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Abstract
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1 Introduction

Monads play an established role in the semantics of sequential and concurrent program-
ming [21] – they encapsulate side-effects, such as statefulness, nontermination, nondetermin-
ism, or probabilistic branching. The well-known correspondence between monads on the
category of sets and algebraic theories [16] impacts accordingly on programming syntax, as
witnessed, for example, in work on algebraic effects [24]: operations of the theory serve as
syntax for computational effects such as non-deterministic or probabilistic choice. The com-
parative analysis of programs or systems beyond two-valued equivalence checking, e.g. under
behavioural preorders, such as similarity, or behavioural distances, involves monads based on
categories beyond sets, such as the categories Pos of partial orders or Met of (1-bounded)
metric spaces. This has sparked recent interest in presentations of such monads using suitable
variants of the notion of algebraic theory. While it is, in principle, possible to work with
equational presentations that encapsulate the additional structure within the signature [14], it
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14:2 Monads on Categories of Relational Structures

seems at least equally natural to represent the additional structure (e.g. distance or ordering)
within the judgements of the theory. Indeed, Mardare, Panangaden, and Plotkin replace
equations with equations-up-to-ϵ in their quantitative algebraic theories [20], which present
monads on Met, and in our own previous work on behavioural preorders [9] as well as in
our own recent work with Adámek [5], we have used inequational theories to present monads
on Pos.

In the present paper, we introduce a generalized approach to such notions of algebraic
theory: We work in categories of finitary relational structures (more precisely, the objects
are sets interpreting a given signature of finitary relation symbols), axiomatized by Horn
theories whose axioms are implications with possibly infinite sets of antecedents. We say that
such a theory is λ-ary for a regular cardinal λ if all its axioms have less than λ antecedents.
For instance, Pos can be presented by a finitary (i.e. ω-ary) Horn theory over a binary
relation ≤, and Met by an ω1-ary Horn theory over binary relations =ϵ “equality up to ϵ”
indexed over rational numbers ϵ. We exploit that the models of a λ-ary Horn theory form
a locally λ-presentable category C [4] to give a syntactic characterization of λ-accessible
monads on C in terms of a notion of relational algebraic theory, in the sense that we prove
a monad-theory correspondence. Following Kelly and Power [14], we use λ-presentable
objects of C as arities and as contexts of axioms; however, as indicated above, we provide a
syntax by expressing axioms using the relational signature instead of necessarily using only
equality. We give a sound and complete deduction system for the arising relational logic
(which generalizes standard equational logic), thus obtaining an explicit description of the
monad generated by a relational algebraic theory in the indicated sense. One consequence of
our main result is that quantitative algebraic theories [20] induce ω1-accessible monads. More
generally, presentations of ω1-presentable monads in our formalism may involve operations
with countable non-discrete arities: indeed, we present an ω1-ary relational algebraic theory
that defines the metric completion monad. We also take a glimpse at the more involved
setting of κ-accessible monads on C where κ < λ (e.g. finitary monads on Met). We
give a partial characterization of κ-presentable objects in this setting, and show that while
the monad-to-theory direction of our correspondence fails for κ < λ, the theory-to-monad
direction does hold. This implies that some salient quantitative algebraic theories induce
finitary monads; e.g. the theory of quantitative join-semilattices [20].

Related Work. We have already mentioned work by Kelly and Power on finitary monads [14]
and by Mardare et al. on quantitative algebraic theories [20], as well as our own previous
work [9] and our joint work with Adámek [5].

Power and Nishizawa [22] have extended the approach of Kelly and Power to deal with
different enrichments of a category and the monads thereon, and obtain a correspondence
between enriched Lawvere theories [25] and finitary enriched monads. More recently, Power
and Garner [10] have provided a more thorough understanding of the equivalence between
enriched finitary monads and enriched Lawvere theories as an instance of a free completion
of an enriched category under a class of absolute colimits. Rosický [26] establishes a monad-
theory correspondence for λ-accessible enriched monads and a notion of λ-ary enriched
theory á la Linton [17], where arities of operations are given by pairs of objects. Like in the
setting of Kelly and Power, relations (inequations, distances) are encoded in the arities. So
the syntactic notion of theory is different from (and more abstract than) ours. Lucyshyn-
Wright [18] establishes a rather general correspondence between monads and abstract theories
in symmetric monoidal closed categories, parametric in a choice of arities, which covers
several notions of theory and correspondences in the categorical literature under one roof.
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Kurz and Velebil [15] characterize classical ordered varieties [6] (which are phrased in
terms of inequalities) as precisely the exact categories in an enriched sense with a “suitable”
generator. In recent subsequent work, Adámek at al. [2] establish a correspondence of these
varieties with enriched monads on Pos that are strongly finitary [13], i.e. their underlying
functor is a left Kan-extension of the embedding of finite discrete posets into Pos.

The main distinguishing feature of our work relative to the above is the explicit syntactic
description of the monad obtained from a theory via a sound and complete derivation system.
A related derivation system is the partial Horn logic of Palmgren and Vickers [23], which
reasons about partial operations with unrestricted domains of definition. In contrast, we
consider (varieties of) algebras with partial operations whose domain of definition is specified
by objects in the base category (cf. Section 4); an essential ingredient in our monad-theory
correspondence.

2 Preliminaries

We review the basic theory of locally presentable categories (see [4] for more detail) and of
monads. We assume a modest familiarity with the elementary concepts of category theory [3]
and with ordinal and cardinal numbers [11]. We write cardX for the cardinality of a set X
and, where λ is a cardinal, we write X ′ ⊆λ X to indicate that X ′ ⊆ X and cardX ′ < λ.

Locally Presentable Categories. Fix a regular cardinal λ (i.e. an infinite cardinal which is
not cofinal to any smaller cardinal). A poset (I,≤) is λ-directed if each subset I0 ⊆λ I has
an upper bound: there exists u ∈ I such that i ≤ u for all i ∈ I0. A λ-directed diagram is a
functor whose domain is a λ-directed poset (viewed as a category); colimits of such diagrams
are also called λ-directed. An object X in a category C is λ-presentable if the covariant
hom-functor C (X,−) preserves λ-directed colimits. That is, X is λ-presentable if for each
λ-directed colimit (Di

ci−→ C)i∈I in C , every morphism m : X → C factors through one of
the ci essentially uniquely: there exists i ∈ I and g : X → Di such that m = ci · g, and for all
g′ : X → Di such that m = ci · g′, there exists j ≥ i such that D(i → j) · g = D(i → j) · g′.

▶ Definition 2.1. A category C is locally λ-presentable if it is cocomplete, its full subcategory
Presλ(C ) given by the λ-presentable objects of C is essentially small, and every C ∈ C is
a λ-directed colimit of objects in Presλ(C ). When λ = ω (resp. ω1), we speak of locally
finitely (resp. countably) presentable categories. We call C locally presentable if it is locally λ-
presentable for some cardinal λ. A functor F on a locally presentable category is λ-accessible
if it preserves λ-directed colimits. When λ = ω or ω1, we speak of finitary and countably
accessible functors, respectively.

Reflective subcategories. A full subcategory C ′ of a category C is reflective if the embedding
ι : C ′ ↪→ C is a right adjoint. In this case, we write rX : X → RX (or just r if X is clear
from the context) for the universal arrows; we call RX the reflection of X ∈ C , rX the
reflective arrow, and the left adjoint R the reflector. The universal property of rX : X → RX

is as follows: For each morphism f : X → Y in C , where Y lies in C ′, there exists a unique
morphism f ♯ : RX → Y such that f = f ♯ · rX . We call C ′ epi-reflective if rX is epi for all
X ∈ C . We will employ the following reflection theorem:

▶ Theorem 2.2 [4, Cor. 2.48]. If C ′ is a full subcategory of a locally λ-presentable category C

and C ′ is closed under limits and λ-directed colimits in C , then C ′ is reflective and locally
λ-presentable.

CALCO 2021
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Monads. A monad on a category C is a functor T : C → C equipped with natural
transformations η : Id → T (the unit) and µ : TT → T (the multiplication) such that the
diagrams below commute.

T TT T TTT TT

T TT T
id

T η

µ
id

ηT T µ

µT µ

µ

We call the monad (T, η, µ) λ-accessible if its underlying functor is λ-accessible.

▶ Definition 2.3. An Eilenberg-Moore algebra for the monad (T, η, µ) is a C -morphism of
the shape a : TX → X satisfying the following coherence laws:

X TX TTX TX

X TX X
id

η

a T a

µ

a

a

A homomorphism from a : TX → X to an Eilenberg-Moore algebra b : TY → Y is a morphism
h : X → Y in C such that h · a = Th · b.

▶ Notation 2.4. For a functor F : C → C , we write AlgF for the category of F -algebras
and homomorphisms, i.e. AlgF has C -morphisms of the shape a : FA → A as objects, and a
homomorphism (A, a) → (B, b) is a C -morphism h : A → B such that h · a = b · Fh.

3 Categories of Relational Structures

As indicated previously, we will study monads over base categories consisting of (single-sorted)
relational structures. Specifically, we will restrict the relational signature to be finitary but
allow infinitary Horn axioms. We proceed to recall basic definitions, examples, and results,
in particular on closed structure and (local) presentability. In Section 3.1, we present new
results on the partial characterization of (internally) λ-presentable objects in cases where the
overall local presentability index of the category is greater than λ.

▶ Definition 3.1.
1. A relational signature is a set Π of relation symbols α, β, . . . together with a finite arity

0 < ar(α) ∈ ω for all α ∈ Π. A Π-edge in a set S is a pair e = α(f) where α ∈ Π and
f : ar(α) → S is a function. For a map g : S → Y , we write g · e = α(g · f). We extend
this notation pointwise to sets E of edges: g · E = {g · e | e ∈ E}.

2. A Π-structure X consists of an underlying set |X| (or just X when no confusion is likely)
and a set E(X) of Π-edges in |X|. If α(f) ∈ E(X), we write αX(f) or even X |= α(f).

3. A relation-preserving map (or briefly a morphism) from X to a Π-structure Y is a function
g : |X| → |Y | such that g · E(X) ⊆ E(Y ). We call g an embedding if g is injective and
relation-reflecting, i.e. if Y |= g · e for an edge e = (α, f : ar(α) → X), then X |= e. We
denote by Str(Π) the category of Π-structures and relation-preserving maps.

▶ Notation 3.2. Given an edge α(f) such that f(i) := xi for all i ∈ ar(α), we sometimes
write α(x1, . . . , xar(α)) or even α(xi) in lieu of α(f). We will pass between these presentations
without further mention.

We are going to carve out full subcategories of Str(Π) by means of infinitary Horn axioms,
whose syntax we recall next.
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▶ Definition 3.3. Let Π be a relational signature, and λ a regular cardinal. We fix a set Var
of variables such that card(Var) = λ. A λ-ary Horn formula over Π has the form

Φ =⇒ ψ

where Φ is a set of Π-edges in Var such that card Φ < λ and ψ is a Π ∪ {=}-edge in Var, for a
fresh binary relation symbol =. In case Φ = {φ1, . . . , φn} is finite, we write φ1, . . . , φn =⇒ ψ,
and if Φ = ∅, then we just write =⇒ ψ. A λ-ary Horn theory H = (Π,A) consists of a
relational signature Π and a set A of λ-ary Horn formulae over Π, the axioms of H .

We fix a λ-ary Horn theory H = (Π,A) for the rest of the paper. We define the semantics
of Horn formulae in a Π-structure X as follows. We denote by X the Π ⊔ {=}-structure
obtained from X by putting =X := {(x, x) | x ∈ X}. A valuation is a map κ : Var → |X|.
We say that X satisfies a Horn formula Φ =⇒ ψ if whenever κ is a valuation such that
X |= κ · ϕ for all ϕ ∈ Φ, then X |= κ · ψ. Finally, X is a model of H , or of A, if X satisfies
all axioms of H . The full subcategory of Str(Π) spanned by the models of A is Str(Π,A)
(or Str H ).

We have an obvious notion of derivation under H over a given set Z (e.g. of variables or
points in a structure): We extend H to (Π ∪ {=}, Ā) where Ā consists of the axioms in A
and additional axioms stating that = is an equivalence and that all relations in Π are closed
under = in the obvious sense. Then we have a single (λ-ary) derivation rule for application
of Horn axioms (Φ =⇒ ψ) ∈ Ā over Z:

κ · Φ
κ · ψ

(κ : Var → Z).

We say that a set E of edges over Z entails an edge e over Z (under H ) if e is derivable
from edges in E in this system. In case Z = Var and cardE < λ, the expression E =⇒ e is
in fact a Horn formula, and we then also say that H entails E =⇒ e if E entails e.

▶ Assumption 3.4. For technical convenience, we assume that the fixed Horn theory
H = (Π,A) expresses equality. That is, there exists a set Eq(x, y) of Π-edges in variables
x, y such that H entails Eq(x, y) =⇒ x = y as well as =⇒ ψ for all edges ψ ∈ Eq(x, x)
(where we use obvious notation for substitution; formally, Eq(x, x) = g · Eq(x, y) where
g(x) = g(y) = x). Moreover, we assume that A explicitly includes the (derivable) formulae
Eq(x1, y1) ∪ · · · ∪ Eq(xar(α), yar(α)) ∪ {α(x1, . . . , xar(α))} =⇒ α(y1, . . . , yar(α)) saying that all
relations α ∈ Π are closed under Eq (implying also that Eq is symmetric and transitive).
This is without loss of generality as we can always extend a given Horn theory with an
equality predicate axiomatized by the above conditions without changing its category of
models; indeed we leave this predicate implicit in examples whose natural presentation does
not include it.

▶ Example 3.5. We mention some key examples of Horn theories:
1. The category Set of sets and functions is specified by the trivial Horn theory (∅, ∅).
2. The category Pos of partially ordered sets (posets) and monotone maps is specified by

the ω-ary Horn theory consisting of a single binary relation symbol ≤ and the axioms

x ≤ x; x ≤ y, y ≤ z =⇒ x ≤ z; and x ≤ y, y ≤ x =⇒ x = y.

This theory expresses equality (Assumption 3.4) via Eq(x, y) = {x ≤ y, y ≤ x}.

CALCO 2021



14:6 Monads on Categories of Relational Structures

3. The theory HMet of metric spaces is the ω1-ary theory consisting of binary relation
symbols =ϵ for all ϵ ∈ Q ∩ [0, 1], and the axioms

=⇒ x =0 x (Refl)
x =0 y =⇒ x = y (Equal)
x =ϵ y =⇒ y =ϵ x (Sym)

x =ϵ y, y =ϵ′ z =⇒ x =ϵ+ϵ′ z (Triang)
x =ϵ y =⇒ x =ϵ+ϵ′ y (Up)

{x =ϵ′ y | Q≥0 ∋ ϵ′ > ϵ} =⇒ x =ϵ y (Arch)

where ϵ, ϵ′ range over Q ∩ [0, 1] (that is, the axioms mentioning ϵ, ϵ′ are in fact axiom
schemes representing one axiom for each ϵ, ϵ′). This theory expresses equality via
Eq(x, y) = {x =0 y}; in fact, even if we remove =0, the remaining theory still expresses
equality via Eq(x, y) = {x =1/n y | n > 0}. The theory HMet specifies the category Met
of 1-bounded metric spaces and non-expansive maps, in the sense that Str(HMet) and
Met are concretely isomorphic: X ∈ Str(HMet) induces the 1-bounded metric space
(X, d) given by d(x, y) =

∧
{ϵ | x =ϵ y ∈ E(X)}, and conversely a metric space (X, d)

induces the HMet-model on X with edges {x =ϵ y | x, y ∈ X, d(x, y) ≤ ϵ}.
4. Consider the theory obtained by taking two “copies” of the theory HMet: its signature

consists of binary relation symbols =0
ϵ ,=1

ϵ for all ϵ ∈ Q ∩ [0, 1], each subject to (indexed
variants of) the axiom schema above. This yields an ω1-ary theory of bi-metric spaces:
sets equipped with a pair of metrics. Morphisms are maps which are non-expansive with
respect to both metrics. Further imposing axioms of the shape

x =0
ϵ y =⇒ x =1

ϵ y (ϵ ∈ Q ∩ [0, 1])

specifies bi-metric spaces in which one metric is always finer than the other. We aim
to approach the problem of digital fingerprinting in future work on graded monads in
precisely this setting.

5. Let L be a complete lattice (for simplicity), and let L0 ⊆ L be meet-dense in L in the
sense that l =

∧
{p ∈ L0 | p ≥ l} for each l ∈ L; whenever q ≥

∧
P for q ∈ L0 and P ⊆ L0

such that
∧
P /∈ L0, then q ≥ p for some p ∈ P (e.g. these conditions hold trivially for

L0 = L). Further, fix λ such that |L0| < λ. Let HL be the λ-ary Horn theory with binary
relation symbols αp for all p ∈ L0 and axioms

{αp(x, y) | p ∈ P} =⇒ αq(x, y) (P ⊆ L0, q =
∧
P ∈ L0) (Arch)

αp(x, y) =⇒ αq(x, y) (p, q ∈ L0, p ≤ q) (Up)

where p, q range over L0. Then Str(HL) is concretely isomorphic to the category of
L-valued relations, whose objects X are sets X equipped with map P : X ×X → L, and
whose morphisms (X,P ) → (Y,Q) are maps X → Y such that Q(f(x), f(y)) ≤ P (x, y).
(Of course, Met is essentially the special case L = [0, 1], L0 = Q ∩ [0, 1] with some
additional axioms.)

6. A signature of partial operations is a set P of operation symbols f with assigned finite
arities ar(f). A (partial) P -algebra is then a set A and, for each f ∈ P , a partial function
fA : Aar(f) → A. A homomorphism of partial algebras is a map h : A → B such that
whenever fA(x1, . . . , xar(f)) is defined, then fB(h(x1), . . . , h(xar(f))) is defined and equals
h(fA(x1, . . . , xar(f))). The category of partial P -algebras and their homomorphims is
concretely isomorphic to the category of models of the ω-ary Horn theory consisting of
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relational symbols αf of arity ar(f) + 1 for all f ∈ P (with αf (x1, . . . , xar(f), y) being
understood as f(x1, . . . , xar(f)) = y), and axioms

αf (x1, . . . , xar(f), y), αf (x1, . . . , xar(f), z) =⇒ y = z.

We proceed to discuss some key aspects of the categorical structure of Str(H ).

Reflection. We first note

▶ Proposition 3.6. Str(Π,A) is a (full) epi-reflective subcategory of Str(Π).

Since Str(Π) is easily seen to be complete and cocomplete, it follows that Str(Π,A) is
cocomplete and moreover closed under limits in Str(Π), and hence complete. We write

R : Str(Π) → Str(Π,A) and rX : X → RX

for the left adjoint of the inclusion Str(Π,A) ↪→ Str(Π) (the reflector) and the corresponding
(surjective) reflection maps, respectively. Explicitly, RX is constructed as follows. We define
an equivalence ∼ on X by x ∼ y if E(X) entails x = y under H (in the sense defined
above), and let q : X → X/∼ denote the quotient map; then RX has underlying set X/∼,
and contains precisely the edges q · e such that E(X) entails e; moreover, rX = q as a map.

Local presentability. One easily checks

▶ Lemma 3.7. An object (X,E) ∈ Str(Π) is λ-presentable iff cardX < λ and cardE < λ;
the category Str(Π) is locally finitely presentable.

By Proposition 3.6 and since Str(Π,A) is easily seen to be closed under λ-directed colimits
in Str(Π), we thus have

▶ Proposition 3.8 [4, Example 5.27(3)]. Str(H ) is locally λ-presentable.

The forgetful functor Str(H ) → Set preserves λ-directed colimits. Moreover, we have an
easy characterization of λ-presentable objects:

▶ Proposition 3.9. For an H -model X, the following are equivalent.
1. X is λ-presentable in Str(Π,A);
2. X ∼= R(Y,E) for some λ-presentable (Y,E) ∈ Str(Π);
3. card |X| < λ, and X is λ-generated, i.e. there exists E ⊆ E(X) such that cardE < λ

and E entails every edge in E(X) under H (equivalently, Ri is an isomorphism where
i : (|X|, E) → X is the Str(Π)-morphism carried by idX).

▶ Remark 3.10. For instance, every finite partial order is ω-presentable, and every countable
metric space is ω1-presentable. We emphasize that the situation is more complicated for κ-
presentable objects where κ < λ; we treat this case in more detail in Section 3.1. For instance,
every finite metric space with rational distances (cf. Example 3.5) is finitely generated in the
sense of Proposition 3.9 but not finitely presentable.

Closed monoidal structure. The point-wise structure defines an internal hom functor:

▶ Definition 3.11. The internal hom of X,Y ∈ Str(Π) is the Π-structure [X,Y ] carried by
Str(Π)(X,Y ) with the edge set defined by

E([X,Y ]) := {e | ∀x ∈ X.πx · e ∈ E(Y )},

CALCO 2021



14:8 Monads on Categories of Relational Structures

where πx : Str(Π)(X,Y ) → Y is defined by πx(g) = g(x). For each X ∈ Str(Π), the
assignment Y 7→ [X,Y ] defines a (covariant) internal hom functor

[X,−] : Str(Π) → Str(Π)

with the action on a morphism m : Y → Z given by post-composition: [X,m](g) := m · g.

One can show that [−,−] endows Str(Π) with a symmetric closed structure. Using results
of Day and LaPlaza [8] it follows that Str(Π) is a symmetric monoidal closed category. The
ensuing monoidal product is given by the structure X ⊗ Y with underlying set X × Y and
edges

{e | (π1 · e constant ∧ π2 · e ∈ E(Y )) ∨ (π2 · e constant ∧ π1 · e ∈ E(X))}.

where an edge (α, f) is constant if f is a constant map, and π1 : X×Y → X and π2 : X×Y →
Y are the projection maps. The tensor unit is the trivial one point structure I0 with no edges.
To verify that this is the monoidal product arising from the symmetric closed structure [−,−]
it suffices to show that (−) ⊗X is left adjoint to [X,−]. Indeed, we have Str(Π)-morphisms
uY : Y → [X,Y ⊗X], uY (y) = λx.(y, x). It is straightforward to check that uY is a universal
arrow. That is:

▶ Proposition 3.12. For every X ∈ Str(Π), (−) ⊗X is a left adjoint of [X,−].

Moreover, one easily checks that [X,−] restricts to a functor

[X,−] : Str(H ) → Str(H ).

Hence, we can apply Day’s reflection theorem [7, §1] to the reflector R : Str(Π) → Str(Π,A)
(see the discussion immediately below Proposition 3.6) to obtain

▶ Corollary 3.13. The category Str(H ) is a closed symmetric monoidal category, with
monoidal structure

X ⊗H Y = R(X ⊗ Y ), I = RI0

and internal hom given by [X,−] : Str(H ) → Str(H ).

We briefly refer to ⊗H as the Manhattan product.

▶ Example 3.14. 1. In Pos (Example 3.5.2), the Manhattan product coincides with binary
Cartesian product (so Pos is Cartesian closed).

2. In Met (Example 3.5.3), the Manhattan product (X, dX)⊗HMet (Y, dY ) is X×Y equipped
with the well-known Manhattan metric d given by d((x1, y1), (x2, y2)) = min(dX(x1, x2) +
dY (y1, y2), 1) (while Cartesian products carry the supremum metric).

▶ Definition 3.15. A functor F : Str(H ) → Str(H ) that preserves the pointwise structure
on morphisms is called enriched. That is, we call F enriched if for all X,Y ∈ Str(H ) and
all edges f : ar(α) → Str(H )(X,Y ) (α ∈ Π), if [X,Y ] |= α(fi), then [FX,FY ] |= α(F (fi)).

Internal local presentability. For use of objects X as arities of operations, we will in fact
need that the internal hom [X,−] is λ-accessible. Using Kelly’s results [12, (5.2) and (5.3)]
this holds precisely for the λ-presentable objects since we have

▶ Proposition 3.16. The λ-presentable objects of Str(H ) are closed under the monoidal
structure. That is, I = RI0 is λ-presentable and X ⊗H Y is λ-presentable whenever X and
Y are so.

In fact, this implies that Str(H ) is locally λ-presentable as a (symmetric monoidal) closed
category [12, (5.5)].



C. Ford, S. Milius, and L. Schröder 14:9

3.1 Compact Horn Models

We have seen above that the category Str(H ) (where H is a λ-ary Horn theory) is
(internally) locally λ-presentable, with a straightforward characterization of the (internally)
λ-presentable objects (Propositions 3.9 and 3.16). We proceed to look at the rather less
straightforward notion of internally κ-presentable objects in Str(Π,A) for κ < λ. The main
scenario that motivates our interest in this case is that of finitary monads on categories that
are internally locally λ-presentable only for some λ > ω, such as metric spaces.

Further unfolding definitions, we have that an object X is internally κ-presentable if for
every κ-directed colimit (Di

ci−→ C)i∈I , the canonical morphism

colim[X,Di] → [X, colimDi]

is an isomorphism. We split this property into two parts: We say that X is weakly κ-
presentable if the canonical morphism is always surjective, and co-weakly κ-presentable if
the canonical morphism is always an embedding. Below, we give necessary and sufficient
conditions for weak κ-presentability. Co-weak κ-presentability is a more elusive property;
more concretely, it means roughly that X-indexed tuples of derivations in the given Horn
theory can be synchronized into single derivations over X-indexed tuples of points. We give
some examples below (Example 3.17).

▶ Example 3.17. We give some examples and non-examples of internally finitely presentable
objects in locally ω1-presentable categories Str(Π,A).
1. A metric space is internally finitely presentable iff it is finite and discrete. The “if”

direction has surprisingly complicated reasons: It holds only because over the reals,
finite joins distribute over directed infima. On the other hand, no non-empty metric
space is externally finitely presentable, as its hom-functor will fail to preserve the
colimit of the directed chain (Di)i<ω of spaces Di with underlying set {0, 1} and metric
d(0, 1) = 1/(i+ 1).

2. In the category of L-valued relations for a complete lattice L in which binary joins fail to
distribute over directed infima (such lattices exist), the two-element discrete space fails
to be internally finitely presentable.

3. Let L be as in the previous item, and assume additionally that there is l ∈ L such that
in the downset of l, finite joins do distribute over directed infima (again, such L exist).
Take the Horn theory of L-valued relations, extended with an additional (two-valued)
relation α and axioms

α(x, y) ∧ α(x′, y′) =⇒ x =l x
′ α(x, y) ∧ α(x′, y′) =⇒ y =l y

′.

Then the set {0, 1} equipped with the discrete L-valued relation and α(0, 1) is internally
finitely presentable.

We proceed to give the announced characterization of weakly finitely presentable objects.

▶ Definition 3.18. A cover (Y,E), or just E, of X ∈ Str(Π,A) is a set E of edges in some
set Y ⊇ |X| such that all edges of X are implied by those in E under the Horn theory
A. That is, the underlying map r(Y,E) : Y → |R(Y,E)| of the reflection composes with the
inclusion i : |X| ↪→ Y to yield a morphism r(Y,E) · i : X → R(Y,E) (in Str(Π,A)). Then X is
κ-compact if for each cover (Y,E) of X there exist E′ ⊆κ E and a morphism f : X → R(Y,E′)
such that r(Y,E) · i = Rj · f where j : (Y,E′) → (Y,E) is the Str(Π)-morphism carried by idY :
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R(Y,E′)

X R(Y,E)

Rjf

r(Y,E)·i

(3.1)

▶ Lemma 3.19. Every κ-compact object is κ-generated.

▶ Remark 3.20. We will show that the weakly finitely presentable objects in Str(Π,A) are
precisely the κ-compact objects with less than κ elements (Proposition 3.21). This character-
ization breaks under seemingly innocuous variations of the definition of κ-compactness:
1. It is essential that the edges of a cover live over a superset Y of X. If we were to

restrict covers to consist of edges over X (call such a cover an X-cover), then finite ω-
compact objects in the arising relaxed sense would in general fail to be finitely presentable.
E.g. take (Π,A) to be the theory of metric spaces additionally equipped with a transitive
relation α. Then the set X = {0, 2} equipped with the discrete metric and the edge
α(0, 2) satisfies the relaxed definition of compactness (every X-cover must contain the
edge α(0, 2)) but fails to be weakly finitely presentable: The colimit of the ω-chain of
objects Di with underlying set {0, 1, 1′, 2}, distances d(0, 1) = d(1′, 2) = 1, d(1, 1′) = 1/i,
and edges α(0, 1) and α(1′, 2) is not weakly preserved by the hom-functor Str(Π,A)(X,−)
(the obvious inclusion of X into the colimit fails to factorize through any of the Di).

2. Note that we do not require that the factorization f of r(Y,E) · i in (3.1) equals r(Y,E′) · i;
i.e. f may rename elements of X into elements of Y that lie outside X. Let us refer to the
natural-sounding strengthening of κ-compactness where we do require f = r(Y,E′) · i as
strong κ-compactness; e.g. X is strongly ω-compact if every cover of X has a finite subcover.
However, this notion is too strong, i.e. not every (weakly) finitely presentable object in
Str(Π,A) is strongly ω-compact. As a counterexample, consider the same Horn theory as
in the previous item but without the transitivity axiom for α. Then the same object X as
in the previous item is weakly finitely presentable (even internally finitely presentable) but
not strongly ω-compact, as witnessed by the cover E = {α(0′, 2)} ∪ {0 =1/n 0′ | n > 0}.

▶ Proposition 3.21. The following are equivalent for X ∈ Str(Π,A):
1. X is weakly κ-presentable;
2. X is κ-compact, and card |X| < κ.

4 Relational Algebraic Theories

We next describe a framework of universal algebra for enriched κ-accessible monads on
the internally locally λ-presentable category C = Str(H ) of H -models, for κ ≤ λ. We
etablish one direction of our theory-monad correspondence: We show that every theory in
our framework induces a κ-accessible monad (Remark 4.12) whose algebras are precisely the
models of the theory (Theorem 4.13). We address the converse direction in Section 5. We
write C0 for the ordinary category underlying the closed monoidal category C.

Following Kelly and Power [14], we use the internally λ-presentable objects in C as
the arities of operation symbols. The full subcategory Presλ(C) of internally λ-presentable
objects is essentially small (Proposition 3.16); we fix a small subcategory Pλ of internally
λ-presentable C-objects representing all such objects up to isomorphism. For all infinite
κ < λ, the full subcategory Pκ ↪→ Pλ is given by the internally κ-presentable objects in Pλ.
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▶ Definition 4.1. Let κ ≤ λ be a regular cardinal. A κ-ary signature is a set Σ of operation
symbols σ, each of which is equipped with an arity ar(σ) ∈ Pκ.

A Σ-algebra A consists of a C-object, also denoted A, and a family of C-morphisms

σA : [ar(σ), A] → A (σ ∈ Σ)

A homomorphism from A to a Σ-algebra B is a morphism h : A → B in C such that the
diagram below commutes for all σ ∈ Σ.

[ar(σ), A] A

[ar(σ), B] B

σA

h·(−) h

σB

We write Alg Σ for the category of Σ-algebras and homomorphisms. By a subalgebra of the
Σ-algebra A, we understand a Σ-algebra B equipped with a homomorphism h : B ↪→ A whose
underlying C-morphism is an embedding.

Signatures and their algebras. Fix a κ-ary signature Σ for the remainder of this section.
The category Alg Σ can be presented as a category of functor algebras:

▶ Definition 4.2. The signature functor associated to Σ, HΣ : C → C, is given by

HΣ =
∐

σ∈Σ[ar(σ),−].

The categories Alg Σ and AlgHΣ are clearly isomorphic as concrete categories over C, so the
forgetful functor Alg Σ → C0 inherits all properties of the forgetful functor AlgHΣ → C0.
We collect a few basic consequences of this observation:

▶ Remark 4.3.
1. In general, the forgetful functor U : AlgF → C from the category AlgF of F -coalgebras

for a functor F on a category C creates all limits in C . It follows that Alg Σ has all limits,
and the forgetful functor Alg Σ → C0 creates them.

2. Since HΣ is a colimit of κ-accessible functors [ar(σ),−], it is itself κ-accessible, so that
the forgetful functor AlgHΣ → C0 creates κ-directed colimits, and the same holds for
the forgetful functor Alg Σ → C0.

3. From the previous observation (which implies that HΣ is also λ-accessible) and Proposi-
tion 3.8, we obtain by [4, Remark 2.75] (for λ-accessible functors F on locally λ-presentable
categories, AlgF is locally λ-presentable) that Alg Σ is locally λ-presentable.

4. Adámek [1] shows that for a λ-accessible functor F on a cocomplete category C , the
forgetful functor AlgF → C is right adjoint. From 2 and cocompleteness of C0 (Section 3),
we thus obtain that the forgetful functor Alg Σ → C0 is right adjoint; that is, every object
X ∈ C generates a free Σ-algebra FΣX.

Varieties of Σ-Algebras. We now describe a syntax for specifying full subcategories of
Alg Σ. As a first step, we introduce a notion of Σ-term, defined as usual in universal algebra:

▶ Definition 4.4 (Σ-Terms; substitution). For X ∈ C, we call its underlying set |X| the set
of variables in X. The set TΣ(X) of Σ-terms in X is defined inductively as follows:
1. Each variable in |X| is a Σ-term in X;
2. For each σ ∈ Σ and each map f : |ar(σ)| → TΣ(X), σ(f) is a Σ-term in X.
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We usually omit the signature Σ from the notation and speak simply of terms (in X). We
employ standard syntactic notions: A substitution is a map τ : |Y | → TΣ(X), for X,Y ∈ C.
We extend τ to a map τ̄ on terms t ∈ TΣ(X) as usual. Formally, we define τ̄(t) inductively
by τ̄(x) = τ(x) for x ∈ X, and τ̄σ(f) = σ(τ̄ · f) for f : ar(σ) → TΣ(X). We will not further
distinguish between τ and τ̄ in the notation, writing τ(t) = τ̄(t) and τ · f = τ̄ · f for t, f
as above. Moreover, the set sub(t) of subterms of a term t ∈ TΣ(X) is defined as usual;
formally, we simultaneously define sub(t) and sub(f) for f : I → TΣ(X) (with I some index
set or object) inductively by sub(x) = {x} for x ∈ X; sub(σ(f)) = {σ(f)} ∪ sub(f) for
f : ar(σ) → TΣ(X); and sub(f) =

⋃
i∈I sub(f(i)).

Note that term formation operates without regard for the relational structure. Consequently,
the evaluation of terms in a given Σ-algebra may fail to be defined:

▶ Definition 4.5. Let A be a Σ-algebra. For an object X ∈ C and a relation-preserving
assignment e : X → A, the partial evaluation map e# : TΣ(X) → A is inductively defined by
1. e#(x) = e(x) for x ∈ X, and
2. e#(σ(f)) is defined for σ ∈ Σ and f : |ar(σ)| → TΣ(X) iff the following hold:

a. e#(f(i)) is defined for all i ∈ ar(σ), and
b. if α(g) is a Π-edge in ar(σ), then A |= α(e# · (f · g)).
In case e#(σ(f)) is defined, we put e#(σ(f)) = σA(e# · f).

As indicated previously, we phrase theories using the relations in Π:

▶ Definition 4.6. A Σ-relation X ⊢ α(f) consists of a context X ∈ C and a Π-edge α(f)
in TΣ(X). We say that X ⊢ α(f) is κ-ary if X ∈ Pκ. A Σ-algebra A satisfies X ⊢ α(f)
if, for each relation preserving assignment e : X → A, e# · f(i) is defined for all i ∈ X, and
αA(e# · f). A (κ-ary) relational algebraic theory (Σ, E) consists of the (κ-ary) signature Σ
and a set E of κ-ary Σ-relations. It determines the subcategory Alg(Σ, E) of Alg Σ consisting
of those Σ-algebras which satisfy each Σ-relation in E . We refer to categories of the shape
Alg(Σ, E) as varieties of Σ-algebras.

▶ Remark 4.7. For C0 = Pos, the above notion of variety of Σ-algebras corresponds precisely
to what we have termed “varieties of coherent algebras” in earlier work with Adámek [5].

▶ Example 4.8. Recall that a (1-bounded) metric space X is complete if every Cauchy
sequence (xi)i∈ω of points in X has a limit in X. That is, if (xi) satisfies the Cauchy property

∀ϵ > 0. ∃Nϵ ∈ ω. ∀n,m ≥ Nϵ (d(yn, ym) < ϵ), (4.1)

then there is a point lim(xi) ∈ X with the property of a limit: for all ϵ > 0 there is N ∈ ω

such that xn =ϵ lim(xi) for all n ≥ N . The full subcategory CMS ↪→ Met of complete
metric spaces is specified by the relational algebraic theory described below. Thus, by
Theorem 4.13 below, we recover the fact that CMS is monadic over Met. Furthermore, we
obtain a completely syntactic ω1-ary description of the metric completion monad via the
deduction system introduced later in this section.

The theory TCMS of complete metric spaces has Γ-ary limit operations limΓ for all spaces
Γ ∈ Pω1 of the form Γ = {xi | i ∈ ω} where (xi)i∈ω is a Cauchy sequence in Γ. The axioms
of TCMS then say precisely that limΓ(xi) is a limit of (xi). Explicitly, for all Γ as above, we
impose all axioms of the shape

Γ ⊢ limΓ(xn) =ϵ xk (k ≥ Nϵ) where Nϵ is as in (4.1).
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We fix a variety V = Alg(Σ, E) for the remainder of this section. We are going to see that V is
a reflective subcategory of Alg Σ by application of Theorem 2.2, i.e. we show that V is closed
under limits and κ-directed colimits in Alg Σ. We state the second property separately:

▶ Proposition 4.9. V is closed under κ-directed colimits in Alg Σ.

Combining this with Remark 4.3.2, we obtain

▶ Corollary 4.10. The forgetful functor V : V → C is κ-accessible.

It is fairly straightforward to show that V is also closed under products and subobjects, and
hence under limits (in Alg Σ). Thus, as announced, we have:

▶ Proposition 4.11. V is a reflective subcategory of Alg Σ.

▶ Remark 4.12. It follows that the forgetful functor V → C0 has a left adjoint, namely
the composite C FΣ−−→ Alg Σ RV−−→ V, where FΣ is the left adjoint of the forgetful functor
Alg Σ → C (Remark 4.3.4) and RV is the reflector according to Proposition 4.11. We call
the ensuing monad TV the free-algebra monad of V; by Corollary 4.10, TV is κ-accessible.

Indeed, V is essentially the category of Eilenberg-Moore algebras of TV : Using Beck’s
monadicity theorem, one can show that

▶ Theorem 4.13. The forgetful functor V → C0 is monadic.

▶ Corollary 4.14. Every κ-ary relational algebraic theory may be translated into an enriched
κ-accessible monad, preserving categories of models.

Relational Logic. We proceed to set up a system of rules for deriving relations among terms.
The calculus will involve two forms of judgements, both mentioning a context X ∈ Str(Π)
(not necessarily κ-presentable). By a relational judgement

X ⊢ α(t1, . . . , tar(α)),

where t1, . . . , tar(α) ∈ TΣ(X), we indicate that for every valuation of X that is admissible,
i.e. satisfies the relational constraints specified in X, the terms ti are defined, and the resulting
tuple of values is in relation α. We treat expressions α(t1, . . . , tar(α)) notationally as edges
over TΣ(X), in particular sometimes write them in the form α(f) for f : ar(α) → TΣ(X).
Moreover, a definedness judgement of the form

X ⊢ ↓t

states that t is defined for all admissible valuations of X. (We could encode ↓t as ϕ(t, t) for
any ϕ ∈ Eq(x, y) but for technical reasons we prefer to keep definedness judgement distinct
from relational judgements.)

The rules of the arising system of relational logic are shown below:

(Var)
X ⊢ ↓x

(x ∈ X) (Ctx)
X ⊢ α(x1, . . . , xar(α))

(X |= α(x1, . . . , xar(α)))

(Mor) {X ⊢ α(fi(j)) | j ∈ ar(σ)} ∪ {X ⊢ ↓σ(fi) | i ∈ ar(α)}
X ⊢ α(σ(fi))

((fi : ar(σ) → TΣ(X))i∈ar(α))

(E-Ar) {X ⊢ α(f · g) | α(g) ∈ ar(σ)} ∪ {X ⊢ ↓f(i) | i ∈ ar(σ)}
X ⊢ ↓σ(f) (f : ar(σ) → TΣ(X))
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(I-Ar) {X ⊢ α(τ · f) | α(f) ∈ ∆} ∪ {X ⊢ ↓τ(y) | y ∈ ∆}
X ⊢ β(c) (+)

(RelAx) {X ⊢ τ · φ | φ ∈ Φ} ∪ {X ⊢ ↓τ(f(i)) | i ∈ ar(α)}
X ⊢ α(τ · f)

(Φ =⇒ α(f) ∈ A,

τ : Var → TΣ(X))

(Ax) {X ⊢ α(τ · f) | α(f) ∈ ∆} ∪ {X ⊢ ↓τ(y) | y ∈ ∆}
X ⊢ β(τ · g) (∆ ⊢ β(g) ∈ E)

Recall that both the arities of operations in Σ and the contexts of the κ-ary Σ-relations in E
are in Pκ. We assume such a ∆ ∈ Pκ to be specified as ∆ = R(Y,E) by a κ-presentable
object (Y,E) ∈ Str(Π) (cf. Lemma 3.7, Proposition 3.9, Lemma 3.19, Proposition 3.21); by
writing ϕ ∈ ∆ for an edge ϕ, we indicate that ϕ ∈ E (rather than just ϕ ∈ E(∆)). The rules
(E-Ar) and (I-Ar) apply to every σ ∈ Σ, and rule (Mor) applies to every σ ∈ Σ and every
α ∈ Π. The side condition (+) of (I-Ar) is the following: for some axiom ∆ ⊢ γ(g) of V there
is σ(h) ∈ sub(g), where h : ar(σ) → TΣ(∆), such that ar(σ) |= β(k) and

c = ar(β) k−−→ ar(σ) h−−→ TΣ(∆) τ−−→ TΣ(X).

Rule (Mor) captures the fact that operations σ are interpreted as morphisms of type
[ar(σ), A] → A, a condition that relates to enrichment of the induced monad. Rule (E-Ar)
states that operations are defined when all the constraints given by their arity are satisfied.
Rules (RelAx) and (Ax) allow application of the axioms of the Horn theory and the variety,
respectively, in both cases instantiated with a substitution. A general substitution rule is not
included but admissible. Rule (I-Ar) captures that every axiom of the variety is understood as
implying that (under the constraints of the context) all subterms occurring in it are defined,
in the sense that the constraints in the arities of the relevant operations hold.

▶ Remark 4.15. Instantiating the above system of rules to the theory of partial orders
yields essentially the ungraded version of our previous deduction system for graded monads
on Pos [9], up to the above-mentioned coding of definedness judgements. At first glance,
the instantiation to the theory of metric spaces appears to yield a system that differs in
several respects from the existing system of quantitative algebra [20]; besides the mentioned
absence of a general substitution rule, this concerns most prominently the absence of a cut
rule (included in [20]) in our system. These distinctions are only superficial: as mentioned
above, the more general substitution rule is admissible in our system, and it follows from
completeness (Theorem 4.19) that the cut rule is admissible as well.

▶ Lemma 4.16. The following rules are admissible:

(Arity) X ⊢ ↓σ(m)
X ⊢ α(m · f)

(ar(σ) |= α(f),
m : |ar(σ)| → TΣ(X)) (Subterm) X ⊢ α(f)

X ⊢ ↓u
(u ∈ sub(f))

Constructing free algebras. We now show that relational logic gives rise to a syntactic
construction of free algebras in the variety V.

The set TV(X) of derivably V-defined terms in X consists of those terms t ∈ TΣ(X) such
that X ⊢ ↓t is derivable. We equip TV(X) with the relations

TV(X) |= α(f) ⇐⇒ X ⊢ α(f) is derivable (α ∈ Π, f : ar(α) → TV(X))

making it into a Π-structure. We write ∼ for the relation on TV(X) given by derivable equality:
that is, for all s, t ∈ TV(Γ) we put s ∼ t iff X ⊢ φ is derivable for all φ ∈ Eq(s, t), which is
clearly an equivalence relation. The ∼-equivalence class of t ∈ TV(X) is denoted by [t]. We
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pick a splitting u : TV(X)/∼ → TV(X) of the canonical quotient map q : TV(X) → TV(X)/∼,
i.e. q · u = id, so u picks representatives of ∼-equivalence classes. Then TV(X)/∼ carries
the structure of a C-object, with edges defined by TV(X)/∼ |= α(f) iff TV(X) |= α(u · f).
(“Only if” means that u is relation preserving.)

▶ Definition 4.17. The algebra FX of defined terms in X is the Σ-algebra obtained by
equipping TV(X)/∼ with the operations σFX : [ar(σ),TV(X)/∼] → TV(X)/∼ well-defined
by f 7→ [σ(u · f)], where u : FΓ → TV(X) is the chosen splitting of q : TV(X) → FX.

▶ Theorem 4.18. For every X ∈ C, FX is a free algebra in V.

Thus, we see that the free-algebra monad TV (Remark 4.12) of a variety V maps each
X ∈ Str(H ) to the carrier of the algebra FX. We note that the reflection Alg Σ → V (see
Proposition 4.11) need not be epi: the rule (Ax) generally “adds” new defined terms in the
presence of axioms; see Adámek et al. [5, Ex. 3.25] for a more detailed view on this point.

▶ Theorem 4.19 (Soundness and Completeness). X ⊢ α(f) is derivable iff every A ∈ V
satisfies X ⊢ α(f).

▶ Remark 4.20. Consequently, our system instantiated to the theory of metric spaces and
the system of quantitative algebra [20], which is also sound and complete, are deductively
equivalent. Hence, our results thus far imply that every quantitative algebraic theory induces
an ω1-accessible monad. Indeed this remains true if one admits operations of countable arity,
as in our theory of complete metric spaces (Example 4.8). Due to non-discrete contexts in
axioms, monads induced by quantitative algebraic theories (such as x =1/2 y ⊢ x =0 y) in
general fail to be finitary. However, our results do imply that the induced monad is finitary
if only discrete contexts are used; e.g. this holds for the theories of left-invariant barycentric
algebras and of quantitative semi-lattices, respectively [20] (note for the latter that axiom
(S4) can be omitted in [20, Def. 9.1]). We conjecture that monads induced by continuous
equation schemes [20] are also finitary.

5 Enriched Accessible Monads

We proceed to establish the monad-to-theory direction of our correspondence; as already
indicated, given our fixed λ-ary Horn theory H , this works only for λ-accessible monads and
λ-ary theories, but not for accessibility degrees κ < λ as in the theory-to-monad direction.
So let T = (T, η, µ) be an enriched λ-accessible monad on C. We proceed to extract a λ-ary
relational algebraic theory from T. We first review the equivalence between monads and
Kleisli triples (see, e.g., Moggi [21], and originally Manes [19, Exercise 12]).

▶ Definition 5.1. A Kleisli triple in C0 is a triple (T, η, (−)∗) consisting of a mapping
T : C0 → C0 (of objects), a morphism ηX : X → TX for all X ∈ C0, and an assignment of a
morphism f∗ : TX → TY to every morphism f : X → TY . This data is subject to the laws
below for all X ∈ C0 and all morphisms f : X → TY and g : Y → TZ:

η∗
X = idX , f∗ · ηX = f, and g∗ · f∗ = (g∗ · f)∗. (5.1)

▶ Remark 5.2. The mapping which assigns to each monad (T, η, µ) the Kleisli triple
(T, η, (−)∗) with (−)∗ defined by f∗ = TX

T f−−→ TTY
µY−−→ TY for f ∈ C0(X,TY ) yields a

bijective correspondence between monads and Kleisli triples on C0.

▶ Notation 5.3. For each operation σ in a signature Σ, we have a term σ(uar(σ)), where
uar(σ) is the inclusion ar(σ) ↪→ TΣ(ar(σ)). By abuse of notation, we also write σ for σ(uar(σ)).
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▶ Definition 5.4. The λ-ary signature ΣT induced by T is the disjoint union of the
sets |TΓ| (Γ ∈ Pλ), where elements of |TΓ| have arity Γ. The variety VT induced by T is
VT = Alg(ΣT, ET) where ET contains all axioms of the following shape, with Γ ∈ Pλ:
1. Γ ⊢ α(σ1, . . . , σar(α)) for all σi ∈ TΓ such that TΓ |= α(σ1, . . . , σar(α))
2. Γ ⊢ f∗(σ) = σ(f) for all ∆ ∈ Pλ, morphisms f : ∆ → TΓ, and σ ∈ |T∆|.
3. Γ ⊢ ηΓ(x) = x for every x ∈ Γ.
Note that in the second item above, for every x ∈ ∆ the operation symbol f(x) ∈ |TΓ| is
considered as a term according to Notation 5.3. Hence σ(f) is a term, too.

We now show that T is the free-algebra monad of its induced variety VT. For each X ∈ C,
the C-object TX carries a canonical Σ-algebra structure with each operation σT X being
defined by σT X(f) := f∗(σ). We call TX the canonical algebra over X.

▶ Lemma 5.5. Every canonical algebra lies in VT.

▶ Theorem 5.6. Each enriched λ-accessible monad T is the free-algebra monad of its induced
variety VT, with the free algebra on X given by the canonical algebra TX.

▶ Remark 5.7. We have thus shown that given a λ-ary Horn theory H , we we can
translate λ-accessible monads on Str(H ) back into λ-ary theories, preserving the notion
of model. For example, every ω1-accessible monad on Met is induced by an ω1-ary theory,
as illustrated in Example 4.8. The situation is more complicated for κ-ary monads where
κ < λ. E.g. we can generate a finitary monad on Met from a single binary operation of type
{(x, y) ∈ A2 | d(x, y) < 1/2} → A. This monad is not induced by any theory with operations
of internally finitely presentable (i.e. discrete) arity, in particular neither by an ω-ary theory
in our framework nor by a quantitative algebraic theory [20].

6 Conclusions

We have introduced the framework of relational logic for reasoning about algebraic structure
on categories of (finitary) relational structures axiomatized by possibly infinitary Horn
theories, such as partial orders or metric spaces. We have proved soundness and completeness
of a generic algebraic deduction system, and we have shown that λ-ary relational algebraic
theories are in correspondence with λ-accessible enriched monads when the underlying Horn
theory is also λ-ary (where “λ-ary” refers to the arity of operations for relational algebraic
theories, and to the number of premisses in axioms for Horn theories). Our results allow for
a straightforward specification also of infinitary constructions such as metric completion.

The theory-to-monad direction of the above-mentioned correspondence remains true for
κ-ary relational algebraic theories and κ-accessible monads on categories of models of λ-ary
Horn theories for κ < λ, e.g. when looking at monads and theories on metric spaces. One
open end that we leave for future research is to obtain a more complete coverage of this
case, which will require a substantial generalization of both the way arities of operations are
defined (these can no longer be taken to be objects of the base category) and in the way the
axioms of the theory are organized, likely using more topologically-minded approaches.
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