
SAT Modulo Symmetries for Graph Generation
Markus Kirchweger #

Algorithms and Complexity Group, TU Wien, Austria

Stefan Szeider #

Algorithms and Complexity Group, TU Wien, Austria

Abstract
We propose a novel constraint-based approach to graph generation. Our approach utilizes the
interaction between a CDCL SAT solver and a special symmetry propagator where the SAT solver
runs on an encoding of the desired graph property. The symmetry propagator checks partially
generated graphs for minimality w.r.t. a lexicographic ordering during the solving process. This
approach has several advantages over a static symmetry breaking: (i) symmetries are detected early
in the generation process, (ii) symmetry breaking is seamlessly integrated into the CDCL procedure,
and (iii) the propagator can perform a complete symmetry breaking without causing a prohibitively
large initial encoding. We instantiate our approach by generating extremal graphs with certain
restrictions in terms of girth and diameter. With our approach, we could confirm the Simon-Murty
Conjecture (1979) on diameter-2-critical graphs for graphs up to 18 vertices.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Mathematics of computing → Extremal graph theory

Keywords and phrases symmetry breaking, SAT encodings, graph generation, combinatorial search,
extremal graphs, CDCL

Digital Object Identifier 10.4230/LIPIcs.CP.2021.34

Supplementary Material Software (Source Code): https://doi.org/10.5281/zenodo.5170575

Funding The authors acknowledge the support from the Austrian Science Fund (FWF), project
P32441, and from the Vienna Science and Technology Fund (WWTF), project ICT19-065.

1 Introduction

Many challenging problems in Combinatorics can be stated as the question of whether a
graph with a particular property exists. A common approach to such problems is to use
a tool like Nauty [29] to generate all connected graphs up to isomorphism with a given
number n of vertices and to check each of them for the desired property. However, up to
isomorphism, already for n = 11 there are over a billion connected graphs, so this method
quickly approaches its limit.

As demonstrated by Codish et al. [10], constraint-based graph generation offers a com-
pelling alternative approach. The graph property is expressed in terms of constraints, and
further constraints expressing a static symmetry break are added. The latter constraints are
based on a lexicographic ordering of solution graphs and exclude some graphs that are not
minimal for this ordering. This approach has the advantage that the graph property is taken
into account already during the generation process. However, a complete symmetry breaking
requires a prohibitively large encoding size. Therefore, one needs to confine only to a partial
check, e.g., that swapping two vertices doesn’t yield a lexicographically smaller graph.

We propose the novel approach SAT modulo Symmetries (SMS) to constraint-based
graph generation. SMS utilizes the interaction between a CDCL1 SAT solver and a special
propagator excluding lexicographically non-minimal graphs during the search. Thus, in
contrast to static symmetry breaking, the minimality check is not added to the encoding but
is carried out dynamically by the symmetry propagator.

1 Conflict-Driven Clause Learning is the predominantly leading algorithmic paradigm for state-of-the-art
SAT solvers [28].

© Markus Kirchweger and Stefan Szeider;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 34; pp. 34:1–34:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mk@ac.tuwien.ac.at
mailto:sz@ac.tuwien.ac.at
https://doi.org/10.4230/LIPIcs.CP.2021.34
https://doi.org/10.5281/zenodo.5170575
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 SAT Modulo Symmetries for Graph Generation

The symmetry propagator is called from within a CDCL-based SAT solver already when
only a few of the graph’s edges are determined. For this purpose, we introduce partially
defined graphs, the corresponding lexicographic ordering, and the algorithm MinCheck
that checks their minimality. If the symmetry propagator detects the current partially
defined graph is not minimal, clauses are learned and added to the solver’s collection of
clauses. On partially defined graphs, the minimality check is not guaranteed to be complete,
but eventually, when all edges are determined, it performs a complete minimality check.
Consequently, we can guarantee that all generated graphs are minimal and unique up to
isomorphism. MinCheck also detects, in some cases, whether the current partially defined
graph implies under minimality the existence or non-existence of further edges. This is done
without increasing the encoding size. When the minimality check reveals that the current
partially defined graph isn’t minimal, this conflict is analyzed, and a suitable clause is added
to the solver; also when an implied edge is detected, a unit clause is added.

We implemented a prototype version of SMS and tested it on two prominent problems
from Extremal Graph Theory [6]. The first asks for graphs with a prescribed minimum girth
(length of a shortest cycle) and the largest number of edges. The second asks for graphs whose
diameter (largest distance between any two vertices) is 2 but decreases when any edge is
deleted. Both are fundamental problems that have been studied for many decades [6, 14, 27].
We could verify some extremal numbers for the girth problem, and confirm the Simon-Murty
Conjecture [7] on diameter-2-critical graphs with up to 18 vertices, improving upon the
known bound of 11.

Our experimental results show that SMS exhibits an encouraging performance, particularly
on unsatisfiable instances. We developed the testing algorithm MinCheck from scratch,
since existing methods based on various other forms of graph canonization cannot handle
partially defined graphs [29]. The check often takes a significant amount of the solving time;
here, we see ample room for improvement. However, the time which SMS spends on the SAT
solving itself is significantly reduced in comparison to a static symmetry breaking.

Related Work

Dynamic symmetry breaking in the broader sense, where symmetry breaking constraints or
clauses are added during the search, has a long history, see, e.g., [3, 13, 15, 21, 32]. More
recently, this has also been combined with nogood (or clause) learning [9, 12, 34], using
the fact that if a new clause/nogood is learned, and the symmetries of the problem are
known, then one can propagate and learn further clauses/nogoods. Metin et al. [30] explored
another way of dynamically utilizing symmetries in the context of SAT by considering the
lexicographic order on the assignments themselves; the symmetries are computed by external
tools or provided by the user before the SAT-solving and are then taken into account by
the solver. Equipping a SAT solver with a special-purpose propagator has been explored
before, e.g., by Liffiton and Maglalang [25] for cardinality constraints and by Gebser et
al. [18] for digraph acyclicity. The SAT Modulo Theory (SMT) framework uses a similar
approach, where the SAT solver interacts with a theory solver, which provides propagators
for a first-order logic theory [5].

2 Preliminaries

Graphs. All considered graphs are undirected and simple (i.e., without parallel edges or
self-loops). A graph G consists of set V (G) of vertices and a set E(G) of edges; we denote the
edge between vertices u, v ∈ V (G) by uv or equivalently vu. We write G − e for the graph

M. Kirchweger and S. Szeider 34:3

obtained from G by deleting the edge e and G − v for the graph obtained from G by deleting
the vertex v. Gn denotes the class of all graphs G with V (G) = {1, . . . , n}. AG denotes the
adjacency matrix of a graph G ∈ Gn where the element at row v and column u, denoted by
AG[v][u], is 1 if vu ∈ E and 0 otherwise. AG[v] denotes the v-th row of AG. Sn denotes the
set of all permutations over {1, . . . , n}.

Graphs G1, G2 ∈ Gn are isomorphic if there is a permutation π ∈ Sn such that for all
1 ≤ u < v ≤ n we have uv ∈ E(G1) if and only if π(u)π(v) ∈ E(G2). π(G) denotes the
graph obtained from G ∈ Gn by the permutation π ∈ Sn, where E(π(G)) = { π(u)π(v) : uv ∈
E(G) }. The total order ⪯ is defined for G, H ∈ Gn by setting G ⪯ H if and only if
AG[1]AG[2] . . . AG[n] is lexicographically smaller or equal to AH [1]AH [2] . . . AH [n]. G is
lexicographically smaller than H (in symbols G ≺ H) if G ⪯ H and G ̸= H. G ∈ Gn is
lexicographically minimal or ⪯-minimal if G ⪯ π(G) for every π ∈ Sn.

We will also consider the lexicographic ordering of pairs of vertices from {1, . . . , n} where
(v1, v2) < (u1, u2) if and only if either (i) v1 < u1 or (ii) v1 = u1 and v2 < u2. We observe that
A[v1][v2] occurs before A[u1][u2] in an adjacency matrix A if and only if (v1, v2) < (u1, u2).
We will say, that a vertex pair is more important than another if the vertex pair is smaller by
this order. Similarly, we will say that an entry A[v1][v2] of the adjacency matrix A is more
important than A[u1][u2] if (v1, v2) < (u1, u2).

▶ Observation 1. Let G, H ∈ Gn. Then G ≺ H if and only if there are 1 ≤ i, j ≤ n such
that AG[i][j] = 0, AH [i][j] = 1, and for all more important pairs of vertices (i′, j′) the values
of the adjacency matrices are equal, i.e., AG[i′][j′] = AH [i′][j′].

Formulas and Satisfiability. A literal is a propositional variable or negated propositional
variable. A clause is a disjunction of literals. A formula in Conjunctive Normal Form
(CNF) is a conjunction of clauses. A (partial) assignment is a function f : X → {true,
false} defined on a set X of propositional variables. For a variable x /∈ X we say that f is
undefined. Assignments extend to literals in an obvious way. A model of a CNF formula F is
an assignment f defined on the variables of F such that each clause of F contains a literal
that is set to true by f . A clause containing a single literal is unity clause.

3 Dynamic Symmetry Breaking in SMS

This section presents our method for dramatically reducing the search space for finding all
graphs in Gn modulo isomorphism, that satisfy a given property. As we deal with graphs from
Gn for some fixed n, we will use CNF formulas that contain all the propositional variables
ev,u, for v < u, which are true if the edge vu is present in the implicitly represented graph.
Hence, we can extract a graph from a model of the formula.

Our aim is to decide during the CDCL SAT solver’s run whether the current partial
assignment can be extended to a model, such that the represented graph is ⪯-minimal.
For this purpose we consider partially defined graphs, since during solving we don’t know
the final graph yet. A partially defined graph is a graph G where E(G) is split into two
disjoint sets D(G) and U(G). D(G) contains the defined edges, U(G) contains the undefined
edges. A (fully defined) graph is a partially defined graph G with U(G) = ∅. Similarly
to Gn, let Pn denote the class of all partially defined graphs G with V (G) = {1, . . . , n}.
Analogously to the adjacency matrix of a fully defined graph, we define the adjacency
matrix AG of a partially defined graph G ∈ Pn as follows: AG[v1][v2] = 1 if v1v2 ∈ D(G),
AG[v1][v2] = ⋆ if v1v2 ∈ U(G), and AG[v1][v2] = 0 otherwise. From a partial assignment
f : X → {true, false} we can extract the partially defined graph G with V (G) = {1, . . . , n},
D(G) = { ij : ei,j ∈ X, f(ei,j) = true } and U(G) = { ij : ei,j /∈ X }.

CP 2021

34:4 SAT Modulo Symmetries for Graph Generation

A partially defined graph G ∈ Pn can be extended to a graph H ∈ Gn if D(G) ⊆ E(H) ⊆
D(G) ∪ U(G). We write X (G) for the set of all graphs to which G can be extended. A
partially defined graph G ∈ Pn is ⪯-minimal if X (G) contains a ⪯-minimal graph.

A permutation π ∈ Sn is a witness of the non-⪯-minimality of G ∈ Pn if π(H) ≺ H for
all H ∈ X (G); observe that in that case G cannot be ⪯-minimal.

Let G ∈ Pn, π ∈ Sn, and (i, j) a vertex pair. We say (i, j) is (G, π)-equal if
AH [i][j] = Aπ(H)[i][j] for all H ∈ X (G) (i.e., (i, j) ∈ {(π(i), π(j)), (π(j), π(i))}, or AG[i][j] =
Aπ(G)[i][j] ̸= ⋆), and (i, j) is (G, π)-critical if (AG[i][j], Aπ(G)[i][j]) ∈ {(1, 0), (⋆, 0), (1, ⋆)}.

Next we will introduce indicator pairs, which will be of crucial importance for checking
whether a partially defined graph is ⪯-minimal. For G ∈ Pn and π ∈ Sn the vertex pair
(i, j) is a (G, π)-indicator pair if (i, j) is (G, π)-critical and for every (i′, j′) < (i, j) with
i′ < j′ at least one of the three cases holds: (i) (i′, j′) ∈ {(π(i′), π(j′)), (π(j′), π(i′))}, or (ii)
AG[i′][j′] = 1, or (iii) Aπ(G)[i′][j′] = 0. A (G, π)-indicator pair (i, j) is a strict (G, π)-indicator
pair if AG[i][j] = 1 and Aπ(G)[i][j] = 0. A partially defined graph G ∈ Pn is constraining if
there is a (G, π)-indicator pair for some π ∈ Sn.

▶ Proposition 2. Let G ∈ Pn. If there is a strict (G, π)-indicator pair for some π ∈ Sn then
G is not ⪯-minimal. Furthermore, if G is fully defined and not ⪯-minimal, then there is a
strict (G, π)-indicator pair for some π ∈ Sn.

Proof. Let G ∈ Pn and (i, j) be a strict (G, π)-indicator pair. For the sake of a contradiction,
assume that G is ⪯-minimal. By definition, there is a fully defined graph H ∈ X (G) which
is ⪯-minimal. First, we show by induction over all more important vertex pairs (i′, j′) than
(i, j) (including i′ > j′) that AH [i′][j′] = Aπ(H)[i′][j′]. We distinguish five cases.
1. If i′ > j′ then (j′, i′) < (i′, j′) hence AH [i′][j′] = AH [j′][i′] = Aπ(H)[j′][i′] = Aπ(H)[i′][j′]

holds by induction hypothesis.
2. If (i′, j′) = (π(i′), π(j′)) then Aπ(H)[i′][j′] = AH [π−1(i′)][π−1(j′)] = AH [i′][j′] holds.
3. If (i′, j′) = (π(j′), π(i′)) then Aπ(H)[i′][j′] = AH [π−1(i′)][π−1(j′)] = AH [j′][i′] = AH [i′][j′]

holds.
4. If AG[i′][j′] = 1 then AH [i′][j′] = 1. By induction hypothesis, Aπ(H)[i′′][j′′] = AH [i′′][j′′]

holds for all more import vertex pairs (i′′, j′′) than (i′, j′). Hence also Aπ(H)[i′][j′] = 1
must hold, otherwise Observation 1 would be violated, so AH [i′][j′] = Aπ(H)[i′][j′].

5. If Aπ(G)[i′][j′] = 0 then Aπ(H)[i′][j′] = 0. Again, by induction hypothesis, Aπ(H)[i′′][j′′] =
AH [i′′][j′′] holds for all more import vertex pairs (i′′, j′′) than (i′, j′). Hence also
AH [i′][j′] = 0 must hold, otherwise Observation 1 would be violated, so AH [i′][j′] =
Aπ(H)[i′][j′].

So, we know that Aπ(H)[i′][j′] = AH [i′][j′] for all more important vertex pairs (i′, j′) than
(i, j) and therefore, by Observation 1, H cannot be ⪯-minimal, consequently G cannot be
⪯-minimal in contradiction to our assumption.

For the second part of the proposition, let G be an arbitrary, non-⪯-minimal, fully
defined graph. Then, by definition of ⪯-minimality, there is a π ∈ Sn such that π(G) < G.
Due to Observation 1, we know that there is a vertex pair (i, j) such that AG[i][j] = 1,
Aπ(G)[i][j] = 0, and Aπ(G)[i′][j′] = AG[i′][j′] for all more important pairs (i′, j′) than (i, j),
hence either AG[i][j] = 1 or Aπ(G)[i][j] = 0, so (i, j) is a strict (G, π)-indicator pair. ◀

▶ Observation 3. Let G ∈ Pn, H ∈ X (G) a ⪯-minimal graph, and (i, j) a (G, π)-indicator
pair for some π ∈ Sn. Then AH [i][j] = Aπ(H)[i][j].

Observation 3 states that if (i, j) is a (G, π)-indicator pair and AG[i][j] = 1 then we can
imply that Aπ(H)[i][j] = 1 for every ⪯-minimal graph H ∈ X (G), and if Aπ(G)[i][j] = 0 then
we can imply that AH [i][j] = 0.

M. Kirchweger and S. Szeider 34:5

A key component for the symmetry propagator that we use within SMS is an algorithm
that tests whether the partially defined graph G ∈ Pn as represented by the current partial
assignment is ⪯-minimal, i.e., whether it can be extended to a ⪯-minimal fully defined graph.
Performing this test is computationally hard in the worst case. For example, finding the
lexicographically smallest isomorphic graph is known to be NP-hard [2].

We restrict our search for permutations π with a (G, π)-indicator pair. In the worst case,
this test still requires considering all the n! permutations of the vertices. However, we use
a more sophisticated approach that exploits the partially defined graph’s structure which
often allows us to avoid the consideration of most of the permutations. Whenever during
search, SMS has a new partial assignment which updates the partially defined graph G, it
calls MinCheck(G) which searches for an indicator pair. If a (G, π)-indicator pair is found,
it extracts a clause representing the reason why G isn’t ⪯-minimal or why a certain edge
must be present or cannot be present in any ⪯-minimal extension of G.

We integrate this procedure into the conflict-driven clause learning algorithm (CDCL).
Whenever the CDCL algorithm assigns an edge variable a truth value, we check the ⪯-mini-
mality of the current partially defined graph G and add a clause if necessary. For efficiency,
some minimality checks may be skipped. If the added clause is invalidated by the current
partial assignment, then the current partial assignment must be discarded and the solver
backtracks. Otherwise, the clause is a unit clause, so a literal can be propagated by Boolean
constraint propagation. All the created clauses are added as learned clauses to the solver, so
the solver’s clause-deletion policy can discard them if they aren’t needed anymore.

Below we present the MinCheck algorithm in detail.

3.1 Minimality Check
Our minimality test is based on the concept of a generalized ordered partition (GOP)
of V = {1, . . . , n}, which is a list of triples P = [(V1, l1, u1), . . . , (Vk, lk, uk)] such that
V1 ∪ · · · ∪ Vk = V , Vi, Vj are disjoint for 1 ≤ i < j ≤ n, ui, li ∈ {1, . . . , n}, ui + 1 = li+1 for
1 ≤ i ≤ k − 1 , and |Vi| = ui − li + 1. Let f be the mapping that indicates to which set each
vertex belongs to, i.e., f(v) = i if and only if v ∈ Vi. Then we associate with a GOP P the
set of permutations Perm(P) = { π ∈ Sn : lf(v) ≤ π(v) ≤ uf(v) for all v ∈ V }; i.e., the GOP
gives a range for each vertex to which it can potentially be mapped.

Next we describe the algorithm MinCheck. The input for the initial call of MinCheck
is a partially defined graph G ∈ Pn. The idea is to start with the GOP P = [(V, 1, n)] and
refine it until we have found a (G, π)-indicator pair with some π represented by the GOP or
can conclude that no such indicator pair exists. Therefore, we recursively assign a vertex v to
r, i.e., π(v) = r for all π ∈ Perm(P), starting with r = 1 and adapt the GOP correspondingly
by splitting up the triples (Vi, li, ui) into multiple triples if necessary.

We use a recursive procedure MinCheck with the following input: a partially defined
graph G ∈ Pn, a GOP P = [(V1, l1, u1), . . . , (Vk, lk, uk)], and a row r ∈ {1, . . . , n}. For
all j < r we have |Vj | = 1, in other words, all the vertices which are mapped to the first
r − 1 vertices are already fixed. Furthermore, we will see that all pairs up to (r − 1, n) are
(G, π)-equal for all π ∈ Perm(P). If r = n we return nil.

Now we choose a v ∈ Vr: we adapt the GOP P to a GOP Pv such that π(r) = v for
all permutations represented by Pv and split up all triples (Vi, li, ui) with i ≥ r (in the
order they occur in the list) such that also the current row, (i.e., all pairs (r, j) with j > r)
are (G, π)-equal for all permutations π represented by the GOP Pv or until we have found
an indicator pair. In the former case, we call MinCheck(G, Pv, r + 1) with the adapted
GOP Pv and return an indicator pair if found; otherwise we backtrack. If every choice of
v ∈ Vr returned no indicator pair, then we return nil.

CP 2021

34:6 SAT Modulo Symmetries for Graph Generation

Before we stipulate how to split the triples in more detail, we mention some preconditions
for MinCheck which will allow us to argue that the preconditions are also satisfied at
recursive calls. The preconditions are as follows:
P1 The vertices which are mapped to the first r − 1 vertices are already determined, i.e.,

|Vi| = 1 for every i < r.
P2 For every permutation π ∈ Perm(P) every pair (i′, j′) with i′ < j′, i′ < r is equal under

π.
P3 For every π ∈ Sn \ Perm(P) with π(k) ∈ Vk for k < r, there is some pair (i′, j′) with

i′ < j′, i′ < r which is not (G, π)-equal and is more important than any (G, π)-critical
vertex pair, hence there is no (G, π)-indicator pair.

First, we split (Vr, lr, ur) into ({v}, lr, lr) and (Vr \ {v}, lr + 1, ur), so π(v) = r for all
π ∈ Perm(Pv). For each (Vi, li, ui), i ∈ {r, . . . , n}, we apply the following steps, where V 0

i :=
{ u ∈ Vi : AG[v][u] = 0 }, V ⋆

i := { u ∈ Vi : AG[v][u] = ⋆ }, and V 1
i := { u ∈ Vi : AG[v][u] = 1 }.

(Some special care is needed for i = r since it was already split, so we use (Vr \ {v}, lr + 1, ur)
instead of (Vr, lr, ur)):
1. We split (Vi, li, ui) into the triples (V 0

i , li, li + |V 0
i | − 1) and (V ⋆

i ∪ V 1
i , li + |V 0

i |, ui); this
ensures that the vertices not adjacent to v are mapped to the smallest vertices possible
without violating the previous GOP.

2. If the set J = { u : AG[r][u] ̸= 0, li ≤ u < li + |V 0
i | } ̸= ∅, then we put j = min J and (r, j)

is a (G, π)-indicator pair for every π ∈ Perm(Pv). Otherwise AG[r][u] = Aπ(G)[r][u] = 0
for every π ∈ Perm(Pv), hence Preconditions 2 and 3 hold up to all more important pairs
than (r, li + |V 0

i |).
3. Now we iterate over the remaining indexes p ∈ [li + |V 0

i |, . . . , ui]. We distinguish between
three cases:
a. AG[r][p] = ⋆: Because all vertices from V 0

i are mapped to smaller vertices than
p, the only way to guarantee that the pair is equal (or critical) is to ensure that
(r, p) ∈ {(π(r), π(p)), (π(r), π(p))}. In all other cases condition 2 does not hold up to
all pairs including (r, p) . This can only be the case if

v = r and p ∈ V ⋆
i , then we must split (V ⋆

i ∪ V 1
i , p, ui) into the triples ({p}, p, p) and

(V ⋆
i \ {p} ∪ V 1

i , p + 1, ui) and remove p from V ⋆
i , or

v = p and r ∈ V ⋆
i , then we must split (V ⋆

i ∪ V 1
i , p, ui) into the triples ({r}, p, p) and

(V ⋆
i \ {r} ∪ V 1

i , p + 1, ui) and remove r from V ⋆
i

In all other cases, we backtrack.
b. If AG[r][p] = 0 we backtrack, since Aπ(G)[r][p] ̸= 0 for every π ∈ Perm(Pv).
c. If AG[r][p] = 1, we again distinguish three cases:

If V ⋆
i ̸= ∅ then we split (V ⋆

i ∪ V 1
i , p, ui) into the triples (V ⋆

i , p, p + |V ⋆
i | − 1) and

(V 1
i , p + |V ⋆

i |, ui) so (r, p) is a (G, π)-indicator pair for all π ∈ Perm(Pv).
If V ⋆

i = ∅ and AG[r][p′] ̸= 1 for some p′ ∈ {p, . . . , ui}, then we backtrack.
If V ⋆

i = ∅ and AG[r][p′] = 1 for all p′ ∈ {p, . . . , ui} then AG[r][p′] = Aπ(G)[r][p′] for
all π ∈ Perm(Pv). So, all more important pairs up to (r, ui) are (G, π)-equal for all
π ∈ Perm(Pv).

One of the steps 1–3 will either produce an indicator pair or cause a backtrack to another
v ∈ Vr. If all choices v ∈ Vr have been exhausted unsuccessfully, we return nil.

▶ Lemma 4. Let G ∈ Pn and r ∈ {1, . . . , n}. If the Preconditions P1–P3 are satisfied,
MinCheck(G, [(V1, l1, u1), . . . , (Vk, lk, uk)], r) will return a permutation π with π(u) ∈ Vu for
u < r and a (G, π)-indicator pair if such a permutation and indicator pair exists; otherwise
the procedure returns nil.

M. Kirchweger and S. Szeider 34:7

Proof. In MinCheck, we only backtrack if we can ensure, that (i) there is no indicator pair
with π(u) ∈ Vu for u < r and π(v) = r and (ii) whenever we find an indicator pair, we return
it immediately. Precondition 2 ensures in all cases that it is indeed an indicator pair and
Precondition 3 that we do not loose any potential candidates. Since the preconditions are
satisfied for recursive calls, the lemma follows by induction. ◀

We can now put the above auxiliary results together and establish the MinCheck
algorithm’s correctness and the fact that it performs a complete minimality check on fully
defined graphs.

▶ Theorem 5. Let G ∈ Pn. If G is constraining, then MinCheck(G) returns a permutation π

and a (G, π)-indicator pair; otherwise MinCheck(G) returns nil.

Proof. MinCheck(G, [(V, 1, n)], 1) is called at the beginning, hence the proposition is true
due to Lemma 4, since Sn = Perm([(V, 1, n)]) and all preconditions are satisfied. ◀

Finally, we present how to extract a suitable clause from a partially defined graph G ∈ Pn

and a (G, π)-indicator pair (i, j).
Let S = { (i′, j′) : (i′, j′) ∈ {(π(i′), π(j′)), (π(j′), π(i′))} }, S1 = { (i′, j′) : (i′, j′) <

(i, j), i′ < j′, AG[i][j] = 1, (i′, j′) ̸∈ S } and S2 = { (i′, j′) : (i′, j′) < (i, j), i′ < j′, Aπ(G)[i][j] =
0, (i′, j′) ̸∈ S }. Then∨

(i′,j′)∈S1

¬ei′,j′

∨
(i′,j′)∈S2

eπ−1(i′),π−1(j′) ∨ ¬ei,j ∨ eπ−1(i),π−1(j)

is the resulting clause, which we add as learned clause. By Proposition 2, this clause must be
satisfied by every assignment which represents a ⪯-minimal graph. We would like to stress
that the created clause is satisfied by every partial assignment representing a ⪯-minimal graph;
hence, the correctness of the symmetry breaking is independent of the found permutations
and indicator pairs.

4 Static Symmetry Breaking

For comparison, we describe the static symmetry breaking approach, which is essentially
the “improved lexicographic break” proposed by Codish et al. [10]. The SAT solver runs
on a CNF formula F ∧ M , where F encodes the properties of the graph sought for, and M

encodes a minimality property. A complete symmetry breaking would require a prohibitively
large encoding size. Therefore, M just ensures that swapping any two vertices does not lead
to a lexicographically smaller graph (if it would, the current graph can’t be ⪯-minimal).

Swapping two vertices i, j leads to swapping in the adjacency matrix the elements A[i][k]
with A[j][k] and A[k][i] with A[k][j], respectively, for k ∈ {1, . . . , n} \ {i, j}. All the other
entries of the matrix will not change, because the diagonal only contains zeros and we have
A[i][j] = A[j][i]. So we have to check whether swapping the entries does not lead to a
⪯-smaller graph. Following [10], we define an order on the rows A[i] and A[j], by setting
A[i] <i,j A[j] if and only if A[i] is lexicographically smaller than A[j] while ignoring the i-th
and j-th elements in both rows.

▶ Proposition 6 ([10]). If G ∈ Gn is ⪯-minimal, then AG[i] ≤i,j AG[j] for all 1 ≤ i < j ≤ n.

We can now define the formula M for the static symmetry break as∧
1≤i<j≤n

∧
k∈{1,...,n}\{i,j}

(∧
l∈{1,...,k}\{i,j}

(ei,l ↔ ej,l) → (ei,k → ej,k)
)

.

CP 2021

34:8 SAT Modulo Symmetries for Graph Generation

Instead of this direct SAT encoding, Codish et al. [10] used the solver BEE to encode the
property stated in Proposition 6. BEE [31] compiles finite domain constraints to SAT while
additionally applying transformations to simplify the encoding and optimize it.

5 Prototype Implementation and Experimental Setup

In this section, we will describe our experimental setup and some implementation details. As
the SAT solver, we use Clingo [19, 20], an ASP solver containing a complete state-of-the-art
CDCL SAT solver. Clingo comes with a C interface that supports rapid prototyping for
developing custom propagators. We used Clingo’s C-interface to integrate our implementation
of MinCheck into the solver. Our implementation is available at Zenodo [24].

The parameter frequency allows us to balance the time spent on the minimality check
and the time spent by the SAT solver itself. If frequency has the value 1/q, then MinCheck
is called only every q-th time an edge variable has been assigned.

Our experiments are run on a computer with Intel Xeon E5540 at 2.53 GHz, 24 GB RAM,
under Ubuntu 18.04. We use Clingo 5.5.0 and all tests are executed with a single thread.

6 Extremal Graphs with Required Girth

A prominent research topic in Extremal Graph Theory [6] is the study of extremal graphs
(i.e., graphs with the largest possible number of edges) on n vertices that exclude a given
family F of graphs as subgraphs. EX(n, F) denotes the class of extremal graphs with that
property, and ex(n, F) denotes the number of edges of the graphs in EX(n, F). The special
case, where F = Ck, the family of cycles up to length k, has received much attention; for
convenience, we write fk(n) = ex(n, Ck). The girth of a graph G is the length of a shortest
cycle in G (or ∞ if G is acyclic). Hence EX(n, Ck) contains precisely the edge-maximal
graphs of girth > k. The base case of k = 3 has been settled over a century ago by Mantel’s
Theorem [27]: f3(n) = ex(n, C3) = ⌊n2/4⌋, where EX(n, F) contains precisely the complete
bipartite graph K⌈n/2⌉,⌊n/2⌋. For the general case k > 3, however, no closed formula is known,
and researchers have tried to compute fk(n) for small values of k [1, 10, 17, 35, 36], or at
least provide lower and upper bounds.

Next, we describe a SAT encoding that produces for given integers n, m, k a propositional
CNF formula F (n, m, k). The formula is satisfiable if and only if there is a graph G ∈
EX(n, Ck) with m edges, and where we can construct G from the satisfying assignment. We
will then evaluate the formula with our SMS-solver and report the experimental results.

6.1 Encoding
We state a useful result before we present the encoding for F (n, m, k) where δG and ∆G

denote the minimum and maximum degree of a graph G, respectively.

▶ Lemma 7 ([17]). If G is a graph of girth ≥ 5 with n vertices and m edges, then n ≥
1 + ∆G · δG ≥ 1 + δ2

G, δG ≥ m − f4(n − 1), and ∆G · n ≥ 2m.

In particular, this applies to all graphs in EX(n, Ck) for k ≥ 4. We also use the obvious
inequality δGn ≤ 2m, which follows from the Handshaking Lemma, to discard some cases.

According to Lemma 7, we can compute for each pair n, m the set In,m of possible intervals
[a, b] such that for each graph G with n vertices and m edges, we have a ≤ δG ≤ ∆G ≤ b for
some [a, b] ∈ I. We can add to F (n, m, k) suitable cardinality constraints that ensure that
vertex degrees belong to one of the intervals.

M. Kirchweger and S. Szeider 34:9

To guarantee that the resulting graph has girth > k, we use two methods: a basic one
and an improved one. The basic method explicitly forbids that any subset of up to k vertices
forms a cycle. The set of all possible cycles of length k can be described with some basic
symmetry breaking as follows:

Ck = { (v1, . . . , vk) ∈ {1, . . . , n}k : i ̸= j → vi ̸= vj , v1 = min{v1, . . . , vk}, v2 < vk }.

Taking v1 as the minimum fixes a particular rotation of the cycle, requiring v2 < vk fixes an
orientation of the cycle. Now we add for each element of Ck the constraint that one edge of
the corresponding cycle must not be present:∧

(v1,...,vk)∈Ck

(¬ev1,v2 ∨ ¬ev2,v3 ∨ · · · ∨ ¬evk−1,vk
∨ ¬evk,v1).

For k ≤ 4 this is a workable solution, but the improved method scales better for larger k. It
is based on the following observation where distG(u, v) denotes the length of a shortest path
between vertices u and v in graph G.

▶ Observation 8. A shortest cycle in a graph G containing the edge uv ∈ E(G) has length
distG−uv(u, v) + 1.

Hence, we can enforce that for every edge uv, distG−uv(u, v) + 1 ≥ g for a required girth g.
Therefore, we start at vertex i and mark all vertices adjacent to i in G − ij. In the next step,
we additionally mark all vertices which are adjacent to already marked vertices. This will be
repeated g − 2 times. If at the end the vertex j is marked, the girth is smaller than desired.

For the concrete encoding, we introduce propositional variables reachedi,j,k,s for represent-
ing that vertex k can be reached in s steps from vertex i in the graph G − ij. Consequently

reachedi,j,k,1 = ei,k for k ∈ {1, . . . , n} \ {i, j} and
reachedi,j,k,s =

∨
l∈V (G)\{k}

(el,k ∧ reachedi,j,l,s−1) for s ∈ {2, . . . , g − 2}, k ∈ {1, . . . , n} \ {i}.

If at any point vertex j is reached, the girth restriction is invalidated. Hence we can use the
following encoding:

girth =
∧
i<j

g−2∧
s=2

(¬reachedi,j,j,s ∨ ¬ei,j).

We further improve this encoding. If we start checking whether a vertex v is part of a cycle
smaller than the given girth, i.e, we check whether distG−uv + 1 ≥ g for all vu ∈ E, then v

cannot be on a cycle which is shorter than the girth g. So for all subsequent vertices v′ > v,
we only consider the graph G − v. This yields the following final encoding:

reachedi,j,k,1 = ei,k for k ∈ {i + 1, . . . , n} \ {j} and
reachedi,j,k,s =

∨
l∈V (G)\{k}

(el,k ∧ reachedi,j,l,s−1) for s ∈ {2, . . . , g − 2}, k ∈ {i + 1, . . . , n}.

6.2 Results
We computed fk(n) for k ∈ {4, 5, 6}, and thereby verified known results [1, 10]. For fixed k

and n we run SMS on the formulas F (n, fk(n), k) and F (n, fk(n) + 1, k); we performed
separate runs for all the intervals in In,m where m donates the number of edges. The first
formula must be satisfiable for at least one interval in In,fk(n) while the second must be

CP 2021

34:10 SAT Modulo Symmetries for Graph Generation

unsatisfiable for every interval in In,fk(n)+1. In some cases, we didn’t need to compute
F (n, fk(n) + 1, k), since already the bounds from Lemma 7 show the non-existence of a graph
with fk(n) + 1 edges.

In general, for fixed k and n we run SMS on F (n, m, k) for different values of m, starting
from a lower bound obtained by Lemma 7. As long as F (n, m, k) is satisfiable, we increment
m by one and repeat until we arrive at a value for which F (n, m, k) is unsatisfiable or we
can apply Lemma 7. Then we know that fk(n) = m − 1.

Table 1 shows our results for k = 4 and n ∈ {15, . . . , 28}. We use the basic method to
encode the girth requirement and choose a frequency of 1/5. For all tables in the current
section, the runtimes are given in seconds; for SMS we provide in parenthesis the fraction of
the total time spent for the minimality check. The columns labeled sat give the minimal
time over all intervals in In,m; the columns labeled unsat give the maximum. An entry
n/a indicates that the unsatisfiability check is covered by Lemma 7; t.o. indicates that the
timeout of 4 hours has been reached without producing a result.

Table 1 Results for f4(n).

sat unsat

n f4(n) SMS Static SMS Static
15 26 0.11(67%) 1.26(0.30) n/a n/a
16 28 0.07(59%) 0.56(0.61) 0.91(71%) 529.42(32.20)
17 31 0.13(66%) 0.58(0.48) n/a n/a
18 34 0.08(53%) 2.80(0.60) n/a n/a
19 38 0.11(53%) 1.06(0.57) n/a n/a
20 41 2.41(73%) 2457.85(161.41) n/a n/a
21 44 0.20(61%) 1.90(151.84) 0.98(72%) 7319.96(1019.41)
22 47 1.28(72%) 3.44(16.69) 11.74(74%) t.o.(t.o.)
23 50 2.95(79%) 1.58(367.83) 177.11(75%) t.o.(t.o.)
24 54 30.91(74%) 638.37(80.74) n/a n/a
25 57 193.68(72%) 204.00(655.66) t.o. t.o.(t.o.)
26 61 74.63(74%) t.o.(168.90) n/a n/a
27 65 1270.38(68%) t.o.(193.44) n/a n/a
28 68 37.84(75%) t.o.(t.o.) t.o. t.o.(t.o.)

We would like to emphasize that the purpose of the experiments is not to identify which
algorithm is the fastest but rather to gain insights into the potential of a dynamic symmetry
breaking for graph generation. We provide for reference the running times of our encoding of
the static symmetry breaking (columns labeled Static) and the times reported by Codish
et al. [10] with their “improved lexicographic break” (given in parentheses) for the same
problems. This is not meant as a direct comparison, as the results by Codish et al. [10] have
been run on different hardware, but just to give a rough idea on the order of magnitude the
two approaches take. It is not completely clear how Codish et al. combined runtimes over
all intervals In,m into one single result. This has no impact on the unsat-times, because for
those there is only a single interval in In,m.

We can see that SMS is significantly faster for the unsatisfiable instances. For example,
SMS determines the unsatisfiable case for n = 22 quickly, although the static approach
reached the timeout. SMS could also establish the unsatisfiability case for n = 23. We see
that SMS uses a large fraction of the time for the minimality check. Therefore, a speedup
for the check would have a significant impact on the runtime.

M. Kirchweger and S. Szeider 34:11

Table 2 Results for f5(n) and f6(n).

n f5(n) sat unsat f6(n) sat unsat
15 22 0.25(15%) 5.40(14%) 18 0.24(6%) 3.28(9%)
16 24 0.25(9%) 0.66(15%) 20 0.60(8%) n/a
17 26 0.59(15%) 1.56(13%) 22 1.14(9%) n/a
18 29 0.54(15%) n/a 23 1.09(8%) 61.35(5%)
19 31 9.30(11%) 8.12(9%) 25 2.34(6%) n/a
20 34 13.08(9%) n/a 27 2.36(7%) n/a
21 36 3.87(9%) 97.16(6%) 29 11.33(5%) n/a
22 39 22.49(7%) n/a 31 16.37(4%) n/a
23 42 9.49(7%) n/a 33 10.46(5%) n/a
24 45 56.01(6%) n/a 36 3.59(5%) n/a
25 48 50.55(6%) n/a 37 17.84(4%) t.o.
26 52 21.08(6%) n/a 39 12.05(5%) 174.83(3%)
27 53 40.13(5%) t.o. 41 217.73(3%) 449.78(3%)
28 56 25.35(5%) 376.81(5%) 43 4961.74(2%) 1245.43(3%)

Table 3 Results for different frequencies.

frequency n = 27 (sat) n = 23 (unsat)
1/1 t.o. 240.00(94.25%)
1/2 2514.35(85.55%) 140.06(88.67%)
1/5 1293.92(67.36%) 103.72(72.46%)
1/10 208.26(51.44%) 96.99(50.79%)
1/20 782.71(30.03%) 125.25(29.45%)
1/50 636.99(12.72%) 243.30(13.63%)
1/100 4454.68(5.23%) 214.43(6.51%)
1/200 3860.19(2.80%) 608.77(3.06%)
1/500 t.o. 774.36(0.97%)
1/1000 t.o. 1103.35(0.46%)

Codish et al. [10] used some further methods to improve their results, i.e., they included
embedded stars in their graphs, leading to a significant speedup. We do not use these
improvements in our experiments.

Next, we report on results for computing fk(n) for k ∈ {5, 6}. For these cases, we used
the girth-constraints based on edge-removal from Section 6.1. In these experiments, we see
that far less time is spent on the minimality check than in the previous experiments, although
there we had a frequency of 1/5. Most likely, the reason is the additionally created variables
for the girth-constraints, because the minimality check is only called when a variable ei,j is
assigned. The results are shown in Table 2.

Table 3 shows the influence of the parameter frequency on SMS’s performance. For this
analysis, we took the unsatisfiable case for f4(23) with the degree interval [4, 5] and the
satisfiable case for f4(27) with the degree interval [4, 6].

Interestingly, the frequency shows a very clear pattern. Up to a frequency of 1/10, the
runtime decreases and then increases again. The reason seems to be the high fraction of the
time spent in MinCheck for a high frequency and possibly the increased number of added
clauses.

CP 2021

34:12 SAT Modulo Symmetries for Graph Generation

7 Application: Diameter-2-Critical Graphs

The diameter of a graph G is the largest distance among all pairs of vertices in G, where the
distance of two vertices is the length of a shortest path between them. A disconnected graph
has diameter ∞. A graph is diameter-d-critical if its diameter is d, but the deletion of any
edge decreases the diameter. The study of extremal properties of graphs with prescribed
diameter has been initiated by Erdős and Rényi in the early 1960s [14] and has been the
subject of intensive research. An important topic in the field is the characterization of
diameter-d-critical graphs [7, 8, 23, 26]. An intriguing open problem is whether the Simon-
Murty Conjecture [7] holds, which states that if G is a diameter-2-critical graph with n

vertices and m edges, then m ≤ ⌊n2/4⌋, with equality precisely for the complete bipartite
graph K⌈n/2⌉,⌊n/2⌋ (i.e., similar to Mantel’s Theorem mentioned above).

Using the list of non-isomorphic graphs generated with Nauty [29], Radosavljević and
Živković [33] computed all diameter-2-critical graphs with up to 10 vertices. Also, Dailly et
al. [11] report on a “computer search” for graphs with up to 11 vertices, focusing on graphs
with a certain number of edges. With SMS we were able to extend these results to graphs
with 12 vertices. The basis for this computation is a SAT encoding that produces for given
integers n and m a propositional CNF formula D2(n, m) which is satisfiable if and only
if there is a diameter-2-critical graph G with n vertices and m edges. As above, one can
construct G from the satisfying assignment.

7.1 Encoding
Equivalently to the above definition, a graph is diameter-2-critical if and only if (i) its
diameter is at most 2 and (ii) when any edge is deleted, the diameter is larger than 2. We
observe that property (i) allows graphs with diameter one, i.e., complete graphs. However,
after deleting any edge, the diameter would still be at most 2 for n > 3, which violates
property (ii).

Our encoding of D2(n, m) handles both properties separately. To encode property (i),
we use∧

1≤i<j≤n

(
ei,j ∨

∨
1≤k≤n

(ei,k ∧ ej,k)
)
.

For property (ii), we first define a subformula N(i, j, c) which encodes that vertices i and j

have exactly c common neighbors, so N(i, j, c) ↔ |{ k ∈ V : ei,k ∧ ej,k }| = c. We can use
cardinality constraints to encode this (see, e.g., [4]) or directly use features of the ASP solver
Clingo to express the cardinality constraints. With the help of this subformula, we can
encode property (ii) as follows:∧

1≤i<j≤n

ei,j →
(

N(i, j, 0) ∨
∨

1≤k≤n

(
ei,k ∧ N(j, k, 1)

)
∨

∨
1≤k≤n

(
ej,k ∧ N(i, k, 1)

))
.

If N(i, j, 0) is satisfiable, then distG−ij(i, j) > 2; in the other cases, either distG−ij(j, k) > 2
or distG−ij(i, k) > 2.

7.2 Results
We use the encoding D2(n, m) to enumerate all ⪯-minimal, diameter-2-critical graphs in Gn.
Therefore, we run SMS repeatedly; each time we find a new graph, we explicitly exclude it
from the search space until no further graph is found. Additionally, we abort the minimality
check after a certain number of steps, because there are some rare cases, where the check
takes far too long. We us a frequency of 1/5.

M. Kirchweger and S. Szeider 34:13

Table 4 shows the results of this computation. Column #-sol gives the number of solutions
found; column time gives the runtime in seconds; as above, the percentage of the runtime
that has been spent for the minimality check is given in parenthesis. Column Static gives
the number of solutions found with the static symmetry breaking method, without filtering
isomorphic solutions. The static version could not find all solutions for n = 12 within 4
hours.

Table 4 Results for generating all diameter-2-critical graphs with n ≤ 10.

SMS Static

n #-sol time #-sol time
3 1 0.11(0%) 1 0.01
4 2 0.11(1%) 2 0.01
5 3 0.12(4%) 4 0.02
6 5 0.15(12%) 11 0.05
7 10 0.26(40%) 32 0.14
8 30 0.83(67%) 163 0.82
9 103 2.53(73%) 1018 6.62
10 519 10.00(63%) 9727 149.20
11 3746 80.47(47%) 133316 9214.83
12 40866 1338.09(33%) t.o. t.o.

When using a cutoff within SMS, we cannot guarantee that all the resulting graphs are
unique up to isomorphism. Nevertheless, a check with Nauty showed that indeed all the
computed graphs are unique. The number of solutions for n ∈ {11, 12}, stated in boldface,
were unknown, as this goes beyond a generate-and-test approach.

Checking the computed graphs, we could confirm the Simon-Murty Conjecture for graphs
with up to 12 vertices. By a minor adaption of the encoding, i.e., enforcing that the number
of edges is ≥ ⌊n2/4⌋, we could extend this to n = 13. If we know the degree of the vertices in
advance, we can create an initial GOP for the minimality check, such that only vertices with
the same degree can be permuted. So, we can use SMS for every possible combination of
vertex degrees. Trivially, all cases where a vertex has degree 1 can be excluded. Additionally,
we can use the following theorem by Fan [16] to discard further combinations in advance
(dG(v) denotes the degree of vertex v in G):

▶ Theorem 9 ([16]). If G is a diameter-2-critical with n vertices and m edges, then∑
v∈V (G) dG(v)2 ≤ 4

15 n3. If n ≤ 24 or n = 26, then m ≤ ⌊n2/4⌋.

Consequently, since
∑

v∈V (G) dG(v) = 2m, Theorem 9 limits the combinations of vertex
degrees. Adding these degree constraints, we could confirm the conjecture for n ∈ {14, . . . , 17}.
For the case n = 18, we used an additional theorem to further restrict the combinations:

▶ Theorem 10 ([22]). If G is a diameter-2-critical with n vertices and maximum degree
≥ 0.7 · n, then G has fewer than ⌊n2/4⌋ edges.

We give some details on the computation in Table 5.

▶ Corollary 11. The Simon-Murty Conjecture holds for graphs with up to 18 vertices.

CP 2021

34:14 SAT Modulo Symmetries for Graph Generation

Table 5 Confirming the Simon-Murty Conjecture for n ∈ {14, . . . , 18}. Column n denotes the
number of vertices, column #-comb the number of degree combinations, max-time the maximal
runtime of a single combination, and total-time the accumulated runtime over all combinations. All
times are given in seconds.

n total time max-time #-comb
14 14512 131 1021
15 156116 604 4319
16 923660 2847 6494
17 11700237 19582 24067
18 46612962 216384 12974*

8 Conclusion

We presented SMS, a novel approach for SAT-based graph generation that utilizes dynamic
symmetry breaking. A key ingredient of SMS is the concept of partially defined graphs and
an algorithm that checks the lexicographical minimality of such graphs. We evaluated a
prototype implementation of SMS on two showcase problems from Extremal Graph Theory,
related to the graph invariants girth and diameter, respectively. We compared SMS with
static symmetry breaking. We used the same encoding for the graph property and the same
underlying SAT solver for both approaches. We think that this double strategy might be of
independent interest, as it supports comparing the very same SAT-encoding on both methods.
The experiments show encouraging results for SMS, in particular on unsatisfiable instances.
As a side effect of our experiments on diameter-2-critical graphs, we could compute some
values that haven’t been known before and confirm the Simon-Murty Conjecture for graphs
with up to 18 vertices.

We see several avenues for improving SMS in the future. An obvious area for improvement
is the minimality check, where we currently use a relatively simple algorithm written from
scratch. This leaves much room for improvement for algorithm design and engineering.
The parameter frequency which controls the calls to the minimality check is currently a
static parameter that stays constant for an entire SMS run. Here, dynamic changes of this
parameter that depend on the current state of the solving progress could significantly increase
the efficiency of SMS.

References

1 E. Abajo and A. Diánez. Exact value of ex(n; {C3, . . . , Cs}) for n ≤ ⌊ 25(s−1)
8 ⌋. Discrete Math.,

185:1–7, 2015. doi:10.1016/j.dam.2014.11.021.
2 Vikraman Arvind, Bireswar Das, and Johannes Köbler. A logspace algorithm for partial

2-tree canonization. In Edward A. Hirsch, Alexander A. Razborov, Alexei L. Semenov, and
Anatol Slissenko, editors, Computer Science - Theory and Applications, Third International
Computer Science Symposium in Russia, CSR 2008, Moscow, Russia, June 7-12, 2008,
Proceedings, volume 5010 of Lecture Notes in Computer Science, pages 40–51. Springer, 2008.
doi:10.1007/978-3-540-79709-8_8.

3 Rolf Backofen and Sebastian Will. Excluding symmetries in constraint-based search. Con-
straints, 7(3-4):333–349, 2002. doi:10.1023/A:1020533821509.

4 Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of boolean cardinality con-
straints. In Francesca Rossi, editor, Principles and Practice of Constraint Programming - CP
2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29 - October 3,
2003, Proceedings, volume 2833 of Lecture Notes in Computer Science, pages 108–122. Springer,
2003. doi:10.1007/978-3-540-45193-8_8.

https://doi.org/10.1016/j.dam.2014.11.021
https://doi.org/10.1007/978-3-540-79709-8_8
https://doi.org/10.1023/A:1020533821509
https://doi.org/10.1007/978-3-540-45193-8_8

M. Kirchweger and S. Szeider 34:15

5 Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability
modulo theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications,
pages 1267–1330. IOS Press, second edition, 2021.

6 Béla Bollobás. Extremal graph theory. Academic Press, 1978.
7 Louis Caccetta and Roland Häggkvist. On diameter critical graphs. Discrete Math., 28(3):223–

229, 1979. doi:10.1016/0012-365X(79)90129-8.
8 Ya-Chen Chen and Zoltán Füredi. Minimum vertex-diameter-2-critical graphs. J. Graph

Theory, 50(4):293–315, 2005. doi:10.1002/jgt.20111.
9 Geoffrey Chu, Maria Garcia de la Banda, Christopher Mears, and Peter J. Stuckey. Symmetries,

almost symmetries, and lazy clause generation. Constraints, 19(4):434–462, 2014. doi:
10.1007/s10601-014-9163-9.

10 Michael Codish, Alice Miller, Patrick Prosser, and Peter J. Stuckey. Constraints for sym-
metry breaking in graph representation. Constraints, 24(1):1–24, 2019. doi:10.1007/
s10601-018-9294-5.

11 Antoine Dailly, Florent Foucaud, and Adriana Hansberg. Strengthening the Murty-Simon
conjecture on diameter 2 critical graphs. Discrete Math., 342(11):3142–3159, 2019. doi:
10.1016/j.disc.2019.06.023.

12 Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. Symmetric explanation learning:
Effective dynamic symmetry handling for SAT. In Serge Gaspers and Toby Walsh, editors,
Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International Conference,
Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10491 of
Lecture Notes in Computer Science, pages 83–100. Springer Verlag, 2017. doi:10.1007/
978-3-319-66263-3_6.

13 Jo Devriendt, Bart Bogaerts, Broes De Cat, Marc Denecker, and Christopher Mears. Symmetry
propagation: Improved dynamic symmetry breaking in SAT. In IEEE 24th International
Conference on Tools with Artificial Intelligence, ICTAI 2012, Athens, Greece, November 7-9,
2012, pages 49–56. IEEE Computer Society, 2012. doi:10.1109/ICTAI.2012.16.

14 P. Erdős and A. Rényi. On a problem in the theory of graphs. Magyar Tud. Akad. Mat. Kutató
Int. Közl., 7:623–641 (1963), 1962.

15 Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. Symmetry breaking. In Toby
Walsh, editor, Principles and Practice of Constraint Programming - CP 2001, 7th International
Conference, CP 2001, Paphos, Cyprus, November 26 - December 1, 2001, Proceedings, volume
2239 of Lecture Notes in Computer Science, pages 93–107. Springer Verlag, 2001. doi:
10.1007/3-540-45578-7_7.

16 Genghua Fan. On diameter 2-critical graphs. Discret. Math., 67(3):235–240, 1987. doi:
10.1016/0012-365X(87)90174-9.

17 David K. Garnick, Y. H. Harris Kwong, and Felix Lazebnik. Extremal graphs without three-
cycles or four-cycles. J. Graph Theory, 17(5):633–645, 1993. doi:10.1002/jgt.3190170511.

18 Martin Gebser, Tomi Janhunen, and Jussi Rintanen. SAT modulo graphs: Acyclicity. In
Eduardo Fermé and João Leite, editors, Logics in Artificial Intelligence - 14th European
Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings,
volume 8761 of Lecture Notes in Computer Science, pages 137–151. Springer Verlag, 2014.
doi:10.1007/978-3-319-11558-0_10.

19 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub, and
Philipp Wanko. Theory solving made easy with Clingo 5. In Manuel Carro, Andy King, Neda
Saeedloei, and Marina De Vos, editors, Technical Communications of the 32nd International
Conference on Logic Programming, ICLP 2016 TCs, October 16-21, 2016, New York City,
USA, volume 52 of OASICS, pages 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/OASIcs.ICLP.2016.2.

20 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Clingo = ASP
+ control: Preliminary report. CoRR, abs/1405.3694, 2014. arXiv:1405.3694.

CP 2021

https://doi.org/10.1016/0012-365X(79)90129-8
https://doi.org/10.1002/jgt.20111
https://doi.org/10.1007/s10601-014-9163-9
https://doi.org/10.1007/s10601-014-9163-9
https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.1016/j.disc.2019.06.023
https://doi.org/10.1016/j.disc.2019.06.023
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1109/ICTAI.2012.16
https://doi.org/10.1007/3-540-45578-7_7
https://doi.org/10.1007/3-540-45578-7_7
https://doi.org/10.1016/0012-365X(87)90174-9
https://doi.org/10.1016/0012-365X(87)90174-9
https://doi.org/10.1002/jgt.3190170511
https://doi.org/10.1007/978-3-319-11558-0_10
https://doi.org/10.4230/OASIcs.ICLP.2016.2
http://arxiv.org/abs/1405.3694

34:16 SAT Modulo Symmetries for Graph Generation

21 Ian P. Gent, Karen E. Petrie, and Jean-François Puget. Symmetry in constraint program-
ming. In Francesca Rossi, Peter van Beek, and Toby Walsh, editors, Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence, pages 329–376. Elsevier, 2006.

22 Teresa Haynes, Michael Henning, Lucas Merwe, and Anders Yeo. A maximum degree theorem
for diameter-2-critical graphs. Open Mathematics, 12(12):1882–1889, 2014. doi:10.2478/
s11533-014-0449-3.

23 Teresa W. Haynes, Michael A. Henning, Lucas C. van der Merwe, and Anders Yeo. Progress
on the Murty-Simon Conjecture on diameter-2 critical graphs: a survey. J. Comb. Optim.,
30(3):579–595, 2015. doi:10.1007/s10878-013-9651-7.

24 Markus Kirchweger and Stefan Szeider. SAT modulo symmetries for graph generation, 2021.
doi:10.5281/zenodo.5170575.

25 Mark H. Liffiton and Jordyn C. Maglalang. A cardinality solver: More expressive constraints
for free - (poster presentation). In Alessandro Cimatti and Roberto Sebastiani, editors, Theory
and Applications of Satisfiability Testing - SAT 2012 - 15th International Conference, Trento,
Italy, June 17-20, 2012. Proceedings, volume 7317 of Lecture Notes in Computer Science, pages
485–486. Springer Verlag, 2012. doi:10.1007/978-3-642-31612-8_47.

26 Po-Shen Loh and Jie Ma. Diameter critical graphs. J. Combin. Theory Ser. B, 117:34–58,
2016. doi:10.1016/j.jctb.2015.11.004.

27 W. Mantel. Problem 28. Wiskundige Opgaven, 10:60–61, 1907.
28 João Marques-Silva and Sharad Malik. Propositional SAT solving. In Edmund M. Clarke,

Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model
Checking, pages 247–275. Springer, 2018. doi:10.1007/978-3-319-10575-8_9.

29 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symbolic Comput.,
60:94–112, 2014. doi:10.1016/j.jsc.2013.09.003.

30 Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. CDCLSym: intro-
ducing effective symmetry breaking in SAT solving. In Dirk Beyer and Marieke Huisman,
editors, Tools and Algorithms for the Construction and Analysis of Systems - 24th International
Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,
Part I, volume 10805 of Lecture Notes in Computer Science, pages 99–114. Springer, 2018.
doi:10.1007/978-3-319-89960-2_6.

31 Amit Metodi and Michael Codish. Compiling finite domain constraints to SAT with BEE.
Theory Pract. Log. Program., 12(4-5):465–483, 2012. doi:10.1017/S1471068412000130.

32 Jean-Francois Puget. Symmetry breaking using stabilizers. In Francesca Rossi, editor,
Principles and Practice of Constraint Programming - CP 2003, 9th International Conference,
CP 2003, Kinsale, Ireland, September 29 - October 3, 2003, Proceedings, volume 2833 of
Lecture Notes in Computer Science, pages 585–599. Springer Verlag, 2003. doi:10.1007/
978-3-540-45193-8_40.

33 Jovan Radosavljević and Miodrag Živković. The list of diameter-2-critical graphs with at
most 10 nodes. IPSI Trans. Adv. Res., 16(1):1–5, 2020. URL: http://ipsitransactions.
org/journals/papers/tar/2020jan/p9.pdf.

34 Bas Schaafsma, Marijn Heule, and Hans van Maaren. Dynamic symmetry breaking by
simulating Zykov contraction. In Oliver Kullmann, editor, Theory and Applications of
Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK,
June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer Science, pages
223–236. Springer Verlag, 2009. doi:10.1007/978-3-642-02777-2_22.

35 Jianmin Tang, Yuqing Lin, Camino Balbuena, and Mirka Miller. Calculating the extremal
number ex(v; {C3, C4, . . . , Cn}). Discr. Appl. Math., 157(9):2198–2206, 2009. doi:10.1016/j.
dam.2007.10.029.

36 P. Wang, G. W. Dueck, and S. MacMillan. Using simulated annealing to construct extremal
graphs. Discrete Math., 235(1-3):125–135, 2001. Combinatorics (Prague, 1998). doi:10.1016/
S0012-365X(00)00265-X.

https://doi.org/10.2478/s11533-014-0449-3
https://doi.org/10.2478/s11533-014-0449-3
https://doi.org/10.1007/s10878-013-9651-7
https://doi.org/10.5281/zenodo.5170575
https://doi.org/10.1007/978-3-642-31612-8_47
https://doi.org/10.1016/j.jctb.2015.11.004
https://doi.org/10.1007/978-3-319-10575-8_9
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1007/978-3-319-89960-2_6
https://doi.org/10.1017/S1471068412000130
https://doi.org/10.1007/978-3-540-45193-8_40
https://doi.org/10.1007/978-3-540-45193-8_40
http://ipsitransactions.org/journals/papers/tar/2020jan/p9.pdf
http://ipsitransactions.org/journals/papers/tar/2020jan/p9.pdf
https://doi.org/10.1007/978-3-642-02777-2_22
https://doi.org/10.1016/j.dam.2007.10.029
https://doi.org/10.1016/j.dam.2007.10.029
https://doi.org/10.1016/S0012-365X(00)00265-X
https://doi.org/10.1016/S0012-365X(00)00265-X

	1 Introduction
	2 Preliminaries
	3 Dynamic Symmetry Breaking in SMS
	3.1 Minimality Check

	4 Static Symmetry Breaking
	5 Prototype Implementation and Experimental Setup
	6 Extremal Graphs with Required Girth
	6.1 Encoding
	6.2 Results

	7 Application: Diameter-2-Critical Graphs
	7.1 Encoding
	7.2 Results

	8 Conclusion

