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Abstract
We introduce five constraint models for the 3-dimensional stable matching problem with cyclic
preferences and study their relative performances under diverse configurations. While several
constraint models have been proposed for variants of the two-dimensional stable matching problem,
we are the first to present constraint models for a higher number of dimensions. We show for all five
models how to capture two different stability notions, namely weak and strong stability. Additionally,
we translate some well-known fairness notions (i.e. sex-equal, minimum regret, egalitarian) into
3-dimensional matchings, and present how to capture them in each model.

Our tests cover dozens of problem sizes and four different instance generation methods. We
explore two levels of commitment in our models: one where we have an individual variable for each
agent (individual commitment), and another one where the determination of a variable involves
pairing the three agents at once (group commitment). Our experiments show that the suitability of
the commitment depends on the type of stability we are dealing with. Our experiments not only led
us to discover dependencies between the type of stability and the instance generation method, but
also brought light to the role that learning and restarts can play in solving this kind of problems.
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1 Introduction

In the classic stable marriage problem, we are given a bipartite graph, where the two sets of
vertices represent men and women, respectively. Each vertex has a strictly ordered preference
list over his or her possible partners. A matching is stable if it is not blocked by any edge,
that is, no man-woman pair exists who are mutually inclined to abandon their partners and
marry each other. Stable matchings were first formally defined in the seminal paper of Gale
and Shapley [20], who introduced the terminology based on marriage that since then became
wide-spread. The notion was then extended to non-bipartite graphs by Irving [27]. Variants
of stable matching problems are widely used in employer allocation markets [44], university
admission decisions [3, 7], campus housing assignments [8, 42] and bandwidth allocation [19].
Typically, the aim is to solve the decision problem on whether a stable matching exists, or
even to solve an optimisation problem considering different fairness notions among stable
matchings, such as egalitarian, minimum-regret, or sex-equal.

A natural generalisation of the problem, as suggested by Knuth in his influential book [31],
is to extend the two-sided stable marriage problem to three sets of agents. Two input variants
of this extension have been defined in the literature. In the first variant, called the 3-gender
stable marriage problem (3gsm) problem [2, 38], each agent has a preference list over the
n2 pairs of agents from the other two sets, assuming that each agent set contains n agents.
Another way of generalising stable matching to three agent sets is the 3-dimensional stable
matching problem with cyclic preferences (3dsm-cyc) [38], in which agents from the first
set only have preferences over agents from the second set, agents from the second set only
have preferences over agents from the third set, and agents from the third set only have
preferences over agents from the first set. In both problem variants, the aim is to find a
matching that does not admit a blocking triple, where a blocking triple can have slightly
different definitions depending on whether the preference lists contain ties or whether a strict
improvement for all agents is required. We explore these different notions in Section 1.1.

1.1 3-dimensional stable matching
In the 3gsm problem variant, the default stability notion is called weak stability, according
to which a blocking triple is defined as a set of three agents, all of whom would strictly
improve their current match if they would form a triple in the solution. Deciding whether
a stable matching exists in a given instance is NP-complete even if the preference lists are
complete [38, 47]. A highly restricted preference structure was later identified that allows for
a polynomial-time algorithm for the same decision problem [12]. Research then evolved in
the direction of preference lists with ties, which gives rise to four different stability definitions,
namely weak, strong, super, and ultra stability, and in the direction of consistent preferences,
which is a naturally restricted preference domain [26].

The derived research results appear to be more diverse when it comes to the 3dsm-cyc
problem variant. Firstly, two stability notions have been investigated: weak and strong. A
weakly stable matching does not admit a blocking triple such that all three agents would
improve, while according to strong stability, a triple already blocks if at least one of its
agents improves, and the others in the triple remain equally satisfied. Biró and McDermid [5]
showed that deciding whether a weakly stable matching exists is NP-complete if preference
lists are allowed to be incomplete, and that the same complexity result holds for strong
stability even with complete lists. However, the combination of complete lists and weak
stability proved to be extremely challenging to solve.
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For this setting, Boros et al. [6] proved that each 3dsm-cyc instance admits a weakly
stable matching for n ≤ 3, where n is the size of each vertex set in the tripartition. Eriksson
et al. [15] later extended this result to n ≤ 4. Additionally, Pashkovich and Poirrier [41]
further proved that not only one, but at least two stable matchings exist for each instance
with n = 5. By this time, the conjecture on the guaranteed existence of a weakly stable
matching in 3dsm-cyc with complete lists became one of the most riveting open questions
in the matching under preferences literature [31, 33, 50]. Surprisingly, Lam and Plaxton [32]
recently disproved this conjecture by showing that weakly stable matchings for 3dsm-cyc
need not exist for an arbitrary n, moreover, it is NP-complete to determine whether a given
3dsm-cyc instance with complete lists admits a weakly stable matching.

Application-oriented research has focused on the so-called “3-sided matching with cyclic
and size preferences” problem, defined by Cui and Jia [11]. They modeled three-sided
networking services, such as frameworks connecting users, data sources, and servers. In their
setting, users have identical preferences over data sources, data sources have preferences
over servers based on the transferred data, and servers have preferences over users. The
characterising feature of this variant is that a triple might contain more than one user, as
servers aim at maximizing the number of users assigned to them. This feature clearly differ-
entiates the problem from the classic 3dsm-cyc setting. Building upon this work, Panchal
and Sharma [40] provided a distributed algorithm that finds a stable solution. Raveendran
et al. [43] tested resource allocation in Network Function Virtualisation. They demonstrated
the superior performance of the proposed cyclic stable matching framework in terms of data
rates and user satisfaction, compared to a centralised random allocation approach.

1.2 Constraint Programming approaches for finding stable matchings
Gent et al. [22] were the first to propose Constraint Programming (CP) models for the
classic stable marriage problem. They showed that it is possible to obtain man-optimal and
woman-optimal stable matchings immediately from the solution by enforcing Arc Consistency
(AC). Later, Unsworth and Prosser [48, 49] presented a binary constraint for the the same
problem and showed that their encoding is better in terms of space and time when compared
to Gent et al.’s approach. They also investigated sex-equal stable matchings in their studies.

The next milestone was reached by Manlove et al. [34], who proposed three CP models
for the Hospital / Residents problem (HR), which is the many-to-one generalisation of the
stable marriage problem. They also explored side constraints for their models such as the
case with forbidden pairs, residents who may form groups, or residents who may swap their
hospitals. The existing research shows that CP models for the stable marriage problem with
incomplete lists and for HR are tractable [22, 34]. O’Malley further explored CP models in
his thesis for the stable marriage problem, and presented four constraint models [39]. Later
on, Siala and O’Sullivan [45] improved the cloned model of Manlove et al. [34] by using a
global constraint that achieves Bound Consistency in linear time.

In 2012 Eirinakis et al. [14] used the poset graph of rotations to enumerate all solutions
of HR, and presented an improved version to the direct CP model of Manlove et al. [34].
Subsequently, Siala and O’Sullivan [46] used the rotation poset to model stable matchings as
SAT formulation for all three types of problems: one-to-one, one-to-many, and many-to-many.
They presented empirical results for finding sex-equal stable matchings, and showed that
their approach outperforms the model presented in their previous paper [45]. Additionally,
Drummond et al. [13] used SAT encoding for finding stable matchings that include couples.

To the best of our knowledge, CP or SAT models for 3-dimensional stable matchings
have not been studied before.

CP 2021
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2 Preliminaries

In this section we introduce the terminology and notation for the problem variants we will
study. First we formalise the 3dsm-cyc problem and define the two known stability concepts
for it. Then, we define three standard fairness notions that were constructed to distinguish
balanced stable solutions on bipartite and non-bipartite stable matching instances.

2.1 3-dimensional stable matching with cyclic preferences
Input and output. Formally, a 3dsm-cyc instance is defined over three disjoint sets of
agents of size n, denoted by A = {a1, . . . , an}, B = {b1, . . . , bn}, and C = {c1, . . . , cn}. A
matching M corresponds to a disjoint set of triples, where each triple, denoted by (ai, bj , ck),
contains exactly one agent from each agent set. Each agent is equipped with her own
preferences in the input. The cyclic property of the preferences means the following: each
agent in A has a strict and complete preference list over the agents in B, each agent in B has
a strict and complete preference list over the agents in C, and finally, each agent in C has a
strict and complete preference list over the agents in A. These preferences are captured by
the rank function, where rankai(bj) is the position of agent bj in the preference list of ai,
from 1 if bj is ai’s most preferred agent to n if bj is ai’s least preferred agent.

Preferences over triples. The preference relation of an agent on possible triples can be
derived naturally from the preference list of this agent. Agent ai is indifferent between
triples (ai, bj , ck1) and (ai, bj , ck2), since she only has preferences over the agents in B and
the same agent bj appears in both triples. However, when comparing triples (ai, bj1 , ck1) and
(ai, bj2 , ck2), where bj1 ̸= bj2 , ai prefers the first triple if rankai

(bj1) < rankai
(bj2), and she

prefers the second triple otherwise. The preference relation is defined analogously for agents
in B and C as well.

Weak and strong stability. A triple t = (ai, bj , ck) is said to be a strongly blocking triple
to matching M if each of ai, bj , and ck prefer t to their respective triples in M . Practically,
this means that ai, bj , and ck could abandon their triples to form triple t on their own, and
each of them would be strictly better off in t than in M . If a matching M does not admit
any strongly blocking triple, then M is called a weakly stable matching. Similarly, a triple
t = (ai, bj , ck) is called a weakly blocking triple if at least two agents in the triple prefer t to
their triple in M , while the third agent does not prefer her triple in M to t. This means that
at least two agents in the triple can improve their situation by switching to t, while the third
agent does not mind the change. A matching that does not admit any weakly blocking triple
is referred as strongly stable. By definition, strongly stable matchings are also weakly stable,
but not the other way round. Observe that it is impossible to construct a triple t that keeps
exactly two agents of a triple equally satisfied, while making the third agent happier, since
the earlier two agents need to keep their partners to reach this, which then already defines
the triple as one already in M .

2.2 Fair stable solutions
In this paper, we translate some standard fairness notions from the classic stable marriage
problem to 3dsm-cyc. In most stable matching problems, several stable solutions might be
present, which gives way to choosing a fair or balanced one among them. We now review the
most prevalent fairness notions in such decisions [25, 29, 33, 10].
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Egalitarian stable matchings. Possibly the most natural way to define a good stable
matching is captured by the notion of egalitarian stable matchings. Each agent’s satisfaction
can be measured by how high she ranks her partner in the matching. In order to gain a
comprehensive measure, we sum up those ranks for all matched agents. A stable matching is
called egalitarian, if it minimises this sum among all stable matchings. Finding an egalitarian
stable matching in the classic stable marriage problem can be done in polynomial time [28, 24],
while it is NP-hard, but 2-approximable if the underlying instance is non-bipartite [17, 18].
An egalitarian stable matching in a 3dsm-cyc instance is defined as the extreme point of
the following function.

min
M is a stable matching

 ∑
(ai,bj ,ck)∈M

rankai
(bj) + rankbj

(ck) + rankck
(ai)

 (1)

Minimum regret stable matchings. Another popular fairness notion, called minimum regret
stable matching, intuitively maximises the satisfaction of the least satisfied person in the
instance. In this context, each agent’s regret is measured by how high she ranks her partner
in the matching – the larger this rank is, the more regret she experiences. The regret of
matching M is defined as the largest regret in the instance, i.e. the worst rank that appears
in the matching. Finding a minimum regret stable matching can be done in polynomial time
both in bipartite and non-bipartite instances [23, 24]. A minimum regret stable matching in
a 3dsm-cyc instance is defined as the extreme point of the following function.

min
M is a stable matching

{
max

(ai,bj ,ck)∈M

{
rankai

(bj), rankbj
(ck), rankck

(ai)
}}

(2)

Sex-equal stable matchings. A third condition is called sex-equality, which aims at reaching
the same satisfaction level of each agent set. The satisfaction of a set of agents is measured
by summing up the satisfaction level, that is, the rank of the matching partner, of each
agent in the set. In the classic stable marriage setting, a sex-equal stable matching minimises
the difference between the satisfaction level of the two sets. Finding a sex-equal stable
matching is NP-hard in those instances [30, 35]. Even though the notion cannot be defined
for non-bipartite instances, it translates readily to 3dsm-cyc instances. The difference of
satisfaction level between any two of the three agent sets can be computed exactly as in
the classic stable marriage setting. Then, the sum of the three pairwise differences must
be minimised. We define a sex-equal stable matching as the extreme point of the following
function.

min
M is a stable matching

{ ∣∣∣∣∣∣
∑

(ai,bj ,ck)∈M

rankai
(bj) − rankbj

(ck)

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑

(ai,bj ,ck)∈M

rankbj
(ck) − rankck

(ai)

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∑

(ai,bj ,ck)∈M

rankck
(ai) − rankai

(bj)

∣∣∣∣∣∣
}

(3)

CP 2021
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2.3 Our contribution
This paper is the first to model 3-dimensional stable matchings, specifically the 3dsm-cyc
problem, including its optimisation variants using side constraints. We propose the following
CP models to find a stable matching in the 3dsm-cyc problem: div (divided agent sets),
uni (unified agent sets), and hs (hitting set). We implement each one of the models under
both weak and strong stability. For the div and uni models, we investigate two kinds of
domain values: one based on the unique identifiers of the agents themselves, referred as
agent-based (agents), and the other based on the ranks of agents in one’s preference list,
referred as rank-based (ranks). We first use the models to find any satisfying solution to a
given 3dsm-cyc instance. Subsequently, we extend all models to optimisation variants under
different fairness criteria and conclude with some empirical findings.

3 Methodology

In this section we present the details of our five proposed models. For each model, we propose
the mandatory matching and stability constraints. We also propose how to model the fairness
constraints for different optimisation versions. Furthermore, if we identified any, we state the
redundant constraints that help the models with better pruning the search space.

3.1 Agent-based DIV model
The div-agents model consists of 3n variables X = {x1, . . . , xn}, Y = {y1, . . . , yn}, and
Z = {z1, . . . , zn}, where the domain of each variable v is set as D(v) = {1, . . . , n}. For
agent-based domain values, assigning xi = j (respectively yi = j, or zi = j) corresponds to
matching ai to bj (respectively bi to cj , or ci to aj). A stable matching M , if any exists, is
found by using the following constraints.

(matching) For all 1 ≤ i, j, k ≤ n, we add the constraint xi = j ∧ yj = k ⇒ zk = i. This
is to ensure that each solution corresponds to a feasible, if not stable, matching.
(stability) Under weak stability, for all 1 ≤ i, j, k ≤ n, and for all i′, j′, k′ such that
ai prefers bj to bj′ , bj prefers ck to ck′ and ck prefers ai to ai′ we add the constraint
xi ̸= j′ ∨ yj ̸= k′ ∨ zk ̸= i′. This is to ensure that there is no strongly blocking triple.
When solving the problem under strong stability, the condition to post the constraint
becomes: ai prefers bj to bj′ or j′ = j, and bj prefers ck to ck′ or k′ = k, and ck prefers
ai to ai′ or i′ = i, and i′ ̸= i ∨ j′ ≠ j ∨ k′ ̸= k. Here, as well as in the other models, the
difference between weak and strong stability constraints is that the latter also cover the
case when exactly two agents of a potential blocking triple are matched together.
(redundancy) For all 1 ≤ i, j, k ≤ n, we add the constraint yj = k ∧ zk = i ⇒ xi = j.
(redundancy) For all 1 ≤ i, j, k ≤ n, we add the constraint zk = i ∧ xi = j ⇒ yj = k.
(redundancy) We add AllDifferent(X) and AllDifferent(Y ) and AllDiffer-
ent(Z) to ensure each agent has exactly one partner from each set.
(optimisation) When solving a fair version of the problem, we add a constraint to minimise
the objective in one of the following ways, depending on which notion of fairness is desired:

For egalitarian M , we model Eqn. 1 as:
∑

(rankai
(bj) + rankbj

(ck) + rank ck(ai)) for
all i, j, k such that xi = j ∧ yj = k ∧ zk = i.
For minimum regret M , we model Eqn. 2 as: max(max(rankai(bj), rankbj (ck),
rank ck(ai))) for all i, j, k such that xi = j ∧ yj = k ∧ zk = i.
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For sex-equal M , we model Eqn. 3 as:
∣∣SA − SB

∣∣ +
∣∣SB − SC

∣∣ +
∣∣SC − SA

∣∣ where
SA =

∑
(rankai

(bj)) for all i, j such that xi = j, SB =
∑

(rankbj
(ck)) for all j, k such

that yj = k, and SC =
∑

(rankck
(ai)) for all k, i such that zk = i.

3.2 Rank-based DIV model
Variables and domains are the same in the rank-based div model (div-ranks) as they are in
the agent-based div model (div-agents), but this time assigning xi = j (respectively yi = j,
or zi = j) corresponds to matching ai to her jth preferred agent (respectively bi to her jth

preferred agent, or ci to her jth preferred agent), who might be different from bj . A stable
matching M , if any exists, is found by using the following constraints.

(matching) For all 1 ≤ i, j, k ≤ n, we add the constraint xi = rankai(bj) ∧ yj =
rankbj

(ck) ⇒ zk = rankck
(ai). This is to ensure that each solution corresponds to a

feasible, if not stable, matching.
(stability) Under weak stability, for all 1 ≤ i, j, k ≤ n, we add the constraint xi ≤
rankai(bj) ∨ yj ≤ rankbj (ck) ∨ zk ≤ rankck

(ai). This is to ensure that there is no strongly
blocking triple. When solving the problem under strong stability, the inequalities are
strict but the following part is added to each disjunction: ∨(xi = rankai

(bj) ∧ yj =
rankbj

(ck) ∧ zk = rankck
(ai)).

(redundancy) For all 1 ≤ i, j, k ≤ n, we add the constraint yj = rankbj (ck) ∧ zk =
rankck

(ai) ⇒ xk = rankai
(bj).

(redundancy) For all 1 ≤ i, j, k ≤ n, we add the constraint zk = rankck
(ai) ∧ xi =

rankai
(bj) ⇒ yj = rankbj

(ck).
(optimisation) We add a constraint to minimise the objective in one of the following ways,
depending on which notion of fairness is desired:

For egalitarian M , we model Eqn. 1 as:
∑n

i=1(xi + yi + zi).
For minimum regret M , we model Eqn. 2 as: max(max(xi, yi, zi)) for all 1 ≤ i ≤ n.
For sex-equal M , we model Eqn. 3 as:

∣∣SA − SB

∣∣ +
∣∣SB − SC

∣∣ +
∣∣SC − SA

∣∣ where
SA =

∑n
i=1(xi), SB =

∑n
j=1(yj), and SC =

∑n
k=1(zk).

Note that, as opposed to agent-based domains, there are no AllDifferent constraints
in rank-based models. The reason for this is that with rank-based domains it is possible for
two agents in the same agent set to be assigned the same value, for example if they both got
assigned to their most preferred agent.

3.3 Agent-based UNI model
The uni-agents model consists of n variables X = {x1, . . . , xn}, where the domain of each
variable v is set as D(v) = {(1, 1), . . . , (1, n), (2, 1), . . . , (n, n)}. Each tuple domain variable
is implemented as an integer domain variable by representing the tuple (j, k) with the integer
(j − 1)n + k. For agent-based domain values, assigning (j, k) to xi corresponds to having the
triple (ai, bj , ck) in the matching. A stable matching M , if any exists, is found by using the
following constraints.

In both the current and following subsections, we denote by xi,B and xi,C respectively
the first and second elements of the pair assigned to xi.

(matching) For all 1 ≤ i < i′ ≤ n, we add the constraint xi,B ̸= xi′,B ∧ xi,C ̸= xi′,C . This
is to ensure that each solution corresponds to a feasible, if not stable, matching.

CP 2021
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(stability) Under weak stability, for all 1 ≤ i, j, k ≤ n, for all 1 ≤ i′, i′′, j′, k′ ≤ n such
that ai prefers bj to bj′ , bj prefers ck to ck′ and ck prefers ai to ai′ , we add the constraint
(xi,B ̸= j′) ∨ (xi′′ ̸= (j, k′)) ∨ (xi′,C ̸= k). This is to ensure that no triple is blocking.
Because in UNI only the agents from A have their own associated variables, determining
whether bj was assigned to ck′ requires checking for each agent ai′′ from A whether both
bj and ck′ were assigned to ai′′ . This is the reason for the additional index i′′. When
solving the problem under strong stability, the condition to post the constraint becomes:
ai prefers bj to bj′ or j′ = j, and bj prefers ck to ck′ or k′ = k, and ck prefers ai to ai′ or
i′ = i, and i′ ̸= i ∨ j′ ̸= j ∨ k′ ̸= k.
(redundancy) We impose the constraint AllDifferent(X).
(redundancy) Denote by F (i) the set of tuples that have an agent i as their first element,
and S(i) the tuples that have i as their second. Then, for all agents ∀i ∈ n we have∑

j∈F (i) Count(j, X) = 1 and
∑

j∈S(i) Count(j, X) = 1.
(optimisation) We add a constraint to minimise the objective in one of the following ways,
depending on which notion of fairness is desired:

For egalitarian M , we model Eqn. 1 as:
∑n

i=1(rankai
(bxi,B

) + rankbxi,B
(cxi,C

) +
rankcxi,C

(ai)).
For minimum regret M , we model Eqn. 2 as: max(max( rankai(bxi,B

),
rankbxi,B

(cxi,C
), rankcxi,C

(ai))) for all 1 ≤ i ≤ n.
For sex-equal M , we model Eqn. 3 as:

∣∣SA − SB

∣∣ +
∣∣SB − SC

∣∣ +
∣∣SC − SA

∣∣ where SA =∑n
i=1(rankai

(bxi,B
)), SB =

∑n
i=1(rankbxi,B

(cxi,C
)), and SC =

∑n
i=1(rankcxi,C

(ai)).

3.4 Rank-based UNI model
Variables and domains are implemented the same in the rank-based uni model (uni-ranks)
as they are in the agent-based uni model (uni-agents), but this time assigning (j, k) to xi

corresponds to matching ai to her jth preferred agent from B, and matching the latter to
her kth preferred agent from C. A stable matching M , if any exists, is found by using the
following constraints.

(matching) For all 1 ≤ i < i′ ≤ n, we add the constraint prefai
(xi,B) ̸= prefai′ (xi′,B) ∧

prefprefai
(xi,B)(xi,C) ̸= prefprefa

i′ (xi′,B)(xi′,C), where prefai
(r) (respectively prefbj

(r),
or prefck

(r)) represents the agent b ∈ B (respectively c ∈ C, or a ∈ A) such that
rankai

(b) = r (respectively rankbj
(c) = r, or rankck

(a) = r). This is to ensure that each
solution corresponds to a feasible, if not stable, matching.
(stability) Under weak stability for all 1 ≤ i, j, k ≤ n, for all 1 ≤ i′, i′′, j′′ ≤ n such
that ck strictly prefers ai to ai′ , we add the constraint (xi,B ≤ rankai

(bj)) ∨ (xi′′,B ̸=
rankai′′ (bj)) ∨ (xi′′,C ≤ rankbj

(ck)) ∨ (xi′ ̸= (rankai′ (bj′′), rankbj′′ (ck))). This is to ensure
that no triple is blocking. When solving the problem under strong stability, ck’s preference
of ai to ai′ is not strict (i′ can be equal to i) but the two inequalities are, and to each
disjunction is added the following part: ∨(xi = (rankai(bj), rankbj (ck))).
(optimisation) We add a constraint to minimise the objective in one of the following ways,
depending on which notion of fairness is desired:

For egalitarian M , we model Eqn. 1 as:
∑n

i=1(xi,B +xi,C +rankprefprefai
(xi,B )(xi,C)(ai)).

For minimum regret M , we model Eqn. 2 as: max(max(xi,B , xi,C ,

rankprefprefai
(xi,B )(xi,C)(ai))) for all 1 ≤ i ≤ n.

For sex-equal M , we model Eqn. 3 as:
∣∣SA − SB

∣∣ +
∣∣SB − SC

∣∣ +
∣∣SC − SA

∣∣ where
SA =

∑n
i=1(xi,B), SB =

∑n
i=1(xi,C), and SC =

∑n
i=1(rankprefprefai

(xi,B )(xi,C )(ai)).



Á. Cseh, G. Escamocher, B. Genç, and L. Quesada 22:9

3.5 HS model
In the hs model, let T be the set of all possible triples as {(1, 1, 1), (1, 1, 2), . . . , (n, n, n)}.
Without loss of generality, assume that the triples in T are ordered, so ti ∈ T refers to the
ith triple of T . Given a triple t ∈ T , we denote by BT (t) all the triples in T that prevent t

from becoming a blocking triple given the preferences. Then, finding a stable matching is
equivalent to finding a hitting set of the non-blocking triples in T .

Let M be a set variable whose upper bound is {i : ti ∈ T}.
(matching) Ensure that each agent from each set is matched by having:

∀a ∈ A :
∑

ti∈T :a∈ti
(i ∈ M) = 1;

∀b ∈ B :
∑

ti∈T :b∈ti
(i ∈ M) = 1;

∀c ∈ C :
∑

ti∈T :c∈ti
(i ∈ M) = 1.

(stability) The stable matching is a hitting set of the non-blocking triples: ∀tj ∈ T :
M ∩ {i : ti ∈ BT (tj)} ̸= ∅. The type of stability is addressed in the computation of the
BT sets. The model as such is not concerned with this aspect.

In this model, M is constrained to be a set of triples representing the stable matching as
defined in Section 2.2, so egalitarian M , minimum regret M , and sex-equal M are defined as
in Equations 1, 2, and 3 respectively.

In the actual implementation, M is represented in terms of an array of n3 Boolean
variables, where each variable refers to the inclusion/exclusion of the corresponding tuple in
the mapping.

4 Experiments

We performed our experiments on machines with Intel(R) Xeon(R) CPU with 2.40GHz
running on Ubuntu 18.04. Our initial experiments on small instances comparing all models
are performed using Gecode 6.3.0 [21]. Then, we conduct further experiments by using
our best performing models for larger instances on a constraint solver based on lazy-clause
generation, namely Chuffed 0.10.4. [9]. For div and uni models, instances were first processed
by MiniZinc 2.5.5 [37] before being given to the solvers. The hs model has been directly
encoded using Gecode 6.2.0. In Section 4.1 we describe the datasets in use. Then, in
Sections 4.2 and 4.3 we compare the proposed models.

4.1 Dataset description
For every size n present in our experiments, we generated 100 instances with n agents in
each agent set and a complete list for each agent. Half of these instances are random and the
other half have some or all of the preferences based on master lists. Master list instances are
instances where the preference lists of all agents in the same agent set are identical. Master
lists provide a natural way to represent the fact that in practice agent preferences are often
not independent. Examples of real-life applications of master lists occur in resident matching
programs [4], dormitory room assignments [42], cooperative download applications such as
BitTorrent [1], and 3-sided networking services [11]. The detailed distribution of the 100
instances generated for each size is as follows:

Random: 50 random instances from uniform distribution.
ML_oneset: 20 instances where the preference lists of the agents in one of the agent
sets are based on master lists, and the preference lists of the agents in the other two
agent sets are random.
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ML_1swap: 15 instances, where each agent set has a randomly chosen master list that
all agents in the set follow. Then, we randomly choose two agents from each agent’s
preference list, and swap their positions.
ML_2swaps: 15 instances, where each agent set has a randomly chosen master list
that all agents in the set follow. First, we randomly choose two agents from each agent’s
preference list, and swap their positions. Subsequently, we randomly choose two more
agents from each list such that the new agents were not involved in the first swap, then
we swap their positions.

Note that neither the type of stability (weak or strong) nor the fairness objective is part
of the preferences themselves. For this reason, the 100 instances generated for each size n

are used for both types of stability and for all satisfiability and optimisation versions.
We did not consider instances where all preference lists in all three sets are exact

master lists, because the complete set of stable matchings for these instances is known [16].
ML_oneset instances always have a strongly stable matching (Lemma 1), but, contrary to the
case with master lists in all three sets, not all solutions have been characterised. Therefore
there is value in modelling fairness versions of the problem for instances with this structure.

4.2 Model comparison
In this section, we first test each one of our five models (i.e. hs, div-agents, div-ranks,
uni-agents, and uni-ranks) using different heuristic search strategies on small instances in
Gecode to find out which strategy performs best. In Gecode experiments, we did not use
extra propagation techniques such as lazy clause generation or restarts. Considering that
the hs model is implemented in Gecode, and not all search strategies are common to both
Gecode and MiniZinc, for a fair comparison between all five models we used indomain_min
(assigning the smallest value in the domain) and indomain_max (assigning the largest value
in the domain) strategies combined with a search on variables in the given order. The former
is referred as nonemin, and the latter as nonemax. Additionally, we further tested the div
and uni models using alternative built-in search strategies that exist in MiniZinc, notably
indomain_split, a heuristic that bisects a variable’s domain then tries the lower half before
trying the upper one. We observed that a strategy that is based on choosing the variable
with the smallest domain size using indomain_min results in the best performance for div
model, while using indomain_split instead of indomain_min leads to the best performance
for uni model. We refer to these as failmin and failsplit strategies, respectively. Therefore,
all the remaining results and plots were obtained by running hs with nonemax strategy,
div-agents and div-ranks with failmin, and uni-agents and uni-ranks with failsplit.

During the experiments, we used a time-limit of 10 minutes for each instance. Considering
the huge number of all combinations of different parameters in each model, we adapted a
look-ahead approach for our tests, i.e. we started performing tests on all models using small
instances n = 4. Then, we incremented the n for each model that has the potential to be the
best. If a model times out on most of the instances for a given combination of parameters,
we do not test it further on these instances.

We use notched boxplots [36] in Figures 1, 2, 3, and 4. Figure 1 presents a comparison of
total time required by all five models on instances of size 5 ≤ n ≤ 11 under weak stability
solved using Gecode. The first insight gained is that the hs model handles the instances
of small sizes very well. When we examine performance based on the dataset generation
methods, we observe that usually a weakly stable matching for the instances in Random
is found faster than other datasets when using Gecode. Additionally we observe that the
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Figure 1 A comparison of total time spent by all models under weak stability using Gecode.

models require more time to solve the instances in ML_1swap for satisfiability, egalitarian,
and minimum regret versions. On the other hand, for the sex-equal version of the problem,
ML_oneset is the most challenging dataset for all models. We conclude from this figure that
hs is the best model when dealing with small instances under weak stability using Gecode.

Figure 2 demonstrates the results obtained from the same datasets under strong stability.
Note that the problem model for finding a matching under weak stability is a relaxed version
of the model under strong stability. However, it is interesting to observe from the experiments
that, on average, strongly stable matchings are found faster than their weak counterpart.
We can clearly observe this behaviour on Figure 2. All models except div-agents were
able to solve all satisfiable instances of size between 4 ≤ n ≤ 11 within the given time
limit. Therefore, in order to provide more insight into the performance of models, we use a
larger scale, i.e. {4, 8, 12, 16, 20} in Figure 2. Under strong stability, we clearly observe that
hs and div-ranks scale better when compared to the other models. For instance, for the
satisfiability problem with size n = 8, both hs and div-ranks quickly solve all the instances.
However, both uni-agents and uni-ranks require longer time than hs and div-ranks, whereas
div-agents fails to solve many instances within the given time-limit. Both uni and hs follow
the same commitment approach (group commitment). We believe this is hampering their
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Figure 2 A comparison of total time spent by all models under strong stability using Gecode.

scalability as there are fewer solutions in the strong stability case, which increases the chances
of making wrong choices thus leading to higher penalties in the case of group commitment
as we have to undo the three pairings. Considering that the time performance of uni models
and div-agents are considerably worse for 4 ≤ n ≤ 12 when compared to others, we decided
to discard them from further experiments. hs is not performing that bad, but its scalability
is affected by the computation of the BT sets. The size of each BT set is O(n3), which is a
remarkable overhead when dealing with big instances. We elaborate more on this limitation
in the next section. Therefore, we conclude from this figure that div-ranks is the most
efficient model when working with large n under strong stability using Gecode.

Note that hs was implemented in Gecode directly because it is cheaper to carry out the
computation of the BT sets in C++ than in MiniZinc. However, this decision does not put
the other models in a disadvantageous position since the main contribution to the running
time comes from the solving time and in all cases the solving phase is carried out in C++.

In addition to the Gecode experiments, we tested our four models div-agents, div-ranks,
uni-agents, and uni-ranks on Chuffed. Chuffed is the state-of-the art lazy clause solver
that performs propagation by recording the reasons of propagation at each step. This helps
with efficiently creating nogoods during the search and avoiding failures. Note that due to
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Figure 3 A comparison of total time spent by all models except hs under weak stability using
Chuffed.

implementing the hs model directly in Gecode, our Chuffed experiment results do not include
the performance of the hs model. Figure 3 presents a comparison of div-agents, div-ranks,
uni-agents, and uni-ranks models on instances of size 5 ≤ n ≤ 11 under weak stability. In
these plots, we can clearly observe that div-ranks model has an advantage over the others in
terms of total time required to complete the experiments. It is interesting to observe that
contrasting with the findings of Gecode experiments in Figure 1, where div-agents seems
to have an analogous performance with div-ranks, if not better, we observe in Figure 3
that div-ranks has a clear advantage over div-agents when using Chuffed. We believe this
shows that div-ranks benefits greatly from nogood learning. Additionally, using Figure 3,
we can verify our previous observation about ML_oneset being a more challenging dataset
generation method for the sex-equal variant under weak stability.

Lastly, Figure 4 demonstrates a comparison of div-agents, div-ranks, uni-agents, and uni-
ranks models on instances of size 5 ≤ n ≤ 11 under strong stability. A very straightforward
intuition of these tests is that the uni-agents and uni-ranks models are not able to scale well
to larger instances. On the other hand, we observe that div-agents handles an increase in
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Figure 4 A comparison of total time spent by all models except hs under strong stability using
Chuffed.

the number of agents better than the uni models, but it still performs worse than div-ranks
when n ≥ 9. Considering the stable and rapid performance of div-ranks using Chuffed and
also combining this with our observation on Figure 2, we conclude that the div-ranks model
is the best one to solve 3dsm-cyc under strong stability.

4.3 Scalability

Considering div-ranks is the best performing model in the majority of cases, we performed
further experiments using this model on instances with n ∈ {20, 23, 26, 29, 32, 35, 40, 45, 50, 60,

70, 80, 90, 100, 110, 120, 130}.
Figure 5 presents a comparison of the median total time required by div-ranks using

failmin strategy on all four datasets both under weak and strong stability. An interesting
insight from this figure is that all four problem variants (i.e. satisfiability, egalitarian, minimum
regret, and sex-equal) result in similar performances under strong stability, where instances
in Random require the longest time to be solved and ML_oneset requires the least. However,
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Figure 5 An overview of the performance of div-ranks using Chuffed under both weak and strong
stability when solving problem instances of different sizes for each dataset.

we cannot make such a generalisation for weakly stable matchings. For instance, ML_oneset
dataset is the most challenging dataset for the sex-equal problem variant, but it is also the
least challenging for the minimum regret variant under weak stability.

5 Conclusion and future work

We proposed a collection of Constraint Programming models to solve the 3-dimensional
stable matching problem with cyclic preferences (3dsm-cyc) using both strong and weak
stability notions. Additionally, we extended some well-known fairness notions (egalitarian,
minimum regret, and sex-equal) to 3dsm-cyc. The five proposed models are fundamentally
different from each other in terms of their commitment (individual or group), and also their
domain values (agents or ranks). Our experiments show that nogood learning benefits some
models more than others. An unexpected observation is that strong stability turns out to
be easier to solve than weak stability. Following a comprehensive empirical evaluation, we
conclude that the performances of the proposed models differ with respect to the type of
stability and dataset generation method.

The models proposed can be easily adapted to take advantage of the good performance
of strong stability by first trying to find a strongly stable matching. Other future work could
extend our models to more types of instances, for example by allowing preference lists to
be incomplete. One could also look at other redundant constraints in order to best take
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advantage of the properties that some instances exhibit with regard to fairness objectives.
We remarked that hs pays a high price for the generation of the BT sets but it is possible to
generate the sets by demand instead of doing it eagerly.
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least one strongly stable matching.

Proof. Assume that agent set C is equipped with a master list. For each agent ck ∈ C, let
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a1 chooses her first choice agent in B, who then chooses her first choice agent in C. This
triple is removed from the instance. Then we iterate the same starting with a2, who chooses
her first choice among agents in B not yet removed, and so on. Let us relabel agents in B

and C so that triples (ai, bi, ci) form the output matching of this algorithm.
First observe that an agent ai can only prefer an agent bj to her partner in M if j < i.

Similarly, ai prefers bi to all agents with j > i. These observations hold for agents bi and ci as
well. Each weakly blocking triple thus must include a decrease in the variable index where the
strict preference occurs, and simultaneously can contain no decrease in the index elsewhere,
because this would make the corresponding agent less satisfied as she was in M . ◀
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