
The PACE 2021 Parameterized Algorithms and
Computational Experiments Challenge: Cluster
Editing
Leon Kellerhals #

Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, Germany

Tomohiro Koana #

Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, Germany

André Nichterlein #

Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, Germany

Philipp Zschoche #

Algorithmics and Computational Complexity, Faculty IV, Technische Universität Berlin, Germany

Abstract
The Parameterized Algorithms and Computational Experiments challenge (PACE) 2021 was devoted
to engineer algorithms solving the NP-hard Cluster Editing problem, also known as Correlation
Clustering: Given an undirected graph the task is to compute a minimum number of edges to
insert or remove in a way that the resulting graph is a cluster graph, that is, a graph in which each
connected component is a clique.

Altogether 67 participants from 21 teams, 11 countries, and 3 continents submitted their
implementations to the competition. In this report, we describe the setup of the challenge, the
selection of benchmark instances, and the ranking of the participating teams. We also briefly discuss
the approaches used in the submitted solvers.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Correlation Clustering, Cluster Editing, Algorithm Engineering, FPT,
Kernelization, Heuristics

Digital Object Identifier 10.4230/LIPIcs.IPEC.2021.26

Supplementary Material Software (Source Code): https://github.com/PACE-challenge/Cluster-
Editing-PACE-2021-instances

archived at swh:1:dir:502489a3535fb499b9bf59fc6ed185fb9a043c2d

Funding This work has been partially supported by the DFG project FPTinP (NI 369/18). The
publication of the proceedings of PACE 2021 has been supported by the Algorithmics and Computa-
tional Complexity group at Technische Universität Berlin.
Tomohiro Koana: Supported by the DFG project DiPa (NI 369/21)

Acknowledgements The PACE challenge was supported by Networks [1] and Technische Universität
Berlin. The prize money (€4000) was generously provided by the Networks [1], an NWO Gravitation
project of the University of Amsterdam, Eindhoven University of Technology, Leiden University and
the Center for Mathematics and Computer Science (CWI). We are grateful to the whole optil.io
team, led by Szymon Wasik, and especially to Jan Badura and Artur Laskowski for the fruitful
collaboration and for hosting the competition at the optil.io online judge system. We thank
Aleksander Figiel (Technische Universität Berlin) for supporting us with scripts in the data collection
process.

© Leon Kellerhals, Tomohiro Koana, André Nichterlein, and Philipp Zschoche;
licensed under Creative Commons License CC-BY 4.0

16th International Symposium on Parameterized and Exact Computation (IPEC 2021).
Editors: Petr A. Golovach and Meirav Zehavi; Article No. 26; pp. 26:1–26:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:leon.kellerhals@tu-berlin.de
https://orcid.org/0000-0001-6565-3983
mailto:tomohiro.koana@tu-berlin.de
https://orcid.org/0000-0002-8684-0611
mailto:andre.nichterlein@tu-berlin.de
https://orcid.org/0000-0001-7451-9401
mailto:zschoche@tu-berlin.de
https://orcid.org/0000-0001-9846-0600
https://doi.org/10.4230/LIPIcs.IPEC.2021.26
https://github.com/PACE-challenge/Cluster-Editing-PACE-2021-instances
https://github.com/PACE-challenge/Cluster-Editing-PACE-2021-instances
https://archive.softwareheritage.org/swh:1:dir:502489a3535fb499b9bf59fc6ed185fb9a043c2d;origin=https://github.com/PACE-challenge/Cluster-Editing-PACE-2021-instances;visit=swh:1:snp:2bec6d512511aa1751f676186dcc8248d6986ba4;anchor=swh:1:rev:e576cb2cec652fe618bcffa21f9db30467a7c77c
https://www.optil.io
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 PACE 2021

1 Introduction

The Parameterized Algorithms and Computational Experiments Challenge (PACE) is an
annually held algorithm engineering competition conceived in Fall 2015 to deepen the
relationship between parameterized algorithmics and practice. It aims to:

1. Bridge the divide between the theory of algorithm design and the practice of algorithm
engineering.

2. Inspire new theoretical developments.

3. Investigate the competitiveness of theoretical algorithms from the field of parameterized
complexity analysis and related fields in practice.

4. Produce universally accessible libraries of implementations and repositories of benchmark
instances.

5. Encourage the dissemination of these findings in scientific papers.

In each of the five prior iterations [27, 28, 21, 32, 46] as well as this iteration, participants
were asked to provide implementations for one or two specifically chosen problems which
provide optimal as well as close to optimal solutions on a given set of selected instances
in an appropriate amount of time. In the previous iterations, PACE tackled the problems
Treewidth [27, 28], Feedback Vertex Set [27], Minimum Fill-in [28], Steiner
Tree [21], Vertex Cover [32], Hypertree width [32], and Treedepth [46]. These
challenges have had a significant impact on the research community According to Google
Scholar, the previous PACE reports are cited more than 145 times altogether. Moreover,
research articles based on concrete implementations competing in previous editions of PACE
were published in conferences such as ALENEX, ESA, SEA, and WADS.

In this article, we report on the sixth iteration of PACE. The problem chosen for
PACE 2021 is Cluster Editing, also known as Correlation Clustering (see Section 2
for the definition and overview). The challenge featured three tracks. In the exact track the
goal was to compute optimal solutions for as many instances as possible with a 30-minute
time limit per instance. In the heuristic track the goal was to compute valid solutions that
are as close as possible to being optimal within 10 minutes per instance. In the (new) kernel
track the goal was twofold: first, to compute an equivalent instance (referred to as kernel)
that is as small as possible and, second, to lift valid (but not necessarily optimal) solutions
for the kernel to valid solutions for the original instance; we refer to Section 3.1 for a more
detailed description of the tracks and their aims.

The PACE 2021 challenge was announced on 22nd October 2020, tracks were specified
on 19th November. On 16th December the public instances were made available. From 28th
March 2021 on, the participants could test solutions on the public instances via the optil.io
platform, which provided also a provisional ranking. The final version of the submissions
was due on 1st June 2021. Afterwards, the submissions were evaluated on the public as well
as a set of hidden instances (see Section 3.2 for details). The results were announced on
16th July 2021. The award ceremony took place during the International Symposium on
Parameterized and Exact Computation (IPEC 2021) which was supposed to take place in
Lisbon, but due to the pandemic crisis was held online. After the debut with PACE 2020,
the current iteration is the second in which short descriptions of the top four solvers in each
track are contained as standalone documents in the proceedings of IPEC.

https://www.optil.io


L. Kellerhals, T. Koana, A. Nichterlein, and P. Zschoche 26:3

Figure 1 Left: An exemplary input graph. Right: Two edge modifications (deleting the red
dotted edge and adding the thick red edge) suffice to obtain this cluster graph from the input graph.
The two clusters are indicated by dashed boxes.

2 Cluster Editing

Graph-based data clustering has numerous applications and there are many approaches to
cluster a given graph [58]. Cluster Editing, also known as Correlation Clustering,
follows the graph modification approach [4, 9, 59]: Given an undirected graph, the task is
to find a minimum-cardinality set of edges to insert or remove in a way that the resulting
graph is a cluster graph – a graph where every connected component is a complete graph
(called a clique) – see Figure 1 for an example. Herein, the assumption is that a cluster graph
gives an ideal clustering: each cluster is maximally connected and no edge exists between
two clusters. The graph modification approach lets us find a cluster graph “closest” to the
input, that is, a best clustering under the parsimony criterion. One important advantage
of this approach is that the number of clusters is not required to be part of the input but
is determined implicitly by the input graph. The application fields of Cluster Editing
include bioinformatics [9], data mining [4], and psychology [64].

For a given graph G = (V, E) we call a set S ⊆
(

V
2
)

of vertex pairs a cluster editing set
if (V, E∆S) is a cluster graph, where ∆ denotes the symmetric difference.

A graph is a cluster graph if and only if it does not contain a P3 as an induced subgraph.
This characterization gives rise to a simple integer linear programming formulation [41] as
well as the following branching strategy: For every induced P3, add the missing edge to make
it a clique, or remove one of the two edges of the P3 [22]. This results in an algorithm with
running time O(3k · |V |3), where k is the size of the cluster editing set. A first improvement
of this simple branch-and-bound algorithm is due to Gramm et al. [39]; among other results
they showed that Cluster Editing is solvable in O(2.27k · |V |3) time. Their algorithm
combines the P3 branching strategy with heavy case distinction. The to this date fastest
fixed-parameter algorithm with respect to k runs in O(1.62k + n + m) time [17]. This
algorithm uses the so-called merge branching technique: When faced with a P3 induced by
the vertices u, v, w, one decides whether or not u and v will end up in the same cluster, and
correspondingly merges u and v into a single vertex uv or deletes the edge {u, v}, respectively.
Note that for the merge step one has to introduce edge weights for the edges incident to uv

and deal with the special case of weight-0 edges. We remark that all solvers submitted to
the exact track solve an integer program or use a branch-and-bound strategy at the heart of
their algorithm.

Among many further studies in parameterized algorithmics [11, 18, 34, 44, 48] it was
shown that an algorithm with running time subexponential in k, the number of vertices, or
the number of edges would refute the exponential time hypothesis (ETH) [45]. Furthermore,
Cluster Editing admits polynomial-size kernelizations. Studies in this direction were
initialized by Gramm et al. [39], who provided a kernel with O(k2) vertices. Over the
next years the kernel size was improved to 24k vertices [33], 4k vertices [42], and finally 2k

vertices [23, 24].

IPEC 2021



26:4 PACE 2021

Observe that any cluster editing set is guaranteed to contain at least one edge for every
disjoint P3, so it is natural to ask whether Cluster Editing remains fixed-parameter
tractable for the number of edges above guarantee. In this line of thought it was shown that
Cluster Editing is fixed-parameter tractable with respect to the number of edges above
the size of a maximum vertex-disjoint P3-packing [11], but para-NP-hard with respect to
the number of edges above the size of a maximum modification-disjoint P3-packing [48].

Cluster Editing is also a hot topic in the field of algorithm engineering. There are
many heuristic approaches that are empirically shown to provide high-quality solutions, as
well as exact algorithms. Most algorithms for the latter combine branch-and-bound strategies
with integer linear programming as well as heavy preprocessing [20, 44]. Concerning heuristics
for Cluster Editing we would like to highlight two approaches which also inspired some of
the submissions to the heuristic track and whose quality was empirically verified. The first is
the Louvain method by Blondel et al. [16] which is a greedy hill climbing algorithm initially
used for community detection. It tries to maximize the relative density of edges inside
the communities compared to those outside. The second approach is the so-called FORCE
heuristic [66] in which one interprets the edges and non-edges between the vertices as forces
and tries to find vertex positionings which minimize the overall energy in the system. Later,
Wittkop et al. [67] combined the FORCE heuristic with a parameterized exact algorithm to
obtain higher stability in the solution quality.

3 Challenge Setup

There were three tracks in which the participants could compete: an exact, a heuristic, and
a new kernelization (data reduction) track. For each track the 200 instances were selected by
the Program Committee (PC), half of them publicly available before the submission deadline.
The instances were sorted by increasing (n, m) in lexicographic order, where n is the number
of vertices and m the number of edges of the particular instance.

In the testing phase the instances were evaluated on optil.io [65]. For the final
evaluation, we tested the instances on Intel(R) Xeon(R) CPU E5-1620 3.60 GHz machines
using the Linux 4.15 kernel. Both evaluations used the same time limits: 30 minutes for the
exact track, 10 minutes for the heuristic track, and 5 minutes for the kernelization track.

3.1 Track Descriptions
The exact and the heuristic track followed essentially the same rules as in previous iterations
of PACE. The kernelization track was newly introduced and aimed at shrinking the input as
much as possible within a five-minute time limit and return an “equivalent” instance. We
subsequently provide the details for each track.

Exact Track. In the exact track submissions had to compute an optimal cluster editing set
within 30 minutes for the given instance. While no proof of optimality of the returned cluster
editing set is required, we disqualified submissions that returned a suboptimal cluster editing
set for some instance (a cluster editing set of strictly smaller size was either known to the
PC in advance or computed by other submissions). The optimality testing was conducted
also on other instances than the 200 instances of the exact track, including some instances of
the heuristic track.

The ranking in the exact track is determined by the number of solved instances with the
overall summed running time as a tie breaker if two submissions solved the same number of
instances.

https://www.optil.io


L. Kellerhals, T. Koana, A. Nichterlein, and P. Zschoche 26:5

Heuristic Track. In the heuristic track submissions had to provide a cluster editing set
within 10 minutes for a given instance.

The ranking computation for the heuristic track is inherited from the previous iterations
of PACE: For each instance, we collected the minimum size smin of any found cluster editing
set (computed by any submission) and the size s of the cluster editing set computed by the
submission. The instance score is then 100 · smin/s. For example, a score of 100 indicates the
submission found was one of the best for this instance while a score of 50 (25) indicates that
the submission found a cluster editing set two (four) times as large as a best known cluster
editing set. Overall, the score for each instance is in the interval [0, 100] where a score of 0
was given if no cluster editing set was returned within 10 minutes. The total score is simply
the average of the instance scores over the 200 test instances.

Kernel Track. The new kernel track was introduced to evaluate preprocessing techniques
for Cluster Editing. The rules are inspired by the kernelization concept, which is arguably
among the practically most relevant tools from of parameterized algorithmics [35]. It is defined
as follows for decision problems: A kernelization algorithm is a polynomial-time algorithm
that, given an instance (I, k) of a parameterized problem L, returns an instance (I ′, k′) such
that:
1. (I, k) is equivalent to (I ′, k′), that is (I, k) ∈ L ⇐⇒ (I ′, k′) ∈ L, and
2. |I ′| + k′ ≤ f(k) for some computable function f .
Note that there are two apparent issues when we want to apply this concept in practice or in
a programming contest:
(a) For many problems (including Cluster Editing) the standard parameter k (solution

size) is not known in advance but is to be determined by the respective solver.
(b) Instead of deciding whether there is a cluster editing set of a certain size, the task is

usually to compute an optimal cluster editing set.
Our solution to issue (a) is straightforward: For an input graph G for Cluster Editing
one returns a number d and a graph G′ such that opt(G) = opt(G′) + d; here opt(H)
denotes the size of an optimal cluster editing set for graph H. Our solution to issue (b)
is inspired by works on enumeration kernels [10, 25] and lossy kernels [50]: We added the
requirement that any submission must provide a so-called lifting algorithm which takes a
(not necessarily optimal) cluster editing set S′ for the kernel, and returns a cluster editing
set S′ for the original instance such that |S| ≤ |S′| + d. Note that the latter condition
accommodates the fact that suboptimal decisions in S′ (over which the submission has no
control) can be rectified in the solution lifting algorithm. Since computing opt(G′) involves
the potentially very time-consuming task of solving Cluster Editing, we did not strictly
verify opt(G) = opt(G′) + d but instead used several heuristic checks: For the 190 out of
200 instances for which we knew opt(G), we verified that opt(G) ≥ d and opt(G) ≥ |S′| + d.
Additionally, we checked |S| ≤ |S′| + d for each instance and that the returned set S is indeed
a cluster editing set for G (three submissions failed this last test and were disqualified). By
using submissions from the heuristic track, we ensured that S′ is either optimal or close to
being optimal. In hindsight, we consider these heuristic tests to be quite efficient in detecting
submissions violating the requirements.

For each instance a submission gets p = (|V ′|+|E′|+1)/(d+1) points, where G′ = (V ′, E′)
is the graph returned by the kernelization algorithm. Similar to the heuristic track, the
instance score is then 100 · pmin/p, where pmin is the minimum points by any submission.

IPEC 2021



26:6 PACE 2021

3.2 Selection of Instances
The exact and kernel track shared their instances, the heuristic track had its own set
of instances. The instances were drawn from various sources which we describe below
in more detail. Most data sources provided weighted instances, that is, for each pair of
vertices there is a number given representing some sort of (dis-)similarity of (or distance
between) the two vertices. From such instances we generated multiple unweighted instances
by adding edges wherever the corresponding weight was above a certain threshold. More
specifically, we proceeded as follows: First all edge weights were linearly scaled to be within
the interval [0, 1]. Then, for each t ∈ {0.1, 0.2, . . . , 0.9} we created an unweighted graph
by adding an edge {u, v} whenever the weight for the vertex pair (u, v) is larger than t.
Varying thresholds resulted in instances with a very wide range of difficulty (e.g. from solvable
within 1 minute to not solved within 3 hours, by a standard ILP formulation [41] solved
with Gurobi). A repository with scripts that download and convert all data is available at
https://github.com/PACE-challenge/Cluster-Editing-PACE-2021-instances.

The data can be categorized as follows:
Biology This category contains two datasets: a real-world biological dataset1 that contains

COG protein similarity data [55, 19] consisting of 3964 weighted instances of which we
chose the 155 instances with between 100 and 5,000 vertices, and a dataset with one
weighted instance taken from the data accompanying the TransClust2 clustering tool [67].

Data Mining This category includes two datasets from which six weighted instances were
created. The first dataset is from the World Color Survey3; the data is converted based
on the descriptions of Regier et al. [56] and Thiel et al. [63] and we created one weighted
instance. The second dataset is the newsgroups dataset from scikit-learn4 [54]; the data
is converted based on the descriptions of Thiel et al. [63] and we created five weighted
instances.

SNAP This category includes instances found in the SNAP [47] dataset. We took 35 large
unweighted graphs having 4,000 up to 2 million vertices. These instances were only used
in the heuristic dataset.

Random We used randomly generated data to produce some challenging instances. In
particular we randomly created action sequences (sequences of actions performed by a
person during computer assisted tests as done e.g. at PIAAC [52]) and converted them
into graphs as described by Ulitzsch et al. [64].

For the exact and kernel track we tested our instances with a standard ILP formulation [41]
solved with Gurobi. We set a time limit of 3 hours per instance and took the running time
as indicator of the difficulty of the instances. In the end, we picked 140 instances that were
solved within the 30 minutes, 15 instances that were solved in more than 30 minutes but
less than 3 hours, and 45 instances that could not be solved within 3 hours. This resulted
in 79 graphs from the Biology category, 13 graphs from the Data Mining category, and 108
graphs from the Random category.

For the heuristic track we picked the data sets such that we had an even distribution with
respect to the graph size. This resulted in 84 graphs from the Biology category, 43 graphs
from the Data Mining category, 36 graphs from the SNAP category, and 37 graphs from
the Random category. Figure 2 displays the number of vertices and edges in the selected
instances of the complete dataset.

1 The dataset is available at https://bio.informatik.uni-jena.de/data/#cluster_editing_data.
2 The dataset is available at https://transclust.compbio.sdu.dk/main_page/index.php.
3 The dataset is available at http://www.icsi.berkeley.edu/wcs/data.html
4 The dataset is available at https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html

https://github.com/PACE-challenge/Cluster-Editing-PACE-2021-instances
https://bio.informatik.uni-jena.de/data/#cluster_editing_data
https://transclust.compbio.sdu.dk/main_page/index.php
http://www.icsi.berkeley.edu/wcs/data.html
https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html


L. Kellerhals, T. Koana, A. Nichterlein, and P. Zschoche 26:7

101 102

101

102

103

104

105

n

m

102 103 104 105 106

103

104

105

106

n

m

Biology Data Mining SNAP Random

Figure 2 The number of vertices (n) and edges (m) in the two created datasets (left: exact and
kernel track; right: heuristic track). In the heuristic track, the first instance with 10 vertices and 31
edges is not shown in order to not clutter the remaining data points too much.

4 Participants and Results

There were 15, 11, and 6 teams that officially submitted a solution to the exact, heuristic,
and kernel track, respectively. Several teams participated in more than one track; in total
there were 21 distinct teams with 11 of them being student teams (the implementation
is done solely by bachelor / master / PhD students). There were roughly twice as many
users that submitted a solution to the optil.io server during the testing phase. For each
track, the top five on optil.io were from participants of PACE 2021. The participants
represented three continents and the following 11 countries (number of authors from the
respective country is given in brackets): Germany (39), Czechia (6), France (5), Australia
(4), India (4), United States (3), Japan (2), Mexico (1), Netherlands (1), Poland (1), and the
United Kingdom (1). The results are listed below.

4.1 Exact Track

The ranking for the exact track is listed subsequently; see Figure 3 for an illustration of the
performance of the accepted solvers on the full benchmark instances. We list the number of
solved instances from the 100 hidden instances and in brackets from the 200 overall instances.

1. Lars Gottesbüren, Tobias Heuer, Thomas Bläsius, Philipp Fischbeck, Michael Hamann,
Jonas Spinner, Christopher Weyand, Marcus Wilhelm (Karlsruhe Institute of Technology,
Hasso Plattner Institut) solved 87 (171) instances [38].
https://github.com/kittobi1992/cluster_editing

2. Alexander Bille, Dominik Brandenstein, Emanuel Herrendorf (Philipps University of
Marburg) solved 81 (160) instances [12].
https://github.com/EmanuelHerrendorf/pace-2021

3. Valentin Bartier, Gabriel Bathie, Nicolas Bousquet, Marc Heinrich, Théo Pierron, Ulysse
Prieto (Grenoble INP, École Normale Supérieure de Lyon, Université de Lyon, University
of Leeds) solved 77 (156) instances [7].
https://github.com/valbart/pace-2021

IPEC 2021

https://www.optil.io
https://www.optil.io
https://github.com/kittobi1992/cluster_editing
https://github.com/EmanuelHerrendorf/pace-2021
https://github.com/valbart/pace-2021


26:8 PACE 2021

0 20 40 60 80 100 120 140 160 180 200

0

500

1,000

1,500

Instance

R
un

ni
ng

tim
e

[s]

Place 1 Place 2 Place 3 Place 4 Place 5
Place 6 Place 7 Place 8 Place 9 Place 10

0 20 40 60 80 100 120 140 160 180

0

500

1,000

1,500

Number of solved instances (out of 200)

R
un

ni
ng

tim
e

[s]

Figure 3 Performance of the top 10 solvers in the exact track. Top: running time plotted for each
of the 200 benchmark instances. Bottom: a cactus plot, here a data point with coordinates (x, y)
indicates that the corresponding solver could solve x instances of the benchmark set in y seconds per
instance. Note that if two solvers solve the same amount of instances within a given time, then the
actual set of solved instances can be different (see the top plot). The red horizontal line indicates
the timeout of 30 minutes.

4. Jona Dirks, Mario Grobler, Tobias Meis, Roman Rabinovich, Yannik Schnaubelt,
Sebastian Siebertz, Maximilian Sonneborn (University of Bremen, Technische Universität
Berlin) solved 71 (144) instances [31].
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/java/
pace-2021-paca-java

5. Thorben Freese, Jakob Gahde, Mario Grobler, Roman Rabinovich, Fynn Sczuka,
Sebastian Siebertz (University of Bremen, Technische Universität Berlin) solved 67 (135)
instances [36].
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/
python/paca-python

6. Yosuke Mizutani (University of Utah) solved 63 (127) instances [51].
https://github.com/mogproject/cluster-editing-2021

7. Václav Blažej, Radovan Červený, Dušan Knop, Jan Pokorný, Šimon Schierreich, Ondřej
Suchý (Czech Technical University in Prague) solved 59 (112) instances [13].
https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/exact

https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/java/pace-2021-paca-java
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/java/pace-2021-paca-java
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/python/paca-python
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/python/paca-python
https://github.com/mogproject/cluster-editing-2021
https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/exact


L. Kellerhals, T. Koana, A. Nichterlein, and P. Zschoche 26:9

8. Sachin Agarwal, Sahil Bajaj, Ojasv Singh, Srinibas Swain (IIIT Guwahati) solved 52
(103) instances [2].
https://github.com/sachin-4099/PACE_2021_Cluster_Editing

9. Sebastian Paarmann (Technische Universität Hamburg) solved 36 (66) instances [53].
https://github.com/spaarmann/cluster-editing

10. Tomoki Takayama (Osaka Prefecture University) solved 17 (38) instances [62].
https://github.com/workhouse-lab/pace-2021

Sylwester Swat (Poznań University of Technology) solved all 100 (200) instances but
gave suboptimal cluster editing sets on additional test data [61].
https://github.com/swacisko/pace-2021
Mario Grobler, Roman Rabinovich, Sebastian Siebertz (University of Bremen, Technische
Universität Berlin) solved 95 (190) instances but gave suboptimal cluster editing sets on
additional test data [40].
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/cc/
pace-2021-paca-cpp
Moritz Lichter, Oliver Bachtler, Tim Bergner, Irene Heinrich, Alexander Schiewe (TU
Darmstadt, TU Kaiserslautern) solved 71 (142) instances but had errors on 5 further
instances [49].
https://gitlab.rlp.net/aschiewe/alphabetic
Kenneth Dietrich, Mario Grobler, Ozan Heydt, Roman Rabinovich, Sebastian Siebertz,
Nick Siering, Leon Stichternath, Julian Tat (University of Bremen, Technische Universität
Berlin) solved 46 instances but provided suboptimal cluster editing sets on 37 further
instances [30].
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/rust/
ceperus/-/tree/v1.0.0

Strategies Used in the Submissions

At the heart of all submissions we find a branch-and-bound algorithm, an ILP solver, or a
combination of the two.

All but two submissions (5th and 8th place) use a branch-and-bound approach. At the
core of these algorithms is a search tree algorithm that resolves all induced P3’s: this could
be a trivial search tree [22], an improved search tree with more case distinctions [39], or
the merge branching strategy which is at the core of the theoretically fastest search-tree
algorithm [17]. Only Bartier et al. (3rd place) use, to the best of our knowledge, a new
branching which starts with each vertex in its own cluster and then merges and reorders
clusters; see their solver description for more details. The other submissions (including places
1, 2, and 4 from the top 5) use one of the existing search trees. Even the best theoretical
bound on the search-tree size of O(1.62k) [17] is prohibitively large for e. g. k ≥ 100 (which
is the case in 180 of the 200 instances). Hence, the “bound”-part in the branch-and-bound
approach is crucial.

Most submissions employ data reduction rules as well as lower and upper bounds to
prune the search tree. There exist various data reduction rules [11, 20, 23, 24, 26, 33, 39, 42],
many of which were implemented in several submissions. Interestingly, Gottesbüren et
al. (1st place) described new data reduction rules that are apparently very effective; see
their solver description for more details. The lower bounds are based on packing disjoint
subgraphs. The easiest candidate (included in almost all submissions) is to compute a set P

IPEC 2021

https://github.com/sachin-4099/PACE_2021_Cluster_Editing
https://github.com/spaarmann/cluster-editing
https://github.com/workhouse-lab/pace-2021
https://github.com/swacisko/pace-2021
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/cc/pace-2021-paca-cpp
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/cc/pace-2021-paca-cpp
https://gitlab.rlp.net/aschiewe/alphabetic
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/rust/ceperus/-/tree/v1.0.0
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/rust/ceperus/-/tree/v1.0.0


26:10 PACE 2021

of modification-disjoint induced P3’s (that is, two P3’s in the packing share at most one
vertex) that is as large as possible: any cluster editing set for the instance has size at least |P|
as at least one edge needs to be modified in each P3 in P . An improvement of this idea is to
find packing of subgraphs where more than one edge modification is needed. As an example,
Gottesbüren et al. (1st place) and Bartier et al. (3rd place) looked to also include stars in
their packing as in each induced K1,ℓ at least ℓ − 1 edges need to be modified. The last type
of employed lower bounds is based on the LP-relaxation of the standard ILP formulation, as
done by Dirks et al. (4th place). The upper bounds are mostly described in the heuristic
track.

The ILP-based approaches work with the standard ILP formulation [41] that has a variable
for each possible edge (each vertex pair) and a constraint for each triple of vertices to ensure
the resulting graph is P3-free. Agarwal et al. (8th place) solved the ILP-formulation with
the open source solver CBC. Other submissions combined the ILP-solver with initial data
reduction, row generation techniques, and the branch-and-bound solver by first measuring
some graph parameters and then decide whether to branch or to use the ILP. These approaches
were pursued by Bartier et al. (3rd), Dirks et al. (4th), and Freese et al. (5th).

4.2 Heuristic Track
The ranking for the heuristic track based on the 100 hidden instances is as follows (see
Figure 4 for an illustration of the performance of the solvers on all 200 benchmark instances):

1. Lars Gottesbüren, Tobias Heuer, Thomas Bläsius, Philipp Fischbeck, Michael Hamann,
Jonas Spinner, Christopher Weyand, Marcus Wilhelm (Karlsruhe Institute of Technology,
Hasso Plattner Institut) got an average score of 99.9989/100 [38].
https://github.com/kittobi1992/cluster_editing

2. Sylwester Swat (Poznań University of Technology) got an average score of
99.9985/100 [61].
https://github.com/swacisko/pace-2021

3. Valentin Bartier, Gabriel Bathie, Nicolas Bousquet, Marc Heinrich, Théo Pierron, Ulysse
Prieto (Grenoble INP, École Normale Supérieure de Lyon, Université de Lyon, University
of Leeds) got an average score of 99.9975/100 [6].
https://github.com/GBathie/pace_2021_mu_solver

4. Martin Josef Geiger (University of the Federal Armed Forces Hamburg) got an average
score of 99.9876/100 [37].
https://doi.org/10.5281/zenodo.4891323

5. Emir Demirović (Delft University of Technology) got an average score of 99.9786/100 [29].
https://bitbucket.org/EmirD/pace-2021/

6. Ben Strasser got an average score of 99.9723/100 [60].
https://github.com/ben-strasser/cluster-editing-pace2021

7. Angus Ritossa, Paula Tennent, Tiana Tsang Ung, Akshay Valluru (UNSW Sydney) got
an average score of 99.8656/100 [57].
https://bitbucket.org/randomsampling/pace21/

8. Sachin Agarwal, Sahil Bajaj, Ojasv Singh, Srinibas Swain (IIIT Guwahati) got an average
score of 99.6739/100 [3].
https://github.com/sahilbajaj82/PACE-2021-Cluster-Editing

9. Václav Blažej, Radovan Červený, Dušan Knop, Jan Pokorný, Šimon Schierreich, Ondřej
Suchý (Czech Technical University in Prague) got an average score of 99.4946/100 [14].
https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/heuristic

https://github.com/kittobi1992/cluster_editing
https://github.com/swacisko/pace-2021
https://github.com/GBathie/pace_2021_mu_solver
https://doi.org/10.5281/zenodo.4891323
https://bitbucket.org/EmirD/pace-2021/
https://github.com/ben-strasser/cluster-editing-pace2021
https://bitbucket.org/randomsampling/pace21/
https://github.com/sahilbajaj82/PACE-2021-Cluster-Editing
https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/heuristic


L. Kellerhals, T. Koana, A. Nichterlein, and P. Zschoche 26:11

0 20 40 60 80 100 120 140 160 180 200
10−6

10−5

10−4

10−3

10−2

10−1

Instance

R
el

at
iv

e
er

ro
r

Place 1 Place 2 Place 3 Place 4 Place 5 Place 6 Place 7 Place 8 Place 9

0 20 40 60 80 100 120 140 160 180 200
10−6

10−5

10−4

10−3

10−2

10−1

Number of solved instances (out of 200)

R
el

at
iv

e
er

ro
r

Figure 4 The relative error made by the top nine heuristic submissions (all submis-
sions with an average score higher than 99/100). More precisely, the y-value of a dot is
(solution size of submission)/(best known solution size) − 1. In the top plot, the x-axis denotes
the respective instance of the benchmark set. In the bottom plot (cactus plot), the x-axis denotes
the number of instances where the submission returned a solution with relative error at most the
data point’s y-value. If a data point is missing (in either plot), then the submission returned a best
known solution and the relative error is zero. We remark that the last 20 instances all have solution
sizes of more than 300,000 edges (up to 2,500,000 edges). Thus, a relative error of 1% can mean a
difference of several thousand edges to the best solution.

10. Jona Dirks, Mario Grobler, Tobias Meis, Roman Rabinovich, Yannik Schnaubelt, Sebastian
Siebertz, Maximilian Sonneborn (University of Bremen, Technische Universität Berlin)
got an average score of 89.0009/100 [31]. https://gitlab.informatik.uni-bremen.
de/parametrisierte-algorithmen/java/pace-2021-paca-java

11. Joshua Harmsen and A.J. Zuckerman (Hamilton College) got an average score of
77.1234/100 [43].
https://github.com/joshuaharmsen845/PACE-Challenge/tree/sol1

IPEC 2021

https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/java/pace-2021-paca-java
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/java/pace-2021-paca-java
https://github.com/joshuaharmsen845/PACE-Challenge/tree/sol1


26:12 PACE 2021

Strategies Used in the Submissions

Before going into somewhat more details of solution strategies, we discuss a more efficient
representation of solutions employed by most submissions. Instead of maintaining sets of
edges, one maintains a partition of the vertices with the meaning that each part in the
partition forms a clique in the resulting graph. We will refer to the parts in the partition as
clusters. It is straightforward to translate solutions between these two representations.

All submissions in the top ten incorporate some form of local search. The differences in the
submissions were in how much focus was given to the local search part: Some implementations
started with a trivial solution and solely focused on the local search part; herein, by trivial
solution we mean a solution in which each vertex is in its own cluster or all vertices are in one
cluster. Submissions following this strategy include places 1, 3, 4, 5, and 6. We remark that
the 3rd placed submission by Bartier et al. first preprocessed the input using data reduction
rules. The only other submission employing data reduction rules is by Sylwester Swat (2nd
place).

The submissions of places 2, 7, 8, 9, and 10 all used different heuristics to compute the
initial solution. Notably, among these submissions, the 2nd placed submission does have
the most elaborate local search part. Thus, local search seems overall the most promising
heuristic approach to cluster editing and we subsequently describe different options for what
local changes were considered by the participants and what were strategies to avoid getting
stuck in local optima. The most frequently used local operations are:
1. (The easiest and by far most-frequently used operation.) Moving a vertex v from one

cluster C into another cluster C ′. Some submissions only consider moving v to clusters C ′

that contain neighbors of v as these are the only options that could improve the current
solution.

2. Putting a vertex v into a newly created cluster; the new cluster then only contains v.
3. Merging two clusters C and C ′ into one new cluster.
4. Swapping two vertices, that is, removing two vertices from their cluster and adding them

to the respective other cluster.
We remark that the list is not exhaustive and variations of the above operations have been
employed as well. To avoid getting stuck in local optima, several strategies have been used,
that fall broadly on the following two approaches:
1. Restart the computation from scratch. Here the local operations use randomization so it

is unlikely to get stuck in the same local optimum.
2. Perform some local changes that do not improve the solution, that is, the cost of the new

solution is at least as high as the old solution. These changes could randomly reassign
a fixed number or a fraction of vertices to new clusters or temporarily change the cost
function for a fixed number of rounds (e.g. temporarily making edge insertions twice as
expensive as edge deletions).

In both approaches, the best encountered solution is stored and returned at the end of the
program. Notably, the 1st and 3rd place submissions follow the second approach and do not
restart computations from scratch.

4.3 Kernel Track
The ranking for the kernel track is as follows:

1. Sylwester Swat (Poznań University of Technology) got an average score of
65.6761/100 [61].
https://github.com/swacisko/pace-2021

https://github.com/swacisko/pace-2021


L. Kellerhals, T. Koana, A. Nichterlein, and P. Zschoche 26:13

b

u

a

c b

u

a

c b

u

a

c

Figure 5 A visualization of the three cases in Reduction Rule 1. The red dashed edges are all
present in the input graph and will be removed by the data reduction rule.

Valentin Bartier, Gabriel Bathie, Nicolas Bousquet, Marc Heinrich, Théo Pierron, Ulysse
Prieto (Grenoble INP, École Normale Supérieure de Lyon, Université de Lyon, University
of Leeds) got an average score of 71.0077/100 but their lifting algorithm did not provide
valid cluster editing sets on 9 instances [5].
https://framagit.org/theo_pierron/pace-2021
Václav Blažej, Radovan Červený, Dušan Knop, Jan Pokorný, Šimon Schierreich, Ondřej
Suchý (Czech Technical University in Prague) got an average score of 54.0123/100 but
did not provide a lifting algorithm in time (the submission after the deadline passed all
our tests) [15].
https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/kernelization
Moritz Beck, Timon Behr, Johannes Blum, Sabine Cornelsen, Sabine Storandt (University
of Konstanz) got an average score of 31.0164/100 but their lifting algorithm did not
provide valid cluster editing sets on 61 instances [8].
https://bitbucket.org/moritzbeck/supercereal/
Kenneth Dietrich, Mario Grobler, Ozan Heydt, Roman Rabinovich, Sebastian Siebertz,
Nick Siering, Leon Stichternath, Julian Tat (University of Bremen, Technische Universität
Berlin) got an average score of 26.0103/100 but their lifting algorithm did not provide a
valid cluster editing set on 1 instance [30].
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/rust/
ceperus/-/tree/v2.0.0
Jona Dirks, Mario Grobler, Tobias Meis, Roman Rabinovich, Yannik Schnaubelt,
Sebastian Siebertz, Maximilian Sonneborn (University of Bremen, Technische Universität
Berlin) got an average score of 18.0/100 but did not provide a lifting algorithm [31].
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/java/
pace-2021-paca-java

Strategies Used in the Submissions

We briefly discuss the data reduction techniques used in the submissions to the kernel track.
Note that many submissions from the exact and also some from the heuristic track also
employ a subset of these techniques. Various submissions employ (subsets of) existing data
reduction rules [11, 20, 23, 24, 26, 33, 39, 42]. While refraining from listing these established
rules, let us mention two new rules employed in the submissions. Bartier et al. (kernel track)
provided the following rule that deals with low degree vertices occurring in a triangle (see
Figure 5 for an illustration).

▶ Reduction Rule 1 (Bartier et al.). Let u be a vertex with neighborhood {a, b, c} and
let L = {a, b, c, u}.

If the vertices in L induce a K4, a has degree three, and b and c both have degree at
most 5, then isolate L. Here, isolating L means removing all edges with exactly one

IPEC 2021

https://framagit.org/theo_pierron/pace-2021
https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/kernelization
https://bitbucket.org/moritzbeck/supercereal/
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/rust/ceperus/-/tree/v2.0.0
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/rust/ceperus/-/tree/v2.0.0
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/java/pace-2021-paca-java
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/java/pace-2021-paca-java


26:14 PACE 2021

endpoint in L and reducing k accordingly.
If the vertices in L induce a diamond (a K4 minus one edge) and a, b, and c have all
degree at most three, then isolate L.
If G[{a, b, c}] contains only the edge {a, b} and a and b have all degree at most three,
then isolate {a, b, u}.

Gottesbüren et al. (1st place in exact track) also provided some additional data reduction
rules. Among these, the following rule using lower and upper bounds, while simple, proved
particularly effective.

▶ Reduction Rule 2 (Gottesbüren et al.). If modifying an edge e would raise the lower bound
above the current upper bound, then e is not allowed to be modified.

Of course Reduction Rule 2 highly depends on the used upper and lower bounds. However,
it would be interesting to see whether this or a similar rule could be used to show a problem
kernel with respect to some above-guarantee parameterization (recall that the number k of
edge modifications is rather large on the benchmark instances).

5 PACE Organization

The Program Committee of PACE 2021 consisted of André Nichterlein (chair), Leon Kellerhals,
Tomohiro Koana, and Philipp Zschoche, all from Technische Universität Berlin. During the
organization of PACE 2021 the Steering Committee (SC) was composed of

Édouard Bonnet LIP, ENS Lyon,
Holger Dell Goethe University Frankfurt and IT University of Copenhagen,
Johannes Fichte Technische Universität Dresden,
Markus Hecher Technische Universität Wien,
Bart M. P. Jansen (chair) Eindhoven University of Technology,
Łukasz Kowalik University of Warsaw,
Marcin Pilipczuk University of Warsaw, and
Manuel Sorge Technische Universität Wien.

In July 2021, André Nichterlein joined the SC, while Édouard Bonnet left. The Program
Committee of PACE 2022 will be chaired by Christian Schulz (University of Heidelberg).

6 Conclusion

We thank all participants for their enthusiasm and impressive work and look forward to
PACE 2022. We hope that future iterations will again feature a kernel track to further push
the development of data reduction rules and kernelization algorithms.

We welcome anyone who is interested to add their name to the mailing list on the website
https://pacechallenge.org/ to receive PACE updates and join the discussion. For fre-
quent updates, especially for updates on plans for PACE 2022, also see the @pace_challenge
Twitter account.

References
1 Networks project, 2017. URL: http://www.thenetworkcenter.nl.
2 Sachin Agarwal, Sahil Bajaj, Ojasv Singh, and Srinibas Swain. Cluster editing using ILP

(CLIP): An exact solver for cluster editing, 2021. URL: https://github.com/sachin-4099/
PACE_2021_Cluster_Editing.

https://pacechallenge.org/
https://twitter.com/pace_challenge
http://www.thenetworkcenter.nl
https://github.com/sachin-4099/PACE_2021_Cluster_Editing
https://github.com/sachin-4099/PACE_2021_Cluster_Editing


L. Kellerhals, T. Koana, A. Nichterlein, and P. Zschoche 26:15

3 Sachin Agarwal, Sahil Bajaj, Ojasv Singh, and Srinibas Swain. Conflict reduced best-fit
cluster (CoRBeC): A heuristic solver for cluster editing, 2021. URL: https://github.com/
sahilbajaj82/PACE-2021-Cluster-Editing.

4 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56:89–113, 2004. doi:10.1023/B:MACH.0000033116.57574.95.

5 Valentin Bartier, Gabriel Bathie, Nicolas Bousquet, Marc Heinrich, Théo Pierron, and Ulysse
Prieto. PACE 2021 kernelization track, 2021. doi:10.5281/zenodo.4947841.

6 Valentin Bartier, Gabriel Bathie, Nicolas Bousquet, Marc Heinrich, Théo Pierron, and Ulysse
Prieto. Pace 2021 muSolver, 2021. doi:10.5281/zenodo.4947325.

7 Valentin Bartier, Gabriel Bathie, Nicolas Bousquet, Marc Heinrich, Théo Pierron, and Ulysse
Prieto. valbart/pace-2021: PACE 2021 exact track, 2021. doi:10.5281/zenodo.4935569.

8 Moritz Beck, Timon Behr, Johannes Blum, Sabine Cornelsen, and Sabine Storandt. Super
Cereal, 2021. doi:10.5281/zenodo.4892806.

9 Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expression patterns. Journal
of Computational Biology, 6(3-4):281–297, 1999. doi:10.1089/106652799318274.

10 Matthias Bentert, Till Fluschnik, André Nichterlein, and Rolf Niedermeier. Parameterized
aspects of triangle enumeration. Journal of Computer and System Sciences, 103:61–77, 2019.
doi:10.1016/j.jcss.2019.02.004.

11 René van Bevern, Vincent Froese, and Christian Komusiewicz. Parameterizing edge modi-
fication problems above lower bounds. Theory of Computing Systems, 62(3):739–770, 2018.
doi:10.1007/s00224-016-9746-5.

12 Alexander Bille, Dominik Brandenstein, and Emanuel Herrendorf. PACE 2021 exact track
submission, 2021. doi:10.5281/zenodo.4889012.

13 Václav Blažej, Radovan Červený, Dušan Knop, Jan Pokorný, Šimon Schierreich, and Ondřej
Suchý. GOAT, 2021. URL: https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/
exact.

14 Václav Blažej, Radovan Červený, Dušan Knop, Jan Pokorný, Šimon Schierreich, and Ondřej
Suchý. GOAT, 2021. URL: https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/
heuristic.

15 Václav Blažej, Radovan Červený, Dušan Knop, Jan Pokorný, Šimon Schierreich, and Ondřej
Suchý. GOAT, 2021. URL: https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/
kernelization.

16 Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of statistical mechanics: Theory and
Experiment, 10, 2008. doi:10.1088/1742-5468/2008/10/P10008.

17 Sebastian Böcker. A golden ratio parameterized algorithm for cluster editing. Journal of
Discrete Algorithms, 16:79–89, 2012. doi:10.1016/j.jda.2012.04.005.

18 Sebastian Böcker and Jan Baumbach. Cluster editing. In Proceedings of the 9th Conference
on Computability in Europe (CiE 2013), volume 7921 of LNCS, pages 33–44. Springer, 2013.
doi:10.1007/978-3-642-39053-1_5.

19 Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke Truß. Going
weighted: Parameterized algorithms for cluster editing. Theoretical Computer Science,
410(52):5467–5480, 2009. doi:10.1016/j.tcs.2009.05.006.

20 Sebastian Böcker, Sebastian Briesemeister, and Gunnar W. Klau. Exact algorithms for cluster
editing: Evaluation and experiments. Algorithmica, 60(2):316–334, 2011. doi:10.1007/s00453-
009-9339-7.

21 Édouard Bonnet and Florian Sikora. The PACE 2018 parameterized algorithms and com-
putational experiments challenge: The third iteration. In Proceedings of the 13th Inter-
national Symposium on Parameterized and Exact Computation (IPEC ’18), volume 115
of LIPIcs, pages 26:1–26:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.IPEC.2018.26.

IPEC 2021

https://github.com/sahilbajaj82/PACE-2021-Cluster-Editing
https://github.com/sahilbajaj82/PACE-2021-Cluster-Editing
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.5281/zenodo.4947841
https://doi.org/10.5281/zenodo.4947325
https://doi.org/10.5281/zenodo.4935569
https://doi.org/10.5281/zenodo.4892806
https://doi.org/10.1089/106652799318274
https://doi.org/10.1016/j.jcss.2019.02.004
https://doi.org/10.1007/s00224-016-9746-5
https://doi.org/10.5281/zenodo.4889012
https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/exact
https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/exact
https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/ heuristic
https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/ heuristic
https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/ kernelization
https://gitlab.fit.cvut.cz/pace-challenge/2021/goat/ kernelization
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1016/j.jda.2012.04.005
https://doi.org/10.1007/978-3-642-39053-1_5
https://doi.org/10.1016/j.tcs.2009.05.006
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.4230/LIPIcs.IPEC.2018.26


26:16 PACE 2021

22 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996. doi:10.1016/0020-0190(96)
00050-6.

23 Yixin Cao and Jianer Chen. Cluster Editing: Kernelization based on edge cuts. Algorithmica,
64(1):152–169, 2012.

24 Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem. Journal of Computer
and System Sciences, 78(1):211–220, 2012.

25 Nadia Creignou, Arne Meier, Julian-Steffen Müller, Johannes Schmidt, and Heribert Vollmer.
Paradigms for parameterized enumeration. Theory of Computing Systems, 60(4):737–758,
2017. doi:10.1007/s00224-016-9702-4.

26 Lucas de O. Bastos, Luiz Satoru Ochi, Fábio Protti, Anand Subramanian, Ivan César Martins,
and Rian Gabriel S. Pinheiro. Efficient algorithms for cluster editing. Journal of Combinatorial
Optimization, 31(1):347–371, 2016. doi:10.1007/s10878-014-9756-7.

27 Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Komusiewicz, and
Frances A. Rosamond. The first parameterized algorithms and computational experiments
challenge. In Proceedings of the 11th International Symposium on Parameterized and Exact
Computation (IPEC ’16), volume 63 of LIPIcs, pages 30:1–30:9. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.IPEC.2016.30.

28 Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE 2017
parameterized algorithms and computational experiments challenge: The second iteration. In
Proceedings of the 12th International Symposium on Parameterized and Exact Computation
(IPEC ’17), volume 89 of LIPIcs, pages 30:1–30:12. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.IPEC.2017.30.

29 Emir Demirović. Kanpai: A bottom-up approach for cluster editing (PACE 2021), 2021. URL:
https://bitbucket.org/EmirD/pace-2021/.

30 Kenneth Dietrich, Mario Grobler, Ozan Heydt, Roman Rabinovich, Sebastian Siebertz,
Nick Siering, Leon Stichternath, and Julian Tat. PACA-RUST, 2021. doi:10.5281/zenodo.
4884693.

31 Jona Dirks, Mario Grobler, Tobias Meis, Roman Rabinovich, Yannik Schnaubelt, Sebastian
Siebertz, and Maximilian Sonneborn. PACA-JAVA, 2021. doi:10.5281/zenodo.4884681.

32 M. Ayaz Dzulfikar, Johannes Klaus Fichte, and Markus Hecher. The PACE 2019 parameterized
algorithms and computational experiments challenge: The fourth iteration (invited paper). In
Proceedings of the 14th International Symposium on Parameterized and Exact Computation
(IPEC ’19), volume 148 of LIPIcs, pages 25:1–25:23. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.IPEC.2019.25.

33 Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and Peter Shaw. Efficient
parameterized preprocessing for Cluster Editing. In Proceedings of the 16th International
Symposium on Fundamentals of Computation Theory (FCT ’07), volume 4639 of LNCS, pages
312–321. Springer, 2007. doi:10.1007/978-3-540-74240-1_27.

34 Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Yngve Villanger.
Tight bounds for parameterized complexity of Cluster Editing with a small number of clusters.
Journal of Computer and System Sciences, 80(7):1430–1447, 2014.

35 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:
Theory of Parameterized Preprocessing. Cambridge University Press, 2019. doi:10.1017/
9781107415157.

36 Thorben Freese, Jakob Gahde, Mario Grobler, Roman Rabinovich, Fynn Sczuka, and Sebastian
Siebertz. PACA-PYTHON, 2021. doi:10.5281/zenodo.4884234.

37 Martin Josef Geiger. Source code for PACE 2021, 2021. doi:10.5281/zenodo.4891323.
38 Lars Gottesbüren, Tobias Heuer, Thomas Bläsius, Philipp Fischbeck, Michael Hamann, Jonas

Spinner, Christopher Weyand, and Marcus Wilhelm. KaPoCE - an exact and heuristic solver
for the cluster editing problem, 2021. doi:10.5281/zenodo.4892524.

https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1007/s00224-016-9702-4
https://doi.org/10.1007/s10878-014-9756-7
https://doi.org/10.4230/LIPIcs.IPEC.2016.30
https://doi.org/10.4230/LIPIcs.IPEC.2017.30
https://bitbucket.org/EmirD/pace-2021/
https://doi.org/10.5281/zenodo.4884693
https://doi.org/10.5281/zenodo.4884693
https://doi.org/10.5281/zenodo.4884681
https://doi.org/10.4230/LIPIcs.IPEC.2019.25
https://doi.org/10.1007/978-3-540-74240-1_27
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.5281/zenodo.4884234
https://doi.org/10.5281/zenodo.4891323
https://doi.org/10.5281/zenodo.4892524


L. Kellerhals, T. Koana, A. Nichterlein, and P. Zschoche 26:17

39 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data clustering:
Exact algorithms for clique generation. Theory of Computing Systems, 38(4):373–392, 2005.

40 Mario Grobler, Roman Rabinovich, and Sebastian Siebertz. PACE 2021 - cluster editing, c++,
2021. doi:10.5281/zenodo.4889505.

41 Martin Grötschel and Yoshiko Wakabayashi. A cutting plane algorithm for a clustering
problem. Mathematical Programming, 45(1-3):59–96, 1989. doi:10.1007/BF01589097.

42 Jiong Guo. A more effective linear kernelization for cluster editing. Theoretical Computer
Science, 410(8-10):718–726, 2009. doi:10.1016/j.tcs.2008.10.021.

43 Joshua Harmsen and A.J. Zuckerman. Cluster editing with existing cliques, 2021. URL:
https://github.com/joshuaharmsen845/PACE-Challenge/tree/sol1.

44 Sepp Hartung and Holger H. Hoos. Programming by optimisation meets parameterised
algorithmics: a case study for cluster editing. In Proceedings of the 9th International Conference
on Learning and Intelligent Optimization, LION 2015, volume 8994 of LNCS, pages 43–58.
Springer, 2015. doi:10.1007/978-3-319-19084-6_5.

45 Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally bounded modifi-
cations. Discrete Applied Mathematics, 160(15):2259–2270, 2012.

46 Lukasz Kowalik, Marcin Mucha, Wojciech Nadara, Marcin Pilipczuk, Manuel Sorge, and
Piotr Wygocki. The PACE 2020 parameterized algorithms and computational experiments
challenge: Treedepth. In Proceedings of the 15th International Symposium on Parameterized
and Exact Computation (IPEC ’20), volume 180 of LIPIcs, pages 37:1–37:18. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.IPEC.2020.37.

47 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection,
June 2014. URL: http://snap.stanford.edu/data/index.html.

48 Shaohua Li, Marcin Pilipczuk, and Manuel Sorge. Cluster editing parameterized above
modification-disjoint P3-packings. In Proceedings of the 38th International Symposium on
Theoretical Aspects of Computer Science (STACS ’21), volume 187 of LIPIcs, pages 49:1–49:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.
49.

49 Moritz Lichter, Oliver Bachtler, Tim Bergner, Irene Heinrich, and Alexander Schiewe. PACE
solver description – Alphabetic, 2021. URL: https://gitlab.rlp.net/aschiewe/alphabetic.

50 Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC ’17), pages 224–237. ACM, 2017. doi:10.1145/3055399.3055456.

51 Yosuke Mizutani. PACE 2021 - exact, 2021. doi:10.5281/zenodo.4877899.
52 OECD. Technical report of the survey of adult skills (PIAAC). Technical report, Paris, France,

2013. URL: https://www.oecd.org/skills/piaac/_Technical%20Report_17OCT13.pdf.
53 Sebastian Paarmann. Pandora cluster editing solver, 2021. doi:10.5281/zenodo.4964394.
54 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

55 Sven Rahmann, Tobias Wittkop, Jan Baumbach, Marcel Martin, Anke Truss, and Sebastian
Böcker. Exact and heuristic algorithms for weighted cluster editing. In Proceedings of the 6th
Computational Systems Bioinformatics Conference (CSB ’07), pages 391–401. World Scientific,
2007. doi:10.1142/9781860948732_0040.

56 Terry Regier, Paul Kay, and Naveen Khetarpal. Color naming reflects optimal partitions
of color space. Proceedings of the National Academy of Sciences, 104(4):1436–1441, 2007.
doi:10.1073/pnas.0610341104.

57 Angus Ritossa, Paula Tennent, Tiana Tsang Ung, and Akshay Valluru. PACE challenge 2021
solver description, from the random sampling group of the UNSW GraphAbility VIP project,
2021. doi:10.5281/zenodo.4946084.

IPEC 2021

https://doi.org/10.5281/zenodo.4889505
https://doi.org/10.1007/BF01589097
https://doi.org/10.1016/j.tcs.2008.10.021
https://github.com/joshuaharmsen845/PACE-Challenge/tree/ sol1
https://doi.org/10.1007/978-3-319-19084-6_5
https://doi.org/10.4230/LIPIcs.IPEC.2020.37
http://snap.stanford.edu/data/index.html
https://doi.org/10.4230/LIPIcs.STACS.2021.49
https://doi.org/10.4230/LIPIcs.STACS.2021.49
https://gitlab.rlp.net/aschiewe/alphabetic
https://doi.org/10.1145/3055399.3055456
https://doi.org/10.5281/zenodo.4877899
https://www.oecd.org/skills/piaac/ _Technical%20Report_17OCT13.pdf
https://doi.org/10.5281/zenodo.4964394
https://doi.org/10.1142/9781860948732_0040
https://doi.org/10.1073/pnas.0610341104
https://doi.org/10.5281/zenodo.4946084


26:18 PACE 2021

58 Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007. doi:
10.1016/j.cosrev.2007.05.001.

59 Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1-2):173–182, 2004. doi:10.1007/3-540-36379-3_33.

60 Ben Strasser. CELMEC: Cluster editing pace 2021, 2021. URL: https://github.com/ben-
strasser/cluster-editing-pace2021.

61 Sylwester Swat. CluES - a heuristic solver for the cluster editing problem, 2021. URL:
https://github.com/swacisko/pace-2021.

62 Tomoki Takayama. SatoxaSolver: A submission for PACE 2021, 2021. doi:10.5281/zenodo.
4941172.

63 Erik Thiel, Morteza Haghir Chehreghani, and Devdatt P. Dubhashi. A non-convex optimization
approach to correlation clustering. In Proceedings of the 33rd AAAI Conference on Artificial
Intelligence (AAAI ’19), the 31st Innovative Applications of Artificial Intelligence Conference
(IAAI ’19), and the 9th AAAI Symposium on EducationalAdvances in Artificial Intelligence
(EAAI ’19), pages 5159–5166. AAAI Press, 2019. doi:10.1609/aaai.v33i01.33015159.

64 Esther Ulitzsch, Qiwei He, Vincent Ulitzsch, Hendrik Molter, André Nichterlein, Rolf Nie-
dermeier, and Steffi Pohl. Combining clickstream analyses and graph-modeled data clus-
tering for identifying common response processes. Psychometrika, 86(1):190–214, 2021.
doi:10.1007/s11336-020-09743-0.

65 Szymon Wasik, Maciej Antczak, Jan Badura, Artur Laskowski, and Tomasz Sternal. Optil.io:
Cloud based platform for solving optimization problems using crowdsourcing approach. In
Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and
Social Computing Companion, CSCW ’16 Companion, pages 433–436. ACM, 2016. doi:
10.1145/2818052.2869098.

66 Tobias Wittkop, Jan Baumbach, Francisco P. Lobo, and Sven Rahmann. Large scale clustering
of protein sequences with force — a layout based heuristic for weighted cluster editing. BMC
Bioinformatics, 8(396), 2007. doi:10.1186/1471-2105-8-396.

67 Tobias Wittkop, Dorothea Emig, Sita Lange, Sven Rahmann, Mario Albrecht, John H Morris,
Sebastian Böcker, Jens Stoye, and Jan Baumbach. Partitioning biological data with transitivity
clustering. Nature Methods, 7(6):419–420, 2010. doi:10.1038/nmeth0610-419.

https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1007/3-540-36379-3_33
https://github.com/ben-strasser/cluster-editing-pace2021
https://github.com/ben-strasser/cluster-editing-pace2021
https://github.com/swacisko/pace-2021
https://doi.org/10.5281/zenodo.4941172
https://doi.org/10.5281/zenodo.4941172
https://doi.org/10.1609/aaai.v33i01.33015159
https://doi.org/10.1007/s11336-020-09743-0
https://doi.org/10.1145/2818052.2869098
https://doi.org/10.1145/2818052.2869098
https://doi.org/10.1186/1471-2105-8-396
https://doi.org/10.1038/nmeth0610-419

	1 Introduction
	2 Cluster Editing
	3 Challenge Setup
	3.1 Track Descriptions
	3.2 Selection of Instances

	4 Participants and Results
	4.1 Exact Track
	4.2 Heuristic Track
	4.3 Kernel Track

	5 PACE Organization
	6 Conclusion

