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Abstract
We propose a framework for computing upper bounds on the optimal value of the (maximization
version of) Weighted CSP (WCSP) using super-reparametrizations, which are changes of the weights
that keep or increase the WCSP objective for every assignment. We show that it is in principle
possible to employ arbitrary (under certain technical conditions) constraint propagation rules to
improve the bound. For arc consistency in particular, the method reduces to the known Virtual
AC (VAC) algorithm. Newly, we implemented the method for singleton arc consistency (SAC) and
compared it to other strong local consistencies in WCSPs on a public benchmark. The results show
that the bounds obtained from SAC are superior for many instance groups.
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1 Introduction

In the weighted constraint satisfaction problem (WCSP) we maximize the sum of (weight)
functions over many discrete variables, where each function depends only on a (usually
small) subset of the variables. A popular approach to tackle this NP-hard combinatorial
optimization problem is via its linear programming (LP) relaxation [21, 32, 30, 29, 20, 1].
The dual of this LP relaxation minimizes an upper bound on the WCSP optimal value over
reparametrizations (also known as equivalence-preserving transformations) of the original
WCSP instance. For large instances this is done only approximately, by methods based on
block-coordinate descent [16, 14, 27, 28, 32, 17] or constraint propagation [5, 18, 32, 19].
Fixed points of these methods are characterized by a local consistency of the CSP formed by
the active tuples (to be defined later) of the transformed WCSP [32, 16, 14, 5, 27].

1 Corresponding author

© Tomáš Dlask, Tomáš Werner, and Simon de Givry;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dlaskto2@fel.cvut.cz
https://orcid.org/0000-0002-1944-6569
mailto:werner@fel.cvut.cz
https://orcid.org/0000-0002-6161-7157
mailto:simon.de-givry@inrae.fr
https://orcid.org/0000-0002-2242-0458
https://doi.org/10.4230/LIPIcs.CP.2021.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Bounds on WCSPs Using Constraint Propagation and Super-Reparametrizations

This approach is limited in that it cannot enforce an arbitrary level of local consistency,
unless new weight functions are introduced. Namely, it can achieve at most pairwise
consistency [33, 34], which for binary WCSPs reduces to arc consistency (reparametrized
WCSP corresponding to global optima of the dual LP relaxation have been called optimally
soft arc consistent in [6, 5]).

In this paper, we study a different LP formulation of the WCSP, which was proposed
in [17] but never pursued later. It differs from the above mentioned basic LP relaxation
and does not belong to the known hierarchy of LP relaxations obtained by introducing new
weight functions of higher arities [24, 33, 19, 1] (which leads to a fine-grained version of the
Sherali-Adams hierarchy [22] for the WCSP). Our LP formulation again minimizes the upper
bound on the WCSP optimal value, but this time over super-reparametrizations of the initial
WCSP instance. Its remarkable feature is that it allows using almost arbitrary (up to some
technical assumptions) constraint propagation techniques to improve the bound, without
introducing new weight functions. On the other hand, it may neither preserve the value of
the individual assignments nor the set of optimal assignments, but it nevertheless provides a
valid, and possibly tighter, bound on the WCSP optimal value.

2 Notation

For clarity of presentation, we will consider only binary WCSPs with finite weights. However,
it would be straightforward to generalize the approach described in the paper to WCSPs of
any arity and with some weights infinite (i.e., including hard constraints).

Let V be a finite set of variables and D a finite domain of each variable. An assignment
x ∈ DV assigns2 a value xi ∈ D to each variable i ∈ V . Let E ⊆

(
V
2
)

be a set of variable
pairs, so that (V, E) is an undirected graph. The weighted constraint satisfaction problem
(WCSP) seeks to maximize the function

F (x |f) =
∑
i∈V

fi(xi) +
∑

{i,j}∈E

fij(xi, xj) (1)

over all assignments x ∈ DV . Here, fi : D → R and fij : D2 → R (where we assume that
fij(k, l) = fji(l, k)) are weight functions, whose values together form a vector f ∈ RT where

T = { (i, k) | i ∈ V, k ∈ D }︸ ︷︷ ︸
V ×D

∪ { {(i, k), (j, l)} | {i, j} ∈ E, k, l ∈ D } (2)

is a set of tuples. For t ∈ T , we denote ft = fi(k) if t = (i, k) ∈ V × D, and ft = fij(k, l) =
fji(l, k) if t = {(i, k), (j, l)} ∈ T − (V × D). The WCSP instance is defined by (D, V, E, f).
However, as the structure (D, V, E) will be the same throughout the paper, we will refer to
WCSP instances only as f (thus, we identify WCSP instances with vectors f ∈ RT ).

We say that an assignment x ∈ DV uses a tuple t = (i, k) if xi = k, and x uses a tuple
t = {(i, k), (j, l)} if xi = k and xj = l. In the constraint satisfaction problem (CSP), we are
given a set A ⊆ T of allowed tuples (while the tuples T − A are called forbidden) and look for
an assignment x (a solution to the CSP) that uses only the allowed tuples, i.e., (i, xi) ∈ A

for all i ∈ V and {(i, xi), (j, xj)} ∈ A for all {i, j} ∈ E. The CSP is satisfiable if it has a
solution. The CSP instance is defined by (D, V, E, A) but, as (D, V, E) will be always the
same, we will refer to it only as A (i.e., we identify CSP instances with subsets of T ).

2 As usual, DV denotes the set of all mappings from V to D, so x ∈ DV is the same as x : V → D.
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For a tuple t ∈ T , we denote

U(t) =
{

{ (i, k′) | k′ ∈ D } if t = (i, k)
{ {(i, k′), (j, l′)} | k′, l′ ∈ D } if t = {(i, k), (j, l)}

so that, e.g., for all i ∈ V and k, k′ ∈ D we have U((i, k)) = U((i, k′)). By

U = { U(t) | t ∈ T } = { {(i, k) | k ∈ D} | i ∈ V } ∪ { {{(i, k), (j, l)} | k, l ∈ D} | {i, j} ∈ E }

we denote the natural partition of T into |V | + |E| subsets. Clearly, any assignment uses
exactly one tuple from each set U ∈ U .

For a CSP A ⊆ T and t ∈ T , we denote A|t = A − (U(t) − {t}). That is, x is a solution
to CSP A|t if and only if x is a solution to CSP A and x uses tuple t. E.g., in A|(i,k) we
search for solutions x to CSP A satisfying xi = k (this is often denoted also as A|xi=k).

3 Bounding the WCSP Optimal Value

We define the function B : RT → R by

B(f) =
∑
i∈V

max
k∈D

fi(k) +
∑

{i,j}∈E

max
k,l∈D

fij(k, l) =
∑
U∈U

max
t∈U

ft. (3)

For f ∈ RT , we call a tuple t ∈ T active if ft = maxt′∈U(t) ft′ . Thus, a tuple t = (i, k) ∈ T

is active if fi(k) = maxk′∈D fi(k′), and a tuple t = {(i, k), (j, l)} ∈ T is active if fij(k, l) =
maxk′,l′∈D fij(k′, l′). The set of all tuples that are active for f is denoted3 by A∗(f) ⊆ T .

▶ Theorem 1 ([32]). For every WCSP f ∈ RT and every assignment x ∈ DV we have:
(a) B(f) ≥ F (x |f),
(b) B(f) = F (x |f) if and only if x is a solution to CSP A∗(f).

Proof. (a) can be checked by comparing expressions (1) and (3) term by term.
(b) says that B(f) = F (x |f) if and only if assignment x uses only the active tuples of f .

This is again straightforward from (1) and (3). ◀

Theorem 1 says that B(f) is an upper bound on the WCSP optimal value. Moreover, it
shows that B(f) = F (x |f) implies that x is a maximizer of the WCSP objective (1).

3.1 Minimizing the Upper Bound by Reparametrizations
If WCSPs f, g ∈ RT satisfy F (x |f) = F (x |g) for all x ∈ DV , we say that f is a
reparametrization of g (or equivalent to g or an equivalence-preserving transformation
of g) [16, 30, 21, 32, 33, 20, 6, 5, 28]. As the function F (x |f) is linear in f for every x,
equality F (x |f) = F (x |g) can be written as F (x |f −g) = 0. Linearity of F (x | ·) also implies
that the set { h ∈ RT | F (x |h) = 0 ∀x ∈ DV } is a subspace4 of RT .

3 The set of active tuples A∗(f) corresponds to the notion of Bool(f) in [5]. The characteristic vector of
the set A∗(f) was denoted f̄ in [27, 32], ⌈f⌉ in [33], and mi[f ] in [20].

4 For binary WCSPs with a connected graph (V, E), this subspace can be parametrized as hi(k) =∑
j|{i,j}∈E

φij(k) and hij(k, l) = −φij(k) − φji(l) where φij , φji : D → R, {i, j} ∈ E, are arbitrary
unary weight functions [32, Theorem 3]. For WCSPs of any arity, see [33, §3.2].

CP 2021
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Given a WCSP g ∈ RT , this suggests to minimize the upper bound on its optimal value
maxx F (x |g) by reparametrizations:

min
f∈RT

B(f) subject to F (x |f) = F (x |g) ∀x ∈ DV . (4)

Although this problem has an exponential number of constraints, its feasible set is an affine
subspace of RT and thus the number of constraints can be reduced to polynomial. Using the
well-known trick, the problem can be transformed to a linear program5, which is the dual LP
relaxation of the WCSP g [21, 32, 20]. WCSPs f optimal for (4) have been called optimally
soft arc consistent (OSAC) in [6, 5]. If any optimal solution f to (4) satisfies B(f) = F (x |f)
for some x, the LP relaxation is tight. Otherwise, B(f) is only a strict upper bound on the
optimal value of WCSP g.

3.2 Minimizing the Upper Bound by Super-Reparametrizations
If WCSPs f, g ∈ RT satisfy F (x |f) ≥ F (x |g) (that is, F (x | f − g) ≥ 0) for all x ∈ DV , we
say that f is a super-reparametrization6 of g. The set { h ∈ RT | F (x |h) ≥ 0 ∀x ∈ DV } is a
polyhedral convex cone. Following [17], we consider the problem

min
f∈RT

B(f) subject to F (x |f) ≥ F (x |g) ∀x ∈ DV . (5)

▶ Theorem 2 ([17]). The optimal value of problem (5) is maxx∈DV F (x |g).

Proof. By Theorem 1(a), every feasible f satisfies

B(f) ≥ F (x |f) ≥ F (x |g) ∀x ∈ DV . (6)

Denoting F ∗ = maxx F (x |g), this implies B(f) ≥ F ∗. To see that this bound is attained,
consider f defined by ft = F ∗/(|V | + |E|) for all t ∈ T . It can be checked from (1) and (3)
that B(f) = F (x |f) = F ∗ for all x, so f is feasible and optimal. ◀

Theorem 2 says that any feasible solution f to (5) yields an upper bound B(f) on the
optimal value of WCSP g, which is attained if f is optimal for (5). Thus, finding a global
optimum of (5) in fact means solving the WCSP g. This is not surprising, as the complexity
of the WCSP is hidden in the exponential set of constraints of (5).

▶ Theorem 3. Let g ∈ RT . Let f ∈ RT be feasible for (5). Then f is optimal for (5) if and
only if CSP A∗(f) has a solution x satisfying F (x |f) = F (x |g).

Proof. By (6) and Theorem 2, a feasible f is optimal if and only if B(f) = F (x |f) = F (x |g)
for some x. The claim now follows from Theorem 1. ◀

Next, we state a useful corollary of Theorem 3.

▶ Theorem 4. Let g ∈ RT . CSP A∗(g) is unsatisfiable if and only if there exists h ∈ RT

such that B(g + h) < B(g) and F (x |h) ≥ 0 for all x ∈ DV .

5 Namely, by introducing auxiliary variables zU ∈ R, problem (4) is equivalent to minimizing
∑

U∈U zU

subject to zU ≥ ft ∀U ∈ U , t ∈ U and F (x |f) = F (x |g) ∀x ∈ DV , which is a linear program.
6 They are called sup-reparametrizations in [23] and virtual potentials in [17].
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Proof. Theorem 3 in particular says that problem (5) attains its optimum at f = g if and
only if A∗(g) is satisfiable. That is, A∗(g) is unsatisfiable if and only if there exists f ∈ RT

such that B(f) < B(g) and F (x |f) − F (x |g) = F (x |f − g) ≥ 0 for all x. Substituting
h = f − g yields the desired claim. ◀

We will refer to vector h in Theorem 4 as a certificate of unsatisfiability of CSP A∗(g)
for g. Note that “for g” is important because h depends not only on the set A∗(g) but also
on the vector g itself. We will discuss this in more detail later on in §3.2.1.

3.2.1 Iterative Scheme
Given a feasible solution f to (5), we call a vector h ∈ RT an improving vector if vector
f ′ = f + h is feasible for (5) and B(f ′) < B(f). Clearly, an improving vector exists if and
only if f is not optimal for (5). Theorem 3 says that for f to be optimal, it is necessary
(but not sufficient) that CSP A∗(f) is satisfiable. Therefore, if A∗(f) is unsatisfiable, there
exists an improving vector. Any certificate h of unsatisfiability of A∗(f) for f (i.e., h satisfies
B(f + h) < B(f) and F (x |h) ≥ 0 for all x) is such an improving vector: indeed, f ′ = f + h

is feasible for (5) because F (x |f ′) = F (x |f) + F (x |h) ≥ F (x |f) ≥ F (x |g) for all x.
This suggests an iterative scheme to progressively improve feasible solutions to (5):

initialize f := g and then repeat this iteration (see Figure 1 in the appendix for an example):
1. If CSP A∗(f) is satisfiable, stop. Otherwise, find a certificate h of unsatisfiability of A∗(f)

for f .
2. Update f := f + h.

Recall that satisfiability of A∗(f) is not sufficient for optimality of f , as we are neglecting
the (difficult) condition F (x |f) = F (x |g) in Theorem 3. Consequently, in Step 1 we are able
to generate only improving vectors h satisfying F (x |h) ≥ 0 for all x, while general improving
vectors (as defined above) need to satisfy only F (x |f + h) ≥ F (x |g) for all x. The former
condition implies the latter but not vice versa. Therefore, fixed points of the algorithm are
local minima of problem (5), in the sense that a fixed point cannot be improved by moving
in any direction h satisfying the former condition (but possibly can be improved by moving
in a direction h satisfying the latter condition).

During the algorithm, this manifests itself as follows. At any time, f satisfies (6), hence
also B(f) ≥ maxx F (x |f) ≥ maxx F (x |g). In every iteration, B(f) decreases and the
number maxx F (x |f) increases or does not change (due to F (x |h) ≥ 0 for all x). When
these two numbers meet, A∗(f) becomes satisfiable by Theorem 1 and the algorithm stops.
Monotonic increase of maxx F (x |f) can be seen as “greediness” of the algorithm: if we
could generate general improving vectors, maxx F (x |f) could also decrease. Any increase of
maxx F (x |f) is undesirable because the bound B(f) will never be able to get below it.

Due to this greediness, the achievable (i.e., after possible convergence) gap B(f) −
maxx F (x |g) critically depends on the “quality” of the certificates h. For a given f , there
can be many certificates h of unsatisfiability of A∗(f) for f . Good certificates are those for
which the difference maxx F (x |f + h) − maxx F (x |f) ≥ 0 is small (ideally zero). Intuitively,
this means F (x |h) should be zero for most of the assignments x and small for the remaining
assignments. In turn, one heuristic for this is to keep vector h sparse7.

7 Sparsity of h is not the whole answer, though, because, e.g., vectors h satisfying F (x |h) = 0 for all x
can be dense, according to Footnote 4.

CP 2021
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So far, we supposed that in Step 1 of the algorithm we were always able to decide if CSP
A∗(f) is satisfiable. This is unrealistic because the CSP is NP-complete. But the approach
remains applicable even if we detect unsatisfiability of A∗(f) (and provide a certificate h)
only sometimes, e.g., using constraint propagation. Then the iterative scheme becomes:
1. Attempt to prove that CSP A∗(f) is unsatisfiable. If we succeed, find a certificate h of

unsatisfiability of A∗(f) for f . If we fail, stop.
2. Update f := f + h.
In this case, the fixed points of the algorithm will be even weaker local minima of problem (5),
but they nevertheless might be still non-trivial and useful.

In the rest of the paper we develop this approach in detail. More precisely, we will
compute an improving vector h in two steps: first (in §4) we compute an improving direction
d ∈ RT from A∗(f) using constraint propagation, and then (in §5) we compute a suitable
step length α > 0 such that h = αd. This is because from the CSP A∗(f) alone it is possible
to obtain only improving directions, while the step α depends also on f .8

Relation to Existing Approaches

The Augmenting DAG algorithm [18, 32] and the VAC algorithm [5] are (up to the precise
way of computing the certificates h) an example of the described approach, which uses arc
consistency to prove unsatisfiability of A∗(f). In this favorable case, there exist certificates h

that satisfy F (x |h) = 0 for all x, so we are in fact solving (4) rather than (5). For stronger
local consistencies such certificates in general do not exist (i.e., F (x |h) > 0 for some x).

The algorithm proposed in [17] can be also seen as an example of our approach. It
interleaves iterations using arc consistency (in fact, the Augmenting DAG algorithm) and
iterations using cycle consistency.

As an alternative to our approach, stronger local consistencies can be achieved by
introducing new weight functions (of possibly higher arity) into the WCSP objective (1) and
minimizing an upper bound by reparametrizations, as in [24, 1, 33, 34, 19]. In our particular
case, after updating f := f + h we could introduce9 a weight function with scope formed
by the variables of all tuples t ∈ T with ht ̸= 0. In this view, our approach can be seen as
enforcing stronger local consistencies but omitting these compensatory higher-order weight
functions, thus saving memory.

Finally, the described approach can be seen as an example of the primal-dual approach [12]
to optimize linear programs using constraint propagation.

4 Deactivating Directions

Here we describe a special kind of directions, deactivating directions (this name will be
justified in §5). Under additional conditions, these directions certify unsatisfiability of a CSP.

▶ Definition 5. Let A ⊆ T and S ⊆ A, S ̸= ∅. An S-deactivating direction for CSP A is a
vector d ∈ RT satisfying
(a) dt < 0 for all t ∈ S,
(b) dt = 0 for all t ∈ A − S,
(c) F (x |d) ≥ 0 for all x ∈ DV . ⌟

Note that for fixed A and S, all S-deactivating directions for A form a convex cone.

8 It follows from Theorem 4, 6, and 15 that a CSP A ⊆ T is unsatisfiable if and only if there is a
direction d ∈ RT such that (i) F (x |d) ≥ 0 for all x and (ii) for every f ∈ RT such that A = A∗(f) there
exists α > 0 such that B(f + αd) < B(f).

9 Notice that such an added weight function would not increase the bound (3) since its weights are
non-positive due to the fact that it needs to decrease the value for some assignments.
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▶ Theorem 6. Let A ⊆ T and S ⊆ A, S ̸= ∅. An S-deactivating direction d ∈ RT for A

exists if and only if CSP A|t has no solution for any t ∈ S.

Proof. For one direction, we proceed by contradiction. Let d be an S-deactivating direction
for A and let x∗ be a solution to A that uses at least one tuple from S. By (1), we have
F (x∗ |d) < 0 because dt = 0 for all t ∈ A − S by condition (b) in Definition 5 and dt∗ < 0
for all t∗ ∈ S by condition (a). This contradicts condition (c).

For the other direction, if CSP A|t has no solution for any t ∈ S, sets S and P = T − A

satisfy Property 7, so an S-deactivating direction exists by Theorem 8 (given below). ◀

Suppose d ∈ RT is an S-deactivating direction for A ⊆ T . If for some U ∈ U it holds that
(A − S) ∩ U = ∅ (equivalently10, A ∩ U ⊆ S) then, by Theorem 6, CSP A is unsatisfiable
because (as noted in §2) every assignment uses exactly one tuple from every set from U . In
that case, d certifies unsatisfiability of CSP A.11

4.1 Obtaining Deactivating Directions Using Constraint Propagation
Although the CSP is NP-complete, satisfiability of some CSPs can be disproved in polynomial
time by constraint propagation. This is an iterative method, which in each iteration infers
that certain tuples of a given CSP instance are not used by any solution and forbids these
tuples. In contrast to usual usage of constraint propagation, we require that in every iteration
it also provides an S-deactivating direction for the set of tuples S it forbids. By Theorem 6,
such a direction always exists.

We will argue that finding an S-deactivating direction for a CSP A is not harder than
infering that A|t has no solution for any t ∈ S. Formally, we consider an algorithm (such as
a constraint propagation method) satisfying the following property:

▶ Property 7. The algorithm takes a set A ⊆ T on input and returns sets S ⊆ A

and P ⊆ T − A such that CSP (T − P )|t is unsatisfiable for every t ∈ S. ⌟

The condition in Property 7 is equivalent to requiring that for any CSP A′ where all
tuples from P are forbidden (i.e., A′ ⊆ T − P ), A′|t is unsatisfiable for all t ∈ S.12 Note that
this implies that CSP A|t is unsatisfiable for all t ∈ S due to A ⊆ T − P .

Returning S = ∅ indicates that the algorithm is not able to forbid any tuple. In addition,
the algorithm provides a “proof” set P ⊆ T − A which can be interpreted as a set of tuples
which are needed to verify that A|t is unsatisfiable for each t ∈ S. It is natural that P is a
subset of forbidden tuples since such tuples suffice to disprove satisfiability of a CSP.

▶ Theorem 8. Let A ⊆ T . If an algorithm satisfying Property 7 takes A on input and
returns sets S, P with S ̸= ∅, then d ∈ RT defined as 13

dt =


−1 if t ∈ S

|{U ∈ U | U ∩ S ̸= ∅}| if t ∈ P

0 otherwise
(7)

is S-deactivating for A.

10 Indeed, for any A, S, U ⊆ T we have (A − S) ∩ U = ∅ ⇐⇒ A ∩ U ⊆ S. We will use this equivalence
repeatedly in the sequel.

11 Let us emphasise that this is different from the certificate of unsatisfiability of CSP A∗(f) for f (in
the sense of Theorem 4) because deactivating directions do not contain the step length. Following
Footnote 8, the step length can be computed for any WCSP f with A∗(f) = A using Theorem 15.

12 This holds due to A ⊆ T − P and the fact that if A′ is unsatisfiable, then any A ⊆ A′ is unsatisfiable.
13 |{U ∈ U | U ∩ S ≠ ∅}| is the number of scopes in U which contain at least one tuple from S. In other

words, every assignment uses at most |{U ∈ U | U ∩ S ̸= ∅}| tuples from S.

CP 2021
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Proof. Conditions (a) and (b) of Definition 5 are clearly satisfied and it only remains to
show that F (x |d) ≥ 0 ∀x ∈ DV . We proceed by contradiction: let x∗ ∈ DV such that
F (x∗ |d) < 0. Denote m = |{U ∈ U | U ∩ S ≠ ∅}. Necessarily, x∗ uses at least one tuple
t∗ ∈ S (otherwise, F (x∗ |d) would not be negative). Additionally, x∗ does not use any tuple
from P . The reason is that every x uses exactly one tuple from each set U ∈ U , so it can
use at most m tuples t with dt = −1. If at least one tuple from P was used, we would have
F (x |d) ≥ 0 by (7).

Since x∗ uses only tuples from the set T − P , it is a solution to CSP T − P . But x∗ uses
at least one tuple t∗ ∈ S, i.e., (T − P )|t∗ is satisfiable, which contradicts Property 7. ◀

Note that Property 7 can be easily satisfied by any algorithm which prunes the CSP search
space by forbidding tuples which are not used in any solution. Such tuples form the set S and
set P can always be trivially chosen as P = T − A. Unfortunately, deactivating direction (7)
calculated using P = T − A would have many positive components. Consequently, an update
of weights along such deactivating direction may substantially increase the values F (x |f),
which is undesirable as explained in §3.2.1.

Ideally, P should be as small as possible because then the deactivating directions do not
increase the weights much and thus allow subsequent improvement of the bound. Though
finding the smallest set P satisfying Property 7 is probably intractable14, in practice we can
often easily find a small such set. E.g., P can simply be the set of forbidden tuples which
the algorithm needed to visit to make its decision. Alternatively, it may only be necessary to
check the support of some tuple to forbid it. Importantly, P need not be the same for each
CSP instance, even for a fixed level of local consistency. For example, if the arc consistency
closure of A is empty, then A is unsatisfiable, but a domain wipe-out may occur sooner or
later depending on A, which affects which tuples needed to be visited.

We will now give examples of deactivating directions corresponding to well-known con-
sistency conditions.

▶ Example 9. Let us consider arc consistency (AC). A CSP A is arc consistent if the
equivalence15 (i, k) ∈ A ⇐⇒

∨
l∈D({(i, k), (j, l)} ∈ A) holds for all {i, j} ∈ E, k ∈ D.

Let k ∈ D and {i, j} ∈ E. If (i, k) ∈ A and {(i, k), (j, l)} /∈ A for all l ∈ D, the AC
propagator infers that A|(i,k) is unsatisfiable and forbids the tuple (i, k), that is, returns
S = {(i, k)}. An S-deactivating direction d for A can be in this case simply

dt =


−1 if t = (i, k)
1 if t ∈ {{(i, k), (j, l)} | l ∈ D}
0 otherwise

(8)

because to forbid the tuple (i, k), it sufficed to verify that {(i, k), (j, l)} /∈ A for all l ∈ D.
Thus, P = {{(i, k), (j, l)} | l ∈ D}.

For the other case, let k ∈ D and {i, j} ∈ E. If (i, k) /∈ A, AC propagator forbids tuples
S = {{(i, k), (j, l)} | l ∈ D} ∩ A based on P = {(i, k)}. In this particular case, it is a good
idea to choose an S-deactivating direction d for A as

14 Set P is related (but not equivalent) to an unsatisfiable core of CSP A|t. Finding a minimal unsatisfiable
core is a “highly intractable problem” [15].

15 Note, for convenience we use a slightly unusual definition of arc consistency, allowing to restrict not
only domains but also constraint relations.
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dt =


−1 if t ∈ {{(i, k), (j, l)}) | l ∈ D}
1 if t = (i, k)
0 otherwise

. (9)

Notice that all the binary tuples are set to −1 in (9), instead of just the tuples S as in (7).
Although (7) would also provide an S-deactivating direction, it is better to use (9) because
both directions d defined by (8) and (9) satisfy F (x |d) = 0 for all x. Thus, WCSPs g

and g + αd are equivalent16 for any α ∈ R which is desirable (see §3.2.1). ⌟

▶ Example 10. We now consider cycle consistency as defined in [17].17 Let C be a (polyno-
mially sized) set of cycles in the graph (V, E). A CSP A is cycle consistent if for each tuple
(i, k) ∈ A ∩ (V × D) and each cycle C ∈ C that passes through node i ∈ V , there exists an
assignment x with xi = k that uses only allowed tuples in cycle C. It can be shown that
the cycle repair procedure in [17] in fact constructs a deactivating direction whenever an
inconsistent cycle is found. Moreover, the constructed direction in this case coincides with (7)
for a suitable set P which contains a subset of the forbidden tuples within the cycle. ⌟

▶ Example 11. Recall that a CSP A is singleton arc consistent (SAC) if for every tuple t =
(i, k) ∈ A∩ (V ×D), the CSP A|t has a non-empty arc-consistency closure. Good (i.e., sparse)
deactivating directions for SAC can be obtained as follows. For some (i, k) ∈ A ∩ (V × D),
we enforce arc consistency of CSP A|(i,k), during which we store the causes for forbidding
each tuple. If A|(i,k) is found to have an empty AC closure, we backtrack and identify only
those tuples which were necessary to prove the empty AC closure. These tuples form the
set P . The deactivating direction is then constructed as in Theorem 8 with S = {(i, k)}.
Note that SAC does not have bounded support as many other kinds of local consistencies [3],
so the size of P can be significantly different for different CSP instances. ⌟

4.2 Composing Deactivating Directions
Recall that constraint propagation iteratively forbids some tuples of a given CSP A ⊆ T , until
it is no longer able to forbid any tuple or it becomes explicit that the CSP is unsatisfiable.
The latter happens if all tuples of some set U ∈ U become forbidden18 (i.e., U ∩ A = ∅),
because (as noted in §2) every assignment uses exactly one tuple from every set from U .

Formally, consider a propagation rule to enforce a local consistency condition Φ, such that
if CSP A is not Φ-consistent then it finds a non-empty set S ⊆ A of tuples to forbid and an
S-deactivating direction19 for A. This rule is applied to the given CSP iteratively, each time
forbidding a different set of tuples. This is outlined in Algorithm 1, which stores the generated
sets Sr of tuples being forbidden and the corresponding Sr-deactivating directions dr. Note
that, by line 4 of the algorithm, Ar = A −

⋃r−1
q=0 Sq for every r = 0, . . . , s + 1.

The generated sequence of Sr-deactivating directions dr for Ar can be composed into a
single

( ⋃s
q=0 Sq

)
-deactivating direction for A using the following composition rule (the proof

is given in the appendix):

16 Such reparametrizations correspond to soft arc consistency operations extend and project in [5].
17 This is different from cyclic consistency as defined in [4]. E.g., reparametrizations are sufficient to

enforce cyclic consistency, whereas super-reparametrizations are needed for cycle consistency.
18 If U = {(i, k) | k ∈ D} for some i ∈ V , this is often called “domain wipe-out”.
19 The deactivating direction can be constructed in any way, e.g. (but not necessarily) using Theorem 8.
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Algorithm 1 Propagation phase: given a CSP A ⊆ T , propagation is applied to A while
deactivating directions are stored.

1 Initialize s := 0, A0 := A

2 while As is not Φ-consistent do
3 Find set Ss ⊆ As and an Ss-deactivating direction ds for As.
4 As+1 := As − Ss

5 if ∃U ∈ U : U ∩ As+1 = ∅ then
6 return unsatisfiable, (Ar)s+1

r=0, (Sr)s
r=0, (dr)s

r=0

7 s := s + 1
8 return possibly satisfiable

Algorithm 2 Composition phase: the sequences (Sr)s
r=0 and (dr)s

r=0 generated by Algorithm 1
for given R ⊆ {0, ..., s}, R ̸= ∅ are composed to an M -deactivating direction d′ for A.

1 Initialize r := max R, d′ := dr, M := Sr.
2 while r > 0 do
3 r := r − 1
4 if r ∈ R or ∃t ∈ Sr : d′

t ̸= 0 then
5 d′ := d′ + δdr (where δ is given by (10) where d, S are replaced by dr, Sr)
6 M := M ∪ Sr

7 return d′, M

▶ Proposition 12. Let A ⊆ T and S, S′ ⊆ A where S ∩ S′ = ∅. Let d be an S-deactivating
direction for A. Let d′ be an S′-deactivating direction for A − S. Let

δ =
{

0 if d′
t ≤ −1 for all t ∈ S,

max{ (−1 − d′
t)/dt | t ∈ S, d′

t > −1 } otherwise.
(10)

Then d′′ = d′ + δd is an (S ∪ S′)-deactivating direction for A.

Proposition 12 allows us to combine Sr-deactivating direction dr for Ar = Ar−1 − Sr−1
with Sr−1-deactivating direction dr−1 for Ar−1 into a single (Sr−1 ∪Sr)-deactivating direction
for Ar−1. By induction, we are able to gradually build a

(⋃s
q=0 Sq

)
-deactivating direction

for A, which certifies unsatisfiability of A whenever Algorithm 1 returns “unsatisfiable”.
However, it is not always needed to construct a full

(⋃s
q=0 Sq

)
-deactivating direction

as not every step of the propagator is necessary to prove unsatisfiability. Instead, one can
choose any U ∈ U such that U ∩ As+1 = ∅ (equivalent to U ∩

(
A −

⋃s
q=0 Sq

)
= ∅, i.e,

U ∩ A ⊆
⋃s

q=0 Sq) and construct an M -deactivating direction for a (possibly smaller) set
M ⊆

⋃s
q=0 Sq, so that U ∩ A ⊆ M . Such direction still certifies unsatisfiability of A and can

be sparser than a
(⋃s

q=0 Sq

)
-deactivating direction, which is desirable as explained in §3.2.1.

This is outlined in Algorithm 2, which composes only a subsequence of directions given
by the set R ⊆ {0, ..., s} and constructs an M -deactivating direction where M ⊇

⋃
r∈R Sr.

Although Algorithm 2 is applicable for any set R, in our case R is obtained by first choosing
any U ∈ U such that U ∩(A−

⋃s
q=0 Sq) = ∅ and then setting R = {r ∈ {0, ..., s} | Sr ∩U ≠ ∅},

so that U ∩ (A − M) = ∅ due to U ∩ A ⊆
⋃

r∈R Sr ⊆ M . Correctness of Algorithm 2 is given
by the following theorem, whose proof is given in the appendix.
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▶ Theorem 13. Algorithm 2 returns an M -deactivating direction d′ for A with M ⊇
⋃

r∈R Sr.

▶ Remark 14. This is similar to what the VAC [5] or Augmenting DAG algorithm [18, 32]
do for arc consistency. To attempt to disprove satisfiability of CSP A∗(f), these algorithms
enforce AC of A∗(f), during which the causes for forbidding tuples are stored. If the AC
closure of A∗(f) is found empty (which corresponds to U ∩ As+1 = ∅ for some U ∈ U), these
algorithms do not iterate through all previously forbidden tuples but only trace back the
causes for forbidding the elements of the wiped-out domain (here, the elements of U). ⌟

5 Line Search and the Final Algorithm

In §4 we showed how to construct an S-deactivating direction d ∈ RT for a CSP A, which
certifies unsatisfiability of A whenever A ∩ U ⊆ S (i.e., (A − S) ∩ U = ∅) for some U ∈ U .
For a WCSP f ∈ RT , to obtain a certificate h ∈ RT of unsatisfiability of CSP A∗(f) for f in
the sense of Theorem 4, we need a step length α > 0 so that h = αd, as mentioned in §3.2.1.
The step length is obtained using the following (somewhat more general) result, whose proof
is given in the appendix.

▶ Theorem 15. Let f ∈ RT . Let d be an S-deactivating direction for A∗(f). Denote20

β = min{ (maxt∈U(t′) ft − ft′)/dt′ | t′ ∈ T, dt′ > 0 },

γ = min{ (ft − ft′)/(dt′ − dt) | U ∈ U , A∗(f) ∩ U ⊆ S, t ∈ U ∩ S, t′ ∈ U − S, dt′ > dt }.

Then β, γ > 0 and for every U ∈ U and α ∈ R, WCSP f ′ = f + αd satisfies:
(a) If A∗(f) ∩ U ̸⊆ S and 0 ≤ α ≤ β, then maxt∈U f ′

t = maxt∈U ft.
(b) If A∗(f) ∩ U ⊆ S and 0 < α ≤ min{β, γ}, then maxt∈U f ′

t < maxt∈U ft.
(c) If A∗(f) ∩ U ̸⊆ S and 0 < α < β, then A∗(f ′) ∩ U = (A∗(f) − S) ∩ U .

If d is an S-deactivating direction for CSP A∗(f) and for all U ∈ U we have A∗(f)∩U ̸⊆ S

then, by Theorem 15(a,c), there is α > 0 such that f ′ = f + αd satisfies B(f ′) = B(f) and
A∗(f ′) = A∗(f) − S. This justifies why such direction d is called S-deactivating: a suitable
update of f along this direction makes tuples S inactive for f .

▶ Remark 16. This might suggest that to improve the current bound B(f), we need not use
Algorithm 2 to construct an S′-deactivating direction d′ such that A∗(f) ∩ U ⊆ S′ for some
U ∈ U , but instead perform steps using the intermediate Sr-deactivating directions dr to
create a sequence fr+1 = fr + αrdr satisfying B(f0) = B(f1) = · · · = B(fs) > B(fs+1).
Unfortunately, it is hard to make this work reliably as there are many choices for the
intermediate step sizes 0 < αr < βr. We empirically found Algorithm 3 to be preferable. ⌟

If d is an S-deactivating direction for A∗(f) and for some U ∈ U we have A∗(f) ∩ U ⊆ S,
then, by Theorem 15(a,b), there is α > 0 such that f ′ = f + αd satisfies B(f ′) < B(f). Thus,
h = αd is a certificate of unsatisfiability of A∗(f) for f in the sense of Theorem 4.

20 β is always defined: by Definition 5 we have F (x |d) ≥ 0 for all x, hence ∃t : dt < 0 ⇒ ∃t′ : dt′ > 0.
γ is defined and needed only in (b), where we assume that U ∩ A∗(f) ⊆ S for some U ∈ U .
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Algorithm 3 The final algorithm to iteratively improve feasible solutions to (5) (i.e., an upper
bound on the optimal value of WCSP g).

1 Initialize f := g.
2 while Algorithm 1 returns “unsatisfiable” on A∗(f) do
3 Generate sequences (Ar)s+1

r=0, (Sr)s
r=0, (dr)s

r=0 by Algorithm 1.
4 Let U ∈ U : U ∩ As+1 = ∅ and set R := {r ∈ {0, ..., s} | Sr ∩ U ̸= ∅}.
5 Compute M -deactivating direction d′ using Algorithm 2.
6 Update f := f + min{β, γ}d′ following Theorem 15.
7 return B(f)

Theorem 15 also proposes a possible (not necessarily optimal21) step size α. This allows
us to formulate, in Algorithm 3, the iterative scheme outlined in §3.2.1. First, constraint
propagation is applied to CSP A∗(f) by Algorithm 1 until either A∗(f) is proved unsatisfiable
or no more propagation is possible. In the latter case, the algorithm halts and returns B(f) as
the best achieved upper bound on the optimal value of WCSP g. Otherwise, if A∗(f) is proved
unsatisfiable, we choose U ∈ U such that U ∩ As+1 = ∅, i.e., A∗(f) ∩ U ⊆

⋃s
r=0 Sr (which

exists since Algorithm 1 returned “unsatisfiable”), define R so that U ∩ A∗(f) ⊆
⋃

r∈R Sr,
and compute an M -deactivating direction d′ where M ⊇

⋃
r∈R Sr using Theorem 13. Since

A∗(f) ∩ U ⊆ M , we can update WCSP f using Theorem 15. Consequently, the bound B(f)
strictly improves after each update on line 6.

In Algorithm 3 we additionally used a heuristic analogous to capacity scaling in network
flow algorithms. We replace the active tuples A∗(f) with “almost” active (θ-active) tuples
A∗

θ(f) =
{

t ∈ T | ft ≥ maxt′∈U(t) ft′ − θ
}

for some threshold θ > 0.22 This forces the
algorithm to disprove satisfiability using tuples which are far from active, thus hopefully
leading to larger step sizes and faster decrease of the bound. Initially θ is set to a high value
and whenever we are unable to disprove satisfiability of A∗

θ(f), the current θ is decreased as
θ := θ/10. The process continues until θ becomes very small.23

6 Experiments

We implemented two versions of Algorithm 3 (incl. capacity scaling), differing in the local
consistency used to attempt to disprove satisfiability of CSP A∗(f):

Virtual singleton arc consistency via super-reparametrizations (VSAC-SR) 24 uses
singleton arc consistency. Precisely, we alternate between AC and SAC propagators:
whenever a tuple (i, k) is removed by SAC, we step back to enforcing AC until no more
AC propagations are possible, and repeat.

21 Finding an optimal step size (i.e., exact line search) would require finding a global minimum of the
univariate convex piecewise-affine function α 7→ B(f + αd). As this would be too expensive for large
instances, we find only a sub-optimal step size: we find the first break (i.e., non-differentiable) point
of the function with a lower objective. This step size is decreased to β if γ > β so that no maximum
increases. This is analogous to the first-hit strategy in [11, §3.1.4].

22 This is similar to the notion of Boolθ(f) in [5, §11.1], tolerance δ in [12, §4.2], and miϵ[f ] in [20, §6.2.4].
23 Precisely, we initialized θ = maxk,l gij(k, l)−mink,l gij(k, l)+maxk gi′ (k)−mink gi′ (k) where {i, j} ∈ E

and i′ ∈ V is the edge and variable with the lowest index (based on indexing in the input instance).
The terminating condition was θ ≤ 10−6.

24 In analogy to [5, 19], let us call a WCSP instance f virtual X-consistent (e.g., virtual AC or virtual RPC)
if A∗(f) has a non-empty X-consistency closure. Then, a virtual X-consistency algorithm naturally
refers to an algorithm to transform a given WCSP instance to a virtual X-consistent WCSP instance.
In the VAC algorithm, this transformation is equivalence-preserving, i.e., a reparametrization. But in
our case, it is a super-reparametrization, which is why we call our algorithm VSAC-SR.
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Virtual cycle consistency via super-reparametrizations (VCC-SR) is the same as VSAC-SR
except that SAC is replaced by CC.25 Though our implementation is different than [17] (we
compose deactivating directions rather than alternate between the cycle-repair procedure
and the Augmenting DAG algorithm), it has the same fixed points.

The procedures for generating deactivating directions for AC, SAC and CC were implemented
as described in Examples 9, 11, and 10. In SAC and CC it is useful to step back to AC
whenever possible since, as described in §4.1, deactivating directions of AC correspond to
reparametrizations and thus avoid increasing the values of individual assignments, which is
beneficial as discussed in §3.2.1.

We compared the bounds calculated by VSAC-SR and VCC-SR with the bounds provided
by EDAC [9], VAC [5], pseudo-triangles (option -t=8000 in toulbar2, adds up to 8 GB
of ternary weight functions), PIC, EDPIC, maxRPC, and EDmaxRPC [19] which are
implemented in toulbar2 [26].

We did the comparison on the Cost Function Library benchmark [8]. Due to limited
computation resources, we used only the smallest 16500 instances (out of 18132). Of these,
we omitted instances containing weight functions of arity 3 or higher. Moreover, to avoid
easy instances, we omitted instances that were solved by VAC without search (i.e., toulbar2
with options -A -bt=0 found an optimal solution). Overall, 5371 instances were left for our
comparison.

For each instance and each method, we only calculated the upper bound and did not
do any search. For each instance and method, we computed the normalized bound Bw−Bm

Bw−Bb

where Bm is the bound computed by the method for the instance and Bw resp. Bb is the
worst resp. best bound for the instance among all the methods. Thus, the best bound26

transforms to 1 and the worst bound to 0, i.e., greater is better.
For 26 instances, at least one method was not able to finish in the prespecified 1 hour limit.

These timed-out methods were omitted from the calculation of the normalized bounds for these
instances. From the point of view of the method, the instance was not incorporated into the
average of the normalized bounds of this particular method. We note that implementations
of VSAC-SR and VCC-SR provide a bound when terminated at any time, whereas the
implementations of the other methods provide a bound only when they are left to finish.27

The results in Table 1 show that no method is best for all instance groups, instead each
method is suitable for a different group. However, VSAC-SR performed best for most groups
and otherwise was not much worse than the other strong consistency methods. VSAC-SR
seems particularly good at spinglass_maxcut [25], planning [7] and qplib [13] instances.
Taking the overall unweighted average of group averages (giving the same importance to
each group), VSAC-SR achieved the greatest average value. We also evaluated the ratio
to worst bound, Bm/Bw, for instances with Bw ̸= 0; the results were qualitatively the
same: VSAC-SR again achieved the best overall average of 3.93 (or 4.15 if only groups with
≥ 5 instances are considered) compared to second-best pseudo-triangles with 2.71 (or 2.84).

25 We chose the cycles in VCC-SR as follows: if 2|E|/|V | ≤ 5 (i.e, average degree of the nodes is at most 5),
then all cycles of length 3 and 4 present in the graph (V, E) are used. If 2|E|/|V | ≤ 10, then all cycles
of length 3 present in the graph are used. If 2|E|/|V | > 10 or the above method did not result in any
cycles, we use all fundamental cycles w.r.t. a spanning tree of the graph (V, E). No additional edges are
added to the graph. Note, [17] experimented with grid graphs (where 4-cycles and 6-cycles of the grid
were used) and complete graphs (where 3-cycles were used).

26 To avoid numerical precision issues, bounds Bm within Bb ± 10−4Bb or Bb ± 0.01 are also normalized
to 1. If Bw = Bb, then the normalized bounds for all methods are equal to 1 on this instance.

27 Time-out happened 5, 2, 3, 6, and 24 times for pseudo-triangles, PIC, EDPIC, maxRPC, and EDmaxRPC,
respectively. This did not affect the results much as there were 5731 instances in total.
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The runtimes (on a laptop with i7-4710MQ processor at 2.5 GHz and 16GB RAM) are
reported in Table 2. Again, the results are group-dependent and one can observe that the
methods explore different trade-offs between bound quality and runtime. However, the strong
consistencies are comparable in terms of runtime on average, except for pseudo-triangles
which are faster but need significantly more memory.

Since both VSAC-SR and VCC-SR start by enforcing VAC (i.e., making A∗(f) arc
consistent by reparametrizations), before running these methods we used toulbar2 to re-
parametrize the input WCSP instance to a VAC state (because a specialized algorithm
is faster than the more general Algorithm 3). Besides this, we did no more attempts to
fine-tune our implementation for efficiency. Thus, the set A∗(f) was always calculated by
iterating through all tuples. SAC was checked on all active tuples without warm-starting or
using any faster SAC algorithm than SAC1 [2, 10]. Perhaps most importantly, we did not
implement inter-iteration warm-starting as in [31, 11], i.e., after updating the weights on
line 6 of Algorithm 3, some deactivating directions in the sequence which were not used to
compose the improving direction may be preserved for the next iteration instead of being
computed from scratch. Except for computing deactivating vectors, the code was the same
for VSAC-SR and VCC-SR. We implemented everything in Java.

7 Concluding Remarks

We have proposed a method to compute upper bounds on the (maximization version of) WCSP.
The WCSP is formulated as a linear program with an exponential number of constraints,
whose feasible solutions are super-reparametrizations of the input WCSP instance (i.e.,
WCSP instances with the same structure and greater or equal objective values). Whenever
the CSP formed by the active (i.e., maximal in their weight functions) tuples of a feasible
WCSP instance is unsatisfiable, there exists an improving direction (in fact, a certificate
of unsatisfiability of this CSP) for the linear program. As this approach provides only a
subset of all possible improving directions, it can be seen as a local search. We showed how
these improving directions can be generated by constraint propagation (or, more generally,
by other methods to prove unsatisfiability of a CSP).

Special cases of our approach are the VAC / Augmenting DAG algorithm [5, 18, 32] which
uses arc consistency and the algorithm in [17] which uses cycle consistency. We have newly
implemented the approach for singleton arc consistency, resulting in VSAC-SR algorithm.
When compared to existing soft local consistency methods on a public dataset, VSAC-SR
provides comparable or better bounds for many instances.

The approach can be straightforwardly extended to WCSPs with different domain sizes,
weight functions of any arities, and some weights equal to minus infinity (i.e., some constraints
being hard). Note in particular that SAC is not restricted to binary CSPs. Of course, further
experiments would be needed to evaluate the quality of the bounds in this case.

Our approach in general requires to store all the weights of the super-reparametrized
WCSP instance. This may be a drawback when the domains are large and/or the weight
functions are not given explicitly as a table of values but rather by an algorithm (oracle).

We expect our improved bounds to be useful to prune the search space during branch-
and-bound search, when solving WCSP instances to optimality. However, we have done
no experiments with this, so it is open whether during search the tighter bounds would
outweigh the higher complexity of the algorithm. We leave this for the future research. Our
approach can be also useful to solve more WCSP instances even without search (similarly
as the VAC algorithm solves all supermodular WCSPs without search) or, given a suitable
primal heuristic, to solve WCSP instances approximately.
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Table 1 Results on instances from Cost Function Library: Average normalized bounds.
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/biqmaclib/ 157 0.02 0.11 0.90 0.22 0.92 0.83 0.81 0.79 0.81
/crafted/academics/ 8 0.88 0.88 0.97 0.95 0.88 0.88 0.88 0.88 1.00
/crafted/auction/paths/ 420 0.00 0.09 0.91 0.35 0.99 0.45 0.68 0.64 0.57
/crafted/auction/regions/ 411 0.00 0.05 0.99 0.10 0.98 0.08 0.18 0.23 0.13
/crafted/auction/scheduling/ 419 0.00 0.02 1.00 0.09 0.80 0.41 0.38 0.41 0.24
/crafted/coloring/ 33 0.94 0.94 0.99 0.97 0.98 1.00 1.00 1.00 0.99
/crafted/feedback/ 6 0.00 0.00 0.54 0.58 0.71 0.49 0.53 0.51 0.72
/crafted/kbtree/ 1800 0.25 0.29 0.60 0.67 0.80 0.73 0.81 0.76 0.89
/crafted/maxclique/dimacs_maxclique/ 49 0.06 0.24 0.98 0.39 0.87 0.39 0.50 0.51 0.55
/crafted/maxcut/spinglass_maxcut/unweighted/ 5 0.00 0.00 1.00 0.42 0.15 0.15 0.15 0.15 0.15
/crafted/maxcut/spinglass_maxcut/weighted/ 5 0.00 0.00 1.00 0.38 0.17 0.17 0.17 0.17 0.17
/crafted/modularity/ 6 0.17 0.19 0.38 0.25 0.99 0.96 0.94 0.96 0.97
/crafted/planning/ 65 0.00 0.54 0.94 0.72 0.32 0.07 0.09 0.07 0.17
/crafted/sumcoloring/ 43 0.04 0.15 0.47 0.50 0.81 0.53 0.63 0.64 0.61
/crafted/warehouses/ 49 0.35 0.99 1.00 0.99 0.35 0.42 0.42 0.42 0.42
/qaplib/ 5 0.40 0.40 0.40 0.41 0.99 0.97 0.97 0.98 0.97
/qplib/ 23 0.00 0.10 0.96 0.38 0.27 0.25 0.25 0.24 0.25
/random/maxcsp/completeloose/ 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
/random/maxcsp/completetight/ 50 0.00 0.12 0.57 0.72 0.88 0.94 0.99 0.69 0.76
/random/maxcsp/denseloose/ 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
/random/maxcsp/densetight/ 50 0.02 0.14 0.52 1.00 0.68 0.48 0.49 0.52 0.60
/random/maxcsp/sparseloose/ 90 0.96 0.96 1.00 0.96 0.96 0.96 0.96 0.96 0.96
/random/maxcsp/sparsetight/ 50 0.01 0.12 0.54 1.00 0.64 0.40 0.40 0.43 0.51
/random/maxcut/random_maxcut/ 400 0.00 0.00 0.77 0.13 0.95 0.98 0.98 0.97 0.99
/random/mincut/ 500 0.09 1.00 1.00 1.00 0.10 0.10 0.10 0.10 0.10
/random/randomksat/ 493 0.01 0.02 0.75 0.22 0.95 0.91 0.89 0.86 0.87
/random/wqueens/ 6 0.00 0.52 0.96 0.94 0.48 0.12 0.29 0.13 0.72
/real/celar/ 23 0.00 0.05 0.08 0.16 0.97 0.66 0.66 0.78 0.95
/real/maxclique/protein_maxclique/ 1 0.00 0.00 1.00 0.03 0.93 0.04 0.04 0.08 0.04
/real/spot5/ 1 0.00 0.08 1.00 0.49 1.00 0.74 0.66 0.41 0.74
/real/tagsnp/tagsnp_r0.5/ 23 0.04 0.86 0.95 0.86 0.31 0.31 0.33 0.29 0.46
/real/tagsnp/tagsnp_r0.8/ 80 0.13 0.66 0.91 0.68 0.29 0.39 0.38 0.33 0.47
Average over all groups 5371 0.20 0.36 0.82 0.58 0.72 0.56 0.58 0.56 0.62
Average over groups with ≥ 5 instances 5369 0.21 0.38 0.80 0.60 0.71 0.57 0.59 0.58 0.63

Table 2 Results on instances from Cost Function Library: Average CPU time in seconds.
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/biqmaclib/ 157 0.11 0.12 180.07 34.60 83.25 1240.00 1241.29 1242.16 1271.86
/crafted/academics/ 8 0.11 0.11 28.61 1.04 29.08 121.44 120.86 108.08 104.47
/crafted/auction/paths/ 420 0.04 0.04 1.96 0.83 1.92 0.19 0.23 0.48 0.64
/crafted/auction/regions/ 411 0.20 0.32 32.14 9.45 673.42 49.85 51.37 102.61 110.48
/crafted/auction/scheduling/ 419 0.10 0.12 16.22 2.03 49.85 26.90 26.89 32.06 32.30
/crafted/coloring/ 33 0.09 0.10 4.99 1.40 0.20 545.50 545.50 545.51 545.50
/crafted/feedback/ 6 0.70 0.70 3588.39 3600.11 11.64 1860.89 1874.08 1875.93 1873.07
/crafted/kbtree/ 1800 0.02 0.02 3.13 11.25 0.10 0.04 0.05 0.06 0.07
/crafted/maxclique/dimacs_maxclique/ 49 0.71 1.32 279.08 126.90 955.60 1345.67 1342.14 1429.73 1428.12
/crafted/maxcut/spinglass_maxcut/unweighted/ 5 0.02 0.02 0.82 0.44 0.02 0.01 0.01 0.01 0.01
/crafted/maxcut/spinglass_maxcut/weighted/ 5 0.02 0.02 1.09 0.53 0.02 0.01 0.01 0.01 0.01
/crafted/modularity/ 6 0.19 0.29 1023.48 127.39 66.25 706.30 783.02 741.91 1442.57
/crafted/planning/ 65 0.16 0.29 638.85 60.62 7.41 0.93 0.96 2.33 4.73
/crafted/sumcoloring/ 43 1.29 1.94 727.49 963.61 255.72 1508.37 1508.36 1509.34 1512.68
/crafted/warehouses/ 49 4.10 9.48 735.80 735.83 4.09 29.48 29.54 28.80 29.82
/qaplib/ 5 0.08 0.09 119.05 278.53 7.38 1448.63 1444.95 1450.09 1449.22
/qplib/ 23 0.13 0.14 255.85 43.11 195.32 626.25 626.24 626.27 626.36
/random/maxcsp/completeloose/ 50 0.06 0.06 1.31 0.16 0.48 0.09 0.10 0.19 0.18
/random/maxcsp/completetight/ 50 0.02 0.03 6.35 12.68 0.47 0.21 0.25 0.31 0.33
/random/maxcsp/denseloose/ 50 0.02 0.02 166.78 0.06 0.11 0.03 0.03 0.03 0.03
/random/maxcsp/densetight/ 50 0.02 0.02 4.20 17.38 0.10 0.06 0.07 0.07 0.08
/random/maxcsp/sparseloose/ 90 0.03 0.03 611.38 0.05 0.06 0.04 0.04 0.04 0.04
/random/maxcsp/sparsetight/ 50 0.02 0.02 11.00 9.74 0.06 0.04 0.05 0.05 0.05
/random/maxcut/random_maxcut/ 400 0.01 0.01 0.73 0.15 0.04 0.03 0.03 0.05 0.07
/random/mincut/ 500 1.09 2.43 14.40 86.22 1.12 0.88 0.87 0.87 0.87
/random/randomksat/ 493 0.02 0.02 3.42 0.17 0.13 0.07 0.10 0.16 0.31
/random/wqueens/ 6 1.33 1.49 992.85 502.42 644.87 1800.15 1800.20 1800.18 1800.60
/real/celar/ 23 0.27 0.28 1798.51 2972.69 66.56 300.76 219.91 495.26 1066.87
/real/maxclique/protein_maxclique/ 1 0.26 0.44 25.24 6.77 1196.62 114.62 114.99 215.30 220.81
/real/spot5/ 1 0.01 0.01 0.62 0.08 0.11 0.03 0.03 0.04 0.04
/real/tagsnp/tagsnp_r0.5/ 23 4.83 378.77 3338.53 2897.83 239.38 3155.96 3148.66 3172.58 3295.19
/real/tagsnp/tagsnp_r0.8/ 80 1.52 22.82 1239.73 858.83 90.05 195.12 206.76 359.55 409.88
Average over all groups 5371 0.55 13.17 495.38 417.59 143.17 471.21 471.49 491.88 538.35
Average over groups with ≥ 5 instances 5369 0.58 14.04 527.54 445.20 112.82 498.80 499.08 517.49 566.88

CP 2021



23:16 Bounds on WCSPs Using Constraint Propagation and Super-Reparametrizations

References
1 Dhruv Batra, Sebastian Nowozin, and Pushmeet Kohli. Tighter relaxations for MAP-MRF

inference: A local primal-dual gap based separation algorithm. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, pages 146–154, 2011.

2 Christian Bessiere, Stephane Cardon, Romuald Debruyne, and Christophe Lecoutre. Efficient
algorithms for singleton arc consistency. Constraints, 16(1):25–53, 2011.

3 Christian Bessiere and Romuald Debruyne. Theoretical analysis of singleton arc consistency.
In Workshop on Modelling and Solving Problems with Constraints, pages 20–29, 2004.

4 Martin C. Cooper. Cyclic consistency: a local reduction operation for binary valued constraints.
Artificial Intelligence, 155(1-2):69–92, 2004.

5 Martin C. Cooper, Simon de Givry, Martí Sanchez, Thomas Schiex, Matthias Zytnicki, and
Tomáš Werner. Soft arc consistency revisited. Artificial Intelligence, 174(7-8):449–478, 2010.

6 Martin C. Cooper, Simon de Givry, and Thomas Schiex. Optimal soft arc consistency. In
Proceedings of the 20th International Joint Conference on Artifical Intelligence, volume 7,
pages 68–73, 2007.

7 Martin C. Cooper, Marie de Roquemaurel, and Pierre Régnier. A weighted CSP approach to
cost-optimal planning. AI Communications, 24(1):1–29, 2011.

8 https://forgemia.inra.fr/thomas.schiex/cost-function-library, commit 356bbb85.
9 Simon De Givry, Federico Heras, Matthias Zytnicki, and Javier Larrosa. Existential arc

consistency: Getting closer to full arc consistency in weighted CSPs. In IJCAI, volume 5,
pages 84–89, 2005.

10 Romuald Debruyne and Christian Bessiere. Some practicable filtering techniques for the
constraint satisfaction problem. In Proceedings of IJCAI’97, pages 412–417, 1997.

11 Tomáš Dlask. Minimizing convex piecewise-affine functions by local consistency techniques.
Master’s Thesis, 2018.

12 Tomáš Dlask and Tomáš Werner. Bounding linear programs by constraint propagation:
Application to Max-SAT. In International Conference on Principles and Practice of Constraint
Programming. Springer, 2020.

13 Fabio Furini, Emiliano Traversi, Pietro Belotti, Antonio Frangioni, Ambros Gleixner, Nick
Gould, Leo Liberti, Andrea Lodi, Ruth Misener, Hans Mittelmann, et al. QPLIB: a library of
quadratic programming instances. Mathematical Programming Computation, 11(2):237–265,
2019.

14 Amir Globerson and Tommi S Jaakkola. Fixing max-product: Convergent message passing
algorithms for MAP LP-relaxations. In Advances in Neural Information Processing Systems,
pages 553–560, 2008.

15 Eric Grégoire, Bertrand Mazure, and Cédric Piette. On finding minimally unsatisfiable cores
of CSPs. International Journal on Artificial Intelligence Tools, 17(04):745–763, 2008.

16 Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy minimization.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10):1568–1583, 2006.

17 Nikos Komodakis and Nikos Paragios. Beyond loose LP-relaxations: Optimizing MRFs by
repairing cycles. In European conference on computer vision, pages 806–820. Springer, 2008.

18 V. K. Koval and M. I. Schlesinger. Dvumernoe programmirovanie v zadachakh analiza
izobrazheniy (Two-dimensional programming in image analysis problems). Automatics and
Telemechanics, 8:149–168, 1976. In Russian.

19 Hiep Nguyen, Christian Bessiere, Simon de Givry, and Thomas Schiex. Triangle-based
consistencies for cost function networks. Constraints, 22(2):230–264, 2017.

20 Bogdan Savchynskyy. Discrete graphical models – an optimization perspective. Foundations
and Trends in Computer Graphics and Vision, 11(3-4):160–429, 2019.

21 M. Schlesinger. Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh
(syntactic analysis of two-dimensional visual signals in noisy conditions). Kibernetika, 4(113-
130):2, 1976.

https://forgemia.inra.fr/thomas.schiex/cost-function-library
356bbb85


T. Dlask, T. Werner, and S. de Givry 23:17

22 H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal of Discrete
Mathematics, 3(3):411–430, 1990.

23 David Sontag and Tommi Jaakkola. Tree block coordinate descent for MAP in graphical
models. In Artificial Intelligence and Statistics, pages 544–551, 2009.

24 David Sontag, Talya Meltzer, Amir Globerson, Tommi Jaakkola, and Yair Weiss. Tightening
LP relaxations for MAP using message passing, 2008.

25 https://software.cs.uni-koeln.de/spinglass.
26 https://miat.inrae.fr/toulbar2.
27 Siddharth Tourani, Alexander Shekhovtsov, Carsten Rother, and Bogdan Savchynskyy.

MPLP++: Fast, parallel dual block-coordinate ascent for dense graphical models. In Proceed-
ings of the European Conference on Computer Vision, pages 251–267, 2018.

28 Siddharth Tourani, Alexander Shekhovtsov, Carsten Rother, and Bogdan Savchynskyy. Tax-
onomy of dual block-coordinate ascent methods for discrete energy minimization. In In-
ternational Conference on Artificial Intelligence and Statistics, pages 2775–2785. PMLR,
2020.

29 Stanislav Živný. The Complexity of Valued Constraint Satisfaction Problems. Cognitive
Technologies. Springer, 2012.

30 Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

31 Tomáš Werner. A linear programming approach to max-sum problem: A review. Technical
Report CTU-CMP-2005-25, Center for Machine Perception, Czech Technical University,
December 2005.

32 Tomáš Werner. A linear programming approach to max-sum problem: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(7):1165–1179, July 2007.

33 Tomáš Werner. Revisiting the linear programming relaxation approach to Gibbs energy
minimization and weighted constraint satisfaction. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32(8):1474–1488, August 2010.

34 Tomáš Werner. Marginal consistency: Upper-bounding partition functions over commutative
semirings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(7):1455–1468,
July 2015.

A Appendix

2

2

5

5

2

2

3

3

7
7

216

6

55

0
1
1

0

4
1
0

4

(a) WCSP f , A∗(f) unsatisfiable.

0

0

0

0

0

0

0

0

0
0

110

0

11

0
-1
-1

0

0
1
1

0

(b) Certificate h of unsatisfiability
of A∗(f) for f .
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(c) WCSP f +h, B(f +h) < B(f).

Figure 1 Example of a single iteration of the scheme. Variables (elements of V ) are depicted as
rounded rectangles, tuples (elements of T ) as circles and line segments, and weights ft are written
next to the circles and line segments. Black circles and solid lines depict active tuples, dashed lines
depict inactive tuples.
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Proof of Proposition 12. First, if d′
t ≤ −1 for all t ∈ S, then d′′ = d′ satisfies the required

condition immediately. Otherwise, δ > 0 since dt < 0 for all t ∈ S by definition and
−1 − d′

t < 0 due to d′
t > −1 in definition of δ. We will show that d′′ satisfies the conditions

in Definition 5.
For t ∈ S with d′

t ≤ −1, d′′
t = d′

t + δdt < d′
t ≤ −1 because δdt ≤ 0. If t ∈ S and d′

t > −1,
then δ ≥ (−1 − d′

t)/dt, so d′′
t = d′

t + δdt ≤ −1. Summarizing, we have d′′
t < 0 for all t ∈ S.

For t ∈ S′, d′
t < 0 and dt = 0 holds by definition due to S′ ⊆ A − S, thus d′′

t = d′
t + δdt =

d′
t < 0 which together with the previous paragraph yields condition (a).

Due to A − S ⊇ (A − S) − S′ = A − (S ∪ S′), for any t ∈ A − (S ∪ S′) we have dt = 0
and d′

t = 0, which implies d′′
t = d′ + δd = 0, thus verifying condition (b).

To show (c): for any x ∈ DV , F (x |d′′) = F (x |d′) + δF (x |d) ≥ 0 by δ ≥ 0. ◀

Proof of Theorem 13. The fact that M ⊇
⋃

r∈R Sr is obvious due to Smax R ⊆ M by
initialization on line 1 and Sr ⊆ M for any r ∈ R, r < max R because in such case the
update on line 6 is performed.

It remains to show that d′ is M -deactivating, which we will do by induction. We claim that
vector d′ is always M -deactivating direction for Ar on line 2 and M -deactivating direction
for Ar+1 on line 4.

Initially we have d′ = dr, so d′ is Sr-deactivating (i.e., M -deactivating since M = Sr

before the loop is entered) for Ar. Also, when vector d′ is first queried on line 4, r decreased
by 1 due to update on line 3, so d′ is M -deactivating for Ar+1. The required property thus
holds when the condition on line 4 is first queried with r = max R − 1.

We proceed with the inductive step. If the condition on line 4 is not satisfied, then
necessarily d′

t = 0 for all t ∈ Sr. So, if d′ is M -deactivating for Ar+1, then it is also
M -deactivating for Ar = Ar+1 ∪ Sr, as can be seen from Definition 5.

If the condition on line 4 is satisfied, d′ is M -deactivating for Ar+1 before the update
on lines 5-6. Since Ar+1 = Ar − Sr and dr is Sr-deactivating for Ar, Proposition 12 can be
applied to dr and d′ to obtain an (M ∪ Sr)-deactivating direction for Ar. After updating M

on line 6, it becomes M -deactivating for Ar.
Eventually, when r = 0, d′ is M -deactivating for A0 = A by line 1 in Algorithm 1. ◀

Proof of Theorem 15. We have β > 0 because dt′ > 0 implies t′ is an inactive tuple, so
maxt∈U(t′) ft > ft′ . We have γ > 0 because in ft − ft′ tuple t is always active and t′ is
inactive, hence ft > ft′ .

To prove (a), let A∗(f) ∩ U ̸⊆ S, so there is t∗ ∈ U such that t∗ ∈ A∗(f) and t∗ /∈ S.
Hence, by Definition 5, dt∗ = 0 and value maxt∈U f ′

t does not decrease for any α since
f ′

t∗ = ft∗ + αdt∗ = ft∗ . To show that the maximum does not increase, consider a tuple t′ ∈ U

such that dt′ > 0 (due to α ≥ 0, tuples with dt′ ≤ 0 can not increase the maximum). It
follows that α ≤ β ≤ (maxt∈U ft − ft′)/dt′ , so f ′

t′ = ft′ + dt′α ≤ maxt∈U ft.
To prove (b), let A∗(f) ∩ U ⊆ S. For all t ∈ U ∩ S, we have f ′

t = ft + αdt < ft by dt < 0
and α > 0, i.e., maxt∈U∩S f ′

t < maxt∈U∩S ft. We proceed to show that f ′
t ≤ maxt′∈U∩S f ′

t′

for every t′ ∈ U − S. Let t∗ ∈ U ∩ S satisfy f ′
t∗ = maxt∈U∩S f ′

t . If dt′ > dt∗ , α ≤ γ ≤
(ft∗ − ft′)/(dt′ − dt∗) implies f ′

t∗ = ft∗ + αdt∗ ≥ ft′ + αdt′ = f ′
t′ . If dt′ ≤ dt∗ , then also

αdt′ ≤ αdt∗ and f ′
t′ = ft′ + αdt′ ≤ ft∗ + αdt∗ = f ′

t∗ holds for any α ≥ 0 since ft′ < ft∗ . As a
result, maxt′∈U−S f ′

t′ ≤ maxt∈U∩S f ′
t < maxt∈U∩S ft = maxt∈U ft.

To prove (c), let A∗(f) ∩ U ̸⊆ S. Following (a), we have maxt∈U ft = maxt∈U f ′
t . If

t ∈ (A∗(f) − S) ∩ U , then dt = 0 and such tuples remain active by f ′
t = ft. Tuples

t ∈ S ∩ U become inactive since f ′
t = ft + dtα < ft = maxt′∈U ft′ by dt < 0 and α > 0.

Tuples t /∈ A∗(f) either satisfy dt ≤ 0 and can not become active or satisfy dt > 0 and by
α < β ≤ (maxt′∈U ft′ − ft)/dt, f ′

t = ft + dtα < maxt′∈U ft′ , so t /∈ A∗(f ′). ◀
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