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—— Abstract

In CP, the most efficient model solving the TSP is the Weighted Circuit Constraint (WCC) combined
with the k-cutset constraint. The WCC is mainly based on the edges cost of a given graph whereas

the k-cutset constraint is a structural constraint. Specifically, for each cutset in a graph, the k-cutset
constraint imposes that the size of the cutset is greater than or equal to two. In addition, any
solution contains an even number of elements from this cutset. Isoart and Régin introduced an
algorithm for this constraint. Unfortunately, their approach leads to a time complexity growing
with the size of the considered cutsets, i.e. with k. Thus, they introduced an algorithm with a
quadratic complexity dealing with k lower or equal to three. In this paper, we introduce a linear
time algorithm for any k£ based on a DFS checking the consistency of this constraint and performing
its filtering. Experimental results show that the size of most of the k-cutsets is lower or equal than 3.
In addition, since the time complexity is improved, our algorithm also improves the solving times.
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1 Introduction

The Traveling Salesman Problem (TSP) is a fundamental graph theory problem. It consists
in finding a minimum cost cycle in a graph visiting all nodes. The TSP appeared in numerous
domains such as biology with genome sequencing, industry with scan chains and electronic
component drilling problems, positioning of very large telescopes, data clustering, scheduling
problems and many others. The applications of TSP make it as fundamental as interesting:
it is often an underlying problem of real-world problems.

Like many real-world problems, the search for the existence of a TSP is NP-Complete
and finding the optimal one is NP-Hard. Thus, all classical methods designed for solving
NP-Hard problems have been tried (MIP, CP, SAT, ...).

In order to solve the optimization version of the TSP without side constraints, the most
efficient method is based on MIP: the so-called specialized solver Concorde [1]. It is mainly
based on an LP relaxation of the TSP obtained by relaxing the integrity and the subtour
constraints in combination with structural cutting planes. Indeed, a large number of cutting
plane algorithms correct the structural defects of the LP relaxation lower bound. Simple
ones such as imposing the 2-connectivity of a graph, and more complex ones such as the
so-called Comb inequalities. Nevertheless, no polynomial time algorithm is known at this
time to detect whether a graph does not violate a Comb inequality. Thus, a large number
of polynomial algorithms have been developed in order to consider only particular cases of
Comb inequalities [4, 6, 3, 13].
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However, it appears that a TSP is often combined with other constraints. For instance,
precedence constraints, TSPTW where there is a time window to visit a node. Thus, Concorde
can no longer be used for these problems and CP becomes a good candidate because it is
more robust to side constraints. The most efficient method at this time solving the TSP in
CP is the Weighted Circuit Constraint (WCC) [2] in combination with the structural k-cutset
constraint [10]. The optimization part of the WCC is based on the Lagrangian Relaxation
(LR) of Held and Karp [8, 9]. The lower bound of the LR is computed by selecting a node x
with its two lowest cost neighbors and a minimum spanning tree in the graph without =z,
i.e. a 1-tree. If we find a minimum 1-tree such that all its nodes have exactly two neighbors,
then an optimal solution is obtained. Thus, the 1-tree is derived through the LR process
until an optimal solution is obtained. Unfortunately, solving optimally the TSP with a LR
can be extremely slow. The WCC integrates filtering algorithms based on the edge costs, the
1-tree cost and a degree constraint on the nodes. With this model, Benchimol et al. were
able to obtain a competitive method with Concorde for problems with less than 100 nodes.
In addition, the integration of the k-cutset constraint improved the competitiveness of this
method. The idea of this constraint is that each cutset of a graph must contain at least two
edges and any solution contains an even number of elements from this cutset. Actually, the
CP model is based on a single graph variable with mandatory and optional edges. Thus, the
k-cutset constraint tries to detect inconsistency in mandatory edges and to filter optional
edges.

Figure 1 Graph kroA150 from TSPLib [14] while solving in a CP solver. K; is a 2-cutset and
K> is a 4-cutset.

For instance, we show two k-cutsets in the graph of Figure 1. The 2-cutset K; contains 2
edges and the 4-cutset Ky contains 4 edges.

Isoart and Régin [10] introduced a quadratic algorithm for the k-cutset constraint checking
the consistency and performing some filtering operations. It is based on a 2-edge-connected
subgraph and Tsin’s algorithm [18]. Note that their algorithm only handle k¥ < 3. This
limitation is set because the number of k-cutsets in a graph is exponential: this corresponds
to all possible partitions of the graph nodes, i.e. 2. However, we are not interested in all of
them. The ones we are interested in are the k-cutsets containing k or k¥ — 1 mandatory edges
in the graph. In addition, there are at most n mandatory edges in any TSP solution.

In this paper, we show that it is sufficient to study a set of k-cutsets lower than or equal
to n in order to obtain a complete filtering. Moreover, we introduce a linear time algorithm
for the k-cutset constraint for any k.
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This article is organized as follows: first, we recall some concepts of graph theory. Then,
we introduce the TSP in CP with the k-cutset constraint. Next, we define a new linear time

algorithm for the k-cutset constraint. Finally, we discuss some experiments and we conclude.

2 Preliminaries

2.1 Definitions

The definitions about graph theory are taken from Tarjan’s book [17].

A directed graph or digraph G = (X, U) consists of a node set X and an arc set U,
where every arc (z;,z;) is an ordered pair of distinct nodes. We note X (G) the set of nodes
of G such that n = | X (G)| and U(G) the set of arcs of G such that m = |U(G)|. In addition,
U (i) is the set of adjacent edges of i. The cost of an arc is a value associated with the arc.
An undirected graph is a digraph such that for each arc (z;,z;) € U, (z;,x;) = (z;, z;).
A multigraph is a digraph such that it can exist arcs that are not unique. If G; = (X3, Uy)
and Gy = (X5,Us) are graphs, both undirected or both directed, G; is a subgraph of
Gs if X1 € X5 and U; C Uy. A path from node z1 to node z; in G is a list of nodes

[1,...,2¢] such that (z;,x;41) is an arc for ¢ € [1..k — 1]. The path contains node z; for
i € [1..k] and arc (z;,x;41) for i € [1..k — 1]. The path is simple if all its nodes are distinct.
The path is a cycle if £ > 1 and 27 = z;. A cycle is Hamiltonian if [z1,...,2,-1] is a

simple path and contains every node of X. The cost of a path p, denoted by w(p), is the
sum of the costs of the arcs contained in p. For a graph G, a solution to the traveling
salesman problem (TSP) in G is a Hamiltonian cycle HC € G minimizing w(HC). An
undirected graph G is connected if there is a path between each pair of nodes, otherwise it
is disconnected. The maximum connected subgraphs of G are its connected components.
A k-edge-connected graph is a graph in which there is no edges set of cardinality strictly
less than k disconnecting the graph. A tree is a connected graph without a cycle. A tree
T = (X',U’) is a spanning tree of G if X' = X and U’ C U. The U’ edges are the tree
edges T and the U — U’ edges are the non-tree edges T. A minimum spanning tree
T = (X’,U’) is a spanning tree minimizing the cost of the tree edges. A bridge is an edge
such that its removal increases the number of connected components. A partition (S,T") of
the nodes of G such that S C X and T'= X — S is a cut. The set of edges (z;,z;) € U having
x; € S and x; € T is the cutset of the (S,T) cut. A k-cutset is a cutset of cardinality k.

2.2 TSP in CP

The current best CP method solving the TSP is a combination of the Weighted Circuit
Constraint (WCC) [2] and the structural constraint k-cutset [10]. The WCC is mainly based
on the 1-tree Lagrangian Relaxation (LR) of Held and Karp [8, 9]. Intuitively, the LR derives
a lower bound of the TSP (here, the 1-tree) until a solution of the TSP is found. A 1-tree
is a minimum spanning tree in G = (X — {z},U) such that € X is connected by its two
nearest neighbors to the minimum spanning tree. Thus, a 1-tree covers the whole graph
with n edges and a single cycle. In addition, if the 1-tree satisfies the degree constraint
(each node of the 1-tree has exactly two neighbors), then the 1-tree is an optimal solution
of the TSP. Therefore, the goal is to minimize the number of nodes that violate the degree
constraint in the 1-tree. To do so, this constraint is integrated into the objective function
and a Lagrangian multiplier 7; is associated to each node i. Let d; be the degree of the node
i in the 1-tree. For each node i of the graph, if d; < 2, then 7; is decreased. Otherwise, if
d; > 2, then 7; is increased. Next, the edge cost w((4, 7)) is modified such that w'((4,7)) is
the modified cost and w’((¢,7)) = w((4, 7)) + m; + 7;. Finally, we obtain an optimal solution
of the TSP by computing a succession of 1-trees and modifying the edge costs.
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However, experiments shown a very slow convergence toward the optimal solution. Thus,
the WCC integrates the following filtering algorithms based on the costs:

If an edge e does not belong to any 1-tree with cost smaller than a given upper bound,

then e can be safely deleted.

If an edge e belongs to all 1-trees with cost smaller than a given upper bound, then e is

mandatory.

In addition, the WCC integrates a structural constraint imposing that each node has
exactly two neighbors, i.e. the degree constraint.

Next, for each cutset of size k, the k-cutset constraint imposes that an even number of
edges is mandatory. In practice, the study is limited to k£ < 3 because the given algorithm
has a complexity growing with k. In addition, the interaction of the filtering algorithms
and the convergence of the Lagrangian relaxation is not straightforward. Thus, Isoart and
Régin [11] introduced an adaptive method in order to improve overall solving times.

About the search strategy, it consists in making a binary search where a left branch is an
edge assignment and a right branch is an edge removal. More precisely, we use the search
strategy LCFirst of Fages et al. [5] which is an interpretation of Last Conflict heuristics [7, 12]
for graph variables. It selects one edge in the graph according to a heuristic and keeps
branching on one extremity of this edge until the extremity is exhausted. Note that it keeps
branching even if a backtrack occurs. Thus, it is a highly dynamic search strategy that learns
from previous choices. Moreover, most of the search strategies are much more efficient (up
to an order of magnitude) when LCFirst is used. In practice, we observe that using LCFirst
strongly interferes with the Lagrangian relaxation and filtering algorithms.

In addition, the WCC uses a single undirected graph variable G = (X, M, O) where all
nodes are mandatory. Without loss of generality, we note O the set of optional edges, M the
set of mandatory edges such that O UM = U and O N M = (). In addition, M is a growing
set and O is a shrinking set. Since we search for a solution of the TSP, when a solution is
found, |[M| =n and O = ().

2.3 The k-cutset constraint

We previously said that the purpose of the k-cutset constraint is to ensure for each cutset
in G = (X, M, O) that a strictly positive and even number of edges are mandatory in any
solution. To do so, Isoart and Régin [10] have shown the following proposition:

» Proposition 1. Given K a k-cutset, then any Hamiltonian cycle C contains an even and
strictly positive number of edges from K.

Since G contains mandatory and optional edges, a k-cutset of G can be partitioned into
two disjoint subsets of O and M. Therefore, we note a k-cutset K = (M’,O") of G such that
M'C M and O’ C O.

» Definition 2. For each k-cutset K = (M’',0’), the k-cutset constraint ensure that |[M'| +
|O'| > 2 and |M’| is even if O' = 0.

From Definition 2, we can therefore define the following consistency checks:

» Corollary 3. If there is a k-cutset in G such that k < 2, then there is no solution for
TSP(G).

» Corollary 4. If there is a k-cutset in G containing k mandatory edges such that k is odd,
then there is no solution for TSP(G).
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In addition, we can define from Definition 2 the following filtering rules:

» Corollary 5. Given a 2-cutset K = (M',0’) in G. Then, the edges of O' must become
mandatory (M < M + O').

» Corollary 6. If there is a k-cutset K in G containing k — 1 mandatory edges such that k
is odd, then the non-mandatory edge e of K can be safely deleted (O < O — {e}).

» Corollary 7. If there is a k-cutset K in G containing k — 1 mandatory edges such that k
is even, then the non-mandatory edge e of K must become mandatory (M < M + {e}).

Therefore, Corollary 3 and 4 allow checking the consistency, Corollary 5 and 7 allow

finding mandatory edges, Corollary 6 allows removing edges.

7

/

(N T

St

Figure 2 Representation of the graph from Figure 1 with mandatory edges (blue) and optional
edges (dark). The two k-cutsets K1 and K> are displayed in red.

For instance, we can deduce in Figure 2 that for the 2-cutset K, all the K; edges become
mandatory by Corollary 5 or 7. Moreover, the 4-cutset K5 is valid because the k-cutset
constraint is consistent (K5 contains only mandatory edges and |K3| = 4 is even).

» Definition 8. A k-cutset K = (M',0’) is failing if |M'| = k and k is odd.
» Definition 9. A k-cutset K = (M’,0’) is prunable if k > 1 and |M'| =k —1 and |O'| = 1.

In order to find failing and prunable k-cutsets, Isoart and Régin [10] have developed an
algorithm in O(n(n +m)). It finds all the k-cutsets such that £ < 2 and all the 3-cutsets
K = (M',0') such that |M'| > 0. For k = 1 and k = 2, they use the non-trivial Tsin’s
algorithm [18] finding all cutsets of size smaller than or equal to 2 in a graph using a DFS in
O(n+m). For 3-cutsets K = (M’,0’) such that |[M'| > 0in G = (X, U), the main idea is the

following: for each mandatory edge e, we look for the 2-cutsets in G = (X, M — {e;, }, O).

Since there are at most n mandatory edges in a TSP solution, this leads to a time complexity in
O(n(n+m)). In addition, they give some practical improvements greatly reducing the number
of considered mandatory edges e,,. For instance, they suggest using a 2-edge-connected
subgraph of G minimizing the number of mandatory edges since all the 3-cutsets have at least
2 edges in this subgraph. Thus, it leads to the following algorithm: for each mandatory edge
em in the 2-edge-connected subgraph, we look for the 2-cutsets in G = (X, M — {e;, }, O).

Therefore, Corollary 3 and 5 are checked with Tsin’s algorithm in O(n+m). Corollary 4, 6
and 7 are checked for & < 3 in O(n(n+m)) with the algorithm described above. Finally, they
have shown that the use of the k-cutset constraint allows reducing the number of backtracks
by an order of magnitude with static strategies. Moreover, a gain of about a factor of 2 in
solving times is obtained.
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In the next section, we will introduce an algorithm enforcing the k-cutset constraint
(i.e. checking Corollary 3, 4, 5, 6 and 7) for all k& in O(n + m).

3 A linear time algorithm

» Definition 10. A mandatory path of G is a path p = [1,...,xx] in G such that for each
i € [1,k—1], the edge (x;,x;i+1) is mandatory.

» Definition 11. A path-merged graph G,_,, of G is the graph G such that for each
mandatory path p = [x1,...,xx] of G and k > 2, the nodes from x5 to xi—1 are removed and
a mandatory edge (x1,xy) is added.

» Definition 12. Given X' a set of nodes. The merge of X' is a mapping from all nodes of
X' to a single node.

» Definition 13. Given Gp_,, = (Xp—m, Mp—m,O) a path-merged graph. A merged graph
G, of Gp—m 15 the multigraph G,_,, such that each connected component of the subgraph
Gopt = (Xp—m,0,0) of G,_,, are merged.

» Definition 14. Given Gp_r, = (Xp—m, Mp—m,O) a path-merged graph. A 2-merged
graph Go —m of Gp_n, is the multigraph G, such that each 2-edge-connected component
of the subgraph Gopr = (Xp—m,0,0) of Gp_r, are merged.

/Hil H—1
/J/\ / //\ /
G G
A~¢ \F\ A~¢ h ~ o
B—K——D B——D Al=———D O —D
G Gp-m Gnm Gom

Figure 3 Given G a 2-edge-connected graph. Gp_,, is the path-merged graph of G such that the
mandatory paths are p1 = [A, J, H] and p2 = [B, K, D]. G, is the merged graph of Gp—m. Ga—p, is
the 2-merged graph of Gp—p.

For instance, Figure 3 shows an example of Definition 11, 13 and 14.

Without loss of generality, we will consider that G is connected. In addition, we will
use Gp—m = (Xp—m, Mp_m, O) the path merged graph of G, G, = (Xy,, My, 0) the merged
graph of Gy, and Gopt = (Xp—m, 0, O) the subgraph G,_,, containing only optional edges.
Each removed nodes of G in G_,, are connected with exactly two mandatory edges (thanks
to the degree constraint of the WCC) and each path is replaced by a single mandatory edge.
Therefore, we will often consider G),_,, instead of G.

3.1 Consistency Check

In order to determine whether G is consistent with the k-cutset constraint, we must check
Corollary 3 and Corollary 4. We can check Corollary 3 with Tarjan’s algorithm [16]. Using a
DFS, it finds all the bridges of a graph (i.e. the 1-cutsets) in O(n+m). Checking Corollary 4
requires to check for the existence of a failing k-cutset. We will show that it can be done in
linear time with Proposition 16.
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» Definition 15. Given X' a set of nodes. We note M (X") = {(i,§)|(i,j) € M,i€ X',j &
X'} the set of outoing mandatory edges of X’ in M.

» Proposition 16. There is no failing k-cutset in G, if and only if there is no connected
component X' in Gope such that |M*(X')| is odd.

Proof. We note (i) there is no failing k-cutset in G,_,, and (i) there is no connected
component X’ in G,y such that [MT(X")] is odd.

(i) = (4i) By definition, if there is no failing k-cutset in G, then there is no connected
component X’ in Gop; such that [MT(X")] is odd.

(1) <= (#4) If a non-empty k-cutset K cuts a connected component of G, then K contains
optional edges since G, is the graph of optional edges. Therefore, a k-cutset containing
only mandatory edges cannot cut a connected component of G,,;. Then, the failing k-cutsets
are obtained by partitioning the connected components of Gy in Gy, i.e. all the k-cutsets
of the merged graph.

For each S C X,,, the cutset size of the cut (S, X,, —S) can be computed as follows: (1)
make the sum of the number of adjacent edges of each node of S, then (2) subtract twice the
number of edges (i, j) such that ¢ and j belong to S (an edge connecting two nodes of S is

counted twice in (1)). Since we consider that (i) is true, the sum obtained by (1) is even.

(2) substract an even number to the sum obtained by (1). Therefore, the cutset size is even
and there is no failing k-cutset in Gp_,. <

Figure 4 Representation of G,p: such that G is the graph of Figure 2.

For instance, in Figure 4, we notice that there are two connected components connected
by 4 mandatory paths in Figure 2, so the k-cutset constraint is consistent with the graph of
Figure 2. In addition, if we consider G, of Figure 3, there is no failing k-cutset and each
node has an even number of adjacent edges.

Then, we can describe an algorithm. First, compute the connected components of
Gopt- Then, for each mandatory edge of M having its two endpoints in two different
connected components of Gy, We increase the number of mandatory outgoing edges for
these connected components. Finally, we iterate on the connected components. If there is
a connected component with an odd number of mandatory outgoing edges, then there is a
failing k-cutset in G. The computation of the connected components of G+ can be done in

O(n +m) with a DFS. The iteration over the mandatory edges of M can be done in O(n).

The check of the number mandatory outgoing edges for the connected components can be
done in O(n). Thus, we can test the consistency of the k-cutset constraint in O(n + m).
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3.2 Pruning

Corollary 5, 6 and 7 define filtering rules for the k-cutset constraint. First, Corollary 5 can
be enforced with Tsin’s algorithm [18]. It performs a single DFS in order to find all the
2-cutsets in a given graph, so it has a time complexity in O(n + m).

In order to enforce Corollary 6 and 7, we need a method finding all k-cutsets having
exactly £ — 1 mandatory edges, i.e. the prunable k-cutsets. Given a prunable k-cutset
K= (MO of G. If M’ is removed, then the edge of O’ is a bridge of G since |0’| = 1.
Formally, we define it in Proposition 17. We will exploit those bridges in order to enforce
Corollary 6 and 7.

» Proposition 17. If K = (M',0’) is a prunable k-cutset of G, then the edge of O' is a
bridge in G' = (X,M — M’,0).

Proof. A prunable k-cutset K = (M’,O’) contains exactly k — 1 mandatory edges and 1
optional edge. Thus, removing the k£ — 1 mandatory edges in G transform K in a 1-cutset,
i.e. in a bridge. |

» Corollary 18. If K = (M’,0’) is a prunable k-cutset of G, then the edge of O’ is a bridge
m Gopt-

Proof. For each prunable k-cutset K = (M',0"), M’ C M. Thus, from Proposition 17, the
edge of O’ is a bridge in G’ = (X, 0, 0). Therefore, it is a bridge in Gopr = (Xp—m,0,0). <«

From Corollary 18, we find the edges belonging to some prunable k-cutsets in G by
searching for bridges in G,,;. It can be done with Tarjan’s DFS algorithm [16] in O(n + m).
Next, we must determine for each bridge whether it should be deleted or become mandatory.
We therefore need to retrieve the set of prunable k-cutsets that contain each bridge.

Without loss of generality, we will consider that G is 2-edge-connected, i.e. G is connected
and bridgeless. Note that it can be checked in O(n + m) with Tarjan’s algorithm [16]. In
addition, we note X;(G") the connected component of G’ containing the node 4.

» Proposition 19. Given e € O a bridge in the connected component X' of Gopr connecting
(X1, X" — X1). Then, the k-cutset K = (M™*(X1),{e}) is a prunable k-cutset of G.

Proof. In order to disconnect X; in G, the edges having exactly one end in X; must be
removed, i.e. the k-cutset K = (M’,0’) of (X1, X — X1). It means M’ = M*(X;) and
O' = O*(Xy). Since e € O is the bridge in X’ of G,y connecting (X1, X’ — X;), O’ = {e}.
Otherwise, e is not a bridge in Gop;. Finally, G is 2-edge connected, then |M’| > 0. Thus, K
is a prunable k-cutset of G. |

» Proposition 20. Given e € O a bridge in Gop and a prunable k-cutset K' = (M’,{e}). If
there are no failing k-cutsets in G, then there are no prunable k-cutsets K" such that the
pruning of e with K' and K" is different.

Proof. For any k-cutset K" = (M",{e}) such that M’ # M", we can build a k-cutset
K" = (M'UM",() containing only mandatory edges. In addition, if K is not a cutset,
then e is not a bridge for M’ or M". If K" is not a failing k-cutset, then M’ U M" is even.
Therefore, M’ and M" are either even or odd. Thus, if there are no failing k-cutsets in
G, then there are no prunable k-cutsets K” such that the pruning of e with K’ and K" is
different. |
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From Proposition 19 and 20, we can describe a first algorithm: for each bridge of the
connected component X’ of G, connecting (X1, X’ — X1), count the number of mandatory
edges having one end in X; and the other in X — X;. If there is an even number of mandatory
edges, then delete e. Otherwise, add e to the mandatory edges. Thus, for each bridge, we
parse at most all the mandatory edges. There is at most n — 1 bridge in a graph and at
most n mandatory edges. Therefore, this algorithm finds all the prunable k-cutsets in O(n?).
Next, we will show how to improve this algorithm in order to obtain a linear time complexity.
However, note that this algorithm is already much better than the one of the state of the
art [10] because we find the k-cutsets for all k with a better time complexity.

B/
/

.\

A

Figure 5 G; represents the 2-merged graph of the path-merged graph of Figure 2. Blue edges
are mandatory paths and dark edges are bridges.

In Figure 5, the 2-merged graph of Figure 2, we notice that some prunable k-cutsets
are much simpler than others to find. Indeed, for (A, B) there are two prunable k-cutsets:
Ky, = (M,{(A,B)}) where M1 = {(A,E), (A, E)} and Ky = (Ms,{(A, B)}) where My =
{(B,E),(D,E)}. In order to find M;, we can simply search for the mandatory edges having
one end in A and the other in {B,C, D, E}. In order to find Ms, we have to search for
the mandatory edges having one end in {B,C, D} and the other in {4, E}. The difference
between M7 and My is that we can simply find M; by considering the mandatory edges with
exactly one end in a single component. Thus, if for each bridge there is such a prunable
k-cutset, then we simply have to count the number of outgoing mandatory edges of each
2-edge-connected components of G, in G. It leads to an algorithm with a linear time
complexity. Unfortunately, this algorithm may not handle all the prunable k-cutsets. For
instance, there are two prunable k-cutsets containing (B,C): K3 = (M3, {(B,C)}) such
that M3 = {(D, E)} and K4 = (My, {(B,C)}) such that My = {(B, E), (A, E), (A, E)}. In
that case, we cannot simply look at the neighbors of B or C' to find the prunable k-cutsets
containing (B, C). Indeed, B and C have more than one optional neighbor. It means that the
bridge (B, C) disconnect G,y in ({A, B}, {C,D}). Therefore, both connected components
are not 2-edge-connected. Thus, we show in Corollary 21 that for a bridge e connecting
(X1,X2) in Gopy, if X1 (resp. Xo) is 2-edge-connected, then it exists a prunable k-cutset
containing e and all the mandatory edges having exactly one end in X; (resp. Xb).

» Corollary 21. Given X' a connected component of Gope. If e € O is a bridge in X' of
Gopt connecting (X1, X" — X1) such that X1 is 2-edge-connected, then there is a prunable
k-cutset K = (M (X1),{e}).

Proof. Immediate from Proposition 19. |

The advantage of Corollary 21 over Proposition 19 is that the 2-edge-connected component
X, of Corollary 21 are disjoint nodes sets. Thus, parsing the neighbors of the 2-edge-
connected components consider at most twice the total number of mandatory edges whereas
Proposition 19 can reconsider for each component all the mandatory edges of the 2-merged
graph. We will use this idea in order to obtain a linear time algorithm.
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In Figure 5, all the k-cutsets formed by the neighborhood of a component are: K4 =
({(A7 E)7 (A7 E)}7 {(A7 B)})v Kp = ({(37 E)}7 {(37 A)? (37 C)})7 Ke = ((Z)a {(C, B)7 (07 D)})
and Kp = ({(D, E)},{(D,C)}). Among them, K4 and Kp are prunable k-cutsets, then
we can immediately deduce for K; that (4, B) is deleted (by Corollary 6) and for Kp
that (D, C) becomes mandatory (by Corollary 5 or 7). If we update the k-cutsets we have:
Ka = ((AE). (A E)}L0Y). Kp = ({(B.E)}{(B,O)}), Kc = ({(C. D)} {(C, B)}) and
Kp ={(D,E),(D,C)},0). We notice that both Kp and K¢ become prunable k-cutsets.
Thus, (C, B) becomes mandatory for both Kp and K¢ (by Corollary 5 or 7). Finally, all
bridges of GG; have been solved.

Note that the subgraph of optional edges of the 2-merged graph can be more sophisticated
than a simple path of bridges edges: it can be a tree. However, it cannot exist a cycle in
this subgraph since the 2-edges-connected components are merged in the 2-merged graph.
For example, (1) of Figure 6 shows a 2-merged graph such that the subgraph of optional
edges is not a single path. We note that (1) is rooted in A and each node of the set of
nodes S = {B,F,G,H,I,J} has exactly one optional neighbor. Thus, we can start by
applying Corollary 21 on S, i.e. the leaves of the tree. Leaves are always valid candidates for
Corollary 21 because they have no optional child and a single optional parent. Then, either
there are no more leaves and therefore there are no more prunable k-cutsets or there are
leaves and we can apply Corollary 21 to these leaves. Finally, we suggest to recursively apply
this process until there are no more leaves in the tree. A sketch of the algorithm is:

Find bridges of G with the DFS-based Tarjan’s algorithm.

Mark the 2-edge-connected components in postorder, i.e. the order of a node is set when

it is backtracked in the DFS.

For each mandatory edge (4, j), increase the number of outgoing mandatory edges of the

2-edge-connected component of ¢ and j.

Iterate over the 2-edge-connected components C; of the 2-merged graph with the defined

postorder and prune the bridge connected to C;.

Bﬂ \ A BﬁAC BﬁA\C BﬁA\C
reYeYeele
G —H I J F/ H/I\J Fl‘/H/I\J Fé‘/H/I\J F&I\J

1) (2) (3) 4) (5)

f\c /\C B/\C 7N 7 )
VOV VO VO
\ /IN \ /IN \ /N \ /N \ /IN

(6) (7) (8) 9) (10)

Figure 6 Example of an execution of the k-cutset pruning algorithm on the graph (1). Blue
edges are mandatory paths, dark edges are bridges. The red node is the current 2-edge-connected
component of the algorithm step.

For instance, Figure 6 shows an execution of the algorithm in a 2-merged graph. Tarjan’s
algorithm allows us to create the 2-merged graph where black edges are bridges and blue edges
are mandatory edges. In this tree, the postorder traversal is {B, F,G,D,H,1,J,E,C, A}.
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Note that the postorder is used to guarantee that for each node considered in the execution
of the algorithm, all its children have already been pruned. From (1) to (10), we show the
iteration over the 2-edge-connected components C; marked as red nodes. Finally, finding the
bridges is performed in O(n 4+ m), parsing the mandatory edges is performed in O(n) and
parsing the 2-edge-connected components is performed in O(n). Thus, our algorithm finds
the prunable k-cutsets for all k in O(n + m). Algorithm 1 is a possible implementation.

It takes as input G = (X, M, O). We note CC the set of connected components in Gop
and 2CC the set of 2-edge-connected components in G, such that 2CC; is the 2-edge-
connected component containing the node i. First, we start by searching the bridges with
Tarjan’s algorithm based on a DFS in order to build C'C and 2CC. Within the DFS, 2C'C is
constructed with respect to the postorder tree traversal. Thus, iterating on 2C'C, we obtain
the postorder tree traversal of the 2-merged graph of G. In Tarjan’s algorithm, a 2-edge
connected component C' is found when a bridge e is found. Thus, we associate e with C
by setting C.bridge=e. For instance, in (1) of Figure 6, each node is a 2-edge-connected
component knowing its parent, i.e. a bridge. Thus, the only node having no parent is the
root node and all the other nodes have a single parent that is an optional edge.

Secondly, we count the number of outgoing mandatory edges for each connected component
of C'C and for each 2-edge-connected component of 2CC. We then consider the connected
components C € CC such that |C] > 1. If |C| = 1, then C has two adjacent mandatory
edges and C contains a single node. Thus, considering C' such that |C| > 1 is equivalent of
considering the path-merged graph of G. In addition, we know that each node i of C has
at most one adjacent mandatory edge (i, j). Therefore, |M(i)] < 1. Otherwise, the node i
would not belong to C. We note M (7). firstEdge() the first edge in the list of the adjacent
mandatory edges of i. Since we are looking for the outgoing mandatory edges, we only
consider the nodes with M (i) = 1. If j is an outgoing edge of C, then we increase the number
of outgoing mandatory edges of C' noted M+ (C). If i and j do not belong to the same
2-edge-connected component, then we increase the number of outgoing mandatory edges
of 2CC; noted M (2CC;) (M*(2CC}) is increased when the node j is considered by the
foreach). Note that we can check if the node ¢ belongs to the nodes set C” with the funtion
C’.isIn(i). In (1) of Figure 6, there is a single connected component C' so M*(C) = 0.
However, there are 10 2-edge-connected components ({A,B,C,D,E,F,G,H,I,J}). For
example, M+ (2CCy4) = 1 and M+ (2CCp) = 3. Afterwards, we check the consistency. If
there is C' € CC such that MT(C) is odd, then there is a failing k-cutset and we return
False. In (1) of Figure 6, there is no C' € CC such that M*(C) is odd, so (1) is consistent
with the k-cutset constraint.

Thirdly, we perform the pruning step. We iterate on all the 2-edge connected components
C of 2CC. We note (i, j) the bridge associated to C. If M (C) is odd, then (i, ;) becomes
mandatory (i.e. it is added to M) and M (2CC;) and Mt (2CC}) are increased by 1. Whether
M™(C) is even or odd, (7,7) is removed from O. Indeed, if the edge becomes mandatory, then
it must not be in the set of the optional edges. For instance, in (1) of Figure 6, we consider the
node B and the bridge (B, A). Note that in (1), M+(2CC4) =1 and M (2CCp) = 3. Since
M*(2CCp) is odd, (B, A) becomes mandatory and M+(2CC,4) = 2 and MT(2CCg) = 4.
Next, we consider the node F and its bridge (F, D). M+(2CCFr) = 2 so (F, D) is removed
and M+ (2CCF) remains unchanged. Then, we repeat this process until (10). We note that
the nodes are chosen in the postorder.
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Algorithm 1 Perform the consistency check and the pruning of k-cutset constraint.

1 k-cutset (G = (X, M, 0))

Input: A graph G=(X,M,0).
Output: A boolean specifying whether G contains a failing k-cutset
// CC : connected components of G — M (Gopt)
// 2CC : postorder 2-edge-connected components of G — M (Gypt)
2 computeBridgesDFS(G — M, CC,2CC) ;
3 foreach connected components C' € CC do
4 if |C| > 1 then
5 foreach node i € C' do
6 if |[M(i)] =1 then
7 (i,7) + M(3).firstEdge();
8 if not C.isIn(j) then
9 | MT(C) + M*(C)+1;
10 if not 2CC;.isIn(j) then
11 | MT(2CCy) + M*(20Cy) +1;
// Consistency check
12 foreach connected components C € CC do
13 L if M*(C) is odd then return Fulse ;
// Pruning
14 foreach 2-edge-connected components C' € 2CC' do
15 if C.bridge # nil then
16 (i,7) < C.bridge;
17 if M+ (C) is odd then
18 MT*(2CC;) + M*T(2CC;) + 1,
19 M+(2CC;) + M+(2CCy) + 1,
20 M« M + (i,7);
21 O+ O0—(4,7);
22 return True;

4 Experiments

The algorithms have been implemented in Java 11 in a locally developed constraint program-
ming solver. The experiments were performed on Clear Linux with an Intel Xeon E5-2696v2
and 64 GB of RAM. The instances are from the TSPLib [14], a library of reference graphs
for the TSP. We rerun experiments ran in Isoart and Régin [10] and exclude instances solved
in less than two seconds. We also include some harder instances. The name of each instance
is suffixed by its number of nodes. In our implementation, the TSP is modeled by the WCC
using the CP-based LR configuration introduced in Isoart and Régin [11]. We note “state of
the art” the TSP model with the state of the art k-cutset algorithm and “linear full k-cutset”
the TSP model with our algorithm. The search strategy used is LCFirst with the heuristic
minDeltaDeg [5] which is also the state of the art. Given e = (4, j) an edge, minDeltaDeg
selects the edge with the minimum difference between the sum of the number of optional
neighbors of ¢ and j and the sum of the number of mandatory neighbors of ¢ and j. Thus, we
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compare linear full k-cutset and the state of the art. We give the number of backtracks (#bk)
and the solving time in seconds in arrays for the k-cutset constraint with different search
strategies. In addition, we set a timeout t.0. of 100,000 seconds. All considered instances are
symmetric graphs.

Table 1 General results comparing the state of the art and linear full k-cutset.

Instance (1) State of the art (2) Linear full k-cutset | Ratio (1)/(2)
time(s) #bk time(s) #bk time(s)  #bk

kroB100 5.4 4,816 3.6 3,308 1.5 1.5
kroE100 2.3 1,804 2.4 2,212 0.9 0.8
prl24 2.8 1,856 3.5 2,482 0.8 0.7
prl36 20.4 18,684 20.0 21,446 1.0 0.9
kroA150 6.1 4,164 4.1 2,798 1.5 1.5
kroB150 262.6 247,574 153.6 154,002 1.7 1.6
sil75 288.5 301,102 280.8 358,676 1.0 0.8
rat195 38.5 24,274 37.8 27,512 1.0 0.9
d198 14.0 7,192 8.6 4,782 1.6 1.5
kroA200 401.0 237,806 323.7 200,392 1.2 1.2
kroB200 127.8 87,296 135.9 109,322 0.9 0.8
tsp225 121.5 65,002 139.3 89,946 0.9 0.7
gr229 227.0 166,378 139.8 114,434 1.6 1.5
2il262 5,230.2 2,254,728 2,970.7 1,711,410 1.8 1.3
pr264 4.7 690 4.9 642 0.9 1.1
a280 7.0 2,372 6.6 2,484 1.1 1.0
lin318 32.9 7,834 11.0 3,456 3.0 2.3
gra3l 1,724.8 265,608 | 1,358.6 247,090 13 1.1
pcb442 | 15,081.5 4,130,580 | 16,490.1 5,555,756 0.9 0.7
d493 | 95,916.6 13,478,616 | 69,247.1 11,346,180 14 1.2
mean 5,975.8 1,065,423.3 4,567.1 997,916.5 1.3 1.1

Table 1 shows the solving times and backtrack numbers for the state of the art and the
linear full k-cutset. A ratio column display both solving times and backtrack numbers gain
for the linear full k-cutset. For most instances, we observe a gain in backtrack numbers and
solving times. Otherwise, the results are quite close to the state of the art results. Indeed,
we observe an average gain in solving time of 30% and 10% in backtracks. On average, the
state of the art runs in 178 backtracks per seconds while linear full k-cutset runs in 219
backtracks per seconds. The low backtrack number gain suggests that most of the cutsets
are in fact k-cutsets with k < 3, and therefore the state of the art algorithm already finds
most of the cutsets.

Nevertheless, the TSP model includes a Lagrangian relaxation and the relation between
the filtering algorithms and the Lagrangian relaxation is not clear [15, 11]. Moreover, the
LCFirst minDeltaDeg search strategy is extremely dynamic. Thus, in order to have a better
understanding of the impact of the linear full k-cutset, we compare it with the static search
strategy maxCost, i.e. edges are selected by decreasing costs.

In Table 2, we observe a gain on all instances that are both solved by (1) and (2), the
solving is therefore much more stable. In addition, we observe that the instance gil262
timeout in the state of the art. Excluding it, we obtain an average gain of 80% in solving time
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Table 2 General results of the static search strategy maxCost comparing the state of the art (1)
with our algorithm (2).

Instance (1) State of the art (2) Linear full k-cutset | Ratio (1)/(2)
time(s) #bk time(s) #bk time(s)  #bk
kroB100 7.7 7,640 6.1 7,056 1.3 1.1
kroE100 10.6 11,328 6.3 6,136 1.7 1.8
prl24 1.3 316 1.1 294 1.1 1.1
prl36 101.5 86,860 73.4 86,094 1.4 1.0
kroA150 57.7 55,940 46.7 49,016 1.2 1.1
kroB150 408.1 344,440 314.2 299,728 1.3 1.1
sil75 4,168.6 4,661,506 3,190.8 4,305,208 1.3 1.1
rat195 486.1 372,438 364.0 358,936 1.3 1.0
d198 71.9 52,618 50.2 41,432 1.4 1.3
kroA200 | 3,111.1 1,944,312 | 18135 1,209,136 1.7 1.6
kroB200 491.3 333,440 376.7 303,318 1.3 1.1
tsp225 15,252.7 11,579,074 | 10,224.3 9,209,292 1.5 1.3
gr229 2,349.7 1,955,538 1,591.3 1,607,300 1.5 1.2
2il262 to. to. | 70,450.6 36,507,156 | >1.2
pr264 7.5 902 6.7 748 1.1 1.2
a280 46.9 20,380 9.6 4,024 4.9 5.1
lin318 65.0 21,292 14.4 5,934 4.5 3.6

and 60% in backtracks. Thus, this shows that the impact of considering k-cutsets for any k
is useful for the performance. In addition, these results suggest that LCFirst minDeltaDeg
fills a part of the lack of structural constraints in the TSP model in CP.

In Table 3, we study the size of the founded k-cutsets in linear full k-cutset with LCFirst
minDeltaDeg. We can observe that the mean size the founded k-cutsets is 3. It confirms the
fact that the state of the art algorithm already finds a large part of the k-cutsets. However,
larger k-cutsets exist: the average number of maximum size of the k-cutsets is 14.1. This
is why we obtain a more interesting backtrack gain than the state of the art whereas the
average k-cutset size is 3.

Finally, our linear full k-cutset algorithm is simple to implement and allows us to obtain
an improvement of the solving times and the number of backtracks.

5 Conclusion

In this paper, we have introduced a new linear time algorithm checking the k-cutset constraint
for any k. Experiments have shown that our algorithm leads to an improvement of solving
times. Moreover, we have shown that on average most of the cutsets are of size 3 even if we
found some much larger cutsets. We hope that other structural constraints will be integrated
into the WCC: they make the CP competitive in the same way that Comb inequalities make
the MIP efficient.
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