Optimising Training for Service Delivery

Ilankaikone Senthooran &
Data Science & AI, Monash University, Clayton, Australia

Pierre Le Bodic &
Data Science & AI, Monash University, Clayton, Australia

Peter J. Stuckey &
Data Science & AI, Monash University, Clayton, Australia

—— Abstract

We study the problem of training a roster of engineers, who are scheduled to respond to service calls
that require a set of skills, and where engineers and calls have different locations. Both training
an engineer in a skill and sending an engineer to respond a non-local service call incur a cost.
Alternatively, a local contractor can be hired. The problem consists in training engineers in skills so
that the quality of service (i.e. response time) is maximised and costs are minimised. The problem
is hard to solve in practice partly because (1) the value of training an engineer in one skill depends
on other training decisions, (2) evaluating training decisions means evaluating the schedules that are
now made possible by the new skills, and (3) these schedules must be computed over a long time
horizon, otherwise training may not pay off. We show that a monolithic approach to this problem
is not practical. Instead, we decompose it into three subproblems, modelled with MiniZinc. This
allows us to pick the approach that works best for each subproblem (MIP or CP) and provide good
solutions to the problem. Data is provided by a multinational company.

2012 ACM Subject Classification Theory of computation — Integer programming; Theory of
computation — Constraint and logic programming

Keywords and phrases Scheduling, Task Allocation, Training Optimisation

Digital Object Identifier 10.4230/LIPIcs.CP.2021.48

Acknowledgements We are grateful for our industry partner for this opportunity to work on a
challenging real-life workforce planning problem and for the many discussions that have allowed us

to conduct this work.

1 Introduction

Large and/or complex machinery and equipment needs regular servicing, so a significant
role for companies who maintain such equipment is to schedule engineers to visit customers
who have such equipment. Apart from regular servicing, equipment can break down so
(emergency) repair visits by engineers also need to be scheduled.

In this work we consider a company that provides services for a wide variety of equipment.
Each piece of equipment is complex, and engineers need to be explicitly trained on how to
service each piece of equipment. In such circumstances the scheduling problem becomes hard:
each engineer is trained to provide services for many, but still a limited subset of, types of
machinery. Assigning an engineer to a service call is only possible if they possess all skills
(typically few) required by that service call.

In this setting, given an existing roster of engineers and a forecast of service calls over a
long horizon, the problem we are tackling consists in strategically deciding which engineers
should be trained, and in what skill(s), in order to minimise costs and ensure a short response
time. This generates a complex multi-layer decision problem:

How many engineers do we need for each skill in order to cover demand?

© Tlankaikone Senthooran, Pierre Le Bodic, and Peter J. Stuckey;

37 licensed under Creative Commons License CC-BY 4.0
27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 48; pp. 48:1-48:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:ilankaikone.senthooran@monash.edu
https://orcid.org/0000-0001-6207-3780
mailto:pierre.lebodic@monash.edu
https://orcid.org/0000-0003-0842-9533
mailto:peter.stuckey@monash.edu
https://orcid.org/0000-0003-2186-0459
https://doi.org/10.4230/LIPIcs.CP.2021.48
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2

Optimising Training for Service Delivery

Which engineers should be trained with which new skills in order to meet demands?

And finally, how do we schedule engineers to ensure customers needs are met in a timely
manner?

The focus of this paper is on the first two parts of this problem. Of course the efficacy of the
first two parts of the problem are only realised if we consider generating actual schedules,
in order to see that we are meeting customer demand. The ability to simulate “what-if”
scenarios, such as upcoming training opportunities and/or preparing for an anticipated
change in demand, at a regular interval (e.g. once a year) allows the service delivery provider
to make the best decisions regarding “whom to train” and “on what skill”.

Another aspect of our problem is geographic. The partner we work with is international
and has engineers available in different states (in this case, different geographical parts of
Australia). Assigning service calls to engineers outside of their home state incurs travel times
and costs that can be reduced by training the right engineers in the right skills in the right
locations. States have different numbers and types of service activities, each one therefore
needs a (possibly empty) tailor-made roster of engineers.

In this paper we give a mathematical model for optimising training for service delivery.
We illustrate the model on real-world data provided by our industry partner. The model
is broken into three parts to answer the three questions in turn: which skills are required?
who should be trained with them? and how does this affect service task scheduling? We
show that this separation is able to provide much more scalable, and indeed better solutions,
than a monolithic model attempting to answer all three questions at once. We show that the
training optimisation can deliver significant savings in comparison to the current assignment
processes (with some caveats).

2 The Problem: Training for Service Delivery

From an operational point of view, service calls arise on the fly and engineers must be
assigned to these jobs so that the calls can be answered as early as possible. An engineer
assigned to a call must possess all the skills required by that job. An engineer is assigned to
a job for the duration of the job, and to at most one job at a time. Assigning an engineer to
a job outside of their home state incurs an extra fixed travel cost and a per-day living cost.
A service call within Australia should not be assigned to an overseas engineer. However, an
overseas job can be allocated to any engineer, including overseas engineers.

While we have just described the operational problem as an online scheduling problem,
in this paper we consider it to be offline, as what we actually want to determine is how
engineers should be trained, which is a strategic decision. In other words, we suppose that
all jobs are known in advance. This is a simplification we make 1) because our industrial
partner is mostly interested in how to train its workforce, rather than than how to schedule
its jobs, and 2) because the actual online method used to assign jobs to engineers used by
our industry partner is too complex to be replicated, for instance by simulation, and needs
to be abstracted to make strategic decisions.

We also consider that training takes no additional time, because for our industrial partner,
training a new skill takes a few days and is usually only available at a few times during the
year. Hence if from a strategic point of view, we determine that it is valuable for an engineer
to learn a given skill, it would outweigh any operational consideration. However, we take
into consideration the training cost, which varies based on skill.

l. Senthooran, P. Le Bodic, and P. J. Stuckey

3 Modelling and Solving the Problem by Decomposition

Our industrial partner provided historical scheduling data to be used as a projection for
future demand. While a straightforward formalisation of this problem into a single model
was clearly a possibility, it proved not to be a good one. Indeed, while it is possible to
create a model that trains engineers, assigns them to service calls and schedules them into
a single monolithic problem that is solved using an off-the-shelf solver, be it a Constraint
Programming (CP) or a Mixed-Integer Programming (MIP) solver, this approach would hit
two major brick walls. First, as the reader might expect, and as our experiments will show,

this is completely impractical due to the combined complexity of the intertwined subproblems.

Second, if the model could be solved to optimality, the training decisions that would be
taken would overfit the historical data by using the fact that future service requests are
completely visible at training time. In reality, future demands are a “fog of war” that cannot
be captured by a single scenario. Instead, modern optimisation modelling practice dictates
that we would need to obtain or generate more scenarios. It is standard to model uncertainty
with chance constraints that need to be satisfied with a certain probability, usually 90 or
95%. See [3] for instance. However, our experiments with a single scenario already fail to
produce good solutions in a reasonable time.

To avoid both poor and overfitted solutions, we decompose the problem into three
subproblems to reduce the complexity, increase the solving speed, and hide the scheduling
decisions from the training decisions. The basic idea is to first forecast future demand using
past data, typically over a longer period of time, and determine what skills are in short
supply. This is the capacity planning subproblem. It is actually a combinatorial problem,
not “just” data analysis, as for each skill there may be enough capacity to cover the jobs
that require it, but no feasible assignment when taking all skills into account. This serves as
an input to the second subproblem, which allocates these new skills to specific engineers, the
skill allocation subproblem. The second subproblem embeds as a guide a relaxation of the
third subproblem, job scheduling, which assigns engineers to jobs and schedules them, using
their newly-acquired skills, if any. The third subproblem does not decide on training, but it
allows us to measure the quality of the solution of the first two subproblems with respect to
service quality (i.e. delays to answer calls) and travel costs, which we optimise over in the
third subproblem.

To summarise, we solve in sequence the three following subproblems:

Capacity planning identifying skills that are shortage in each state to serve local service

calls with the local engineers based on the historical data.

Skill allocation finding whom to train and on what skill to train from the identified set

of skills that are in shortage based on the future service calls, allowing travel.

Job scheduling assigning service calls to engineers and scheduling them so as to minimise

the overall cost and/or response time.

The subproblems are discussed in detail in the following subsections.

3.1 Capacity Planning

Capacity planning is done for every state individually to identify the skills that are required
to serve the local jobs with the local engineers. We look at the past data to identify what
skills were in shortage for each state. This is done by matching the available skills with

the requirement in a way that minimises the cost to train engineers to meet the shortage.

Suppose a state has two engineers, one, say E1, with skills A and B, and other, say E2 with
C. There are two jobs: one that requires skill A, and another that requires skill B. Suppose

48:3

CP 2021

48:4

Optimising Training for Service Delivery

that both require 5 days. Technically, in this case, both jobs can be performed by the local
engineer E1 with skills A and B. However, one job must wait until the other is completed.
To minimise the response time, engineer E2 should to be trained on either A or B. This
decision depends on the training cost of the skills. If A is more expensive than B, E1 will
perform the job that requires skill A and E2 will perform the other given training on skill B.

Now, lets say, we have an option to use local contractors to perform the job and the new
objective is to minimise the total cost, both training and contractor charges. For the above
example, if the cost of the contractor is cheaper than training an engineer, the tool will not
suggest any skill training.

In the event where a state has no local engineers or not enough to cater for the demand
within the period in consideration, no new skills will be suggested as there are no local
engineers to be trained. Naturally, in this case, service calls are made using engineers from
other states or by local contractors.

Next, we show the formulation of the capacity planning problem for a state.

3.1.1 Input and Derived Data

Input Index Sets.

J = {1,...,N7}: set of jobs (service calls) that need to be assigned engineers and
scheduled.

E=1{1,...,N%}: set of engineers / technicians.

SK ={1,...,NKF}: set of skills.

S =1{1,...,N¥}: set of all states both where jobs need to be served and engineers are
located.

SK™ C SK: subset of skills that engineer e € £ has training on
Es C &: subset of engineers who are located in state s € S
jjk C J: subset of jobs from state s € S that require skill sk € SK

Input Data.
hstart: planning horizon start date

he™@: planning horizon end date

wdays: number of working days within the planning horizon kst — pend

nsdays: number of days that becomes available upon training a new skill

split € Z*: number of periods that the planning horizon is split into

loct™: location (state) of engineer e € S

locg"b: location (state) of job j € J needs to be performed

d;: duration of job j € J

Ceont: per day cost to contract a job

Ctrain: cost of training on skill sk € SK

3.1.2 Decision Variables

skshort$), € Z*: number of days that skill sk € SK is in shortage in state s € S during
the planning horizon.

sksupp?), € Z*: number of days that skill sk € SK is supplied/allocated in state s € S
during the planning horizon.

skreg?,, € {0,1}: 1 if skill sk € SK is identified as required skill in state s € S during the
planning horizon, otherwise 0.

l. Senthooran, P. Le Bodic, and P. J. Stuckey

3.1.3 Constraints and Objective Function

Upper bound. on the skill supplied and in shortage is limited to the required amount.

skshort?;, < Z dj, skeSK,seS. (1)
JETSF

sksuppy, < Z d;j, skeSK,seS. (2)
JETSF

The amount of skill supplied cannot exceed the number of working days.

sksupp?, < wdays, ske€ SK,seS. (3)

New skill suggestion. Skills that are not required by the jobs within the planning horizon
are not suggested.

Z d; =0 — skreq;, =0, skeSK,seS. (4)
JET Sk

Supply and demand. Demand for skill is met by the supply or by contractor (shortage) or
by training.

Z d; < sksupp?;, + skshorty, + nsdays x skreqs,, skeSK,seS. (5)
jeTsk

Objective function. sum of the cost to contract the jobs that are shortage in skill and to
conduct training on suggested new skills.

3 s __ (Ycont s train s
min < obj = C" X3 csic ses SkShortly + 3 esk ses Cor™™ X skreqg,. (6)

3.2 Skill Allocation

From the previous step (capacity planning), we know what are the set of skills a state needs
to handle the future jobs. So deciding whom to train and on what skill to train them is
crucial since the wrong decision might lead to longer response time and higher cost. This
step looks at some jobs in hand, preferably for a shorter period, and decides whom to train in
the skills found to be in short supply in the previous step for all states simultaneously. Here
we allow a job to be allocated to an engineer from a different state than the job’s location
(state). The objective here is to reduce the cost of training someone and the cost of travel
involved in attending jobs that are assigned to an engineer from a different state. The travel
includes the return flight cost and the accommodation cost equivalent to the length of the
job duration. If a state needs a skill and that state has excess workforce, training someone
locally is cheaper than the alternatives, and the algorithm will recommend training a local
engineer on that skill. In this case, the local engineer can perform the job that requires the
recommended skill.
Next, we present the formulation of the skill allocation problem of a state.

3.2.1 Input and Derived Data

Input Index Sets.
SIC;Ob C SK: subset of skills that are required to perform job j € J.
&%k C &: subset of engineers that have training on sk € SK

48:5

CP 2021

48:6

Optimising Training for Service Delivery

Input Data.
C({l;ght € Z*,a # b: flight cost of travelling from state a € S to state b € S.
Cacco ¢ 77+ per day accommodation cost in state s € S.

cap?™*™: maximum number of new skills an engineer is allowed to acquire.

cap’®’: maximum number of jobs an engineer is allowed to undertake.

Functions. The constraints in our model use the following functions.
isOverseasJob(j): returns true if job j € J needs to be performed overseas, otherwise
false.
isOverseasEngineer(e): returns true if engineer e € £ is from overseas, otherwise false.

3.2.2 Decision Variables

newskills, € SKE™: list of skills suggested/allocated to engineer e € £.
alloc; € EsF sk € SK?Ob: engineer that job 5 € J is assigned to.
cost?T“”el: travel cost to perform job j € J.

costih@m: cost of training an engineer in skill sk € SK.

3.2.3 Constraints and Objective Function

Available skills for training are restricted to those identified by the previous solution

newskills, C {sk | sk € SK, skreql, =1}, s€ S,e €& (7)

Limit. on the number of new skill recommendations for an engineer.
|newskills.| < cap'™™, e€ & (8)

A limited number of jobs are assigned to an engineer when deciding the skill recommend-
ation.

Z(allocj =e) <cap’®®, ec& (9)

Jj€ET

Travel cost. If a job is allocated to an engineer from a different state, apply flight and
accommodation cost otherwise set the cost to zero.

eng job travel __ o~ flight acco . .
lOCauocj #+ loc}- — cost = Cloczylic_,locgob + C’locj_oh xdj, jeJ (10)
“J
lOCZ?zicj = loc;-"b — costﬁ-”‘“el =0, j€J (11)

Location. An engineer should only be assigned to a job if their existing skill set and the
newly recommended skill matches the job skill requirement
SKI* € SK . Unewskillsaiioe;, j € T (12)

alloc;

An overseas engineer cannot perform jobs in Australia.

—isOverseasJob(j) — —isOverseasEngineer(alloc;), je€ J (13)

l. Senthooran, P. Le Bodic, and P. J. Stuckey

Dominance. To increase the solving efficiency by eliminating the symmetries, we apply a
dominance constraint — one that favours skill addition to an engineer with a subset of skills
when compared to another engineer’s skills.

SKEY C SKeyY — |newskillser| > |newskillses|, el,e2 € E,el # e2. (14)

When the maximum number of new skills that an engineer can acquire within the planning
period is restricted to one, as is often the case with our partner company, the above constraint
is a dominance constraint, it does not remove any optimal solutions. However, when a new
engineer can be trained in two or more skills we have no proof that this is a dominance
constraint, and instead use it as a rule of thumb to improve solving efficiency.

Objective function. sum of training and travel costs.

: L train travel
min <— Obj - ZeGE z:nsenewslﬂ'lls€ COStnS + Zjé(] COStj : (15)

3.3 Job Scheduling

From the previous step (skill allocation), we know which engineer to train on what skill
in order to perform given future jobs. The next step is to assign jobs to engineers while
scheduling them. In this step, we assume the engineers have already acquired the training
on the recommended skills and have added those skills to their existing skill set. The overall
objective is to minimise the total travel cost.

Next, we show the formulation of the job scheduling problem of a state.

3.3.1 Input and Derived Data

Input Index Sets.
Tk C 7. subset of jobs that require skill sk € SIC
C: set of contractors

Input Data.
arrival Date;: arrival date of job j € J
wait;: preferred wait time of job j € J
maxW ait: maximum time a job can wait until its been attended since the allowed start
date, i.e. arrivalDate; + wait;,j € J

3.3.2 Decision Variables

startDate;: start date of job j € J
cost§™: cost to contract job j € J.

3.3.3 Constraints and Objective Function

All the constraints listed in step 2, except (a) the constraint on the number of new skills an
engineer is allowed to acquire, (b) the dominance constraint and (c¢) the constraint on the
set of possible engineers who can perform a job in the event contractors are permitted, are
applied in this step. In addition to these, the following constraints are also enforced:

48:7

CP 2021

48:8

Optimising Training for Service Delivery

Non-overlapping. Two jobs that are allocated to the same engineer cannot overlap in time.
We use the disjunctive(s,d) constraint which forces tasks with start times given by array s
and durations given by array d not to overlap. We apply this to each engineer e by replacing
the duration of tasks that the engineer is not allocated by O.

disjunctive(startDate, [if alloc; = e then d; else 0|5 € J]), e€& (16)

Limit on overlapping jobs. When contractors are not used, we enforce a redundant constraint
to apply a cap on the number of jobs that can overlap, which is equal to the available engineers
with the required skill. We use the global cumulative(s,d,r,b) constraint which forces at
each point in time, the total number of tasks (with start times given by array s, durations
given by array d and resources required to perform the task given by array r) that overlap
that point, does not exceed the limit given by b. We apply this to each skill sk.

cumulative([startDate;|j € T, [d;]5 € T**], (1|5 € T**), card(E%%)), sk e SK (17)

Scheduling window. A job must only be scheduled after a set period since its arrival date.
Each job depending on its type can have a different wait period.

startDate; > arrival Date; + wait;, j € J (18)
A job must be served within a set period after the wait time.

startDate; < arrivalDate; + wait; + maxWait, je€J (19)

Possible engineers for a job. When contractors are permitted, we allow assigning an
engineer with the required skill or a contractor for a job. Here we assume the contractor has
the necessary skill and available in every state.

alloc; € E¥ UC, sk € SKI™ sk e SK, jeJ (20)

Contractor Cost. If a job is allocated to a contractor, apply the associated cost otherwise
set the cost to zero.

alloc; € C — cost?‘mt =C" xd;, jeJ (21)

allocj ¢ C — costs™™ =0, jeJ (22)

Objective function. sum of travel and contractor costs.

min < obj = 3, ; costi" ! 4 cost§o. (23)

3.4 Monolithic Model

The single monolithic problem is essentially modelled by combining all constraints in step 2
and step 3, where the newskills. are kept as variables so that deciding whom to train on
what, allocating jobs to engineers and scheduling are performed together. Equation (7)
is omitted so there is no limit on the possible set of new skills that can be trained. The
objective is to reduce the sum of training and travelling costs, i.e. Equation (15).

l. Senthooran, P. Le Bodic, and P. J. Stuckey

4 Experiment

We have evaluated our algorithm by executing it as a single-thread process on an Intel(R)
Core(TM) i7-8700K CPU @ 3.70GHz on actual data provided by an industry partner. The
data has approximately 8800 jobs over two years requiring 113 different skills. We are given
53 engineers with a varying skill sets to perform the jobs at hand, and be trained further.
The engineers are located in 7 states, including one overseas, while service calls occur in 22
states, including 14 overseas from where 10% of the service calls originate. We split the data
into two, the first year (Y1) data is used for capacity planning and the second year (Y2)
data is used to perform skill allocation and job scheduling.

We modelled our problem using MiniZinc [15], which allowed us to try different off-
the-shelf solvers (CP and MIP) on the same model before deciding on the most suitable
one. MiniZinc translates constraints into forms suitable for the chosen solver. For example,
in MiniZinc, sets are native. For both CP and MIP solvers, the set constraints, given in
Equation (7), are mapped to zero/one representations [2]. To choose an appropriate solver for
each step in the decomposed approach and the monolithic model, we ran the preprocessing
for each experiment using several solvers (CP and MIP) - Chuffed, Gecode, CBC, and Gurobi.
The results were consistent on all occasions and we chose a MIP solver (Gurobi) for steps 1
and 2, and a CP solver (Chuffed) for step 3. For the monolithic model, a CP solver (Chuffed)
worked best.

For step 3 and the monolithic model we use a programmed search strategy to find solutions
quickly. During scheduling we choose the unscheduled job with the earliest start time and the
then fix its start time to this earliest possible time and assign an engineer for that job first
trying to schedule an engineer who resides in the same location as the job, thus favouring
solutions with lower travel costs. We experimented with a number of search strategies and
found this to be overall the most robust.

In all the tables provided here, steps 1, 2 and 3 refer to capacity planning, skill allocation
and job scheduling stages of the decomposed approach, respectively. Tables 1 shows the
results of experiments conducted to compare the performance of the decomposed approach
against the monolithic approach for two settings: skill allocation and job scheduling over
one-month and two-month periods. For this comparison, we performed the capacity planning
using the first-year (Y1) data, and the skill allocation and job scheduling on the second-year
(Y2) data. To have a fair comparison, we used the same Y2 data used in the monolithic
model for the skill allocation step of the decomposed approach for each period. All the runs
had a cutoff time set at 360 seconds except for the monolithic model, which had it set at
3600 seconds. The values shown in the tables indicate the values at the timeout.

The first line of Table 1 shows that determining the skills in short supply is straightforward,
we can find an optimal solution in 10 seconds. The results in Table 1 show that while the
monolithic model can generate better solutions within its much longer time limit for some
of the one month long instances, it scales very poorly, unable to find solutions to one one
month problem and any two month problems. Clearly decomposing the problem into 3 parts
does restrict the resulting solutions, since an “optimal solution” for the decomposed problem
can be bettered by the monolithic model. However, this was when we were looking at a
shorter period to decide the skill allocation. From the experimental results presented next,
we can see that when skill allocation is performed over an extended period, that is, when
looking at the larger problem, the decomposed approach outperforms the monolithic model
in terms of solution quality and solving speed. This is true for the all months, including the

48:9

CP 2021

48:10

Optimising Training for Service Delivery

cases that were previously bettered by the monolithic model. Overall it is clear that the
monolithic model is not practical, even given far more resources and solving a restriction of
the problem it cannot compete.

The second experiment, shown in Table 2, tackles a much more practical version of the
problem, and is the default problem used in the tool delivered to the industrial partner. Here
the decisions of what skills are in short supply and which engineers should be trained on
which skills (steps 1 and 2) are both performed over 1 year of data. The table compares
three scenarios: when no new skills can be trained, when we can train at most one new skill
per engineer, and when we can train at most two new skills per engineer. Clearly given more
flexibility of training skills allows us to train more engineers. The second part of the table
shows the monthly solutions over the year under the three different scenarios. It considers
two different maximum waiting times for jobs. It gives the time to compute the solution,
the total wait time over all jobs, the number of job serviced by interstate engineers and the
total travel cost, for each month of jobs. For each different wait time it also shows the year
sums of the statistics. The headline result is that (perhaps unsurprisingly) enabling new
skill training can significantly improve upon the overall costs of providing the service calls.
Indeed new skill training is required when we restrict the waiting time, Y2M7 and Y2M8
have no solution with the available engineers and skills. The savings of targeted training
are significant reducing overall costs by 30%. Interestingly the more flexible scenario where
we can train two skills per person does not always lead to a better overall cost solution.
Recall that the training decisions are made on the Y1 data and hence may not be completely
reflected in the Y2 data that we actually schedule, and indeed the total number of new skills
assigned to engineers only marginally increases. The more flexible scenario does lead to
significantly less waiting time for customers though.

Given that in some months we find no viable schedule without using contractors, we
extend the step 3 model to allow contractors. This requires a more complex search strategy
to obtain good results, but ensures that we find a viable schedule for each month. We applied
a search strategy that is similar to the one used in the step 3 model before the extension,
which chooses the unscheduled job with the earliest start time and then fix its start time
to the earliest possible time and assign an engineer for that job first trying to schedule an
engineer who is not a contractor and resides in the same location as the job. The results
shown in Table 3 are very similar to those in Table 2 since we try to minimize the use of
contractors. The results here do not change the previous conclusions.

5 Related Work

There is extensive literature on the workforce allocation problem [10, 17, 1], including with
CP models [12, 14]. A significant part of the literature deals with the problem of assigning
crossed-trained workers, i.e. trained in multiple skills, to jobs that require a single skill.
Although not necessary when each task requires a single skill, cross-training allows the
reduction of service delivery delays and increase the utilization of the workforce. A number of
papers, among which [4, 5, 6, 13, 18], study the effect of cross-training of the entire workforce
as a single varying parameter, but not with decision variables that describe the specific skills
that each staff member must learn. This approach is most appropriate when the workforce is
large and many staff members have the same skill profile.

l. Senthooran, P. Le Bodic, and P. J. Stuckey 48:11

Table 1 Performance comparison between decomposed and monolithic approaches. Steps 1,2,3
represents capacity planning, skill allocation, and job scheduling stages, respectively. MM refers to
monolithic model. A { indicates a greedy optimal solution for steps 2 and 3 was discovered. The
best overall cost solution found of the two approaches is in bold. A — indicates no solution was found
within the time limit.

Training Travel Total

Period Step #Jobs Time gﬁ:)jiage ’IV“(;:;;I ﬁgﬁ:’ #In‘;:(e);s;tate Cost Cost Cost
(x100) (x100) (x100)
Y1 1 4301 10 759
1-month, maxWait = 15
Y2M1 2,3 364 8+T7 222 8 18 237 1184 11421
MM 364 14400 287 8 18 237 1049 1286
Y2M2 2,3 400 8421 873 7 16 198 1262 11460
MM 400 14400 723 7 15 201 1112 1313
Y2M3 2,3 429 10+360 896 6 28 165 1632 1797
MM 429 14400 690 4 39 107 1883 1990
Y2M4 2,3 393 8+10 414 5 18 140 1389 11529
MM 393 14400 522 6 18 140 1127 1267
Y2M5 2,3 449 10+91 816 6 29 165 2017 12182
MM 449 14400 750 6 29 165 1825 1990
Y2M6 2,3 380 7+360 863 3 19 84 1889 1973
MM 380 14400 595 0 31 0 2053 2053
Y2M7 2,3 459 10+360 1353 5 31 140 2480 2620
MM 459 14400 1202 0 64 0 2878 2878
Y2M8 2,3 370 8+15 638 6 17 171 1487 11658
MM 14400 — — — — — —
Y2M9 2,3 371 7+10 703 3 15 84 1007 11091
MM 371 14400 657 4 15 104 921 1025
Y2M10 2,3 386 8+15 581 6 18 168 1104 11272
MM 386 14400 574 7 18 188 1131 1319
Y2M11 2,3 637 14+360 975 8 33 224 1999 2223
MM 637 14400 1156 0 70 0 2897 2897
Y2M12 2,3 299 6-+7 332 4 16 115 1154 11269
MM 299 14400 267 4 16 115 1131 1246
2-month, mazWait = 15
Y2M1-2 2,3 812 144360 2346 9 53 254 3352 3606
MM 14400 — — — — — —
Y2M2-3 2,3 810 214360 1731 8 43 221 3325 3546
MM 14400 — — — — — —
Y2M3-4 2,3 818 19+360 1475 10 38 274 3373 3647
MM 818 14400 2429 0 101 0 4534 4534
Y2M4-5 2,3 814 15+360 2015 8 47 218 4631 4849
MM 814 14400 1651 0 83 0 4815 4815
Y2M5-6 2,3 829 23+360 3079 7 78 196 5471 5667
MM 14400
Y2M6-7 2,3 814 15+360 3089 9 62 255 4646 4901
MM 14400 — — — — — —
Y2M7-8 2,3 741 164360 1852 7 41 199 3228 3427
MM 14400 — — — — — —
Y2M8-9 2,3 741 174360 1572 6 32 168 2030 2198
MM 741 14400 1628 0 71 0 2832 2832
Y2M9-10 2,3 996 26+360 1755 9 56 260 3507 3767
MM 14400 — — — — — —
Y2M10-11 2,3 637 15+360 975 8 33 224 2010 2234
MM 637 14400 1138 0 70 0 2897 2897
Y2M11-12 2,3 573 14433 591 8 22 224 2162 12386
MM 573 14400 559 6 27 171 2080 2251

CP 2021

48:12 Optimising Training for Service Delivery

Table 2 Comparison — Effect of allowing 0,1 or 2 skills per engineer on the total cost and changing
maxW ait on the solving time — time out per run 360s. A “—” indicates the problem is unsatisfiable.

No New Skills One-8kill Per Person Two-Skill Per Person
Training Training #New Training
Period Step #Jobs | Time 7:]1:3‘:' Cost | Time ﬁgﬁ‘: Cost | Time Skills Cost

(x100) (x100) (# Engs) (x100)
Y1 1,2 4301 0 0 0 | 94216 19 540 | 9+467 20 (16) 565

Total #Inter- Travel Total #Inter- Travel Total #Inter- Travel

Wait state Cost Wait state Cost Wait state Cost
Jobs (x100) Jobs (x100) Jobs (x100)
maxWait = 30
Y2M1 3 364 10 322 43 1740 5 235 13 1047 4 249 12 1038
Y2M2 3 400 21 604 37 1805 10 670 12 1173 12 616 12 1173
Y2M3 3 429 61 1071 49 2229 20 921 19 1305 23 932 19 1305
Y2M4 3 393 28 618 42 1776 9 648 13 1241 11 488 13 1241
Y2M5 3 449 80 881 55 2488 35 933 20 1826 35 833 20 1826
Y2M6 3 380 360 880 30 2146 360 803 14 1753 360 826 14 1753
Y2M7 3 459 360 1716 63 2969 53 1272 21 2015 54 1225 21 2015
Y2M8 3 370 18 826 33 2156 7 627 13 1519 8 568 13 1519
Y2M9 3 371 15 727 26 1181 8 544 10 973 12 6 10 973
Y2M10 3 386 15 634 43 1817 10 418 13 1132 9 427 13 1132
Y2M11 3 637 360 1482 68 2919 294 1295 29 1794 303 1271 26 1695
Y2M12 3 299 7 308 28 1697 3 225 12 1150 3 221 11 1141
Total 10069 517 24923 8591 189 17468 8256 184 17376
maxWait =15

Y2M1 3 364 19 278 43 1750 6 235 13 1047 4 249 12 1038
Y2M2 3 400 18 546 37 1805 15 577 12 1173 14 559 12 1173
Y2M3 3 429 360 731 49 2370 76 681 20 1434 89 772 20 1434
Y2M4 3 393 36 573 42 1776 10 576 13 1241 11 467 13 1241
Y2M5 3 449 75 805 55 2488 41 T 20 1826 40 735 20 1826
Y2M6 3 380 360 565 31 2226 360 761 16 1925 360 755 16 1925
Y2M7 3 459 — — — — 188 1184 21 2026 360 1119 23 2171
Y2M8 3 370 14 578 13 1519 13 545 15 1539
Y2M9 3 371 32 740 26 1191 19 648 10 983 32 662 10 983
Y2M10 3 386 85 514 44 1838 9 416 14 1153 8 394 14 1153
Y2M11 3 637 360 1093 71 3115 360 944 31 1938 360 925 29 1844
Y2M12 3 299 5 225 28 1697 3 220 12 1150 4 192 12 1223
Total 6070 426 20256 7597 195 17955 7374 196 18115

Table 3 Comparison (contractors allowed) — Effect of allowing 0, 1 or 2 skills per engineer on the
total cost and changing maxW ait on the solving time — time out per run 360s.

No New Skills One-Skill Per Person Two-Skill Per Person

Training Training #New Training

Period Step #Jobs | Time ﬁ:ﬁ‘:’ Cost | Time ﬁgﬁ: Cost Time Skills Cost

) (x100) (x100) (# Engs) (x100)
Y1 1,2 4301 0 0 0 | 7+523 31 850 | 743297 23 (20) 643

#Inter- Total #Inter- Total #Inter- Total

Total state, Cost Total state, Cost Total state, Cost

Wait Contract- ‘Wait Contract- ‘Wait Contract-
ed Jobs (x100) ed Jobs (x100) ed Jobs (x100)
maxWait = 30
Y2M1 3 364 25 314 36,15 1651 12 177 12,12 1149 360 2059 27,16 2505
Y2M2 3 400 47 592 30,17 1696 29 560 8,14 1080 360 3072 28,20 2407
Y2M3 3 429 92 1054 40,21 2099 57 753 13,17 1194 340 2076 24,23 2973
Y2M4 3 393 44 604 36,14 1683 28 401 8,13 1154 360 2791 33,5 3841
Y2M5 3 449 129 837 47,16 2394 69 791 17,11 1762 360 3895 30,16 4010
Y2M6 3 380 360 861 25,14 2050 360 724 12,10 1675 360 4414 27,24 3667
Y2M7 3 459 360 1635 51,23 2813 152 1518 13,20 1897 202 1629 8,38 2132
Y2M8 3 370 38 754 24,23 2018 24 518 5,22 1387 131 1526 13,23 1814
Y2M9 3 371 30 732 18,17 1079 23 511 3,16 877 360 2669 35,10 2933
Y2M10 3 386 40 623 35,12 1750 17 385 10,6 1096 199 1321 18,15 1595
Y2M11 3 637 360 1487 63,12 2870 200 1117 20,15 1562 30 443 11,13 1916
Y2M12 3 299 14 311 21,8 1650 8 196 8,5 1120 30 443 11,13 1916
Total 9804 426,192 23753 7651 129,171 15953 26338 265,216 31709
mazWait = 15

Y2M1 3 364 51 258 36,15 1661 14 177 12,12 1149 8 215 8,12 966
Y2M2 3 400 37 534 30,17 1696 29 523 8,14 1080 23 589 8,14 1080
Y2M3 3 429 360 692 45,13 2341 360 613 14,16 1276 360 722 15,15 1347
Y2M4 3 393 48 579 36,14 1683 39 392 8,13 1154 26 558 8,13 1154
Y2M5 3 449 98 87 47,16 2394 70 714 17,11 1762 67 807 17,11 1762
Y2M6 3 380 360 609 29,7 2179 360 765 15,5 1795 360 718 16,5 1897
Y2M7 3 459 360 1068 53,18 2946 262 1306 13,20 1908 360 1222 21,18 2135
Y2M8 3 370 56 535 23,24 2106 31 506 5,22 1387 76 514 6,22 1469
Y2M9 3 371 44 721 18,18 1084 47 638 3,17 882 27 670 3,17 882
Y2M10 3 386 287 502 36,12 1771 15 320 11,6 1117 13 361 11,6 1117
Y2M11 3 637 360 1140 66,10 3100 360 1028 26,6 1832 360 1042 22,11 1848
Y2M12 3 299 11 237 21,8 1650 7 196 8 1120 6,5 218 7,5 1111
Total 7662 440,172 24611 7178 140,150 16462 7636 142,149 16768

l. Senthooran, P. Le Bodic, and P. J. Stuckey

We focus on papers that propose methods to decide how to both train, allocate jobs and
schedule them. De Bruecker et al. [8] specifically review the workforce planning literature
that takes skills into account, and in particular (in Section 3.3.3) the papers that allow the
workforce to be trained. One important dichotomy is whether the skills are hierarchical or
categorical. With hierarchical skills, there are only skill levels, where a worker at a given skill
level can perform all jobs at this or a lower skill level. With categorical skills, there is no
comparison between skills.

Huang et al. [11] optimise the service level delivered by a consultancy-type business where
projects require certain skills. Since the problem is solved via a discrete event simulator, this
allows them to model many different aspects of the problem, such as employees deciding to
leave. Within the simulation, the decision to assign staff to projects is made by a Linear
Program, hence fractional (simultaneous) assignments are possible. The future horizon is
divided into planning periods, during which staff can be trained to ensure that enough
capacity of each skill is available for the projects in that period. In this model, each staff
can only possess one skill, and training that staff is a “transfer”, i.e. the staff loses the
previous skill. Other papers consider that staff can be re-trained, losing their original skills,
or transferred between departments [16].

De Bruecker et al. [7] propose a three-step approach to training and scheduling aircraft
maintenance teams from one season to the next. Each stage solves a Mixed-Integer Program
and feeds into the next step. The first stage consists in scheduling maintenance shifts to
ensure the flights can operate on schedule, and assigning workers to the shifts. The second
stage refines the set of skills needed by each team of workers in order to reduce the amount
of training needed. The third stage attempts to schedule the training needed in the training
season.

6 Conclusion

We have demonstrated the potential value of additional training in reducing overall costs for
our service delivery problem. Together with the substantial cost reduction, our solutions
also provides auxiliary benefits, such as a more highly trained workforce, and considerably
less travel, thereby improving staff wellbeing and reducing the company’s carbon footprint.

Furthermore, we have shown that using a single monolithic model to solve the entire
problem was not practical, as the solutions it can find in a time similar to our decomposition
approach are much worse.

One limitation is our current inability to solve the third subproblem, which schedules jobs
and evaluate the quality of our training decisions, for a one-year horizon. We believe that
the cost we obtain for the month-by-month approach are a reasonable approximation of the
cost that would be obtained for the entire year, but we have not been able to experimentally
verify this hypothesis.

Another potential limitation of the current approach is that our third subproblem is set as
an offline job scheduling problem. While this integrates well with the first two subproblems,
offline scheduling might give a biased measure of the efficiency with which the workforce can
deal with jobs that in practice would need to be allocated on the fly. Hence future work
includes solving the job scheduling subproblem online, which, since recently, can be modelled
in Minizinc using the techniques presented in [9].

48:13

CP 2021

48:14

Optimising Training for Service Delivery

—— References

1

10

11

12

13

14

15

Mark Antunes, Vincent Armant, Kenneth N. Brown, Daniel A. Desmond, Guillaume Es-
camocher, Anne-Marie George, Diarmuid Grimes, Mike O’Keeffe, Yiqing Lin, Barry O’Sullivan,
Cemalettin Ozturk, Luis Quesada, Mohamed Siala, Helmut Simonis, and Nic Wilson. Assigning
and scheduling service visits in a mixed urban/rural setting. International Journal on Artificial
Intelligence Tools, 29(03n04):2060007:1-2060007:31, 2020. doi:10.1142/S0218213020600076.
Gleb Belov, Peter J. Stuckey, Guido Tack, and Mark Wallace. Improved linearization of
constraint programming models. In Michel Rueher, editor, Principles and Practice of Constraint
Programming, Lecture Notes in Computer Science, pages 49-65. Springer, 2016. International
Conference on Principles and Practice of Constraint Programming 2016, CP 2016 ; Conference
date: 05-09-2016 Through 09-09-2016. doi:10.1007/978-3-319-44953-1_4.

John R. Birge and Frangois Louveaux. Introduction to Stochastic programming (2nd edition).
Springer, New York, NY, 2011.

Michael J. Brusco. An exact algorithm for a workforce allocation problem with application to
an analysis of cross-training policies. IIE Transactions, 40(5):495-508, 2008. doi:10.1080/
07408170701598124.

G M Campbell. A two-stage stochastic program for scheduling and allocating cross-trained
workers. Journal of the Operational Research Society, 62(6):1038-1047, 2011. doi:10.1057/
jors.2010.16.

Gerard M. Campbell. Cross-utilization of workers whose capabilities differ. Management
Science, 45(5):722-732, 1999. doi:10.1287/mnsc.45.5.722.

Philippe De Bruecker, Jeroen Belién, Jorne Van den Bergh, and Erik Demeulemeester. A
three-stage mixed integer programming approach for optimizing the skill mix and training
schedules for aircraft maintenance. Furopean Journal of Operational Research, 267(2):439-452,
2018. doi:10.1016/j.ejor.2017.11.047.

Philippe De Bruecker, Jorne Van den Bergh, Jeroen Belién, and Erik Demeulemeester. Work-
force planning incorporating skills: State of the art. European Journal of Operational Research,
243(1):1-16, 2015. doi:10.1016/j.ejor.2014.10.038.

Alexander Ek, Maria Garcia de la Banda, Andreas Schutt, Peter J. Stuckey, and Guido Tack.
Modelling and solving online optimisation problems. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(02):1477-1485, April 2020. doi:10.1609/aaai.v34i02.5506.

A.T Ernst, H Jiang, M Krishnamoorthy, and D Sier. Staff scheduling and rostering: A review
of applications, methods and models. Furopean Journal of Operational Research, 153(1):3-27,
2004. Timetabling and Rostering. doi:10.1016/80377-2217(03)00095-X.

Huei-Chuen Huang, Loo-Hay Lee, Haiqing Song, and Brian Thomas Eck. Simman—a simulation
model for workforce capacity planning. Computers & Operations Research, 36(8):2490-2497,
2009. Constraint Programming. doi:10.1016/j.cor.2008.10.003.

Serdar Kadioglu, Mike Colena, Steven Huberman, and Claire Bagley. Optimizing the cloud
service experience using constraint programming. In Gilles Pesant, editor, Principles and
Practice of Constraint Programming, pages 627—637, Cham, 2015. Springer International
Publishing.

Haitao Li and Keith Womer. Scheduling projects with multi-skilled personnel by a hybrid
milp/cp benders decomposition algorithm. J. Scheduling, 12:281-298, June 2009. doi:
10.1007/s10951-008-0079-3.

Y. Naveh, Y. Richter, Y. Altshuler, D. L. Gresh, and D. P. Connors. Workforce optimization:
Identification and assignment of professional workers using constraint programming. IBM
Journal of Research and Development, 51(3.4):263-279, 2007. doi:10.1147/rd.513.0263.
N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, and G. Tack. Minizinc: Towards
a standard CP modelling language. In C. Bessiere, editor, Proceedings of the 13th International
Conference on Principles and Practice of Constraint Programming, volume 4741 of LNCS,
pages 529-543. Springer-Verlag, 2007.

https://doi.org/10.1142/S0218213020600076
https://doi.org/10.1007/978-3-319-44953-1_4
https://doi.org/10.1080/07408170701598124
https://doi.org/10.1080/07408170701598124
https://doi.org/10.1057/jors.2010.16
https://doi.org/10.1057/jors.2010.16
https://doi.org/10.1287/mnsc.45.5.722
https://doi.org/10.1016/j.ejor.2017.11.047
https://doi.org/10.1016/j.ejor.2014.10.038
https://doi.org/10.1609/aaai.v34i02.5506
https://doi.org/10.1016/S0377-2217(03)00095-X
https://doi.org/10.1016/j.cor.2008.10.003
https://doi.org/10.1007/s10951-008-0079-3
https://doi.org/10.1007/s10951-008-0079-3
https://doi.org/10.1147/rd.513.0263

l. Senthooran, P. Le Bodic, and P. J. Stuckey

16

17

18

Haiqing Song and Huei-Chuen Huang. A successive convex approximation method for
multistage workforce capacity planning problem with turnover. FEuropean Journal of Opera-
tional Research, 188(1):29-48, 2008. doi:10.1016/j.ejor.2007.04.018.

Jorne Van den Bergh, Jeroen Belién, Philippe De Bruecker, Erik Demeulemeester, and Liesje
De Boeck. Personnel scheduling: A literature review. FEuropean Journal of Operational
Research, 226(3):367-385, 2013. doi:10.1016/j.ejor.2012.11.029.

Kum-Khiong Yang, Scott Webster, and Robert A. Ruben. An evaluation of worker cross
training and flexible workdays in job shops. IIE Transactions, 39(7):735-746, 2007. doi:
10.1080/07408170701244687.

48:15

CP 2021

https://doi.org/10.1016/j.ejor.2007.04.018
https://doi.org/10.1016/j.ejor.2012.11.029
https://doi.org/10.1080/07408170701244687
https://doi.org/10.1080/07408170701244687

	1 Introduction
	2 The Problem: Training for Service Delivery
	3 Modelling and Solving the Problem by Decomposition
	3.1 Capacity Planning
	3.1.1 Input and Derived Data
	3.1.2 Decision Variables
	3.1.3 Constraints and Objective Function

	3.2 Skill Allocation
	3.2.1 Input and Derived Data
	3.2.2 Decision Variables
	3.2.3 Constraints and Objective Function

	3.3 Job Scheduling
	3.3.1 Input and Derived Data
	3.3.2 Decision Variables
	3.3.3 Constraints and Objective Function

	3.4 Monolithic Model

	4 Experiment
	5 Related Work
	6 Conclusion

