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Abstract
We introduce the problem of finding a satisfying assignment to a CNF formula that must further
belong to a prescribed input subspace. Equivalent formulations of the problem include finding a
point outside a union of subspaces (the Union-of-Subspace Avoidance (USA) problem), and finding
a common zero of a system of polynomials over F2 each of which is a product of affine forms.

We focus on the case of k-CNF formulas (the k-Sub-Sat problem). Clearly, k-Sub-Sat is no
easier than k-SAT, and might be harder. Indeed, via simple reductions we show that 2-Sub-Sat is
NP-hard, and W[1]-hard when parameterized by the co-dimension of the subspace. We also prove
that the optimization version Max-2-Sub-Sat is NP-hard to approximate better than the trivial
3/4 ratio even on satisfiable instances.

On the algorithmic front, we investigate fast exponential algorithms which give non-trivial
savings over brute-force algorithms. We give a simple branching algorithm with running time (1.5)r

for 2-Sub-Sat, where r is the subspace dimension, as well as an O∗(1.4312)n time algorithm where
n is the number of variables.

Turning to k-Sub-Sat for k ⩾ 3, while known algorithms for solving a system of degree k

polynomial equations already imply a solution with running time ≈ 2r(1−1/2k), we explore a more
combinatorial approach. Based on an analysis of critical variables (a key notion underlying the
randomized k-SAT algorithm of Paturi, Pudlak, and Zane), we give an algorithm with running
time ≈

(
n
⩽t

)
2n−n/k where n is the number of variables and t is the co-dimension of the subspace.

This improves upon the running time of the polynomial equations approach for small co-dimension.
Our combinatorial approach also achieves polynomial space in contrast to the algebraic approach
that uses exponential space. We also give a PPZ-style algorithm for k-Sub-Sat with running
time ≈ 2n−n/2k. This algorithm is in fact oblivious to the structure of the subspace, and extends
when the subspace-membership constraint is replaced by any constraint for which partial satisfying
assignments can be efficiently completed to a full satisfying assignment. Finally, for systems of
O(n) polynomial equations in n variables over F2, we give a fast exponential algorithm when each
polynomial has bounded degree irreducible factors (but can otherwise have large degree) using a
degree reduction trick.
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5:2 Satisfiability in a Subspace

1 Introduction

Given an n-variate Boolean formula Φ along with an affine subspace A ⊆ Fn
2 (given by

a system of F2-linear equations) as input, we explore the complexity of testing if Φ has
a satisfying assignment in A. This is a natural twist on Boolean constraint satisfaction
problems that studies the effects of linear algebra on Boolean logic. Our focus shall be
on the case when Φ is presented in Conjunctive Normal Formal (CNF). We refer to this
problem as satisfiability in a subspace and denote it by Sub-Sat. This framework can capture
non-Boolean problems such as Graph K-Colorability indicating the richness of combining
the problem of Boolean CNF-satisfiability with a linear-algebraic constraint. We also note
that in the area of practical SAT solvers there is interest in CNF satisfiability conjuncted
with XOR constraints [26, 25].

Further, Sub-Sat has two other equivalent interesting formulations. The first of these is
union of subspace avoidance, USA for short: Given affine subspaces A1, A2, . . . , Am ⊆ Fn

2 is
there an x ∈ Fn

2 that is not in the union
⋃m

i=1 Ai? A different formulation is a special case of
finding a solution to a bunch of polynomial equations pi = 0 over Fn

2 , namely when each pi

is a product of affine forms. We refer to this reformulation as PAF-Sat. We will describe
these (easy) equivalences in Section 1.3.

For most of the paper, we restrict attention to the case when Φ is a k-CNF formula (a CNF
formula with clauses of width at most k) for a fixed k, referred to as the k-Sub-Sat problem.
Clearly, k-Sub-Sat is a generalization of the well-studied k-Sat (k-CNF satisfiability). In
terms of the two reformulations above, k-Sub-Sat corresponds to the USA problem when
the spaces Ai have co-dimension at most k, and for the PAF-Sat problem, each polynomial
pi is the product of up to k affine forms.

We present both hardness results and algorithms for k-Sub-Sat, described in Sections 1.1
and 1.2 below respectively. Owing to the NP-hardness of the problems, the algorithmic focus
is on exponential time algorithms that give non-trivial improvements over brute-force.

There are two possible angles from which to view the study of k-Sub-Sat. The first is as
a problem intermediate between satisfiability of k-CNF formula and a system of degree k

polynomial equations. The second is as a specific instance of a constraint satisfaction problem
(CSP) obtained by combining two fundamental types of constraints. There have been a few
works [20, 7] giving algorithms beating brute-force for some natural problems with mixed
constraints, but we are still far from a general picture of how to obtain fast exponential
algorithms for a combined template of constraints when each constraint type does admit
such non-trivial algorithms. In this context, tackling the combination of k-CNF formulas
and linear equations is a good starting point, and one that could hopefully spur a more
systematic study in the future. There have been a few investigations [15, 17, 8, 16] into the
fine-grained complexity of CSPs via the algebraic approach based on (partial) polymorphisms.
This theory has developed the tools to compare the optimal exponents of different constraint
types, identifying for instance the “easiest” NP-hard CSP within some classes. However,
with the exception of [4], polymorphisms have not been leveraged to design fast exponential
algorithms with competitive exponents.

1.1 Hardness results
Since k-Sub-Sat is a generalization of k-Sat, k-Sub-Sat inherits all the intractability results
of k-Sat for k ⩾ 3. This leaves the interesting case of 2-Sub-Sat. This turns out to be much
harder than the polynomial time solvable 2-Sat. We establish the following, showing not just
hardness (even for FPT algorithms) of the exact version, but also a tight inapproximability
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for the approximation version (even on satisfiable instances). The proofs are based on short,
simple reductions, once an appropriate problem to reduce from is chosen.1 The W[1]-hardness
answers a question posed in [3] on the fixed-parameter complexity of 2-Sat with a global
modular constraint, parameterized by the modulus.

▶ Theorem 1.
1. 2-Sub-Sat is NP-hard. It is further W[1]-hard when parameterized by the co-dimension

of the affine space A in which we seek a satisfying assignment.
2. Given a satisfiable instance of 2-Sub-Sat, it is NP-hard to find an assignment in the

input space A that satisfies more than 3/4 + ϵ of the 2SAT clauses, for any ϵ > 0.

1.2 Algorithmic results
Analogous to seeking k-Sat algorithms faster than brute-force, we investigate fast exponential
time algorithms for k-Sub-Sat that beat the naive brute-force 2dim(A) time algorithm, where
A ⊆ Fn

2 is the subspace in which we seek a solution. Algorithms for k-Sat have received
much attention and are central to the burgeoning field of fast exponential-time algorithms.
The algorithmic theory is closely connected to fixed parameter tractability and parameterized
complexity [11, 10]. The accompanying hardness theory [13, 14], based on the exponential-
time hypothesis (ETH) and the strong exponential-time hypothesis (SETH), is a sanity check
to the quest for faster algorithms for k-Sat and other NP-complete problems.

There are several interesting k-Sat algorithms with running time O∗(2n(1−Θ(1/k))).2 We
only mention two significant algorithms from among these: one by Paturi, Pudlak, Zane [21]
and another due to Schöning [23]. Both algorithms are simple to describe with delightfully
clever and elegant analyses. The PPZ algorithm considers variables in a random order, and
gives each a random value unless its value is forced by a clause and previously set values.
It achieves a running time of O∗(2n(1−1/k)). Schöning’s algorithm starts with a random
assignment and in each step fixes an unsatisfied clause by flipping the value of a random one
of its variables. It achieves a running time of O∗((2 − 2/k)n).

Given that k-Sub-Sat generalizes k-Sat, it is natural to seek exponential algorithms
with similar running times for k-Sub-Sat. For Sub-Sat with input space A ⊆ Fn

2 , the
brute-force algorithm in fact runs in time O∗(2dim(A)). A natural question is whether we can
get similar improvements in the exponent of the O∗(2dim(A)) running time.

An algorithm [18] with running time about O∗(2r(1−1/5k)) is known for checking sat-
isfiability of a collection of arbitrary degree k polynomial equations in r variables: Let
Pi ∈ F2[x1, x2, . . . , xr], 1 ⩽ i ⩽ m, be polynomials over the field F2. Following [18], the
Poly-Eqs problem is solving the system of polynomial equations Pi = 0, 1 ⩽ i ⩽ m over
F2: to check if there exists a solution in Fr

2 and compute one if it exists. When Pi are
all of degree bounded by k we denote this special case by k-Poly-Eqs. The k-Poly-Eqs
problem generalizes k-Sub-Sat by the following easy transformation: Suppose the subspace
A where we seek a satisfying assignment is r dimensional. Then we can express the ith

clause in the k-Sub-Sat instance as a disjunction of k affine linear forms in r variables:
Ci = (ℓi,1 ∨ ℓi,2 ∨ · · · ∨ ℓi,k). We define the corresponding polynomial Pi =

∏k
j=1(ℓi,j + 1).

Now, the k-Sub-Sat instance is satisfiable iff the k-Poly-Eqs instance Pi = 0, 1 ⩽ i ⩽ m

has a solution in Fr
2.

1 The NP-hardness would also follow from Schaefer’s dichotomy theorem for Boolean CSP [22], though
that is an overkill hammer for this result.

2 The notation O∗(f(n)) for running time bounds suppresses polynomial factors.
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5:4 Satisfiability in a Subspace

The algorithm [18] is a novel application of the Razborov-Smolensky “polynomial method,”
originally developed as a lower bound technique, used to define low-degree probabilistic
polynomials for approximating the OR gate. The same idea allows for replacing a system of
polynomial equations by a single probabilistic polynomial (without significant increase in
degree), followed by a partial table lookup search. The article [18] presents more general
results applicable to all finite fields Fq. Recently, in [9], the running time for the case of F2
has been improved to O∗(2r(1−1/2k)) by a refinement of the search method in [18].

Since k-Sub-Sat is a special case of solving a system of polynomial equations over F2, it
raises the natural question of improving the running time further to match the O∗(2r(1−1/k))
running time of the PPZ randomized algorithm for k-Sat. We are only able to achieve this
speed-up in some special cases. However, on the positive side, our algorithms turn out to
be polynomial space bounded, unlike the polynomial equations based method which requires
exponential space [18, 9].

1.2.1 Algorithms for 2-Sub-Sat
For 2-Sub-Sat a simple deterministic branch-and-bound algorithm achieves a running time
of O∗(3r/2) where r is the dimension of the subspace A. We can improve on this with
a randomized branching strategy to a running time of O∗(1.5r). This improves over the
randomized O∗(1.6181r) algorithm given by the polynomial method [9] for solving a system
of quadratic equations over F2. There is also a simple deterministic branching algorithm
with O∗(((1 +

√
5)/2)r) running time for 2-Sub-Sat. This is based on the same branching

strategy for k-Sat [19, Theorem, pp. 295] with its running time governed by the generalized
Fibinacci numbers.

When dim(A) = n − t, we can adapt the algorithm from [3, Algorithm 4.1] (for solving
2-SAT with a single abelian group constraint) to obtain an O∗(

(
n
⩽t

)
) time algorithm. 3

The result of Theorem 1 shows that this problem is not in FPT parameterized by the
co-dimension t, answering a question posed in [3] on whether 2-SAT with a global abelian
group constraint might be fixed-parameter tractable, parameterized by the group size. More
generally, the work [3] systematically studied the effect of a global modular constraint on the
complexity of Boolean constraint satisfaction problems, exposing many interesting phenomena
and connections.

Balancing the two running times of O∗(1.5r) and O∗(
(

n
n−r

)
) algorithm when r ⩾ n/2

(the exponents of the two bounds become equal at r = (1 − η)n for η ≈ 0.115816) yields a
O∗(1.4312n) time randomized algorithm for 2-Sub-Sat on n variables. The following records
these results.

▶ Theorem 2. There is a randomized O∗(1.5r) algorithm for 2-Sub-Sat where r is the
dimension of the input space, as well a deterministic O∗(

(
n
⩽t

)
) time algorithm where t is the

co-dimension. Together, these imply a randomized O∗(1.4312n) time algorithm as a function
of the number n of variables.

1.2.2 Algorithms for k-Sub-Sat
We explore combinatorial algorithms for k-Sub-Sat based on the notion of critical variables
(which was introduced in [21] and plays an important role in their satisfiability algorithm).
Let Φ be a satisfiable CNF formula in n variables xi, i ∈ [n], and let ā ∈ Fn

2 be a satisfying
assignment.

3 For nonnegative integers n, t, the notation
(

n
⩽t

)
stands for

∑t

i=0

(
n
i

)
.
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▶ Definition 3 ([21]). We say xi is a critical variable for ā with respect to Φ if the assignment
ā + ei falsifies Φ, where ei is the ith elementary vector with 1 in the ith coordinate and zero
elsewhere (so ā + ei is just ā with xi flipped). If the formula Φ is clear from context, we
simply say that xi is a critical variable for assignment ā.

The key idea in our combinatorial algorithms is plucking of non-critical variables based
on the following simple observation: if Φ is an n-variate CNF formula and ā is a satisfying
assignment such that variable xi is non-critical for it, then the formula Φ′ obtained by plucking
xi (i.e., dropping all occurrences of xi and its complement from Φ) remains satisfiable with
ā′ ∈ Fn−1

2 as a satisfying assignment, where ā′ is obtained from ā by dropping the ith

coordinate.
The important property of Φ′ is that given any satisfying assignment for Φ′ we can set

xi to either 0 or 1 to recover a satisfying assignment for Φ. This facilitates searching for
a satisfying assignment in an affine space A: if the plucked variable xi occurs in a linear
constraint defining A then we can drop that linear constraint while seeking a satisfying
assignment for Φ′, because that linear constraint can always be satisfied by choosing the
right value of xi which still remains overall a satisfying assignment for Φ. Based on this idea
we obtain the following algorithms for k-Sub-Sat:

The first result here is a randomized O∗(
(

n
t

)
2n−n/k) time algorithm for k-Sub-Sat where

t = codim(A). This algorithm is essentially governed by the running time of the PPZ
satisfiability algorithm [21] combined with an iterative “search and pluck” operation to
remove t non-critical variables from the t linear equations defining A. This running time
is superior to the O∗(2r−r/2k) time randomized algorithm based on solving polynomial
equations for small values of t = o(n).
The second result is a general randomized O∗(2n−n/2k+n/2k2) time algorithm for
k-Sub-Sat, nearly matching the ≈ 2r−r/2k run time of the polynomial equations al-
gorithm [9, 18] for r close to n. It again uses the PPZ satisfiability algorithm as a
subroutine combined with simple applications of the plucking step: if the number of
critical variables is fewer than n/2, it randomly guesses and plucks non-critical variables.
This algorithm does not need to look at the linear equations defining A. In fact, it works
for any Boolean constraint C(x1, x2, . . . , xn) (replacing membership in the affine space
A) with a polynomial-time algorithm that takes a partial assignment and extends it to
an assignment that satisfies C. For example, C can be a HORN or dual HORN formula.
It is pleasing to note that we can apply the idea of plucking non-critical variables to
2-Sub-Sat and obtain an O∗(

(
n
⩽t

)
) deterministic algorithm (cf. [3]), where t = codim(A).

Exploiting the structure of 2-CNF formulas, we can find the non-critical variables effi-
ciently.

▶ Theorem 4. The k-Sub-Sat problem admits two randomized algorithms, one running in
time O∗(2n−n/2k+n/2k2), and another running in O∗(

(
n
t

)
2n−n/k) when the input subspace

has co-dimension t ⩽ n/2.4 Both algorithms use space bounded by a polynomial in n.

▶ Remark 5. Satisfiability algorithms based on the switching lemma (which converts k-CNF
to decision trees of moderate term size and number of terms) are known in the literature (e.g.,
see [12]). We can easily adapt this algorithm to solve k-Sub-Sat, because once we have a
decision tree for the underlying k-CNF formula, for the k-Sub-Sat instance each path of the
decision tree will give rise to a system of linear equations over F2. For each path, therefore,

4 Of course, there is also a trivial O∗(2n−t) time brute force algorithm.

IPEC 2021



5:6 Satisfiability in a Subspace

we can even count the number of satisfying assignments. Counting over all the paths of the
decision tree gives the total number of satisfying assignments for the k-Sub-Sat instance in
randomized time O∗(2n(1−1/c·k)) for some suitable large constant c > 0. Furthermore, the
algorithm is also polynomial space-bounded. In terms of running time, however, it is a much
weaker bound in comparison to [18] or even the algorithms of Theorem 4. In this context,
we note that for #k-Sat there is a deterministic O∗(2n(1−1/c·k)) time algorithm based on
the polynomial method (albeit using exponential space) [6]. We do not know of any such
deterministic algorithm for counting satisfying assignments to k-Sub-Sat.

Finally, motivated by the (unbounded CNF) Sub-Sat problem, we revisit the general
problem solving a system of polynomial equations pi = 0, 1 ⩽ i ⩽ m over F2, where m = O(n),
where each pi is given by an arithmetic circuit of poly(n) degree. In the case when each
pi has small degree irreducible factors, we get a 2r(1−α) time randomized algorithm, where
α depends on the number of equations m and the degree bound on the irreducible factors
(Theorem 25).

1.3 Equivalent and related problems to Sub-Sat
Recall the USA problem: Given a collection of affine subspaces A1, A2, . . . , Am ⊆ Fn

2 (where
each Ai is given by a bunch of affine linear equations over F2) the problem is to determine if
there is a point x ∈ Fn

2 \
⋃m

i=1 Ai.
Clearly, the complement Fn

2 \
⋃m

i=1 Ai is expressible as an AND of ORs of affine linear
forms ⊕i∈Sxi + b, b ∈ {0, 1}. Thus, USA is clearly reducible to Sub-Sat. The converse
reduction is also easy: given a CNF formula Φ and an affine subspace A ⊆ Fn

2 we first convert
it to an AND of ORs of affine linear forms. An assignment x ∈ A satisfies Φ if and only if
it satisfies C1 ∧ C2 ∧ · · · ∧ Cm, where each clause Ci is an OR of affine linear forms. The
set Ai of satisfying assignments of the complement Ci is an affine subspace of Fn

2 , and Φ is
satisfiable by x ∈ A if and only if x ∈ Fn

2 \
⋃m

i=1 Ai.
For the equivalence to PAF-Sat, suppose Φ = C1 ∧C2 ∧· · ·∧Cm, where each clause Ci is

an OR of affine linear forms Ci = ∨t
j=1Lij . As already discussed in Section 1.2, the assignment

x ∈ Fn
2 satisfies Ci if and only if it satisfies the polynomial equation

∏m
j=1(Lij + 1) = 0.

Thus, the satisfiability of Φ is reducible to a system of m polynomial equations pi = 0, where
each pi is a product of affine linear forms. The converse reduction is also easy which we omit.

Organization of the paper

We present the results in a different order than in the introduction. In Section 2 we first
present the algorithms for k-Sub-Sat and then for 2-Sub-Sat. In Section 3 we present our
hardness results for 2-Sub-Sat. Finally, in Section 4 we present the algorithm for Poly-Eqs
for O(n) equations pi = 0, where each pi has unrestricted degree but constant-degree
irreducible factors.

For reasons of space, all proofs are skipped in the extended abstract; a full version of the
paper is available on arXiv [1].

2 Algorithmic results for k-Sub-Sat

As mentioned in the introduction, the k-Sub-Sat problem seems intermediate in difficulty,
between k-Sat and the problem k-Poly-Eqs of solving a system of degree-k polynomial
equations over F2. The latter problem has an O∗(2r(1−1/2k)) time algorithm [18, 2, 9], which
yields an O∗(2r(1−1/2k)) time algorithm for k-Sub-Sat, where r = dim(A).
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Ideally, we would like an algorithm for k-Sub-Sat with run time O∗(2r(1−1/k)), with
savings in the exponent similar to that of the PPZ algorithm [21] for k-Sat.

We present some algorithms in this direction: For 2-Sub-Sat there is a simple O∗(1.5r)
time randomized algorithm which improves on the O∗(2r(1−1/2k)) bound for k = 2. For a
special case of k-Sub-Sat, when r = dim(A) is close to the number of variables n, we are
able to adapt the PPZ algorithm to essentially get an O∗(2r(1−1/2k)) time algorithm. Writing
t = n − r = codim(A), we can even obtain an O∗(

(
n
⩽t

)
· 2n(1−1/k) time algorithm for the

problem, also based on the PPZ satisfiability algorithm, which yields the desired 1/k savings
in the exponent for small t.

2.1 An O∗(
(

n

t

)
· 2n(1−1/k)) time randomized algorithm: co-dimension t

case

As outlined in Section 1.2, the algorithm will use the PPZ satisfiability algorithm [21] as a
subroutine, combined with variable plucking steps to solve k-Sub-Sat in randomized time
O∗(

(
n
t

)
· 2n(1−1/k)), when codim(A) = t. In particular, for codim(A) = o(n) the algorithm

has run time O∗(2n(1−1/k+o(1))).
The variable plucking is based on analyzing the critical variables for a solution ā ∈ Fn

2 of
a given k-Sub-Sat instance (Φ, A), depending on whether or not they occur in the linear
equations defining A.

For an instance (Φ, A) we partition the variables into two sets

{xi | i ∈ [n]} = Vin ⊔ Vout,

where Vin is the subset of variables that have nonzero coefficient in at least one of the t linear
equations defining A, and Vout is the remaining set of variables. By abuse of notation, we
will also treat Vin ⊔ Vout as a partition of the index set [n]. We consider the following two
cases.

Case 1. Suppose (Φ, A) has the property that for every solution ā ∈ Fn
2 each variable in Vin

is critical for ā w.r.t Φ. There is no variable plucking required in this case. It only involves
the application of the PPZ satisfiability algorithm on Φ and checking that the assignment
found belongs to A. We need the following lemma which is analogous to [21, Lemma 4]. The
proof of the lemma is by an induction argument like in [21].

▶ Lemma 6. Let S be a nonempty subset of Fn
2 . For each ā ∈ S, let Iout(ā) = {i ∈ Vout |

ā + ei /∈ S}, where ei is the ith elementary vector. Then we have∑
ā∈S

2|Iout(ā)|−|Vout| ⩾ 1. (1)

Now, let ā ∈ Fn
2 be some solution of the k-Sub-Sat instance (Φ, A). Then, by the

assumption of Case 1 and the preceding discussion ā has |Vin| + |Iout(ā)| critical variables
w.r.t Φ.

Following the analysis in [21], if we now run one iteration of the PPZ algorithm on the
instance Φ, the probability that ā is output is at least

1
n2 · 2−n+(|Vin|+|Iout(ā)|)/k.

IPEC 2021



5:8 Satisfiability in a Subspace

Let S ⊂ Fn
2 denote the subset of solutions to the instance (Φ, A). Summing up over all

ā ∈ S, the probability that some solution ā is output is given by∑
ā∈S

1
n2 · 2−n+(|Vin|/k+|Iout(ā)|/k) = 1

n2 2−n+n/k ·
∑
ā∈S

2(−|Vout|/k+|Iout(ā)|)/k

⩾
1
n2 2−n+n/k ·

∑
ā∈S

2(−|Vout|+|Iout(ā)|) ⩾
1
n2 2−n+n/k ,

where the last step uses Lemma 6. This finishes the analysis of Case 1.

▶ Remark 7. Notice in the probability analysis that S is the set of solutions to (Φ, A) and not
all solutions to Φ. The crucial property that for every ā ∈ S, each variable in Vin is critical
w.r.t Φ yields that there are |Vin| + |Iout(ā)| critical variables for ā w.r.t Φ. Intuitively, as
the variables in Vout do not occur in the linear equations, the PPZ algorithm when run on Φ
will be able to deterministically set, on average, |Iout(ā)|/k many of the critical variables in
Vout without any interaction with the linear equations defining A.

Case 2. We now consider the case when not all variables in Vin are critical to all solutions to
(Φ, A). We will show that there is a subset of at most t variables in Vin that can be plucked
from Φ and reduce the transformed instance to Case 1. We will argue that the algorithm
can do an exhaustive search for this subset of Vin of size at most t.

▶ Lemma 8. In the k-Sub-Sat instance (Φ, A), let Bx = b be the system of t linear equations
defining A. Suppose variable x1 occurs in the first equation

∑n
j=1 B1jxj = b1 (i.e., B11 ≠ 0).

Further, suppose x1 is not critical for some solution to (Φ, A). Let Φ′ be the formula obtained
by plucking x1 from Φ. Let A′ be the affine space of co-dimension t − 1 defined by dropping
the first linear equation

∑n
j=1 B1jxj = b1 after eliminating x1 from the other linear equations

by row operations. Then (Φ′, A′) is satisfiable and any solution ā′ to (Φ′, A′) can be extended
to a solution ā of (Φ, A).

Lemma 8 describes a pluck/eliminate step applied to the non-critical variable x1: namely,
pluck x1 from Φ and eliminate it from the equations describing A.

Clearly, for some sequence of s ⩽ t pluck/eliminate steps applied successively transforms
(Φ, A) to (Φs, As) for which Case 1 holds. Since we do not have an efficient test for checking
non-criticality, the algorithm has to do an exhaustive search for the sequence of s variables to
pluck/eliminate. The number of variable sequences to consider is bounded by nt. However,
as we argue in the next claim, it suffices to consider each unordered subset U of size s ⩽ t

variables and apply pluck/eliminate steps to its variables in the natural order x1, . . . , xn.
Thus, we can bound the exhaustive search to

(
n
⩽t

)
subsets of variables. Let (ΦU , AU ) be the

resulting instance after pluck/eliminate applied to variables in U in the natural order.

▶ Lemma 9. Let (Φ, A) be a satisfiable instance of k-Sub-Sat with codim(A) = t. There is
a subset U of variables of size at most t, such that (ΦU , AU ) is a satisfiable Case 1 instance
of k-Sub-Sat.

The O∗(
( n
⩽t

)
· 2n−n/k) time Algorithm. On input (Φ, A), the algorithm proceeds as

follows:

For each subset U ⊂ Vin of size at most t do the following:
1. Pluck the variables in U from Φ to obtain ΦU .
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2. For each variable xi ∈ U (in any order): pick some equation in which xi occurs; remove
xi from other equations by adding the picked equation to it; drop the picked equation
from the system.

3. Run the PPZ algorithm on the resulting instance (ΦU , AU ) as if Case 1 were applicable.
More precisely, run PPZ on ΦU for O∗(2n−n/k) steps; for each solution obtained, if it
satisfies AU then output an extension of it to a solution to (Φ, A) and exit,5 else continue
the for-loop for the next choice of subset U .

To see the correctness, suppose (Φ, A) is satisfiable. By Lemma 9, for some choice of U

with |U | ⩽ t, (ΦU , AU ) is a Case 1 instance. Hence, the PPZ satisfiability algorithm will
output a solution to (ΦU , AU ) in time O∗(2n−n/k) with high probability. This solution can
be uniquely extended to a solution to (Φ, A) using the linear equations.

We have thus shown the following.

▶ Theorem 10. There is a randomized O∗(
(

n
t

)
·2n−n/k) time algorithm for k-Sub-Sat for sub-

spaces of co-dimension t. In particular, for t = o(n) we have a randomized O∗(2n(1−1/k+o(1)))
time algorithm.

2.2 An O∗(2n−n/2k+n/2k2) time PPZ-based algorithm for k-Sub-Sat
Let (Φ, A) be a k-Sub-Sat instance. Our objective is a randomized algorithm with run time
2n−(1−ν)n/k for as small an ν as possible (ideally, tending to zero).

To this end, we can first apply Valiant-Vazirani Lemma [27] to increase the number of
constraints (thereby reducing the rank of A) and getting an instance (Φ, A′) such that Φ
has a unique solution in A′ with high probability (i.e., inverse polynomial probability as
guaranteed by Valiant-Vazirani).

If dim(A′) ⩽ n − (1 − ν)n/k we can brute force search in A′ in deterministic time
2dim(A′) ⩽ 2n−(1−ν)n/k. Thus, we can assume that dim(A′) = n − t and A′ is the solution
space of t < (1 − ν)n/k independent affine linear equations.

Let now ā ∈ Fn
2 be the unique solution to the k-Sub-Sat instance (Φ, A′). We partition

the variable set into Vin ⊔ Vout as before.

▷ Claim 11. Every variable in Vout is critical for the satisfying assignment ā of Φ.

Proof. Suppose xi ∈ Vout is not critical for ā. Then ā + ei is also a satisfying assignment for
Φ. Moreover, since xi does not occur in Vin, ā + ei satisfies the linear equations defining A′.
Hence ā + ei is a solution to (Φ, A′) contradicting the uniqueness of ā.

The variable plucking algorithm. If ā has more than (1 − ν)n many critical variables
(ν to be fixed in the analysis) then by running the PPZ satisfiability algorithm [21] for
O∗(2n−(1−ν)n/k) iterations we will find it with high probability.

Otherwise, there are more than νn many variables in Vin that are not critical for Φ at ā.
1. Repeat the following two steps at most t times.
2. (The plucking step) Randomly pluck a variable xi from Vin and drop it from the formula

Φ to obtain its shrinking Φ1. Take a linear equation ℓ = b in which xi occurs. By row
operations eliminate xi from all other linear equations in which xi occurs and then drop
the equation ℓ = b. Let the affine space described by the new set of at most t − 1 linear

5 From a solution to (ΦU , AU ) we can reconstruct the solution to (Φ, A) as the values to variables in U
are uniquely determined via the linear equations from the values to the other variables.
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5:10 Satisfiability in a Subspace

equations be A1. We claim that (Φ1, A1) also has a unique solution ā1 (obtained from ā

by dropping the ith coordinate).
3. Let n1 = n − 1. Run the PPZ algorithm for 2n1−(1−ν)n1/k time on Φ1. If we do not find

the unique solution ā1 then repeat the plucking step.

At the end of t successful plucking steps we are left with a k-Sat instance Φt with a
unique solution (the subspace At is Fn

2 ) and PPZ will find that solution from which we can
compute ā by recovering the unique values of the plucked variables using the linear equations.

Analysis. At the jth iteration of the plucking step, the probability that all j steps pluck off
non-critical variables is at least νj . Thus, the running time of the search for unique solutions
for the (Φj , Aj) over all t steps is bounded by

∑t
j=0 O∗( 1

νj · 2nj−(1−ν)nj/k).
Letting α = 21−(1−ν)/k and noting that nj = n − j we can rewrite and bound the above

sum as

O∗(2n−(1−ν)n/k) ·
t∑

j=0

1
νj · αj

⩽ O∗(2n−(1−ν)n/k) · t · 1
νt · αt

⩽ O∗(2n−(1−ν)n/k) · t ·
(

1
2ν

)(1−ν)n/k

· 2(1−ν)n/k2
,

as the sum
∑t

j=0
1

νj ·αj is bounded by t 1
νt·αt for να < 1 and t ⩽ (1 − ν)n/k.

The overall running time of the algorithm is, therefore, O∗(2n−n/k) · 2νn/k ·
( 1

2ν

)(1−ν)n/k ·
2(1−ν)n/k2 , which is minimized at ν = 1/2 as we argue below, and is given by
O∗(2n−n/2k+n/2k2).
▶ Remark 12 (Extension beyond linear-algebraic constraints). We note some aspects about the
algorithm and explain its adaptation to the more general setting of k-CNF satisfiability in
the presence of a global boolean constraint C(x1, x2, . . . , xn) with the property that given a
partial assignment to the variables xi we can extend the assignment to the remaining variables
that satisfies the constraint C, if such an extension exists. We set ν = 1/2 and t = n/2k.
Note that the algorithm need not partition the variables into Vin and Vout. If there are over
n/2 non-critical variables, the algorithm can “obliviously” pluck one with probability 1/2.
Oblivious in the sense that it does not need to see the constraint C. After t = n/2k plucking
steps, there are at most n − n/2k remaining variables. We add a final step to the algorithm
which is a brute-force search over all 2n−n/2k assignments to the remaining variables. For
each assignment to these that satisfies Φt we can check, in polynomial time, if there is an
extension to it that satisfies C. This search will succeed for the unique solution ā. An
interesting example for constraint C would be HORN formulas. As clause size is unrestricted
in HORN formulas, notice that neither a direct application of the PPZ satisfiability algorithm,
nor an application of the polynomial equations algorithms would give constant savings in the
exponent for the running time bound.

More generally, call a Boolean constraint C(x1, x2, . . . , xn) T (n)-easy if there is a T (n)
time-bounded algorithm that searches for a satisfying extension of a given partial assignment
to the variables xi.

▶ Theorem 13. There is a randomized O∗(2n−n/2k+n/2k2 ·T (n)) time algorithm that takes any
k-CNF formula and a T (n)-easy boolean constraint C(x1, x2, . . . , xn) as input and computes
a satisfying assignment for the formula and C.

▶ Corollary 14. There is a randomized O∗(2n−n/2k+n/2k2) time algorithm for k-Sub-Sat.
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2.3 An O∗(1.5r) time algorithm for 2-Sub-Sat
▶ Theorem 15. Given a 2-Sub-Sat instance (Φ, A), where Φ is a 2-CNF formula and
A ⊂ Fn

2 is an r-dimensional affine subspace given by linear equations, there is a randomized
O∗(1.5r) time algorithm to check if Φ has a satisfying assignment in A and if so to compute
it.

▶ Remark 16. The run time of O∗(1.5r) that we obtain improves on the polynomial equations
based algorithms, where for k = 2 the best run time so far is O∗(1.618r) [9]. For k = 3 a
similar randomized branching strategy gives an algorithm with run time O∗((7/4)r). For
larger k the run time degrades to O∗((2 − 1/2k−1)r). This running time bound is obtained
similarly as for Theorem 15: fix a satisfying assignment ā of the k-Sub-Sat instance. For a
clause (ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk) of k linearly independent linear forms a random (nonzero) linear
combination

∑k
i=1 αiℓi evaluates to 1 at ā with probability exactly 2k−1

2k−1 .

2.4 2-Sub-Sat in a co-dimension t subspace
In this section we consider 2-Sub-Sat where we are seeking a solution in an affine space A

such that codim(A) = t.
Given a formula Φ we will identify a canonical satisfying assignment ā for Φ based on

which we will define critical variables. Since 2-Sat is in polynomial-time, we can detect
non-critical variables in Φ w.r.t. ā in polynomial time. Now the plucking step will try all the
possible

(
n
t

)
choices of plucking non-critical variables, recalling that a non-critical variable

plucked from a linear constraint defining A allows us to drop that constraint.

▶ Theorem 17. There is an O∗(
(

n
t

)
) time deterministic algorithm for checking if a 2-Sub-Sat

instance (Φ, A) is satisfiable where the affine space A has co-dimension t.

3 Hardness results

In this section we prove our hardness results for subspace satisfiability. Since k-Sat itself is
NP-hard for k ⩾ 3, so is k-Sub-Sat for k ⩾ 3. So we focus on the case k = 2.

3.1 NP-hardness of 2-Sub-Sat
While 2-Sat is polynomial time solvable, the following theorem shows that 2-Sub-Sat is
NP-hard. Note that this follows from Schaefer’s dichotomy theorem for Boolean CSP as the
combination of 2-Sat constraints and linear equations (even with 3 variables per equation)
is not one of the six tractable cases, and thus NP-hard. Below we give a direct proof based
on a simple reduction.

▶ Theorem 18. 2-Sub-Sat is NP-hard.

3.2 W[1]-hardness of 2-Sub-Sat parameterized by co-dimension
We now strengthen the hardness result of Theorem 18 and show that 2-Sub-Sat is unlikely to
even be fixed-parameter tractable when parameterized by the co-dimension t of the subspace
in which we seek a satisfying assignment to the 2CNF formula. On the other hand, recall
that (as shown in [3] and also Section 2.4), for fixed co-dimension t, 2-Sub-Sat can be solved
in polynomial time. Our W[1]-hardness answers (in the negative) a question posed in [3]
on whether 2-Sat with a single modular constraint modulo M is fixed-parameter tractable
when parameterized by M (they gave an algorithm with complexity nO(M)).
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5:12 Satisfiability in a Subspace

▶ Theorem 19. Consider the 2-Sub-Sat where the input subspace within which one has to
satisfy the 2-Sat formula has co-dimension t. Parameterized by t, 2-Sub-Sat is W[1]-hard.

3.3 Approximability of Max-2-Sub-Sat

Given the hardness of deciding exact satisfiability of 2-Sub-Sat instance, we now turn
to approximate satisfiability. In the Max-2-Sub-Sat problem, the goal is to satisfy the
maximum number of 2SAT clauses with an assignment that belongs to the input affine space
A. Thus, the affine constraints are treated as hard constraints. We allow clauses of width 1.
If unary clauses are disallowed in the 2CNF formula, and each clause involves exactly two
distinct variables, we call the problem Max-E2-Sub-Sat.

3.3.1 Easy approximation algorithms

We can assume that no variable is forced to 0 or 1 by the affine space A, since if that happens
we can just set and remove that variable and work on the reduced instance. If we pick a
random assignment from A, it will satisfy at least 1/2 of the clauses of the 2CNF formula in
expectation, and in fact at least an expected fraction 3/4 of the clauses when each clause
involves two distinct variables. The algorithms are easily derandomized. For satisfiable
instances of Max-2-Sub-Sat, one can find a 3/4 approximate solution, as one can eliminate
all the unary clauses, and add those conditions to the subspace inside which we want to find
an assignment to the 2CNF formula. So we get the following trivial algorithmic guarantees.

▶ Observation 20. In polynomial time, one can get a factor 1/2 approximate solution to
instances of Max-2-Sub-Sat, a factor 3/4 approximate solution to instances of Max-E2-
Sub-Sat, and a factor 3/4 approximate solution to satisfiable instances of Max-2-Sub-Sat.

We will now show that all the above guarantees are best possible, with matching NP-hardness
results.

3.3.2 Tight inapproximability via simple reductions

For the hardness results and rest of the section, it is convenient to work with the PAF-Sat
formulation of Sub-Sat. The Max-LIN2 problem, of maximizing the number of satisfied
equations in a system of affine equations mod 2, trivially reduces to Max-2-PAF-Sat (with
each equation being degree 1 instead of degree 2). By Håstad’s seminal tight inapproximability
for Max-LIN2, we have the following.

▶ Observation 21. For any ϵ > 0, Max-2-PAF-Sat (and thus Max-2-Sub-Sat) is NP-hard
to approximate within a factor of (1/2 + ϵ), and this holds for almost satisfiable instances
that admit an assignment satisfying a fraction (1 − ϵ) of equations.

We also get a tight hardness (matching Observation 20) for the Max-E2-Sub-Sat
or equivalently when each polynomial equation is the product of exactly two (linearly
independent) affine forms.

▶ Lemma 22. For any ϵ > 0, Max-E2-PAF-Sat is NP-hard to approximate within a factor
of (3/4+ϵ), and this holds for almost satisfiable instances that admit an assignment satisfying
a fraction (1 − ϵ) of equations.
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3.3.3 Inapproximability for satisfiable instances
The above inpproximability results do not apply to satisfiable instances of 2-Sub-Sat. They
are obtained by reductions from linear equations whose exact satisfiability can be easily
checked. We now prove that approximating Max-2-Sub-Sat doesn’t get easier on satisfiable
instances.

▶ Theorem 23. For every ϵ > 0, it is NP-hard to approximately solve satisfiable instance of
Max-E2-Sub-Sat within a factor of 3/4 + ϵ. That is, it is NP-hard to find, given as input
a satisfiable instance of 2-Sub-Sat, an assignment satisfying a fraction 3/4 + ϵ of the 2SAT
constraints.

4 System of polynomial equations over binary field: effect of
reducibility

We now examine a special case of the problem of solving a system of polynomial equations
over F2 studied in [18, 2, 9]. For motivating background, we recall according to the strong
exponential time hypothesis (SETH) that Sat, that is n-variable CNF satisfiability of
unrestricted clause width, cannot be essentially solved faster than 2n time. However,
Schuler [24] and Calabro et al [5] have shown the special case that sparse instances of Sat
(with c · n clauses) can be solved in O∗(2n(1−α)) time, where α is a constant depending on the
clause density c. It is natural to ask if there is an analogous result for Sub-Sat (satisfiability
of conjunctions of unbounded disjunctions of affine linear forms). In this section we show a
more general algorithmic result in the setting of systems of polynomial equations over F2.

Let Pi ∈ F2[x1, x2, . . . , xn], 1 ⩽ i ⩽ m be polynomials over the field F2 as input instance
to the Poly-Eqs problem. The problem is denoted k-Poly-Eqs when the degrees are
bounded by k which generalizes k-Sub-Sat as already explained in the introduction.

The unrestricted degree case is significantly different, because we can easily combine the
m equations into a single equation as follows. Define

P = 1 +
m∏

i=1
(1 + Pi).

Clearly, the system Pi = 0, 1 ⩽ i ⩽ m has a solution iff P = 0 has a solution.
Thus, assuming SETH, there is no algorithm essentially faster than 2n for solving P = 0.

▶ Remark 24. There is also the question of how the polynomials Pi are given as part of
the input. If deg Pi ⩽ k for all Pi then we can in polynomial-time compute their sparse
representation as a linear combination of the nk many monomials of degree at most k.
However, in the above reduction of combining the Pi into a single polynomial, P is a small
arithmetic formula. In fact, for the case of Poly-Eqs we consider, where the instance is a
system of equations Pi = 0, 1 ⩽ i ⩽ m such that m = O(n) and each Pi has constant degree
irreducible factors, we can assume that the Pi are given as arithmetic circuits.

We now show that Poly-Eqs instances Pi = 0, 1 ⩽ i ⩽ m can be solved faster than 2n if
m is linear in n and the irreducible factors of each Pi are of constant degree. This can be
seen as a “polynomial equations” analogue of Schuler’s Sat algorithm for spare instances
with unrestricted clause width [24, 5]. We note that a different degree reduction method,
based on a rank argument, is used in [18, Section 4] to solve systems of polynomial equations
pi = 0, where each pi is given by a sum of product of affine linear forms.
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5:14 Satisfiability in a Subspace

▶ Theorem 25. Let Pi = 0, 1 ⩽ i ⩽ c · n, for a constant c > 0, be an instance of Poly-Eqs,
such that the degree of each irreducible factor of each Pi is bounded by a constant b. There is
a randomized algorithm for Poly-Eqs that runs in time 2n(1−α) for such instances, where
α > 0 is a constant that depends on c and b.
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