service (i.e. response time) is maximised and costs are minimised. The problem
is hard to solve in practice partly because (1) the value of training an engineer in one skill depends
on other training decisions, (2) evaluating training decisions means evaluating the schedules that are
now made possible by the new skills, and (3) these schedules must be computed over a long time
horizon, otherwise training may not pay off. We show that a monolithic approach to this problem
is not practical. Instead, we decompose it into three subproblems, modelled with MiniZinc. This
allows us to pick the approach that works best for each subproblem (MIP or CP) and provide good
solutions to the problem. Data is provided by a multinational company.
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1 Introduction

Large and/or complex machinery and equipment needs regular servicing, so a significant
role for companies who maintain such equipment is to schedule engineers to visit customers
who have such equipment. Apart from regular servicing, equipment can break down so
(emergency) repair visits by engineers also need to be scheduled.

In this work we consider a company that provides services for a wide variety of equipment.
Each piece of equipment is complex, and engineers need to be explicitly trained on how to
service each piece of equipment. In such circumstances the scheduling problem becomes hard:
each engineer is trained to provide services for many, but still a limited subset of, types of
machinery. Assigning an engineer to a service call is only possible if they possess all skills
(typically few) required by that service call.

In this setting, given an existing roster of engineers and a forecast of service calls over a
long horizon, the problem we are tackling consists in strategically deciding which engineers
should be trained, and in what skill(s), in order to minimise costs and ensure a short response
time. This generates a complex multi-layer decision problem:

How many engineers do we need for each skill in order to cover demand?
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Which engineers should be trained with which new skills in order to meet demands?

And finally, how do we schedule engineers to ensure customers needs are met in a timely
manner?

The focus of this paper is on the first two parts of this problem. Of course the efficacy of the
first two parts of the problem are only realised if we consider generating actual schedules,
in order to see that we are meeting customer demand. The ability to simulate “what-if”
scenarios, such as upcoming training opportunities and/or preparing for an anticipated
change in demand, at a regular interval (e.g. once a year) allows the service delivery provider
to make the best decisions regarding “whom to train” and “on what skill”.

Another aspect of our problem is geographic. The partner we work with is international
and has engineers available in different states (in this case, different geographical parts of
Australia). Assigning service calls to engineers outside of their home state incurs travel times
and costs that can be reduced by training the right engineers in the right skills in the right
locations. States have different numbers and types of service activities, each one therefore
needs a (possibly empty) tailor-made roster of engineers.

In this paper we give a mathematical model for optimising training for service delivery.
We illustrate the model on real-world data provided by our industry partner. The model
is broken into three parts to answer the three questions in turn: which skills are required?
who should be trained with them? and how does this affect service task scheduling? We
show that this separation is able to provide much more scalable, and indeed better solutions,
than a monolithic model attempting to answer all three questions at once. We show that the
training optimisation can deliver significant savings in comparison to the current assignment
processes (with some caveats).

2 The Problem: Training for Service Delivery

From an operational point of view, service calls arise on the fly and engineers must be
assigned to these jobs so that the calls can be answered as early as possible. An engineer
assigned to a call must possess all the skills required by that job. An engineer is assigned to
a job for the duration of the job, and to at most one job at a time. Assigning an engineer to
a job outside of their home state incurs an extra fixed travel cost and a per-day living cost.
A service call within Australia should not be assigned to an overseas engineer. However, an
overseas job can be allocated to any engineer, including overseas engineers.

While we have just described the operational problem as an online scheduling problem,
in this paper we consider it to be offline, as what we actually want to determine is how
engineers should be trained, which is a strategic decision. In other words, we suppose that
all jobs are known in advance. This is a simplification we make 1) because our industrial
partner is mostly interested in how to train its workforce, rather than than how to schedule
its jobs, and 2) because the actual online method used to assign jobs to engineers used by
our industry partner is too complex to be replicated, for instance by simulation, and needs
to be abstracted to make strategic decisions.

We also consider that training takes no additional time, because for our industrial partner,
training a new skill takes a few days and is usually only available at a few times during the
year. Hence if from a strategic point of view, we determine that it is valuable for an engineer
to learn a given skill, it would outweigh any operational consideration. However, we take
into consideration the training cost, which varies based on skill.
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3 Modelling and Solving the Problem by Decomposition

Our industrial partner provided historical scheduling data to be used as a projection for
future demand. While a straightforward formalisation of this problem into a single model
was clearly a possibility, it proved not to be a good one. Indeed, while it is possible to
create a model that trains engineers, assigns them to service calls and schedules them into
a single monolithic problem that is solved using an off-the-shelf solver, be it a Constraint
Programming (CP) or a Mixed-Integer Programming (MIP) solver, this approach would hit
two major brick walls. First, as the reader might expect, and as our experiments will show,
this is completely impractical due to the combined complexity of the intertwined subproblems.
Second, if the model could be solved to optimality, the training decisions that would be
taken would overfit the historical data by using the fact that future service requests are
completely visible at training time. In reality, future demands are a “fog of war” that cannot
be captured by a single scenario. Instead, modern optimisation modelling practice dictates
that we would need to obtain or generate more scenarios. It is standard to model uncertainty
with chance constraints that need to be satisfied with a certain probability, usually 90 or
95%. See [3] for instance. However, our experiments with a single scenario already fail to
produce good solutions in a reasonable time.

To avoid both poor and overfitted solutions, we decompose the problem into three
subproblems to reduce the complexity, increase the solving speed, and hide the scheduling
decisions from the training decisions. The basic idea is to first forecast future demand using
past data, typically over a longer period of time, and determine what skills are in short
supply. This is the capacity planning subproblem. It is actually a combinatorial problem,
not “just” data analysis, as for each skill there may be enough capacity to cover the jobs
that require it, but no feasible assignment when taking all skills into account. This serves as
an input to the second subproblem, which allocates these new skills to specific engineers, the
skill allocation subproblem. The second subproblem embeds as a guide a relaxation of the
third subproblem, job scheduling, which assigns engineers to jobs and schedules them, using
their newly-acquired skills, if any. The third subproblem does not decide on training, but it
allows us to measure the quality of the solution of the first two subproblems with respect to
service quality (i.e. delays to answer calls) and travel costs, which we optimise over in the
third subproblem.

To summarise, we solve in sequence the three following subproblems:
Capacity planning identifying skills that are shortage in each state to serve local service
calls with the local engineers based on the historical data.
Skill allocation finding whom to train and on what skill to train from the identified set
of skills that are in shortage based on the future service calls, allowing travel.
Job scheduling assigning service calls to engineers and scheduling them so as to minimise
the overall cost and/or response time.

The subproblems are discussed in detail in the following subsections.

3.1 Capacity Planning
Capacity planning is done for every state individually to identify the skills that are required
to serve the local jobs with the local engineers. We look at the past data to identify what
skills were in shortage for each state. This is done by matching the available skills with
the requirement in a way that minimises the cost to train engineers to meet the shortage.
Suppose a state has two engineers, one, say E1, with skills A and B, and other, say E2 with
C. There are two jobs: one that requires skill A, and another that requires skill B. Suppose
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that both require 5 days. Technically, in this case, both jobs can be performed by the local
engineer E1 with skills A and B. However, one job must wait until the other is completed.
To minimise the response time, engineer E2 should to be trained on either A or B. This
decision depends on the training cost of the skills. If A is more expensive than B, E1 will
perform the job that requires skill A and E2 will perform the other given training on skill B.

Now, lets say, we have an option to use local contractors to perform the job and the new
objective is to minimise the total cost, both training and contractor charges. For the above
example, if the cost of the contractor is cheaper than training an engineer, the tool will not
suggest any skill training.

In the event where a state has no local engineers or not enough to cater for the demand
within the period in consideration, no new skills will be suggested as there are no local
engineers to be trained. Naturally, in this case, service calls are made using engineers from
other states or by local contractors.

Next, we show the formulation of the capacity planning problem for a state.

3.1.1 Input and Derived Data
Input Index Sets.
J = {1, . . . , NJ }: set of jobs (service calls) that need to be assigned engineers and
scheduled.
E = {1, . . . , NE}: set of engineers / technicians.
SK = {1, . . . , NSK}: set of skills.
S = {1, . . . , NS}: set of all states both where jobs need to be served and engineers are
located.
SKeng

e ⊆ SK: subset of skills that engineer e ∈ E has training on
Es ⊆ E : subset of engineers who are located in state s ∈ S
J sk

s ⊆ J : subset of jobs from state s ∈ S that require skill sk ∈ SK

Input Data.
hstart: planning horizon start date
hend: planning horizon end date
wdays: number of working days within the planning horizon hstart − hend

nsdays: number of days that becomes available upon training a new skill
split ∈ Z+: number of periods that the planning horizon is split into
loceng

e : location (state) of engineer e ∈ S
locjob

j : location (state) of job j ∈ J needs to be performed
dj : duration of job j ∈ J
Ccont: per day cost to contract a job
Ctrain

sk : cost of training on skill sk ∈ SK

3.1.2 Decision Variables
skshorts

sk ∈ Z+: number of days that skill sk ∈ SK is in shortage in state s ∈ S during
the planning horizon.
sksupps

sk ∈ Z+: number of days that skill sk ∈ SK is supplied/allocated in state s ∈ S
during the planning horizon.
skreqs

sk ∈ {0, 1}: 1 if skill sk ∈ SK is identified as required skill in state s ∈ S during the
planning horizon, otherwise 0.
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3.1.3 Constraints and Objective Function
Upper bound. on the skill supplied and in shortage is limited to the required amount.

skshorts
sk ≤

∑
j∈J sk

s

dj , sk ∈ SK, s ∈ S. (1)

sksupps
sk ≤

∑
j∈J sk

s

dj , sk ∈ SK, s ∈ S. (2)

The amount of skill supplied cannot exceed the number of working days.

sksupps
sk ≤ wdays, sk ∈ SK, s ∈ S. (3)

New skill suggestion. Skills that are not required by the jobs within the planning horizon
are not suggested.∑

j∈J sk
s

dj = 0→ skreqs
sk = 0, sk ∈ SK, s ∈ S. (4)

Supply and demand. Demand for skill is met by the supply or by contractor (shortage) or
by training.∑

j∈J sk
s

dj ≤ sksupps
sk + skshorts

sk + nsdays× skreqs
sk, sk ∈ SK, s ∈ S. (5)

Objective function. sum of the cost to contract the jobs that are shortage in skill and to
conduct training on suggested new skills.

min ← obj = Ccont ×
∑

sk∈SK,s∈S skshorts
sk +

∑
sk∈SK,s∈S Ctrain

sk × skreqs
sk. (6)

3.2 Skill Allocation
From the previous step (capacity planning), we know what are the set of skills a state needs
to handle the future jobs. So deciding whom to train and on what skill to train them is
crucial since the wrong decision might lead to longer response time and higher cost. This
step looks at some jobs in hand, preferably for a shorter period, and decides whom to train in
the skills found to be in short supply in the previous step for all states simultaneously. Here
we allow a job to be allocated to an engineer from a different state than the job’s location
(state). The objective here is to reduce the cost of training someone and the cost of travel
involved in attending jobs that are assigned to an engineer from a different state. The travel
includes the return flight cost and the accommodation cost equivalent to the length of the
job duration. If a state needs a skill and that state has excess workforce, training someone
locally is cheaper than the alternatives, and the algorithm will recommend training a local
engineer on that skill. In this case, the local engineer can perform the job that requires the
recommended skill.

Next, we present the formulation of the skill allocation problem of a state.

3.2.1 Input and Derived Data
Input Index Sets.
SKjob

j ⊆ SK: subset of skills that are required to perform job j ∈ J .
Esk ⊆ E : subset of engineers that have training on sk ∈ SK
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Input Data.
Cflight

a,b ∈ Z+, a ̸= b: flight cost of travelling from state a ∈ S to state b ∈ S.
Cacco

a ∈ Z+: per day accommodation cost in state s ∈ S.
captrain: maximum number of new skills an engineer is allowed to acquire.
capjob: maximum number of jobs an engineer is allowed to undertake.

Functions. The constraints in our model use the following functions.
isOverseasJob(j): returns true if job j ∈ J needs to be performed overseas, otherwise
false.
isOverseasEngineer(e): returns true if engineer e ∈ E is from overseas, otherwise false.

3.2.2 Decision Variables
newskillse ∈ SKeng

e : list of skills suggested/allocated to engineer e ∈ E .
allocj ∈ Esk, sk ∈ SKjob

j : engineer that job j ∈ J is assigned to.
costtravel

j : travel cost to perform job j ∈ J .
costtrain

sk : cost of training an engineer in skill sk ∈ SK.

3.2.3 Constraints and Objective Function
Available skills for training are restricted to those identified by the previous solution

newskillse ⊆ {sk | sk ∈ SK, skreqs
sk = 1}, s ∈ S, e ∈ Es (7)

Limit. on the number of new skill recommendations for an engineer.

|newskillse| ≤ captrain, e ∈ E (8)

A limited number of jobs are assigned to an engineer when deciding the skill recommend-
ation.∑

j∈J
(allocj = e) ≤ capjob, e ∈ E (9)

Travel cost. If a job is allocated to an engineer from a different state, apply flight and
accommodation cost otherwise set the cost to zero.

loceng
allocj

̸= locjob
j → costtravel

j = Cflight

loceng
allocj

,locjob
j

+ Cacco
locjob

j

× dj , j ∈ J (10)

loceng
allocj

= locjob
j → costtravel

j = 0, j ∈ J (11)

Location. An engineer should only be assigned to a job if their existing skill set and the
newly recommended skill matches the job skill requirement

SKjob
j ⊆ SKeng

allocj
∪ newskillsallocj

, j ∈ J (12)

An overseas engineer cannot perform jobs in Australia.

¬isOverseasJob(j)→ ¬isOverseasEngineer(allocj), j ∈ J (13)
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Dominance. To increase the solving efficiency by eliminating the symmetries, we apply a
dominance constraint – one that favours skill addition to an engineer with a subset of skills
when compared to another engineer’s skills.

SKeng
e1 ⊆ SK

eng
e2 → |newskillse1| ≥ |newskillse2|, e1, e2 ∈ E , e1 ̸= e2. (14)

When the maximum number of new skills that an engineer can acquire within the planning
period is restricted to one, as is often the case with our partner company, the above constraint
is a dominance constraint, it does not remove any optimal solutions. However, when a new
engineer can be trained in two or more skills we have no proof that this is a dominance
constraint, and instead use it as a rule of thumb to improve solving efficiency.

Objective function. sum of training and travel costs.

min ← obj =
∑

e∈E
∑

ns∈newskillse
costtrain

ns +
∑

j∈J costtravel
j . (15)

3.3 Job Scheduling
From the previous step (skill allocation), we know which engineer to train on what skill
in order to perform given future jobs. The next step is to assign jobs to engineers while
scheduling them. In this step, we assume the engineers have already acquired the training
on the recommended skills and have added those skills to their existing skill set. The overall
objective is to minimise the total travel cost.

Next, we show the formulation of the job scheduling problem of a state.

3.3.1 Input and Derived Data
Input Index Sets.
J sk ⊆ J : subset of jobs that require skill sk ∈ SK
C: set of contractors

Input Data.
arrivalDatej : arrival date of job j ∈ J
waitj : preferred wait time of job j ∈ J
maxWait: maximum time a job can wait until its been attended since the allowed start
date, i.e. arrivalDatej + waitj , j ∈ J

3.3.2 Decision Variables
startDatej : start date of job j ∈ J
costcont

j : cost to contract job j ∈ J .

3.3.3 Constraints and Objective Function
All the constraints listed in step 2, except (a) the constraint on the number of new skills an
engineer is allowed to acquire, (b) the dominance constraint and (c) the constraint on the
set of possible engineers who can perform a job in the event contractors are permitted, are
applied in this step. In addition to these, the following constraints are also enforced:
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Non-overlapping. Two jobs that are allocated to the same engineer cannot overlap in time.
We use the disjunctive(s, d) constraint which forces tasks with start times given by array s

and durations given by array d not to overlap. We apply this to each engineer e by replacing
the duration of tasks that the engineer is not allocated by 0.

disjunctive(startDate, [if allocj = e then dj else 0|j ∈ J ]), e ∈ E (16)

Limit on overlapping jobs. When contractors are not used, we enforce a redundant constraint
to apply a cap on the number of jobs that can overlap, which is equal to the available engineers
with the required skill. We use the global cumulative(s, d, r, b) constraint which forces at
each point in time, the total number of tasks (with start times given by array s, durations
given by array d and resources required to perform the task given by array r) that overlap
that point, does not exceed the limit given by b. We apply this to each skill sk.

cumulative([startDatej |j ∈ J sk], [dj |j ∈ J sk], [1|j ∈ J sk], card(Esk)), sk ∈ SK (17)

Scheduling window. A job must only be scheduled after a set period since its arrival date.
Each job depending on its type can have a different wait period.

startDatej ≥ arrivalDatej + waitj , j ∈ J (18)

A job must be served within a set period after the wait time.

startDatej ≤ arrivalDatej + waitj + maxWait, j ∈ J (19)

Possible engineers for a job. When contractors are permitted, we allow assigning an
engineer with the required skill or a contractor for a job. Here we assume the contractor has
the necessary skill and available in every state.

allocj ∈ Esk ∪ C, sk ∈ SKjob
j , sk ∈ SK, j ∈ J (20)

Contractor Cost. If a job is allocated to a contractor, apply the associated cost otherwise
set the cost to zero.

allocj ∈ C → costcont
j = Ccont × dj , j ∈ J (21)

allocj /∈ C → costcont
j = 0, j ∈ J (22)

Objective function. sum of travel and contractor costs.

min ← obj =
∑

j∈J costtravel
j + costcont

j . (23)

3.4 Monolithic Model
The single monolithic problem is essentially modelled by combining all constraints in step 2
and step 3, where the newskillse are kept as variables so that deciding whom to train on
what, allocating jobs to engineers and scheduling are performed together. Equation (7)
is omitted so there is no limit on the possible set of new skills that can be trained. The
objective is to reduce the sum of training and travelling costs, i.e. Equation (15).
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4 Experiment

We have evaluated our algorithm by executing it as a single-thread process on an Intel(R)
Core(TM) i7-8700K CPU @ 3.70GHz on actual data provided by an industry partner. The
data has approximately 8800 jobs over two years requiring 113 different skills. We are given
53 engineers with a varying skill sets to perform the jobs at hand, and be trained further.
The engineers are located in 7 states, including one overseas, while service calls occur in 22
states, including 14 overseas from where 10% of the service calls originate. We split the data
into two, the first year (Y1) data is used for capacity planning and the second year (Y2)
data is used to perform skill allocation and job scheduling.

We modelled our problem using MiniZinc [15], which allowed us to try different off-
the-shelf solvers (CP and MIP) on the same model before deciding on the most suitable
one. MiniZinc translates constraints into forms suitable for the chosen solver. For example,
in MiniZinc, sets are native. For both CP and MIP solvers, the set constraints, given in
Equation (7), are mapped to zero/one representations [2]. To choose an appropriate solver for
each step in the decomposed approach and the monolithic model, we ran the preprocessing
for each experiment using several solvers (CP and MIP) - Chuffed, Gecode, CBC, and Gurobi.
The results were consistent on all occasions and we chose a MIP solver (Gurobi) for steps 1
and 2, and a CP solver (Chuffed) for step 3. For the monolithic model, a CP solver (Chuffed)
worked best.

For step 3 and the monolithic model we use a programmed search strategy to find solutions
quickly. During scheduling we choose the unscheduled job with the earliest start time and the
then fix its start time to this earliest possible time and assign an engineer for that job first
trying to schedule an engineer who resides in the same location as the job, thus favouring
solutions with lower travel costs. We experimented with a number of search strategies and
found this to be overall the most robust.

In all the tables provided here, steps 1, 2 and 3 refer to capacity planning, skill allocation
and job scheduling stages of the decomposed approach, respectively. Tables 1 shows the
results of experiments conducted to compare the performance of the decomposed approach
against the monolithic approach for two settings: skill allocation and job scheduling over
one-month and two-month periods. For this comparison, we performed the capacity planning
using the first-year (Y1) data, and the skill allocation and job scheduling on the second-year
(Y2) data. To have a fair comparison, we used the same Y2 data used in the monolithic
model for the skill allocation step of the decomposed approach for each period. All the runs
had a cutoff time set at 360 seconds except for the monolithic model, which had it set at
3600 seconds. The values shown in the tables indicate the values at the timeout.

The first line of Table 1 shows that determining the skills in short supply is straightforward,
we can find an optimal solution in 10 seconds. The results in Table 1 show that while the
monolithic model can generate better solutions within its much longer time limit for some
of the one month long instances, it scales very poorly, unable to find solutions to one one
month problem and any two month problems. Clearly decomposing the problem into 3 parts
does restrict the resulting solutions, since an “optimal solution” for the decomposed problem
can be bettered by the monolithic model. However, this was when we were looking at a
shorter period to decide the skill allocation. From the experimental results presented next,
we can see that when skill allocation is performed over an extended period, that is, when
looking at the larger problem, the decomposed approach outperforms the monolithic model
in terms of solution quality and solving speed. This is true for the all months, including the
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cases that were previously bettered by the monolithic model. Overall it is clear that the
monolithic model is not practical, even given far more resources and solving a restriction of
the problem it cannot compete.

The second experiment, shown in Table 2, tackles a much more practical version of the
problem, and is the default problem used in the tool delivered to the industrial partner. Here
the decisions of what skills are in short supply and which engineers should be trained on
which skills (steps 1 and 2) are both performed over 1 year of data. The table compares
three scenarios: when no new skills can be trained, when we can train at most one new skill
per engineer, and when we can train at most two new skills per engineer. Clearly given more
flexibility of training skills allows us to train more engineers. The second part of the table
shows the monthly solutions over the year under the three different scenarios. It considers
two different maximum waiting times for jobs. It gives the time to compute the solution,
the total wait time over all jobs, the number of job serviced by interstate engineers and the
total travel cost, for each month of jobs. For each different wait time it also shows the year
sums of the statistics. The headline result is that (perhaps unsurprisingly) enabling new
skill training can significantly improve upon the overall costs of providing the service calls.
Indeed new skill training is required when we restrict the waiting time, Y2M7 and Y2M8
have no solution with the available engineers and skills. The savings of targeted training
are significant reducing overall costs by 30%. Interestingly the more flexible scenario where
we can train two skills per person does not always lead to a better overall cost solution.
Recall that the training decisions are made on the Y1 data and hence may not be completely
reflected in the Y2 data that we actually schedule, and indeed the total number of new skills
assigned to engineers only marginally increases. The more flexible scenario does lead to
significantly less waiting time for customers though.

Given that in some months we find no viable schedule without using contractors, we
extend the step 3 model to allow contractors. This requires a more complex search strategy
to obtain good results, but ensures that we find a viable schedule for each month. We applied
a search strategy that is similar to the one used in the step 3 model before the extension,
which chooses the unscheduled job with the earliest start time and then fix its start time
to the earliest possible time and assign an engineer for that job first trying to schedule an
engineer who is not a contractor and resides in the same location as the job. The results
shown in Table 3 are very similar to those in Table 2 since we try to minimize the use of
contractors. The results here do not change the previous conclusions.

5 Related Work

There is extensive literature on the workforce allocation problem [10, 17, 1], including with
CP models [12, 14]. A significant part of the literature deals with the problem of assigning
crossed-trained workers, i.e. trained in multiple skills, to jobs that require a single skill.
Although not necessary when each task requires a single skill, cross-training allows the
reduction of service delivery delays and increase the utilization of the workforce. A number of
papers, among which [4, 5, 6, 13, 18], study the effect of cross-training of the entire workforce
as a single varying parameter, but not with decision variables that describe the specific skills
that each staff member must learn. This approach is most appropriate when the workforce is
large and many staff members have the same skill profile.
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Table 1 Performance comparison between decomposed and monolithic approaches. Steps 1,2,3
represents capacity planning, skill allocation, and job scheduling stages, respectively. MM refers to
monolithic model. A † indicates a greedy optimal solution for steps 2 and 3 was discovered. The
best overall cost solution found of the two approaches is in bold. A – indicates no solution was found
within the time limit.

Period Step #Jobs Time Total
Shortage

Total
Wait

#New
Skills

#Interstate
Jobs

Training
Cost

(x100)

Travel
Cost

(x100)

Total
Cost

(x100)
Y1 1 4301 10 759

1-month, maxW ait = 15
Y2M1 2,3 364 8+7 222 8 18 237 1184 †1421

MM 364 14400 287 8 18 237 1049 1286
Y2M2 2,3 400 8+21 873 7 16 198 1262 †1460

MM 400 14400 723 7 15 201 1112 1313
Y2M3 2,3 429 10+360 896 6 28 165 1632 1797

MM 429 14400 690 4 39 107 1883 1990
Y2M4 2,3 393 8+10 414 5 18 140 1389 †1529

MM 393 14400 522 6 18 140 1127 1267
Y2M5 2,3 449 10+91 816 6 29 165 2017 †2182

MM 449 14400 750 6 29 165 1825 1990
Y2M6 2,3 380 7+360 863 3 19 84 1889 1973

MM 380 14400 595 0 31 0 2053 2053
Y2M7 2,3 459 10+360 1353 5 31 140 2480 2620

MM 459 14400 1202 0 64 0 2878 2878
Y2M8 2,3 370 8+15 638 6 17 171 1487 †1658

MM 14400 — — — — — —
Y2M9 2,3 371 7+10 703 3 15 84 1007 †1091

MM 371 14400 657 4 15 104 921 1025
Y2M10 2,3 386 8+15 581 6 18 168 1104 †1272

MM 386 14400 574 7 18 188 1131 1319
Y2M11 2,3 637 14+360 975 8 33 224 1999 2223

MM 637 14400 1156 0 70 0 2897 2897
Y2M12 2,3 299 6+7 332 4 16 115 1154 †1269

MM 299 14400 267 4 16 115 1131 1246
2-month, maxW ait = 15

Y2M1-2 2,3 812 14+360 2346 9 53 254 3352 3606
MM 14400 — — — — — —

Y2M2-3 2,3 810 21+360 1731 8 43 221 3325 3546
MM 14400 — — — — — —

Y2M3-4 2,3 818 19+360 1475 10 38 274 3373 3647
MM 818 14400 2429 0 101 0 4534 4534

Y2M4-5 2,3 814 15+360 2015 8 47 218 4631 4849
MM 814 14400 1651 0 83 0 4815 4815

Y2M5-6 2,3 829 23+360 3079 7 78 196 5471 5667
MM 14400 — — — — — —

Y2M6-7 2,3 814 15+360 3089 9 62 255 4646 4901
MM 14400 — — — — — —

Y2M7-8 2,3 741 16+360 1852 7 41 199 3228 3427
MM 14400 — — — — — —

Y2M8-9 2,3 741 17+360 1572 6 32 168 2030 2198
MM 741 14400 1628 0 71 0 2832 2832

Y2M9-10 2,3 996 26+360 1755 9 56 260 3507 3767
MM 14400 — — — — — —

Y2M10-11 2,3 637 15+360 975 8 33 224 2010 2234
MM 637 14400 1138 0 70 0 2897 2897

Y2M11-12 2,3 573 14+33 591 8 22 224 2162 †2386
MM 573 14400 559 6 27 171 2080 2251
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Table 2 Comparison – Effect of allowing 0,1 or 2 skills per engineer on the total cost and changing
maxW ait on the solving time – time out per run 360s. A “—” indicates the problem is unsatisfiable.

No New Skills One-Skill Per Person Two-Skill Per Person

Period Step #Jobs Time #New
Skills

Training
Cost

(x100)
Time #New

Skills

Training
Cost

(x100)
Time

#New
Skills

(# Engs)

Training
Cost

(x100)
Y1 1,2 4301 0 0 0 9+216 19 540 9+467 20 (16) 565

Total
Wait

#Inter-
state
Jobs

Travel
Cost

(x100)

Total
Wait

#Inter-
state
Jobs

Travel
Cost

(x100)

Total
Wait

#Inter-
state
Jobs

Travel
Cost

(x100)
maxWait = 30

Y2M1 3 364 10 322 43 1740 5 235 13 1047 4 249 12 1038
Y2M2 3 400 21 604 37 1805 10 670 12 1173 12 616 12 1173
Y2M3 3 429 61 1071 49 2229 20 921 19 1305 23 932 19 1305
Y2M4 3 393 28 618 42 1776 9 648 13 1241 11 488 13 1241
Y2M5 3 449 80 881 55 2488 35 933 20 1826 35 833 20 1826
Y2M6 3 380 360 880 30 2146 360 803 14 1753 360 826 14 1753
Y2M7 3 459 360 1716 63 2969 53 1272 21 2015 54 1225 21 2015
Y2M8 3 370 18 826 33 2156 7 627 13 1519 8 568 13 1519
Y2M9 3 371 15 727 26 1181 8 544 10 973 12 6 10 973
Y2M10 3 386 15 634 43 1817 10 418 13 1132 9 427 13 1132
Y2M11 3 637 360 1482 68 2919 294 1295 29 1794 303 1271 26 1695
Y2M12 3 299 7 308 28 1697 3 225 12 1150 3 221 11 1141
Total 10069 517 24923 8591 189 17468 8256 184 17376

maxW ait = 15
Y2M1 3 364 19 278 43 1750 6 235 13 1047 4 249 12 1038
Y2M2 3 400 18 546 37 1805 15 577 12 1173 14 559 12 1173
Y2M3 3 429 360 731 49 2370 76 681 20 1434 89 772 20 1434
Y2M4 3 393 36 573 42 1776 10 576 13 1241 11 467 13 1241
Y2M5 3 449 75 805 55 2488 41 777 20 1826 40 735 20 1826
Y2M6 3 380 360 565 31 2226 360 761 16 1925 360 755 16 1925
Y2M7 3 459 — — — — 188 1184 21 2026 360 1119 23 2171
Y2M8 3 370 — — — — 14 578 13 1519 13 545 15 1539
Y2M9 3 371 32 740 26 1191 19 648 10 983 32 662 10 983
Y2M10 3 386 85 514 44 1838 9 416 14 1153 8 394 14 1153
Y2M11 3 637 360 1093 71 3115 360 944 31 1938 360 925 29 1844
Y2M12 3 299 5 225 28 1697 3 220 12 1150 4 192 12 1223
Total 6070 426 20256 7597 195 17955 7374 196 18115

Table 3 Comparison (contractors allowed) – Effect of allowing 0, 1 or 2 skills per engineer on the
total cost and changing maxW ait on the solving time – time out per run 360s.

No New Skills One-Skill Per Person Two-Skill Per Person

Period Step #Jobs Time #New
Skills

Training
Cost

(x100)
Time #New

Skills

Training
Cost

(x100)
Time

#New
Skills

(# Engs)

Training
Cost

(x100)
Y1 1,2 4301 0 0 0 7+523 31 850 7+3297 23 (20) 643

Total
Wait

#Inter-
state,

Contract-
ed Jobs

Total
Cost

(x100)

Total
Wait

#Inter-
state,

Contract-
ed Jobs

Total
Cost

(x100)

Total
Wait

#Inter-
state,

Contract-
ed Jobs

Total
Cost

(x100)

maxWait = 30
Y2M1 3 364 25 314 36,15 1651 12 177 12,12 1149 360 2059 27,16 2505
Y2M2 3 400 47 592 30,17 1696 29 560 8,14 1080 360 3072 28,20 2407
Y2M3 3 429 92 1054 40,21 2099 57 753 13,17 1194 340 2076 24,23 2973
Y2M4 3 393 44 604 36,14 1683 28 401 8,13 1154 360 2791 33,5 3841
Y2M5 3 449 129 837 47,16 2394 69 791 17,11 1762 360 3895 30,16 4010
Y2M6 3 380 360 861 25,14 2050 360 724 12,10 1675 360 4414 27,24 3667
Y2M7 3 459 360 1635 51,23 2813 152 1518 13,20 1897 202 1629 8,38 2132
Y2M8 3 370 38 754 24,23 2018 24 518 5,22 1387 131 1526 13,23 1814
Y2M9 3 371 30 732 18,17 1079 23 511 3,16 877 360 2669 35,10 2933
Y2M10 3 386 40 623 35,12 1750 17 385 10,6 1096 199 1321 18,15 1595
Y2M11 3 637 360 1487 63,12 2870 200 1117 20,15 1562 30 443 11,13 1916
Y2M12 3 299 14 311 21,8 1650 8 196 8,5 1120 30 443 11,13 1916
Total 9804 426,192 23753 7651 129,171 15953 26338 265,216 31709

maxW ait = 15
Y2M1 3 364 51 258 36,15 1661 14 177 12,12 1149 8 215 8,12 966
Y2M2 3 400 37 534 30,17 1696 29 523 8,14 1080 23 589 8,14 1080
Y2M3 3 429 360 692 45,13 2341 360 613 14,16 1276 360 722 15,15 1347
Y2M4 3 393 48 579 36,14 1683 39 392 8,13 1154 26 558 8,13 1154
Y2M5 3 449 98 787 47,16 2394 70 714 17,11 1762 67 807 17,11 1762
Y2M6 3 380 360 609 29,7 2179 360 765 15,5 1795 360 718 16,5 1897
Y2M7 3 459 360 1068 53,18 2946 262 1306 13,20 1908 360 1222 21,18 2135
Y2M8 3 370 56 535 23,24 2106 31 506 5,22 1387 76 514 6,22 1469
Y2M9 3 371 44 721 18,18 1084 47 638 3,17 882 27 670 3,17 882
Y2M10 3 386 287 502 36,12 1771 15 320 11,6 1117 13 361 11,6 1117
Y2M11 3 637 360 1140 66,10 3100 360 1028 26,6 1832 360 1042 22,11 1848
Y2M12 3 299 11 237 21,8 1650 7 196 8 1120 6,5 218 7,5 1111
Total 7662 440,172 24611 7178 140,150 16462 7636 142,149 16768
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We focus on papers that propose methods to decide how to both train, allocate jobs and
schedule them. De Bruecker et al. [8] specifically review the workforce planning literature
that takes skills into account, and in particular (in Section 3.3.3) the papers that allow the
workforce to be trained. One important dichotomy is whether the skills are hierarchical or
categorical. With hierarchical skills, there are only skill levels, where a worker at a given skill
level can perform all jobs at this or a lower skill level. With categorical skills, there is no
comparison between skills.

Huang et al. [11] optimise the service level delivered by a consultancy-type business where
projects require certain skills. Since the problem is solved via a discrete event simulator, this
allows them to model many different aspects of the problem, such as employees deciding to
leave. Within the simulation, the decision to assign staff to projects is made by a Linear
Program, hence fractional (simultaneous) assignments are possible. The future horizon is
divided into planning periods, during which staff can be trained to ensure that enough
capacity of each skill is available for the projects in that period. In this model, each staff
can only possess one skill, and training that staff is a “transfer”, i.e. the staff loses the
previous skill. Other papers consider that staff can be re-trained, losing their original skills,
or transferred between departments [16].

De Bruecker et al. [7] propose a three-step approach to training and scheduling aircraft
maintenance teams from one season to the next. Each stage solves a Mixed-Integer Program
and feeds into the next step. The first stage consists in scheduling maintenance shifts to
ensure the flights can operate on schedule, and assigning workers to the shifts. The second
stage refines the set of skills needed by each team of workers in order to reduce the amount
of training needed. The third stage attempts to schedule the training needed in the training
season.

6 Conclusion

We have demonstrated the potential value of additional training in reducing overall costs for
our service delivery problem. Together with the substantial cost reduction, our solutions
also provides auxiliary benefits, such as a more highly trained workforce, and considerably
less travel, thereby improving staff wellbeing and reducing the company’s carbon footprint.

Furthermore, we have shown that using a single monolithic model to solve the entire
problem was not practical, as the solutions it can find in a time similar to our decomposition
approach are much worse.

One limitation is our current inability to solve the third subproblem, which schedules jobs
and evaluate the quality of our training decisions, for a one-year horizon. We believe that
the cost we obtain for the month-by-month approach are a reasonable approximation of the
cost that would be obtained for the entire year, but we have not been able to experimentally
verify this hypothesis.

Another potential limitation of the current approach is that our third subproblem is set as
an offline job scheduling problem. While this integrates well with the first two subproblems,
offline scheduling might give a biased measure of the efficiency with which the workforce can
deal with jobs that in practice would need to be allocated on the fly. Hence future work
includes solving the job scheduling subproblem online, which, since recently, can be modelled
in Minizinc using the techniques presented in [9].
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Abstract
Decision systems for solving real-world combinatorial problems must be able to report infeasibility
in such a way that users can understand the reasons behind it, and understand how to modify the
problem to restore feasibility. Current methods mainly focus on reporting one or more subsets of the
problem constraints that cause infeasibility. Methods that also show users how to restore feasibility
tend to be less flexible and/or problem-dependent. We describe a problem-independent approach to
feasibility restoration that combines existing techniques from the literature in novel ways to yield
meaningful, useful, practical and flexible user support. We evaluate the resulting framework on two
real-world applications.
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1 Introduction

Finding (high quality) solutions to combinatorial problems is important for our society. This
has fuelled research into technologies to model and solve these problems, many of which are
now used in decision systems deployed by businesses such as Amazon, Google and HP.

An important, but less researched aspect of these systems is their interaction with human
users, particularly when reporting infeasibility created by errors or “what-if” scenarios. While
users do need information to restore feasibility, it is not obvious what information is best.
Research has mainly focused on finding subsets of the problem constraints responsible for
the infeasibility. This has yielded interesting subsets, such as Minimal Unsatisfiable Sets
(MUS) and Minimal Correction Subsets (MCS) [20], and enumeration methods to compute
them efficiently (e.g., [13, 16, 19, 18, 21]). See [6] for applications of these subsets.

While enumeration methods are a great starting point for explaining infeasibility to users,
a straightforward use of these methods is not suitable for real-world systems [10]. We have
experienced this repeatedly, most recently in a system that finds high quality 3D layouts
for an industrial plant, where better quality solutions can save millions of dollars. We soon
realised it is easy for users to create infeasible plants due to incorrect data (e.g., making the
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plant too small for its equipment) and/or inconsistent constraints (e.g., setting object A on
the ground and also on top of another object B). Since plants contain hundreds of pieces
of equipment, multiple inconsistencies are easily introduced. Our attempts to use some of
the constraint-independent enumeration methods available [19, 18] to find and resolve these
inconsistencies resulted in impractical waiting times and hundreds of MUSes, overwhelming
users. Further, these methods did not show how to restore feasibility. Our attempts to
use methods that sacrificed generality for speed, and which reported the minimum changes
needed to restore feasibility [6, 27], led to users being given a very restricted set of choices.

Our experiences illustrate the need for user support that is meaningful, useful, practical
and flexible. We say support is meaningful if it expresses the selected constraint subsets in a
way that is understandable to users. It is useful if it helps users determine not only what
prevents the system from finding a solution, but also how to actually modify the data or
constraints to eliminate the inconsistency. It is practical if it is fast enough for users, and it
is flexible if it gives them choices regarding how to find and resolve infeasibility.

The few methods that address some of these four needs [17, 8, 4] tend to focus only on
one of them and/or are problem-dependent. Our main contributions are (1) to describe a
problem-independent approach to feasibility restoration that combines existing qualitative
and quantitative techniques in novel ways, yielding meaningful, useful, practical and flexible
user support, and (2) to evaluate the trade-offs between practicality and flexibility for the
conflict resolution alternatives offered by our approach, as well as their meaningfulness and
usefulness, in the context of two real-world applications. In doing this, we also contribute
(3) a method to quantify the violation of logical combinations of constraints, and (4) a
problem-independent interface for user intervention.

2 Background and Related Work

Explaining infeasibility. Given an unsatisfiable set of constraints C, subset M ⊆ C is a
Minimal Unsatisfiable Set (MUS) of C iff M is unsatisfiable and removing any constraint from
M makes it satisfiable; and is a Minimal Correction Subset (MCS) of C iff C \M is satisfiable
and adding any c ∈ M to C \ M makes it unsatisfiable. Every MCS is a hitting set of all
MUSes (i.e., has a non-empty intersection with each MUS) and vice-versa. While removing
a MUS from C might not make it satisfiable (C may have disjoint MUSes), removing one
MCS from C does. Applications often have a subset B of C, called the background, that
should not appear in the computed subsets. Its complement C \ B is the foreground. MUSes
and MCSes are redefined using B as follows. A minimal conflict of C for B is a subset M of
the foreground such that M ∪ B is unsatisfiable, and for any M ′ ⊂ M , M ′ ∪ B is satisfiable.
A minimal relaxation of C for B is a subset M of the foreground such that (C \ M) ∪ B is
satisfiable and for any subset M ′ ⊂ M , (C \ M ′) ∪ B is unsatisfiable. Herein we treat MUS
and MCS as synonyms of minimal conflicts and minimal relaxations, respectively.

Finding one MUS. Early techniques to find a MUS are based on linear deletion methods [13],
where each constraint in unsatisfiable set C is tentatively removed from it, and is added back
to C if its removal yields satisfiability. Once all constraints in the initial C are tested, those
in the final C form a MUS. One of the most popular techniques is QuickXplain [16], which
reduces the number of satisfiability checks needed by recursively splitting and reducing C to
a MUS. These approaches use solvers as satisfiability checkers, without taking into account
any properties of C. Other approaches sacrifice such generality for speed by focusing on
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particular kinds of constraints, like those in linear programs [26, 12], numerical constraint
satisfaction problems [11], and Mixed Integer Programs (MIP) [13], where a MUS is called
an Irreducible Inconsistent Subsystem (IIS).

Enumerating MUSes and finding one MCS. Most MUS enumeration techniques gain
speed by keeping track of the explored subsets to prune superseded ones. One of the most
popular is MARCO [19], which avoids redundant checks of supersets/subsets of known
unsatisfiable/satisfiable sets. The aim when enumerating MUSes is often to compute an
MCS. Efficient techniques exist to compute MCSes directly (e.g., [20, 9, 21]), rather than
as hitting sets of MUSes. MCSes discovered during MUS enumeration can also be used to
speed up the enumeration process [1].

Preferred subsets. The exponential number of MUSes and MCSes, together with the large
number of constraints in real-world problems, have yielded methods that allow users to
express their preferences [16, 22, 23]. These methods obtain MUSes and MCSes built from less
preferred constraints, which can be violated to satisfy the more important ones. In addition,
accounting for preferences can help speed up computation, as shown by MiniBrass [25],
which generalises several constraint preference schemes by using partially ordered valuation
structures, and implements them as a soft constraint modelling language.

Human-understandable subsets. The closest work we know of is that of [17], which uses
a version of MARCO to iteratively construct minimal conflicts responsible for causing
infeasibility, coupled with minimal relaxations which can be used to restore feasibility. Their
minimal sets can be expressed in human understandable language and at different levels of
abstraction by using a powerset lattice of Boolean variables to represent each constraint in
the foreground, which only contains constraints that can be altered by parameters controlled
by the users. It is also the only work we know of that tries to eliminate redundancies from
the subsets to produce more compact descriptions. In contrast, our method is problem-
independent and, as shown later, its novel combination of enumeration and IIS based methods
makes it more practical and flexible.

Connecting models to instances. We distinguish between a problem model, where the
input data is described in terms of parameters, and a particular model instance, where the
values of all parameters are added to the model. Models are usually defined in a high-level
language, such as JuMP [7] or MiniZinc [24], and their instances are compiled into a flat
format, where loops are unrolled and constraints are transformed into formats suitable for
the selected solver. Both the compiler and the solver may introduce new variables and
constraints during the flattening/solving process. This makes it difficult to report constraint
subsets to the users in a meaningful way. In this paper we use the MiniZinc toolchain, which
assigns a unique identifier [18] to each variable and constraint in a flattened instance that
links them to the part of the model’s source code that generated them.

3 Motivating Example: Plant Layout

The equipment allocation phase of the Plant Layout system of [2] finds the 3D position
coordinates and orientations of the specified equipment within a given container space, that
(a) satisfy distance, maintenance and alignment constraints, and (b) minimise the costs of
the plant’s footprint, of the supporting equipment, and of a Manhattan approximation of the
connecting pipes. Figure 1(d) shows a possible solution for the plant described in Figure 1(a).

CP 2021
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Figure 1 Simplified Plant Layout workflow for a feasible plant (a⇒d) and for feasibility restoration
(a⇒b⇒c⇒d).

Data. The user interface (UI, Figure 1(a)) provides a predefined palette of equipment
templates, where each template belongs to a class (e.g., heat exchangers or pumps) and each
class has a set of associated constraints. Users can drag and drop equipment from the palette
onto the canvas to describe the plant. They can modify the equipment dimensions, alter the
positions of the nozzles where the pipes attach, and connect equipment via pipes.

Underlying constraints. Each piece of equipment is automatically constrained to (a) be
within the container space, (b) not overlap with any other equipment, (c) be positioned in one
of four possible orientations, (d) satisfy the min/max distances associated to its class, and
(e) satisfy any maintenance access constraints associated to its class (e.g., needs truck access
or cannot have equipment below). In addition, some combinations of equipment have extra
constraints (e.g., heat exchangers must be symmetrically positioned w.r.t. their connecting
vessel). Finally, the model has redundant constraints to speed up solving.

User constraints. The UI allows users to add, remove and modify some of the underlying
constraints. In particular, users can (a) modify the min/max distances between equipment
classes, (b) add constraints on the relative position/distance of any two objects, (c) ad-
d/delete/modify maintenance access for any equipment, (d) ensure objects are positioned
within/at a given area/point, (e) provide upper bounds to the container space dimensions,
and (f) add group size constraints forcing selected objects to be within a given sized box.

Internal representation. The optimisation model internally treats equipment as boxes, thus
ignoring their exact form. It also treats maintenance access as boxes attached to equipment in
rigid/rotatable form, thus providing access to one or any of its sides (blue, green and yellow
boxes in Figure 1(d)). The position of each box is modelled primarily by its front-left-bottom
corner coordinates and its orientation. However, many other auxiliary decision variables are
used to make it easier to express certain constraints.
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Restoring feasibility. It is easy for user constraints to cause infeasibility. For example, the
min/max distances or the absolute/relative positioning of equipment, can conflict with the
dimensions of the container space, or make it impossible for equipment to be symmetrically
positioned. Figure 1(b) shows some of the ways our system helps users restore feasibility,
which include displaying the constraints in all MUSes from which users can select an MCS.
This MCS is then used to find restoration values for its constraints (Figure 1(c)). Users can
then modify these values in the UI and restart the process for a solution (Figure 1(d)).

4 Design Decisions

As mentioned before, our aim is to support users not only in understanding the reasons for
infeasibility, but also in recovering from it, and do so in a meaningful, useful, practical and
flexible way. As with most multi-objective optimisation problems, these objectives often
conflict. For example, in order to be useful we would like to find all possible MCS (or minimal
relaxation) subsets. However, this can be both impractical and overwhelming to users, thus
affecting meaningfulness. The following is a brief summary of our key design decisions.

To be meaningful we use MiniZinc’s capability to (a) annotate the model constraints
with meaningful names, and (b) connect the variables and constraints seen by the underlying
solver (i.e., those in the flattened instance) to those appearing in the problem model. This
allows us to present information to the users at the same level of abstraction used by the UI,
independently of the underlying technology (see, for example, the constraint names “group
size” and “maximum distance” in the infeasibility set reported by Figure 1(b)).

To be useful we combine the detection of infeasible sets with a conflict resolution
technique where slack variables are added to user constraints, transforming them into soft
constraints [27]. This allows us to tell users not only which constraint subsets are infeasible,
but also how the value of their variables can be modified to make them feasible.

To be practical we combine time-intensive methods that aim to enumerate all minim-
al/maximal infeasible/feasible sets, with fast methods that aim to report a single set, possibly
not minimal/maximal. By iteratively combining these methods we can provide feedback
about infeasibility quickly, while also generating sets that are useful to the users.

To be flexible we show users the different ways in which our methods can be executed
and allow them to decide what they want reported and how long they can wait for it.

Figure 2 Sequence diagram showing the high-level overview of the method for an application.
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5 Method Overview

Figure 2 shows our method as a sequence diagram, where colours correspond to the different
restoration methods users can select and the solid/dash outline indicates the right/left
direction of the arrow. The first 4 steps (in green) are always followed: the user describes the
problem via a UI (step 1), which sends this information to the instance generator (step 2) to
generate a MiniZinc instance (step 3) that is flattened by the MiniZinc compiler and sent to
the selected solver (step 4). If a (possibly optimal) solution is found, it is sent back to the UI
and presented to the user (steps 5 and 6). Otherwise, two paths (blue/red) can be selected.
In the blue path the solver engages our soft generator (step 7) to generate a soft instance,
where the user constraints are relaxed by means of slack variables aimed at quantifying
infeasibility (step 9). This soft instance is flattened and sent to the solver (step 10) for a
soft solution. Users who want a fast, though potentially incomplete explanation, can get
this soft solution (steps 11 and 12) and use the values of the slack variables to modify the
problem, and restart the process at step 1. If they want a more complete explanation, the
soft solution can be sent to our MUS enumerator (step 13) to speed up its enumeration. In
the red path the MUS enumerator is called directly (step 8) and the enumeration is done as
usual. In both cases, the enumeration often requires several calls to a solver (step 14). The
enumerated MUSes are sent to the UI and presented to the users (steps 15 and 16), who
can then review these MUSes (step 16), select their preferred MCS (step 17), and trigger
another recovery phase (step 18), where slack variables are only added to the selected MCS
constraints (step 19). The resulting soft instance is then flattened (step 20) and solved
(step 21). The MCS solution is presented to users in step 22, who can adopt it into the
original problem or perform further modifications, before restarting the process.

6 Soft Generator

Our soft generator has two main goals. The first one is to quickly identify either one MCS
or the constraints in the MUSes of one MCS. The former greatly reduces the number of
constraints users need to modify, but locks them into the constraints of that MCS. The latter
allows users to select their preferred MCS from the constraints in the MUSes, but can yield
too many constraints. Thus, the former is more meaningful, the latter more flexible. The
second goal is to quantify the minimum changes required to restore feasibility [5].

To achieve our goals, we modify the infeasible instance based on [27] in two ways. First,
all user constraints are relaxed by introducing slack variables, whose values provide the
required quantification for our two goals (and must be ≥ 0). Second, the original objective
function is replaced by one that always minimises the total slack value (second goal) but
can either minimise the number of slacks with a positive value (yielding one MCS), or not
(yielding constraints in the MUSes of one MCS). For Plant Layout the violation measured by
the slacks corresponds to length units, and the new objective function uses them without
any scaling (i.e., the unit of violation is constant, e.g., 1mm) and without any weights, since
we do not have a priori preferences. Instead, users can control such preferences a posteriori
(step 17) by switching constraints on and off (see Section MUSes and MCS Visualiser).

Relaxing constraints via slacks. Let c, x ∈ Rn be vectors of coefficients and variables,
respectively, and d ∈ R a constant. Linear inequality c⊤x ≤ d is relaxed in [27] as c⊤x ≤ d+sω,
where ω is the index of the constraint and, thus, of the slack variable sω. Since all slack
variables must be ≥ 0, linear equality c⊤x = d is relaxed in [27] using two inequalities:
c⊤x ≤ d + s+

ω and c⊤x ≥ d − s−
ω , which increases the number of constraints.
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Combinatorial constraints are not tackled in [27], and we are not aware of any method to
quantify their violation. We define a general method by modifying MiniZinc’s linearisation
mechanism for MIP solvers [3]. Let us show how we do this using logic constraints to illustrate
the method. Consider a logic constraint, such as a disjunction of inequalities. MiniZinc
linearises logic constraints in three steps. First, each linear component (say c⊤x ≤ d) is
turned into an indicator constraint, b = 1 → c⊤x ≤ d, where b is an auxiliary 0/1 variable
and → logical implication. Second, each indicator constraint is turned into the big-M
constraint c⊤x ≤ d + M(1 − b), where M is an upper bound for c⊤x − d. Finally, the
original logic constraint is translated into Boolean arithmetic. Our method modifies step two
to relax the indicator constraints by introducing a slack variable into the right-hand side:
b = 1 → c⊤x ≤ d + sω. This quantifies the infeasibility.

Replacing the objective function. To identify one MCS quickly, we generate the following
lexicographic two-objective function, which first minimises the total number of positive slacks
(yielding a minimum-cardinality MCS), and then the total magnitude of slack violation [6]
(ensuring the changes needed to restore feasibility via that MCS are minimal):

lex_min(f1 =
∑

ω bω; f2 =
∑

ω sω) (1)

where sω is the slack variable introduced for constraint ω, and each bω is a new 0/1 variable
defined by the indicator constraint bω = 0 → sω ≤ 0 (recall sω ≥ 0). Thanks to f1, the
solution returned minimises the number of constraints that must be violated to get a soft
solution to the original problem (those for which the slack variables are positive). This
identifies one MCS (in fact a minimum-cardinality MCS), which was our first goal. Thanks
to f2, the solution also quantifies the minimum total change required for the slack values in
the violated constraints, which was our second goal. While the resulting value for f2 might
be higher than that obtained with f2 alone, neither f1 nor f2 alone perform well: f1 can
yield too large slack values, while f2 is unlikely to yield an MCS.

To identify the constraints in the MUSes of some MCS quickly we generate the following
alternative lexicographic two-objective function [27]:

lex_min(f ′
1 = maxω sω; f2) (2)

where ω, sω, and f2 are as above. Here, f ′
1 minimises the maximum slack value and f2 the sum

of slacks, ensuring each falls below the value returned by f ′
1. Note that this does not group

constraints into MUSes, thus speeding up the computation. Again, neither f ′
1 norf2 alone

perform well: f ′
1 may leave all slacks positive (including those of non MUS-members), while

f2 can lead to arbitrary MUS-member slacks being zero. Even joining both objectives by a
linear combination can fail to produce a single MUS, thus reducing flexibility by reducing the
amount of choice. Consider for example, constraints x ≤ 1+s1, y ≤ 1+s2, Ax+By ≥ 3−s3,
and Cx + Dy ≥ 3 − s4, with user inputs A = B = C = D = 1. Minimising f ′

1 + f2 produces
s1 = s2 = 1

2 , s3 = s4 = 0, while a MUS must have one of the last two constraints. Even
objective (2) may miss some constraints of a MUS if they overlap with those of another MUS.
This is shown in Figure 3, where lines denote linear constraints 1–5 and arrows denote their
feasible directions, yielding three MUSes: {1, 2, 3}, {1, 4, 5}, and {1, 2, 5}. When minimising
objective (2), the slacks of constraints 3 and 4 become zero and are thus disregarded.

Note that when using any of the two objectives above, the original objective is not used.
This allows us to omit their associated variables and constraints (giving a satisfaction version
of the model), which can sometimes simplify the model considerably. This is also the case
when enumerating MUSes (detailed in the next section).
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Figure 3 An example of overlapping MUSes.

7 MUS Enumerator

MUS enumeration often aims at computing an MCS. Automatically doing this can however
prevent users from selecting the best MCS for their problem. To increase flexibility, our
method graphically displays the MUSes enumerated (see next section) in such a way it is easy
for users to identify different MCSes for those MUSes, and select one. We use FindMUS [18], a
MUS enumeration tool available for MiniZinc, that extends MARCO to take advantage of the
hierarchical structure present in MiniZinc models. User-provided names for the constraints
and expressions in the model are included in FindMUS’s JSON output, making it easier to
integrate with other tools and present more meaningful MUSes to users.

The downside of such flexibility is practicality: MUS enumeration tools are often imprac-
tical for real-world systems due to the number of possible foreground constraint combinations.
This number can be very large even after removing any redundant constraints added by
the system to speed up solving, and after moving to the background (a) data constraints
assumed to be correct, such as the dimensions of the equipment in Plant Layout, and (b)
underlying constraints that cannot be modified by the user, such as the non-overlap and
the group constraints. These constraints are easily marked in the model using MiniZinc
annotations, and automatically removed or put in the background by our method. This also
increases meaningfulness as it focuses users on the constraints they can change (e.g., the size
of a group), and reduces the number of MUSes pointing to the same problem (e.g., one per
object in the group not fitting in the allocated space).

To further increase the practicality of MUS enumeration tools we have explored three
alternative avenues. The first avenue uses the solution to the soft instance generated by the
soft generator to try to speed up the search for MUSes. To achieve this, the MUS enumerator
collects in set V ars all non-slack variables that occur in at least one constraint with a positive
slack value. It then partitions the original set of constraints by defining the foreground as
the set of constraints that have at least one variable in V ars, and the background as the
remaining set of constraints. Intuitively, this focuses the MUSes on the variables that are
directly involved in the infeasibility. For Plant Layout, V ars corresponds to the objects
in the plant and our system uses the annotations in the MiniZinc model to speed up the
detection of constraints that involve at least one object in V ars.

The second avenue explores the use of the Irreducible Inconsistent Subsystem (IIS)
efficiently computed by some MIP solvers – we use Gurobi [14]. To achieve this, the MUS
enumerator is modified to start each search for a MUS by asking the solver for an IIS, with
the aim of improving performance. Gurobi can report whether the IIS is minimal or not,
and we have modified FindMUS to deal with it accordingly, further shrinking non-minimal
subsets to a MUS before reporting it. The third avenue combines the two previous ones by
allowing the MUS enumerator to take advantage of both soft generation and IIS.
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Figure 4 Conflict visualisations for the Water Management problem introduced in Section 10.

8 MUSes and MCS Visualiser

As shown in Figure 2, step 16 enables users to review the MUSes found by the MUS
enumerator, and select a correction set (minimal or not, step 17) to execute steps 18–22. To
help users during this selection, we developed three problem-independent ways to visualise
MUSes, each providing different levels of detail and different perspectives on the conflicts
(Figure 1(b) for Plant Layout, and Figure 4 for Water Management, see Section 10).

The most detailed visualisation provides a list of all MUSes found by the algorithm
(2 in Figure 1(b) and 5 in Figure 4(a)). Users can select a MUS in the list to see details
of its conflicting constraints including description, error type, associated elements and (if
the constraint was relaxed) the value of its variables. The user can select one (or more)
constraints from the MUSes in the list to form a (possibly not minimal) correction set. The
selected constraints are used for step 17 in the workflow shown in Figure 2.

The list visualisation is only meaningful when the number of MUSes and/or constraints
in each MUS is small. To increase meaningfulness for large lists, we created a graph
representation (Figure 4(b)) that connects the constraints (coloured dots on the left-hand
side) with their MUSes (green dots in the middle) and their elements (green dots on the
right-hand side). The colour of each constraint dot identifies its type, as described by the
legend appearing in the top-right of the figure. Constraints that occur in the same MUSes
are grouped in a rectangle and linked to those MUSes, significantly reducing the number of
connections and visual clutter.

Users can interact with the graph in two ways. First, if they select a constraint on the
graph, the system highlights with a red frame the constraint and all MUSes linked to it (e.g.,
MUS 2 in Figure 1(b) and MUS 4 and 5 in Figure 4(b)), indicating that all those MUSes will
be resolved if the highlighted constraint, or any constraint in that rectangle, is relaxed. The
system also highlights with a green frame any rectangle linked to the highlighted MUSes,
indicating that selecting constraints in those rectangles is no longer required to resolve the
MUSes. This helps users find a suitable MCS (achieved when all MUSes are highlighted),
which will be used to relax its constraints and find a solution (steps 18–22 in Figure 2). The
second way of interacting with the graph is by deselecting one or more types of constraints in
the legend, indicating the user would prefer not to modify them (e.g., constraint “minimum
distance” in Figure 1(b) and “TRANSFER_MAX” in Figure 4(b) are greyed out). This
causes the system to remove those constraints from the left-hand side. Note that if the user
deselects too many constraint types, the remaining constraints might not resolve all existing
MUSes. If so, those MUSes are highlighted as a warning to the user.
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The third visualisation is a network (Figure 4(c)) that helps users better understand the
conflicts by focusing on the conflicting elements and their relationships. Nodes in the network
represent constraint elements, while black edges represent relationships among them. The
network can be laid out using force-directed layout or fixed locations. Constraint conflicts
are visualised on top of this network using the same colour codes as those in the MUS graph
visualisation, and drawn either as frames around a node (if the conflict only involves that
node) or as coloured edges (if it involves multiple ones).

9 Experimental Evaluation for Plant Layout

This section aims at evaluating the trade-offs between practicality and flexibility for the
conflict resolution alternatives offered by our method in the context of a real-world application,
as well as their meaningfulness and usefulness.

Benchmarks. We used the Plant Layout’s UI to create four classes of benchmarks: small (S),
medium (M), large (L) and extra-large (XL). Small benchmarks have between 2 and 5 boxes
and (except for S2) no pipes, medium have 19 boxes and 20 pipes, large have 78 boxes and 66
pipes, and extra-large have 217 boxes and 207 pipes. We then created variations of these four
classes by adding constraints that made them infeasible. Those constraints were carefully
selected to create a representative single conflict of a specific type. In small benchmarks
we evaluated six types of base conflicts using “toy-plants” as a proof of concept to check
that these conflicts could be effectively detected using our approach. For the three larger
classes, we applied four of these base conflicts: 1) a conflict involving minimum-maximum
distance, 2) a conflict involving symmetric placement of equipment, 3) a conflict involving
the relative attachment position of a box, and 4) a conflict involving insufficient group
size for contained boxes. We also created benchmarks with a combination of conflicts. To
reduce the experiment size, we selected four additional conflict combinations of the given
base conflicts: 5) symmetry + minimum-maximum distance, 6) symmetry + attachment
position, 7) symmetry + group size, and 8) all four base conflicts combined. This resulted
in 8 benchmarks for each size class, e.g., M1 for medium size with a minimum-maximum
distance conflict, M5 for a medium size with a combined symmetry + minimum-maximum
distance conflict, and M8 for a medium size with all four base conflicts combined. This in
turn resulted in 30 infeasible benchmarks, whose characteristics are shown in Table 1.

The first two columns show the benchmark size and name. The next fourshow the total
number of constraints in the instances generated in step 4 when the benchmark is initially
solved (empty if MiniZinc detects infeasibility and aborts), in step 10 when it is relaxed
by the soft generator searching for the set of constraints either in an MCS (equation (1) –
denoted SGC) or in its MUSes (equation (2) – denoted SGU), respectively, and in step 8
when calling FindMUS directly (denoted FM). The last four columns show the number of
conflicts in the benchmark (equal to the number of constraints in a minimum MCS), the
number of objects (boxes or pipes) involved in these conflicts, and the type of constraints in
conflict (MnD indicates a minimum distance, MxD a maximum distance, Sym a symmetry
constraint, AttPos the position of an attached box, GrSz a group size, and CtSp the size of
the container space). Note that the last benchmark in the medium, large and extra-large
size (M8, L8 and XL8) contains all the conflicts from the first 4 benchmarks in that size.

Setup. All benchmarks were run in 8 different configurations: the three already introduced
(SGC, SGU and FM) and the combinations FM+IIS, SGC+FM, SGC+FM+IIS, SGU+FM
and SGU+FM+IIS (IIS denotes Gurobi’s IIS). In addition, all configurations involving
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Table 1 Characteristics of the 30 infeasible benchmarks created for Plant Layout.

#Constraints in #Conflicts #Objects in Type of constraints in conflicts
associated instances the conflicts

Bnchm. Initial SGU SGC FM #boxes #pipes

Sm
al

l

S1 42 113 174 115 1 2 0 MnD, MxD
S2 141 295 434 306 1 3 2 MnD, MxD, Sym
S3 99 264 421 250 1 4 0 MnD, MxD, AttPos
S4 60 150 223 155 1 3 0 MnD, GrSz
S5 40 107 180 101 1 2 0 MxD
S6 116 364 575 362 1 5 0 MnD, CtSp

M
ed

iu
m

M1 1,516 4,105 6,506 4,241 1 2 0 MnD, MxD
M2 1,524 4,145 6,570 4,277 1 3 2 MnD, MxD, Sym
M3 1,516 4,105 6,506 4,241 1 4 0 MnD, MxD, AttPos
M4 1,512 4,083 6,472 4,221 1 3 0 MnD, GrSz
M5 1,528 4,167 6,604 4,297 2 5 2 MnD, MxD, Sym
M6 1,528 4,167 6,604 4,297 2 7 2 MnD, MxD, Sym, AttPos
M7 1,524 4,145 6,570 4,277 2 6 2 MnD, MxD, Sym, GrSz
M8 1,532 4,189 6,638 4,317 4 12 2 MnD, MxD, Sym, AttPos, GrSz

L
ar

ge

L1 10,653 36,669 60,754 35,687 1 2 0 MnD, MxD
L2 10,657 36,683 60,780 35,699 1 3 6 MnD, MxD, Sym
L3 10,653 36,669 60,754 35,687 1 3 0 MnD, MxD, AttPos
L4 10,653 36,665 60,750 35,683 1 3 0 MnD, GrSz
L5 10,661 36,705 60,814 35,719 2 5 6 MnD, MxD, Sym
L6 10,661 36,705 60,814 35,719 2 6 6 MnD, MxD, Sym, AttPos
L7 10,657 36,683 60,780 35,699 2 6 6 MnD, MxD, Sym, GrSz
L8 10,665 36,727 60,848 35,739 4 11 6 MnD, MxD, Sym, AttPos, GrSz

X
L

ar
ge

XL1 95,285 336,243 554,302 332,384 1 2 0 MnD, MxD
XL2 - 334,157 552,240 329,181 3 5 6 MnD, MxD, Sym
XL3 95,285 336,243 554,302 332,384 1 2 0 MnD, MxD, AttPos
XL4 93,854 329,875 543,878 326,030 1 4 0 MnD, GrSz
XL5 - 336,387 554,482 332,513 4 7 6 MnD, MxD, Sym
XL6 - 336,387 554,482 332,513 4 7 6 MnD, MxD, Sym, AttPos
XL7 - 330,019 544,058 326,159 4 9 6 MnD, MxD, Sym, GrSz
XL8 - 330,063 544,126 326,199 6 13 6 MnD, MxD, Sym, AttPos, GrSz

FM were run in two modes: finding one MUS and finding all. This is because FindMUS
supports a fast single MUS extraction mode that might also be useful for users. All runs
were performed on an Intel Core i7-8700K (3.70 GHz, 12 cores, 12MB cache) with 32GB
memory using MiniZinc 2.5.5, FindMUS, and Gurobi 9.0.1. Each instance was run on 2 cores
with 2 instances being run in parallel at a time. Time limits for the soft generator (step 13)
and for FindMUS (step 14) were both set at 1/2 hour for small sizes, and 2 hours and 4
hours, respectively, for the other sizes. If reached, SGC and SGU might return unnecessary
constraints, while FM might return non-minimal or not all unsatisfiable subsets.

Results. Tables 2 and 3 show the results. Values are underlined if a timeout was reached.
Table 2 shows the number and total value of positive slack variables, and number of MUSes.
The first two columns show the benchmark size and name. The next four show the number
(#sl) and total value (slack) of positive slack variables returned by SGC and SGU. The last
six show the number of MUSes (#ms) returned by FM, FM+IIS, SGC+FM, SGC+FM+IIS,
SGU+FM, and SGU+FM+IIS, with FM enumerating all MUSes. Table 3 shows the run-
times. The first two columns show the benchmark size and name, and the others show the
times (minutes:seconds) taken by the 8 configurations in two modes: FM computing one
MUS (greyed) and all MUSes.

Discussion. There is no clear winner between SGC and SGU in terms of speed. Both
only time out for the XL benchmarks (except for XL5) with symmetry conflicts (whose
absolute value constraint slows down solving). When there is no timeout, SGC always returns
a minimum MCS, while SGU returns more constraints (those in the associated MUSes),
where partition into MUSes is unknown. If SGU returns many constraints (e.g., XL8), they
can become overwhelming and thus not meaningful. If it does not, they can also be more
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Table 2 Number and total value of positive slack variables, and number of MUSes.

SGU SGC FM FM+IIS SGU+FM SGU+FM+IIS SGC+FM SGC+FM+IIS
Bnchm. # sl slack # sl slack # ms # ms # ms # ms # ms # ms

Sm
al

l

S1 2 2,000 1 2,000 1 1 1 1 1 1
S2 4 2,321 1 2,506 5 5 5 5 2 2
S3 4 500 1 500 1 1 1 1 1 1
S4 2 500 1 500 1 1 1 1 1 1
S5 2 1,000 1 1,000 1 1 1 1 1 1
S6 4 3,000 1 3,000 1 1 1 1 1 1

M
ed

iu
m

M1 2 2,000 1 2,000 1 1 1 1 1 1
M2 4 2,321 1 2,506 5 5 5 5 2 2
M3 4 500 1 500 1 1 1 1 1 1
M4 2 500 1 500 1 1 1 1 1 1
M5 5 4,000 2 4,506 6 6 6 6 3 3
M6 5 2,821 2 3,006 6 6 6 6 3 3
M7 5 2,821 2 3,006 6 6 6 6 3 3
M8 7 5,000 4 5,506 8 8 8 8 5 5

L
ar

ge

L1 2 50 1 50 4 4 4 4 4 4
L2 9 2,182 1 1,000 24 0 24 0 0 2
L3 3 750 1 500 2 2 2 2 2 2
L4 2 450 1 450 1 1 1 1 1 1
L5 9 2,232 2 1,050 4 4 4 4 9 8
L6 11 2,848 2 1,500 1 1 1 1 1 1
L7 10 2,632 2 1,450 0 0 25 0 0 0
L8 14 3,348 4 2,000 2 2 2 2 2 2

X
L

ar
ge

XL1 2 1,500 1 1,500 1 1 1 1 1 1
XL2 11 40,097 4 22,850 4 4 4 4 4 4
XL3 3 1,950 1 1,500 2 2 2 2 1 1
XL4 3 1,550 1 1,300 3 5 0 3 1 1
XL5 12 41,516 5 24,350 5 5 5 5 5 5
XL6 15 52,661 5 25,056 3 7 5 5 5 5
XL7 12 41,316 5 55,213 4 8 5 5 7 7
XL8 15 44,316 7 33,871 6 5 6 7 7 7

Table 3 Run-time results for Plant Layout. Times are given in minutes:seconds.

SGU SGC FM FM + IIS SGU+FM SGU+FM+IIS SGC+FM SGC+FM+IIS
Bnchm. 1 ms all ms 1 ms all ms 1 ms all ms 1 ms all ms 1 ms all ms 1 ms all ms

Sm
al

l

S1 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01
S2 <0:01 <0:01 <0:01 <0:01 <0:01 0:12 <0:01 <0:01 0:02 0:12 <0:01 <0:01 0:02 0:04
S3 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 0:02 <0:01 <0:01 <0:01 <0:01
S4 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01
S5 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01 <0:01
S6 <0:01 <0:01 <0:01 <0:01 0:07 0:07 <0:01 <0:01 0:07 0:08 <0:01 <0:01 0:07 0:07

M
ed

iu
m

M1 <0:01 <0:01 0:03 0:05 0:06 0:08 0:04 0:05 0:08 0:09 0:04 0:05 0:07 0:08
M2 <0:01 0:03 0:03 0:16 0:21 1:18 0:05 0:20 0:22 1:26 0:06 0:10 0:24 0:47
M3 <0:01 0:02 0:05 0:11 0:19 0:26 0:06 0:10 0:25 0:29 0:07 0:10 0:30 0:33
M4 <0:01 0:02 0:02 0:03 0:11 0:12 0:03 0:05 0:15 0:16 0:04 0:05 0:15 0:17
M5 <0:01 0:11 0:04 1:43 0:14 2:58 0:05 1:41 0:17 2:52 0:14 1:34 0:26 2:09
M6 <0:01 14:39 0:04 1:34 0:18 3:01 0:06 1:25 0:24 2:47 14:40 15:05 15:04 16:39
M7 <0:01 0:03 0:03 0:34 0:09 1:32 0:04 0:40 0:11 1:43 0:06 0:27 0:13 1:07
M8 <0:01 0:13 0:04 188:11 0:22 194:46 0:05 149:17 0:24 149:36 0:15 127:01 0:36 128:07

L
ar

ge

L1 0:33 0:31 1:02 5:37 1:17 5:49 5:59 29:10 3:14 18:37 5:19 28:22 3:03 18:29
L2 1:27 70:00 40:00 242:28 5:36 283:42 15:40 241:44 66:14 247:35 79:24 312:51 138:15 327:31
L3 0:30 1:36 0:41 6:40 0:59 7:29 7:14 17:10 3:03 14:00 2:51 11:33 3:22 12:46
L4 0:28 0:34 0:48 2:15 1:48 3:12 4:03 6:00 3:34 5:37 2:38 3:26 2:30 3:29
L5 6:59 3:30 1:00 240:06 1:39 277:59 8:36 275:57 9:15 246:59 121:31 244:26 6:07 280:16
L6 3:30 5:54 0:38 294:54 1:01 254:35 4:33 250:05 4:47 284:20 6:38 261:16 7:10 345:39
L7 2:16 9:09 1:10 254:31 2:37 245:25 14:45 243:57 4:31 298:03 84:48 262:09 11:28 279:48
L8 4:34 1:36 0:41 252:43 1:04 289:09 5:23 253:20 5:47 275:15 2:30 251:14 2:53 305:01

X
L

ar
ge

XL1 02:51 11:54 49:26 153:16 19:52 118:35 100:25 127:54 52:48 78:51 84:36 97:36 51:49 63:47
XL2 121:25 139:03 02:12 240:27 04:36 250:00 130:20 361:41 127:08 362:49 142:09 164:39 143:03 157:57
XL3 106:23 19:22 19:47 251:49 31:51 251:38 195:51 303:19 161:01 278:49 36:20 42:20 89:29 101:34
XL4 08:15 13:38 23:41 240:33 12:48 241:44 83:19 248:53 35:15 250:03 19:15 21:20 28:28 29:34
XL5 83:46 135:58 38:50 240:57 04:35 244:25 87:00 324:24 89:42 333:00 138:54 378:22 139:06 363:55
XL6 123:23 144:03 02:10 240:18 04:18 241:00 135:45 362:48 126:39 364:03 162:16 384:46 148:24 389:58
XL7 121:43 243:06 02:22 240:10 04:23 241:16 132:23 362:02 129:04 377:29 246:26 414:04 253:35 420:07
XL8 122:01 254:37 18:46 240:31 05:09 240:07 127:28 364:21 127:14 361:48 258:48 495:23 258:23 494:42
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meaningful (may give more context to the failure) and flexible (give more choice). However,
if the MCS returned by SGC is meaningful enough, SGC is more useful, as it always provides
the minimum number of constraints that must be changed. This already shows the value of
having different approaches available.

As expected, enumerating all MUSes using FM is significantly slower than using SGU or
SGC. However, if FM does not time out, it is more flexible than SGC (gives a single MCS)
and SGU (might miss constraints), and more meaningful, as it provides the full context while
partitioning constraints into MUSes (as opposed to SGU). Also, using FM to find a single
MUS is usually fast. Users could repeatedly do this to restore instances with several MUSes.

The combination of FM with SGU is not as promising as expected: the possible reduction
in flexibility due to only looking at the variables in the constraints returned by SGU only
pays off with speed-ups for M3, M8 and XL1. The rest are actually slower. The combination
with SGC is better in terms of speed-ups (M2, M3, M8, XL1 to XL4), but might lose MUSes
(M2 and M8). SGU and SGC improve FM’s usefulness by providing users with slack values.

These results, and our own experience as users, suggest the following strategies for Plant
Layout. Less experienced users, those modifying an unfamiliar model, and those with enough
time would benefit from using FM on its own and in combination with SGC to get results
that are useful (via SGC’s slacks), flexible (FM’s MUSes) and meaningful (FM+SGC’s MUS
reduction). Experienced users are likely to find SGU’s results useful, fast and (together with
their knowledge and experience) meaningful enough to restore feasibility, compared to being
flexible with longer run-times and possible timeouts for very large instances.

10 Second Real-World Example: Water Management

Managing a city’s water supply requires a complex set of decisions regarding the city’s
storage/service reservoirs, tunnels and water-transfer pipelines. The work of [15] describes
an optimisation system designed to do this by creating a plan that outlines the anticipated
operations in the water supply system for years ahead, and identifies for each month the
expected water to be sourced, stored, moved from one reservoir to another, or released to
the rivers. The resulting operating plan is built to (a) satisfy water demand, environmental
and network capacity constraints, (b) minimise the risk of uncontrolled releases from the
water harvesting sites, and (c) minimise the cost of transferring water between reservoirs.

Data. The UI provides a predefined water supply network and historical stream-flows,
where the user can set (a) the reservoir capacities, (b) planning horizon length and, for each
month, (c) the water demands (d) min/max water levels per reservoir and (e) min/max
water flow per pipeline. In addition, for the selected planning horizon, users must specify the
water levels of each reservoir at the beginning of the period and the anticipated stream-flow
derived from past data. This allows users to generate operating plans for different rain inflow
scenarios, storage distributions (both spatial and seasonal) and planning horizons.

Underlying constraints. Each reservoir is constrained to maintain its water level within
the specified range for each month, and to release water to waterways to meet any specified
environmental requirements. Each pipeline (i.e., the water transfer link between reservoirs,
from a reservoir to the city, or from a reservoir to the river) cannot transfer more water than
its maximum capacity. No redundant constraints were added to the model.

CP 2021
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Table 4 Characteristics of the 14 infeasible benchmarks created for Water Management.

#Constraints in #Conflicts Type of constraints in conflicts
associated instances

Bnchm. Initial SGU SGC FM

Sh
or

t

S1 12,532 14,994 16,139 16,096 1 MnV, MxV
S2 12,531 14,993 16,138 16,095 1 MnT, MxT
S3 12,531 14,993 16,138 16,095 1 MnR, MxR
S4 12,532 14,994 16,138 16,096 2 MnV, MxV, MnT, MxT
S5 12,532 14,994 16,138 16,096 2 MnV, MxV, MnR, MxR
S6 12,531 14,993 16,137 16,095 2 MnT, MxT, MnR, MxR
S7 12,532 14,994 16,137 16,096 3 All three conflicts

L
on

g

L1 62,506 74,604 80,209 80,166 1 MnV, MxV
L2 62,505 74,603 80,208 80,165 1 MnT, MxT
L3 62,505 74,603 80,208 80,165 1 MnR, MxR
L4 62,506 74,604 80,208 80,166 2 MnV, MxV, MnT, MxT
L5 62,506 74,604 80,208 80,166 2 MnV, MxV, MnR, MxR
L6 62,505 74,603 80,207 80,165 2 MnT, MxT, MnR, MxR
L7 62,506 74,604 80,207 80,166 3 All three conflicts

User constraints. When generating an operating plan, users can modify the network
capacity constraints (a, d and e mentioned under “Data” above) to consider events such as
the closure of a pipeline or a reduction in the water level at a reservoir during a given period
due to maintenance.

Restoring feasibility. The number of network capacity-related parameters exposed to users is
high and increases with the planning horizon length. Thus, users can easily cause infeasibility
by setting conflicting values. For example, setting a low maximum water level at a reservoir
can result in excess water that needs to be transferred out, which then conflicts with the
limit set on a pipeline.

10.1 Experimental Evaluation for Water Management
Benchmarks. We built two classes of benchmarks: with short-term operating plans (12-
month) and with long-term ones (60-month). All are built on the same distribution network,
which has 11 reservoirs, 9 transfer nodes and 46 connections. We then created seven
benchmarks for each class by modifying the operational parameters that made them infeasible.
Three of the benchmarks have a single base conflict: 1) a conflict involving minimum-maximum
reservoir volume, 2) a conflict involving minimum-maximum pipeline limits, and 3) a conflict
involving minimum-maximum release limits. The remaining four benchmarks are created
from combinations of these base conflicts.

Table 4 shows the characteristics of the resulting 14 infeasible benchmarks. Columns 1–7
follow those of Table 1. The last column shows the type of constraints in conflict, where MnV
indicates a constraint on the minimum water volume to be maintained in a reservoir, MxV a
constraint on the maximum reservoir volume, MnT a minimum transfer volume constraint,
MxT a maximum transfer volume constraint, MnR a constraint on the minimum volume
released to the rivers, and MxR a constraint on the maximum release volume.

Setup and Results. We used the same setup as for Plant Layout. The results, shown in
Tables 5 and 6, follow the same structure as that of Tables 2 and 3.

Discussion. There is no timeout in any of the instances and configurations tried. Interest-
ingly, short-term instances have more slacks/MUSes than long-term ones. This is because
the chosen conflicts have more impact in the short-term benchmarks and can be resolved in
many more ways than in the long-term ones.
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Table 5 Number and total value of positive slack variables, and number of MUSes.

SGU SGC FM FM+IIS SGU+FM SGU+FM+IIS SGC+FM SGC+FM+IIS
Bnchm. # sl slack # sl slack # ms # ms # ms # ms # ms # ms

Sh
or

t

S1 3 18,976 1 19,236 7 7 7 7 7 7
S2 2 3,317 1 5,267 4 4 3 3 3 3
S3 1 240 1 240 1 1 1 1 1 1
S4 5 22,293 2 24,503 19 19 16 16 16 16
S5 3 19,216 2 19,476 8 8 8 8 8 8
S6 3 3,557 2 5,507 5 5 4 4 4 4
S7 5 22,533 3 24,743 20 20 17 17 17 17

L
on

g

L1 1 800 1 800 1 1 1 1 1 1
L2 1 620 1 620 1 1 1 1 1 1
L3 1 310 1 310 1 1 1 1 1 1
L4 2 1,420 2 1,420 2 2 2 2 2 2
L5 2 1,110 2 1,110 2 2 2 2 2 2
L6 2 930 2 930 2 2 2 2 2 2
L7 3 1,730 3 1,730 3 3 3 3 3 3

Table 6 Run-time results for Water Management. Times are given in minutes:seconds.

SGU SGC FM FM + IIS SGU+FM SGU+FM+IIS SGC+FM SGC+FM+IIS
Bnchm. 1 ms all ms 1 ms all ms 1 ms all ms 1 ms all ms 1 ms all ms 1 ms all ms

Sh
or

t

S1 <0:01 <0:01 0:06 0:22 0:03 0:09 0:05 0:27 0:04 0:13 0:05 0:16 0:04 0:09
S2 <0:01 <0:01 0:13 0:38 0:03 0:19 0:07 0:28 0:04 0:15 0:07 0:17 0:04 0:09
S3 <0:01 <0:01 0:07 0:08 0:03 0:05 0:06 0:08 0:04 0:06 0:06 0:08 0:04 0:06
S4 <0:01 <0:01 0:14 1:42 0:05 0:42 0:06 1:10 0:04 0:33 0:08 0:56 0:04 0:23
S5 <0:01 <0:01 0:06 0:29 0:04 0:12 0:06 0:26 0:05 0:13 0:06 0:27 0:04 0:13
S6 <0:01 <0:01 0:13 0:51 0:03 0:26 0:14 0:35 0:04 0:20 0:08 0:23 0:04 0:12
S7 <0:01 <0:01 0:06 2:05 0:04 1:00 0:06 1:25 0:06 0:45 0:06 1:05 0:04 0:31

L
on

g

L1 0:06 0:05 0:33 0:41 0:17 0:27 0:32 0:42 0:23 0:28 0:32 0:36 0:22 0:26
L2 0:06 0:05 0:35 0:43 0:17 0:27 0:38 0:50 0:24 0:34 0:35 0:51 0:22 0:32
L3 0:07 0:05 0:30 0:41 0:17 0:26 0:43 0:48 0:25 0:35 0:39 0:44 0:22 0:32
L4 0:06 0:05 0:34 1:12 0:18 0:41 0:38 1:15 0:24 0:47 0:35 1:11 0:23 0:46
L5 0:06 0:05 0:34 1:16 0:18 0:40 0:35 1:09 0:24 0:46 0:43 1:13 0:23 0:45
L6 0:06 0:05 0:30 1:05 0:17 0:39 0:42 1:19 0:24 0:47 0:38 1:15 0:23 0:46
L7 0:06 0:05 0:32 1:45 0:17 0:59 0:38 1:48 0:24 1:07 0:41 1:40 0:23 1:06

SGC is slightly faster than SGU, but this is only noticeable in the long-term benchmarks.
SGC always returns a minimum MCS, while SGU returns more constraints in short-term
instances but an MCS in long-term ones because the total amount of violations required
by an MCS happens to be the minimum. In all cases, SGC produces the same number of
constraints as the number of conflicts introduced. Both FM and FM+IIS, enumerate all
MUSes, but FM+IIS is faster. Out of the four combined approaches (SGU+IIS, SGU+FM,
SGU+FM+IIS, SGC+FM+IIS), SGC+FM+IIS is always fastest, and is even faster than
FM+IIS for many short-term benchmarks. All four combinations produce the same number
of MUSes for the same benchmark. While they often take longer to enumerate all MUSes
than FM and FM+IIS, they produce fewer MUSes in some benchmarks (S2, S4, S6, S7).

Like for Plant Layout, using FM/FM+IIS to enumerate all MUSes is slower than using
SGU and SGC. However, it is more flexible and provides the full context; especially with the
visualiser, where users can easily see the connections between the conflicting constraints.

Based on the above results and our experience as users, we recommend using FM+IIS or
SGC+FM+IIS for this problem, which we have already used to find conflicts for our industry
partner very quickly. This might be surprising, as SGC is faster and always points to the
correct reservoirs and/or connections. However, all configurations are fast and there are
often multiple ways to resolve conflicts in this problem, one of which could be the desired
way to fix them, and this could only be found by enumerating all the MUSes.
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11 Conclusion

This paper addresses the need for decision systems to provide meaningful, useful, practical
and flexible conflict resolution techniques to be actually deployed by its target users.

To be meaningful an interface must present application concepts rather than software
constructs. While requiring a problem-specific interface, the ability to interact with a solution,
change it and get feedback about the infeasibility of the change, is problem-independent.
We propose a generic explanation tool that shows which user constraints conflict with each
other, describes the conflicts (Figures 1 and 4), and avoids overwhelming users by supporting
diagnosis at different levels of detail through the annotation of the underlying constraints,
and by letting users determine the amount of information shown (MCS/MUSes).

To be useful the system must also show users how to resolve conflicts. We propose a
combination of conflict resolution methods that not only identify the key conflicting decisions,
but also reveal the amount of change needed to resolve them. We do this by both reducing
the set of infeasible constraints to a minimal set, and finding the smallest total relaxation of
the constraints that can restore feasibility.

Theoretical approaches to detecting feasibility do not scale to real-world applications,
as finding all minimal unsatisfiable sets (MUSes) is often computationally impractical for
them. A key contribution of this paper to practicality and flexibility is the ability for users to
control infeasibility detection, as shown in Figure 2, so that useful explanations are returned
in the right amount of time (from a few seconds to overnight, depending on the need).

Usability is a slippery and often underestimated concept. The novel features we propose
result from a collaborative process with industry users, who were initially sceptical and/or
confused about the software, and now want to see the solutions it produces, understand
the best trade-offs between the different objectives and learn why some seemingly obvious
decisions turn out to be far from optimal.

This work identifies a few future research directions, and gives some initial indication of
what can be achieved. For instance, we developed a method to soften logical constraints.
This can be extended to other constraint types, e.g., CP global constraints. The presented
conflict visualisations are helpful but require user evaluation to prove their usefulness.
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Abstract
Decision trees are a popular classification model in machine learning due to their interpretability and
performance. Traditionally, decision-tree classifiers are constructed using greedy heuristic algorithms,
however these algorithms do not provide guarantees on the quality of the resultant trees. Instead, a
recent line of work has studied the use of exact optimization approaches for constructing optimal
decision trees. Most of the recent approaches that employ exact optimization are designed for
datasets with binary features. While numeric and categorical features can be transformed to binary
features, this transformation can introduce a large number of binary features and may not be
efficient in practice. In this work, we present a novel SAT-based encoding for decision trees that
supports non-binary features and demonstrate how it can be used to solve two well-studied variants
of the optimal decision tree problem. We perform an extensive empirical analysis that shows our
approach obtains superior performance and is often an order of magnitude faster than the current
state-of-the-art exact techniques on non-binary datasets.
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1 Introduction

Classification models assign class labels to data observations. Learning classification models
from a set of training examples is a key task in supervised machine learning. Decision
trees are among the most popular classification models in machine learning as they provide
interpretable models and tend to have good performance.

Traditionally, decision-tree classifiers are constructed using greedy heuristic algorithms,
such as CART [9], ID3 [21], and C4.5 [22]. However, these algorithms do not provide
guarantees on the quality of the resultant trees, which can therefore be unnecessarily large
or potentially inaccurate [4]. Alternatively, learning a globally optimal decision-tree classifier
was shown to be NP-complete for several optimization criteria [17, 14]. Still, in recent years a
variety of exact techniques have been proposed to solve the problem of optimal decision-tree
classifiers. One class of techniques focuses on optimizing decision tree size (either the depth
of the tree or the number of nodes in the tree) such that all training examples are correctly
classified [3, 7, 18]. Another class of techniques, instead, focuses on maximizing the number
of correctly classified training examples, while constraining the maximal depth of the decision
tree [24, 23, 2, 15, 6]. Recent works found that optimal decision-tree classifiers tend to have
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higher out-of-sample accuracy than heuristic approaches [16, 3, 13, 6]. Furthermore, many
of the recent approaches for optimal decision trees can be extended to support additional
constraints that the resulting trees must satisfy, such as fairness constraints [1].

Many of the recent state-of-the-art approaches are designed for datasets with binary
features [3, 24, 18, 15, 23], and some are further limited to binary class labels (i.e., classification
with only two classes) [18, 15]. However, in practice, most real-world datasets contain
categorical and numeric features. In order to perform classification in datasets with categorical
and numeric features, these approaches convert any non-binary feature into a set of binary
features using standard techniques (see discussions in [3, 24]). This conversion often introduces
a large number of binary features and may lead to poor performance.

In this work, we present and empirically evaluate a novel approach for learning optimal
decision-tree classifiers that can directly handle non-binary features without converting them
into binary features. Specifically, we make the following contributions:
1. We present a novel SAT encoding of decision trees that directly supports numeric features

and use this encoding to solve two well-known optimization problems in classification
tasks: (1) finding a minimum-depth decision tree that correctly classifies all training
examples; and (2) finding a decision tree of a given depth that maximizes the number of
correctly classified training examples.

2. We present an extension of our SAT encoding that directly supports categorical features
based on power set branching and show, theoretically and empirically, that the new
encoding is more expressive and can lead to decision trees with better solution quality
w.r.t. the two studied optimization problems.

3. We perform extensive experimental analysis and show that our encoding significantly
outperforms recent state-of-the-art techniques on datasets with non-binary features for
each of the studied optimization problems.

2 Technical Background

2.1 Problem Definition
In Section 2.1.1 we formally define the decision trees considered in this work and in Sec-
tion 2.1.2 we define the two optimization problems we consider for learning optimal decision
trees.

2.1.1 Decision Trees
We start by defining the tree structure of a decision tree. Then, we define the depth of the
tree based on the deepest leaf node and the special case of complete tree.

▶ Definition 1 (Tree Structure). A tree structure T is a tuple (TB , TL, δ, p, l, r) where TB

and TL are finite sets respectively representing the branching and leaf nodes, δ ∈ TB is the
root node, p : (TB ∪ TL − {δ}) → TB is the parent function, and l, r : TB → (TB ∪ TL) are
respectively the left and right child functions. A well-formed tree structure is one with the
property ∀x, y : p(y) = x ↔ (l(x) = y ∨ r(x) = y).1

▶ Definition 2 (Tree Depth). Given a tree structure T = (TB , TL, δ, p, l, r), we recursively
define the depth of each node t ∈ TB ∪ TL as depth(t) = depth(p(t)) + 1 with depth(δ) = 0.
The depth of the tree structure is defined to be the maximum depth among its leaf nodes,
depth(T ) = maxt∈TL

depth(t).

1 Note that well-formedness guarantees the absence of loops in parental relations.
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▶ Definition 3 (Complete Tree). A tree structure T = (TB , TL, δ, p, l, r) is considered complete
if all the leaf nodes have the same depth, i.e., ∀t1, t2 ∈ TL : depth(t1) = depth(t2).

Next, we formally define decision trees and describe how to perform prediction using such
decision trees.

▶ Definition 4 (Decision Tree). Given a set of features F and integer labels C, a decision
tree is a tuple D = (T , β, α, θ) where T = (TB , TL, δ, p, l, r) is a tree structure, β : TB → F

is the feature selection function, α : TB → dom(F ) is the threshold selection function, and
θ : TL → C is the leaf labelling function. A well-formed decision tree satisfies ∀t ∈ TB :
α(t) ∈ dom(β(t)). Note that dom(j) represents the set of possible values for feature j ∈ F

and dom(F ) =
⋃

j∈F dom(j).

An evaluation of a set of features F is called a data point x. For each j ∈ F , x[j] ∈ dom(j)
represents the value of feature j at point x. A dataset usually referred to as X, contains a
finite set of data points xi ∈ X for training or testing purposes.

A decision tree D = (T , β, α, θ) predicts the label of a given point xi by starting from
the root and recursively delivering the point to the left or right child until a leaf node is
reached. The label of the leaf node is the output. The recursive predict function Θ(t, xi) on
node t ∈ TB ∪ TL and point xi ∈ X is defined as follows:

Θ(t, xi) =


θ(t) if t ∈ TL

Θ(l(t), xi) elseif xi[β(t)] ≤ α(t)
Θ(r(t), xi) else

The prediction of decision tree D for data point x′ ∈ X can be obtained by Θ(δ, x′) where δ

is the root node of the decision tree. We use the simplified notation Θ(x′) to denote Θ(δ, x′).
Given a labelled dataset, i.e., a dataset in which the correct class label for each data

point is provided, we can measure the accuracy of a decision tree on the dataset with respect
to the provided labels.

▶ Definition 5 (Decision Tree Accuracy). Given a set of features F and integer labels C, a
set of training examples xi ∈ X, and a labelling γ : X → C, the accuracy of decision tree
D = (T , β, α, θ) on X is the fraction of data points in X that are correctly classified with
respect to the labelling γ,∑

xi∈X 1[Θ(xi) = γ(xi)]
|X|

,

where 1 is the indicator function.

2.1.2 Learning Optimal Decision Trees
We consider two problems representing two different optimization criteria for optimal decision
tree. Problem 1 consists of finding a decision tree with minimum depth such that all the
training examples are correctly classified. This problem is consistent with Avellaneda [3].

▶ Problem 1 (Min-Depth Optimal Decision Tree). Given set of features F and integer labels
C, a set of training examples xi ∈ X, and a labelling γ : X → C, output a decision tree
D = (T , β, α, θ) such that T is a minimum depth complete tree and D correctly classifies all
training examples, i.e., Θ(xi) = γ(xi) ∀xi ∈ X.
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Problem 2 consists of finding a decision tree that maximizes the number of training
examples that are correctly classified subject to a constraint on the tree depth. This problem
is consistent with the problems considered in a variety of recent works, e.g., in [15, 23, 2].

▶ Problem 2 (Max-Accuracy Optimal Decision Tree). Given a set of features F and integer
labels C, a set of training examples xi ∈ X, a labelling γ : X → C, and a chosen depth d,
output a decision tree D = (T , β, α, θ) such that T is a complete tree of the chosen depth,
depth(T ) = d, and D maximizes the number of training examples that are correctly classified,
i.e.,

∑
xi∈X 1[Θ(xi) = γ(xi)] where 1 is the indicator function.2

2.2 SAT and MaxSAT
SAT formulae are represented in Conjunctive Normal Form (CNF) and are defined over a set
of Boolean variables. A SAT formula is a conjunction of clauses, each clause is a disjunction
of literals, and each literal is either a Boolean variable or its negation. An assignment of the
Boolean variables satisfies a clause if at least one of its literals is true. The SAT problem
consists of finding an assignment of the variables that satisfies all clauses in a formula [8].

The MaxSAT problem is the optimization variant of the SAT problem and consists of
finding an assignment of the variables that maximizes the number of satisfied clauses. Partial
MaxSAT [12] is a generalization of the MaxSAT problem where the set of clauses consists of
hard clauses that must be satisfied and soft clauses that can be violated.

3 SAT-based Encoding for Learning Optimal Decision Trees

In this section, we present our SAT-based approach for optimal decision trees. In Section 3.1,
we present the core encoding for decision trees that can be used to solve the two optimization
problems considered in this work. In Section 3.2, we present a SAT-based approach for
solving the min-depth problem (Problem 1) by searching for increasingly deeper decision
trees that can correctly classify all training examples. In Section 3.3, we present a partial
MaxSAT encoding of the max-accuracy problem (Problem 2).

3.1 Encoding Decision Trees
We propose a SAT encoding of a decision tree, D = (T , β, α, θ). Similar to previous works
(e.g., [3, 23]), our encoding assumes a tree structure T (typically a complete tree of some
depth d), and decides on the values of β, α, and θ. When the depth of the tree is unknown
in advance (e.g., in the min-depth optimal decision tree problem) we can solve a sequence of
problems for trees of increasing depth as described in Section 3.2.

3.1.1 Variables
The following binary variables are used to represent the different aspects of a decision tree:

[at,j ]: Represents whether feature j is chosen for the split at branching node t.
[si,t]: Represents whether point i is directed towards the left child, if it passes through
branching node t.
[zi,t]: Represents whether point i ends up at leaf node t.
[gt,c]: Represents whether label c is assigned to leaf node t.

2 Note that since |X| is fixed, maximizing the number of correctly classified training examples is identical
to maximizing the accuracy in Definition (5).
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3.1.2 Clauses
The following set of hard clauses in conjunctive normal form guarantee the validity of the
recursion in the modelled decision tree, and can consequently be used as the core encoding
for both of the optimization problems we consider.

The clauses in Eq. (1) and Eq. (2) guarantee that exactly one feature is chosen at each
branching node t ∈ TB .

(¬at,j , ¬at,j′) t ∈ TB , j ̸= j′ ∈ F (1)

(
∨

j∈F

at,j) t ∈ TB (2)

For each branching node t ∈ TB , we need to make sure that all the data points for which
the feature value is less than or equal to the feature threshold are directed left and all the
data points for which the feature value is greater than the threshold are directed right. We
use #i

j to denote the index of the i’th data point in X when sorted by feature j in ascending
order, assuming ties are broken arbitrarily, and define Oj to be the set of all consecutive
pairs in this ordering, i.e., Oj = {(#i

j , #i+1
j ) | 1 ≤ i ≤ |X|−1}. Then, the clauses in Eq. (3)

guarantee that there are no two points with different feature values where the one with the
higher value is directed left while the one with the lower value is directed right. The clauses
in Eq. (4), together with the clauses in Eq. (3), guarantee that points with equal values are
directed in a similar manner.

(¬at,j , si,t, ¬si′,t) t ∈ TB , j ∈ F, (i, i′) ∈ Oj(X) (3)
(¬at,j , ¬si,t, si′,t) t ∈ TB , j ∈ F, (i, i′) ∈ Oj(X), xi[j] = xi′ [j] (4)

For each data point xi, we need to guarantee the validity of its path in the decision tree.
We use Al(t) (resp. Ar(t)) to denote all the ancestors of a leaf node t ∈ TL such that t is a
descendant of their left (resp. right) branch. The clauses in Eq. (5) and Eq. (6) guarantee
that each data point that ends up at a leaf node follows the corresponding path. In contrast,
the clauses in Eq. (7) guarantee that each data point that does not end up in leaf node
t ∈ TL has at least one deviation from the corresponding path

(¬zi,t, si,t′) t ∈ TL, xi ∈ X, t′ ∈ Al(t) (5)
(¬zi,t, ¬si,t′) t ∈ TL, xi ∈ X, t′ ∈ Ar(t) (6)

(zi,t,
∨

t′∈Al(t)

¬si,t′ ,
∨

t′∈Ar(t)

si,t′) t ∈ TL, xi ∈ X (7)

The clauses in Eq. (8) guarantee that each leaf node is assigned at most one label. Note
that we do not include constraints that prevent leaves with no label. The optimization
criteria discussed in Sections 3.2 and 3.3 guarantee that in optimal solutions, all leaves that
have corresponding training examples will be assigned a label. Leaf nodes that do not have
any corresponding training examples will be assigned an arbitrary label post-optimization in
order to maintain a valid decision tree.

(¬gt,c, ¬gt,c′) t ∈ TL, c ̸= c′ ∈ C (8)

Finally, we add redundant constraints that help prune the search space. For each
branching node, the clauses in Eq. (9) guarantee that the data point with the lowest feature
value is directed left and the clauses in Eq. (10) guarantee that the data point with the
highest feature value is directed right.

(¬at,j , s#1
j
,t) t ∈ TB , j ∈ F (9)

(¬at,j , ¬s#|X|
j

,t
) t ∈ TB , j ∈ F (10)
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3.1.3 Decoding Decision Trees from Solutions
Assuming a solution to the SAT encoding above, i.e., an assignment of the variables at,j ,
si,t, zi,t, and gt,c that satisfy the clauses in Section 3.1.2, we now describe how to extract
the decision tree D = (T , β, α, θ). Decoding β is done by setting β(t) = j if the variable at,j

is true. Similarly, decoding θ is done by setting θ(t) = c if the variable gt,c is true. Note
that these procedures are valid since we are guaranteed that at,j and gt,c are unique for each
node, i.e., ∀t ∈ TB :

∑
j∈F at,j = 1 and ∀t ∈ TL :

∑
c∈C gt,c = 1.

Since our SAT encoding does not explicitly compute the threshold for each node, to
decode α we have to choose a threshold based on the direction of the data points in each
branching node. For a branching node t ∈ TB with β(t) = j, we set α(t) = xi[j] where
(i, i′) ∈ Oj(X) are consecutive data points according to the ordering of feature j such that
si,t is true and si′,t is false. Intuitively, this rule uses the largest value directed left as the
feature threshold for the node t.

3.2 Encoding the Min-Depth Optimal Decision Tree Problem
To find a minimum depth decision tree such that all training examples are correctly classified,
we add the following clauses to the core decision tree encoding described above:

(¬zi,t, gt,γ(xi)) t ∈ TL, xi ∈ X (11)

The clauses in Eq. (11) guarantee that the class labels assigned to leaf nodes are consistent
with the training set labels of the corresponding data points. If a data point xi ends in leaf
node t ∈ TL then the assigned label of t must match the training label γ(xi).

In order to guarantee that we find the minimum depth decision tree, we follow the
technique in [3]. We start by solving the SAT formula for a tree structure T of depth 1 and
in each iteration increase the depth by 1 until a solution is found. This guarantees that when
the SAT solver finds a solution, the obtained decision tree has a minimum depth subject to
the constraint that all training examples must be classified correctly.

3.3 Encoding the Max-Accuracy Optimal Decision Tree Problem
To find a decision tree of a given depth that maximizes the number of correctly classified
training examples, we introduce the following variables to keep track of training examples
that are correctly classified:

[pi]: Represents whether point xi is correctly classified, i.e., xi ends up in a leaf node
with the label γ(xi).

We use a partial MaxSAT model that includes both hard and soft clauses. We use all the
clauses from our core decision tree encoding in Section 3.1 as hard clauses. We also add the
hard clauses in Eq. (12) that guarantee pi is set to true only when xi ends up in a leaf node
whose label is consistent with the training label.

(¬pi, ¬zi,t, gt,γ(xi)) t ∈ TL, xi ∈ X (12)

In order to maximize the number of correctly classified training examples, we add a soft
clause for each data point, that is satisfied whenever the point is correctly classified.

(pi) xi ∈ X (13)

Therefore, the optimal solution for this partial MaxSAT model is a decision tree that
maximizes the number of correctly classified training examples.
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4 Extending Optimal Decision Trees for Categorical Features

Categorical features are features that take their value from a set of values representing
different categories that do not induce a natural ordering.3 For example, in a dataset of
financial transactions we can have a feature that describes the type of transaction from a set
of known transaction types. In order to deal with a categorical feature with K categories,
one can convert the feature to K binary features representing a one-hot encoding of the
original categorical feature. However, this can lead to unnecessarily deep decision trees as
splits may be required for many categories.

In this section, we show that we can easily extend our approach to generate decision
trees that support branching on categorical features directly. We employ power set branching
in which a selected subset of the categories is assigned to the left branch while the subset
that contains the rest of the categories is assigned to the right branch. For the min-depth
optimal decision tree problem, such extension can lead to decision trees of smaller depth that
can potentially be found earlier. For the max-accuracy optimal decision tree problem, such
extension can allow more flexible trees that achieve higher accuracy for the same depth.

▶ Example 1. To demonstrate the potential benefit of power set branching, consider a
simplified dataset of transactions that can either be approved or denied. Each transaction has
one categorical feature describing the transaction type with the categories {A, B, C, D, E, F }.
Transaction with types A, D, and F are approved, while transactions with types B, C, and
E are denied. Figure 1 (left) shows a standard decision tree where the categorical feature
was converted to six binary features representing a one-hot encoding of the original feature.
Figure 1 (right) shows the extended variant of decision trees where we can branch directly
on categorical features by assigning a subset of the categories to each branch. The standard
decision tree requires branching, in sequence, on multiple different categories leading to a tree
with a minimum depth of 3. In contrast, the extended decision tree that supports branching
on categorical features has a depth of 1.

Figure 1 Left: a standard decision tree for the example dataset. Right: a decision tree with
power set branching for categorical features.

4.1 Decision Trees with Power Set Branching for Categorical Features
We assume a set of features F that includes categorical features FC and numeric features
FN such that F = FC ∪ FN . In order to support power set branching, we augment the
decision tree with a category subset selector αC , DC = (T , β, α, αC , θ). We denote the set of
branching nodes associated with numeric features ΠN = {t ∈ TB | β(t) ∈ FN } and similarly
define ΠC the set of branching nodes associated with categorical features. We use α as a

3 Some categorical features induce a natural ordering and can therefore be represented as numeric features.
For example a categorical feature with the categories {Low, Medium, High} can be transformed to a
numeric feature with the values {1, 2, 3}.
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threshold selector for branching nodes with numeric features, α : ΠN → dom(FN ), and αC

that selects a subset of categories for branching nodes with categorical feature from the
corresponding power set αC : ΠC → 2dom(FC ).4

Intuitively, αC provides the subset of categories for which data points should be directed
left. To predict the label of a given point xi we use the recursive ΘC as follows:

ΘC(t, xi) =


θ(t) if t ∈ TL

ΘC(l(t), xi) elseif (t ∈ ΠN ∧ xi[β(t)] ≤ α(t)) ∨ (t ∈ ΠC ∧ xi[β(t)] ∈ αC(t))
ΘC(r(t), xi) else

Decision trees with power set branching are more expressive than decision trees that use
a binarized encoding of these categorical features. Specificially, each decision tree that uses
binary branching for categorical features can be transformed into a decision tree with power
set branching with identical predictions.

▶ Proposition 1. Given a decision tree D = (T , β, α, θ) operating on a set of features
bin(F ), there exists a decision tree with power set branching on the same structure D′

C =
(T , β′, α, α′

C , θ) operating on the set of features F such that

∀xi : ΘC(xi) = Θ(bin(xi))

where bin(F ) is F with its categorical features encoded using binary features in one-hot style
and bin(xi) is xi with its values encoded according to the binarized features set bin(F ).

The above proposition is correct since each branching node in the decision tree D
associated with a binary feature that correspond to one category c in the categorical feature
j ∈ FC can be replaced in D′ with a node that branches directly on the feature j and directs
the subset of categories {c} to the right and the subset that contains the rest of the categories
to the left. Proposition 1 implies the following corollaries on the solution-quality guarantees
of power set branching w.r.t each of the optimization problems.

▶ Corollary 6. Given an instance of Problem 1, the minimum depth found for a decision tree
with power set branching is always equal to or less than that of a decision tree with branching
based on binarized encoding of categorical features.

▶ Corollary 7. Given an instance of Problem 2, the maximum accuracy found for a decision
tree with power set branching is always equal to or more than that of a decision tree with
branching based on binarized encoding of categorical features.

4.2 SAT-based Encoding of Decision Trees with Power Set Branching
Interestingly, the proposed extension involves only minor changes to the decision tree encoding
in Section 3.1. Eq. (14)–(24) show the modified encoding with the changes highlighted in
blue. The clauses in Eq. (16) guarantee that data points where the feature value is less or
equal to the feature threshold are directed left and vice versa. As this does not apply to
categorical features, we restrict Eq. (16) to numeric features. Instead, we add Eq. (18) that,
together with the existing Eq. (17), guarantees that data points with the same category are
directed in the same direction. Finally, for numeric features we used redundant constraints

4 Similar to α, a well-formedness condition on αC would dictate that ∀t ∈ ΠC : αC(t) ⊆ dom(β(t)).
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that guarantee the lowest feature value is directed left and the highest feature value is directed
right. For categorical features we do not have such ordering over categories and instead we
simply use the clauses in Eq. (23) to make sure that some arbitrary category is chosen to be
directed left (in categorical features, #j represents an arbitrary ordering over the category
values of feature j) and we modify Eq. (24) such that no specific category is forced to go
right.5 Note that unlike previous work that focused on categorical features [13], our approach
directly encodes optimal decision trees with both numeric and categorical features.

(¬at,j , ¬at,j′) t ∈ TB , j ̸= j′ ∈ F (14)

(
∨

j∈F

at,j) t ∈ TB (15)

(¬at,j , si,t, ¬si′,t) t ∈ TB , j ∈ FN , (i, i′) ∈ Oj(X) (16)
(¬at,j , ¬si,t, si′,t) t ∈ TB , j ∈ F, (i, i′) ∈ Oj(X), xi[j] = xi′ [j] (17)
(¬at,j , si,t, ¬si′,t) t ∈ TB , j ∈ FC , (i, i′) ∈ Oj(X), xi[j] = xi′ [j] (18)
(¬zi,t, si,t′) t ∈ TL, xi ∈ X, t′ ∈ Al(t) (19)
(¬zi,t, ¬si,t′) t ∈ TL, xi ∈ X, t′ ∈ Ar(t) (20)

(zi,t,
∨

t′∈Al(t)

¬si,t′ ,
∨

t′∈Ar(t)

si,t′) t ∈ TL, xi ∈ X (21)

(¬gt,c, ¬gt,c′) t ∈ TL, c ̸= c′ ∈ C (22)
(¬at,j , s#1

j
,t) t ∈ TB , j ∈ F (23)

(¬at,j , ¬s#|X|
j

,t
) t ∈ TB , j ∈ FN (24)

Note that in our encoding, it is possible to have degenerate nodes for which all categories
are directed left with none of the categories directed right. An optimal solution may have
degenerate nodes, however we can easily convert such solutions to optimal solutions without
degenerated nodes. As a post-optimization step, we arbitrarily select a subset of categories
from the left branch and move them to the right branch. Then, we copy all the subtree of
the left branch to the right branch, leading to identical predictions on the training examples
and maintaining the optimality of the original solution.

4.2.1 Decoding Decision Trees with Power Set Branching

Decoding a decision tree from a solution to the SAT encoding above follows the same
procedure as described in Section 3.1.3, with one key difference. For nodes that are associated
with categorical branching, we need to decode αC , the category subset selector that indicates
the subset of categories associated with the left branch. For a categorical branching node
t ∈ ΠC that is associated with feature j, i.e., β(t) = j, j ∈ FC , we define αC(t) to be the set
of categories in feature j for which there are data points in X that are directed left,

αC(t) = {c | ∃xi ∈ X : xi[β(t)] = c ∧ si,t = 1}.

5 Note that we could add clauses that guarantee that at least one category will go to the right, however it
does not provide significant pruning and we therefore opted not to add them.
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5 Experiments

In this section, we perform an extensive experimental evaluation of our SAT-based approach
for optimal decision trees. For each of the two optimization criteria, we compare our approach
to state-of-the-art exact approaches for optimal decision trees that optimize the same criterion
based on the runtime and objective value. Previous work on each of the two criteria has
already evaluated the quality of decision trees that are optimal with respect to a set of training
examples on external validation datasets [15, 3, 2, 24] and also discussed the differences
between the two criteria [15, 3]. In this work, we focus on the optimization performance with
respect to each of the optimization criteria.

Our algorithm for the min-depth optimal decision tree problem is implemented in C++
based on SAT solver MiniSAT [11]. Our encoding for the max-accuracy optimal decision
tree problem is solved using the MaxSAT solver Loandra [5]. The experiments were run on
two 12-core Intel E5-2697v2 CPUs and 128G of ram.

5.1 Baselines
We compare our approach to recent state-of-the-art baselines for each optimization problem.
For min-depth optimal decision trees, we compare our approach to Avellaneda’s SAT-based
approach [3] that uses the MiniSAT solver [11]. For max-accuracy optimal decision trees, we
compare our approach to Hu et al.’s MaxSAT encoding [15] solved by Loandra [5], and to
Verhaeghe et al.’s constraint programming (CP) model [23] solved by Oscar [20]. Note that
other approaches, such as OCT [6], BinOCT [24], DL8 [19], DL8.5 [2], have been previously
compared to one or more of the baselines we consider in their original publications [15, 3, 23].

Binary Encoding of Non-Binary Features

Most recent state-of-the-art approaches, including the selected baselines, support datasets
that contain only binary features. Therefore, these approaches convert any non-binary feature
into a set of binary features in a pre-processing step prior to optimization. To binarize the
datasets, we follow the procedure in Avellaneda [3] in which each non-binary feature that
can have v possible different values is represented by v binary features, one for each possible
value. Furthermore, if the feature is ordered, e.g., numeric features, then each binary feature
represents the operator ≤ as described in the following example from Avellaneda [3]:

▶ Example 2. Consider a set of training examples where each example has a single integer
feature f , {(1), (3), (4), (5)}. Then, we can transform f into three binary features f̃0, f̃1, f̃2.
If the feature f̃0 is true it means that the value of f in the example is greater than 1. If the
feature f̃1 is true it means that the value of f in the example is greater than 3, etc. Therefore,
the transformed dataset will be {(0,0,0), (1,0,0), (1,1,0), (1,1,1)}.

Note that the above binary feature encoding supports the decision trees described in Definition
4 since selecting a binary feature for a branching node implies a threshold that values smaller
or equal to the threshold are directed into one branch, while values greater than the threshold
are directed into the other branch.

5.2 Datasets
To evaluate the performance of our approach,we run experiments on 15 datasets with different
characteristics, obtained from the UCI repository [10]. Table 1 reports the size of each dataset
|X|, the number of class labels |C|, the number of numeric features |FN |, the number of
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Table 1 Description of the datasets used in our experiments.

Type Name |X| |FN | |FB | |FC | f̃ |C|

N

Banknote 1372 4 0 0 5016 2
Breast Cancer 116 9 0 0 891 2
Cryotherapy 90 5 1 0 93 2

Immunotherapy 91 6 1 0 166 2
Ionosphere 351 32 2 0 8114 2

Iris 150 4 0 0 119 3
User Knowledge 258 5 0 0 431 4

Vertebral Column 310 6 0 0 1741 2
Wine 178 13 0 0 1263 3

C

Credit Approval† 653 6 4 5 1130 2
Promoter 106 0 0 57 228 2

Soybean Large† 266 5 16 14 76 15
Protease Cleavage 746 0 0 8 160 2

Protease Cleavage(/4) 186 0 0 8 156 2

B Car‡ 1728 6 0 0 15 2
Monk2 169 4 2 0 11 2

† Records with missing values were removed.
‡ Classes were merged following Avellaneda [3].

binary features6 |FB |, and the number of categorical features |FC |. It also reports the number
of binary features after the transformation of all the numeric and categorical features into
binary features which is required for the baseline methods.

Consistent with our focus on non-binary features, we selected datasets with mostly
numeric features (type N) or categorical features (type C). We also included the datasets
Monk2 and Car that we consider binary (type B) since they have either binary features or
numeric features that can be convert to binary with a small number of additional variables.

The datasets Credit Approval, Promoter, Soybean Large, and Protease Cleavage include
a significant number of categorical features and will be used to evaluate our extension for
optimal decision trees with categorical features. We also created a smaller version of Protease
Cleavage that includes only 25% of the records (by selecting each fourth row).

5.3 Results

We start by evaluating our SAT-based formulation in Section 3 on numerical and binary
datasets. In Section 5.4, we present the results for the min-depth optimal decision tree
problem and in Section 5.5, we present the results for the max-accuracy optimal decision
tree problem. In Section 5.6, we present results for the categorical branching extension in
Section 4. Finally, in Section 5.7 we analyze the memory consumption.

6 In our encoding binary features are numeric features that take one of two possible values, however we
list them separately in Table 1 as they are supported by the baseline methods without transformation.
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Table 2 Experimental results for min-depth optimal decision tree problem.

Dataset Min Depth Time (s)
Ours SAT [3]

Banknote 4 5.82 T/O [4]
Breast Cancer 4 6.59 T/O [4]
Cryotherapy 4 0.08 0.24

Immunotherapy 4 0.18 1.3
Ionosphere ? T/O [4] T/O [3]

Iris 4 0.04 0.17
User Knowledge 5 1.31 59.44

Vertebral Column 5 87.35 T/O [5]
Wine 3 0.11 14.75

Car 8 T/O [8] 89.1
Monk2 6 2.73 0.28

5.4 Results for the Min-Depth Optimal Decision Tree Problem
We compare our encoding for min-depth optimal decision trees to Avellaneda’s SAT encod-
ing [3] on the binary and numeric datasets. Following Avellaneda’s analysis, we set the time
limit to 30 minutes. Table 2 shows the time to optimal solution for each of the approaches,
as well as the tree depth of the optimal solution. As both approaches follow the procedure of
solving SAT formulae for increasingly deeper trees until a solution is found, the first solution
found is guaranteed to be optimal, i.e., of minimum depth. In case an approach does not find
an optimal solution in the time limit, we report “T/O [d]” where d indicates the tree depth
of the SAT formula being solved at the moment of time out. We highlight in bold results for
which the alternative approach required at least twice as much run time or timed out.

The results in Table 2 show that our approach performs at least as well, and in most
cases significantly better on datasets with numeric features. In particular, it finds optimal
solutions for Banknote, Breast Cancer and Vertebral Column, for which the baseline timed
out. In Ionosphere we find that both methods timed out, however our approach has managed
to prove that a solution does not exist for a depth of 3, while the baseline only proved that a
solution does not exist for a depth of 2. As expected, in the two binary datasets (Car and
Monk2), we find that the baseline outperforms our method. In particular, it manages to find
an optimal solution to Car, while our approach timed out.

5.5 Results for the Max-Accuracy Optimal Decision Tree Problem
Next, we compare our encoding for max-accuracy optimal decision trees to Hu et al.’s MaxSAT
encoding [15] and Verhaeghe et al.’s CP encoding [23] on the binary and numeric datasets.
Following Hu et al., we set the time limit to 15 minutes and run experiments for three
different depth values, {2, 3, 4}. Table 3 shows the time required to find an optimal solution
for each approach or “T/O” if an optimal solution was not found in the time limit. It also
reports the cost of the solutions, i.e., the number of training examples that are not correctly
classified, for each approach. If an optimal solution was found and proved, then the cost
indicates the optimal cost. Otherwise, we report the cost of the best found solution by each
approach. Note that the datasets Iris, User Knowledge, and Wine could only be solved by
our approach as the two baselines only support classification problems with two class labels.
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Table 3 Experimental results for max-accuracy optimal decision tree problem.

Dataset Depth Solution Cost Time (s)
Ours MaxSAT [15] CP [23] Ours MaxSAT [15] CP [23]

Banknote
2 100 176 100 16.83 T/O 512.21
3 23 550 100 105.79 T/O T/O
4 0 88 100 18.98 T/O T/O

Breast Cancer
2 19 24 19 5.07 T/O 22.19
3 9 25 12 242.16 T/O T/O
4 0 18 11 20.79 T/O T/O

Cryotherapy
2 5 5 5 0.57 3.68 4.21
3 1 1 1 0.73 17.57 27.39
4 0 0 0 0.75 24.14 7.61

Immunotherapy
2 8 8 8 0.99 10.53 5.22
3 4 4 4 3.81 T/O 146.45
4 0 1 0 1.27 T/O 18.53

Ionosphere
2 29 41 29 155.06 T/O T/O
3 21 186 29 T/O T/O T/O
4 10 76 28 T/O T/O T/O

Iris
2 6 – – 0.6 – –
3 1 – – 0.77 – –
4 0 – – 0.82 – –

User Knowledge
2 35 – – 1.94 – –
3 10 – – 3.29 – –
4 1 – – 3.86 – –

Vertebral Column
2 45 46 45 15.79 T/O 67.91
3 32 44 42 T/O T/O T/O
4 15 39 42 T/O T/O T/O

Wine 2 6 – – 1.25 – –
3 0 – – 1.62 – –

Car
2 250 250 250 12.67 9.2 2.16
3 182 182 182 T/O T/O 5.99
4 122 122 122 T/O T/O 14.09

Monk2
2 57 57 57 2.74 4.38 1.38
3 42 42 42 T/O 826.31 3.6
4 32 31 31 T/O T/O 8.12

The results in Table 3 show that for all numeric datasets our approach either finds
solutions faster than the baselines or that all approaches time out. Furthermore, for all
numeric datasets, our approach finds solutions that are at least equal, and in many cases
significantly better than the baselines. As expected, for binary datasets (Car and Monk2),
our approach underperforms relative to the baselines and timed out for depths 3 and 4. Still,
it finds the optimal solution for all depths in Car and for depth 2 and 3 in Monk2. For
the three datasets that could not be solved by the baselines, our approach found optimal
solutions in seconds. In Wine, a tree of depth 3 correctly classifies all training examples.

CP 2021
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Table 4 Results for min-depth decision trees on datasets with categorical features.

Dataset Min Depth Time (s)
Ours-PS Ours SAT [3] Ours-PS Ours SAT [3]

Credit Approval ? ? ? T/O [6] T/O [5] T/O [5]
Protease Cleavage ? ? ? T/O [5] T/O [7] T/O [6]

Protease Cleavage(/4) 4 ? ? 0.69 T/O [7] T/O [6]
Promoter 4 4 4 224.22 498.3 87.69

Soybean Large ? ? ? T/O [6] T/O [6] T/O [6]

5.6 Results on Categorical Datasets
In this section, we present results on datasets with categorical features. We compare our
power set branching for categorical features (Ours-PS) against our encoding without power
set branching (Ours) and the baselines. As the optimal solution for the different approaches
may be different, we do not highlight in bold the lowest run time. For example, our power
set branching can fail to find an optimal solution in the time limit, while still obtaining a
lower-cost solution compared to an optimal solution of a binary branching approach.

Table 4 reports the results for the min-depth optimal decision tree problem. Note that we
report the min depth for each of the approaches as the power set approach can have a lower
optimal solution. We find that most categorical datasets could not be solved by any of the
methods in the time limit. However, in Protease Cleavage(/4), our encoding that is based
on power set branching (Ours-PS) is able to find a solution decision tree of depth 4, while
binary branching fails to find a solution after proving that no solution exists for a depth of 6.
This demonstrates the expressiveness of our power set branching for categorical features.

Table 5 shows the results for the max-accuracy optimal decision tree problem. We find
that in all of the cases, our power set approach obtains the lowest cost solution and that in
almost all cases, these solutions are strictly lower compared to all other approaches. Note
that we encountered an error when running the code for the CP approach [23] on the Credit
Approval dataset with a depth of 4.

5.7 Results on Memory Consumption
To compare the memory consumption of the different approaches, we recorded the peak
memory consumption of each approach for each of the datasets. Due to limited space, we only
report aggregated results. Table 6 reports the mean and maximum values for the different
approaches for each optimization problem and dataset type. In all cases, our approach has the
lowest mean and maximum values. In categorical datasets, our power set encoding obtains
the second lowest values. In the worst case, our approach required approximately 1GB of
memory for the standard encoding and 1.9GB for the power set encoding. In comparison,
Avellaneda [3] and Hu et al. [15] required more than 10GB in the worst case. For Verhaeghe
et al. [23], we find that the maximum values are approximately within a factor of two from
ours, however the mean values are still significantly higher than ours.

6 Conclusion

We present a novel SAT-based encoding for optimal decision trees that can directly encode
non-binary features, namely numeric and categorical features. We study two variants of
optimal decision trees based on different optimization criteria and present extensive empirical
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Table 5 Results for max-accuracy decision trees on datasets with categorical features.

Dataset Depth Cost Time (s)
Ours-PS Ours [15] [23] Ours-PS Ours [15] [23]

Credit
Approval

2 84 84 84 84 106.26 151.45 T/O 33.06
3 76 76 82 81 T/O T/O T/O T/O
4 60 65 74 [E] T/O T/O T/O [E]

Protease
Cleavage

2 98 186 186 186 T/O 325.35 56.11 4.82
3 101 133 149 133 T/O T/O T/O 29.68
4 39 98 136 100 T/O T/O T/O T/O

Protease
Cleavage(/4)

2 13 49 49 49 18.91 28.58 16.5 4.36
3 1 29 29 29 7.37 575.93 T/O 22.7
4 0 37 40 17 1.27 T/O T/O T/O

Promoter
2 12 13 13 13 316.71 44.53 316.02 4.35
3 3 3 4 3 T/O 324.77 T/O 63.22
4 0 0 0 0 7.83 57.72 81.08 129.15

Soybean
Large

2 152 159 – – 16.22 99.93 – –
3 104 112 – – T/O T/O – –
4 35 45 – – T/O T/O – –

Table 6 Analysis of peak memory consumption (MB) for the different approaches.

Min-Depth Max-Accuracy
Ours-PS Ours [3] Ours-PS Ours [15] [23]

N Mean N/A 142.02 4,527.80 N/A 236.34 1,646.73 1,176.36
Max N/A 1,003.86 16,684.36 N/A 1,299.09 10,994.48 2,381.50

C Mean 904.73 489.42 3,086.98 412.67 222.61 728.83 1,332.50
Max 1,865.21 984.20 10,075.11 1,451.05 705.93 3,838.78 2,180.96

analysis that shows our approach outperforms recent state-of-the-art methods on datasets
with non-binary features in terms of optimization quality. Furthermore, we show that our
extension for categorical features can lead to higher quality solutions.

We believe our work can be extended in a number of ways. Extending our formulations
with additional constraints, such as minimum-support constraints or pruning constraints, or
alternative optimization criteria is an interesting direction for future work. Investigating the
impact of different tree structures and the use of our approach as part of an ensemble method
are also interesting research directions. Finally, our approach for dealing with non-binary
features can be extended to other classification models such as decision sets [25].
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PBO, and study the impact of various search techniques applicable in the context of IHS for PBO.
Through an extensive empirical evaluation, we show that the IHS approach to PBO can outperform
other currently available PBO solvers, and also provides a complementary approach to PBO when
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2012 ACM Subject Classification Mathematics of computing→ Combinatorial optimization; Theory
of computation → Constraint and logic programming

Keywords and phrases constraint optimization, pseudo-Boolean optimization, implicit hitting sets

Digital Object Identifier 10.4230/LIPIcs.CP.2021.51

Supplementary Material Software (Source Code and Experiment Data): https://bitbucket.org/
coreo-group/pbo-ihs-solver/

archived at swh:1:dir:cb17c95ad7c0b25976387d98840a459491191df2

Funding Work financially supported by Academy of Finland under grants 322869 and 342145.

Acknowledgements The authors thank Paul Saikko for his initial implementation work on PBO-IHS.

1 Introduction

Declarative approaches are central in efficiently solving various types of NP-hard real-
world optimization problems. Indeed various constraint optimization paradigms have been
developed, ranging from mixed integer linear programming (MIP) [32] to finite-domain
constraint optimization [34] and Boolean satisfiability (SAT) based maximum satisfiability
(MaxSAT) [3] and its extensions to e.g. optimization modulo theories and MaxSMT [11, 41].
Each of the paradigms offer distinct features in terms of the declarative language used
and the underlying algorithmic approach, ranging from branch-and-cut in MIP to the
unsatisfiability-based search through iterative applications of SAT solvers in MaxSAT.

Pseudo-Boolean (PB) constraints [36] constitute an interesting constraint language for
modelling and solving optimization problems. Also known as 0-1 linear constraints, stated as
linear inequalities with integer coefficients over binary variables, pseudo-Boolean constraints
constitute a central fragment of integer programming. However, PB constraints can also
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be viewed as natural generalizations of conjunctive normal form clausal constraints [5, 36].
Taking this view, effective specialized decision procedures have been developed for PB by
lifting search techniques from the realm of SAT solving, boosted with additional inference
techniques which lift the theoretical efficiency of PB solvers beyond that of standard SAT
solvers [24, 10, 42, 12]. For a recent overview of such conflict-driven pseudo-Boolean solving,
we refer the reader to [9]. Recent work on extending these techniques from decision to
optimimization problems by harnessing search techniques from both core-guided MaxSAT
solving [21] and linear programming [20] have been shown to hold promise as an alternative
approach to pseudo-Boolean optimization (PBO) complementing the more classical MIP
solving techniques [33].

Building on these recent developments, in this work we develop an alternative approach to
PBO drawing from both advances in PB solving and IP solving. In particular, motivated by
the success of the so-called implicit hitting set (IHS) approach to MaxSAT [16, 17, 18, 37] as
a current state-of-the-art MaxSAT solving approach alongside the core-guided approach, we
develop a first instantiation of an IHS PBO solver. While the general IHS solving framework
has been shown to be applicable in a range of settings [18, 19, 28, 39, 27, 25, 38], we are not
aware of earlier work studying the applicability of IHS in the context of PBO. For realizing a
competitive IHS PBO solver, we harness recent advances in native reasoning techniques for
pseudo-Boolean constraints, which enable efficiently identifying inconsistent assignments over
subsets of objective function variables [20], i.e., unsatisfiable cores in the context of PB. As the
other major component, we employ integer programming and linear programming for hitting
set computations over iteratively accumulated unsatisfiable cores as well as for integrating
bounds-based inference techniques [14, 2]. We provide results from an extensive empirical
evaluation of our implementation of the IHS approach to PBO, comparing its performance
with a range of earlier developed specialized solvers for PBO as well as a commercial MIP
solver, and evaluate the impact of the various search techniques of the empirical performance
of the IHS PBO solver. It turns out that, overall, our IHS PBO solver outperforms earlier
advances in specialized PBO solving, and shows complementary performance depending on
the problem domains considered with respect to both other specialized PBO solvers and a
commercial MIP solver.

2 Preliminaries

A binary variable x has the domain {0, 1}. A literal l over a variable x is either x or x ≡ (1−x).
A pseudo-Boolean (PB) constraint C is a 0-1 integer linear inequality

∑
i aili ≥ B over

literals li. The set of variables appearing in C is var(C). We assume w.l.o.g. that all PB
constraints are in normalized form, i.e., that each variable appearing in it is distinct and that
the coefficients ai and bound B are non-negative integers. We use l = 0 as shorthand for the
constraints l ≥ 0 and −l ≥ 0 (rewritten in normal form). An assignment τ : var(C)→ {0, 1}
is extended to literals by τ(l) = 1 − τ(l). An assignment τ satisfies C (τ(C) = 1) if∑

i aiτ(li) ≥ B. When convenient we treat an assignment τ over a set X of variables as a
set of literals τ = {x | x ∈ X ∧ τ(x) = 1} ∪ {x | x ∈ X ∧ τ(x) = 0}.

A PB formula F = {C1, . . . , Cn} is a set of PB constraints. We denote by var(F ) the
set of variables appearing in the constraints of F . An assignment τ : var(F ) → {0, 1} is
a solution to F if it satisfies all constraints in F . We use τ(F ) = 1 to denote that τ is a
solution to F ; τ(F ) = 0 denotes that τ is not a solution to F .

An instance F of the pseudo-Boolean optimization problem (PBO) consists of a PB
formula constraints(F) and an objective function OF ≡

∑
i wili where each li is a literal

over a variable xi ∈ var(constraints(F)) and wi its non-negative integer weight. When
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clear from context, we use F and constraints(F) interchangeably and drop the superscript
from OF . We will sometimes abuse notation and treat O as either a set of literals or a set of
weight-literal tuples, i.e., write l ∈ O and (w, l) ∈ O to obtain either literals or weight-literal
pairs from O. The set of variables appearing in O is var(O). The value of O under an
assignment τ : var(O) → {0, 1} is O(τ) =

∑
i wiτ(li). A solution τ to F is optimal if it

minimizes O(τ) over all solutions to F . The PBO problem consists of finding an optimal
solution to a given PBO instance.

The approach to computing optimal solutions of PBO instances presented in this work
makes use of so called core constraints and hitting sets.

▶ Definition 1. A constraint C =
∑

i aili ≥ B is a core constraint of F if: i) var(C) ⊂
var(OF ) and ii) (τ(F) = 1)→ (τ(C) = 1) holds for all solutions to F .

In words, a core constraint of an instance F is a constraint over the variables in the objective
function that is satisfied by any solution to F .

▶ Example 2. Let 0 < r < n be two integers and consider the instance Fn,r with the
constraints {

∑n
i=1 bi ≥ r} and objective function O ≡

∑n
i=1 bi. Now var(F) = {b1, . . . , bn}

and any assignment τ that assigns at least r variables in var(F) to 1 is a solution to F .
The assignment τo that sets τo(bj) = 1 for j = 1 . . . r and τo(bk) = 0 for k = r + 1 . . . n is an
optimal solution to Fn,r. The cost of τo (and thus the cost of Fn,r) is O(τo) = O(Fn,r) = r.
The constraint

∑n
i=1 bi ≥ t is a core constraint of F for all t = 1 . . . r, as is C =

∑
b∈S b ≥ 1

for any set S ⊂ O of literals containing at least n− r + 1 variables. To see why C is a core
constraint, notice that any solution τ to F sets at least r of the n literals in O to 1 will also
set at least one literal in S to 1 as well.

Given a set C of core constraints of an instance F , we say that an assignment γ : var(O)→
{0, 1} that satisfies C is a hitting set of C. A hitting set γo is optimal if O(γo) ≤ O(γ) holds
for all hitting sets of C. The term hitting set stems from an important special case of core
constraints, namely, those of form C =

∑
l ≥ 1. Such constraints are satisfied by setting at

least one l ∈ C to 1, thus hitting that constraint. For our purposes, a central property of
hitting sets is that they provide lower bounds on O(F).

▶ Proposition 3. Let γo, C and F be as above. Then O(γo) ≤ O(F).

Proof. Let τ be an optimal solution of F . Then τ(C) = 1 by the definition of a core constraint
and O(γo) ≤ O(τ) = O(F) by the optimality of γo. ◀

3 Implicit Hitting Sets for Pseudo Boolean Optimization

Algorithm 1 details the PBO-IHS algorithm for computing an optimal solution to a PBO
instance F . In short, the algorithm works by iteratively refining an upper and lower bound
on O(F), represented in the pseudocode by UB and LB, respectively. The algorithm also
maintains a witness for the upper bound in the form of an assignment τbest for which
O(τbest) = UB. The search terminates when LB = UB at which point τbest is returned.

During initialization (Lines 2–5) the lower bound LB and set C of core constraints of
F are initialized to 0 and ∅, respectively. Additionally, an upper bound UB (as well as
its witness τbest) is obtained by invoking a PB solver via the function PB-Solve on the
constraints of F . The call to PB-Solve returns a boolean sat? indicating whether or not the
constraints in F are satisfiable and a solution of F if they are. Note that, if the constraints
of F are not satisfiable, then there do not exist any solutions to F , so PBO-IHS terminates.
Afterwards the main search loop is started.

CP 2021
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Algorithm 1 The base IHS algoritm for PBO.

1 PBO-IHS(F)
Input: A PBO instance F
Output: An optimal solution τ

2 (τbest , sat?)← PB-Solve(F)
3 if not sat? then
4 return “no feasible solutions”
5 UB ← O(τbest); LB ← 0; C ← ∅
6 while true do
7 γ ← Min-Hs(O, C)
8 LB ← O(γ)
9 if UB = LB then break ;

10 C ← C ∪ Extract-Cores(γ, UB, τbest ,F);
11 if UB = LB then break;
12 return τbest

Min-Hs(O, C):
minimize:

∑
(w,l)∈O

w · l

subject to:

C ∀C ∈ C

l ∈ {0, 1} ∀(w, l) ∈ O

return:
{l | l set to 1 in opt. soln}∪
{l | l set to 0 in opt. soln}

(a) An IP for computing an optimal
hitting set over a set of core constraints

Figure 1 The implicit hitting set approach to PBO.

Algorithm 2 Extracting multiple core constraints from a single hitting set.

1 Extract-Cores(γ, UB, τbest ,F)
2 A = {l | l ∈ O ∧ γ(l) = 0};
3 Cn ← ∅;
4 while true do
5 (sat?, κ, τ)← PB-Solve-A

(
F ,A);

6 if (sat?) then
7 if O(τ) < UB then τbest ← τ ; UB ← O(τ);
8 return Cn;
9 else Cn ← Cn ∪ {

∑
l∈κ l ≥ 1 | l ∈ κ}; A ← A− κ;

During each iteration of the loop (Lines 6–11), the lower bound is refined by computing an
optimal hitting set γ over C on Line 8. In our implementation, the hitting set is computed by
solving the integer program Min-Hs detailed in Figure 1a. If the new LB matches the known
UB the algorithm terminates on Line 9. Otherwise, the upper bound UB and set C are next
refined by the function Extract-Cores detailed in Algorithm 2. After refining the upper
bound and extracting new core constraints, the termination criteria is again checked. If the
new UB matches the current LB, the algorithm terminates. Otherwise, the loop reiterates.

Extract-Cores computes new core constraints of F by invoking a PB solver on the
constraints of F under a set A of assumptions. The inputs to Extract-Cores is the current
hitting set γ of C, the upper bound UB, its witness τbest and the constraints of F . The
function initialises a set A to contain all literals in O set to 0 by γ. In other words, initially
the set A contains all literals of O that do not incur cost in γ. A set Cn of new core constraints
is also initialized to ∅. New core constraints are then computed by invoking a PB solver
via the function PB-Solve-A. The function takes as input a set F of constraints and a set
A of assumptions and then solves the formula F ∪ {l = 0 | l ∈ A}. There are two options,
either the formula is satisfiable (sat? is true), or it is not (sat? is false). In the first case,
the call to PB-Solve-A returns a solution τ to F that sets τ(l) = 0 for all l ∈ A. Then O(τ)
is compared to UB which is updated if needed. Afterwards Extract-Cores terminates and
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returns the set Cn of new core constraints found. In the second case, κ ⊂ A is a set of literals
for which F ∪ {l = 0 | l ∈ κ} is also unsatisfiable. This implies that

∑
l∈κ l ≥ 1 is a core

constraint of F so it is added to Cn. The literals in κ are then removed from A and the loop
reiterated.

The following theorem establishes the correctness of PBO-IHS.

▶ Theorem 4. Given an input PBO instance F PBO-IHS terminates and returns an optimal
solution τ to F .

Proof. (Sketch) To show that τ is optimal we note that O(τ) = O(γ) for an optimal hitting
set γ over a set C of core constraints of F , which by Proposition 3 implies O(τ) ≤ O(F).

To show that PBO-IHS terminates, we first show that each call to Extract-Cores ter-
minates. This follows from each invocation of PB-Solve-A either resulting in termination
of Extract-Cores, or elements being removed from A and the fact that, by the check on
Line 2, the call PB-Solve-A(F , ∅) returns satisfiable.

For the final part of the argument, we say that a hitting set γ returned on Line 7 is
feasible if PB-Solve-A(F , {l | l ∈ O ∧ γ(l) = 0}) is satisfiable, otherwise it is infeasible. We
note that, as soon as a feasible hitting set γ is computed by Min-Hs, PB-Solve-A will find a
solution τ for which O(τ) = O(γ) = LB in the first iteration of Extract-Cores and PBO-IHS
will terminate. As there only are a finite number of possible hitting sets, we thus only need
to show that a fixed infeasible hitting set γI can be computed at most once by Min-Hs. This
follows from the fact that γI being infeasible implies that the invocation of Extract-Cores
will add (at least) one new core constraint

∑
l∈κ l ≥ 1 for some κ ⊂ O \ {l | γ(l) = 1} into

the set C. Thus γI will not be a hitting set in subsequent iterations. ◀

We end this section with an example demonstrating the execution of PBO-IHS.

▶ Example 5. Invoke PBO-IHS on the instance F5,2 from Example 2 with n = 5 and r = 2.
Assume that the first solution obtained on on line 2 is τbest = {b1, b2, b3, b4, b5}. The initial
upper bound is set to UB = O(τbest) = 4. In the first iteration of the search loop, there are
no core constraints to satisfy. As such, the first call to Min-Hs returns γ = {b1, b2, b3, b4, b5}.
As O(γ) = 0, the lower bound LB is not improved and the algorithm moves on to invoke
Extract-Cores. The set A is initialized to {b1, b2, b3, b4, b5}. The first call to PB-Solve-A
returns unsatisfiable. There are a number of subsets of the assumptions that could be
returned, let κ = {b1, b2, b3, b4} be the one obtained. Before the next call, the set A is refined
to {b5} and the core constraint

∑4
i=1 bi ≥ 1 is added to Cn. The next call returns satisfiable,

returning for example the solution τ = {b1, b2, b3, b4, b5}. The solution has O(τ) = 3 so
the upper bound and τbest are updated before Extract-Cores terminates. At this point
UB = 3 ̸= 0 = LB so PBO-IHS does not terminate.

In the next iteration, the call to Min-Hs is done with C = {
∑4

i=1 bi ≥ 1}. Assume the call
returns γ = {b1, b2, b3, b4, b5}. The lower bound LB is now updated to 1 and the function
Extract-Cores is again invoked. This time around, the first call to PB-Solve-A is done with
A = {b2, b3, b4, b5}. The first call is unsatisfiable, the only subset of assumptions that can be
returned is κ = {b2, b3, b4, b5}. The next call to PB-Solve-A will return satisfiable. Assume
that this time a solution τ = {b1, b2, b3, b4, b5} is returned. The solution has O(τ) = 2 so the
upper bound is again updated.

At this point, PBO-IHS has found an optimal solution of F5,2. However, since UB = 2 >

1 = LB, the algorithm does not terminate. Informally speaking, the algorithm has found
an optimal solution, but not proven its optimality. The “proof” of optimality is obtained
once Min-Hs returns a hitting set γ with O(γ) = 2, which in turn happens after enough
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core constraints have been extracted for C = {(b1 + b2 + b3 + b4 ≥ 1), (b1 + b2 + b3 + b5 ≥
1), (b1 + b2 + b4 + b5 ≥ 1), (b1 + b3 + b4 + b5 ≥ 1), (b2 + b3 + b4 + b5 ≥ 1)}. In other words for
each bi C should contain at least one constraint in which bi does not appear. Then Min-Hs
returns a hitting set γ with O(γ) = 2, which updates LB = 2 and allows the algorithm to
terminate.

4 Search Techniques and Refinements

We move on to describing a number of refinements and additional heuristics to PBO-IHS.
We will later on empirically evaluate the impact of each of the techniques on the runtime
performance of PBO-IHS.

Many of the refinements we consider are based on techniques first proposed for the IHS
algorithm in the context of MaxSAT. These are motivated by the fact that, in order for
PBO-IHS to terminate, the lower bound LB needs to be set to the optimal cost O(F) of the
instance F that is being solved. This in turns means that the Min-Hs subroutine should
compute a hitting set γ for which O(γ) = O(F). In fact, by adapting a well known result from
MaxSAT, we can show that there are families of instances on which PBO-IHS as presented in
Section 3 requires an exponential number of core constraints from Extract-Cores in order
to terminate.

▶ Proposition 6 (Adapted from [16]). For every even n ∈ N there exists a PBO instance Fn

for which Extract-Cores needs to extract Ω(2n) core constraints before PBO-IHS terminates.

Proof. (Sketch) Let r = n/2 and Fn = Fn,r from Example 2 and, following similar reasoning
as in [16] in the context of MaxSAT, to show that in order for Min-Hs to compute a hitting set
γ with O(γ) = n/2 = O(Fn,r), Extract-Cores needs to extract at least one core constraint
of form

∑
l∈S l ≥ 1 for each subset S ⊂ O with n− r + 1 literals.

More precisely, if there exists a subset Sp ⊂ O with n − r + 1 elements for which(∑
l∈Sp

l ≥ 1
)

/∈ C, then the solution γ = {l | l ∈ Sp} ∪ {l | l /∈ Sp} is a hitting set over C
that has O(γ) = n− (n− r + 1) = r−1 < r = O(Fn,r). As a consequence, the minimum-cost
hitting set γ computed by Min-Hs will have O(γ) < O(Fn,r) and the algorithm will not
terminate. In other words, Extract-Cores will need to extract at least

(
n

r+1
)

core constraints
before Min-Hs computes a hitting set γ with O(γ) = O(Fn,r). ◀

In light of Proposition 6 we expect any technique for deriving more core constraints of an
instance to improve on the empirical performance of PBO-IHS. In this work, we consider the
following techniques.

4.1 Constraint Seeding
In constraint seeding, the input instance F is scanned for constraints that only contain
variables that appear in the objective function. Such constraints trivially satisfy the second
requirement of Definition 1 and as such are core constraints of F . Any such constraints
are added to C prior to starting the main search loop (Lines 6-11 of Algorithm 1). While
a similar technique is employed in MaxSAT solving, in the context of PBO we can show
that constraint seeding can have a significant effect on the number of core constraints that
PBO-IHS needs to extract before termination.

▶ Example 7. Consider again the instance F5,2 from Example 2. On this instance constraint
seeding is able to detect the core constraint C =

∑5
i=1 bi ≥ 2 and add it to C. Assume that the

first solution τbest obtained on line 2 is {b1, b2, b3, b4, b5} implying an initial UB of 4. In the
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Algorithm 3 Computing multiple core constraints with weight-aware core extraction.

1 Extract-Cores-WCE(γ, UB, τbest ,F)
2 Cn ← ∅; W ← ∅;
3 for (w, l) ∈ O do
4 if γ(l) = 1 then W(l) = 0;
5 else W(l) = w;
6 while true do
7 (sat?, κ, τ)← PB-Solve-A

(
F , {l ∈ O | W(l) > 0});

8 if (sat?) then
9 if O(τ) < UB then τbest ← τ ; UB ← O(τ);

10 return Cn;
11 else
12 Cn ← Cn ∪ {

∑
l∈κ l ≥ 1 | l ∈ κ};

13 wκ = minl∈κ{W(l)};
14 for l ∈ κ do W(l)←W(l)− wκ;

first iteration of the search loop, the core constraint C added by seeding results in the hitting
set γ computed on Line 7 assigning at least two variables to 1. Assume γ = {b1, b2, b3, b4, b5}.
The LB is then refined to 2 and the function Extract-Cores invoked. In the first iteration
of Extract-Cores, the function PB-Solve-A is invoked with A = {b3, b4, b5}. The result is
satisfiable and the function returns the assignment τ = {b1, b2, b3, b4, b5}. Since O(τ) = 2
the UB is then updated and search terminated.

The example combined with Proposition 6 implies the following.

▶ Proposition 8. For every even n ∈ N there exists a PBO instance Fn on which the
Extract-Cores subroutine of PBO-IHS extracts Ω(2n) cores before termination if constraint
seeding is not used and no cores if seeding is used.

We observe an interesting connection between constraint seeding and abstract cores, a
recently proposed improvement to the IHS algorithm for MaxSAT [6]. Abstract cores are
a compact representation of a large number of ordinary core constraints. More specifically,
an abstraction variable ab.c[k] defined over a set of n literals ab ⊂ O that all have the
same coefficient in O has the definition ab.c[k] ↔

∑
l∈ab l ≥ k, i.e., the linear constraints∑

l∈ab l−k ·ab.c[k] ≥ 0 and
∑

l∈ab l−n ·ab.c[k] < k. Let Abs be a set of abstraction variables.
An abstract core constraint C is a linear constraint for which var(C) ⊂ var(O) ∪ Abs that
is satisfied by any assignment that satisfies both F and the definitions of the abstraction
variables. Each such constraint containing an abstraction variable ab.c[k] corresponds to(

n
(n−k+1)

)
(non-abstract) core constraints of form

∑
l∈C,l ̸=ab.c[k] l +

∑
l∈abk

l ≥ 1 where
abk ⊂ ab is any subset containing n− k + 1 variables.

A central motivation for abstract cores in the context of MaxSAT is that the IHS
algorithm for MaxSAT needs to extract an exponential number of cores when solving the
CNF translation of the instance presented in Example 2. As demonstrated by Example 7,
the technique of constraint seeding in PBO already allows avoiding the need to extract a
large number of core constraints on this specific instance.
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4.2 Weight-Aware Core Extraction
Weight-aware core extraction (WCE), first proposed in the context of core-guided MaxSAT
solving in [7], is a technique for extracting more core constraints from a single hitting set
by using information provided by the coefficients of the objective variables. The idea has
previously been explored in the context of PBO under the name independent cores in [21].
Here we employ WCE for the first time in the context of IHS.

Algorithm 3 details Extract-Cores-WCE, the computation of new core constraints with
WCE. Given an instance F and a hitting set γ, the procedure initializes a weight W(l) for
each objective function literal l ∈ O. The weight of l equals its coefficient in O if γ(l) = 0 and
0 otherwise. Each call to PB-Solve-A is then performed with a set of assumptions containing
all literals for which W(l) is not 0. Note specifically that the first set of assumptions will
be same with and without employing WCE. After a subset κ of assumptions is obtained
from the PB oracle, the weight of each literal l ∈ κ is lowered by wκ, the minimum weight
among all literals in κ. Importantly, this lowers the weight of at least one literal to 0, thus
guaranteeing the eventual termination of Extract-Cores-WCE.

The intuition underlying WCE is that it allows for extracting not only a (variable) disjoint
set of core constraints from each hitting set, but also core constraints whose variables intersect
on a subset containing literals with large coefficients. The following example demonstrates
how WCE can decrease the number of hitting sets that the IHS algorithm needs to compute
before termination.

▶ Example 9. Consider an instance F = {(b1 + bN ≥ 1), (b2 + bN ≥ 1), . . . , (bn + bN ≥ 1)}
with O =

∑n−1
i=1 b1 + nbN . Invoke Extract-Cores (Algorithm 2) on F with γ = ∅. In

the first iteration, PB-Solve-A is invoked with A1 = {b1, . . . , bn, bN}. Since any set κ

that could be returned contains bN it will be removed from the set of assumptions after
one core has been computed. Since an assignment setting bN = 1 satisfies the instance,
Extract-Cores can only compute a single new core constraint before terminating. With
WCE (i.e., Extract-Cores-WCE) the situation changes. The initial set of assumptions will
again be A1. Since any set κ returned by PB-Solve-A will have wκ = 1, the weight W of bN

is lowered by 1 and thus remains positive. Hence bN will stay in the assumptions until either
(i) n core constraints have been extracted or (ii) all other literals are removed from the set of
assumptions.

4.3 Non-Optimal Hitting Sets
At early stages of IHS search, when C only contains a few core constraints, we expect
O(γ) < O(F) to hold for an optimal hitting set γ over C. Recalling that PBO-IHS can
terminate only when LB = O(F), this implies that we do not expect an optimal hitting
set over C to result in termination before enough cores have been extracted. However, the
Extract-Cores subroutine does not necessarily need an optimal hitting set in order to
compute new core constraints. Hence instead of spending time computing a – potentially
useless – optimal hitting set, we can instead focus our efforts on computing any hitting set
that allows Extract-Cores to derive more core constraints.

More precisely, we terminate Min-Hs once an incumbent hitting set γi is obtained which
is either optimal or satisfies O(γi) < UB. Even if the lower bound LB can only be updated if
γi is optimal, Extract-Cores will still either derive a new core constraint, or find a solution
τ for which O(τ) = O(γi) < UB. In both cases, the search progresses toward an optimal
solution. The only way in which γi can be rediscovered in subsequent iterations is if it was
in fact optimal. More formally, we can show that the requirement of the hitting set being
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computed by Min-Hs either being optimal, or having cost lower than the current UB is
sufficient for the correctness of PBO-IHS. This follows from the fact that each non-optimal
hitting set can be computed by Min-Hs at most once and each optimal one at most twice.
For a more detailed argument in the context of MaxSAT, we refer the reader to [2].

4.4 Core Shrinking through Shuffling Assumptions
The sizes of core constraints found during iterations of IHS directly impact the tightness
of the hitting set constraints. In IHS MaxSAT solving, subset-minimization of cores is
done by iteratively asking the SAT solver performing cores extraction whether some soft
clauses can be removed from the cores while maintaining unsatisfiability. However, in the
context of PBO, we observed that subset-minimization of cores through the PB solver during
IHS search often becomes too time-consuming, and hence we do not – at least currently –
attempt to subset-minimize cores in this way before turning to the hitting set solver. Instead,
we make use of another, computationally less demanding way of potentially identifying
smaller cores. In particular, at the time of termination of the PB solver (the PB-Solve-A
subroutine of Algorithm 2) at a specific iteration, the subset of assumptions from which
the core constraint is formed is obtained by propagating all assumptions one by one until
the solver reports unsatisfiable. A central fact to note is that the specific core constraint
obtained will depend on the order in which assumptions are propagated; other orders of
propagating the assumptions during this “analyzeFinal” phase may provide at times smaller
cores. With this aim, we randomly shuffle the order of the assumptions a number of times
(set to 20 repetitions in our current implementation), and choose a smallest-cardinality core
among the cores obtained this way as the core constraint that is then added to the hitting
set solver. Since this shuffling approach to shrinking cores relies only on polynomial-time
propagation within the PB solver, it avoids the worst-case exponential subset-minimization
calls if core shrinking would be performed by iteratively asking the PB solver to identify
assumptions that can be left out from a found core.

4.5 Reduced Cost Fixing
The hybrid approach of PBO-IHS combining IP solving and PB reasoning opens up the
possibility of introducing techniques from IP solving into the PB reasoning part of PBO-IHS.
One such technique that we consider in this work is reduced cost fixing, a standard technique
in the realm of IP solving [14, 15, 32]. In IHS for PBO, reduced cost fixing can be applied in
two ways: on the LP relaxation of the actual PBO instance, and on the level of solving the
hitting set programs using IP solving. In the context of IHS for MaxSAT and in particular
on the level of the hitting set IP, reduced cost fixing was first explored in [2].

First consider employing reduced costs obtained from solving the hitting set problems dur-
ing IHS search. For a set C of core constraints and an objective function O, let Min-Hs(O, C)LP

be the LP relaxation of the IP depicted in Figure 1a, i.e., the linear program obtained by
removing the requirement of the l variables being integral, and instead allowing them to take
any value in the range [0, 1]. Informally speaking, given a solution η to Min-Hs(O, C)LP, the
reduced cost rc(b) of a variable assigned to 1 (0) by η measures the effect that assigning b to
0 (1) instead would have on O(η). Since the optimal cost of Min-Hs(O, C)LP is a lower bound
on the optimal cost Min-Hs(O, C) which in turn is a lower bound on O(F), the reduced costs
of a variable b in the objective function can sometimes be used to show that either b = 1 or
b = 0 holds for at least one optimal solution to F , which allows us to fix the value of b for
the rest of the search.
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More precisely, suppose τbest is a feasible solution to F and consider a non-basic variable
x (i.e., a variable assigned to either 0 or 1 by η) of Min-Hs(O, C)LP. If η(x) = 0 and either:
(i) O(η) + rc(x) > O(τbest) or (ii) O(η) + rc(x) = O(τbest) and τbest(x) = 0, then x is fixed
to 0 in subsequent iterations of the PBO-IHS algorithm. Similarly, if η(x) = 1 and either: (i)
O(η)− rc(x) > O(τbest) or (ii) O(η)− rc(x) = O(τbest) and τbest(x) = 1, then x is fixed to 1
is subsequent iterations. We emphasise, that in both cases, the variable is fixed both in the
Min-Hs, and the Extract-Cores subroutines.

A detailed argument for the correctness of reduced cost fixing in implicit hitting set-based
MaxSAT can be found in [2]. We sketch the proof of the case η(x) = 0. First note that if
x = 1 is infeasible for the LP relaxation of Min-Hs, then it will be infeasible for the IP as
well. In other words, then no hitting set over C can set x = 1 and, by the definition of a core
constraint, neither can any solution to F . On the other hand, if x = 1 is feasible, then by
the properties of reduced costs [4], any solution ηm to the LP for which ηm(x) = 1 will have
O(ηm) ≥ O(η) + rc(x) ≥ O(τbest) ≥ O(F). Since the LP is a relaxation of the IP and the
costs of the optimal solutions γo of the IP have O(γo) ≤ O(F), it follows that fixing x = 0
can be done without removing an optimal solution of the IP.

Secondly, we note that the LP relaxation of the input PBO instance itself can be solved
for obtaining bounds information already before the IHS search, complementary to the
information obtained from reduced costs from the hitting set computations during search.
In particular, for obtaining reduced costs information on an input PBO instance F , solve
the LP relaxation FLP of F prior to starting the main search loop, and apply reduced cost
fixing based on the reduced costs obtained from an optimal solution ηi of FLP whenever the
IHS search improves the upper bound UB during search.

5 Empirical Evaluation

We turn to overviewing results from an empirical evaluation of the IHS approach to PBO
presented in this work. The experiments reported on were run on nodes with 8-core Intel
Xeon E5-2670 2.6-GHz CPUs and 64-GB RAM. We set a per-instance 3600-second time and
16-GB memory limit.

5.1 Implementation
We implemented PBO-IHS in Python, with a PB solver (as the core extractor) and an integer
programming solver (as the hitting set solver) imported as external modules. We use the
Roundingsat version 2 [24] (commit 1476bf0bcd) as the PB solver, using its most recent
configuration as described in [20]. To implement the PB-Solve-A function, we extended
the Roundingsat implementation to include an analyzeFinal function similar to the one
implemented in the MiniSat SAT solver [22, 23], so that we can call Roundingsat within
PBO-IHS under assumptions and extract unsatisfiable cores over the assumptions. As the
integer programming solver for hitting set computations we used IBM ILOG CPLEX C++
API version 12.8. We compiled both Roundingsat and CPLEX API components using
pybind11, which is a utility that allows to compile C++ libraries as python modules. In the
following, we will refer as PBO-IHS to our implementation of the IHS approach to PBO which
applies HS reduced cost fixing, constraint seeding, assumption set shuffling, non-optimal
hitting sets and weight-aware core extraction, but does not apply reduced cost fixing based
on solving the LP relaxation of the input PBO instance and does not employ abstract
cores. (To this end, we will also report on the marginal contribution of each of these search
techniques on the overall performance of PBO-IHS.) For the experiments, our implementation
of PBO-IHS runs single-threadedly. The PBO-IHS implementation is available in open source
at https://bitbucket.org/coreo-group/pbo-ihs-solver/.

https://bitbucket.org/coreo-group/pbo-ihs-solver/
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5.2 Alternative Approaches
We extensively compare the empirical performance of PBO-IHS to those of previously proposed
specialized approaches to PBO:

Open-WBO [30] encodes the PBO instance into a MaxSAT instance by transforming
the PB constraints into CNF by the well-known (generalized) totalizer encoding [29]. The
MaxSAT instance is then solved with the OLL algorithm for MaxSAT [31].
Sat4J [8] generalizes the CDCL procedure for SAT solving to PB solving and the cutting
planes proof system. The cutting planes reasoning is implemented using the weakening
and saturation rules similar to [10]. Computing an optimal solution to an instance F is
done by solution improving search, i.e., starting from ub = ∞ iteratively invoking the
solver on the formula F ∪ {

∑
(w,l)∈O wl < ub} which is satisfiable by an assignment τ iff

τ is a solution to F with O(τ) < ub. When such τ is found, ub is updated to O(τ) and
the loop reiterated. The search terminates when the solver reports the formula to be
unsatisfiable, at which point the last found (optimal) solution is returned.
NaPS [40] encodes the PBO instance into a MaxSAT instance using binary decision
diagrams (BDDs). An optimal solution to the MaxSAT instance is then computed a
combination of solution improving and binary search.
Roundingsat (RS) [24] generalizes the CDCL procedure for SAT solving to PB solving
and the cutting planes proof system. Cutting planes reasoning is implemented using the
division and rounding rules. Optimization is then done by solution improving search.
RS/lp [20], a version of RS that periodically invokes a linear programming (LP) solver
on the LP relaxation of the instance being solved. The LP calls are used to derive more
conflicts to the CDCL procedure implemented in basic roundingsat. For example, if
there are no feasible solutions to the LP relaxation of the instance under the current
partial assignment, then there will not be any feasible solutions to the PB instance either.
Computing an optimal solution is done by solution improving search.
RS/oll [21], a version of RS that combines the solution improving search with an
extension of the OLL algorithm to PBO [1]. OLL is a lower bounding approach that
extracts core constraints of the instance being solved. Based on the obtained constraints,
the instance is then relaxed in a way that allows – in a controlled way – one more of the
literals in the objective function to be set to 1 in subsequent iterations.

In addition to these academic specialized PBO solvers, we also investigate how PBO-IHS
fares against CPLEX [13].

5.3 Benchmarks
For the experiments, we collected a large number of benchmarks from different sources.
Firstly, we collected all benchmarks used in Pseudo-Boolean Competition 2016 [35] (so
far the most recent instantiation of the competition) as well as benchmarks available on
the competition website that were used in previous competition instantiations since 2005.
Secondly, we collected all 0-1 integer programs from the MIPLIB 2017 library [26] as well as
earlier MIPLIB releases. We filtered out 7914 benchmark instances that had no objective
function and 249 unsatisfiable benchmarks which do not admit solutions, as uninteresting
for benchmarking optimization solvers, as well as 206 benchmarks that have at least one
coefficient with an absolute value higher than 264 and 548 benchmarks with non-linear
constraints or non-linear terms in their objective functions. Starting from 17312 Pseudo-
Boolean Competiton benchmarks and 1273 MIPLIB benchmarks, respectively, after filtering
we were left with 8456 and 252 benchmarks, respectively, giving a total of 8708 benchmarks
that we used in the experiments reported on here.
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We categorized to the best of our knowledge the benchmarks (based on their source,
related publications, and finally, by file names) into different problem domains, obtaining the
problem domain categorization shown in Table 1. We observe that the whole benchmark
set is significantly unbalanced in terms of the number of instances originating from specific
problem domains. For a fair comparison of the overall performance of the different solvers
across the different benchmark domains, we sampled at random (without repetition) from
each problem domain 30 instances (or all of the instances from the domain, if the domain
included less that 30 instances) for the comparison. The sampled benchmark set contains
in total 1786 benchmarks. Unless explicitly stated otherwise, all results reported on in this
section are with respect to the sampled benchmark set.

5.4 Results: Comparison with Specialized PBO Solvers
We first compare the empirical performance of PBO-IHS to those of other specialized PBO
solvers on the sampled benchmark set. Figure 2(top) shows how many benchmarks each solver
was able to solve (y-axis) under different per-instance time limits, We observe that PBO-IHS
outperforms all of the other specialized solvers. The two recent variants of Roundingsat
perform the second and third best; in particular, PBO-IHS also outperforms the version
of Roundingsat (RS/lp) which is used within PBO-IHS for core extraction. To justify the
sampling of benchmarks in order to achieve a balanced benchmark set, confirmed the results
for the three best-performing solvers under 10 different random samplings. The results,
shown in Figure 2(bottom), confirm that the relative performance of the solvers is robust
against subsampling benchmarks in a balanced way. In more detail, For each solver S,
Figure 2(bottom) includes 3 lines: S-max, S-median and S-min. A point (t, x) on the S-max
line indicates that S was able to solve x benchmarks within t seconds for at least one of
the ten benchmark set samples. Analogously, a point on the S-min line indicates solving
x benchmarks within t seconds in all samples, and the S-median line indicates solving x

benchmarks within t in five of the 10 samples.
More detailed data per benchmark domain (over the full benchmark set) is reported in

Table 1, with the number of instances solved (left column) and the cumulative runtimes
over solved instances (right column) shown for each solver, with all benchmarks from each
problem domain included. Interestingly, we observe that the relative performance of the
Roundingsat versions (RS/lp and RS/oll) and PBO-IHS depends significantly on the problem
domain, suggesting that the approaches complement each other.

5.5 Results: Impact of Different Search Techniques in PBO-IHS
We also investigated the marginal impact of the different search techniques and refinements
to PBO-IHS on the empirical performance of PBO-IHS. Figure 3(top) provides a comparison of
the default configuration of PBO-IHS (with HS reduced cost fixing (hs-rc), constraint seeding,
assumption set shuffling, non-optimal hitting sets, weight-aware core extraction, but without
reduced cost fixing based on solving the LP relaxation of the input PBO instance (pb-rc) or
abstract cores) to configurations of PBO-IHS with each of HS reduced cost fixing, constraint
seeding, assumption set shuffling, non-optimal hitting set computation, and weight-aware
core extraction separately switched off, as well the configurations using reduced cost fixing
on the PBO LP and abstract cores separately. We observe that constraint seeding makes
the largest positive marginal contribution to the empirical performance of PBO-IHS, and
assumption set shuffling second largest positive marginal contribution. The third largest
positive contribution is made by using non-optimal hitting sets, followed closely by weight-
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aware core extraction. The use of abstract cores, at least as currently implemented, makes
a significant negative marginal contribution, noticeably degrading the performance of the
default version of PBO-IHS. Exploring the relationship between constraint seeding and abstract
cores in PBO, as well as alternative instantiations of the abstract cores framework, remains
interesting for future work. The two different forms of reduced cost have only a very modest
impact. While reduced cost fixing based on the PBO LP does not make a significant negative
marginal contribution, it does not appear to improve on the performance of PBO-IHS, which
justifies disabling it together with abstract cores in the default configuration of PBO-IHS.

5.6 Results: Runtime Division between Core Extraction and MCHS

Figure 4(left) details the fraction of solving time spent in the Min-Hs subroutine of PBO-IHS
on the 898 of the instances solved within the time limit. Note that since the Min-Hs and
PB-Solve-A subroutines dominate the running time of PBO-IHS, the rest of the runtime is
effectively spent in PB-Solve-A. We observe that on most of the instances, over 80% of the
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Figure 2 Top: Runtime comparison of specialized PBO solvers. Bottom: Confidence intervals
over 10 benchmark subset samples for the three best-performing solvers.
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Table 1 Comparison of specialized PBO solver per benchmark domain: number of solved instances
(#) and cumulative runtimes over solved instances in seconds (cum.)

Sat4J RS Open-WBO Naps RS/lp RS/oll PBO-IHS
Domain (#instances) # cum. # cum. # cum. # cum. # cum. # cum. # cum.
10orplus/9orless (156) 55 99459 39 64252 156 202 156 14149 154 55344 156 1406 156 23670
caixa (24) 24 13 20 16 24 2 24 179 24 70 24 3 24 64
rand.*list (118) 113 5241 59 1961 118 44 118 2218 118 692 118 125 118 2296
area_* (59) 11 626 37 11998 59 138 54 3613 54 16176 57 9469 51 11784
trarea_ac (18) 1 1 1 2 13 2314 4 4582 16 3722 5 1868 18 7751
aries-da_nrp (70) 15 1747 16 7994 25 11938 19 7325 43 15442 21 10599 32 10413
BA (1440) 85 175161 301 221066 160 116377 0 0 588 472938 356 230143 20 30038
NG (960) 2 804 59 71042 11 11990 0 0 48 115499 138 194128 0 0
MANETs (150) 29 5744 0 0 20 13648 14 17875 40 23547 29 9525 25 21152
BioRepair (30) 30 457 30 8551 30 105 30 311 30 3258 30 35 30 262
Metro (30) 30 4413 30 1270 30 3341 30 775 30 1795 29 3291 27 12595
ShiftDesign (30) 12 2258 16 5671 28 10696 30 2781 18 12824 27 3371 9 9060
Timetabling (30) 17 11920 15 8026 27 10054 25 17502 23 15419 24 3295 28 8768
EmployeeScheduling (14) 0 0 0 0 9 480 9 506 0 0 0 0 0 0
golomb-rulers (34) 14 642 14 5765 11 1656 12 3451 12 1216 12 436 12 4212
bsg (60) 0 0 10 156 10 4767 10 813 10 465 10 1963 5 16
mis/mds (120) 0 0 44 8968 48 6605 47 6245 45 3853 45 5525 57 15335
course-ass (6) 0 0 2 1225 2 29 4 3226 3 33 2 1 1 6
decomp (10) 0 0 0 0 8 1809 8 4516 0 0 2 2200 0 0
data (68) 1 2 8 1628 0 0 4 2414 13 4044 13 5837 11 2163
dt-problems (60) 37 1712 40 3573 38 2777 59 8697 60 2 60 7 60 113
domset (15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
factor (186) 186 56 186 0 186 710 186 160 186 2 186 0 186 342
factor-mod-B (225) 0 0 225 67 199 39899 225 3243 225 60 225 25 225 344
fctp (35) 2 36 2 0 1 141 6 468 5 940 5 2 12 499
featureSubscription (20) 20 1266 20 2492 20 76 20 112 20 8106 20 941 20 303
frbXX-XX-opb (40) 0 0 0 0 0 0 17 11552 0 0 0 0 6 11343
flexray (9) 5 1697 4 83 4 496 4 296 4 393 4 31 4 50
fome (3) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
graca (100) 20 230 24 3664 97 4687 98 10487 31 21769 93 14428 84 40593
haplotype (8) 0 0 8 202 8 31 8 60 8 2385 8 57 7 4023
garden (7) 4 28 5 1 6 94 6 355 5 1 5 0 6 76
hw32/hw64/hw128 (27) 0 0 2 1 1 217 1 50 8 3470 5 889 10 12063
jXXopt (2040) 1604 32395 1613 36840 1611 34453 1621 58870 1589 51821 1603 42149 1579 64191
keeloq_tasca (4) 0 0 4 424 4 360 4 3019 4 33 4 7 4 54
kullmann (7) 0 0 1 2 1 0 0 0 1 2 1 3 3 3016
lion9-single-obj (1513) 1181 89655 687 4242 1501 12026 1400 105853 1412 113829 1482 62955 1487 120526
logic-synthesis (74) 24 7180 39 5078 49 4750 33 2581 61 11647 48 786 71 708
miplib/neos (79) 18 3516 27 1725 25 2455 25 5479 37 8377 32 6048 38 10631
miplib/other (405) 84 9044 96 7093 80 20989 95 20135 147 36264 123 15349 156 38501
unibo (36) 0 0 3 127 0 0 0 0 3 228 3 77 8 5342
market-split (20) 2 659 4 4750 0 0 4 1575 4 342 4 2670 1 1167
opb/graphpart (31) 0 0 8 2641 22 940 23 7019 12 435 14 4942 24 5211
opb/autocorr_bern (43) 0 0 5 1168 3 1768 3 337 4 3594 3 318 8 2089
opb/sporttournament (22) 0 0 4 667 7 697 4 168 4 23 6 2032 11 3121
opb/edgecross (19) 0 0 3 2869 6 1634 4 1230 6 2899 3 9 12 3984
opb/pb (8) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
opb/faclay (10) 0 0 0 0 0 0 0 0 0 0 0 0 1 960
opb/other (6) 0 0 1 0 1 0 1 0 1 0 1 0 1 2
primes/aim (48) 48 15 48 0 48 0 48 0 48 4 48 0 46 234
primes/jnh (16) 16 16 16 35 16 36 16 11 16 19 16 44 16 53
primes/ii (41) 10 504 21 7087 26 9348 25 12121 23 6874 33 2792 34 5230
primes/par (30) 20 17 20 14 20 2 20 14 20 15 20 31 20 422
primes/other (13) 2 5 2 2 6 5 6 22 6 452 4 204 5 938
routing (15) 15 1030 15 19 15 2 15 17 15 7 15 1 15 26
radar (12) 0 0 6 313 0 0 0 0 6 71 1 127 12 77
synthesis-ptl-cmos (10) 2 0 2 0 8 15 3 27 9 135 8 1186 10 16
testset (6) 6 1529 6 1161 5 81 6 1721 6 0 6 1 6 8
ttp (8) 2 1 2 0 2 0 2 1 2 0 2 0 2 10
vtxcov (15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
wnq (15) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 3 Runtime comparison of various PBO-IHS variants.
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Figure 4 Left: Ratio of solving time spent by PBO-IHS in Min-Hs subroutine for solved benchmarks.
Right: Ratio of constraints seeded on all benchmarks.

overall solving time is spent computing core constraints: on 462 of the 893 instances, only
20% of the time was spent in Min-Hs, and one over 1/3 of the instances 99% of the overall
solving time is spent in PB-Solve-A (marked by the blue line). On the other hand, the
runtimes of Min-Hs dominates on approximately 1/5 of the instances.

Figure 4(right) shows the fractons of constraints that can be seeded over all benchmark
instances. At least one constraint is seeded for 71.4% of the instancess; at least half of all
constraints are seeded for 41.6% of the instances; and all of the constraints are seeded for
33.7% of the instances. Note that while the whole instance is solved directly as an IP through
a single Min-Hs call when all constraints are seeded, we also observed that there are instances
on which the runtime of Min-Hs dominates even though all constraints are not seeded.

5.7 Results: Comparison with a Commercial IP Solver
Finally, we investigate how the prototype implementation of PBO-IHS fares in terms of
runtime performance against CPLEX, one of the de-facto commercial MIP solvers with
a significant number of person years behind it. For a fair comparison with CPLEX, we
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Figure 5 Per-instance runtime comparison of PBO-IHS (x-axis) vs CPLEX (y-axis).

used the CPLEX presolver also before calling PBO-IHS. This eliminates to an extent the
differentiating contribution of the powerful preprocessor of CPLEX in terms of runtime
performance (though it should be noted that CPLEX appears to employ further probing for
e.g. clique inequalities after the presolving stage, which we were unable to employ before
calling PBO-IHS). A per-instance runtime comparison is shown in Figure 5, with more details
per benchmark domain provided in Appendix A. We observe that, while CPLEX fairs better
in the overall number of solved instances, the two solvers exhibit noticeably complementary
performance, relative performance depending on the problem domain considered.

6 Conclusions

We described and implemented a first instantiation of the implicit hitting set approach for
pseudo-Boolean optimization. On one hand, the instantiation is motivated by the great
success of the implicit hitting set approach in the context of maximum satisfiability, which
motivates extending the approach to the more generic context of PBO. On the other hand, the
instantiation is motivated by recent advances in pseudo-Boolean solving as a generalization
of SAT solving, providing efficient unsatisfiable core extraction which is one of the critical
requirements for realizing IHS for PBO. We studied the impact of liftings of various IHS search
techniques from MaxSAT to PBO, and showed through an extensive empirical evaluation
that our IHS PBO solver implementation provides in practice a competitive as well as
complementary approach to pseudo-Boolean optimization.
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A Detailed Results: PBO-IHS vs CPLEX

Table 2 provides a per-instance comparison of the performance of PBO-IHS and CPLEX on
the full benchmark set.

Table 2 Per-domain comparison of PBO-IHS and CPLEX: number of solved instances (#) and
cumulative runtimes over solved instances in seconds (cum.)

PBO-IHS CPLEX
Domain (#instances) # cum. # cum.
10orplus/9orless (156) 156 20309 156 1709
caixa (24) 18 38 24 61
rand.*list (118) 118 878 118 301
area_* (59) 57 10735 59 789
trarea_ac (18) 17 5209 18 47
aries-da_nrp (70) 55 17508 70 2278
BA (1440) 7 17028 761 419659
NG (960) 0 0 238 224058
MANETs (150) 27 13051 61 25757
BioRepair (30) 30 223 30 862
Metro (30) 27 10911 30 2626
ShiftDesign (30) 10 9688 6 7062
Timetabling (30) 28 8019 27 6313
EmployeeScheduling (14) 0 0 13 149
golomb-rulers (34) 12 4669 10 589
bsg (60) 5 16 15 3571
mis/mds (120) 64 26665 58 15127
course-ass (6) 1 8 6 12
decomp (10) 0 0 0 0
data (68) 10 2202 24 3076
dt-problems (60) 47 74 60 358
domset (15) 0 0 0 0
factor (186) 186 348 186 242
factor-mod-B (225) 225 317 216 4204
fctp (35) 12 622 12 936
featureSubscription (20) 20 301 1 2644
frbXX-XX-opb (40) 5 5397 3 3615
flexray (9) 4 69 3 14
fome (3) 0 0 0 0
graca (100) 62 20019 27 14459

PBO-IHS CPLEX
Domain (#instances) # cum. # cum.
haplotype (8) 7 2992 0 0
garden (7) 6 76 6 60
hw32/hw64/hw128 (27) 6 1324 18 5072
jXXopt (2040) 1581 47081 1487 136243
keeloq_tasca (4) 4 124 4 1412
kullmann (7) 3 3016 3 3183
lion9-single-obj (1513) 1487 33403 1480 57923
logic-synthesis (74) 71 767 71 690
miplib/neos (79) 36 9962 58 14578
miplib/other (405) 161 32009 217 50306
unibo (36) 8 4764 8 6826
market-split (20) 0 0 8 6075
opb/graphpart (31) 24 3795 28 715
opb/autocorr_bern (43) 8 1838 8 2180
opb/sporttournament (22) 11 3056 13 3089
opb/edgecross (19) 12 3433 15 6316
opb/pb (8) 0 0 0 0
opb/faclay (10) 1 879 1 1004
opb/other (6) 1 2 3 4106
primes/aim (48) 44 236 46 235
primes/jnh (16) 16 52 16 42
primes/ii (41) 34 5148 34 5060
primes/par (30) 20 369 20 426
primes/other (13) 5 1512 5 976
routing (15) 15 32 15 28
radar (12) 11 62 12 39
synthesis-ptl-cmos (10) 10 17 10 18
testset (6) 6 8 6 12
ttp (8) 2 12 2 4
vtxcov (15) 0 0 0 0
wnq (15) 0 0 0 0
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Propagation of linear constraints has become a crucial sub-routine in modern Mixed-Integer Pro-
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1 Introduction

This paper is concerned with Mixed-Integer Linear Programs (MIPs) of the form

min{cT x | Ax ≤ b, ℓ ≤ x ≤ u, x ∈ Rn, xj ∈ Z for all j ∈ I}, (1)

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and I ⊆ N = {1, . . . , n}. Additionally, ℓ ∈ Rn
−∞ and

u ∈ Rn
∞, where R∞ := R ∪ {∞} and R−∞ := R ∪ {−∞}. For each variable xj , the interval

[ℓj , uj ] is called its domain, which is defined by its lower and upper bounds ℓj and uj , which
may be infinite.
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Surprisingly fast solvers for solving MIPs have been developed in practice despite MIPs
being NP-hard in the worst case [4, 15]. To this end, the most successful method has
been the branch-and-bound algorithm [16] and its numerous extensions. The key idea of
this method is to split the original problem into several sub-problems (branching) which
are hopefully easier to solve. By doing this recursively, a search tree is created with nodes
being the individual sub-problems. The bounding step solves relaxations of sub-problems to
obtain a lower bound on their solutions. This bound can then be used to prune sub-optimal
nodes which cannot lead to improving solutions. By doing this, the algorithm tries to avoid
having to enumerate exponentially many sub-problems. The most common way to obtain a
relaxation of a sub-problem is to drop the integrality constraints of the variables. This yields
a Linear Program (LP) which can be solved e.g., by the simplex method [21].

This core idea is extended by numerous techniques to speed up the solution process. One
of the most important techniques is called constraint propagation. It improves the formulation
of the (sub)problem by removing parts of domains of each variable that it detects cannot lead
to feasible solutions [23]. The more descriptive term bounds propagation or bounds tightening
is used to denote the variants that maintain a continuous interval as domain. Modern
MIP solvers make use of this technique during presolving in order to improve the global
problem formulation [24], as well as during the branch-and-bound algorithm to improve the
formulation of the sub-problems at the nodes of the search tree [1].

In practice, efficient implementations exist in MIP solvers [3, 1] and recently even a
GPU-parallel algorithm [26] has been developed. These are iterative methods, which may
converge to the tightest bounds only at infinity. For such methods, the presence of unbounded
variable domains in the problem formulation makes the quantification of the relative distance
to the final result at a given iteration difficult. (Iterative bounds tightening has a unique
fixed point to which it converges, see Section 2.2.) In turn, this makes it difficult to define an
implementation-independent measure of how much progress these algorithms have achieved
at a given iteration.

In this paper, we address this difficulty and introduce tools to study and compare the
behavior of iterative bounds tightening algorithms in MIP. We show that the reduction of
infinite bounds to some finite values is a fundamentally different process from the subsequent
(finite) improvements thereafter, and thus propose to measure the ability of an algorithm
to make progress in each of the processes independently. We show how the challenge posed
by infinite starting bounds can be solved and provide methods for measuring the progress
of both the infinite and the finite domain reductions. Pseudocode and hints are provided
to aid independent implementation of our procedure. Additionally, the code of our own
implementation is made publicly available.

On the applications side, the new procedure is used to investigate two questions. First,
we analyze to what extent heuristic, tolerance-based stopping criteria as typically imposed
by real-world MIP solvers can cause iterative bounds tightening algorithms to terminate
prematurely; we find that this situation occurs rarely in practice. Second, we compare a
newly developed, GPU-based propagation algorithm [26] to a state-of-the-art sequential
implementation in a real-world setting where both are terminated early; we show that the
GPU-parallel version is even more competitive than originally reported.

The rest of the paper is organized as follows. After presenting the necessary background
and motivation in Section 2, we discuss the properties of bounds propagation and its ability
to perform reductions on infinite and on finite bounds in Section 3. Based on the findings, we
present functions used to measure the progress of bounds tightening algorithms in Section 4.
Lastly, in Section 5, we apply the developed procedure to answer the above-mentioned
questions and present our computational results. Section 6 gives a brief outlook.
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2 Background and Motivation

In Section 2.1, we introduce some basic terminology used in the Constraint Programming
(CP) and MIP communities, related to constraint propagation. Section 2.2 formally presents
bounds propagation of linear constraints alongside some known results from literature that
are relevant for the discussions in the paper. In Section 2.3 we outline the problems that
motivate the paper.

2.1 Constraint Propagation in CP and MIP
In the Constraint Programming (CP) community, constraint propagation appears in a variety
of forms, both in terms of the algorithms and its desired goals [23]. The propagation algorithms
are implemented via mappings called propagators. A propagator is a monotonically decreasing
function from variable domains to variable domains [25]. The goal of most propagation
algorithms is fomalized through the notion of consistency, which these algorithms strive to
achieve. The most successful consistency technique is arc consistency [18]. Multivariate
extension of arc consistency has been called generalized arc consistency [20], as well as domain
consistency [27], and hyper-arc consistency [19]. Informally speaking, a given domain is
domain consistent for a given constraint if it is the least domain containing all solutions to
the constraint (see [23] for a formal definition).

The main idea of bounds consistency is to relax the consistency requirement to only
require the lower and the upper bounds of domains of each variable to fulfill it. There are
several bounds consistency notions in the CP literature [10]. In this paper, we adopt the
notion of bounds consistency from [1, Definition 2.7].

Modern CP solvers often work with a number of propagators which might or might not
strive for different levels of consistency [25]. In this setting, the notions such as greatest
common fixed point (see [9, Definition 4]) and consistency of a system of constraints are often
analysed as a product of a set of propagators. Solvers often focus on optimizing the interplay
between different propagators (e.g., see [25]) to quickly decide feasibility.

In MIP solving, constraint propagation additionally interacts with many other components
that are mostly focused on reaching and proving optimality, see [2, 5, 6, 8] for examples of
different approaches to integrate constraint propagation and MIP. As a result, the role of
constraint propagation in the larger solving process changes and developers are faced with
different computational trade-offs. In practice, propagation is almost always terminated before
the fixed point is reached [1]. In this paper, we are concerned with constraint propagation of
a set of linear constraints, where we explicitly include the presence of continuous variables
and of variables with initially unbounded domains, which frequently occur in real-world MIP
formulations.

2.2 Bounds Propagation of Linear Constraints
A linear constraint can be written in the form

β ≤
n∑

i=1
aixi ≤ β, (2)

where β ∈ R−∞ and β ∈ R∞ are left and right hand sides, respectively, and a ∈ Rn is the
vector of constraint coefficients. Variables xi have lower and upper bounds ℓi ∈ R−∞ and
ui ∈ R∞, respectively.1 We require the following definitions:

1 When x ∈ Z, then ℓ ∈ Z−∞ and u ∈ Z∞, however, because Z ⊂ R, integer variables can be handled the
same way as real ones. In the remainder of the paper, Z will be used only where necessary.
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▶ Definition 1 (activity bounds and residuals). Given a constraint of the form (2) and bounds
ℓ ≤ x ≤ u, the functions α : Rn

−∞,Rn
∞ 7→ R ∪ {−∞,∞} and α : Rn

−∞,Rn
∞ 7→ R ∪ {−∞,∞}

are called the minimum and maximum activities of the constraint, respectively, and are
defined as

α = α(ℓ, u) =
n∑

i=1
aibi with bi =

{
ℓi if ai > 0
ui if ai < 0

, (3a)

and

α = α(ℓ, u) =
n∑

i=1
aibi with bi =

{
ui if ai > 0
ℓi if ai < 0

. (3b)

The functions αj : Rn
−∞,Rn

∞, {1, . . . , n} 7→ R ∪ {−∞,∞} and αj : Rn
−∞,Rn

∞, {1, . . . , n} 7→
R ∪ {−∞,∞} are called the j-th minimum activity residual and the j-th maximum activity
residual of the constraint, and are defined as

αj = αj(ℓ, u, j) =
n∑

i=1,i̸=j

aibi with bi =
{

ℓi if ai > 0
ui if ai < 0

, (4a)

and

αj = αj(ℓ, u, j) =
n∑

i=1,i̸=j

aibi with bi =
{

ui if ai > 0
ℓi if ai < 0

. (4b)

▶ Definition 2 (bound candidate functions). The functions Bj
surplus : Rn

−∞,Rn
∞ 7→ R ∪

{−∞,∞} and Bj
slack : Rn

−∞,Rn
∞ 7→ R ∪ {−∞,∞} are called the bound candidate functions

and are defined as

Bj
surplus(ℓ, u) =

β − αj

aj
, (5a)

and

Bj
slack(ℓ, u) =

β − αj

aj
. (5b)

Then, the following observations are true and can be be translated into algorithmic steps,
see, e.g., [1, 14, 9]:

▶ Observation 3 (linear constraint propagation).
1. If β ≤ α and α ≤ β, then the constraint is redundant and can be removed.
2. If α > β or β > α, then the constraint cannot be satisfied and hence the entire (sub)problem

is infeasible.
3. Let x satisfy (2), i.e., β ≤

∑n
i=1 aixi ≤ β, then for all j = {1, . . . , n} with aj > 0,

ℓnew = Bj
slack(ℓ, u) ≤ xj ≤ Bj

surplus(ℓ, u) = unew, (6a)

and for all j = {1, . . . , n} with aj < 0,

ℓnew = Bj
surplus(ℓ, u) ≤ xj ≤ Bj

slack(ℓ, u) = unew. (6b)
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4. For all j ∈ {1, . . . , n} such that xj ∈ Z,

⌈ℓnew
j ⌉ ≤ xj ≤ ⌊unew

j ⌋ (7)

If the first two steps are not applicable, the algorithm computes the new bounds ℓnew

and unew in Steps 3 and 4. For a given variable j, if ℓnew
j > ℓj , then the bound is updated

with the new value. Similarly, uj is updated if unew
j < uj .

An actual implementation may skip Steps 1 and 2 without changing the result. This is
because for redundant constraints Steps 3 and 4 correctly detect no bound tightenings, and
for infeasible constraints, Steps 3 and 4 lead to at least one variable with an empty domain,
i.e., ℓnew

j > unew
j .

When propagating a system of the type (1) which consists of several constraints, one
simply applies the above steps to each constraint independently. Notice that in such systems,
it is possible for two or more constraints to share the same variables (i.e., coefficients aj

are non-zero in several constraints). Therefore, if a bound of a variable is changed in one
constraint, this can trigger further bound changes in the constraints which also have this
variable. This gives the propagation algorithm its iterative nature, as one has to repeat the
propagation process over the constraints as long as at least one bound change is found. A
pass over all the constraints is also called a propagation round. If no bound changes are found
during a given round, then no further progress is possible and the algorithm terminates. At
this point, all constraints are guaranteed to be bound consistent [1].

This algorithm can be interpreted as a fixed-point iteration in the space of variable and
activity bounds with a unique fixed point [9]; it converges to this fixed point, however not
necessarily in finite time [7]. Additionally, even when it does converge to the fixed point in
finite time, convergence can be very slow in practice [1, 9, 17]. To deal with this, practical
implementations of bounds propagation introduce tolerance-based termination criteria which
stop the algorithm if the progress becomes too slow, i.e., the relative size of improvements on
the bounds falls below a specified threshold. With this modification, the algorithm always
terminates in finite time (but not in worst-case polynomial-time), however, it may fail to
compute the best bounds possible.

To distinguish the above-described approach from alternative methods to compute
consistent bounds (see, e.g., [7] for a method solving a single LP instead), we will use the
following definition:

▶ Definition 4 (Iterative Bounds Tightening Algorithm). Given variable bounds ℓ, u of a
problem of the form (1), any algorithm updating these bounds by calculating ℓnew, unew via
(6a), (6b), and (7) iteratively as described in Observation 3, thus traversing a sequence of
bounds (ℓ, u)1, (ℓ, u)2, . . . is called an iterative bounds tightening algorithm (IBTA).

Note that this definition leaves the flexibility for individual algorithmic choices, for example,
the timing of when bound changes are applied or the order in which the constraints are
processed. If a given algorithm applies the found changes immediately, making them available
to subsequent constraints in the same iteration, it might traverse a shorter sequence of
bounds to the fixed point than the algorithm which delays updates of bounds until the end
of the current iteration (e.g., because it processes constraints in parallel). The ordering of
processed constraints can lead to different traversed sequences because a given bound change
that depends on other changes being applied first might be missed in a given iteration if the
constraint it depends on is not processed first.

CP 2021
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2.3 Motivation

Our motivation for this paper is threefold:

1. Estimating the premature stalling effect of IBTAs: In the context of MINLP, Belotti
et al. [7] propose an alternative bounds propagation algorithm that computes the bounds
at the fixed point directly by solving a single linear program. This approach circumvents
non-finite convergence behavior and shows that the bounds at the fixed point can in theory
be computed in polynomial time.

Nevertheless, in practice, the trade-off between the quality of obtained bounds including
their effect on the wider branch-and-bound algorithm and the algorithm’s runtime makes the
iterative bounds propagation with tolerance-based stopping criteria the most effective method
in most cases, despite its exponential worst-case runtime. The use of stopping criteria still
leaves individual instances or potentially even instance classes susceptible to the following
effect stated by Belotti et al. as a motivation for their LP-based approach, which is also
the motivation for our paper: “However, because the improvements are not guaranteed to be
monotonically non-increasing, terminating the procedure after one or perhaps several small
improvements might in principle overlook the possibility of a larger improvement later on.”
In their paper, no attempt is made to quantify this statement, as likely out-of-scope and
non-trivial to answer.

In this work, we aim to develop a methodology to quantify the overall progress that a
given IBTA achieved up to a given point in its execution. Ideally, we would like to have a
function f , which maps current variable bounds to a scalar value, for example in [0, 100],
which measures the achieved progress. The main difficulty in developing such a function
comes in the form of unbounded variable domains in the input instances (and potentially
during the algorithm’s execution). Observing the values of such a function over the execution
time of the algorithm could then be used to study the behavior of IBTAs on instances of
interest and quantify the effect brought up by Belotti et al., which we call premature stalling
(see Section 5.2 for formal definition). Furthermore, an algorithm-independent f would allow
comparing the behavior of different IBTAs with respect to premature stalling.

2. Performance comparison of different IBTAs in practice: As already motivated by
Definition 4, different IBTAs might traverse different sequences of bounds from the initial
values to the fixed point. Additionally, we stated in Section 2.2 that in practice, iterative
bounds propagation is used exclusively with tolerance-based stopping criteria, meaning that
the algorithm is stopped potentially before reaching the fixed point. The following problem
then arises: for two such algorithms traversing different sequences of bounds that are stopped
before reaching the unique fixed point, how do we judge which one performed better? Perhaps
a more natural way to formulate this question is: in how much time do the two algorithms
achieve the same amount of progress? A function measuring the progress of iterative bounds
propagation as already proposed can be used to answer this question.

As a concrete example, we will compare the following two IBTAs: the canonical, state-
of-the-art sequential implementation, for example from [1], and a GPU-parallel algorithm
recently proposed in [26]. In the preliminary computational study on the MIPLIB 2017 test
set [13] presented in [26], the two algorithms are compared for the propagation to the fixed
point (no tolerance-based stopping criteria). In this work, we will compare the performance
of the two algorithms in a real-world setting, i.e., when terminated before reaching the fixed
point.
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3. Designing stopping criteria: as already stated, the tolerance-based stopping criteria
are crucial for effective IBTAs. Notice that because different IBTAs might traverse different
sequences of bounds, their average individual improvements on the bounds might be different
in size. In fact, the study in [26] shows that on average, the size of improvements by the
GPU-parallel algorithm is smaller than that of the canonical sequential implementation over
the MIPLIB 2017 test set, despite its higher performance in terms of runtime to the fixed
point. An important implication of this effect is that given two such algorithms, a given
stopping criterion might be effective for one of them, but ineffective for the other. In this
context, quantifying the magnitude and distribution of expected improvements of a given
algorithm for a given problem class and its likelihood to prematurely stall, would allow one
to make more informed decisions when designing effective stopping criteria.

Lastly, we believe that gaining insight into the behavior of these algorithms is a motivation
in itself that could potentially benefit future and existing methodologies in the context of
linear constraint propagation.

3 Finite and infinite domain reductions

Any IBTA starts with arrays of initial lower and upper bounds, ℓs ∈ Rn
−∞ and us ∈ Rn

∞,
respectively, and incrementally updates individual bounds towards the uniquely defined
fixed-point bounds which we denote by ℓl and ul. To denote the arrays of bounds at any
given time between the start and the fixed point we simply use ℓ and u and call them current
bounds. Obviously, it holds that ℓs

j ≤ ℓj ≤ ℓl
j and us

j ≥ uj ≥ ul
j for all j ∈ {1, . . . , n}.

Observe that both initial and limit bounds may contain infinite values.

3.1 Reducing Infinite Bounds to Finite Values
Variables that start with infinite value in either lower or upper bound, will either remain
infinite if no bound change is possible or will become finite values. We start with the following
simple observation:

▶ Observation 5. Given a constraint of the form (2) and a given variable j ∈ {1, . . . , n}
with a bound ℓj = −∞ (or uj =∞), the possibility of tightening this bound to some finite
value depends on the signs of coefficients aj , j ∈ {1, . . . , n}, the finiteness of variable bounds
ℓj , j ∈ {1, . . . , n} \ j and uj , j ∈ {1, . . . , n} \ j, and the finiteness of β and β, but not on the
values that these variables take, if they are finite.

Proof. To see the dependence on the sign of coefficients a, let the lower bound of a given
variable j be ℓj = −∞ and let β and αj be finite, β = ∞ and αj = −∞. Then, by (6a)
and (6b), aj > 0 implies ℓnew

j ∈ R > −∞ and the bound is updated. Else, if aj < 0, then
ℓnew

j = −∞ and no bound change is possible.
The dependence on the finiteness of β and β is trivial, while the coefficients a are finite by

problem definition. To see the dependence on the finiteness of variable bounds, consider the
activities αj and αj of a variable j with ℓj = −∞, uj =∞, and ai > 0 for all i ∈ {1, . . . , n}.
If there exists k such that uk = ∞, k ∈ {1, . . . , n} \ j then α = ∞ and consequently ℓj

cannot be tightened. Otherwise, if uk ∈ R for all k ∈ {1, . . . , n} \ j, then α ∈ R and a bound
tightening is possible.

The specific finite values that the variables in (6a) and (6b) take have no effect on the
possibility to reduce an infinite bound to a finite value because arithmetic operations between
finite values again produce a finite value (also aj ̸= 0 by definition) and −∞ < k <∞ for all
k ∈ R. Variables which are restricted to integer values also do not affect this process, as the
operations ⌈ℓj⌉ and ⌊uj⌋ give ℓj , uj ∈ Z and Z ⊂ R. The same argument from above then
applies. ◀
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Notice that the same effect of finite bound changes triggering new bound changes in the
subsequent propagation rounds is also true for infinite domain reductions, hence this process
might also require more than one iteration. Furthermore, these iterations have the following
property:

▶ Corollary 6. Let k ∈ N be the number of iterations a given IBTA takes to reach the fixed
point. Then there is a number c ≤ k, c ∈ N0 such that the first c propagation rounds have at
least 1 reduction of an infinite to a finite bound, and none thereafter. By pigeonhole principle,
c is at most the number of initially infinite bounds.

Proof. The coefficients a and the left- and right-hand sides β and β are constants that do not
change during the course of the algorithm. By Observation 5 the only thing left influencing
the infinity reductions is the finiteness of variable bounds. If no infinite to finite reductions
are made at any given round, then none can be made thereafter. Finite to infinite reductions
are not possible as the algorithm only accepts improving bounds. ◀

In conclusion, the process of reducing infinite bounds to some finite values is independent
and fundamentally different from the incremental improvements of finite values thereafter,
which is driven by the values of the variables in (6b) and (6a). Accordingly, we will measure
the ability of an algorithm to reduce the infinite bounds to some finite values separately from
its ability to make improvements on the finite values of the bounds thereafter.

3.2 Finite Domain Reductions
Our main approach in measuring the progress of finite domain reductions (see Section 4.2)
relies on the observation that the starting as well as the fixed point of propagation is uniquely
defined for a given MIP problem and hence independent from the algorithm used. The
measuring function then answers the following question: for given bounds ℓ and u at some
time during the propagation process, how far have we gotten from the starting point ℓs and
us, relative to the endpoint ℓl and ul. When the bounds of a given variable did not change
during the propagation process, or they are finite at both the start and the end, there is no
difficulty in calculating such a measure. However, when a given variable bound started as an
infinite value but was tightened to some finite value by the end of propagation, special care
is needed to handle this case, which we address in this section.

In Section 2, we discussed how a sequential and a parallel propagation algorithm might
traverse different sequences of bounds during their executions. Let us consider the first round
of two such algorithms, and see what might happen to the bounds which start as infinite
but are tightened during the course of the algorithm. When the sequential algorithm finds a
bound change, it is immediately made available to the subsequent constraints in the same
round. Consequently, if an infinite domain reduction happens in the subsequent constraints,
it may produce a stronger finite value compared to the parallel algorithm which used the
older (weaker) bound information. This serves to show that the first finite values that such
bounds take may not be the same in different IBTAs. Hence they cannot be used safely
to compare finite domain reductions across different implementations. In what follows, we
construct a procedure to compute algorithm-independent reference values for each bound.

▶ Definition 7 (weakest variable bounds). Given an optimization problem of the form (1)
with starting variable bounds ℓs and us, we call ℓj weakest lower bound of variable j if

ℓj = −∞ and no IBTA can produce a finite lower bound ℓj ∈ R, or
ℓj ∈ R and no IBTA can produce a finite lower bound ℓj ∈ R with ℓj < ℓj.
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We call uj weakest upper bound of variable j if
uj =∞ and no IBTA can produce a finite upper bound uj ∈ R, or
uj ∈ R and no IBTA can produce a finite upper bound uj ∈ R with uj > uj.

When both the starting and the limit bounds are finite we have ℓj = ℓs
j resp. uj = us

j

(because all IBTAs only accept improving bounds) and when they are both infinite we have
ℓs

j = ℓl
j = ℓj = −∞ resp. us

j = ul
j = uj =∞. Notice that the cases of ℓs

j ∈ R with ℓl
j = −∞

and us
j ∈ R with ul

j = ∞ are not possible as ℓs
j ≤ ℓl

j and us
j ≥ ul

j . The main challenge in
computing ℓ and u is due to the remaining case of ℓs

j = −∞, ℓl
j ∈ R resp. us

j =∞, ul
j ∈ R. In

what follows, we will extend the notation introduced in Section 2.2 with Bij
slack and Bij

surplus
denoting Bj

slack and Bj
surplus applied to constraint i and variable j, respectively. The procedure

presented in Algorithm 1 computes ℓ and u.

Algorithm 1 The Weakest Bounds Algorithm.

Input: System of m linear constraints β ≤
∑n

i=1 aixi ≤ β, ℓ ≤ x ≤ u

Output: Weakest variable bounds ℓ and u

1: mark all constraints
2: bound_change_found ← true
3: ℓ = ℓ, u = u

4: while bound_change_found do
5: bound_change_found ← false
6: for each constraint i do
7: if i marked then
8: unmark i

9: for each variable j such that aij ̸= 0 do
10: if aij > 0 then
11: ℓnew

j = Bij
slack(ℓ, u)

12: unew
j = Bij

surplus(ℓ, u)
13: else
14: ℓnew

j = Bij
surplus(ℓ, u)

15: unew
j = Bij

slack(ℓ, u)
16: if xj ∈ Z then
17: ℓnew = ⌈ℓnew

j ⌉, unew
j = ⌊unew

j ⌋
18: if ℓj = −∞ and ℓnew

j ∈ R and (ℓj = −∞ or (ℓj ∈ R and ℓnew
j < ℓj)) then

19: ℓj ← ℓnew
j

20: bound_change_found ← true
21: if uj =∞ and unew

j ∈ R and (uj =∞ or (uj ∈ R and unew
j > uj)) then

22: uj ← unew
j

23: bound_change_found ← true
24: if bound_change_found then
25: mark all constraints k such that akj ̸= 0
26: return ℓ, u

The procedure starts by setting ℓ = ℓs and u = us and will proceed to iteratively update
these bounds until they are all weakest bounds. Up to Lines 18 and 21, the procedure is
very similar to the usual bounds propagation: it evaluates (6a), (6b), and (7) on the latest
available bounds for all constraints and variables. As the bounds which start as finite values
are already weakest by definition, the first part of the checks in Lines 18 and 21 makes
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`s ` `l ul u us

Figure 1 Schematic representation of the starting (index s), current (no index) and limit bounds
(index l) for a given variable on the real line. In this example, ℓs = ℓ ∈ R and us = u ∈ R.

sure that these variables are not considered. For bounds that are infinite at the start, the
algorithm checks if the new candidate is finite. If so, the new candidate becomes the weakest
bound incumbent if the current weakest bound is infinite, or the new candidate is weaker
than the current one. This process then repeats in iterations until no further weakenings are
possible. Notice that the constraint marking mechanism, implemented in Lines 1, 7, 8, 24,
and 25 is not necessary for the correctness of the weakest bounds procedure, but as it can
substantially speed up the execution of the algorithm, we include it in the pseudocode.

4 An Algorithm-Independent Measure of Progress

As pointed out in Section 3.1, we will measure the ability of an IBTA to reduce infinite
bounds to some finite values separately from the improvements of finite bounds. Section 4.1
presents the functions measuring infinite domain reductions, while Section 4.2 presents the
functions measuring the progress in finite domain reductions.

As before, we denote the starting bounds of a variable j as ℓs
j and us

j , the weakest bounds
as ℓj and uj , the limit bounds as ℓl

j and ul
j , and the bounds at a given point in time during

the propagation as ℓj and uj . Recall that the following relations hold: ℓs
j ≤ ℓj ≤ ℓl

j and
us

j ≥ uj ≥ ul
j for all j ∈ {1, . . . , n}. Additionally, if ℓj ∈ R, then ℓl

j ∈ R and ℓs
j ≤ ℓj ≤ ℓj ≤ ℓl

j .
Likewise, if uj ∈ R then ul

j ∈ R and us
j ≥ uj ≥ uj ≥ ul

j . Lastly, if ℓs
j ∈ R then ℓj = ℓs

j and if
us

j ∈ R then uj = us
j . Figure 1 illustrates example starting, current, and limit bounds of a

given variable on the real line.

4.1 Measuring Progress in Infinite Domain Reductions
As bounds propagation has a unique fixed point to which it converges, we know the state of
the algorithm at both the beginning and the end (a given bound is either finite or infinite).
Denote by ntotal ∈ N the total number of bounds that change from an infinite to some finite
value between the starting and the limit bounds of the problem, and by ncurrent ∈ N ≤ ntotal

the number of infinite bounds reduced to finite values by a given IBTA at a given point
during its execution:

ntotal = |{j = 1, . . . , n : ℓs
j = −∞, ℓl

j ∈ R}|+ |{j = 1, . . . , n : us
j =∞, ul

j ∈ R}|, (8a)

and,

ncurrent = |{j = 1, . . . , n : ℓs
j = −∞, ℓj ∈ R}|+ |{j = 1, . . . , n : us

j =∞, uj ∈ R}|. (8b)

Then, the progress in infinite domain reductions of the IBTA at that point is calculated as:

P inf = ncurrent

ntotal , ntotal ̸= 0. (9)

Observe that the total number of infinite domain reductions ntotal is algorithm-independent
and can be precomputed from the starting and the limit bounds. Because IBTAs never relax
bounds, P inf is trivially non-decreasing.
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4.2 Measuring Progress in Finite Domain Reductions
The concept of the weakest variable bounds developed in Section 3.2 gives us a natural
starting point for finite domain reductions. As bounds propagation converges towards its
unique fixed point, the endpoint is also well defined. Notice that the bounds which are
infinite at the endpoint, also had to be infinite at the starting point, meaning that no change
was made on this bound. The rest of the bounds are either infinite at the beginning, in which
case we can compute the weakest bound by Algorithm 1, or the bound is finite at both the
start and the end.

Our main approach is to measure the relative progress of each individual bound from
its weakest value towards the limit value. Given a variable j ∈ {1, . . . , n} we will denote by
Pℓj
∈ R and Puj

∈ R the scores which measure the amount of progress made on its lower and
upper bounds ℓj and uj , respectively, at a given point in time. Afterward, we will combine
the scores of all the variable bounds into the global progress in the form of a single scalar
value Pfin ∈ R, which measures the global progress in finite domain reductions at a given
point in time.

For variable j, Pℓj
and Puj

are computed as

Pℓj
=


ℓj−ℓj

ℓl
j
−ℓj

if ℓj > ℓj and ℓj ̸= ℓl
j

0 otherwise
, (10a)

and

Puj =


uj−uj

uj−ul
j

if uj < uj and uj ̸= ul
j

0 otherwise
. (10b)

Given the vectors of scores for individual bounds Pℓ ∈ Rn and Pu ∈ Rn, we calculate Pfin as

Pfin = ∥Pℓ∥1+∥Pu∥1=
∑

j

(Pℓj
+ Puj

), (11)

where ∥·∥1 denotes the ℓ1 norm. It holds that Pℓj
,Puj

∈ [0, 1] and

Pfin ≤ |{j = 1, . . . , n : ℓj ̸= ℓl
j}|+ |{j = 1, . . . , n : uj ̸= ul

j}|. (12)

This maximum score is algorithm-independent and can be precomputed for each instance.
This makes it possible to normalize the maximum score to, e.g., 100%. Again, because IBTAs
never relax bounds, this progress function is trivially non-decreasing.

4.3 Implementation Details
To precompute ℓ and u, we implemented Algorithm 1. To obtain ℓl and ul, any correct bounds
propagation algorithm can be run on the original problem, assuming that it propagates the
problem to the fixed point (no tolerance-based stopping criteria).

Computing the progress measure is expensive relative to the amount of work that bounds
propagation normally performs. Hence, it can considerably slow down the execution and
incur unrealistic runtime measurements. To avoid this effect, we proceed as follows in our
implementation. First, we run the bounds propagation algorithm together with progress
measure computation and record the scores after each round. Then, we run the same bounds
propagation algorithm but without the progress measure calculation and record the time
elapsed to the end of each round. This gives us progress scores and times for each round,
but also the time it took to reach the scores at the end of each round.
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5 Applications of the Progress Measure

In this section, we apply the progress measure in order to answer two questions of practical
relevance. In Section 5.1, we first describe the experimental setup that will form the base for
subsequent evaluations. In Section 5.2 we show that MIP instances in practice rarely cause
IBTAs to stall prematurely, i.e., have very slow progress followed by larger improvements
thereafter, a concern brought up in [7] (see Section 2.3). In Section 5.3, we show that the
newly-developed GPU-based propagation algorithm from [26] is even more competitive in a
practical setting than reported in the original paper.

5.1 Experimental Setup

We will refer to two linear constraint propagation algorithms:

1. gpu_prop is the GPU-based algorithm from [26], and

2. seq_prop is the canonical sequential propagation as described in e.g. [1]. Our imple-
mentation closely follows the implementation in the academic solver SCIP [12].

We use the MIPLIB 2017 test set, which is currently the most adopted and widely used
testbed of MIP instances [13]. This test set contains 1065 instances, however, the open-source
MIP file reader we used had problems with reading 133 instances, leaving the test set at 932
instances. On 72 instances gpu_prop and seq_prop failed to obtain the same fixed point
(due to e.g., numerical difficulties and other problems), and we remove these instances from
the test set as well. Additionally, we impose an iteration limit of 100 for both propagation
algorithms, with 2 instances hitting this limit.

During MIP solving, the case where no bound changes are found during propagation
is valid and common. However, this is of no interest to us here, as we could make no
measurements of progress. There are 310 such instances in the test set. Furthermore,
8 instances with challenging numerical properties showed inconsistent behavior with our
implementations, and we remove these instances from the test set as well. Finally, the test
set used for the evaluations is left with 540 MIP instances.

In terms of hardware, we execute the gpu_prop algorithm on a NVIDIA Tesla V100 PCIe
32GB GPU, and the seq_prop algorithm on a 24-core Intel Xeon Gold 6246 @ 3.30GHz with
384 GB RAM CPU. All executions are performed with double-precision arithmetic.

As we use this test set to measure the progress of propagation algorithms, they were run
until the fixed point is reached with the progress recorded as described in Section 4.3. In this
setting, IBTAs terminate after no bound changes are found at a given propagation round.
What this means is that the last two rounds will both have the same maximum score (no
bound changes in the last round). Because this feature reflects the design of the algorithms,
in the results we assume that the maximum score is reached after the last round, and not
after the second-to-last round. This is equivalent to removing the second-to-last round. On
the other hand, when the (finite or infinite) score does not change its value between two
rounds which are not the last and the second-to-last one, we assume that the score is reached
at the first time when it is recorded.

Due to implementation reasons, we will sample progress after each propagation round of
an algorithm, rather than after every single bound change. Then, we use linear interpolation
to build the progress functions Pfin and P inf and thus obtain an approximation of the true
progress function.
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5.2 Analyzing Premature Stalling in Linear Constraint Propagation
First, we have to quantitatively define the premature stalling effect. The danger it poses is
that the stopping criteria might terminate the algorithm after an iteration with slow progress,
and potentially miss on substantial improvements later on. While infinite domain reductions
are usually easy to find by bounds propagation algorithms, they are nevertheless considered
significant and the algorithm is usually not stopped after an iteration that contains these
tightenings [1]. Accordingly, we will reflect this in our premature stalling effect definition.

We slightly adapt the notation introduced in Section 4.2 and define the progress in finite
domain reductions as a function of time denoted by P : [0, 100]→ [0, 100]. Observe that the
input (time) and output (progress) of this function are normalized to values between 0 and
100. In this notation we assume that P is continuous and twice differentiable, however, in
practice, the progress is sampled only after each propagation round and P built by linear
interpolation. In our implementation, we approximate the derivatives of P by second-order
accurate central differences in the interior points and either first or second-order accurate
one-sided (forward or backward) differences at the boundaries [22, 11]. Additionally, given a
propagation round r, t(r) denotes the normalized time at the end of propagation round r.
All derivates are w.r.t. time: P ′ = d

dtP. We denote by k ∈ N the number of iterations the
propagation algorithm takes to reach the fixed point and by ℓr, ur ∈ Rn the arrays of lower
and upper bounds at iteration r, respectively. Then, the premature stalling effect is defined
as follows.

▶ Definition 8. Let P be a progress function of finite domain reductions for the propagation
of a given MIP instance. Then, the propagation algorithm is said to prematurely stall with
coefficients p, q ∈ R∞≥0 at round r ∈ {2, . . . , k} if the following conditions are true:
1. there does not exist j ∈ {1, . . . , n} such that ℓr−1

j = −∞ and ℓr
j ∈ R,

2. there does not exist j ∈ {1, . . . , n} such that ur−1
j =∞ and ur

j ∈ R,
3. P ′(t(r)) < p, and
4. there exists x ∈ [t(r), 100] such that P ′′(x) > q.

The first two conditions simply state that there were no infinite domain reductions in
round r. To understand the third condition, let p = 0.1 at r. This would mean that the
algorithm is progressing at a rate of 1 percent of progress in 10 percent of the time at r

(recall the normalized domains of P). Taking another derivative and looking at the remainder
of the time interval reveals if this rate will increase (is greater than 0), meaning that there
are bigger improvements to follow than the improvements the algorithm is currently making.
The parameter q ≥ 0 allows quantification of increase in size of these improvements. Also,
recall from Section 4.2 that P is non-decreasing and hence P ′(t) ≥ 0 for all t ∈ [0, 100]. With
this, we can now detect instances where slow progress is followed by a significant increase in
improvements.

Table 1 reports the number of premature stalls in the test set for several different
combinations of parameters p and q. Notice that the 310 instances for which no bound
changes are found cannot stall by definition. Additionally, 57 instances in the test set only
recorded infinite domain reductions, and these instances also cannot prematurely stall by
definition. The results of testing the remaining 432 instances which do record at least one
finite domain reduction for premature stalling are shown in Table 1.

Let us first look into the results for seq_prop. From the first row of the table, we can
see that only 48 instances experience any kind of increase in the second derivative during
the execution, i.e., the improvements get smaller in time for all but 48 instances in the test
set (equivalently, P is concave for all but 48 instances). From the second row, we can see
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Table 1 Number of premature stalls in the test for different values of parameters p and q.

# stalls
p q seq_prop gpu_prop

∞ 0.0 48 44
0.1 0.0 14 18
0.1 0.2 1 0
0.1 0.5 0 0
0.5 0.5 1 0
0.5 2.0 0 0

that among these 48 instances that experience any kind of second derivative increase, 14
experience slow progress of p = 0.1 at least once during their execution. Among these, only 1
instance experiences an increase in second derivative of more than q = 0.2 following the slow
progress of p = 0.1. If we further restrict the increase in the second derivative to q = 0.5,
then no instances are shown to stall prematurely. In the last row we see that even if the slow
progress is relaxed to p = 0.5, there are no instances that record a more significant increase
in the second derivative of 2.0.

Additionally, even though gpu_prop performed similarly to seq_prop with respect to
stalling, we can still observe that it is on average less susceptible to premature stalling than
seq_prop, as it recorded a smaller or equal amount of instances with premature stalling for
all but one parameter combinations.

We conclude that in practice, the premature stalling effect seems to occur only rarely
and on individual instances. This shows that termination criteria based on local progress are
reasonable.

5.3 Analyzing GPU-parallel Bounds Propagation in Practice
As pointed out in Section 2.3, gpu_prop traverses a potentially different sequence of bounds
from the start to the fixed point than seq_prop. Because of this, computational experiments
in [26] report the speedup of gpu_prop over seq_prop for propagation runs to the fixed
point. As bounds propagation is stopped early in practice, we will now use the progress
measure to compare the two algorithms when stopped at different points in the execution.
For each instance in the set, given a progress value x ∈ [0, 100], the speedup of gpu_prop over
seq_prop is computed by tseq_prop

x /tgpu_prop
x , where tx is the wall-clock time the algorithm

takes to reach progress value x.2 Then, the geometric mean of speedups over all the instances
in the test set is reported. The results are shown on Figure 2. When a given instance only
has bound changes in the infinite phase, it is excluded from the finite phase comparisons (57
instances). Likewise, instances with only finite progress are removed from the infinite phase
(164 instances).

As we can see, for the propagation to the fixed point (100 percent progress), gpu_prop is
about 4.9 times faster than seq_prop in finite domain reductions. For the infinite domain
reductions, gpu_prop is a factor of about 5.4 times faster than seq_prop. Next, we can see
that the speedup is minimal at the fixed point, i.e., for any progress value between 10 and 100,
gpu_prop increases its speedup over seq_prop compared to the fixed-point speedup. The

2 For x = 100, we get the identical speedup at the fixed point evaluation as done in [26].
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Figure 2 Speedup of the finite and the infinite domain reductions of gpu_prop over seq_prop
for different percentages of progress made.

maximum speedups of around 7.8 for the finite domain reductions and about 7.0 for infinite
domain reductions are achieved at the progress of roughly 50 percent. Additionally, notice
that in the last few percent of progress there is a steep drop in speedup. This means that
even for very weak stopping criteria which would stop the algorithms at the same point just
before the limit is reached, gpu_prop would significantly increase its speedup over seq_prop.
We conclude that gpu_prop is even more competitive against seq_prop in conjunction with
stopping criteria than for the case of propagation to the fixed point.

6 Outlook

In this work, we proposed a method to measure progress achieved by a given algorithm in
the propagation of linear constraints with continuous and/or discrete variables. We showed
how such a measure can be used to answer questions of practical relevance in the field of
Mixed-Integer Programming.

One question that remains open is to what extent the finite reference bounds produced by
the weakest bounds procedure used here are actually realized by at least one iterative bounds
tightening algorithm. The current procedure only guarantees that they are finite if iterative
bounds propagation can produce a finite bound, and that no iterative bounds propagation
algorithm can produce a weaker bound. A deeper analysis could yield a refined method to
produce weakest bounds that are tightest in the sense that they are actually achieved by at
least one iterative bounds propagation algorithm. This is part of future research and could
provide a stronger version of the framework.

Though our development was described for linear constraints, there are no conceptual
barriers that prevent the notion of weakest bounds to be extended to more general classes
of constraints. We demonstrated how the key issue of unbounded variable domains can be
solved in order to obtain an algorithm-independent measure of progress. In this sense, our
method is also relevant for constraint systems on (partially) unbounded domains, where
normalization can be nontrivial. An important example is the class of factorable programs
from the field of Global Optimization and Mixed-Integer Nonlinear Programming.
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Abstract
Systems of ordinary differential equations (ODEs) and partial differential equations (PDEs) are
extensively used in many fields of science, including physics, biochemistry, nonlinear control, and
dynamical systems. On the one hand, analytical methods for solving systems of ODEs/PDEs mostly
remain an art and are largely insufficient for complex systems. On the other hand, numerical
approximation methods do not yield a viable analytical form of the solution that is often required
for downstream tasks. In this paper, we present an approximate approach for solving systems of
ODEs/PDEs analytically using solvers like Gurobi developed in Operations Research (OR). Our main
idea is to represent entire functions as Bézier curves/surfaces with to-be-determined control points.
The ODEs/PDEs as well as their boundary conditions can then be reformulated as constraints on
these control points. In many cases, this reformulation yields quadratic programming problems
(QPPs) that can be solved in polynomial time. It also allows us to reason about inequalities. We
demonstrate the success of our approach on several interesting classes of ODEs/PDEs.
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1 Introduction

Systems of ordinary differential equations (ODEs) and partial differential equations (PDEs)
are so extensively used that they are the mathematical language of many sciences. The
following are just a few examples. In physics, they are used to describe harmonic motion,
radioactive decay, and propagation of electromagnetic waves [18]. In biochemistry, they
are used to model biological processes ranging from the biosynthesis of phospholipids and
proteins to the growth of cancer cells and viral dynamics [2]. In control theory, they are
used to describe the behavior of dynamical systems and optimal strategies for controlling
them [6]. An abundance of other applications can be found in many other sciences.

Plenty of analytical methods have been developed for solving ODEs/PDEs. These include
standard techniques like separation of variables, the method of characteristics, integral
transform, change of variables, fundamental solutions, and superposition [14], and newer
techniques that utilize Lie groups [13] and Bäcklund transforms [9]. Despite the existence of
many such techniques, the applicability of analytical methods has been restricted to special
classes of systems of ODEs/PDEs such as first-order systems, second-order systems with
constant coefficients, and second-order systems with variable coefficients. A comprehensive
study of ODEs/PDEs amenable to different analytical methods can be found in [14].

Many numerical approximation methods have also been developed to address the lim-
itations of analytical methods. These include the finite element method (FEM) [20], the
finite difference method (FDM) [10], and the finite volume method (FVM) [3]. Although
numerical approximation methods have very general applicability, they too have drawbacks
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of their own. They don’t return a solution in an analytical form. Instead, they return a
solution as a set of values calculated at discrete points on a meshed geometry. This makes
the solution unviable for downstream tasks in which analytical operations may be involved.

While fitting high-order polynomials on the set of values calculated at discrete points
can sometimes salvage an analytical form and enable some downstream derivatives, it is
not a satisfactory method either. This is because enforcing a desired property, such as an
inequality constraint, at the discrete points does not enforce it everywhere. For example,
in a system of ODEs that describes the velocity profile of a robot, enforcing a maximum
velocity constraint on a finite number of discrete time points doesn’t enforce it at all time
points if high-order polynomials are used for interpolation.1

Because of the problems associated with both analytical and numerical approximation
methods, controller design and synthesis problems in many domains still remain very hard.
Such problems involve decision variables in addition to ODEs/PDEs. Typically, the ODEs/P-
DEs can be solved in a “simulation” phase only when decision variables have assigned values.
Neither the analytical nor the numerical approximation method can facilitate the search for
optimal values of the decision variables themselves. For example, in nanoscale photonics,
a set of teflon dielectric cylinders are used to focus electromagnetic power. Given values
for the decision variables, i.e., positions of the dielectric cylinders, the PDEs that describe
the resulting distribution of electromagnetic power can be solved numerically. However, the
optical filter design problem of choosing where to optimally place the dielectric cylinders
themselves is very hard.

In this paper, we present an approximate approach for solving systems of ODEs/PDEs
analytically using solvers like Gurobi developed in Operations Research (OR). Our main
idea is to represent entire functions as Bézier curves/surfaces with to-be-determined control
points. Bézier curves have a number of useful mathematical properties [11]. They can
uniformly approximate any continuous function; their derivatives are also Bézier curves; and
a Bézier curve lies entirely within the convex hull of its control points. Because of their
attractive mathematical properties, Bézier curves have been widely used in many application
domains, including computer graphics [12], computer-aided design [5], path planning [1], and
trajectory planning [16]. Using the Bézier curve/surface representation in our case, we show
that ODEs/PDEs as well as their boundary conditions can be reformulated as constraints on
their control points.

Our proposed approach has several advantages. First, not only does it have the general
applicability of numerical approximation methods but it also produces an analytical form that
is useful for downstream tasks. Such downstream tasks are commonplace in physics-based
machine learning where the principle of least action can be expressed as a second-order PDE,
known as the Euler-Lagrange equation [15], on which further data-driven inferences must be
carried out.

Second, our approach uses control points instead of a discretization of the independent
variables’ domains. For example, consider a function f(t) with t ∈ [0, T ]. Numerical
approximation methods require the discretization of the interval [0, T ]. However, discretization
not only necessitates an increase in the number of discrete points for growing values of T

but also creates a dependency on interpolation methods for values of t between the discrete

1 There exist other numerical approximation methods, called meshfree methods [7], useful for simulations
in which the discrete points can be dynamically created or destroyed. Meshfree methods can also be
combined with FEM, FDM, or FVM to yield hybrid methods [4]. But, in general, they too have the
same drawbacks.
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Figure 1 Illustrates an important property of Bézier curves: A Bézier curve is enclosed entirely
within the convex hull of its control points. Here, the Bézier curve has 4 control points in a
2-dimensional space.

points. In contrast, our approach represents f(t) as a linear combination of Bernstein basis
polynomials on t. The to-be-determined coefficients of the linear combination are its control
points. f(t) is therefore automatically defined for all values of t ∈ [0, T ]. Moreover, the
number of control points depends on the complexity of f(t) and not on the domain size
of t. In fact, some of the benefits of such a representation are used in recent numerical
approximation methods like isogeometric analysis [8].

Third, although our approach uses only a finite number of control points, it allows us
to enforce desired properties at all points on the resulting solution rather than at a set of
discrete points. In particular, our approach also allows for inequalities, e.g., to enforce the
maximum acceleration of a robot at all times. For this reason, we say that our method is
more generally applicable to differential programming.

Fourth, since our approach reformulates ODEs/PDEs and their boundary conditions as
constraints on their control points, they can be combined with other decision variables. This
allows us to cast controller design and synthesis problems as optimization problems that don’t
require expensive simulation. In addition, the nature of the resulting constraints provides
insights into the nature of the ODEs/PDEs, allowing us to draw parallels between the
mathematical theory of ODEs/PDEs and the computational theory of optimization. In fact,
upon reformulation, many interesting classes of ODEs/PDEs yield quadratic programming
problems (QPPs) that can be solved in polynomial time.

In this paper, we demonstrate the success of our approach on several interesting classes
of ODEs/PDEs. However, given the enormous literature relevant to ODEs/PDEs, our paper
can only qualify as a feasibility study in an important direction with preliminary results.

2 Background

In mathematics, Bernstein basis polynomials of degree n are defined to be

Bi,n(t) =
(

n

i

)
ti (1 − t)n−i , i ∈ {0, 1 . . . n},

where
(

n
i

)
is the binomial coefficient equal to n!

i!(n−i)! .
A k-dimensional Bézier curve of degree n is of the form

B(t) =
n∑

i=0
piBi,n(t), t ∈ [0, 1],
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where P = {p0, p1 . . . pn} is the set of n + 1 k-dimensional control points. Therefore, it
is a curve parameterized by t and interpretable as a linear combination of the Bernstein
basis polynomials of degree n. The coefficients of the linear combination are the n + 1
k-dimensional control points.

A Bernstein polynomial B(t) of degree n is a 1-dimensional Bézier curve of degree n.
Therefore, it is a linear combination of the Bernstein basis polynomials of degree n. The
coefficients of the linear combination are n + 1 real numbers acting as 1-dimensional control
points.

Bernstein polynomials and Bézier curves have many useful mathematical properties.
For example, the Weierstrass Approximation Theorem [11] establishes that any continuous
real-valued function defined on the interval [0, 1] can be uniformly approximated by Bernstein
polynomials.

Two other useful properties of Bernstein polynomials and Bézier curves are with respect
to their derivatives and their control points. The derivative of a Bézier curve B(t) of degree
n is a Bézier curve of degree n − 1. In particular,

dB(t)
dt

=
n−1∑
i=0

p′
iBi,n−1(t),

where the control point p′
i = n (pi+1 − pi), for i ∈ {0, 1 . . . n − 1}.

A Bézier curve B(t) is bounded by the convex hull of its control points P for t ∈ [0, 1], as
shown in Figure 1. Intuitively, this is because for any given value of t ∈ [0, 1]: (a) Bi,n(t) ≥ 0
for i ∈ {0, 1 . . . n}, and (b)

∑n
i=0 Bi,n(t) = 1. Therefore, B(t) for t ∈ [0, 1] is interpretable as

a non-negative linear combination of its control points, necessitating its presence in the convex
hull. In particular, B(0) = p0 and B(1) = pn. In the case of Bernstein polynomials, the
control points are 1-dimensional real numbers, and B(t) lies entirely within [inf(P ), sup(P )].

3 Solving ODEs

To solve ODEs/PDEs using Bézier curves/surfaces, we have to develop the general theory
in stride. It is best illustrated through examples and case studies. In this and the next
sections, we apply our proposed methodology to a series of examples that are chosen to be
in increasing order of complexity and generality. Unless stated otherwise, we use the interval
[0, 1] for all independent variables since the Bernstein basis polynomials are also defined
within the same interval.

3.1 First-Order Homogeneous Linear ODEs with Constant Coefficients
An ODE is said to be linear if it is of the form

a0(t)y(t) + a1(t)y′(t) . . . am(t)y(m)(t) + b(t) = 0, (1)

where a0(t), a1(t) . . . am(t) and b(t) are differentiable functions of t, and the functions
y(t), y′(t) . . . y(m)(t) are the successive derivatives of the to-be-determined function y(t).

A first-order linear ODE has m = 1. Moreover, a first-order homogeneous linear ODE
has b(t) = 0. Consider a first-order homogeneous linear ODE with constant coefficients, i.e.,
a0(t) and a1(t) are constants denoted by a0 and a1, respectively. Therefore, the ODE is of
the form

a0y(t) + a1y′(t) = 0. (2)
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(a) 3y(t) + y′(t) = 0; y(0) = 2. (b) y(t) + y′(t) = 0; y(0) = 5.

Figure 2 Shows the solutions of two first-order homogeneous linear ODEs with constant coefficients.
The solutions generated by the Bézier curve method (blue) match the analytical solutions (orange)
exactly. (The blue color is not visible because of the exact match.) The analytical solution for (a) is
y(t) = 2e−3t. The analytical solution for (b) is y(t) = 5e−t. In both cases, 6 control points and 6
test points were used, resulting in a running time of 0.60 s for (a) and 0.45 s for (b).

The above ODE has a known family of solutions of the form {Ce(−a0/a1)t : C ∈ R}. A
particular solution from this family can be identified based on the initial conditions. Consider
the example

3y(t) + y′(t) = 0, (3)

with the accompanying initial condition y(0) = 2.
Suppose we represent y(t) using a 1-dimensional Bézier curve B(t) of degree n and n + 1

to-be-determined control points P = {p0, p1 . . . pn}. By substituting B(t) for y(t) and its
derivative B′(t) for y′(t), the problem reduces to

3
n∑

i=0
piBi,n(t) +

n−1∑
i=0

n(pi+1 − pi)Bi,n−1(t) = 0. (4)

The initial condition reduces to p0 = 2. In essence, this reduced formulation enforces the
polynomial g(t) = 3

∑n
i=0 piBi,n(t)+

∑n−1
i=0 n(pi+1 −pi)Bi,n−1(t) of degree n to be identically

equal to 0. Since this can happen only when all the coefficients of the powers of t are
individually equal to 0, the problem further reduces to linear equalities on the control points.

Although linear equalities can be solved very efficiently, our first attempt fails for the
following reason. We have n + 1 linear constraints coming from g(t) ≡ 0; and we have 1
linear constraint coming from the initial condition. This accounts for a total of n + 2 linear
constraints on n + 1 variables, creating an over-constrained problem that doesn’t necessarily
have a solution.

In a second attempt, we split the constraints to hard and soft constraints. The linear
constraints coming from the initial conditions are retained as hard constraints, while the
linear constraints coming from g(t) ≡ 0 are relaxed to be soft constraints, with a penalty
for violation measured using squared error. Of course, the soft constraints should fully
incentivize enforcing g(t) ≡ 0. Therefore, the squared error is measured on g(t) evaluated at
M ≥ n + 1 test points sampled from the interval [0, 1].

CP 2021
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(a) 2y(t) + y′(t) = 5t − 3; y(0) = 4.

Figure 3 Shows the solution of a first-order non-homogeneous linear ODE with constant coeffi-
cients, when b(t) is a polynomial. The solution generated by the Bézier curve method (blue) matches
the analytical solution (orange) exactly. (The blue color is not visible because of the exact match.)
The analytical solution is y(t) = 27

4 e−2t + 5
2 t − 11

4 . Here, 6 control points and 6 test points were
used, resulting in a running time of 0.61 s.

Let t1, t2 . . . tM be the test points. We formulate the following QPP:

Minimize
p0,p1...pn

M∑
i=1

(g(ti))2 (5)

s.t. p0 = 2.

Solving the QPP yields optimal values of p0, p1 . . . pn, which in turn can be used to
construct the desired B(t) as an approximation for y(t). Figure 2(a) shows the Bézier curve
solution to the above problem. Figure 2(b) shows the Bézier curve solution to another
first-order homogeneous linear ODE with constant coefficients given by

y(t) + y′(t) = 0, (6)

with the accompanying initial condition y(0) = 5.
For the QPP solver, we used CVX, a MatLab R2020b package for specifying and solving

convex programs. We report the CVX running times for all examples discussed in this paper.
All experiments were conducted on a laptop with a 2.8GHz Quad-Core Intel Core i7 processor
and 16GB 2133MHz DDR4 memory. We used the default CVX settings for all experiments.

3.2 First-Order Non-Homogeneous Linear ODEs with Constant
Coefficients

We now examine first-order non-homogeneous linear ODEs with constant coefficients. This
is similar to the previous subsection, except that b(t) is not necessarily 0. We refer to a
non-zero b(t) as the non-homogeneity term.

If b(t) is a polynomial, the formulation using Bézier curves again reduces to a case of
polynomial equivalence, and our proposed methodology continues to be directly applicable.
However, we note that if the degree of b(t) exceeds n, then the number of test points M

should be ≥ deg(b(t)) + 1.
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(a) 2y(t) + y′(t) = sin (30t) − 3; y(0) = 1. (b) 2y(t) + y′(t) = sin (30t) − 3; y(0) = 1.

Figure 4 Shows the solutions of a first-order non-homogeneous linear ODE with constant
coefficients, when b(t) is not a polynomial. The solution generated by the Bézier curve method
(blue) better approximates the analytical solution (orange) with an increasing number of test points.
The analytical solution is y(t) = (1145e−2t + sin (30t) − 15 cos (30t) − 678)/452. In (a), 6 control
points and 6 test points were used, resulting in a running time of 0.38 s. In (b), 6 control points and
20 test points were used, resulting in a running time of 0.57 s.

Consider the following example:

2y(t) + y′(t) = 5t − 3 (7)
y(0) = 4.

The analytical solution of this ODE is given by y(t) = 27
4 e−2t + 5

2 t − 11
4 . Figure 3 shows this

analytical solution and the Bézier curve solution obtained using n = 5 and M = 6. Once
again, the Bézier curve solution provides very accurate results.

If b(t) is not a polynomial, the formulation is not reducible to one of polynomial equivalence.
Nonetheless, our method can still be used since Bézier curves can uniformly approximate
any function [11].

Consider the following example:

2y(t) + y′(t) = sin (30t) − 3 (8)
y(0) = 1.

The non-homogeneity term b(t) is no longer a polynomial and is in fact very oscillatory. The
analytical solution of this ODE is given by y(t) = (1145e−2t+sin (30t)−15 cos (30t)−678)/452.
Figure 4(a) shows that the Bézier curve solution has a large deviation from the analytical
solution when n = 5 and M = 6. However, Figure 4(b) shows that the accuracy of the Bézier
curve solution improves significantly as M increases, i.e., when n = 5 and M = 20.

3.3 Higher-Order Linear ODEs
In this subsection, we discuss higher-order linear ODEs. These are linear ODEs with m > 1.
They can be classified as homogeneous or non-homogeneous, depending on b(t). If b(t) = 0,
the ODE is homogeneous; otherwise, it is non-homogeneous with b(t) referred to as the
non-homogeneity term. We consider two illustrative types of higher-order linear ODEs.

Consider an ODE of the form

a0y(t) + a1y′(t) + a2y′′(t) = 0, (9)

CP 2021
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(a) −6y(t) + y′(t) + y′′(t) = 0; y(0) = 0, y′(0) = 1. (b) 13
t2 y(t)− 5

t y′(t)+y′′(t) = 0; y(1) = 1, y′(1) = 0.

Figure 5 Shows the solutions of two higher-order linear ODEs. (a) shows an ODE with constant
coefficients, and (b) shows an Euler-Cauchy ODE. In (a), the solution generated by the Bézier
curve method (blue) matches the analytical solution (orange) exactly. (The blue color is not visible
because of the exact match.) In (b), the solution generated by the Bézier curve method (blue)
approximates the analytical solution (orange). The analytical solution for (a) is y(t) = 1

5 (e2t − e−3t).
The analytical solution for (b) is y(t) = 0.5t3(2 cos(2 log t) − 3 sin(2 log t)). In (a), 6 control points
and 6 test points were used, resulting in a running time of 0.45 s. In (b), 6 control points and 20
test points were used, resulting in a running time of 0.71 s.

where a0, a1 and a2 are constants. This type of ODE can be solved using the method of
characteristic equations, i.e., by finding the roots of the polynomial a0 + a1λ + a2λ2 = 0 and
using them to form linearly independent solutions of the ODE.

We can apply our Bézier curve method to this class of ODEs as well. This is because the
second derivative d2B(t)

dt2 of a Bézier curve B(t) is also a Bézier curve. If B(t) is of degree n,
d2B(t)

dt2 is of degree n−2. Moreover, the control points of d2B(t)
dt2 are simple linear combinations

of the control points of B(t).
When a0 = −6, a1 = 1 and a2 = 1, the analytical solution is given by y(t) = 1

5 (e2t − e−3t)
for the initial conditions y(0) = 0, y′(0) = 1. Figure 5(a) shows the solution generated by the
Bézier curve method. This solution matches the analytical solution exactly.

Now consider the Euler-Cauchy ODE of the form

q

t2 y(t) + p

t
y′(t) + y′′(t) = 0, (10)

where p and q are constants. This class of ODEs also has well-studied analytical methods
for finding general solutions. When p = −5 and q = 13, the analytical solution is given by
y(t) = 0.5t3(2 cos(2 log t) − 3 sin(2 log t)) for the initial conditions y(1) = 1, y′(1) = 0.
Figure 5(b) shows the solution generated by the Bézier curve method. This solution
approximates the analytical solution fairly well.

The Bézier curve solution of the Euler-Cauchy ODE improves with increasing n and M .
Similarly, the Bézier curve approximations improve with increasing n and M when b(t) is
oscillatory.

4 Solving Systems of ODEs

In this section, we apply our methods to systems of ODEs. In such cases, we have to solve
for a vector of unknown functions ȳ(t) that satisfy differential equations involving their
derivatives. Although systems of ODEs invoke matrices to describe the relationships between
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(a) ȳ′(t) = Aȳ(t); ȳ(0) = (1, 1)⊤. (b) ȳ′(t) = Aȳ(t); ȳ(0) = (1, 1)⊤.

Figure 6 Shows the solutions of a system of ODEs. The solution generated by the Bézier curve
method (blue and green for y1(t) and y2(t), respectively) better approximates the analytical solution
(red and pink, respectively) with increasing n. The analytical solution is ȳ(t) = 1

7 (1, −1)⊤e−t +
2
7 (3, 4)⊤e6t. In (a), 8 control points and 20 test points were used, resulting in a running time of
1.03 s. In (b), 11 control points and 20 test points were used, resulting in a running time of 0.90 s.
(The blue and green colors are not visible because of the exact match.) The columns of A are (2, 4)⊤

and (3, 3)⊤ in that order.

the various unknown functions and their derivatives, they involve only one independent
variable t. We focus our discussion on an example that illustrates the generality of our Bézier
curve method.

Consider the system of ODEs

ȳ′(t) = Aȳ(t), (11)

where ȳ(t) : R → R2 and A is a 2 × 2 matrix of real numbers. We have to solve for
ȳ(t) = (y1(t), y2(t))⊤.

The family of solutions for this system of ODEs is intimately related to the eigenvalues of
A. If A has two distinct real eigenvalues, λ1 and λ2, with corresponding eigenvectors v̄1 and
v̄2, the general solution is given by C1v̄1eλ1t + C2v̄2eλ2t, for constants C1 and C2. If A has
complex conjugate eigenvalues, λ1 ± iλ2, with corresponding eigenvectors v̄1 ± iv̄2, the general
solution is given by C1(v̄1 cos (λ2t) − v̄2 sin (λ2t))eλ1t + C2(v̄1 sin (λ2t) + v̄2 cos (λ2t))eλ1t. If
A has a repeated real eigenvalue λ and the eigenvectors v̄1 and v̄2 are linearly independent,
the general solution is given by C1v̄1eλt + C2v̄2eλt. If A has only one linearly independent
eigenvector v̄, the general solution is given by C1v̄eλt + C2(v̄teλt + η̄3λt), where η̄ is any
solution of (A − λI)η̄ = v̄.

For illustration, suppose A =
(

2 3
4 3

)
. Its eigenvalues are λ1 = −1 and λ2 = 6, with

corresponding eigenvectors v̄1 = (1, −1)⊤ and v̄2 = (3, 4)⊤. When accompanied by the initial
condition ȳ(0) = (1, 1)⊤, the analytical solution is ȳ(t) = 1

7 (1, −1)⊤e−t + 2
7 (3, 4)⊤e6t.

We can also solve for ȳ(t) using our Bézier curve method. The idea is to represent it
as a Bézier curve B(t) with 2-dimensional control points. If B(t) is chosen to be of degree
n, it has n + 1 to-be-determined control points P = {p̄0, p̄1 . . . p̄n}. Using the test points
t1, t2 . . . tM , we formulate the following QPP:

CP 2021



53:10 Differential Programming via OR Methods

Minimize
p̄0,p̄1...p̄n

M∑
i=1

ϵ2
i (12)

s.t. B(0) =
(

1
1

)
∀1 ≤ i ≤ M :

(
−ϵi

−ϵi

)
≤ B′(ti) − AB(ti) ≤

(
ϵi

ϵi

)
.

The constraints in this problem are linear since B(t) and B′(t) yield linear combinations of
the to-be-determined control points when evaluated at a specific t.

Figure 6 shows the solutions generated by the Bézier curve method. The solutions
approximate the analytical solution very well; and the accuracy increases with increasing n

and M .

5 Solving PDEs

In this section, we apply our methods to PDEs. In such cases, we have multiple independent
variables; and the required function is a surface in high-dimensional space. The differential
equations specifying the characteristics of the required function can involve its partial
derivatives. We generalize our Bézier curve method to the Bézier surface method. For
illustration, we focus our discussion on solving PDEs for a function f(t, u) on two independent
variables t and u.

A k-dimensional Bézier surface B(t, u) of degrees nt × nu is characterized by the k-
dimensional control points pi,j , for 0 ≤ i ≤ nt and 0 ≤ j ≤ nu. It is given by

B(t, u) =
nt∑

i=0

nu∑
j=0

pi,jBi,nt
(t)Bj,nu

(u), (13)

where Bi,nt
(t) and Bj,nu

(u) are the Bernstein basis polynomials. The partial derivatives of
B(t, u) are given by

∂B(t, u)
∂t

= nt

nt−1∑
i=0

nu∑
j=0

(pi+1,j − pi,j)Bi,nt−1(t)Bj,nu(u)

∂B(t, u)
∂u

= nu

nu−1∑
j=0

nt∑
i=0

(pi,j+1 − pi,j)Bi,nt
(t)Bj,nu−1(u)

Bézier surfaces have attractive mathematical properties equivalent to those of Bézier
curves [17]. These include their ability to approximate any surface with a sufficient number
of control points, being closed under the operations of differentiation, and being entirely
within the convex hull of their control points. For a function f(t, u) represented as a Bézier
surface B(t, u) of degrees nt × nu, there are (nt + 1) × (nu + 1) to-be-determined control
points. Evaluating B(t, u) at a specific test point (t, u) yields a linear combination of these
control points that can be easily incorporated into the formulation of a QPP.

Consider the following example PDE:

ft(t, u) + fu(t, u) + 2 = 0 (14)
f(t, 0) = t2,

where ft(t, u) and fu(t, u) denote the partial derivatives of f(t, u) with respect to t and u,
respectively, and f(t, 0) = t2 is a boundary condition.
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(a) ft(t, u) + fu(t, u) + 2 = 0; f(t, 0) = t2.
(b) ft(t, u) − 4fuu(t, u) = 0; f(0, u) =
6 sin (πu), f(t, 0) = 0, f(t, 1) = 0.

(c) ft(t, u) − 4fuu(t, u) = 0; f(0, u) =
6 sin (πu), f(t, 0) = 0, f(t, 1) = 0.

(d) ft(t, u) − 4fuu(t, u) = 0; f(0, u) =
6 sin (πu), f(t, 0) = 0, f(t, 1) = 0.

Figure 7 Shows the solutions of some PDEs. The solutions generated by the Bézier surface
method are good approximations to the analytical solutions. The quality of the solutions increases
with the number of test points and the degrees used in the Bézier surface. In (a), the analytical
solution is f(t, u) = 2u + (t − u)2. In (b)-(d), the analytical solution is f(t, u) = 6 sin (πu)e−4π2t. In
(a), 4 × 4 control points and 17 test points were used, resulting in a running time of 2.36 s. In (b),
3 × 3 control points and 10 test points were used, resulting in a running time of 1.85 s. In (c), 6 × 6
control points and 37 test points were used, resulting in a running time of 2.33 s. In (d), 11 × 11
control points and 122 test points were used, resulting in a running time of 20.45 s. In (a) and (d),
the Bézier surface solution is an exact match to the analytical solution.

Using the test points (t1, u1), (t2, u2) . . . (tM , uM ), we formulate the following QPP:

Minimize
pi,j :0≤i≤nt,0≤j≤nu

M∑
l=1

(ϵ2
l + ε2

l ) s.t. (15)

∀1 ≤ l ≤ M : − ϵl ≤ ∂B(t, u)
∂t

+ ∂B(t, u)
∂u

+ 2 ≤ ϵl

∀1 ≤ l ≤ M : − εl ≤ B(tl, 0) − t2
l ≤ εl.

Our test points are chosen from [0, 1] × [0, 1]. Unlike the initial conditions in ODEs that were
imposed as hard constraints at specific points, the boundary conditions in PDEs typically
involve entire subspaces. For example, the boundary condition f(t, 0) = t2 involves all
t ∈ [0, 1]. While we can express this condition as a hard constraint equating two polynomials,
it risks posing an over-constrained problem. Therefore, we include it as a soft constraint in
the objective function, with each test point contributing a term to it.
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(b) vmax = 4 m/s.

Figure 8 Shows the result of applying our Bézier curve method to the motion profile problem.
The orange curves are the optimal velocity profiles derived from physical interpretation. The blue
curves are close approximations produced by our method. In both cases, 40 control points were used
for the approximation. In both (a) and (b), L = 12 m, amax = 4 m/s2 and amin = −4 m/s2. In (a),
vmax = 8 m/s, and in (b), vmax = 4 m/s.

Figure 7(a) shows the result of our method for the above PDE with nt = 3, nu = 3 and
M = 17. The result is an exact match to the known analytical solution f(t, u) = 2u+(t−u)2.

We now consider a popular Heat Equation widely used in physics [18]. With Dirichlet
boundary conditions, the PDE is as follows:

ft(t, u) − 4fuu(t, u) = 0 (16)
f(0, u) = 6 sin (πu)
f(t, 0) = 0, f(t, 1) = 0.

Here, fuu(t, u) refers to the second partial derivative ∂2f(t,u)
∂u2 . The analytical solution is given

by f(t, u) = 6 sin (πu)e−4π2t.
Figures 7(b)-(d) show the results of our method for the Heat Equation with different

values of nt, nu and M . The accuracy improves with increasing degrees and number of test
points. In fact, an exact match to the analytical solution is achieved relatively quickly, as
shown in Figure 7(d).

6 Differential Programming with Inequalities

In the foregoing sections, we demonstrated the viability of our approach on various kinds
of ODEs and PDEs. As already outlined in the Introduction, we conducted this feasibility
study in anticipation of reaping the many benefits of our approach compared to existing
methods. In this section, we show one such benefit in allowing the use of inequalities.

Inequalities and differential operators are commonplace in robotics, physics, and hybrid
systems, among many other areas of science and engineering. For example, in robotics, a
robot might have a maximum acceleration or deceleration capability that is posed as an
inequality involving the second derivative of its motion profile. Existing analytical techniques
are not capable of handling inequalities; and existing numerical techniques do not produce
an analytical solution that may be required for downstream tasks. However, our Bézier curve
method is viable in such situations.
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Consider the following simple motivating example. Suppose a robot is required to travel
a distance L in a straight line between two points A and B. Suppose it is required to start at
A and end at B with 0 velocities; and suppose it has maximum velocity vmax ≥ 0, maximum
acceleration amax ≥ 0 and minimum acceleration amin ≤ 0. The goal is to minimize the
traversal time T . Intuitively, the optimal solution is to start with maximum acceleration
amax and stop with maximum deceleration |amin|. In between, the robot should cap off at
the maximum velocity vmax. The two possible scenarios are illustrated in Figure 8.

Stated purely mathematically, the differential programming problem involves inequalities
and is as follows:

Find ℓ(t) : [0, T ] → R and minimum T s.t. (17)
∀t : ℓ′(t) ≤ vmax

∀t : amin ≤ ℓ′′(t) ≤ amax

ℓ(0) = 0, ℓ(T ) = L

ℓ′(0) = 0, ℓ′(T ) = 0.

As such, solving this mathematical problem without the physical interpretation is not
straightforward even from the perspective of techniques available in calculus. This is
primarily because of the inequalities imposed on the derivatives of continuous functions.

In contrast, our Bézier curve method solves this problem efficiently since inequalities
are naturally allowed in OR solvers. Figure 8 shows the Bézier curve solutions for ℓ(t), the
distance function that represents the distance covered at time t starting from A, for the two
possible scenarios. (See [19] for more details on this approach to solve the motion profile
problem and its generalization to the multi-robot scenario.)

We also note that our Bézier curve method is not just any polynomial-fitting method.
General polynomial-fitting methods cannot enforce global conditions on a function since they
are required to hold for all t. In our method, the convex hull property of Bézier curves is
invoked to ensure that satisfying inequalities at only the control points entails that they are
also globally satisfied.

7 Discussion

There are many anticipated benefits of our approach since it casts differential operators in the
language of OR, and consequently, in the language of search. Many optimization problems in
science and engineering that may not be directly amenable to analytical methods can instead
be solved programmatically using OR solvers. In turn, powerful OR solvers like Gurobi
are scalable to millions of variables. They also employ efficient parallelization techniques.
Moreover, since OR is already being studied in relation to constraint programming (CP)
and artificial intelligence (AI), our framework paves the way for combining the strengths
of variational techniques used in calculus, primal-dual techniques used in OR, constraint
propagation techniques used in CP, and heuristic search techniques used in AI.

Many problems in the real world can also benefit from rendering differential operators
in the language of search. In addition to scalability and reasoning with inequalities, this
reformulation allows us to introduce extra decision variables. Testing and verification
of complex systems involving ODEs/PDEs can be done via highly scalable search-based
methods instead of prohibitively expensive simulation-based methods. Optimization problems
in computational physics, e.g., how to optimally place a set of teflon dielectric cylinders to
focus electromagnetic power, can be solved using search-based methods after rendering the
PDEs of electromagnetism in the language of OR.

CP 2021



53:14 Differential Programming via OR Methods

8 Conclusions and Future Work

In this paper, we presented an OR-based approach for differential programming to address the
drawbacks of existing analytical and numerical methods. Analytical methods mostly remain
an art and are largely insufficient for complex systems. Numerical approximation methods
do not yield a viable analytical form of the solution that is often required for downstream
tasks. Our main idea was to represent entire functions as Bézier curves or Bézier surfaces
with to-be-determined control points. The ODEs/PDEs as well as their boundary conditions
can then be reformulated as constraints on these control points. In many cases, we showed
that this reformulation yields QPPs that can be solved efficiently. We also demonstrated the
use of our approach in differential programming with inequalities.

More generally, our work facilitates search-based methods for solving problems that
involve differential operators and sets the stage for combining the strengths of variational
methods used in calculus and search-based pruning methods used in OR, CP and AI. There
are many avenues of future work based on the foregoing discussions. We are also interested
in the idea of representing local regions of functions using separate Bézier curves/surfaces
and “stitching” them together under conditions of continuity to achieve more efficiency.
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Abstract
Constraint acquisition can assist non-expert users to model their problems as constraint networks.
In active constraint acquisition, this is achieved through an interaction between the learner, who
posts examples, and the user who classifies them as solutions or not. Although there has been
recent progress in active constraint acquisition, the focus has only been on learning satisfaction
problems with hard constraints. In this paper, we deal with the problem of learning soft constraints
in optimization problems via active constraint acquisition, specifically in the context of the Max-CSP.
Towards this, we first introduce a new type of queries in the context of constraint acquisition, namely
partial preference queries, and then we present a novel algorithm for learning soft constraints in
Max-CSPs, using such queries. We also give some experimental results.
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1 Introduction

Constraint programming (CP) is a powerful paradigm for solving combinatorial problems,
with successful applications in various domains. The basic assumption in CP is that the
user models the problem and a solver is then used to solve it. One of the major challenges
that CP has to deal with is that of efficiently obtaining a good model of a real problem
without relying on experts [21, 33, 23, 22]. As a result, automated modeling and constraint
learning technologies attract a lot of attention nowadays, and a number of approaches based
on Machine Learning have been developed [31, 18, 17].

An area of research in CP towards this direction is that of constraint acquisition where
the model of a constraint problem is acquired (i.e. learned) using examples of solutions
and non-solutions [8, 7, 2, 32]. Constraint Acquisition can be passive or active. In passive
acquisition, examples of solutions and non-solutions are provided by the user and based on
these examples, the goal is to learn a set of constraints that correctly classifies the given
examples [3, 5, 29, 2, 8]. In active or interactive acquisition the system interacts with an oracle,
e.g. a human user, while acquiring the constraint network [24, 6, 37, 8]. State-of-the-art
active constraint acquisition systems like QuAcq [4], MQuAcq [42] and MQuAcq-2 [41] use
the version space learning paradigm [30], extended for learning constraint networks. They
learn the target constraint network by proposing examples to the user to classify them as
solutions or not [6, 8, 37]. These questions are called membership queries [1].

Although constraint learning has focused on satisfaction problems, soft constraints,
within constraint optimization frameworks such as (weighted) Max-CSP, have also been
considered [15, 43, 18, 12] as part of the wider literature on learning preferences [19, 36].
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In [34, 9] ML techniques are exploited in order to infer constraint preferences from given
solution ratings. Rossi and Sperduti [35] extend these methods so that the scoring function is
estimated via an interactive process where high-scoring assignments are posted as queries to
the user, who then ranks them according to her preferences. Campigotto et al. [14] consider
combinatorial utility functions expressed as weighted combinations of terms.

Techniques for computing minimax optimal decisions have also been developed [10, 11, 44].
[27] uses weighted first-order logical theories to represent constrained optimization problems.
Dragone et al. [20] exploits comparison queries in a context where preferences are modeled
by individual variables. In [28] MAX-SAT models that can be probably approximately
correct (PAC) are learned for combinatorial optimization. Preference elicitation methods for
Incomplete Soft Constraint Problems (ISCPs) [25] and Distributed Constraint Optimization
Problems (DCOPs) [39, 38] have also been studied.

More closely related to the framework of constraint acquisition are the works of Vu and
O’Sullivan [45, 46, 47]. However, all these works concern passive constraint acquisition. In
this paper, we deal with the problem of learning Max-CSPs via active constraint acquisition.
To the best of our knowledge, there is no study on learning soft constraints in this context.
We first introduce a new type of queries in this context, namely (partial) preference queries,
inspired by works on preference elicitation [16]. Such a query posts two examples to the user
and asks her to specify if either of them is preferable or if she is indifferent between the two.
We then describe an algorithm that, driven by the user’s replies to preference queries, is
able to learn all the soft constraints appearing in a Max-CSP. We highlight the differences
between learning soft constraints within our proposed framework and standard constraint
acquisition of hard constraints and give preliminary experimental results.

2 Background

The vocabulary (X, D) is the common knowledge shared by the user and the system. It is a
finite set of n variables X = {x1, ..., xn} and a set of domains D = {D(x1), ..., D(xn)}, where
D(xi) ⊂ Z is the set of values for xi.

A constraint c is a pair (rel(c), var(c)), where var(c) ⊆ X is the scope of the constraint,
while rel(c) is a relation between the variables in var(c) that specifies which of their assignments
satisfy c. |var(c)| is called the arity of the constraint. A constraint network is a set C

of constraints on the vocabulary (X, D). A constraint network that contains at most one
constraint on each subset of variables (i.e. for each scope) is called normalized. Following
the literature on constraint acquisition, we will assume that the target constraint network is
normalized.

An example eY is an assignment on a set of variables Y ⊆ X and it belongs to DY =∏
xi∈Y D(xi). If Y = X, the example e is called a complete example. Otherwise, it is called

a partial example. An example eY is rejected (or accepted) by a constraint c iff var(c) ⊆ Y

and the projection evar(c) of eY is not in (or is in) rel(c). A complete assignment that is
accepted by all the constraints in C is a solution of C. sol(C) denotes the set of solutions
of C. An assignment eY is a partial solution of C iff it is not rejected by any constraint
in C. Note that such a partial assignment is not necessarily part of a complete solution.
κC(eY ) denotes the set of constraints in C that reject eY , while λC(eY ) denotes the set of
constraints in C that satisfy eY .

Besides the vocabulary, the learner is given a language Γ consisting of bounded arity
constraints. The constraint bias B is a set of constraints on the vocabulary (X, D), built
using the constraint language Γ. The bias is the set of all candidate constraints from which
the system can learn the target constraint network.
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In ML, the classification question asking the user to determine if an example eX is a
solution to the problem or not, is called a membership query ASK(e). The answer to such
a query is positive if e is a solution and negative otherwise. A partial membership query
ASK(eY ), with Y ⊂ X, asks the user to determine if eY ∈ DY is a partial solution or not.
Following the literature on constraint acquisition, we assume that all queries are answered
correctly by the user.

In active constraint acquisition, the system iteratively generates a set E of complete or
partial examples, which are labelled by the user as positive or negative. A constraint network
C agrees with E if C accepts all examples in E labelled as positive and rejects those labelled
as negative. The acquisition process has converged on the learned network of constraints
CL ⊆ B iff CL agrees with E and for every other network C ⊆ B that agrees with E, we
have sol(C) = sol(CL).

2.1 Max-CSP
A Max-CSP is a quadruple P = (X, D, Ch, Cs), with X being the set of variables, D the
set of domains , Ch being the set of hard constraints that have to be satisfied mandatorily,
and Cs being the set of soft constraints whose satisfaction should be maximized, called
soft constraints. The optimal solution to a Max-CSP maximizes the number of satisfied
soft constraints, while satisfying all the hard constraints. In a weighted Max-CSP each soft
constraint ci ∈ Cs is associated with a positive real value (a weight) wi and the optimal
solution maximizes the total sum of the satisfied constraints’ weights.

As in learning a standard CSP, it is important to be able to determine whether the version
space has converged, or not. If this is indeed the case, the learning system will stop posting
queries as the user has an exact characterization of her target problem. But convergence
must be defined in a different way compared to the standard case. We now define the target
constraint network and the convergence problem in the context of constraint acquisition of
soft constraints in Max-CSPs.

▶ Definition 1. The target soft constraint network CsT is the constraint network that
correctly states the preferences of the user in the problem she has in mind.

▶ Definition 2. Given a bias B being able to represent the target soft constraint network
CsT , the system has converged to CsT iff ∀c ∈ B, ChL |= c ∨ ∃c′ ∈ CsL | c′ |= c w.r.t. ChL,
with ChL and CsL being the learned networks of hard and soft constraints respectively.

Hence, the system converges to the target network CsT when all the constraints that are
still in the bias B are implied by ChL or by a constraint we have already learned w.r.t. ChL.

3 Partial Preference Queries

In active constraint acquisition, the interaction between the learner and the user is established
via membership queries. This process can be used while learning Max-CSPs to acquire any
hard constraints that may be present in the problem, but membership queries cannot be used
to acquire soft constraints, as such constraints are allowed to be violated in both solutions
and non-solutions.

As a result, several other types of queries have been considered in preference learning.
For example, the user can be asked to associate a precise desired value to each presented
solution [35]. As another example, a comparison query posts two examples to the user and
asks her to state which of them she prefers [16, 26]. To be precise, a comparison query
posts two complete assignments eX and e′

X to the user, and the possible answers to such a
query are:
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1. eX ≻ e′
X : the user prefers eX to e′

X ,
2. eX ≺ e′

X : the user prefers e′
X to eX ,

3. eX ∼ e′
X : the user is indifferent between eX and e′

X .

Such queries are easier for the user to answer compared to other types used in preference
elicitation. We now introduce partial preference queries as a variant of comparison queries.
Specifically, in a partial preference query, denoted as PrefAsk(), we can have the following
cases regarding the two examples included in the query:
1. Both examples are (partial) assignments eY , e′

Y over the same set of variables Y ⊆ X. In
this case, the query is similar to a comparison query, generalized so that the assignments
can be partial.

2. One of the examples is eY , with Y ⊆ X, and the other one is eY ′ , with Y ′ ⊂ Y . That
is, the second example is a projection of the first one on some of its variables, which
means that both examples share the same assignment in the variables in Y ′, while the
first example includes additional variable assignments (the variables in Y \ Y ′). Hence,
the answer of the user in this case can either be eY ∼ eY ′ or eY ≻ eY ′ .

Let us now demonstrate the use of preference queries through a typical scenario from the
literature [14]. Consider a house sales system suggesting candidate houses according to their
characteristics. Assume that we have several variables, including the price of the house, its
total area, whether it has a garden, whether it has a parking spot, the construction year,
etc. Now assume that the preferences of the user are: 1. to have a parking spot, 2. the total
area of the house to be ≥ 100m2. Now consider a partial preference query consisting of the
following examples:

House #1: Construction year = 2000, parking spot = “yes”, garden = “no”
House #2: Construction year = 2004, parking spot = “no”, garden = “no”

In this case the examples in the query are both partial assignments on the same variables,
and the user would prefer the first one (i.e. House #1), because it satisfies the requirement
to have a parking spot. Now consider the following partial preference query:

House #1: Construction year = 2000, parking spot = “yes”, garden = “no”
House #2: Construction year = 2000, garden = “no”

This is a case where the second example is a projection on the assignment of the first one.
Again, the user would prefer House #1, because it satisfies the requirement to have a parking
spot. Hence, it “offers greater satisfaction” of the preferences compared to House #2.

Now assume we have:
House #3: Construction year = 2000, parking spot = “no”, garden = “no”

If the system asks the user to compare House #2 and House #3 the user would answer
that she is indifferent, as no additional requirement is satisfied by House #3. This is due
to the fact that this type of preference queries is asking the user to state if the additional
information offered by House #3 helps satisfy the preferences to a greater degree, and is not
a comparison between 2 different examples (i.e. Houses).

A query posted to the user must give the system more information that it already has.
So now we define the notion of informative queries.

▶ Definition 3. A (partial) preference query q is called irredundant (or informative) iff the
answer of the user to q is not predictable. Otherwise, it is called redundant. The answer of
the user to a query is predictable when the satisfied constraints from CsL and B by the two
examples imply that λCsT

(e) ⊃ λCsT
(e′) or λCsT

(e) = λCsT
(e′).
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4 Learning Soft Constraints

In this section, we present our proposed approach for learning Max-CSPs. We first detail the
differences between the acquisition of soft constraints within our framework and standard
active constraint acquisition, and then present our algorithm. We then present our proposed
algorithm, PrefAcq, in detail.

4.1 Differences with Constraint Acquisition of hard constraints
In our proposed method the entire network is learned in two separate steps:
1. The hard constraints (if any) are learned via a standard constraint acquisition algorithm.

Only membership queries are used in this step, while the soft constraints do not affect
the answers of the user.

2. The soft constraints representing the preferences of the user are learned via our proposed
algorithm. Only preference queries are used in this step, but as we explain, the examples
generated must satisfy the already learned hard constraints.

Although in the context of standard constraint acquisition, learning hard constraints is
well defined, some things differ when acquiring soft constraints. Let us first recall how active
constraint acquisition algorithms operate. They typically comply with the following generic
procedure:
1. Generate an example eY in DY and post it as a query to the user.

a. If the answer is positive, update the version space, removing from the bias B the
constraints rejecting the example.

b. If the answer is negative, search for one or more constraints of CT that reject the
example eY , via partial membership queries.

2. If not converged, return to step 1.

In more detail, once a generated example eY is classified as negative, the system discovers
the scope of one of the violated constraints, as follows. It successively decomposes eY to
a simpler problem by removing entire blocks of variables from the example while posting
partial queries to the user. If after the removal of some variables the answer of the user to the
partial query posted is “yes”, then it has discovered that the removed block contains at least
one variable from the scope of a violated constraint. Then the acquisition system focuses
on this block. When, after repeatedly removing variables, the size of the considered block
is 1, then this variable surely belongs to the scope of a violated constraint. A logarithmic
complexity in terms of the number of queries posted to the user is achieved by splitting. In
each decomposition step the set of variables is approximately split in half.

Our proposed approach uses a similar technique. We exploit the 2nd type of partial
preference queries described above to locate the scope of satisfied soft constraints in a
generated example. That is, we repeatedly post a query comparing an example eY with its
projection on a subset of variables Y ′ ⊂ Y . The 1st type of partial preference queries is used
to find the specific relation of the constraint, after the scope has been located.

Let us now detail the differences between standard learning of hard constraints and
learning of soft constraints.

4.1.1 Violation vs. satisfaction of constraints
A main difference is that in standard constraint acquisition, when trying to find a hard
constraint via membership queries, it is the violation of constraints that drives the search.
This is because the violation of a constraint results in a negative answer by the user, which
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forces the system to continue searching. On the other hand, in a preference query, it is the
satisfaction of constraints that drives the search process. This is because the preference of
one example over another means that more constraints are satisfied in the former compared
to the latter, which will force the system to continue searching for these constraints.

4.1.2 Information derived from user answers
In standard constraint acquisition, the procedure to find the scope of one or more violated
constraints exploits the fact that the information that is derived from the answer to a
membership query ASK(eY ) concerns the variables in Y , and only them. That is, the answer
will inform us about the existence or not of a violated constraint c with var(c) ⊂ Y . In a
preference query, when comparing an example eY to its projection on a subset of variables
Y ′ ⊂ Y , the answer of the user gives information about the variables in Y \ Y ′. That is,
the answer will inform us about the existence or not of a satisfied soft constraint c with
var(c) ⊂ Y ∧ ∃x ∈ var(c) | x ∈ Y \ Y ′. Hence, if the answer is that the user is indifferent
between the examples, any constraint c′ with var(c′) ⊂ Y ∧ ∃x ∈ var(c′) | x ∈ Y \ Y ′ has to
be removed from B because it certainly does not belong to CsT (if it did belong then the
user would have preferred eY ).

4.1.3 Top-down vs. bottom-up
Because of the above, another important difference lies in the algorithmic approach. Standard
constraint acquisition algorithms follow a top-down procedure when searching for constraints
to learn. They post membership queries to the user while successively decomposing the
initial example. As we will explain in the next section, our algorithm for Max-CSPs also
performs a top-down decomposition of the initial query, but crucially, no queries are posted
while this decomposition takes place. Once this process is finished, having decomposed the
query as much as possible, the algorithm continues in a bottom-up fashion, with preference
queries being posted to guide the search for satisfied soft constraints.

Example 1 shows the series of queries posted by our method to locate the scope of a
constraint.

▶ Example 1. Assume that the vocabulary (X, D) given to the system is X = {x1, ..., x8}
and D = {D(x1), ..., D(x8)} with D(xi) = {1, ..., 8}, the target network of soft constraints
CsT is the set {c37, c38} and B = {cij | 1 ≤ i < j ≤ 8}, with |B| = 28. Also, assume that
we have a complete example which satisfies all the constraints in B. Table 1 shows the
preference queries posted to the user until the scope of one of the two constraints in CsT

has been found.
In a process explained below, our method recursively creates sub-examples by splitting

the example, approximately in half, until it creates a sub-example with only one variable
assignment. Assuming that this sub-example is e{x1}, we will now search for a constraint
that is satisfied by e{x1}. As no constraint c exists in B with var(c) = {x1}, we will go back
to search in e{x1,x2}, by posting the query PrefAsk(e{x1},e{x1,x2}) to the user. As the user
will answer that she is indifferent between the two examples (because none of the target
constraints is satisfied by them), we will first remove c12 from B, as it is definitely not in
CsT , and then will continue adding variables to the examples and posting queries. The user’s
answer to the third query will be that the second example is preferable to the first (because
both target constraints are satisfied by e{x1,...,x8}). Hence, we find that at least one variable
of the scope of a satisfied constraint from CsT is in Y \ Y ′, i.e. in {x5, ..., x8}.
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Table 1 Searching for a soft constraint via preference queries, in Example 1.

# Preference query answer information we get
1. e{x1} vs e{x1,x2} ∼ no satisfied constraints, c12 removed from B

2. e{x1,x2} vs e{x1,...,x4} ∼ no satisfied constraints, c13, c14, c23, c24 re-
moved from B

3. e{x1,...,x4} vs e{x1,...,x8} ≺ at least one satisfied constraint with var(c) ⊂
{x1, ..., x8} ∧ ∃x ∈ var(c) | x ∈ {x5, ..., x8}

4. e{x1,...,x4} vs e{x1,...,x5} ∼ no satisfied constraints here, c15, c25, c35, c45
removed from B

5. e{x1,...,x5} vs e{x1,...,x6} ∼ no satisfied constraints, c16, c26, c36, c46, c56 re-
moved from B

6. e{x1,...,x6} vs e{x1,...,x8} ≺ at least one satisfied constraint with var(c) ⊂
{x1, ..., x8} ∧ ∃x ∈ var(c) | x ∈ {x7, x8}

7. e{x1,...,x6} vs e{x1,...,x7} ≺ x7 ∈ var(c)
8. e{x7} vs e{x1,x7} ∼ no satisfied constraints, c17 removed from B

9. e{x1,x7} vs e{x1,...,x3,x7} ≺ at least one satisfied constraint with var(c) ⊂
{x1, ..., x3, x7} ∧ ∃x ∈ var(c) | x ∈ {x2, x3}

10. e{x1,x7vse{x1,x2,x7} ∼ no satisfied constraints, c27 removed from B

11. e{x1,x2,x7vse{x1,...,x3,x7} ≺ x3 ∈ var(c)

Then, trying to discover the complete scope, again we will decompose the projection
of the example on this discovered set of variables {x5, ..., x8} until we reach a sub-example
with the fewest variables possible. However, in each query posted now, both examples will
include the variables that have already been searched, because one (or more) variable(s) of
the sought scope may be among them. For instance, in the 4th query both the examples
include the assignments of variables {x1, ..., x4} in which we have already searched. But
although we know that there is no satisfied constraint c ∈ CsT with var(c) ∈ {x1, ..., x4}, it
is possible that one or more variables among {x1, ..., x4} participate in the sought scope (as
is actually the case with both c37 and c38).

In query #6 the set of variables to search in is narrowed to {x7, x8}. As we will explain,
this query (and query #11) will not be actually posted because it is redundant. We only
include it here to make the example easier to understand. With query #7, we will find
that x7 is in the scope of a constraint. Then we will start searching again, with the same
reasoning as before, in order to find the remaining variables of the scope, knowing that they
are in {x1, ..., x6}.

During this process, each query includes, in both examples, the assignment of the variable
in the sought scope that we have already found (i.e. the assignment of x7). Including the
assignment of x7 means that the answer of the user to the query posted will now depend only
on the presence or absence of the other variable of the scope in the two examples. Hence, if
x3 is present in one of the examples and absent from the other, the former example will be
preferred. After a few queries we will find scope {x3, x7} and then we will continue searching
for more constraints.

4.2 Description of PrefAcq
PrefAcq (Algorithm 1) is a novel active learning algorithm for soft constraints. It starts
by setting the learned network CsL equal to the empty set (line 1). Then, it iteratively
generates examples (line 3) in which it will search for satisfied soft constraints via the function
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SearchSC (line 5) until it detects convergence at line 4. Each example generated must be a
solution to the problem, i.e. to satisfy all the hard constraints. Also, it must satisfy at least
one of the candidate soft constraints in the version space, i.e. at least one constraint from B,
so that the version space is reduced with each generated example.

Algorithm 1 The PrefAcq Algorithm.

Input: Ch, B, X, D (Ch: The set of the hard constraints, B: the bias, X: the set of
variables, D: the set of domains)

Output: CsL: a constraint network
1: CsL ← ∅;
2: while true do
3: Generate e in DY , with Y ⊆ X, accepted by Ch s.t. λB(eY ) ̸= ∅;
4: if e = nil then return “CsL converged”;
5: SearchSC(e, ∅, Y , ∅, true);

Function SearchSC (Algorithm 2) is used to search for satisfied soft constraints in the
example generated. It finds all the constraints from CsT that are satisfied in the example
given. It recursively decomposes the example as much as possible, until a sub-example with
the minimum number of variables (typically just one) is reached, as in Example 1.

Then SearchSC starts the bottom-up search for satisfied constraints that rewinds the
recursive decomposition of the initial example, with more variables taken into account step
by step. In this way, it exploits the information that can be derived via the preference
queries, i.e. for a preference query PrefAsk(eY , eY ′), with Y ′ ⊂ Y , the answer of the user will
reveal if ∃c ∈ CsT | var(c) ∈ Y \ Y ′. SearchSC starts posting queries when the example with
minimum number of variables is reached and then goes bottom-up so that in any subsequent
query we will already have derived all the information we can in eY ′ before we search in
Y \ Y ′. For example, in Example 1, when query 3 is posted to the user, we already know
that there are no satisfied constraints from CsT in {x1, x2, x3, x4}.

In more detail, SearchSC takes as input an example e, three sets of variables R, Y , S and
a Boolean variable ask_query. In each call, S contains variables which we have found to be
in the scope of a satisfied constraint, for which we seek the rest of the variables. The set
Y is the one in which we will search for satisfied constraints. R contains the variables that
SearchSC has already searched in previous calls. The Boolean variable ask_query is set to
true if a query is needed to be posted and to false if the query may be redundant. True is
returned if a constraint has been found and false otherwise. In the first call to SearchSC
in PrefAcq, we have R = S = ∅. Also, Y is set to the assigned variables in the example
generated and ask_query = true.

First, SearchSC initializes the boolean variable found_flag to false and the set Q to
R ∪ S (lines 2-3), i.e. the variables in which we have already searched in previous recursive
calls (R) and the variables we have found to be in the scope we seek (S). The set Q stores
the variables that will be present in both the partial examples posted to be compared by
the user. It is empty in the first call. If the projection of the example e on Q ∪ Y (i.e. the
variables in which we have already searched and the ones we are searching in the current
recursive call) does not satisfy more constraints from B than its projection on Q, then there
is no point searching for a satisfied constraint with at least one variable of its scope in Y .
Hence, false is returned in this case (line 4). Otherwise, at line 5 the set Y is split in two
balanced parts, with |Y1| = ⌊|Y |/2⌋ and then the function recursively calls itself with Y = Y1,
reducing the set of variables to be searched. Notice that when splitting Y at line 5 we ensure
that if |Y | is not even, Y2 will contain one more variable than Y1. This is important because
otherwise the algorithm would never terminate because of the recursive call at line 6.
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Algorithm 2 SearchSC: Searching for soft constraints.

Input: e, R, Y , S, ask_query (e: the example, R, Y, S: sets of variables, ask_query: a
boolean variable)

Output: found_flag: returns true if a constraint is found, false otherwise
1: function SearchSC(e, R, Y , S, ask_query)
2: found_flag ← false;
3: Q← R ∪ S;
4: if λB(eQ) = λB(eQ∪Y ) then return false;
5: split Y into < Y1, Y2 > such that |Y1| = ⌊|Y |/2⌋ and Y2 = Y \ Y1;
6: if |Y1| > 0 then found_flag ← SearchSC(e, R, Y1, S, true);
7: if ∃c ∈ λCsL(eQ∪Y ) | ∃var(c) ∩ Y2 ̸= ∅ then
8: c← pick random c ∈ λCsL(eQ∪Y ) s.t.var(c) ∩ Y2 ̸= ∅ ;
9: for each xi ∈ var(c) do

10: found_flag ← SearchSC(e, R, Y \ {xi}, found_flag ∨ ask_query )
∨found_flag;

11: return found_flag;
12: if λB(eQ∪Y1) = λB(eQ∪Y ) then return found_flag;
13: ask_query ← (ask_query ∨ found_flag);
14: if ask_query ∧ PrefAsk(eQ∪Y , eQ∪Y1) = (eQ∪Y ∼ eQ∪Y1) then
15: B ← B \ λB(eQ∪Y );
16: return found_flag;
17: if |Y2| > 1 then SearchSC(e, R ∪ Y1, Y2, S, false);
18: else
19: if SearchSC(e, ∅, R ∪ Y1, S ∪ Y2, true) = false then
20: CsL ← CsL∪ FindSC(e, S ∪ Y2);
21: return true;

In case the example eQ∪Y satisfies constraints that are already in CsL, with at least one
variable in Y2, we call SearchSC recursively for each subset of Y created by removing one of
the variables of the scope of such a constraint (lines 7-11). This is done to ensure soundness,
as we now explain.

Ensuring Soundness. Before continuing with the description of the algorithm, let us clarify
an important issue. It is possible that when SearchSC has focused on a partial example in a
set of variables Y and posts a preference query including this example, there may already
exist satisfied constraints from CsL (i.e. constraints we have already learned) with scopes
having at least one variable in Y2, i.e. in the set of variables in which we search. Consider the
running example. After the system finds the constraint c37 from example e, it will continue
searching. After finding that x8 is in the scope of a constraint we seek, it will now search in
Y2 = {x1, ..., x7} for the rest of the variables in the same scope. However, the already learned
constraint c37 is satisfied in the projection of e on {x1, ..., x7}. This will affect the answers
of the user in the subsequent queries and will mislead the algorithm. As a result, instead
of learning scope {x3, x8}, it will also include x7 in the learned scope, which is incorrect,
making the algorithm unsound.

To resolve this problem, SearchSC does the following: For each satisfied constraint in
CsL, with var(c) ⊂ Y ∧ var(c) ∩ Y2 ̸= ∅, it recursively searches in partial examples created
by removing one of the variables in var(c). This guarantees that any constraint c′, with
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var(c′) ⊂ Y ∧ var(c′) ∩ Y2 ̸= ∅ that will be learned is indeed in CsT . As our assumption is
that the constraint network is normalized, at least one variable appears in var(c) but not in
var(c′), meaning that by removing this variable, the algorithm will be able to search in an
example where c is not satisfied while c′ is. Therefore, it will be able to learn c′, without c

affecting the answers of the user to the preference queries posted.
With this method, the system exploits the fact that for any satisfied constraint c′ ∈ CsT

which we have not already learned, we have var(c) \ var(c′) ̸= ∅ for every c ∈ CsL. This
is true because of the assumption that the target constraint network is normalized. In our
example, SearchSC will search in the two sets of variables created by removing one of the
variables in the scope of the learned constraint c37, i.e. {x1, x2, x4, ..., x7} and {x1, ..., x6}.
Constraint c37 is not satisfied in the projection of e in either of these sets of variables, so
eventually the algorithm will discover that x3 is the other variable it seeks, and learn c38.

We now continue with the description of the algorithm. A preference query is posted
to the user at line 14, when the example cannot be simplified any more. The examples
compared are eQ∪Y and eQ∪Y1 , meaning that the information we get from the answer of the
user regards the variables in Y2, which is the set of variables that belong to Y but not to
Y1. As Y1 is previously given as Y to the recursive call at line 6, we definitely have already
searched in there. So, searching now in Y2, we finish searching in Y . The preference query is
posted only if it is not redundant (checks at lines 12,13), e.g. query 6 in the running example
will not be actually posted because the answers to previous queries (queries 3-5) imply the
user’s answer. From query 3 we know that there is at least one satisfied constraint with a
variable of its scope in {x5, ..., x8}, and from queries 4-5 we know that this variable is not in
{x5, x6}, so it is certain that it is in {x7, x8}, and the relevant query can be avoided. This is
what the check in line 13 does, with the Boolean variable ask_query (given as a parameter)
denoting whether we know that at least one satisfied constraint exists in Y and found_flag

specifying whether a constraint has been already found in any recursive call until now or not
(i.e. if a satisfied constraint was found in Y1).

If the answer to the query is that the user does not prefer any example, then the satisfied
constraints in B[Q ∪ Y ] are removed from B and false is returned (lines 15,16). Otherwise,
if we have reached line 17, we know that Y2 contains at least one variable from a satisfied
constraint from CsT that we have not learned yet, because the preference query of type 2 can
only have two answers: Either the user is indifferent, or she prefers the example containing
more variables. If |Y2| > 1, then SearchSC is recursively called with R = R ∪ Y1 and Y = Y2,
to continue searching in Y2 (line 17). Notice that ask_query is set to false, because we now
know that a constraint certainly exists in Y2. So, in the next recursive call (where Y2 will be
given as Y ) we know that if no constraint is found in any sub-call, then the query does not
have to be posted. With ask_query set to false in a recursive call, we know that Y contains
at least one variable of the scope. So, if the variable is not found in Y1, we know it is in
Y2. found_flag will show us if it is found in Y1 or not in the check of line 13, as in query
6 of the running example where we know that there is a variable of the scope we seek in
Y = {{x5, ..., x8}} (so in this recursive call we have ask_query = false) and no constraint
has been found in Y1 because of queries 4-5. In case |Y2| = 1, we know that it is in the scope
of the constraint we seek because the user answered that she prefers the example having Y2
instantiated. Thus, SearchSC is recursively called with R = ∅, Y = R ∪ Y1 and S = S ∪ Y2,
to search for more variables of the scope in R ∪ Y1 (line 19).

If no more variables are discovered at a recursive call, then S ∪Y2 is the scope we seek, so
FindSC is called to find the specific constraint, which is then added to CsL (line 20). Finally,
having reached this point means that a constraint has been found either by this call or by a
recursive call, so true is returned.
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4.2.1 Finding the specific relation
In order to find the specific relation of the constraint sought, in the scope found by SearchSC,
two functions are used, FindSC and FindSC-2. FindSC is the main function used to find
the specific constraint, after a scope has been located, while FindSC-2 is used under certain
circumstances, in case there is any constraint c in CsL, with var(c) ⊂ S, that is satisfied by
the examples posted to the user, affecting her answers and preventing FindSC from learning
the specific relation. If this is the case, the constraint may not be learned via the main loop
of FindSC, so another technique is used in FindSC-2.

FindSC (Algorithm 3) takes as parameters e and S, where e is the example in which
SearchSC located the scope of a satisfied constraint from CsT , and S is that scope. It posts
partial preference queries of the 1st type to find the specific relation. It returns the soft
constraint found to be in CsT . The main idea is to compare example e to an example e′ that
satisfies at least one candidate constraint that e also satisfies, but not all such constraints.
In this way, we can shrink the set with the candidate constraints after each query.

Algorithm 3 FindSC:

Input: e, S (e: the example, S: the scope of the soft constraint we seek)
Output: c: the constraint found

1: function FindSC(e, S)
2: ∆← {c ∈ B | var(c) = S};
3: B ← B \∆;
4: ∆← λ∆(eS);
5: while true do
6: Generate e′ in DS accepted by Ch, s.t. λCsL

(e′) = λCsL
(e) ∧ λ∆(e′) ̸= λ∆(e) ∧

λ∆(e′) ̸= ∅;
7: if e′ ̸= nil then
8: answer ← PrefAsk(e′, e);
9: if answer = (e ≻ e′) then ∆← κ∆(e′);

10: else
11: found← false;
12: if ∃c ∈ λB(e′) | var(c) ⊂ S then
13: for each xi ∈ S do
14: found← SearchSC(e, ∅, S \ {xi}, true ) ∨found_flag;
15: if found = false then
16: ∆← λ∆(e′);
17: else break;
18: if ∃c ∈ CsL | var(c) ⊂ S ∧ |∆| > 1 then ∆← FindSC-2(S, ∆);
19: pick random c ∈ ∆; return c;

FindSC first initializes the set ∆ to the candidate constraints, i.e. the constraints from B

with scope S that are satisfied by e, and removes them from B (lines 2-4) because after the
constraint is found no other constraint with scope S can exist in CsT , given our normalization
assumption. In line 5, FindSC enters its main loop in which it posts preference queries to
the user. In line 6, a partial example e′ is generated, to be compared to eS , that is accepted
by Ch and satisfies fewer constraints from ∆ than eS , but at least one. On the way example
e′

S is generated, if there is no satisfied constraint c ∈ CsT with var(c) ⊂ S that will affect
the answer of the user, then whatever the answer of the user is, at least one candidate
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constraint will be eliminated. This is because if the user is indifferent between the examples,
the satisfied constraints from eS that are not satisfied by e′

S are removed (line 16), while if
the user prefers eS , the satisfied constraints by e′

S cannot contain the one we seek, so they
are removed (line 9).

In order to make sure that there is no satisfied constraint c ∈ CsT with var(c) ⊂ S in the
examples eS and e′

S that will affect the answer of the user on which example is preferable,
the system tries to generate an example that satisfies the same constraints in CsL as eS .
However, there are two cases that this may not be possible and special handling is required.

First, when the generated example e′
S may satisfy a not yet learned constraint in CsT .

To handle this, if there are candidate constraints from B, with a scope subset of S, that
are satisfied by e′

S (line 12), FindSC checks if any of them is in the target network, in lines
13,14. This is done, by calling SearchSC in all the examples eS\xi

, ∀xi ∈ S, in a technique
similar to the one used in lines 6-10 of SearchSC. If at least one constraint is found to be in
the target network, the system returns on generating a new example in line 6, as no useful
information can be derived from the answers of the user with the current example.

The second case is when there exists an already learned constraint c (i.e. in CsL), with
var(c) ⊂ S. This may affect the answers of the user, preventing FindSC from generating
an example e′

S with the necessary properties, and thus making it not possible to learn the
specific relation. Specifically, the reason that such an example may not be generated in
line 6, although all the constraints in ∆ are not yet equivalent w.r.t Ch, is the existence
of constraint(s) c ∈ CsL with a scope var(c) ⊂ S, that may not allow the generation of an
example e′ accepted by Ch, with λCsL

(e′) = λCsL
(e) ∧ λ∆(e′) ̸= λ∆(e) ∧ λ∆(e′) ̸= ∅.

Let us give an example: Assume that ∆ = {c1, c2}, and thus e ∈ sol(c1)∩sol(c2). Also, we
have constraints c3, c4 ∈ CsL with var(c3), var(c4) ⊂ S and we have sol(c3) = sol(c1)\sol(c2)
and sol(c4) = sol(c2) \ sol(c1)

In this case, if we want to generate an example e′ with λ∆(e′) ̸= λ∆(e) ∧ λ∆(e′) ̸= ∅,
e′ will satisfy either c1 or c2, and this will affect the user preferences in the query in line
8, which makes it not possible to use the answer to find which of c1, c2 is in CsT . So, in
order to have an informative query in line 8, we must be able to generate an example e′ s.t.
λCsL

(e′) = λCsL
(e) along with the rest of the properties, which we cannot in this case.

Also, another case is where there may be a constraint c ∈ CsL accepted by e that cannot
by accepted by any example e′ with the desired properties.

To deal with such cases, function FindSC-2 is called in line 18, to find the constraint we
seek, or to prove that all constraints in ∆ are equivalent w.r.t the hard constraints.

FindSC-2 (Algorithm 4) has two main loops, to cover all different cases where a constraint
with a scope subset of S exists in CsL. The first loop is in lines 2-16 and the second loop is
in lines 17-31. Each one deals with different cases. They both remove constraints from ∆
that provably cannot be in CsT . FindSC-2 returns the final ∆ with all constraints being
equivalent w.r.t. the hard constraints of the problem.
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Algorithm 4 FindSC-2:

Input: S, ∆ (S: the scope of the soft constraint we seek, ∆: the set containing the constraints
that may belong to CsT )

Output: ∆: the set containing the constraints that may belong to CsT

1: function FindSC-2(S, ∆)
2: while true do
3: Generate e, e′ in DS accepted by Ch, s.t. λCsL

(e′) = λCsL
(e) ∧ λ∆(e′) ̸= λ∆(e) ∧

λ∆(e′), λ∆(e) ̸= ∅;
4: if e′ = nil ∨ e = nil then break;
5: found← false;
6: if ∃c ∈ λB(e) | var(c) ⊂ S then
7: for each xi ∈ S do
8: found← SearchSC(e, ∅, S \ {xi}, true ) ∨found_flag;
9: if ∃c ∈ λB(e′) | var(c) ⊂ S then

10: for each xi ∈ S do
11: found← SearchSC(e′, ∅, S \ {xi}, true ) ∨found_flag;
12: if found = false then
13: answer ← PrefAsk(e′, e);
14: if answer = (e ∼ e′) then ∆← ∆ \ ((λ∆(e) ∪ λ∆(e′)) \ (λ∆(e) ∩ λ∆(e′));
15: else if answer = (e ≻ e′) then ∆← λ∆(e) \ λ∆(e′);
16: else ∆← λ∆(e′) \ λ∆(e);
17: while true do
18: Generate e in DS accepted by Ch, s.t. ∅ ⊂ λ∆(e) ⊂ ∆ ∧ λCsL

(e) ̸= ∅;
19: if e ̸= nil then
20: answer ← PrefAsk(eS , evar(λCsL

(e)));
21: if answer = (eS ∼ evar(λCsL

(e))) then ∆← κ∆(eS);
22: else
23: found← false;
24: if ∃c′ ∈ λB(e) | var(c′) ⊂ S ∧ var(c′) ⊃ var(c) then
25: for each xi ∈ S do
26: found← SearchSC(e, ∅, S \ {xi}, true ) ∨found_flag;
27: if found = false then
28: ∆← λ∆(e);
29: else break;

return ∆;

In more details, in the first loop, a partial example eS is generated (line 3), that is
accepted by Ch and satisfies fewer constraints from ∆ than eS , but at least one.

The main idea is the following. The system generates two new examples e, e′ s.t. each
one satisfies a different subset of ∆ and the same subset of CsL. Next, these examples are
compared, eliminating parts from ∆ from the candidate constraints in a repetitive process,
depending on the answer of the user on which example is preferable. If one is preferable
then only the constraints satisfied only by that example stay in ∆. If the user is indifferent
between the two, then the examples satisfied by one example and not by the other are
removed from ∆.

If the system cannot generate such a pair of examples, because e.g. all examples satisfying
a (different) subset of ∆ also satisfy a (different) subset of CsL, then it tries to generate a new
example eS , satisfying at least one constraint from ∆ but not all, satisfying also a constraint
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c ∈ CsL with var(c) ⊂ S, if one exists. Then it posts a preference query comparing the
example eS with its projection in var(c), in order to find out if the constraint(s) in ∆ that are
satisfied are in the target network. If the user is indifferent between the examples, it means
that the constraints in ∆ satisfied by eS are not in the target network and are removed.
Otherwise, only these constraints remain in ∆.

If no example can be generated, then the system can return randomly a constraint from
∆ in line 19 of FindSC, because they are all equivalent w.r.t. Ch.

5 Experimental Evaluation

We first detail the experimental setting.
Experiments were run on an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz with 16 GB of
RAM
The maxB heuristic [42] was used for query generation, altered to fit the context of soft
constraints. maxB normally focuses on examples violating as many constraints from B

as possible. But it now focuses on examples satisfying as many constraints from B as
possible. The best such example (according to maxB) found within 1 second is returned,
even if not proved optimal. Also, bdeg was used for variable ordering. The variable
appearing in the most constraints in B is chosen [40]. Random value ordering was used.
We evaluated our algorithm in the extreme case where CsL is initially empty, meaning that
we have no background knowledge. This results in a large number of queries. However,
in real applications it is common to have background knowledge and use it e.g. by giving
a frame of basic constraints.
We evaluate our algorithm on learning the soft constraints, while hard constraints are
given by the user. If the hard constraints are unknown too, a constraint acquisition
algorithm like QuAcq [4], MQuAcq [42] or MQuAcq-2 [41] can be used to learn them
before using PrefAcq to learn the soft constraints.
We measure the size of the learned network CsL, the total number of queries #queries,
the average time per query T̄ and the total cpu time of the acquisition process T . The
time measured is in seconds. PrefAcq was run 5 times on each benchmark. The means
are presented along with the standard deviation .

We used the following benchmarks:

Random. We generated two classes of random Max-CSPs with 50 variables and domains
of size 10. The first instance consists of 12 hard and 100 soft constraints, while the second
consists of 122 hard and 30 soft constraints. All the hard ones are ̸= constraints, while the
soft are among {̸=, >, <}. The bias was initialized with 7,350 constraints, using the language
Γ = {=, ̸=, >, <,≥,≤}.

Radio Link Frequency Assignment Problem. The RLFAP is the problem of providing
communication channels from limited spectral resources [13]. We used a simplified version of
the RLFAP [13], with 50 variables having domains of size 15. The target network contains
100 hard and 25 soft constraints. B contains 12,250 constraints from the language of 2
distance constraints ({|xi − xj | > y, |xi − xj | = y}) with 5 different possible values for y.

Exam Timetabling Problem. We used a simplified version of the exam timetabling problem
from the Elect. Eng. Dept. of UOWM, Greece. We considered 24 courses, and 2 weeks of
exams, meaning that there are 10 possible days for each course to be assigned. We assumed
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that there are 3 timeslots in each day. This resulted in a model with 24 variables and
domains of size 30. There are hard ̸= constraints between any two courses, assuming that
only one course is examined during each time slot. Also, hard constraints prohibit courses of
the same semester being examined on the same day. 30 soft constraints from the language
Γ = {̸=, >, <, |xi−xj | > y, |xi−xj | < y}, capture the lecturers’ and the students’ preferences
about the examination of specific courses. We built a bias with 5,796 constraints from the
language(Γ = {≠, =, >, <,≥,≤, |xi − xj | > y, |xi − xj | < y, |⌊xi/3⌋ − ⌊xj/3⌋| > y}) with 5
different possible values for y. This resulted in a bias containing 5,796 constraints in total.

Note that although all the benchmarks we used are binary (i.e. their constraint network
consists of binary constraints only), our proposed method works of constraints of any
arity, as long as it is bounded, as mentioned in Section 2. However, it does not work on
global constraints, but neither does any active constraint acquisition algorithm, as they are
unbounded, which means the bias should have an exponential size on the number of variables
of the problem.

Table 2 Results of PrefAcq.

Benchmark |CsL| #q T̄ Ttotal

Random122-30 30 ± 0 859 ± 25 0.03 ± 0.001 27.29 ± 0.78
Random12-100 100 ± 0 2234 ± 65 0.02 ± 0.001 39.43 ± 1.06
RLFAP 25 ± 0 621 ± 26 0.33 ± 0.02 209.26 ± 12.56
Exam TT 30 ± 0 751 ± 13 0.19 ± 0.02 146.54 ± 16.30

Table 2 presents the results of PrefAcq. We see that the number of queries is proportional
to the number of constraints learned. Also, comparing the two random problems, we see that
although the number of queries increases when learning more soft constraints, the average
time between two queries is about the same. This is because the number of queries depends
only on the number of soft constraints we have to learn and on the size of B, while the
waiting time depends on the time taken for query generation. As both random problems
are easy to solve, queries are generated very fast. In contrast, in the RLFAP and the Exam
Timetabling problem (denoted as Exam TT), which are harder to solve, the system takes
more time to generate examples that do not violate any hard constraints and satisfy at least
one c ∈ B, at line 3 of PrefAcq. But still, the average waiting time for the user is under 1
second.

6 Conclusion

We have extended the framework of active constraint acquisition to the learning of soft
constraints in Max-CSPs. Based on a type of query used in preference elicitation, we
introduced partial preference queries. Then we presented PrefAcq, a novel algorithm for
learning soft constraints in Max-CSPs using such queries. Finally, we give some preliminary
experimental results. Our method can be extended to weighted Max-CSP if PrefAcq is used
to learn the constraints and a method such as the one in [35] is then used the learn their
weights. The existence of weights in constraints does not affect the procedure followed by
our method.
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Abstract
This paper presents how state-of-the-art parallel algorithms designed to solve the Satisfiability (SAT)
problem can be applied in the domain of product configuration. During an interactive configuration
process, a user selects features step-by-step to find a suitable configuration that fulfills his desires
and the set of product constraints. A configuration system can be used to guide the user through
the process by validating the selections and providing feedback. Each validation of a user selection is
formulated as a SAT problem. Furthermore, an optimization problem is identified to find solutions
with the minimum amount of changes compared to the previous configuration. Another additional
constraint is deterministic computation, which is not trivial to achieve in well performing parallel
SAT solvers. In the paper we propose five new deterministic parallel algorithms and experimentally
compare them. Experiments show that reasonable speedups are achieved by using multiple threads
over the sequential counterpart.
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1 Introduction

Configuration systems [12] offer great benefits for the sales process and customers, while
technical challenges rise to enable configuration models with increasingly large knowledge
bases. Every valid configuration has to fulfill a set of propositional formulas. The configuration
system’s task is to find such an assignment for a given set of user requirements. Janota
showed [25] that this problem can be expressed as a Boolean Satisfiability Problem (SAT)
and consequently solved by a SAT-solver. Essentially, the configuration model together with
the user requirements are transformed into conjunctive normal form (CNF). If the formula is
satisfiable, then there exists at least one valid configuration for the underlying configuration
model and the user’s needs.

Parallel SAT-solvers have been mainly studied on very hard SAT problems. Configuration
systems tend to have different requirements that exceed the common SAT problem. Generally,
the created problem instances are smaller and less complex, due to the a step-by-step
configuration process. However, new problems are introduced. Firstly, in case that the
customer’s latest selection in the interactive process combined with the current configuration
are unsatisfiable, the configuration system should return an alternative solution that minimizes
the number of changes with regard to the current configuration. This problem can be modeled
as an optimization problem, for example as a Maximum Satisfiability Problem (MaxSAT) or
Minimum-Cost Satisfiability Problem (MinCostSAT). The underlying cost function evaluates
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the changes of every assignment compared to the current configuration. Additionally a
configuration system requires fully deterministic behavior and very low response time (in the
order of hundreds of milliseconds).

The aim of this work is to report on how state-of-the-art parallel SAT solving techniques
can be adapted and used in a commercial product configurator. Our main contribution is the
development of parallel algorithms for problem instances created during interactive configur-
ation processes 1. These instances are described by calculating the optimal valid solutions for
a given user change, start-configuration, and Boolean formula. Several parallel algorithms
are presented that fulfill the completeness and optimality criteria for assignments required by
configuration systems. Experimental results show that the presented approaches can achieve
significant improvements in response time by using multiple processor cores. Furthermore,
the approaches fulfill the completeness, optimality, and determinism requirements. Especially
the latter has not been widely researched in this domain, because many applications do not
rely on reproducible results.

2 Related Work

SAT and two of its extensions (MaxSAT and MinCostSAT) have been applied to the field of
product configuration [46, 47]. Methods were presented to check the general consistency of a
product data base, by converting it into formulas of propositional logic. This was done in a
real product configuration system for the automotive industry. A broader discussion of the
applicability of SAT solvers for configuration systems is given in [25], where scalability is
emphasized as a potential benefit. Early research on concepts focusing on the configuration
process has been presented by Sabin and Weigel in [43]. A good overview of the interactive
configuration process, in which a user specifies his requirements step-by-step with validation
and feedback in between, is given in [27]. Different solving techniques for this process
have been proposed. Batory and Freuder et al. present in [3] and [13] algorithms for a
lazy approach. In this context lazy means that no precompilation is required, because
all computations are performed during the configuration process. Non-lazy approaches
mainly use binary-decision-diagrams (BDD) instead of SAT solvers, examples are [16] and [1].
Furthermore, Janota discusses many optimization techniques and algorithms to model the
interactive configuration process lazily with the help of SAT [26]. Additionally, he elaborates
on methods to improve the transparency of a configuration system. This is achieved by
providing algorithms to generate comprehensible explanations using resolution trees and
completing partial configurations.

Currently, most parallel SAT solvers are based on one of the two main approaches: divide-
and-conquer (also called search space splitting) and parallel portfolios. Early parallel SAT
solvers (PSATO [49], PSatz [30], PaSAT [45], GridSAT [7], MiraXT [34], PaMiraXT [44])
were based on the divide-and-conquer approach. The search space in these solvers is divided
dynamically using guiding-paths. Another approach is to divide the search space statically
at the beginning of the search using look-ahead techniques [22]. This paradigm is called

1 We adapted already existing algorithms, however, they are designed for SAT solving, which still has
several differences to our problem (decision vs. optimization problem, non-deterministic vs. deterministic
behavior, focus on large difficult problems vs. real time response, non-interactive vs. interactive
usage). Therefore our main contribution is the non-trivial adaptation of the SAT algorithms to
product configuration. The second contribution is the evaluation of these algorithms on real industrial
configuration problems (and some random problems) and identifying their strengths and weaknesses in
that context.
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cube-and-conquer. It is a two-phase approach that partitions the original problem into many
subproblems (cubes) which are subsequently solved in parallel [23, 5]. Parallel portfolios,
popularized by Hamadi et al. with the solver ManySAT [18], differ by starting several SAT
solvers on the same formula but with different parameter settings in parallel. The solvers
compete to find a solution to the input problem and terminate as soon as one has been
found. More recent examples of portfolio solvers are Plingeling [4] or HordeSat [2]. Most
parallel SAT solvers introduce non-deterministic behavior, which is not acceptable in some
applications, such as ours for example. This problem has been acknowledged by Hamadi et
al. [17], who proposed the first deterministic parallel SAT solver based on ManySAT. A recent
result [40] shows that comparable performance to non-deterministic parallel SAT solvers is
achievable by using techniques such as delayed clause exchange and accurate estimation of
execution time of clause exchange intervals.

This paper is focused on the combination of SAT and optimization problems. Hence, we
also discuss parallel best-first search algorithms. Approaches for parallel A* can be separated
into two major categories, depending on the management of the OPEN list. A centralized
parallel A* [24, 41] works on a shared central OPEN list [41]. To remove potential bottlenecks
on the shared OPEN list, algorithms that use the so called decentralized approach have
been developed. The algorithm PRA* (Parallel Retracting A*) assigns an OPEN list to
each processor [10]. Every generated node is mapped to a processor using a hash function.
Following work mainly concentrated on developing sophisticated hash functions to reduce
overhead [31, 29].

3 Preliminaries

A Boolean variable has two possible values: True and False. A literal is a Boolean variable
(positive literal) or a negation of a Boolean variable (negative literal). A clause is a disjunction
(∨) of literals and, finally, a CNF formula (or just formula) is a conjuction of clauses. A
clause with only one literal is called a unit clause. A positive (resp. negative) literal is
satisfied if the corresponding variable is assigned the value True (resp. False) A clause is
satisfied, if at least one of its literals is satisfied and the formula is satisfied, if all its clauses
are satisfied.

The satisfiability (SAT) problem is to determine whether a given formula has a satisfying
assignment, and if so, also find it. Most complete SAT solvers are based on the DPLL
algorithm [8] and its extension the CDCL algorithm [38, 39].

SAT only searches for an assignment that satisfies the Boolean formula. Optimality with
regard to the assignment is not considered. Two approaches that introduce an optimization
function are the Maximum Satisfiablity Problem (MaxSAT) and the Minimum-Cost Satisfiab-
ility Problem (MinCostSAT). Both problems extend SAT by incorporating a cost function
that evaluates assignments. The better known MaxSAT problem is to find an assignment
that maximizes the number of satisfied clauses of a Boolean formula [35]. In the MinCostSAT
problem we assign a non-negative cost to each variable to quantify an assignment. The
problem is to find a variable assignment that satisfies F and minimizes the total cost of the
variables set to True. The transformation between MaxSAT and MinCostSAT problems can
be performed by adding auxiliary variables/clauses to the respective formulas [36].

The DPLL/CDCL algorithm can be extended to solve MinCostSAT instances. The cost
for every variable assignment are accumulated during unit propagation. At every branching
point a decision variable is chosen, partial assignments are calculated, and the assignment with
the lowest costs is used. This amounts to a recursive branch-and-bound algorithm [14, 36].
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A configuration task is a triplet (V, D, C), where V = {v1, v2 . . . , vn} is a finite set of
domain (feature) variables and D = {dom(v1), dom(v2), . . . , dom(vn)} represent the set of
corresponding finite variable domains. Furthermore, C = PKB ∪ CR represent constraints,
with PKB being the product knowledge base (configuration model) and CR a set of user
requirements. The solution to a configuration task is called a configuration. A configuration
is an instantiation (assignment) I = {v1 = i1, v2 = i2, . . . , vn = in}, with each ij being one
of the elements of dom(vj). A configuration is called valid, if it is complete (every variable
is assigned with a value) and consistent with all constraints [11]. Janota discusses in [25]
whether SAT solvers can be used effectively in a configuration system (configurator). Janota
shows that every configuration task can be translated into a Boolean formula. Consequently,
by solving the Boolean formula in CNF by using a SAT solver, the initial configuration task
is solved as well.

4 Problem definition

The term configuration can be interpreted as an assignment for an underlying Boolean formula
Fcnf . During the interactive configuration process, a user selects or deselects attributes
step-by-step to add or remove them from a configuration. The attributes are translated to
corresponding Boolean variables of Fcnf , thus every attribute is also an atomic proposition.
A selection expresses that the attribute must be part of the current configuration. Any
selection or deselection can be reverted throughout the configuration process. A configuration
is considered valid if it is consistent with all constraints (C), but not every variable (V )
needs to be assigned. The user may start with an empty configuration which is progressing
through user selections and deselections until it is complete. With respect to the underlying
Boolean formula, an empty configuration contains every literal as a negative one. In the
following, a user selection or deselection is also called a user wish.

During the configuration process, each user wish δ causes a configuration step. The
step calculates a new valid configuration (solution) s using an existing assignment β (called
start-configuration), by applying the user wish. A start-configuration describes the valid
preexisting assignment for a configuration step. The user wish represents the desired change
that should be applied to the existing configuration. Therefore, a user wish δ can be described
as a set of literals.

For every configuration step, the configurator ensures the validity of the resulting config-
uration to prevent invalid user selections. Depending on the constraints, certain user wishes
violate the configuration model which are resolved by the configurator through automatically
selecting or deselecting attributes. To quantify the result of a configuration step, a cost
function is introduced. The costs of the changes resulting from the user wish are calculated by
analyzing the difference between the start-configuration β and the resulting configuration s:

deltaCost(β, s) =
∑
l∈s

{
l ∈ β → 0
l /∈ β → c(l) ∈ N≥0

(1)

The cost function c(l) must be non-negative but can be domain specific. For example, literal
changes from positive to negative can be more expensive to prefer keeping literals that the
user already selected in the configuration process. A change from a positive literal to a
negative one expresses a deselection of an attribute for the user. Each configuration step has
two concrete requirements to fulfill.
1. Every configuration step has to apply the user wish δ to the start-configuration β,

expressed as δ ⊆ s.
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2. The resulting configuration s has to be optimal, i.e., there is no other solution s′ that
results in lower costs (by applying the function deltaCosts(β, s′)) and introduces the user
wish δ to the start-configuration β.

The second requirement extends the SAT problem by incorporating an optimization problem
of finding the minimal-cost configuration for each step. The problem of calculating a
configuration step is similar to the MinCostSAT problem. The main difference is that
positive variables do not inherently increase the costs. Costs are only accumulated by changes
to the start-configuration, independent of the variable’s truth value. The user can define a
limit r on how many solutions should be returned at most in the case that multiple optimal
valid configurations exist. All found solutions are represented by the set S. Furthermore,
this set of solutions must be the same when repeating the same configuration step, i.e., we
require fully deterministic calculation.

▶ Definition 1 (MinCostConf). The minimal-cost interactive configuration task (MinCost-
Conf) is described by the 6-tuple:

(Ap, Cp, β, δ, c(l), r)

where Ap describes the set of attributes for a product p given its feature variables. The
set of constraints for a specific product is given by Cp. The dynamic components are the
start-configuration β and the user wish δ. Furthermore, a non-negative cost function c(l)
defines the cost for attribute l ∈ Ap, when l changes with respect to β. The maximum amount
of returned solutions is limited to r. A solution s is valid if all constraints Cp are fulfilled
and δ is part of each solution s (δ ⊆ s). An optimal solution s is a minimal-cost assignment
with respect to β (

∑
l∈s c(l), ∀l /∈ β). A valid optimal solution s is called a configuration

and the set of found solutions is denoted by S.
The task is to find all configurations. In case of more than r optimal configurations, the
cardinality of S is limited to r. Repeatedly solving the same task must return the same set S,
i.e., the process must be deterministic.

Regarding the complexity, MinCostConf (being an extension of MinCostSAT) obviously
belongs to the class of NP-complete optimization problems.

5 Parallel Algorithms for Product Configuration

This Section contains the main contributions of the paper – the description of the parallel
algorithms we developed for the MinCostConf problem. This paper is based on a Master
Thesis [48], which contains a more detailed description of the described algorithms including
pseudo-code, examples, and figures.

5.1 Baseline: Sequential A* Search for MinCostConf
The A* algorithm [19] is an extension of Dijkstra’s algorithm [9]. The A* algorithm formulates
its problem as a weighted directed graph and aims to find the minimal cost path from a
source node to a goal node. In this process, the algorithm constructs a search tree and always
expands the most promising node. Furthermore, the A* algorithm maintains an OPEN list
of nodes that have not been expanded yet. The list is ordered by the cost accumulated from
the root node to the current node and the heuristic estimation of the cost to reach a goal
node. A second list, called CLOSED list contains all nodes that have been expanded. To
decide which path to expand, the function f(n) = g(n) + h(n) is minimized over all nodes,
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where g(n) is the path’s cost from the source node to n, which is the next node on the path.
Additionally, h(n) estimates the cost of extending the path from node n to the goal node.
The heuristic function h(n) differentiates the A* algorithm from Dijkstra’s algorithm. A
heuristic function is called admissible if it does not overestimate the cost from node n to the
goal node. For A* it holds in general, that if h is an admissible function, then A* search is
optimal [19]. Consequently, utilizing this property allows us to terminate the search as soon
as a solution has been found, because the estimated costs of all other nodes are larger than
the actual cost of the found solution.

The A* algorithm can be combined with DPLL and applied to the MinCostConf problem,
which is an optimization problem. The DPLL algorithm constructs a search tree which can
be interpreted as a weighted directed graph. Every edge serves as a unit propagation of a
decision literal. The edges’ weights are given by the costs of the propagated literals, thus the
weights are non-negative. This leads to a search tree in which the costs can only increase
or remain unchanged with increasing tree depth. Finally, the goal node is the lowest cost
valid assignment. In the domain of product configuration, multiple valid optimal solutions
may exist, which represent potential alternatives for the user to choose from. Thus, several
goal nodes may exist. In our case, the function g(n) sums the costs of already assigned
literals. The set Ln describes the literals that are assigned on the path from source node n1
to node ni. As a lower bound for the costs from n to the goal node, the heuristic function
h(ni) = costs(Uni

) is used, where Uni
is the set of unit clauses remaining in the node ni. It

accumulates the costs of all remaining unit clauses in F , that will result from the chosen
literal, because their truth value is already defined but they have not been propagated yet.
This obviously constitutes an admissible heuristic.

During the A* search, node evaluations are mainly based on the costs of propagated
literals. Essentially, every change with regards to the start-configuration introduces costs.
The start-configuration always describes the configuration prior to the current user wish.
Having selected an attribute, the user wants as few changes to the prior configuration as
possible, thus a cost function is utilized.

5.2 Centralized Parallel A* Search
An intuitive solution is to extend the sequential A* algorithm to perform it in a multithreaded
environment. In parallel versions of the centralized A* approach, the single OPEN list is
kept [24, 41]. Therefore, k threads work concurrently on a shared OPEN list. Each thread
retrieves nodes from that data structure in order of their f -values, expands them, and inserts
the successors of the expanded nodes (states) into the OPEN list. Re-expansions of nodes
(contrary to the sequential algorithm) are possible, because a state may not have the optimal
g-value when taken from the list and being expanded. However, this issue is not applicable
to the DPLL algorithm, since nodes in the search tree are only reached by one specific path.
This property leads to two improvements. Firstly, the g-value of a node cannot be updated
by processing another node first. Secondly, duplicate detection of states is not required,
because only one path leads to every state, thus two threads cannot arrive at the same
state. Therefore, when using parallel A* search for the DPLL algorithm, the CLOSED list is
not required. Nevertheless, the concurrent work can lead to search overhead by expanding
suboptimal nodes that would not have been expanded by a sequential version of A*. Besides
search overhead, expanding nodes in parallel easily leads to nondeterministic behavior. This
critical problem as well as solutions are discussed thoroughly at the end of this section.

In a multithreaded environment, a coordination mechanism for all threads is required. We
use the Master-Worker paradigm, with a single master thread and a set of worker threads.
The latter can scale from 1 to k threads. The master maintains a overview of the procedure,
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Worker Thread 1

Worker Thread 2

Worker Thread 3

Master Thread

OPEN list

process

dispatches & checks

initializes & checks

Input

Figure 1 An explanatory thread overview of the centralized parallel A* approach using a single
master thread and three worker threads (Master-Worker paradigm). All threads are accessing one
central OPEN list, using a shared-memory architecture.

while the workers process tasks in parallel. The master initializes the MinCostConf instance
resulting in the root node and dispatches the k threads to start processing. Subsequently
the workers remove nodes from the OPEN list, which is implemented as a priority queue.
Each task consists of the unit propagation of a decision literal (except for the root node)
and resulting unit clauses. Communication between threads is performed by using shared
data, e.g. for thread state information and all currently known optimal solutions. Access to
the shared data is required for workers as well as for the master. Workers need to know the
current optimal solutions to decide whether their task (node) needs to be processed or can
be skipped. While all workers are processing nodes, the master checks whether the OPEN
list is empty, because an empty list indicates that the search is finished. Additionally, the
master checks the state of all worker threads by accessing shared data, to decide whether
the search can be terminated or not, for instance in case that the optimal solution has been
found. See Figure 1 for an overview diagram.

The centralized parallel A* approach uses two shared primitive variables, the Boolean
searchFinished and the integer minCost. Especially the latter is updated several times
during a configuration step, because many suboptimal solutions may be found during the
parallel search process. Thus, multiple threads try to retrieve and update the value of
this variable simultaneously. To avoid memory inconsistency, all updates to these variables
use optimistic locking in form of atomic compare-and-swap instructions. Moreover, several
complex data structures are utilized. The most central data structure is the priority queue
Q, representing the OPEN list by maintaining all nodes that may be expanded during the
tree search. It is based on a binary heap and uses locks as a synchronization mechanism
to allow parallel work of k threads on a single queue. An increasing number of threads (k)
can result in high lock contention on Q. However, the assumption is that the number of
operations on Q is relatively low in the domain of product configuration, due to solving
smaller problem instances. Moreover, the node expansion is expensive, because it involves
performing compute-intensive unit propagation which further limits the lock contention. For
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search termination detection, two arrays thread-waiting states (TWS) and running-thread-
costs (RTC) are used. Both enforce locking mechanisms to restrict concurrent thread access,
for instance of the master thread and worker threads. While a worker thread retrieves a
node from Q, the master thread has to wait until the worker thread has updated its waiting
state as well as running costs. The described locking techniques are also applied in all other
approaches discussed below.

5.3 Decentralized Parallel A* Search
In a decentralized parallel A* search, each thread maintains its own local OPEN list to perform
the search. Initially, the root node is assembled and processed by a thread. Subsequently
generated nodes are distributed among all threads to achieve good load-balancing with low
idle time. Especially the load balancing strategy is a deciding factor for computation time,
thus many different ideas have been developed. Kumar, Ramesh, and, Rao were among the
first to utilize a distributed strategy in [33]. Their approach generates an initial amount of
nodes and distributes them to all OPEN lists. The different threads expand the nodes in
parallel. To avoid threads working on suboptimal parts of the search tree, since the thread
is limited to its own OPEN list, they introduced a communication strategy to share nodes.
The goal is to have all threads working on promising sections of the search space. The
communication to distribute newly spawned nodes is performed by choosing another thread
randomly and inserting the node to the target’s local OPEN list.

To apply the decentralized parallel A* search to DPLL, each of the k threads maintains a
local priority queue as an OPEN list. Moreover, a distribution strategy is required to attain
good load balancing. Besides additional priority queues, the overall coordination mechanism
is similar to the presented centralized parallel A* search. Therefore, a master thread and k

worker threads are used. In the following, the responsibilities of the different threads are
explained. Being a variation of parallel A* search, only key differences to the centralized
approach are elaborated.

The master thread’s function is the search initialization and termination detection. Being
an extension of the centralized A* search algorithm, only a few changes have been made
for the master thread’s logic. For initialization, the root node is inserted into the queue of
the first thread. Successive nodes are distributed by the worker threads. Having multiple
OPEN lists changes the search termination detection. Firstly, we must test whether all
queues in Q are empty and all threads are on a waiting state. Secondly, we test whether all
remaining nodes in all OPEN lists are more expensive or at least equal-cost and r solutions
have been found. Thus, the search termination detection is more complex, to accommodate
the increased number of priority queues.

The worker thread only processes nodes from its local task pool to reduce lock contention.
One major difference between the centralized and decentralized strategy is the handling of
successor nodes. Every successor node is assigned to one specific thread, determined by a
random distribution function.

Comparing properties of the decentralized and centralized parallel A*, the main advantage
of the former is the reduced lock contention on the shared OPEN list. With increasing
number of threads, the contention on the central data structure surges (synchronization
overhead). Hence, the decentralized parallel A* search has the potential to scale better
with more processing units. However, distributing nodes across multiple OPEN lists brings
disadvantages as well. Firstly, communication overhead is increased, because nodes are
exchanged across threads to reduce idle time and the number of suboptimal nodes expanded.
Secondly, search overhead is increased compared to the centralized approach. In general, it
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can be measured by comparing the expanded nodes in parallel to the number of its sequential
implementation. Reason for this growth is that threads potentially work on suboptimal parts
of the search tree while waiting for more promising nodes from other threads. In a centralized
A* search, all threads work on one data structure, thus promising nodes are expanded first
and threads often work on similar sections of the search tree.

5.4 Parallel Cube-and-Conquer
Cube-and-Conquer (C&C) is a two-step approach to solve the SAT instances. First, the
problem is divided into a large number of subproblems (cubes) which are subsequently solved
in parallel. Regarding thread management, the Master-Worker paradigm is used, comparable
to previous parallel A* search algorithms. The master thread is entirely responsible for the
first phase, thus generating the desired amount of cubes. Afterwards, the master distributes
the cubes among all k available worker threads which process them independently in parallel.
The generation of cubes is performed by best-first search until the required amount of cubes
is found. In case the set of optimal solutions is found during this phase, the second phase is
not performed.

In phase two each worker thread is assigned a list of subproblems (called cubes), that
have to be processed. For each cube, a local priority queue Q is initialized with the cube, a
partial assignment, as the root node. Subsequently, a best-first search is executed for the
current cube constructing a sub-tree of the original search space. Thus, nodes are removed
from the priority queue iteratively and successor nodes are generated by unit propagation
and the choice of the next decision literal resulting in up to two child nodes. Furthermore, to
reduce search overhead, cube termination detection is performed. If the head of the priority
queue has accumulated costs that exceed the costs of any found solution then the cube can
be aborted.

Considering cube-and-conquer, it is a two-phase method that is suited for hard SAT
instances. For such CNF formulas, cube-and-conquer approaches can generate between
thousand and a million cubes, evaluated extensively in [23] and [5]. The first phase is
executed sequentially, followed by parallel processing of subproblems. Distributing cubes in
phase two among all worker threads results in a relatively clear search space partitioning
and thus little communication overhead. Worker threads only check the currently known
minimum cost solution to decide whether a cube can be aborted. Using local information also
reduces the synchronization overhead, especially by not using a global OPEN list. Overall,
these advantages lead to a simpler approach with less complexity. However, the used method
partitions the original search tree into sub-trees. These cubes are processed iteratively,
which potentially leads to larger search overhead. The reduced communication and iterative
processing of cubes can increase the time threads spend on expanding suboptimal parts of
the overall search space. According to our observations, this disadvantage is enhanced in
SAT instances that are not very hard, for instance a configuration step within a configuration
system. Due to the underlying optimization problem (MinCostConf) and lower instance
hardness, the search trees usually have a small height and width. Two reasons are that many
paths can be pruned and only few conflicts are encountered. Having hard SAT instances,
search trees tend to be of greater height and width, reducing potential search overhead.

In contrast to this, the parallel A* Search uses more complex search space splitting
strategies, by extensively sharing data. On the one hand, regarding communication and
synchronization overhead, Cube-and-conquer introduces the smallest efforts. However, this
benefit leads to the drawback of higher search overhead, especially compared to the centralized
A* Search approach. These properties affect the performance depending on the considered
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formula’s complexity. Summarized, cube-and-conquer potentially performs well on hard
SAT instances, for example for Random SAT and Random 3-SAT benchmarks. Regarding
industry cases, the performance is dependent on the size of the constructed search tree. Full
evaluation, analysis and comparison of the different methods is presented in Chapter 6.

5.5 Parallel Portfolio Solver

Our first portfolio approach combines several instances of a sequential solver (A* base solver).
Each instance has its own set of configuration settings, consisting of several parameters such
as:

The branching heuristic. Different score-based branching heuristics are used which
are comparable to the One-Sided (OS) and Two-Sided (TS) Jeroslow-Wang Rules [28].
Furthermore, a second component is added as a parameter which influences the priority
of choosing variables that have a positive cost (i.e. are not special variables with zero
cost). Due to the underlying optimization problem, it can be beneficial to preferably
branch over variables with positive cost to limit the search tree growth.
Tie-breaking criteria of the OPEN list. We can use different strategies to prioritize nodes
with the same f value within the OPEN list, such as comparing the number of unsatisfied
clauses.
Clause Learning. Clause learning is not always beneficial in MinCostConf, due the
introduced overhead. Therefore some instances will utilize clause learning and others not.

With various defined parameters, a portfolio can be constructed by combining solvers with
different configuration sets. The diversification’s purpose is to have a portfolio with solvers
that have little search space overlap to reduce search overhead and the solver’s sensitivity to
parameters.

Comparing parallel portfolios to divide-and-conquer approaches, several distinctions
can be drawn. A major advantage is the robustness of parallel portfolios against the
impact of configuration parameters that SAT solvers generally face. However, considerable
disadvantages exist, especially for industrial use cases. The main problem is that the parallel
portfolio does not partition the search space into distinct portions, but rather duplicates
the Boolean formula for each instance. As a result, the memory consumption increases
approximately proportionally to the number of cores. For industry cases and production
systems, resources are limited.

5.6 Parallel Portfolio A*

An alternative strategy is to adapt the parallel A* algorithm. The main motivation is to
avoid the Boolean formula duplication that is performed by the previously shown parallel
portfolio. Instead, the search space is divided but multiple threads work cooperatively on the
same instance. To adopt the benefit of being less sensitive to parameter tuning, each thread
uses different settings but work on the same formula. Regarding parameters, changing the
branching heuristic and related settings such as the “Prefer Cost Literals” can be changed
for each processing unit. Hence, when a thread processes a node and has to choose the
next decision literal for that path, a thread specific heuristic is utilized. Usually, these
parameters have a strong impact on the search behavior with respect to the order of path
expansions. This strategy can be applied to both, centralized and decentralized parallel A*
search. Despite using varying parameters, no other changes are required for these algorithms.



N. M. Ullmann, T. Balyo, and M. Klein 55:11

5.7 Making the Search Deterministic

Most current parallel SAT solvers are not capable of producing stable results, due to
their architectures relying on weak synchronization [17]. Nevertheless, reproducibility of a
configuration process is a key requirement for a configurator.

The following criteria are used to order configurations as the foundation to achieve
reproducible configuration steps: (1) cost of the configuration using the delta-cost function,
(2) number of decision literals (tree-depth), (3) number of positive decision literals (left
branches), and (4) hash of literals contained in the solution. During parallel search in
the search tree, solutions can be found in varying order across several executions. To
accommodate this instability, the termination criteria must be adapted to ensure that
previously returned solutions are not skipped through early termination in another execution
of the same configuration step. Therefore, two alterations are presented in the following,
both aiming at ensuring deterministic behavior as well as minimizing the search overhead.

5.7.1 Tree-depth Depending Termination

The first approach exploits the number of decision variables in any obtained solution. As
soon as the requested amount of alternative configurations r has been found, the maximum
tree-depth (number of decision variables) j is extracted from all found solutions. This
indicates the solution that is ordered last among all solutions, thus it can be used to prune
unexplored nodes. Consequently, only paths within the search tree that either have lower
costs than already known valid assignments or are equal-cost and have a tree-depth less
or equal to j are expanded. For subsequently found equal-cost solutions, the maximum
j may be updated to reflect the new upper bound, in case it has fewer decision variables.
This procedure incrementally reduces the depth of j and consequently the number of paths
that may be expanded. As soon as no viable nodes can be processed, because all are more
expensive or equal-cost and at deeper levels, the search can be terminated. This strategy
ensures that always the same m solutions are returned, because all paths are expanded that
contain the m optimal solutions with the smallest number of decision literals.

5.7.2 Advanced Tree-depth Depending Termination

The previous strategy can further be improved by not only utilizing the tree-depth (vertical),
but also the position within one level of the search tree (horizontal). For instance, all z

optimal solutions share the same tree-depth, but only at most r alternative configurations are
requested. Using the presented tree-depth depending termination, all z solutions have to be
computed, since the sequence of finding them is unstable using multiple threads. The larger
z is, the higher is the search overhead (in worst case z − r avoidable nodes are expanded).
To circumvent this, the multiple-criteria order of solutions described above is adapted by
adding the number of left edges in the path from root to the node n. The number of left
edges in a path is abbreviated with “left-branches” in the following. After having found r

solutions, the minimum tree-depth as well as the maximum number of left-branches on that
level are shared with all threads to prune paths. The value can be updated after having
found another solution on a smaller or equal level. In the former case, the value is always
updated because the new solution has a smaller tree-depth. In the latter case, the value is
only updated if the number of left-branches is larger than the minimum of all currently hold
solutions on that level. This strategy reduces the number of expanded nodes, when several
solutions are on the same level.
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5.7.3 Node Expansion Termination

For the presented cube-and-conquer approach (5.4), a simpler deterministic search termination
detection can be used. The distribution of cubes after the first phase consistently assigns a
set of work to each thread. Each worker thread processes the cubes in the same order without
exchanging them, hence the initial search space partitioning is consistent for repeating
configuration steps. This property can be exploited to terminate cubes early, by limiting the
amount of nodes each thread is processing after r solutions have been found. For this, the
sorting criteria is changed. Having two equal-cost solutions, the one that originated from an
earlier cube is preferred.

6 Experimental Evaluation

This Section presents an evaluation and comparison of the developed algorithms in Chapter 5.
As a baseline, the commercial product configurator CAS Merlin [6] is used. The evaluated
algorithms are:
1. Centralized Parallel A* Search (CA*): Extension of the sequential A* search using

multiple threads on a single OPEN list.
2. Decentralized Parallel A* Search (DA*): Extending the A* search by assigning an OPEN

list to each thread. Nodes are exchanged among the workers.
3. Parallel Cube-and-Conquer (C&C): Two-phase approach. Firstly, the problem is decom-

posed into subproblems. Afterwards, the cubes are processed in parallel.
4. Parallel Portfolio (PP): Combining multiple sequential base solvers with different config-

urations.
5. Parallel Portfolio A* (PPA*): Extending parallel A* search by using different settings

for each worker thread.

All the algorithms are implemented in Java 11 and executed on the application server
WildFly 15. The server has an Intel Core i7-7820HQ CPU and 16 GB RAM. We did
experiments with up to 4 threads per SAT solve. This is not an impressive amount when
compared to recent work in the area of parallel SAT solvers, nevertheless, we identified 4
as the maximum amount of threads that can be allocated to solving one configuration click
(calculation of the next valid configuration) in order to use the available server capacities
reasonably and economically in a commercial setting in our case.

We do not compare our algorithms to any existing academic implementations for similar
problems in this paper for a few reasons. To facilitate a meaningful evaluation we would
need to integrate state-of-the-art academic parallel PBO [42] or PMaxSAT [37] solvers
into the configurator. This is difficult, since these solvers are written in C/C++ while
our application is in Java. According to our preliminary evaluations, the translation and
execution overhead is too big, especially for easy problem instances, which constitute the
majority in our application. Additionally, our configuration problems also contain numeric
constraints (like in SMT) which cannot be handled by PBO/PMaxSat. We tried integrating a
MaxSMT solver but we could not obtain satisfactory results that way either. Not even for the
sequential computation, let alone in parallel. Another reasons are the special requirements
in our application such as deterministic calculation and enumeration of multiple optimal
solutions.
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Table 1 Comparison of different rule sets (Boolean formulae). RS1 to RS3 show formulae of
industry cases. R3SAT are random 3-SAT instances and RSAT stands for random SAT instances.
Ratio describes the clause to variable ratio of the resulting Boolean formulas.

Rule Set Domain Complexity # Clauses # Variables Ratio Avg. clause length
RS1 High 17157 8483 2.02 3.98
RS2 Medium 4803 8318 0.58 3.34
RS3 Low 8023 1722 4.66 4.70

R3SAT – 449 100 4.49 3
RSAT – 850 100 8.50 5.8

The data used for the experiments consists of various real industry cases as well as random
SAT and random 3-SAT instances2. The industry cases are divided into three groups (RS1,
RS2, RS3) of various complexity, where RS1 is the most complex and RS3 the least complex3.
The properties of the benchmarks are given in Table 1. The formula sizes are not as high
as what we usually see in say SAT competition benchmarks. On the other hand, one must
consider, that the time limit at the SAT competition is 5000 seconds while we want solutions
in milliseconds. This is also related to using only 4 threads. Using many threads increases
the overhead, which we cannot afford in our setting.

The entire system is tested using automated simulation of configuration processes. Each
test for a rule set consists of n configuration steps. Every configuration step is repeated
three times to have more accurate mean wall clock times. Therefore, for each rule set 3n

data points are available. The usage of simulated configuration steps yields a mixture of
small and larger configuration changes with varying response times. Considering randomly
generated tests, 23 random SAT and 57 random 3-SAT instances are used (hence 80 data
points). For each tested algorithm configuration, a warm-up phase is executed for the Java
Virtual Machine (JVM). Despite measuring different metrics, the usage of automated tests
also ensures the correctness of all implemented algorithms.

Our main goal was to conceptualize approaches that scale well with increasing numbers of
processing units. In Table 2 the speedup of the different parallel algorithms is displayed using
varying numbers of threads. We report relative speedup rather than absolute run-times, since
we believe it is more representative and the standard way to evaluate parallel algorithms.

Largest improvements are attained on RS1 with an overall speedup of 2.5 for CA*. On
the easier problem domains RS2 and RS3, the improvements decrease to 2.06 and 1.13.
Especially the latter is explained by the numerous short running configuration tasks in RS3
that lead to overhead using CA* search. Results of DA* search show very similar effects,
scaling well on complex rule sets but suffering from overhead on simpler ones like RS3. On
RS3, the search algorithms perform better with two threads (0.91) than with four (0.90) due
to the added synchronization and communication overhead. C&C’s results do not show a
clear pattern, it scales best on RS1 and RS3, less so on the medium rule set RS2. However,
the addition of more threads shows larger diminishing returns. On RS1 the difference between
three and four threads is only a speedup of 0.06 compared to the baseline. Furthermore,
the table shows that the portfolio solver scales negatively in many cases with the number of
processing units. An exception is the less complex rule set RS3. Hence, the scaling issues of
the PP solver is related to the complexity of the problem instance.

2 The JNH and CBS benchmarks from SATLIB https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
3 The complexity of the groups RS1, RS2, and RS3 is defined based on the average runtime performance

of the baseline (single threaded) algorithm on these benchmark sets.
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Table 2 Comparison of overall speedup for parallel algorithms using varying numbers of threads.
PPA* was evaluated only with 4 threads.

Rule Set CA* DA* C&C PP PPA*

RS1
2 Threads 1.63 1.58 1.22 0.91 –
3 Threads 2.07 1.98 1.37 0.88 –
4 Threads 2.50 2.08 1.44 0.83 2.40

RS2
2 Threads 1.58 1.40 0.94 0.86 –
3 Threads 2.03 1.43 1.01 0.72 –
4 Threads 2.06 1.55 1.05 0.63 1.94

RS3
2 Threads 0.89 0.91 1.12 1.07 –
3 Threads 1.01 0.90 1.27 1.15 –
4 Threads 1.13 0.90 1.33 1.24 1.00

R3SAT/RSAT
2 Threads 1.40 1.49 1.91 1.02 –
3 Threads 1.55 1.86 2.26 0.99 –
4 Threads 1.72 2.06 2.46 0.97 1.72

All before presented results include the deterministic versions of the algorithms. To
determine the approximate impact of the stricter search termination criteria, the best
performing algorithm is considered: the centralized parallel A* search. For the evaluation,
the most complex benchmark RS1 is used which contains a wide variety of configuration
tasks. The impact is measured by the overall speedup of the non-deterministic version over
the deterministic version of CA* search. We measured an overhead of approximately 2-3%
on RS1. The overall performance cost is 2.4%, if only long running tasks (>100 ms) are
considered.

A general observation is the increasing performance improvement on more complex rule
sets. A main reason for this is the share of short running configuration tasks on less complex
formulas (e.g. RS3). Having instances that can be solved very fast (in less than 50 ms),
it is difficult to achieve significant improvements through additional processing units. The
added overhead due to initialization and synchronization outweighs the benefits of solving
the instance in parallel. Regarding the parallel portfolio, the solver performs worst on many
industry cases. Moreover, it partly scales negatively with increasing thread pools. For each
sequential base solver, the Boolean formula is duplicated. Performing k separate A* searches,
with k being the number of threads, escalates the memory consumption due to the search
tree construction. In most tests, the increased load on the system outweighs the benefits of
having separate solver configurations that reduce the sensitivity to parameter tuning. Thus,
the alternative portfolio approach PPA*, which applies different sets of parameters to parallel
A* search, achieves more consistent and better results.

Further data (plots and tables) and discussion about the experimental evaluation are
available in the main author’s master’s thesis [48].

7 Conclusion

Our goal was to find search algorithms that can exploit the capabilities of common multi-core
processors while maintaining their completeness and determinism with respect to found
solutions. To define the problem occurring in interactive configuration, the MinCostConf
problem was introduced which extends the SAT and MinCostSAT problems and belongs
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to the class of NP-hard problems. It describes the task of finding minimal-cost solutions
given a start-configuration and user wish. Additionally, different custom cost functions were
shown to model distinctive behaviors that evaluate configuration changes with respect to the
start-configuration.

We presented various parallel algorithms to solve the MinCostConf problem. As a
baseline, the existing sequential A* search algorithm was introduced with a custom cost
function that prefers to keep prior user selections. Three major strategies for parallel
search were implemented. Firstly, two versions of parallel A* search were conceptualized.
Secondly, a parallel cube-and-conquer algorithm was presented and lastly, a parallel portfolio
approach was proposed. To avoid search space duplication, an alternative was shown which
applies portfolio concepts to parallel A* search. The introduction of parallel algorithms for
MinCostConf added nondeterminism with regard to the order of found solutions. This has
been addressed by designing robust search termination detection strategies which ensure
that the search is only terminated when the expected configurations are found.

We performed experiments to compare the implemented algorithms using real industry
cases as well as random SAT instances. The achieved speedup varied depending on the rule
set, but for critical configuration tasks with longer response times, a consistent speedup
between 2 and 3 was attained utilizing 4 worker threads. Lastly, the experiments also showed
that deterministic behavior can be achieved with a reasonable overhead.

7.1 Future Work

There are several aspects in this paper that can be extended and further improved upon.
Firstly, the evaluation was performed on a limited selection of rule sets using up to four
threads. Thus, the presented algorithms can be optimized to utilize a larger number of
processing units, although diminishing returns are expected.

Secondly, the presented algorithms are only a subset of possible approaches. Other
algorithms that have been used in the literature can be adopted and changed to fit the
presented problem. For instance, to limit the memory footprint the iterative deepening
A* (IDA*) algorithm can be adapted ([32]). This can also improve the presented parallel
portfolio approach which is limited by its resource consumption. Furthermore, the presented
MinCostConf problem defines solutions as minimal-cost configurations. In some domains
with very complex configuration models, this criteria may be loosened and only good but
suboptimal solutions are requested. This could be performed for example with a parallel and
deterministic version of beam search.

A reviewer of this paper suggested, that the methods used for robust and super solu-
tions [21, 20, 15] in constraint programming bear a lot of similarity to our methods. In future
work we would like to examine these similarities.

Lastly, parallel SAT related algorithms may also be used in other areas of interactive
product configuration. Besides a valid configuration, additional information can be calculated,
for example the attributes that are not possible to select without changing the pinned
attributes. Therefore, these attributes may be grayed out for the user. To accelerate this
calculation, a parallel algorithm can be applied. Another area of interest is multi-product
configuration. Given several loosely coupled products, a user wish in one product can cause
changes in other dependent ones, possibly causing a chain reaction. The calculation of this
impact can be performed in parallel, by analyzing the impact of the user with the help of a
dependency graph and performing independent sub-configurations in parallel.
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Abstract
Constraint programming provides generic techniques to efficiently solve combinatorial problems.
In this paper, we tackle the natural question of using constraint solvers to sample combinatorial
problems in a generic way. We propose an algorithm, inspired from Meel’s ApproxMC algorithm on
SAT, to add hashing constraints to a CP model in order to split the search space into small cells
of solutions. By sampling the solutions in the restricted search space, we can randomly generate
solutions without revamping the model of the problem. We ensure the randomness by introducing a
new family of hashing constraints: randomly generated tables. We implemented this solving method
using the constraint solver Choco-solver. The quality of the randomness and the running time of our
approach are experimentally compared to a random branching strategy. We show that our approach
improves the randomness while being in the same order of magnitude in terms of running time.
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1 Introduction

Using constraint satisfaction as a core technique, constraint solvers have been enriched with
different additional properties, such as optimisation (even with multiple objectives [8]), user
preferences [18], diverse solutions [10], robust solutions [9], etc. In this article, we propose
a method to sample solutions of a constraint problem, without modifying its model. This
work is motivated by many situations where a user wants randomized solutions: to ease
user feedback and decision making, to ensure equity (for instance in planning problems), to
guarantee solution coverage (for instance in test generation problems).

Currently, a straightforward way to randomly sample solutions with a CP solver is to
use RandomVarDom; that is, randomly picking a variable and a value as an enumeration
strategy. However this strategy does not return uniformly drawn solutions (uniformly within
the solution set), and also replaces the strategy that may have been chosen or built for the
problem. Our approach is inspired from UniGen [13], a near-uniform sampling algorithm
for SAT, adapted to the CP framework. The idea is to divide the search space by adding
random hashing constraints, until only a small, tractable number of solutions remain. No
replacement of the strategy is needed and the sampling can be done among these solutions.
Our algorithm also features a dichotomic variation which accelerates the whole process.

This algorithm needs to be fed with random hashing constraints. In order to maintain
the running time reasonable, we choose to randomly generate table constraints [5], which are
implemented in all constraint solvers. We rely on their extensional representation of valid
tuples to produce, at cheap cost, a multivariate uniform distribution.
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We implemented our proposal on top of Choco-solver [16] and compare it to Random-
VarDom on various types of problems. We show that our approach improves, in practice,
the randomness compared to RandomVarDom. In addition, the running time increase is
limited in practice. This shows that adding a better level of randomization can be done at a
low computation cost.

1.1 Related works

As we previously said, our work is inspired from Meel’s work on UniGen [13], an algorithm
to sample SAT problems. UniGen is a two-step algorithm. The first step consists in running
ApproxMC, an algorithm for SAT model counting. XOR constraints are added to the
model until there are less than a given number of solutions. The solutions are counted within
the smaller space marked by the additional constraints, and this number, multiplied by
a ratio between the volume of the smaller space and the volume of the real search space,
gives a first value for the solution number. Applying this algorithm multiple times gives an
approximation of the number of solutions. In the second step, this approximation is used in
UniGen to sample the problem. The resulting distribution is near the uniform distribution.
The idea used in ApproxMC on SAT (divide to count) has also recently been used in a CP
context for model counting [15]. Our algorithm uses the same idea of additional constraints
to divide the search space, within the CP framework, for solution sampling.

Among the broad literature of SAT solution sampling, we also want to mention [6], which
is close to our approach. The authors sample partial solutions, and iteratively extend them
by instantiating a fixed number of variables. This approach works well because of the binary
domains, but in CP the possible large domains would be an issue. This would force to do more
iterations, which in the worst case would lead to an algorithm close to RandomVarDom

Solution sampling in constraint programming was first studied in [4] and [7], using
bayesian networks. These approaches allow to have a uniform sampling, or to choose the
distribution of the solutions, but are exponential in the induced width of the constraint
graph. This complexity prevents the approach from being used on big instances, and forces
the use of approximations. We took the opposite view of designing a fast sampling method,
knowing that we would not be able to guarantee the uniformity of the sampling.

Other approaches improve the diversity of solutions, a different task from sampling. It
consists in finding solutions far from each other, for a given metric (edit distance for instance).
In [10] the model is re-written to search for distant solutions. In [20] solutions are returned
in an online fashion; search strategies are designed to search in spaces far from the solutions
previously found. Diversification and sampling are linked but remain two very different goals.
On one hand, sampling multiple solutions will necessarily return diverse solutions, but it is
very unlikely to be the most distant solutions. On the other hand, diversification does not
give any guarantee of randomness, as solutions close to other ones may never be returned.

1.2 Outline

Section 2 gives the notations and recalls the definitions that are needed afterwards. Sec-
tion 3 presents our approach to sample solutions, and section 4 describes our experimental
evaluation.
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2 Preliminaries

2.1 Constraint programming

In this article we are interested in constraint satisfaction problems (CSPs). A CSP P is a
triple ⟨X , C,D⟩ where
X = {X1, . . . , Xn} is a set of variables;
D is a function associating a domain to every variable;
C is a set of constraints, each constraint C ∈ C consists of:

a tuple of variables called scope of the constraint scp(C) = (Xi1 , . . . , Xir ), where r is
the arity of the constraint
a relation, i.e. a set of instantiations

rel(C) ⊆
r∏

k=1
D(Xik

)

A constraint is said to be satisfied if every variable Xik
∈ scp(C) is instantiated to a value

of its domain xik
∈ D(Xik

), and (xi1 , . . . , xir ) ∈ rel(C). The constraints can be defined in
extension (called table constraints [5]) by giving explicitly rel(C), or in intension with an
expression in a higher level language. For example, the expression X1 + X2 ≤ 1 for X1, X2
on domains {0, 1}, represents rel(C) = {(0, 0), (0, 1), (1, 0)}.

CSP solving is the search for one, some or all solutions, i.e. assignments of value to every
variable such that all the constraints are satisfied. Optimisation problems (COPs) are CSPs
where an objective function obj to minimise (or maximise) has been added.

Notations

Let a problem P = ⟨X ,D, C⟩, and C a constraint, we write P∧C for the CSP ⟨X ,D, C ∪ {C}⟩.
We note Sols(P) the set of solutions of problem P.

In the following, we only consider satisfaction problems. It is also possible to deal
with optimisation problems, up to an approximation, by turning them into a satisfaction
problem. Let a COP (P, obj) to minimise (resp. maximise), and let opt be the minimum
value (resp. maximum) of the objective obj. Let ϵ ≥ 0, we transform the problem into a
CSP P ∧ (obj ≤ opt + ϵ) (resp. P ∧ (obj ≥ opt− ϵ)). As the gap ϵ increases, the solutions
searched will be further from the optimal value.

2.2 Chi squared test

Evaluating the randomness of a system is a hard task because random systems can take
surprising values without being biased (for example, a fair coin does, occasionally, land ten
times in a row on heads). The chi squared (or χ2) test allows to compare the result of a
random experiment to an expected probability distribution. It comes from a convergence
result to the χ2 law, stated in [14] and recalled here. Let Y be a random variable on a finite
set, taking the value k with probability pk for 1 ≤ k ≤ d. Let Y1, . . . , Yn be independent
random variables of the same law as Y . Let N

(k)
n the number of variables Yi, 1 ≤ i ≤ n

equal to k.
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▶ Theorem 1 ([14]). When n tends to infinity, the cumulative distribution function of the
random variable

Zn =
d∑

k=1

(
N

(k)
n − n · pk

)2

n · pk

tends to the cumulative distribution function of the law of the χ2 with (d − 1) degrees of
freedom (noted χ2

d−1).

The χ2 test comes down to randomly picking values by making the assumption that they
follow the law of Y , compute the experimental value zexp

n of Zn, and compute the probability
(called p-value)

P(Zn ≥ zexp
n ) ≈ P(χ2

d−1 ≥ zexp
n )

If this probability is close to zero, then, having a more extreme result than the one obtained
is very unlikely. It means that the hypothesis under which the experimental values follow
the same law as Y can be confidently rejected.

2.3 Random search strategy

The search algorithm for a constraint problem alternates:
a depth-first search, where the search space is reduced by adding constraints (called
decisions), for example, an assignment of a variable to a value in its domain;
a phase of propagation that checks the satisfiability of the constraints of the CSP.

A natural search strategy to add randomness is the strategy RandomVarDom that
picks randomly (uniformly) a variable X among all the non instantiated variables, a value
x ∈ D(X), and applies the decision X = x. This strategy has the advantage to be easily
implemented in any constraint solver. However it prevents from using an other more efficient
exploration strategy, and besides, the distribution of the solutions may be far from uniform.
For example on the problem P = ⟨{X1, X2}, {X1 7→ {0, 1}, X2 7→ {0, 1}}, {X1 + X2 > 0}⟩,
let s the solution returned by a solver configured to use RandomVarDom, then we have,

P(s = {X1 7→ 0, X2 7→ 1}) = 3
8

P(s = {X1 7→ 1, X2 7→ 0}) = 3
8

P(s = {X1 7→ 1, X2 7→ 1}) = 1
4

The implications on the running time to find solutions and the quality of the randomness
on different problems are discussed in section 4.

3 New sampling approach

We present here a new approach to sample solutions. This approach is twofold: first we
present a way to generate random tables, and we then present an algorithm to sample
solutions using these generated constraints.
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Algorithm 1 Random table constraint generation algorithm.

1 Function RandomTable(P , v, p)
Data: A CSP P = ⟨{X1, . . . , Xn},D, C⟩, v > 0, 0 < p < 1
Result: A random table constraint

2 T ← {};
3 i1, . . . , iv ← GetIndices(P , v);
4 foreach (xi1 , . . . , xiv ) ∈

∏v
k=1D(Xik

) do
5 if Random() < p then
6 T.add((xi1 , . . . , xiv ));

7 return Table((Xi1 , . . . , Xiv
), T );

3.1 Random table constraints
The algorithm to generate random table constraints is presented in Algorithm 1. We suppose
available the functions Random() that returns a random floating point number between 0
and 1, GetIndices(P, v) that returns v indices i1, . . . iv such that |D(Xik

)| ̸= 1, 1 ≤ k ≤ v

(if there are less than v such indices, they are all returned), and Table(X ′, T ) that creates
a table constraint C such that scp(C) = X ′ and rel(C) = T . The two parameters of the
algorithm are: v the number of variables in the table, and p the probability to add a tuple
in the table. The algorithm first randomly chooses v variables among the variables whose
domains are not reduced to a singleton, and then runs through all the instantiations of these
v variables and adds each instantiation in the table with probability p.

The goal of these tables is to restrict the solution space to a smaller sub-space. The
following theorem shows that in average, the number of solutions of the problem is reduced
by a factor p.

▶ Theorem 2. Let P be a CSP, and T a table constraint randomly generated with probability
p. Then

E (|Sols(P ∧ T )|) = p|Sols(P)|

Proof. For σ ∈ Sols(P), let γσ a random variable equal to 1 if and only if σ ∈ Sols(P ∧ T ).
P(γσ) is the probability that σ satisfies T . Let Xi1 , . . . , Xir

the variables chosen in T . Each
instantiation of these variables has been added in the table with probability p, including
the instantiation (σ(Xi1), . . . , σ(Xiv )). It means that σ satisfies the table constraint T with
probability p. We then have p = P (γσ = 1) = E (γσ). It follows:

E (|Sols(P ∧ T )|) = E

 ∑
σ∈Sols(P)

γσ


=

∑
σ∈Sols(P)

E (γσ)

=
∑

σ∈Sols(P)

p

= p|Sols(P)| ◀

The purpose of Theorem 2 is the following: by adding table constraints, we decrease the
size of the solution set, and we can control how much, in average.
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Algorithm 2 Sampling algorithm by adding table constraints.

1 Function TableSampling(P , κ, v, p)
Data: A CSP P, κ ≥ 2, v > 0, 0 < p < 1
Result: A solution to the problem P

2 S ← FindSolutions(P , κ);
3 if |S| = 0 then
4 return “No solution”;
5 while |S| = 0 ∨ |S| = κ do
6 T ← RandomTable(P , v, p);
7 S ← FindSolutions(P ∧ T, κ);
8 if |S| ̸= 0 then
9 P ← P ∧ T ;

10 return RandomElement(S);

3.2 Sampling algorithm
First, the auxiliary functions used in the sampling algorithm are presented. The first
one is RandomElement(S) that returns a random element taken uniformly in S. The
second function is FindSolutions(P, s) that enumerates the solutions of P until s solutions
have been found, and returns them. Notice that, if this function returns s solutions, then
|Sols(P)| ≥ s, and if it returns less than s solutions then all the solutions have been found.
The depth first search in constraint solvers makes the implementation of such a function
easy.

The sampling algorithm works in the following manner: table constraints are added to
the problem to reduce the number of solutions. When there are less solutions than a given
pivot value, a solution is randomly returned among the remaining solutions. The algorithm
is presented in details in Algorithm 2. A value κ for the pivot is chosen to bound the number
of solutions enumerated in the intermediate problems, as well as the number of variables per
table v and the probability p to add a tuple in the table.

The algorithm first enumerates κ solutions and immediately stops if there are no solutions,
or less than κ solutions. If the problem has more than κ solutions a new table constraint is
randomly generated. If the problem with this constraint still has solutions, the constraint is
definitively added to the problem. The algorithm stops when there are less than κ solutions.
Finally, a solution is randomly chosen from all the solutions remaining, and returned.

3.2.1 Proof of termination
When creating random algorithms, one has to be particularly careful about the termination.
We show here that Algorithm 2 terminates with probability 1. A discussion about the
experimental behaviour is done in section 4.3.

We fix values for κ ≥ 2, v > 0 and 0 < p < 1. The case of the initial problem not being
satisfiable is caught at the beginning of the algorithm (line 3).

The following lemmas shows that there always exists a table that reduces the number
of solutions of the problem without making it inconsistent, and this table is chosen with a
non-zero probability. Without loss of generality, we suppose that there are always v variables
in the tables. If less than v variables are not instantiated, we pick some of the already
instantiated variables and use their current values to complete the instantiations.
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▶ Lemma 3. Let P be a problem with at least two solutions. In our framework, there exists
a random table constraint T0 such that

0 < |Sols(P ∧ T0)| < |Sols(P)|

Proof. Let σ1 and σ2 two distinct solutions of the problem P. Let i1 such that σ1(Xi1) ̸=
σ2(Xi1). Let i2, . . . , iv other indices such that |D(Xik

)| ̸= 1, 2 ≤ k ≤ v. Let us define the
table

T0 = Table ((Xi1 , . . . , Xiv
), {(σ1(Xi1), . . . , σ1(Xiv

))})

Then σ1 ∈ Sols(P∧T0) so Sols(P∧T0) ̸= ∅, and σ2 ̸∈ Sols(P∧T0) so Sols(P∧T0) ̸= Sols(P).
Since we add a constraint to P to build P ∧ T0, we have Sols(P ∧ T0) ⊆ Sols(P), thus
0 < |Sols(P ∧ T0)| < |Sols(P)|. ◀

▶ Lemma 4. There exists a constant ρ > 0, depending only on the initial problem, such that,
for T a randomly chosen table constraint with v variables:

P (0 < |Sols(P ∧ T )| < |Sols(P)|) ≥ ρ

Proof. We know from Lemma 3 that there is at least one table constraint T0 such that
0 < |Sols(P ∧ T0)| < |Sols(P)|. Let d be the maximum size of the domains of the initial
problem. We bound the probability of RandomTable(v, p) to pick exactly T0 (up to ordering
of the scope of the constraints). Let T be a random table returned by RandomTable(v, p).
We want to bound

P(T = T0) = P (scp(T ) = scp(T0) ∧ rel(T ) = rel(T0))
= P (scp(T ) = scp(T0)) · P (rel(T ) = rel(T0)|scp(T ) = scp(T0))

There is
(

n
v

)
ways to choose the v variables appearing in the table (the ordering does not

matter), so P (scp(T ) = scp(T0)) = 1/
(

n
v

)
. Let k the number of tuples in T0. There are at

most dv possible tuples in total. The probability to choose every tuple in T0 and not the others
is pk(1−p)dv−k. As k ≤ dv we have the lower bound P (rel(T ) = rel(T0)|scp(T ) = scp(T0)) ≥
pk(1 − p)dv−k ≥ min(p, 1 − p)dk . By defining ρ = 1

(n
v)min(p, 1 − p)dk we have the desired

bound, and ρ > 0 because 0 < p < 1. ◀

We proved that during an iteration of the loop, there is a probability strictly greater than
0 to remove solutions without making the problem inconsistent. We can now prove that the
algorithm terminates with probability 1. The proof is similar to the one showing that tossing
a fair coin, until tails comes up, ends with probability 1.

▶ Theorem 5. Algorithm 2 terminates with probability 1.

Proof. For some k > |Sols(P)| − κ, we want to find an upper bound of the probability that
the algorithm has not stopped after k iterations. In some cases, an iteration reduces the
number of solutions to the problem without making it inconsistent. There can be at most
|Sols(P)| − κ such iterations, because the algorithm stops if there is less than κ solutions
(condition of the while line 5). For the other iterations, the condition of the while loop
ensures that: either the (most recently added) table made the problem inconsistent, or it did
not reduce the number of solutions. The probability for this to happen is less than 1− ρ,
as stated in Lemma 4. Thus, the probability that, after k iterations, the algorithm did not
stop, is less than (1− ρ)k−|Sols(P)|+κ. This probability tends to zero when k tends to infinity.
This proves that the algorithm stops with probability 1. ◀
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Algorithm 3 Algorithm of dichotomic addition of tables.

1 Function DichotomicTableAddition(P , nbTables, κ, v, p)
Data: A CSP P = ⟨X ,D, C⟩ , nbTables > 0, κ ≥ 2, v > 0, 0 < p < 1
Result: P with the new table constraints, and the number of added tables

2 T ← array of size nbTables;
3 for i = 0 to nbTables− 1 do
4 T [i]← RandomTable(P , v, p);
5 S ← FindSolutions(P ∧

∧
t∈T t, κ);

6 while |S| = 0 ∧ |T | > 0 do
7 T ← T [0 : |T |/2[;
8 S ← FindSolutions(P ∧

∧
t∈T t, κ);

9 return P ∧
∧

t∈T t, |T |;

This proof is built with an upper bound, and considers the worst case (when solutions
are eliminated slowly), but in practice there is more than one table satisfying Lemma 3. The
solving time will be studied in practice in Section 4.5.

3.3 Dichotomic table addition
It is possible to improve the efficiency of the algorithm by increasing the number of tables
added at each step. At the beginning of the search, a table has a small probability to make
the problem inconsistent, so it is wiser to add more constraints to reduce the number of
calls to the solver. This algorithm is inspired from the unbounded dichotomic search: first,
find i such that the value we want to guess is between 2i and 2i+1, and then, run a usual
dichotomic search between 2i and 2i+1.

The algorithm of dichotomic table addition is presented in Algorithm 3, and should
replace lines 6 to 9 of Algorithm 2. Let τ be the number of tables added at the previous
step, we choose nbTables = 1 if τ = 0 or nbTables = 2τ otherwise, and nbTables tables
are generated and stored in an array T . The algorithm then enumerates κ solutions to the
problem where the tables in T have been added. If there is no solutions, it deletes half of
the constraints in T . The procedure stops when the problem is satisfiable or |T | = 0.

Theorem 5 can be extended to the case of the dichotomic table addition, because line 6
in Algorithm 3 ensures that the problem does not become inconsistent.

3.4 Discussion
In this section, we discuss the algorithmic choices we have made in Algorithm 2.

3.4.1 Quality of the division by the tables
In the proof of Theorem 2 the random variables (γσ)σ∈Sols(P) are not independent. For
example, let σ1 and σ2 two solutions to the problem that only differ on one variable X, then

P(γσ2 = 1|γσ1 = 1) = P(X ∈ scp(T )) · p + P(X /∈ scp(T )) (1)

Indeed, if the variable X appears in T , then σ2 will be kept with probability p, but if X is
out of the scope of T , then σ2 will always be kept. If the table does not have all the variables
in its scope, then it may not split the clusters of solutions which take the same values on
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multiple variables. This notion of independence is central in the approaches of Kuldeep
Meel [13] to show the uniformity of the sampling. Contrarily to this approach, our sampling
is not uniform. We choose to have tables of a controlled size for sake of efficiency.

Formula 1 showing the non independence also shows that increasing the number of
variables in the table makes the random variables γσ more independent, hence the whole
sampling process closer to uniformity. Tables containing all the variables of the problem
would make the random variables γσ fully independent, since in this case P(X /∈ scp(T )) = 0.
This would give a theoretical guarantee on the sampling, but is impossible to generate in
practice.

3.4.2 Influence of the parameters

Three parameters have to be chosen to run the algorithm. We can already estimate the
impact of the parameters on the running time and on the quality of the randomness.

As seen in the previous subsection, increasing the number of variables in the tables should
improve the randomness, but will also exponentially increase the number of tuples in the
table, with a negative impact on the running time.
Reducing the probability of adding a tuple in a table should improve the running time
because the tables will be smaller, so the propagation will be faster, and the number of
added tables will be lower because the problem will be more quickly reduced.
The impact of the pivot on the running time is unclear. Having a higher pivot means that
more solutions have to be enumerated at each step, but it also means that the algorithm
will stop after adding fewer constraints.

These hypotheses will be experimentally verified in section 4.

4 Experiments

This section presents the experiments done to test our approach. First, we evaluate the
behaviour in term of randomness. Then, we compare the running time of our approach to
the strategy RandomVarDom. The code is available online 1, along with all the scripts to
generate the figures presented in this article.

4.1 Implementation

The implementation has been done in Java 11 using the constraint solver choco-solver
version 4.10.6 [16]. It is possible to create a model directly in Java using the choco-solver
library, or by giving a file in the FlatZinc format (generated from the MiniZinc format).
Unless the FlatZinc file defines a strategy, the solver default strategy is used (dom/Wdeg [3]
and lastConflict [12]).

A technical improvement has been done, by adding a propagation step before the
generation of a table (before line 6 of algorithm 2). This avoids enumerating some tuples
that would be immediately deleted by propagation.

In the following, the algorithm used is TableSampling with DichotomicTableAddi-
tion.

1 https://github.com/MathieuVavrille/tableSampling
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Management of randomness

The random number generator used is the default one in Java : java.util.Random. This
generator uses a formula of linear congruence to modify a seed on 48 bits given as input. The
Java documentations points to [11], see section 3.2.1 for more information. This randomness
generator has flaws (notably a period of 248), but is sufficient to our needs (as shown in [2]).

The implementation uses a single instance of the random number generator, passed as
argument to every function needing it. This avoids a non independence behaviour due to a
bad generation of random seeds.

4.2 Problems
The approach is independent from the constraints of the problem, so we were able to apply
it on four different problems, including three real life problems. We present here the models
and their characteristics.

N -queens

The first problem is the N -queens problem, which consists of placing N queens on an N ×N

chessboard such that no queen attacks an other one (queens attack in every 8 directions, as
far as possible). We implemented it with the usual model with N variables with domain
[1, N ], an all_different constraint and inequality binary constraints (for diagonal attacks).

Renault Mégane Configuration

This is the problem of configurations of the Renault Mégane introduced in [1] and already used
in [10] for the search of diverse solutions. There are 101 variables with domains containing
up to 43 values, and the 113 constraints are modeled by table constraints, the majority of
them are non binary. This problem is loosely constrained, hence having more than 1.4 · 1012

solutions.

On Call Rostering

This problem models the system of duty, notably used by healthcare workers. This problem is
available in the MiniZinc benchmarks 2 and contains different constraint types, such as linear
constraints, global constraints count, absolute values, implications and table constraints.
Many datasets are available but only the smallest (4s-10d.dzn) has been used here. It is an
optimisation problem (minimization), so it was necessary to transform this problem into a
satisfaction problem by bounding the objective function. The optimal value is 1:

There are 136 solutions with obj ≤ 1
There are 2,099 solutions with obj ≤ 2
There are more than 10,000 solutions with obj ≤ 3

By randomly sampling the solutions, the solver can be used as a tool to help people creating
plannings to decide on (giving them multiple plannings to compare), and brings a form of
equity between the workers. Indeed, oriented search methods could favor some workers at
the expenses of others.

2 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/on-call-rostering

https://github.com/MiniZinc/minizinc-benchmarks/tree/master/on-call-rostering
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Feature Models

These are problems of software management, helping to decide on the order of implementation
of software features. The problem is specified in the MiniZinc format in [17] using the data
in [19]. Again, it is an optimisation problem (maximization), the optimal value is 20,222.
We add the constraint obj ≥ 17, 738 to make it a satisfaction problem with 95 solutions.

4.3 Experimental behaviour

We discuss here the experimental behaviour of TableSampling. In practice, we see that
most of the computations are done at the beginning of the algorithm. At the beginning,
most of the tables added do not make the problem inconsistent. We really benefit from the
dichotomic addition of tables. Most of the time is spent finding κ solutions, because as only
few tables are added to the problem, the search space is not reduced much, so searching for
solutions is not sped up.

At the end of the algorithm, when there are only few solutions remaining (but still more
than κ), there is a higher probability to make the problem inconsistent by adding a table.
Actually, this is not an issue, because it becomes really fast to find the solutions (or to prove
that the problem is inconsistent). This is due to the fact that all the tables added previously
really restrict the search space and are quickly propagated.

4.4 Quality of the randomness

The first goal of the experiments is to evaluate the quality of the randomness, i.e. knowing if
the solutions are sampled randomly and uniformly. The following results show that even
if the solutions are not sampled uniformly, the approach using table constraints is more
uniform than the strategy RandomVarDom.

4.4.1 Evaluation of the uniformity

To have a numerical measure of the uniformity of the sampling, we used the χ2 test. Knowing
the number nbSols of solutions of a problem (and numbering these solutions), nbSamples

samples are drawn and the number of occurences nbOcci of each solution i ∈ {1, . . . , nbSols}
is counted. We compute the value of the variable

zexp =
nbSols∑

k=1

(nbOcck − nbSamples/nbSols)2

nSamples/nbSols

and then the p-value of the test3 (i.e. the probability that the χ2 law takes a more extreme
value than zexp). This p-value gives a numerical value of the quality of the randomness.
More specifically, a large number of samples are drawn (more than the number of solutions)
and the evolution of the p-value depending on the number of samples is plotted. In our
case, as the sampling is not uniform, the p-value will tend to 0 when the number of samples
increases, but we remark that the sampling using tables has a p-value which tends slower to
0 than the default sampling using RandomVarDom.

3 We use the library “Apache Commons Mathematics Library” (https://commons.apache.org/proper/
commons-math/) for the probability computations
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(a) Feature Models problem with κ = 2 and p = 1/2. (b) On Call Rostering problem with the constraint
obj ≤ 1, v = 4 and p = 1/8.

(c) On Call Rostering problem with the constraint
obj ≤ 2, κ = 16 and v = 5.

(d) 9-queens problem with κ = 8, with different
values for v and p.

Figure 1 Evolution of the p-value on different problems, with different parameters. Plotting of
graphs using the table sampling and RandomVarDom.

To do this test we need to know the number of solutions nbSols and to sample multiple
times nbSols solutions, so the evaluation of the randomness can only be done on small
instances. These instances are the 9-queens (352 solutions), the Feature Models with the
constraint obj ≥ 17, 738 (95 solutions) and the On Call Rostering problem with the constraints
obj ≤ 1 and obj ≤ 2 (136 and 2,099 solutions).

We want to evaluate the impact of the evolution of a parameter (number of variables,
pivot, or probability) on the randomness of the algorithm of sampling by tables. To do so, in
the figures that follow, we plot the evolution of the p-value for the strategy RandomVarDom,
as well as for different values of parameters for the sampling by tables, by changing one
parameter at a time. The legend gives the parameters associated to each execution (v for
the number of variables, κ for the pivot and p for the probability).

▶ Remark 6. The figures show the p-value in a logarithmic scale, because it tends to 0.
Moreover, as the computations are done using floating point representation, a p-value smaller
than 10−16 will be considered to be equal to 0.
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4.4.2 Impact of the number of variables

We first vary the number of variables used in the generated tables. Fig. 1a shows the
evolution of the p-value on the Feature Models problem with parameters κ = 2 and p = 1/2.
We remark that increasing the number of variables in the table makes the p-value tend to
zero slower, meaning that the sampling is closer to uniformity. As we remarked earlier, this
is due to a better independence in the probability that two solutions will satisfy the table
constraints (see section 3.4.1).

4.4.3 Impact of the pivot

On Fig. 1b, we vary the pivot on the problem On Call Rostering, with the constraint obj ≤ 1
and parameters v = 4 and p = 1/8. Here we observe that increasing the pivot improves the
randomness. Indeed, when the pivot is high, at each step a lot of solutions are enumerated,
and in the end a random solution will be picked among a lot of other solutions, leading to a
better randomness. The extreme case is the perfect (but costly) sampling process, when the
pivot is higher than the number of solutions: the algorithm is then simply an enumeration of
all the solutions and returns a random solution.

4.4.4 Impact of the probability

Fig. 1c shows the p-value for different values of the table probability p, on the On Call
Rostering problem, with the constraint obj ≤ 2 and the parameters κ = 16 and v = 5.
There is no clear influence of the probability to add tuples in the tables to the quality of the
randomness. This allows, when choosing the probability, to focus on the running time (as we
will see in section 4.5.1).

4.4.5 Quality of the randomness

The last test was done on the 9-queens problem. Fig. 1d shows the evolution of the p-value
with κ = 8 and different values for v and p. On this particular problem (and on the N -queens
problem for any N), the sampling using the table constrains is actually uniform in practice
(the p-value tends to 1). As we already said, we have no theoretical guarantee with our
approach, but it seems that, on some problems, we may achieve uniformity in practice. We
believe that it is due to the structure of the solution space, because the N -queens problem is
a very structured problem with many symmetries. Thus, it is likely that the solutions are
properly spread on the search space.

4.4.6 Comparison with RandomVarDom

On every graph, we also plotted the evolution of the p-value for the sampling using the
search strategy RandomVarDom. We see on the three first graphs that our approach tends
to zero after significantly more samples than RandomVarDom. Using TableSampling
makes the sampling more uniform. For example, after sampling 50 solutions, the p-value
of RandomVarDom is 0.004, but the p-value of TableSampling (with parameters κ =
2, v = 2, p = 1/2) is 0.1. On the N -queens problem, RandomVarDom is not uniform but
our approach is, meaning that it really improved the quality of the randomness.
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Figure 2 Heat maps of the time to sample one solution, by fixing different parameters, on the
On Call Rostering problem with the constraint obj ≤ 3.

4.5 Running time

The evaluation of the running time is done in two parts. The parameters may have an
important impact on the running time: we experimentally investigate in Section 4.5.1 which
parameters have a positive impact. Then, we compare the running time of our method and
that of using RandomVarDom as a randomization strategy.

In the section, we use problems with more than 10,000 solutions. This eliminates the
Feature Models problem, which has too few solutions to provide a meaningful statistical test.
For each method, 50 samples are done, in order to to average the running time.

4.5.1 Impact of the parameters

To show the impact of the parameters on the time to sample one solution, we fix one
parameter, and vary the two other parameters, to plot a heat map of the time, in function
of the two parameters. Fig. 2 shows the three heat maps obtained by fixing the number of
variables, the pivot or the probability. The hypotheses done in section 3.4.2 are verified here
experimentally:

decreasing the number of variables in the tables, decreases the running time;

decreasing the probability of adding a tuple in the table decreases the running time.
As we previously saw, increasing the number of variables improves the randomness. There is
a compromise to do between the running time (having few variables in the tables) and the
quality of the randomness (having many variables in the tables).

We also saw that the probability to add a tuple in the tables does not have a clear
impact on the quality of the randomness, so it is best to choose small probabilities to have
smaller tables, hence giving a faster propagation, as well as fewer tables added during the
computations.

The number of variables in the tables should be chosen as a trade-off between the desired
quality of randomness and the running time. It will depend on the application: instances
with big domains may require smaller v not to have too big tables (for example, v = 4 for
domains of size 100 would have to enumerate 108 tuples). From our experiments, we suggest
as a baseline to use the parameters κ = 16 and p = 1/32.
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Table 1 Comparison of the time to sample a solution between RandomVarDom and table
sampling.

Problem Random- Table sampling Ratio
VarDom v κ p Time

32 ms

2
16 1/16 55 ms 1.7

1/32 59 ms 1.8

32 1/16 89 ms 2.8
Renault Mégane 1/32 86 ms 2.7

Configuration

3
16 1/16 74 ms 2.3

1/32 67 ms 2.1

32 1/16 83 ms 2.6
1/32 65 ms 2.0

38 ms

2
16 1/16 14 ms 0.36

1/32 14 ms 0.38

32 1/16 15 ms 0.4
On Call 1/32 18 ms 0.46

Rostering

3
16 1/16 18 ms 0.47

1/32 15 ms 0.4

32 1/16 19 ms 0.5
1/32 17 ms 0.44

12-queens 2 ms

2
16 1/16 4 ms 2.4

1/32 4 ms 2.3

32 1/16 7 ms 4.1
1/32 7 ms 3.9

3
16 1/16 10 ms 5.6

1/32 8 ms 4.3

32 1/16 12 ms 6.9
1/32 11 ms 6.0

4.5.2 Comparison to RandomVarDom
In this Section, we compare the running time to RandomVarDom. Table 1 shows the
running time to sample one solution for 8 different sets of parameters of table sampling. To
take into account the variability of the solving time, we measure it on 50 samplings, and
report the average time to get one sample. The ratio between the time of TableSampling
and the time of RandomVarDom is also given.

We showed that the quality of the randomness of TableSampling is better than the
one of RandomVarDom, and we would expect to pay a price in running time in return.
But, in practice, the running times are still within the same order of magnitude. On the
On Call Rostering problem, it is even two to three time faster to use TableSampling
instead of RandomVarDom On the other two problems, RandomVarDom is faster. This
behaviour can be explained quite easily: the On Call Rostering problem is very sparse, and
there are many values in the domains of the variables that do not lead to solutions. Thus,
the RandomVarDom strategy provokes a lot of fails during the search, because it often
picks values that do not appear in solutions. In comparison, on the problems of Renault
Mégane Configuration and N -queens, a lot of values in the domains of the variables may
lead to solutions, so the probability of failing because of a bad choice is low. Our approach
also allows to use a different and more powerful strategy, since it can be combined with any
search strategy. We can thus take advantage of all the progress made in the design of search
strategies.
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5 Conclusion

We presented an algorithm using table constraints to randomly sample solutions of a problem.
We improved this algorithm by increasing the number of tables added at each step. We
experimented our approach on four different problems, involving different types of constraints
and different domains of variables. We showed that the sampling is closer to uniformity
than a sampling using the search strategy RandomVarDom. Even with this improved
randomness, the running time remains comparable to RandomVarDom. Our approach uses
the solver as a black box, hence can be applied to a wide range of problems.

In the future, we plan to study structured problems, and investigate how to improve
the sampling using the structure of the problem. Optimisations problems are also an other
research direction. Instead of artificially turning them into satisfaction problems, we plan to
use the samples previously found to directly search for close to optimal solutions.
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these state-of-the-art solvers is that they are based on floating-point arithmetic and can only
produce an approximate solution which may be far away from the optimal solution or even
outside the feasible domain. On the other hand, the solvers based on exact arithmetic can
get exact optimal solutions, but are time-consuming and have poor scalability in practice.

In this paper, we particularly consider the scene of applying linear programming in
program analysis based on numerical abstract interpretation [6], in the context of which it is
important to guarantee the soundness of the analysis. Linear programming is one of the basic
operations of many numerical abstract domains, such as Template Constraint Matrix [21],
constraint-only polyhedra [7], etc. To achieve high efficiency while guaranteeing soundness,
this paper considers the scene of using low-cost rigorous linear programming techniques
based on floating-point arithmetic to implement numerical abstract domains.

Rigorous linear programming has received much attention in the last two decades in
the field of mathematics. In 2003, Neumaier and Shcherbina [19] propose a method that
computes safe bounds of the objective function of the primal problem by solving the dual
problem using floating-point linear programming. Jansson [11] proposes another technique
which focuses on linear programming problem with uncertain input data and infinite bounds
of decision variables. Although the above techniques produce general solution for rigorous
linear programming problems, they may provide too conservative results for some linear
programming problems in practice, especially when variables involve infinite bounds or
problems are ill-conditioned. Hence, they may cause much precision loss when being used to
implement program analysis.

Our approach. To make rigorous linear programming more practical for program analysis, we
propose a novel rigorous linear programming technique based on Fourier-Mozkin elimination
and interval arithmetic. This new technique is complementary to existing rigorous linear
programming techniques and their combination via some heuristic rules can achieve a better
trade-off between cost and precision than the identical ones.

The main contributions of this paper are as follows:
We introduce a new rigorous linear programming technique based on Fourier-Mozkin
elimination and interval arithmetic.
We conduct an experimental evaluation of the usefulness and effectiveness of our technique
for solving linear programming problems. The results show the availability of our
technique.
We develop a tool called RlpSolver that wraps existing rigorous linear programming
techniques together, and provide heuristic rules to help choosing proper solvers in different
cases.

For the sake of brevity, we use the following abbreviations throughout the paper:
LP: linear programming.
RLP: rigorous linear programming.
FME: Fourier-Mozkin elimination.

The rest of the paper is organized as follows. In Section 2, we review some preliminaries
of FME and RLP. Section 3 presents an overview of our work via a motivating example. In
Section 4, we illustrate our RLP approach based on FME in detail. Section 5 presents the
framework and heuristic rules of our tool named RlpSolver. Section 6 presents experimental
results. Section 7 discusses some related work. Finally, conclusions and future work are given
in Section 8.
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2 Preliminaries

In this section, we first review some basic concepts and notations of linear system with
interval coefficients. After that, we illustrate two existing representative RLP techniques,
i.e., SafeBound [19] and ErrorBound [11].

2.1 Interval Linear System
Let A, A ∈ Rm×n be real matrices with A ≤ A. We define the following set of real matrices:

A =
[
A, A

]
=

{
A ∈ Rm×n : A ≤ A ≤ A

}
We call A an interval matrix, whose lower and upper bounds are A and A respectively. An
interval vector is a special interval matrix with one column, i.e., d =

{
d ∈ Rm : d ≤ d ≤ d

}
.

Assume that A ∈ IRm×n (where IR denotes the set of intervals whose bounds are real
numbers) is a interval matrix whose dimension is m× n and b ∈ Rm is a m-dimension real
vector. We define

Ax ≤ b (1)

as an interval linear inequality system, representing a set of linear inequality systems
constituted by all Ax ≤ b where A ∈ A.

2.2 Linearization Technique
Now, we describe a method (called Orthant Reduction in this paper) to transform interval
linear inequalities into linear inequalities [4]. Considering any interval linear inequality∑

i [ai, bi] xi ≤ c (0 ≤ i ≤ n), where the variable xk (0 ≤ k ≤ n) is always non-negative or
always non-positive. When xk ≥ 0, it always holds that akxk ≤ bkxk. Hence, in this
case,

∑
i [ai, bi] xi ≤ c is equivalent to

∑
i̸=k [ai, bi] xi + akxk ≤ c. Similarly, when xk ≤ 0,

it always holds that akxk ≥ bkxk. Hence, in this case,
∑

i [ai, bi] xi ≤ c is equivalent to∑
i̸=k [ai, bi] xi + bkxk ≤ c.

2.3 SafeBound
Neumaier and Shcherbina [19] propose a method (called SafeBound in this paper) that
derives the safe bounds of the objective function by post-processing on the approximate
result produced by a general floating-point LP solver.

Consider a LP model represented in the following form:

min cT x

s.t. Ax ≤ b (2)

the dual of which is

max bT y

s.t.

{
AT y = c

y ≤ 0
(3)
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Suppose y is an approximate result of (3). By introducing interval arithmetic, we have
r := AT y − c ∈ r = [r, r]. Remind that Ax ≤ b and y ≤ 0, and thus we have cT x =(
AT y − r

)T
x = yT Ax− rT x ≥ yT b− rT x ∈ yT b− rT x. Hence, µ := inf

(
yT b− rT x

)
is the

safe lower bound for cT x, which can be calculated via floating-point arithmetic as follows:

rounddown:
r = AT y − c;
t = yT b;
roundup:
r = AT y − c;
µ = max{ rT x, rT x, rT x, rT x } − t;
µ = −µ;

where rounddown (roundup) denotes that we set rounding mode to −∞ (+∞).

2.4 ErrorBound
Jansson [11] proposes a method (called ErrorBound in this paper) to derive rigorous error
bounds for the optimal value from boxes that are verified to contain feasible points. And
Keil implements this method in Lurupa [14]. The method is described as follows (we refer
the proofs to [11]).

Consider the following LP model:

f := min cT x

s.t.

{
Ax ≤ a

x ≤ x ≤ x
(4)

where the simple bounds of x, i.e., x and x, may be infinite (i.e., x = −∞ or x = +∞),
which can lead to uncertainties.

LP model (4) can be formally represented by the parameter tuple P := (A, a, c). To
cope with uncertainties of the input data, we introduce interval arithmetic by rewriting P

with corresponding interval parameter tuple P := (A, a, c). Then we focus on this resulting
interval LP problem P.

The dual of interval LP problem P is depicted as follows:

f := max aT y + xT u + xT v

s.t.

{
AT y + u + v = c
y ≤ 0, u ≥ 0, v ≤ 0

(5)

▶ Theorem 1 (Lower Bound). Consider an interval linear program P with simple bounds
x ≤ x. Suppose interval vectors y ≤ 0 satisfy
1. for all free xj and all A ∈ A, there exists y ∈ y such that

cj − (A:j)T
y = 0

holds, and
2. for all variables xj bounded on one side only the defects

dj := cj − (A:j)T y

are non-negative if the variable is bounded from below and non-positive if it is bounded
from above.
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Then a rigorous lower bound for the optimal value can be computed as

inf
P ∈P

f(P ) ≥ f := inf

aT y +
∑

xj ̸=−∞

xjd+
j +

∑
xj ̸=+∞

xjd−
j

 (6)

▶ Theorem 2 (Upper Bound). Consider an interval linear program P with simple bounds
x ≤ x. Suppose interval vector x satisfies

Ax ≤ a, x ≤ x ≤ x (7)

Then a rigorous upper bound for the optimal value can be computed as

sup
P ∈P

f(P ) ≤ f := max{cT x} (8)

3 Overview

In this section, we provide a simple but typical example to illustrate our motivation. Consider
the following LP problem:

min z = −9x0 + 6x1 − 4x2

s.t.



3x0 − 8x1 + 5x2 ≤ −14
−5x0 − 2x1 + 6x2 ≤ 17
5x0 + 2x1 − 6x2 ≤ −17
−2x0 + 4x1 ≤ 19
x0, x1, x2 ≥ 0

(9)

Table 1 shows the results and execution time of solving the above LP problem via different
LP and RLP techniques. The first row of Table 1 shows the exact result given by glp_exact

which is based on exact arithmetic from GLPK [16], a linear programming kit maintained
by GNU. The existing RLP technique proposed by Neumaier and Shcherbina [19] (called
SafeBound in Sect. 2.4) only produces minus infinity which is sound but too conservative.
The reason lies in that the bounds of most variables in problem (9) involve infinity. Lurupa
[14] which implements Jansson’s method [11] (we call ErrorBound in Sect. 2.4), produces a
finite lower bound. Compared with Lurupa and SafeBound, our FME-based RLP produces
a more precise result which is also a rigorous finite lower bound. Besides, from the third
column of Table 1, we can see that among these techniques, our FME-based RLP has the
best performance.

Table 1 Results of motivating example.

approaches results time(s)

glp_exact 6.04166666666666785090 0.000292
Lurupa [14] 6.04166582676214503067 0.000063

SafeBound [19] −∞ 0.000160
FME-based RLP 6.04166666666666607454 0.000014
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4 RLP based on Fourier-Mozkin Elimination

In this section, we will present our RLP approach based on Fourier-Mozkin elimination
(FME). First, we review how to solve LP problem using FME. Then, we introduce how to
derive a sound floating-point FME to construct a RLP approach. After that, we introduce
techniques to improve efficiency of FME, so as to improve efficiency of RLP.

4.1 LP via Fourier-Mozkin Elimination
Fourier-Mozkin elimination is a general technique to perform variable elimination from
a system of linear inequalities. Solving LP problems mathematically via FME has been
discussed by Williams [26]. In this subsection, we will introduce the principle of applying
FME to solve the following LP problem:

max cT x

s.t.

{
Ax ≤ b

x ≥ 0
(10)

To solve LP problem (10) by FME, we need to reconstruct the objective function by
generating a new linear inequality, namely, xn+1 − cT x ≤ 0 and then we get a new linear
inequality system:

Ax ≤ b

xn+1 ≤ cT x

x ≥ 0
(11)

For (11), we can get the upper bound of newly added variable, i.e., xn+1, by applying
FME to eliminate all the other variables in (11). Obviously, the upper bound of xn+1 is the
maximum value of cT x. Computing the minimum value of cT x can be reformulated as the
following problem:

min cT x = −
(
max − cT x

)
(12)

Following the above process, if applying FME based on exact arithmetic, we can get the
exact maximum (minimum) value of the LP problem. However, if we conduct FME using
floating-point arithmetic, the result may be unsound. In other words, we may get a smaller
(larger) value than the exact maximum (minimum) value.

To this end, in this paper, we propose a RLP approach based on FME using floating-point
arithmetic. The key idea is to use interval arithmetic and linearization techniques to derive a
sound floating-point FME. In the following subsections, we first describe how to get a sound
floating-point FME and then describe techniques to improve the precision and efficiency.

4.2 Sound Floating-Point FME
The key idea of constructing sound floating-point FME is to use interval arithmetic with
outward rounding, that is, rounding up for computing upper bound and rounding down for
computing lower bound. With interval arithmetic, we will get a new form of linear inequality
in which all coefficients of variables are intervals.

For the sake of presentation, we introduce the following notations to denote floating-point
operations:
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⊕r: floating-point addition.
⊖r: floating-point minus.
⊗r: floating-point multiplication.
⊘r: floating-point division.

where r ∈ {+∞,−∞} represents rounding mode in which +∞ means upward and −∞ means
downward.

Assume we want to eliminate variable xi (i ≤ n) from the following two inequalities:
a+

i xi +
∑

k ̸=i,k≤n

a+
k xk + [a+

n+1, a+
n+1]xn+1 ≤ c+ if a+

i > 0 (13)

a−
i xi +

∑
k ̸=i,k≤n

a−
k xk + [a−

n+1, a−
n+1]xn+1 ≤ c− if a−

i < 0 (14)

where only the coefficient for variable xn+1 (that is introduced in (11) to denote the objective
value of the original LP problem) is an interval and all coefficients for other variables
xk (k ≤ n) are scalars. After dividing (13) and (14) respectively by the absolute value of the
coefficient of xi using interval arithmetic with outward rounding, we have

xi +
∑

k ̸=i,k≤n

[a+
k ⊘−∞ a+

i , a+
k ⊘+∞ a+

i ]xk

+ [a+
n+1 ⊘−∞ a+

i , a+
n+1 ⊘+∞ a+

i ]xn+1 ≤ c+ ⊘+∞ a+
i (15)

where a+
i > 0 and

− xi +
∑

k ̸=i,k≤n

[a−
k ⊘−∞ (⊖a−

i ), a−
k ⊘+∞ (⊖a−

i )]xk

+ [a−
n+1 ⊘−∞ (⊖a−

i ), a−
n+1 ⊘+∞ (⊖a−

i )]xn+1 ≤ c− ⊘+∞ (⊖a−
i ) (16)

where a−
i < 0. By adding (15) and (16), we have∑

k ̸=i,k≤n

[(a+
k ⊘−∞ a+

i )⊕−∞ (a−
k ⊘−∞ (⊖a−

i )), (a+
k ⊘+∞ a+

i )⊕+∞ (a−
k ⊘+∞ (⊖a−

i ))]xk+

[(a+
n+1 ⊘−∞ a+

i )⊕−∞ (a−
n+1 ⊘−∞ (⊖a−

i )), (a+
n+1 ⊘+∞ a+

i )⊕+∞ (a−
n+1 ⊘+∞ (⊖a−

i ))]xn+1

≤ (c+ ⊘+∞ a+
i ) ⊕+∞ (c− ⊘+∞ (⊖a−

i )) (17)

Then according to the LP model (10), we have xk ≥ 0 when k ≤ n. Hence, via Orthant
Reduction technique described in Sect. 2.2, (17) can be linearized into the following form
(where all coefficients for xk (k ≤ n) are scalars):∑

k ̸=i,k≤n

dkxk + [dn+1, dn+1]xn+1 ≤ c′ (18)

where

dk = ((a+
k ⊘−∞ a+

i )⊕−∞ (a−
k ⊘−∞ (⊖a−

i )) when k ≤ n

dn+1 = (a+
n+1 ⊘−∞ a+

i )⊕−∞ (a−
n+1 ⊘−∞ (⊖a−

i ))

dn+1 = (a+
n+1 ⊘+∞ a+

i )⊕+∞ (a−
n+1 ⊘+∞ (⊖a−

i ))

and

c′ = (c+ ⊘+∞ a+
i )⊕+∞ (c− ⊘+∞ (⊖a−

i ))
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We use the above process to eliminate a variable xi (i ≤ n) from a system of inequalities
where only the coefficient for variable xn+1 is an interval and the coefficients for other
variables xk (k ≤ n) are scalars, which results in a system of the same form. Obviously, from
the implementation point of view, we can skip the calculation of upper bound of interval
coefficient of xk (when k ≤ n) in (15) (17), which can reduce some unnecessary calculations.

The division operation during converting (13) ~(14) into (15) ~(16) may introduce many
interval coefficients for other variables, and converting interval coefficients into scalar ones
using linearization may introduce precision loss. Considering that integer values of normal
(not too large) magnitude can be represented exactly in floating-point representation, we
also consider implementing FME using multiplication described as follows.

Assume a+
i ⊗−∞ a−

i = a+
i ⊗+∞ a−

i can be represented exactly by floating-point represent-
ation (e.g., an integer). Then, after multiplying (13) by the minus of coefficient of xi in (14)
and multiplying (14) by the coefficient of xi in (13) using interval arithmetic with outward
rounding, we have

− a+
i a−

i xi +
∑

k ̸=i,k≤n

[a+
k ⊗−∞ (⊖a−

i ), a+
k ⊗+∞ (⊖a−

i )]xk

+ [a+
n+1 ⊗−∞ (⊖a−

i ), a+
n+1 ⊗+∞ (⊖a−

i )]xn+1 ≤ c+ ⊗+∞ (⊖a−
i ) (19)

a+
i a−

i xi +
∑

k ̸=i,k≤n

[a−
k ⊗−∞ a+

i , a−
k ⊗+∞ a+

i ]xk

+ [a−
n+1 ⊗−∞ a+

i , a−
n+1 ⊗+∞ a+

i ]xn+1 ≤ c− ⊗+∞ a+
i (20)

where ai+ > 0 and a−
i < 0. By adding (19) and (20), we have∑

k ̸=i,k≤n

[(a+
k ⊗−∞ (⊖a−

i ))⊕−∞ (a−
k ⊗−∞ a+

i ), (a+
k ⊗+∞ (⊖a−

i ))⊕+∞ (a−
k ⊗+∞ a+

i )]xk+

[(a+
n+1 ⊗−∞ (⊖a−

i ))⊕−∞ (a−
n+1 ⊗−∞ a+

i ), (a+
n+1 ⊗+∞ (⊖a−

i ))⊕+∞ (a−
n+1 ⊗+∞ a+

i )]xn+1

≤ (c+ ⊗+∞ (⊖a−
i )) ⊕+∞ (c− ⊗+∞ a+

i ) (21)

Then we can linearize (21) into scalar form similarly as linearizing (17). Similarly, we can
skip the calculation of upper bound of interval coefficient of xk in (21).

Finally, after we eliminate all variables x (consisting of xk’s (k ≤ n) from the system
(11), we will result in an one-variable interval linear system over xn+1:

[a1, a1]xn+1 ≤ b1

· · ·
[am, am]xn+1 ≤ bm

which is equivalent to the disjunction of the following two linear systems:
−xn+1 ≤ 0
a1xn+1 ≤ b1
· · ·
amxn+1 ≤ bm

∨


xn+1 ≤ 0
a1xn+1 ≤ b1
· · ·
amxn+1 ≤ bm

from which we can easily drive the upper bound of variable xn+1.
To sum up, overall, we can derive FME-based RLP by substituting the process of FME

described in Sect. 4.1 with sound floating-point FME described in this subsection. As
floating-point FME is sound, so the result of FME-based RLP is also rigorous.
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4.3 Redundancy Removal

It is known that FME for eliminating multiple variables may introduce a large number of
redundant constraints during the process, which may lead to extra space and time cost.
Hence, redundancy removal is a significant point to make FME practical.

In this paper, we utilize bit vector to implement two techniques, that is, Chernikov’s
rule [5] and Kohler’s rule [15], to remove redundant constraints. The main ideas of these two
techniques are described in the following subsections.

To simplify the descriptions of redundancy removal techniques, we rewrite linear inequality
system (11) as

A′x′ ≤ b′ (22)

where A′, x′ and b′ respectively are

A′ =

 A 0
−I 0
−cT 1

 , x′ =
(

x

xn+1

)
, b′ =

b

0
0

 (23)

Note that sometimes we also represent linear system (22) via the parameter tuple (A′, b′).

4.3.1 Bit Vector

We associate each inequality respectively with an index set which consists of integers
representing the row index of the inequality in the original system (22). For efficiency, we
encode the index set via a bit vector. The main idea is that if one inequality generated
during FME is a combination result of some original inequalities, then in the bit vector of
the generated inequality, the bits corresponding to the combined original inequalities will be
set to 1, while the remaining bits are set to 0. E.g., if an inequality φ is a combination result
of the first and third inequalities of the original inequality system, then the bit vector of φ is
0 · · · 00101 (the lowest bit from right corresponds to the first inequality in the system).

4.3.2 Chernikov’s Rule

In [5], Chernikov proposes a heuristic rule to avoid generating some redundant constraints
during FME by restricting the length of the index set associated with each inequality. To
simplify description, we write qi to denote the index set of inequality i. Before the starting
of elimination, the index sets of each constraint qi in the original inequality system (22) are
initialized as singleton sets which consist of the row index i of the corresponding constraint qi

in the constraint matrix A′ (i.e., qi is one of {1, 2, . . . , m}, where m is the number of rows in
A′). Assume that we want to make a combination between inequalities i and j. Before doing
combination, we can calculate the index set of this combination, that is, qij = qi ∪ qj . If the
size of qij is strictly greater than s + 1, where s means the combination is to be conducted
during the process of eliminating the s-th variable (after eliminating s− 1 variables), then
we can skip this combination since the resulting constraint is definitely redundant [5].

Algorithm 1 depicts the procedure of FME integrated with Chernikov’s rule.
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Algorithm 1 Procedure of FME with Chernikov’s rule.

1: /* (A′, b′) denotes the linear inequality system (22)*/
2: /* bv′ denotes the set of bit vectors corresponding to the inequalities in (A′, b′) */
3: /* j means the index of the variable to be eliminated, also corresponding to the j-th

column of A′*/
4: procedure FME_Iteration(A′, b′, bv′, j)
5: // i means the i-th row of A′ (i = 1, 2, . . . , m)
6: I+

j ← {i : aij > 0}; I−
j ← {i : aij < 0}; I0

j ← {i : aij = 0}
7: // Extracting inequalities and their corresponding bit vectors of A′ with indices in I0

j

8: (A′′, b′′, bv′′)← (A′, b′, bv′) |I0
j

9: for k+ ∈ I+
j do

10: for k− ∈ I−
j do

11: // bv_1bits() derives the number of one’s in a bit vector
12: ij_1bits← bv_1bits(bvk+ | bvk−) //Here | denotes bitwise OR operation
13: // Check Chernikov’s rule
14: if ij_1bits > j + 1 then
15: continue
16: end if
17: // FME_combine() combines of two inequalities, as described in Sect. 4.2
18: // FME_add() adds one inequality together with its corresponding
19: // bit vector into the resulting inequality system
20: (ac, bc)← FME_combine((A′

k+ , b′
k+), (A′

k− , b′
k−))

21: (A′′, b′′, bv′′)← FME_add((A′′, b′′, bv′′), (ac, bc, bvk+ | bvk−))
22: end for
23: end for
24: return (A′′, b′′, bv′′)
25: end procedure

Algorithm 2 Procedure of redundancy removal with Kohler’s Rule.

1: procedure RMR_ByKohler(A′, b′, bv′)
2: (A′′, b′′)← ∅; bv′′ ← ∅
3: // nb_rows() derives the number of rows for the parameter matrix
4: for i← 0 to nb_rows(A′)− 1 do
5: flag = false

6: for j ← i + 1 to nb_rows(A′) do
7: if (bvi | bvj) == bvi then
8: flag = true

9: break

10: end if
11: end for
12: if flag == false then
13: (A′′, b′′, bv′′)← FME_add((A′′, b′′, bv′′), (A′

i, b′
i, bv′

i))
14: end if
15: end for
16: return (A′′, b′′, bv′′)
17: end procedure
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4.3.3 Kohler’s Rule
Kohler’s rule is another well-known technique for removing redundant constraints during
FME. In our design, after doing FME in one iteration step (i.e., eliminating one variable),
we can derive a new inequality system, (A′, b′), together with its bit vectors, bv′. Then we
check each inequality in (A′, b′) with others to find out whether the subset relation exists
between them, to determine the redundant inequality, more clearly, superset being redundant
and subset not. Algorithm 2 depicts the procedure of Kohler’s rule to remove redundant
constraints.

Finally, we integrate Chernikov’s rule and Kohler’s rule into the process of FME. Al-
gorithm 3 depicts the procedure of our FME-based RLP, with initial inequality system as
input and maximum value of objective function as output.

Algorithm 3 Procedure of FME-based RLP.

Input: Initial linear inequality system (A′, b′)
Output: The maximum value of xn+1

1: // bv_initial() initializes bit vectors for initial system, as described in Sect. 4.3.1
2: bv′ ← bv_initial(A′, b′)
3: for j ← 1 to nb_columns(A′) do
4: (A′, b′, bv′) ← FME_Iteration(A′, b′, bv′, j)
5: (A′, b′, bv′) ← RMR_ByKohler(A′, b′, bv′)
6: end for
7: // max() derives the maximum value for objective function (noting
8: // that at this location, (A′, b′) only involves one variable, i.e., xn+1)
9: return max(A′, b′)

4.4 Optimization Considering Sparsity
In the field of program analysis, the objective function and constraint system are usually
sparse [24, 25], i.e., they contain mostly zeros. Hence, when we solve RLP problems
encountered during program analysis, we may make use of the sparsity in the LP problem to
accelerate the solving process.

Consider the LP problem encoded in (22), we say two variables xi and xj are relevant, if
there exists a constraint ϕ in A′x′ ≤ b′ of (22) such that the coefficients of xi and xj in ϕ

are not zero. The defined relevant relation is an equivalence relation on the set of variables
in x′, and the collection of its equivalence classes forms a partition of set of variables in x′.
Let S denote the equivalence class that variable xn+1 belongs in, and let S̄ denote the set of
variables not in S. Then the LP problem encoded in (22) can be reformulated as

A′x′ ≤ b′

where

A′ =
(

AS 0
0 AS̄

)
, x′ =

(
xS

xS̄

)
, b′ =

(
bS

bS̄

)
(24)

Thus, the LP problem encoded via

A′x′ ≤ b′

can be reduced to the following equivalent LP problem:

ASxS ≤ bS (25)
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Note that to derive the variable bound for xn+1, (25) is equivalent to (22). It is worth
mentioning that solving (25) will be more efficient than solving (22), since solving (25)
involves less variables to be eliminated from a linear system with less constraints.

5 Integrating RLP Techniques

Our proposed FME-based RLP, and two existing RLP techniques (i.e., SafeBound and
ErrorBound) have their own advantages and disadvantages. E.g., FME-based RLP has high
precision and specializes in small-scale LP problems but degrades a lot in efficiency when
the scale of LP problems increases. SafeBound and ErrorBound can handle large-scale LP
problems but have poor accuracy. To make RLP more practical and effective, we implement
a tool called RlpSolver, combining our FME-based RLP together with two existing RLP
techniques, that is, SafeBound [19], ErrorBound [11] (implemented in Lurupa [14]). Fig. 1
provides an overview of RlpSolver.

(a) Framework of RlpSolver. (b) Workflow of Heuristics in RlpSolver.

Figure 1 Overview of RlpSolver.

As shown in Fig. 1a, in RlpSolver, we can choose any of the three techniques to solve
one LP problem. Moreover, RlpSolver provides an option to automatically choose a proper
technique to solve a LP problem via heuristic rules. The workflow of the heuristics we design
is depicted in Fig. 1b, which automatically chooses a proper RLP technique for a given LP
problem. The details of heuristic rules are as follows:

FME-based RLP is often more precise than SafeBound and ErrorBound in many cases,
but may cost more time when the number of constraints is greater than some threshold.
Hence, by default, RlpSolver will choose FME-based RLP when the number of constraints
is less than some threshold. In other cases, we will try SafeBound or ErrorBound.
When the number of constraints is greater than some threshold, we will choose between
ErrorBound and SafeBound. Specifically, when many variables’ bounds are infinite (i.e.,
when the percent of infinite bounds exceeds some threshold), we will use ErrorBound
since SafeBound may often give infinity as results and ErrorBound behaves better than
SafeBound for infinite bounds.
Since ErrorBound and SafeBound depend upon floating-point simplex or other LP
algorithms, they may encounter numerical instability when solving LP problems and may
not fit for dealing with ill-conditioned (dual) problems, while FME-based RLP is more
robust than ErrorBound and SafeBound, thus we will try FME-based RLP if ErrorBound
or SafeBound fails.
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6 Implementation and Experiments

To evaluate the precision and efficiency of our proposed FME-based RLP and the integration
tool RlpSolver, we conduct experiments over randomly generated LP problems. We apply
glp_exact, SafeBound, Lurupa (which implements ErrorBound), and FME-based RLP to
our benchmark respectively. We use the exact LP API from GLPK (a linear programming
kit maintained by GNU) [16], i.e., glp_exact (which is implemented via exact arithmetic), as
our baseline.

By setting thresholds for the number of variables and constraints (10 and 15 respectively),
we split our benchmark into four categories, that is, small number of variables with small
number of constraints (SV_SC), small number of variables with large number of constraints
(SV_LC), large number of variables with small number of constraints (LV_SC), and large
number of variables with large number of constraints (LV_LC). In our benchmark, the
ranges of sizes of constraints (and variables) in SV_SC, SV_LC, LV_SC and LV_LC are
6~14 (4~9), 15~25 (4~9), 12~14 (10~12), 15~25 (10~18) respectively. Fig. 2 shows the log
of execution time. From Fig. 2, we can see that when the number of constraints is small
(as shown in Fig. 2 (a) and (c)), the performance of FME-based RLP is almost at the same
level as Lurupa and SafeBound, even better in many cases. When the number of constraints
is large (as shown in Fig. 2 (b) and (d)), FME-based RLP costs more time than SafeBound
and Lurupa, but its performance is mostly better than that of glp_exact.

Figure 2 Execution time over benchmark SV_SC (a), SV_LC (b), LV_SC (c), and LV_LC (d).

For the precision, as shown in Table 2, we provide the statistics of the number of instances
that FME-based RLP, SafeBound and Lurupa respectively provide the highest precision in
benchmark. For example, in SV_LC category, there are 149 out of 152 cases where FME-
based RLP obtains the highest precision. Experimental results show that FME-based RLP
is mostly more precise than SafeBound and Lurupa. Thus, when the number of constraints
is small, FME-based RLP is the best choice and also a good choice in the cases where the
number of constraints is large but requiring high precision. Moreover, during experiments,
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we find that there are many cases where SafeBound outputs too conservative results (i.e.,
infinity as the objective value) while FME-based RLP can output bounded (finite) results
which are close to that of glp_exact. In other words, FME-based RLP can be used in these
cases where SafeBound or Lurupa provide too conservative results, to improve the precision
of program analysis. The last column of Table 2 shows that there are 272 out of 575 cases
where integration tool RlpSolver can derive the highest precision.

Table 2 The number of cases where each technique provides the highest precision.

Categories Total FME-based RLP SafeBound Lurupa Equal1) RlpSolver

SV_SC 173 1572) 8 24 7 156
SV_LC 152 149 2 1 0 1
LV_SC 123 1153) 1 10 1 115
LV_LC 127 127 0 0 0 0

1) “Equal” means the results of FME-based RLP, SafeBound and Lurupa are equal.
2) There is 1 case where FME-based RLP is equal to only SafeBound and 1 case where

FME-based RLP is equal to only Lurupa in this category.
3) There is 1 case where FME-based RLP is equal to only Lurupa in this category.

For the execution time, Fig. 3 shows the cumulative time of different techniques for
solving LP problems in benchmark. The dashed line at the top left corner of Fig. 3 means the
time-out period. The curves of FME-based RLP and RlpSolver show that FME-based RLP
and RlpSolver take less execution time over the left half part than Lurupa and SafeBound.
Over the right half part (which consists of problems with large number of constraints), the
performance of FME-based RLP degrades a lot, while the execution times of RlpSolver,
SafeBound and Lurupa are still in the same order of magnitude. On the whole, via heuristic
rules, RlpSolver can achieve a good balance in terms of time cost and precision by choosing
a proper technique for different cases.

Figure 3 Execution time of several techniques.
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7 Related Work

FME and FME-based LP. Fourier-Mozkin elimination is a general technique to perform
variable elimination from a system of linear inequalities. Kohler [15] proposes a heuristic
rule (called Kohler’s rule now) for removing redundant constraints. Chernikov [5] proposes
additional rules to avoid generating some redundant combinations during elimination. Bas-
trakov et al. [1] propose a new way of checking Chernikov rules using bit pattern trees as an
accelerating data structure to avoid extensive enumeration. Maréchal et al [17] present a
raytracing algorithm that replaces most LP problem resolutions by distance computations
to efficiently eliminate redundancies in polyhedra. Solving LP problems via FME has been
continuously studied. Williams [26] first adapts FME to solve LP problems mathematically.
Kanniappan et al. [12] propose a modified FME method of solving LP problems which can
reduce the number of additional constraints to a considerable extent.

RLP. Rigorous linear programming has received much attention in the recent two decades.
In the 2003 seminal paper, Neumaier and Shcherbina [19] propose a technique that computes
safe bounds of objective value of primal problem by solving the dual problem with floating-
point linear programming. At almost the same time, Jansson [11] proposes another method
for LP with uncertain input data and infinite bounds. Keil implements Jansson’s method
[11] in a tool, named Lurupa [14]. Guilbeau et al. [10] review the technique proposed in[19]
and point out typographical errors in original publication and give some advice for other
implementers. Rump [20] gives some details on how to obtain mathematically rigorous results
for global optimization implemented in floating-point arithmetic.

LP and RLP in Analysis and Verification. LP is widely-used in analysis and verification
of programs, neural networks, etc. Sankaranarayanan et al. [22] use standard LP in
their Template Constraint Matrix (TCM) domain to compute the right-hand constants
for templates. Chen et al. [3] use RLP in their floating-point polyhedra domain [3] and
interval polyhedra domain [4] to support domain operations. David Monniaux [18] proposes
a simple but sound and complete preprocessing phase which can be adapted to existing SMT
solvers via floating-point computations to help an exact linear arithmetic decision procedure.
Besson [2] explains how to design a sound procedure for linear arithmetic built on an inexact
floating-point LP solver. Dillig et al. [8] propose a sound and complete simplex-based
algorithm for solving linear inequalities over integers which can be viewed as a semantic
generalization of the branch-and-bound technique. It is also worth mentioning that LP and
mixed integer LP (MILP) are used in recent neural network verification [9, 13].

8 Conclusion

Rigorous linear programming is an important technique to make implementations of program
analysis and verification techniques sound and efficient in practice. Existing RLP techniques
sometimes produce too conservative (even unbounded) results, especially when many bounds
of variables in the problem are infinite or when the LP problem is ill-conditioned. To address
this problem, we propose a new technique, FME-based RLP, which can be treated as a
supplement to existing RLP techniques. On this basis, we implement a tool, RlpSolver,
wrapping FME-based RLP and existing RLP techniques together, and propose heuristics
to select a proper technique for different LP problems. Experimental results show that our
FME-based RLP is complementary to existing RLP techniques and provides more precise

CP 2021



57:16 Making Rigorous Linear Programming Practical for Program Analysis

results than existing RLP techniques for many cases. Experimental results also show that
our RLP integration tool, i.e., RlpSolver, achieves a good performance in terms of precision
and efficiency by choosing a proper technique for different cases.

For future work, we plan to make use of more techniques to expedite removing redundancy
during the process of FME. We also plan to conduct experiments in the context of using
RLP in program analysis and verification.
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Abstract
Despite the NP-completeness of Boolean satisfiability, modern SAT solvers are routinely able to
handle large practical instances, and consequently have found wide ranging applications. The
primary workhorse behind the success of SAT solvers is the widely acclaimed Conflict Driven Clause
Learning (CDCL) paradigm, which was originally proposed in the context of Boolean formulas in
CNF. The wide ranging applications of SAT solvers have highlighted that for several domains, CNF
is not a natural representation and the reliance of modern SAT solvers on resolution proof system
limit their ability to efficiently solve several families of constraints. Consequently, the past decade
has witnessed the design of solvers with native support for constraints such as Pseudo-Boolean (PB)
and CNF-XOR.

The primary contribution of our work is an efficient solver engineered for PB-XOR formulas, i.e.,
formulas consisting of a conjunction of PB and XOR constraints. We first observe that a simple
adaption of CNF-XOR architecture does not provide an improvement over baseline; our analysis
highlights the need for careful engineering of the order of propagations. To this end, we propose
three different tactics, all of which achieve significant performance improvements over the baseline.
Our work is motivated by applications arising from binarized neural network verification where
the verification of properties such as robustness, fairness, trojan attacks can be reduced to model
counting queries; the state of the art model counters reduce counting to polynomially many SAT
queries over the original formula conjuncted with randomly generated XOR constraints. To this
end, we augment ApproxMC with LinPB and we call the resulting counter as ApproxMCPB. In an
extensive empirical comparison over 1076 benchmarks, we observe that ApproxMCPB can solve 912
instances while the baseline version of ApproxMC4 (augmented with CryptoMiniSat) can solve only
802 instances.
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1 Introduction

Given a Boolean formula F, the problem of satisfiability (SAT) is to determine whether there
is an assignment σ to the set of variables such that F evaluates to True. The celebrated
work of Cook and Levin (independently) established the NP-completeness of SAT [6, 21]
and thereby establishing SAT at the core of the fundamental question of whether P=NP?
From the practical perspective, the past three decades have been witness to unprecedented
performance improvements in SAT solvers, which largely owes to the Conflict Driven Clause
Learning (CDCL) paradigm, owing to seminal work of Marques-Silva and Sakallah [22], which
has seen been combined with careful software engineering along with rigorous theoretical
advances. Quoting Knuth: “The story of satisfiability is a tale of the triumph of software
engineering blended with rich doses of beautiful mathematics.”

From a theoretical perspective, the breakthrough performance improvements of SAT
solvers can be cast as surprising given the reliance of CDCL solvers on the resolution as a proof
system. Resolution can be characterized as a weak proof system with strong lower bounds
for simple formulas such as those based on Pigeon Hole Principle [15, 38]. The weakness of
resolution as a proof system is well known to the SAT community, and consequently there
have been efforts since the early 2000s in the design of solvers that can perform reasoning
more powerful than resolution [10, 3, 33, 20, 12].

The CDCL solver’s reliance on resolution contributed to the rise of Conjunctive Normal
Form (CNF) to be the input representation for modern SAT solvers. While Tseitin encoding
provides an efficient method to convert an arbitrary Boolean formula into CNF with only a
linear overhead [37], such an encoding deprives the solver of the natural representation of
the problem. Several problems arising from practice can be naturally represented constraints
using XORs and Pseudo Boolean (PB), which provided an impetus to the design of solvers
with native support for such representations. It is worth remarking that for representations
such as XORs and PBs, proof systems such as Gaussian Elimination and cutting planes [7]
are known to be exponentially more powerful than resolution.

To summarize, the weakness of resolution and availability of instances arising from practice
with natural representation in forms other than CNF have led to the design of solvers such as
CryptoMiniSat [36] and RoundingSat [12] with native support for XORs and PB constraints
respectively. While the design of CryptoMiniSat was originally motivated by applications in
cryptanalysis, its availability served as a bedrock to the development of approximate model
counting techniques over the past decade [14, 4, 13, 5, 25, 24, 1]. The current state-of-the-art
approximate model counter is ApproxMC [4], which is in its fourth version [34]. ApproxMC
takes in a CNF formula and then relies on hashing-based techniques to reduce counting
to polynomially many SAT queries over the formulas represented as a conjunction of the
original CNF formula and randomly generated XOR constraints. The past three years have
witnessed the power of tight integration of CryptoMiniSat and ApproxMC [35, 34].

Akin to applications relying on SAT queries, for several applications of counting, CNF
is not the natural representation. Of particular interest to us are applications arising from
verification of neural network [27]. Baluta et al. proposed the framework of quantitative
verification, called NPAQ, which reduces the verification of properties such as robustness,
fairness, trojan attacks over Binarized Neural Networks (BNNs) to counting queries [2].
It is worth observing that the natural representation of BNNs is a conjunction of PB
constraints and the counting framework of ApproxMC introduces randomly generated XOR
constraints; therefore, each of the underlying SAT queries can be represented as a conjunction
of PB and XOR constraints. The current implementation of ApproxMC is built on top
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of CryptoMiniSat due to its native support of XORs and therefore, NPAQ employs CNF
encoding of PB constraints into CNF. While NPAQ was shown to scale to large instances,
the scalability remains a major challenge. In this context, one wonders whether it is possible
to address the scalability challenge of hashing-based approximate model counting when the
instances have their natural representation in PB via the design of an efficient model counter
that has native support for both PB and XOR constraints.

Given the availability of the state-of-the-art cutting plane proof system-based PB solver,
RoundingSat [12], a straightforward first step would be to integrate the easily portable
Gauss-Jordan elimination module in CryptoMiniSat [36] into RoundingSat. Our initial
foray, surprisingly, yielded little to no significant improvement in comparison to the current
approach of invoking CryptoMiniSat over PB constraints encoded into CNF. We denote this
approach by Lazy-GJE.

The primary contribution of this work is an efficient satisfiability solver, called LinPB, for
PB-XOR formulas. Our design of LinPB is based on our identification of the key performance
bottleneck in the aforementioned approach: the presence of redundant propagation. In
LinPB, we propose three novel strategies for propagation: Shared-Watches, Eager-GJE, and
Mixed-Watches. To evaluate the empirical effectiveness of our proposed techniques, we
integrate LinPB with the ApproxMC algorithm; we call the resulting tool ApproxMCPB.
We perform an empirical comparison of ApproxMCPB vis-a-vis ApproxMC4 tool and other
state-of-the-art counters on over 1076 benchmarks arising from binarized neural network
verification for diverse properties [2]. Our empirical comparison shows that while ApproxMC
can solve only 802 instances, ApproxMCPB can solve 912 instances, thereby achieving a
gain of over 100 instances. Furthermore, the PAR-2 score for ApproxMC is 3305 seconds
while the PAR-2 score for ApproxMCPB is 1822 seconds, thereby achieving an almost 50%
decrease in PAR-2 score. Among different strategies, we observe that usage of Lazy-GJE
leads to ApproxMCPB solving 804 instances while usage of Shared-Watches, Eager-GJE,
and Mixed-Watches leads to solving 892, 892, and 912 instances.

The rest of the paper is organized as follows: We discuss notations and preliminaries in
Section 2 and introduce the background of PB and XOR solving in Section 3. In Section 4,
We focus on core technical contributions for PB-XOR solving. We then present an extensive
experimental evaluation in Section 5 and finally conclude in Section 6.

2 Notations and Preliminaries

Let X = {x1, x2, . . . xn} be the set of Boolean variable. A literal is a variable or its negation.
A clause is a disjunction of literals.

For a Boolean formula φ, we use Vars(φ) to denote the set of variables involved in φ. If
an assignment σ of truth values to all the variables in Vars(φ) makes formula φ evaluate to
True, it’s called a solution or witness of φ. We use sol(φ) to denote the set of all witnesses of
φ. Given a set of variables P ⊆ Vars(φ), we denote the projection of RF on P by sol(φ)↓P .

In the context of propositional model counting, we aim to compute the number of solutions,
i.e. |sol(φ)|, for a given Boolean formula φ. A probably approximately correct (PAC) counter
denotes a probabilistic algorithm ApproxCount(·, ·, ·) that takes as inputs a formula φ, a
tolerance ϵ > 0 and a confidence 1− δ ∈ (0, 1], and returns a count c with (ϵ, δ)-gurantees,
i.e., Pr[|sol(φ)|/(1 + ϵ) ≤ c ≤ (1 + ϵ)|sol(φ)] ≥ 1− δ. Similarly, projected model counting is
to compute |sol(φ)↓P | instead of |sol(φ)| for a given sampling set P ⊆ V ars(F ).

A (linear) pseudo-Boolean (PB)-constraint is represented as Σi∈Swixi ≥ k where, S ⊆ [n],
wi, k ∈ Z. An XOR-constraint is represented as ⊕i∈Sxi = b for S ⊆ [n] and b ∈ {0, 1} where
⊕ represents XOR operator. A formula is in CNF if it can be represented as conjunction
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of clauses. Similarly, a formula is PB form (resp. XOR form) if it can be represented as
conjunction of PB (resp. XOR) constraints. Furthermore, a formula is in PB-XOR (resp.
CNF-XOR) form if if can be represented as ϕ ∧ ψ where ϕ is a formula in PB (resp. CNF)
form and ψ is a formula in XOR form.

PB Encoding of XOR

Our work focuses on the efficient handling of PB-XOR formulas. A simple baseline approach
would be to express XOR constraints as PB constraints, and in this context, one wonders
whether there is an efficient method to encode PB constraints. We now state a well-known
encoding of XOR into PB constraints via the introduction of additional auxiliary variables.

▶ Observation 1 (folklore). Given a XOR constraint:
⊕i=n

i=1 xi = b, and ⊕ denotes exclusive
disjunction operation, we introduce auxiliary Boolean variables {ti}, i = 1, 2, ..., ⌊log2(n)⌋.
Then, the XOR constraint is logically equivalent to the following pseudo-Boolean constraint:

Σni=1xi − Σ⌊log2(n)⌋
i=1 2i · ti = b (1)

Applying the encoding in Definition 1, we achieve a one-to-one mapping between XOR
constraint and its PB encoding.

3 Background

In order to put our contributions in context, we provide a brief discussion about the workings
of the current state-of-the-art implementations of Gauss-Jordan elimination procedures in
modern SAT solvers such as CryptoMiniSat [36].

3.1 Gauss-Jordan Elimination
Gauss-Jordan Elimination (GJE) is an efficient algorithm for solving systems of linear
equations. Since XOR constraints are considered as linear equations modulo two, Gauss-
Jordan Elimination (GJE) can be used to solve systems of XOR constraints. CryptoMiniSat
[36] was the first SAT solver with deep integration of Gauss-Jordan Elimination into CDCL
framework. Later, Han and Jiang proposed a new framework [16] building on Simplex-like
techniques that performs Gauss-Jordan elimination, i.e., using reduced row echelon form
instead of row echelon form. They used a two-watched variable scheme to detect propagations
and conflicts in XOR constraints. Meel and Soos integrated Han and Jiang’s framework
into their proposed architecture BIRD that sought to take advantage of both in-processing
techniques and GJE. Recently, Soos, Gocht, and Meel [34] achieved acceleration in XOR unit
propagation via exploiting bit-level parallelism offered in modern CPUs. In particular, they
employed bit-packed integers to represent XOR rows in a matrix and apply bitwise operations,
such as and, inverse, hamming weight, to quickly detect propagations and conflicts in XORs.

Lazy Reason Clause Generation

During XOR propagation, a reason clause will be generated to be used in future conflict
analysis. However, during profiling the runtime of SAT solver, the generation process is
quite time-consuming if the size of the XOR constraint involves thousands of variables.
Furthermore, a large portion of reason clauses are never used during conflict analysis as
not all assigned variables will be involved in the conflict as we apply the 1UIP policy. To
reduce the overhead from the generation of useless reason clauses, Soos, Gocht, and Meel
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proposed [34] a lazy generation method, which was based on the observation that once a
literal is propagated by XOR propagation, the row of the XOR will preserve the propagated
state until backtracking to the previous level. Therefore, the lazy method keeps an index
of the row and the propagating literal but does not compute the reason clause eagerly.
Whenever a reason clause is requested by conflict analysis, the reason clause is computed
from the recorded row.

3.2 Conflict-Driven Pseudo-Boolean Solving
The past two decades have witnessed a rich array of techniques proposed in the context of
PB solving (MiniSat+ [11], Open-WBO [23, 18], NaPS [30], Sat4j [20], PRS [10], Galena [3],
Pueblo [33], RoundingSat [12]). Given the space considerations, we refer the reader to [28]
for a detailed discussion on PB solvers and we will focus on providing a brief overview
of the underlying PB solver, RoundingSat, in our work. RoundingSat employs a Conflict-
Driven framework similar to the conflict-driven clause learning (CDCL) framework in CNF
solving. The framework primarily extends conflict analysis and unit propagation from
CNF to pseudo-Boolean constraints. RoundingSat employs cutting-planes based generalized
resolution [7, 17, 9, 12] to resolve two PB constraints, which is exponentially stronger than
resolution from a theoretical standpoint. In contrast to the two-watched literal scheme
for CNF solving, RoundingSat employs a three-tiered approach where clauses, cardinality
constraints, and general PB constraints were handled with different watched propagation
techniques [3, 32, 20, 12, 8].

4 LinPB: An Efficient PB-XOR Solver

We now turn to the primary technical contribution of this work, our solver, LinPB, for
PB-XOR formulas. As mentioned in Section 1, our first step (Section 4.1) was to lift the
Lazy-GJE module inside CryptoMiniSat to RoundingSat. Observing that such a process
did not yield any dividends compared to the baseline, we sought to investigate the key
performance bottlenecks and accordingly propose three strategies: Shared-Watches, Eager-
GJE, and Mixed-Watches, which seek to optimize the interaction between PB and XOR
constraints. Since we keep the internal components of PB and GJE intact, our discussion in
the rest of the section will focus on the interactions between the two components. In the
rest of the section, we will use the term PB propagation to refer to propagations due to PB
constraints and XOR propagations to refer to unit propagations due to XOR constraints
via GJE.

4.1 Lazy Gauss-Jordan Elimination
We present the high-level overview of Lazy-GJE in Algorithm 1. We assume that the formula
ϕ corresponds to PB constraints while the formula ψ corresponds to XOR constraints.
Following CryptoMiniSat, we keep separate propagation indices for PB (qϕ) and XOR
constraints (qψ). Trail ν represents the current assignment queue. The while loop at lines 3–7
performs PB propagation until we detect a conflict at line 6 or go through all assignments
in ν. The while loop at lines 8–12 executes the similar procedure for XOR propagation. If
neither PB nor XOR propagation detects a conflict, the unit propagation returns NULL at
line 13. We refer to Algorithm 1 as a lazy method because GJE is invoked lazily, i.e., it is
invoked only after all the unit propagations from PB constraints are processed.

As mentioned earlier, we observed that augmenting RoundingSat with Lazy-GJE did not
lead to performance improvements over the baseline, CryptoMiniSat (wherein PB constraints
are encoded into CNF). Upon further investigation, we observed a considerable performance
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Algorithm 1 Lazy Gauss Jordan Elimination.

1 Function propagationLazyGJE()
Data: PB constraints ϕ, XOR constraints ψ,
trail ν, PB propagation index qϕ, XOR propagation index qψ

2 while qϕ < size(ν) or qψ < size(ν) do
3 while qϕ < size(ν) do
4 lϕ ← ν[qϕ]
5 qϕ ← qϕ + 1
6 if propagatePB(ϕ, lϕ) == conflict then
7 return conflict

8 while qψ < size(ν) do
9 lψ ← ν[qψ]

10 qψ ← qψ + 1
11 if propagateXOR(ψ, lψ) == conflict then
12 return conflict

13 return NULL

drop with the increase in the number of XOR constraints. A plausible primary reason for
the behavior is that the Lazy-GJE delays conflict detection arising from XOR constraints,
and the delay may lead to many redundant PB (unit) propagations. We illustrate such a
scenario via an example.

▶ Example 2. Hard instance for Lazy-GJE.
∧
i∈[1..n](xi+¬xi+1 ≥ 1)∧

∧
j∈[0..⌊ n

3 ⌋](x3j+1⊕
x3j+2 ⊕ x3j+3 = 1), n≫ 1.

Suppose we select decision variables sequentially from x1 to xn and prefer negative polarity for
the decision literal. Table 1 shows the procedure for a PB-XOR solver employing Lazy-GJE
to solve Example 2. At level 1, the solver performs O(n) PB propagations and produces O(n)
assignments. Then, the XOR propagation immediately detects a conflict, which, however,
only involves the decision variable and first two variables implied at current level, while
the rest of PB propagations are irrelevant to the conflict. The redundant PB propagations
are reproduced every time the solver reaches level 1. In summary, the usage of Lazy-GJE
leads to LinPB processing O(n2) redundant PB propagations. The scenario described above
is reminiscent of the motivation of chronological backtracking [26], in which a solver may
reassign many variables that are irrelevant to the conflict after non-chronological backtracking.

4.2 Eager-GJE
Table 1 demonstrates that lazy invocation of GJE may lead the solver to perform many
redundant PB propagations in PB-XOR solving. Furthermore, Gauss Jordan Elimination
is sound and complete, i.e., all unit propagations and conflicts implied by the given set of
XORs would be discovered by a GJE-based decision procedure. Therefore, a natural reaction
would be to invoke GJE in an eager fashion.

Algorithm 2 presents the propagation routine for Eager-GJE. Like Lazy-GJE, we use
independent indexes for PB and XOR to track trail. Lines 2–6 perform PB propagation for
literal lϕ. After each PB propagation, lines 7–11 go through all assignments in ν to detect all
possible propagations and conflicts in XOR constraints via (incremental) GJE. We denote
Algorithm 2 as an eager method because of the aggressive invocation of XOR propagations.
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Table 1 Procedure to solve Example 2 by Lazy-GJE. Column Level denotes the current decision
level. Column Decision presents the decision literal at the current level. Column PB-propagation
and XOR-propagation show the inferred assignments or the detected conflict by propagations. The
last column specifies the conflict constraint, resolvents, and learned constraints in conflict analysis.
Finally, jump to the next level if no conflict; otherwise, backtrack.

Level Decision PB propagation XOR propagation Conflict analysis
0 NIL NIL NIL jump to level 1
1 ¬x1 ¬x2, ¬x3, ...¬xn+1 conflict at x1 ⊕ x2 ⊕ x3 = 1 conflict constraint x1 + x2 + x3 ≥ 1

resolve with x2 + ¬x3 ≥ 1 and x1 + ¬x2 ≥ 1
learn x1 ≥ 1
backtrack to level 0

0 NIL x1 NIL jump to level 1
1 ¬x2 ¬x3, ¬x4, ...¬xn+1 conflict at x4 ⊕ x5 ⊕ x6 = 1 conflict constraint x4 + x5 + x6 ≥ 1

resolve with x5 + ¬x6 ≥ 1 and x4 + ¬x5 ≥ 1
learn x4 ≥ 1
backtrack to level 0

0 NIL x4, x3, x2 NIL jump to level 1
repeat k = 2, 3, ...

⌊
3
n

⌋
1 ¬x3k−1 ¬x3k, ¬x3k+1...¬xn+1 conflict at x3k+1 ⊕ x3k+2 ⊕ x3k+3 = 1 conflict constraint x3k+1 + x3k+2 + x3k+3 ≥ 1

resolve with x3k+2 + ¬x3k+3 ≥ 1 and x3k+1 +
¬x3k+2 ≥ 1
learn x3k+1 ≥ 1
backtrack to level 0

0 NIL x3k+1, x3k, x3k−1 NIL jump to level 1

Our empirical evaluation indicates that while Eager-GJE is able to provide a remedy for
some of the weaknesses of Lazy-GJE, the overhead due to GJE limits the scalability.

4.3 Shared-Watches
We now seek to take the middle road: we want to avoid both lazy and eager invocation of
GJE. Our approach is to intermingle the PB and XOR propagations. Our proposed scheme,
called Shared-Watches, is presented in Algorithm 3. Unlike the separate indexes for PB and
XOR to trace propagation in Lazy-GJE, we use a shared index q for both constraints. At
line 5 and 7, we detect PB and XOR propagation synchronously for each assignment l and
terminate the unit propagation immediately if any of them detects a conflict.

We apply Shared-Watches to Example 2 and hold the same assumption that we select
decision variables sequentially from x1 to xn and prefer negative polarity for each decision
literal. Table 2 presents a shared-watches solver to solve Example 2. Every time at level 1,
after a constant number (≤ 4) of PB propagations, the solver timely detects the conflict in
XOR propagation. The fast detection of the conflict saves runtime from useless propagations,
and then the solving time complexity is reduced to O(n).

4.4 Mixed Watches
Our empirical analysis indicates that the key performance bottleneck for Shared-Watches
and Eager-GJE is the computationally expensive (incremental) GJE that is invoked by
propagateXOR. In order to reduce the overhead from XOR propagation and meantime watch
XOR constraints timely, we propose Mixed-Watches. Mixed-Watches aims to learn partial
PB constraints of interest implied by XOR constraints and add them to PB constraints.
PB watches can detect partial XOR propagations and conflicts implied by equivalent PB
constraints without access to XOR watches. In other words, Mixed-Watches reduce the
invocation of XOR propagation but maintain the ability to watch XORs in a timely fashion. It
is worth remarking that learning all PB constraints implied by a XOR constraint would either
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Algorithm 2 Eager-GJE.

1 Function propagationEagerGJE()
Data: pseudo-Boolean constraints ϕ, XOR constraints ψ,
trail ν, propagation index qϕ, XOR propagation index qψ

2 while qϕ < size(ν) do
3 lϕ ← ν[qϕ] ;
4 qϕ ← qϕ + 1 ;
5 if propagatePB(ϕ, lϕ) == conflict then
6 return conflict
7 while qψ < size(ν) do
8 lψ ← ν[qψ] ;
9 qψ ← qψ + 1 ;

10 if propagateXOR(ψ, lψ) == conflict then
11 return conflict

12 return NULL

Algorithm 3 Shared-Watches.

1 Function propagationSharedWatches()
Data: pseudo-Boolean constraints ϕ, XOR constraints ψ, trail ν, propagation

index q
2 while q < size(ν) do
3 l← ν[q]
4 q ← q + 1
5 if propagatePB(ϕ, l) == conflict then
6 return conflict
7 if propagateXOR(ψ, l) == conflict then
8 return conflict

9 return NULL

necessitate the addition of a large number of auxiliary variables or storage of exponentially
many (in the size of XORs) PB constraints. Therefore, the quality of learned PB constraints
from XOR is of significant importance.

We propose to learn both conflict and reason constraints used by conflict analysis (CA-
reason) from XOR constraints since the conflict and propagation play an essential role
in CDCL, and these constraints are likely to be triggered again in the future. Algorithm
4 presents the pseudocode for conflict analysis in PB-XOR solving with Mixed-Watches.
Lines 2–3 add the conflict constraint (Cconfl) to learned PB constraints if Cconfl is detected
from XOR propagation. Lines 4–11 perform conflict analysis. We retrieve the last assignment
l from trail ν at line 5. If l in the conflict constraint, we fetch the reason constraint (Creason)
at Line 7. If the reason constraint is generated from a XOR constraint, we add Creason to
learned PB constraints at lines 8–9. The conflict constraint resolve with the reason constraint
at line 10. The last assignment is removed from the trail nu at line 11, and then the next
iteration starts. Finally, the function returns the constraint after analysis at line 12. In
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Table 2 Procedure to solve Example 2 by Shared-Watches. Column Level denotes the current
decision level. Column Decision presents the decision literal at the current level. Column PB-
propagation and XOR-propagation show the inferred assignments or the detected conflict by
propagations. The last column specifies the conflict constraint, resolvents, and learned constraints
in conflict analysis. Finally, jump to the next level if no conflict; otherwise, backtrack.

Level Decision PB propagation XOR propagation Conflict analysis
0 NIL NIL NIL jump to level 1
1 ¬x1 ¬x2, ¬x3 conflict at x1 ⊕ x2 ⊕ x3 = 1 conflict constraint x1 + x2 + x3 ≥ 1

resolve with x2 + ¬x3 ≥ 1 and x1 + ¬x2 ≥ 1
learn x1 ≥ 1
backtrack to level 0

0 NIL x1 NIL jump to level 1
1 ¬x2 ¬x3, ¬x4, ¬x5, ¬x6 conflict at x4 ⊕ x5 ⊕ x6 = 1 conflict constraint x4 + x5 + x6 ≥ 1

resolve with x5 + ¬x6 ≥ 1 and x4 + ¬x5 ≥ 1
learn x4 ≥ 1
backtrack to level 0

0 NIL x4, x3, x2 NIL jump to level 1
repeat k = 2, 3, ...

⌊
3
n

⌋
1 ¬x3k−1 ¬x3k, ¬x3k+1, ¬x3k+2, ¬x3k+3 conflict at x3k+1 ⊕ x3k+2 ⊕ x3k+3 = 1 conflict constraint x3k+1 + x3k+2 + x3k+3 ≥ 1

resolve with x3k+2 + ¬x3k+3 ≥ 1 and x3k+1 +
¬x3k+2 ≥ 1
learn x3k+1 ≥ 1
backtrack to level 0

0 NIL x3k+1, x3k, x3k−1 NIL jump to level 1

Section 5, we use a portfolio method to empirically show that learning both conflict and
CA-reason constraints is the best learning heuristic, and Mixed-Watches cooperates well
with Lazy-GJE.

5 Experimental Evaluation

We equipped the state-of-the-art pseudo-Boolean solver RoundingSat[12] with proposed
PB-XOR tactics and called the resulting solver LinPB. To showcase the impact of LinPB,
we integrated LinPB into the state-of-the-art hashing-based counting technique ApproxMC,
implementing the first pseudo-Boolean model counter, ApproxMCPB. We conducted an
extensive study on 1076 benchmarks1 arising from quantitative verification of binarized
neural networks with respect to different properties such as robustness, trojan attack, and
fairness. These benchmarks represent a wide range of security applications where quality and
runtime performance of counters are key determining factors [2]. To evaluate the performance
of ApproxMCPB, we performed a comparison with state-of-the-art CNF projected counting
techniques ApproxMC4 [34], Ganak[31], GPMC[29] and projMC[19]. We used CNF encoding
as described in [2], and equivalent pseudo-Boolean encoding2 for ApproxMCPB. We developed
the PB counter employing PB encoding of XOR constraints as another baseline.3

Experiments were conducted on a high-performance computer cluster, each node consisting
of 2xE5-2690v3 CPUs with 2x12 real cores and 96GB of RAM. We set the time limit as
5000 seconds and the memory limit as 4GB for each counter per benchmark. Keeping in
line with the prior work, we set the confidence factor δ = 0.2 and tolerance factor ϵ = 0.8 by
default for approximate counters. We used the number of solved benchmarks and PAR-2
score to evaluate the performance. The PAR-2 score represents the average running time on
benchmarks with a doubling-time penalty on timeout benchmarks.

1 The benchmarks are available at https://teobaluta.github.io/NPAQ/#benchmarks.
2 Refer to Appendix A for PB encoding.
3 The baseline solved nearly 200 fewer benchmarks than ApproxMCPB and thereby of no interest to us.
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Algorithm 4 Mixed-Watches.

1 Function conflictAnalysisMixedWatches(Cconfl, ν)
Data: conflict constraint Cconfl, trail ν

2 if Cconfl is from XOR propagation then
3 AddConstraintToPB(Cconfl)
4 while Cconfl is not asserting do
5 l← getLast(ν)
6 if ¬l in Cconfl then
7 Creason ← getReason(l)
8 if Creason is from XOR propagation then
9 AddConstraintToPB(Creason)

10 Cconfl ← resolve(Cconfl, Creason)
11 ν ← removeLast(ν)
12 return Cconfl

The objective of our experimental evaluation is to analyze the performance of ApproxM-
CPB both in terms of runtime and approximation quality. In particular, we sought to answer
the following questions:
RQ 1 How does the performance of GJE tactics for ApproxMCPB?
RQ 2 How does the runtime performance of ApproxMCPB compare with ApproxMC4 and

other state-of-the-art projected counting techniques?
RQ 3 How far are the counts computed by ApproxMCPB from the exact counts?

In summary, the usage of Lazy-GJE leads to ApproxMCPB solving 804 instances while
usage of Shared-Watches, Eager-GJE, and Mixed-Watches allows ApproxMCPB solve 892,
892 and 912 instances respectively. While the state-of-the-art tool, ApproxMC4, can only
solve 802 instances, ApproxMCPB can solve 912 instances, an increment of 110 instances.
Furthermore, the PAR-2 score for ApproxMC4 is 3305 seconds while PAR-2 score for
ApproxMCPB is 1822 seconds, thereby achieving almost 50% decrease in PAR-2 score.
Moreover, the speedup of ApproxMCPB to ApproxMC4 is independent of the number of
solutions. In terms of approximation quality, the average observed tolerance is 0.037, far
better than the theoretical guarantee of 0.8.

5.1 Performance of GJE tactics
This section evaluates the performance of ApproxMCPB augmented with different PB-XOR
tactics: Lazy-GJE, Eager-GJE, Shared-Watches, and Mixed-Watches4. Table 3 summarizes
the results. ApproxMCPB augmented with Lazy-GJE solved only 804 of 1076 benchmarks
while ApproxMCPB augmented with Shared-Watches, Eager-GJE, and Mixed-Watches solved
892, 892, and 912 instances respectively, thereby achieving a gain of over 100 instances.
Furthermore, the PAR-2 score for the usage of Lazy-GJE is 2755 seconds while the PAR-2
score for the usage of Shared-Watches, Eager-GJE, and Mixed-Watches is 2017, 2042, 1822
seconds respectively, thereby achieving a decrease of over 700 seconds. Observe that the
usage of Mixed-Watches leads to ApproxMCPB solving 20 more instances than the other
tactics.

4 See Appendix B for the optimal configuration of Mixed-Watches
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Table 3 The number of solved benchmarks for ApproxMCPB configured with different Gauss
Jordan Elimination tactics. PAR-2 score is in parentheses. Mixed-Watches applies the heuristic of
learning both conflict and CA-reason constraints based on Lazy-GJE. Time out after 5000s.

Total Lazy-GJE Eager-GJE Shared-Watches Mixed-Watches
1076 (PAR-2) 804 (2755) 892 (2042) 892 (2017) 912 (1822)

400 500 600 700 800 900 1000
Benchmarks

0

1000

2000

3000

4000

5000

Ru
nt

im
e(

s)

Mixed-Watches
Shared-Watches
Eager-GJE
Lazy-GJE

Figure 1 Runtime for ApproxMCPB of different GJE tactics on 1076 BNN benchmarks. The
x-axis represents the number of solved benchmarks, while the y-axis shows the counting time. A
point (x, y) represents that x benchmarks can be solved within y seconds. The number of solved
benchmarks sorts counters in descending order in the legend.

Figure 1 presents the cactus plot of the performance of different tactics. We present the
number of solved benchmarks on the x-axis and the time taken on the y-axis. A point (x, y)
represents that x benchmarks can be solved within y seconds for the particular tactic. We
observed that all the curves almost converge to an overlapped curve before the 300-second
runtime threshold, which means the usage of different tactics makes ApproxMCPB solve a
similar number of benchmarks within a runtime threshold less than 300 seconds. Then, Lazy-
GJE begins to diverge and leads to ApproxMCPB solving fewer benchmarks than other tactics
with the same runtime threshold. Eager-GJE and Shared-Watches diverge together at around
1000-second threshold, and Shared-Watches slightly outperforms Eager-GJE after diversion.
The observation reveals that the usage of Mixed-Watches always leads to ApproxMCPB
solving no fewer benchmarks than other tactics no matter what runtime threshold is used.
Similarly, the usage of Shared-Watches always produces a no worse result than Eager-GJE
and Lazy-GJE. In summary, Eager-GJE, Shared-Watches, and Mixed-Watches successively
extend the reach of ApproxMCPB.

Runtime breakdown. To analyze the time consumption of main procedures, we profile the
runtime breakdown for conflict analysis, PB propagation, XOR propagation, and others. For
each procedure, we sum the runtime over solved benchmarks and compute the proportion in
total runtime. Then, we calculate the PAR-2 score and proportionally break it down into the
four procedures. Figure 2 presents the breakdown of PAR-2 score. The x-axis shows the main
procedures in PB-XOR solving, while the y-axis presents the PAR-2 score proportionally
taken by each procedure. Colors represent different GJE tactics. We observed that Lazy-GJE
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Figure 2 Breakdown of PAR-2 score. We proportionally break down the PAR-2 score into four
procedures according to the runtime taken by each procedure. The x-axis shows the four main
procedures in PB-XOR solving, while the y-axis presents the PAR-2 score proportionally taken by
each procedure.

spends much more time on conflict analysis and PB propagation than other tactics, while
Eager-GJE and Shared-Watches spend more time on XOR propagation and other procedures.
Particularly, Mixed-Watches spends relatively less time on all procedures among four tactics.
The observation reveals that the usage of Eager-GJE and Shared-Watches indeed incurs more
overhead from XOR-propagation and other procedures. The usage of Mixed-Watches leads
to ApproxMCPB achieving a similar efficiency in conflict analysis and PB-propagation as
Eager-GJE and Shared-Watches while maintaining a small overhead from XOR-propagation
and other procedures, thereby emerging as the most efficient tactic.

5.2 Performance vs. State-of-the-art Projected Counting Techniques
Since the design of LinPB was motivated by model counting applications, we present an
empirical comparison of ApproxMCPB vis-a-vis other state-of-the-art counting techniques.
For all the results in this section, we equip ApproxMCPB with Mixed-Watches tactic. Table
4 summarizes the results. We observed that state-of-the-art techniques can solve at most
802 of 1076 instances while ApproxMCPB can solve 912 instances, thereby achieving a
gain of over 100 instances. The PAR-2 score for state-of-the-art techniques is at least 3305
seconds while the PAR-2 score for ApproxMCPB is 1822 seconds, thereby achieving an
almost 50% decrease in PAR-2 score. Particularly, the exact counting techniques can solve
only 511 instances, roughly half of ApproxMCPB. Therefore, ApproxMCPB significantly
outperforms state-of-the-art projected counting techniques. Figure 3 presents the number of
solved benchmarks in terms of the runtime threshold for all counters. The righter the curve
is, the more benchmarks the counter can solve within a runtime threshold. We observed
that ApproxMCPB can always solve more instances than other techniques given any runtime
threshold.

Dependence on #Solutions. We now analyze how the speedup achieved by ApproxMCPB
varies with the #Solutions. To this end, Figure 4 presents the speedup of the ApproxMCPB
to ApproxMC4 on the y-axis with the #Solutions. We selected benchmarks solved by
ApproxMCPB or ApproxMC4. Each point represents a benchmark. The x-axis presents
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Table 4 Number of solved benchmarks for ApproxMCPB vs. state-of-the-art projected model
counting techniques. PAR-2 score is in the parentheses. ApproxMCPB uses the best configuration
of Mixed-Watches. Time out after 5000s.

Exact Probabilistic Exact Approximate
Total GPMC projMC Ganak ApproxMC4 ApproxMCPB

1076 (PAR-2) 511 (5713) 430 (6584) 1 (9991) 802 (3305) 912 (1822)
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Figure 3 Runtime for ApproxMCPB vs. state-of-the-art projected model counters. The x-axis
represents the number of solved benchmarks, while the y-axis shows the counting time. A point (x, y)
represents that x benchmarks can be solved within y seconds. Ganak can solve only one instance
and therefore fails to be plotted. The number of solved benchmarks sorts counters in descending
order in the legend. Time out 5000s.

the number of solutions of the benchmark in the log2 scale5, while the y-axis represents the
speedup, i.e., the counting-time6 ratio of ApproxMC4 to the ApproxMCPB TCNF

TP B
on the

benchmark. The horizontal gray line highlights the boundary of speedup y = 1.
We observed that almost all points are above the horizontal line, indicating ApproxMCPB

outperforms ApproxMC4 on most instances. Even though most instances can be both
solved, ApproxMCPB can solve over 100 instances beyond the reach of ApproxMC4 while
ApproxMC4 only solved 7 instances beyond the reach of ApproxMCPB. Furthermore, the
speedup of ApproxMCPB to ApproxMC4 randomly falls into the interval [100, 102] on almost
all benchmarks. Therefore, ApproxMCPB is able to achieve consistent speedup over the
entire spectrum of #Solutions.

5.3 Correctness
To evaluate the approximation quality, we compare the counts computed by approximate
model counters with counts returned by exact model counters. Figure 5 shows the model
counts computed by ApproxMCPB, and the bounds obtained by scaling the exact counts

5 Given that the estimation is a ∗ 2b, we denote the log value as b + log2(a + 1) to avoid invalid log2(0).
6 Drawing from the definition of PAR-2 score, we double the runtime if the benchmark is unsolved within

the time limit.
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Figure 4 Speedup of ApproxMCPB to ApproxMC4 in terms of the number of solutions of
benchmarks. Speedup represents counting-time ratio of ApproxMC4 to ApproxMCPB. #Solutions
is in the log2 scale. The horizontal gray line denotes the boundary of speedup y = 1. The runtime is
doubled if unsolved within the time limit (5000s).

with the tolerance factor (ϵ = 0.8). We selected benchmarks solved by at least one exact
counter. All exact counts from the same benchmark are equal. The exact count sorts
benchmarks in ascending order on the x-axis, while the y-axis represents the model count.
We observed that for all the benchmarks, ApproxMCPB computed counts within the
tolerance. Furthermore, for each instance, the observed tolerance (ϵobs was calculated
as max( |sol(F )|

AprxCount − 1, AprxCount|sol(F )| − 1), where AprxCount is the estimate by ApproxMCPB.
We observed that the arithmetic mean of ϵobs across all benchmarks is 0.037 - far better than
the theoretical guarantee of 0.8.

Furthermore, we observed that the estimates of ApproxMCPB always match that of
ApproxMC4. Recall that the hashing-based approximate counting technique is to employ
randomly generated XOR constraints to partition the solution space into roughly equal
small cells and count the number of solutions in a randomly picked cell to estimate the total
number of solutions. We used the same random seed for ApproxMCPB and ApproxMC4.
Hence, both counters always generated the same set of XOR constraints and counted the
same cell to estimate the #Solutions.

6 Conclusion and Discussion

In this paper, we focused on the design of LinPB, a solver with native support for PB-XOR
formulas. The need for LinPB was motivated by the recent surge of interest in verification of
(binarized) neural networks wherein the quantitative verification queries were shown to reduce
to model counting. Binarized neural networks can be naturally represented as PB constraints
while hashing-based techniques reduce counting to polynomially many SAT queries wherein
the original formula is conjuncted with random XOR constraints.

We observed that a straightforward adaptation of the Lazy-GJE approach does not yield
performance improvements. Our empirical investigations highlighted the importance of the in-
teraction of PB and XOR propagations. To this end, we designed three propagation strategies:
Eager-GJE, Shared-Watches, and Mixed-Watches. We demonstrate the effectiveness of LinPB
by augmenting it with the state-of-the-art hashing-based algorithm, ApproxMC; we call the



J. Yang and K. S. Meel 58:15

0 100 200 300 400
Benchmarks

100

101

102

103

104

105

#S
ol

ut
io

ns
ApproxMC-PB
exact*1.8
exact/1.8

Figure 5 Plot showing counts obtained by ApproxMCPB vis-a-vis exact counts.

resulting counter, ApproxMCPB. Our empirical evaluation demonstrates ApproxMCPB is
able to solve 110 more benchmarks than the baseline approach with a decrease of PAR-2
score by 1483.

The runtime performance of LinPB opens up several interesting directions of future
work. We sketch out two directions of particular interest. First, it is worth observing that,
unlike modern CNF solvers, the PB solvers are still in the nascent phase, and consequently
lack intricate efficient preprocessing techniques. Therefore, in our design of LinPB, we
did not adapt the BIRD architecture [35], which was designed to efficiently transform
XOR constraints between clauses and native representation, aiming to utilize the powerful
inprocessing technique of CNF. The development of efficient inprocessing for PB constraints
would invite extending LinPB with a BIRD-eseque architecture. Secondly, the significant
performance improvements of Mixed-Watches over Eager-GJE and Shared-Watches leads us
to speculate that adoption of these strategies in the context of CNF-XOR solving would also
lead to performance improvements.
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A Pseudo-Boolean Encoding of Binarized Neural Network

Conditional pseudo-Boolean constraint is a fundamental building block to binarized neural
network (BNN). We introduce the pseudo-Boolean encoding of conditional pseudo-Boolean
constraint in Definition 3. Then we sketch the idea to encode BNN on top of conditional
pseudo-Boolean constraints.
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▶ Definition 3. Given a conditional pseudo-Boolean constraint ϕ : y → ΣN
i=1wixi op b, op

∈ {≥,≤}, wi, b ∈ Z, xi, y ∈ {0, 1}, we define as the pseudo-Boolean encoding of ϕ:
C = Σi=Ni=1 |wi|
Σi=Ni=1 wixi + (b+ C)¬y ≥ b if op is ≥
Σi=Ni=1 wixi + (b− C)¬y ≤ b if op is ≤

(2)

The neuron, a basic component in binarized neural network can be logically represented by
the constraint:

y ↔ ΣNi=1wixi + b ≥ 0 (3)

in which wi ∈ {+1,−1}. Formula (3) is equivalent to:

y → ΣNi=1wixi + b ≥ 0 ∧ ¬y → ΣNi=1wixi + b < 0 (4)

Finally, we encode formula (4) based on conditional pseudo-Boolean constraints introduced
in Definition 3. The complete encoding is shown as follows.

Let’s consider the k-th block of BNN: BLKk : vk → vk+1 (vk, vk+1 ∈ {1,−1}N ) including
1. linear layer(wk, bk) : vk → olin

olini = ΣNi=1w
k
i v
k
i + bki

(vk, wk ∈ {+1,−1}N , b, olin ∈ RN )
2. batch normalization layer(µk, σk, αk, γk) : olin → obn

obni = tlin
i −µk

i

σk
i

· αki + γki

(µk, σk, αk, γk, olin, obn ∈ RN )
3. binarization layer: obn → vk+1

vk+1
i = 1↔ obni ≥ 0

(vk+1 ∈ {1,−1}N , obn ∈ RN )

According to the encoding in “Quantitative Verification of Neural Networks and Its
Security Applications” by Teo, we can get the following constraint for each neuron when
α > 0 (In following constraints vk+1

i , vki ∈ {0, 1} because we have transferred them into
boolean variables):

vk+1
i = 1↔ ΣNi=1w

k
i v
k
i ≥ C ′k

i

C ′k
i =

⌈
Ck

i +ΣN
i=1wi

2

⌉
Cki =

⌈
−σk

i

αk
i

γki + µki − bki
⌉ (5)

By Eq. 2, Eq 3, Eq. 4, we can get:
ΣNi=1w

k
i v
k
i + βki ¬v

k+1
i ≥ C ′k

i

βki = C ′k
i +N

−ΣNi=1w
k
i v
k
i + β′k

i v
k+1
i ≥ 1− C ′k

i

β′k
i = N + 1− C ′k

i

(6)
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Note that βki and β′k
i are constants. The other two are linear encoding. Similarly we can get

constraints for α < 0:

vk+1
i = 1↔ ΣNi=1w

k
i v
k
i ≤ C ′k

i

C ′k
i =

⌊
Ck

i +ΣN
i=1wi

2

⌋
Cki =

⌊
−σk

i

αk
i

γki + µki − bki
⌋

−ΣNi=1w
k
i v
k
i + βki ¬v

k+1
i ≥ −C ′k

i

βki = −C ′k
i +N

ΣNi=1w
k
i v
k
i + β′k

i v
k+1
i ≥ 1 + C ′k

i

β′k
i = N + 1 + C ′k

i

(7)

Corner case when α = 0:

vk+1
i = 1↔ γki ≥ 0 (8)

B Configuration of Mixed-Watches

In this section, we focus on examining the integration compatibility of Mixed-Watches with
Lazy-GJE, Eager-GJE, and Shared-Watches with different heuristics for Mixed-Watches. To
this end, we focus on the following heuristics:
1. CA-reason: Addition of the reason constraint generated from XOR-propagation and used

by conflict analysis to PB constraints.
2. All-reason: Addition of all the reason constraints generated from XOR-propagation to

PB constraints.
3. Confl: Addition of the conflict constraints detected from XOR-propagation to PB con-

straints.

Table 5 Number of solved benchmarks for Mixed-Watches integrated with other GJE tactics and
applying different heuristics. PAR-2 score is in the parentheses. The heuristic means adding the
corresponding constraints from XOR-propagation to PB constraints. Time out after 5000s.

Heuristics
GJE tactics No mixed7 CA-reason All-reason Confl CA-reason ∪ Confl All-reason ∪ Confl
Lazy-GJE 804 (2755) 909 (1834) 908 (1855) 897 (1961) 912 (1822) 908 (1854)
Eager-GJE 892 (2042) 881 (2172) 801 (2776) 889 (2071) 881 (2180) 801 (2777)

Shared-Watches 892 (2017) 907 (1850) 902 (1951) 909 (1839) 907 (1860) 900 (1976)
7 The original tactic without Mixed-Watches.

Table 5 summarizes the results. The first column shows the GJE tactic integrated with
Mixed-Watches. The second column presents the number of solved benchmarks and PAR-2
score in the parentheses for the original tactic without Mixed-Watches, while the following
columns show the result for GJE tactics integrated with different heuristics of Mixed-Watches.
The third, fourth, and fifth columns refer to CA-reason, All-reason, and Confl heuristics
while the last two columns refer to combination of the aforementioned heuristics.

The bold cell in Table 5 highlights that a Mixed-Watches integrated with Lazy-GJE
and employing CA-reason and Confl heuristics, solved the most number of benchmarks and
achieved the smallest PAR-2 score. Furthermore, we observe that Mixed-Watches improves
the performance Lazy-GJE by around one hundred more solved benchmarks from 804 to 912
and improves the performance of Shared-Watches by a dozen solved benchmarks while making
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Figure 6 Runtime for Mixed-Watches integrated with other GJE tactics and applying different
heuristics. The x-axis represents the number of solved benchmarks, while the y-axis shows the
counting time. A point (x, y) represents that x benchmarks can be solved within the runtime
threshold y. The number of solved benchmarks sorts counters in descending order in the legend.
Time out after 5000s.

Eager-GJE solve fewer benchmarks than the original tactic. On the other hand, Table 5
summarizes that learning both conflict and reason constraints used by conflict analysis (CA-
reason) from XOR-propagation is the best heuristic for Lazy-GJE based Mixed-Watches. All
heuristics involving CA-reason constraints always solves more benchmarks than All-reason.

To provide a comprehensive picture, we present the cactus plot in Figure 6 for different
combinations. The legend of the Figure has all the combinations sorted in descending order
by the number of solved benchmarks.
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Abstract
We propose an automated testing framework based on constraint programming techniques. Our
framework allows the developer to attach a numerical constraint to a type that restricts its set of
possible values. We use this constraint as a partial specification of the program, our goal being to
derive property-based tests on such annotated programs. To achieve this, we rely on the user-provided
constraints on the types of a program: for each function f present in the program, that returns a
constrained type, we generate a test. The tests consists of generating uniformly pseudo-random inputs
and checking whether f ’s output satisfies the constraint. We are able to automate this process by
providing a set of generators for primitive types and generator combinators for composite types. To
derive generators for constrained types, we present in this paper a technique that characterizes their
inhabitants as the solution set of a numerical CSP. This is done by combining abstract interpretation
and constraint solving techniques that allow us to efficiently and uniformly generate solutions of
numerical CSP. We validated our approach by implementing it as a syntax extension for the OCaml
language.
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1 Introduction

In this article, we propose an automated testing framework that generates tests for a restricted
class of dependent types, that is constrained types. Constrained types attach a membership
predicate to a type and are used to restrict its set of possible values. For instance, to encode
rationals as a pair of integer (n, d), one could add the constraint d ̸= 0 to filter invalid
representations. Moreover, providing the constraint that n and d are coprime with d > 0
defines a canonical representation for this type. This is desirable when a given term has
several structurally different but semantically equivalent representations, e.g. 2

4 would violate
the constraint while 1

2 would be valid. However, type systems with constrained types are
generally undecidable making it hard to obtain strong static guarantees at compile-time [2].
Dynamic verification, on the other hand, while not preserving these strong formal guarantees,
makes the approach both feasible and practical. One instance of this is property-based
testing [9] that can potentially detect bugs in programs given a specification. Still, this
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requires to manually provide tests that may be tedious and error-prone. For these reasons,
we focus on the development of an automated test system for constrained types. The goal of
our framework is to exhibit wrong behaviours in such programs by finding instances of a
constrained type that violate their predicates. We achieve this by automatically generating
tests for functions that manipulate constrained types. This requires from the developer to
input a constraint from which we extract a partial specification of the program. The resulting
generated tests consist in generating random inputs for the tested functions and checking
their output against the given specification. Therefore, the main challenge we face is the
automatic derivation of uniform value generators for constrained types. We address this by
combining two approaches: Constraint Programming [26] and Abstract Interpretation [11].
Abstract interpretation provides modular, efficient and precise abstractions, in particular, for
numerical values. Coupling it to standard constraint programming resolution scheme allows
us to provide fast and uniform input generators for our automatically generated tests.

Our implementation targets the OCaml [21] programming language, and the examples
we show are written in it. However, our approach is generic and could be ported to other
languages, hence, this paper voluntarily disregards some specificities of the OCaml language.

1.1 Example: Putting Constraints in Programming
Consider the following example:

1 type nat = int [@ satisfying (fun x -> x >= 0)]

This type declaration type nat = int is an alias of the primitive for machine-integers.
Adding the annotation [@satisfying (fun x -> x >= 0)] specifies the constraint that values x

of this type must respect the constraint x ≥ 0, that is the positive integers. We then generate
a test for each function whose return type is nat, as in the following example:

1 let add (x : nat) (y: nat) : nat = x * y

Compiling this program with our preprocessor will generate the following test:
1 let add_test () =
2 let x_rnd = range 0 max_int in
3 let y_rnd = range 0 max_int in
4 ( multiply x y) >= 0

To achieve this, we have solved the constraint x ≥ 0 ∧ x ≤ 264 and determined the set
of its solution. This allowed us to define the generator for the nat type. Here, range is a
primitive of our framework that draws uniformly within an integer range.

Running this test will (usually) yield an error message stating that the return value of
add violates the predicate (fun x -> x >= 0) for some input. Indeed, when a random input
close to 264 is passed to the function, an overflow may occur which would cause the return
value to violate the constraint.

This example is designed to illustrate our testing framework process. Throughout the
paper, we will describe how to derive generators from more complex constraints.

1.2 Contributions
This article focuses on type-driven automated test generation. Our contribution is threefold:

Firstly, we propose an automated testing framework capable to derive a partial specifica-
tion of a program using a set of constraints given by the developer. We then run tests
against this specification.
Secondly, we present an abstract domain based solving technique able to characterize
constrained types in a way that enables the automatic derivation of uniform random
generators, i.e. each instance has the same probability to be drawn.
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Finally, we give abstract domains (i.e. boxes, polyhedra) and their associated operators
that permit generic random uniform generation.

1.3 Outline
This paper is organized as follows: Section 2 presents the related works. Section 3 introduces
the derivation of generators and specification for constrained types. Section 4 recalls
definitions of our abstract domains usage in constraint solving, and explains the relations
between Numerical Constraint Satisfaction Problems (NCSP) and constrained types. Section 5
discusses the problem of uniform random sampling within heterogeneous abstract values, in
particular for polyhedra and, related, the cardinality estimation problem with such domains.
Section 6 presents our implementation, its current limitations and gives some experimental
results. Finally, Section 7 summarizes our work and discusses its future continuations.

2 Related Works

Random testing has been thoroughly studied, for testing correctness [16, 28], exhaustive-
ness [33], complexity [5] etc. Several frameworks exist and relate more or less to our work.
For instance, American Fuzzy Lop [37] inspects the execution paths of the program and
apply mutations to each input to potentially discover new ones. This method increases the
coverage of the test but requires the binaries to be instrumented. In the OCaml ecosystem,
the ppx-inline-tests preprocessor makes it possible to inline tests in the source code. Also,
several testing libraries for OCaml programs exist, such as monolith [31], or QCheck [13],
inspired from Haskell’s QuickCheck library [9]. These property-based testing frameworks are
widely used [24, 23]. In particular, we re-use from QCheck some basic value generators for
our automatic test generation. However, these works require the developer to manually write
the tests, that is the generators and the properties to be checked. Our approach makes it
possible to define constrained types that will act as a partial specification of the program and
automatically extract the needed generators. Our framework automatically generates tests
and is, thus, less error-prone and is easily maintainable: a constrained type annotation is
sufficient to generate tests for all functions that return values of this type. This way, the test
suite is updated automatically each time a new function is added. Such as ppx_inline_tests,
our framework is implemented as a preprocessing mechanism that has no side-effects on the
execution of the original program.

Constrained types have been widely studied, for example, Dependant ML [36] enriches
the type system of ML with a restricted form of dependent types. Also, Cayenne [2] has
dependent types and is able to encode predicate logic at the type level allowing types to be
used as specifications of programs. However, this makes Cayenne’s type checking undecidable.
In [27], the authors presented a framework for a Hindley/Milner kind of type systems with
constraints as a set of formulas over a cylindric algebra. These approaches to constrained
types are either undecidable in the general case or do not support the same constraint
language as we do, that is numerical constraints. Closer to our work, the study of automatic
generator derivation for data types has already been studied in previous works. For example,
in [6], the authors adapt a Boltzmann model for random generation of algebraic data types,
in particular for inductive types. Our approach is similar but we handle constrained types.
In [15], the author explores the definition of generators for a class of dependent types.
However, the proposed techniques are not automatic and do not aim to be uniform.

There exists several uniform sampling tools for SAT [14, 8]. We aim for the same goal
but for NCSP instead. In [17], the authors focus on generating random uniform solutions
for CSP, however they target discrete problems, with very small domain size, which are

CP 2021



59:4 Automated Random Testing of Numerical Constrained Types

not adapted to numerical variables with large cardinalities (e.g. machine-integers). The ese
of CP techniques for test generation has already been explored in the CP literature. For
instance, the FocalTest framework[7] uses a constraint-based approach to build inputs for
property based testing. Another example is [18] in which the method proposed is used to
generate white box tests. Our approach differs from these in several way: our resolution
scheme is based on abstract domain instead of clp(FD). Also our constraints are extracted
from the types while theirs are derived from the statements of the program. Finally we aim
at producing uniform generators which is not the case in these works.

We also explore the problem of generators definition using numerical abstract domains.
In [34], the author proposes a way to quantify the precision of abstract values through a
measure of volumes, including an approximated measuring of polyhedra. Also, [19] proposes
an algorithm to solve boolean and linear constraints, and to randomly select values among
the set of solutions using rejection sampling. This is close from what we do in Section 5
except that we have additional hypothesis that allow us to compute an exact volume and
minimize the use of rejection sampling.

3 Testing Semantics

Random testing within a typed language requires the definition of pseudo-random generators
for types. These generators are used to provide inputs for the functions whose output is
checked against a given specification. A pseudo-random generator g for a data type τ is
a function g : S → τ , with S the type of random seeds, which is useful to make the tests
reproducible. Previous work, such as [6], has shown that the derivation of efficient uniform
random generators for algebraic data types can be made automatic, even in presence of
recursive types. However, this is more difficult for constrained types: a constrained type can
be seen as a pair ⟨τ, p⟩, composed by an algebraic type τ and a predicate p : τ → bool. The
set of its inhabitants is defined as S = {t ∈ τ | p(t) = true}. As a result, a generator for a
constrained type ⟨τ, p⟩ needs to produce a value of type τ that satisfies p.

3.1 Type Language and Semantics

Our framework aims at generating tests that verify that some function does not violate the
invariant attached to its return type. To do so, we provide to the developer the capability of
constraining a type τ with an arbitrary predicate i.e. a function of type τ → bool. Therefore,
our syntactic extension may be seen as a small but expressive annotation language. To be
able to reason on the types of the program, we will suppose that all the values that we
handle are explicitly typed. We consider a ML-like type language with constrained types.
Its Bachus-Naur form (BNF) grammar is given in Figure 1.

A type declaration is composed of an identifier and a type expression. Type expressions can
be: type identifiers, product types (tuples), sum types where each variant is differentiated by a
unique constructor, and constrained type which we add to the language via the [@satisfying]

annotation. Note that even if the syntax permits the definition of recursive types, these
are not handled by our framework yet. The constraint language used for the definition of
predicates over constrained types is relatively classic. Here, I and F are respectively the set
of integers and floating point values, and V is the set of variable identifiers.

Annotating a type τ with a predicate p defines a partial specification for the program:
all functions returning a value of type τ are expected to produce values that satisfy p. This
property being in the general case out of the reach of a type checker [2], we propose to test it.
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decl ::= ‘type’ ident ‘=’ type declaration

type ::= ident identifier
| type {‘*’ type } product
| ident ‘of’ type { ‘|’ ident ‘of’ type } sum
| type ‘[@satisfying’ constraint ‘]’ constrained

constraint ::= arith □ arith □ ∈ {≥,≤, =, ̸=}
| ‘not’ constraint negation
| constraint ‘||’ constraint disjunction
| constraint ‘&&’ constraint conjunction

arith ::= i i ∈ I
| f f ∈ F
| v v ∈ V
| arith ⋄ arith ⋄ ∈ {+,−, ∗, /, %}
| - arith opposite

Figure 1 Grammar of the constrained type language.

3.2 Constraints semantics
We introduce inference rules that enriches a standard type algebra with constrained types:
because types are composable, we need to define inference rules to propagate constraints
from atomic types to composite types. For example, when a type τ is product or a sum of
types that were constrained by a property, this property is lifted to τ accordingly.

▶ Example 1. Consider the following constrained types which define the type of positive
float and 2D circles:

1 type positive = float [@ satisfying (fun x -> x >= 0)]
2 type circle = ( float * float) * positive }

Here, the type circle is not explicitly constrained, but as it depends on the type positive,
an implicit constraint will be attached to it. More generally, whenever a type τ is defined
using a constrained type τ ′, the constraint over τ is also inherited by τ ′. Here, circle is
implicitly constrained by the function: (fun ((cx,cy),radius) -> radius >= 0).

In Figure 2, we give a formal definition of the semantics for constraints composition. We
define it by induction over the syntax while considering a predicate environment ρ that stores,
for each type identifier, the predicate that was attached to it. For clarity, we consider that
an unconstrained type is a constrained type who is attached a tautology. Also, we suppose
the initial environment ρ0 already equipped with tautological constraints for primitives
types: ρ0 = [unit 7→ λ().true, bool 7→ λb.true, int 7→ λi.true, float 7→ λf.true]. For each
rule, the conclusion gives the derivation formula of a constraint for a given type, using the
constraints derived in the premises. The constraint for product types is the conjunction of
constraints attached to the type sub-components. For sum types, we determine for each
variant the corresponding constraint and build a predicate based on pattern matching1 to
select a constructor using case by case reasoning. For type declarations, we use the notation
ρ[id 7→ pτ ] to denote the setting of the constraint associated to the type identifer id to its
new value pτ .

1 function patterns is equivalent to fun x -> match x with patterns
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(declaration)
ρ(τ)→ pτ

(type id = τ, ρ)→ (ρ[id 7→ pτ ])

(constrained)
ρ(τ)→ pτ

(τ [@satisfying p], ρ)→ λx.p(x) ∧ pτ (x)

(identifier)
p = ρ(id)

(id, σ)→ p

(product)
ρ(τ1)→ p1 . . . ρ(τn)→ pn

(τ1 ∗ · · · ∗ τn, ρ)→ λ(x1, . . . , xn).p1(x1) ∧ · · · ∧ pn(xn)

(sum)
ρ(τ1)→ p1 . . . ρ(τn)→ pn

(c1 of τ1 | . . . | cn of τn, ρ)→ function c1(x1) 7→ p1(x1) | . . . | cn(xn) 7→ pn(xn)

Figure 2 Constraint semantics.

3.3 Generator semantics
The derivation of random generators for composite types given random generators for atomic
types, is made following the same inductive principle as in the previous section. To keep track
of which generator is associated to which type, we consider an environment σ which associates
to each type identifier its generator. We suppose an initial environment σ0 populated with
uniform random generators for primitive types. Figure 3 presents the derivation of uniform
random generators for constrained types.

(declaration)
σ(τ)→ gτ

(type id = τ, σ)→ (σ[id 7→ gτ ])

(constrained)
(τ [@satisfying p], σ)→ solve(τ, p))

(identifier)
g = σ(id)

(id, σ)→ g

(product)
σ(τ1)→ g1 . . . σ(τn)→ gn

(τ1 ∗ · · · ∗ τn, σ)→ λi.(g1(i), . . . , gn(i))

(sum)
σ(τ1)→ λi.c1(g1(i)) . . . σ(τn)→ λi.cn(gn(i))

(c1 of τ1 | . . . | cn of τn, σ)→ weighted([(card(τ1), gn); . . . ; (card(τn), gn)])

Figure 3 Generator semantics.

For product types (similar to Cartesian product of sets), generators are obtained by
composing the generators obtained for their components. An important point of our work
is to derive random generators with uniform distribution: each inhabitants of the type has
the same probability to be drawn. Because uniform distributions do not compose so easily,
especially in the case of sum types (union of sets), we have to take care of the cardinal of
each type’s population. Hence for sum types, we decompose the uniform sampling of a value
in two steps: first choosing a constructor, and then drawing a value for this constructor. For
this to be uniform, the first step takes into account the cardinality of the components: the
more inhabitant one has, the more likely it has to be chosen. To achieve that, we introduce
two procedures: card and weighted.
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The procedure card gives the number of inhabitants of a given type. As we restrict
ourselves to non-recursive types, keeping track of the cardinality of an algebraic data type
is straightforward: cardinality for sum (resp. product) types is given by the sum (resp.
product) of the cardinalities of their components. Computing cardinalities of constrained
types is equivalent in our case to counting the solutions of a CSPs, which is a known hard
problem [30]. Hence, we use approximations to compute the cardinal of constrained types
which we present in the next section. The procedure weighted chooses a generator among
a list of generators. To choose uniformly, each generator has a probability of being chosen
equal to its associated weight.

Finally generators for constrained types are given by the procedure solve that, given a
type declaration and a predicate, builds the generator corresponding to the constrained type.
We give a definition of this procedure in the next section.

3.4 Test Generation

From the generators and the constraints we derived from the annotated program, we may
now produce tests. We retrieve value declarations in the program for which the return type
is a constrained one. If the value declaration is a constant c, we simply generate a test that
consists of applying the predicate to c. If the value declaration is a function f , we will first
retrieve, for each of its arguments, the associated generators to build the inputs. Equipped
with input generators, we then apply f to the uniformly drawn inputs and validate the
outputs using the constraint predicate.

4 Solving Constrained Types

We now study the derivation of generators and cardinality estimation for constrained types.
One way to automatically do this is to extensively compute the set of values of a type
and keep only those that satisfy a constraint. We may then randomly choose among those
whenever a generator is called. This approach however is not practical and does not scale.
Another possibility is to use a rejection sampling technique using the generator for τ and
checks its values against p. This should yield a uniform generator but present an important
flaw: when the cardinality of the constrained type ⟨τ, p⟩ is small compared to the cardinality
of the original type τ , this tends to be ineffective. Moreover, cardinality may only be an
estimation, not an exact result. Instead, our approach is to solve constrained types by
providing a measurable characterization of their inhabitants. We are then able to define
uniform random generators over it. To do so, we see a constrained type as a constraint
satisfaction problem, and its inhabitants as the solutions of this problem. We use for this
task a hybrid approach, that mixes both techniques from Abstract Interpretation [11] and
Constraint Programming [26], based on abstract domains. These are a key notion in abstract
interpretation as they implement an abstract semantic for which they provide data-structures
and define algorithmic aspects. They are designed to abstract program values and are thus
particularly well-suited for our needs. Moreover, many constructive and systematic methods
to design and compose such domains exist in the literature: numerical domains (intervals,
congruences, polyhedra, octagons, etc.), domain composition operators (products, powersets,
etc.).
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4.1 CSP extraction from a constrained type
A constraint-satisfaction problem can be defined as a triplet ⟨V ,D, C⟩, where V = {v1, . . . , vn}
is a set of variables, D = {d1, . . . , dn} a set of interval domains, each one being associated to
a variable, and C = {c1, . . . , cm} is a set of constraints over the variables. A solution of a
CSP (V,D, C) is an instance i = {v1 → x1, ..., vn → xn} that satisfies all of the constraints
by substitution of the variables with their value in i, that is:

∀i, xi ∈ di ∧ ∀c ∈ C, c({v1 → x1, ..., vn → xn})

In our case, we want to solve CSPs that are extracted from constrained types, to obtain
an approximation of their sets of inhabitants. We can then tackle the problem of generating
uniformly within this approximation. Consider the following declaration:

1 type itv = (int * int) [@ satisfying (fun (inf ,sup) -> inf <= sup)]

This type defines a bounded two-dimensional space, where dimensions correspond
to the members of the tuple, named inf and sup in the predicate. These are con-
strained by the relation inf ≤ sup. From a constraint solving point of view, the set
of inhabitant of this type is the set of solutions of the CSP: ⟨V = {inf; sup} ,D ={

[−264; 264]; [−264; 264], C = {inf ≤ sup}
}
⟩

We have automated the process of CSP extraction for type definition by inlining their
declaration: we give an identifier to each of the value of the type and then work within a
simple numerical abstract element where each identifier corresponds to a variable. Doing
so builds a CSP that abstracts some information about the shape of the type and hence, in
parallel, we build a function that will reconstruct from the solutions of the CSP, a value with
the correct shape.

4.2 CSP solving
Solving a numerical CSP usually means finding one or all the solutions of the problem.
Because this is generally impossible when the domains of the variables are continuous (or just
very large), solvers generally compute a set of boxes, that is a Cartesian product of intervals,
that covers the solution space. The resolution of such problems works from above: given
an initial coarse approximation, several heuristics are used until a sufficiently good cover is
found. In order to build this cover, a constraint solver generally alternates two main steps:

Filtering: which reduces the variables domains by removing values that do not satisfy
the constraints.
Splitting: which duplicates the problem to create two (or more) complementary sub-
problems that are smaller, w.r.t. a certain measure, than the original one.

Repeating these two steps in turn does not necessarily terminate. Hence, this procedure
generally goes on until the search space contains: no solution, only solutions, or is smaller
than a given parameter. Producing such a cover can be sufficient for us if we are able to
compute its exact number of solutions, and select one of these uniformly. However, using
boxes poorly fits our need, in particular, when we are considering relational constraints,
which appear fairly commonly in constrained types. Therefore, we use the solving method
of [29], which is designed to be parameterized by any abstract domain. The algorithm
introduced in [29] builds a set of abstract elements S that covers the solution space, i.e. for
all instances i that satisfy all the constraints C, we have ∃e ∈ S, i ∈ γ(e). Here γ is the usual
concretization function for abstract values, that is the set of concrete instances abstracted by
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an element. The algorithm starts from an initial abstract element e built from the domains
of the variables. Then, e is filtered according to the set of constraints. If the filtered abstract
element e′ is not empty, three cases are possible:

e′ satisfies all the constraints, then it is added to the set of solutions.
there is at least one constraint c that e′ does not satisfy and its size is small enough with
respect to a given threshold, it is also added to the set of solutions.
otherwise, e′ is divided into sub-elements using the split operator and the process is
repeated with each of these sub-elements.

When all of the elements have been processed, the union of the element in S is a sound
over-approximation of the solution space. We propose a slightly modified version of this
algorithm, which, we believe, is better suited for our needs.

4.3 Solving Algorithm

Contrarily to the algorithm of [29], we distinguish inner elements from outer elements. Inner
elements are the ones that are guaranteed to only contain solutions while outer elements
may contain non-solutions. Our algorithm is defined in Figure 1.

Algorithm 1 Abstract solving for generator derivation.
1: function solve(D, C, ϵ, max)
2: I ← ∅
3: O ← ∅
4: e =init(D)
5: O ←insert(e, O)
6: while µ(I, O) > ϵ ∨ |I| < max do
7: e← biggest(O)
8: e′ ← ρ(e, C)
9: if e′ ̸= ⊥ then

10: if solution(e′, C) then
11: push e′ in I

12: else
13: push split (e) in O

14: return I, O

Our algorithm maintains two sets of elements: inner elements I, and outer elements O.
Here, I under-approximates the solution set and O is such that I ∪O over-approximates it.
It first initializes an abstract element e and inserts it in the set of outer elements O. Then,
the main loop proceeds repeating the steps: The biggest element of O is selected (which is
more likely to contains more solutions), filtered using the propagator ρ, and pushed in I if it
satisfies the constraints. Otherwise, it is split and the sub-elements are pushed back in O.

As we will see, the number of element in the cover is related to the size of the code
generated for the random samplers. Also their rejection rate is closely related to the
proportion of inner elements in the cover. Thus the tuning of the obtained generator may be
controlled by the max and ϵ parameters: max is needed to avoid an exponential growth of
the cover and ϵ fixes a rejection rate to reach. The next section gives insights about the code
generation and defines precisely µ(I, O).
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4.4 From covers to generators
Once we have computed a cover (I, O) for a constrained type ⟨τ, p⟩, we have to compile it
into a generator for ⟨τ, p⟩. A cover is a set of inner elements and a set of outer elements.
Thus, to compile a cover into a generator we start by compiling each element e ∈ (I ∪ O)
into a generator. We then choose an element e of the cover, and generate an instance i using
the generator associated with e. If e belongs to I, then i is kept, but if it belongs to O, then
i must be checked against p to make sure that it is a valid member of the constrained type.
In that case, we are forced to rely on rejection sampling.

Hence, the generator for the whole cover is actually a dispatcher to the generators of
the elements: it randomly selects an element’s generator with a probability proportional to
the volume of the underlying set of solutions, then calls it. Note that this yields a uniform
generator because the split operator produces elements that do not overlap. Otherwise,
instances belonging to several elements would appear more often during the sampling.

To compute the cardinality of a constrained type ⟨τ, p⟩ we must reason on the number of
solutions of its associated cover. This exact number is given by:∑

e∈I

|γ(e)|+
∑
e∈O

| {i ∈ γ(e) | p(i)} |

However, as the number of solutions of an outer element e depends on the predicate p,
it is hard to compute exactly in the general case. Instead, we use an over-approximation
of this number that is |{i ∈ γ(e)}|. Our cardinality estimation for a cover (I, O), denoted
card(I, O), is given by:

card(I, O) =
∑
e∈I

|γ(e)|+
∑
e∈O

|γ(e)|

Despite of this over-approximation, our sampling method is uniform, thanks to rejection
sampling: rejecting erroneous solutions does not bias the uniform distribution. To ensure
the sampling of the uniform distribution in case of rejection, the whole sampling process is
restarted from the beginning i.e. an abstract element is drawn w.r.t. to its volume and so on.

One way to mitigate the occurrences of rejections, is to minimize the volume of O. Hence
the introduction of µ(I, 0) defined as

µ = 1− card(I, ∅)
card(I, O)

It measures the relative error between the over-approximation and the exact volume of an
abstract element. At the start of the algorithm process µ(I, O) = 1. Then it decreases at
each iteration until reaching the desired precision. Note that µ = 0 means that the abstract
element corresponds exactly to the set of solutions of the CSP and the random sampling will
be made without rejection.

5 Abstract Domains for Random Testing

The technique presented in the previous section relies on abstract domains to solve and
derive generators for constrained types. To use abstract domains in the context of constraint
resolution, the authors of [29] define several operators and requirements they must satisfy.
Our use-case requires the same operators, plus an additional one for the random sampling of
an element. The following definition gives these.



G. Ziat, M. Dien, and V. Botbol 59:11

−264

−264

264

2640

0

inf

sup

(a) Graphical resolution of the CSP.
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(b) Metrics over the resulting generator.

Figure 4 Solving the itv constrained type with boxes.

▶ Definition 2. Abstract domains for constraint solving are given by
a partial order ⟨D,⊑⟩ and the usual abstract set operators and values ⟨⊤,⊥,⊓,⊔⟩
an abstraction α and a concretization function γ

a size function card: D → N+

a split function split: D → P (D),
a constraint filtering operator ρ : D × C → D ∪ {⊥}, which given an abstract value e and
a constraint c computes the smallest abstract value (possibly empty) entailed by c and e.
a generation function uniform: D → Rn

For sake of concision, we will not detail the compilation of abstract elements into
expressions. Instead we define random generation functions on abstract elements.

5.1 Boxes

A very studied abstract domain in continuous constraint solving is the abstract domain
of boxes. Its main operators rely on interval arithmetic [1] and were already introduced
in previous work [35]. In our case, the cardinality of a box b = [a1, b1] × · · · × [an, bn] is
its volume (defined as its Lebesgue measure) i.e. card(b) =

∏n
i=1(bi − ai). For the split

operation, we use standard bisection of a variable with the so-called largest-first heuristic
which chooses the variable with the biggest range as a variable selection strategy. Also, for
the filtering operation we use the HC4 constraint propagation algorithm [3]. Finally, the
uniform distribution over a n-dimensional box is sampled using n uniform (over [0, 1]) and
independant random variables (ri)i≤n with the formula (ai + ri ∗ (bi − ai))i≤n.

Defining these operators is sufficient to embed this domain within our testing framework.
Using boxes, it is possible to derive efficient generators for constrained type that use non
relational constraints, that are constraints that involve a single variable. However, producing
fast generators in presence of relational constraints is harder e.g. the itv type of Example 4.1.
Figure 4 shows graphically the approximation we obtain and the corresponding generated
OCaml code is given in Appendix A.1. Filled elements correspond to inner elements, and
empty elements correspond to outer elements. The Table 4b gives some metrics over the
cover and the resulting generator: the row ♯inner (resp. ♯outer) gives the number of inner
(resp. outer) elements, the third row gives the µ-score and the last line gives the generation
rate of the obtained generator, which is measured experimentally and is given in number of
calls per seconds.
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We can see that when dealing with an affine constraint, the use of boxes misfits our
needs: the precision needed to avoid rejections during the sampling leads to a high number of
elements in the cover of the solution space and so a very large (in term of code size) and slow
sampler. To solve this issue, we focus in the next subsection on a relational abstract domain.

5.2 Polyhedra
The polyhedra abstract domain [12] is a numerical relational abstract domain that approx-
imates sets of points as convex closed polyhedra. Modern implementations [20] generally
follow the “double description approach” and maintain two dual representations for each
polyhedron: a set of linear constraints and a set of vertices. The constraint representation
of the polyhedron is the intersection of the half-spaces defined by the linear constraints.
The vertex representation is the convex hull of a set of points. These dual descriptions
are very useful in practice as polyhedra operators [20] are generally easier to define on one
representation rather than the other. We use both to define the filtering, splitting, measure
and random sampling functions. Constraint filtering for polyhedra generally consists in
building a sound linear approximation of a constraint (different approximations can be used
e.g. quasi-linearization [25] or linearization for polynomial constraints [22]), and then adding
it to the representation of a given polyhedron.

Volume computation and uniform random sampling within a polyhedron are notoriously
hard tasks. The first problem is ♯P-hard (see [4] for example). For the sampling, the
fastest algorithm (to our knowledge) has an expected (time) complexity in O⋆

(
n3)2 (see

Theorem 3.1.3 of [10]) whose result validity and running time are probabilistic.
We mitigate these problems by systematically considering a simpler case: simplices. A

simplex is the most simple polyhedron with a non null volume, obtainable in an n-dimensional
space as it is the convex hull of n + 1 vertices. Instead of stopping the split and filtering
procedure when an inner polyhedron is found, we continue to split elements until all are
simplices. To do so, we use a split operator that favors the creation of simplices that can be
summarized as follows. Suppose a polyhedron P lives in a n-dimensional space and is not
already a simplex, i.e. it is defined using at least n + 2 vertices:

pick n + 1 arbitrary vertices, {v0, . . . , vn}
compute Q the smallest polyhedron that encompasses {v0, . . . , vn}
return Q ∪ (P ⊖Q)

Here, the difference operator (⊖) used in the last step corresponds to the set difference of
two polyhedra. This operator, illustrated by Figure 5, uses the constraint representation:
the polyhedron Q is a space defined by the conjunction of a set of constraints CQ, where
each constraint is a linear inequality over the variables of the polyhedron. It is defined as:

P ⊖Q ≜
{⋃

P ∩ ¬c | c ∈ CQ

}

Our simplex split allows us to decompose a polyhedron while performing the resolution,
which allows us to define both the volume estimation and the uniform random sampling on
simplices. The way to compute the volume of a simplex is well known and not discussed here.

In order to sample a point of a simplex, we first consider its mirror parallelotope:
given a simplex polyhedron P defined by the set of vertices V = {v1, . . . , vn}, we build
its mirror parallelotope P ′ by adding one vertex t to V , obtained by translation of v1 by

2 The ⋆ in O⋆
(
n3

)
hides logarithmic factor.
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Figure 5 Difference operator: P ⊖ Q.
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(b) r is not inside P , we take r′ its reflection point
according to b.

Figure 6 Simplex uniform generation procedure.

the vector δ = −−→v1v2 + −−→v1v3 + . . . + −−→v1vn. Then, a point r of P ′ is uniformly drawn by
sampling n− 1 independent and uniform random variables (ri)i≤n−1 over [0, 1], such that
r = r1 · −−→v1v2 + r2 · −−→v1v3 + . . . + rn−1 · −−→v1vn.

If r is inside P we keep it.

Else, r is outside P , we keep r′ its symmetrical according to b.

Where b is the barycenter of the opposite face to v1, i.e. the n− 2 dimensional face of
corners {v2, . . . , vn}. Figure 6 illustrates this procedure for a 2D-simplex. Note that every
point in P has exactly two ways of being chosen, that is directly or by symmetry, which makes
this procedure uniform. Equipped with this relational abstract domain, we can compare
the result obtained for the CSP of the itv type, illustrated by Figure 7. The corresponding
code, given in Appendix A.2, is approximately three times faster than the one obtained with
boxes, thanks to the null rejection rate (µ = 0).

−264

−264

264
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0

inf

sup

♯ inner 1
♯ outer 0

µ 0
rate: 627k/s

Figure 7 Approximation of the itv type with polyhedra.
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6 Current Implementation and Benchmarks

Our implementation is built as a syntax extension for OCaml based on a preprocessing
mechanism. We use OCaml’s attributes to allow the user to annotate its types with
constraints. Attributes are placeholders in the syntax tree which are ignored by the com-
piler but can be used by external tools such as ours. We have developed a prototype
to demonstrate the interest of our technique. It is open-source and available at the url
https://github.com/ghilesZ/Testify. It currently implements the work we have presen-
ted in Sections 3 and 4 plus some other features we describe briefly here. Our main focus
is the constraint solving of constrained types to automatically derive generators. How-
ever for a more practical use, we provide the programmer two other ways of specifying
a generator for a given type. The first one is using the rejection keyword, for example
type even = int [@satisfying rejection(fun x -> x mod 2 = 0)]. Constraints tagged as re-
jected will not be handled by the constraint solver but will simply be treated a posteriori
after the generation to keep or discard generated values. The second one is by manual
annotation of functions: the developer can tag one of its own function of type S → τ as a
custom generator for the type τ . This will overload the generator automatically derived by
our framework. Also we have presented a type language with tuples and sum types but our
actual implementation also handles polymorphic and record types. We have not detailed
those here as they do not represent a specific challenge from a constraint solving perspective.

Also, as the numerical values we manipulate in our CSPs correspond to sets of machine
integers and floating point numbers, the computation we perform are likely to produce round-
off errors if made using standard precision. To bypass this issue, all of our computations
are made using arbitrary precision integers and rationals. Moreover, our uniformity metrics
are valid in R but not necessarily for floating point numbers. We believe that this is a
reasonable approximation. Finally our current implementation suffers from some limitations,
for example: we handle explicitly typed values only and do not enjoy the capabilities of
OCaml’s type inference mechanism. Also, we do not have a generator derivation mechanism
for recursive types and further work will be needed to lift these restrictions.

We have applied our testing framework on some open source OCaml libraries where
we have identified and annotated some constrained types. These types use quite simple
constraints that are mainly bound constraints, linear constraints of the form xi ≤ xj , and
some disjunctions of such constraints. This reflects the fact that when writing code, the
developer keeps in mind a relatively simple representation of the set of possible values of
its type. Table 1 presents some metrics over the tests we have generated using different
configurations. The first two columns give some information about the constrained type
from which we derive the CSP. The first column specifies the kind of constraints attached
to the type: bc for bound constraints, lin for linear constraints, and dis, for disjunctions of
linear constraints. The second column indicates the number of variables appearing in the
corresponding CSP. The next columns give some quality metrics over the generators: the
generation speed and uniformity. The column B8 (resp. B64) gives the measures for the
boxes abstract domain with a cover size limited to 8, (resp. 64), the column P gives these
values for polyhedra (with a cover size limited to 64). For comparison purposes, we add
a supplementary column RS that gives the statistics we obtain using rejection sampling.
The row µ shows the value of µ(I, O) at the end of Algorithm 1 and the last row gives the
generation rate, i.e. the number of generated values (in thousands) per seconds. The results
of Table 1 validates our intuition: constraint solving of constrained types helps producing
efficient generators. All of our abstract domain based configurations outperform the rejection

https://github.com/ghilesZ/Testify
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Table 1 Generation rate and value of µ per configuration.

CSP B8 B64 P RS
kind ♯var rate µ rate µ rate µ rate µ

bc 2 10075 0 10059 0 2604 0 816 0
bc 2 9860 0 9996 0 2586 0 842 0
lin 2 2551 0.6 3312 0.35 3262 0 1333 0
bc 1 26055 0 26146 0 7870 0 1922 0
lin 2 2602 0.6 3200 0.35 3358 0 1337 0
lin 2 2594 0.6 3166 0.35 3366 0 1080 0
lin 2 2622 0.6 3312 0.35 3234 0 428 0
bc 2 10246 0 10436 0 2768 0 1449 0
lin 2 2066 0.82 2812 0.44 6394 0 115 0
lin 3 615 1 716 1 1362 0 403 0
lin 2 2213 0.6 2750 0.35 6146 0 2278 0
dis 5 462 1 523 0.85 1189 0 452 0

sampling approach by one order of magnitude. In columns B8 and B64 the size limit for the
cover varies and as expected, it decreases µ. Moreover, on the benchmarks it almost always
increases the generation rate. This indicates that the execution time benefits more from
reducing the rejection rate than from increasing the size of the cover. However, it is slower
on most examples using bound constraints than the boxes due to the relative complexity
of the simplex generation procedure compared to the one of boxes. For the examples with
linear relational constraints, the samplers produced with polyhedrons are faster.

7 Conclusion

We have proposed in this paper an automated type-driven testing framework for programs
that manipulate constrained types. We have defined an automated technique to derive
efficient random uniform generators for numerical constrained types. To do so, we have
proposed several abstract domains, both relational and non-relational, with the addition of
random value generator. The strength of our method lies in its genericity: it allows us to
shift the problem of uniform random sampling of CSP solution to the definition of a uniform
generation operator for abstract domains. Further works include the study of such operators
for some popular domains of abstract interpretation such as congruences, products, octagons,
etc. Another idea would be to couple our methods with Boltzmann generation techniques
(like in [6]) in order to build generators for recursive types with constraints.

Our techniques were implemented in a prototype that can be used as a preprocessor for
OCaml programs. Even though we targeted OCaml and although we have taken advantage
of its generic syntax extension mechanism, the process we have presented could be adapted
to most programming languages. The tests we are able to generate are not made to be as
pertinent as some hand written tests and our goal is not to replace those. However our
approach being fully automatic and fast, it can be used on the fly, while programming, to
find bugs quickly. We believe that random uniform generators for abstract domain open
the way for hybrid techniques at the border between sound static analysis approaches and
complete testing techniques. For example, one could imagine a backward analysis able to
derive necessary preconditions (as in [32]) that exhibit bugs in a program and then uniformly
generating tests within the corresponding abstract element to find actual bugs.
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A Generated code for generators

A.1 Generated code using the boxes abstract domain
The following code gives the generator for the itv type we derived using the boxes abstract
domain. The weighted procedure chooses a generator w.r.t. their probability. To perform
quickly on average the list is sorted in decreasing order of probabilities, first elements being
bigger, and thus more likely to be chosen. The function is more thus likely to stop quickly in
average without harming uniformity.

1 weighted
2 [(0.400000000001 ,
3 (( fun x ->
4 (fun i -> ((( get_int "x") i), (( get_int "y") i)))
5 (( fun rs ->
6 [("y", (( mk_int_range 0 0 x3fffffffffffffff ) rs ));
7 ("x", (( mk_int_range 0 x4000000000000000 ( -1)) rs ))]) x ))));
8 (0.100000000001 ,
9 ( reject (fun (x, y) -> x <= y)

10 (fun x ->
11 (fun i -> ((( get_int "x") i), (( get_int "y") i)))
12 (( fun rs ->
13 [("y",
14 (( mk_int_range 0 x2000000000000000 0 x3fffffffffffffff ) rs ));
15 ("x", (( mk_int_range 0 0 x1fffffffffffffff ) rs ))]) x ))));
16 (0.100000000001 ,
17 ( reject (fun (x, y) -> x <= y)
18 (fun x ->
19 (fun i -> ((( get_int "x") i), (( get_int "y") i)))
20 (( fun rs ->
21 [("y", (( mk_int_range 0 0 x1fffffffffffffff ) rs ));
22 ("x", (( mk_int_range 0 0 x1fffffffffffffff ) rs ))]) x ))));
23 (0.100000000001 ,
24 ( reject (fun (x, y) -> x <= y)
25 (fun x ->
26 (fun i -> ((( get_int "x") i), (( get_int "y") i)))
27 (( fun rs ->
28 [("y", (( mk_int_range 0 x6000000000000000 ( -1)) rs ));
29 ("x",
30 (( mk_int_range 0 x4000000000000000 0 x5fffffffffffffff ) rs ))])
31 x ))));
32 (0.100000000001 ,
33 ( reject (fun (x, y) -> x <= y)
34 (fun x ->
35 (fun i -> ((( get_int "x") i), (( get_int "y") i)))
36 (( fun rs ->
37 [("y",
38 (( mk_int_range 0 x4000000000000000 0 x5fffffffffffffff ) rs ));
39 ("x",
40 (( mk_int_range 0 x4000000000000000 0 x5fffffffffffffff ) rs ))])
41 x ))));
42 (0.0500000000001 ,
43 ( reject (fun (x, y) -> x <= y)
44 (fun x ->
45 (fun i -> ((( get_int "x") i), (( get_int "y") i)))
46 (( fun rs ->
47 [("y",
48 (( mk_int_range 0 x2000000000000000 0 x3fffffffffffffff ) rs ));
49 ("x",
50 (( mk_int_range 0 x3000000000000000 0 x3fffffffffffffff ) rs ))])
51 x ))));
52 (0.0500000000001 ,
53 ( reject (fun (x, y) -> x <= y)
54 (fun x ->
55 (fun i -> ((( get_int "x") i), (( get_int "y") i)))
56 (( fun rs ->
57 [("y",
58 (( mk_int_range 0 x2000000000000000 0 x3fffffffffffffff ) rs ));

https://lcamtuf.coredump.cx/afl/
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59 ("x",
60 (( mk_int_range 0 x2000000000000000 0 x2fffffffffffffff ) rs ))])
61 x ))));
62 (0.0500000000001 ,
63 ( reject (fun (x, y) -> x <= y)
64 (fun x ->
65 (fun i -> ((( get_int "x") i), (( get_int "y") i)))
66 (( fun rs ->
67 [("y", (( mk_int_range 0 x6000000000000000 ( -1)) rs ));
68 ("x", (( mk_int_range 0 x7000000000000000 ( -1)) rs ))]) x ))));
69 (0.0500000000001 ,
70 ( reject (fun (x, y) -> x <= y)
71 (fun x ->
72 (fun i -> ((( get_int "x") i), (( get_int "y") i)))
73 (( fun rs ->
74 [("y", (( mk_int_range 0 x6000000000000000 ( -1)) rs ));
75 ("x",
76 (( mk_int_range 0 x6000000000000000 0 x6fffffffffffffff ) rs ))])
77 x ))))]
78

A.2 Generated code using the polyhedra abstract domain
The following code was generated by our framework as a generator for the itv type using the
polyhedra abstract domain. The simplex procedure corresponds to drawing method given
in section 5.2.

1 fun x ->
2 (fun i -> ((( get_int "x") i), (( get_int "y") i)))
3 (( simplex
4 [(( mk_int 0 x4000000000000000 ), "y");
5 (( mk_int 0 x4000000000000000 ), "x")]
6 [[(( mk_int 0 x3ffffffffffffe00 ), "y");
7 (( mk_int 0 x4000000000000000 ), "x")];
8 [(( mk_int 0 x3ffffffffffffe00 ), "y");
9 (( mk_int 0 x3ffffffffffffe00 ), "x")]]

10 [(( mk_int 0 x3ffffffffffffe00 ), "y"); (( mk_int 0), "x")]) x)
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Abstract
Max-sum is a version of belief propagation that was adapted for solving distributed constraint
optimization problems (DCOPs). It has been studied theoretically and empirically, extended to
versions that improve solution quality and converge rapidly, and is applicable to multiple distributed
applications. The algorithm was presented both as a synchronous and an asynchronous algorithm,
however, neither the differences in the performance of these two execution versions nor the implications
of message latency on the two versions have been investigated to the best of our knowledge.

We contribute to the body of knowledge on Max-sum by: (1) Establishing the theoretical
differences between the two execution versions of the algorithm, focusing on the construction of
beliefs; (2) Empirically evaluating the differences between the solutions generated by the two versions
of the algorithm, with and without message latency; and (3) Establishing both theoretically and
empirically the positive effect of damping on reducing the differences between the two versions. Our
results indicate that in contrast to recent published results indicating the drastic effect that message
latency has on distributed local search, damped Max-sum is robust to message latency.
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1 Introduction

Recent advances in computation and communication have resulted in realistic distributed
applications, in which humans and technology interact and aim to optimize mutual goals
(e.g., IoT applications). A promising multi-agent approach to solve these types of problems
is to model them as distributed constraint optimization problems (DCOPs), where decision
makers are modeled as agents that assign values to their variables. The goal in a DCOP is
to optimize a global objective in a decentralized manner. Unfortunately, the communication
assumptions of the DCOP model are overly simplistic and often unrealistic: (1) All messages
arrive instantaneously or have very small and bounded delays; and (2) Messages sent arrive
in the order that they were sent. These assumptions do not reflect real-world characteristics,
where messages may be disproportionally delayed due to different bandwidths in different
communication channels.
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Recently, a study that investigated the effect of message latency on standard distributed
local search algorithms, e.g., MGM and DSA, has shown that message delays have a a dramatic
positive effect on the performance of the asynchronous versions of these algorithms [18].
Apparently, message latency generates an exploration effect, which improves significantly
the quality of the solutions they produce. Nevertheless, this study did not investigate the
effect on distributed incomplete inference algorithms, e.g., the Max-sum algorithm, although,
these algorithms have been shown recently to be most successful [3, 4]. Thus, we focus our
attention to the effect of message latency on Max-sum and its variants in this paper.

Max-sum is a version of the belief propagation algorithm [16, 25], which is used for solving
DCOPs. It has been recently proposed for solving multi-agent optimization problems in
applications, such as sensor systems [23, 22], task allocation for rescue teams in disaster areas
[19], and smart homes [21]. As with most belief propagation algorithms, Max-sum is known
to converge to an optimal solution when solving problems represented by acyclic graphs. On
problems represented by cyclic graphs, the beliefs may fail to converge, and the resulting
assignments that are considered optimal under those beliefs may be of low quality [6, 30].
This occurs because cyclic information propagation leads to computation of inaccurate and
inconsistent information [16].

To decrease the effect of cyclic information propagation in belief propagation, the damping
method has been suggested. It balances the weight of the new calculation performed in each
iteration and the weight of calculations performed in previous iterations, resulting in an
increased probability for convergence [4]. Recently, splitting nodes in the factor graph on
which belief propagation operates has been shown to be an effective method for accelerating
the convergence of the algorithm when combined with damping [20, 4].

Max-sum has been presented both as an asynchronous and as a synchronous algorithm
(e.g., [6, 30, 5]). In the synchronous version, agents perform in iterations. In each iteration,
an agent sends messages to all its neighbors and waits for the messages sent to it from all
its neighbors to arrive, before moving to the next iteration. In the asynchronous version,
agents react to messages when they arrive. To best of our knowledge, the implications of
this difference in the execution of the algorithm on its performance have not been studied to
date. Moreover, while message latency does not affect the actions that agents perform (only
delays them) in the synchronous version, intuitively, it is expected to have a major effect
on the performance of the asynchronous version. The reason is that the beliefs included in
messages are used by agents in the construction of beliefs that they propagate to others and
in their assignment selection. In asynchronous execution, belief construction and assignment
selection might be performed while considering imbalanced and inconsistent information.

In this paper, we make the following contributions:
1. We analyze the properties of the two execution versions of Max-sum, synchronous and

asynchronous. More specifically, using backtrack cost trees [28], we investigate the possible
differences between the propagated beliefs in synchronous and asynchronous executions
of Max-sum.

2. We investigate the effect of damping on asynchronous Max-sum. While there are clear
indications (both empirical and theoretical) that damping improves the performance
of the synchronous version of Max-sum [4, 28], to best of our knowledge, the effect of
damping on the asynchronous version of Max-sum has not been studied. We analyze
this effect both theoretically and empirically. Both indicate that damping reduces the
differences between synchronous and asynchronous execution.

3. We investigate the performance of the different versions of the algorithm in the presence of
message latency. While the beliefs propagated and the computation that agents perform
are not affected by message latency in the synchronous version (only delayed), this is not
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true for the asynchronous version. Once again, our empirical results reveal that damping
reduces the differences. Moreover, the version of Max-sum proposed by [4] that includes
both damping and splitting maintains its fast convergence properties and the quality of
solutions, even in asynchronous execution with message delays.

2 Background

In this section we provide background on graphical models, distributed constraint optimization
problems (DCOPs), the DCOP versions of belief propagation – Max-sum and its variants –
and backtrack cost tree (BCT) – the tool we use to analyze the algorithms’ behavior. While
the Max-sum variants that we discuss are actually solving a min-sum problem [20], we will
still refer to them as “Max-sum” since this name is commonly used [6, 7, 30].

2.1 Graphical Models
Graphical models such as Bayesian networks or constraint networks are a widely used
representation framework for reasoning and solving optimization problems. The graph
structure is used to capture dependencies between variables [11]. Our work extends the
theory established in [24], which considered the most a priori Maximum a posteriori (MAP)
assignment, which is solved using the Max-product version of belief propagation. The
relation between MAP and constraint optimization is well established [11, 6, 15], and thus,
results that consider Max-product for MAP apply to Max/Min-sum for solving constraint
optimization problems, as well as the other way round [20]. Without loss of generality, we
will focus on constraint optimization, since it is more common in AI literature. Moreover,
we will consider the distributed version of the problem, since it is a natural representation
for message passing algorithms. Nevertheless, our results apply to any version of problem
represented by a graphical model and solved by belief propagation, as do the results of [24].

2.2 Distributed Constraint Optimization Problems
Without loss of generality, in the rest of this paper, we will assume that all problems are
minimization problems, as it is common in the DCOP literature (e.g., [13]). Thus, we assume
that all constraints define costs and not utilities.

A DCOP is defined by a tuple ⟨A, X , D, R⟩. A is a finite set of agents {A1, A2, . . . , An}.
X is a finite set of variables {X1, X2, . . . , Xm}. Each variable is held by a single agent, and
an agent may hold more than one variable. D is a set of domains {D1, D2, . . . , Dm}. Each
domain Di contains the finite set of values that can be assigned to variable Xi. We denote
an assignment of value x ∈ Di to Xi by an ordered pair ⟨Xi, x⟩. R is a set of relations
(constraints). Each constraint Rj ∈ R defines a non-negative cost for every possible value
combination of a set of variables, and is of the form Rj : Dj1 ×Dj2 × . . .×Djk

→ R+ ∪{0}. A
binary constraint refers to exactly two variables and is of the form Rij : Di ×Dj → R+ ∪{0}.1
For each binary constraint Rij , there is a corresponding cost table Tij with dimensions
|Di| × |Dj | in which the cost in every entry exy is the cost incurred when Xi is assigned
to x and Xj is assigned to y. A binary DCOP is a DCOP in which all constraints are
binary. A partial assignment is a set of value assignments to variables, in which each
variable appears at most once. vars(PA) is the set of all variables that appear in partial

1 We say that a variable is involved in a constraint if it is one of the variables the constraint refers to.
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assignment PA, i.e., vars(PA) = {Xi | ∃x ∈ Di ∧ ⟨Xi, x⟩ ∈ PA}. A constraint Rj ∈ R
of the form Rj : Dj1 × Dj2 × . . . × Djk

→ R+ ∪ {0} is applicable to PA if each of the
variables Xj1 , Xj2 , . . . , Xjk

is included in vars(PA). The cost of a partial assignment PA is
the sum of all applicable constraints to PA over the value assignments in PA. A complete
assignment (or a solution) is a partial assignment that includes all the DCOP’s variables
(i.e., vars(PA) = X ). An optimal solution is a complete assignment with minimal cost.

For simplicity, we make the common assumption that each agent holds exactly one
variable (i.e., n = m) and we concentrate on binary DCOPs. These assumptions are common
in the DCOP literature (e.g., [17, 26]). In addition to the standard motivation for focusing
on binary DCOPs, in the case of Max-sum it is essential, since the runtime complexity of
each iteration of Max-sum is exponential in the arity of the constraints.

2.3 The Max-Sum Algorithm
Max-sum operates on a factor graph, which is a bipartite graph in which the nodes represent
variables and constraints [10]. Each variable-node representing a variable of the original
DCOP is connected to all function-nodes representing constraints that it is involved in.
Similarly, a function-node is connected to all variable-nodes representing variables in the
original DCOP that are involved in it. Variable-nodes and function-nodes are considered
“agents” in Max-sum (i.e., they can send and receive messages, and can perform computation).

A message sent to or from variable-node X (for simplicity, we use the same notation for
a variable and the variable-node representing it) is a vector of size |DX | including a cost for
each value in DX . These costs are also called beliefs. Before the first iteration, all nodes
assume that all messages they previously received (in iteration 0) include vectors of zeros. A
message sent from a variable-node X to a function-node F in iteration i ≥ 1 is formalized as
follows:

Qi
X→F =

∑
F ′∈FX ,F ′ ̸=F

Ri−1
F ′→X − α (1)

where Qi
X→F is the message variable-node X intends to send to function-node F in iteration

i, FX is the set of function-node neighbors of variable-node X, and Ri−1
F ′→X is the message

sent to variable-node X by function-node F ′ in iteration i − 1. α is a constant that is reduced
from all beliefs included in the message (i.e., for each x ∈ DX) in order to prevent the costs
carried by messages throughout the run of the algorithm from growing arbitrarily large.

A message Ri
F →X sent from a function-node F to a variable-node X in iteration i includes

for each value x ∈ DX :

minP A−X
cost(⟨X, x⟩, PA−X) (2)

where PA−X is a possible combination of value assignments to variables involved in F

not including X. The term cost(⟨X, x⟩, PA−X) represents the cost of a partial assignment
a = {⟨X, x⟩, PA−X}, which is:

f(a) +
∑

X′∈XF ,X′ ̸=X,⟨X′,x′⟩∈a

(Qi−1
X′→F )x′ (3)

where f(a) is the original cost in the constraint represented by F for the partial assignment
a, XF is the set of variable-node neighbors of F , and (Qi−1

X′→F )x′ is the cost that was received
in the message sent from variable-node X ′ in iteration i − 1, for the value x′ that is assigned
to X ′ in a. X selects its value assignment x̂ ∈ DX following iteration k as follows:
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x̂ = arg min
x∈DX

∑
F ∈FX

(Rk
F →X)x (4)

In the synchronous version (Syn_Max-sum), at each iteration t, an agent waits to receive
all messages sent to it in iteration t − 1 before performing computation and generating the
messages to be sent in that iteration [30]. In the asynchronous version (Asy_Max-sum),
agents react to messages they receive. Whenever a node receives a message, it performs
computation and sends out messages to its neighbors, taking into consideration the last
message received from each of its neighbors [6]. In both versions, the logic for the actions of
the agents are identical, only the trigger for performing those actions is different.

2.3.1 Damped Max-sum (DMS)

DMS has an additional feature, which is the damping of the propagated beliefs. In order
to add damping to Max-sum, a parameter λ ∈ [0, 1) is used. Before sending a message in
iteration k, an agent performs calculations as in standard Max-sum. We use m̂k

i→j to denote
the result of the calculation made by agent Ai for the content of a message intended to be
sent from Ai to agent Aj in iteration k and mk−1

i→j to denote the message sent by Ai to Aj at
iteration k − 1. The message sent by Ai to Aj at iteration k is calculated as follows:

mk
i→j = λmk−1

i→j + (1 − λ)m̂k
i→j (5)

Thus, λ expresses the weight given to previously performed calculations with respect to the
most recent calculation performed. Moreover, when λ = 0 the resulting algorithm is standard
Max-sum.

We use Syn_DMS and Asy_DMS to denote the synchronous and asynchronous versions
of DMS, respectively, in this paper.

2.3.2 Asynchronous Execution

All the definitions used for describing Max-sum (and DMS) above use the iteration number
k. It was used to describe how a message is generated, using the information received by
the factor graph node in the previous iteration (k − 1). In asynchronous execution, their
are no iterations, and agents perform computation steps whenever they receive messages.
Thus, in asynchronous execution, the information that a node Ni uses, when it generates
a message in some time t, is, for each neighbor Nj , the information included in the last
message received from Nj (prior to t), regardless of when it was sent by Nj . If no message
has been received from Nj yet, Ni uses a vector of zeros in its computation. Notice, that in
the presence of message delays, a node Ni may receive messages from its neighbor Nj , not
in the order they were sent. This is true for both the synchronous and the asynchronous
versions of the algorithm. Nevertheless, the agents use the messages in the order in which
they were received.

In order to avoid this phenomenon, we implemented a time-stamp method that allowed
the agents receiving messages to consider the information they include in the order that they
were sent. However, the results were not significantly different from the results obtained
when we did not use this method, thus, we do not report these results in our empirical study.
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Figure 1 An acyclic DCOP factor graph (on the left) and its equivalent SCFG (on the right).

2.3.3 Max-sum with Split Constraint Factor Graphs
When Max-sum is applied to an asymmetric problem, the representing factor graph has each
(binary) constraint represented by two function-nodes, one for each part of the constraint
held by one of the involved agents. Each function-node is connected to both variable-nodes
representing the variables involved in the constraint [31]. Figure 1 presents two equivalent
factor graphs that include two variable-nodes, each with two values in its domain, and a
single binary constraint. On the left, the factor graph represents a (symmetric) DCOP
including a single constraint between variables X1 and X2, hence, it includes a single function
node representing this constraint. On the right, the equivalent factor graph representing
the equivalent asymmetric DCOP is depicted. It includes two function-nodes, representing
the parts of the constraint held by the two agents involved in the asymmetric constraint.
Thus, the cost table in each function-node includes the asymmetric costs that the agent
holding this function-node incurs. In this example function-node F ′

12 is held by agent A1,
while F ′

21 is held by A2. The factor graphs are equivalent since the sum of the two cost
tables held by the function-nodes representing the constraints in the factor graph on the
right, is equal to the cost table of the single function-node representing this constraint in the
factor graph on the left (see [32] for details). Researchers have used such Split Constraint
Factor Graphs (SCFGs) as an enhancement method for Max-sum [20, 4]. This is achieved by
splitting each constraint that was represented by a single function-node in the original factor
graph into two function-nodes. The SCFG is equivalent to the original factor graph if the
sum of the cost tables of the two function-nodes representing each constraint in the SCFG is
equal to the cost table of the single function-node representing the same constraint in the
original factor graph. By tuning the similarity between the two function-nodes representing
the same constraint one can determine the level of asymmetry in the SCFG. The use of
symmetric SCFGs was shown to trigger very fast convergence to high quality solutions.
However, generating mild asymmetry, postpones convergence and generates some exploration,
which results in improved solution quality [4].

2.3.4 Non-Concurrent Logic Operations
In order to evaluate the performance of distributed algorithms performing in a distributed
environment, there is a need to establish which of the operations performed by agents
could not have been performed concurrently and, thus, the run-time performance of the
algorithm is the longest non-concurrent sequence of operations that the algorithm performed.
In [29], DisCSP algorithms were evaluated, which their basic logic operations were constraint
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Figure 2 (a) A lemniscate factor-graph. (b) An example of a BCT for a belief in the message
sent from X1 to the function-node F13 at time t = 6 in the lemniscate depicted on the left hand side.

checks (CCs), thus, the performance was measured in terms of non-concurrent constraint
checks (NCCCs). In [14], search based complete algorithms were compared with inference
algorithms, thus, algorithms that perform different atomic logic operations (i.e., constraint
checks and compatibility checks) were compared, and the results were reported in terms
of non-concurrent logic operations (NCLOs). This approach is the one we adopt in this
study, since we evaluate the quality of the solutions of the algorithms, as a function of the
asynchronous advancement of the algorithm, when agents perform computation concurrently.

Recently, these insights were generalized such that similar statements can be made when
the algorithm is solving finite factor-graphs with multiple cycles [28]. Zivan et al. have
proved that, as in the single cycle case, on every finite factor-graph, Max-sum at some point
in time starts to repeatedly follow a path that minimizes its beliefs. When a large enough
damping factor is used, this minimal path is indeed the minimal path in the factor-graph,
and thus, if it is consistent, the algorithm converges to the optimal solution.

2.4 Backtrack Cost Trees
For analyzing the behavior of Max-sum on factor graphs with an arbitrary (finite) number
of cycles, Zivan et al. proposed the use of a backtrack cost tree (BCT) [28]. It allows one
to trace, for each belief, the entries in the cost tables held by function-nodes that were
used to compose this belief. That is, what were the components of the assignment’s cost.
Their analysis included insights regarding the constructions of beliefs from costs incurred
by constraints. Thus, for every pair of constrained variables, Xi and Xj , for each x ∈ Di,
x′ ∈ Dj , the cost incurred by the constraint for assigning x to Xi and x′ to Xj was denoted
as R(Xi = x, Xj = x′). Formally, a BCT is definde as follows:
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60:8 The Effect of Asynchronous Execution and Message Latency on Max-Sum

▶ Definition 1. A Backtracking Cost Tree (BCT) is defined for a belief that appears either
in a message sent from variable Xi at time t, to a function node connecting it to a variable
Xj or to a message sent from that function node to variable Xi. The belief is regarding the
cost of assigning some x ∈ Di to Xi. Without loss of generality, we will elaborate on the first
among these two and denote it as BCT t

i=x→j .
The belief, as constructed by the Max-sum algorithm, is a sum of various components,

and the tree is composed from them. At the root is the belief, i.e., a cost for assigning some
x ∈ Di to Xi, and it is connected to all nodes it received a message from at time t − 1, with
the edges containing the beliefs it was passed that ended up in the calculation of the belief it
sent. Each of those nodes is connected itself to the nodes that send it messages at time t − 2,
with the edges containing the beliefs that passed to it that ended up in its message. The tree
leaves are all at time 0 (see Figure 2 (b)).

For a single-cycle factor graph, the BCT for every belief is a chain. Factor graphs with
multiple cycles include variable-nodes with more than two neighbors, and thus, the BCTs of
their beliefs include nodes with multiple children.

A BCT starts from the end point (i.e., the root of the BCT as presented in Figure 2 (b)),
which is the belief (cost) of assigning to Xi some value x from its domain Di, as sent to a
neighboring node. The values from which that belief was calculated can then be backtracked
to the messages and costs due to all the individual constraints that were summed up to
create that belief. An example of such a tree for a belief generated when Max-sum solves the
factor-graph depicted in Figure 2(a) is depicted in Figure 2(b).

For each BCT, there is an implied assignment tree that consists of the value assignments
that the variables at each time-point of the tree would need to be assigned in order to incur
the costs included in the BCT. The value assignment selected by a variable at time t is the
one with the minimal sum of beliefs sent to the corresponding variable-node at iteration t − 1.
The tree for this minimal sum of beliefs will be denoted by BCT t

i , as it does not depend on
any specific belief that appears in a message to another variable.

2.5 Convergence Properties
Belief propagation converges in linear time to an optimal solution when the problem’s
corresponding factor graph is acyclic [16]. For a single-cycle factor graph, we know that
if belief propagation converges, then it is to an optimal solution [8, 24]. Moreover, when
the algorithm does not converge, it periodically changes its set of assignments. In order to
explain this behavior, Forney et al. show the similarity of the performance of the algorithm
on a cycle to its performance on a chain, whose nodes are similar to the nodes in the cycle,
but whose length is equal to the number of iterations performed by the algorithm. One can
consider a sequence of messages starting at the first node of the chain and heading towards
its other end. Each message carries beliefs accumulated from costs added by function-nodes.
Each function-node adds a cost to each belief, which is the constraint value of a pair of value
assignments to its neighboring variable-nodes. Each such sequence of cost accumulation
(route) must at some point become periodic, and the minimal belief would be generated by
the minimal periodic route. If this periodic route is consistent (i.e., the set of assignments
implied by the costs contain a single value assignment for each variable), then the algorithm
converges. Otherwise, it does not [8].

Recently, these insights were generalized such that similar statements can be made when
the algorithm is solving factor graphs with multiple cycles. Specifically (using BCTs), Zivan
et al. proved that, as in the single cycle case, on every finite factor graph, Max-sum at some
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point in time starts to repeatedly follow a path that minimizes its beliefs. When a large
enough damping factor is used, this minimal path is indeed a minimal path in the factor
graph, and thus, if it is consistent, then the algorithm converges to an optimal solution [28].

3 The Effect of Asynchronous Execution

In order to analyze the differences in the performance of Syn_Max-sum and Asy_Max-sum,
one must investigate the differences in the structure of the BCTs of beliefs sent by the
algorithms’ nodes. In Syn_Max-sum, the height of a BCT for a belief included in a message
sent at iteration t is t and, for each node in the tree, the heights of the sub-trees rooted by
each of its children nodes are equal. On the other hand, in Asy_Max-sum, messages can
have different delays and, thus, each sub-tree in a BCT can have a different height.

Our first theoretical property addresses the results proved in [28] regarding the convergence
of the synchronous version of Max-sum (Syn_Max-sum). More specifically, we prove that
the property that was proved in Lemma 1 in [28], and was used to prove the main theorem of
this study (i.e., the main theorem in [28]), is not guaranteed when the algorithm is performed
asynchronously in an environment that includes message latency.

▶ Proposition 1. In the presence of message delays, unlike Syn_Max-sum, Asy_Max-sum is
not guaranteed to converge to a minimal repeated route.

Proof. The structure of the BCTs of the beliefs that are exchanged by agents, depend on
the timing of the arrival of messages from which they are composed. Each BCT (and as a
result, the corresponding belief that it demonstrates its construction), is an outcome of a
specific combination of message delays, resulting in different orders of message arrivals and
the number of such combinations is exponential in the maximal number of messages that the
beliefs they carry can be included in the BCT. Moreover, the combination of message delays
that resulted in a specific minimal route of beliefs is not guaranteed to repeat itself. Thus,
even if the algorithm reaches a minimal route, it may not repeat it. ◀

The proposition above seems to put an end to the natural wish that the convergence
property of Syn_Max-sum can be established for Asy_Max-sum as well. However, the
differences between the executions of the two versions of the algorithm can be minimized.
More specifically, the effect caused by sub-trees of the BCTs having different heights in
Asy_Max-sum can be significantly reduced through the use of damping.

Denote by layerk the set of nodes of a BCT with depth k (distance from the root), and by
BCTk the layers of the BCT with depth k or less. We will say that a layerk is effective if and
only if there exists a belief calculated using BCTk that is different than the belief calculated
when taking into consideration the complete BCT. For each BCT B, we say that its effective
BCT B′ is BCTk′ such that layerk′ is effective and for any layerk that is effective in B,
k′ ≥ k.

▶ Lemma 1. When asynchronous DMS (Asy_DMS) is performed with a large enough
damping factor2, in an environment including bounded message delays, there exists a finite
number of non-concurrent steps3 of the algorithm ns1, such that in the steps following it, for
every two beliefs included in the same message, if layerk in each of the corresponding BCTs
is effective, then the number of nodes in layerk of both BCTs are equal.

2 For an analysis of the size of the damping factor required, with respect to the largest number of neighbors
(degree) that a node in the factor graph has, see [28].

3 We consider a step to be an action that starts when a node in the graph received some messages (at
least one), performed computation and ends when it sent some messages (at least one).
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Proof. Since delays are bounded, there exists a number of non-concurrent steps ns0 < ns1
in which the roots of the BCTs of all beliefs received in messages for every step following ns0
have the same number of children. This will be true for all non-concurrent steps ns > ns0
and, thus, layers of BCTs of beliefs that are sent in the same message with depth k following
ns ≥ ns0 + δk (where δ is the maximal size of a message delay, in terms of non-concurrent
steps) must have the same number of nodes. Damping with a large enough damping factor,
causes the bottom layers of BCTs to have less influence on the calculation made by the nodes
in the algorithm following each computation step (see [28] for details). Let ϵ denote the
smallest cost that can affect the nodes’ actions in the algorithm. If we wait for a sufficiently
large enough number of steps, the maximal sum of costs in the BCTs, of steps performed
before ns0 will be smaller than ϵ. We use ns1 to denote that sufficiently large enough number
of steps. ◀

An immediate corollary from Lemma 1 is that in Asy_DMS (which is using a large
enough damping factor), following ns1, the effective BCTs of all beliefs included in each
message have the same number of nodes. This reduces the possible differences between beliefs
that can be generated by each node. Moreover, for the case that the algorithm does converge,
the effect of the asynchronous performance vanishes, as we prove below.

▶ Proposition 2. When Asy_DMS using a large enough damping factor, is performed in an
environment with bounded message delays, if after performing ns2 > ns1 (ns1 as described
in Lemma 1) non-concurrent steps, it reaches a minimal consistent route (i.e., all nodes
perform k sequential asynchronous steps in which the value assignments corresponding to the
minimal route are selected), then it will repeatedly follow this route (i.e., it has converged).

Proof. As established above, following ns1, the effective BCTs for beliefs included in the
same message have the same number of nodes (in each layer and altogether) regardless
of message delays. When the algorithm reaches a minimal consistent route, the beliefs
corresponding to this minimal route involve only one value in each domain, and the belief
corresponding to it is minimal in each message. Additional nodes added to the BCTs of the
beliefs corresponding to the assignments in the minimal route represent costs in the entries
of the cost tables of function-nodes that are part of the minimal route. Hence, they will not
change its minimal property or the choice of the minimal route assignments, i.e., for every
ns > ns2 the effective BCT ns

i will be identical. Similarly, the addition of nodes to BCTs of
beliefs corresponding to assignments that are not included in the minimal route represent
costs that belong to routes with larger overall costs. ◀

Proposition 2 has a major importance to our discussion. Both the asynchronous and the
synchronous versions of DMS will converge when they reach a consistent minimal path (i.e.,
the differences between them can exist only when the minimal path is inconsistent. In such
a case, the synchronous execution version will repeat the minimal non consistent route while
the asynchronous execution version may leave it and explore other routes).

4 Experimental Evaluation

In order to evaluate the implications of asynchronous execution (compared to synchronous
execution) and message latency on the different versions of Max-sum, we used an asynchronous
simulator, in which agents are implemented by Java threads. It includes a mailing agent that
simulates the delays of messages as suggested by [29]. Using this type of simulator allows us
to implement any type of message delay pattern. Other simulators, such as ns-3 [12, 1], offer a
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number of communication patterns from which one can select. However, we prefer the use of
the simulator proposed in [29], which allows complete flexibility in the design of the message
delay pattern and it allows to measure run-time in implementation independent units. Thus,
the results are presented as a function of the number of non-concurrent logic operations
(NCLOs). The atomic logic operations in these algorithms are the evaluation of the cost of a
combination of two assignments (i.e., an access to the cost table of a function-node). Each
agent performed the computation for the function-nodes that were assigned to it. We used a
greedy heuristic to evenly assign function-nodes to agents and, thus, increase concurrency. In
order to simulate message delays, for each message sent between nodes that their roles were
performed by different agents, a delay in terms of NCLOs was selected, and the message was
delivered to the receiving agent after that agent had the opportunity to perform this number
of logic operations.

We evaluated the algorithms on problems including 50 agents, which are too large for
complete DCOP algorithms to solve. These included random graph problems, graph coloring
problems, scale-free network problems, and overlapped solar systems problems (details below).

In each experiment, we randomly generated 50 different problem instances. The results
presented in the graphs are an average of those 50 runs. In order to demonstrate the
convergence of the algorithms, we present the sum of costs of the constraints involved in the
assignment that would have been selected by each algorithm every 100K NCLOs. We also
performed t-tests to evaluate the significance of differences between all presented results.

As mentioned above, the experiments were performed on four types of distributed
constraint optimization problems. Each type of problem exhibits a different level of structure
in the constraint graph topology and in the constraint functions. All problems were formulated
as minimization problems.

Random Graph Problems: These problems are random constraint graph topologies
with density p1 = {0.1, 0.6}. They include variables with 10 values in each domain. The
cost tables held by function-nodes include costs that were selected uniformly between 100
and 200. Both the constraint graph and the constraint functions are unstructured.
Graph Coloring Problems: These problems are random constraint graph topologies
in which each variable has three values (i.e., colors), and all constraints are “not-equal”
cost functions, where an equal assignment of neighbors in the graph incurs a random
cost between 100 and 200 and non equal value assignments incur zero cost. Such random
graph coloring problems are commonly used in DCOP formulations of resource allocation
problems. We set the density to p1 = 0.05 and had three values (i.e., colors) in each
domain [27, 6, 4].
Scale-free Network Problems: Problems generated using the model by [2]. An initial
set of 10 agents was randomly selected and connected. Additional agents were added
sequentially and connected to 3 other agents with a probability proportional to the number
of links that the existing agents already had. The cost of each joint assignment between
constrained variables was independently drawn from the discrete uniform distribution
from 100 to 199. Each variable had 10 values in its domain. Similar problems were
previously used to evaluate DCOP algorithms by Kiekintveld et al. [9]. The constraint
graph is somewhat structured but the constraint functions are unstructured.
Overlapped Solar Systems Problems: The overlapped solar system is a realistic
problem, inspired by the Constant Speed Propagation Delay Model implemented in the
ns-3 simulator [12, 1]. The graph topology is inspired by scale-free networks. An initial
set of 5 agents are randomly selected to be the centers of the solar systems, and they are
connected. Each of these agents Ac

i is assigned two coordinates that are drawn from a
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Figure 3 (a) Solution quality as a function of NCLOs, of Max-sum versions solving sparse
random problems (p1 = 0.1). (b) A closer look at the solution quality of DMS-SCFG versions on
these problems.

continuous uniform distribution: xc
i ∼ U(0, 1) and yc

i ∼ U(0, 1). All other agents (i.e.,
stars in the solar systems) are randomly assigned to one of the solar systems. The index
c represents the solar system in which the agent is assigned too, and it is equal to the
index of the center agent of the solar system (i.e., if Ac

i is the center of a solar system,
then i = c). The coordinates for an assigned agent (Ac

j where j ̸= c) are drawn from a
Normal distribution as follows: xc

j ∼ N(µ = xc
i , σ = 0.05) and yc

j ∼ N(µ = yc
i , σ = 0.05)

based on the location of the center of the solar system that it was attached to.

The probability that two arbitrary agents Ai and Aj will be neighbors is defined by
pij = (1 − distanceij

maxDistance )β where distanceij is the Euclidean distance between agents Ai

and Aj , maxDistance is the Euclidean distance between agent Ai to the farthest agent,
and β expresses the changes in the probability that both agents will be neighbors as a
function of their distance (in our experiments we used β = 3). For each pair agents, a
random probability pr ∈ [0, 1] was generated, and two agents are considered as neighbors
if pr < pij . Costs between connected agents were selected uniformly between 100 and 200.

While the structure of these problems is similar to scale-free networks, the addition of
the geographic locations of nodes allows one to calculate the size of message delays with
respect to physical distance as specified below.

For random uniform problems, graph coloring problems, and scale-free network problems,
all algorithms were run in a setup with no message delays and a setup with random message
delays selected uniformly from the range (0, 10K) NCLOs. For overlapped solar systems
problems, in addition to the no message delay setup, the delay for each sent message between
agents Ai and Aj was drawn from a Poisson distribution Poisson(Γ · distanceij) NCLOs
where Γ is the average delay. This is in contrast to the Constant Speed Propagation Delay
Model implemented in ns-3 where the delays that were calculated as a function of the distance
between the geographic location of the nodes in the communication graph, were fixed and
not sampled [12, 1].
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Figure 4 Solution quality as a function of NCLOs, of Max-sum versions solving dense random
problems (p = 0.6) (a) and graph coloring problems (b)).
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Figure 5 Solution quality as a function of NCLOs, of Max-sum versions solving scale-free network
problems (a) and overlapped solar systems problems (b)).

4.1 Results
Figure 3(a) presents the quality of solutions produced by the different versions of Max-
sum when solving sparse random graph problems with p1 = 0.1. Each figure presented in
this sections includes four graphs, presenting results of the algorithms when performing
synchronously, asynchronously, with message delays and without. The versions include
Max-sum, DMS with λ = 0.9, DMS-SCFG.4 Asy_Max-sum (with and without message
delays) traversed solutions with higher costs on average than Syn_Max-sum. The results
of the different runs of the algorithms were scattered and, thus, the differences from the
synchronous versions were not found to be statistically significant. Asy_DMS, on the other
hand, performed similarly to Syn_DMS, with and without message delays (as expected
following Proposition 1).

4 DMS-SCFG is the damped Max-sum (DMS) algorithm with split constraint factor graphs (SCFGs).
We used the 0.4-0.6 version of DMS-SCFG, which was found to perform best by [4].
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Figure 6 Solution quality as a function of NCLOs, of DMS with different λ values, solving
random uniform problems with p1 = 0.1 (a) and p1 = 0.6 (b)).

Another observation is that all versions of DMS-SCFG converged very fast compared
to the other versions of the algorithm. Figure 3(b) provides a closer look that allows one
to better compare their convergence rates. Both the synchronous and the asynchronous
versions converge at the same rate in environments that do not include message delays.
Clearly, message delays affect the synchronous version more than the asynchronous version
of the algorithm. Nevertheless, in all execution modes, the algorithm converges very fast to
solutions with the same quality.

Figure 4(a) presents the results for the same algorithms solving dense random graph
problems with p1 = 0.6. While the results seem similar to the results presented in Figure 3(a),
there are fewer differences between the Max-sum versions. On the other hand, on these
problems, the DMS versions in scenarios that do not include message delays find high quality
solutions faster and converge.

Figure 4(b) presents the results of the algorithms solving graph coloring problems. It
is apparent that the exploration performed by Max-sum and DMS is less effective on these
problems, and thus, the advantage of DMS-SCFG is prominent. Moreover, in the presence of
message delays, standard Max-sum improves its performance. We assume that delays break
the very structured execution on this type of problems, and has a positive exploration affect.
This affect is diminished when damping for the same properties that we established in the
section titled “The Effect of Asynchronous Execution.”

The results of the algorithms when solving scale free network and the overlapping solar
system problem are presented in in Figure 5. They were found to be similar to the results
presented in Figure 4(a) for the dense random problems. The differences in the performance
of Asy_Max-sum from Syn_Max-sum was found to be significant when solving scale-free
networks, with and without message delays. No significant difference was found between the
synchronous and asynchronous versions when solving overlapped solar system problems. It
seems for these problems that the similar structure has a more major effect on the behavior
of the algorithms than the pattern of the message delays.

In our second set of experiments we evaluated the influence of the selection of the
damping factor on the effect that asynchronous execution and message latency have on
DMS’s performance. Figure 6 presents the results of the algorithm with three different values
of the damping parameter, i.e., λ = 0.5, λ = 0.7 and λ = 0.9, solving sparse (a) and dense
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Figure 7 Ratio between the number of NCLOs in which the agents were idle and the total
number of NCLOs for all algorithms and all execution modes.

(b) random uniform problems. As expected from the properties established in Propositions 1
and 2, asynchronous execution affects the performance of all versions of DMS when it does
not converge. However, it is apparent that the λ = 0.9 version is less affected by message
delays in the asynchronous execution, as expected. Similar results were obtained for all types
of problems and were omitted to avoid redundancy.

In order to compare the effect that message delays have on the agents performing
synchronously and asynchronously, we measured the average number of NCLOs in which
agents were idle in each mode of execution of the algorithm. The results are presented in
Figure 7. It includes for each algorithm, in each mode of execution, the average ratio of the
number of NCLOs in which the agent was idle (i.e., waiting for message to arrive) and the
total number of NCLOs the algorithm was executed. It is apparent that when solving all
problem types, the agents performing asynchronously spend less time idle than the agents
performing synchronously. This difference between the performance of the synchronous
and the asynchronous versions was most apparent in DMS_SCFG. Nevertheless, while
the difference in the time the agents spent idle when performing this type of the Max-
sum algorithm, the synchronous and the asynchronous versions were most similar in their
convergence time and the solution quality.

4.2 Discussion
The advantage of DMS over standard Max-sum, when solving graphs with multiple cycles, was
reported empirically in a number of studies (e.g., [4]) and explained theoretically by [28]. In
Max-sum, costs that are aggregated in the beginning of the run are duplicated in every node
of the graph that has more than two neighbors and, thus, they are taken into consideration
an exponential number of times in the calculation of beliefs and in the assignment selection.
Damping reduces the weight of these costs in the belief calculation until it becomes negligible.
A similar phenomenon reduces the differences between the performance of Syn_DMS and
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Asy_DMS. As we established in the corollary of Lemma 1, when using a large enough
damping factor, the effect of BCTs with different heights is eliminated in DMS and, thus,
after enough NCLOs are performed, the effective BCTs of the beliefs in each message have
the same number of nodes. The results comparing DMS with different damping factor values,
demonstrate the need to use a high damping factor in order to achieve robustness to message
delays. This empirical evidence, strengthens the property established in Lemma 1 and its
corollary, that if the damping factor used in not high enough, the effect of the lower layers
of the BCTs, which may have different structure and a different number of nodes, on the
generation of beliefs by the nodes, is not eliminated. Thus, message delays have a greater
effect on the algorithm’s performance when the damping factor used is not low. Finally,
Asy_DMS-SCFG maintains the fast convergence properties and the quality of the solutions
of the synchronous version. It is also robust to message latency.

5 Conclusions

In this paper, we filled the gap in the Max-sum literature on the difference of synchronous
and asynchronous executions of the algorithm in distributed environments. Our theoretical
analyses revealed that, unlike its synchronous counterpart, the asynchronous version of
Max-sum in the presence of message latency can cause the propagation of inconsistent beliefs,
resulting in the loss of guaranteed properties (Proposition 1). However, not all is lost as one
can use damping to minimize this effect and, subsequently, ensure that when asynchronous
DMS finds a minimal route, it will converge, as does the synchronous version (Proposition 2).
Finally, experimental results show that when the algorithm is further optimized through split
constraint factor graphs, it converges very fast to high-quality solutions even in the presence
of message delays. Taken together, these results extend significantly our understanding of
Max-sum in distributed environments with more realistic messaging assumptions, propose
algorithmic tools that are theoretically grounded to alleviate the issues raised, and enable a
more effective use of Max-sum by real-world practitioners.
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