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—— Abstract

High-performance Computing (HPC) systems have become essential instruments in our modern
society. As they get closer to exascale performance, HPC systems become larger in size and more
heterogeneous in their computing resources. With recent advances in AI, HPC systems are also
increasingly being used for applications that employ many short jobs with strict timing requirements.
HPC job dispatchers need to therefore adopt techniques to go beyond the capabilities of those
developed for small or homogeneous systems, or for traditional compute-intensive applications. In
this paper, we present a job dispatcher suitable for today’s large and heterogeneous systems running
modern applications. Unlike its predecessors, our dispatcher solves the entire dispatching problem
using Constraint Programming (CP) with a model size independent of the system size. Experimental
results based on a simulation study show that our approach can bring about significant performance
gains over the existing CP-based dispatchers in a large or heterogeneous system.
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1 Introduction

Motivations

High Performance Computing (HPC) is the application of supercomputers to solve complex
computational problems, which has become indispensable for scientific progress, industrial
competitiveness, economic growth and quality of life in our modern society [18, 22]. An HPC
system is a network of computing nodes, each containing several powerful CPUs and a large
pool of memory. The world’s fastest systems today can reach hundreds of petaFLOPs (10%°
floating-point operations per second) and they are expected to reach soon the exaFLOP level
(10'® FLOPs) [16]. Indeed, today’s most powerful system Fugaku has recently increased
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Figure 1 Eurora, KIT ForHLR II and top 500 HPC systems of June 2021.

its performance on a mixed-precision HPC-AI benchmark to 2 exaFLOPs.! In their march
towards this elevated performance, HPC systems are getting larger in size and becoming
more heterogeneous in their computing resources in an effort to keep the power consumption
at bay. Figure 1 shows in blue dots the size of today’s top 500 systems' and their number of
CPU cores and co-processor cores (with the green triangles referring to the top 3 systems).
The majority of these systems have thousands of nodes with tens and hundreds of thousands
of CPU cores in total. Around 30% of them employ energy-efficient accelerators such as
GPUs and Many Integrated Cores (MICs), in addition to the traditional CPUs and memory.
The number of co-processor cores are above ten thousand in most of such systems.

Central to the efficiency and the Quality-of-Service (QoS) of an HPC system is the job
dispatcher which decides the jobs to run next among those waiting in the queue (scheduling)
and on which resources to run them (allocation). This is an on-line decision making problem
because the process is repeated periodically as new jobs arrive to the system while some
previously dispatched jobs are still running. Traditionally, HPC job dispatchers have been
designed for compute-intensive jobs requiring days to complete. There is an increasing trend
where HPC systems are being used for modern applications that employ many short jobs
(< 1 h), such as data analytics as data is being streamed from a monitored system [23].
In such application scenarios, response times are critical for acceptable user experience,
hence job dispatchers need to rapidly process a large number of short jobs in making on-line
decisions. Though optimal dispatching is a critical requirement in HPC systems, the on-line
job dispatching is an NP-hard optimization problem [5].

In this paper, we propose an on-line job dispatcher suitable for today’s large and hetero-
geneous HPC systems running modern applications. Differently from the existing techniques
based on heuristic algorithms [11, 27], we exploit the power of Constraint Programming
(CP), which has a long track record of success in job scheduling and resource allocation
problems [2]. While past work had already used CP in this context, the focus was on small
or homogeneous systems where the nodes have only CPUs and memory.

Related work

The first CP-based HPC dispatcher was introduced in [3] and shown to obtain better solutions
compared to a Priority Rule-Based (PRB) dispatcher [9, 15], which is widely adopted in
commercial HPC workload management systems such as Altair PBS Professional [1] and
SLURM Workload Manager [25]. The dispatcher was later embedded as a plug-in within
the software framework of PBS professional [8]. Another CP-based dispatcher with the
additional feature of limiting system power consumption was presented in [7, 6] and proved
to outperform a PRB dispatcher on the instances with tight power capping values.

! https://www.top500.org
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Subsequently, [13] presented two CP-based on-line job dispatchers for HPC systems,
which we here refer to as PCP’19 and HCP’19. They were built on the previous CP-based
dispatchers [3, 7] and redesigned for satisfying the challenges of systems running modern
applications that employ many short jobs and that have strict timing requirements. A
simulation study [13] based on a workload trace collected from an heterogeneous system
Eurora [10] reveals that PCP’19 and HCP’19 yield substantial improvements over the original
dispatchers [3, 7] and provide a better QoS compared to Eurora’s dispatcher [17], which is a
part of PBS Professional.

PCP’19 and HCP’19 are, however, not designed for today’s large and heterogeneous
systems. In PCP’19, the number of decision variables in the CP model increases proportionally
to the number of nodes and the possible allocations of jobs in each node. Figure 1 shows
where the Eurora system stands compared to today’s top 500 systems. As we will show in
our experimental results, PCP’19 cannot be used in a larger system like KIT ForHLR 11?2,
whose size is comparable to that of the majority of the top systems.

In HCP’19 instead, the problem is decoupled into scheduling and allocation problems.

Only the scheduling problem is addressed using CP, and this is done without representing
the nodes in the model by treating the resources of the same type across all nodes as a
pool of resources. The allocation problem is then solved with a heuristic algorithm using
the best-fit strategy [24], while fixing any inconsistencies introduced during scheduling due
to the absence of the nodes in the model. The decoupled approach drops the number of
decision variables dramatically compared to PCP’19, enabling HCP’19 to scale to larger
systems. However, it mainly suits to homogeneous systems where all the nodes have only
CPUs and memory, and thus the actual node of an allocated resource is not relevant. In an
heterogeneous system, on the contrary, some nodes contain scarce resource types, such as
GPUs and MICs, and allocating their CPUs carelessly (i.e., to jobs that do not need any of
GPUs and MICs) may cause resource fragmentation [20]. The decoupled approach therefore
may result in several iterations between scheduling and allocation in an heterogeneous system,
decreasing the dispatching performance, as we will show in our experimental results with
Eurora. The advantages of tackling the entire problem using CP, as was done in PCP’19,
are that scheduling and allocations decisions are made jointly and that with the presence of
nodes in the model, allocation strategies dedicated for heterogeneous systems [20] can be
encoded as constraints.

Contributions

We exploit the strengths of PCP’19 and HCP’19 to overcome their limitations. We tackle
the entire dispatching problem using CP, and to do that we present a new allocation model
where the number of variables is system size independent. We combine this model with the
scheduling model common to PCP’19 and HCP’19, and showcase the practical value of our
approach. Our contributions are (i) a new HPC application domain emerging from today’s
large and heterogeneous systems to push the limits of complete methods for optimization, (ii)
a novel CP-based online job dispatcher (PCP’21) suitable for such systems (iii) experimental
evidence of the benefits of PCP’21 over PCP’19 and HCP’19 supported by a simulation
study based on workload traces collected from the Eurora and KIT ForHLR II systems.

2 https://www.scc.kit.edu/dienste/forhlr2.php
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Organization

The rest of the paper is organized as follows. In Section 2, we introduce the on-line job
dispatching problem in HPC systems, and describe briefly the CP scheduling and allocation
models of PCP’19 as we will later use the same scheduling model in PCP’21 and contrast
the allocation model with ours. In Section 3, we present our new CP allocation model and
search algorithm. In Sections 4 and 5, we detail our simulation study and present our results.
We conclude and describe the future work in Section 6.

2 Formal Background

2.1 On-line job dispatching problem in HPC systems

A job is a user request in an HPC system and consists of the execution of a computational
application over the system resources. A set of jobs is a workload. A job has a name, required
resource types (cores, memory, etc) to run the corresponding application, and an ezpected
duration which is the maximum time it is allowed to execute on the system. An HPC system
typically receives multiple jobs simultaneously from different users and places them in a
queue together with the other waiting jobs (if there are any). The waiting time of a job is
the time interval during which the job remains in the queue until its execution time.

An HPC system has N nodes, with each node n € N having a capacity cap,, , for each
resource type r € R. Each job ¢ in the queue @ has an arrival time ¢;, maximum number
of requested nodes rn; and a demand reg; , giving the amount of resources required from r
during its expected duration d;. The resource request of i is distributed among rn; identical
job units, preserving for each one reg; ,/rn; amount of resources from r, thus allowing to
execute the rn; job units in parallel. Job units can be tasks that are spanned across multiple
nodes and that communicate between them during their entire execution (for instance an
MPT job). A specific resource can be used by one job unit only. We have rn; = 1 for serial
jobs and rn; > 1 for parallel jobs. The units of a job can be allocated on the same or different
nodes, depending on the system availability. On-line job dispatching takes place at a specific
time ¢ for (a subset of) the queued jobs Q. The on-line job dispatching problem at a time ¢
consists in scheduling each job ¢ by assigning it a start time s; > ¢, and allocating i to the
requested resources during its expected duration d;, such that the capacity constraints are
satisfied: at any time in the schedule, the capacity cap, , of a resource r is not exceeded
by the total demand reg; , of the jobs ¢ allocated on it, taking into account the presence of
jobs already in execution. The objective is to dispatch in the best possible way according
a measure of QoS, such as with minimum waiting times s; — ¢; or the slowdown (%)
for the jobs, which is directly perceived by the HPC users. A solution to the problem is a
dispatching decision. Once the problem is solved, only the jobs with s; = ¢ are dispatched.
The remaining jobs with s; > t are queued again with their original ¢;. During execution, a
job exceeding its expected duration is killed. It is the workload management system that
decides the dispatching time t and the subsequent dispatching times.

2.2 PCP’19 dispatcher

Scheduling model

The scheduling problem is modeled using Conditional Interval Variables (CIVs) [19]. A CIV
7; € T represents a job i and defines the time interval during which i runs. At a dispatching
time ¢, there may already be jobs in execution which were previously scheduled and allocated.
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We refer to such jobs as running jobs. The scheduling model considers in the 7 variables both
the running jobs and a subset @ C @ of the queued jobs that can start execution as of time
t. The properties s(7;) and d(7;) correspond respectively to the start time and the duration
of the job i. All job units of a job ¢ start at the same time, therefore they share the same
7;. Since the actual runtime (real) duration d} of a running or queued job ¢ is unknown at
the modeling time, PCP’19 uses an expected duration d; for d(7;), which is supplied by a job
duration prediction method. For the queued jobs, we have d(7;) = d;. For the running jobs
instead, d(7;) = max(1, s(7;) + d; — t) taking into account the possibility that d; < df due to
underestimation. While the start time of the running jobs have already been decided, the
queued jobs have s(7;) € [t, eoh], where eoh is the end of the worst-case makespan calculated
ast+ ) d(m).

The capacity constraints are enforced via cumulative([s(7;)], [d(7;)], [req; |, Tcap,), for
all n € N and for all r € R, with Tcap, = ZnN capp,r- The objective function minimizes

the total job slowdown Zﬂ s(r)=ai+d(mi) ' The gearch for solutions focuses on the jobs with

d(7i)
highest priority where the priority of a job i is its slowdown % at the dispatching

time t. We note that HCP’19 uses the same scheduling model and search.

Allocation model

The allocation model replicates each 7; variable p;, times for each n € N, where p; ,, =
min(rn;, min,.c g L%
Ui,n,; Tepresents a possible allocation of a job unit j of ¢ on node n and has s(ui,nﬁj) = s(7y)
and d(u; ;) = d(1;). To define the allocation, the model relies on the execution state

property (z) of CIVs. We have z(u; ;) € [0, 1], meaning that it can be present or not in

|) giving the minimum times a job unit can fit on n. The variable

the solution. Instead for the scheduling variables we have x(7;) = 1 because all of them
need to be scheduled and thus be present in the solution. The model uses the alternative
constraint [19] to restrict the number of variables in U,en[2(u; n,;)] present in the solution
to be the maximum number of requested nodes rn;, that is )y Zj (U p,j) = rn; with
s(1i) = s(win,;) HE x(u; ;) = 1. Additionally, the capacity constraints are enforced for each
n € N and for each r € R as cumulative([s(uin,;)], [d(Win,;)], [req /0], capp,r).

A drawback of this model is its number of variables. While the scheduling model has |Q|
variables, the allocation model has Zie@ > nen Pi.n variables, which increases proportionally

to N (i.e., system size). A minimum of 1 + |N| variables are needed to model a serial job.

Parallel jobs will require even more variables which may create difficulty in large systems
with many parallel jobs.

3 PCP’21: a New CP-based Job Dispatcher

Our dispatcher PCP’21 imports the scheduling model, the objective function and the job
priorities of PCP’19 and contains a new allocation model with |Q|+ 3", o i * | R| variables,
which is system size independent. The number of variables thus depends on the number
of resource types (which is a small value) multiplied by the sum of the requested nodes

(which is usually much smaller than the system size) of all jobs in Q (which is a fixed value).

Next, we present the allocation model and describe how we search on the scheduling and the
allocation variables.

26:5
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Figure 3 Allocation of some jobs on the example system at a dispatching time ¢.

Allocation model

In this new model, we represent the system in a way to emphasize the resources instead
of the nodes as in the previous model. We consider all the resources of a certain type r in
an ordered array by following the sequence of the nodes. This is exemplified in Figure 2
which represents a system with 4 nodes. Each node has 4 cores and 4 units of memory. The
first two nodes have 2 GPUs, and the next two has 2 MICs. The array labelled as GPU,
for instance, lists all the GPU resources available in the system. There are in total 2 * 2
GPUs, the first two in the array are from the first node, the third and the forth from the
second node. An array position refers to a specific resource of type r in a node n, which is
highlighted with a colour and a number in Figure 2.

Let us assume that, at a dispatching time ¢, a job J; is still running, and three more jobs
Jo, J3, Jy are extracted from the queue. As for their resource requests, let us assume that J;
requires 3 memory units, 1 GPU and 1 core; J5 4 memory units, 2 GPUs and 2 cores; J3 2
memory units and 8 cores via two job units J3; and J32; and J4 1 memory unit, 1 MIC and
1 core. Figure 3 shows a possible allocation of these jobs in the system after a dispatcher
call at time t. The running job .J; is allocated to the minimum positions available in the
arrays corresponding to the requested resource types, hence it is allocated in node 1 (the
first available node), occupying the first 3 memory, the first GPU and the first core positions
in the corresponding arrays. Since Jy requires two GPUs, it is allocated in the second node,
occupying all the memory and GPU and the first two core positions in the green parts of the
resp. arrays. The job units of J3 do not fit in the same node, so they are equally distributed
to the next two nodes, each occupying the first memory and all the core positions of the
yellow and orange parts of the resp. arrays. As for Jy, it can be allocated only in the last
two nodes, because it needs an MIC. As the cores of these nodes are all occupied, Jy cannot
be allocated and is postponed to the next dispatching time ¢ + 1.

Following this representation, we model the positions of a job unit j of a queued job ¢ on
a resource type r via the variables y; » ;. As we also need to represent the time during which
the allocation is valid, we use a two-dimensional box to model an allocation, as depicted in
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resourcer yers | Mem | MIC | GPU | Core
req i, Tcap,
ird* S J1 1 - 1 1
J2 5 - 3 5
Yirj|----- J3,1 9 - - 9
i i J32 13 - - 13
s(t ;) s(r;))+d(r;) time Ja - - - -

Figure 4 Modelling the allocation of a job unit j of a job ¢ on a resource type r (left), and the
assignment of the y; , ; variables at time ¢ in the example allocation (right).

Figure 4 (left). The y-axis gives the available positions and the x-axis gives the time interval
during which the resource is consumed. The vertices of the box are defined by the variables
in the origin: s(7;) which is the starting time of the job ¢ and y; ,; which is the starting
position of the allocation. The box spans from the origin by the expected duration d(7;) in
the x-axis, instead in the y-axis by reg; . /rn; which is the required resource amount. As for
the domains, we have D(y;,,;) = [1, Tcap,], where Tcap, = ), .y capn . The domain of
the starting time is the same as in the scheduling model, that is D(s(7;)) = [¢t, eoh].

Figure 4 (right) shows the assignment of the y; , ; variables at time ¢ in our example
allocation. Take for instance Jo which has one job unit (itself) and requires 4 memory units,
2 GPU and 2 cores. As we saw in Figure 3, it occupies in the Memory array the 5" to the
9*h positions, in the GPU array the 3'¢ to the 5", and in the Core array the 5 to the 7th.
Consequently, the corresponding y; . ; variables are assigned to the starting positions 5, 3
and 5, and the relative boxes span in the y-axis to the last positions 9, 5, and 7, respectively.

We also need to model the running jobs. To a job unit j of a job ¢ on a resource type r,
which was previously assigned the resources of a certain node, we now assign the minimum
available position among those that refer to the same node. We have already exemplified
this with J; in Figure 3. These resources are allocated to ¢ during its d(7;). If multiple job
units are assigned to the same node, the resources are occupied consecutively, leaving the
higher indices free.

To enforce that a resource is used by one job unit only, we forbid the
boxes to overlap via the diffn constraint [4]. For each » € R, we have
diffn([s(7)], [d(7:)], [¥ir ;] s [regir/rni]). As the domain size of the y; . ; variables depends
on the system size and can be large, we add implied constraints to shrink them. They
are the classical cumulative constraints used together with a diffn constraint in pack-
ing problems, as was also done in [4]: cumulative([s(r;)], [d(7;)], [req; r/mn;], Tcap,) and
cumulative([y; ], [regi»/rni], [s(7:)], eoh). Given that the jobs units of jobs with rn; > 1
have identical resource requests, their allocations are symmetric. We post an ordering
constraint on the positions of the jobs unit of a job ¢ on a resource type r to break symmetry:
Yirj < Yirj+1 It is a strict ordering as the position variables take different values.

Finally, we need additional constraints to guarantee that certain allocations are in the
same node. For that, we utilize a mapping array map, for each resource type r, which is
based on the system representation introduced earlier. The positions of map, correspond to
the available resources, indexed by 1 to Tcap, = N €apn,r, and each value in the array is
a number corresponding to a node. To ensure that the allocated resources of a job unit are
in the same node, we post an element constraint, which indexes an array with a variable,
as element(mapy,,Y; ;) = element(map,,,Yir, ;) ¥ri,rs € R, where R is the set of the

26:7
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requested resource types of the job unit j of job i. We use the element constraint also to
enforce that the positions spanning from y; , ; to y; . ; +(req; r /rn;)—1 refer to the same node:
element(mapy, yi,r ;) = element(map,,y;r ; + (reg; /rn;) — 1) Vr € Riff reg; » /rn; > 0.

Search

Similarly to PCP’19 and HCP’19, we use a custom search algorithm derived from the
schedule-or-postpone algorithm [21] to search on the scheduling variables s(7;). At each
decision node, we select the job i whose priority is highest and that can start first, and
assign to s(7;) its earliest start time min(s(7;)). Note that the priorities are calculated once
statically at the dispatching time t before search starts.

Differently from PCP’19 and HCP’19, we interleave the scheduling and the allocation
assignments of a selected job i. After assigning a scheduling variable s(7;), we search on the
allocation variables [y; . ;] of i. We start with the resource » which has the lowest availability
at time ¢. Then we search on [y; , ;] in lexicographical order and assign them their minimum
values min(y; ;), which guarantees consistency with the symmetry breaking constraints on
the allocation variables.

Even though we have designed PCP’21 for systems engaged with heterogeneous workloads,
an heterogeneous system may as well receive a workload with homogeneous resource requests
(i.e., only CPU and memory) which creates symmetry among the requested resources. We
adapt the search algorithm to break symmetry in such a scenario as follows. After a resource
allocation attempt for a job i, if the search fails or wants to find a better solution, it backtracks
to the scheduling variable s(7;), as opposed to backtracking within the [y; , ;] variables.

Following PCP’19 and HCP’19, search is bounded by a time limit 4 due to the problem
complexity. Thus, the best solution returned within the limit is the dispatching decision. If,
however, no satisfiability answer is obtained within the limit, the time limit is extended to
2 % §, as opposed to restarting search with the new time limit 2 x 4 as was done in PCP’19
and HCP’19. This procedure continues until the time limit reaches d,,4,. We suspend the
search if the solution quality did not change after k£ consecutive time limit extensions.

4 Experimental Study

To evaluate the significance of our approach, we conducted an experimental study by
simulating on-line job submission to two HPC systems. We dispatched jobs using PCP’21,
PCP’19, HCP’19, and sought answers to the following questions: (1) how do the dispatchers
compare when they are engaged in a workload with heterogeneous resource requests? (2)
can PCP’19 and PCP’21 scale to a large system? As we said earlier, an heterogeneous
system may as well receive a workload with homogeneous resource requests. We thus sought
an answer also to the following question: (3) how much do we lose by using PCP’21 for a
workload with homogeneous resource requests compared to using HCP’19 which is more
suitable for an homogeneous system? Before we present the answers in Section 5, we describe
in this section the ingredients of our experimental study.

HPC systems and workload datasets

Our study is based on two different workload traces collected from two different HPC systems.
The first system is the Eurora [10], which was in production at CINECA datacenter in Italy
until 2015. With 64 nodes, the system size is small compared to the current trend (see
Figure 1), but the architecture is heterogeneous with each node containing 2 octa-core CPUs,
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16 GB memory, and two of GPU or MIC. To answer the first question, we use the workload
dataset with which PCP’19 and HCP’19 were tested in [13]. It consists of logs over 400,000
jobs submitted during the time period March 2014—August 2015 and is dominated by short
jobs, making up 93.14% of all the jobs. As for resource requests, 22.8% of the jobs require
only CPU and memory while 77.2% need in addition one of GPU or MIC.

The second system is the KIT ForHLR II%, located at Karlsruhe Institue of Technology
in Germany. We use this system to answer the second question because it has 1,173 nodes,
a size comparable to the current trend (see Figure 1). 1,152 of these nodes are thin, each
equipped with 20 cores and 64 GB memory, and the remaining 21 are fat each containing 48
cores, 4 GPUs, and 1 TB memory. Even though a small fraction of the nodes contain GPUs,

we use a workload with homogeneous resource requests to answer also the third question.

The workload dataset is available on-line. 3 It contains logs for 114,355 jobs submitted
during the time period June 2016-January 2018. All the jobs require only CPU and memory,
and 66.26% of them are short (< 1h).

Job duration prediction

We derived the expected durations d; of jobs via three prediction methods. The first is a
data-driven heuristic first proposed in [14] and later was shown to work well with PCP’19
and HCP’19 when simulating the Eurora dataset [13]. The heuristic constructs job profiles
from the workload. Prediction is based on the observation that jobs with similar profiles
have the same duration for long periods of time. For each job, the heuristic searches for the

last job with a similar profile, and uses its duration to predict the duration of the new one.

Each user is analyzed separately. The similar profile is identified using a set of rules. If all
rules fail, then the user-declared wall-time is taken as the predicted duration. In all cases,
the prediction is capped by the wall-time.

Despite being a valid alternative, this method relies on job names, a type of data omitted
in the KIT ForHLR, II and some other public datasets. We thus employed a second heuristic
method that uses the run times of the last two jobs to predict the duration of the next
job [26]. In both methods, the predictions are calculated on-line during the simulation and
the knowledge base is updated upon job termination. The last prediction method is an
oracle which gives the actual runtime (real) durations d] and provides a baseline during the
simulation of both datasets.

Simulation

We used the AccaSim workload management system simulator [12] to simulate the HPC
systems with their workload datasets. Each job submission is simulated by using its available
data, for instance, the owner, the requested resources, and the real duration, the execution
command or the name of the application executed. AccaSim uses the real duration to
simulate the job execution during its entire duration. Therefore job duration prediction
errors do not affect the running time of the jobs with respect to the real workload data. The
dispatchers are implemented using the AccaSim directives to allow them to generate the
dispatching decisions during the system simulation.

3 https://www.cse.huji.ac.il/labs/parallel/workload/logs.html

26:9

CP 2021


https://www.cse.huji.ac.il/labs/parallel/workload/logs.html

26:10

Job Dispatcher for Large and Heterogeneous HPC Systems

Table 1 Times obtained from the Eurora system.

Dispatcher | Avg. disp. time [ms] | Total sim. time [g]
HCP’19-D 392 208,231
PCP’'19-D 511 271,586
PCP’21-D 209 111,373
HCP’19-R 357 189,522
PCP’'19-R 469 249,367
PCP’21-R 256 136,401

Experimental settings

As a CP modelling and solving toolkit, we customized Google OR-Tools* 7.3 by implementing
the alternative constraint and the proposed search algorithm and by making visible some
variables of the solver, and ported it to Python 3.6 to implement PCP’21 in AccaSim. As for
PCP’19 and HCP’19, we used their publicly available implementations®, and carried over
their parameters m = 100, § = 18, d;pqe = 165, k = 2. For the simulation of the KIT ForHLR
IT workload, which has only homogeneous resource requests, we adapted the search algorithm
of PCP’21 to break symmetry among the requested resources as described in Section 3. We
refer to this version of PCP’21 as PCP’21; in the experimental results. All experiments were
performed on a CentOS machine equipped with Intel Xeon CPU E5-2640 Processor and
16GB of RAM. The source code is publicly available at https://git.io/fjial.

5 Experimental Results

In this section, we show our experimental results. In each simulation, we compare the
dispatchers’ performance (in Tables 1 and 2) in terms of (i) the average CPU time spent
in generating a dispatching decision over all dispatcher invocations, including the time for
modeling the dispatching problem instance and searching for a solution, and (ii) the total
simulation time from the first job submission until the last job completion. We also compare
the dispatchers’ QoS (in Figures 5 and 10) in terms of the average slowdown and waiting
times of the jobs. To refer to a dispatcher using a certain job duration prediction method,
we append -D, -L2 or -R to the name of the dispatcher for the data-driven heuristic, the
last-two heuristic and the real duration, respectively.

5.1 Simulation of the Eurora workload

We remind that we simulate a system like Eurora to compare all the dispatchers when they
are engaged in a workload with heterogeneous resource requests. All the dispatchers complete
the simulation. Comparing their performance in Table 1, we can clearly see the benefits
of using PCP’21. With the decoupled approach of HCP’19, the performance drops almost
by half (around 47%) when using -D. We observe a further performance decrease (around
59%) with PCP’19, which could be attributed to its higher number of decisions variables.
PCP’21 is the most efficient dispatcher also when using -R, with gains around 28% and 45%
compared to HCP’19 and PCP’19, resp.

4 https://developers.google.com/optimization/
5 https://git.io/fjial
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Figure 5 Average and error bars showing one std. deviation of slowdown and waiting times [s]
obtained from the Eurora system.

As for the quality of decisions, we observe in Figure 5 that all dispatchers return better
solutions than Eurora’s PBS dispatcher. Among the CP-based dispatchers, PCP’21 results in
the best average slowdown and a substantial decrease in the error when using -D. Otherwise,
the dispatchers have similar (low) slowdown values when using -R and have similar waiting
times when using either of job duration prediction methods.

As a side comment, we note in Table 1 that PCP’21-D performs better than PCP’21-R.
Looking at Figure 5, however, we see that PCP’21-R finds better solutions than PCP’21-D
within the time limit. In the instances of -D, jobs have similar durations (due to the way the
data-driven prediction method works), instead in the instances of -R, jobs have a more diverse
duration. The -R instances tend to be more difficult and take longer to solve, especially with
PCP’21-R which uses the expected durations also in the allocation model.

Additional analysis is needed in order to quantify the reduction in the number of decision
variables obtained by going from PCP’19 to PCP’21. During the simulation of an HPC
system and its workload data, all dispatchers start with the same dispatching instance, but
then they schedule and allocate jobs diversely. This in turn leads to different jobs running
on different resources of the system as well as to different jobs waiting in the queue in the
next dispatching time. We cannot therefore compare the dispatchers’ model size on the
distinct instances they entail throughout the simulation period. To analyze the dispatchers
on the same instances, we saved the instances created during the simulation of the Eurora
workload while using PCP’19-D and PCP’19-R as a dispatcher. Each instance is created
when the simulator calls the corresponding dispatcher, and the instance is described by the
queued jobs, the running jobs and their specific allocation on the system. We obtained in
total 624,569 instances.

Figure 6 shows the ratio of the number of decision variables between PCP’21 and PCP’19
versus the percentage of the instances. For all instances, the ratio is below 0.1, proving the
significance of the new allocation model. To confirm the impact on the search performance,
we give in Figures 7 and 8, the ratio of the dispatching time and the number of fails. We
note that while some instances are solved to optimality, some instances hit the time limit
but even in that case PCP’19 and PCP’21 extend the time limit differently, as was described
in Section 3. For almost all the instances, the ratio of the dispatching time is between 1 and
0.01, and the ratio of the number of fails is between 0.1 and 0, supporting the direct effect of
model size on the dispatcher performance. In Figure 9, we show the ratio of the dispatching
time versus the ratio of the number of fails for each individual instance. 93% and 88% of the
instances fall into the region where both ratios are between 0 and 1 when using -D and -R,
respectively.
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We also analyzed the ratio of the quality of the dispatching decisions. The results (not
shown here) are in line with those shown in Figure 5. The ratio is 1 for the vast majority of

the instances.

5.2 Simulation of the KIT ForHLR Il workload

We remind that we simulate a system like KIT ForHLR, II to observe whether PCP’19 and
PCP’21 can scale to a large system. We do it so by using a workload with homogeneous
resource requests, because an heterogeneous system may as well receive an homogeneous

workload

and in that case we want to quantify any possible loss with respect to HCP’19

which is more suitable for an homogeneous system. We experiment with both PCP’21 and
PCP’21; to see the importance of symmetry breaking with an homogeneous workload.
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Figure 9 Ratio of the dispatching time (x-axis) vs ratio of the #fails (y-axis) between PCP’21
and PCP’19 on the individual Eurora instances.

Table 2 Times obtained from the KIT ForHLR II system.

Dispatcher | Avg. disp. time [ms] | Total sim. time [s]
HCP’19-L2 278 56,083
PCP’19-L2 00 00
PCP’21-L2 493 99,590
PCP’21,-1L2 334 67,471
HCP’19-R 269 54,289
PCP’'19-R 00 00
PCP’21-R 476 96,030
PCP’21,-R 342 69,094
Slowdown Lot Waiting time

1]
10 102 1

100 100

Figure 10 Average and error bars showing one std. deviation of slowdown and waiting times [s]
obtained from the KIT ForHLR II system.

PCP’19 cannot complete the simulation for several days. At some point in time, it stops
dispatching, even if new jobs are entering in the queue and the system is empty with all
its resources available. This is because PCP’19 cannot handle certain dispatching instances

within the available time limit and blocks the current and the next dispatching decisions.

Instead PCP’21 and PCP’21 complete the simulation, as can be seen in Table 2, confirming
its advantage to PCP’19 in a large system. We observe in the table that symmetry breaking
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is crucial with an homogeneous workload. PCP’21 significantly reduces the total simulation
time and average dispatching time compared to PCP’21. The performance of PCP’21; is
not too far from that of HCP’19. The performance gap is around 27% and 20% when using
-R and -D, resp. We can see in Figure 10 that in terms of the QoS, the dispatchers behave
almost identically.

5.3 Discussion

We showed that when dispatching an Eurora workload dominated by short jobs with het-
erogeneous resource requests, PCP’21 is more efficient than the other dispatchers by 28%
to 59%. While PCP’21 can scale to a large system like KIT ForHLR II, PCP’19 cannot.
This is probably due to the high number of decision variables in the allocation model of
PCP’19. Additional experiments on the individual Eurora instances generated by PCP’19
confirmed that PCP’21 substantially reduces the number of variables, the dispatching time,
and the number of fails. We also argued that an heterogeneous system may as well receive
an homogeneous workload. We showed that when dispatching a KIT ForHLR II workload
dominated by short jobs with homogeneous resources requests, the use of an adapted version
of the search algorithm that breaks symmetry among the identical resources is crucial. With
this version of PCP’21(called PCP’21;), the performance loss relative to HCP’19 is limited
to 27%. Our results thus provide evidence for the significance of our approach in dispatcher
performance in a large or heterogeneous system running modern applications.

While we have used real data representing the workload of modern systems and applica-
tions, our conclusions are based on a simulation study which is restricted by the capabilities
of the simulator. For instance, AccaSim does not add the dispatching time to the waiting
times of jobs. This seems to be the reason why we have not observed noteworthy gains with
PCP’21 in the QoS. In a real system, jobs’ waiting time (and slowdown) would increase
during dispatching time, therefore dispatcher performance would directly affect the QoS.

6 Conclusions and Future Work

Constraint Programming (CP) has been been successfully applied to solve the on-line job
dispatching problem in HPC systems [3, 7] including those running modern applications [13].
We argued that the limitations of the available CP-based job dispatchers may hinder their
practical use in today’s systems that are becoming larger in size and more heterogeneous
in their computing resources. In an attempt to bring CP closer to a deployed application,
we presented a new CP-based on-line job dispatcher for HPC systems (PCP’21). Unlike its
predecessors, PCP’21 solves the entire problem using CP and its model size is independent
of the system size. Experimental results based on a simulation study show that our approach
can bring about significant performance gains over the existing dispatchers in a large or
heterogeneous system.

In future work, we will devise and experiment with a meta-dispatcher that can switch
between PCP’21 and HCP’19 depending on the workload type. Moreover, we will investigate
the impact of performance in the QoS of a dispatcher by adapting the simulator to take
into account the dispatching time in the calculation of the job waiting time. To improve the
dispatcher performance further, we will study breaking the symmetry among the identical
nodes (i.e. the nodes that have the same resource availability at a dispatching time t) and
dominance breaking during search. We will also investigate whether large neighbourhood
search can be beneficial. Towards our objective to deploy and evaluate a CP-based dispatcher
in a real system, we plan to encode as constraints the allocation strategies proposed for
heterogeneous systems [20].
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