
3rd International Workshop on
Formal Methods for Blockchains

FMBC 2021, July 18-19, 2021, Los Angeles, California, USA
(Virtual Conference)

Edited by

Bruno Bernardo
Diego Marmsoler

OASIcs – Vo l . 95 – FMBC 2021 www.dagstuh l .de/oas i c s



Editors

Bruno Bernardo
Nomadic Labs, Paris, France
bruno@nomadic-labs.com

Diego Marmsoler
University of Exeter, UK
D.Marmsoler@exeter.ac.uk

ACM Classification 2012
Security and privacy → Logic and verification; Software and its engineering → Formal software verification;
Security and privacy → Distributed systems security; Computer systems organization → Peer-to-peer
architectures

ISBN 978-3-95977-209-9

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-209-9.

Publication date
November, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.FMBC.2021.0

ISBN 978-3-95977-209-9 ISSN 1868-8969 https://www.dagstuhl.de/oasics

mailto:bruno@nomadic-labs.com
https://orcid.org/0000-0003-2859-7673
mailto:D.Marmsoler@exeter.ac.uk
https://www.dagstuhl.de/dagpub/978-3-95977-209-9
https://www.dagstuhl.de/dagpub/978-3-95977-209-9
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.FMBC.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-209-9
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics


0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs is a series of high-quality conference proceedings across all fields in informatics. OASIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

FMBC 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics




Contents

Preface
Bruno Bernardo and Diego Marmsoler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:vii

Program Committee
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:ix

Supporting Reviewers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:xi

Regular Papers

Towards Verified Price Oracles for Decentralized Exchange Protocols
Kinnari Dave, Vilhelm Sjöberg, and Xinyuan Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:1–1:14

Money Grows on (Proof-)Trees: The Formal FA1.2 Ledger Standard
Murdoch J. Gabbay, Arvid Jakobsson, and Kristina Sojakova . . . . . . . . . . . . . . . . . . . . . 2:1–2:14

Short Papers

Using Coq to Enforce the Checks-Effects-Interactions Pattern in DeepSEA Smart
Contracts

Daniel Britten, Vilhelm Sjöberg, and Steve Reeves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3:1–3:8

Formally Documenting Tenderbake
Sylvain Conchon, Alexandrina Korneva, Çagdas Bozman, Mohamed Iguernlala,
and Alain Mebsout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4:1–4:9

Towards Contract Modules for the Tezos Blockchain
Thi Thu Ha Doan and Peter Thiemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:1–5:9

3rd International Workshop on Formal Methods for Blockchains (FMBC 2021).
Editors: Bruno Bernardo and Diego Marmsoler

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de




Preface

The 3rd International Workshop on Formal Methods for Blockchains (FMBC) took place
virtually on July 18/19 2021 as part of CAV 2021, the 33rd International Conference on
Computer-Aided Verification. FMBC’s purpose is to be a forum to identify theoretical and
practical approaches applying formal methods to blockchain technology.

This third edition of FMBC attracted 15 submissions on topics such as verification of
smart contracts or analysis of consensus protocols. Each paper was reviewed by at least
three program committee members or appointed external reviewers. This led to a selection
of 5 papers (2 long and 3 short) that were presented at the workshop as regular talks, as
well as 3 extended abstracts that were presented as lightning talks. Additionally, we were
very pleased to have an invited keynote by David L. Dill (Novi/Facebook, USA).

This volume contains the papers selected for regular talks as well as the abstract of the
invited talk.

We thank all the authors that submitted a paper, as well as the program committee
members and external reviewers for their immense work. We are grateful to Arie Gurfinkel,
Workshop Chair of CAV 2021, for his guidance. Finally, we would like to express our gratitude
to our sponsor Nomadic Labs for its generous support.

September 2021 Bruno Bernardo
Diego Marmsoler

3rd International Workshop on Formal Methods for Blockchains (FMBC 2021).
Editors: Bruno Bernardo and Diego Marmsoler

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de




Program Committee

Wolfgang Ahrendt
Chalmers University of Technology, Sweden

Lacramioara Astefanoei
Nomadic Labs, France

Massimo Bartoletti
University of Cagliari, Italy

Bruno Bernardo
Nomadic Labs, France

Joachim Breitner
Dfinity Foundation, Germany

Achim Brucker
University of Exeter, UK

Zaynah Dargaye
Nomadic Labs, France

Jérémie Decouchant
TU Delft, Netherlands

Dana Drachsler Cohen
Technion, Israel

Ansgar Fehnker
University of Twente, Netherlands

Maurice Herlihy
Brown University, USA

Lars Hupel
INNOQ, Germany

Florian Kammueller
Middlesex University London, UK

Igor Konnov
Informal Systems, Austria

Andreas Lochbihler
Digital Asset, Switzerland

Diego Marmsoler
University of Exeter, UK

Simão Melo de Sousa
Universidade da Beira Interior, Portugal

Karl Palmskog
KTH, Sweden

Maria Potop-Butucaru
Sorbonne Université, France

Andreas Rossberg
Dfinity Foundation, Germany

Albert Rubio
Complutense University of Madrid, Spain

César Sanchez
Imdea, Spain

Clara Schneidewind
TU Wien, Austria

Ilya Sergey
Yale-NUS College/NUS, Singapore

Mark Staples
CSIRO Data61, Australia

Meng Sun
Peking University, China

Simon Thompson
University of Kent, UK

Josef Widder
Informal Systems, Austria

3rd International Workshop on Formal Methods for Blockchains (FMBC 2021).
Editors: Bruno Bernardo and Diego Marmsoler

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


3rd International Workshop on Formal Methods for Blockchains (FMBC 2021).
Editors: Bruno Bernardo and Diego Marmsoler

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


Supporting Reviewers 0:xi

Supporting Reviewers

Yuteng Lu

Luis Arrojado da Horta

FMBC 2021





Towards Verified Price Oracles for Decentralized
Exchange Protocols
Kinnari Dave #

CertiK, New York, NY, USA

Vilhelm Sjöberg #

CertiK, New York, NY, USA

Xinyuan Sun #

CertiK, New York, NY, USA

Abstract
Various smart contracts have been designed and deployed on blockchain platforms to enable
cryptocurrency trading, leading to an ever expanding user base of decentralized exchange platforms
(DEXs). Automated Market Maker contracts enable token exchange without the need of third
party book-keeping. These contracts also serve as price oracles for other contracts, by using a
mathematical formula to calculate token exchange rates based on token reserves. However, the price
oracle mechanism is vulnerable to attacks both from programming errors and from mistakes in the
financial model, and so far their complexity makes it difficult to formally verify them. We present a
verified AMM contract and validate its financial model by proving a theorem about a lower bound
on the cost of manipulation of the token prices to the attacker. The contract is implemented using
the DeepSEA system, which ensures that the theorem applies to the actual EVM bytecode of the
contract. This theorem could be used as proof of correctness for other contracts using the AMM, so
this is a step towards a verified DeFi landscape.

2012 ACM Subject Classification Software and its engineering → Software verification

Keywords and phrases Smart Contract Verification, Interactive Theorem Proving, Blockchain,
Decentralized Finance

Digital Object Identifier 10.4230/OASIcs.FMBC.2021.1

Supplementary Material Software (Source Code): https://github.com/certikfoundation/deepsea

Acknowledgements The work was partially supported by a Conflux Ecosystem Grant (October
2020).

1 Introduction

The last two years have seen a rapidly increasing interest in using decentralized finance
(DeFi) instead of traditional centralized exchanges in order to trade, lend, and borrow
cryptocurrencies. DeFi puts the trading logic into a smart contract on the blockchain,
which increases trust and transparency, and lets anyone compose financial applications “like
lego pieces”. Smart contracts also enable completely new financial primitives, e.g. flash
loans [22], risk-free lending of very large amounts which will be paid back within a single
blockchain transaction. Estimates say DeFi total trading volume increased from $0.67 billion
in January 2020 to $70 billion in January 2021, while DeFi investments reached 20.5 billion
in January 2021 [16, 17].

However, protocols in decentralized finance are vulnerable to hacks. In 2020 there were
at least 16 large DeFi hacks, with total losses of $196 million. Some of these were due to
mistakes in the financial model (we give an example below in Section 2.2), while in others
the financial theory was sound but the contract itself was implemented incorrectly [19].

The high stakes of DeFi makes it crucial that the smart contracts executing these protocols
come with formal guarantees. However, applying formal verification to them is challenging.
Reasoning about the financial models often requires mathematics, e.g. real analysis, that

© Kinnari Dave, Vilhelm Sjöberg, and Xinyuan Sun;
licensed under Creative Commons License CC-BY 4.0

3rd International Workshop on Formal Methods for Blockchains (FMBC 2021).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 1; pp. 1:1–1:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kinnari.dave@certik.io
mailto:vilhelm.sjoberg@certik.io
mailto:sxysun@certik.io
https://doi.org/10.4230/OASIcs.FMBC.2021.1
https://github.com/certikfoundation/deepsea
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


1:2 Towards Verified Price Oracles for Decentralized Exchange Protocols

goes beyond the capabilities of non-interactive theorem provers such as SMT solvers. And
even if we can prove theorems about the financial model, we must still show that the actual
program code correctly implements the model. Existing tools either try to work at the model
level, or they can prove quite shallow properties about code.

In this paper, we consider one of the most widely used DeFi protocols, a Uniswap-style
automated market making (AMM) contract. Various attempts [4, 3, 7] have been made at
studying the AMM model mathematically and reasoning about specific cases. However, these
are paper proofs and do not directly reason about the program being executed on the virtual
machine.

We make use of the DeepSEA system, which has been tailored to support rigorous formal
verification. The DeepSEA compiler can automatically generate a high-level Coq model for a
contract, so we know that the theorem we prove in Coq will apply to the actual executed
code. Achieving this requires some care, because existing work deals with the AMM model
in terms of real numbers, and we must lift that proof to give bounds for the integer variables
in the actual program.

AMM contracts are a basic building block of more complex financial contracts. In the
future, we envision that such contracts will also be formally verified, e.g. by using the result
we prove here as one lemma.

Contributions. We make the following contributions in this paper:
1. We implement a Uniswap-style AMM contract in DeepSEA (Section 3).
2. We formalize in Coq a result, previously only proven on paper [4], which establishes a lower

bound on the cost to an attacker of manipulating prices quoted by the AMM contract
(Section 5.2). Our formalization makes use of existing third-party math developments
(Section 5.1), which shows the benefit of working inside a general-purpose proof assistant.

3. We also establish the non-depletion property of the contract, i.e it is impossible to
drain the contract of all it’s reserves by swapping any number of tokens. (Section 5.2).
This proof requires exporting integer inequalities to reals and using ring homomorphism
properties to transport them back to integers, as is evident in the math_lemma.v 1

module.
4. We use the auto generated Coq functions by the DeepSEA compiler frontend to link the

bytecode to the formalized proof, thus establishing important financial properties of the
generated bytecode (Section 5.3).

In the rest of the paper, we first explain the setting of the work (Section 2), then our
specific contributions, and finally we discuss related work and conclude.

2 Background

“Market making” is the process of providing liquidity for various assets by continuously
quoting of the price at which the market maker is willing to buy and the price at which the
market maker is willing to sell their asset. Traditionally, these price quotes are listed in an
order book, which records the current assets open for buying/selling. This requires trust
in the central party managing the liquidity pools. The idea behind an Automated Market
Maker protocol is to replace the central party with a smart contract that owns reserves of

1 Available online at https://github.com/certikfoundation/deepsea/blob/master/contracts/amm/
math_lemma.v

https://github.com/certikfoundation/deepsea/blob/master/contracts/amm/math_lemma.v
https://github.com/certikfoundation/deepsea/blob/master/contracts/amm/math_lemma.v


K. Dave, V. Sjöberg, and X. Sun 1:3

Trader Liquidity Providers

α β

pay transaction fees

swap tokens Tokens

earn transaction fees

Figure 1 AMM mechanism.

two Ethereum-hosted cryptocurrencies (a.k.a tokens), and trades them at a price determined
using a mathematical formula. Once these smart contracts are deployed, they can also serve
as price oracles for other smart contracts.

2.1 Automated Market Makers
Automated Market Makers are decentralized exchange protocols which facilitate trading of
tokens on blockchain based platforms by providing liquidity pools without an order book
mechanism. These protocols allow exchange between pairs of tokens, and each token pair
has a corresponding smart contract which facilitates the exchange. The exchange rate is
calculated using a mathematical formula which is a function of the token reserves in the
contract. We focus on the constant product market makers. This type of automated market
makers satisfy the invariant:

xA.yB = k

where xA, yB are the reserves for token A and token B respectively. It follows from this
formula that the marginal price of A with respect to B (the price offered by the contract for
small trades) is the ratio of the token reserve of B to that of A. Since the Uniswap protocol [1]
is one of the most popular implementations of the AMM mechanism, we briefly describe the
functionalities it provides and its mechanism. The protocol is designed so that the smart
contract implementing it interacts with two kinds of users: Liquidity Providers and Traders.

Liquidity Providers contribute to the pool of reserves of the token pair. This is enabled
by issuing a liquidity token to the Liquidity Provider when they choose to contribute to
the pool. The token dictates the share of the token reserves that the provider is entitled to.
The provider can treat the liquidity token as an asset that can be traded. To incentivize
the providers, they receive an interest proportionate to their shares, which is funded by
charging traders a 0.3% transaction fee for each trade they make with the contract. The
mint() method facilitates minting of liquidity tokens for the providers.

FMBC 2021



1:4 Towards Verified Price Oracles for Decentralized Exchange Protocols

At any point, the provider is free to withdraw liquidity from the token reserves by calling
the burn() method from the smart contract. On doing so, they receive the tokens they had
lent to the liquidity pool plus the interest they earned from the transaction fees.

The number of liquidity tokens minted for a particular liquidity provider is determined
by their share in the token reserve. There are various formulae used to calculate this. The
Uniswap protocol determines the number of tokens minted using the following formula:

sminted = xdeposited

xstarting
.sstarting

Here, sminted denotes the number of Liquidity Tokens minted for the amount xdeposited tokens
that have been deposited to the pool containing xstarting tokens and sstarting liquidity tokens
representing contributions to that liquidity pool.

In the event that liquidity is being deposited to the reserves for the first time, the above
formula doesn’t work (since xstarting = 0). In this case, the number of liquidity tokens
minted is given by:

sminted = √
xdeposited.ydeposited

where xdeposited, ydeposited denotes the pair reserves that the depositor lends to the contract.
Additionally, the Uniswap protocol charges a 0.05% protocol fee as a part of the net 0.3%
transaction fee charged to traders. This fee is optional and is turned off for the DeepSEA
implementation of the AMM contract.

2.2 Oracles
The AMM mechanism also supports a price oracle function. The first protocol designed by
Uniswap supports an on-chain price oracle which computes prices using the constant product
market maker formula and reports instantaneous prices when queried. Other contracts
can e.g. issue loans of one token guaranteed by a collateral in another token, and use the
reported price to calculate how much the collateral is worth. However, the mechanism of
reporting instantaneous prices is highly susceptible to attacks, in particular in combination
with flash loans. Let us consider an example of an oracle attack which happened on 18th
February 2020 [5]:

▶ Example 1. The bZx protocol is a lending protocol which facilitates decentralized borrowing
and lending of assets on Ethereum. The Kyber network on the other hand is an on-chain
AMM protocol similar to Uniswap. An attacker flash-borrowed 7500 ETH from the bZx
protocol, then called the Kyber protocol to swap a net amount of 900 ETH with 155,994
sUSD. This affects the reserves of ETH and sUSD in the Kyber protocol thus affecting
the prices reported by it. The attacker later relies on bZx quering the faulty Kyber oracle
to borrow ETH against sUSD at a cheap rate. To get the sUSD required to perform this
exchange on bZx, the attacker buys sUSD from an unrelated contract at a normal rate. They
used the Synthetix depot contract, which had larger reserves and therefore did not change
price as much as Kyber. They used 3518 ETH from their borrowed ETH to get 943,837
sUSD. Now, they borrow 6796 ETH from bZx with a collateral of only 1,099,841 sUSD. They
are able to do this because of the price manipulation on the Kyber oracle which bZx queries.
Finally, they are able to transfer back the 7500 ETH borrowed from bZx to repay the flash
loan. In effect, bZx lost $600k in equity.



K. Dave, V. Sjöberg, and X. Sun 1:5

Malicious user

Synthetix protocol

Kyber protocol

bZx protocol
3.

35
18

E
T

H

3.
94

3,
83

7s
U

S
D

2
.

900
E

T
H

2.
15

5,
99

4s
U

S
D

1
.

7500
E

T
H

4. 6796E
T

H

4. 1, 099, 841sU
S

D

5. return
loan

Figure 2 bZx protocol attack.

How can such attacks be avoided? There are several partial solutions. The lending contract
can try to avoid being called inside a flash-loan transaction (limiting the amount of funds
available for oracle manipulations), or use a “slippage check”2 to detect if a manipulation
is in progress. The oracle can report a time-weighted average instead of the instantaneous
price, to smooth out spikes (this approach is adopted by the Uniswap v2 protocol). We
believe the ideal solution, which we build towards in this paper, is to prove that attacks
are impossible by calculating the cost of such manipulation to the attacker as a function
of various parameters of the contract such as token reserves. Once this is achieved, these
parameters can be modified to make the cost of manipulation high enough that the attack
can not be carried out using the funds available to the attacker.

2.3 The DeepSEA system
DeepSEA (Deep Simulation of Executable Abstractions), is a programming language and
system that links high-level specifications in Coq [20] to executable code.The original ver-
sion [18] compiled programs into C, while a new version [10] compiles Ethereum contracts to
Ethereum Virtual Machine (EVM) bytecode.

The DeepSEA compiler works in two steps. The front end parses and type-checks the
input to create a typed intermediate representation. From the intermediate representation it
then generates two things. First, a set of Coq Gallina functions that serves as a high-level
model of the program, one function for each method in the contract. Since Gallina is a
pure functional language, monads are used to capture effects. The end-user can load this
model into their own Coq project, and prove theorems about the contract just as they would
about any program written in Coq. Second, there is a backend similar to the CompCert
compiler [12], which goes through a series of phases of intermediate representations and
generates an EVM bytecode file. Crucially, there is a proof in Coq (although it is not yet
complete) that this compilation is done correctly, which will give a high degree of certainty
that results proven about the high-level specifications also hold for the bytecode.

2 Slippage is defined to be the change in price in the time period between a trade order being placed and
it’s execution. Hence causing traders to settle for a price different from the one they initially requested.
An ongoing attack would cause such slippage.

FMBC 2021



1:6 Towards Verified Price Oracles for Decentralized Exchange Protocols

Contracts written in DeepSEA are structured similarly to Solidity contracts, as a set of
objects which contain state (storage) variables and methods which can modify the state. In
DeepSEA the objects are further organized into “layers”, which can express the modular
structure of large systems.

3 DeepSEA AMM

The smart contract written in DeepSEA to support AMMs3 uses the Uniswap v2 protocol
as a blueprint. Instead of dividing the functionality of the protocol into two basic types of
smart contracts (as is done in the Uniswap protocol), the DeepSEA contract combines the
functionality of the router contracts and that of the core contracts into a single contract with
two sets of methods corresponding to the above classification.

In the DeepSEA setup, the entire contract is defined as a layer AMM on top of an underlay
layer called the AMMLIB. The AMMLIB layer consists of three objects: two ERC20 tokens
which are to be swapped and a liquidity token. The AMM layer acts as the interface for the
contract. This layer consists of an object of type AMMInterface, which defines the methods
that provide all the functionalities of the protocol. The methods in this object signature are
given as follows:

simpleSwap0: This method allows the transfer of one token to the contract to be exchanged
for the other, and returns the amount of the second token to be received in return.
mint: This method allows the transfer of liquidity to a liquidity pool for a liquidity
provider.
burn: This method allows a liquidity provider to withdraw liquidity from a pool.
sync: This method is a recovery mechanism method to prevent the market for the given
pair from being stuck in case of low reserves.
skim: This method prevents any user from depositing more tokens in any reserve than
the maximum limit, to prevent overflow.
k: This method tracks the product of the reserves.
quote0: This method returns the equivalent amount of the second token, given an amount
of the first token and current reserves in the contract.
getAmountOut0: This method returns the maximum possible amount of a token than
can be gained in exchange for a particular input amount of the other token and that of
the reserves.
getAmountIn0: This method returns the amount of a given token that must be input in
order to obtain the desired amount of the other token under the given reserves.

Compared to the Uniswap protocol, we have made a few simplifications. Unlike Uniswap,
which offers the option of switching on/off the protocol fee, the DeepSEA contract does not
model protocol fees. Moroever, instead of using the above mentioned square root formula to
calculate the share of minted liquidity tokens for a liquidity provider, the DeepSEA contract
uses the product and burns the first 1000 coins, as in Uniswap v2. The price oracle mechanism
is based on Uniswap v1, and the DeepSEA contract does not support flash swaps (i.e., getting
flash loans of the assets in the liquidity pool). In the future we may add these features,
in order to make our contract completely ABI-compatible with the original. However, the
DeepSEA AMM contract already offers all the core functionality offered by the Uniswap
protocol, and it contains everything that is relevant to the specification that we are verifying.
As such, our proof is an example of verifying a realistic contract.

3 Available online at https://github.com/certikfoundation/deepsea/blob/master/contracts/amm/
amm.ds

https://github.com/certikfoundation/deepsea/blob/master/contracts/amm/amm.ds
https://github.com/certikfoundation/deepsea/blob/master/contracts/amm/amm.ds


K. Dave, V. Sjöberg, and X. Sun 1:7

4 Mathematical Analysis of Automated Market Makers

While AMM contracts hold a great deal of promise for the future of Decentralized Finance,
the stability of the markets generated using smart contracts remains a concern. To address
such concerns and provide a rigorous comparison with Centralized Finance, Angeris et al.
carried out a mathematical analysis [4]. They define the conditions on the Uniswap price
in terms of the market price so that no arbitrage opportunities arise. Moreover, they show
that it is impossible to drain the contract of all it’s liquidity reserves, and go on to model
risk in the constant product market maker model. Here we give a brief description of their
results, which we mechanize uisng the Coq proof assistant and connect to the DeepSEA
AMM contract.

4.1 Manipulating Prices
Since the AMM contract calculates the prices of tokens based on liquidity reserves using a
mathematical formula, an attacker can potentially trade with the contract to alter reserves
in order to manipulate the prices, as illustrated in Section 2.2. Angeris et al. prove that the
cost of such a manipulation is proportionate to the reserves, thus confirming the intuition
that large liquidity reserves lead to stable prices.

Consider an AMM contract which facilitates trading of two tokens α, β. Let the token
reserves in this contract before the swap to be analysed is performed be given by Rα, Rβ

respectively. Further assume that the swap involved a deposit of ∆β β coins and a corres-
ponding withdrawal of ∆α α coins. We consider the cost of manipulating the market price
in the event of the reference market price being infinitely liquid (i.e when ∆β = mp∆α).

Suppose that the attacker performs this swap to manipulate the reported price by a
fraction ϵ. This gives us the intended price muas a function of ϵ and mp:

mu = (1 + ϵ)mp

Since the AMM under consideration uses the constant product market maker formula,
an alternative computation of the new price is obtained to be the inverse ratio of the token
reserves:

mu = Rβ + ∆β

Rα − ∆α

Thus, giving us the equation Rβ+∆β

Rα−∆α
= (1 + ϵ)mp.

This swap is made in order to achieve the new price as the reported price by the oracle
when queried. Since it is performed by the attacker, Angeris et al. calculate it’s cost to the
attacker and establish a lower bound on this cost. The attacker deposited ∆β amount of β

tokens in the contract and received ∆α amount of α tokens from the contract. The price of
the α tokens relative to the β tokens before the manipulation is given by mp. Thus, the net
cost of this manipulation to the attacker is simply given by the expression:

∆β − mp.∆α

After some algebraic simplifications, this cost can be calculated as a function of ϵ and fixed
contract parameters:

C(ϵ) = ∆β − mp∆α = Rβ(
√

1 + ϵ + (
√

1 + ϵ)−1 − 2)

The cost of manipulation theorem establishes that there is a minimal positive cost to the
attacker which is propertional to the reserves of the token added.

FMBC 2021



1:8 Towards Verified Price Oracles for Decentralized Exchange Protocols

▶ Theorem 2 (Cost of manipulation). The cost of manipulating the exchange rate of tokens by
a fraction ϵ (C(ϵ)) by performing a token swap is bounded below by a function of ϵ depending
on it’s range:

0 ≤ ϵ ≤ 1 : C(ϵ) ≥ Rβ
ϵ2

2 inf0≤ϵ′≤1C ′′(ϵ′) = ( 1
32

√
2) )Rβϵ2

ϵ ≥ 1 : C(ϵ) ≥ κRβ
√

ϵ

where κ = 3/2 −
√

2.

4.2 Nondecreasing k and no depletion
The cost of manipulation result is the most interesting result, because it has implications for
the correctness of clients of the oracle and because it uses more advanced math. In addition,
Angeris et al. also prove a simpler invariant which gives some additional confidence that the
contract is implemented correct. We formalize this proof also.

In particular, they prove that it is impossible to drain the contract of all it’s token
reserves, irrespective of how many tokens the attacker can use for the swap. This is proved
by showing that the net reserves of tokens in the contract are strictly bounded away from 0.
The result is stated as follows:

▶ Theorem 3 (Nondepletion). At all times, Rα + Rβ > 0.

The proof for this property follows by the AM-GM inequality, and the increasing k
invariant. The increasing k invariant establishes that when the protocol charges trading fees,
the product of the reserves of the tokens in the contract is strictly increasing over each swap
operation.

These properties are related to the notion of path independence( [9]). For an arbitrary
type of AMM, one could worry that it would be possible to exploit the liquidity providers by
making repeated trades, e.g. selling token A when the price is low and then buying back
when the price is high, and maybe eventually draining the entire reserve. The above invariant
shows that constant-product market makers are immune to such attacks. If the product k

was exactly constant, then the prices would only depend on the net amount of A traded,
not on the exact “path” of buys and sells. In practice k is increasing because of trading fees,
which means it is never advantageous to strategically split trades into multiple transactions.

5 Mechanizing results for the DeepSEA AMM contract

In this section we describe our mechanization of the properties stated in Section 4.

5.1 Importing third-party Coq libraries
In order to reason about various bounds on expressions used in the result established in
Section 4.1, we chose to use the Coq-interval [15] library. The library supports a high degree
of automation, to establish approximate preliminary bounds on certain standard functions
like the square root function, polynomials, trigonometric functions, the exponential function
and the logarithm. It uses Taylor models (as defined in [14]) to establish such bounds.

However, this library by itself doesn’t prove to be sufficient, since it relies on Coquelicot [8]
to prove certain results and doesn’t provide automation to use them. In order to setup an
environment compatible with these results, we use Coquelicot as well.

Additionally, we rely on the injections of natural numbers and integers into reals,(in
particular, to establish the increasing k invariant from Section 4.2) and the proven ring
homomorphism properties of these injection in the Coq standard library, to argue about
integers in bytecode inside reals and then transport established inequalities over reals back
to inequalities over integers.



K. Dave, V. Sjöberg, and X. Sun 1:9

5.2 Proof Outline
The formalization4 of the above properties of the constant product market maker protocol in
the Coq proof assistant requires the use of real analysis results.

To prove the lower bound in Theorem 2 in the first case, we use the Taylor series
approximation for continuous and twice differentiable functions. We state and prove the
Taylor series approximation for the function,

√
1 + ϵ + 1/

√
1 + ϵ − 2 in the interval (0, 1].

The lemma is stated as follows:

Lemma taylor_m : 0 < eps <= 1 ->
exists eta,
(0 <> eps -> (0 < eta < eps \/ eps < eta < 0)) /\
sqrt (1 + eps) + 1/sqrt(1 + eps) -2 =
(((2 - eta) / (8* ((1 + eta)^2) * sqrt (1 + eta))) * eps^2).

We use the general version of the Taylor Lagrange theorem formalized in the Coq-interval
library to prove the above lemma. [14] The statement of the theorem is as follows:

Section TaylorLagrange.
Variables a b : R.
Variable n : nat.
Notation Cab x := (a <= x <= b) (only parsing).
Notation Oab x := (a < x < b) (only parsing).
Variable D : nat -> R -> R.
Notation Tcoeff n x0 := (D n x0 / (INR (fact n))) (only parsing).
Notation Tterm n x0 x := (Tcoeff n x0 * (x - x0)^n) (only parsing).
Notation Tsum n x0 x := (sum_f_R0 (fun i => Tterm i x0 x) n) (only parsing).
Section TL.

Hypothesis derivable_pt_lim_Dp :
forall k x, (k <= n)%nat -> Oab x ->
derivable_pt_lim (D k) x (D (S k) x).

Hypothesis continuity_pt_Dp :
forall k x, (k <= n)%nat -> Cab x ->
continuity_pt (D k) x.

Variables x0 x : R.
Theorem Taylor_Lagrange :

exists xi : R,
D 0 x - Tsum n x0 x =
Tcoeff (S n) xi * (x - x0)^(S n)
/\ (x0 <> x -> x0 < xi < x \/ x < xi < x0).

End TL.
End TaylorLagrange.

In the above setting, the function D : nat → R → R represents the series of a function and
it’s nth derivative, where D0 is the function itself and Dn is it’s (n-1)th derivative. Tsum n
x0 x is the sum of the first n terms of the Taylor series of the function D0. Since, a necessary
condition for the Taylor Lagrange theorem to hold is that if the approximation is of the
nth order then each of the kth order derivatives of the function should be continuous and

4 Available online at https://github.com/certikfoundation/deepsea/blob/master/contracts/amm/
cst_man.v

FMBC 2021

https://github.com/certikfoundation/deepsea/blob/master/contracts/amm/cst_man.v
https://github.com/certikfoundation/deepsea/blob/master/contracts/amm/cst_man.v


1:10 Towards Verified Price Oracles for Decentralized Exchange Protocols

differentiable for all k ≤ n, the section in the Taylor.v module includes a hypothesis, which
we must prove in order to apply the theorem. We define the following function and use it in
place of the above function D for our application of the Taylor Lagrange theorem:

Definition T_f_1 (n : nat) :=
match n with
| 0%nat => (fun x => sqrt(1+x) + (1/sqrt (1 + x)))
| 1%nat => (fun x => 1/(2* sqrt(1+x)) - (1/ (2 * (1 + x) * (sqrt (1 + x)))))
| 2%nat => (fun x => (2 - x)/ (4 * ((1 + x)^2) * sqrt(1 +x)))
| _ => (fun x => 0%R)

end.

The required hypothesis are stated and proved as the following lemmas:

Lemma deriv_lim_T_f : forall (k : nat) (x : R),
(k <= 1)%nat ->
0 < x < 1 ->
derivable_pt_lim (T_f_1 k) x (T_f_1 (S k) x).

Lemma cont_lim_T_f : forall (k : nat) (x : R),
(k <= 1)%nat ->
0 <= x <= 1 -> continuity_pt (T_f_1 k) x.

Once, we have the Taylor approximation, we establish a lower bound on the remainder term
using the powerful interval tactic. This can be done since we have a range in which ϵ lies for
the first lower bound on the cost of manipulation (i.e 0 ≤ ϵ ≤ 1). The lemma for the lower
bound on the remainder term is stated as follows:

Lemma lower_bnd : forall eta, 0 <= eta <= 1 ->
(2 - eta) / (8 * ((1 + eta)^2) * sqrt (1 + eta)) >= 1 / 48.

Note that, the lower bound in ( [4]) is 1/32
√

2. Since the interval tactic works based
on approximations [15], it cannot be used to prove exact irrational bounds. Hence, we
approximate

√
2 with 3/2 to get a lower bound of 1/48. This lower bound can be made

closer to 1/32
√

2, by using a finer approximation.This gives us the first part of the lower
bound in Theorem 2.

To prove the second part, we use a different approach from the one used in [4]. The lower
bound for the case when ϵ ≥ 1 involves proving the following inequality:

x + x−1 − 2 ≥ κx

where x =
√

1 + ϵ, κ = 3/2 −
√

2. Here again we approximate κ by 5/100 to facilitate the
use of the interval tactic. Instead of using the analysis of quadratic equations approach as
in ( [4]), we use a simpler way. After a small algebraic manipulation, and accounting for
approximations the above inequality can be re-written as the following lemma:

Lemma eps_sq : eps >= 1 ->
(sqrt(1 + eps) - 1)^2 - ((5/100) * (1 + eps)) >= 0.

To show this, we use the fact that if the derivative of a continuous function defined on
a connected domain is positive, then the function is increasing. This coupled with the
observation that the value of the l.h.s of the above inequality evaluated at 1 is positive, gives
us the proof. Thus we have the lower bound on the cost of manipulation for the second case :

Lemma cst_func_ge_1 : eps >= 1 ->
sqrt ( 1 + eps) + (1 / sqrt (1 + eps)) -2 >= ((5/100) * sqrt (1 + eps)).



K. Dave, V. Sjöberg, and X. Sun 1:11

Combining them gives us the following mechanization of Theorem 2 :

Definition cost_of_manipulation_val := (IZR (reserve_beta s)) *
(sqrt (1 + eps) + (1/ sqrt (1 + eps)) - 2).

Theorem cost_of_manipulation_min : eps >= 0 ->
cost_of_manipulation_val >= (IZR (reserve_beta s)) * (5/100) * sqrt (eps) \/
cost_of_manipulation_val >= (IZR (reserve_beta s)) * (1/48) * (eps^2).

We also mechanize the no-depletion property from Section 4.2. The formalized version of
Theorem 3 holds for the AMM contract written in DeepSEA:

Theorem no_depletion_reserves : (IZR (reserve_beta s'')) +
(IZR (reserve_alpha s'')) > 0.

Proving this result requires establishing the increasing product invariant over integers. This
requires some careful reasoning over reals before the result is transported back to integers.
The increasing product invariant is stated as follows:

Lemma increasing_k : Z.lt (compute_k s) (compute_k s'').

The above lemma states that the product of the reserves always increases with each swap
operation. Thus, we establish two independent important algorithmic properties of the
bytecode corresponding to the DeepSEA AMM contract.

5.3 Connection to the DeepSEA contract
The results we formalized in the Coq Proof assistant about the cost of manipulation of the
market price are for the AMM contract written in DeepSEA. The cst_man.v module imports
the Coq files generated by the DeepSEA compiler, so that computations can be made using
the variables of the contract. We want to know how prices are affected by a single call to the
simpleSwap0 function, we do so by adding the following hypothesis to our file:

Hypothesis del_alp : runStateT (AutomatedMarketMaker_simpleSwap0_opt
toA (make_machine_env a)) s = Some (r' , s'').

Here AutomatedMarketMaker_simpleSwap0_opt is an automatically generated Coq function
which represents the behaviour of the contract method. The hypothesis says that a call to it,
exchange of the token α for the input token β ,completed without reverting and left us in a
new contract state s’.

This is done to calculate ∆α. Once the values Rα, Rβ , ∆α, ∆β are obtained from the
contract, the fraction by which the exchange price can be manipulated (i.e ϵ) is computed
using the formula:

Rβ + ∆β

Rα − ∆α
= (1 + ϵ)∆β

∆α

Now the results stated in 4.1 are formalized for the ϵ obtained from above and its possible
values.

6 Related Work

We are only aware of one mechanized proof applied to a DeFi contract: Park et al.’s
verification of the original Uniswap AMM using the KEVM Framework [23]. They prove that
the functions implemented by the contract bytecode conforms to a high-level specification

FMBC 2021



1:12 Towards Verified Price Oracles for Decentralized Exchange Protocols

(the constant-product formulas), and they do not prove any financial correctness properties.
In other words, the end result of the verification is a set of high-level functions similar to what
DeepSEA generates automatically and we take as our starting point; however, this is done
for the already existing and deployed contract, while DeepSEA requires you to re-implement
the contract in the DeepSEA language.

As for paper proofs, we already discussed Angeris and Chitra’s theorem [4], which we
mechanize in this paper. Angeris et al. [3] consider generalizations of the Uniswap formula
and further desirable properties. Bartoletti et al set out to understand DeFi protocols by
writing down (on paper) abstract models of AMMs [7] and lending pools [6] as transition
systems, and then proving theorems such as demand-sensitivity and non-depletion about
them. In future work, we aim to provide machine-checked proofs of many such properties, as
we have already done for non-depletion.

An alternative to formal proof is to apply model checking [21, 19] or graph search with
contraints [24] to find DeFi hacks. These works manually translate and simplify the set of
contracts into a language the model checker can deal with, and can then make a best effort
to find exploits. Because model checking is automatic (so it requires less user effort) we
believe this can be a useful complement.

The kind of oracle we consider provides pricing information based directly on on-chain
trades. This should be distinguished from oracles that aggregates data from off-chain sources
and posts them on the blockchain. Analyses of the latter [11, 13] show that they, too, have
problems with spurious data spikes and possible attacks.

7 Conclusions and Future Work

We take the first step in formally verifying financial properties of the contract at the
algorithmic level. This is enabled by the Coq functional model that is automatically
generated by the DeepSEA compiler. Not only is the compilation to bytecode verified, but
we also have a formalization of the desirable properties of the Constant Product Market
Maker model which is directly tied to the DeepSEA AMM contract. Hence we have a verified
specification and verified code.

In the future, we want to extend this line of work in two directions. First, we want to
consider theorems about more advanced kinds of oracles. The non-manipulation result we
formalized is still the state of the art when it comes to mathematical analysis of oracles, but
more recent developments have made it partially obsolete. As we explained in Section 5.2,
the assumption is that the attacker makes a loss because he bought tokens at a too-high price.
But in a scenario involving flash-loans this is not necessarily the case, because in a single
transaction the attacker can carry out the manipulation and then immediately sell back the
tokens again. There is not enough time for other market participants to exploit the incorrect
price through arbitrage. Similar considerations apply if the attacker is colluding with a miner
to control the order of transactions in a block. Newer oracles such as Uniswap v2 [1] and
Uniswap v3 [2] are more robust and hacker-resistant than the simple instantaneous-price
oracle that we consider, because they average the price over a longer time period. Theoretical
results about such models however still remain to be established.

Second, it will be interesting to prove the correctness of a client of an oracle, e.g. to
give bounds on when a lending protocol can become undercollateralized. Just like the DeFi
applications themselves are built from “money lego”, we hope that they can be verified by
composing together theorems about the individual components.



K. Dave, V. Sjöberg, and X. Sun 1:13

References

1 Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap v2 core. 2020, 2020. URL:
https://uniswap.org/whitepaper.pdf.

2 Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson. Uniswap
v3 core, 2021.

3 Guillermo Angeris and Tarun Chitra. Improved price oracles: Constant function market
makers. In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies,
pages 80–91, 2020.

4 Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and Tarun Chitra. An analysis
of uniswap markets. arXiv preprint, 2019. arXiv:1911.03380.

5 Korantin Auguste. The bzx attacks explained. Blog post. https://www.palkeo.com/en/
projects/ethereum/bzx.html#second-transaction., 2020. (Accessed on 05/23/2021).

6 Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. Sok: Lending pools
in decentralized finance. CoRR, abs/2012.13230, 2020. arXiv:2012.13230.

7 Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. A theory of automated
market makers in defi. arXiv preprint, 2021. arXiv:2102.11350.

8 Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot: A user-friendly library
of real analysis for coq. Mathematics in Computer Science, 9(1):41–62, 2015.

9 Vitalik Buterin. On path independence. Blog post, 2017. URL: https://vitalik.ca/general/
2017/06/22/marketmakers.html.

10 CertiK Foundation. DeepSEA. (Accessed on 05/23/2021). URL: https://github.com/
certikfoundation/deepsea.

11 Wanyun Catherine Gu, Anika Raghuvanshi, and Dan Boneh. Empirical measurements on
pricing oracles and decentralized governance for stablecoins. Available at SSRN 3611231, 2020.

12 Xavier Leroy. The CompCert verified compiler. http://compcert.inria.fr/, 2005–2021.
13 Bowen Liu, Pawel Szalachowski, and Jianying Zhou. A first look into defi oracles. arXiv

preprint, 2020. arXiv:2005.04377.
14 Érik Martin-Dorel, Laurence Rideau, Laurent Théry, Micaela Mayero, and Ioana Pasca.

Certified, efficient and sharp univariate taylor models in coq. In 2013 15th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pages 193–200.
IEEE, 2013.

15 Guillaume Melquiond. Coq-interval. Retrieved June, 17:2017, 2011.
16 miscellanous. Cryptocurrency statistics. Blog post, 2020. URL: https://duneanalytics.

com/queries/4494/8769.
17 miscellanous. Defi statistics. Blog post, 2020. URL: https://cointelegraph.com/news/

defi-hacks-and-exploits-total-285m-since-2019-messari-reports.
18 Vilhelm Sjöberg, Yuyang Sang, Shu-chun Weng, and Zhong Shao. DeepSEA: a language for

certified system software. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–
27, 2019.

19 Xinyuan Sun, Shaokai Lin, Vilhelm Sjöberg, and Jay Jie. How to exploit a defi project
(extended talk abstract). Talk at the 1st Workshop on Decentralized Finance (DeFi), colocated
with Financial Cryptography and Data Security 2021 (fc21), March 2021.

20 The Coq Development Team. The Coq proof assistant. https://coq.inria.fr/. Accessed:
28/5/2019.

21 Palina Tolmach, Yi Li, Shang-Wei Lin, and Yang Liu. Formal analysis of composable defi
protocols. CoRR, abs/2103.00540, 2021. arXiv:2103.00540.

22 Dabao Wang, Siwei Wu, Ziling Lin, Lei Wu, Xingliang Yuan, Yajin Zhou, Haoyu Wang, and
Kui Ren. Towards understanding flash loan and its applications in defi ecosystem. CoRR,
abs/2010.12252, 2020. arXiv:2010.12252.

FMBC 2021

https://uniswap. org/whitepaper.pdf
http://arxiv.org/abs/1911.03380
https://www.palkeo.com/en/projects/ethereum/bzx.html#second-transaction
https://www.palkeo.com/en/projects/ethereum/bzx.html#second-transaction
http://arxiv.org/abs/2012.13230
http://arxiv.org/abs/2102.11350
https://vitalik.ca/general/2017/06/22/marketmakers.html
https://vitalik.ca/general/2017/06/22/marketmakers.html
https://github.com/certikfoundation/deepsea
https://github.com/certikfoundation/deepsea
http://compcert.inria.fr/
http://arxiv.org/abs/2005.04377
https://duneanalytics.com/queries/4494/8769
https://duneanalytics.com/queries/4494/8769
https://cointelegraph.com/news/defi-hacks-and-exploits-total-285m-since-2019-messari-reports
https://cointelegraph.com/news/defi-hacks-and-exploits-total-285m-since-2019-messari-reports
https://coq.inria.fr/
http://arxiv.org/abs/2103.00540
http://arxiv.org/abs/2010.12252


1:14 Towards Verified Price Oracles for Decentralized Exchange Protocols

23 Daejun Park Yi Zhang, Xiaohong Chen. Formal specification of constant product market
maker model and implementation, 2018. URL: https://github.com/runtimeverification/
verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf.

24 Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur Gervais. On the
just-in-time discovery of profit-generating transactions in defi protocols. arXiv preprint, 2021.
arXiv:2103.02228.

https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
http://arxiv.org/abs/2103.02228


Money Grows on (Proof-)Trees: The Formal FA1.2
Ledger Standard
Murdoch J. Gabbay Ñ

Heriot-Watt University, Edinburgh, UK
Nomadic Labs, Paris, France

Arvid Jakobsson Ñ

Nomadic Labs, Paris, France

Kristina Sojakova1
Ñ

INRIA, Paris, France

Abstract
Once you have invented digital money, you may need a ledger to track who owns what – along with
an interface to that ledger so that users of your money can transact. On the Tezos blockchain this
implies: a smart contract (distributed program), storing in its state a ledger to map owner addresses
to token quantities; along with standardised entrypoints to query and transact on accounts.

A bank does a similar job – it maps account numbers to account quantities and permits users to
transact – but in return the bank demands trust, it incurs expense to maintain a centralised server
and staff, it uses a proprietary interface . . . and it may speculate using your money and/or display
rent-seeking behaviour. A blockchain ledger is by design decentralised, inexpensive, open, and it
won’t just decide to bet your tokens on risky derivatives (unless you want it to).

The FA1.2 standard is an open standard for ledger-keeping smart contracts on the Tezos
blockchain. Several FA1.2 implementations already exist.

Or do they? Is the standard sensible and complete? Are the implementations correct? And what
are they implementations of ? The FA1.2 standard is written in English, a specification language
favoured by wet human brains but notorious for its incompleteness and ambiguity when rendered
into dry and unforgiving code.

In this paper we report on a formalisation of the FA1.2 standard as a Coq specification, and on
a formal verification of three FA1.2-compliant smart contracts with respect to that specification.
Errors were found and ambiguities were resolved; but also, there now exists a mathematically precise
and battle-tested specification of the FA1.2 ledger standard.

We will describe FA1.2 itself, outline the structure of the Coq theories – which in itself captures
some non-trivial and novel design decisions of the development – and review the detailed verification
of the implementations.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Theory of computation → Program verification; Social and professional topics → Quality assurance

Keywords and phrases Distributed ledger, smart contracts, Coq, formal verification, blockchain

Digital Object Identifier 10.4230/OASIcs.FMBC.2021.2

Supplementary Material Software (Source Code): https://gitlab.com/nomadic-labs/mi-cho-coq
/-/tree/kristina@fa12-verification-v2/src/contracts_coq

archived at swh:1:dir:d27f5d0a1c97463a68274d4006103dcc032a401b

Acknowledgements The authors acknowledge the support of Nomadic Labs and the detailed and
very helpful comments of three anonymous referees. We also thank Benoît Rognier, the Edukera
team, and Tom Jack for their feedback and support.

1 Sojakova wrote the the Coq code described in this paper.

© Murdoch J. Gabbay, Arvid Jakobsson, and Kristina Sojakova;
licensed under Creative Commons License CC-BY 4.0

3rd International Workshop on Formal Methods for Blockchains (FMBC 2021).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 2; pp. 2:1–2:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.gabbay.org.uk
https://orcid.org/0000-0001-5796-3455
https://www.arvidj.eu
https://orcid.org/0000-0001-6028-8972
https://who.rocq.inria.fr/Kristina.Sojakova/
https://doi.org/10.4230/OASIcs.FMBC.2021.2
https://gitlab.com/nomadic-labs/mi-cho-coq/-/tree/kristina@fa12-verification-v2/src/contracts_coq
https://gitlab.com/nomadic-labs/mi-cho-coq/-/tree/kristina@fa12-verification-v2/src/contracts_coq
https://archive.softwareheritage.org/swh:1:dir:d27f5d0a1c97463a68274d4006103dcc032a401b;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/
https://archive.softwareheritage.org/swh:1:cnt:6b3b9423e6d47a813139bc079bc0f53afefa2fd3;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


2:2 The Formal FA1.2 Ledger Standard

1 Introduction

1.1 Tezos: a universal, modular blockchain
The Tezos blockchain was outlined in a 2015 whitepaper [3] and went live in September 2018.
It is an accounts-based proof-of-stake blockchain system with the unique feature that it is a
universal blockchain in the sense that the protocol for running Tezos is itself data on the
Tezos blockchain, and this data is subject to regular upgrade by stake-weighted community
vote.2 Universality favours a healthy modularity at every level of the system’s design, since
almost anything in the running system can be and is subject to update.

Tezos has just one native token: the tez. Further tokens can be created in a modular
fashion, using smart contracts.

Thus we can represent Ethereum and Bitcoin on Tezos (using so-called wrapped tokens);3
we can represent NFTs (non-fungible tokens representing unique assets); likewise for stable-
coins and so forth. All these things can be and have been represented as Tezos smart
contracts. Given this freedom, we need interoperability standards for our tokens to adhere to.
After all, a token on its own is useless; its value comes from how we might transact with it.4

1.2 The FA1.2 standard: five entrypoints, in English
The FA1.2 standard is an English document specifying a minimal API for a ledger-like
smart contract. Compliance with FA1.2 ensures some degree of interoperability across
multiple smart contracts and tools on the Tezos blockchain.

The FA1.2 standard asserts that a given smart contract should provide the following five
entrypoints and behaviours:
1. %transfer expects a from account, a to account, and an amount of tokens to be

transferred, and updates the ledger accordingly.
2. %approve expects an owner, a spender, and a new allowance for the spender, and

updates the transfer approvals accordingly.5
3. %getAllowance expects an owner, a spender, and returns the approved transfer allowance

for the spender, via a callback (see Remark 2 below).
4. %getBalance expects an owner and returns the owner’s balance via a callback.
5. %getTotalSupply returns the total sum of all balances in the ledger, via a callback.

▶ Remark 1. The list above is nearly a complete summary of the FA1.2 standard, which is
just a couple of pages long and clearly intended to be as straightforward as possible (which
is a good thing). A few words may be helpful on what this standard leaves out:

2 As the programs of the “universal” Turing machine are themselves data on its memory. The “regular
upgrade” property is called a self-amendment in the Tezos literature.

To be precise: for space-efficiency, the Tezos blockchain holds not the protocol code but its hash – it is a
standard trick to store large datastructures off-chain and retain an on-chain hash. When the protocol
self-amends the hash gets updated and code matching that hash – which must be the protocol code (where
“must” = “our hash function is computationally infeasible to break”) – propagates across the network for
nodes to load and run. This low-level functionality is handled by a “shell” (think: BIOS).
3 We mention a few wrapped tokens at the start of Section 4.
4 Like money in the bank is only useful because you could use it to perform transactions. You don’t have

to – at least not all at once – but that’s not the point: what matters is that you could.
5 When you use a debit card you authorise a debit. The merchant could in principle not do this; thus the

authorisation is granted but the withdrawal does not take place. Likewise a direct debit is an approval
for a withdrawal. Similarly %approve does not send tokens; it approves another smart contract to make
a token withdrawal, up to some limit. E.g. when you sell tokens for tez in Dexter, you give permission
using %approve for Dexter to transfer tokens from your account.

https://en.wikipedia.org/wiki/Tezos
https://tzip.tezosagora.org/proposal/tzip-7/


M. J. Gabbay, A. Jakobsson, and K. Sojakova 2:3

1. The FA1.2 standard does not exclude entrypoints that are not mentioned in the list above:
an implementation may offer additional entrypoints.

2. The FA1.2 standard does not constrain the behaviour of additional entrypoints, if present
in an implementation. These entrypoints could change balances or allowances (such as
some kind of admin entrypoint) or the total number of tokens in circulation (often called
mint or burn entrypoints).

3. The FA1.2 standard does not exclude additional preconditions on the entrypoints that it
mentions: an implementation may impose additional preconditions.

For example, consider a simple standard for doors that insists on just one entrypoint,
%openDoor, with two conditions: if the call to %openDoor succeeds then the door will be open
afterwards; and the call fails with error “alreadyOpen” if the door is already open. Hopefully
your home’s front door complies with this standard, which is why it is called a door, but
also: it has an additional implementation-specific entrypoint %lockDoor; and an additional
implementation-specific precondition on its %openDoor entrypoint that it will fail – even if
the door is not open! – if the door is locked; and finally the door has an administrative
override entrypoint %fireDepartment, to be invoked only by people with authorisation and
in special circumstances.6 Yet none of this implementation-specific structure makes your
front door any less of a door. More on this is in Section 4 and Remark 8.

▶ Remark 2 (Callbacks). A call to any entrypoint of a smart contract in Tezos takes some
parameters, some (possibly zero) quantity of tez, and a continuation address of another
entrypoint, called a callback, to which flow of control will continue. Thus “returns X via a
callback” above means X is passed as a parameter to the nominated callback entrypoint.

1.3 This is not enough
The English FA1.2 standard is reasonable per se, but it is not enough:
1. The FA1.2 standard is written in English. This means it might be incomplete or

incoherent,7 and it can’t be directly manipulated using verification tools.
2. Just because a smart contract claims to be FA1.2-compliant does not mean that it is:

perhaps it is buggy; perhaps it is hostile; perhaps the implementors just interpreted the
English specification differently than the standard’s authors intended.

3. The FA1.2 standard is not itself a standard for verifying compatibility with the FA1.2
standard! That is: given two verifications of two implementations (or even of the same
implementation), it is not a priori guaranteed that they are verifying the same properties
– and the FA1.2 standard, which is written in English, cannot help resolve this.

To state the obvious: ledgers are safety-critical. This is real money – for a certain 21st
century definition of “real” – that our smart contracts could be manipulating [4, 1].

Saying “trust us, we’re experts” is problematic not just because we might be wrong,
but also because an open permissionless blockchain should not demand such trust: users
should be able to check correctness, or trust that somebody independent of a central “expert”
authority has checked or could check this, and (since this is an open system) they should
best also trust that whatever “correctness” means, it means nearly, and preferably precisely,
the same to them as to the other users with whom they might transact.

6 True story. The first author has seen this entrypoint invoked.
7 In fact there’s no “might” about it: a quick scan of the standard reveals points which a suitably naïve,

bloody-minded, or hostile reader could interpret in spectacularly different ways, in spite of the authors’
efforts to be precise. Thus multiple implementations could exist, doing radically different things and all
claiming plausibly to be “true” to “the” FA1.2 standard. This is not a criticism of FA1.2 or its authors:
it is in the nature of the English language itself.

FMBC 2021



2:4 The Formal FA1.2 Ledger Standard

1.4 Our work in a nutshell
This paper reports on a verification effort undertaken at Nomadic Labs that we argue
addresses the points above. That is:

we place the FA1.2 standard on a precise mathematical footing that can be both trusted
and verified, and
we check correctness of three smart contracts which claim to be FA1.2-compliant.

The reader should not expect novel maths in this work – indeed, in this context “novel”
= “untested” and may best be avoided where possible. However, there are other types of
innovation to this work:
1. To our knowledge, this is the only full formalisation of a blockchain ledger standard and

of multiple implementations against it, in a theorem-prover.
This addresses the three points above, by providing: a formal specification of the standard,
formal representations within the theorem-prover of the programs themselves, proofs
of compliance for the latter with respect to the former – and also a gold standard for
comparing and operating on all of these proofs, since they are all proof-objects within
the theorem-prover itself.

2. Also relevant is the theory files’ structure, which is new as we discuss below.
Having secure and reliable ledgers on Tezos is an existential issue for the blockchain ecosystem,
so the fact that this could be nailed down, as we have done, has both practical and theoretical
importance. Thus, this work exemplifies the application to a tangible industrial problem of a
particular (Coq-based) theorem-prover technology ecosystem.
▶ Remark 3. We may write smart contract and implementation synonymously. Also, smart
contracts may be written in high-level languages, but to run on Tezos they must get compiled
to a lower-level stack-based language called Michelson.8 We may not always distinguish
between the original program and its compiled Michelson executable, but we will when this
difference matters and it will always be clear what is meant.
▶ Remark 4. The formal FA1.2 standard does not replace the English FA1.2 standard: to be
fully proficient a reader would have to know Coq and also understand something about how
Tezos contracts are embedded into it. However, the formal FA1.2 standard (or an evolution
of it) could serve as a standard reference within certain expert communities, and even outside
such communities a reader with good reason to try could parse the Coq code, if they have
some knowledge of dependent types and perhaps have read the English standard and looked
at this paper. Thus, the formal and the English FA1.2 standards are embedded in what one
might call a larger “space of understanding”, within which they complement and enrich one
another such that each is made stronger and more rigorous by the existence of the other.

2 Introducing: the formal FA1.2 standard

The formal FA1.2 standard is written in Coq and structured into a small number of modules:
1. FA12StorageAccess, FA12StorageDefinitions, and FA12StorageAxioms: These specify

internal functions which the smart contract must support (see Figure 1), along with
axioms on their behaviour. These functions are not entrypoints and cannot be called
from outside the smart contract. They may be explicit in the code of a concrete smart
contract implementation, but not necessarily – e.g. the smart contract might be in a
low-level, non-functional language – so long as they could be defined on the contract’s
underlying data structures.

8 Think: the Tezos equivalent of bytecode or machine code, though Michelson is still quite high level.

https://archive.softwareheritage.org/swh:1:cnt:6b3b9423e6d47a813139bc079bc0f53afefa2fd3;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_standard.v
https://archive.softwareheritage.org/swh:1:cnt:6b3b9423e6d47a813139bc079bc0f53afefa2fd3;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_standard.v;lines=113
https://archive.softwareheritage.org/swh:1:cnt:6b3b9423e6d47a813139bc079bc0f53afefa2fd3;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_standard.v;lines=141
https://archive.softwareheritage.org/swh:1:cnt:6b3b9423e6d47a813139bc079bc0f53afefa2fd3;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_standard.v;lines=185


M. J. Gabbay, A. Jakobsson, and K. Sojakova 2:5

We might call this part of the standard an idealised implementation, where “idealised”
is used in the sense of “Platonic ideal”, rather than in the sense of “perfect”.

2. FA12Standard: This specifies entrypoint behaviour in terms of the functions above and
renders into precise Coq code the English of the FA1.2 standard (whence the module
name). Note however that the formal FA1.2 standard goes beyond the English standard
by specifying internal functions rather than just entrypoints as per the previous item,
thus it adds some intensional content which the English FA1.2 standard lacks.

3. FA12SumOfBalances: This contains results derived from postulates in the formal FA1.2
standard, so which are guaranteed properties of any FA1.2-compliant smart contract.

getAllowance : data storage_ty -> data address -> data address -> data nat
getBalance : data storage_ty -> data address -> data nat
getTotalSupply : data storage_ty -> data nat
setBalance : data storage_ty -> data address -> data nat

-> data storage_ty
setAllowance : data storage_ty -> data address -> data address ->

data nat -> data storage_ty

Figure 1 Types of key functions from the formal FA1.2 standard.

(** Asking for the balance of an owner we just set yields the new value. *)
Axiom getBalance_setBalance_eq : forall sto owner balance’,

getBalance (setBalance sto owner balance’) owner = balance’.

(** Setting a balance leaves everyone else’s balances unchanged. *)
Axiom getBalance_setBalance_neq : forall sto owner balance’ owner’,
owner <> owner’ ->
getBalance (setBalance sto owner balance’) owner’ = getBalance sto owner’.

Figure 2 Example axioms: ledger entries are abstract arrays.

(** Entry point: ep_getBalance *)
Definition ep_getBalance

( p : data ep_getBalance_type)
( sto : data storage_type )
(ret_ops : data (list operation) )
(ret_sto : data storage_type ) :=

let ’(owner, contr) := p in
let balance := getBalance sto owner in
let op := transfer_tokens nat I balance tokens contr in

ret_sto = sto /\ ret_ops = [op].

Figure 3 Specification for %getBalance entrypoint.

(** In the case when the sender is withdrawing from someone else’s account,
they must be authorized to transfer at least the specified amount. *)

(sender <> from -> amount <= getAllowance sto from sender)%N

Figure 4 Translation into Coq of a line from the English standard.

FMBC 2021

https://archive.softwareheritage.org/swh:1:cnt:6b3b9423e6d47a813139bc079bc0f53afefa2fd3;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_standard.v;lines=233
https://archive.softwareheritage.org/swh:1:cnt:6b3b9423e6d47a813139bc079bc0f53afefa2fd3;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_standard.v;lines=337


2:6 The Formal FA1.2 Ledger Standard

Theorem ep_getBalance_sumOfAllBalances
( env : @proto_env self_type )
( p : data ep_getBalance_type)
( sto : data storage_type )
(ret_ops : data (list operation) )
(ret_sto : data storage_type ) :

ep_getBalance env p sto ret_ops ret_sto ->
sumOfAllBalances ret_sto = sumOfAllBalances sto.

Proof.
destruct p as [owner contr]; cbn.
intros [H_ret_sto _].
subst; auto.

Qed.

Figure 5 Example result: %getBalance does not affect total supply.

Definition contract
:= Eval cbv in extract (contract_file_M fa12_camlcase_string.contract 500) I.

Figure 6 Parsing a Michelson code string into Mi-Cho-Coq’s deep embedding of Michelson.

▶ Example 5. Code asserting functions of the idealised implementation is in Figure 1, and
two of its example axioms are in Figure 2 (together, these axioms assert that the ledger is
an abstract array). In these figures, data is a standard Mi-Cho-Coq [2] wrapper mapping
(a Coq representation of) Michelson types to Coq types, and sto is short for “storage” and
represents a state datum (ledger entries, address of admin, total of all balances, and so forth)
that is threaded through computations.

▶ Remark 6. We continue the discussion of the idealised implementation above: The functions
in Figure 1 are building blocks with which we can specify the behaviour of the entrypoints
listed in Subsection 1.2. In this respect, our verification has done something that looks
deceptively simple but is not. By writing these functions down we have refined the English
FA1.2 standard – which speaks only about entrypoints and thus is in some sense purely
extensional – to a specification which is not just more precise (since it is written in Coq); but
also adds intensional structure (i.e. not having purely to do with entrypoint behaviour) in
that it describes an idealised implementation which a concrete implementation must resemble
in a sense made quite formal by the standard itself.

▶ Example 7. Code asserting entrypoint behaviour is in FA12Specification. For instance:
1. Figure 3 includes code which specifies that a call to the %getBalance entrypoint should

get the balance (this is the balance := getBalance sto owner part, which is passed to
the callback in the operation op) and any tokens attached to the call just get passed
through untouched, as per a line from the standard that “getBalance . . . returns [the]
balance of the given address, or zero if no such address is registered.”. We spell this out
(in small font) in Figure 7: see also code for getBalance and returning zero if no address
is registered.

2. Figure 4 reflects in the formal FA1.2 standard a condition from the English FA1.2 standard
that “the transaction sender must be previously authorized to transfer at least the requested
number of tokens from the “from” account using the approve entrypoint.

https://en.wikipedia.org/wiki/Array_data_type#Abstract_arrays
https://archive.softwareheritage.org/swh:1:cnt:fa5c55c2ffaf666bd981e45213f32457860cc314;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/michocoq/semantics.v;lines=313
https://tzip.tezosagora.org/proposal/tzip-5/#getbalance
https://archive.softwareheritage.org/swh:1:cnt:6b3b9423e6d47a813139bc079bc0f53afefa2fd3;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_standard.v;lines=118-119
https://archive.softwareheritage.org/swh:1:cnt:6b3b9423e6d47a813139bc079bc0f53afefa2fd3;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_standard.v;lines=147-152
https://archive.softwareheritage.org/swh:1:cnt:6b3b9423e6d47a813139bc079bc0f53afefa2fd3;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_standard.v;lines=147-152
https://archive.softwareheritage.org/swh:1:cnt:6b3b9423e6d47a813139bc079bc0f53afefa2fd3;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_standard.v;lines=285-287


M. J. Gabbay, A. Jakobsson, and K. Sojakova 2:7

let balance := getBalance sto owner in (* ‘owner‘ balance retrieved from ‘sto‘ and put in ‘balance‘ *)
let op := transfer_tokens
(* ‘op‘ is a transfer_token operation, which will act as a callback to the contract ‘contr‘, sending

it the value ‘balance‘. tez transfers and smart contract calls in Tezos are the same thing! *)
(* Each transfer_token operation has a recipient contract (+ optional entrypoint), an amount of tez,

and a parameter. )
nat (* parameter type: each contract (+entrypoint) has a parameter type.

In this case, recipient parameter type is ‘nat‘, as it is to receive the ‘balance‘,
which is also ‘nat‘ *)

I (* trivial proof by construction that ‘nat‘ is *passable* (technical requirement) *)
balance (* parameter: value sent to ‘contr‘. balance is thus a ‘nat‘ *)
tokens (* amount of tokens: using the notation ‘tokens‘, we return

the number of tez that was sent to this contract and that triggered this execution.
Hence, we just "pass the tokens along". *)

contr (* recipient: the contract ‘contr‘ will be the receiver of this call.
Note that ‘contr‘ comes from the parameter sent to ‘getBalance‘. Thus we have
a "callback" pattern: the value requested is not "returned" to the caller,
instead call back ‘contr‘ (which may be the caller but not necessarily) with
the requested value *)

in ret_sto = sto /\ ret_ops = [op]. (* require ‘op‘ to be the only returned operation *)

Figure 7 Closer look at some code from Figure 3.

▶ Remark 8.
1. Continuing Remark 1, we do not assert that an entrypoint call must succeed, even if all

of the conditions described in the FA1.2 standard are met, since entrypoints can fail for
implementation-specific reasons.

2. Furthermore, FA12Specification is a ledger standard, concerned with the conditions for
entrypoint calls to succeed, and what happens when they do. Thus we do assert that an
entrypoint must fail if conditions for a successful execution are unmet, but we do not
assert what error it should return and we omit clauses from the English standard of the
form “This entrypoint can fail with the following errors”.
This is not because they do not matter (they do, of course) but because from the point of
view of the maths of maintaining a ledger, these clauses concern standards for diagnostics
and debugging rather than standards for being a ledger. An analogy: it matters if a
computation of 100! reports NatOverflow when its 32-bit integers overflow, but not to a
mathematical specification of what it is to be the factorial function.9

▶ Example 9. The module FA12SumOfBalances contains results valid for any implementation
compliant with the formal FA1.2 standard, because they are derived just from postulates of
the standard. Figure 5 illustrates one such result, which states that querying a balance does
not change the total number of tokens on the ledger, as also returned by %getTotalSupply.
This is a relevant result and is also a sanity check on the design, that it postulates enough
that this can be proved.

9 Error-reporting is also a bit of a rabbit-hole which the English standard skirts but a Coq standard
could not. For example suppose two preconditions fail: which associated error should be returned? The
English standard does not say (because it does not care) but from our point of view, disambiguating
such issues is a distraction which could also restrict generality, and in ways which would not add value
to the standard itself. One could even argue that the English FA1.2 standard is in fact two standards
intertwined: a ledger standard, and an error-reporting standard, and we have formalised the former.
The Edukera FA1.2 verification specifies error messages as per the English standard. Is this wrong?
No, just different: their verification follows more in the verified abstraction of code style of Remark 11
(see also Subsection 5.2) than in the spec as a logical theory style of this paper, so for example their
specification could just state that the error returned is whatever error actually is returned by the
implementation they are abstracting. As always, what we view as a feature depends on what we wish
to achieve.

FMBC 2021

https://archive.softwareheritage.org/swh:1:cnt:6b3b9423e6d47a813139bc079bc0f53afefa2fd3;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_standard.v;lines=337
https://archive.softwareheritage.org/swh:1:cnt:6b3b9423e6d47a813139bc079bc0f53afefa2fd3;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_standard.v;lines=430-442
https://archive.softwareheritage.org/swh:1:cnt:6a674dd389a0e8c8b42cb8aa51f63cfbb8e6fb96;origin=https://github.com/edukera/archetype-lang;visit=swh:1:snp:1d57f54c27b3b4300155035e6cf732fb5263bf5f;anchor=swh:1:rev:45153bdbc30609d593699ac7854b9ee97a06d042;path=/contracts/fa12.arl;lines=71


2:8 The Formal FA1.2 Ledger Standard

▶ Remark 10. We have sketched how the FA1.2 standard was refined and formalised into the
formal FA1.2 standard, which conceptually splits in three parts:
1. an idealised implementation,
2. a behavioural specification (how external entrypoints are wired to the functions), and
3. a small logical theory of the idealised implementation and its behaviour, stating in

particular that FA1.2-specified entrypoints do not change the total supply of tokens.
Next we discuss the workflow of verifying a concrete implementation against the standard.

3 Per-implementation verification

We have verified three implementations as FA1.2 compliant (see below for what that means):
1. an implementation by camlCase in Morley (a Haskell eDSL for Michelson contracts),
2. an implementation by Edukera in Archetype (an integrated toolchain for specifying,

implementing and verifying Tezos smart contracts), and
3. a liquidity ledger from the prototype Dexter 2 smart contract by the LIGO lang team, in

CameLIGO (a language with ML-like syntax for Tezos smart contracts).

Concretely, verification proceeds as follows (we consider the camlCase contract):
1. The smart contract is compiled from some high-level smart contract language (Morley,

Archetype, CameLIGO. . . ), to a Michelson codestring – Michelson is the low-level stack-
based native smart contracts language of the Tezos blockchain – and stored as a Coq
string (see fa12_camlcase_string.v).
Thenceforth we do not work directly with the original source code of the smart contract.
We may use it for reference, but what gets validated is the Michelson file.10

2. This Michelson code string is parsed to a term of Mi-Cho-Coq’s deep embedding of
Michelson (see fa12_camlcase.v). This is a one-line operation; see Figure 6.
Thus we now have dynamically, in memory a Coq datum contract representing the
Michelson code string read from disk,11 of which properties can be asserted and proved.

3. Details of the concrete implementation – how data is stored, any additional entrypoints
and their behaviour – are packaged up, abstracted, and proved as high-level descriptions
in Coq of behaviour (see fa12_camlcase.v).

4. Finally we prove that the high-level description of the implementation satisfies the formal
FA1.2 specification (see fa12_camlcase_verif.v).
And thus we conclude that the contract is FA1.2-compliant.

Let’s unpack that. The sentence “And thus we conclude that the contract is FA1.2-compliant”
is shorthand for a fuller statement that:

A high-level Coq description of a Mi-Cho-Coq datum representing a Michelson code
compilation of the original smart contract, satisfies a Coq formalisation of a refinement
of the FA1.2 standard.

Let’s unpack that further to spell out what parts of this are mathematically assured:
1. Refining the English FA1.2 standard to the formal FA1.2 standard is not mathematically

assured. This was a creative human step of taking the FA1.2 English description and
obtaining from it something formal in Coq that is more intensional, extensive, and precise
than the English source, yet which we can still judge to be in some sense faithful to it.

10 This is good, in the sense that the Michelson code is what gets executed on-chain. But note that the
Michelson code may be compiler-dependent. Therefore when we say “We validated a contract” this
actually means “We validated a Michelson compilation of that contract”.

11 So “We validated one particular compilation to Michelson of that contract” acutally means “We validated
a Coq datum representing one particular compilation to Michelson of that contract”.

https://archive.softwareheritage.org/swh:1:dir:63e41e177cb270b4eaf143cf7253c9b00689c283;origin=https://gitlab.com/camlcase-dev/fa1.2;visit=swh:1:snp:3468f4e76154f9037ee288928c1cccba4e34507e;anchor=swh:1:rev:0cdbf84668b4d5f2a8107aaf78ac8f74d24962d8
https://hackage.haskell.org/package/morley
https://archive.softwareheritage.org/swh:1:cnt:6a674dd389a0e8c8b42cb8aa51f63cfbb8e6fb96;origin=https://github.com/edukera/archetype-lang;visit=swh:1:snp:1d57f54c27b3b4300155035e6cf732fb5263bf5f;anchor=swh:1:rev:45153bdbc30609d593699ac7854b9ee97a06d042;path=/contracts/fa12.arl
https://archetype-lang.org/
https://archive.softwareheritage.org/swh:1:cnt:7c2fa5012d1e744e91db075ed0c21969a904b7d2;origin=https://gitlab.com/dexter2tz/dexter2tz/;visit=swh:1:snp:74b5f6193e6d831c9ff815c4332e4ea82ce5b44d;anchor=swh:1:rev:1cec9d9333eba756603d6cd90ea9c70d482a5d3d;path=/lqt_fa12.mligo
https://ligolang.org/
https://archive.softwareheritage.org/swh:1:cnt:37763c65f8d814adab96f09532d08d591ce179e4;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_camlcase_string.v
https://archive.softwareheritage.org/swh:1:cnt:570ebb8ffbbbd5682451835677350946cc9c2256;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_camlcase.v
https://archive.softwareheritage.org/swh:1:cnt:570ebb8ffbbbd5682451835677350946cc9c2256;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_camlcase.v;lines=51
https://archive.softwareheritage.org/swh:1:cnt:570ebb8ffbbbd5682451835677350946cc9c2256;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_camlcase.v
https://archive.softwareheritage.org/swh:1:cnt:60c6e8bac6e7d3fe21a7d8d94c14a1354b009a45;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_camlcase_verif.v


M. J. Gabbay, A. Jakobsson, and K. Sojakova 2:9

English Spec

Formal Spec

Implementation

Verification

(a) Spec as verified abstraction of code

Eng Spec Form Spec Theory

Impl 1

Impl 2

Impl 3

Verif 1

Verif 2

Verif 3

(b) Spec as logical theory

Figure 8 Two workflow architectures.

2. The compilation of the smart contract from its original source code to Michelson is not
assured, unless the compiler is verified in some way – which currently isn’t the case
for Morley, Archetype and LIGO.12 Note also that the Michelson code is what gets
executed, which localises any subsequent validation to that compilation, and not some
other compilation e.g. using a different compiler or a different version of that compiler.

3. We have to trust correctness of the transformation of the Michelson code string into
Mi-Cho-Coq’s representation of Michelson code; and that Mi-Cho-Coq itself correctly
captures the intended semantics of Michelson.

4. Everything else is rigorous, provided we trust the Coq kernel.

▶ Remark 11. There are (at least) two ways to use logic: to communicate meaning about
specific objects (“this chair I’m sitting on, is black”), or to reason about (possibly empty)
classes of things (“black chairs”; “the King of France”). Likewise there are two ways to view
a formal specification: as a higher-level description of properties of a specific piece of code,
or as a specification of properties which pieces of code in general may or may not have. This
distinction matters for how we write and evaluate the usefulness of our verifications:
1. Figure 8a illustrates one verification workflow. A programmer reads a specification in

English and writes an implementation (bottom left arrow). Then for additional assurance
a formal spec is designed – in the light of the informal English spec and implementation
(top left and middle arrows) – and the implementation is verified (two right-hand arrows).
Here, the formal spec is a verified abstraction of the code.

2. Figure 8b illustrates our workflow. An English specification is refined to some Coq code
(the formal specification) which entails via its definitions and axioms a collection of prop-
erties (a theory) against which implementations can be verified.13 Here implementations
are viewed as models of the spec as a logical theory. If the verifications fail that’s an error,
and the specification, the implementation, or the theory are modified until they succeed.

In Figure 8a we see implementational choices and may even want to represent them in the
abstract description (a concrete example is in Footnote 9, second paragraph). In Figure 8b
we cannot see implementational choices when we design the abstract description and we do
not want to. We will see how this lack of access will help us to detect ambiguities in the
source English standard in Section 4.

12 Morley is more of a macro language for Michelson, but it includes non-trivial transformations of the
source code that are not yet proven to preserve semantics.

13 This is a kind of dual to program extraction, where we start from a specification and extract an
executable which then compiles to byte- or machine-code, which (if we trust our compilers) is correct by
construction.

FMBC 2021



2:10 The Formal FA1.2 Ledger Standard

▶ Remark 12. We would argue that our workflow in Figure 8b is a natural way to structure
verification against a standard, especially if we plan to verify more than one ledger. The
specification-as-a-theory maximises modularity and reuse, minimises reinventing of the wheel,
and accommodates both a posteriori and a priori reasoning:

A posteriori. Write your smart contract in whatever language you prefer. Compile it to
Michelson code as you would have to anyway; then (guided by the original source code)
rebuild a certified correct high-level description of your contract in Coq, prove that the
certified high-level description satisfies the formal standard, and that (the representation
in Coq of) the compiled Michelson respects this description.
A priori. Express a high-level design in Coq (or translate one into Coq). Prove it satisfies
the formal standard, thus validating your design. Then implement this design in your
language of choice, and verify that it respects the high-level description.

We would submit to the reader that this is reasonable and that most software development
follows some mix of the two patterns above.

▶ Example 13. We continue Example 9. Two typical results in the per-implementation files,
which exemplify the kind of results they contain, are that:

Validity of storage is preserved by all entrypoints. This is a key sanity property which must
include the five entrypoints mentioned in the FA1.2 standard (as listed in Subsection 1.2)
but must also include any other operations offered by the smart contract.
The total supply of tokens is is correctly preserved (or updated, if tokens were minted or
burned), and in particular that %getTotalSupply really does return the total supply.
This is not entirely trivial because, for computational efficiency, most smart contracts
track the total number of tokens separately from the tokens themselves.14 Thus checking
that %getTotalSupply returns the total supply requires us to write a predicate that
computes the total supply, and verify that this “real” total supply is correctly tracked by
whatever computationally efficient tally the smart contract is keeping.15

For scale, verification of the first property requires 115 lines of Coq code for the camlCase
contract, 115 lines for the Edukera contract, and 139 for the Dexter 2 contract (roughly half
of which is boilerplate code).

4 Refining the FA1.2 standard

FA1.2 is underspecified by design, and often constructively so. For instance, ETHtz, USDtz,
and tzBTC are all Tezos tokens (wrapping Ether, US Dollars, and Bitcoin respectively), and
they may be FA1.2-compliant (or maybe not) – but clearly they are also different and special.
Being FA1.2-compliant is just a property of a smart contract. In particular:

The standard does not restrict the operations returned by the %transfer and %approve

entrypoints. For instance, a contract may call another contract to access its ledger, e.g.
if the ledger data is stored remotely.
A contract may have more entrypoints than are mentioned in the standard, e.g. to mint
and burn tokens.

However, it is also possible for FA1.2 to be underspecified in undesirable ways, and our
verification effort uncovered two such issues, which were updated and corrected:

14 An analogy: the Bank of England may keep track of how much cash is in circulation, but it would be
computationally prohibitive to actually go out and count all the cash in the country.

15 Another analogy: if the reader has ever lost money down the back of a sofa and then struggled (and
perhaps failed) to find it again, they may appreciate that making sure that absolutely no tokens slip
through any cracks, may require careful discipline. Somewhere in the first author’s childhood home
there may still be a cheque for fifty pounds from his grandfather.

https://archive.softwareheritage.org/swh:1:cnt:60c6e8bac6e7d3fe21a7d8d94c14a1354b009a45;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_camlcase_verif.v;lines=488-603
https://archive.softwareheritage.org/swh:1:cnt:60c6e8bac6e7d3fe21a7d8d94c14a1354b009a45;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_camlcase_verif.v;lines=488-603
https://archive.softwareheritage.org/swh:1:cnt:e7ec32030421cdbbeda08766eb72b3d3b86c993d;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_edukera_verif.v;lines=478-593
https://archive.softwareheritage.org/swh:1:cnt:0d81a944bb15a93eb12a6f1c6886cf2983d627d2;origin=https://gitlab.com/nomadic-labs/mi-cho-coq/;visit=swh:1:snp:2e40ba6397bd802a3eaa8ee84ebab385cc070584;anchor=swh:1:rev:f6fbab5abf35945c1ea58a02ffe5c235021b162f;path=/src/contracts_coq/fa12_dexter_verif.v;lines=582-721
https://ethtz.io/
https://usdtz.com/
https://tzbtc.io/


M. J. Gabbay, A. Jakobsson, and K. Sojakova 2:11

4.1 Issue 1: Self-transfer
When the from and to accounts in the %transfer entrypoint coincide, the operation can be
treated either as a NOOP, or as a regular transfer (affecting allowances). The camlCase
implementation originally chose the former; the Edukera and Dexter 2 implementations
choose the latter.

It was agreed that this underspecification is undesirable and the FA1.2 standard was up-
dated to require that this case be treated as a regular transfer. The camlCase implementation
of the %transfer entrypoint was updated accordingly.

Note how this was noticed because we checked more than one ledger implementation
against the same formal standard (cf. Remark 11 and comment 1 of Subsection 1.3).

4.2 Issue 2: passing tokens to a view entrypoint
As noted in Remark 2, when we call an entrypoint in Michelson we must pass it some
(possibly zero) number of tez tokens. What should an entrypoint do if it gets passed tokens
and does not need them? For instance, the entrypoint could be one of the so-called view
entrypoints of FA1.2, %getAllowance, %getBalance, and %getTotalSupply.16

The camlCase and Edukera implementations opted to keep such tokens. Thus, if we
called camlCase or Edukera implementation of %getBalance with some tokens, the contract
would simply keep the tokens in its balance. We contacted the creators of the FA1.2 standard
and they said this was undesirable: such tokens should be forwarded to the entrypoint’s
callback – i.e. a passthrough. The standard was updated to include this condition, and the
implementations updated accordingly.

4.3 Summary of refinements
Thanks to this verification work the FA1.2 standard could be updated to eliminate two
missed corner cases. The implementations were also updated as required.

Notably, the architecture of our verification (as discussed in Section 3) had a subtle
but powerful effect on the errors that we could detect: because of how we factorised
our verification files, and because (thanks to this factoring) we could consider multiple
implementations uniformly against the same formal standard, it was easier to see where
different implementations had made substantively divergent design decisions and to trace
these decisions back to undesirable underspecifications in the core standard.

5 Related and future work

So far as we know there is nothing else in the literature quite like the FA1.2 formal standard
and verifications reported on in this work. There have however been some other formalisation
efforts in this field, notably: the ERC20 standard and its executable semantics in K; and a
formalisation and verification of FA1.2 in Archetype by Edukera. We discuss each in turn:

5.1 ERC20-K
ERC20 is to Ethereum as FA1.2 is to Tezos (in fact, ERC20 came first and FA1.2 follows its
example). ERC20 is a quite detailed API specification, but just like the FA1.2 standard, it is
written in English, which is neither formal nor executable.

16 An OO programmer would call the view entrypoints getters.

FMBC 2021

https://gitlab.com/tzip/tzip/-/issues/43
https://gitlab.com/tzip/tzip/-/issues/43
https://gitlab.com/camlcase-dev/fa1.2/-/issues/2
https://gitlab.com/camlcase-dev/fa1.2/-/issues/1
https://gitlab.com/camlcase-dev/fa1.2/-/issues/1
https://eips.ethereum.org/EIPS/eip-20#specification


2:12 The Formal FA1.2 Ledger Standard

The ERC20-K semantics formalises ERC20 in K and annotates it with unit tests, with a
particular focus on corner cases. As per the description:

ERC20-K is . . . a formal executable semantics of a refinement of . . . ERC20 [in] the K
framework. ERC20-K clarifies [the precise meaning of] ERC20 functions [and] the
corner cases that the ERC20 standard omits . . . such as transfers from yourself to
yourself or transfers that result in arithmetic overflows, [and we] manually . . . produced
. . . a test-suite [of] tests which we believe cover all the corner cases.

In other words, ERC20-K turns the English API specification into a executable API specific-
ation in K, and provides a detailed test suite of sixty unit tests.

The ERC20-K homepage contains references to other work,17 and the broad thrust of its
argument is, just like ours, that a standard needs written in a formal language.

5.2 Archetype FA1.2 implementation and verification by Edukera
The company Edukera has a smart contracts language Archetype, in which they wrote a
(short and succinct) implementation of an FA1.2-compliant smart contract. Included with the
Archetype source code is a specification which asserts compliance with the FA1.2 standard.

In common with our work and with ERC20-K, the development argues for the need for a
formal specification against which implementations can be checked.

The verification itself uses a Why3 library for Archetype that implements and specifies
Archetype-specific abstractions. Half of this library is currently verified, which includes the
parts that correspond directly to the FA1.2 smart contract, but not all of the libraries on
which it depends.18 Verification of the rest is a work in progress.

Archetype is an expressive environment in which a user can employ a single set of
convenient high-level abstractions to specify and implement a contract, within a uniform
and well-automated workflow.19 Thus, the Edukera FA1.2 specification is a reflection of
the FA1.2 standard into the Archetype toolstack, though as currently written it remains
closely-tailored to the sole FA1.2 implementation which it has to talk about, namely the
Edukera FA1.2 implementation in Archetype (e.g. if an implementation has additional
mint or burn entrypoints, like the Dexter 2 contract, then it will not satisfy the Archetype
specification’s condition that the total supply is unchanged after each entrypoint).20

By design our work exists at a distance from any specific implementation and indeed from
any specific source language, and it can be applied to any contract that can be compiled to
Michelson, following a formal standard that does not require the smart contract programmer
to buy in to any particular ecosystem except for Tezos itself. The correctness guarantee
provided by compliance with our formal FA1.2 standard is correspondingly flexible and
high-level, and our three verifications (including of the Archetype contract’s compilation to
Michelson) illustrate how this guarantee can be obtained as part of a practical workflow.

17 Sadly no published academic work, but see a linear logic representation by one Rainy McRainface.
18 Details in an Agora post; search for the section on Verification.
19 As per the Archetype README, it provides a single language to describe [a] business logic . . . from

which the different operational versions may be derived.
20 One could argue that the Archetype FA1.2 specification could be relaxed and the formal FA1.2 standard

is also “just” a reflection of the FA1.2 standard into Coq. This is true but misses the point: it wasn’t,
because there was not any need, because the camlCase and Dexter 2 contracts do not exist in the
Archetype implementation/specification ecosystem, because they are written in Morley and CameLIGO
respectively. The point is not expressivity but scope: Archetype’s uniformity and power are available
inside the Archetype toolstack, whereas you can benefit from the formal FA1.2 standard using any
toolstack – provided you add an entry for a Coq wizard to your budget. This is not either/or, but two
complementary approaches in a rich design space.

http://web.archive.org/web/20210512150957/https://runtimeverification.com/blog/erc20-k-formal-executable-specification-of-erc20/
https://github.com/runtimeverification/erc20-semantics
https://archive.softwareheritage.org/swh:1:cnt:6a674dd389a0e8c8b42cb8aa51f63cfbb8e6fb96;origin=https://github.com/edukera/archetype-lang;visit=swh:1:snp:1d57f54c27b3b4300155035e6cf732fb5263bf5f;anchor=swh:1:rev:45153bdbc30609d593699ac7854b9ee97a06d042;path=/contracts/fa12.arl;lines=54
https://dapphub.github.io/LLsai/token
http://web.archive.org/web/20210521093913/https://forum.tezosagora.org/t/a-verified-implementation-of-fa1-2/2264
https://github.com/edukera/archetype-gitbook


M. J. Gabbay, A. Jakobsson, and K. Sojakova 2:13

5.3 Future work
Extending to FA2

The third author is currently extending the development here to the FA2 standard, which is
an update and extension of FA1.2 to allow, amongst other things, multiple token types.21

Property-based testing

We argued in Remark 14 above, and in point 3 of Subsection 1.3, that proofs of FA1.2-
compliance using our methodology are by construction comparable, because they are all Coq
proofs of the same properties – namely, those stated in the formal FA1.2 standard.

This is true, but not the whole story: what if you have a program and you want to test
it? Here, our development is of little direct help.

Contrast with the Edukera specification and ERC-20K, which come bundled with unit
tests which are visibly more portable (we are not aware of the Edukera tests having been
made available as a separate portable entity, but the test suite could presumably be ported).

It would be helpful for future work to extend the formal FA1.2 standard to a library of
unit tests, or property-based testing properties, against which a prototype smart contract
could be plugged, before going to the trouble of running the workflow described in Section 3.

Accessibility

For sheer accessibility, the work in this paper falls far short of a tool like the ERC20 token
verifier, which will test your bytecode online for compliance with the ERC20 token standard
while U wait [5], subject to significant restrictions on the code.22

To the extent that these restrictions map from ERC20 to FA1.2, they do not apply to
the work reported in this paper, and we see here the usual trade-off between ease-of-use and
power (i.e. between price and performance). Which we prefer depends on our use case.

We could certainly envisage future work in which such a tool is created for FA1.2, based
on a test-suite automatically derived from our Coq development. One could even imagine a
tool which inputs a Coq specification (like the formal FA1.2 standard) and outputs an online
test-suite, thus combining the rigour of Coq with the accessibility of an online testing suite.
It is early days in this technology and there is much scope for innovation.

6 Conclusion

Having dependable token ledgers is absolutely necessary for the Tezos blockchain. Because
of the blockchain’s modular and updatable architecture, such ledgers are not primitive to
the blockchain kernel, and therefore must be coded as smart contracts.23

Several ledger implementations exist, both live and deployed (ETHtz, USDtz, and tzBTC)
and prototypical (camlCase, Edukera, and Dexter 2 by the LIGO lang team).

Smart contracts for ledgers are by design intended to handle real value – and once
deployed they may be impossible to change or update. Users may lose money if mistakes
are made, and also any failures may be perceived as reflecting poorly on the parent Tezos

21 See Tezos Improvement Proposal 12 (TZIP-12) and the Tezos Developer Portal FA2 documentation.
22 For instance: functions not in the ERC20 standard are ignored – which might sound innocuous but

it is not, since without extra functions we might as well use a well-tested smart contract off-the-shelf.
Similarly, the tool does not support external function calls or loops.

23 This is just one small facet of the general fact that innovation in financial technology would benefit
from any and all techniques to produce scalable, reliable smart contracts.

FMBC 2021

https://erc20.fireflyblockchain.com
https://erc20.fireflyblockchain.com
http://web.archive.org/web/20210801144248/https://erc20.fireflyblockchain.com/disclaimer.html
https://ethtz.io/
https://usdtz.com/
https://tzbtc.io/
https://gitlab.com/tzip/tzip/-/blob/master/proposals/tzip-12/tzip-12.md
https://web.archive.org/web/20210512095205/https://tezos.b9lab.com/fa2/


2:14 The Formal FA1.2 Ledger Standard

blockchain.24 Therefore, the standards for safety and correctness for this class of program
are exceedingly high, not only in the sense that the programs should be right, but also that
what “being right” means should be described with clarity and precision.

In particular, it is in the blockchain’s best interests that validation of ledger implementa-
tions be made as modular as possible, so that proofs and proof-architectures can be reused
and presented uniformly and reliably.
▶ Remark 14. Before this research, there was an English standard called “the FA1.2 standard”,
and multiple implementations whose correctness was unknown. If they were verified (as is
the case for the Edukera contract) there was still no way to systematically say what passing
that verification meant compared e.g. against another verification by another team working
to another interpretation of the English standard.

After this research, we have refined FA1.2 to a precise software artefact in Coq, and
verified three implementations against this. Thus they are proven correct, in the same way,
with respect to the same notion of correctness.

This development is visibly modular and systematic. Furthermore, the implementations
and the standard have both been refined through the detection and elimination of some
potentially dangerous corner cases. We think it can be considered a success.

We hope the ideas in this paper may serve as a model for future research and development.

References
1 Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A Survey of Attacks on Ethereum

Smart Contracts (SoK). In Matteo Maffei and Mark Ryan, editors, Principles of Security
and Trust, pages 164–186, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg. doi:10.1007/
978-3-662-54455-6_8.

2 Bruno Bernardo, Raphaël Cauderlier, Zhenlei Hu, Basile Pesin, and Julien Tesson. Mi-Cho-
Coq, a Framework for Certifying Tezos Smart Contracts. In Formal Methods. FM 2019
International Workshops – Porto, Portugal, October 7–11, 2019, Revised Selected Papers,
Part I, volume 12232 of Lecture Notes in Computer Science, pages 368–379. Springer, 2019.
doi:10.1007/978-3-030-54994-7_28.

3 L.M. Goodman. Tezos – a self-amending crypto-ledger, 2014. URL: https://tezos.com/
whitepaper.pdf.

4 Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. Finding
The Greedy, Prodigal, and Suicidal Contracts at Scale. In Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC ’18, page 653–663, New York, NY, USA,
2018. Association for Computing Machinery. doi:10.1145/3274694.3274743.

5 Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Roşu. A Formal
Verification Tool for Ethereum VM Bytecode. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2018, page 912–915, New York, NY, USA, 2018. Association
for Computing Machinery. doi:10.1145/3236024.3264591.

24 . . . which may find itself blamed even if the smart contract was created by a third party.

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-030-54994-7_28
https://tezos.com/whitepaper.pdf
https://tezos.com/whitepaper.pdf
https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1145/3236024.3264591


Using Coq to Enforce the
Checks-Effects-Interactions Pattern in DeepSEA
Smart Contracts
Daniel Britten #

The University of Waikato, Hamilton, New Zealand

Vilhelm Sjöberg #

CertiK, New York, NY, USA

Steve Reeves #

The University of Waikato, Hamilton, New Zealand

Abstract
Using the DeepSEA system for smart contract proofs, this paper investigates how to use the Coq
theorem prover to enforce that smart contracts follow the Checks-Effects-Interactions Pattern. This
pattern is widely understood to mitigate the risks associated with reentrancy. The infamous “The
DAO” exploit is an example of the risks of not following the Checks-Effects-Interactions Pattern. It
resulted in the loss of over 50 million USD and involved reentrancy – the exploit used would not
have been possible if the Checks-Effects-Interactions Pattern had been followed.

Remix IDE, for example, already has a tool to check that the Checks-Effects-Interactions Pattern
has been followed as part of the Solidity Static Analysis module which is available as a plugin.
However, aside from simply replicating the Remix IDE feature, implementing a Checks-Effects-
Interactions Pattern checker in the proof assistant Coq also allows us to use the proofs, which are
generated in the process, in other proofs related to the smart contract.

As an example of this, we will demonstrate an idea for how the modelling of Ether transfer
can be simplified by using automatically generated proofs of the property that each smart contract
function will call the Ether transfer method at most once (excluding any calls related to invoking
other smart contracts). This property is a consequence of following a strict version of the Checks-
Effects-Interactions Pattern as given in this paper.

2012 ACM Subject Classification Security and privacy → Logic and verification; Computer systems
organization → Distributed architectures

Keywords and phrases smart contracts, formal methods, blockchain

Digital Object Identifier 10.4230/OASIcs.FMBC.2021.3

Category Short Paper

Supplementary Material Software (Source Code): https://github.com/Coda-Coda/deepsea-1/
tree/fmbc-2021; archived at swh:1:dir:85ea91f0b51380b40bf760195c03a5564d195993

Acknowledgements I (Daniel Britten) want to thank the University of Auckland and Associate
Professor Jing Sun for kindly hosting me during this research.

1 Introduction

The importance of smart contracts being correct has been voiced many times, most obviously
because of the high financial risk associated with a smart contract being incorrect and
exploited (such as “The DAO” [8] and others [1, 7, 9]) which all involved the use of what we
will refer to as malicious reentrancy.

Reentrancy involves a smart contract C that triggers the execution of code of another
smart contract D which then calls a function in the original smart contract C before the
original execution of C has completed. However, when not handled properly, reentrancy can

© Daniel Britten, Vilhelm Sjöberg, and Steve Reeves;
licensed under Creative Commons License CC-BY 4.0

3rd International Workshop on Formal Methods for Blockchains (FMBC 2021).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 3; pp. 3:1–3:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:db130@students.waikato.ac.nz
https://orcid.org/0000-0002-7860-3595
mailto:vilhelm.sjoberg@certik.io
mailto:stever@waikato.ac.nz
https://orcid.org/0000-0002-3840-6060
https://doi.org/10.4230/OASIcs.FMBC.2021.3
https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021
https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021
https://archive.softwareheritage.org/swh:1:dir:85ea91f0b51380b40bf760195c03a5564d195993;origin=https://github.com/Coda-Coda/deepsea-1;visit=swh:1:snp:a42a746dc167f9124e7f54e04261c6f2b1081803;anchor=swh:1:rev:1fd048a2d97195023e0cc2548931ecd17739f476
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


3:2 Enforcing Checks-Effects-Interactions in DeepSEA

cause a smart contract to behave incorrectly and be exploited. This happens with malicious
reentrancy, which maliciously exploits the situation that the original execution of C has not
completed.

This issue can be mitigated by following the Checks-Effects-Interactions Pattern which
suggests that a smart contract should first do the relevant Checks, then make the relevant
internal changes to its state (Effects), and only then interact with other smart contracts
which may well be malicious. When following the Checks-Effects-Interactions Pattern a
reentrant call is essentially no different to a call that is initiated after the first call is finished
so no additional risk from malicious reentrant calls is possible.

On the Ethereum blockchain, interacting with a malicious smart contract is even possible
when transferring Ether. This is because if the recipient is a smart contract then it has the
opportunity to run some code on receiving funds.

The problem with all this is that the modelling of smart contract execution when there is
the possibility of reentrancy is difficult and the related correctness proofs would be complex
as well. Even modelling the humble Ether transfer needs to take the possibility of reentrancy
into account.

Using the DeepSEA [2] system for proofs about smart contract correctness, a method
of enforcing the Checks-Effects-Interactions Pattern has been developed. Enforcing the
Checks-Effects-Interactions Pattern greatly simplifies the modelling of any action that might
involve external calls (including Ether transfers).

Tangibly, enforcing the Checks-Effects-Interactions Pattern means that the DeepSEA
code for a smart contract function shown on the left (Listing 1) should not be permitted and
the code shown on the right (Listing 2) should be allowed.

Listing 1 “Unsafe” function.

let unsafeExample() =
transferEth(msg_sender, 0u42);
transferSuccessful := true

Listing 2 “Safe” function.

let safeExample() =
transferSuccessful := true;
transferEth(msg_sender, 0u42)

The end result of the work in this paper is a system which automatically proves that
the Checks-Effects-Interactions Pattern has been followed for most cases when it indeed has
been, although there are some cases where the Checks-Effects-Interactions Pattern has been
followed but this system cannot prove it, as a compromise for automation. A related result
is then used to demonstrate an idea for simplifying the modelling of Ether transfers.

The main contributions of this paper are as follows:

A Coq [3] proposition formalising the notion of a smart contract function following the
Checks-Effects-Interactions Pattern. This is discussed in Subsection 2.4.

Automated proofs related to the previous contribution as well as related automated
proofs that the lists of transfers (that are directly generated by the smart contract) after
function calls are of length at most one. See Section 3 and Section 4 respectively.

A demonstration of an idea for simplifying the modelling of what states are reachable by
a smart contract by making use of some of these automated proofs (Section 4).



D. Britten, V. Sjöberg, and S. Reeves 3:3

2 Representing the absence of reentrancy situations as a proof goal

2.1 The DeepSEA system
All the modelling and proofs in the paper make use of the DeepSEA system for smart contract
proofs. DeepSEA [2] is an up and coming framework and smart contract language that
promises to provably link high-level specifications in Coq [3] to Ethereum Virtual Machine
(EVM) bytecode. This will give a high degree of certainty that results proven about the
high-level specifications also hold for the bytecode. The DeepSEA compiler is based upon
the CompCert verified compiler [5].

2.2 The Checks-Effects-Interactions Pattern
The Checks-Effects-Interactions Pattern suggests that a smart contract should follow a
pattern in which calls to external contracts are always the last step [12].

When following the CEIP, nested calls are equivalent to calls invoked one after another as
nested calls cannot influence the outcome of the original call (excluding considering gas). This
enables a simpler model than completely modelling reentrancy with co-recursive functions.
The simpler model is considered to be equivalent to a complete model in terms of modelling
what states are reachable and we rely on an informal knowledge for this. Ideally, we would
like to model reentrancy foundationally making use of the EVM semantics and then prove
that the simple model is equivalent to the more complex model in the case where the CEIP
is followed.

In this paper, a stricter version of the Checks-Effects-Interactions Pattern is used where
only one Interaction is permitted. This eliminates modelling complications in the situations
where two external calls are done but the first one turns out to throw an error. It is virtually
impossible to know, when modelling, whether an arbitrary external call will throw an error,
particularly due to the possibility of gas being exhausted.

This strict version of the Checks-Effects-Interactions Pattern will now simply be referred
to as the CEIP.

2.3 Relevant aspects of the DeepSEA system
Listing 3 shows the same DeepSEA smart contract function in different representations.

The intermediate level and high level representation are both generated automatically from
the DeepSEA source. First, the intermediate level abstract syntax tree in Coq is generated
from the source. The denotational semantics of the AST gives the high level representation
(by the synth_stmt_spec_opt Coq function as a part of the DeepSEA system). The AST for
each function contains the relevant information required to formulate the notion of whether
the function adheres to the CEIP. The inductive proposition described in the next section
makes use of the intermediate level AST representation.

2.4 Coq Inductive Proposition: cmd_constr_CEI_pattern_prf

The typing rule (Figure 1) corresponds to the definition of cmd_constr_CEI_pattern_prf
which is an inductive proposition in Coq capturing the notion of a function following the
CEIP. The typing rule is based upon the syntax of the smart contract as represented in the
DeepSEA intermediate level language. It uses the assumption that reentrancy is only possible
when certain syntax, such as CCtransfer is encountered. CCtransfer is the intermediate
level language construct corresponding to a transferEth call. The ○ icon indicates that the
contract cannot in any way have triggered reentrancy yet and the ○ icon indicates that

FMBC 2021



3:4 Enforcing Checks-Effects-Interactions in DeepSEA

Listing 3 “Safe” function in different representations with similarities highlighted.

DeepSEA smart contract source code (not Coq):
let safeExample() =

transferSuccessful := true ;
transferEth (msg_ sender , 0u 42 )

DeepSEA intermediate level language in Coq:
(CC sequence
(CCstore

(LCvar Contract_ transferSuccessful := true _var)
(ECconst_int256 tint_bool true Int256.one))

(CC transfer
(@ECbuiltin0 _ _ _ builtin0_ caller _impl)
(ECconst_int256 tint_U (Int256.repr 42 _var))
(Int256.repr 42 ))))

DeepSEA high level language in Coq:
(get;;
MonadState.modify (update_Contract_ transferSuccessful true )) ;;
d <- get;;
(let (success, d') :=
me_ transfer me (me_ caller me) (Int256.repr 42 ) d in
if Int256.eq success Int256.one then put d' else mzero)

reentrancy may have been triggered by that point (and so no unsafe commands such as
writing to storage should be allowed after that point). The ○ icon would indicate a contract
that is vulnerable to malicious reentrancy but does not occur in the typing rule as the rule
defines what is safe.

The transfer related rule in Coq is shown in Listing 4. The notion that at most one external
call is allowed is captured by the fact that the proof requires the state Safe_no_reentrancy
(○) beforehand. Due to the transfer the contract is then in a state where reentrancy may
have occurred and this is captured by the state Safe_with_potential_reentrancy (○).

In Listing 5 we define that if the body of a for loop stays at state ρ (either ○ or ○) then
the for loop as a whole is also defined to stay at state ρ.

The remaining definitions are available in the GitHub repository1. This defines what
it means for a DeepSEA smart contract function to follow the CEIP. To be precise, if
cmd_constr_CEI_pattern_prf can be proven for a given function then that function follows
the CEIP.

A drawback of this formulation is that interrelated if statements are not able to be
reasoned about. If the logical content of interrelated if statements made it possible to know
the CEIP was indeed followed, this formulation would not allow those functions to be proved
to be safe. This does however simplify proof automation. An alternative approach which
made use of the high level representation of the smart contract was also explored. This
“instrumented semantics” approach added reentrancy state tracking to the semantics of
DeepSEA, and as a result is able to reason about interrelated if statements. This alternative
approach still assumes specific syntactic elements correspond to the possibility of causing
reentrancy.

1 https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021 – See README for the specific files
relevant to this paper.

https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021


D. Britten, V. Sjöberg, and S. Reeves 3:5

Figure 1 Typing rule for a command that adheres to the CEIP, corresponding to the Coq
inductive proposition cmd_constr_CEI_pattern_prf. (Some rarely used rules have been omitted).
ρx ∈ {○, ○}.

{ρ} skip {ρ}
{ρ1} c1{ρ2} {ρ2} c2 {ρ3}
{ρ1} let x = c1 in c2 {ρ3} {○} load {○} {○} e1 := e2 {○}

{ρ1} c1{ρ2} {ρ2} c2{ρ3}
{ρ1} c1 ; c2 {ρ3}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{○} ctrue{○} {○} cfalse{○}
{○} if e1 then ctrue else cfalse {○}

{ρ} c {ρ}
{ρ} for e1 to e2 do c {ρ}

{ρ1} function {ρ2}
{ρ1} function call {ρ2}

{○} transferEth(e1, e2) {○}
{ρ} c {ρ}

{ρ} assert c {ρ}
{ρ} c {ρ}

{ρ} deny c {ρ}

Listing 4 Defining CEIP adherence for CCTransfer.

| CCCEIPtransfer :
forall e1 e2,
cmd_constr_CEI_pattern_prf
_ (* Infer the return type *)
Safe_no_reentrancy (* ○ *)
(CCtransfer e1 e2) (* Typically related to a 'transferEth' call. *)
Safe_with_potential_reentrancy (* ○ *)

(* After, the possibility of reentrancy is noted. *)

Listing 5 Defining CEIP adherence for CCFor.

| CCCEIPfor :
forall {ρ} id_it id_end e1 e2 c,
cmd_constr_CEI_pattern_prf _ ρ c ρ

(* Given a command that stays at state ρ *)
-> cmd_constr_CEI_pattern_prf _ ρ (CCfor id_it id_end e1 e2 c) ρ

(* Then the for loop as a whole stays at state ρ *)

FMBC 2021



3:6 Enforcing Checks-Effects-Interactions in DeepSEA

Listing 6 Coq tactic to prove adherence to the CEIP.

Ltac CEI_auto :=
repeat (

reflexivity
+ typeclasses eauto
+ eapply CCCEIPskip + eapply CCCEIPlet + eapply CCCEIPload
+ eapply CCCEIPfor + eapply CCCEIPtransfer + ... ).

Another drawback (with both approaches) is that other techniques to manage reentrancy
issues such as locks are not considered to be safe by these methods, even when they may
have been used in a way which is safe. On the other hand, this does simplify modelling by
only needing to consider cases equivalent to when no reentrancy occurs.

3 Automatically proving the absence of reentrancy situations

Now that we have defined the notion of a smart contract following the CEIP the goal is to
automatically prove this for every function that does indeed follow the CEIP (or at least,
most). The automation will be carried out by Coq tactics.

The tactic, partially shown in Listing 6, will repeatedly apply the constructors from
the cmd_constr_CEI_pattern_prf definition along with resolving certain typeclass goals auto-
matically. The + used to combine the tactics is critical to ensure the tactic backtracks as
necessary because sometimes it is not the first matching constructor that is relevant.

See GitHub2 for the full definitions of all the tactics involved. The proofs are done
automatically and provide the user with an error if they fail (which would likely indicate the
CEIP was not followed).

4 Simplifying the modelling of Ether transfer

The fact that we are following the CEIP simplifies the modelling of Ether transfer due to
the fact that nested calls can be considered to be called one after another as no nested calls
can influence the outcome of the original call (excluding gas considerations), as discussed in
Section 2.2. This means that when considering what states are reachable it is sound to treat
the transfer as only affecting Ether balances and ignore any other potential state changes.
Also, since we are following the strict version of the CEIP we know that there is at most one
call to transferEth which further simplifies the modelling.

When modelling Ether transfer in DeepSEA, at the end of a smart contract function
call a list of transfers is produced and the modelled overall balances need to be updated
based upon that list. If the list contains more than one element, how the balances should
be updated is unclear due to the possibility of reentrancy having occurred. This is where
a proof that only one transfer at most was directly generated is particularly useful. Coq
allows us to pass this proof as an argument to our definition and use it to discharge the case
where the list is longer than one element, as shown in Listing 7. This is greatly useful for
simplifying the modelling by allowing us to demonstrate to Coq that we do not need to model
reentrancy related to multiple transfers. If we did not have the proof we would be stuck

2 https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021 – See README for the specific files
relevant to this paper.

https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021


D. Britten, V. Sjöberg, and S. Reeves 3:7

Listing 7 Updating balances for a list of length at most one.

Program Definition update_balances_from_transfer_list transfers
( length_evidence : length transfers <= 1 ) previous_balances a :=

match transfers with
| [] => previous_balances a
| [t] => update_balances_from_single_transfer contract_address

(recipient t) (amount t) previous_balances a
| (h :: i :: t) as l => _ (* Coq allows us to discharge this case. *)

end.
Next Obligation. (* This is the case where transfers = h :: i :: t *)
intros.
exfalso. (* There is an impossible situation. *)
rewrite <- Heq_transfers in length_evidence. simpl in length_evidence. lia.

Defined.

with either truncating the list (which would be inaccurate) or assuming all the transfers took
place with no reentrancy (which would also be inaccurate and leave the supposedly proven
correct contract open to potential malicious reentrancy).

The relevant proofs that each smart contract function directly generates at most one
transfer are similar to the proofs about the CEIP being followed in the sense that the
DeepSEA inv_runStateT_branching tactic considers all branches of code execution like done
by the CEI_auto tactic (Listing 6).

This technique simplifies the modelling of Ether transfer without leaving the door open
for malicious reentrancy. The proofs are automated, only requiring the DeepSEA smart
contract programmer to follow the strict version of the CEIP.

5 Related Work

A number of other tools aim to tackle the problem of reentrancy, such as [4, 6, 10] and [11].
This work is unique in that it explicitly makes use of proofs related to the CEIP in simplifying
modelling smart contracts. It also is a step towards a smart contract proof system that
uniquely targets the EVM as well as allowing proofs to be done on a high-level representation
of the smart contract with strong guarantees that the properties proven about the high-level
representation will also apply to the EVM bytecode.

6 Conclusion

This paper discusses an approach for representing and automatically proving that DeepSEA
smart contracts follow the CEIP (code available on GitHub3). This is demonstrated by
defining an inductive proposition in Coq that states that a particular smart contract function
follows the CEIP. A proof that each smart contract function calls the Ether transfer function
at most once is also discussed. An application of these proofs to simplify the modelling of
Ether transfer is then discussed.

3 https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021 – See README for the specific files
relevant to this paper.

FMBC 2021

https://github.com/Coda-Coda/deepsea-1/tree/fmbc-2021


3:8 Enforcing Checks-Effects-Interactions in DeepSEA

References
1 Lucas Campbell. DeFi platform dForce hacked for $25m - ERC777 reentrancy attack. https:

//defirate.com/dforce-hack/. (Accessed on 23 May 2021).
2 CertiK Foundation. DeepSEA. https://github.com/certikfoundation/deepsea. (Accessed

on 23 May 2021).
3 The Coq Development Team. The Coq proof assistant. https://coq.inria.fr/. (Accessed

on 23 May 2021).
4 Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analysis framework for smart

contracts. In 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB), pages 8–15. IEEE, 2019.

5 Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and
Christian Ferdinand. CompCert – a formally verified optimizing compiler. In ERTS 2016:
Embedded Real Time Software and Systems, 8th European Congress, 2016. URL: https:
//hal.inria.fr/hal-01238879.

6 Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart
contracts smarter. Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016.

7 Alex Manuskin. Living in a lego house: The imBTC DeFi hack explained. https://www.
zengo.com/imbtc-defi-hack-explained/. (Accessed on 23 May 2021).

8 Muhammad Izhar Mehar, Charles Louis Shier, Alana Giambattista, Elgar Gong, Gabrielle
Fletcher, Ryan Sanayhie, Henry M. Kim, and Marek Laskowski. Understanding a Revolutionary
and Flawed Grand Experiment in Blockchain: The DAO Attack. Journal of Cases on
Information Technology, 21(1):19–32, 2019.

9 David Oz Kashi. The reentrancy strikes again – The case of Lendf.Me. https://valid.
network/post/the-reentrancy-strikes-again-the-case-of-lendf-me. (Accessed on 23
May 2021).

10 Remix. Remix – Ethereum IDE. https://remix.ethereum.org/. (Accessed on 23 May 2021).
11 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken

Chan Guan Hao. Safer smart contract programming with Scilla. Proceedings of the ACM on
Programming Languages, 3(OOPSLA):1–30, 2019.

12 Maximilian Wohrer and Uwe Zdun. Smart contracts: security patterns in the Ethereum
ecosystem and solidity. In 2018 International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), pages 2–8. IEEE, 2018.

https://defirate.com/dforce-hack/
https://defirate.com/dforce-hack/
https://github.com/certikfoundation/deepsea
https://coq.inria.fr/
https://hal.inria.fr/hal-01238879
https://hal.inria.fr/hal-01238879
https://www.zengo.com/imbtc-defi-hack-explained/
https://www.zengo.com/imbtc-defi-hack-explained/
https://valid.network/post/the-reentrancy-strikes-again-the-case-of-lendf-me
https://valid.network/post/the-reentrancy-strikes-again-the-case-of-lendf-me
https://remix.ethereum.org/


Formally Documenting Tenderbake
Sylvain Conchon
Nomadic Labs, Paris, France

Alexandrina Korneva
Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190, Gif-sur-Yvette, France

Çagdas Bozman
Functori, Paris, France

Mohamed Iguernlala
Functori, Paris, France

Alain Mebsout
Functori, Paris, France

Abstract
In this paper, we propose a formal documentation of Tenderbake, the new Tezos consensus algorithm,
slated to replace the current Emmy family algorithms. The algorithm is broken down to its essentials
and represented as an automaton. The automaton models the various aspects of the algorithm: (i)
the individual participant, referred to as a baker, (ii) how bakers communicate over the network
(the mempool) and (iii) the overall network the bakers operate in. We also present a TLA+
implementation, which has proven to be useful for reasoning about this automaton and refining
our documentation. The main goal of this work is to serve as a formal foundation for extracting
intricate test scenarios and verifying invariants that Tenderbake’s implementation should satisfy.

2012 ACM Subject Classification Software and its engineering → Formal methods

Keywords and phrases Consensus algorithm, Tezos blockchain, TLA+

Digital Object Identifier 10.4230/OASIcs.FMBC.2021.4

Category Short Paper

Supplementary Material Model (Source Code): https://www.lri.fr/~conchon/tenderbake/
Tenderbake.tla

1 Introduction

Tenderbake is a new consensus algorithm designed by Nomadic Labs for the Tezos block-
chain [5]. Tenderbake participates in the blockchain protocol to ensure that all peers reach
agreement on the state of the distributed ledger. Essentially, the algorithm ensures that all
participants record the same blocks, in the same order, in their local copy of the blockchain.

Like Tezos’s current Emmy family protocols, Tenderbake is a Byzantine Fault-Tolerant
(BFT) algorithm that can tolerate (a limited number of) malicious machine failures on an
aynchronous network. The main advantage of Tenderbake is related to block finality, i.e.,
the point at which the parties involved can consider the consensus on adding a block to
be complete. More precisely, this is the moment when it becomes impossible to go back or
modify a block that has been added to the blockchain. Unlike the probabilistic finality of
Emmy algorithms, where the probability that a block will eventually belong to the blockchain
increases with the number of blocks added in front of it, Tenderbake allows for an almost
immediate finality: a block is considered to belong to the chain when only two blocks are
added after it. This new consensus algorithm technology is inspired by PBFT (practical
Byzantine Fault-Tolerant) protocols [4] like Tendermint [1, 3] in the Cosmos project [6].

© Sylvain Conchon, Alexandrina Korneva, Çagdas Bozman, Mohamed Iguernlala, and Alain Mebsout;
licensed under Creative Commons License CC-BY 4.0

3rd International Workshop on Formal Methods for Blockchains (FMBC 2021).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 4; pp. 4:1–4:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.FMBC.2021.4
https://www.lri.fr/~conchon/tenderbake/Tenderbake.tla
https://www.lri.fr/~conchon/tenderbake/Tenderbake.tla
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


4:2 Formally Documenting Tenderbake

To achieve such a finality result, Tenderbake implements a three-phase PBFT protocol:
a proposal phase where a single participant (called baker) proposes a new block, and two
successive voting phases (called preendorsement and endorsement) at the end of which a
quorum of votes must be reached on the proposed block. If a consensus is reached, each
participant adds the proposed block locally to their blockchain and a new instance of the
algorithm can then start for the next block (referred to as the next level in Tezos). However,
this idyllic scenario can fail for many reasons. For example, Byzantine participants can inject
fake blocks or fake votes. The consensus can also fail even in the absence of participant
failure because blocks and votes, which are sent as messages, can be arbitrarily delayed or
lost by the network. In this case, a new round of proposals/votes is launched, possibly with
a new block issued by another participant.

Tenderbake implements several mechanisms to avoid Byzantine attacks or asynchrony-
related problems to guarantee the correctness of the consensus. For instance, a synchronization
mechanism is required for each participant to decide that a round of proposals/votes is
over. For this purpose, Tenderbake implements a partially synchronous system, where
participants synchronize without exchanging messages, by exploiting their internal clocks
and the information stored in the blockchain. As another example, cryptographic certificates
about the (pre)endorsing majority are injected into blocks to prevent Byzantine attacks.

Designing and implementing a consensus algorithm like Tenderbake is notoriously chal-
lenging. While a very precise proof-and-paper description of this algorithm has been given
in [2], we propose in this paper a TLA+ modeling of Tenderbake. To do this, we break
down the algorithm to its essentials and represent bakers’ roles as an automaton. We also
abstract the notion of time, but retain a synchronization mechanism that allows the drift
of participants’ clocks to be simulated. We do not sacrifice any of the more subtle features
of Tenderbake’s implementation, like how the protocol is handled by both the mempool (a
more sophisticated gossip layer) and the bakers themselves.

The main goal of our work is to provide a formal executable documentation of Tenderbake
that will serve as a basis for extracting complex test scenarios and invariants that the
Tenderbake implementation must satisfy. So far, our TLA+ automaton has proven useful for
reasoning and exchanging with the developers of the actual implementation. The TLA+ model
is available at https://www.lri.fr/~conchon/tenderbake/.

2 Tezos Architecture

Tezos forms a Peer-to-peer network in which peers, called nodes, are interconnected and
communicate by message passing. Nodes implement the core algorithms and data structures
of the blockchain. They are composed of a Peer-to-peer layer (P2P), validators (which use
the rules of the economic protocol to check blocks and operations), a distributed database
(DDB), and a specific data structure for pending operations, called the Mempool.

Nodes continuously run a gossip protocol to communicate and exchange blockchains
(complete or just head blocks) with each other. Each node maintains in the Mempool the
best version of the blockchain that it has received. Nodes do not communicate plain messages
directly, but only a hash value of them. When a node receives a hash, it checks if this
value is already stored in its DDB before saving it. The role of the DDB is to maintain a
correspondance between hash keys and the plain values associated with them. For that, as a
parallel task, the DDB fetches data (of which only the hash is known) from the node’s peers,
and, conversely, responds to similar peers’ requests by providing them with the requested
data. When the DDB gets a response, it transmits to the Mempool the plaintext values that
correspond to blocks, transactions, or votes.

https://www.lri.fr/~conchon/tenderbake/


S. Conchon, A. Korneva, Ç. Bozman, M. Iguernlala, and A. Mebsout 4:3

Tezos architecture – simplified view
NODE

P2
P

Mempool

BAKER

WORKER
Blockchains

Votes

• The baker gets the first two blocks
from the Mempool 

• The baker implements the 
consensus rounds to decide 
whether to vote on the current 
head or not

• The worker gets the votes from the 
Mempool and checks potential 
quorums

NETWORK

• Communicates and exchanges
blockchains (complete and heads) with 
other nodes

• Maintains the best version of the 
blockchain that it has received (fitness)  

• Passes on votes 

6

Va
lid

at
or

DDB

Figure 1 Tezos general architecture.

In this architecture, shown in Figure 1, bakers are not directly visible on the network.
For security reasons, they only communicate with each other through the nodes they are
connected to (which we refer as the node of the baker). The role of a baker is to produce
proposal blocks and to vote for the head blocks of the blockchain stored in its node’s Mempool.
For that, a baker gets the first two blocks of the blockchain from the Mempool (via a Remote
Procedure Call mechanism – RPC) and it implements the consensus rounds of Tenderbake
to decide whether to vote on the current head or not. A baker is also composed of a worker
running in parallel, whose role consists of getting the votes from the Mempool (via RPC)
and checking for potential quorums.

This modular, secure and highly parallel architecture raises several issues when imple-
menting a PBFT algorithm like Tenderbake. First, while a Baker is voting on a specific
blockchain head, the Mempool can receive a new proposal and decide to change its head.
This means that everything needs to be resynchronized for the baker and the worker to vote
or get a quorum on the current head. Secondly, Tezos has been designed to be agnostic to the
consensus algorithm used to produce blocks. As a consequence, the rules of the Tenderbake
algorithm are abstract, so it is important to make sure that the Mempool has access to all
necessary information needed to choose the best blockchain. Last, bakers combine timestamp
information stored in the blocks and their current clock to know how long before a round
timeout is triggered. Since each baker has their own clock, this can lead to clock drift, to
which the protocol must be resistant.

Finally, the communication mechanism between components involves RPC (Worker/Mem-
pool and Baker/Mempool) and streams of events (Worker/Baker). To simplify our modeling,
we approximate these communications through a shared memory mechanism and leave the
modeling of a communication layer closer to the implementation to future work.

3 Tenderbake Automaton

In this section, we describe the Tenderbake consensus formally, for a set of participants
BAKERS. Contrary to the implementation in Tezos, where participants change at each level,
we assume that this set is fixed. Each individual participant (baker) runs the same automaton.
We explain how this automaton is implemented in TLA+ in Section 4.

The automaton is given in Figure 2. It represents the evolution of a baker’s state and the
actions performed by this baker in the three possible consensus phases. In the rest of this
section, we give a description of the local state maintained by an arbitrary baker i and we
detail the transitions of this automaton using a rudimentary guarded command language.

Notations. By convention, the internal variables of the baker i are denoted by capital
letters associated with an index i. Thus, Xi represents the internal variable X of i. We
use lowercase letters for parameters. Certain variables are option variables, meaning that

FMBC 2021



4:4 Formally Documenting Tenderbake

NP

CP CE

Preendorsement 
QuorumProposal

Proposal

Endorsement 
Quorum

Endorsement 
Quorum

TimeoutTimeout

Timeout

Figure 2 Tenderbake automaton.

ProposalCHi = (B, _)
NodeCHi = (H, PRE)

¬TOi ∧ B ̸= H −→
let{ℓ; r; p; pqc; eqc} = H in

B.ℓ < ℓ −→
RNDi := TICKi − (PRE.t + 1)
LOCKEDi := −; PQCi := −; ELECTi := −
CHi := (H, PRE)
PQCi := pqc
RNDi = r −→ PEi := PreEndorse(i, ℓ, r, b)

ℓ = B.ℓ ∧ r < RNDi ∧ B.r < r −→
CHi := (H, PRE)
PQCi.r? < pqc.r? −→ PQCi := pqc

ℓ = B.ℓ ∧ r = RNDi ∧ (r ̸= B.r ∨ p = B.p) −→
CHi := (H, PRE)
PQCi.r? < pqc.r? −→ PQCi := pqc
LOCKEDi = − ∨ LOCKEDi.p = p ∨
(pqc ̸= − ∧ LOCKEDi.r ≤ pqc.r) −→

PEi := PreEndorse(i, ℓ, r, p)

Figure 3 Receiving a proposal.

Trigger Timeout
¬TOi ∧
(∀j, k.j ̸= k =⇒ |TICKj − TICKk| ≤ ∆) ∧
(∀j.j ̸= i =⇒ |TICKi + 1 − TICKj | ≤ ∆) −→

TOi := true;
TICKi := TICKi + 1;

Figure 4 Trigger timeout oracle.

Not Proposer
CHi = (B, _)

TOi ∧ ¬ isP roposerNextRound(i) ∧
¬ isP roposerNextLevel(i) −→

TOi := false
RNDi := RNDi + 1

Proposer Next RoundCHi = (B, P)

TOi ∧ isP roposerNextRound(i) ∧
¬ isP roposerNextLevel(i) −→

TOi := false
RNDi := RNDi + 1
let p, pqc, P =

if (PQCi = −) then (ε, −, P)
else (PQCi.p, PQCi, PQCi.pred) in

let b = {B with t = TICKi; r = RNDi; p; pqc} in
Pi := Propose(i, (b, P ))

Proposer Next Level
CHi = (B, _)

TOi ∧ isP roposerNextLevel(i) −→
TOi := false
let b = {ℓ = B.ℓ + 1; t = TICKi; p = ε;

r = RNDi − ELECTi.b.r;
eqc = ELECTi.q; pqc = −} in

RNDi := RNDi + 1
Pi := Propose(i, (b, ELECTi.b))

Figure 5 A baker’s possible actions once
timeout has been reset.

they can have a value or not. Not having a value is denoted by the symbol -. When
comparing variables, X? means that X is an option variable and can therefore be empty.
By convention, empty variables are (strictly) less than non-empty variables. We stick to
conventional message passing notation where m(x1, . . . , xk)? stands for the reception of a
message m with parameters x1, . . . , xk, and m(v1, . . . , vk)! is the asynchronous broadcast of
m with v1, . . . , vk as arguments. Note that when a baker broadcasts a message, he does not
send it to himself.

Baker’s state. As shown in Figure 2, our automaton has three distinct states, which
correspond to the possible phases of the consensus algorithm: NP for Non Proposer, CP for
Collecting Preendorsements, and CE for Collecting Endorsements. In addition to this control
flow information, a baker i maintains a copy of the blockchain in a variable CHi. Since only
the two head blocks of the blockchain are needed for the consensus algorithm, CHi contains
a pair of blocks (B, P), where B is the head block of the blockchain and P its predecessor. A
block is represented by a record { ℓ; r; t; p; eqc; pqc }, where each component is accessible
via the standard record access notation (e.g. B.r). The role of each of these components is
summarized in Figure 6.

In addition to the two head blocks stored in CHi, a baker maintains his current consensus
round in RNDi. For safety reasons, a baker must also keep track of the block he voted
for, in variable LOCKEDi and for which a preendorsement voting quorum was observed.



S. Conchon, A. Korneva, Ç. Bozman, M. Iguernlala, and A. Mebsout 4:5

ℓ level of the block in the blockchain;
r consensus round during which the block was proposed;
t timestamp of when the block was proposed;
p block’s payload - i.e. contents without consensus operations;

pqc preendorsing majority certificate with the round when
it was observed;

eqc endorsing majority certificate for the previous block.

Figure 6 Block structure.

Initial state for Baker i Init. state for Mempool

CHi = (G, G) NodeCHi = (G, G)
RNDi = 0 Mi = ∅
TICKi = 1 Pi = −

LOCKEDi = Genesis Ei = −
PQCi = {p = []; q = ∅; r = 0} PEi = −

ELECTi = {b = G; q = ∅}
TOi = true

where G = {ℓ = 0; r = 0; t = 0; p = []; pqc = −; eqc = ∅}

Figure 7 Initial states.

Preendorsement QuorumCHi = (B, _)

let q = {m ∈ Mi | m = PreEndorse(_, ℓ, r, p) ∧
ℓ = B.ℓ ∧ p = B.p ∧
r = RNDi = B.r} in

¬TOi ∧ quorum(q) ∧ LOCKEDi ̸= B −→
PQCi := {p = B.p; r = B.r; q = q}
LOCKEDi := B
Ei := Endorse(i, B.ℓ, B.r, B.p)

Endorsement QuorumCHi = (B, _)

let q = {m ∈ Mi | m = Endorse(_, ℓ, r, p) ∧
ℓ = B.ℓ ∧ p = B.p ∧
r = RNDi = B.r} in

¬TOi ∧ quorum(q) ∧ ELECTi = − −→
ELECTi := {b = B; q = q}

Figure 8 Preendorsement and endorsement
quorums.

MempoolNodeCHi = (H, PRE)

PreEndorse(j, ℓ, r, p)? ∨ PEi = PreEndorse(j, ℓ, r, p) −→
Mi := Mi ∪ {PreEndorse(j, ℓ, r, p)}
PEi ̸= − −→

PreEndorse(i, ℓ, r, p)!
PEi := −

Endorse(j, ℓ, r, p)? ∨ Ei = Endorse(j, ℓ, r, p) −→
Mi := Mi ∪ {Endorse(j, ℓ, r, p)}
Ei ̸= − −→

Endorse(i, ℓ, r, p)!
Ei := −

Propose(j, (h, pre))? ∨ Pi = Propose(j, (h, pre)) −→
let {ℓ; r; pqc; eqc} = h in
isP roposer(j, ℓ, r) ∧
(H.ℓ, H.pqc.r, −PRE.r, H.r) < (ℓ, pqc.r, −pre.r, r) ∧
valid_eqc(eqc, pre) ∧
(pqc = − ∨ valid_pqc(h)) −→

NodeCHi := (h, pre)
Pi ̸= − −→

Propose(i, (h, pre))!
Pi := −

Figure 9 Mempool transitions.

quorum(x) ∆= |x| > 2×|BAKERS|
3

valid_eqc(eqc, pre) ∆= quorum(eqc) ∧
∀Endorse(i, ℓ, r, p) ∈ eqc, (ℓ, r, p) = pre.(ℓ, r, p)

valid_pqc(b) ∆= quorum(b.pqc.q) ∧
∀PreEndorse(i, ℓ, r, p) ∈ b.pqc.q, (ℓ, p) = b.(ℓ, p) ∧ r < b.r

isProposer(i, ℓ, r) ∆= ((ℓ + r) mod |BAKERS|) + 1 = i

isProposerNextRound(i) ∆= let (B, P) = CHi in
isProposer(i, B.ℓ, RNDi + P.r − PQCi.pred.r + 1)

isProposerNextLevel(i) ∆= ELECTi ̸= − ∧
isProposer(i, B.ℓ + 1, RNDi − ELECTi.b.r)

Figure 10 Definitions of predicates.

To guarantee progression, a record ELECTi of the form { b; q; } is used to store the first
observed endorsement quorum (in q) for the head block (in b). Finally, in order to speed up
the convergence of the algorithm, a record PQCi of the form { p; r; q; } is used to keep track
of the preendorsement quorum q with the highest round r, associated to the block payload p.
The initial state for a baker is given in Figure 7. Bakers are locked on and have elected the
genesis block G in order to force the progression to go through proposals at level 1.

Time and clocks. Tenderbake runs on the notion of rounds and time. As mentioned in
Section 1, the ideal consensus scenario is not always attainable. This is where the concept of
rounds comes in. Bakers have a predefined number of seconds to decide on a block. Once
that time is up, and if an agreement has not been reached, a timeout event is triggered, and
the bakers have to drop what they were doing and start a new round. In Tenderbake, this
is achieved with clocks and real-time. By combining timestamp information stored in the
blocks and their current clock, bakers can calculate both their current round in the consensus
and the time remaining before a timeout is triggered. The protocol is also resistant (to some
extent) to a possible clock drift between bakers.

FMBC 2021



4:6 Formally Documenting Tenderbake

Our model accounts for this clock/real-time mechanism in an abstract way. To do this,
we first simplify the problem by considering that all rounds have the same duration. Then,
we get rid of local clocks by replacing them with local counters that contain the number of
timeouts a baker has received. Finally, we use a global mechanism (the oracle, depicted in
Figure 4) to notify a baker when a round ends. Although it may seem too simplistic, our
mechanism allows us to account for the problems related to time in Tenderbake, in particular
the one related to clock drift.

To implement our abstract synchronization mechanism, we assign two local variables to
each baker: a boolean TOi, for timeout, used by the oracle to communicate the end of a
round to the baker, and an integer TICKi to count the number of rounds elapsed since the
blockchain was started. We also use a constant ∆ to set the maximum offset on the number
of ticks (i.e. rounds) between bakers.

To start a new round for a baker i, our oracle executes non-deterministically the guard/ac-
tion command in Figure 4 as soon as (1) the baker i has no timeout to handle (2) the
differences between any two bakers’ counted rounds does not exceed ∆, before and after
execution of the transition.

The command’s action sets the timeout variable of the baker i to true and increments its
tick counter. This transition guarantees that no two bakers can drift for more than ∆ rounds
but allows each one to proceed independently. After this transition, the baker must handle
its timeout and move according to one of the three cases described in the next paragraph.
In Tenderbake, we use ∆ = 1, which means that internal clocks of the machines on which
bakers run are only allowed to drift by an amount that would result in a difference of at
most one round.

Timeout transitions. As shown in Figure 2, a baker is forced to move to state NP when the
oracle resets his TOi variable. This is when the baker can start a new round if no consensus
was reached during the current round, or a new level, if the baker has collected a quorum
of endorsements for his current head block. The actions bakers are allowed to perform on
timeouts depend on their right to propose a new block for the next round (in the same
level), or for the earliest possible round of the next level in which the baker can propose. We
abstract this authorization with a predicate IsProposer(i, ℓ, r) which is true when baker i is
the proposer at level ℓ and round r.

Figure 5 contains the possible behaviors (or transitions) of a baker after a timeout. In
Not the Proposer, the baker first checks that he is not the proposer for the next round
RNDi + 1 of the current level B.ℓ (see Def. of isProposerNextRound). Then, either there
is no block stored in ELECTi (denoted by ELECTi = -), meaning the baker did not obtain
a quorum for his head block, or the baker is not the proposer for the next level (see Def.
of isProposerNextLevel). In the latter case, instead of IsProposer(i, B.ℓ + 1, 0), the baker
checks for the round RNDi − ELECTi.b.r of the next level B.ℓ + 1. This expression takes
into account the difference between the baker’s current round RNDi and the round during
which the baker obtained a quorum for his head block (stored in the ELECTi variable). Thus,
for instance, if a baker obtains a quorum at round RNDi = r, and if he is the proposer
for the next level at the end of that round r, then the baker checks indeed the first round
RNDi − r = 0 of the next level. The actions associated to this transition consist only of
resetting the TOi variable and incrementing the counters TICKi and RNDi. In Proposer
of next round, the baker communicates a proposal Propose(i, (b, P )) for the next round
to the Mempool through the variable Pi. The block b is built using the content of the head
block B with new timestamp and round information. The payload of this new proposal is
either a fresh value (denoted by ε) or the payload of the block stored in the baker’s PQCi



S. Conchon, A. Korneva, Ç. Bozman, M. Iguernlala, and A. Mebsout 4:7

variable, if it exists. The preendorsement quorum certificate of this new block is either empty
or the one stored in PQCi. In Proposer of next level, the baker must have a block
stored in ELECTi and he must also be the proposer of the round RNDi − ELECTi.b.r in the
next level B.ℓ + 1. The new proposal contains a fresh payload, an endorsement quorum for
its block predecessor taken from ELECTi.q and a timestamp equal to TICKi.

The Mempool. While a Mempool typically serves as a gossip layer, simply passing on
messages between bakers, Tenderbake’s Mempool is more sophisticated. For instance, the
Mempool keeps a local variable NodeCHi, its own copy of the blockchain, the most up-to-date
version that it has “seen” come through. Since the consensus in Tenderbake depends on the
last two blocks, NodeCHi contains only the head of the blockchain and its predecessor in our
model. In addition to these blocks, the Mempool also maintains a set Mi of all of the votes
(PreEndorse or Endorse messages) that it receives from all bakers.

Furthermore, when the Mempool receives a proposal, either through a message or a shared
variable, it first verifies that the proposed block is actually better than its current head. If
it is indeed better, the Mempool simply updates its version of the blockchain. Otherwise,
it is ignored. The notion of a better chain is an important part of a consensus algorithm,
corresponding to a total ordering between blocks. In Tezos, this ordering is based on a notion
of fitness, which amounts to comparing, in a lexicographic order, the following quadruples
(H.ℓ, H.pqc.r, −PRE.r, H.r) < (l, pqc.r, −pre.r, r), where H and PRE are the first two head
blocks of NodeCHi, while h and pre are the blocks received in a Propose(j, (h, pre)) message.
Moreover, in addition to fitness, the Mempool ensures the information contained in the eqc

and pqc fields is valid. Last, if this better proposal has been received through a shared
variable, the Mempool broadcasts it to the other participants. Figure 9 shows transitions
of the Mempool that handle PreEndorse and Endorse votes (received either by messages or
through the shared variables PEi and Ei). These messages are simply stored in Mi

1.

Proposal transition. As seen in Figure 2, a baker can handle a new proposal in any state.
We give in Figure 3 the Proposal transition that a baker can execute as soon as he is running
a new round and when the head block B in CHi is different from the one in the Mempool.
In that case, a baker determines if he can vote (preendorse) for the new head stored in the
Mempool. There are only two possibilities for a baker to preendorse a proposal:
1. The chain stored in the Mempool is strictly longer than the one stored in the baker.
2. Both chains have the same length and the proposal’s round is equal to the current baker’s

round RNDi. The baker also checks that he is not about to vote twice in the same round,
except for the same payload. Moreover, the baker only preendorses in this case if:
a. he has never endorsed (locked) a previous proposal in the same level, or
b. he is locked to some block payload p0 at some round r0, but the current proposal’s

payload is equal to p0, or the current proposal got a PQC at some round r1 > r0.
In (1), a baker synchronizes the value of its current round RNDi in the new level. It also
checks, before preendorsing, that the block H, while at a higher level, does not correspond to
an old proposal.

Quorums. The last two transitions are described in Figure 8. As mentioned above, the
Mempool keeps a set Mi of all the messages it has received. If the number of preendorse
messages for the head block B stored in CHi is enough for a quorum, then a baker can

1 Although we could wipe the contents of Mi at each new round startup, we decided not to do it explicitly
to be able to explore different mempool cleaning strategies in practice.

FMBC 2021



4:8 Formally Documenting Tenderbake

execute the Preendorsement Quorum transition to update PQCi with his current head and the
calculated quorum, change LOCKEDi to B, since this is the block he is about to endorse, and
communicate an Endorse(i, B.ℓ, B.r, B.p) message to the Mempool. An endorsement quorum
transition is possible in states CE and CP. The baker observes endorsement quorums only
when his ELECTi variable is not set. In that case, if enough endorsement messages exist in
the Mempool for his head block, the baker records that block and its quorum in ELECTi.

4 TLA+

In this section we discuss how we go from the previous automaton to its TLA+ implementation.
The automaton makes it fairly straightforward to convert to TLA+ by simply representing
the baker, the Mempool, the possible actions, and the synchronization mechanism.

The Baker and the Mempool. We define a constant set BAKERS of all bakers in the
network. A variable BakerState maps each baker to their state (i.e. the internal variables
from Section 3), represented as a record structure. We stray from the types in Section 3 by
using n-tuples instead of records to represent LOCKEDi, ELECTi, and PQCi. BakerState[ i ]
represents the state of baker i. To model the phases of the algorithm, we add an internal
variable STATEi for each baker. Initially, each baker starts off in the following state, where
sequences are delimited by ⟨ ⟩, and Genesis is the genesis block:

InitialState
∆= [state 7→ "np", pqc 7→ ⟨⟩, ch 7→ ⟨Genesis, Genesis⟩, rnd 7→ 0,

locked 7→ ⟨⟩, elect 7→ ⟨Genesis, {}⟩, timeout 7→ true, tick 7→ 0]

The Mempool is a record with the fields - nodeCH, for its local blockchain (the first two
blocks), msgs, the set of Endorse and PreEndorse messages it has received, and the fields
propose, endorse, preendorse for the variables Pi, Ei, PEi. It starts off with an empty set of
msgs and two Genesis blocks.

Synchronization. As mentioned in Section 3, we introduce an oracle transition which allows
bakers to progress individually with timeouts (TOi) while maintaining synchronization, i.e.
by being at most ∆ rounds apart. We do the same thing in our TLA+ implementation: TOi

is the first enabling condition of each timeout step definition.

Actions. Bakers and the Mempool are impacted by the various actions on the network.
Each of these are defined individually in TLA+. For example, the Endorsement Quorum step
in Figure. 2, enabled in CP or CE, is defined as follows:

EndQuorum(i) ∆= ∧ BakerState[i].timeout = false
∧ BakerState[i].elect = ⟨⟩
∧ BakerState[i].state = "cp" ∨ BakerState[i].state = "ce"
∧ CollectEnd(i)
∧ BakerState′ = [BakerState except

![i].elect = ⟨BakerState[i].chain[1].round,

BakerState[i].chain[1].contents,

BakerState[i].chain[1].time⟩,
![i].state = BakerState[i].state]

∧ unchanged Mempool

Baker i can execute this step iff (i) he is synchronized, (ii) he is in state cp or ce, and (iii)
CollectEnd(i) is true. CollectEnd (for “collecting endorsements”) counts all of the Endorse
messages for i’s current head in Mempool.msgs and checks whether it is enough for a quorum.
If these three conditions are satisfied, baker i modifies ELECTi and transitions to phase NP
of the algorithm. Every other transition in Figure 2 is defined in a similar way.



S. Conchon, A. Korneva, Ç. Bozman, M. Iguernlala, and A. Mebsout 4:9

Test scenarios. While the automaton made writing our TLA+ specification easier, the
spec itself has, in return, proven extremely useful in debugging the automaton. Sometimes a
deadlock would be reached when it should not have been, leading us to review Tenderbake’s
code, and fixing things we overlooked in our model. The main advantage is, however, being
able to run various test scenarios. We can easily modify our spec to account for various clock
drifts or Byzantine bakers.

5 Conclusion

In this paper we proposed a TLA+ model of Tenderbake, along with an automaton detailing
the key parts of Tenderbake. This method simplifies the problem by abstracting the notion
of time, while retaining Tenderbake’s more nuanced features, such as its more elaborate
Mempool. Our method gives us a formalized and executable Tenderbake documentation.
This serves as the foundation for running specific test scenarios and verifying properties
Tenderbake needs to satisfy. An immediate line of future work is to define those properties
and check them with the TLC model checker.

References
1 Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara Tucci

Piergiovanni. Correctness of tendermint-core blockchains. In 22nd International Conference on
Principles of Distributed Systems, OPODIS 2018, December 17–19, 2018, Hong Kong, China,
volume 125 of LIPIcs, pages 16:1–16:16, 2018.

2 Lăcrămioara Astefănoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieutord, Sara
Tucci Piergiovanni, and Eugen Zalinescu. Tenderbake – A solution to dynamic repeated
consensus for blockchains. In Fourth International Symposium on Foundations and Applications
of Blockchain, 2021.

3 Sean Braithwaite, Ethan Buchman, Igor Konnov, Zarko Milosevic, Ilina Stoilkovska, Josef
Widder, and Anca Zamfir. Formal specification and model checking of the tendermint
blockchain synchronization protocol (short paper). In 2nd Workshop on Formal Methods for
Blockchains, FMBC@CAV 2020, July 20–21, 2020, Los Angeles, California, USA (Virtual
Conference), volume 84 of OASIcs, pages 10:1–10:8, 2020.

4 Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173–186, 1999.

5 LM Goodman. Tezos – A self-amending crypto-ledger white paper. URL: https://www. tezos.
com/static/papers/white paper. pdf, 2014.

6 Jae Kwon and Ethan Buchman. Cosmos whitepaper, 2019. URL: https://cosmos.network/
resources/whitepaper.

FMBC 2021

https://cosmos. network/resources/whitepaper
https://cosmos. network/resources/whitepaper




Towards Contract Modules for the Tezos
Blockchain
Thi Thu Ha Doan #

University of Freiburg, Germany

Peter Thiemann #

University of Freiburg, Germany

Abstract
Programmatic interaction with a blockchain is often clumsy. Many interfaces handle only loosely
structured data, often in JSON format, that is inconvenient to handle and offers few guarantees.

Contract modules provide a statically checked interface to interact with contracts on the Tezos
blockchain. A module specification provides all types as well as information about potential failure
conditions of the contract. The specification is checked against the contract implementation using
symbolic execution. An OCaml module is generated that contains a function for each entry point of
the contract. The types of these functions fully describe the interface including the failure conditions
and guarantee type-safe and sometimes fail-safe invocation of the contract on the blockchain.

2012 ACM Subject Classification Software and its engineering → Specification languages

Keywords and phrases contract API, modules, static checking

Digital Object Identifier 10.4230/OASIcs.FMBC.2021.5

Category Short Paper

Supplementary Material Software (Source Code): https://github.com/proglang/tezos-project/
tree/master/papers/contract-modules/code

Funding Thi Thu Ha Doan: supported by a grant from the Tezos foundation.

1 Introduction
Contracts on the blockchain rarely run in isolation. To be useful beyond shuffling tokens
between user accounts, they need to interact with the outside world. On the other hand,
the outside world also needs to interact by initiating transactions and starting contracts
that feed information into the blockchain. One direction is addressed by oracles that watch
certain events on the blockchain, create a response by calculation or gathering data, and
then invoke a callback contract to inject this response into the chain. Trust is an essential
aspect for an oracle.

The other direction is about automatizing certain processes in connection with the
blockchain. For example, opening or closing an auction according to a schedule, programming
a strategy for an auction, or creating an NFT. To this end, an interface is needed to invoke
contracts safely. Existing interfaces are lacking because they are essentially untyped (string-
based or JSON-based) and often low level because they require dealing directly with RPC
interfaces. Trust is not needed because the process runs on behalf of a certain user.

We propose contract modules that provide a clean, language-integrated way to interact
with a blockchain from a host language (OCaml in our case). They abstract over underlying
string-based interfaces and details like fee handling. They provide a high-level typed interface
which reduces a contract invocation to a function call in the host language.

The contract modules approach does not provide a fixed API, but rather generates a
specific interface for each contract with one function for each entry point of the contract.
This interface is statically checked against the contract implementation to ensure type safety
and exception safety. That is, values passed to an interface function do not lead to type
mismatches when invoking the underlying contract. Morever, every failure condition arising
during contract execution is handled by proper error reporting according to the interface.

© Thi Thu Ha Doan and Peter Thiemann;
licensed under Creative Commons License CC-BY 4.0

3rd International Workshop on Formal Methods for Blockchains (FMBC 2021).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 5; pp. 5:1–5:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:doanha@cs.uni-freiburg.de
mailto:thiemann@acm.org
https://orcid.org/0000-0002-9000-1239
https://doi.org/10.4230/OASIcs.FMBC.2021.5
https://github.com/proglang/tezos-project/tree/master/papers/contract-modules/code
https://github.com/proglang/tezos-project/tree/master/papers/contract-modules/code
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


5:2 Towards Contract Modules for the Tezos Blockchain

Listing 1 Simple auction contract (auction.tz).

parameter (or (unit %close) (unit %bid));
storage (pair (bool %bidding)

(pair (address %owner)
(address %hi_bidder )));

Our work is situated in the context of the Tezos blockchain, which supports Michelson
as its low-level contract language, and the host language OCaml, which comes with an
expressive polymorphic type system as well as a powerful module system that we enhance
with contract modules.

2 Context

Tezos is a third generation, account-based, self amendable blockchain [8]. It employs a
proof-of-stake consensus protocol, which includes ways to evolve the protocol itself. The
consensus protocol is executed by so-called bakers and their proposed blocks are checked by
validators. They receive some compensation in the form of tokens (Tezzies) for their work.
According to proof-of-stake, bakers and validators are nodes elected by the Tezos network
according to their token balance.

Each Tezos contract is associated with an account as well as some storage. Contracts
are pure functions of type parameter × storage → operation list × storage, where the types
parameter and storage are depend on the specific contract while the type operation is fixed by
the Tezos system. When a contract is invoked with a parameter, the blockchain provides the
current storage and updates it with the second, storage component of its return value. The
first component of the return value is a list of blockchain operations (contract deployments,
token transfers, contract invocations, and delegation of baking rights) that are executed
transactionally after the first invocation terminates. Each invocation may be accompanied
with an amount of tokens that are added to the current account balance of the callee contract.

Contracts are implemented in the language Michelson, a statically typed stack-based
language. Each contract has fixed types for its parameter and for its storage. The storage
is initialized when the contract is deployed. Besides primitive types like unit, int, bool,
address, and string, there are pairs, sums, functions, lists, and maps along with a range of
domain-specific types (operation, key, signature, timestamp, key_hash, contract, mutez – for
tokens, and so on) most of which can serve as types for storage and parameters.

A Michelson contract has a single default entry point. However, the parameter type is
typically a sum type and each component of the sum can serve as a subsidiary entry point.

3 An auction contract

As a concrete example, we consider a simple auction contract with the header shown in
Listing 1. This contract has two entry points, close and bid, expressed by giving the single
parameter a sum type. To call the entry point close we invoke the contract with parameter
Left () otherwise we use Right (), where () is the sole value of type unit. The contract’s
storage is a nested pair which contains a boolean flag and two addresses.

The contract works as follows. It is deployed with storage (true,(owner,owner)) which
indicates that bidding is allowed and the contract owner is currently the highest bidder. On
deployment the owner deposits an initial balance to indicate the minimum bid. Closing the



T. T. H. Doan and P. Thiemann 5:3

Listing 2 Example contract module.

contract type Auction = sig
paid entrypoint bid ()
raises "closed" (** auction closed *)

| "too␣low" (** bid too low *)

entrypoint close ()
raises "closed" (** auction closed *)

| "not␣owner" (** caller cannot close *)
end

contract transfers the balance to the owner. Closing is restricted to the owner. Closing as
well as bidding fails if the auction is closed. If bidding is open and the amount of tokens
accompanying the bid exceeds the current highest bid, the current bidder replaces the previous
highest bidder and the previous highest bidder is reimbursed. Otherwise, bidding fails.

To invoke this contract from an OCaml program, we generate an OCaml module, say
Auction, from a specification of the contract. This module contains two functions close
and bid corresponding to the entry points. The type of these entry points reflects further
properties of these entry points as well as the ways in which an entry point might fail.

Besides the obvious, technology induced ways that a contract invocation might fail
(insufficient gas price offered, insufficient gas to complete, timeout due to lack of connectivity,
etc) a Michelson contract can fail due to a programmer induced condition caused by the
instruction FAILWITH. It terminates contract execution with an error message which is
reported back to the caller. This error message includes the top value on the stack.

We consider the technological failures like Java’s unchecked exceptions, but we wish to
deal with the explicit failures like checked exceptions [2]. Our generated code handles failures
in a suitable error monad that makes the failures explicit in a custom datatype.1

Listing 2 shows a contract module for the auction contract. It declares the entry point
bid as paid, i.e., it should be invoked with a non-zero amount of tokens, it states the pattern
() for the input value of type unit, and it specifies two failure messages that we wish to deal
with programmatically. The close entry point is similar, but it is not pair. This contract
reflects the understanding of the programmer with the intention that the raises clauses
cover all failures that can arise during execution of the respective entry point.

Listing 3 contains an OCaml module signature as it would be generated from the contract
module. The module Tezos supposedly contains types and other low-level Tezos-specific
definitions. The type pukh for public key hashes identifies contracts, the type mutez stands
for Tezos tokens, the type status reflects the internal return status, and monad is an internal
monad type. The signature declares a function and an error type for each entry point.

The error types mirror the raises clauses. The first argument of each function is the
address of the contract, then an optional argument for the transaction fee, an argument for
passing an amount of tokens (only for a paid entry point), the next argument would be for
the parameter; it is omitted here because its type is unit. The return type refers to the
specific error type.

1 Alternatively, errors could be modeled using OCaml exceptions, but we choose to stay within the
monadic framework that is used by existing Tezos APIs.

FMBC 2021



5:4 Towards Contract Modules for the Tezos Blockchain

Listing 3 Generated signature.

type bid_errors =
| bid_closed (** auction closed *)
| bid_too_low (** bid received is too low *)

val bid
: Tezos.pukh -> ?fee:Tezos.mutez -> amount:Tezos.mutez
-> (Tezos.status , bid_errors) Tezos.monad

type close_errors =
| close_closed (** auction closed *)
| close_not_owner (** caller cannot close the auction *)

val close
: Tezos.pukh -> ?fee:Tezos.mutez
-> (Tezos.status , close_errors) Tezos.monad

4 Simple Checking

We check the contract by symbolic execution against its specification in the contract module.
Symbolic execution proceeds by calculating a symbolic stack at each transition from one
Michelson instruction to the next. The symbolic interpreter is fully typed and rejects ill-typed
Michelson programs, if the ill-typed part is reachable from the default entry point. The
initial stack is calculated from the storage type, the parameter type, and the entry point. As
we aim to keep symbolic values as concrete as possible, some instructions may turn out to be
unreachable or only reachable under certain conditions. This way, we obtain, for each entry
point, a set of final symbolic stacks along with a path condition indicating when this final
state is reachable. Moreover, for each FAILWITH instruction we obtain a symbolic value for
the reported message and a path condition indicating reachability of this instruction. We
employ the SMT solver Z3 [7, 4] to check the feasibility of a path condition.

Here are some simple examples of checkable properties.
For each entry point, we collect the set of reachable instructions. For example, the AMOUNT

instruction obtains the amount of tokens sent with a contract invocation. It should not be
possible to reach that instruction from an unpaid entry point like close. This property is
straightforward to check from the path condition generated for the AMOUNT instruction.

For each entry point, we collect the set of reachable FAILWITH instructions along with
their path condition and their arguments. In most cases the symbolic interpreter finds a
concrete argument for each FAILWITH instruction because the typical usage pattern is to
push a concrete (string) value on the stack immediately preceding the FAILWITH. It remains
to check that each argument to FAILWITH should be accounted for by one raises clause.

Checking the simple auction contract in this way already flags an omission in the contract
module (Listing 2). The problem is that bidding returns the previous highest bid as part
of the transaction where the highest bidder is stored as a value of type address. However,
to receive a token transfer, this address must by cast (by the Michelson implementation
of the contract) to an implicit contract of Michelson type (contract unit). This cast is



T. T. H. Doan and P. Thiemann 5:5

Listing 4 Enhanced contract module.
1 contract type SaferAuction = sig
2 storage (Pair (bidding : bool)
3 (Pair (owner : address) (hi_bidder : address )))
4
5 entrypoint close ()
6 requires bidding raises "closed" (** auction closed *)
7 requires (SOURCE = owner) raises "not␣owner"
8 ensures not bidding
9 ensures (post.BALANCE = 0)

10 ensures (TRANSFER_TOKENS unit BALANCE hi_bidder)
11
12 paid entrypoint bid ()
13 requires bidding raises "closed" (** auction closed *)
14 requires (AMOUNT > pre.BALANCE) raises "too␣low" (** low bid *)
15 ensures bidding
16 ensures (post.BALANCE = AMOUNT)
17 ensures (post.hi_bidder = SOURCE)
18 ensures (TRANSFER_TOKENS unit pre.BALANCE hi_bidder)
19
20 invariant (post.owner = owner)
21 invariant (post.bidding => bidding)
22 invariant (post.hi_bidder = hi_bidder or post.hi_bidder = SOURCE)
23 end

unavoidable as a value of contract type cannot be stored. However, the cast may fail and its
failure leads to an error condition that is reported with a FAILWITH instruction that is not
covered by the contract module.2 The entry point for closing has the same issue with the
address of the owner, who is scheduled to receive the balance of the contract.

The best way to address this issue would be to assert that the addresses stored for the
owner and the highest bidder always cast successly into the (contract unit) type so that
the stated module type can be retained. Unfortunately, doing so requires control over the
initialization of the storage, which is part of the deployment of the contract. At present,
our design for contract modules does not include support for the deployment of a contract.
Moreover, it is not clear whether it makes sense to support it as there is no guarantee that a
contract will be deployed using the API generated from a contract module.

The quick fix is to add raises clauses for the No entrypoing ... message. With this
fix, we successfully check the module description against the Michelson implementation of its
contract. Another fix would be to rewrite the contract to enable the dynamic creation of
auctions.

5 Advanced Checking

As it is expensive to invoke a contract just to find out that it fails, we propose to extend
entry point specifications with preconditions along with some global invariants as shown in
Listing 4. The idea is that the generated OCaml module tries to check the preconditions

2 We generated the Michelson code for this example using the Liquidity compiler (https://www.
liquidity-lang.org/). While the failures for closed and too low are explicit in the source pro-
gram, the compiler inserts the casts into the contract type automatically using the error message No
entrypoint default with parameter type unit.

FMBC 2021

https://www.liquidity-lang.org/
https://www.liquidity-lang.org/


5:6 Towards Contract Modules for the Tezos Blockchain

off-chain before invoking the contract. To this end, the off-chain code needs to obtain
properties like balance, storage etc of the contract, but this information is available from a
Tezos node without a fee! Of course, such an off-chain check is prone to race conditions as
concurrent contract invocations from other parties may interfere and change the data before
our module gets a chance to invoke the contract.

Generally, a specification can refer to the values available to the contract. For example,
the instructions SOURCE3, BALANCE, and AMOUNT refer to the respective values. As the current
BALANCE includes the AMOUNT sent with the transaction, we write pre.BALANCE (= BALANCE
− AMOUNT) for the balance before the transaction starts and post.BALANCE for the balance
after the transaction finishes. The latter is calculated by subtracting the amounts transferred
from the current BALANCE. The existence of a token transfer in the returned operation list is
indicated by the respective TRANSFER_TOKENS instruction. The components of the storage
are referred to by name. We distinguish the outgoing storage by prepending post. as in
post.owner.

For each clause requires Φ raises s, we take the path condition Θ for a FAILWITH
instruction with argument matching the string s and check that Φ ∧ Θ is not satisfiable in
the context given by the initial stack for the entry point.

From all requires Φi and ensures Ψj clauses, we check that ¬(
∧

Φi →
∧

Ψj) is
unsatisfiable in the context given by the initial stack for the entry point and its corresponding
final stack and path condition.

We discuss two of the preconditions to highlight the properties that need to be analyzed
and where race conditions may interfere.

The precondition SOURCE = owner of close can be checked off-chain because the owner’s
address is part of the storage. However, it is in general unsound to perform such a test
off-chain because the owner’s address could change if an entry point changes that component
of the storage. To safely check this precondition, all other entry points must preserve the
owner’s address, which is indeed the case by the postcondition in line 17. This postcondition
is verified as outlined above.

The situation is slightly more complex at the bid entry point. The failure "closed" is
guarded by bidding. As the bidding component of the state can change, a precise prediction
is not possible. A closer look reveals some subtlety. If bidding is true, then the flag may
have changed by some interleaved call to close. However, if bidding is false, then there is
no point in invoking the contract because bidding will never be reset to true. We address
this situation by verifying the global invariant post.bidding => bidding.

For the failure "to␣low", the analysis is very similar: we need to know that there
is no successful execution of bid after an execution of close. Moreover, each invoca-
tion of bid raises the balance of the contract monotonically. Thus, if the off-chain check
AMOUNT > pre.BALANCE fails, we can be sure that the contract invocation will also fail; either
because someone closed the auction or because the balance is at least as high as in the
off-chain sample. Checking pre.BALANCE off-chain is particularly simple, because it is the
current balance of the account.

3 The execution of a Michelson contract is part of a transaction, which can encompass several contract
executions. The SOURCE of a Michelson contract is the originator of the entire transaction.



T. T. H. Doan and P. Thiemann 5:7

6 Symbolic interpretation of Michelson

Michelsym, our symbolic interpreter for Michelson, works in two stages. In the first stage,
it calculates symbolic stacks between each pair of reachable instructions. The underlying
symbolic domain comprises all concrete values, supports the type system, and generates a
term representation for symbolic values. Michelsym collects a path predicate that is extended
at each conditional, but which remains uninterpreted. If symbolic execution reaches certain
instructions (most notably FAILWITH), Michelsym records the argument value and the path
condition.

Presently, Michelsym works on Michelson files which result from compiling the examples
provided with the Liquidity compiler. It generates human-readable output as well as output
in the SMTlib format suitable for SMT-solvers like Z3. This output needs to be weaved
together manually with the formulas generated from a contract module.

We plan to revise Michelsym so that it directly communicates with Z3 to directly check for
unsatisfiable path conditions and to be better integrated with the contract module frontend.

7 Related work

Smart contract-based applications often require interaction between a smart contract on
the blockchain and the outside world. However, smart contracts cannot connect to external
sources on their own. This is where oracles [13, 5] come into play. Oracles act as a bridge
between smart contracts and external sources. Namely, they collect and verify external
information and make it available to smart contracts on the blockchain. Several research
works have been conducted to provide oracle solutions for the Blockchain. Adler et al.[12]
proposed a framework to provide developers with a guide for incorporating oracles into
blockchain-based applications. Oracles may need to observe the state of the chain to determine
what information to send. In addition, oracles transmit data from external sources to the
blockchain. Therefore, they would need to have a programmatic interface to interact with
the blockchain.

The basic idea of our advanced checking, namely precondition checking, is inspired by
JML, the Java modeling language [11, 6], in which the behavior of program components
is described as a contract between Java program and its clients. This contract specifies
preconditions that must be satisfied by clients and postconditions that are guaranteed by the
program. A precondition supplied with a client call must be verified before a function defined
by the program is called, and the program guarantees that the postconditions are satisfied
in return after the call. The original idea of using preconditions and postconditions dates
back to Hoare’s paper [10]. Software contracts have also been proposed for blockchain [3]. In
our approach, the safe contract module in the OCaml language comes close to contracts in
this sense. Several applications are based on JML [14]. Ahrendt et al. [1] propose the KeY
framework for deductive software verification.

Our contract module specifies preconditions and then off-chain checks whether a user call
satisfies those preconditions. Symbolic execution plays an important role in the preconditions
checking in our method. A smart contract is verified against its specification in the contract
module by symbolic execution. In a paper on symbolic execution [9], Hentschel et al. proposed
the symbolic execution debugger (SED) platform, which is based on the KeY framework.
The platform SED has a static symbolic execution engine for sequential programs.

FMBC 2021



5:8 Towards Contract Modules for the Tezos Blockchain

8 Conclusion

Current blockchains often provide low-level interfaces to interact with smart contracts. These
interfaces work with loosely structured without static guarantees. This paper presents ongoing
research on the programmatic interaction with smart contracts on the Tezos blockchain that
could benefit developers of mixed applications and oracles comprised of on-chain and off-chain
parts. The approach does not provide a general API, but targets each individual smart
contract by generating a specialized contract module that provides a typed high-level interface
from a contract specification. In doing so, errors from contract calls are explicitly specified in
a user-defined data type. A contract call is wrapped in a fully typed and integrated OCaml
function. In addition, the wrapper can check preconditions before the actual call to reduce
the waste of gas of a failed call.

While our conceptual approch is applicable and would be beneficial for other blockchains,
the actual implementation is very much tied to the Tezos blockchain. The key asset here is
the symbolic interpreter which is hardcoded for Michelson and adapted to the peculiarities
of the Tezos blockchain. By targeting Michelson, our work is applicable to all languages
running on Tezos, but a similar tool would have to be developed from scratch for another
blockchain.

References

1 Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter Schmitt, and
Mattias Ulbrich. Deductive Software Verification – The KeY Book: From Theory to Practice,
volume 10001. Springer-Verlag, January 2016. doi:10.1007/978-3-319-49812-6.

2 Davide Ancona, Giovanni Lagorio, and Elena Zucca. A core calculus for Java exceptions. In
Linda M. Northrop and John M. Vlissides, editors, Proceedings of the 2001 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applications, OOPSLA
2001, Tampa, Florida, USA, October 14–18, 2001, pages 16–30. ACM, 2001. doi:10.1145/
504282.504284.

3 Massimo Bartoletti. Smart contracts contracts. Frontiers Blockchain, 3:27, 2020. doi:
10.3389/fbloc.2020.00027.

4 Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson, and Christoph M. Wintersteiger.
Programming Z3. In Jonathan P. Bowen, Zhiming Liu, and Zili Zhang, editors, Engineering
Trustworthy Software Systems – 4th International School, SETSS 2018, Chongqing, China,
April 7-12, 2018, Tutorial Lectures, volume 11430 of Lecture Notes in Computer Science, pages
148–201. Springer, 2018. doi:10.1007/978-3-030-17601-3_4.

5 Giulio Caldarelli. Understanding the blockchain oracle problem: A call for action. Information,
11(11), 2020.

6 Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. Beyond assertions: Advanced
specification and verification with JML and ESC/Java2. In Proceedings of the 4th International
Conference on Formal Methods for Components and Objects, FMCO’05, page 342–363, Berlin,
Heidelberg, 2005. Springer-Verlag.

7 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

8 L. Goodman. Tezos – A self-amending crypto-ledger, 2014. URL: https://www.tezos.com/
static/papers/white-paper.pdf.

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1145/504282.504284
https://doi.org/10.1145/504282.504284
https://doi.org/10.3389/fbloc.2020.00027
https://doi.org/10.3389/fbloc.2020.00027
https://doi.org/10.1007/978-3-030-17601-3_4
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.tezos.com/static/papers/white-paper.pdf
https://www.tezos.com/static/papers/white-paper.pdf


T. T. H. Doan and P. Thiemann 5:9

9 Martin Hentschel, Richard Bubel, and Reiner Hähnle. The symbolic execution debugger (SED):
a platform for interactive symbolic execution, debugging, verification and more. International
Journal on Software Tools for Technology Transfer, 21, October 2019.

10 C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

11 Gary Leavens and Yoonsik Cheon. Design by contract with JML, 2006. URL: https:
//www.cs.ucf.edu/~leavens/JML/index.shtml.

12 Kamran Mammadzada, Mubashar Iqbal, Fredrik Milani, Luciano García-Bañuelos, and
Raimundas Matulevičius. Blockchain Oracles: A Framework for Blockchain-Based Applications,
pages 19–34. Springer Verlag, September 2020.

13 Roman Mühlberger, Stefan Bachhofner, Eduardo Castelló Ferrer, Claudio Di Ciccio, Ingo
Weber, Maximilian Wöhrer, and Uwe Zdun. Foundational oracle patterns: Connecting
blockchain to the off-chain world. Business Process Management: Blockchain and Robotic
Process Automation Forum, page 35–51, 2020.

14 Peter W. V. Tran-Jørgensen. Automated translation of VDM-SL to JML-annotated Java.
Technical Report Electronics and Computer Engineering, 5(29), March 2017.

FMBC 2021

https://www.cs.ucf.edu/~leavens/JML/index.shtml
https://www.cs.ucf.edu/~leavens/JML/index.shtml



	p000-Frontmatter
	Preface

	p001-Dave
	1 Introduction
	2 Background
	2.1 Automated Market Makers
	2.2 Oracles
	2.3 The DeepSEA system

	3 DeepSEA AMM
	4 Mathematical Analysis of Automated Market Makers
	4.1 Manipulating Prices
	4.2 Nondecreasing k and no depletion

	5 Mechanizing results for the DeepSEA AMM contract
	5.1 Importing third-party Coq libraries
	5.2 Proof Outline
	5.3 Connection to the DeepSEA contract

	6 Related Work
	7 Conclusions and Future Work

	p002-Gabbay
	1 Introduction
	1.1 Tezos: a universal, modular blockchain
	1.2 The FA1.2 standard: five entrypoints, in English
	1.3 This is not enough
	1.4 Our work in a nutshell

	2 Introducing: the formal FA1.2 standard
	3 Per-implementation verification
	4 Refining the FA1.2 standard
	4.1 Issue 1: Self-transfer
	4.2 Issue 2: passing tokens to a view entrypoint
	4.3 Summary of refinements

	5 Related and future work
	5.1 ERC20-K
	5.2 Archetype FA1.2 implementation and verification by Edukera
	5.3 Future work

	6 Conclusion

	p003-Britten
	1 Introduction
	2 Representing the absence of reentrancy situations as a proof goal
	2.1 The DeepSEA system
	2.2 The Checks-Effects-Interactions Pattern
	2.3 Relevant aspects of the DeepSEA system
	2.4 Coq Inductive Proposition: cmd_constr_CEI_pattern_prf

	3 Automatically proving the absence of reentrancy situations
	4 Simplifying the modelling of Ether transfer
	5 Related Work
	6 Conclusion

	p004-Conchon
	1 Introduction
	2 Tezos Architecture
	3 Tenderbake Automaton
	4 TLA^{+}
	5 Conclusion

	p005-Doan
	1 Introduction
	2 Context
	3 An auction contract
	4 Simple Checking
	5 Advanced Checking
	6 Symbolic interpretation of Michelson
	7 Related work
	8 Conclusion


