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Abstract
In this article we study a well-known problem, called Bipartite Token Jumping and not-so-well
known problem(s), which we call, Half (Induced-) Subgraph, and show that under Gap-ETH,
these problems do not admit FPT algorithms. The problem Bipartite Token Jumping takes as
input a bipartite graph G and two independent sets S, T in G, where |S| = |T | = k, and the objective
is to test if there is a sequence of exactly k-sized independent sets ⟨I0, I1, · · · , Iℓ⟩ in G, such that: i)
I0 = S and Iℓ = T , and ii) for every j ∈ [ℓ], Ij is obtained from Ij−1 by replacing a vertex in Ij−1

by a vertex in V (G) \ Ij−1. We show that, assuming Gap-ETH, Bipartite Token Jumping does
not admit an FPT algorithm. We note that this result resolves one of the (two) open problems
posed by Bartier et al. (ISAAC 2020), under Gap-ETH. Most of the known reductions related to
Token Jumping exploit the property given by triangles (i.e., C3s), to obtain the correctness, and
our results refutes FPT algorithm for Bipartite Token Jumping, where the input graph cannot
have any triangles.

For an integer k ∈ N, the half graph Sk,k is the graph with vertex set V (Sk,k) = Ak ∪ Bk, where
Ak = {a1, a2, · · · , ak} and Bk = {b1, b2, · · · , bk}, and for i, j ∈ [k], {ai, bj} ∈ E(Tk,k) if and only if
j ≥ i. We also study the Half (Induced-)Subgraph problem where we are given a graph G and
an integer k, and the goal is to check if G contains Sk,k as an (induced-)subgraph. Again under
Gap-ETH, we show that Half (Induced-)Subgraph does not admit an FPT algorithm, even when
the input is a bipartite graph. We believe that the above problem (and its negative) result maybe of
independent interest and could be useful obtaining new fixed parameter intractability results.

There are very few reductions known in the literature which refute FPT algorithms for a
parameterized problem based on assumptions like Gap-ETH. Thus our technique (and simple
reductions) exhibits the potential of such conjectures in obtaining new (and possibly easier) proofs
for refuting FPT algorithms for parameterized problems.
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1 Introduction

In this article we study two graph problems and obtain intractability results under Gap-
Exponential Time Hypothesis (Gap-ETH), which was conjectured by Dinur [13] and Marx [33].
Gap-ETH conjectures that for some constant ϵ > 0, even to distinguish whether all clauses
or at most (1 − ϵ) fraction of the clauses in the given CNF-SAT formula can be satisfied by
an assignment, requires exponential amount of time. Most of the known (fixed parameter)
intractability results in the field of parameterized complexity are based on conjectures like
FPT ̸= W[t], where t is a positive integer. While conjectures like Gap-ETH are stronger
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2:2 Refuting FPT Algorithms for Some Parameterized Problems Under Gap-ETH

than the more accepted conjectures like the one stated above, they can be used to explain
the hardness of a problem by connecting them to SAT, particularly in the absence of insights
into the (in)tractability/hardness of a problem. The main message of this article is that, we
can (in certain situtation) harness the “approximation gap” provided by the Gap-ETH in
obtaining new and simple intractability results. We would like to remark that Gap-ETH
has been also previously used by Bhattacharyya et al. [4] for obtaining fixed parameter
intractability result for Even Set (among other problems), whose complexity status, prior
to their result, was an infamous open problem in the field (see for example, the book of
Downey and Fellow [15]).

Reconfigurations and Token Jumping. The first problem that we study is a reconfiguration
problem, where in a typical such problem, we have an underlying problem, an instance of
the underlying problem, solutions for the instances, and a transformation function from
one solution to the other, and the objective is to use check existence of a sequence of
transformation from a given solution to another (see, for example, [35] for an introduction
to reconfigurations). We study the reconfiguration of independent sets on a graph, where
the initial independent set S and final independent set T are of the same size k. The
transformations we allow is called token jumping, which was first introduced by Kamiński et
al. [22]. We can view a transformation of an independent set to another, in our setting, as
jumping a token from one vertex to some other vertex, while maintaining the independence
property, where all the tokens are initially placed in the former independent set S. The
objective of Token Jumping for a given graph G and independent sets S and T of size k

is to test existence of a sequence of transformations from S to T via jumping tokens (one
at-a-time). For two sets X and Y , X∆Y denotes the set (X \ Y ) ∪ (Y \ X). Next we formally
define the problem Bipartite Token Jumping, which is Token Jumping when the input
is a bipartite graph.

Bipartite Token Jumping Parameter: k

Input: A bipartite graph G and two independent sets S and T in G, where |S| = |T | = k.
Question: Determine if there a sequence of exactly k-sized independent sets
⟨I0, I1, · · · , Iℓ⟩, in G, such that the following holds:
1. I0 = S and Iℓ = T , and
2. for each j ∈ [ℓ], |Ij−i∆Ij | = 2.

Some Known Results on Token Jumping. We note that Token Jumping problem is
known to be polynomial time solvable, when the input is restricted to special graph classes
like trees [11], interval graphs [5], bipartite permutation and bipartite distance-hereditary
graphs [17], line graphs [19] and even-hole-free graphs [22].

Although Independent Set on bipartite graphs is one of the classic polynomial time
solvable problem (see, for instance, [24] and [18]), Lokshtanov and Mouawad [31] showed that
the problem Bipartite Token Jumping is NP-hard. Lokshtanov et al. [32] showed that
Token Jumping is W[1]-hard, when parameterized by the sizes of the given independent sets.
They also designed an FPT algorithm for the problem when the input graph has bounded
degeneracy. We remark that prior to the above result, Ito et al. [21] had obtained an FPT
algorithm for the problem when parameterized by k and the maximum degree of the input
graph. Token Jumping is also known to be FPT on strongly Kℓ,ℓ-free graphs [6, 20], where
a graph is said to be strongly Kℓ,ℓ-free if it does not contain the complete bipartite graph
Kℓ,ℓ as a subgraph. Bartier et al. [2, 3] designed an FPT algorithm for Token Jumping
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on C4-free bipartite graphs when parameterized by the sizes of the independent sets. They
also showed that the problem has no FPT algorithm when the input is restricted to C4-free
graphs. The status of Token Jumping on bipartite graphs, i.e., the problem Bipartite
Token Jumping, was left as an open problem by Bartier et al. [2].

Our Result on Token Jumping. We resolve one of the open problems of Bartier et al. [2],
under Gap-ETH, by proving the following theorem.

▶ Theorem 1. Assuming Gap-ETH, Bipartite Token Jumping does not admit an FPT
algorithm, when parameterized by k.

We obtain the above result by via a simple reduction from the Maximum Balanced
Biclique problem, and then use its FPT-inapproximability result by Chalermsook et al. [9]
under Gap-ETH, to show that Bipartite Token Jumping cannot have an FPT algorithm.
Roughly speaking, by exploiting the Pigeonhole principle in our proof, if the input bipartite
graph has a biclique Kk,k as an (induced-)subgraph with bipartition A and B, then we are
able to argue that there will be a point in the transformation from one of the appropriately
constructed independent set to the another, which must contain at least half of vertices from
A and B each. Using the above we are able to exploit the known FPT inapproximability of
Maximum Balanced Biclique to obtain our result.

(Induced-)Subgraphs and Half Graphs. The Subgraph Isomorphism and Induced-
Subgraph Isomorphism are among the fundamental problems in algorithmic graph theory.
(Induced-)Subgraph Isomorphism takes as input two graphs G and H, and the objective
is to test if (an isomorphic copy of) H is contained as an (induced-)subgraph in G. For a
family of graphs Π, a natural generalization of (Induced-)Subgraph Isomorphism is the
problem Π (Induced-)Subgraph, where we are given a graph G and an integer k, and
the objective is to test if G contains an (induced-)subgraph isomorphic to a graph on k

vertices in the family Π. The problems Subgraph Isomorphism and Induced-Subgraph
Isomorphism are among the very well-studied problems in Computer Science, which are
NP-hard, as they (both) encapsulate problems like Clique (see, [10] and [23]). The fixed
parameter intractability of Clique, parameterized by the solution size [14], also implies that
both of the above problems do not admit any FPT algorithm when parameterized by |V (H)|.

We study Π (Induced-)Subgraph, when Π is a family of structured graphs, called half
graphs (see, [16]) and the corresponding problem(s) Half (Induced-)Subgraph.1 For an
integer k ∈ N, the half graph Sk,k is the graph with vertex set V (Sk,k) = Ak ∪ Bk, where
Ak = {a1, a2, · · · , ak} and Bk = {b1, b2, · · · , bk}, and for i, j ∈ [k], {ai, bj} ∈ E(Sk,k) if and
only if j ≥ i (see Figure 1, for an illustration).

Our result will particularly focus on the instances where the input graph is bipartite, and
thus we formally define the problems Bipartite Half Subgraph and Bipartite Half
Induced-Subgraph below.

Bipartite Half (Induced-)Subgraph Parameter: k

Input: A bipartite graph G and an integer k.
Question: Does G contain a graph isomorphic to Sk,k as an (induced-)subgraph?

1 We note that the term “skew” was used in the context of Skew Multicut and Directed Feedback
Arc Set for a graph class closely related to half graphs (see [26], for more details). Another closely
related graph class is the family of bipartite chain graphs (or bisplits), please see [7].
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2:4 Refuting FPT Algorithms for Some Parameterized Problems Under Gap-ETH

Figure 1 The half graph S4,4.

Some Known Results on Π (Induced-)Subgraph. The problems Π (Induced-)Subgraph
have been studied for several structured families of graphs, most notable being Clique and
Independent Set. Although, when Π is among the many well-known and highly structured
families like cliques, independent sets, and bicliques, the problem seem to be “inherently-
enumerative”, and thus, fixed parameter intractable [9], we do know several instances where
the problem is FPT. Khot and Raman [25] obtained a complete fixed parameter tractability
dichotomy for Π Subgraph, for hereditary families, by showing that if Π includes all graphs
with no edges but not all complete graphs, or vice versa, then the problem is fixed parameter
intractable, and otherwise, it admits an FPT algorithm. Also, Kratsch et al. [27] studied
the kernelization complexity for hereditary families of graphs for such problems. Lin and
Chen [30] obtained an FPT algorithm for Π Induced-Subgraph, when Π is the family of
all graphs with exactly k edges.2

One of the notorious parameterized problems, whose status of fixed parameter tractability
was open until 2015 is the Biclique problem. Despite it’s deceptive similarity with Clique,
the problem was not known to be fixed parameter intractable, until such a result was obtained
by Lin [28, 29]. Later, Chalermsook et al. [8, 9] showed that, for any function f ∈ o(k),
Biclique does not admit a k/f(k)-approximation algorithm, running in FPT time, assuming
Gap-ETH.

Our Contribution on Π (Induced-)Subgraph. We study the Bipartite Half (Induced-)
Subgraph problem(s), and obtain the following result.

▶ Theorem 2. Assuming Gap-ETH, Bipartite Half (Induced-)Subgraph does not
admit an FPT algorithm, when parameterized by k.

We obtain the above result by a (Turing) reduction starting from the problem Maximum
Balanced Biclique. For the given instance of Maximum Balanced Biclique, we begin
by “color-coding” a copy of Kk,k in the input graph (if it exist). We note that color-coding
was introduced by Alon et al. [1], for designing FPT algorithms for parameterized by the
solution size, for detecting cycles and paths of a given length. After this we create two copies
of each of the color classes obtained using the color-coding to “complete” an S2k,2k using the

2 Here, k used in the definition of Π is the same as the number k which is provided as input in the Π
Induced-Subgraph instance.
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presence of the biclique. We note that directly using Multicolored Biclique leads to
issues in the one of direction of the proof, relating to the stricter condition of picking vertices
from each of the color classes. We note that approximation in the solution that we are able
to output for the Maximum Balanced Biclique instance arises due to the possibility of
picking multiple copies of the same vertex.

We would like to note that, we came across the problem Bipartite Half (Induced-)
Subgraph, while studying Bipartite Token Jumping. Although, later we obtained a
simple proof for our negative result regarding Bipartite Token Jumping, eliminating the
need to go via the route of Bipartite Half (Induced-)Subgraph. Nevertheless we believe
due to the “sequence-like” structure it offers, it may turn out to be a useful starting point
for obtaining new intractability results, similar to its cousins like Clique and Biclique.

2 Preliminaries

Sets and Functions. We denote the set of natural numbers (including 0) by N. For n ∈ N,
we use [n] and [n]0 to denote the sets {1, 2, · · · , n} and {0, 1, 2, · · · , n}, respectively. For a
set X, we denote its power set by 2X = {X ′ | X ′ ⊆ X}. For a set Y , by Y × Y , we denote
the set {(y, y′) | y, y′ ∈ Y }. For a function f : X → Y and an element y ∈ Y , f−1(y) denotes
the set {x ∈ X | f(x) = y}. For a non-empty set X, a family F ⊆ 2X is a partition of X, if i)
for each Y ∈ F , Y ̸= ∅, ii) for distinct Y, Z ∈ F , we have Y ∩ Z = ∅, and iii) ∪Y ∈F Y = X.

Graph Theory. We refer to the book of [12] for standard graph terminology. Given a
graph G, we denote its vertex set and edge set by V (G) and E(G), respectively. Whenever
the context is clear, we use n and m to denote the number of vertices and the number of
edges in the input graph, respectively. Consider a graph G. For X ⊆ V (G), G[X] denotes
the subgraph of G induced by X, i.e. G[X] is the graph with vertex set X and edge set
{{x, y} ∈ E(G) | x, y ∈ X}.

For a graph G, a set S ⊆ V (G) is an independent set in G if for every u, v ∈ S, we
have {u, v} /∈ E(G). A graph G is bipartite if its vertex set can be partitioned into two
independent sets X and Y . In the above, X, Y is called a bipartition of G.

For an integer k ∈ N, Kk,k denotes the bipartite graph with a bipartition A and B, each
with k vertices, so that for each a ∈ A and b ∈ B, we have {a, b} ∈ E(Kk,k). In the above,
Kk,k is called a biclique. For a bipartite graph G, by opt-biclq(G) we denote the largest
integer k∗, such that G has a Kk∗,k∗ -biclique as an induced subgraph.

Satisfiability and Gap-ETH. For q ∈ N, the q-SAT problem takes as input a q-CNF formula
ϕ with m clauses on a variable set X of size n, and the objective is to test if there is an
assignment asg : X → {0, 1} that satisfies ϕ.

Next we define the maximization version of q-SAT, called Max q-SAT. For q ∈ N, the
problem Max q-SAT takes as input a q-CNF formula ϕ with m clauses on a variable set X

of size n, and the objective is to compute, opt-SAT(ϕ), which is the maximum number of
clauses in ϕ that can be simultaneously satisfied by an assignment asg : X → {0, 1}.

We next state the statement of Gap-ETH.

▶ Conjecture 3 (Gap-Exponential Time Hypothesis (Gap-ETH), [13, 33]). For some constant
δ, ϵ > 0, no algorithm can, given a 3-CNF formula ϕ on n variables and m = O(n) clauses,
distinguish between the following cases correctly with probability at least 2/3 in time O(2δn):
i) opt-SAT(ϕ) = m and ii) opt-SAT(ϕ) < (1 − ϵ) · m.

IPEC 2021
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Figure 2 Illustration of construction of G′. Double arrows show all possible edges between the
sets, and set lines between A and B shows complementation of edges between them from G.

Some Results on Maximum Balanced Biclique. In the Maximum Balanced Biclique
problem we are given a bipartite graph G and an integer k, and the objective is to test if
opt-biclq(G) ≥ k.3

In the following we state an inapproximability result regarding Maximum Balanced
Biclique, which follows as a corollary from Definition 2.1 and 3.2, Proposition 3.3 and
Corollary 5.16 of [9].

▶ Proposition 4. Assuming Gap-ETH, there is no algorithm, which for all bipartite graphs
G on n vertices and an integer k, runs in time f(k) · nO(1), and does one of the following
i) outputs 1 if opt-biclq(G) ≥ k, or ii) outputs 0 if opt-biclq(G) < k/2; where f is some
computable function. That is, Maximum Balanced Biclique does not admit a factor
2-approximation algorithm running in FPT time.

We remark that the above proposition is a very special instantiation, which is enough for
our purpose, of the more general result of Corollary 5.16 of [9].

3 Refuting FPT Algorithms for Bipartite Token Jumping

The objective of this section is to prove Theorem 1. We obtain the above by exhibiting
an appropriate reduction from Maximum Balanced Biclique. We begin by explaining
the intuition behind our reduction. Consider an instance (G, k) of Maximum Balanced
Biclique, where G is a bipartite graph with vertex bipartition A and B. We will create
an instance (G′, S, T ) of Bipartite Token Jumping as follows. Intuitively speaking,
G′ will be obtained from G by adding two new sets of vertices S and T , each of size k.
The construction will ensure that in any transformation from S to T , there must exist a
consecutive pair of independent sets, which places k/2 tokens in A and B, each, which will
induce a complete bipartite graph in G (via complementing edges). We will now formally
describe our construction.

Construction of (G′, S, T ). Initialize V (G′) = V (G) = A ∪ B and E(G′) = {{a, b} | a ∈
A, b ∈ B, and {a, b} /∈ E(G)} (see Figure 2). We add two sets of (k + 1 new vertices),
S = {s1, s2, · · · , sk, sk+1} and T = {t1, t2, · · · , tk, tk+1} to V (G′). We add all the edges
between S∪A and T , i.e, we add all the edges in {{u, t} | u ∈ S∪A and t ∈ T} to E(G′). Also,

3 The definition of Maximum Balanced Biclique given in [9], is a purely optimization version, where
k is not part of the input. We state the problem this way, as this helps us get around unnecessary
technicalities, without compromising on the technical merit of the result.
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we add all the edges between vertices in S and B, i.e., the edges in {{s, b} | s ∈ S and b ∈ B}
to E(G′). Clearly, by the construction, G′ is a bipartite graph, with bipartition A′ = S ∪ A

and B′ = T ∪ B. The above concludes the construction of the Bipartite Token Jumping
instance (G′, S, T ).

In the following lemmata we will establish some useful properties that will help us prove
the theorem.

▶ Lemma 5. If (G, k) is a yes-instance of Maximum Balanced Biclique, then (G′, S, T )
is a yes-instance of Bipartite Token Jumping.

Proof. Suppose that opt-biclq(G) ≥ k, and consider X = {x1, x2, · · · , xk} ⊆ A and Y =
{y1, y2, · · · , yk} ⊆ B, such that G[X ∪Y ] is isomorphic to Kk,k. We will construct a sequence
⟨S = I0, I1, · · · , Ik, I ′

1, I ′
2, · · · , I ′

k, Î1, Î2, · · · , Îk+1 = T ⟩, of independent sets of size k + 1 in
G′, to conclude that (G′, S, T ) is a yes-instance of Bipartite Token Jumping.

For j ∈ [k], let Ij = (Ij−1 \ {sj}) ∪ {xj}. As X ⊆ A and A is an independent set in G′, it
follows that, for each j ∈ [k], Ij is an independent set in G′. Recall that S is an independent
set in G′ of size exactly k + 1, S ∩ A = ∅, and X ⊆ A. Thus we can obtain that, for each
j ∈ [k], Ij is an independent set in G′ of size exactly k + 1 in G′.

Let I ′
1 = (Ik \ {sk+1}) ∪ {y1}. For j ∈ [k] \ {1}, I ′

j = (I ′
j−1 \ {xj−1}) ∪ {yj}. Note that

for each x ∈ X and y ∈ Y , we have {x, y} ∈ E(G), and thus {x, y} /∈ E(G′). The above
together with the fact that X ∩ Y = ∅, implies that for each j ∈ [k], I ′

j is an independent set
in G′ of size exactly k + 1.

Finally, let Î1 = (I ′
k \ {xk}) ∪ {t1}, and for j ∈ [k + 1] \ {1}, let Îj = (Îj−1 \ {yj−1}) ∪ {tj}.

As B ∪ T is an independent set in G′ and I ′
k is an independent set of size exactly k + 1 in G′,

it follows that for each j ∈ [k + 1], Îj is an independent set of exactly size k + 1 in G′. Also,
by the construction of Îk+1 it follows that Îk+1 = T .

From the construction of ⟨S = I0, I1, · · · , Ik, I ′
1, I ′

2, · · · , I ′
k, Î1, Î2, · · · , Îk+1 = T ⟩ it follows

that it is a solution for the Bipartite Token Jumping instance (G, S, T ). This concludes
the proof. ◀

In the next lemma we exploit a solution for the Bipartite Token Jumping instance (if
it exists), to obtain an approximation for the Maximum Balanced Biclique instance.

▶ Lemma 6. If (G′, S, T ) is a yes-instance of Bipartite Token Jumping, then
opt-biclq(G) ≥ k/2.

Proof. Suppose that (G′, S, T ) is a yes-instance of Bipartite Token Jumping, and let
⟨S = I0, I1, · · · , Iℓ = T ⟩ be a solution for it. Recall that for each s ∈ S and u ∈ T ∪ B, we
have {s, u} ∈ E(G′), |S| = |T | = k + 1, and S ∩ T = ∅. Thus, there must exist q ∈ [ℓ] such
that |Iq ∩ A| = k. Let qlrg be the largest integer in [ℓ], such that |Iqlrg ∩ A| = k. Let rsml be
the smallest integer in r ∈ [ℓ], such that rsml > qlrg and |Ir ∩ (T ∪ B)| ≥ k. Note that rsml
exists as T = Iℓ. As |Iqlrg ∩ A| = k, |Irsml ∩ (T ∪ B)| = k, and A ∩ (T ∪ B) = ∅, there must
exist j ∈ [ℓ], such that qlrg < j < rsml and |Ij ∩ (T ∪ B)| = ⌈k/2⌉. As k ≥ 2, Ij ∩ (T ∪ B) ̸= ∅,
and thus there is some v ∈ Ij ∩ (T ∪ B). Also, |Ij | = k + 1, and thus, Ij must contain
at least k + 1 − ⌈k/2⌉ ≥ k/2 vertices from S ∪ A. Recall that by the construction of G′,
{s, v} ∈ E(G′), for each s ∈ S. From the above we can obtain that Ij ∩ S = ∅. Recall that
each vertex in T is adjacent to every vertex in S ∪ A. From the above discussions we can
obtain that X = Ij ∩ A has at least k/2 vertices and Y = Ij ∩ B has at least ⌈k/2⌉ vertices.
By the construction of G′, we can obtain that G[X ∪ Y ] is a biclique in G, and thus we can
obtain that opt-biclq(G) ≥ k/2. ◀

IPEC 2021



2:8 Refuting FPT Algorithms for Some Parameterized Problems Under Gap-ETH

We are now ready to prove Theorem 1.

Proof of Theorem 1. Towards a contradiction, suppose that there is an algorithm A, for
Bipartite Token Jumping running in time f(k)nO(1). Using A, we design an algorithm
B, running in time f(k)nO(1), which given a bipartite graph G and an integer k, returns 1 if
opt-biclq(G) ≥ k, and returns 0 if opt-biclq(G) < k/2, thus contradicting Proposition 4.

Our algorithm B is as follows. Given an instance (G, k) of Maximum Balanced
Biclique, B constructs (in polynomial time) an instance (G′, S, T ) of Bipartite Token
Jumping, as discussed previously. The algorithm B calls A on the input (G′, S, T ), and
returns 1 if and only if A returns 1 on the Bipartite Token Jumping instance.

We now argue the correctness of our algorithm. We first argue that whenever
opt-biclq(G) ≥ k, then B returns 1. From Lemma 5, whenever opt-biclq(G) ≥ k, then
(G′, S, T ) is a yes-instance of Bipartite Token Jumping. Thus A, and hence B, must re-
turn 1. Notice that the contrapositive of Lemma 6 gives us that whenever opt-biclq(G) < k/2,
then (G′, S, T ) is a no-instance of Bipartite Token Jumping. Thus, A and hence, B must
return 0 for the above case. This concludes the proof. ◀

4 Refuting FPT Algorithms for Bipartite Half (Induced-)Subgraph

The objective of this section is to prove Theorem 2. We begin with the following simple
observation that will be useful in “encoding” an instance Maximum Balanced Biclique
as instances of Bipartite Half Induced-Subgraph (resp. Bipartite Half Subgraph).

▶ Observation 7. For any k ∈ N, the half graph T2k,2k contains Kk,k as an induced subgraph.

Proof. Recall that, for any k ∈ N, T2k,2k is the graph with vertex set V (T2k,2k) = A2k ∪ B2k,
where A2k = {a1, a2, · · · , a2k} and B2k = {b1, b2, · · · , b2k}, and for i, j ∈ [2k], {ai, bj} ∈
E(T2k,2k) if and only if j ≥ i. From the above we can deduce that, for any i ∈ [k] and
j ∈ [2k] \ [k], we have {ai, bj} ∈ E(Tk,k). The above implies that T2k,2k[{ai | i ∈ [k]} ∪ {bj |
j ∈ [2k] \ [k]}] is isomorphic to Kk,k. ◀

We will use the above observation to encode (approximately) the instance of Maximum
Balanced Biclique into an instance of Bipartite Half (Induced-)Subgraph. We
remark that the same construction will work for both Bipartite Half Subgraph and
Bipartite Half Induced-Subgraph. Before moving further we introduce a definition and
an algorithmic result about it, that will be used in our reduction.

▶ Definition 8. For n, ℓ ∈ N, a family F of functions from [n] to [ℓ] is an (n, ℓ)-perfect
hash family if for every S ⊆ [n] of size ℓ, there exists f ∈ F , such that for each i ∈ [ℓ],
|S ∩ {j ∈ [n] | f(j) = i}| = 1.

▶ Proposition 9 ([34]). For any n, ℓ ∈ N, we can construct an (n, ℓ)-prefect hash family of
size eℓ · ℓO(log ℓ) · log n in time eℓ · ℓO(log ℓ) · n log n.

We will next intuitively explain our (Turing) reduction below. Consider an instance
(G, k) of Maximum Balanced Biclique, where G is a bipartite graph with bipartition
A and B. We will begin by “color-coding” a copy of Kk,k in G (if it exists). We remark
that the technique of color-coding was introduced by Alon et al. [1], for designing FPT
algorithms parameterized by the solution size, for detecting cycles and paths of a given
length. Also, the above was derandomized (in the same paper), by using the construction
of perfect-hash families based on the result of Schmidt and Siegel [36], and an improved
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algorithm for computing such families was obtained by Naor et al. [34] (see Proposition 9).
The idea of color coding is to distinctly color the vertices in the copy of Kk,k present (as a
subgraph/induced subgraph) in G. Using the above, we obtain a partition of A into k sets
A1, A2, · · · , Ak, and also a partition of B into k sets, B1, B2, · · · , Bk, so that the vertices
of a fixed Kk,k in G picks exactly one vertex from each Ais and Bis. After this, using one
more copy of the sets Ais and Bis, to be denoted by A′

is and B′
is, respectively, we create

an instance of Bipartite Half (Induced-)Subgraph, by providing extra vertices/edges
using the copies. We remark that the “loss” in our reduction comes from the situation where
a solution for the Bipartite Half (Induced-)Subgraph instance may pick two copies of
the same vertex.

We will now move to the formal description of the reduction. Consider an instance (G, k)
of Maximum Balanced Biclique, where G is a bipartite graph with bipartition A =
{a1, a2, · · · , an1} and B = {b1, b2, · · · , bn2}, and let n = n1 + n2. We let A′ = {a′

i | i ∈ [n1]}
and B′ = {b′

i | i ∈ [n2]}, copies of A and B, respectively. Using Proposition 9, we begin by
computing (n1, k)- and (n2, k)-prefect hash families, F1 and F2, respectively. For f ∈ F1 and
i ∈ [k], we let A[f, i] = {aj ∈ A | f(j) = i} and A′[f, i] = {a′

j ∈ A′ | f(j) = i}. Similarly, for
f ∈ F2 and i ∈ [k], we let B[f, i] = {bj ∈ B | f(j) = i} and B′[f, i] = {b′

j ∈ B′ | f(j) = i}.
We will use the convention that, for a vertex v ∈ A ∪ B, its corresponding copy in A′ ∪ B′

will be denoted by v′.
For each pair of functions f1 ∈ F1 and f2 ∈ F2, we create a Bipartite Half (Induced-)

Subgraph instance If1,f2 = (Gf1,f2 , 2k), where Gf1,f2 is a bipartite graph as follows. We
let V (Gf1,f2) = A ∪ B ∪ A′ ∪ B′. We will now describe the edge set of Gf1,f2 . First we
add all the edges in G, between A and B, to Gf1,f2 , i.e., for each a ∈ A and b ∈ B, such
that {a, b} ∈ E(G), we add {a, b} to E(Gf1,f2). (Intuitively speaking, the objective of the
above edges will be to directly preserve, in Gf1,f2 , the Kk,ks of G, if they exist.) Roughly
speaking, next we will add edges, that will be useful in completing the missing vertices/edges
in a half graph (using the copies A′ and B′), apart from those that are already present
in the biclique. For each i ∈ [k] and j ∈ [k], where j ≥ i, and for each a ∈ A[f1, i] and
b ∈ B[f2, j], we add {a, b′} to E(Gf1,f2) if and only if {a, b} ∈ E(G). Similarly, for each
i ∈ [k] and j ∈ [k], where j ≥ i, and for each a ∈ A[f1, i] and b ∈ B[f2, j], we add {a′, b}
to E(Gf1,f2) if and only if {a, b} ∈ E(G). This completes the description of Gf1,f2 , and
thus the Bipartite Half (Induced-)Subgraph instance If1,f2 = (Gf1,f2 , 2k). We let
I = {If1,f2 | f1 ∈ F1 and f2 ∈ F2}.

In the following two lemmata we will establish some useful relationships between the
Maximum Balanced Biclique instance (G, k) and the instances of Bipartite Half
(Induced-)Subgraph that we have created.

▶ Lemma 10. If (G, k) is a yes-instance of Maximum Balanced Biclique, then there
are f1 ∈ F1 and f2 ∈ F2, such that If1,f2 is a yes-instance of Bipartite Half (Induced-
)Subgraph.

Proof. Suppose that opt-biclq(G) ≥ k, and consider X = {x1, x2, · · · , xk} ⊆ A and Y =
{y1, y2, · · · , yk} ⊆ B, such that G[X ∪ Y ] is isomorphic to Kk,k. As F1 is an (n1, k)-
perfect hash family, there must exist f∗

1 ∈ F1, such that for each i ∈ [k], |A[f∗
1 , i] ∩

X| = |A′[f∗
1 , i] ∩ X| = 1. Similarly, there exists f∗

2 ∈ F2, such that for each i ∈ [k],
|B[f∗

2 , i] ∩ Y | = |B′[f∗
2 , i] ∩ Y | = 1. Without loss of generality, we will assume that for

i ∈ [k], we have A[f∗
1 , i] ∩ X = {xi} and B[f∗

2 , i] ∩ X = {yi}. (Notice that the above can
be achieved by renaming of the vertices.) Let X∗ = {xi | i ∈ [k]} ∪ {x′

i | i ∈ [k]} and
Y ∗ = {yi | i ∈ [k]} ∪ {y′

i | i ∈ [k]}, Gf∗
1 ,f∗

2
[X∗ ∪ Y ∗]. The construction of Gf∗

1 ,f∗
2

and the
assumption that G[X ∪ Y ] is isomorphic to Kk,k, implies that Gf∗

1 ,f∗
2
[X∗ ∪ Y ∗] is isomorphic

to T2k,2k. This concludes the proof. ◀
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▶ Lemma 11. If there are functions f1 ∈ F1 and f2 ∈ F2, such that (Gf1,f2 , 2k) is a
yes-instance of Bipartite Half (Induced-)Subgraph, then opt-biclq(G) ≥ k/2.

Proof. Consider f1 ∈ F1 and f2 ∈ F2, such that (Gf1,f2 , 2k) is a yes-instance of Bipartite
Half (Induced-)Subgraph. Let X∗ ⊆ A ∪ A′ and Y ∗ ⊆ B ∪ B′ be each of size 2k, such
that Gf1,f2 [X∗ ∪ Y ∗] contains T2k,2k as an (induced) subgraph.4 From Observation 7, we
can obtain that there is X̂ ⊆ X∗ ⊆ A ∪ A′ and Ŷ ⊆ Y ∗ ⊆ B ∪ B′, each of size k, such that
Gf1,f2 [X̂ ∪ Ŷ ] is isomorphic to Kk,k. We construct two sets X ⊆ A and Y ⊆ B as follows,
each initialised to ∅. For each a ∈ A, we add a to X, if {a, a′} ∩ X̂ ≠ ∅. Similarly, for each
b ∈ B, we add b to Y , if {b, b′} ∩ Ŷ ≠ ∅. Note that the sizes of X and Y , each, must be at
least k/2. Using the above together with the construction of Gf1,f2 can be used to obtain
that G[X ∪ Y ] is isomorphic to K⌈k/2⌉,⌈k/2⌉. Thus we conclude that opt-biclq(G) ≥ k/2. ◀

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Towards a contradiction, suppose that there is an algorithm A, for
Bipartite Half (Induced-)Subgraph running in time f(k)nO(1), where n is the number
of vertices in the input graph. Using A, we design an algorithm B, running in time g(k) ·nO(1)

(where g is a computable function), which given a bipartite graph G on n vertices and an
integer k, returns 1 if opt-biclq(G) ≥ k, and returns 0 if opt-biclq(G) < k/2, thus contradicting
Proposition 4.

Our algorithm B is as follows. Given an instance (G, k) of Maximum Balanced
Biclique, the algorithm B starts by constructing the family of Bipartite Half (Induced-)
Subgraph instance I, as discussed previously, in time bounded by 2O(k log k) · nO(1) time
(see Proposition 9). Next, for each I ∈ I, B calls A for the input I of Bipartite Half
(Induced-)Subgraph. The algorithm B return 1 if and only if A returns 1 for at least one
instance I ∈ I.

The construction of the set I, together with the assumed running time of A implies
that the running time of B can be bounded by f(k) · 2O(k log k) · nO(1). We now argue the
correctness of our algorithm B.

We first argue that whenever opt-biclq(G) ≥ k, then B returns 1. From Lemma 10,
whenever opt-biclq(G) ≥ k, then there must exist a yes-instance of Bipartite Half
(Induced-)Subgraph I ∈ I. Thus, in the above case, B always returns 1, as required.
Notice that the contrapositive of Lemma 11 gives us that whenever opt-biclq(G) < k/2, then
there is no I ∈ I, such that I is a yes-instance of Bipartite Half (Induced-)Subgraph,
and thus, B will necessarily output 0 for this case. This concludes the proof. ◀

5 Conclusion

Assuming Gap-ETH, we showed that the Bipartite Token Jumping and Bipartite Half
(Induced-)Subgraph problems do not admit FPT algorithms. Our results are obtained
by appropriate reductions from the Maximum Balanced Biclique problem, and then
exploiting the known FPT-inapproximability result of [9] under Gap-ETH, to show that
our problems cannot have an FPT algorithms. The natural open problems that arise from
our results (and also from the previous works) is obtaining fixed parameter intractability
results for these problems under standard and more well-believed conjectures like FPT ̸=
W[t], where t ∈ N \ {0}.

4 We assume T2k,2k is an induced subgraph of Gf1,f2 [X∗ ∪ Y ∗] when we are considering the problem
Bipartite Half Induced-Subgraph, whereas, we assume that it is a subgraph when we are considering
the problem Bipartite Half Subgraph.
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We believe that our (negative) result regarding Bipartite Half (Induced-)Subgraph
maybe a useful starting point for obtaining newer results, similar to its counterparts, like
Clique and Biclique. Again we note that not many (parameterized) reductions are known,
which refute FPT algorithms under conjectures like Gap-ETH, one of the exceptions to the
above is the result of [4]. We believe that newer conjectures like Gap-ETH maybe useful in
obtaining newer (and perhaps easier) fixed parameter intractability results, and our reduction
serves as a (yet another) evidence for it.
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