
An Investigation of the Recoverable Robust
Assignment Problem
Dennis Fischer #

Department of Computer Science, RWTH Aachen, Germany

Tim A. Hartmann #

Department of Computer Science, RWTH Aachen, Germany

Stefan Lendl #

Institute of Operations und Information Systems, Universität Graz, Austria

Gerhard J. Woeginger #

Department of Computer Science, RWTH Aachen, Germany

Abstract
We investigate the so-called recoverable robust assignment problem on complete bipartite graphs, a
mainstream problem in robust optimization: For two given linear cost functions c1 and c2 on the
edges and a given integer k, the goal is to find two perfect matchings M1 and M2 that minimize the
objective value c1(M1) + c2(M2), subject to the constraint that M1 and M2 have at least k edges in
common.

We derive a variety of results on this problem. First, we show that the problem is W[1]-hard with
respect to parameter k, and also with respect to the complementary parameter k′ = n/2 − k. This
hardness result holds even in the highly restricted special case where both cost functions c1 and c2

only take the values 0 and 1. (On the other hand, containment of the problem in XP is straightforward
to see.) Next, as a positive result we construct a polynomial time algorithm for the special case
where one cost function is Monge, whereas the other one is Anti-Monge. Finally, we study the variant
where matching M1 is frozen, and where the optimization goal is to compute the best corresponding
matching M2. This problem variant is known to be contained in the randomized parallel complexity
class RNC21, and we show that it is at least as hard as the infamous problem Exact Red-Blue
Matching in Bipartite Graphs whose computational complexity is a long-standing open problem.
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1 Introduction

The Assignment Problem (AP) is a fundamental and well-investigated problem in discrete
optimization: For the complete bipartite graph Kn,n = (V, En,n) with given costs c : En,n →
R on the edges, the AP asks for a perfect matching M in Kn,n that minimizes the total
cost c(M). The AP can be solved in polynomial time, by using for instance the Hungarian
method or techniques from network flow theory; see Burkard, Dell’Amico & Martello [3].

1 RNC2 is the randomized version of NC2. For a definition of NC2 see [1].
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19:2 An Investigation of the Recoverable Robust Assignment Problem

In this paper we study a variant of the AP from the area of robust optimization, which we
denote as Recoverable Assignment Problem (RecovAP). An instance of RecovAP
consists of two cost functions c1, c2 : En,n → R on the edges of Kn,n together with an integer
bound k. The goal is to find two perfect matchings M1 and M2 that minimize the objective
value c1(M1) + c2(M2), subject to the constraint that M1 and M2 have at least k edges in
common. We also consider the following two non-trivial special cases of RecovAP:

Consider an arbitrary (bipartite) subgraph G = (V, E) of Kn,n. If the cost functions
c1 and c2 are set to +∞ on all edges outside E, one arrives at the graphic special case
of RecovAP for bipartite input graphs G. This allows us to study the problem with
graph-theoretic tools, and to look into graph-theoretic structures.
If the cost function c1 is set to zero on the edges of some fixed perfect matching and
set to +∞ on all the remaining edges, the perfect matching M1 is thereby fixed and
frozen at the zero-cost edges. Then problem RecovAP boils down to finding a matching
M2 that minimizes c2(M2) subject to the constraint |M1 ∩ M2| ≥ k; we denote the
resulting optimization problem as Second-stage recoverable assignment problem
(2S-RecovAP).

Both problems RecovAP and 2S-RecovAP are motivated by (central and natural) questions
in the area of Recoverable Robust Optimization.

Known and related results. The study of discrete optimization problems with intersec-
tion constraints (as imposed in problem RecovAP) was initiated through applications in
Recoverable Robust Optimization under interval uncertainty. The literature mainly ana-
lyzes situations where the feasible solutions form the bases of various types of matroids:
Kasperski & Zieliński [14] construct a polynomial time solution for the case of uniform
matroids; the underlying robust optimization problem is called the recoverable selection
problem. Lachmann, Lendl & Woeginger [15] provide a simple greedy-type algorithm for
recoverable selection, and thereby improve the time complexity in [14] from cubic time down
to linear time. Hradovic, Kasperski & Zieliński [12, 11] obtain a polynomial time algorithm
for the recoverable matroid basis problem and a strongly polynomial time algorithm for
the recoverable spanning tree problem. These results have been generalized and improved
by Lendl, Peis & Timmermans [16] who show that the recoverable matroid basis and the
recoverable polymatroid basis problem can both be solved in strongly polynomial time.
Iwamasa & Takayawa [13] further generalize these results and cover cases with nonlinear
and convex cost functions.

Büsing [5] derives various NP-hardness results for recoverable robust shortest s-t-path
problems, and thus makes one of the first steps in this area beyond feasible solutions with
a matroidal structure. Further results about s-t-paths with intersection constraints are
obtained by Fluschnik et al. [8]. Note that the combinatorics of s-t-paths is substantially
more complex than the combinatorics of matroid bases: whereas all bases of a matroid have
the same cardinality, different s-t-paths may contain totally different numbers of edges. For
that reason, recoverable robust shortest s-t-path problems do not (easily) translate into
corresponding optimization problems that ask for two feasible solutions with at least k

common elements.
Şeref et al. [19] study 2S-RecovAP and obtain a randomized algorithm running in

polynomial time if the costs are polynomially bounded. A stable matching variant of
2S-RecovAP has recently been introduced and studied by Bredereck et al. [2].

Our contribution. By analyzing problem RecovAP, we take another step beyond matroidal
structures in recoverable robust optimization. Section 2 discusses the computational complex-
ity of RecovAP. We look into the parameterized complexity of RecovAP. We show that



D. Fischer, T. A. Hartmann, S. Lendl, and G. J. Woeginger 19:3

the problem is W[1]-hard with respect to the central parameter k, the lower bound on the
intersection size of the two matchings. Furthermore, the problem is W[1]-hard with respect
to the so-called recoverability parameter k′ = n − k, hence the problem that asks to have
all of the n matching edges of M1 and M2 to coincide except for up to k exceptions. These
hardness results even hold in the highly restricted case where both cost functions c1 and c2
only take the values 0 and 1. Similar W[1]-hardness results hold for the graphic version of
RecovAP on planar graphs. On the positive side, there exists a simple XP algorithm for
parameter k (that checks all possible sets M1 ∩ M2 of size k) and there also exists a simple
XP algorithm for parameter k′ (that checks all possible sets M1 − M2 and M2 − M1 of size
k′). This is in contrast to the variants of the problem with the constraint |M1 ∩ M2| ≤ k

or |M1 ∩ M2| = k. These problems are easily shown to be NP-hard for each fixed k via a
reduction from the Disjoint Matchings Problem [9]. Finally, we show that the graphic
version of RecovAP with respect to parameter treewidth is in FPT.

Next, in Section 3 we discuss problem RecovAP under Monge-type conditions; we refer
to Burkard, Klinz & Rudolf [4] for an extensive overview of Monge properties. The cost
function in the assignment problem may naturally be viewed as an n × n cost matrix. If
both cost functions c1 and c2 correspond to Monge matrices, problem RecovAP boils down
to something trivial: In the optimal solution both matchings M1 and M2 run along the
main diagonal of the underlying matrix. And if both cost functions c1 and c2 correspond to
Anti-Monge matrices, then in the optimal solution both matchings M1 and M2 run along
the secondary diagonal of the underlying matrix. The mixed case where c1 corresponds to a
Monge matrix and where c2 corresponds to an Anti-Monge matrix is less trivial and more
interesting. By analyzing the combinatorial structure of potential optimal solutions, we show
that it is solvable in polynomial time.

Finally, in Section 4 we turn to the second-stage recoverable assignment problem 2S-
RecovAP, which shows a strange and rather unpleasant behavior. We feel that problem
2S-RecovAP is too hard to allow a polynomial time solution, and we simultaneously feel that
it is too easy to allow an NP-hardness proof. We support our intuition by two mathematical
arguments: First, by a straightforward reduction to the extact matching problem in red blue
biparite graphs by Şeref et al. [19], there exists an RNC2 algorithm for 2S-RecovAP. As the
complexity class RNC2 ⊆ RNC is conjectured to be properly contained in NP, this provides
evidence for the easiness of 2S-RecovAP. Secondly, we show that the exact matching
problem in red-blue bipartite graphs [7] is logspace reducible to 2S-RecovAP. As the
existence of a polynomial time algorithm for this exact red-blue matching problem is doubtful
(and constitutes a long-open famous problem), this provides evidence for the hardness of
2S-RecovAP.

Due to the page limit, some of the proofs are omitted or a short sketch is given. The
detailed proofs will be published in the full version of the paper.

2 Parameterized Complexity

To show W[1]-hardness of the RecovAP problem we reduce from the well known grid tiling
problem. In the grid tiling problem we are given an ℓ × ℓ grid in which every cell contains a
set of tuples. The task is to select a value for every row and for every column compatible
with the tuples in the cells: That is, each cell defined by a row and column combination
contains a tuple with the values selected for this row and column.

IPEC 2021
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Figure 1 Gadgets for the W[1]-hardness result for RecovAP and parameter k: (a) Selection
gadget for row values (analogously for column values). The depicted matching fixes value 2. (b)
Component for one row in Si,j (analogously for one column). Each middle edge represents one tuple
in Si,j This component exists for both columns and rows and the middle edges are identified if the
corresponding tuples are the same.

Grid Tiling
Input: Integers ℓ, n, and a collection S = (Si,j)(i,j)∈[ℓ]×[ℓ] with Si,j ⊆ [n] × [n].

Question: Are there integers r1, . . . , rℓ and c1, . . . , cℓ such that (ri, cj) ∈ Si,j for every
i, j ∈ [ℓ]?

Grid Tiling has been shown to be W [1]-hard for parameter ℓ and has no f(ℓ)no(ℓ)-time
algorithm [6]. For simplicity, we assume that every value 1, . . . , n appears in at least one
tuple of S; which can be achieved by renaming the occurring n many values increasingly.
That way we ensure that the size of the numbers are polynomial in the size of the input.

By the same reduction, we obtain a lower bound of the runtime assuming the Exponential
Time Hypothesis (ETH); for more details on ETH we refer to [6].

▶ Theorem 1. RecovAP is W[1]-hard for parameter k with edge cost (c1(e), c2(e)) ∈
{(0, 0), (0, 1), (1, 0), (1, 1)} for all edges e, and, unless ETH fails, it has no f(k)no(

√
k)-time

algorithm.

Proof. Let I = (S, n, ℓ) be a Grid Tiling instance. We construct a RecovAP instance
that asks for matchings M1 and M2 of cost 0 and with at least k = ℓ2 edges e ∈ M1 ∩ M2.
Hence, only edges with cost (0, 0) may be part of M1 ∩ M2. Our construction uses edges
with cost (0, 0) only to model tuples of grid cells. By our construction, exactly one (0, 0)
cost edge (ri, cj) per grid cell Si,j may be in M1 ∩ M2, which then fixes the selection of that
tuple using a cell gadget. We force these tuples to comply with a global selection of row and
column values r1, . . . , rℓ and c1, . . . , cℓ, using row and column selection gadgets.

In our reduction, we use two types of gadgets, the row/column selection gadget and the
cell gadget. The property of the row/column selection gadget is to encode the selection of
one integer per row/column. The role of the cell gadget is to encode the selection of a tuple
(ri, cj) ∈ Si,j which is consistent with the selection of the row selection gadget for row i and
the column selection gadget for column j. Each of the gadgets will contain a set of special
vertices called terminals. These terminals will later be used to connect the gadgets with each
other using additional edges.

In the following, we first formally introduce the subgraphs and costs of these gadgets.
Next, we combine these gadgets into an instance of RecovAP.
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Since we aim for a solution (M1, M2) of cost 0, edges of cost 1 are not allowed in the
matchings M1, M2. Hence, edges with cost (0, 1) can only be included in M1 and edges with
cost (1, 0) can only be included in M2. This fact is heavily used in the following arguments.

For the row selection gadget we construct a graph Grow which is a star with center vertex
v and leaves t1, . . . , tn, the terminals of the gadget. All edges of the row selection gadget
have cost (0, 1). Note, that exactly one of the terminals can be matched with cost 0 using
M1. This matching corresponds to the selected value in the given row. Also, note that in
this case the terminal tr is the unique vertex matched by M1 and all other terminals must be
matched by M1 to some vertex outside of the gadget. See Figure 1 (a) for an illustration of
the row selection gadget, where the gadget is the part left of the dashed box. All the vertices
of the row selection gadget will be matched in M2 using auxiliary vertices introduced at the
end of this construction.

Analogously, we construct the column selection gadget as a graph Gcol with terminals
tcsel(c) for all column choices c ∈ [n]. The only difference is, that all edges are assigned cost
(1, 0) and the selection is determined by the matching M2.

For the cell gadget we construct a graph Gcell(S), where S is the set of tuples from [n]× [n]
corresponding to the cell. For each tuple (r, c) ∈ S there exists a special tuple edge etup(r,c)

of cost (0, 0) in Gcell(S). For each possible row choice r ∈ [n] we introduce two terminal
vertices tleft(r) and tright(r). We construct two parts Grcell(S) and Gccell(S) handling the row
and column selection in the cell (see Figure 1(b) for an illustration of Grcell(S)). Gcell(S) is
then defined as the union of Grcell(S) and Gccell(S) identifying the common tuple edges.

We begin by introducing the part of the cell gadget that correspond to the row selection,
denoted by Grcell(S). For this part all vertices must be matched by M1 either inside the
gadget or from outside of the gadget if they are terminals. To match these vertices using
M2 we will later introduce auxiliary vertices. The terminals tleft(r) and tright(r) are part of
Grcell(S) and connected by distinct internally vertex-disjoint paths of length 5 for each tuple
(r, c) ∈ S, where etup(r,c) is the center edge of this path. All the edges of these paths, except
for the tuple edges, are assigned cost (0, 1). Note that there might exist r such there is no
tuple (r, c) ∈ S. For such r nothing except for the two terminal vertices is added to Grcell(S).
This construction is depicted in Figure 1 (b) inside of the dashed box. Observe that tleft(r)

is matched by M1 from outside of the gadget if and only if tright(r) is matched by M1 from
outside of the gadget. The only feasible matching in this case adds the second and third
edge along the paths from tleft(r) to tright(r) to M1. Hence, for such r none of the tuple
edges etup(r,c) corresonding to a tuple (r, c) ∈ S can be matched by M1. But if tleft(r) is not
matched by M1 from outside of the gadget then also tright(r) cannot be matched from the
outside of the gadget and exactly for one tuple (r, c) ∈ S the tuple edge etup(r,c) and the first
and last edge along the path connecting tleft(r) to tright(r) have to be added to M1. For all
other paths the second and third edge have to be added to M1. This way of selecting tuple
edges is illustrated in Figure 1 (b). All the constructed vertices in this paragraph, except
those incident to the tuple edges, have to be matched by M2 using auxiliary vertices.

Analogously, the parts of the cell gadget that correspond to the column selection are
denoted by Gccell(S). For each possible column choice c ∈ [n] we introduce two terminal
vertices ttop(c) and tbottom(c), analogous to tleft(r) and tright(r) for the row choices. They are
connected to each other via the tuple edges in the same way as the terminals of Grcell(S).
Again by not matching ttop(c) from the outside by M2 it is enforced that tbottom(c) is not
matched from the outside by M2 and exactly one tuple edge etup(r,c) must be matched by
M2. All the constructed vertices in this paragraph except those incident to the tuple edges
will be matched by M1 using auxiliary vertices.

IPEC 2021



19:6 An Investigation of the Recoverable Robust Assignment Problem

The cell gadget Gcell(S) is defined as the union of Grcell(S) and Gccell(S). The tuple edges
and there incident vertices are introduced only once in Gcell(S) and are identified in this
union.

In addition we add 2 · (n + |S|) auxiliary vertices to Gcell(S). For each i ∈ [n] we connect
tleft(i) with ttop(i) and tright(i) with tbottom(i) via a path of length 2, using 2n of the auxiliary
vertices (see Figure 2 (a)). Observe that for each tuple (r, c) ∈ S there are 4 vertices connected
to the terminals tleft(r), ttop(c), tright(r) and tbottom(c) inside Gcell(S). We add a path of length
two between the vertex connected to tleft(r) and the vertex connected to ttop(c); and also add
a path of length two between the vertex connected to tright(r) and the vertex connected to
tbottom(c). The cost of the constructed auxiliary edges connected to vertices in Grcell(S) are
set to (1, 0) and the cost of the constructed auxiliary edges connected to vertices in Gccell(S)

are set to (0, 1).
These constructed paths of length 2 can be used to match each of the connected vertices

with M1 or M2 respectively which also matches the auxiliary vertices with both of the
matchings.

Observe that the tuple edges are the only edges in the cell gadget that can both be
matched by M1 and M2. Hence, if exactly one terminal tleft(r) is not matched by M1 and
exactly one terminal ttop(c) is not matched by M2 it holds that the cell gadget can contribute
one edge to M1 ∩ M2 if and only if (r, c) ∈ S. Using the auxiliary edges all vertices can be
matched by both M1 and M2.

Now, we are ready to define the instance of RecovAP on a graph G. For each row i ∈ [ℓ]
we add two distinct copies of the row gadget Grow

i,1 = Grow, Grow
i,2 = Grow with terminals

t
rsel(r)
i,1 , t

rsel(r)
i,2 to G and for each column j ∈ [ℓ] we add two distinct copies of the column

selection gadget Gcol
j,1 = Gcol, Gcol

j,2 = Gcol with terminals t
csel(c)
j,1 , t

csel(c)
j,2 to G.

For each cell (i, j) ∈ [ℓ] × [ℓ] we add a distinct copy of the cell gadget Gcell
i,j = Gcell(Si,j)

with terminals t
left(r)
i,j , t

right(r)
i,j , t

top(c)
i,j , t

bottom(c)
i,j to G.

We now connect the terminals of these gadgets. For each row i ∈ [ℓ] and possible choice
r we connect t

rsel(r)
i,1 to t

left(r)
i,1 and t

rsel(r)
i,2 to t

right(r)
i,ℓ with cost (0, 1). For each column j ∈ [ℓ]

and possible choice c we connect t
csel(c)
j,1 to t

top(c)
1,j and t

csel(c)
j,2 to t

bottom(c)
ℓ,j with cost (1, 0).

For each i ∈ [ℓ], j ∈ [ℓ − 1] and choice r we connect terminals t
right(r)
i,j with t

left(r)
i,j+1 with cost

(0, 1). For each i ∈ [ℓ − 1], j ∈ [ℓ] and column choice c we connect terminals t
bottom(c)
i,j with

t
top(c)
i+1,j with cost (1, 0).

To ensure the existence of perfect matchings we add for the vertices of the selection
gadgets 2 · (ℓ + ℓn) additional auxiliary vertices to G. The first half is used to connect the
vertices of the row selection gadgets Grow

i,1 on the left of the grid with the vertices of the
column selection gadgets Gcol

i,1 on the top via paths of length 2 for all i ∈ [n]. The others are
used to connect the vertices of the row selection gadgets Grow

i,2 on the right to the column
selection gadgets Gcol

i,2 on the bottom via paths of length 2 for all i ∈ [n]. The cost of the
edges added in these paths is set to (1, 0) for all edges incident to a vertex of a row selection
gadget and (0, 1) for all edges incident to a vertex of a column selection gadget. Hence, all
vertices in the row and column selection gadgets can be matched by both matchings with
cost 0.

It is now easy to check that the constructed graph is bipartite. To create an instance of
RecovAP we add additional edges with cost (1, 1) to obtain a complete bipartite graph.
Note that these edges can neither be used by M1 nor by M2.

It remains to show that the given instance of the Grid Tiling is a yes-instance if and only
if there exists a solution to the constructed instance G of RecovAP with |M1 ∩ M2| ≥ ℓ2 of
cost 0.
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By construction, all the matched tuple edges in each row must be consistent with the
row selection and all the matched tuple edges in each column must be consistent with the
column selection, else the matchings M1, M2 cannot have cost 0. Hence, |M1 ∩ M2| ≥ ℓ2 can
only be obtained if the same tuple edge is used inside each cell gadget by both the row and
column selection.

For the converse direction observe that given a yes-instance of Grid Tiling and the
corresponding solution one can easily set the matchings M1 and M2 in the constructed
gadgets according to the solution for Grid Tiling and obtain a solution for ReocvAP of
cost 0 such that |M1 ∩ M2| ≥ ℓ2.

To show the ETH lower bound assume, for the sake of contradiction, that there is an
algorithm for RecovAP with running time f(k)no(

√
k). Then an instance of Grid Tiling

can be transformed in polynomial time into an instance of RecovAP. For the parameter
it holds that k = ℓ2. So this leads to a running time f(ℓ)no(

√
ℓ2) = f(ℓ)no(ℓ). This is a

contradiction. ◀

(a)

l r

t

b(b)

Figure 2 (a) A sketch of the surrounding of a grid cell component (in the dashed box) with
matching M1 in green and M2 in red. Most of the edges leading into the box are left out, except
for two example diagonal (0, 0) cost edges, one in both matchings, one in none. Outside in faint
color are the additional helper vertices to make the matchings perfect. By positioning these helper
vertices on a diagonal as depicted, there are only crossings of edges of cost (0, 1) and (1, 0). (b) A
crossing gadget that replaces a crossing of a (0, 1) cost edge {l, r} and (1, 0) cost edge {t, b}. The
red (dashed and fully drawn) edges have cost (0, 1) and the green cost (1, 0). The fully drawn red
edges show a matching replacing {ℓ, r} ∈ M1 while the fully drawn green edges show a matching
replacing {t, b} /∈ M2.

This hardness results also translates to planar graphs with the help of a crossing gadget.
Since the input graph is not complete, we no longer need edge cost (1, 1).

▶ Corollary 2. RecovAP is W[1]-hard on planar graphs for parameter k with (c1(e), c2(e)) ∈
{(0, 0), (0, 1), (1, 0)} for all edges e, and unless ETH fails it has no f(k)no(

√
k)-time algorithm.

Proof. The key observation is that by arranging the vertices in the plane as shown in
Figure 2(a), there are only crossing edges of cost (0, 1) and (1, 0). Crossings appear from
edges of cost (0, 1) in Grow and Grcell(S) with edges of cost (1, 0) in Gcol and Gccell. Also
when connecting the auxiliary vertices such crossings appear. Note that when connecting the
auxiliary vertices it does not matter which specific vertices are connected. Only the fact that
each vertex is connected matters. Hence it is possible to arrange for each cell gadget half of

IPEC 2021
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l r

Figure 3 The gadget G
snake(>k,0)
l,r that replaces an edge {l, r} and effectively simulates an edge of

cost (k + 1, 0), for k = 3.

the auxiliary vertices in the northwest and half of them in the southeast (see Figure 2(a)).
This way it is possible to order the vertices on the left from top to bottom and connect them
in this order without any crossings of these (1, 0) cost edges. They then only cross other cost
(0, 1) edges of the cell gadget. The principle holds for all other edges connecting the auxiliary
vertices of the cell gadget. For the edges connecting auxiliary vertices introduced for the row
and column selection gadgets the same idea works by putting them in the northwest and
southeast of the whole graph G.

We now introduce the crossing gadget Gcross which is used to replace every crossing of an
edge {ℓ, r} of cost (0, 1) with an edge {t, b} of cost (1, 0) in G. Graph Gcross is illustrated in
Figure 2(b). Graph Gcross consists of 4 vertices v1, v2, v3, v4 and the edges {ℓ, v1}, {v2, r}
and {v3, v4} of cost (0, 1) and the edges {t, v3}, {v3, v1} and {v4, v2} of cost (1, 0).

Observe that the case {ℓ, r} ∈ M1 is simulated by {ℓ, v1} ∈ M1, {v2, r} /∈ M1 and
{v3, v4} ∈ M1 and the case {ℓ, r} /∈ M1 is simulated by {ℓ, v1} /∈ M1, {v2, r} ∈ M1 and
{v3, v4} /∈ M1. Similarly, there are two ways to simulate {t, b} ∈ M2 and {t, b} /∈ M2.

It is important that the four new vertices are always matched within this crossing gadget,
and thus no further auxiliary vertices are needed. Further, note that this construction can
be easily chained in order to handle cases where {ℓ, r} or {t, b} cross more than one other
edge. ◀

As a final step regarding planar graphs, we avoid vertices of degree > 4, and we avoid
(0, 0) cost edges, thus showing hardness for cost (0, 1) and (1, 0). The key step is to replace a
single (0, 1) edge by a long path-like gadget that effectively simulates a cost (0, k + 1) edge,
analogously for a (1, 0) edge. Figure 3 shows such a gadget.

▶ Corollary 3. RecovAP is W[1]-hard on planar graphs with maximum degree 4 for
parameter k with (c1(e), c2(e)) ∈ {(0, 1), (1, 0)} for all edges e, and unless ETH fails it has
no f(k)no(

√
k)-time algorithm.

Using similar ideas we can also show W[1]-hardness for the dual parameter k′ = n − k,
hence the problem that asks to have all of the n matching edges of M1 and M2 to coincide
except for up to k exceptions. In robust optimization this parameter is of importance and
called the recoverability parameter.

▶ Theorem 4. RecovAP is W[1]-hard for the recoverability parameter k′ = n − k with
(c1(e), c2(e)) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} for all edges e, and, unless ETH fails, it has no
f(k)no(

√
k)-time algorithm.

Ideally, Theorem 4 would translate to planar graphs by using a crossing gadget. However,
according to Gurjar et al. [10], such a crossing gadget does not exist in this case.
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Figure 4 Illustrations for the Monge and Anti-Monge case. (a) Modification to ensure that no
cycles have length larger than four. (b) Modification to move 2-cycles east of a 4-cycle into a 4-cycle.
(c) Modification to move 2-cycles southeast of a 4-cycle into a 4-cycle.

Beside planar graphs, we also consider graphs of bounded treewidth. RecovAP is fixed
parameter tractable in the treewidth of the input graph (without the intersection size k as
parameter). Our algorithm is based on dynamic programming over the tree decomposition.

▶ Theorem 5. RecovAP is in FPT with respect to the treewidth of the input graph.

3 Monge and Anti-Monge Matrices

In this section we develop a polynomial time algorithm for the special case of RecovAP if
the cost function c1 is given by a Monge matrix A = (ai,j) ∈ Rn×n and the cost function of
c2 is given by an Anti-Monge matrix B = (bi,j) ∈ Rn×n. The matrix A is called a Monge
matrix if for all i < k and j < l it holds that ai,j + ak,l ≤ ai,l + ak,j . Analogously, the matrix
B is called an Anti-Monge matrix if for all i < k and j < l it holds that bi,j + bk,l ≥ bi,l + bk,j .
Let U = {u1, . . . , un} and V = {v1, . . . , vn} be the bipartition of the vertex set of Kn,n.
Then the costs of edge {ui, vj} is given by c1({ui, vj}) = ai,j and c2({ui, vj}) = bi,j .

Note, that it is a well-known result that if the cost function of the AP is given by a
Monge matrix then the diagonal {{ui, vi} : i = 1, . . . , n} is an optimal solution, similarly the
anti-diagonal for Anti-Monge matrices.

Surprisingly, for these special cost functions also the RecovAP has an optimal solution
of a similar combinatorial structure, as we show in the following. We illustrate solutions in
matrix form by highlighting entry (i, j) with a square if {ui, vj} ∈ M1 and with a cross if
{ui, vj} ∈ M2.

▶ Theorem 6. Let c1 be given by a Monge matrix A and c2 be given by an Anti-Monge
matrix B. Then, there exists an optimal solution M1, M2 to the RecovAP such that
1. {ui, vi} ∈ M1 for all i = 1, . . . , ⌊ n−k

2 ⌋ and i = ⌈ n+k
2 ⌉, . . . , n,

2. {ui, vn+1−i} ∈ M2 for all i = 1, . . . , ⌊ n−k
2 ⌋ and i = ⌈ n+k

2 ⌉, . . . , n,
3. M1 ∩ M2 is an optimal solution to the AP with cost c1 + c2 on the complete bipartite

subgraph induced by the sets of vertices {ui | i = ⌊ n−k
2 ⌋ + 1, . . . , ⌈ n+k

2 ⌉ − 1} and {vi | i =
⌊ n−k

2 ⌋ + 1, . . . , ⌈ n+k
2 ⌉ − 1}.

Based on this structural result we can easily compute an optimal solution for RecovAP
by solving the instance of the AP on the subgraph stated in point 3 of Theorem 6 and then
completing the perfect matchings M1 and M2 as stated in points 1 and 2. In summary, we
obtain the following result.
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▶ Theorem 7. Let c1 be given by a Monge matrix A and c2 be given by an Anti-Monge
matrix B. Then the RecovAP can be solved in O(n + k log k) time.

In the following we prepare the proof of Theorem 6 based on several structural lemmas.
The main tool to analyze feasible solutions M1, M2 is their decomposition into M1-M2-
alternating cycles of even length. For any even number s we call such an alternating cycle
an s-cycle. Using this language, we call an edge e ∈ M1 ∩ M2 a 2-cycle. A 4-cycle consists of
four edges {ui, vj}, {ui′ , vj′} ∈ M1 and {ui, vj′}, {uj′ , vi} ∈ M2. Note that by the fact that
A is Monge and B is Anti-Monge the cost of such edges is minimum if i < i′ and j < j′.
We call a 4-cycle fulfilling this property an aligned 4-cycle. We identify the 4-cycle with
its indices (i, j, i′, j′). Similarly, we identify a 2-cycle {vi, vj} ∈ M1 ∩ M2 with its indices
(i, j). Also, observe that in our matrix visualization 4-cycles correspond to 2 × 2 submatrices
where the corners diagonal to each other are marked by squares and crosses. The fact that
i < i′ and j < j′ implies that the squares are drawn into the northwest and southeast corner
and the crosses are drawn into the northeast and southwest corners. We say that a 4-cycle
(i1, j1, i′

1, j′
1) is nested inside another 4-cycle (i2, j2, i′

2, j′
2) if it holds that i2 < i1 < i′

1 < i′
2

and j2 < j1 < j′
1 < j′

2. Analogously we say that a 2-cycle (i1, j1) is nested inside a 4-cycle
(i2, j2, i′

2, j′
2) if i2 < i1 < i′

2 and j2 < j1 < j′
2.

Note, that in the language of such cycles Theorem 6 is equivalent to: there exists an
optimal solution which consists of ⌊ n−k

2 ⌋ many aligned 4-cycles and all the other matching
edges are 2-cycles; all 4-cycles are nested into each other and the 2-cycles are nested inside
the innermost 4-cycle; the 2-cycles form a minimum cost perfect matching with respect to
c1 + c2 on their vertices.

In Lemma 8 we prove that there always exists an optimal solution without s-cycles for
s > 4, and all the 4-cycles are nested and aligned. The main idea here is to iteratively remove
such long cycles from the outside to the inside. In a second step (Lemma 9) we then show
that there exists an optimal solution in which all 2-cycles lie inside the innermost 4-cycle.

▶ Lemma 8. Let perfect matchings M1, M2 be feasible solutions to 2S-RecovAP. Then
there exists a solution M ′

1, M ′
2 consisting only of 2-cycles and aligned 4-cycles, and all the

4-cycles are nested.

Proof. As a first step consider the subinstance (submatrices) where all vertices (rows and
columns) contained in 2-cycles are removed (which makes handling row an column indices
easier in the following). The resulting submatrices of A and B remain Monge and Anti-Monge.

Now assume that for q = 1, . . . , ℓ−1 it we have that (q, q, n+1−q, n+1−q) already forms
a 4-cycle in M1, M2. Note that as base of the induction the case ℓ = 1 trivially true. We
now construct matchings M ′

1, M ′
2 of smaller or equal cost such that (q, q, n + 1 − q, n + 1 − q)

is also a 4-cycle for q = ℓ. If {uq, vq} /∈ M1 it there are edges {ui, vq}, {uq, vj} ∈ M1. We
have that q < i < n + 1 − q and q < j < n + 1 − q due to our assumption on present 4-cycles.
Because A is Monge, we can exchange those edges for the edges {uq, vq}, {ui, vj} in M ′

1. See
Figure 4 (a) for an illustration of this modification. Analogously, we can ensure that M ′

1
also contains {un+1−q, vn+1−l} and M ′

2 contains both {un+1−q, vq}, {uq, vn+1−q}, forming
the 4-cycle as claimed.

By induction we obtain a solution consisting of only nested aligned 4-cycles, except for
maybe one additional 2-cycle exactly in the center of the matrix. We obtain the solution
M ′

1, M ′
2 as claimed by adding back the vertices (rows and columns) of the 2-cycles removed

in the first step. ◀

▶ Lemma 9. There is a solution M1, M2 with minimum cost c1(M1) + c2(M2) where all
4-cycles are nested and aligned, and where no 2-cycle is outside of a 4-cycle.
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Proof. Note that the first part of the claim is already implied by Lemma 8, and we start
with matchings M1, M2 fulfilling the structure stated in Lemma 8. For the second claim
we again process the cycles from outside to inside with respect to the nesting order of the
4-cycles. Assume that (x, y) is the outmost 2-cycle in M1, M2, and let (i, j, i′, j′) be the
outmost 4-cycle that does not contain (x, y). We show how to modify M1, M2 such that the
cost does not increase, the number of 2-cycles does not decrease and such that the number
of 4-cycles that contain all 2-cycles is increased by one.

We do this by looking at two distinct cases (up to symmetry). Case 1, we have i < j < x

and i′ < y < j′, i.e., (x, y) lies east of (i, j, i′, j′). In this case we remove {ui, vj′} and {ux, uy}
from M2 and add {ux, vj′} and {ui, vy} to M2, which can only improve the cost, since B is
Anti-Monge. In addition we remove {ui′ , vj′} and {ux, vy} from M1 and add {ux, vj′} and
{ui′ , vy} to M1. See Figure 4 (b) for this modification. Note, that now (i, j, i′, y) is a new
4-cycle containing the new 2-cycle (x, j′). A 2-cycle lying to the north, south or west of the
4-cycle can be handled symmetrically.

Case 2 is the case when the 2-cycle lies to the southeast of the 4-cycle, i.e. i < i′ < x

and j < j′ < y. In this case we remove {ui′ , vj} and {ux, vy} from M2 and replace it with
{ux, vj} and {ui′ , vy} which can only decrease the cost by the fact that B is Anti-Monge.
As a second step we remove {ui, vj′} and {ui′ , vy} from M2 and add {ui′ , vi′} and {ui, vy}
to M2. See Figure 4 (c) for this modification. Note, that now (i, j, x, y) is a new 4-cycle
containing the new 2-cycle (i′, j′). The cases when the 2-cycle lies northeast, southwest or
northwest can be handled similarly. ◀

Now we are ready to give the proof of Theorem 6.

Proof of Theorem 6. Basically Lemma 9 already implies the combinatorial structure claimed
in Theorem 6. The only point missing is that there are exactly ⌊ n−k

2 ⌋ many nested 4-cycles
in the solution and the remaining edges form 2-cycles inside.

Note that selecting more 2-cycles than strictly necessary (by the constraint or the
combinatorial structure) is never helpful, since because of the Monge structure 4-cycles
correspond to the optimal solution of the two independent APs.

Hence, if 2 divides n − k the theorem follows directly, there is an optimal solution with k

2-cycles at positions i, j with n−k
2 < i, j < n−k

2 .
Otherwise, if n − k is not multiple of 2, we can assume that n is even and k is odd, since if

n is odd an optimal solution always selects the edge {u(n+1)/2, v(n+1)/2} as a 2-cycle, giving
an equivalent instance with n − 1 rows and columns and the constraint to select at least
k − 1 many 2-cycles. Hence let n be even and k odd. Since the number of edges in a 2-cycle
is even, we must select at least k + 1 many 2-cycles, and the claim follows. ◀

4 The Second Stage Recoverable Assignment Problem

In this section we study a variant of RecovAP in which the perfect matching M1 is fixed
and we are looking for a perfect matching M2 of minimum linear cost c2(M2) subject to the
constraint that |M1 ∩ M2| ≥ k. Note that 2S-RecovAP is a special case of RecovAP, with
the special cost structure c1(e) = 0 if e ∈ M1 and c1(e) = ∞ otherwise.

Using the language of recoverable robust optimization this problem is called the incre-
mental assignment problem. Şeref et al. [19] study this problem and obtain a straightforward
reduction to Exact Matching in Red-Blue Bipartite Graphs, one of the few natural
problems known to be in Randomized-NC (RNC) for which no polynomial time algorithm is
known.
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−→

Figure 5 Visualization of the reduction from the special case of Exact Matching in Red-Blue
Bipartite Graphs where R is a matching to general Exact Matching in Red-Blue Bipartite
Graphs.

Exact Matching in Red-Blue Bipartite Graphs
Input: A bipartite graph G = (U ∪ V, E), a subset of edges R ⊆ E (the red colored

edges), and an integer k ∈ N.
Question: Is there a perfect matching M of G such that |M ∩ R| = k.

Mulmuley et al. [17] show that this problem can be solved in randomized polynomial
time if all costs are polynomially bounded. In summary, the following result holds.2

▶ Corollary 10 (Şeref et al. [19]). 2S-RecovAP can be solved by an RNC2 algorithm, if all
costs c2 are polynomially bounded.

The techniques for this algorithm are not specific to bipartite graphs. Hence they can also
be used to solve the second stage of the recoverable perfect matching problem on general
graphs in RNC2.

Surprisingly, we are able to prove that the complexity of these problems is essentially
equal. We show that 2S-RecovAP is at least as hard as Exact Matching in red-blue
bipartite graphs. Note here that our following logspace reduction implies a reduction in
NC2 [18].

▶ Theorem 11. Exact Matching in Red-Blue Bipartite Graphs is logspace reducible
to 2S-RecovAP.

Proof. As a first part of the proof we give a reduction from exact matching in red-blue
colored bipartite graphs to the special case of the problem where the set of red edges forms a
matching. In the second part we then show that we can reduce this problem to 2S-RecovAP.

For this first part let ((G = (U ∪ V ), E), R, k) be the given instance of exact matching.
We construct a new bipartite graph G′′ = (U ′′ ∪ V ′′, E′′) and a set of edges R′′ ⊆ E′′ (see
Figure 5 for an illustration). Note that without loss of generality we can assume that G

contains no vertex of degree one, since such vertices can always be preprocessed in a trivial
way.

For every vertex v in G we add an independent set v1, . . . , vdeg(v)−1 of deg(v) − 1 many
vertices to G′′. If v ∈ U the vertices are added to U ′′, otherwise if v ∈ V the vertices are
added to V ′′. For every edge e = {u, v} of G we add two vertices ue and ve to G′′ and
connect them by the edge {ue, ve}. If {u, v} ∈ R. Then we add {ue, ve} to R′′. In addition
we add all the edges {ui, ue} for i = 1, . . . , deg(u) − 1 and {vi, ve} for i = 1, . . . , deg(v) − 1
to E′′. Observe that the graph G′′ is bipartite if and only if G is bipartite and note that
since |U | = |V | also |U ′′| = |V ′′|.

2 For formal definitions of NC2 and RNC2 see [18, Sections 15.3 and 15.4].
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▷ Claim (a). There exists a perfect matching of G with exactly k edges in R if and only if
there exists a perfect matching in G′′ with exactly k edges in R′′.

Proof. Given a perfect matching M of G with exactly k edges in R we construct a perfect
matching M ′′ in G′′ with exactly k edges in R′′. For each e ∈ M we add the edge {ve, ue}
to M ′′. Note that this way we add exactly k edges from R′′ to M ′′. Now for every vertex v

exactly one of its incident edges in G is in M . Hence there are exactly deg(v) − 1 incident
edges that are not in M . For each such edge {v, w} ∈ E \ M we select one of the vertices
vj for j ∈ {1, . . . , deg(v) − 1} and add {vj , ve} to M ′′. Note that this way M ′′ is a perfect
matching in G′′ with exactly k edges from R′′ in M ′′.

For the converse direction, assume that M ′′ is a perfect matching of G′′ with exactly
k edges from R′′. We construct a perfect matching M of G with exactly k edges from R.
Note that every original vertex v ∈ V is replaced by an independent set v1, . . . , vdeg(v)−1 in
G′′. Each of the vertices v1, . . . , vdeg(v)−1 is matched to a vertex ve′ for an incident edge
e′ ∈ E. But since there exist only deg(v) − 1 such vertices and v has exactly deg(v) incident
edges in G there exists a unique edge e = {v, w} in G for which ve is not matched to one
of v1, . . . , vdeg(v)−1. Hence ve must be matched to its only remaining neighbor we by M ′′.
Note, that by similar arguments e is also the unique incident edge e′ = {v, w} in G for which
the vertex we′ is not matched to one of the vertices w1, . . . , wdeg(w)−1. We add the edge
{v, w} to M . Since v is an arbitrary vertex in G such an edge is added for every v, hence M

is a perfect matching in G. Since M ′′ contains exactly k edges from R′′ and for each edge
{ve, we} in M ′′ we add the edge e = {v, w} to M , also M contains exactly k edges from R.

◁

As a next step we show how to obtain the instance (G′, M1, c2, k) of 2S-RecovAP
such that there exists a perfect matching of G with exactly k edges in R if and only if the
optimal value for (G′ = (U ′ ∪ V ′, E′), M2, c2, k) is k. The graph G′′ constructed above is a
subgraph of G′. In addition to that, for each vertex v ∈ V ′′ that is not matched by R′′ we
add an additional vertex v′ to G′ and the edge {v, v′}. Since G′′ is a bipartite graph with
|U ′′| = |V ′′| and R′′ is a matching we can select for each such v′ another unique vertex u′

and add the edge {v′, u′} to G′. We define the set R′ as the set of edges consisting of R′′

and all edges {v, v′} for all v ∈ {u ∈ V ′′ : u not matched by R′′}. Note that R′ is a perfect
matching in G′. We set c2(e) = 1 for all e ∈ R′′ and c2(e) = ∞ for all edges {v, v′} where
v ∈ {u ∈ V ′′ : u not matched by R′′}. For all other edges the cost c2 is equal to 0.

▷ Claim (b). There exists a perfect matching of G with exactly k edges in R if and only if
there exists solution to 2S-RecovAP instance (G′, M1, c2, k) with cost k.

Proof. Assume that there exists a perfect matching M of G with exactly k edges in R. Then
by Claim (a) there also exists a perfect matching M ′′ of G′′ with exactly k edges in G′′.
Based on M ′′ we define a perfect matching M2 in G′ in the following way. The matching
M ′′ is added to M2 and hence all vertices in the subgraph G′′ of G′ are matched. For all the
remaining vertices, by the construction above there exists a unique matching consisting of
the edges {v′, u′} which are added to M2. Note, that c2(M2) = k.

For the converse direction, assume that M2 is a perfect matching in G′′ with at least k

edges from M1 and cost k. Since only edges in R′ ∩ M1 have finite cost and c2(M2) = k it
holds that exactly k edges from R′ are contained in M2. In addition, since none of the edges
{v, v′} are contained in M2 it holds that M2 ∩ E′ is a perfect matching in G′ with exactly k

edges from R′. Hence by Claim (a) there exists a perfect matching in G containing exactly k

edges from R. ◁
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This completes the reduction as claimed in the theorem. Note that this reduction can be
implemented using logarithmic space. We just have to process one vertex after another and
need to implement a counter counting up to the degree of a vertex. ◀

The case with costs c2 that are not polynomially bounded remains open. But note, that
an RNC algorithm for this problem would imply an RNC algorithm for the special case of
obtaining a minimum cost perfect matching, which is a long standing open problem [7].
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