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Preface

This volume contains the papers presented at the 32nd International Symposium on Al-
gorithms and Computation (ISAAC 2021). ISAAC 2021 was held in a hybrid manner on
December 6–8, 2021 and was organized by Kyushu University, Japan. ISAAC 2021 provided
a forum for researchers working in the areas of algorithms, theory of computation, and
computational complexity. The technical program of the conference included 72 contributed
papers. We received 215 submissions in response to the call for papers. Each submission
received at least three reviews. The program committee held electronic meetings using Easy-
Chair. In the end, the Program Committee selected 72 of the submissions for presentation
at the symposium.

The conference included two invited presentations, delivered by Prosenjit Bose (Carleton
University) and Tatiana Starikovskaya (The École normale supérieure, Paris). Abstracts of
their talks are included in this volume. We wish to thank all the authors who submitted
extended abstracts for consideration, the program committee members for their scholarly
efforts, and all external reviewers who assisted in the evaluation process. We are grateful to
Kayamori Foundation of Information Science Advancement, Support Center for Advanced
Telecommunications Technology Research (SCAT), KDDI Foundation, Algorithmic Founda-
tions for Social Advancement (AFSA) by Grant-in-Aid for Transformative Research Areas,
MEXT, Japan, and Fusion of Computer Science, Engineering and Mathematics Approaches
for Expanding Combinatorial Reconfiguration by Grant-in-Aid for Transformative Research
Areas, MEXT, Japan, for financial support and the local organizers of ISAAC 2021. Finally,
we acknowledge the endorsement from Special Interest Group on Algorithms (SIGAL) of
IPSJ.
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Streaming Pattern Matching
Tatiana Starikovskaya #

DIENS, École normale supérieure, PSL Research University, Paris, France

Abstract
Many classical algorithms for string processing assume that the input can be accessed in full via
constant-time random access, which poses a serious limitation in the modern era of data deluge. In
this talk, we will focus on the streaming model of computation that allows to overcome this issue.
In this model of computation, we assume that the input arrives as a stream, one character at a
time, which captures a situation when the data are sequential measurements or an output of an
algorithm. The space complexity is defined as all the space used, including the space used to store
any information about the input, which allows to develop ultra-efficient algorithms.

The first streaming algorithm for pattern matching was presented in the seminal paper of Porat
and Porat in FOCS 2009. For a pattern of length m, the algorithm uses only O(log m) space, while
any classical algorithm requires Ω(m) space. This result served as a foundation of the area of
streaming algorithms for pattern matching. After a brief survey of the area, we will discuss two
questions in more details: the k-mismatch problem and the pattern matching with k-edits problem.
In the k-mismatch problem, one is given a pattern and a text, and the task is to find all substrings
of the text that have at most k mismatches with the pattern. The current best algorithm for this
problem was given by Clifford, Kociumaka, and Porat in SODA 2019, and for a pattern of length m

it uses O(k log m) space and Õ(
√

k) time per character of the text. In the pattern matching with
k-edits problem, the task is similar, but one must find substrings that can be transformed into the
pattern by at most k edits, i.e. substitutions, insertions, and deletions of a character. For this
problem, the first streaming algorithm was presented by Kociumaka, Porat, and Starikovskaya in
FOCS 2021. The algorithm takes Õ(poly(k)) space and Õ(poly(k)) time per character of the text.
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Spanning Properties of Variants of the Delaunay
Graph
Prosenjit Bose #

Carleton University, Ottawa, Canada

Abstract
A weighted geometric graph G is a graph whose n vertices are points in the plane and whose m

edges are line segments weighted by the Euclidean distance between their endpoints. A t-spanner
of G is a connected spanning subgraph G′ with the property that for every pair of vertices x, y,
the shortest path from x to y in G′ has weight at most t ≥ 1 times the shortest path from x to y

in G. The parameter t is commonly referred to as the spanning ratio or the stretch factor. Typically,
G is a graph with Ω(n2) edges. As such, the goal in this area is to construct a subgraph G′ that
possesses several desirable properties such as O(n) edges and spanning ratio close to 1. In addition,
when planarity is one of the desired properties, variants of Delaunay graphs play a vital role in the
construction of planar geometric spanners. In this talk, we will provide a comprehensive overview
of various results concerning the spanning ratio, among other several other properties, of different
types of Delaunay graphs and their subgraphs.
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Abstract
We present subquadratic algorithms in the algebraic decision-tree model for several 3Sum-hard
geometric problems, all of which can be reduced to the following question: Given two sets A, B,
each consisting of n pairwise disjoint segments in the plane, and a set C of n triangles in the
plane, we want to count, for each triangle ∆ ∈ C, the number of intersection points between the
segments of A and those of B that lie in ∆. The problems considered in this paper have been
studied by Chan (2020), who gave algorithms that solve them, in the standard real-RAM model,
in O((n2/ log2 n) logO(1) log n) time. We present solutions in the algebraic decision-tree model whose
cost is O(n60/31+ε), for any ε > 0.

Our approach is based on a primal-dual range searching mechanism, which exploits the multi-level
polynomial partitioning machinery recently developed by Agarwal, Aronov, Ezra, and Zahl (2020).

A key step in the procedure is a variant of point location in arrangements, say of lines in the
plane, which is based solely on the order type of the lines, a “handicap” that turns out to be beneficial
for speeding up our algorithm.
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1 Introduction

Let A and B be two sets, each consisting of n pairwise disjoint line segments in the plane,
and let C be a set of n triangles in the plane. We study the problem of counting, for each
triangle ∆ ∈ C, the number of intersection points between the segments of A and those of B
that lie inside ∆. We refer to this problem as within-triangle intersection-counting. This is
one of four 3Sum-hard problems (among many others) studied by Chan [11], all of which
can be reduced to the problem just mentioned.1 The other three problems are:2

(i) Intersection of three polygons. Given three simple n-gons A, B, C in the plane, determine
whether A ∩B ∩ C is nonempty.

(ii) Coverage by three polygons. Given three simple n-gons A, B, C in the plane, determine
whether A ∪B ∪ C covers a given triangle ∆0.

(iii) Segment concurrency. Given sets A, B, C, each consisting of n pairwise disjoint
segments in the plane,3 determine whether A×B × C contains a concurrent triple.

Chan [11] presents slightly subquadratic algorithms for all four problems, whose run-
ning time in the standard real-RAM model (also referred to as the uniform model) is
O((n2/ log2 n) logO(1) log n). He has observed that, as already mentioned, all these problems
can be reduced in near-linear time to the within-triangle intersection-counting problem, so it
suffices to present an efficient subquadratic solution for that problem.

We study the within-triangle intersection-counting problem in the algebraic decision-tree
model. In this model only sign tests of polynomial inequalities of constant degree that
access explicitly (the endpoint coordinates of) the input segments or vertices of the input
triangles count towards the running time. All other operations cost nothing in the model, but
are not allowed to access the input segments explicitly. Although originally introduced for
establishing lower bounds [7], the algebraic decision-tree model has become a standard model
for upper bounds too, used in the study of many problems, including the 3Sum-problem
itself [10, 17, 20, 23, 25] and various 3Sum-hard geometric problems [5, 6, 17]. One can
interpret the decision-tree model as an attempt to isolate and minimize the cost of the part
of the algorithm that explicitly accesses the real representation of the input objects, and
ignore the cost of the other purely discrete steps. This has the potential of providing us
with an insight about the problem complexity, which might eventually lead to an improved
solution also in the uniform real-RAM model.

We show that the within-triangle intersection-counting problem and, hence, also prob-
lems (i)–(iii), can be solved in this model with O(n60/31+ε) sign tests, for any ε > 0. Chan [11]
also remarks (without providing details) that his algorithm can be implemented in O(n2−δ)
time in the algebraic decision-tree model, for some δ > 0 that he left unspecified. (With
some care, as was communicated to us, one can obtain δ ≈ 0.01.) Our algorithm is rather

1 Chan [11] refers to this problem as “triangle intersection-counting.”
2 The fact that these problems are 3Sum-hard, and the connections between them, are stated in [11].
3 The segments of one set, say C, need not be pairwise disjoint. Although not explicitly stated, the

technique in [11] for the uniform model can also handle this situation.
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different from Chan’s, and gives a concrete value for δ (any positive δ < 2/31), as mentioned
above. Our techniques appear to be of independent interest and to have the potential to
apply to other problems, as we demonstrate in the full version [4, Section 4].

If the segments in A and B and the triangles in C were all full lines,4 then, in general,
determining the existence of a concurrent triple of lines in A×B×C (the so-called concurrency
testing problem) is the dual version of the classical 3Sum-hard collinearity testing problem,
in which we are given three sets of points in the plane, and wish to determine whether their
Cartesian product contains a collinear triple. This problem has recently been studied in the
algebraic decision-tree model by Aronov et al. [5], in a restricted version where two of the
sets are assumed to lie on two constant-degree algebraic curves, where an algorithm with
roughly O(n28/15) comparisons has been presented.

The problems studied here can be regarded as other dual versions of collinearity testing,
where restrictions of a different kind are imposed. As noted by Chan [11], the additional
disjointness properties that are assumed here make the problem simpler than collinearity
testing (albeit by no means simple), and its solution appears to have no bearing on the
unconstrained collinearity problem itself. In the full version [4, Section 5] we comment on
the substantial differences between this work and the work by Aronov et al. [5].

Our technique is based on hierarchical cuttings of the plane, as well as on tools and
properties of segment-intersection range searching. We also use the so-called Fredman’s
trick in algebraic-geometric settings, in which the problem is mapped into a primal-dual
range searching mechanism involving points and surfaces in R6. This reduction exploits the
very recent multi-level polynomial partitioning technique of Agarwal et al. [2] (or a similar
technique of Matoušek and Patáková [27]). Our range-searching mechanism of points and
algebraic surfaces in higher dimensions is a by-product of our analysis, which appears to be
broadly applicable in other range-searching contexts, and we thus regard it as a technique of
independent interest; see, for example, Proposition 2 and its proof.

Point location in arrangements. An additional key ingredient of our approach involves
point location in an arrangement of lines in the plane (or an arrangement of curves, or of
hyperplanes in higher dimensions). This is of course a well studied problem with several
optimal solutions [29], but we adapt and use techniques that are handicapped by the
requirement that each operation that examines the real parameters specifying the lines
involves at most three input lines. In contrast, the persistent data structure of [29], for
example, needs to sort the vertices of the arrangement from left to right, thus requiring
comparisons of the x-coordinates of a pair of vertices, which are in general determined by the
parameters of four input lines. The persistent data structure method has been used in [5, 11]
for the study of other 3Sum-hard geometric problems. Here we replace this approach with
one that uses solely the relative positions of triples of lines, the so-called order type of the
arrangement. In this approach each comparison involves only three input lines, which, as we
show, eventually leads to improved performance of the algorithm.

In standard settings, separating the order-type computation from the rest of the processing
makes no sense. This is because obtaining the full order-type information for N lines already
takes Θ(N2) time. This makes the approach based on the order type noncompetitive, as
one can just do point location in the line arrangement, in the uniform model, with O(N2)
preprocessing. Nevertheless, in the applications considered in this paper (see Section 3 and

4 Disjointness then of course cannot be assumed in general, although it might occur when the lines in
each set are parallel, as in the dual version of the 3sum-hard GeomBase problem [19].
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the full version [4, Section 4]), the input lines have a special representation, which allows us
to avoid an explicit construction of their order type and obtain this information implicitly in
subquadratic time in the decision-tree model. The rest of the preprocessing, which takes
quadratic time and storage in the uniform model, costs nothing in the decision-tree model.

The problem of determining whether and how the order type of an arrangement is sufficient
to construct an efficient point-location data structure has, to the best of our knowledge,
never been addressed explicitly. As we believe that this kind of “handicapped” point location
will be useful for other applications (some of which are mentioned in the full version [4,
Section 4]), we present it in some detail in Section 2 and in the full version [4, Section 2.2].
We also present extensions of this technique to arrangements of constant-degree algebraic
curves in R2, and to arrangements of planes or hyperplanes in higher dimensions, which will
be used in the applications presented in the full version [4, Section 4].

The algorithm for solving the within-triangle intersection-counting problem in the algebraic
decision-tree model, and, consequently, also of the other three problems listed at the beginning
of this section, is presented in Section 3. Additional applications of our technique are presented
in the full version [4, Section 4]; they include: (i) counting intersections between two sets
of pairwise disjoint circular arcs inside disks, and (ii) minimum distance problems between
lines and two sets of points in the plane.

2 Order-type–based point location in arrangements

Order types. An arrangement of non-vertical lines in the plane (and, later, curves in the
plane, or hyperplanes in higher dimension) can be described in the following combinatorial
fashion. We use the notion of an order type, defined for a set L of lines as follows: Given any
ordered triple of lines (ℓ1, ℓ2, ℓ3) from L, where both ℓ2 and ℓ3 intersect ℓ1, we record the
left-to-right order of the intersections ℓ1 ∩ ℓ2 and ℓ1 ∩ ℓ3 along ℓ1; note that the intersections
might coincide. The totality of this information gives, for each line in L, the left-to-right order
of its intersections with every other line it meets. Furthermore, we assume the existence of an
“infinitely steep” line ℓ∞, placed sufficiently far to the left, the order of whose intersections
with the “normal” lines encodes the order of their slopes. This information is dual to the
perhaps more familiar notion of an order type for a set of points in the plane (see, e.g., [21]).
A higher-dimensional analog of this information involves recording the order in which a line
that is the intersection of d − 1 hyperplanes in Rd meets the remaining hyperplanes that
meet but do not contain it. We also assume a suitable analog of the “infinitely steep line,”
recursively defined over the dimension.

Back in the plane, the permutations along each line of the intersection points with the
other lines are called local sequences [22]. This view allows us to extend the definition of
the order type to x-monotone curves, where each pair of curves is assumed to intersect at
most s points, for some constant s. In this case the order type gives, for each curve γ in
the collection, the labeled left-to-right sequence of intersection points with the other curves,
where each intersection point is labeled by the triple (i, j, k), where i and j are the indices
of the two curves that form the intersection, and k indicates that it is the kth leftmost
intersection point of the two curves. The order type also includes the vertical order of the
curves at x = −∞. See the full version [4, Section 2.2] for further details.

The significance of the order type is that (a) it only records information for (d+ 1)-tuples
of objects, and (b) it contains enough information that lets us construct the arrangement and
preprocess it for fast point location, without having to access further the actual parameters
that define the objects.
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The problem we tackle now is the following: Given the order type of an arrangement,
preprocess this information into a point location data structure. The preprocessing stage is
not allowed to access the actual geometric description of the objects, such as the coefficients
of the equations defining the lines or hyperplanes, but can only exploit the discrete data
given by the order type. A query, in contrast, is allowed to examine the coefficients of the
few objects that it encounters.

We present two solutions for this problem. First, we show that, for d-dimensional
hyperplane arrangements, for any d ≥ 2, the sampling method of Meiser [28] (see also [16])
can be implemented using only order-type information. Second, we show that for arrangements
of x-monotone curves in the plane, a simple variant of the separating-chain method for point
location [15, 26] can be implemented such that only order-type information is used during
the preprocessing. We present only the first technique in this version of the paper, and
delegate the second one to the full version [4, Section 2.2].

2.1 Sampling-based approach for hyperplane arrangements
Let H be a set of N non-vertical hyperplanes in Rd, where d ≥ 2 is a fixed constant. We
want to construct a point-location data structure for the arrangement A(H) induced by H,
where we are only given the order type of H. Essentially, we are given, for each intersection
line formed by d− 1 hyperplanes, the order of its intersections with the other hyperplanes.
(Alternatively, we are given, for each simplex σ formed by d + 1 of the hyperplanes, the
x1-order of the vertices of σ.) We only require H not to contain vertical hyperplanes. We
do permit more than d hyperplanes to share a point, as well as other degeneracies. This is
indeed a natural scenario for our applications including segment intersection counting and
its related problems.

We briefly sketch the randomized method first proposed by Meiser [28] and analyzed in
detail by Ezra et al. [16] (see also [10]), and show that the order-type information is sufficient
to construct the data structure.

Before considering the point-location structure, we note that the order type suffices to
construct a discrete representation of the arrangement A(H), in which each j-dimensional
cell of A(H), for j = 1, . . . , d, stores the set of all (j − 1)-dimensional cells that form its
boundary (and consequently of all cells, of all dimensions, on its boundary), with respective
back pointers from each cell to all higher-dimensional cells that contain it on their boundary.
This can be done, e.g., by the Folkman–Lawrence topological representation theorem for
oriented matroids [18], which, roughly speaking, implies that, given the order type of H,
one can construct a combinatorial representation for the arrangement A(H), consisting of
all sign conditions. That is, each face f of A(H) (of any dimension) is encoded by a sign
vector {−1, 0,+1}|H| representing the above/below/on relation of f with respect to each
hyperplane in H; see [9] for an inductive proof for the planar case, and its generalization to
higher dimensions in [8]. Given this property, a naïve actual construction of the combinatorial
representation of A(H) is easy to derive, and is free of charge in the decision-tree model,
once the order type of H is computed. When we perform a point-location query we report a
pointer to the sign vector of the cell of A(H) that contains the query point – see below.

Preprocessing. Given the arrangement A(H) and a fixed ε > 0, we first construct a
random sample S of O( d2

ε log d
ε ) hyperplanes of H; the size of S does not depend on n. We

then compute a canonical triangulation of the arrangement A(S). For each face of A(S),
of any dimension at least 2, we use a fixed rule to designate a reference vertex p of this
face. For example, we can take p to be the lexicographically smallest vertex of the face,
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with each vertex represented by the lexicographically smallest d-tuple of the indices of the
hyperplanes that contain it and whose intersection is a single point.5 We then triangulate
each face f of A(S) by the fan obtained by adding the vertex p to each simplex in the
triangulations of the lower-dimensional faces composing the boundary of f and not incident
to p. Next, we construct the conflict list L(∆) for each simplex ∆ of the triangulation, of any
dimension, defined as the set of hyperplanes of H that cross ∆, i.e., intersect, but not fully
contain, it. L(∆) can indeed be constructed using only the order type: Deciding whether a
hyperplane h ∈ H belongs to L(∆) amounts to testing whether there exist two vertices of ∆
that lie on different sides of h, and each such test is an orientation test of the corresponding
(d+ 1)-tuple of hyperplanes: h and the d hyperplanes forming the vertex.

From standard results on ε-nets [24], a suitable choice of the constant of proportionality
in the bound on the sample size guarantees that, with high probability, the conflict list size
is not larger than εn, for each simplex ∆. It remains to recurse, for each simplex ∆ of the
triangulation, with the hyperplanes in L(∆). (If ∆ is not full-dimensional, we also record the
hyperplanes containing it and the recursive processing involves building a lower-dimensional
arrangement within ∆.) This leads to a hierarchical data structure in which the number
of hyperplanes decreases by a factor ε at each level. The construction continues until the
number of hyperplanes falls below a suitable constant, at which point we simply store the
remaining hyperplanes. Let w be a leaf in this hierarchy. It will be convenient to further
preprocess the set H(w) of hyperplanes stored at w into a tree Tw that allows us to locate
a query point in the arrangement A(H(w)). The structure Tw is simply a ternary tree of
depth |H(w)| = O(1), where a node at level j stores the j-th hyperplane hj of H(w), so we
can test if a query point is below, on, or above hj . Observe that each leaf of Tw corresponds
to a unique cell in the arrangement A(H(w)) and, hence, also in A(H) – indeed, the sign
with respect to every hyperplane in H \H(w) is determined by the search path to the node
w in the hierarchy.

Answering queries. Queries are answered as follows. First, we locate the (open) simplex ∆
of the canonical triangulation of A(S) containing the query point q. Since d is assumed to
be constant, S is also of constant size, and so locating ∆ can be done in O(1) time. Next,
we recurse in the data structure attached to ∆. When we reach a leaf w of the hierarchy, we
continue to search in the tree Tw. When we reach a leaf in Tw we have located q and can
report (a pointer to) the sign vector of the cell containing q.

The overall number of these recursive steps is O(log n), and thus answering a query costs
O(log n) arithmetic operations, where the hidden constant6 is polynomial in d. As noted, in
our applications we only need to determine whether q lies on a hyperplane of H.

The following lemma summarizes the result.

▶ Lemma 1. Let H be a set of n hyperplanes in Rd, where d ≥ 2 is a constant. Using
only the order type of H, we can construct a polynomial-size data structure that guarantees
O(log n)-time point-location queries in the arrangement A(H); the implied constant depends
polynomially on d. The (polynomial) preprocessing time and the storage of the data structure
cost nothing in the decision-tree model.

5 When p is chosen as the bottommost vertex, the resulting triangulation is referred to as the bottom-vertex
triangulation, but in general the order type does not provide us with this information.

6 The value of this constant depends on the storage allocated to the structure. For example, spending
n2d log d+O(d) on storage guarantees query cost of O(d4 log n) [16].
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Remark. The query time for d = 2 is better than the time in the second, level-based approach
presented in the full version [4, Section 2.2] for curves in the plane (which is O(log2 n)).
However, the sampling-based method does not extend to non-straight curves, since there is
no obvious way to extend the notion of a canonical triangulation to the case of curves. The
only viable way of doing this seems to use the standard vertical-decomposition technique.
Unfortunately (for us), constructing the vertical decomposition requires that we compare the
x-coordinates of vertices defined by different, unrelated pairs of curves. Such a comparison
involves four input curves and it cannot be resolved from the order-type information alone.
For lines in the plane, however, the above technique does yield the improved logarithmic
query time.

3 The algorithm for within-triangle intersection-counting

Our input consists of two sets A, B, each of n pairwise disjoint segments in the plane, and of
a set C of n triangles in the plane. To simplify the presentation, we assume that the input is
in general position, namely that, among the segments of A, B, and edges of triangles of C,
no two share a supporting line, and no endpoint of one segment lies on another (with the
obvious exception of the vertices of a triangle in C).7 These are the only general position
assumptions that we need. A triple of segments (one from A, one from B, and an edge of a
triangle from C) are allowed to be concurrent.

A high-level roadmap of the algorithm. To avoid various technical issues that complicate
the description of our algorithm, we focus in this overview on the simpler segment concurrency
problem, where C is a set of (not necessarily disjoint) segments, and the goal is to determine
whether there is a triple (a, b, c) ∈ A×B ×C of concurrent segments. To make the overview
even simpler, assume that C is a set of lines.

We fix a parameter g ≪ n and put r := n/g. We construct a (1/r)-cutting Ξ(A) for the
segments of A, and another such cutting Ξ(B) for the segments of B. Since the segments of A
are pairwise disjoint, we can construct Ξ(A) of size O(r), and similarly for Ξ(B) (see [14]).
We overlay the two cuttings and obtain a planar decomposition Ξ. While the complexity
of Ξ is O(r2), any line of C crosses only O(r) of its cells.

For each two-dimensional cell σ of Ξ (lower-dimensional cells are simpler to handle), we
preprocess the sets Aσ ⊆ A and Bσ ⊆ B of those segments that cross σ, each of size at most
n/r = g, into a data structure that supports efficient queries, each specifying a line c and
asking whether c passes through an intersection point of a segment of Aσ and a segment of
Bσ. We pass to the dual plane, obtain sets A∗

σ and B∗
σ of at most g points (dual to the lines

containing the segments) each. (We ignore here “short” segments that have an endpoint
inside σ; see below.) The query is a point c∗ and the task is to determine whether c∗ is
collinear with a pair of points (a∗, b∗) ∈ A∗

σ ×B∗
σ. For a ∈ Aσ and b ∈ Bσ we define γa,b to

be the line that passes through a∗ and b∗, and let Γσ denote the collection of these lines.
The query with c∗ then reduces to point location in the arrangement A(Γσ), where we only
need to know whether c∗ lies on any of the lines.

We cannot perform this task explicitly in an efficient manner, since the complexity
of A(Γσ) is O(g2) and we have O(r2) = O(n2/g2) such arrangements, of overall size O(n2).
We can do it, though, in the algebraic decision-tree model, in an implicit manner, using the
so-called Fredman’s trick; see [23] for a simpler yet representative application of Fredman’s

7 For technical reasons, we also allow a triangle in C to degenerate to a segment.

ISAAC 2021



3:8 Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems

trick, as well as [5, 6] for geometric applications of Fredman’s trick. Concretely, we apply
the order-type–based machinery of Section 2 to construct A(Γσ) and preprocess it for fast
point location. More precisely, we first construct the order type of Γσ: this involves, for each
triple of lines γa1,b1 , γa2,b2 , γa3,b3 , determining the ordering of their intersection points along
each of these lines. We express this test, in a straightforward manner, as the sign test of
some 12-variate constant-degree polynomial G(a1, a2, a3; b1, b2, b3).

We map the triple (b1, b2, b3) to a point in a six-dimensional parametric space, and
(a1, a2, a3) to an algebraic surface ψa1,a2,a3 in this space, which is the locus of all triples
(b1, b2, b3) with G(a1, a2, a3; b1, b2, b3) = 0. We now need to locate the points (b1, b2, b3) in
the arrangement of the surfaces ψa1,a2,a3 , from which all the sign tests can be resolved, at
no extra cost in the algebraic decision-tree model, thereby yielding the desired order type.
The subsequent construction of the arrangement A(Γσ), and its preprocessing for fast point
location, using the machinery in Section 2, also cost nothing in our model.

To make this process efficient, we group together all the points (b1, b2, b3), for b1, b2, b3
in the same cell σ, over all cells σ, into one global set P , and group the surfaces ψa1,a2,a3

into another global set Ψ. We have |P |, |Ψ| = O(r) ·O(g3) = O(ng2) (since there are only
O(r) cells of Ξ(A) (resp., of Ξ(B)) from which the triples (a1, a2, a3) (resp. (b1, b2, b3)) are
drawn).

Using the recent machinery of Agarwal et al. [2] or of Matoušek and Patáková [27], we
can perform this batched point location in 6-space in time

O
(

|P |6/7+ε|Ψ|6/7+ε + |P |1+ε + |Ψ|1+ε
)

= O
(

(ng2)12/7+2ε
)
,

for any ε > 0. Full details of this step, crucial, albeit rather technical, are given in the full
version [4, Section 3.1].

Searching with the dual points c∗ takes O
(

n2

g log g
)

time, because we have n query
lines c, each line crosses O(r) = O(n/g) cells σ, and each point location with c∗ in each
of the encountered arrangements takes O(log g) time. Balancing (roughly) this cost with
the preprocessing cost, we choose g = n2/31, and obtain the total subquadratic running
time O(n2−2/31+ε) = O(n60/31+ε).

Quite a few issues were glossed over in this overview. Since the segments of A and of B are
bounded, a cell σ may contain endpoints of these segments, making the passage to the dual
plane more involved. The same applies in the original within-triangle intersection-counting
problem, where the triangles of C may have vertices or more than one bounding edge that
lie in or meet σ. We thus need to handle the presence of such “short” segments and/or
“short” triangles. Moreover, we need to count intersection points within each triangle, and the
number of cells in overlay of the cuttings Ξ(A), Ξ(B) that a triangle can fully contain is much
larger than O(r). All these issues require more involved techniques, which are developed
below, with some details delegated to the full version [4, Section 3]. Still, the overall runtime
of the resulting algorithm remains O(n60/31+ε), for any ε > 0.

Hierarchical cuttings. This ingredient is needed for counting intersection points in cells
that are fully contained inside a query triangle. The application of hierarchical cuttings
to our problem significantly reduces the query time – see below. Fix a parameter g ≪ n

and put r := n/g. We construct a hierarchical (1/r)-cutting Ξ(A) for the segments of A,
which is a hierarchy of (1/r0)-cuttings, where r0 is some sufficiently large constant. The
top-level cutting Ξ1(A) is constructed for A. Since the segments of A are pairwise disjoint,
we can construct Ξ1(A) so that it consists of only O(r0) trapezoids (for concreteness, we
write this bound as br0, for some absolute constant b), each of which is crossed by at most
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n/r0 segments of A, which comprise the so-called conflict list of the cell σ, denoted as Aσ.
The construction time of Ξ1(A), in the real-RAM model, is O(n log r0) = O(n). See [14,
Theorem 1] for details.

For each cell σ of Ξ1(A), we clip the segments in its conflict list Aσ to within σ and apply
the cutting-construction step recursively to this set, clipping also the cells of the new cutting
to within σ (and ignoring cells, or portions thereof, that lie outside σ, as they are not met by
any of the clipped segments of Aσ). We denote the union of all the resulting (1/r0)-cuttings
as Ξ2(A). We continue recursively in this manner, until we reach a level s at which all
the cells are crossed by at most n/r segments. We thus obtain a hierarchy of cuttings
Ξ1(A),Ξ2(A), . . . ,Ξs(A), for some index s = O(log r). We denote the collective hierarchy
as Ξ(A). Since we stop the recursion as soon as n/rs

0 ≤ n/r, the overall number of cells
of all the levels is O((br0)s) = O(r1+ε), for any prespecified ε > 0, for a suitable choice of
r0 = r0(ε). Technically, the trapezoids in the cutting are relatively open, and the cutting
also includes one- and zero-dimensional cells; as the latter are easier to deal with, we will
focus below on the two-dimensional cells of the cutting. At any level j of the hierarchy, the
cells of Ξj(A) are pairwise disjoint. As these cells partition the plane, each intersection point
between a segment of A and a segment of B lies in precisely one cell of a suitable dimension
at each level. See Figure 1 for an illustration.

Figure 1 Interaction of a hierarchical cutting with a triangle. The dark gray cells are the ones
inside the triangle at the top level of the hierarchy; the medium gray cells are the ones inside the
triangle at the second level (and whose parent cells are not inside the triangle). The light gray cells
will be refined and handled at lower levels, since they intersect the triangle boundary.

We apply a similar hierarchical construction for B, and let Ξ(B) = {Ξj(B)}j≤s denote
the resulting hierarchical cutting, which has analogous properties. (We assume for simplicity
that the highest index s is the same in both hierarchies.)

We now overlay Ξ(A) with Ξ(B), that is, at each level j of the hierarchy, we overlay the
cells of Ξj(A) with the cells of Ξj(B). We denote the jth level overlay as Ξj , and the entire
hierarchical overlay structure as Ξ = {Ξj}j≤s. Since each of Ξj(A) and Ξj(B) consists of
at most (br0)j cells, the number of cells of Ξj is at most O((br0)2j). Since we have rs

0 ≈ r

(up to a factor of r0), it follows that the overall complexity of all the overlays is O(r2+2ε),
provided that we choose r0, as above, to be sufficiently large, as a function of ε.

For simplicity of exposition, we ignore lower-dimensional faces of the cuttings, and regard
each of the overlays Ξj as a decomposition of the plane into pairwise openly disjoint convex
polygons, each of complexity linear in j ≤ s = O(log r). Each cell σ of the overlay is
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3:10 Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems

identified by the pair (τ, τ ′), where τ and τ ′ are the respective cells of Ξj(A) and Ξj(B)
whose intersection is σ; we simply write σ = (τ, τ ′). Each bottom-level cell σ of the final
overlay Ξs is crossed by at most n/r = g segments of A and by at most g segments of B.

Classifying the segments and triangles. Let σ = (τ, τ ′) be a cell of Ξj , for any level j of
the hierarchy. Call a segment e of A long (resp., short) within σ if e crosses σ and neither of
its endpoints lies in σ (resp., at least one endpoint lies in σ). Let Al

σ (resp., As
σ) denote the

set of long (resp., short) segments of A within σ. Apply analogous definitions and notations
to the segments of B. Denote by Cσ (resp., C(0)

σ ) the set of triangles with at least one edge
that crosses σ (resp., that fully contain σ). Call a triangle ∆ ∈ Cσ long (resp., short) in σ if
σ does not (resp., does) contain a vertex of ∆, and denote by Cl

σ (resp., Cs
σ) the set of long

(resp., short) triangles in Cσ.
For each triangle ∆ ∈ C, each of its edges crosses only O((br0)j) cells of Ξj . Indeed,

as such an edge crosses from one cell of Ξj to an adjacent cell, it does so by crossing the
boundary of either a cell of Ξj(A) or a cell of Ξj(B), and the total number of such crossings
is O((br0)j). In particular, the edge crosses at most O(r1+ε) cells of the final overlay Ξs. It
follows that

∑
σ∈Ξ |Cl

σ| ≤
∑

σ∈Ξ |Cσ| = O(nr1+ε), but clearly
∑

σ∈Ξ |Cs
σ| is only O(n log r).

In contrast, ∆ can fully contain many more cells of Ξs, perhaps almost all of them, but the
hierarchical nature of the construction allows us to deal with a much smaller number of such
interior cells, by collecting them at higher levels of the hierarchy; see below for details.

The algorithm: A quick review. The high-level structure of the algorithm is as follows (see
also the “roadmap” overview given earlier). We construct the hierarchies Ξ(A) = {Ξj(A)}j≥1
and Ξ(B) = {Ξj(B)}j≥1. For each cell τ of Ξj(A) (resp., τ ′ of Ξj(B)), we compute its
conflict list Aτ (resp., Bτ ′), which, as we recall, is the set of all segments of A that cross τ
(resp., segments of B that cross τ ′). We then form the hierarchical overlay Ξ = {Ξj}j≥1, and
for each cell σ = (τ, τ ′) of any overlay Ξj , we compute the subset Aσ of the segments of Aτ

that cross σ, and the subset Bσ of the segments of Bτ ′ that cross σ. We partition Aσ into
the subsets Al

σ and As
σ of long and short segments (within σ), respectively, and apply an

analogous partition to Bσ. The additional overall cost for constructing these sets, over all
hierarchical levels, is O(r2+ε · n/r) = O(nr1+ε) = O(n2+ε/g). (The cost at the bottom level
dominates the entire cost over all levels.)

We also trace each triangle c ∈ C through the cells of Ξ that are crossed by its edges,
and form, for each cell σ of the overlay, the list Cσ of triangles of C with at least one edge
that crosses σ. We partition Cσ into the subsets Cl

σ and Cs
σ, as defined earlier. As we show

below, we can handle, in a much more efficient way, the short triangles of Cs
σ, as well as

the triangles of Cl
σ all three of whose edges cross σ, simply because the overall number of

such triangle-cell interactions is small. We therefore focus on the triangles of Cl
σ that have

only one or two edges crossing σ. For triangles with two crossing edges we use a standard
two-level data structure (where in each level we consider only one crossing edge). This lets
us assume, without loss of generality, that each triangle in Cl

σ is a halfplane. Each of these
halfplanes can be represented by its bounding line, that is the line supporting the appropriate
crossing edge of the triangle. We flesh out the details below.

We also assume, for now, that all the segments of Aσ and of Bσ are long in σ (and so
we drop the superscript l). This is the hard part of the analysis, requiring the involved
machinery presented below. After handling this case, we will address the much simpler
situations that involve short segments and/or short triangles (or triangles with three edges
crossing σ). The cost of handling short segments or short triangles within cells is lower, even
in the uniform model, since the overall number of short objects within cells is smaller.
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Handling the long segments. We preprocess each level j of the overlay, to compute, for
each of its cells σ = (τ, τ ′), the number of intersection points between the (long) segments
of Aσ and those of Bσ (which, due to the clipping, lie in σ). This is a standard procedure that
involves computing the number of pairs of segments from Aσ ×Bσ whose intersection points
with the boundary of σ interleave (these are precisely the pairs of intersecting segments),
and can be implemented to take O((|Aσ| + |Bσ|) log(|Aσ| + |Bσ|)) time; see, e.g., [1]. We
store the resulting count at σ.

Consider a two-dimensional cell σ, a segment a ∈ Aσ, a segment b ∈ Bσ, and a triangle
∆ ∈ Cσ. By assumption, ∆ has only one edge c or two edges c1, c2 crossing σ. When a

and b intersect inside σ, the intersection lies in ∆ if and only if the triple (a, b, c), or each
of the triples (a, b, c1), (a, b, c2), has a prescribed orientation, reflecting the condition that
the point a ∩ b lies on the side of c (or the sides of c1, c2) that contain ∆. This orientation
(or orientations) can be positive, negative, or zero, depending on the relative order of the
slopes of a, b, and c (or of c1 and c2), and on whether ∆ lies to the left or to the right of c
(or of c1, c2).

For each halfplane c+ that represents a triangle ∆ ∈ Cσ (the halfplane contains ∆ and is
bounded by the line supporting the single (relevant) edge c of ∆ that crosses σ), we want
either (i) to represent the set of pairs (a, b) ∈ Aσ × Bσ that have a prescribed orientation
of the triple (a, b, c), as the disjoint union of complete bipartite graphs, or (ii) to count the
number of such pairs. The subtask (i) arises in cases where ∆ has two edges crossing σ and
is needed for the first level of the data structure, which we query with the first crossing edge
of ∆. The subtask (ii) arises in the second level of the structure, which we query with the
second crossing edge of ∆, and in cases where only one edge of ∆ crosses σ.

We also count the number of intersections within σ, in O ((|Aσ| + |Bσ|) log(|Aσ| + |Bσ|))
time. As a matter of fact, with a simple modification of the procedure, we can, within the
same time bound, represent the set of all pairs of segments (a, b) ∈ Aσ ×Bσ that intersect
each other (inside σ) as the disjoint union of complete bipartite graphs, so that the overall
size of their vertex sets is O ((|Aσ| + |Bσ|) log(|Aσ| + |Bσ|)). This follows from standard
planar segment-intersection range searching machinery; see, e.g., [1]. In what follows we
focus on just one such graph, and to simplify the presentation we denote it as Aσ ×Bσ, with
a slight abuse of notation.

Preparing for Fredman’s trick. We use the infrastructure developed by Aronov et al. [5],
with suitable modifications, but adapt it to the order-type context. We preprocess A and B
into a data structure that we will then search with the points dual to the lines supporting
the edges of the triangles of C. For each a ∈ A, b ∈ B, we define γa,b to be the line that
passes through a∗ and b∗, where a∗ (resp., b∗) is the point dual to a (resp., b). By our general
position assumption, a∗ ≠ b∗, so γa,b is well defined. Let Γ0 denote the set of these n2 lines.
Our goal in task (ii) is to count, for each cell σ of any of the overlays, for each point c∗ dual
to an edge of a triangle ∆ ∈ Cσ, the number of lines of Γ0 that lie above c∗, the number of
lines that are incident to c∗, and the number of lines that lie below c∗. In task (i), we want to
represent each of these sets of lines as the disjoint union of a small number of precomputed
canonical sets. This calls for preprocessing the arrangement A(Γ0) into a suitable point
location data structure, which we will then search with each c∗ ∈ C∗, and retrieve the desired
data from the outcome of each query.

As in, e.g., [5], a naïve implementation of this approach will be too expensive. Instead, we
return to the hierarchical partitions Ξ(A), Ξ(B), and Ξ, and iterate, over all cells σ = (τ, τ ′)
of the bottom level Ξs, defining Γσ := {γa,b | (a, b) ∈ Aσ × Bσ}. In principle, we want to
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construct the separate arrangements A(Γσ), over the cells σ, preprocess each of them into a
point location data structure, and search, for each triangle ∆ ∈ C, in the structures that
correspond to the cells of Ξ that are either crossed by (at most) one or two edges of ∆, or
fully contained in ∆. This is also too expensive if implemented naïvely, so we use instead
Fredman’s trick, combined with the machinery developed in Section 2.

We first observe that, for each triangle ∆ ∈ C, finding the cells σ (at any level of the
hierarchy) that ∆ fully contains is easy and inexpensive. We go over the hierarchy of the
overlays Ξj . At the root we find, by brute force, all the (constantly many) cells of Ξ1 that ∆
fully contains, and add their intersection counts to our output counter. We then recurse, in
the same manner, in the at most br0 cells of Ξ1 that ∆ crosses. Thus the number of cells we
visit is at most O(r2

0) ·
(
1 + br0 + (br0)2 + · · · + (br0)s

)
= O(r1+ε), so the overall cost of this

step8 is O
(
nr1+ε

)
= O

(
n2+ε/g

)
.

We therefore focus, for each triangle ∆ of C, only on the cells that it crosses (at every
level of the hierarchy), and restrict the analysis for now to cells at which ∆ is long, with
at most two of its edges crossing the cell. Repeating most of the analysis just given, the
number of these cells is O(r1+ε) (with a smaller constant of proportionality, since we now do
not have the factor O(r2

0), as above).

Constructing A(Γσ) in the decision-tree model. Consider the step of constructing A(Γσ)
for some fixed bottom-level cell σ. Following the technique in Section 2, we perform this step
using only the order type of Γσ, and we begin by considering the task of obtaining the order-
type information. That is, we want to determine, for each ordered triple (γa1,b1 , γa2,b2 , γa3,b3)
of lines of Γσ, whether the point γa1,b1 ∩ γa2,b2 lies to the left or to the right of the point
γa1,b1 ∩γa3,b3 . Let G(a1, a2, a3; b1, b2, b3) denote the 12-variate polynomial (of constant degree)
whose sign determines the outcome of the above comparison. (The immediate expression for
G is a rational function, which we turn into a polynomial by multiplying it by the square
of its denominator, without affecting its sign; our general position assumption ensures that
none of the denominators vanishes.)

Once the signs of all expressions G(a1, a2, a3; b1, b2, b3) are determined, we can apply
Lemma 1. The rest of the preprocessing, which constructs a discrete representation of the
arrangement, say, in the DCEL format [13], and turns this representation into an efficient
point location data structure, can be carried out at no cost in the algebraic decision-tree
model.

We search the structure with each triangle ∆ ∈ Cσ. We may assume that ∆ is long
in σ and that only one or two edges of ∆ cross σ, as the other cases are easy to handle.
Assuming further that there is only one such edge c, locating the dual point c∗ in A(Γσ)
takes O(log g) time, as shown in Section 2 (noting that Γσ consists of only g2 lines). With
suitable preprocessing, locating c∗ gives us, for free in our model, the three sets of the lines
that pass above c∗, are incident to c∗, or pass below c∗. The case where two edges of ∆
cross σ is handled using a two-level version of the structure; see below for details. The point
location cost now goes up to O(log2 g).

Consider then the step of computing the order type of the lines of Γσ, that is, of computing
the sign of G(a1, a2, a3; b1, b2, b3), for every triple of segments a1, a2, a3 ∈ Aσ and every triple
of segments b1, b2, b3 ∈ Bσ. To this end, we play Fredman’s trick. We fix a bottom-level cell
τ of Ξ(A). For each triple (a1, a2, a3) ∈ A3

τ , we define the surface

ψa1,a2,a3 = {(b1, b2, b3) ∈ R6 | G(a1, a2, a3; b1, b2, b3) = 0},

8 It is for making this step efficient that we use hierarchical partitions. A single-shot partition would have
forced the query to visit up to Θ(r2) such cells, which would make it too expensive.
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and denote by Ψ the collection of these surfaces, over all cells τ . We have N := |Ψ| =
O((n/g)1+ε · g3) = O(n1+εg2). Similarly, we let P denote the set of all triples (b1, b2, b3), for
b1, b2, b3 ∈ B3

τ ′ , over all cells τ ′ of Ξ(B). We have M := |P | = O(n1+εg2). These bounds
pertain to the bottommost level of the hierarchy; they are smaller at levels of smaller indices.

We apply a batched point-location procedure to the points of P and the surfaces of
Ψ. The output of this procedure is a collection of complete bipartite subgraphs of P × Ψ,
so that, for each such subgraph Pα × Ψα, G(a1, a2, a3; b1, b2, b3) has a fixed sign for all
(b1, b2, b3) ∈ Pα and all (a1, a2, a3) ∈ Ψα, see, e.g., [3, 12] for the use of such structures in
similar contexts. This tells us the desired signs of G(a1, a2, a3; b1, b2, b3), for every pair of
triples (a1, a2, a3) ∈ A3

τ , (b1, b2, b3) ∈ B3
τ ′ , over all pairs of cells (τ, τ ′) ∈ Ξ(A) × Ξ(B), and

these signs give us the orientation (i.e., the order of the intersection points) of every triple
of lines γa,b. That is, we obtain the order type of the lines. As remarked in Section 2, we
may assume that this also includes the sorting of the lines at x = −∞, but, for the sake of
concreteness, we address this simpler task in the full version [4, Section 3].

The batched point location step proceeds by using the recent multilevel polynomial
partitioning technique of Agarwal et al. [2, Corollary 4.8]. We delegate the full, and rather
technical, details of the analysis to the full version [4, Section 3.1], and just summarize the
result here.

▶ Proposition 2. Let T (M,N) denote the maximum possible sum of the sizes of the vertex
sets of the complete bipartite graphs produced by the recursive process described above, over
all input sets of at most M points and at most N surfaces. Then we have

T (M,N) = O
(
M6/7+εN6/7+ε +M1+ε +N1+ε

)
,

for any ε > 0, where the constant of proportionality depends on ε. The same asymptotic
bound also holds for the cost (in the uniform model) of constructing these graphs.

In summary, the information collected so far allows us to obtain the combinatorial
structure of each of the arrangements A(Γσ), over all cells σ of Ξ, and subsequently construct
an order-type–based point-location data structure for each of them, at no extra cost in
the algebraic decision-tree model. The overall cost of this phase, in this model, is thus
O

(
(n1+εg2)12/7+ε

)
, for any ε > 0. By replacing ε by some small multiple thereof, we can

write this bound as O
(
(ng2)12/7+ε

)
, for any ε > 0.

Fredman’s trick, as applied above, separates the handling of the conflict lists Aτ , over
the trapezoids τ of Ξ(A), and the conflict lists Bτ ′ , over the trapezoids τ ′ of Ξ(B). For a
cell σ = (τ, τ ′) of Ξ, not all the segments in Aτ necessarily cross σ, so we have to retain
(for σ) only those that do cross it, and apply a similar pruning to Bτ ′ . As we show in the
full version [4, Section 3], the cost of this filtering step is O(g) for each σ, for an overall cost
of O((n/g)2 · g) = O(n2/g).

Searching with the elements of C. We now need to search the structures computed in the
preceding phase with the dual features of the triangles of C. Due to lack of space, we delegate
the description to the full version [4, Section 3], where we show that the total searching
time, for all the elements of C, is O

(
n2+ε log2 g

g

)
, concluding (see once again our high-level

roadmap):

▶ Theorem 3. Let A and B be two sets each consisting of n pairwise disjoint segments in the
plane, and let C be a set of n triangles in the plane. We can count, for each triangle ∆ ∈ C,
the number of intersection points of segments of A with segments of B that lie inside ∆, in
the algebraic decision-tree model, at the subquadratic cost O(n60/31+ε), for any ε > 0.

ISAAC 2021



3:14 Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems

▶ Corollary 4. We can solve, in the algebraic decision-tree model, at the cost of O(n60/31+ε),
for any ε > 0, each of the problems (i) intersection of three polygons, (ii) coverage by three
polygons, and (iii) segment concurrency, as listed in the introduction.
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Abstract
Consider the geometric range space (X, Hd) where X ⊂ Rd and Hd is the set of ranges defined by
d-dimensional halfspaces. In this setting we consider that X is the disjoint union of a red and blue
set. For each halfspace h ∈ Hd define a function Φ(h) that measures the “difference” between the
fraction of red and fraction of blue points which fall in the range h. In this context the maximum
discrepancy problem is to find the h∗ = arg maxh∈(X,Hd) Φ(h). We aim to instead find an ĥ such
that Φ(h∗) − Φ(ĥ) ≤ ε. This is the central problem in linear classification for machine learning,
in spatial scan statistics for spatial anomaly detection, and shows up in many other areas. We
provide a solution for this problem in O(|X| + (1/εd) log4(1/ε)) time, for constant d, which improves
polynomially over the previous best solutions. For d = 2 we show that this is nearly tight through
conditional lower bounds. For different classes of Φ we can either provide a Ω(|X|3/2−o(1)) time
lower bound for the exact solution with a reduction to APSP, or an Ω(|X| + 1/ε2−o(1)) lower bound
for the approximate solution with a reduction to 3Sum.

A key technical result is a ε-approximate halfspace range counting data structure of size O(1/εd)
with O(log(1/ε)) query time, which we can build in O(|X| + (1/εd) log4(1/ε)) time.
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1 Introduction

Let X be a set of m points in Rd for constant d where X can either be the union of a red,
R, and blue set, B, of points X = R ∪ B (possibly not disjoint) or a set of weighted points
where each point has weight w(x) for x ∈ X. Now let (X, Hd) be the associated range space
of all subsets of X defined by intersection with a halfspace.

We are interested in finding the halfspace h∗ and value Φ∗ that maximizes a function
ΦX(h) : Hd → R for some class of functions Φ. We characterize them by reframing it as
a function of µR and µB so ΦX(h) = ϕ(µR(h), µB(h)), where µR(h) = |R ∩ h|/|R| and
µB(h) = |B ∩ h|/|B| are the fraction of red or blue points, respectively, in the range h. In
particular, we only consider functions ΦX(h) which can be calculated in O(1) time from
µR(h) and µB(h) as ϕ(µR(h), µB(h)) (e.g., ϕ(µR, µB) = |µR − µB |). Given such a fixed ϕ,
or one from a class, we state the two main problems: exact and ε-additive error.

Problem Max-Halfspace: From a given set X = R ∪ B ⊂ Rd points where |X| = m

and a Lipshitz constant function ΦX(h) : 2X → R, find h∗ = arg maxh∈Hd
ΦX(h).

Problem ε-Max-Halfspace: From a given set X = R ∪ B ⊂ Rd points where |X| = m

and a Lipshitz constant function ΦX(h) : 2X → R where h∗ = arg maxh∈Hd
ΦX(h), find

ĥ ∈ Hd such that ΦX(h∗) − ΦX(ĥ) ≤ ε.
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4:2 Approximate Maximum Halfspace Discrepancy

Figure 1 Plots of common ϕ functions. From left to right: ϕ||, ϕf (for f = 0.3), and ϕK .

We typically write ΦX as Φ when the set X is clear. Our algorithms will explicitly
compute µR(h) (and µB(h) separately) for each h evaluated, and so work with all functions
ϕ. Notable useful examples of ϕ, shown in Figure 1, include:

discrepancy: ϕ||(h) = |µR(h) − µB(h)|.
This measures the maximum disagreement between the proportions of the two sets B and
R: the central task of building a linear classifier (on training data) in machine learning is
often formulated to maximize precisely this function [26, 34, 12, 15]. Given a coloring of
X into R and B, this also measures the discrepancy of that coloring [32, 10].
f-balancing: ϕf (h) = 1 − |(µR(h) − µB(h)) − f |, for a fraction f ∈ (0, 1).
This scores how well a halfspaces strikes a balance of f between the two sets. By
minimizing this function (or maximizing 1 − ϕf (h)), the goal is to find a range h that
exhibits an imbalance between the sets of f . Maximizing this function (say with f = 1/2)
is the problem of finding good ham sandwich cuts [27].
Kulldorff: ϕK(h) = µR(h) log µR(h)

µB(h) + (1 − µR(h)) log 1−µR(h)
1−µB(h) .

This is the Kulldorff discrepancy function [23] which arises in spatial scan statistics [29,
30, 23, 24, 21, 33, 3, 2], for detecting spatial anomalies. This function specifically is
derived as the log-likelihood ratio test under a Poisson model, but other similar convex,
non-linear functions arise naturally from other models [24, 2]. In this setting the most
common range shape model is a disk, and the best algorithms [16, 17, 29] operate by
lifting to one-dimension higher where the ranges correspond to halfspaces.

All of these ϕ functions are Lipschitz continuous over µB and µR, and thus this extends
to a combinatorial notion of Lipschitz over the associated Φ with respect to the combinatorial
range h: that is, |ΦX(h) − ΦX(h′)| ≤ c(||h ∩ R| − |h′ ∩ R||/|R| + ||h ∩ B| − |h′ ∩ B||/|B|)
for constant c. For ϕ|| and ϕf , c = 1, and for ϕK it is bounded in a reasonable range of
µB , µR [2, 28]. This means that approximating each of µB(h) and µR(h) up to additive error
translates into at most additive error in ΦX .

We also consider the hardness of these problems, and for this we will restrict the classes of
functions ϕ considered in these problems. We will show the largest lower bound on concave
functions ϕ (like ϕf ), and this construction will apply to a Lipschitz functions (again like ϕf ).
However, the class of convex functions (like ϕ|| and ϕK) are more prevalent, and we present a
smaller lower bound, but which applies to convex Lipschitz functions (including ϕ|| and ϕK).

We also note that for all of the above functions and linked challenges, the ε-approximate
versions are just as relevant and common as the exact ones. For instance in machine learning,
typically ε-additive error is the baseline, on assumptions that the input X is drawn from a
fixed but unknown distribution [38, 25]. Spatial scan statistics are applicable to data sets
containing thousands to 100s of millions of spatial data points, such as census data, disease
incidents, geo-located social media posts. The exact algorithms are polynomial in m and
therefore can have massive runtimes, which become infeasible in the full data sets. Usually
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the exact algorithms are not even attempted and the set of ranges considered are defined
using some heuristic such as disks with centerpoints of a grid or centered at data points. On
the other hand the ε-additive error versions are scalable with runtimes of O(m + poly( 1

ε )),
depending only on the accuracy of the solution not the scale of the data or assumptions
about the data distribution.

Our Results. We connect this problem to the approximate range counting problem for
constant d ≥ 2 in the additive error model by designing a data structure of size O( 1

εd ) that
can be constructed in time O(m + 1

εd log4 1
ε ) with constant probability and supports range

counting queries in time O(log 1
ε ). This structure implies a halfspace scanning algorithm

that runs in time O(m + 1
εd log4 1

ε ). The data structure is closely related to cuttings, but we
do not need the set of crossing lines, but only an approximation of their total count.

In the other direction, we show instances where ϕ is linear that are as hard as Ω(m3/2−o(1))
on the exact problem, reduced from APSP, and instances where ϕ is concave that are as
hard as Ω(m + 1

ε2−o(1) ), reduced from 3Sum. This implies (conditionally) that this class of
scanning algorithms requires Ω(m + 1

ε2−o(1) ) time, and any further algorithmic improvements
(beyond polylog(1/ε)) factors) would either require specific and new assumptions on ϕ or
improvement on a classic hard problem.

Relation to Prior Work. The best prior algorithms for ε-Max-Halfspace required O(m +
(1/ε)d+1/3 log2/3(1/ε)) time [28] and the best exact algorithm requires O(md) time [16, 17].
Conditioned on 3Sum, without allowing restrictions to ϕ beyond linearity, our lower bound
shows the prior exact algorithms are shown tight for d = 2 by setting m = 1/ε.

For the related problem of the range space defined by axis-aligned rectangles [39], the
story for instance is more complicated with respect to ϕ. For linear ϕ the exact problem
can be solved in O(m2) time [7] which is tight [6] assuming no subcubic algorithm for
Max-Weight-3-Clique (and hence APSP). The ε-approximate version can be solved in
O(m + 1

ε2d−2 + 1
ε2 log log 1

ε ) time with constant probability [28], and by the result of Backurs
et al. [6] this cannot be improved beyond Ω(m + 1/ε2) in R2 under the same assumptions [28].
However, for general functions ϕ the best known runtimes increase to O(m4) and O(m+1/ε4)
for the exact and approximate versions, respectively [28]. Although for a big class of convex
functions (like ϕK) can be reduced back to O(m + 1/ε2.5) in the approximate case [28]. Thus,
this paper shows the situation appears significantly simpler for the halfspaces case, and we
provide a new connection to a (usually) separate [41, 6, 40] class of conditional hardness
problems through 3Sum.

Our approximate range counting structure is also new and may be of independent interest,
allowing very fast halfspace queries (in O(log 1/ε) time) in moderate dimensions d where
1/εd may not be too large. For example, 3d disk queries maps to the d = 4 setting, and
with ε = 0.01 (1% error) then 1/εd = 100 million – which can fit in the memory of most
modern systems, and allow for very fast queries. Similar structures are possible for the exact
range counting paradigm [8, 10], and these could be adapted to the approximate setting
after constructing an appropriate ε-sample of X [38, 25, 29]. But these would instead use
higher Õ(1/εd+1) preprocessing time (where Õ(z) hides polylog(z) terms). Most effort in
approximate range counting has come in the low-space regime. For instance with relative
(1 + ε) error, one can build a data structure of expected size O(poly(1/ε) · m) that answers
approximate range counting queries in O(poly(1/ε) · log m) time in R3 [1]. However for d > 3
with linear space, the query time becomes polynomial in m at Õ(m1−1/⌊d/2⌋) [5, 4, 35].
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A related line of work on robust halfspace learning under specific noise models in high
dimensions has witnessed significant progress in the last few years [12, 15, 13, 11]. These
models and algorithms also start with a sufficiently large iid sample (of size roughly 1/ε2),
and ultimately achieve a result with additive ε error from the opt. However, they assume a
specific noise model, but using this achieve runtimes polynomial in d, whereas our results
grow exponentially with d but do not require any assumptions on the noise model. A
recent focus is on Massart noise, where given a perfect classifier, each point has its sign
flipped independently with an assigned probability at most η < 1/2. Only recently [11], in
this Massart noise model it was achieved a proper learned function (a halfspace) in time
polynomial in 1/ε and in d. Recent previous work was not proper (the learned function may
not be a halfspace) [12, 15], or takes time exponential in 1/ε [13]. Indeed, under Gaussian
distributed data, the proper halfspace learning requires dΩ(1/ε) time [14], under the statistical
query model [36].

2 Background and Notation

Useful Sampling Properties. An ε-sample [19, 38] is a subset S ⊂ X so for a range space
(X, R) it preserves the density for all ranges as maxA∈R | |X∩A|

|X| − |S∩A|
|S| | ≤ ε. An ε-net is

a subset N ⊂ X so for a range space (X, R) it hits large ranges, specifically for all ranges
A ∈ R such that |X ∩ A| ≥ ε|X| we guarantee that N ∩ A ≠ ∅. For halfspaces, a random
sample S ⊂ X of size O( 1

ε2 (d + log 1
δ ) is an ε-sample with probability at least 1 − δ [38, 25],

and a random sample N ⊂ X of size O( d
ε log 1

εδ ) is an ε-net [20] with probability at least
1 − δ.

Enumeration. Given a set of points X ⊂ Rd, Sauer’s Lemma [37] shows that there are
at most O(|X|d) combinatorially distinct ranges, where each range defined by a halfspace
contains the same subset of points. We can always take a halfspace and rotate it until it
intersects at most d boundary points without changing the set of points contained inside.
This observation immediately implies a simple algorithm for scanning the point set; we can
just enumerate all subsets of at most d points, compute a halfspace that goes through these
points, and count the red and blue points lying underneath to evaluate Φ.

Our work builds upon this simple algorithm by dividing it into two steps and optimizing
both. We first define a set of prospective ranges Ĥd to scan and then secondly compute the
function Φ on each region. Matheny et al. [28] showed that a simple random sample X0 ⊂ X

of size O( 1
ε ) (for constant d) induces a small range space (X0, Hd). Each range (a subset of

X0) maps to a canonical geometric halfspace h0, and this geometric halfspace in turn induces
a range h0 ∩ X, an element of (X, Hd). We refer to this subset of (X, Hd) as (X, Ĥd), it is of
size O(1/εd). Now for each range h ∩ X in (X, Hd) there is a range ĥ ∩ X ∈ (X, Ĥd) such
that the symmetric difference between them is at most ε|X|. So if every range in (X, Ĥd)
needs to be explicitly checked, and f(1/ε) is the time to compute Φ, this would imply a
(1/εd)f(1/ε) lower bound. Note that f(1/ε) may take super-constant time because we may
need to construct the (approximate) µR(h) and µB(h) values.

Cuttings. Cuttings are a useful tool to formalize divide and conquer steps in geometric
algorithm design. Given Rd, a set of halfspaces Hd of size m, and some parameter r a
1
r -cutting is a partition of Rd into a disjoint set of constant complexity cells where each cell
is crossed by at most m/r halfspaces. The set of halfspaces crossing a cell in the cutting is
referred to as the conflict list of the cell. It is well established that the number of partitions
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is of size O(rd) and the partitioning can be constructed in O(rd−1m) time if the conflict
lists are needed [31]. If the crossing information is not needed then faster algorithms can
be used. For instance, the arrangement of a 1

r -net over Hd defines a partitioning of Rd into
disjoint cells where each cell is crossed by at most m/r halfspaces, and since a simple random
sample can be used to generate the net, a cutting of size O(rd logd r) can be computed
in O(m + rd logd r) time with constant probability. For r ≪ m, this can be a substantial
runtime improvement with a small increase in size.

When a cutting is restricted to a single cell there are better bounds on the size of the
partitioning. We will need this better bound for our proof and we restate it here.

▶ Theorem 1 ([9, 8]). Denote the vertices corresponding to d-way intersections of Hd as
A(Hd). A 1

r -cutting of a cell ∆ containing |A(Hd) ∩ ∆| = η vertices can be constructed with

O(η
( r

m

)d

+ rd−1) cells.

3 Approximate Halfspace Range Counting and the Upper Bound

In this section, instead of operating on R ∪ B = X ∈ Rd, as is common for halfspace range
searching, we work on the set H of dual halfspaces in Rd. In this setting a query halfspace
h ∈ Hd in the dual representation is qh ∈ Rd, and the desired quantity is the number
of halfspaces in H below qh. We apply the construction separately for R and B, so the
halfspaces H may be weighted, with positive weights.

We will construct L decompositions of Rd into disjoint trapezoidal cells: ∆0, ∆1, . . . , ∆L.
For each level of cells ∆i any cell ∆ ∈ ∆i has a set of children cells S∆. The next level of cells
∆i+1 is the disjoint union of all the S∆ children cells of ∆ ∈ ∆i; that is ∆i+1 =

⋃̇
∆∈∆i

S∆.
Initially ∆0 = Rd and therefore contains the entire domain and a corresponding sample of
this initial cell will be denoted as Ĥ; we will bound it’s required size in Lemma 6. Define
∆ ⊓ H to be the set of halfspaces in H that lie completely underneath ∆ (that is, if q ∈ ∆
then q /∈ h for any h ∈ ∆ ⊓ H), and ∆ ∩ H is the set of halfspaces in H that cross ∆.

Importantly, we maintain an estimate of the weight of each cell mi(∆), as we recursively
build the decomposition. It depends on a sufficiently large constant r. For a cell ∆
we will consider a sample H∆ ⊂ H ∩ ∆ of halfspaces. For each cell ∆′ ∈ ∆i+1 where
∆′ ∈ S∆ we take a sample H∆′ ⊂ (H∆ ∩ ∆′) of size |H∆∩∆′|

r with replacement. The value
m̂i+1(∆′) estimates the number of halfplanes lying below it, and is defined recursively as
m̂i+1(∆′) = ri+1|H∆ ⊓ ∆′| + m̂i(∆); with m̂0(∆) = 0. If a cell ∆ has a small number of
lines crossing it, specifically if |H∆| ≤ log 1

ε then the recursion terminates. Otherwise, we
split the cell, and create a 1/t∆-cutting of each (∆, H∆), and let S∆ be its cells; the value
t∆ = max( |H∆|r2i+1

|Ĥ| , 1) is 1 if |H∆| is small, otherwise it is at most r. We recurse on each cell

∆′ in each S∆ until each is sufficiently small, which will require L = O(log |Ĥ|
ε ) = O(log 1

ε )
levels. See Algorithm 1 for details.

Complexity analysis. As cells are subsampled and split the number of lines and vertices
lying inside of a cell drops off quickly with the level.

▶ Lemma 2. A cell ∆ ∈ ∆i with sample H∆ is of size |H∆| ≤ |Ĥ|/r2i.

Proof. Consider a cell ∆∗ ∈ ∆i−1 where ∆ ∈ S∆∗ then |H∆| = 1
r |H∆∗ ∩ ∆| by construction,

and since ∆ is a cell in a 1
t∆∗ -cutting of H∆∗ then |H∆∗ ∩ ∆| ≤ |H∆∗ |/t∆∗ = |Ĥ|/r2i−1;

hence |H∆| = |∆ ∩ H∆∗ |/r ≤ |Ĥ|/r2i. ◀
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4:6 Approximate Maximum Halfspace Discrepancy

Algorithm 1 SampleCut(∆0, Ĥ).

for levels i = [0, L] do
for each cell in that level ∆ ∈ ∆i with |H∆| > log 1

ε do
Set t∆ = max( |H∆|r2i+1

|Ĥ| , 1)
Build S∆, the cells of a 1

t∆
-cutting on (∆, H∆).

for each child cell ∆′ ∈ S∆ do
m̂i+1(∆′) = ri+1|H∆ ⊓ ∆′| + m̂i(∆)
Sample H∆′ ⊂ H∆ where |H∆′ | = |∆′ ∩ H∆|/r

The number of vertices in the cells drops off quickly as well.

▶ Lemma 3. A cell ∆ ∈ ∆i with sample H∆ has E[|A(H∆)|] ≤ |A(Ĥ)∩∆|
rdi expected vertices.

Proof. Consider a vertex lying inside of ∆ induced by the intersection of d halfspaces
h1, . . . , hd ∈ H∆∗ in ∆ (where ∆ ⊂ ∆∗ ∈ ∆i−1). The probability that this vertex is in H∆ is
Pr(h1 ∈ H∆ ∧ . . . ∧ hd ∈ H∆) ≤ 1

rd . The probability that a vertex survives through i samples
is then upper bounded by 1

rdi and by linearity of expectation E[A(H∆)] ≤ |A(Ĥ)∩∆)|
rdi . ◀

Combining these results we show the expected number of cells increases as O(rdi). This
leverages Theorem 1 using the number of vertex dependent bound for size of the cutting.

▶ Lemma 4. At a level i the expected number of cells is E[|∆i|] = O(rdi).

Proof. The number of cells at a level i is in expectation

E[|∆i|] = E

 ∑
∆∈∆i−1

O(|A(H∆) ∩ ∆|
td
∆

|H∆|d
+ td−1

∆ )


= C · E

 ∑
∆∈∆i−1

|A(H∆) ∩ ∆|
td
∆

|H∆|d
+ td−1

∆


from Theorem 1, for some sufficiently large constant C < r/4. Since t∆ = max( |H∆|r2i+1

|Ĥ| , 1)
we can divide cells in ∆i−1 into a set ∆+

i−1 where t∆ > 1, and is therefore split, and a set
of cells ∆i−1 \ ∆+

i−1 where t∆ = 1, and is therefore not split. The set of non split cells
∆i−1 \ ∆+

i−1 cannot be larger than |∆i−1|.

E[|∆i|] = C · E

 ∑
∆∈∆i−1

|A(H∆) ∩ ∆|
td
∆

|H∆|d
+ td−1

∆ )


≤ C · E

|∆i−1| +
∑

∆∈∆+
i−1

|A(H∆) ∩ ∆|r
2di−d

|Ĥ|d
+ td−1

∆





M. Matheny and J. M. Phillips 4:7

By Lemma 2 we can bound t∆ ≤ |H∆|r2i+1

|Ĥ| ≤ r, to replace the last term.

E[|∆i|] ≤ C · E

|∆i−1| +
∑

∆∈∆+
i−1

|A(H∆) ∩ ∆|]r
2di−d

|Ĥ|d
+ rd−1


≤ C · r2di−d

|Ĥ|d
E

 ∑
∆∈∆+

i−1

|A(H∆) ∩ ∆|]

+ C · (rd−1 + 1)E[|∆i−1|])

By Lemma 3 E[|A(H∆) ∩ ∆|] ≤ |A(Ĥ)∩∆′|
rdi−d , and this yields

E[|∆i|] ≤ C · r2di−d

|Ĥ|d
E

 ∑
∆∈∆+

i−1

|A(Ĥ) ∩ ∆|
rdi−d

+ C · (rd−1 + 1)E[|∆i−1|])

= C · rdi

|Ĥ|d
E

 ∑
∆∈∆+

i−1

|A(Ĥ) ∩ ∆|

+ C · (rd−1 + 1)E[|∆i−1|]).

Since a vertex in A(Ĥ) ∩ ∆ can only be in one cell
∑

∆∈∆+
i−1

|A(Ĥ) ∩ ∆| ≤ |Ĥ|d, since this
quantity upper bounds the number of vertices in A(Ĥ). Hence

E[|∆i|] ≤ . . . chain of inequalities . . . ≤ C ·
(
rdi + (rd−1 + 1)E[|∆i−1|]

)
Now finally we show E[|∆i|] ≤ 2C · rdi by inductively assuming E[|∆i−1|] ≤ 2C · rd(i−1) for
C < r/4 and r sufficiently large

E[|∆i|] ≤ C ·
(

rdi + (rd−1 + 1)(2Crd(i−1))
)

≤ C ·
(
rdi + rdi/2 + rdi−d+1/2

)
≤ 2C · rdi = O(rdi). ◀

Sampling Error. Consider now that we wish to estimate |Ĥ ⊓ ∆|, the number of planes
crossing under some ∆. We will use that ∆ lies within a nested sequence of cutting cells
∆ = ∆i ⊂ ∆i−1 ⊂ . . . ⊂ ∆0 with ∆i ∈ ∆i, ∆i−1 ∈ ∆i−1, . . . , ∆0 ∈ ∆0, where i ≤ L, and
with corresponding samples Ĥ = H∆0 and H∆1 , · · · , H∆ℓ

. We can also define m̂i(∆) more
generally for a cell ∆ that is the subset of a cell ∆i ∈ ∆i (and its ancestors), but not
necessary one of those cells. It is defined m̂i(∆) = ri|H∆i−1 ⊓ ∆| +

∑i−1
j=0 rj |H∆j−1 ⊓ ∆j |. By

this definition m̂0(∆) = |Ĥ ⊓ ∆|, and we are left to bound |m̂i(∆i) − |Ĥ ⊓ ∆i||.

▶ Lemma 5. |m̂i(∆) − |Ĥ ⊓ ∆|| = O(i
√

|Ĥ| log 2ℓ
δ′ ) with probability 1 − δ′.

Proof. By the triangle inequality we expand
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4:8 Approximate Maximum Halfspace Discrepancy

|m̂i(∆) − m̂0(∆)| ≤
i−1∑
j=0

|m̂j+1(∆) − m̂j(∆)|

=
i−1∑
j=0

∣∣∣∣∣∣∣∣∣∣
rj+1|H∆j

⊓ ∆| +
j∑

ℓ=0
rℓ|H∆ℓ−1 ⊓ ∆ℓ|

−

(
rj |H∆j−1 ⊓ ∆| +

j−1∑
ℓ=0

rℓ−1|H∆ℓ−2 ⊓ ∆ℓ−1|

)
∣∣∣∣∣∣∣∣∣∣

=
i−1∑
j=0

∣∣rj+1|H∆j
⊓ ∆| + rj |H∆j−1 ⊓ ∆j | − rj |H∆j−1 ⊓ ∆|

∣∣
=

i−1∑
j=0

rj
∣∣r|H∆j

⊓ ∆| − |(H∆j−1 ∩ ∆j) ⊓ ∆|
∣∣

≤
i−1∑
j=0

rj · r · Cd

√
|H∆j

| log 1
δ† .

The last inequality follows since H∆j
is a random sample from H∆j−1 ∩ ∆j , and the

⊓∆ restriction is a constant VC-dimension range [38]; the constant Cd depends only on
d, and δ† is the probability of failure for each term in the sum. In particular we use∣∣∣ |H∆j

⊓∆|
|H∆j

| −
|(H∆j−1 ∩∆j)⊓∆|

|H∆j−1 ∩∆j |

∣∣∣ ≤ Cd

√
1

|H∆j
| log 1

δ† and multiply by |H∆j−1 ∩ ∆j | = r|H∆j
|.

Applying Lemma 2 then |H∆j
| ≤ |Ĥ|

r2j . Hence

i−1∑
j=0

rj

√
|H∆j

| log 1
δ† ≤

i−1∑
j=0

rj

√
|Ĥ|
r2j

log 1
δ† ≤

i−1∑
j=0

√
|Ĥ| log 1

δ† .

And to ensure a failure probability of 1 − δ′ for the sequence of samples, set δ† = δ′/2ℓ.

|m̂i(∆) − |Ĥ ⊓ ∆|| ≤ i · Cd

√
|Ĥ| log 2ℓ

δ′ . ◀

Now how large does Ĥ need to be to ensure a correct estimate of the cells at the leaves
of the arrangement. This largely depends on the number of ε-samples taken in total.

▶ Lemma 6. We can ensure that |m̂i(∆) − |Ĥ ⊓ ∆|| ≤ ε|Ĥ| for all ∆ ∈ ∆i with probability
δ by setting |Ĥ| = O( i3

ε2 log i
δ ).

Proof. We can set the probability of δ′ = δ/(2|∆i|) in Lemma 5 to ensure a failure probability
of δ for each cell ∆ ∈ ∆i and therefore |m̂i(∆) − |Ĥ ⊓ ∆|| = O(i

√
|Ĥ| log 2i|∆i|

δ ). So if

ε|Ĥ| = |m̂i(∆) − |Ĥ ⊓ ∆|| = O(i
√

|Ĥ| log 2i|∆i|
δ ) then |Ĥ| = O( i2

ε2 log 2i|∆i|
δ ).

From Lemma 4 we know that |∆i| = O(rdi), and so |Ĥ| = O( i3

ε2 log i
δ ). ◀

Runtime. The time to compute an estimate for ∆ ∈ ∆i is linear in the number of
lines in H∆ ≤ |Ĥ|

r2i . We can then devise the expected runtime for computing estimates
for all cells in a level i, of which there are E[|∆i|] = O(rdi), so the total for level i is∑

∆∈∆i
O( |Ĥ|

r2i ) = O( |∆i||Ĥ|
r2i ) = O(ri(d−2)|Ĥ|). The total expected runtime over all levels

is then
∑L

i=0 O(ri(d−2)|Ĥ|). Furthermore, if d = 2 then this will be O( L4

ε2 log L
δ ). If d > 2
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then each layer of the cutting will dominate the previous layers in runtime and so the
total time will be bounded by the time to compute the last layer as

∑L
i=0 O(ri(d−2)|Ĥ|) =

O(r(L+1)(d−2) L3

ε2 log L
δ ).

Next we want to achieve that all cells ∆ ∈ ∆L are of size |H∆| < logr
1
ε . This can be

achieved via |H∆| < |Ĥ|/(r2L) ≤ logr
1
ε by setting the maximum level L > 1

2 logr
|Ĥ|

logr
1
ε

=
O(log 1

ε ), via Lemma 6. Then a query can at first recursively descend into the structure
for O(L) = O(log 1

ε ) steps, and upon reaching a leaf node, can enumerate the leaf node’s
sample which will take at most O(log 1

ε ) time again. With L = O(log 1
ε ), the total time

to compute the cell division for d = 2 is O( L4

ε2 log L
δ ) = O( 1

ε2 log4 1
ε log log 1

ε

δ ). For d >

2, then O(r(L+1)(d−2) L3

ε2 log L
δ ) = O( 1

εd log3 1
ε log log 1

ε

δ ) since r(ℓ+1)(d−2) = rr(d−2) logr
1
ε =

rrlogr
1

εd−2 = r
εd−2 .

▶ Theorem 7. We can build an ε-approximate halfspace range counting data structure of size
O(1/εd) that for any halfspace h ∈ Hd returns in O(log(1/ε)) time returns a count m̂(h) so
that |m̂(h) − |h ∩ X|| ≤ ε|X|. The total expected construction time, with probability 1 − δ, for
d = 2 is O(|X| + 1

ε2 log4 1
ε log log 1

ε

δ ), and for constant d > 2 is O(|X| + 1
εd log3 1

ε log log 1
ε

δ ).

Finding the Maximum Range. To query the structure we need a set of viable halfspaces
that cover the space well enough to approximately hit the maximum region. We can use
a random sample of points from the primal space of size O( 1

ε ) to induce a set of O(1/εd)
halfspaces Ĥd, as was done in [28], to get a constant probability that at least one halfspace
is O(ε)-close to the maximum region. Then we repeat the procedure log 1

δ times and take
the maximum found region to magnify the success probability to 1 − δ (see [28] for details).
For each query hyperplane h we can query a structure constructed over R and over B and
then compute the function value from this; we return the h which maximizes Φ(h).

The set of query hyperplanes from this tactic is of size O( 1
εd ) for constant d and at each

level we can determine which cell the dual point of the halfspace falls into by testing a
constant O(rd) number of constant sized cells. At a leaf of the structure we check if the
remaining, at most log 1

ε , dual halfspaces are below the query dual point, to determine the
total count. The query structure has O(log 1

ε ) levels and at each level a constant amount of
work is done; it is repeated for each of O( 1

εd ) halfspaces, and the entire endeavor is repeated
log 1

δ times to reduce the probability of failure. The full runtime is O( 1
εd log 1

ε log 1
δ ), plus

the construction time of the data structure (from Theorem 7) which dominates the cost.

▶ Theorem 8. We can solve ε-Max-Halfspace with probability 1 − δ, in expected time
O(|X| + 1

εd log4 1
ε log log 1

ε

δ ) for d = 2 and O(|X| + 1
εd log3 1

ε log log 1
ε

δ ) for constant d > 2.

4 Conditional Lower Bounds

Our upper bounds only restrict ΦX(h) = ϕ(µR(h), µB(h)) to be a Lipschitz function. Next
we show that an algorithm that can operate on this entire class of functions for d = 2 has a
conditional lower bound of O(m + 1

ε2−o(1) ), depending on 3Sum [18].
However, the first bound requires ϕ is also concave (unlike ϕ|| or ϕK which are convex).

So we consider a different convex function ϕ(µR, µB) = µR − µB on weighted points; solving
for it, and again after flipping all signs of weights, corresponds with ϕ|| (which can be used to
approximate ϕK). We show Max-Halfspace for this ϕ is lower bounded by O(m3/2−o(1))
conditional on APSP [41] requiring Ω(n3−o(1)) time.
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Figure 2 On left converting the Point-Covering problem into the dual makes it such that a
line contains every ray that it intersects. On right the equivalent bichromatic discrepancy problem
where red points have been placed on the lower envelope.

4.1 Lower Bounds by 3SUM
Gajentaan and Overmars identified a large class of problems in computational geometry
called 3Sum hard [18]. 3Sum can be reduced to each of these problems, so an improvement
in any one of them would imply an improvement in 3Sum. While there are some loose lower
bounds for this problem, 3SUM is conjectured to not be solvable in O(m2−o(1)) time [22, 40].
3Sum reduces to the following problem in O(m log m) time [18].

Problem Point-Covering: From a given set of m halfspaces determine if there is a
point at depth k (k halfspaces lie above this point) where k ≤ m/2.

Through standard point-line duality, we transform this to its equivalent dual problem.

Problem Line-Covering: From a given set of m rays, oriented upwards or downwards,
determine if there is a line cutting through k rays where k ≤ m/2.

Define the piecewise linear function (for k ≤ m/2) on points R, B ∈ R2:

Φ(h) = ϕLC(µR, µB) = |R| − |µR|R| − µB |B| − k| = |R| − ||h ∩ R| − |h ∩ B| − k| .

▶ Lemma 9. Line-Covering is reducible to Max-Halfspace in R2 with ϕLC in O(m log m)
time.

Proof. Construct the lower envelope of all endpoints of the rays; this takes O(m log m) time.
Each upwards oriented ray is replaced with a point at its end point, and placed in R. Each
downward oriented ray is replaced with two points: its endpoint generates a point in B, and
where it intersects the lower envelope generates a point in R. See Figure 2.

Lines now correspond to halfplanes below those lines. Upward ray intersections require
lines above them. Downward rays require lines between the corresponding B and R points:
if a line is above both, they cancel in ϕLC ; if it is below both, it includes neither; if a line is
between them, it only identifies the R point. But the lines below both are below the lower
envelope, and cannot be the optimal halfspace. Thus scanning the generated point set R ∪ B,
if it identifies a halfspace h where Φ(h) > |R|, only then is Line-Covering satisfied. ◀

We can also reduce the exact version to the approximate version. If we run an ε-
approximate Max-Halfspace algorithm, and set ε = 1

2|R| then the approximate range h′

found will be off by at most a count of 1/2 from the optimal range, and hence must be the
optimal solution.
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▶ Theorem 10. In R2, ε-MaxHalfspace for ϕLC takes Ω(m + 1/ε2−o(1)) assuming the
full input of size m needs to be read, and 3Sum requires Ω(n2−o(1)) time.

Since ϕLC is concave and 1-Lipschitz, this implies any algorithm that works for all concave
ϕ or all 1-Lipschitz ϕ must also take at least this long.

4.2 Lower Bound by All Pairs Shortest Path
We next provide a new construction that directly applies to the ϕ|| function on weighted
points in R2 via a reduction from All Pairs Shortest Path (APSP). We first show the Max-
Weight-3-Clique problem reduces to APSP via another problem Negative-Triangle.

Problem APSP: Given an edge-weighted undirected graph with n vertices, find the
shortest path between every pair of vertices.
Problem Negative-Triangle: Given an edge-weighted undirected graph with n vertices,
determine if there is a triangle with negative total edge weight.
Problem Max-Weight-K-Clique: Given an edge-weighted undirected graph with n

vertices, find the K-clique with the maximum total edge weight.

While the APSP is more well-known, Willams and Williams [41] showed it is equivalent
to the Negative-Triangle problem, which will be more useful. Both have well-known
O(n3) algorithms and are conjectured to not be solvable in less than O(n3−o(1)) time, and
improving that bound on one would improve on the other. Moreover, Backurs et al. [6]
used Max-Weight-K-Clique as a hard problem, believed to require O(nK−o(1)) time, for
which to reduce to several other problems involving rectangles. They note that for K = 3,
Max-Weight-3-Clique is a special case of Negative-Triangle. That is, for a guessed
max-weight ω, one can subtract ω/3 from each edge weight, then multiply all weights by
−1. If there exists a negative triangle with the new weights, there exists a triangle with
weight ω in the original. One can resolve the max weight with logarithmically number of
steps of binary search. Hence, Negative-Triangle (and hence also APSP) reduces to
Max-Weight-3-Clique.

For Max-Weight-3-Clique it is equivalent to assume a 3-partite graph G = (V, E) [6];
that is, the vertices V are the disjoint union of three independent sets A = {a1, a2, . . . , an},
B = {b1, b2, . . . , bn}, and C = {c1, c2, . . . , cn}. Each independent set will have exactly n

vertices and each vertex, for instance ai, will have an edge with every vertex in B and C.
Denote the edge between ai and bj as e(ai, bj) and the weight as w(e(ai, bj)). We reduce to
a dual of halfspace scanning in R2:

Problem Max-Weight-Point: Given m weighted lines find a point which maximizes
the sum of weights of all lines passing below that point (or intersecting that point).

Our reduction will rely on a planar geometric realization of any such graph G with
m = O(n2) lines, where the lines correspond to edges, and triple configurations of lines
correspond with cliques. Given such an instance, if we can solve the Max-Halfspace
algorithm (in the dual as Max-Weight-Point) in better than O(m 3

2 −o(1)) time we can
recover the solution to the Max-Weight-3-Clique problem in better than O(n3−o(1)) time.

The double weighted line gadget. Our full construction will use a special gadget which
will ensure the max weighted point will correspond with a vertex at a triple intersection of a
planar arrangement of lines, with each line corresponding with an edge in G. For this to hold
we instantiate each edge as a double line d(e). This consists of two parallel lines ℓu(e) and
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d(e(ai, b1))
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Figure 3 Max-Weight-Point construction with n = 3. Left: intersection of ai blue and red
bundles with all black double lines. Right: relation of the bundles, with 3 ai intersections marked.

ℓl(e), separated vertically by a gap of a small positive value α ≪ 1, with ℓu(e) above ℓl(e).
In what follows we will refer to a double line as a single line; to be precise this will refer to
a line at the midpoint between ℓl and ℓu. Let w̄ = 2 maxe∈E |w(e)| + 1 be a large enough
value so for any e ∈ E that w̄ + w(e) is strictly positive, and any |w(e)| < w̄/2. Then we
denote the weight of the double line as w(d(e)) = w(e) + w̄. This is transferred to the lines
as w(ℓu(e)) = −w(d(e)) and w(ℓl(e)) = w(d(e)).

Now given a query point x ∈ R2 we say it is on d(e) if it lies between lines ℓl(e) and ℓu(e),
and not on otherwise. This will allow us to control the effect of e on query x in a precise way.

▶ Lemma 11. Any point x that lies on d(e) will have weight contributed to it by e of exactly
w(e) + w̄; otherwise that contribution will be 0.

Reduction to triple intersections. Our construction will place double lines for each edge in
the graph. The edges from A to B will be blue lines; from A to C will be red lines, and from
B to C will be black lines. All lines of the same color will be parallel; this will ensure that
any query point x ∈ R2 can only be on one double line of each color. For easy of exposition,
in our construction description (and illustration; see Figure 3) the black lines will be vertical,
which makes ambiguous the “above” relation; so the final step will be to rotate the entire
construction clockwise by a small angle (less than π/4 radians).

The construction will now lay out the double lines so that every clique {ai, bj , ck} will be
realized as a triple intersection of double lines d(e(ai, bj)), d(e(ai, ck)), and d(e(bj , ck)) and
so there are no other types of triple intersections. Such a triple intersection will have weight
precisely w(e(ai, bj)) + w(e(ai, ck)) + w(e(bj , ck)) + 3w̄ > (3/2)w̄, and any other point (e.g.,
a double intersection) must have weight strictly less than (3/2)w̄.

▶ Lemma 12. The maximum weight point must occur at a triple intersection of three double
lines of different colors, and thus must correspond the max weight 3-clique.

The full construction. The blue lines (using A to B edges) will all be horizontal. Edge
e(ai, bj) will have y-coordinate yi,j = −j − i(5n2) so that yi,j+1 = yi,j − 1 and so yi+1,j =
yi,j − 3n2. Set y1,1 = −5n2 − 1. This bundles the blue lines associated with the same ai

point. Figure 3 shows a single bundle (left) and structure of all bundles (right).
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The red lines (using A to C edges) will be at a 45 degree angle (a slope of 1), similarly
clustered by their ck values. Double line d(e(ai, ck)) will have equation y = x + oi,k. We
define the offsets oi,k = −k(3n) − i(5n2) so that o1,1 = −3n − 5n2; oi,k+1 = oi,k − 3n and
oi+1,k = oi,k − 5n2. And in particular, double lines d(e(ai, bj)) (at horizontal yi,j) and
d(e(ai, ck)) (at offset oi,k) will intersect at x-value xj,k = yi,j − oi,k.

The black lines (using B and C) will be vertical. Edge d(e(bj , ck)) will have x coordinate
xj,k, defined xj,k = yi,j − oi,k = −j + (3n)k. Also, these xj,k values will be distinct for
different values of j, k, but independent of the choice of ai. Moreover, these are the same
x-coordinates where the corresponding red and blue lines intersect. Thus each black line
d(e(bj , ck)) intersects the intersection of blue line d(e(ai, bj)) and d(e(ai, ck)) for each ai.

Finally, note that all black lines are in the x range [−3n2, 0] we can argue that they do
not cause any other triple intersections. Because the each red bundle has offsets separated by
more than 3n2 then a red bundle associated with ai cannot intersect a blue bundle associated
ai′ for i ̸= i′ since the red lines have linear slope and the blue bundles are also separated
by more than 3n2. Thus the intended triple intersections (of d(e(ai, bj)), d(e(ai, ck)), and
d(e(bj , ck))) are the only ones in this construction.

In total there are n2 blue, n2 blue, and n2 black double lines, thus m = O(n2). Hence,
Max-Weight-3-Clique on n vertices reduces to Max-Halfspace in time O(n2). Then
reversing the dual mapping, we consider each dual line as two points, one in R and one in B,
and this corresponds with the Max-Halfspace problem in R2 with ϕ||. Then since APSP
reduces to Max-Weight-3-Clique, we obtain the following theorem.

▶ Theorem 13. In R2, Max-Halfspace for ϕ|| on m points requires Ω(m3/2−o(1)) time
assuming that APSP on n vertices requires Ω(n3−o(1)) time.

5 Conclusions and Discussion

We have mostly closed the planar ε-Max-Halfspace problem with an Õ(m+1/εd) algorithm
in Rd and conditional (to 3Sum) Ω(m + 1/ε2−o(1)) lower bound in R2. However, the lower
bound uses a piecewise-linear function ϕLC , and while all known algorithmic improvements
that depend on ϕ take advantage of this linear structure (e.g., for rectangles [3, 28]),
the function ϕLC , perhaps strangely, is concave. Also surprisingly we can prove another
conditional lower bound for Max-Halfspace using a convex (in fact, again linear) function
ϕ, but this one is smaller at Ω(m3/2−o(1)) in R2, and because some point may have very
small weight in the construction, does not directly apply to ε-Max-Halfspace, which allows
ε additive error. Moreover, this reduces to APSP, which does not appear to be in the same
class as 3Sum [40].

We leave several curious aspects to future work. Is there a real fine-grained complexity
difference between the ϕ variants in the problems? That is, can we improve upper bounds
for convex ϕ, or improve conditional lower bounds in this case? And can we condition the
results on 3Sum in the convex ϕ case? The convex ϕ lower bound construction relies on
weighted points, can we obtain improved algorithmic runtime by only allowing {−1, +1}
weights? Moreover, are the polynomial terms (1/ε)d in the algorithmic runtime correct in
constant dimensions larger than d = 2? And can these results help resolve polynomial terms
in the high-dimensional robust statistics settings? An anonymous reviewer has suggested
to use data structure for relative-error approximate counting on an ε-sample of halfspaces,
and has argued that this can reduce the space requirements to o(1/εd); given our focus on
the runtime of the maximum halfspace problem, we did not pursue this space improvement.
If the runtime can be reduced to o(1/εd) clearly such a reduction in the space complexity
would also be required.
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Abstract
Visibility problems are fundamental to computational geometry, and many versions of geometric set
cover where coverage is based on visibility have been considered. In most settings, points can see
“infinitely far” so long as visibility is not “blocked” by some obstacle. In many applications, this may
be an unreasonable assumption. In this paper, we consider a new model of visibility where no point
can see any other point beyond a sight radius ρ. In particular, we consider this visibility model in
the context of terrains. We show that the VC-dimension of limited visibility terrains is exactly 7.
We give lower bound construction that shatters a set of 7 points, and we prove that shattering 8
points is not possible.
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1 Introduction

Visibility is fundamental to computational geometry, and in particular, variants of geometric
set cover where coverage is determined by what a point “sees” have been widely considered in
the literature. One of the most famous such applications is the art gallery problem where we
are given a simple polygon P and we wish to place the minimum number of “guard” points
G such that each point inside P is seen by some guard in G. Usually, the way that visibility
is defined, is that two points p and q see each other if the line segment pq does not contain
any point outside of P . The intuition is that P is modelling some room (or art gallery), and
if the line segment connecting the two points exits P , then there is a wall of the polygon
that “blocks” their vision. The geometric set cover problem with respect to this definition
of visibility has been considered in many different contexts, for example simple polygons
[9, 15, 8, 1, 13], monotone polygons [20, 22, 12, 21, 14], rectilinear polygons [21, 22], staircase
polygons [4, 23, 25], and terrains [18, 17, 2, 16, 6, 11, 19].

A terrain T is an x-monotone polygonal chain defined by a sequence of n vertices
p1, . . . , pn. We let x(pi) and y(pi) denote the coordinates of pi. The x-monotone property
implies that x(pi) < x(pi+1) for each i ∈ {1, . . . , n − 1}. Note that given this definition, a
vertical line intersects T in at most one point. Consider three vertices of T , pi, pj , and pk

such that i < j < k. We say pj pierces pipk if pj is strictly above pipk. Similarly, if there is
some pj that pierces pipk then we say that pipk is pierced. Generally visibility in terrains is
defined in the following way: pi and pk see each other if and only if pipk is not pierced.
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a d
cb

Figure 1 a sees c. b sees d. In an LVT, a may be too far from d to see it.

1.1 A Restricted Model of Visibility
An issue with the usual visibility model for various applications is that points are assumed
to be able to see “infinitely far”. That is, a guard that is very far from p is assumed to
see p just as clearly as another guard that is very close to p. Distance does not matter so
long as the line segment connecting the points is not “blocked”. In many applications, this
assumption is not true, and a model that considers the distance between a guard and the
points it sees may be desirable. To address this undesirability, there has been some research
that has considered restricted visibility models for exploring/guarding polygons or polygonal
environments. Much of this past work is motivated by robotics, often times in an online
setting where a robot is trying to learn about its surroundings but has restrictions on how
far it can see, e.g. [3, 10, 24]. Other past work has considered restricted visibility models
when computing an optimal “watchman tour” where a single guard patrols a known polygon,
e.g. [26, 7].

In this paper we consider a limited visibility model of the terrain guarding problem, where
each point has a sight radius ρ and cannot see any points that are outside of its sight radius.
So to contrast with most of the past work with limited visibility models, we are assuming
that we have full knowledge of the terrain we wish to guard, we can use multiple guards, and
the guards are static. We call an instance of this problem a limited visibility terrain (LVT).
An LVT can be defined by a set of n, x-monotone vertices and a sight radius ρ. We say that
two points p and q see each other if and only if (1) pq is not pierced and (2) d(p, q) ≤ ρ, where
d(p, q) is the Euclidean distance between p and q. In this paper, we assume each point has
the same sight radius, although it would be interesting to also consider the scenario where
each point has its own radius. For any point p, we denote disc(p) to be a disc of radius ρ

centered at p. Then clearly p cannot see any points that are not inside disc(p) in this model.

1.2 Order Claim Generalization
One of the key properties of (regular) terrains is the order claim.

▷ Claim 1. Let a, b, c, d be four points on a regular terrain such that x(a) < x(b) < x(c) <

x(d). If (1) a sees c and (2) b sees d, then a sees d.

The intuition here is pretty simple. Since a sees c, it must be that ac is not pierced (so b

is “below” ac). Similarly bd is not pierced (so c is below bd). This implies that ad is “above”
ac and bd, and therefore ad is not pierced (implying that a and d see each other).

For LVTs the order claim does not hold if a ̸∈ disc(d). See Figure 1 for an illustration.
We can however apply a generalization of the order claim.



M. Gibson-Lopez and Z. Yang 5:3

▷ Claim 2. Let a, b, c, d be four points on an LVT such that x(a) < x(b) < x(c) < x(d). If
(1) ac is not pierced and (2) bd is not pierced, then ad is not pierced.

1.3 VC-Dimension
An interesting measure of the complexity of a set system is the notion of VC-dimension. To
define this, we say that a finite set of points G in T is shattered if for every subset of G′ ⊆ G

there exists some point v ∈ T such that v sees every point in G′ and does not see any point
in G \ G′. In this context, we call v a viewpoint. The VC-dimension is the largest d such
that there exists some LVT T and point set G of size d that can be shattered.

Brönnimann and Goodrich give a polynomial-time O(log OPT )-approximation algorithm
for any set system with constant VC-dimension [5] where OPT is the size of an optimal cover.
For regular terrains, King showed that the VC-dimension is 4 [17]. This result relies heavily
on the order claim, which as we mentioned above does not hold in the limited visibility
model. One would certainly expect the VC-dimension to increase in this model.

1.4 Our Results
We prove the following theorem.

▶ Theorem 3. The VC-Dimension of limited visibility terrains is 7.

We show that for any set of 8 points on a LVT, it is not possible to shatter the set,
and we show that it is possible to shatter a set of 7 points (thereby proving that our upper
bound analysis is tight). We show several key structural lemmas about visibility in a LVT,
and then use a computer program to show that there is no permutation of the 8 points and
the 28 needed viewpoints such that there is a LVT with the points in left-to-right order
according to the permutation that satisfies all of the visibility requirements. As is often
the case with VC-dimension proofs, a direct proof often involves a tedious case analysis, so
we use a computer program that is much easier to verify is correct rather than having to
analyze each case “manually”. Our proof of Theorem 3 then implies that the algorithm of
Brönnimann and Goodrich [5] is a O(log OPT )-approximation algorithm for guarding the
vertices of a LVT.

2 Upper Bound

In this section, we show that the VC-dimension of LVTs is at most 7. We will do this
by showing that any set of 8 points cannot be shattered. Suppose that it is possible to
shatter 8 points, that is there exists a LVT that shatters a set G = {g1, . . . , g8} which are
indexed according to increasing x-coordinate without loss of generality. Motivated by the
connection to geometric set cover, we sometimes call the points of G guards. For any subset
S ⊆ {1, . . . , 8}, let vpS denote a point that should see gi for each i ∈ S and does not see gj

for any j ̸∈ S. For example, vp1,6,8 should see g1, g6, and g8 and should not see any other
point of G. Let V be the set of all such viewpoints. Clearly |V | = 28 = 256.

We begin with a high-level overview of our proof strategy for showing that G cannot
be shattered. Suppose the contrary, and let T denote a LVT that does shatter G. We say
the ordering of T is the permutation of G ∪ V when sorting G ∪ V by their x-coordinates
(note T may have vertices that do not correspond with G or V ). We say any subsequence
of the ordering is a partial ordering of T . The intuition is that an ordering describes the
left-to-right order of the points of V and G with respect to T , and a partial ordering describes
the left-to-right ordering of some of the points of V and G. See Figure 2 for an illustration.
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g1

vp1,2

g2
vp1,2,3

vp2,3

g3

vp1,3

Figure 2 The ordering of T is (g1, vp1,2, g2, vp1,2,3, vp2,3, g3, vp1,3). Partial orderings of T include
(g1, g2, vp2,3, g3), (vp1,2, vp1,2,3, g3, vp1,3), etc.

Now we view the problem in the “opposite direction”; instead of starting with a LVT and
considering its order, we start with an order and consider whether there is a LVT that has
this order. We call any permutation O of V ∪ G a candidate ordering (CO) of V ∪ G. We
say O is realizable if there is a LVT T that shatters G such that O is the ordering of T . For
every subset V ′ ⊆ V , we call a permutation of V ′ ∪ G a candidate partial ordering (CPO),
and we say it is realizable if it is a partial ordering of any LVT T that shatters G.

We obtain our result by showing that there is no realizable CPO. We do this by first
proving a set of structural lemmas. Given a CPO O, the lemmas will imply some properties
that must be satisfied by any realization of O. For example, we might be able to argue that
any realization of O must satisfy y(gi) < y(gj), or we might be able to argue that a point
v ∈ V that is not supposed to see gi must be outside the disc of gi or vgi must be pierced in
any realization. If the lemmas contradict each other then we can determine that O is not
realizable.

The proofs of VC-dimension upper bounds are often tedious case analyses. We instead
use a computer program that helps to automate this case analysis. Our program, given a
CPO O, determines if our lemmas can be used to show that O is not realizable. The CPOs
we give as inputs to the program are all of the CPOs based off G and four points of V . Each
of the CPOs can be analyzed in parallel, and therefore picking four points of V provides a
nice tradeoff between the number of CPOs that must be considered and the amount of time
it takes to evaluate a single CPO (the time to evaluate all cases on a 3.7 GHz CPU with 6
cores is less than 24 hours).

2.1 Structural Lemmas
We now give a set of structural lemmas that will help us argue when a CPO is not realizable.
We use the following definitions. Suppose that pi and pj are two points on an LVT such
that d(pi, pj) ≥ ρ and |x(pi) − x(pj)| < ρ (note that this implies that y(pi) ̸= y(pj)). Then
if y(pi) > y(pj) we say that pi is high outside disc(pj), and similarly we say that pj is low
outside disc(pi). See Figure 3.

▶ Lemma 4. Let pi, pj , pk, and pl be four points on a LVT such that x(pi) < x(pj) < x(pk) <

x(pl). If (1) pi sees pk and (2) pj sees pl, then d(pj , pk) ≤ ρ.
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pi

pj

Figure 3 pj is low
outside of disc(pi).

pi
pj

pk

pl

Figure 4 d(pj , pk) ≤ ρ.

pi

pj

pk

Figure 5 y(pj) < y(pi) and
y(pj) < y(pk).

Proof. Without loss of generality, assume that y(pj) ≤ y(pk). Then it must be that y(pk) ≤
y(pl), or else pk would pierce pjpl. Consider the triangle △pjpkpl. We have ∠pjpkpl > π

2 ,
thus pj , pl is the longest side of the triangle. Then we have d(pj , pk) < d(pj , pl) ≤ ρ. See
Figure 4 for illustration. ◀

▶ Lemma 5. Let pi, pj , and pk be three points on a LVT such that x(pi) < x(pj) < x(pk). If
(1) pk sees pi but does not see pj and (2) pjpk is not pierced, then pj is low outside disc(pk).
Moreover, we also have y(pj) < y(pi).

Proof. See Figure 5 for illustration. Since pjpk is not pierced and they do not see each
other, then clearly d(pj , pk) > ρ. Since pi ∈ disc(pk), we must have x(pk) − x(pi) ≤ ρ, and
since x(pj) is “between” x(pi) and x(pj) it therefore must be that x(pk) − x(pj) < ρ. So
it remains to show that y(pj) < y(pk) and y(pj) < y(pi). For the sake of contradiction,
suppose that y(pj) ≥ y(pi), clearly y(pk) > y(pj), otherwise pj will pierce pipk. Consider
the △pipjpk. We have ∠pipjpk is greater than π

2 , see Figure 6 for illustration. Therefore
d(pi, pk) > d(pj , pk) > ρ, contradicting that pi sees pk. Thus the initial assumption y(pj) ≥
y(pi) is wrong. We can derive a contradiction for y(pj) ≥ y(pk) similarly. ◀

▶ Lemma 6. Let pi, pj , and pk be three points on a LVT such that x(pi) < x(pj) < x(pk).
If (1) y(pi) < y(pj) and d(pi, pj) > ρ, and (2) pipk is not pierced, then y(pj) < y(pk) and
d(pi, pk) > ρ.

Proof. Clearly we must have y(pj) < y(pk) or else pj would pierce pipk. See Figure 7 for
illustration. In △pipjpk, clearly the longest edge is pipk, thus d(pi, pk) > d(pi, pj) > ρ. ◀

▶ Lemma 7. Let pi and pk be two points on a LVT that that do not see each other, but
d(pi, pk) ≤ ρ. Then there must be some point pj ∈ (pi, pk) that pierces pipk. If there is
some point pl such that d(pi, pl) ≤ ρ and d(pk, pl) ≤ ρ, then either d(pj , pl) ≤ ρ or pj is high
outside disc(pl).

Proof. It must be that x(pl) − x(pi) ≤ ρ, and since pj is “between” pi and pk then we
have x(pl) − x(pj) < ρ. We then complete the lemma by showing that if pj is such that
d(pj , pl) > ρ and y(pj) < y(pl) then it cannot pierce pipk. In this case, pj must be low
outside disc(pl). By convexity, we have that pipk is contained inside of disc(pl), and therefore
it cannot be that pj pierces pipk, see Figure 8 for illustration. ◀
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pi

pk

pj

Figure 6 Contradiction with pi seeing pk.

pj

pk

pi

Figure 7 y(pi) < y(pk).

pl
pi

pk
pj

Figure 8 Contradiction with
d(pj , pl) > ρ and y(pj) < y(pl).

pi

pj

pk

v

Figure 9 Contradiction with d(v, pk) ≤ ρ.

▶ Lemma 8. Let pi, pj, and pk be three points on an LVT such that x(pi) < x(pj) < x(pk)
such that pj is low outside disc(pi) and d(pj , pk) ≤ ρ. Then there is no point v : x(pj) <

x(v) < x(pk) such that v is low outside disc(pk) and d(pi, v) ≤ ρ.

Proof. If the lemma is incorrect, then there would be a v that satisfies the following three
properties: (1) y(v) < y(pk), (2) d(v, pk) > ρ, and (3) d(pi, v) ≤ ρ. We will prove the
lemma by showing that any point that satisfies conditions (1) and (3) cannot also satisfy
condition (2). To that end, let v be any point satisfying y(v) < y(pk) and d(pi, v) ≤ ρ.
We will show that it must be such that d(v, pk) ≤ ρ. See Figure 9 for illustration. Given
x(pi) < x(pj) < x(v), d(pi, pj) > ρ, d(pi, v) ≤ ρ, from Lemma 5 clearly y(v) > y(pj). Since
y(v) < y(pk), then we have x(pj) < x(v) < x(pk) and y(pj) < y(v) < y(pk). This implies
that v is inside of the axis-parallel rectangle with pj as lower-left corner and pk as upper-right
corner. If a and b are any two points in this rectangle, then we have d(a, b) ≤ d(pj , pk) ≤ ρ,
and therefore it must be that d(v, pk) ≤ ρ. ◀

2.2 Procedure
We use a computer program to show that there does not exist a realizable CO of G ∪ V . Our
strategy is to consider a starting set of viewpoints Vstart := {vp1,3,5,7,8, vp1,2,4,6,8, vp1,3,6,8,
vp1,2,4,5,7,8}, and to show that every CPO of G ∪ Vstart is not realizable. This implies there
is no realizable CO of G ∪ V . If not, then consider the subsequence of a realizable order
when considering the vertices in G ∪ Vstart. This would be a realizable CPO of G ∪ Vstart.

Suppose O is some CPO of G ∪ Vstart that we are considering. It may be that our lemmas
can “directly” show that O is not realizable, that is we can apply the lemmas to the points
in O to derive a contradiction. In fact, this is true for roughly half of the CPOs of G ∪ Vstart

(which is why we pick this set as a starting point). If we cannot directly show O is not
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realizable, we consider extensions of O. That is, we consider a viewpoint v that is not in O,
and we consider adding v to O in one of the |O|+1 “gaps” in O. Intuitively, we add one more
viewpoint to O to obtain a new CPO O′ while ensuring that the order of the points in O is
the same in O′. Then we say that O′ is an extension of O. Using this terminology, note that
O is realizable if and only if there is at least one realizable extension of O. Similarly, if we
are considering a CPO O of G ∪ V ′ and there is a viewpoint v ∈ V \ V ′ such that our lemmas
imply a contradiction for every extension of O that includes v, then we can in turn say that
O is not realizable. When considering viewpoints for extensions, we restrict ourselves to the
set Vtest which is the set of all 96 viewpoints such satisfies either (1) they see both g1 and g8,
or (2) see g2 and g7 and exactly one of g1 and g8. The intuition is that Vtest consist of the
more “difficult” viewpoints to find a spot in an order, so by only considering extensions from
Vtest we can focus the search to “difficult” viewpoints only, speeding up our program. And
indeed it is sufficient to consider only these viewpoints given that our program verifies that
no CPO of G ∪ Vstart is realizable, even if we only needed to extend to G ∪ Vtest.

Our program consists of two main functions: isNotRealizable() (Algorithm 1 and 2
in the paper due to the length of the algorithm) and candidateOrderingIsExtendable()
(Algorithm 3 in the paper). isNotRealizable() takes a CPO as input and returns true if
our lemmas can directly show that the order is not realizable, and returns false otherwise.
candidateOrderingIsExtendable() takes a CPO as input and returns true if there is an extension
such that the lemmas cannot directly show it is not realizable, and otherwise returns false.
In this paper, we give color-coded pseudocode that explains what our program does. The
actual C++ source code that we use as well as a color-coded rich text version of the source
code is provided at https://github.com/utsa-saga/vc8proof (the colors are used to help
with the readability of the code, pairing the “sections” of the source code with the “sections”
of the pseudocode from the paper).

Given 4 fixed starting viewpoints Vstart and guard set G = {g1, g2, . . . , g8}, we consider all
11,880 CPOs of G∪Vstart. Our program handles each of these 11,880 orderings independently
(cases can be tested simultaneously in parallel). Let O1 denote one such ordering. We pass
O1 to candidateOrderingIsExtendable(). This function calls isNotRealizable() on O1. If
we determine that it is not realizable, then candidateOrderingIsExtendable() returns false
immediately. If we cannot determine that O1 is not realizable, then we add a new viewpoint
from Vtest to O1 to obtain a new candidate ordering and repeat until we find a candidate
ordering of G ∪ Vtest for which isNotRealizable() returns false (indicating that it might be
realizable) or determine that every candidate ordering of G ∪ Vtest extending from O1 is not
realizable. In our actual program, we use some heuristics for computing a “good” ordering of
the points in Vtest \ Oi that are not shown in candidateOrderingIsExtendable().

It is not too difficult to see that candidateOrderingIsExtendable() is correct given that
isNotRealizable() is correct. We will formally show that isNotRealizable() is correct. That
is, we show that if isNotRealizable() returns true for some candidate ordering Oi, then
a contradiction about any realization can be derived from our lemmas. To help show
the correctness of this function, we define some notation. We use three main variables
to detect lemma contradictions: cannotBlockWithTerrain[{u, v}], tooFarAway[{u, v}], and
higherPoint[{u, v}].

The first variable is set to true if it must be that every realization must satisfy that uv is
not pierced (following from the order claim generalization that we presented in Section 1.2.
We consider this variable for all pairs u, v ∈ O. The second variable is set to be true when
every realization (according to our lemmas) must satisfy that d(u, v) > ρ, it is set to false if
d(u, v) ≤ ρ in every realization, and it is set to unknown if our lemmas do not imply this one
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way or the other. We consider this variable for u, v pairs such that at least one of u and v is
in G. As for the third variable, it will be set to either u, v, or unknown depending on if we
can determine which point must have the larger y-coordinate in any realization according to
our lemmas. This again is defined for all pairs u, v pairs such that at least one of u and v is
in G.

In order to determine the values of variables 2 and 3, we define some extra notation and
variables that are used as “helpers”. Let O be any candidate ordering of G ∪ V ′, where V ′ is
any subset of V . For ease of description, we add to O a “dummy” point vp−∞ to the left of
every point of O and a “dummy” point vp∞ to the right of every point of O. Since we have a
fixed ordering of the points, we can determine for any two points of u, v ∈ O whether or not
u and v are can be pierced by applying the order claim generalization we presented in Section
1.2. For any guard g ∈ G, let L(g) denote all viewpoints to the left of g in O, and similarly let
R(g) denote all viewpoints to the right of g in O. Let leftMostPointGuardSees(g) denote
the leftmost point of L(g) that sees g. If there is no such point, then we define it to be g.
Similarly we let rightMostPointGuardSees(g) denote the rightmost point in R(g) that sees
g, and if no such point exists we set it to be g. Let closestHighOutsideLeft(g) denote the
rightmost point v ∈ L(G) such that g does not see v, cannotBlockWithTerrain[{g, v}] is true,
and v sees some g′ ∈ G right of g (our lemmas imply this view point must be high outside
disc(g)). If no such point exists, we let closestHighOutsideLeft(g) be vp−∞. We similarly
define closestHighOutsideRight(g) to be the leftmost point v ∈ R(g) such that g does not
see v, cannotBlockWithTerrain[{g, v}] is true, and v sees some g′ ∈ G left of g. If no such
point exists, we define closestHighOutsideRight(g) to be vp∞. For any two points u, v ∈ O,
we say u < v if u is to the left of v in O.

▶ Lemma 9. If our function isNotRealizable(O) returns true, then O is not realizable.

Proof. We will show a contradiction to realization for each line of isNotRealizable() that
returns true. To this end, we will also show that the assignments for our variables cannotB-
lockWithTerrain, tooFarAway, and highestPoint are in fact correct.

Gold Block. In the gold block (Line 1), we set the values for the variable cannotBlockWith-
Terrain. If for points a and d we have cannotBlockWithTerrain[{a, d}] set to true, then it
is true that in any realization of O that ad is not pierced as either they see each other or
there are points b and c such that ac is not pierced and ad is not pierced (second Claim from
Section 1.2). If cannotBlockWithTerrain[{a, d}] is false then we make no assumptions about
whether ad is pierced.

Green Block. Now consider the green block (Lines 2–3), and in particular suppose we
return true in line 3. Without loss of generality assume that it returned true because
leftMostPointGuardSees(g) < closestHighOutsideLeft(g). Let p denote
leftMostPointGuardSees(g), and let q denote closestHighOutsideLeft(g). Then g does
not see q and qg cannot be pierced which implies that in any realization we must have
d(q, g) > ρ. But we can apply Lemma 4 with pi, pj , pk, and pl as p, q, g, g′ respect-
ively, where g′ is a guard that q sees to the right of g (which exists by the definition of
closestHighOutsideLeft(g)). Then in any realization, d(q, g) ≤ ρ by Lemma 4, a contradic-
tion.

We also remark that closestHighOutsideRight(g) must indeed be high outside disc(g)
in any realization. This follows from Lemma 5 by letting pk be closestHighOutsideRight(g),
pj be g, and pi be any guard that closestHighOutsideRight(g) sees to the left of g. Similarly,
closestHighOutsideLeft(g) must be high outside of disc(g).
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Blue Block. Now consider the blue block of code (Lines 4–23) where we set the tooFarAway
and higherPoint variables for each pair of guards. We claim that if tooFarAway[{gi, gj}] is
set to true, then the lemmas imply that any realization must have d(gi, gj) > ρ, and if it
is set to false then every realization must have d(gi, gj) ≤ ρ. Similarly we claim that if we
set higherPoint[{gi, gj}] to be gi, then any realization must have y(gi) > y(gj) and if it is
set to be gj then any realization must have y(gi) < y(gj). We initially set both variables to
unknown, and then we change them if we detect a reason to change them.

Suppose we set tooFarAway[{gi, gj}] to be false in Line 7. Then let p be leftMostPoint-
GuardSees(gj) and let q be rightMostPointGuardSees(gi). Then from the if-statement,
we have that p < gi < gj < q and applying Lemma 4 we have that d(gi, gj) ≤ ρ in any
realization, therefore our variable setting is correct.

Now suppose that we set higherPoint[{gi, gj}] to be gi in Line 9. If closestHighOutside-
Right(gj) and rightMostPointGuardSees(gi) are the same point, then we have that y(gi) >

y(gj) in any realization by Lemma 5. If they are not the same point, then we have gi < gj <

p < q where p is closestHighOutsideRight(gj) and q is rightMostPointGuardSees(gi). If
we had y(gi) ≤ y(gj) then it would have to be that d(gi, p) > ρ and y(gi) < y(p) and therefore
we can apply Lemma 6 to gi, p, and q to get that d(gi, q) > ρ, a contradiction. Therefore it
must be that y(gi) > y(gj) in any realization. A symmetric argument holds for Line 13.

Now suppose that we set higherPoint[{gi, gj}] to be gj in Line 17 (and therefore also set
tooFarAway[{gi, gj}] to be true in the next line). Then from the if-statement, we can apply
Lemma 6 to gi, closestHighOutsideRight(gi), and gj to see that both assignments must be
true in any realization. The argument is symmetric in Line 22.

Note that each of the “return true” statements in this block occur if we get contradictory
statements about which of gi and gj has the larger y-coordinate, and therefore if we return
true in this block then O is indeed not realizable.

Light Green Block. Now consider the light green block (Lines 24–26). If we return true in
line 26, then we have that gigj cannot be pierced in any realization. But at the same time
we would need a gk between gi and gj such that y(gk) > y(gi) and y(gk) > y(gj). Clearly
the latter implies that gk pierces gigj , and therefore O cannot be realized.

Red Block. Now consider the red block of code (Lines 27–41). In this block we set the
tooFarAway and higherPoint variables for a guard g and a viewpoint p. We will argue
that if we set these variables to something other than unknown then any realization must
satisfy that assignment. If we set tooFarAway[{g, p}] to be false in Line 30 then its either
because g sees p (in which case they obviously cannot be too far away) or it’s because
leftMostPointGuardSees(g) < p < g < g′ where g′ is a guard that p sees. In this case we
can apply Lemma 4 to see that it must be that d(p, g) ≤ ρ in any realization.

Now suppose we enter the else statement starting at Line 34. In this case we have that
g does not see p and we have cannotBlockWithTerrain[{g, p}] is true. Therefore clearly
the reason why g does not see p is because d(g, p) > ρ, and therefore our assignment of
tooFarAway[{g, p}] to be true is correct. Then further suppose we set higherPoint[{g, p}]
to be g in Line 36. Then we can apply to Lemma 5 to leftMostPointGuardSees(g), p,

and g to see that indeed it must be y(p) < y(g). The argument for Line 38 where we set
higherPoint[{g, p}] to be p follows symmetrically.

Yellow Block. Now consider the yellow block (Lines 42–51). Consider any viewpoint vp

that satisfies the for-loop condition in Line 43. Then we have that vp does not see gj , but
d(vp, gj) ≤ ρ. Therefore any realization must have some point that pierces vpgj . Moreover
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Figure 10 x(g′) > x(gk) and vp sees g′.

we have cannotBlockWithTerrain[{gi, gj}] is true from Line 42. Then maybe gi is a point
that pierces vpgj , but if it does not pierce it then certainly no point between gi and gj can
pierce vpgj (as it would also pierce gigj). This means that if gi does not pierce vpgj , then
we would need to find a point between vp and gi (possibly a point not in O) to pierce vpgj .
The yellow block first considers if it is possible for gi to pierce, and if it cannot, then we
consider the possibility of a “blocker” between vp and gi.

First consider the if-statement in Line 44. If this condition is true, then we have that
there is some guard gk such that vp and gj are inside of disc(gk) but gi is low outside
disc(gk). Lemma 7 implies that any point that pierces vpgj cannot be low outside disc(gk),
and therefore gi cannot pierce vpgj .

Next consider the if-statement in Line 46. If this condition is true, then we have that
there is some guard gk to the right of gj such that vp is high outside disc(gk), gi is low outside
disc(gk), and gj is inside disc(gk). Since vp is high outside disc(gk), we have that a ray shot
straight down from vp will first intersect disc(gk) at a point I1 such that y(I1) > y(gk) (recall
that this is true since vp must see a guard to the right of gk in order for higherPoint[{vp, gk}]
to be vp). Now consider walking along vpgj starting at gj and walking towards vp. Let
I2 denote the point that this walk exits disc(gk). Then we have that y(I2) > y(I1). See
Figure 10. Therefore any point that is low outside disc(gk) cannot pierce vpgj , and therefore
gi cannot pierce vpgj .

So now suppose that giCanBeBlocker was set to false by one of the two cases above.
Then indeed gi cannot pierce vpgj and we now need to consider a blocker strictly between
vp and gi. There are two potential issues this might cause. The first is that if gi does not
pierce vpgj but some point b between vp and gi does pierce vpgj , then it must be that b also
pierces vp, gi. So if we have cannotBlockWithTerrain[{vp, gi}] set to true, then we cannot
use such a blocker b. But moreover, using a blocker b in this range may cause us to have to
flip cannotBlockWithTerrain[{vp2gj}] from false to true if we use such a blocker b. Indeed,
for any point vp2 to the left of vp, if we have cannotBlockWithTerrain[{vp2, gi}] is true, then
the use of this blocker b will force us to have cannotBlockWithTerrain[{vp2, gj}] to be true
by the second claim in Section 1.2. If we previously determined that vp2 cannot be too far
away from gj , then this would imply that vp2 sees gj , a contradiction. Therefore in this case
we would not be able to use a new blocker b.

So if we determine that gi cannot be a blocker and a new point between vp and gi cannot
be the blocker, then it is not possible to pierce vpgj without changing other visibilities and
therefore O cannot be realized, and the algorithm returns true accordingly.
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Purple Block. Now consider the purple block (Lines 52–54). If there are guards gi and gj

and viewpoints vp1 and vp2 that satisfy the if-statement condition then we have vp2 sees
gj and is low outside disc(gi), and we have vp1 sees gi and is low outside disc(gj). The
left-to-right order of gi < vp2 < vp1 < gj then contradicts Lemma 8, and therefore O is not
realizable and we return true accordingly. ◀

3 Lower Bound

In this section, we show that the VC-Dimension of LVTs is at least 7. See Figure 12 for the
coordinates of the vertices of our LVT where a set of 7 vertices is shattered. We remark that
the main value of this construction is that it shows that our upper bound proof we give in
Section 2 is tight. We do not claim that this LVT is particularly interesting outside of the
fact that it proves that the upper bound cannot be improved.

Here, we assume that the radius ρ that each vertex can see is 1. The vertices that
are shattered are the vertices G = {g1, . . . , g7}. The viewpoints are labeled vp where the
subscript denotes which vertices of G the viewpoint sees. Some of the vertices are neither a
viewpoint nor a vertex in G and are labeled “-” (their role is simply to block a viewpoint
from seeing a vertex in G). The table does not contain a viewpoint for the empty set or for
the subsets of size 1. It is trivial to add these points: the empty set point can be placed to
the right of all points a distance greater than 1 to each vertex in G, and a viewpoint that
should see only one vertex gi can be placed in a steep “canyon” just to the left of gi so that
every other gj is blocked from seeing it.

To formally verify that our coordinates are correct, we wrote a computer program that
ensures each viewpoint sees exactly which guards they are supposed to see. Our program to
verify the problem is available at https://github.com/utsa-saga/vc7proof.

The aspect ratio of our construction is very large which makes it difficult to produce a
static figure that is helpful in visualizing the construction. Nonetheless, see Figure 11 for a
static figure of the LVT. Note that in this figure, we use letters A through G to represent
the guards instead of g1 - g7 (e.g., B represents g2 and BEF represents vp2,5,6). See Figure
11 for the overall the boundary of the LVT, where the viewpoints are listed in blue (many
of the labels are not visible because the points are so close together) and the guards in
G are red. There is a dynamic version of the figure that allows zooming in-and-out here:
https://www.geogebra.org/calculator/ybvdrjag. Finally we have dynamic figures for
each guard. They show the disc of the guard so it is possible to see which portions of the
LVT are too far away from certain guards. In these figures, green line segments indicate that
the guard and viewpoint see each other (their line segment is not pierced, and they are close
enough to see each other); red line segments indicate their line segment is pierced; purple
viewpoints indicate the viewpoints that are outside of the disc of the guard.

g1: https://www.geogebra.org/calculator/vcjyvhmm
g2: https://www.geogebra.org/calculator/hjnqeuqy
g3: https://www.geogebra.org/calculator/nktasnvc
g4: https://www.geogebra.org/calculator/pgb5tzj2
g5: https://www.geogebra.org/calculator/bptpyugq
g6: https://www.geogebra.org/calculator/cx8khxkc
g7: https://www.geogebra.org/calculator/t83pycpq
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Algorithm 1 boolean isNotRealizable(O) – Part 1 of 2.

1: For each pair of points u, v, set cannotBlockWithTerrain[{u, v}] to true if u sees v or the
order claim generalization implies that uv cannot be pierced, otherwise set it to be false.

2: if there is a g ∈ G such that
leftMostP ointGuardSees(g) < closestHighOutsideLeft(g) or
closestHighOutsideRight(g) < rightMostP ointGuardSees(g) then

3: return true
4: for every pair gi, gj ∈ G such that i < j do
5: tooFarAway[{gi, gj}] = unknown, higherPoint[{gi, gj}] = unknown
6: if leftMostP ointGuardSees(gj) < gi and

gj < rightMostP ointGuardSees(gi) then
7: tooFarAway[{gi, gj}] = false
8: if closestHighOutsideRight(gj) ≤ rightMostP ointGuardSees(gi) then
9: higherPoint[{gi, gj}] = gi

10: if leftMostP ointGuardSees(gj) ≤ closestHighOutsideLeft(gi) then
11: if higherPoint[{gi, gj}] is gi then
12: return true
13: higherPoint[{gi, gj}] = gj

14: if closestHighOutsideRight(gi) < gj and
cannotBlockWithTerrain[{gi, gj}] is true then

15: if higherPoint[{gi, gj}] is gi then
16: return true
17: higherPoint[{gi, gj}] = gj

18: tooFarAway[{gi, gj}] = true
19: if gi < closestHighOutsideLeft(gj) and

cannotBlockWithTerrain[{gi, gj}] is true then
20: if higherPoint[{gi, gj}] is gj then
21: return true
22: higherPoint[{gi, gj}] = gi

23: tooF arAway[{gi, gj}] = true
24: for every pair gi, gj ∈ G such that i < j do
25: if cannotBlockWithTerrain[{gi, gj}] is true and there is a k ∈ (i, j) such that

higherPoint[{gi, gk}] and higherPoint[{gk, gj}] are both gk then
26: return true
27: for all g ∈ G do
28: for all viewpoints p ∈ L(g) do
29: if g sees p or (leftMostP ointGuardSees(g) < p and

p sees a guard right of g) then
30: tooFarAway[{g, p}] = false, higherPoint[{g, p}] = unknown
31: else if cannotBlockWithTerrain[{g, p}] is false then
32: tooFarAway[{g, p}] = unknown, higherPoint[{g, p}] = unknown
33: else
34: tooFarAway[{g, p}] = true
35: if leftMostP ointGuardSees(g) < p then
36: higherPoint[{g, p}] = g

37: else if p sees a guard to the right of g then
38: higherPoint[{g, p}] = p

39: else
40: higherPoint[{g, p}] = unknown
41: Symmetrically repeat steps 28 - 40 for viewpoints p ∈ R(g).



M. Gibson-Lopez and Z. Yang 5:13

Algorithm 2 boolean isNotRealizable(O) – Part 2 of 2.

42: for every pair gi, gj ∈ G such that i < j and cannotBlockWithTerrain[{gi, gj}] is true do
43: for each viewpoint vp such that leftMostP ointGuardSees(gj) < vp < gi and vp does

not see gj and tooFarAway[{vp, gj}] is false do
44: if there is a gk ∈ G such that tooFarAway[{vp, gk}] is false and tooFarAway[{gi, gk}]

is true and higherPoint[{gk, gi}] is gk and tooFarAway[{gj , gk}] is false then
45: giCanBeBlocker = false
46: else if there is a gk ∈ G such that gj < gk and tooFarAway[{vp, gk}] is true and

higherPoint[{vp, gk}] is vp and tooFarAway[{gi, gk}] is true and higherPoint[{gk, gi}]
is gk and tooFarAway[{gj , gk}] is false then

47: giCanBeBlocker = false
48: if giCanBeBlocker is false then
49: if cannotBlockWithTerrain[{vp, gi}] is true or (there is a vp2 such that

leftMostP ointGuardSees(gj) < vp2 < vp and vp2 sees gi and vp2 does not see gj

and tooFarAway[{vp2, gj}] is false) then
50: return true
51: Repeat Lines 43 - 50 symmetrically, looking for a vp to the right of gj such that gi needs

a blocker to prevent it from seeing vp.
52: for every pair gi, gj ∈ G such that i < j do
53: if there are viewpoints vp1 and vp2 such that gi < vp2 < vp1 < gj and vp1 sees gi

and tooFarAway[{vp1, gj}] is true and higherPoint[{vp1, gj}] is gj and vp2 sees gj and
tooFarAway[{gi, vp2}] is true and higherPoint[{gi, vp2}] is gi then

54: return true
55: return false

Algorithm 3 boolean candidateOrderingIsExtendable(Oi).

1: if isNotRealizable(Oi) then
2: return false
3: else if Vtest \ Oi = ∅ then
4: return true
5: for all v ∈ Vtest \ Oi do
6: for j = 0 to |Oi| do
7: Let Oi+1 be a candidate ordering by inserting v into position j in Oi.
8: if candidateOrderingIsExtendable(Oi+1) then
9: return true

10: return false

ISAAC 2021



5:14 The VC-Dimension of Limited Visibility Terrains

Figure 11 Terrain Boundary.
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Coordinate Label Coordinate Label
(0.065221878837284,-0.699711771625512) vp3,5,7 (0.573309531425741,-1.58973181578975) vp1,2,4,5,6
(0.065221883996657,-0.699711787103631) vp2,3,5,7 (0.608804212112144,-1.60869870293362) vp2,4
(0.065224793883047,-0.699755445718236) vp1,2,3,5,7 (0.608804366893335,-1.6086950913725) vp2,4,6
(0.065235112629113,-0.700075326846282) vp1,3,5,7 (0.608806017892706,-1.60869251168598) vp2,4,5,6
(0.065609528330117,-0.705692491048488) vp4,5,7 (0.656334162272601,-1.53539071931979) vp1,2,4,6,7
(0.065611746860522,-0.705696463765723) vp1,3,4,5,7 (0.656375437256865,-1.53532622715688) vp1,2,4,5,6,7
(0.067070817554251,-0.727468502027634) vp1,3,4,5,6,7 (0.656376469131471,-1.53532674309418) vp1,2,5,6,7
(0.067071333491554,-0.727471546057723) vp1,7 (0.656534954752298,-1.53526755476674) vp2,4,6,7
(0.067071849428857,-0.727471597651453) g1 (0.656535377820887,-1.535266894367) vp2,4,5,6,7
(0.067074429115374,-0.727520611695267) vp1,2,3,4,5,6,7 (0.660353313865299,-1.5324679344966) vp2,4,7
(0.067074945052677,-0.727534542002456) vp2,3,4,5,6,7 (0.660902529124661,-1.53132874493092) vp1,2,4
(0.082446781067165,-0.96428681986565) vp1,3,4,5,6 (0.660902787093312,-1.53132513336979) vp1,2,4,7
(0.082549968527825,-0.964802757168949) vp1,2,3,4,5,6 (0.660915685525895,-1.53130191619114) vp1,2,4,5,7
(0.082555127900858,-0.965009132090268) vp2,3,4,5,6 (0.663061984707618,-1.5304660977598) vp2,4,5,7
(0.099059962233389,-1.22973656241294) vp2,5,6 (0.666998070394486,-1.52760625728761) vp2,3,4
(0.099885461918668,-1.2302009059859) vp1,2,5,6 (0.666998586331789,-1.52759748635346) vp2,3,4,7
(0.099916418156866,-1.2307168432892) vp2,6 (0.667003745704822,-1.52758716760739) vp2,3,4,5,7
(0.100607258205983,-1.23053110586002) vp1,2 (0.701416763834859,-1.46577787867218) vp1,2,3,4,5,7
(0.100607774143286,-1.23051046836788) g2 (0.701421923207892,-1.46578303804522) vp1,5,7
(0.104172900909082,-1.3046919338362) vp2,4,5 (0.701427082580925,-1.465780974296) vp1,2,5,7
(0.105560772254956,-1.30552775226754) vp2,3,4,5 (0.701435337577777,-1.46578200617061) vp1,2,5
(0.111473413750761,-1.30925281959736) vp1,2,4,5 (0.701436369452384,-1.46578303804522) vp1,5
(0.113506206725759,-1.31048075037921) vp1,2,3,4,5 (0.701674732486508,-1.46526194136888) g5
(0.113764175377408,-1.31254449959241) vp1,3,4,5 (0.702087482329147,-1.47062768932319) vp5,7
(0.113769334750441,-1.31600643889755) vp4,5 (0.702190669789807,-1.47042131440187) vp5,6,7
(0.114022144029058,-1.3161560607155) vp3,4,5 (0.732501986358618,-1.47586445295168) vp2,5
(0.378697980621395,-1.67370061190164) vp1,2,3,5 (0.732527783223783,-1.47578706235618) vp2,5,7
(0.378955949273044,-1.67421654920494) vp1,3,5 (0.732630970684442,-1.47558068743486) vp2,5,6,7
(0.379007543003374,-1.67442292412626) vp3,5 (0.732638709743992,-1.47558352509003) vp2,6,7
(0.412749842639122,-1.65615874358948) vp1,2,3,5,6 (0.833197469843465,-1.37048425875288) vp2,3,5
(0.41378171724572,-1.65822249280267) vp1,3,5,6 (0.833238744827728,-1.37032947756189) vp2,3,5,6,7
(0.414204785834425,-1.65983221718897) vp5,6 (0.833239539113207,-1.3703289054906) vp2,3,7
(0.414297654549019,-1.65977030471257) vp3,5,6 (0.833239539164801,-1.37032890546481) vp2,7
(0.41842515297541,-1.6637946156783) vp2,3,5,6 (0.833239539371176,-1.37032890487148) vp2,3,6,7
(0.548214340993282,-1.57551774308386) vp1,2,3,5,6,7 (0.833806275861357,-1.36950397787661) −
(0.548216920679799,-1.57552032277038) vp1,3,5,6,7 (0.833820231965412,-1.36949386550546) vp2,3,4,6,7
(0.548219500366316,-1.57552548214341) vp3,5,6,7 (1.02748913951977,-1.22916903137931) vp2,3,4,6
(0.548441353406734,-1.57567252427485) vp1,2,3,6 (1.02756188662794,-1.22911641093374) vp2,3
(0.5484516721528,-1.57568284302092) vp1,3,6 (1.02756188667953,-1.22911640577437) vp2,3,6
(0.548456831525833,-1.57569316176698) vp3,6 (1.04219283672648,-0.925087451372909) −
(0.549466004891086,-1.57464864669645) vp1,2,3,6,7 (1.04219289863896,-0.925087358504194) vp1,2,3,4,6
(0.549466262859737,-1.57464890466511) vp1,3,6,7 (1.04219335266378,-0.925075584814933) g6
(0.549466520828389,-1.57464942060241) vp3,6,7 (1.04219336298253,-0.925075770552362) vp6,7
(0.549468068640299,-1.5746483887278) vp1,2,3,7 (1.04219338356843,-0.925075589974306) vp1,6
(0.54946832660895,-1.57464890466511) vp3,7 (1.04219338362002,-0.925075585330871) vp1,6,7
(0.549472196138725,-1.57465096841432) vp1,2,3 (1.04219341354439,-0.925075562113692) vp1,2,6
(0.549472712076029,-1.57465148435162) vp1,3 (1.04219341457626,-0.925075533221203) vp1,2,6,7
(0.549473228013332,-1.57464064966825) g3 (1.04219355903871,-0.925075275252551) vp1,2,3,4,6,7
(0.549576415473991,-1.57639483649947) vp3,4,6 (1.04219361063244,-0.925075223658821) vp1,2,7
(0.549989165316631,-1.57618846157815) vp3,4,6,7 (1.04219367254491,-0.92507512047136) vp1,2,3,4,7
(0.551640164687187,-1.57660121142079) vp1,3,4 (1.049421634283,-0.914440053244729) vp1,3,4,7
(0.552047755156793,-1.57366036879198) vp1,2,3,4 (1.04942627771873,-0.91443391359082) vp1,3,7
(0.552052914529826,-1.57360877506165) g4 (1.04951940440198,-0.913640092455965) vp1,3,4,6
(0.552070456398138,-1.5738187615441) vp4,7 (1.04951966237063,-0.913621776681697) vp1,3,4,6,7
(0.552071488272745,-1.57381721373219) vp4,6,7 (1.0498287088153,-0.912847870726749) vp3,4,5,6
(0.552073552021958,-1.57381514998297) vp4,5,6,7 (1.04982891519023,-0.912847561164367) vp3,4
(0.552506939356729,-1.57805615461609) vp4,6 (1.04982922475261,-0.912796276996419) vp3,4,5,6,7
(0.552517258102795,-1.57804583587003) vp4,5,6 (1.04984470287171,-0.912771512005861) vp3,4,5,7
(0.556087544241624,-1.58007862884502) vp1,4,5,6 (1.04984728255822,-0.912767900444738) vp3,4,7
(0.556110761420272,-1.58009410696412) vp1,4,6 (1.05251209872976,-0.711993478552486) g7
(0.556156679840266,-1.58004664073222) vp1,4 (1.05302803603306,-0.71044566664259) vp1,4,5,7
(0.556157195777569,-1.58003477417424) vp1,4,6,7 (1.05313122349372,-0.71018769799094) vp1,4,5
(0.556167514523635,-1.58002703511469) vp1,4,7 (1.05313638286675,-0.699027974120585) vp1,5,6,7
(0.556180412956217,-1.58000639762256) vp1,4,5,6,7 (1.05316372754383,-0.698461732930214) vp1,5,6
(0.573305403927315,-1.58973697516278) vp1,2,4,6

Table 1 The coordinates of our construction.Figure 12 The coordinates of our construction.
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Abstract
In the standard planar k-center clustering problem, one is given a set P of n points in the plane,
and the goal is to select k center points, so as to minimize the maximum distance over points in P

to their nearest center. Here we initiate the systematic study of the clustering with neighborhoods
problem, which generalizes the k-center problem to allow the covered objects to be a set of general
disjoint convex objects C rather than just a point set P . For this problem we first show that there
is a PTAS for approximating the number of centers. Specifically, if ropt is the optimal radius
for k centers, then in nO(1/ε2) time we can produce a set of (1 + ε)k centers with radius ≤ ropt.
If instead one considers the standard goal of approximating the optimal clustering radius, while
keeping k as a hard constraint, we show that the radius cannot be approximated within any factor
in polynomial time unless P = NP, even when C is a set of line segments. When C is a set of unit
disks we show the problem is hard to approximate within a factor of

√
13−

√
3

2−
√

3 ≈ 6.99. This hardness
result complements our main result, where we show that when the objects are disks, of possibly
differing radii, there is a (5 + 2

√
3) ≈ 8.46 approximation algorithm. Additionally, for unit disks

we give an O(n log k) + (k/ε)O(k) time (1 + ϵ)-approximation to the optimal radius, that is, an
FPTAS for constant k whose running time depends only linearly on n. Finally, we show that the
one dimensional version of the problem, even when intersections are allowed, can be solved exactly
in O(n log n) time.
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1 Introduction

In the standard k-center clustering problem, one is given a set P of n points in a metric
space and an integer parameter k ≥ 0, and the goal is to select k points from the metric
space (or from P in the discrete k-center problem), called centers, so as to minimize the
maximum distance over points in P to their nearest center. Equivalently, the problem can
be viewed as covering P with k balls with the same radius r, where the goal is to minimize r.
It is well known that it is NP-hard to approximate the optimal k-center radius ropt within
any factor less than 2 in general metric spaces [21], and that the problem remains hard to
approximate within a factor of roughly 1.82 in the plane [12]. For general metric spaces,
the standard greedy algorithm of Gonzalez [19], which repeatedly selects the next center to
be the point from P which is furthest from the current set of centers, achieves an optimal
2-approximation to ropt. An alternative algorithm due to Hochbaum and Shmoys [20] also
achieves an optimal approximation ratio of 2 by approximately searching for the optimal
radius, observing that if r ≥ ropt then all points will be covered after k rounds of repeatedly
removing points in 2r radius balls centered at any remaining point of P .
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6:2 Clustering with Neighborhoods

In this paper we consider a natural generalization of k-center clustering in the plane,
where the objects which we must cover are general disjoint convex objects rather than points.
Specifically, in the clustering with neighborhoods problem the goal is to select k center points
so that balls centered at these points with minimum possible radius intersect all the convex
objects. This generalization is natural as real world objects may not be well modeled as
individual points. This generalized setting has previously been considered for other classical
point based problems in the plane, such as the Traveling Salesperson Problem [10], where
the authors referred to these objects as neighborhoods. (We instead typically refer to them
as objects.) To the best of our knowledge we are the first to consider the general problem of
clustering convex objects in this context, though as we discuss below many closely related
problems have been considered, some of which equate to special or extreme cases of our
problem. We remark that since a point is a convex set, the hardness results for k-center
clustering immediately apply to clustering with neighborhoods.

Related Work

As clustering is a fundamental data analysis task, countless variants have been considered.
Here we focus on variants which share our k-center objective of minimizing the maximum
radius of the balls at the chosen centers. Bandyapadhyay et al. [7] considered the colorful
k-center problem, where the points are partitioned into color classes P1, . . . , Pc and the goal
is to find k balls with minimum radius which cover at least ti points from each color class Pi.
When our convex objects have bounded diameter our problem can be approximately cast
as an instance of colorful k-center by replacing each object with the set Pi of grid points
it intersects and setting ti = 1. General colorful clustering, however, is more challenging
as the color classes can be interspersed, which is why [7] assumes the number of color
classes is a constant, allowing for a constant factor approximation, which subsequently was
improved [5, 23]. Note that colorful k-center itself generalizes the k-center with outliers
problem [8], corresponding to the case with a single color class P with n − t outliers allowed.

Xu and Xu [31] considered k-center clustering on point sets (KCS) where given points sets
S1, . . . , Sn the goal is to find k balls of minimum radius such that each Si is entirely contained
in one of the balls. Again when our objects have bounded diameter we can relate our problem
to KCS by discretizing the objects. Their requirement that all of Si be covered by a single
ball implies that the optimal radius is at least the radius of the largest object, whereas in
our case as only a single point of Si needs to be covered the radius can be arbitrarily smaller.
In particular, while [31] achieves a (1 +

√
3)-approximation, we show our problem cannot in

general be approximated within any factor in polynomial time unless P = NP.
For the special case when k = 1 or k = 2, there are several prior results which closely

relate to our problem. When k = 1, i.e. the one-center problem, the solution can be derived
from the farthest object Voronoi diagram, for which Cheong et al. [9] gave a near linear time
algorithm for polygon objects. For disk objects, Ahn et al. [4] gave a near quadratic time
algorithm for the two-center problem. Several papers have also considered generalizing to
higher dimensions, but restricting the convex objects to affine subspaces of dimension ∆.
Gao et al. [16] introduced the 1-center problem for n lines, achieving a linear time (1 + ε)-
approximation, as well as a (1 + ε)-approximation for higher dimensional flats or convex sets
whose running time depends exponentially on ∆. Later in [17] the same authors considered
the more challenging k = 2 and k = 3 cases for lines, providing a (2 + ε)-approximation in
quasi-linear time. Subsequently, [26] considered the problem for axis-parallel flats, where
they provide an improved approximation for k = 1, hardness results for k = 2, and an
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approximation for larger k where the time depends exponentially on both k and ∆. While our
focus is on the k-center objective, we remark that k-means clustering for lines was considered
by Marom and Feldman [27], who gave a PTAS for constant k.

The k-center problem for points in a metric space can also be viewed as clustering the
vertices according to the shortest path metric of a positively weighted graph. This allows
one to consider specific graph classes, for example, Eisenstat et al. [11] gave a polynomial
time bi-criteria approximation scheme for k-center in planar graphs (i.e. they allow both the
number of centers and radius to be violated). We remark, however, that for our problem,
and the various others described above where the objects are not points, the complete graph
with all pairwise distances between the objects, is not necessarily metric (i.e. it may not be
its own metric completion). For example, the triangle inequality would be violated if you
had two small convex objects (e.g. points) which are far from one another but both are close
to some other large convex object. Note that this non-metric behavior is what allows us to
prove a stronger hardness of approximation result than that for points in the plane [12].

Finally, we note that there is a polynomial time algorithm for k-center when k is
a constant and the objects are points in d-dimensional Euclidean space, for constant d.
Specifically, Agarwal and Procopiuc [3] gave an nO(k1−1/d) time exact algorithm, as well as a
O(n log k) + (k/ε)O(k1−1/d) time (1 + ε)-approximation. Later Bădoiu et al. [6] removed the
bounded dimension assumption, achieving a 2O((k log k)/ε2) · dn time (1 + ε)-approximation.

Our Contribution

In this paper we initiate the systematic study of the NP-hard clustering with neighborhoods
problem. While this problem allows centers to be placed anywhere in the plane, in Section 3
we first argue that one can compute a cubic sized set of points P and a cubic sized set of radii
R, such that for any integer k ≥ 0 there is an optimal set S ⊆ P of k centers with optimal
radius ropt ∈ R. This naturally leads to a PTAS for approximating the optimal number of
centers by using Minkowski sums to reduce the problem to instances of geometric hitting set,
for which there is a well known PTAS [29]. Specifically, if ropt is the optimal radius for k

centers, then in nO(1/ε2) time we can produce a set of (1 + ε)k centers with radius ≤ ropt.
In clustering problems, however, often the emphasis is on approximating the radius, while

keeping k as a hard constraint. In Section 4 we prove this problem is significantly harder, by
adapting the hardness proof of [12] for planar k-center. Specifically, we show that the radius
cannot be approximated within any factor in polynomial time unless P = NP, even when the
convex objects are restricted to disjoint line segments. On the other hand, for disjoint unit
disks, a more in depth proof shows the problem is APX-hard, and in particular cannot be
approximated within

√
13−

√
3

2−
√

3 ≈ 6.99 in polynomial time unless P = NP. Complementing this
result, in Section 5 we present our main result, showing that when the objects are disjoint
disks (of possibly varying radii) there is a (5 + 2

√
3)-approximation for the optimal radius.

Significantly, for the case of disks, our approximation factor of 5 + 2
√

3 ≈ 8.46 is close to
our hardness bound of

√
13−

√
3

2−
√

3 ≈ 6.99. Moreover, while our approximation holds for disks of
varying radii, interestingly our hardness bound applies even for disks of uniform radii.

Further probing the complexity of clustering with neighborhoods, in Section 6 we show
there is an FPTAS for unit disks when k is bounded by a constant. Specifically, we give an
O(n log k)+(k/ε)O(k) time (1+ε)-approximation to the optimal radius, by carefully reducing
to the algorithm of [3] for k-center. Finally in Section 7, by utilizing the searching procedure
of [15], we show that in one dimension the problem can be solved exactly in O(n log n) time
even when intersections are allowed, contrasting our hardness results in the plane.
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6:4 Clustering with Neighborhoods

2 Preliminaries

Given points x, y ∈ Rd, ||x − y|| denotes their Euclidean distance. Given two closed sets
X, Y ⊂ Rd, ||X − Y || = minx∈X,y∈Y ||x − y|| denotes their distance. For a single point x we
write ||x − Y || = ||{x} − Y ||. For a point x and a value r ≥ 0, let B(x, r) denote the closed
ball centered at x and with radius r.

Let C be a set of n pairwise disjoint convex objects in the plane. For simplicity, we assume
C is in general position. We work under the standard assumption that the objects in C are
semi-algebraic sets of constant descriptive complexity. Namely, the boundary of each object
is composed of a set of algebraic arcs where the sum of the degrees of these arcs is bounded
by a constant, and any natural standard operation on such objects, such as computing the
distance between any pair of objects, can be carried out in constant time. See Agarwal
et al. [1] for a more detailed discussion of this model. Our analysis generalizes to the case
where n is the total complexity of C and individual objects in C are not required to have
constant complexity, however, assuming constant complexity simplifies certain structural
statements and the polynomial degree of n in our running time statements.

▶ Problem 1 (Clustering with Neighborhoods). Given a set C of n disjoint convex objects in
the plane, and an integer parameter k ≥ 0, find a set of k points S (called centers) which
minimize the maximum distance to a convex object in C. That is,

S = arg min
S′⊂R2,|S′|=k

max
C∈C

||C − S′||.

Let S be any set of k points, and let r = maxC∈C ||C − S||. We refer to r as the radius of
the solution S, since r is the minimum radius such that the set of all balls B(s, r) for s ∈ S,
intersect all C ∈ C. If S is an optimal solution then we refer to its radius ropt as the optimal
radius.

In this paper we will consider two types of approximations.1 Let C, k be an instance
of Problem 1 with optimal radius ropt. For a value α ≥ 1, we refer to a polynomial time
algorithm as an α-size-approximation if it returns a solution S of radius ≤ ropt where |S| ≤ αk.
Alternatively, we refer to a polynomial time algorithm as an α-radius-approximation if it
returns a solution S of radius ≤ αropt where |S| = k. Often we refer to the latter radius case
simply as an α-approximation.

3 Canonical Sets and a PTAS for Approximating the Size

In this section we show that while Problem 1 allows centers to be placed anywhere in the
plane, we can compute a canonical cubic sized set of points P and a set of corresponding
radii R, such that for any integer k ≥ 0 there is an optimal set S ⊆ P of k centers with
optimal radius ropt ∈ R. We then use this property to give a PTAS for Problem 1 when
approximating the size of an optimal solution. Specifically, for any fixed ε > 0, we give a
(1 + ε)-size-approximation with running time nO(1/ε2). In Section 5, we will again use this
canonical set when designing our constant factor radius-approximation for disks.

The bisector of two convex objects C, C ′ is the set of all points x in the plane such that
||x − C|| = ||x − C ′||. Let β(C, C ′) denote the bisector of C and C ′. As discussed in [24],
any set C of n disjoint constant-complexity convex objects in general position satisfies the
conditions of an abstract Voronoi diagram [25]. In particular we can assume the following:

1 We refrain from using the standard bi-criteria approximation terminology to emphasize that in each
case only the size or only the radius is being approximated, not both.
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1) For any C, C ′ ∈ C we have that β(C, C ′) is an unbounded simple curve.
2) The intersection of any two bisectors is a discrete set with a constant number of points.
We point out that in the following lemma there is a single pair of sets P, R which works
simultaneously for all values of k.

▶ Lemma 2. Let C be a set of n disjoint convex objects. In O(n3 log n) time one can compute
a set of O(n3) points P , and a corresponding set of O(n3) radii R, such that for any value
k ≥ 0 for the instance C, k of Problem 1 there is an optimal set of k centers S with optimal
radius ropt such that S ⊆ P and ropt ∈ R.

Proof. Let I(C) be a set containing exactly one (arbitrary) point from each convex object in
C. For any number of centers k, let S be any optimal solution, and let ropt be the optimal
radius. Consider an arbitrary center s ∈ S. Let C′ be the subset of objects in C which
intersect the ball B(s, ropt). We can assume C′ is non-empty, as otherwise the center s does
not cover any convex object within radius ropt and so can be thrown out. Moreover, if
|C′| = 1 then we can assume s is the point from I(C) which intersects this one convex object.
So assume |C′| > 1, and let C be the convex object in C′ which lies furthest from s. Now
consider moving s continuously toward the convex object C. As we do so the distance from s

to C monotonically decreases. Thus so long as C remains the furthest convex object from s

in C′, the ball B(s, ropt) still intersects all of C′ (i.e. we did not increase the solution radius).
Now if C always remains the furthest, when s eventually reaches and intersects C then this
will imply its distance to all objects in C′ is zero, which is a contradiction as we assumed the
convex objects do not intersect. Otherwise, at some point C is no longer the furthest, which
implies we must have crossed a bisector β(C, C ′) for some other convex object C ′ ∈ C′.

So far we have shown one can assume each center s either is in I(C), or lies on the bisector
β = β(C, C ′) of the two objects, C, C ′, which lie furthest away from s among the set of
objects C′ which intersect the ball B(s, ropt). In the latter case, let Tβ denote the set of all
points p on β such that there exists a third object X ∈ C such that ||p − X|| = ||p − C|| (or
equivalently ||p − X|| = ||p − C ′||). Note that such points lie at intersections of bisectors and
thus from the above discussion before the lemma, we know Tβ is a discrete set. As β is a
simple curve, we can view points in Tβ as being ordered along β. Suppose that s /∈ Tβ , and
let p and q be the points of Tβ which come immediately before and after s along β, and let
[p, q] denote the portion of β lying between these points. (This interval may be unbounded
to one side if s comes after or before all points in Tβ .) Recall that C′ is the subset of objects
intersecting B(s, ropt), and C and C ′ are the furthest from s among those in C′. Observe
that for any other point z in [p, q], C and C ′ must also be the furthest objects from z among
those in C′, as otherwise as we move continuously along β from s to z we must cross another
point from Tβ before reaching z and there are no such points in (p, q). Thus if we replace s

with the point in [p, q] minimizing the distance to C (or equivalently C ′) then all objects
previously intersected by B(s, ropt) will remain intersected by B(s, ropt).

Let M(C) be a set containing, for each bisector β, the set Tβ and one minimum distance
point from each such interval [p, q]. We thus have argued that the points of S can be assumed
to lie in P = I(C) ∪ M(C). As for the running time and size of these sets, first observe that
I(C) has size n and can be trivially computed in O(n) time. For the set M(C), first observe
that there are O(n2) bisectors. For any bisector β, the set Tβ of intersection points of β with
other bisectors that are equidistant at the intersection point, has size O(n), since by general
position every point is equidistant to at most 3 objects and as mentioned above any pair of
bisectors intersect in a constant number of points. (In other words, we ultimately consider
all O(n3) points equidistant to three objects, as opposed to all O(n4) bisector intersections.)
Thus the set M(C), and correspondingly P , has size O(n3) as claimed. For the running
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6:6 Clustering with Neighborhoods

time, as the objects in C all have constant complexity, so do their bisectors, and thus Tβ can
be computed in O(n) time. The minimum points of M(C) on β, can thus be computed by
sorting Tβ along β, in O(n log n) time, and then computing the minimum point in constant
time for each constant complexity interval between consecutive pairs of points from Tβ along
β. Thus over all O(n2) bisectors it takes O(n3 log n) time to compute M(C). ◀

We now argue the canonical sets P and R from the above lemma naturally lead to a
PTAS for size-approximation by using Minkowski sums. For sets A, B ⊂ R2, let A ⊕ B =
{a + b | a ∈ A, b ∈ B} denote their Minkowski sum. Let B(r) denote the ball of radius r

centered at the origin. Then we write C ⊕ B(r) = {C ⊕ B(r) | C ∈ C}. A set of points S is
called a hitting set for a set of objects if every object has non-empty intersection with S.

▶ Observation 3. A set S of k centers is a solution to Problem 1 of radius r if and only
if S is a hitting set of size k for C ⊕ B(r). This holds since for any C ∈ C and s ∈ S,
B(s, r) ∩ C ̸= ∅ if and only if s ∈ C ⊕ B(r).

In the geometric hitting set problem we are given a set R of n regions and a set P of m

points in the plane, and the goal is to select a minimum sized hitting set for R using points
from P . The above observation implies we can reduce any given instance C, k of Problem 1
to multiple instances of geometric hitting set. Specifically, by Lemma 2, in O(n3 log n) time
we can compute a set R of O(n3) values, one of which must be the optimal radius ropt. Then
for each r ∈ R we construct a hitting set instance where R = C ⊕ B(r), and P is the set of
points from Lemma 2. By the above observation, if r < ropt, then the hitting set instance
requires more than k points, and if r ≥ ropt then it requires at most k points. Therefore,
given an algorithm for geometric hitting set we can use it to binary search for ropt.

While hitting set is in general NP-hard to approximate within logarithmic factors [30], in
our case there is a PTAS as the regions are nicely behaved. A collection of regions in the
plane is called a set of pseudo-disks if the boundaries of any two distinct regions in the set
cross at most twice. Mustafa and Ray [29] showed that there is an nmO(1/ε2) time PTAS for
geometric hitting set when R is a collection of n pseudo-disks and P is a set of m points. It
is known that if we take the Minkowski sum of a single convex object with each member
of a set of disjoint convex objects, then the resulting set is a collection of pseudo-disks (see
for example [2]). Thus C ⊕ B(r) is a collection of pseudo-disks. Therefore, by the above
discussion, we have the following theorem. As the decision procedure is now approximate,
the binary search must be modified to look at larger radii when the hitting set algorithm
returns > (1 + ε)k points, and smaller radii otherwise. (This yields an adjacent pair r < r′

such that r < ropt, implying r′ ≤ ropt, and an r′- cover of the input using ≤ (1 + ε)k points.)

▶ Theorem 4. There is a PTAS for Problem 1 for approximating the optimal solution size.
That is, for any fixed ε > 0, there is a (1 + ε)-size-approximation with running time nO(1/ε2).

We remark that the PTAS of [29] implicitly assumes the objects are in general position,
that is if two objects intersect then they properly intersect (i.e. their interiors intersect).
While C satisfies this property, it may not after we take the Minkowski sum with a given
radius. However, as we can compute distances between our objects, this is easily overcome
by computing the smallest non-zero distance d between two objects in C ⊕ B(r), and instead
running the hitting set algorithm on C ⊕ B(r + α), where α is some infinitesimal value less
than d/2. This ensures any objects which intersected in C ⊕ B(r) now properly intersect,
and there are no new intersections.
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Figure 4.1 Reducing planar Vertex Cover to Problem 1 for segments.

4 Radius Approximation Hardness

In this section we argue that for Problem 1 it is hard to approximate the radius within any
factor, even when C is restricted to being a set of line segments. Moreover, for the case when
C is a set of disks, i.e. the case considered in Section 5, we argue the problem is APX-Hard.
Our hardness results use a construction similar to the one from [12], where they reduce from
the problem of planar vertex cover where the maximum degree of a vertex is three, which is
known to be NP-complete [18]. We denote this problem as P3VC.

4.1 Line Segments
Here we argue that it is hard to radius-approximate Problem 1 within any factor, even when
C is a set of line segments. We remark that the following reduction works for any instance of
planar vertex cover (i.e. regardless of the degree), but the reduction for disks in the next
subsection uses that the degree is at most three.

▶ Theorem 5. Problem 1 cannot in polynomial time be radius-approximated within any
factor that is computable in polynomial time unless P = NP, even when restricting to the set
of instances in which C is a set of disjoint line segments.

Proof. Let G, k be an instance of P3VC. Consider a straight line embedding of G, and let d

denote the distance between the closest pair of non-adjacent segment edges.2 Let ε > 0 be
a value strictly smaller than d/2 and strictly smaller than half the length of any segment
edge. The set C of segments in our instance of Problem 1 will be the segment edges from the
embedding, but where each segment has an ε amount removed from each end, i.e. we remove
all portions of segments in ε balls around the vertices, see Figure 4.1. We use the same value
of k in our Problem 1 instance as in the P3VC instance.

If there is a vertex cover of size at most k then if we place balls of radius ε at each of
the k corresponding vertices of the embedding, then these balls will intersect all segments in
C, i.e. we have a solution to Problem 1 of radius ε. On the other hand, by the definition
of d, any ball of radius < d/2 cannot simultaneously intersect two segments from C if they
correspond to non-adjacent edges from G. (Note when we shrunk the edges by ε this could
only have made them further apart.) Thus if the minimum vertex cover requires > k vertices,
then our instance of Problem 1 requires > k centers if we limit to balls with radius < d/2.

2 In O(n log n) time one can compute a straight line embedding of G where the vertices are on an
(2n − 4) × (n − 2) grid [14]. This implies a lower bound on d with a polynomial number of bits.
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6:8 Clustering with Neighborhoods

Therefore, if we could approximate the minimum radius of our Problem 1 instance within
any factor less than d/(2ε) then we can determine whether the corresponding vertex cover
instance had a solution with ≤ k vertices. However, we are free to make ε > 0 as small as we
want and thus d/(2ε) as large as we want, so long as this quantity (or more precisely a lower
bound on it) is computable in polynomial time. ◀

4.2 Disks
Here we argue that it is hard to radius-approximate Problem 1 within a constant factor
when C is restricted to be a set of unit disks. The following reduction from P3VC is similar
to the one given in [12], which embeds the graph such that edges are replaced by odd length
sequences of points. In our case, these odd length sequences of points are instead replaced
with odd length sequences of appropriately spaced disks.

▶ Theorem 6. For the set of instances in which C is a set of disjoint unit disks, Problem 1
cannot be radius-approximated to any factor less than

√
13−

√
3

2−
√

3 in polynomial time unless
P = NP.

Proof. To simplify our construction description, instead of requiring the disks be disjoint,
we allow them to intersect at their boundaries, but not their interiors. Later we remark how
this easily implies the result for the disjoint disk case.

So let G = (V, E), k be an instance of P3VC. For every edge in E we create a sequence of
an odd number (greater than 1) of unit disks, where consecutive disks in the sequence are
spaced 2(2/

√
3 − 1) apart from one another. (Note 2(2/

√
3 − 1) is the distance between the

disks, not their centers.) For a vertex v of degree two, we place the disks corresponding to
the v end of the adjacent edges again at distance 2(2/

√
3 − 1) apart. For a vertex v of degree

three, we place the disks corresponding to the v end of the adjacent edges such that they all
just touch one another at their boundaries, see Figure 4.3. Thus the centers of these disks
form an equilateral triangle, and let the center point of this triangle be t. For any one of the
adjacent edges, we further require that the centers of the first two disks (on the v end of
the edge) lie on a straight line containing t, in other words the edges leaving v do not bend
until several disks away from v. As G is a planar graph with maximum degree three such an
embedding of polynomial size is possible, similar to the case in [12]. Doing so requires using
different numbers of disks for each edge and allowing the edges to bend (i.e. the centers of
three consecutive disks of an edge may not lie on a line). However, we will require these
bends to be gradual. Specifically, observe that if the centers of three consecutive disks of an
edge were on a straight line, the distance between the two non-consecutive disks would be
2(1 + 2(2/

√
3 − 1)) > 2.6, see Figure 4.2. We then require that the bends are shallow enough

such that two non-consecutive disks of an edge are more than 2.5 apart. We also require
this for disks from edges adjacent to a degree two vertex (when they are not both the disks
immediately adjacent at the vertex), or a degree three vertex when neither disk is one of
corresponding three touching disks of the vertex. Finally, for disks that come from edges
that are not adjacent, we easily enforce that they are again more than 2.5 apart. (This is
similar to the value d from Theorem 5.)

So given an instance G, k of P3VC, we construct an instance C, κ of Problem 1 where C is
determined from G as described above and κ = k + (|C| − |E|)/2. We first argue if G has a
vertex cover of size k then for our instance of Problem 1 there is a solution of radius 2/

√
3−1.

First, for any vertex v in the vertex cover we create a center, and roughly speaking place it
at the location of v in the embedding. Namely, if v had degree two then we place the center
at the midpoint of the centers of the disks at the ends of the edges adjacent to v, which
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> 2.6

> 2.5

Figure 4.2 Consecutive disks along an edge.

d1

d2d3

m

d′2

2
√ 13

/3
−
2

Figure 4.3 Three touching disks corresponding to a degree three vertex.

by construction are exactly 2(2/
√

3 − 1) apart and thus a ball at the midpoint with radius
2/

√
3 − 1 intersects both. If v has degree three then we place a center at the center point

t of the equilateral triangle determined by three touching disks of the adjacent edges. An
easy calculation3 shows that since our disks have unit radius, that B(t, 2/

√
3 − 1) intersects

the three touching disks. We now cover the remaining disks with (|C| − |E|)/2 centers. For
any edge e ∈ E let ne be the number of disks used for e in the above construction. Observe
that as we already placed centers at vertices corresponding to a vertex cover of the edges, at
least one disk at the end of each edge is already covered, and so there are at most ne − 1
consecutive disks that need to be covered. (Note ne − 1 is even.) However, as consecutive
disks are exactly 2(2/

√
3 − 1) apart on each edge, these ne − 1 disks can be covered with

(ne − 1)/2 balls of radius (2/
√

3 − 1) by covering the disks in pairs. Thus the total number
of centers used is k +

∑
e∈E(ne − 1)/2 = k + (|C| − |E|)/2 = κ.

Now suppose the minimum vertex cover of G requires > k vertices. In this case we
argue that our instance of Problem 1 requires more than κ centers if we limit to balls with
radius <

√
13/3 − 1. Call any two disks in C neighboring if they are consecutive on an

3 For an equilateral triangle with edge length 2, the distance from an edge to the center point of the
triangle is 1/

√
3, thus the distance from the center point to any one of the unit balls is 2/

√
3 − 1.
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6:10 Clustering with Neighborhoods

edge or if they are disks on the v end of two edges adjacent to a vertex v. By construction,
neighboring disks have distance ≤ 2/

√
3 − 1 from each other. For a pair of disks which are

not neighboring we now argue their distance is at least 2
√

13/3 − 2. Specifically, if these
disks come from the same edge but are not consecutive along that edge, or if they are from
distinct edges that are either non-adjacent or are adjacent to a degree two vertex (but not
the two disks of that vertex), then by construction their distance is > 2.5 > 2

√
13/3 − 2.

The remaining case is when the disks are from distinct edges adjacent to a degree three
vertex, but they are not both from the three touching disks of the vertex. It is easy to see
that the closest two such disks can be is when one of the disks is one of the three touching
disks, and the other is the second disk on another edge. We now calculate the distance
between two such disks, see Figure 4.3. Let the three touching disks be denoted D1, D2, and
D3, with centers d1, d2, and d3, respectively. Let D′

2 denote the second disk on the edge
containing D2, and let its center by d′

2. We wish to compute ||D1 − D′
2|| = ||d1 − d′

2|| − 2,
as these are unit disks. Let m denote the midpoint of d1 and d3, and observe that the line
through d2 and d′

2 passes through m and is orthogonal to the line through d1 and d3, as the
points d1, d2, and d3 form and equilateral triangle. Thus by the Pythagorean theorem we
have ||d1 − d′

2||2 = 12 + (1 + 2(2/
√

3 − 1) + 1 +
√

3)2 = 1 + (4/
√

3 +
√

3)2 = 52/3, where
the +

√
3 term is the height of an equilateral triangle of side length 2. Thus ||D1 − D′

2|| =
||d1 − d′

2|| − 2 = 2
√

13/3 − 2.
Now we finish the argument that when the minimum vertex cover of G requires > k

vertices, our instance of Problem 1 requires more than κ centers if we limit to balls with
radius <

√
13/3 − 1. By the above, limiting to radius <

√
13/3 − 1 implies that any ball

either covers just a single disk, or a pair of neighboring disks. An edge e with ne disks thus
requires at least ⌈ne/2⌉ = 1 + (ne − 1)/2 disks to cover it. Moreover, a ball can only cover
both a disk of e and e′ if those disks are on the v end of two edges adjacent to v. Let Ez be
the subset of edges with at least one disk covered by such a ball (i.e. a ball corresponding to
a vertex), and let z be the number of such balls. Then the total number of balls required is

≥ z +
∑

e∈Ez

(ne − 1)/2 +
∑

e∈E\Ez

(1 + (ne − 1)/2)

= z + (|C| − |E|)/2 + |E \ Ez| = z + (κ − k) + |E \ Ez|,

which is more than κ when z + |E \ Ez| > k. Notice, however, there is a vertex cover of G of
size z + |E \ Ez|, consisting of the vertices that z counted, and one vertex from either end of
each edge in E \Ez. Thus as the minimum vertex cover has size > k, we have z + |E \Ez| > k

as desired.
Therefore, if we could approximate the minimum radius of our Problem 1 instance within

any factor less than
√

13/3−1
2/

√
3−1 =

√
13−

√
3

2−
√

3 then we can determine whether the corresponding
vertex cover instance had a solution with ≤ k vertices. In the above analysis the boundaries
of the circles were allowed to intersect, but we can enforce that all disks are disjoint without
changing the approximation hardness factor since we showed the problem is hard for any
factor that is less than

√
13−

√
3

2−
√

3 . Specifically, rather than having the disks for a degree three
vertex touch, we can instead make them arbitrarily close to touching. ◀

5 Constant Factor Radius Approximation for Disks

In this section we argue that when C is a set of disjoint disks (of possibly differing radii),
that there is a constant factor radius-approximation for Problem 1.
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▶ Lemma 7. Let C be a set of pairwise disjoint disks such that for all C ∈ C, the radius of C

is ≥ r. If there is a point s ∈ R2 where ||s − C|| ≤ (2/
√

3 − 1)r for all C ∈ C, then |C| ≤ 2.

Proof. We give a proof by contradiction. So suppose there exists a point s such that there
are three disjoint disks in C, each with radius ≥ r, and all of which intersect the ball
B(s, ( 2√

3 − 1)r). Observe that if any one of these three disjoint disks C has radius > r,
then it can be replaced by a disk C ′ of radius r such that C ′ ⊂ C and C ′ still intersects
B(s, ( 2√

3 − 1)r). As these new disks are all still disjoint and intersect B(s, ( 2√
3 − 1)r), it

suffices to argue we get a contradiction when all three disks have radius exactly r. Let the
centers of these three disks be denoted x, y, and z. Now, at least one of the angles ∠xsy,
∠ysz, and ∠zsx is ≤ 2π/3. Without loss of generality assume it is ∠xsy, and let γ = ∠xsy.

Consider the triangle △sxy, and let its side lengths be denoted a = ||x−s||, b = ||y−s||, c =
||x − y||. Since γ ≤ 2π/3, by the Law of Cosines we thus have c2 = a2 + b2 − 2ab cos(γ) ≤
a2 + b2 + ab. As the r radius disks with centers x and y are disjoint, we know that 2r < c.
Combining these two inequalities we get 4r2 < a2 + b2 + ab. As B(s, ( 2√

3 − 1)r) intersects
the r radius disks centered at both x and at y, we also have that a, b ≤ ( 2√

3 − 1)r + r = 2r√
3 .

Combining this with the previous inequality gives 4r2 < a2+b2+ab ≤ 4r2/3+4r2/3+4r2/3 =
4r2, which is a clear contradiction and thus the number of disks in C is at most 2. ◀

For any constant c ≥ 1, we call an algorithm a c-decider for Problem 1, if for a given
instance with optimal radius ropt, and for any given query radius r, if r ≥ ropt then the
algorithm returns a solution S of radius ≤ cr, and if r < ropt/c it returns False (for
ropt/c ≤ r < ropt either answer is allowed).

▶ Lemma 8. There is an O(n2.5) time (5 + 2
√

3)-decider for Problem 1, when restricted to
instances where C is a set of disjoint disks.

Proof. Let r be the given query radius. We build a set S of centers as follows, where initially
S = ∅. Let P be the set of center points of all disks in C with radius < (3 + 2

√
3)r. Until

P is empty repeatedly add an arbitrary point p ∈ P to the set S, remove all disks from C

which intersect B(p, (5 + 2
√

3)r), and remove all center points from P corresponding to disks
removed from C. Let S1 refer to the resulting set of centers. For the remaining set of disks
C′, define the subset C′′ = {C ∈ C′ | ∃ D ∈ C′ \ {C} s.t. ||C − D|| ≤ 2r}. First, for every disk
C in C′ \C′′ we add an arbitrary point from C to S. Let this set of added centers be denoted
S2. Now for the set C′′ we construct a graph G = (V, E) where V = C′′ and there is an edge
from C to D if and only if ||C − D|| ≤ 2r. Let E be a minimum edge cover of G. (Note every
vertex in G has an adjacent edge by the definition of C′′ and thus E exists.) For every edge
(C, D) ∈ E , ||C − D|| ≤ 2r and thus there is a point p ∈ R2 such that ||p − C||, ||p − D|| ≤ r.
So finally, for each (C, D) ∈ E we add this corresponding point p to S. Let this final set of
added centers be denoted S3. If |S| ≤ k we return S (which is the disjoint union of S1, S2,
and S3) and otherwise we return False.

To prove the above algorithm is a (5+2
√

3)-decider, first we argue that if r < ropt/(5+2
√

3)
then it returns False. To do so we prove the contrapositive. So assume |S| ≤ k. Let S1, S2,
and S3, and C′′ ⊆ C′ ⊆ C be as defined above. As we used balls of radius (5 + 2

√
3)r, all

C ∈ C \ C′ are within distance (5 + 2
√

3)r of points in S1. All C ∈ C′ \ C′′ have distance zero
to a point in S2. Finally, all C ∈ C′′ have distance ≤ r to a point in S3. As S is the disjoint
union of S1, S2, and S3, we thus have that all C ∈ C are within distance (5 + 2

√
3)r to a set

S with ≤ k points, which by the definition of Problem 1 means that ropt ≤ (5 + 2
√

3)r.
Now suppose r ≥ ropt, where ropt is the optimal radius for the given instance C, k of

Problem 1. In order to prove the algorithm is a (5 + 2
√

3)-decider, in this case we must
argue it returns a ≤ (5 + 2

√
3)r radius solution. As already shown above, if the algorithm
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6:12 Clustering with Neighborhoods

returns a solution then it has radius ≤ (5 + 2
√

3)r, thus all we must argue is that a solution
is returned, namely that |S| ≤ k. So fix an optimal solution S∗ for the original input instance
C, k. We argue that there are disjoint subsets S∗

1 , S∗
2 , and S∗

3 of S∗ such that |S∗
1 | ≥ |S1|,

|S∗
2 | ≥ |S2|, and |S∗

3 | ≥ |S3|, and therefore |S| ≤ |S∗| = k.
Let the points in S1 = {t1, . . . , t|S1|} be indexed in the order they were selected. Consider

the point ti, which is the center of some disk Ci ∈ C with radius ≤ (3 + 2
√

3)r. Let
Ui = ∪j≤iB(tj , (5 + 2

√
3)r). Define S∗

1 as the centers s of S∗ such that B(s, r) ⊆ U|S1|.
To argue |S∗

1 | ≥ |S1|, it suffices to argue that for all i there exists some s ∈ S∗ such that
B(s, r) ̸⊆ Ui−1 while B(s, r) ⊆ Ui (i.e. s gets charged uniquely to ti). Now there must be
some center s ∈ S∗ such that B(s, ropt) ∩ Ci ̸= ∅, as S∗ covers C with radius ropt. Moreover,
since r ≥ ropt, we have B(s, r) ̸⊆ Ui−1, since otherwise it implies Ui−1 ∩ Ci ̸= ∅ and thus ti

could not have been selected in the ith round as the algorithm had already removed it from
P . Conversely, B(s, r) ⊆ Ui, since B(s, r) intersects Ci and Ci has radius ≤ (3 + 2

√
3)r, and

thus B(s, r) ⊆ B(ti, (5 + 2
√

3)r) ⊆ Ui. Therefore |S∗
1 | ≥ |S1|.

For any s ∈ S∗
1 , B(s, r) ⊆ U|S1|, and since the disks of C′ do not intersect U|S1|, in the

optimal solution C′ must be ropt-covered only using centers from S∗ \ S∗
1 . Let S∗

2 be the
subset of centers from S∗ \ S∗

1 which ropt covers C′ \ C′′. Since any disk C ∈ (C′ \ C′′) has
distance > 2r to its nearest neighbor in C′ \ {C} and ropt ≤ r, the optimal solution must
use a distinct center to cover each disk in C′ \ C′′, i.e. |S∗

2 | ≥ |S2|, and moreover, C′′ must be
covered in the optimal solution by S∗ \ (S∗

1 ∪ S∗
2 ). So finally, let S∗

3 be the subset of centers
from S∗ \ (S∗

1 ∪ S∗
2 ) which ropt covers C′′. By construction, the radius of each C ∈ C′′ is

≥ (3 + 2
√

3)r. Thus, by Lemma 7 any point from S∗
3 can (2/

√
3 − 1) · (3 + 2

√
3)r = r ≥ ropt

cover at most 2 disks from C′′. Now the graph G, for which our algorithm computes a
minimum edge cover E , contains an edge for every pair of disks which can be simultaneously
covered with a single r radius ball. Therefore |S∗

3 | ≥ |E| = |S3|.
For the running time, computing the set P takes O(n) time. Selecting a new point p ∈ P

and removing all disks from C which intersect B(p, (5 + 2
√

3)r) can be done in O(n) time,
and thus repeating this till P is empty takes O(n2) time. Determining the subset C′′, and
hence the graph G, can naively be done in O(n2) by checking the distances between all pairs
in C′. Selecting a point from each C ∈ (C′ \ C′′) takes O(n) time. Finally, since computing a
minimum edge cover can be reduced to computing a maximum matching, E can be found in
O(n2.5) time (see [28]). ◀

We remark that it should be possible to improve the running time of the above decision
procedure, by arguing that the graph G it constructs is sparse. However, ultimately that
will not improve the running time of the following optimization procedure, as it searches
over the O(n3) sized set of Lemma 2.

▶ Theorem 9. There is an O(n3 log n) time (5 + 2
√

3)-radius-approximation algorithm for
Problem 1, when restricted to instances where C is a set of disjoint disks.

Proof. By Lemma 2, in O(n3 log n) time we can compute an O(n3) sized set R of values,
such that ropt ∈ R, where ropt is the optimal radius. So sort the values in R, and then
binary search over them using the (5 + 2

√
3)-decider of Lemma 8, which we denote decider(r).

Specifically, if decider returns False we recurse to the right, and if it returns a solution (i.e.
True) then we recurse on the left. Note that since our decision procedure is approximate,
the values for which it returns True or for which it returns False may not be contiguous in
the sorted order of R. Regardless, however, our binary search allows us to find a pair r′ < r

which are consecutive in R and such that decider(r′) is False, and decider(r) is True. (Unless
decider always returns True, in which case it returns the smallest value in R.) By Lemma 8



H. Huang, G. Klimenko, and B. Raichel 6:13

decider is a (5 + 2
√

3)-decider, and thus since decider(r′) is False by definition we have that
r′ < ropt. However, as r′ < r are consecutive in the sorted order of R and since ropt ∈ R,
this implies ropt ≥ r. On the other hand, again by the definition of a (5 + 2

√
3)-decider,

decider(r) outputs a solution with radius at most (5 + 2
√

3)r ≤ (5 + 2
√

3)ropt, thus giving us
a (5 + 2

√
3)-approximation as claimed.

By Lemma 2, computing and sorting the O(n3) values in R takes O(n3 log n) time. By
Lemma 8 each call to decider takes O(n2.5) time, and since we are binary searching over
O(n3) values, the time for all calls to decider is O(n2.5 log(n3)) = O(n2.5 log n). Thus the
total time is O(n3 log n) as claimed. ◀

Our focus in this paper is on the planar case, however, in the full version [22] we remark
how the above decision procedure works in higher dimensions. The above optimization
procedure does not immediately extend as it makes use of Lemma 2, however, in the full
version we informally sketch how one can approximately recover the same result.

6 An Efficient FPTAS for Bounded k

By Lemma 2, we can compute a set of O(n3) points which contains a subset of size k that is
an optimal k-center solution. Thus, for constant k, enumerating all O(n3k) possible subsets,
and taking the minimum cost found, yields a polynomial time algorithm. In this section, we
argue that for constant k, we can achieve a (1 + ε)-radius-approximation for unit disks, whose
running time depends only linearly on n. Contrast this with Theorem 6, where we argued
that when k is not assumed to be constant, that the problem is hard to approximate for unit
disks within a given constant factor. We use the following from Agarwal and Procopiuc [3].

▶ Theorem 10 ([3]). Given a set P of n points in the plane, there is an O(n log k)+(k/ε)O(
√

k)

time (1 + ε)-radius-approximation algorithm for k-center, denoted kCenter(ε, P ).

▶ Theorem 11. There is an O(n log k)+(k/ε)O(k) time (1+ε)-radius-approximation algorithm
for Problem 1, when restricted to instances where C is a set of disjoint unit disks.

Proof. Let P denote the set of center points of the disks in C. For any given set S of k

points in the plane, let rP (S) = maxp∈P ||p − S|| and rC(S) = maxC∈C ||C − S||. Observe
that rC(S) ≤ rP (S) ≤ rC(S) + 1. Specifically, rC(S) ≤ rP (S) since any ball (in particular
one centered at a point from S) which contains a center point from P also intersects the
corresponding disk in C. On the other hand, rP (S) ≤ rC(S) + 1 since for any ball intersecting
a disk in C, if we increase its radius by 1 then it will contain the center point of that disk, as
C consists of unit disks.

Let ropt denote the optimum radius for the given instance C, k of Problem 1. We consider
two cases based on the value of ropt. First, suppose that ropt > 2/ε. Let S′ denote the
solution returned by kCenter(ε/3, P ). By the above inequalities and Theorem 10,

rC(S′) ≤ rP (S′) ≤ (1 + ε/3) min
S⊂R2,|S|=k

rP (S) ≤ (1 + ε/3)(1 + min
S⊂R2,|S|=k

rC(S))

= (1 + ε/3)(1 + ropt) < (1 + ε/3)(εropt/2 + ropt) = (1 + ε/3)(1 + ε/2)ropt ≤ (1 + ε)ropt,

where the last inequality assumed ε ≤ 1. Thus S′ is (1 + ε)-approximation for Problem 1.
Now suppose that ropt ≤ 2/ε. In this case observe that for any point x ∈ R2, the ball

B(x, ropt) can intersect only O(1/ε2) disks from C as they are disjoint and all have radius
1. Thus any center from the optimal solution can cover at most O(1/ε2) disks within the
optimal radius, and so it must be that n = O(k/ε2).
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6:14 Clustering with Neighborhoods

The algorithm is now straightforward. If n ≤ γk/ε2, for some sufficiently large constant γ,
then by Lemma 2 in O((k/ε2)3 log(k/ε)) time we can compute a set P of O((k/ε2)3) points
such that P contains an optimal set of k centers. We try all possible subsets of P of size k

and take the best one. There are O((k/ε2)3k) such subsets, and for each subset its cost can
be determined in O(kn) = O((k/ε)2) time. Thus in this case we can compute the optimal
solution in O((k/ε)2 · (k/ε2)3k) = (k/ε)O(k) time.

On the other hand, if n > γk/ε2 then the above implies ropt > 2/ε. In this case it was
argued above that kCenter(ε/3, P ) returns a (1 + ε)-approximation, and by Theorem 10 it
does so in O(n log k) + (k/ε)O(

√
k) time. In either case, we have a (1 + ε)-approximation (or

better) and the total time is max{(k/ε)O(k), O(n log k) + (k/ε)O(
√

k)}. ◀

7 One Dimensional Clustering with Neighborhoods

In this section we show that despite clustering with neighborhoods being hard to radius
approximate within any factor in the plane, we can solve the one dimensional variant exactly
in O(n log n) time, even when object intersections are allowed. First, we argue the decision
problem can be solved in linear time. Then we argue that we can use a scheme similar to
that in [15] to search for the optimal radius.

In one dimension, a convex object is just a closed interval. Thus we have the following
one dimensional version of Problem 1, where intersections are no longer prohibited.

▶ Problem 12 (One Dimensional Clustering with Neighborhoods). Given a set C of n closed
intervals on the real line, and an integer parameter k ≥ 0, find a set of k points S (called
centers) which minimize the maximum distance to an interval in C. That is,

S = arg min
S′⊂R,|S′|=k

max
C∈C

||C − S′||.

The following decision procedure is similar in spirit to various folklore results for interval
problems in one dimension (for example, see the discussion in [13] on interval stabbing).
The challenge is turning this decision procedure into an efficient optimization procedure, for
which as discussed below we make use of [15].

We first sort the intervals in increasing order both by their left and by their right endpoints.
We maintain cross links between the two sorted lists so that if we remove an interval from
one list, its copy in the other list can be removed in constant time.

▶ Lemma 13. Given an instance C, k of Problem 12, where the intervals have been presorted,
for any query radius r, in O(n) time one can decide whether r ≥ ropt.

Proof. We build a set S of centers as follows, where initially S = ∅. Let [α, β] denote the
interval with the leftmost right endpoint (i.e. β is smallest among all intervals). We place a
center at β + r and add it S. Next we remove all intervals which intersect the ball B(β + r, r).
Note that these intersecting intervals are precisely those whose left endpoint is ≤ β + 2r, as
this condition is clearly necessary to intersect B(β + r, r), but also sufficient as all intervals
have right end point ≥ β. We then repeat this process until all intervals are removed. If
|S| ≤ k we return True and otherwise we return False.

Observe that every time we place a center, we remove intervals it covers within distance
r. Thus the final set S is a set of centers of radius r, and so if |S| ≤ k, then r ≥ ropt and the
algorithm correctly returns True. Moreover, we now argue that S is a minimum cardinality
set of centers of radius r, and thus if |S| > k then the algorithm correctly returns False.
Adopting notation from above, let [α, β] be the interval with leftmost right endpoint, and
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let c be the center our algorithm places at β + r. Now in the minimum cardinality solution,
there must be at least one center c′ within distance r from [α, β], implying the location of
c′ is ≤ β + r. Thus c′ can only r-cover intervals with left endpoint ≤ β + 2r. However, as
described above, c r-covers all intervals with left endpoint ≤ β + 2r, and thus c′ r-covers a
subset of those c does. Conversely, the subset of intervals not r-covered by c is a subset of
those not r-covered by c′. By induction our algorithm uses the smallest possible number of
centers to r-cover the intervals not r-covered by c, which therefore is at most the number
centers the global minimum solution uses to r-cover the superset of intervals not r-covered
by c′. Thus overall our set of centers was an r-cover of minimum cardinality.

For the running time, observe that determining the location of the next center takes
constant time since it only depends on the leftmost right endpoint, and we assumed we have
the sorted ordering of the intervals by right endpoint. Moreover, we can remove all of the
intervals intersecting the r radius ball at the new center in time linear in the number of
intersecting intervals, since as discussed above these intersecting intervals are a prefix of the
sorted ordering by left endpoint. As we spend constant time per interval removed, overall
this is an O(n) time algorithm. ◀

Lemma 13 gives us a decision procedure for Problem 12 which we now wish to utilize
to search for the optimum radius. We use the following lemma to reduce the search space,
which can be seen as a simplification of Lemma 2 for the one dimensional case, where here
we only need to consider distances from bisecting points rather than bisecting curves.

▶ Lemma 14. Let C be a set of closed intervals. Then for any value k, the optimal radius
for the instance C, k of Problem 12 is either 0 or ||C − C ′||/2 for some pair C, C ′ ∈ C.

Proof. For any value k, let S be an optimal solution with optimal radius ropt. Consider
an arbitrary center s ∈ S, and let C′ be the subset of C which intersects the ball B(s, ropt).
We can assume that |C′| ≥ 1, as otherwise B(s, ropt) does not intersect any interval and
so s can be thrown out. If |C′| = 1, then s intersects only one interval, and thus without
loss of generality s can be placed inside this interval, i.e. at distance 0 from it. So assume
|C′| > 1, and let C be the furthest interval from s in C′. As we move s towards C, so long
as C remains the furthest interval from s in C′, B(s, ||s − C||) will continue to intersect all
intervals in C′. If C always remains the furthest, when s eventually reaches C, its distance to
C and hence all of C′ will be 0. Otherwise, if before we reach C, s is no longer the furthest
from s, then we must have crossed the bisector point between C and some other interval in
C′. In this case, we can place s on this bisector point and B(s, ||s − C||) will intersect all
intervals in C′, and moreover ||s − C|| ≤ ropt since ||s − C|| monotonically decreased as we
moved s towards C. Modifying all centers in S in this way thus produces a solution whose
radius is ≤ ropt and is either 0 or the distance from a bisector point to either interval in the
pair it bisects. ◀

Given a set C of n intervals, let P (C) denote the set of all 2n left and right endpoints
of the intervals in C. To find the optimal solution to an instance C, k of Problem 12, by
Lemma 14, we can binary search over the interpoint distances of points in P (C) using our
decider from Lemma 13. (When we call the decider we divide the interpoint distance by
two as Lemma 14 actually tells us it is a bisector distance.) As there are Θ(n2) interpoint
distances, naively this approach takes O(n2 log n) time. However, [15] previously showed that
in the abstract setting where one is given a linear time decider, and the optimal solution is an
interpoint distance, one can find the optimal solution in O(n log n) time. This is achieved by
reducing the problem to searching in an implicitly defined sorted matrix, which we describe
in the full version [22]. Below is the summarizing theorem.

▶ Theorem 15. Problem 12 can be solved in O(n log n) time, where n = |C|.
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Approximating Longest Spanning Tree with
Neighborhoods
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Abstract
We study the following maximization problem in the Euclidean plane: Given a collection of
neighborhoods (polygonal regions) in the plane, the goal is to select a point in each neighborhood so
that the longest spanning tree on selected points has maximum length. It is not known whether
or not this problem is NP-hard. We present an approximation algorithm with ratio 0.548 for this
problem. This improves the previous best known ratio of 0.511.

The presented algorithm takes linear time after computing a diameter. Even though our algorithm
itself is fairly simple, its analysis is rather involved. In some part we deal with a minimization
problem with multiple variables. We use a sequence of geometric transformations to reduce the
number of variables and simplify the analysis.
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1 Introduction

The spanning tree is a well-studied and fundamental structure in graph theory and combin-
atorics. The well-known minimum spanning tree (Min-ST) problem asks for a spanning tree
with minimum total edge-weight. In contrast, the maximum spanning tree (Max-ST) problem
asks for a spanning tree with maximum total edge-weight. In the context of abstract graphs,
the two problems are algorithmically equivalent in the sense that an algorithm that finds a
Min-ST can also find a Max-ST within the same time bound (by simply negating the edge
weights), and vice versa. The situation is quite different in the context of geometric graphs
where vertices are points in the plane and edge-weights are Euclidean distances between
points. In geometric graphs, an algorithm that exploits geometry for finding a Min-ST is not
necessarily useful for finding a Max-ST because there is no known geometric transformation
between the “nearest” and “farthest” relations among points [22]. The existing geometric
algorithms, for solving these two problems, exploit different sets of techniques.

Problems related to maximum configurations in the plane (also know as long configurations)
have received considerable attention after the seminal work of Alon, Rajagopalan, and Suri [2].
In this paper we study the longest spanning tree with neighborhoods (Max-ST-NB) problem.
We are given a collection of n neighborhoods (polygonal regions) in the Euclidean plane and
we want to find a maximum-length tree that connects n representative points, one point from
each neighborhood, as in Figure 1(a). The length of the tree is the total Euclidean length
of its edges. Each neighborhood is the union of simple polygons, and the neighborhoods
are not necessarily disjoint. The neighborhoods are assumed to be colored by n different
colors. The classical Euclidean Max-ST problem is a special case of the Max-ST-NB in
which each neighborhood consists of exactly one point, as in Figure 1(b). Although the
Euclidean Max-ST problem can be solved in O(n log n) time [22], it is not known whether or
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not the Max-ST-NB problem can be solved in polynomial time. The difficulty lies in choosing
representative points from neighborhoods; once these points are selected, the problem is
reduced to the Euclidean Max-ST problem.

(a) Max-ST-NB (b) Max-ST

Figure 1 (a) Longest spanning tree with four polygonal neighborhoods that are colored red,
green, blue, and purple. (b) Euclidean maximum spanning tree.

It is easily seen (see Section 2) that the longest star (which connects a point in one
neighborhood to a point in each of the other neighborhoods) achieves a 0.5-approximate
solution for the Max-ST-NB problem. Recently, Chen and Dumitrescu [10] present an
approximation algorithm with ratio 0.511, which is the first improvement beyond 0.5.

Although any optimal solution for the Max-ST problem contains a diametral pair (two
points with maximum distance) as an edge, an optimal solution for the Max-ST-NB problem
does not necessarily contain any bichromatic diametral pair (two points with maximum
distance that belong to different neighborhoods). Another result of Chen and Dumitrescu [10]
shows that any algorithm, that always includes a bichromatic diametral pair in the solution,
cannot achieve an approximation ratio better than

√
2 −

√
3 ≈ 0.517. This somehow breaks

the hope of getting a good approximation ratio by using greedy techniques. Thus, to improve
the ratio beyond 0.517 one needs to employ some nontrivial ideas.

1.1 Our contributions and approach

We present an approximation algorithm for the Max-ST-NB problem with improved ratio√
7−1
3 ≈ 0.548. Our algorithm is not complicated: We compute a double-star (a tree of

diameter 3) centered at a bichromatic diametral pair, and compute up to three stars (trees of
diameter 2) centered at points on the smallest enclosing circle, and then report the longest
one. Our algorithm takes linear time after computing a bichromatic diameter. Our analysis
involves a minimization problem with multiple variables. We employ a sequence of geometric
transformations to reduce the number of variables and simplify the analysis. The following
theorem summarizes our main contribution.

▶ Theorem 1. A 0.548-approximation for the longest spanning tree with neighborhoods can
be computed in linear time after computing a bichromatic diameter.

As a minor result we improve the upper bound 0.517 on the approximation ratio of
algorithms that always include a bichromatic diameter in their solutions. We show that
the ratio of such algorithms cannot be better than 0.5. This upper bound is tight because
there exists a 0.5-approximation algorithm that always includes a bichromatic diameter (see
Section 2). Therefore, to obtain a ratio of better than 0.5 one should take into account also
spanning trees that do not contain any bichromatic diameter.
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1.2 Related problems and applications
The Max-ST-NB problem has the same flavor as the Euclidean group Steiner tree problem in
which we are given n groups of points in the plane and the goal is to find a shortest tree that
contains “at least” one point from each group. The group Steiner tree problem in graphs
is NP-hard and cannot be approximated by a factor O(log2−ϵ n) for any ϵ > 0 [16]. The
Max-ST-NB also lies in the concept of imprecision in computational geometry where each
input point is provided as a region of uncertainty and the exact position of the point may be
anywhere in the region; see e.g. [13, 18]. Analogous problems have been studied for other
structures, e.g., minimum spanning tree with neighborhoods [8, 13, 25], traveling salesman
tour with neighborhoods [3, 20, 21] (which is APX-hard [12]), and convex hulls [18, 23], to
name a few. We refer the interested readers to the thesis of Löffler [17].

The maximum spanning tree and related problems, in addition to their fundamental nature,
find applications in worst-case analysis of various heuristics in combinatorial optimization [2],
and in approminating maximum triangulations [5, pp. 338]. They also appear in clustering
algorithms where one needs to partition a set of entities into well-separated and homogeneous
clusters [4, 22]. Maximum spanning trees are directly related to computing diameter and
farthest neighbors which are fundamental problems in computational geometry, with many
applications [1].

2 Preliminaries for the algorithm

The output of our algorithm is either a star or a double-star. A star, centered at a vertex p,
is a tree in which every edge is incident to p. A double-star, centered at two vertices p and q,
is a tree that contains the edge pq and its every other edge is incident to either p or q.

Let P be a set of points in the Euclidean plane. The smallest enclosing disk for P is
the smallest disk that contains all the points of P . A diametral pair of P is a pair of points
in P that attain the maximum distance. If the points in P are colored, then a bichromatic
diametral pair of P is defined as a pair of points in P with different colors that attain the
maximum distance. The center of mass of P (also knows as the centroid) is a point m in the
plane such that for any arbitrary point u in the plane we have∑

p∈P

−→up = |P | · −→um. (1)

The intersection of two disks is called a lens. We denote the Euclidean distance between
two points p and q in the plane by |pq|. In our context, a geometric graph is a graph whose
vertices are points in the plane and whose edges are straight line segments. The length of a
geometric graph G, denoted by len(G), is the total Euclidean length of its edges.

A simple 0.5-approximation algorithm

Chen and Dumitrescu [10] pointed out the following simple 0.5-approximation algorithm for
the Max-ST-NB problem (a similar approach was previously used in [2] and [14]). Take a
bichromatic diametral pair (a, b) from the given n neighborhoods; a and b belong to two
different neighborhoods. Choose an arbitrary point from each of the other n−2 neighborhoods.
Let Sa be the star obtained by connecting a to b and to all chosen points. Define Sb analogously
on the same point set. Every edge of any optimal solution T ∗ has length at most |ab|, and
thus len(T ∗) ⩽ (n − 1)|ab|. By the triangle inequality len(Sa) + len(Sb) ⩾ n|ab| ⩾ len(T ∗).
Therefore the longer of Sa and Sb is a 0.5-approximate solution for the problem.
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3 The approximation algorithm

In this section we prove Theorem 1. Put δ =
√

7−1
3 ≈ 0.548.

To facilitate comparisons we use the same notation as of Chen and Dumitrescu [10].
Let X = {X1, X2, . . . , Xn} be the given collection of n polygonal neighborhoods of total
N vertices. We assume that each Xi is colored by a unique color. Our algorithm selects
representative points only from boundary vertices of polygonal neighborhoods. Thus, in the
algorithm (but not in the analysis) we consider each polygonal neighborhood Xi as the set of
its boundary vertices, and consequently we consider X as a collection of N points colored by
n colors. Define the longest spanning star centered at a point p ∈ Xi as the star connecting
p to its farthest point in every other neighborhood.

The algorithm

The main idea of the algorithm is simple: we compute a spanning double-star D and (at
most) three spanning stars S1, S2, S3, and then report the longest one.

We compute D as follows. Let (a, b) be a bichromatic diametral pair of X . After a
suitable relabeling assume that a ∈ X1 and b ∈ X2. Add the edge ab to D. For each Xi,
with i ∈ {3, . . . , n}, find a vertex pi ∈ Xi that is farthest from a and find a vertex qi ∈ Xi

that is farthest from b (it might be the case that pi = qi). If |api| ⩾ |bqi| then add api to
D otherwise add bqi to D. Observe that D spans all neighborhoods in X , and each edge of
D has length at least |ab|/2, as in Figure 2(a). Now we introduce the stars. Let C be the
smallest enclosing disk for X . Notice that the boundary of C contains at least two points of
X . If it contains exactly two points then we define S1 and S2 as the two longest spanning
stars that are centered at these points (in this case we do not have S3). If it contains three
or more points then there exist three of them such that the triangle formed by those points
contains the center of C [11, Chapter 4, Section 4.7]. In this case we define S1, S2, and S3
as the three longest spanning stars that are centered at those three points, as in Figure 2(b).

X3, . . . , Xn

a b

S1

S2

S3

C

(a) (b)

Figure 2 Illustration of the algorithm: (a) the double-star D, and (b) the stars S1, S2, and S3.

Running time analysis

The smallest enclosing disk C for X can be computed in O(N) time [9, 19, 24]. The result
of [7], that computes a maximum spanning tree on multicolored points, implies that a
bichromatic diametral pair (a, b) for X can be found in O(N log N log n) time (the algorithm
of Bhattacharya and Toussaint [6] also computes a bichromatic diameter, but only for two-
colored points). The rest of our algorithm (finding farthest points from a, b, and from the
points on the boundary of C) takes O(N) time.
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3.1 Analysis of the approximation ratio
Our main plan for analysis works as follows: we show that if the radius of C is at least δ

then one of the stars Si is a desired tree, otherwise the double-star D is a desired tree.
For the analysis we consider X as the initial collection of polygonal neighborhoods. Let

T ∗ denote a longest spanning tree with neighborhoods in X . It is not hard to see that for
any point in the plane, its farthest point in a polygon P must be a vertex of P (see also [11,
Chapter 7, Section 7.4]). Thus, any bichromatic diameter of X is introduced by two vertices
of polygons in X . Hence the pair (a, b), selected in the algorithm, is a bichromatic diameter
of the initial collection X . Therefore, |ab| is an upper bound for the length of edges in T ∗.
After a suitable scaling assume that |ab| = 1. Since T ∗ has n − 1 edges,

len(T ∗) ⩽ (n − 1)|ab| = n − 1. (2)

Recall the smallest enclosing disk C from the algorithm. Let c denote the center of C and
r denote its radius. If the boundary of C has exactly two points of X then denote them by
c1 and c2. In this case the segment c1c2 is a diameter of C; see [11, Chapter 4, Section 4.7].
If the boundary of C has three or more points of X then denote the three points (that are
chosen in the algorithm) by c1, c2, and c3. In this case the triangle c1c2c3 is acute and it
contains the center c; see [11, Chapter 4, Section 4.7]. Recall the longest spanning stars S1,
S2, S3 from the algorithm. After a suitable relabeling assume that the star Si is centered at
the point ci.

▶ Lemma 2. If r ⩾ δ and the boundary of C contains exactly two points of X then

max{len(S1), len(S2)} ⩾ δ · len(T ∗).

Proof. In this case c1c2 is a diameter of C, and thus |c1c2| = 2r ⩾ 2δ. We consider two
cases depending on similarity of colors of c1 and c2.

The points c1 and c2 have different colors. This case is depicted in Figure 3(a). After a
suitable relabeling assume that c1 ∈ X1 and c2 ∈ X2. Pick an arbitrary point pi from
each Xi with i ∈ {3, . . . , n}. Let S′

1 be the spanning star with center c1 that connects c1
to all pis and to c2. Let S′

2 be the spanning star with center c2 that connects c2 to all pis
and to c1. Since S1 and S2 are longest spanning stars centered at c1 and c2, it holds that
len(S′

1) ⩽ len(S1) and len(S′
2) ⩽ len(S2). By bounding the maximum with the average,

then using the triangle inequality and (2) we get:

max {len(S1), len(S2)} ⩾ max {len(S′
1), len(S′

2)} ⩾
1
2 (len(S′

1) + len(S′
2))

= 1
2

(
|c1c2| + |c1c2| +

n∑
i=3

(|c1pi| + |pic2|)
)

⩾
1
2

(
2|c1c2| +

n∑
i=3

|c1c2|

)
= |c1c2|

2 · n ⩾ δ · n ⩾ δ · len(T ∗).

The points c1 and c2 have the same color. Assume that c1, c2 ∈ X1. Pick an arbitrary
point pi from each Xi with i ∈ {2, . . . , n}. Let S′

1 be the spanning star that connects
c1 to all pis. Let S′

2 be the spanning star that connects c2 to all pis. Notice that
len(S′

1) ⩽ len(S1) and len(S′
2) ⩽ len(S2). Similar to the previous case we have:

max {len(S1), len(S2)} ⩾
1
2

n∑
i=2

(|c1pi| + |pic2|) ⩾ |c1c2|
2 · (n − 1) ⩾ δ · len(T ∗). ◀
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X3, . . . , Xn

c2c1
S ′
1 S ′

2

c3

c2

c1

C

C2

C3

C1 = Cj

r

m c

m′

c1 X3, . . . , Xn

c2 c3m

(a) (b) (c)

Figure 3 Illustration of the proofs of (a) Lemma 2, (b) Lemma 3, and (c) Lemma 4.

▶ Lemma 3. If the boundary of C contains three or more points of X then for any point m

in the plane there exists a point cj ∈ {c1, c2, c3} such that |cjm| ⩾ r.

Proof. Let Ci be the disk of radius r centered at each ci. The boundary of each Ci passes
through the center c of C, as in Figure 3(b). Since the triangle c1c2c3 contains c it holds
that C1 ∩ C2 ∩ C3 = c. Therefore there exists a disk Cj that does not have m in its interior,
and thus |cjm| ⩾ r. ◀

▶ Lemma 4. If r ⩾ δ and the boundary of C contains three or more points of X then

max{len(S1), len(S2), len(S3)} ⩾ δ · len(T ∗).

Proof. In this case the triangle c1c2c3 contains the center c of C. We consider three cases
depending on similarity of colors of c1, c2, and c3.

The points c1, c2, c3 have pairwise distinct colors. Thus, they belong to three different
neighborhoods. After a suitable relabeling assume that c1 ∈ X1, c2 ∈ X2, and c3 ∈ X3.
Pick an arbitrary point from each Xi with i ∈ {4, . . . , n}. Denote the selected points by
P . Let m be the center of mass of P . By Lemma 3 there exists a point cj ∈ {c1, c2, c3}
where |cjm| ⩾ r. After a suitable relabeling assume that cj = c1, and thus |c1m| ⩾ r. By
(1) we get∑

p∈P

|c1p| ⩾ |P | · |c1m| ⩾ (n − 3) · r ⩾ (n − 3) · δ.

Let S′
1 be the star that connects c1 to all points of P and to c2 and c3. Since S1 is the

longest spanning star centered at c1, we have that len(S1) ⩾ len(S′
1). Since the triangle

c1c2c3 contains c, we have |c2c1| + |c3c1| ⩾ |c2c| + |c3c| = 2r ⩾ 2δ. These inequalities and
(2) give

len(S1) ⩾ len(S′
1) = |c1c2|+ |c1c3|+

∑
p∈P

|c1p| ⩾ 2δ +(n−3) ·δ = (n−1) ·δ ⩾ δ · len(T ∗).

All points c1, c2, c3 have the same color. Assume that c1, c2, c3 ∈ X1. Pick an arbitrary
point from each Xi with i ∈ {2, . . . , n}. Denote the selected points by P . Let m be the
centroid of P , and let c1 be the point in {c1, c2, c3} for which |c1m| ⩾ r (by Lemma 3).
Let S′

1 be the star that connects c1 to all points of P . Similar to the previous case by
using (1) we get

len(S1) ⩾ len(S′
1) ⩾

∑
p∈P

|c1p| ⩾ |P | · |c1m| ⩾ (n − 1) · r ⩾ (n − 1) · δ ⩾ δ · len(T ∗).



A. Biniaz 7:7

Only two of c1, c2, c3 have the same color. This case is depicted in Figure 3(c). Assume
that c2 and c3 have the same color and they belong to X2. Also assume that c1 ∈ X1. We
handle this case in a slightly different way; this is because if the point cj from Lemma 3
(which would have distance at least r to the centroid) belongs to {c2, c3} then there is no
guarantee that |cjc1| ⩾ δ, and hence we may not be able to establish the lower bound
δ · (n − 1).
Pick an arbitrary point from each Xi with i ∈ {3, . . . , n}. Let P be the set containing
all selected points together with the point c1. Let m be the centroid of P . Consider the
point cj (from Lemma 3) for which |cjm| ⩾ r. If cj = c2 then let S′

2 be the star that
connects c2 to all points of P . In this case

len(S2) ⩾ len(S′
2) =

∑
p∈P

|c2p| ⩾ |P | · |c2m| ⩾ (n − 1) · r ⩾ (n − 1) · δ ⩾ δ · len(T ∗).

If cj = c3 then by a similar argument we can show that len(S3) ⩾ δ · len(T ∗).
Now assume that cj = c1, and thus |c1m| ⩾ r. Let P ′ = P \ {c1}, and let m′ be the
centroid of P ′. Using the recursive definition of centroid [15] (based on the Euclidean
rule of the lever) the point m lies on the segment c1m′, as in Figure 3(c). Informally
speaking, if we remove c1 from P then its (new) centroid moves away from c1. Therefore
|c1m′| ⩾ |c1m| ⩾ r. Let S′

1 be the star obtained by connecting c1 to all points of P ′ and
to the one of c2 and c3 that is farther from c1. Assume that c2 is the farther one, and
notice that |c1c2| ⩾ r. Then,

len(S1) ⩾ len(S′
1) = |c1c2| +

∑
p∈P ′

|c1p| ⩾ r + |P ′| · |c1m′|

⩾ r + (n − 2) · r ⩾ δ · len(T ∗). ◀

Lemmas 2 and 4 take care of our analysis for the case where the radius r of C is at
least δ. The next lemma takes care of the case where r ⩽ δ by showing that in this case
the double-star D is a desired tree. We employ a collection of geometric transformations to
simplify the proof.

▶ Lemma 5. If r ⩽ δ then len(D) ⩾ δ · len(T ∗).

Proof. Recall (a, b) as a bichromatic diametral pair of X . Also recall our assumptions that
a ∈ X1, b ∈ X2, and that |ab| = 1.

One challenge that we face here is that the vertices of our double-star D could be different
from the vertices of the optimal tree T ∗; this could make it difficult to obtain a lower bound
for the length of D in terms of the length of T ∗. But we know that the vertices of both D

and T ∗ come from the same ground sets X1, . . . , Xn. Our plan is to compare the length
of D with the length of T ∗ by comparing the lengths of their edges separately. For each
i ∈ {1, . . . , n} let p∗

i and pi be the vertices of T ∗ and D that belong to Xi, respectively (it
might be that p∗

i = pi). Notice that a = p1 and b = p2. Direct all edges of T ∗ towards p∗
1

and direct all edges of D towards p1. To each vertex of T ∗ and D (except p∗
1 and p1) assign

its unique outgoing edge. For each i ∈ {2, . . . , n} let len(p∗
i ) and len(pi) be the length of

edges that are assigned to p∗
i and pi, respectively. We already know that len(p2) = |ab| = 1

and len(p∗
i ) ⩽ |ab| = 1 for all i. Thus, in order to show that len(D) ⩾ δ · len(T ∗) it suffices to

show that len(pi) ⩾ δ · len(p∗
i ) for each i ∈ {3, . . . , n}. From the optimization point of view,

we are interested in the minimum value of the ratio
len(pi)
len(p∗

i ) (3)

over all pairs (pi, p∗
i ). In particular we want this value to be at least δ.

ISAAC 2021
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From now on we consider a fixed value of i ∈ {3, . . . , n}. For brevity we write p for pi, p∗ for
p∗

i , and X for Xi. In the rest of this section we will show that len(p) ⩾ δ · len(p∗). Recall from
the algorithm that p is connected to the farther of a and b, and thus len(p) = max{|pa|, |pb|}.
Let D(a, δ) and D(b, δ) be the disks of radii δ that are centered at a and b, respectively. If p

is outside D(a, δ) then len(p) ⩾ |pa| ⩾ δ ⩾ δ · len(p∗). Likewise, if p is outside D(b, δ) then
len(p) ⩾ δ · len(p∗), and we are done.

In the rest of this section we assume that p is in the lens L = D(a, δ) ∩ D(b, δ) which
is depicted in Figure 4(a). In the current setting, the neighborhood X (which contains p)
lies entirely in L because otherwise our algorithm would have picked a point of X outside
L. Therefore, the point p∗ (which also belongs to X) lies in L. Moreover max{|ap|, |bp|} ⩾
max{|ap∗|, |bp∗|} because otherwise our algorithm would have picked p∗ instead of p. Thus,
in view of (3), it suffices to show that

max{|ap∗|, |bp∗|}
len(p∗) ⩾ δ. (4)

For any point q in disk C let qC be the intersection point of the boundary of C with the
ray emanating from q and passing through the center c; Figure 4(a) depicts this for point
q = p∗. The point qC is the farthest point of C from q. Thus the largest possible length of
the edge of T ∗ that is assigned to p∗ is |p∗p∗

C |, that is, len(p∗) ⩽ |p∗p∗
C |. Thus, in view of

(4), it suffices to show that

max{|ap∗|, |bp∗|}
|p∗p∗

C |
⩾ δ. (5)

Inequality (5) deals with a minimization problem which has multiple variables, including
the coordinates of a, b, p∗, and c. We use a sequence of geometric transformations to reduce
the number of variables and simplify the analysis. Our transformations will not increase the
ratio in (5).

If we increase the radius of C (while fixing its center c) then |p∗p∗
C | would increase

but |ap∗| and |bp∗| remain unchanged. Thus, for the purpose of (5) we can assume that
C has maximum possible radius which is δ. Then, for any point q ∈ C it holds that
|qqC | = |qc| + |cqC | = |qc| + δ.

Let ℓ(a, b) be the line through a and b. If p∗ lies in the same side of ℓ(a, b) as c does,
then let p∗ be the reflection of p∗ with respect to ℓ(a, b). Notice that p∗ also lies in lens L.
Moreover |ap∗| = |ap∗| and |bp∗| = |bp∗|, but |p∗p∗

C | ⩽ |p∗ p∗
C |. Thus, in view of (5), the

point p∗ achieves a smaller ratio than p∗. Therefore we can assume that p∗ lies in a different
side of ℓ(a, b) than c does.

Let L denote the configuration that is the union of the lens L, the segment ab, and the
point p∗. Notice that any translation, rotation, and reflection of L will not change |ap∗| and
|bp∗|. Move L along the ray, that is emanating from c and passing through p∗, and stop as
soon as one of a and b lies on the boundary of C. Assume that b is the point that lies on C.
This translation can only increase |p∗p∗

C |, but not decrease. Now fix L at b and rotate it in
the direction, that moves p∗ away from c, until a also lies on the boundary of C. The lens L

is small enough and does not intersect the boundary of C after rotation. This rotation can
only increase |p∗p∗

C |, but not decrease. (Such a rotation moves p∗
C on the boundary of C,

but that does not affect the argument because the value |cp∗
C |, which is equal to the radius

of C, remains unchanged.) Therefore, above transformations do not increase the ratio in (5).
After these transformations assume, without loss of generality, that ab is horizontal, a is to
the left of b, and c lies above ab. The current setting is depicted in Figure 4(b). Notice that
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L
p∗

C

D(a, δ) D(b, δ)

p∗C

a bcc

p∗C

a b

p∗

c

δ
c

ba

p∗

c1

c2
q

x

(a) (b) (c)

Figure 4 Illustration of (a) the lens L and the point p∗
C associated with p∗, (b) the configuration

L after translation and rotation, (c) the points q, c1, c2.

|p∗p∗
C | = |cp∗| + |cp∗

C | = |cp∗| + δ. Due to symmetry we may assume that p∗ lies to the right
side of the vertical line through c, and thus |ap∗| ⩾ |bp∗|, as in Figure 4(c). In view of (5),
in the current setting our goal is to show that

|ap∗|
|cp∗| + δ

⩾ δ. (6)

Let q be the intersection point of ap∗ with the vertical line through c, as in Figure 4(c).
Then |ap∗| = |aq| + |qp∗| and |cp∗| ⩽ |cq| + |qp∗|. Thus,

|ap∗|
|cp∗| + δ

⩾
|aq| + |qp∗|

|cq| + |qp∗| + δ
⩾

|aq|
|cq| + δ

,

where the second inequality is valid because we subtract the same amount |qp∗| from the
numerator and denominator of a fraction which is smaller than 1 (notice that |aq| < |cq| + δ).
Thus, for showing (6) it suffices to show that

|aq|
|cq| + δ

⩾ δ. (7)

Recall the definition of L, and notice that its topmost point lies on the center c. Let c1 be
the intersection point of ab with the vertical line through c, and let c2 be the lowest point of
L; see Figure 4(c). Then |cc1| = |c1c2|, |ac| = |ac2| = δ, and |ac1| = 1/2. Notice that q lies on
the segment c1c2, and |cq| = |cc1| + |qc1|. Denote the length |qc1| by x. Then 0 ⩽ x ⩽ |c1c2|.
Using the Pythagorean theorem we get |aq| =

√
x2 + 1/4 and |c1c2| =

√
δ2 − 1/4. Thus we

can write the ratio in (7) as a function f which depends only on x:

f(x) = |aq|
|cq| + δ

=
√

x2 + 1/4
x + δ +

√
δ2 − 1/4

,

where x ∈
[
0,
√

δ2 − 1/4
]
. The function f(x) is decreasing on this interval of x and thus

its minimum value is attained at
√

δ2 − 1/4. Plugging this into f we get f
(√

δ2 − 1/4
)

=
√

7−1
3 = δ. This verifies (7) and finishes the proof of the lemma. ◀

The cases considered in Lemmas 2, 4, and 5 ensure that the length of one of S1, S2, S3,
and D is at least δ · len(T ∗). This concludes our analysis and finishes the proof of Theorem 1.
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3.2 Inclusion of bichromatic diameter
Here we show that the approximation ratio of an algorithm, that always includes a bichromatic
diametral pair in its solution, cannot be larger than 0.5.

p0 p1 p2 p3
1 1 1−2ε

ε

X3, . . . , XnX1 X1X2

Figure 5 Illustration of the upper bound 0.5 for inclusion of a bichromatic diametral pair.

We introduce an input instance with n neighborhoods. Consider four points p0 = (0, 0),
p1 = (1, 0), p2 = (2, 0), and p3 = (3 − 2ε, 0) for arbitrary small ε > 0, e.g. ε = 1/n. Our
input consists of neighborhoods X1, . . . , Xn where X1 = {p0, p3}, X2 = {p2}, and each of
X3, . . . , Xn has exactly one point that is placed at distance at most ε from p1; see Figure 5.
In this setting, (p0, p2) is the unique bichromatic diametral pair. Consider any tree T that
contains the bichromatic diameter p0p2 (this means that p3 is not in T ). Any edge of T

incident to X3, . . . , X4 has length at most 1+ε. Therefore len(T ) ⩽ 2+(1+ε)(n−2) < n+1.
Now consider the tree T ∗ that does not contain p0p2 but connects each of X2, . . . , Xn to p3.
The length of T ∗ is at least (1 − 2ε) + (2 − 3ε)(n − 2) > 2n − 6. Then, the ratio

len(T )
len(T ∗) <

n + 1
2n − 6

tends to 1/2 in the limit. This establishes the upper bound 0.5 on the approximation ratio.

4 Conclusions

A natural open problem is to further improve the approximation ratio for the Max-ST-NB
problem. We believe that our algorithm has better approximation guarantee, however this
requires more detailed analysis. We obtained the ratio of 0.548 by analyzing the stars
S1, S2, S3 and the double-star D separately. One might be able to improve the ratio by
analyzing the stars and the double-star together and then taking the longest one.
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Abstract
We propose a self-improving algorithm for computing Voronoi diagrams under a given convex distance
function with constant description complexity. The n input points are drawn from a hidden mixture
of product distributions; we are only given an upper bound m = o(

√
n) on the number of distributions

in the mixture, and the property that for each distribution, an input instance is drawn from it with a
probability of Ω(1/n). For any ε ∈ (0, 1), after spending O

(
mn logO(1)(mn)+mεn1+ε log(mn)

)
time

in a training phase, our algorithm achieves an O
(

1
ε
n log m + 1

ε
n2O(log∗ n) + 1

ε
H

)
expected running

time with probability at least 1 − O(1/n), where H is the entropy of the distribution of the Voronoi
diagram output. The expectation is taken over the input distribution and the randomized decisions of
the algorithm. For the Euclidean metric, the expected running time improves to O

(
1
ε
n log m + 1

ε
H

)
.
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1 Introduction

Self-improving algorithms, proposed by Ailon et al. [1], is a framework for studying algorithmic
complexity beyond the worst case. There is a training phase that allows some auxiliary
structures about the input distribution to be constructed. In the operation phase, these
auxiliary structures help to achieve an expected running time, called the limiting complexity,
that may surpass the worst-case optimal time complexity.

Self-improving algorithms have been designed for product distributions [1, 11]. Let n be
the input size. A product distribution D = (D1, . . . , Dn) consists of n distributions Di such
that the ith input item is drawn independently from Di. It is possible that Di = Dj for some
i ̸= j, but the draws of the ith and jth input items are independent. No further information
about D is given. Sorting, Delaunay triangulation, 2D maxima, and 2D convex hull have
been studied for product distributions. For all four problems, the training phase uses O(nε)
input instances, and the space complexity is O(n1+ε). The limiting complexities of sorting
and Delaunay triangulation are O

( 1
ε n + 1

ε Hout
)

for any ε ∈ (0, 1), where Hout is the entropy
of the output distribution [1]. The limiting complexities for 2D maxima and 2D convex hull
are O(OptM + n) and O(OptC + n log log n) respectively, where OptM and OptC are the
expected depths of the optimal linear decision trees for the two problems [11].

Extensions that allow dependence among input items have been developed. One extension
is that there is a hidden partition of [n] into groups. The input items with indices in the kth
group follow some hidden functions of a common parameter uk. The parameters u1, u2, · · ·
follow a product distribution. The partition of [n] is not given though. If the hidden functions
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are known to be linear, sorting can be solved in a limiting complexity of O
( 1

ε n + 1
ε Hout

)
after a training phase that takes O(n2 log3 n) time [8]. If it is only known that each hidden
function has O(1) extrema and the graphs of two functions intersect in O(1) places (without
knowing any of the functions, or any of these extrema and intersections), sorting can be
solved in a limiting complexity of O(n + Hout) after an Õ(n3)-time training phase [7]. For
the Delaunay triangulation problem, if it is known that the hidden functions are bivariate
polynomials of O(1) degree (without knowing the polynomials), a limiting complexity of
O(nα(n) + Hout) can be achieved after a polynomial-time training phase [7].

Another extension is that the input instance I is drawn from a hidden mixture of
at most m product distributions. That is, there are at most m product distributions
D1, D2, . . . such that Pr[I ∼ Da] = λa for some fixed positive value λa. The upper bound
m is given, but no information about the λa’s and the Da’s is provided. Sorting can be
solved in a limiting complexity of O

( 1
ε n log m + 1

ε Hout
)

after a training phase that takes
O(mn log2(mn) + mεn1+ε log(mn)) time [8].

In this paper, we present a self-improving algorithm for constructing Voronoi diagrams
under a convex distance function dQ in R2, assuming that the input distribution is a hidden
mixture of at most m product distributions. The convex distance function dQ is induced
by a given convex polygon Q of O(1) size. The upper bound m is given, and we assume
that m = o(

√
n). We also assume that for each product distribution Da in the mixture,

λa = Ω(1/n). Let ε ∈ (0, 1) be a parameter fixed beforehand. The training phase uses
O(mn log(mn)) input instances and takes O

(
mn logO(1)(mn) + mεn1+ε log(mn)

)
time. In

the operation phase, given an input instance I, we can construct its Voronoi diagram VorQ(I)
under dQ in a limiting complexity of O

( 1
ε n log m + 1

ε n2O(log∗ n) + 1
ε H

)
, where H denotes the

entropy of the distribution of the Voronoi diagram output. Note that Ω(H) is a lower bound
of the expected running time of any comparison-based algorithm. Our algorithm also works
for the Euclidean case, and the limiting complexity improves to O

( 1
ε n log m + 1

ε H
)
.

For simplicity, we will assume throughout the rest of this paper that the hidden mixture
has exactly m product distributions. We give an overview of our method in the following.

We follow the strategy in [1] for computing a Euclidean Delaunay triangulation. The
idea is to form a set S of sample points and build Del(S) and some auxiliary structures in
the training phase so that any future input instance I can be merged quickly into Del(S)
to form Del(S ∪ I), and then Del(I) can be split off in O(n) expected time. Merging I into
Del(S) requires locating the input points in Del(S). The location distribution is gathered
in the training phase so that distribution-sensitive point location can be used to avoid the
logarithmic query time as much as possible. Modifying Del(S) efficiently into Del(S ∪ I)
requires that only O(1) points in I fall into the same neighborhood in Del(S) in expectation.

In our case, since there are m product distributions, we will need a larger set S of mn

sample points in order to ensure that only O(1) points in I fall into the same neighborhood
in VorQ(S) in expectation. But then merging I into VorQ(S) in the operation phase would
be too slow because scanning VorQ(S) already requires Θ(mn) time. We need to extract a
subset R ⊆ S such that R has O(n) size and R contains all points in S whose Voronoi cells
conflict with the input points.

Still, we cannot afford to construct VorQ(R) in O(n log n) time. In the training phase, we
form a metric d related to dQ and construct a net-tree TS for S under d [15]. In the operation
phase, after finding the appropriate R ⊆ S, we use nearest common ancestor queries [20] to
compress TS in O(n log log m) time to a subtree TR for R that has O(n) size. Next, we use
TR to construct a well-separated pair decomposition of R under d in O(n) time [15], use the
decomposition to compute the nearest neighbor graph of R under d in O(n) time, and then
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construct VorQ(R) from the nearest neighbor graph in O(n) expected time. The merging
of I into VorQ(R) to form VorQ(R ∪ I), and the splitting of VorQ(R ∪ I) into VorQ(I) and
VorQ(R) are obtained by transferring their analogous results in the Euclidean case [1, 6].

We have left out the expected time to locate the input points in VorQ(S). It is bounded by
O(1/ε) times the sum of the entropies of the point location outcomes. We show that VorQ(I)
allows us to locate the input points in VorQ(S) in O(n log m + n2O(log∗ n)) time. Then, a
result in [1] implies that the sum of the entropies of the point location outcomes is O(n log m+
n2O(log∗ n) + H). The expected running time is thus O( 1

ε n log m + 1
ε n2O(log∗ n) + 1

ε H), which
dominates the limiting complexity. In the Euclidean case, Vor(I) allows us to locate the
input points in O(n log m) time, so the limiting complexity improves to O( 1

ε n log m + 1
ε H).

Details and proofs that are omitted due to space constraint can be found in the full
version of this paper [9].

2 Preliminaries

Let Q be a convex polygon that has O(1) complexity and contains the origin in its interior.
Let ∂ and int(·) be the boundary and interior operators, respectively. So Q’s boundary is
∂Q and its interior is int(Q). Let dQ be the distance function induced by Q: ∀ x, y ∈ R2,
dQ(x, y) = min{λ ∈ [0, ∞) : y ∈ λQ + x}. As Q may not be centrally symmetric (i.e.,
x ∈ Q ⇐⇒ −x ∈ Q), dQ may not be a metric.

The bisector of two points p and q is {x ∈ R2 : dQ(p, x) = dQ(q, x)}, which is an open
polygonal curve of O(1) size. The Voronoi diagram of a set Σ of n points, VorQ(Σ), is a
partition of R2 into interior-disjoint cells Vp(Σ) = {x ∈ R2 : ∀q ∈ Σ, dQ(p, x) ≤ dQ(q, x)} for
all p ∈ Σ. There are algorithms for constructing VorQ(Σ) in O(n log n) time [10, 18].

Vp(Σ) is simply connected and star-shaped with respect to p [10]. We use Np(Σ) to
denote the set of Voronoi neighbors of p in VorQ(Σ). The Voronoi edges of VorQ(Σ) form a
planar graph of O(|Σ|) size. Each Voronoi edge is a polygonal line, and we call its internal
vertices Voronoi edge bends. We use VΣ to denote the set of Voronoi edge bends and Voronoi
vertices in VorQ(Σ). For the infinite Voronoi edges, their endpoints at infinity are included
in VΣ.

Define Q∗ = {−x : x ∈ Q}. For any points x, y ∈ R2, dQ∗(x, y) = dQ(y, x). At any
point x on a Voronoi edge of VorQ(Σ) defined by p, q ∈ Σ, there exists λ ∈ (0, ∞) such that
dQ∗(x, p) = dQ(p, x) = dQ(q, x) = dQ∗(x, q) = λ and dQ∗(x, s) = dQ(s, x) ≥ λ for all s ∈ Σ.
Hence, {p, q} ⊂ ∂(λQ∗ + x) and int(λQ∗ + x) ∩ Σ = ∅, i.e., an “empty circle property”.

Take a point x. Consider the largest homothetic1 copy Q∗
x of Q∗ centered at x such that

int(Q∗
x) ∩ Σ = ∅. If we insert a new point q to Σ, we say that q conflicts with x if q ∈ Q∗

x.
We say that q conflicts with a cell Vp(Σ) if q conflicts with some point in Vp(Σ). Clearly,
Vp(Σ) must be updated by the insertion of q. We use VΣ|q to denote the subset of VΣ that
conflict with q. The Voronoi edge bends and Voronoi vertices in VΣ|q will be destroyed by
the insertion of q.

We make three general position assumptions. First, no two sides of Q are parallel. Second,
for every pair of input points, their support line is not parallel to any side of Q. Third, no
four input points lie on the boundary of any homothetic copy of Q∗, which implies that every
Voronoi vertex has degree three.

It is much more convenient if all Voronoi cells of the input points are bounded. We
assume that all possible input points appear in some fixed bounding square B centered at
the origin. We place O(1) dummy points outside B so that all Voronoi cells of the input

1 A homothetic copy of a shape is a scaled and translated copy of it.
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Figure 1 The left image shows the bounding square B and the large enclosing λQ∗. In the right
image, we slide a copy of λQ∗ around B to generate the outer convex polygon. The dashed polygon
demonstrates the sliding of λQ∗ around B. The bold edges on this convex polygon are translates of
the boundary edges of B. Every edge of λQ∗ has two translational copies too as labelled.

points are bounded, and their portions inside B remain the same as before. Refer to Figure 1.
Take λQ∗ for some large enough λ ∈ R such that for every point x ∈ B, λQ∗ + x contains B.
Refer to the left image in Figure 1. We slide a copy of λQ∗ around B to generate the outer
convex polygon. The dashed polygon demonstrates the sliding of λQ∗ around B. This outer
polygon contains a translational copy of every edge of B and two translational copies of every
edge of λQ∗. We add the vertices of this outer polygon as dummy points. Any homothetic
copy of Q∗ that intersects B cannot be expanded indefinitely without containing some of
these dummy points. So all Voronoi cells of input points are bounded. For each point x ∈ B,
since the dummy points lie outside λQ∗ + x and B ⊆ λQ∗ + x (i.e., λQ∗ + x is not empty of
the input points), the portion of the Voronoi diagram inside B is unaffected by the dummy
points.

3 Training phase

Sample set S. Take mn ln(mn) instances I1, I2, . . . , Imn ln(mn). Define x1, . . . , xmn ln(mn) by
taking the p1’s in I1, . . . , Im ln(mn) to be x1, . . . , xm ln(mn), p2’s in Im ln(mn)+1, . . . , I2m ln(mn)
to be xm ln(mn)+1, . . . , x2m ln(mn), and so on. The set S of sample points includes a 1

mn -net
of the xi’s with respect to the family of homothetic copies of Q∗, as well as the O(1) dummy
points. The set S has O(mn) points and can be constructed in O(mn logO(1)(mn)) time as
homothetic copies of Q∗ are pseudo-disks [1, 19].

Point location. Compute VorQ(S) and triangulate it by connecting each p ∈ S to VS ∩
∂Vp(S), i.e., the Voronoi edge bends and Voronoi vertices in ∂Vp(S). For unbounded Voronoi
cells, we view the infinite Voronoi edges as leading to some vertices at infinity; an extra
triangulation edge that goes between two infinite Voronoi edges also leads to a vertex at
infinity, giving rise to unbounded triangles. Figure 2 shows an example.

Construct a point location structure LS for the triangulated VorQ(S) with O(log(mn))
query time [13]. Take another mεnε input instances and use LS to locate the points in
these input instances in the triangulated VorQ(S). For every i ∈ [n] and every triangle t, we
compute π̃i,t to be the ratio of the frequency of t hit by pi to mεnε, which is an estimate of
Pr[pi ∈ t]. For each i ∈ [n], form a subdivision Si that consists of triangles with positive π̃i,t’s,
triangulate the exterior of Si, and give these new triangles a zero estimated probability. Set
the weight of each triangle in Si to be the maximum of (mn)−ε and its estimated probability.
Construct a distribution-sensitive point location structure Li for Si based on the triangle
weights [2, 16]. Note that Li has O(mεnε) size, and locating a point in a triangle t ∈ Si

takes O
(
log Wi

wt

)
time, where wt is the weight of t and Wi is the total weight in Si.
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Figure 2 Part of the triangulation of a Voronoi diagram induced by the triangle shown with a gray
center. The solid edges form the Voronoi diagram. The dashed edges refine it into a triangulation.

For any input instance (p1, . . . , pn) in the operation phase, we will query Li to locate pi

in the triangulated VorQ(S), which may fail if pi falls into a triangle with zero estimated
probability. If the search fails, we query LS to locate pi.

Net-tree. We first define a metric that is induced by a centrally symmetric convex polygon.
Define Q̂ = {x − y : x, y ∈ Q∗}, i.e., the Minkowski sum of Q∗ and −Q∗, or equivalently Q∗

and Q. It is centrally symmetric by definition. It can be visualized as the region covered
by all possible placements of Q∗ that has the origin in the polygon boundary. Since Q̂ is
a Minkowski sum, its number of vertices is within a constant factor of the total number of
vertices of Q∗ and −Q∗, which is O(1).

Let d be the metric induced by the centrally symmetric convex polygon Q̂, which is a
doubling metric – there is a constant λ > 0 such that for any point x ∈ R2 and any positive
number r, the ball with respect to d centered at x with radius r can be covered by λ balls
with respect to d of radius r/2.

Given a set of points P , a net-tree for P with respect to d [15] is an analog of the
well-separated pair decomposition for Euclidean spaces [4]. It is a rooted tree whose leaves
are the points in P . For each node v, let parent(v) denote its parent, and let Pv denote the
subset of P at the leaves that descend from v. Every tree node v is given a representative
point pv and an integer level ℓv. Let τ ≥ 11 be a fixed constant. Let B(x, h) denote the ball
{y ∈ R2 : d(x, y) ≤ h}. By the results in [15] (Definition 2.1 and the remark that follows
Proposition 2.2), the following properties are satisfied by a net-tree:
(a) pv ∈ Pv.
(b) For every non-root node v, ℓv < ℓparent(v), and if v is a leaf, then ℓv = −∞.
(c) Every internal node has at least two and at most a constant number of children.
(d) For every node v, B

(
pv, 2τ

τ−1 · τ ℓv
)

contains Pv.
(e) For every non-root node v, B

(
pv, τ−5

2τ−2 · τ ℓparent(v)−1)
∩ P ⊂ Pv.

(f) For every internal node v, there is a child w of v such that pw = pv.

Clusters. We construct a net-tree TS for S in O(mn log(mn)) expected time [15]. We define
clusters as follows. Label all leaves of TS as unclustered initially. Select the leftmost m

unclustered leaves of TS ; if there are fewer than m such leaves, select them all. Find the
subtree rooted at a node v of TS that contains the selected unclustered leaves, but no child
subtree of v contains them all. We call the subtree rooted at v a cluster and label all its leaves
clustered. Then, we repeat the above until all leaves of TS are clustered. By construction,
the clusters are disjoint, each cluster has O(m) nodes, and there are O(n) clusters in TS .

We assign nodes in each cluster a unique cluster index in the range [1, O(n)]. We also
assign each node of a cluster three indices from the range [1, O(m)] according to its rank in
the preorder, inorder, and postorder traversals of that cluster. The preorder and postorder
indices allow us to tell in O(1) time whether two nodes are an ancestor-descendant pair.
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We keep an initially empty van Emde Boas tree EBc [21] with each cluster c. The
universe for EBc is the set of leaves in the cluster c, and the inorder of these leaves in c is
the total order for EBc. We also build a nearest common ancestor query data structure for
each cluster [20]. The nearest common ancestor query of any two nodes can be reported in
O(log log m) time.

Planar separator. VorQ(S) is a planar graph of O(mn) size with all Voronoi edge bends
and Voronoi vertices as graph vertices. By a recursive application of the planar separator
theorem, one can produce an m2-division of VorQ(S): it is divided into O(n/m) regions, each
region contains O(m2) vertices, and the boundary of each region contains O(m) vertices [14].

Extract the subset B ⊂ S of points whose Voronoi cell boundaries contain some region
boundary vertices in the m2-division. So |B| = O(m · n/m) = O(n). Compute VorQ(B) and
triangulate it as in triangulating VorQ(S). By our choice of B, the region boundaries in the
m2-division of VorQ(S) form a subgraph of VorQ(B). Label in O(n) time the Voronoi edge
bends and Voronoi vertices in VorQ(B) whether they exist in VorQ(S).

We construct point location data structures for every region Π in the m2-division as
follows. For every boundary vertex w of Π, let Q∗

w be the largest homothetic copy of Q∗

centered at w such that int(Q∗
w) ∩ B = ∅. These Q∗

w’s form an arrangement of O(m2)
complexity, and we construct a point location data structure that allows a point to be located
in this arrangement in O(log m) time. We also construct a point location data structure for
the portion of the triangulated VorQ(S) inside Π. Since the region has O(m2) complexity,
this point location data structure can return in O(log m) time the triangle in the triangulated
VorQ(S) that contains a point inside Π.

Output and performance. The following result summarizes the output and performance of
the training phase. The proof of Lemma 1(a) is similar to an analogous result for sorting
in [8].

▶ Lemma 1. Let Da, a ∈ [m], be the distributions in the hidden mixture. The training phase
computes the following structures in O(mn logO(1)(mn) + mεn1+ε log(mn)) time.

(i) A set S of O(mn) points and VorQ(S). It holds with probability at least 1 − 1/n that
for any a ∈ [1, m] and any v ∈ VS,

∑n
i=1 Pr[Xiv | I ∼ Da] = O(1/m), where Xiv = 1 if

pi ∈ I conflicts with v and Xiv = 0 otherwise.
(ii) Point location structures LS and Li for each i ∈ [n] that allow us to locate pi in the

triangulated VorQ(S) in O
( 1

ε H(ti)
)

expected time, where ti is the random variable that
represents the point location outcome, and H(ti) is the entropy of the distribution of ti.

(iii) A net-tree TS for S, the O(n) clusters in TS, the initially empty van Emde Boas trees
for the clusters, and the nearest common ancestor data structures for the clusters.

(iv) An m2-division of VorQ(S), the subset B ⊆ S of O(n) points whose Voronoi cell
boundaries contain some region boundary vertices in the m2-division, VorQ(B), and
the point location data structures for the regions in the m2-division.

Lemma 1(a) leads to Lemma 2 below, which implies that for any v ∈ VS , if we feed the
input points that conflict with v to a procedure that runs in quadratic time in the worst
case, the expected running time of this procedure over all points in VS is O(n). The proof of
Lemma 2 is just an algebraic manipulation of the probabilities.

▶ Lemma 2. For every v ∈ VS, let Zv be the subset of input points that conflict with v. It
holds with probability at least 1 − O(1/n) that

∑
v∈VS

E
[
|Zv|2

]
= O(n).
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Q∗w1

Q∗w2

Q∗x
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Figure 3 (a) The points q and q′ define a Voronoi edge, and w1 and w2 are two adjacent Voronoi
edge bends or Voronoi vertices on this edge. At any point x between w1 and w2, the polygon Q∗

x

(shown dashed) is a subset of Q∗
w1 ∪ Q∗

w2 . (b) A triangle quv in the triangulated Voronoi diagram in
Figure 2 is shown. If a point p conflicts with the white dot (i.e., lies inside the bold dashed triangle),
then p conflicts with u or v (i.e., lies inside one of the two light dashed circles.)

We state two technical results. Figure 3(a) and (b) illustrate these two lemmas.

▶ Lemma 3. Consider VorQ(Y ) for some point set Y . For any point x ∈ R2, let Q∗
x be the

largest homothetic copy of Q∗ centered at x such that int(Q∗
x) ∩ Y = ∅. Let w1 and w2 be

two adjacent Voronoi edge bends or Voronoi vertices in VorQ(Y ). For any point x ∈ w1w2,
Q∗

x ⊆ Q∗
w1

∪ Q∗
w2

. The same property holds if w1 and w2 are Voronoi vertices connected by a
Voronoi edge, and x lies on that Voronoi edge.

▶ Lemma 4. Let q be a point in some point set Y . Let quv be a triangle in the triangulated
VorQ(Y ). If a point p ̸∈ Y conflicts with a point in quv, then p conflicts with u or v. Hence,
if p conflicts with Vq(Y ), p conflicts with a Voronoi edge bend or Voronoi vertex in ∂Vq(Y ).

4 Operation phase

Given an instance I = (p1, · · · , pn), we construct VorQ(I) using the pseudocode below.

Algorithm 1 Operation Phase.

1. For each i ∈ [n], query Li to find the triangle ti in the triangulated VorQ(S) that contains
pi, and if the search fails, query LS to find ti.

2. For each i ∈ [n], search VorQ(S) from ti to find VS |pi
, i.e., the subset of VS that conflict

with pi. This also gives the subset of S whose Voronoi cells conflict with the input points.
Let R be the union of this subset of S and the set of representative points of all cluster
roots in TS .

3. Compute the compression TR of TS to R.
4. Construct the nearest neighbor graph 1-NNR under the metric d from TR.
5. Compute VorQ(R) from 1-NNR.
6. Modify VorQ(R) to produce VorQ(R ∪ I).
7. Split VorQ(R ∪ I) to produce VorQ(I) and VorQ(R). Return VorQ(I).

We analyze step 1 in Section 4.1, steps 2 and 3 in Section 4.2, steps 4 and 5 in Section 4.3,
and steps 6 and 7 in Section 4.4. Step 1 is the most time-consuming; all other steps run in
O(n) expected time.
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4.1 Point location
By Lemma 1(b), step 1 runs in O

(∑n
i=1

1
ε H(ti)

)
expected time, which is O

( 1
ε n log m +

1
ε H(t1, . . . , tn)

)
as we will show later. By Lemma 5 below, if there is an algorithm that can

use VorQ(I) to determine t1, . . . , tn in c(n) expected time, then H(t1, . . . , tn) = O(c(n) + H),
implying that step 1 takes O

( 1
ε (n log m + c(n) + H)

)
expected time. Any preprocessing cost

of S is excluded from c(n). We present such an algorithm.

▶ Lemma 5 (Lemma 2.3 in [1]). Let D be a distribution on a universe U . Let X : U → X ,
and let Y : U → Y be two random variables. Suppose that there is a comparison-based
algorithm that computes a function f : (I, X(I)) → Y (I) in C expected comparisons over D

for every I ∈ U . Then H(Y ) = C + O(H(X)).

Recall that we have computed in the training phase the subset B ⊆ S whose Voronoi cell
boundaries contain some region boundary vertices in the m2-division of VorQ(S). Note that
|B| = O(n). We have also computed VorQ(B) and point location data structures associated
with the regions in the m2-division. We use VorQ(B) and these point location data structures
determines t1, . . . , tn as follows.

Task 1: Merge VorQ(B) with VorQ(I) to form the triangulated VorQ(B ∪ I).
Task 2: Use VorQ(S), VorQ(B), and VorQ(B ∪ I) to find the triangles t1, . . . , tn.

We discuss these two tasks in the following.

Task 1. For every point p ∈ B, define a polygonal cone surface Cp =
{

(a, b, dQ(p, (a, b)) :
(a, b) ∈ R2}

. Each horizontal cross-section of Cp is a scaled copy of Q centered at p. The
triangulated VorQ(B) is the vertical projection of the lower envelope of {Cp : p ∈ B}, denoted
by L(B). Similarly, L(I) projects to VorQ(I). We take the lower envelope of L(B) and
L(I) to form L(B ∪ I) which projects to VorQ(B ∪ I). We do so in O(n2O(log∗ n)) expected
time with a randomized algorithm that is based on an approach proposed and analyzed by
Chan [5, Section 4].

Task 2. Suppose that for an input point pi ∈ I, we have determined some subset Bi that
satisfies B ⊆ Bi ⊆ S, and we have computed a Voronoi edge bend or Voronoi vertex vi in
VorQ(Bi) that conflicts with pi and is known to be in VS or not.

If vi ∈ VS , we search VorQ(S) from vi to find VS |pi (i.e., the subset of VS that conflict
with pi), which by Lemma 3 also gives the triangle ti in the triangulated VorQ(S) that
contains pi. By Lemma 2, the expected total running time of this procedure over all input
points is O(n).

Suppose that vi ̸∈ VS . So vi is not a region boundary vertex in the m2-division of VorQ(S),
i.e., vi lies inside a region in the m2-division of VorQ(S), say Π. For each boundary vertex w

of Π, let Q∗
w be the largest homothetic copy of Q∗ centered at w such that int(Q∗

w) ∩ B = ∅.
These Q∗

w’s form an arrangement of O(m2) complexity, and we locate pi in this arrangement
in O(log m) time. It tells us whether pi ∈ Q∗

w for some boundary vertex w of Π. If so, then
pi conflicts with w, which belongs to VS , and we search VorQ(S) from w to find VS |pi

and
hence the triangle ti in the triangulated VorQ(S) that contains pi. Otherwise, pi must lie
inside Π in order to conflict with vi inside Π without conflicting with any boundary vertex of
Π. So we do a point location in O(log m) time to locate pi in the portion of the triangulated
VorQ(S) inside Π. This gives ti.
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How do we compute vi for pi? We discuss this computation and provide more details of
Step 2 in the full version [9]. The following lemma summarizes the result that follows from
the discussion above.

▶ Lemma 6. Given VorQ(I), the triangles t1, . . . , tn in the triangulated VorQ(S) that contain
p1, . . . , pn ∈ I can be computed in O

(
n log m + n2O(log∗ n)) expected time.

▶ Lemma 7. Step 1 of the operation phase takes O
( 1

ε (n log m+n2O(log∗ n) +H)
)

expected
time, where H is the entropy of the distribution of VorQ(I).

Proof. Let A ∈ [1, m] be a random variable that indicates which distribution in the
mixture generates the input instance. By the chain rule for conditional entropy [22,
Proposition 2.23], H(ti) ≤ H(ti) + H(A|ti) = H(ti, A) = H(A) + H(ti|A). It is known
that H(A) ≤ log2(domain size of A) = log2 m [22, Theorem 2.43]. Thus,

∑n
i=1 H(ti) ≤

n log2 m +
∑n

i=1 H(ti|A). The variables t1|A, . . . , tn|A are mutually independent. So∑n
i=1 H(ti|A) = H(t1, . . . , tn|A). Since entropy is not increased by conditioning [22, The-

orem 2.38], we get
∑n

i=1 H(ti|A) = H(t1, . . . , tn|A) ≤ H(t1, . . . , tn). By Lemma 6, we
can determine t1, . . . , tn using VorQ(I) in O(n log m + n2O(log∗ n)) expected time. So
H(t1, . . . , tn) = O(n log m + n2O(log∗ n) + H) by Lemma 5, where H is the entropy of
the distribution of VorQ(I). ◀

In the Euclidean metric, merging Vor(B) and Vor(I) into Vor(B ∪ I) can be reduced to
finding the intersection of two convex polyhedra of O(n) size in R3, which can be solved in
O(n) time [5]. So the expected running time of step 1 improves to O

( 1
ε (n log m + H)

)
.

4.2 Construction of R

Step 1 determines the triangle ti in the triangulated VorQ(S) that contains pi ∈ I. We search
VorQ(S) from ti to find VS |pi , which takes O

(∣∣VS |pi

∣∣) time [18]. This search also gives the
Voronoi cells that conflict with pi. The total time over all i ∈ [n] is O

(∑
v∈VS

|Zv|
)
, where

Zv is the subset of input points that conflict with v. Since R includes all sites whose cells
conflict with the input points and the representative points of all cluster roots in TS , we have
|R| ≤

∑
v∈VS

|Zv| + O(n). The following result follows from Lemma 2.

▶ Lemma 8. The set R has O(n) expected size. Step 2 of the operation phase constructs R

in O(n) expected time.

4.3 Extraction of VorQ(R)

4.3.1 Construction of TR

We define a compression of a net-tree T . Select a subset U of leaves in T . Let T ′ ⊆ T be the
minimal subtree that spans U . Bypass all internal nodes in T ′ that have only one child. The
resulting tree is the compression of T to U . The following result is an easy observation.

▶ Lemma 9. Let T be a net-tree. Let T1 be the compression of T to a subset U1 of leaves.
The compression of T1 to any subset U2 of leaves in T1 can also be obtained by a compression
of T to U2.

Conceptually, TR is defined as follows. Select all leaves of TS that are points in R, and
TR is the compression of TS to these selected leaves. Since R includes the representative
points of all cluster roots, all ancestors of the cluster roots in TS will survive the compression
and exist as nodes in TR. The compression affects the clusters only. More precisely, for each
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Figure 4 Three different cases in the manipulation of the stack. The tree shown is a part of TS .
The gray nodes are nodes in Tc. The gray leaves are leaves in Rc.

cluster c in TS , we select its leaves that are points in R and compute the compression Tc

of the cluster c to these selected leaves. Substituting every cluster c in TS by Tc gives the
desired TR. It remains to discuss how to compute the Tc’s.

We divide R in O(n) expected time into sublists R1, R2, . . . such that Rc consists of the
points that are leaves in cluster c. Recall that every cluster c has an initially empty van Emde
Boas tree EBc for its leaves in left-to-right order. For each Rc, we insert all leaves in Rc into
EBc and then repeatedly perform extract-min on EBc. This gives in O(|Rc| log log m) time
a sorted list R′

c of the leaves in Rc according to their left-to-right order in the cluster c.
If |R′

c| = 1, then Tc consists of the single leaf in Rc. Suppose that |R′
c| ≥ 2. We construct

Tc using a stack. Initially, Tc is a single node which is the first leaf in R′
c. The stack stores

the nodes on the rightmost root-to-leaf path in the current Tc, with the root at the stack
bottom and the leaf at the stack top. When we scan the next leaf q in R′

c, we find in cluster
c the nearest common ancestor x of q and q’s predecessor in R′

c. This takes O(log log m)
time [20]. If we see x at the stack top, we add q as a new leaf to Tc with x as its parent, and
then we push q onto the stack. Refer to the left image in Figure 4. If we see an ancestor z of
x at the stack top, let y be the node that was immediately above z in the stack and was just
popped, we make x the rightmost child of z in Tc (which was y previously), we also make y

and q the left and right children of x respectively, and then we push x and q in this order
onto the stack. Refer to the middle image in Figure 4. If neither of the two conditions above
happens and the stack is not empty, we pop the stack and repeat. Refer to the right image
in Figure 4. If the stack becomes empty, we make x the new root of Tc, we also make the
old root of Tc and q the left and right children of x respectively, and then we push x and q

in this order onto the stack. The construction of Tc takes O(|Rc| log log m) time.

▶ Lemma 10. The compression TR of TS to R can be computed in O(n log log m) time.

4.3.2 Construction of the k-nearest neighbor graph
Let X be any subset of S. Assume that the compression TX of TS to X is available. We show
how to use TX to construct in O(k|X|) time the k-nearest neighbor graph of X under the
metric d. We denote this graph by k-NNX . We will use the well-separated pair decomposition
or WSPD for short. For any c ≥ 1, a set

{
{A1, B1}, . . . , {As, Bs}

}
is a c-WSPD of X under

d if the following properties are satisfied:
∀ i, Ai, Bi ⊆ X.
∀ distinct x, y ∈ X, ∃ i such that

{
x, y} ∈

{
{a, b} : a ∈ Ai ∧ b ∈ Bi

}
.

∀ i, the maximum of the diameters of Ai and Bi under d is less than 1
c · d(Ai, Bi). It

implies that Ai ∩ Bi = ∅.
It is known that a c-WSPD has O(cO(1)|X|) size and can be constructed in O(c(O(1)|X|)
time from a net-tree for X [15]. The same method works for a compression TX of TS to X,
giving a c-WPSD of O((c + 1)O(1)|X|) size in O((c + 1)O(1)|X|) time. To compute k-NNX ,
we transfer a strategy in [4] for constructing a Euclidean k-nearest neighbor graph using a
WSPD.



S.-W. Cheng and M. T. Wong 8:11

▶ Lemma 11. Given the compression TX of TS to any subset X ⊆ S, the k-NNX can be
constructed in O(k|X|) time.

The next result shows that the vertex degree of 1-NNX is O(1).

▶ Lemma 12. For any subset X ⊆ S, every vertex in 1-NNX has O(1) degree, and adjacent
vertices in 1-NNX are Voronoi neighbors in VorQ(X).

4.3.3 VorQ(R) from the nearest neighbor graph
We show how to construct VorQ(R) in O(n) expected time using 1-NNR. We use the following
recursive routine which is similar to the one in [3] for constructing an Euclidean Delaunay
triangulation from the Euclidean nearest neighbor graph. The top-level call is VorNN(R, TR).

Algorithm 2 VorNN(Y, TY ).

1. If |Y | = O(1), compute VorQ(Y ) directly and return.
2. Compute 1-NNY under the metric d using TY .
3. Let X ⊆ Y be a random sample such that X meets every connected component of 1-NNY ,

and Pr[p ∈ X] = 1/2 for every p ∈ Y .
4. Compute the compression TX of TY to X.
5. Call VorNN(X, TX) to compute VorQ(X).
6. Using 1-NNY as a guide, insert the points in Y \ X into VorQ(X) to form VorQ(Y ).

There are two differences from [3]. First, we use a compression TY of TS to compute
1-NNY in step 2, which takes O(|Y |) time by Lemma 11. Second, we need to compress TY to
TX in step 4. This compression works in almost the same way as described in Section 4.3.1
except that we can afford to traverse TY in O(|Y |) time to answer all nearest common
ancestor queries required for constructing TX . Thus, step 4 runs in O(|Y |) time.

Step 3 is implemented as follows [3]. Form an arbitrary maximal matching of 1-NNY . By
the definition of 1-NNY , each connected component of 1-NNY contains at least one matched
pair. Randomly select one point from every matched pair. Then, among those unmatched
points in 1-NNY , select each one with probability 1/2 uniformly at random. The selected
points form the subset X required in step 3. The time needed is O(|Y |).

In step 6, for each p ∈ Y \ X that is connected to some point q ∈ X in 1-NNY , p and
q are Voronoi neighbors in VorQ(Y ) by Lemma 12. So p conflicts with a point in Vq(X).
By Lemma 4, p conflicts with a Voronoi edge bend or Voronoi vertex in ∂Vq(X), which can
be found in O

(∣∣∂Vq(X)
∣∣) time. After finding a Voronoi edge bend or Voronoi vertex v in

∂Vq(X) that conflicts with p, we search VorQ(X) from v to find all Voronoi edge bends and
Voronoi vertices that conflict with p. In the same search of VorQ(X) , we modify VorQ(X)
into VorQ

(
X ∪ {p}

)
as in a randomized incremental construction [18]. By the Clarkson-Shor

analysis [12], the expected running time of the search of VorQ(X) and the Voronoi diagram
modification over the insertions of all points in Y \ X is O(|Y |). We spend O

(∣∣∂Vq(X)
∣∣)

time to find v. It translates to an O(1) charge at each vertex of Vq(X). This charging
happens only for q’s neighbors in 1-NNY . By Lemma 12, there are O(1) such neighbors
of q, so the charge at each vertex of Vq(X) is O(1). Moreover, if a vertex of Vq(X) is
destroyed by the insertion of a point from Y \ X, that vertex will not reappear. So the
O

(∣∣∂Vq(X)
∣∣) cost is absorbed by the structural changes which is already taken care of by

the Clarkson-Shor analysis. Unwinding the recursion gives a total expected running time of
O(|R| + |R|/2 + |R|/4 + · · · ) = O(|R|).

▶ Lemma 13. VorNN(R, TR) computes VorQ(R) in O(|R|) expected time.
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4.4 Computing VorQ(I) from VorQ(R) and I

Let q be a point in R. Let v1, v2, . . . be the vertices of Vq(R), in clockwise order, which may
be Voronoi edge bends or Voronoi vertices. Let Q∗

vi
denote the largest homothetic copy of Q∗

centered at vi such that int(Q∗
vi

) ∩ R = ∅. Let Zvi
= Q∗

vi
∩ I where I is an input instance.

▶ Lemma 14. The portions of VorQ(R ∪ I) and VorQ

(
{q} ∪ Zvi

∪ Zvi+1

)
inside the triangle

qvivi+1 are identical.

Proof. Let p be a point in (R ∪ I) \ {q} that contributes to VorQ(R ∪ I) inside qvivi+1. As
qvivi+1 ⊆ Vq(R), p ̸∈ R. So p ∈ I. By Lemma 4, p conflicts with vi or vi+1. ◀

Step 2 of the operation phase has found VS |pi
for each pi ∈ I. VS |pi

and the portions of
the Voronoi edges of VorQ(S) among the points in VS |pi

are preserved in VorQ(R) because R

includes the subset of S whose Voronoi cells conflict with the input points. Hence,
⋃n

i=1 VS |pi

is the set UR of Voronoi edge bends and Voronoi vertices in VorQ(R) that conflict with
the input points. y Lemma 14, we locally compute pieces of VorQ(R ∪ I) and stitch them
together. The running time is O

(∑
u,v(|Zu| + |Zv|) log(|Zu| + |Zv|)

)
, where the sum is over

all pairs {u, v} of adjacent Voronoi edge bends and Voronoi vertices in VorQ(R) such that
{u, v} ∩ UR ̸= ∅. Since the degrees of Voronoi edge bends and Voronoi vertices are two
and three respectively, this running time can be bounded by O

( ∑
v∈UR

|Zv| log |Zv|
)
. Since

UR ⊆ VS , by Lemma 2, step 6 of the operation phase computes VorQ(R∪I) in O(n) expected
time.

In step 7, the splitting of VorQ(R ∪ I) into VorQ(R) and VorQ(I) can be performed
in O(n) expected time by using the algorithm in [6] for splitting a Euclidean Delaunay
triangulation. That algorithm is combinatorial in nature. It relies on the Voronoi diagram
being planar and of O(n) size, all points having O(1) degrees in the nearest neighbor graph,
and that one can delete a site from a Voronoi diagram in time proportional to its number of
Voronoi neighbors. The first two properties hold in our case, and it is known how to delete a
site from an abstract Voronoi diagram so that the expected running time is proportional to
its number of Voronoi neighbors [17].

▶ Lemma 15. Step 6 of the operation phase computes VorQ(R ∪ I) in O(n) expected time,
and step 7 splits VorQ(R ∪ I) into VorQ(I) and VorQ(R) in O(n) expected time.

In summary, since steps 2-7 of the operation phase take O(n) expected time, the limiting
complexity is dominated by the O

( 1
ε n log m + 1

ε n2O(log∗ n) + 1
ε H

)
expected running time of

step 1. In the Euclidean case, step 1 runs faster in O
( 1

ε n log m + 1
ε H

)
time.

▶ Theorem 16. Let Q be a convex polygon with O(1) complexity. Let n be the input size.
For any ε ∈ (0, 1) and any hidden mixture of at most m = o(

√
n) product distributions such

that each distribution contributes an instance with a probability of Ω(1/n), there is a self-
improving algorithm for constructing a Voronoi diagram under dQ with a limiting complexity
of O( 1

ε n log m + 1
ε n2O(log∗ n) + 1

ε H). For the Euclidean metric, the limiting complexity is
O( 1

ε n log m + 1
ε H). The training phase runs in O(mn log2(mn) + mεn1+ε log(mn)) time.

The success probability is at least 1 − O(1/n).

5 Conclusion

It is open whether one can get rid of the requirement that each distribution in the mixture
contributes an instance with a probability of Ω(1/n), which is not needed for self-improving
sorting [8]. Eliminating the n2O(log∗ n) term from the limiting complexity might require
solving the question raised in [5] that whether there is an O(n)-time algorithm for computing
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the lower envelope of pseudo-planes. As a Voronoi diagram can be interpreted as the
lower envelope of some appropriate surfaces, a natural question is what surfaces admit a
self-improving lower envelope algorithm.
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Abstract
We consider the problem of coordinated motion planning for a swarm of simple, identical robots:
From a given start grid configuration of robots, we need to reach a desired target configuration via a
sequence of parallel, continuous, collision-free robot motions, such that the set of robots induces a
connected grid graph at all integer times. The objective is to minimize the makespan of the motion
schedule, i.e., to reach the new configuration in a minimum amount of time. We show that this
problem is NP-hard, even for deciding whether a makespan of 2 can be achieved, while it is possible
to check in polynomial time whether a makespan of 1 can be achieved.

On the algorithmic side, we establish simultaneous constant-factor approximation for two
fundamental parameters, by achieving constant stretch for constant scale. Scaled shapes (which arise
by increasing all dimensions of a given object by the same multiplicative factor) have been considered
in previous seminal work on self-assembly, often with unbounded or logarithmic scale factors; we
provide methods for a generalized scale factor, bounded by a constant. Moreover, our algorithm
achieves a constant stretch factor : If mapping the start configuration to the target configuration
requires a maximum Manhattan distance of d, then the total duration of our overall schedule is O(d),
which is optimal up to constant factors.
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Figure 1 (Top left) An autonomous, sphere-shaped catom, changing location by rotating around
a second catom used as a pivot [17]. (Bottom left) A swarm of catoms building a wall [17].
(Right) A configuration of catoms in the process of building a scaffold structure [26].

In this paper, we consider connected swarm reconfiguration: transform a set of mobile
agents from a given start into a desired target configuration by a sequence of parallel,
continuous, collision-free motions that keeps the overall arrangement connected at all integer
times. Problems of this type occur for assemblies in space, where disconnected pieces cannot
regain connectivity, or for small-scale swarm robots (such as catoms in claytronics [13]) which
need connectivity for local motion, electric power and communication; see Figure 1.

A crucial algorithmic aspect is efficiency: How can we coordinate the robot motions, such
that a target configuration is reached in timely or energy-efficient manner? Most previous
work has largely focused on sequential schedules, where one robot moves at a time, with
objectives such as minimizing the number of moves. In practice, however, robots usually
move simultaneously, so we desire a parallel motion schedule, with a natural objective of
minimizing the time until completion, called makespan. How well can we exploit parallelism
in a robot swarm to achieve an efficient schedule? As illustrated in Figure 2, this is where
the connectivity constraints make a tremendous difference.

A critical parameter in self-assembly is the robustness of the involved shapes, corresponding
to sufficient local connectivity to prevent fragility. This leads to the concept of scaled shapes;
intuitively, a scale factor of c corresponds to replacing each pixel of a polyomino shape by a
quadratic c×c array of pixels. This has fundamental connections to Kolmogorov and runtime
complexity, as shown by Soloveichik and Winfree [22]: “Furthermore, the independence of
scale in self-assembly theory appears to play the same crucial role as the independence of
running time in the theory of computability. . . [we] show that the running-time complexity,
with respect to Turing machines, is polynomially equivalent to the scale complexity of the
same function implemented via self-assembly by a finite set of tile types.” As a consequence,
limiting scale has received considerable attention, as sketched in the related work section.

As we demonstrate in this paper, achieving optimal makespan for connected reconfig-
uration is provably hard, even in relatively basic cases. On the positive side, we present
methods that are capable of achieving a constant-factor approximation, assuming not more
than a generalization of constant scale of configurations. As can be seen from Figure 2, this
is considerably more intricate than in a non-connected setting, even in very basic instances.

1.1 Our Results
We provide a spectrum of new results for questions arising from efficiently reconfiguring a
connected, unlabeled swarm of robots from a start configuration Cs into a target configuration
Ct, aiming for minimizing the overall makespan and maintaining connectivity in each step.
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(a) (b) (c) (d)

Figure 2 Reconfiguration with and without connectivity constraints. (a) Relocating the colored
particle from s to t, without (red trajectory A) and with connectivity constraint (blue trajectory B).
(b) Coordinating many particles to quickly deliver a specific particle to a desired location, while
preserving connectivity. (c) Reconfiguring an arrangement of identical particles in a single, parallel,
connected step. (d) Reconfiguring an arch-shaped arrangement of identical particles into a U-shaped
one, without (motion plan A, shown in red) and with connectivity (motion plan B, shown in blue).

Deciding whether there is a schedule with a makespan of 1 transforming Cs into Ct can
be done in polynomial time, see Theorem 1.
Deciding whether there is a schedule with a makespan of 2 transforming Cs into Ct is
NP-hard, see Theorem 2. This implies NP-hardness of approximating the minimum
makespan within a constant of ( 3

2 − ε), for any ε > 0, see Corollary 3.
As our main algorithmic result, we show that there is a constant c∗ such that for any pair
of start and target configurations with a (generalized) scale of at least c∗, a schedule with
constant stretch can be computed in polynomial time, see Theorem 4 and Corollary 11.
This implies that there is a constant-factor approximation for the problem of computing
schedules with minimal makespan restricted to pairs of start and target configurations
with a scale of at least c∗, see Corollary 12.

1.2 Related Work
In the following, we provide a sketch of the wide spectrum of related work; see the full version
of our paper [11] for a more detailed overview, as well as [7].

The basic question of coordinating the motion of many agents in an efficient manner arises
in many applications, such as ground swarm robotics [18, 19], aerial swarm robotics [3, 28],
air traffic control [5], and vehicular traffic networks [10, 20]. Multi-robot coordination dates
back to the seminal work by Schwartz and Sharir [21] from the 1980s. In both discrete
and geometric variants of the problem, the objects can be labeled, colored or unlabeled. In
the labeled case, the objects are all distinguishable and each object has its own, uniquely
defined target position. In the colored case, the objects are partitioned into k groups and
each target position can only be covered by an object with the right color; see Solovey and
Halperin [23]. In the unlabeled case, objects are indistinguishable and target positions can be
covered by any object; see Kloder and Hutchinson [15], Turpin et al. [27], Adler et al. [1], and
Solovey et al. [25]. On the negative side, Solovey and Halperin [24] prove that the unlabeled
multiple-object motion planning problem is PSPACE-hard.

For an instance of parallel reconfiguration, a lower bound for the time required for all
robots to reach their destinations is the maximum distance between a robot’s origin and
destination. This motivates the stretch factor, i.e., the ratio of the makespan of a parallel
motion plan divided by the maximum distance. In recent work, Demaine et al. [2, 7] were
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able to develop algorithms that can achieve constant stretch factors that are independent
of the number of robots; however, these approaches do not satisfy the crucial connectivity
constraint, so different algorithmic methods are required.

The concept of scale complexity has received considerable attention in self-assembly;
achieving constant scale has required special cases or operations. Soloveichik and Winfree [22]
showed that the minimal number of distinct tile types necessary to self-assemble a shape,
at some scale, can be bounded both above and below in terms of the shape’s Kolmogorov
complexity, leading to unbounded scale in general. Demaine et al. [9] showed that allowing to
destroy tiles can be exploited to achieve a scale that is only bounded by a logarithmic factor,
beating the linear bound without such operations. In a setting of recursive, multi-level staged
assembly with a logarithmic number of stages (i.e., “hands” for handling subassemblies),
Demaine et al. [6] achieved logarithmic scale, and constant scale for more constrained classes
of polyomino shapes; this was later improved by Demaine et al. [8] to constant scale for a
logarithmic number of stages. More recently, Luchsinger et al. [16] employed repulsive forces
between tiles to achieve constant scale in two-handed self-assembly.

2 Preliminaries

We consider robots at integer grid positions. A set of n unlabeled robots forms a configu-
ration C, corresponding to a vertex-induced subgraph H of the infinite integer grid, with
an edge between two grid vertices v1, v2 ∈ C if and only if v1 and v2 are on adjacent grid
positions, i.e., a distance of 1 apart. A configuration is connected, if H is connected. Two
configurations C1 and C2 overlap, if they have at least one position in common. A configura-
tion C is c-scaled, if it is the union of c× c squares of vertices. The scale of a configuration
C is the maximal c such that C is c-scaled. This corresponds to objects being composed of
pixels at a certain resolution; note that this is a generalization of the uniform pixel scaling
studied in previous literature (which considers a c-grid-based partition instead of an arbitrary
union), so it supersedes that definition and leads to a more general set of results. Two
robots are adjacent if their positions v1, v2 are adjacent, i.e., (v1, v2) ∈ E(H); and diagonally
adjacent if their positions are adjacent with a common vertex v such that (v1, v) and (v, v2)
lie orthogonal.

A robot can move in discrete time steps by changing its location from a grid position v to
an adjacent grid position w; denoted by v → w. Two moves v1 → w1 and v2 → w2 are called
collision-free if v1 ̸= v2 and w1 ≠ w2. A transformation between two configurations C1 =
{v1, . . . , vn} and C2 = {w1, . . . , wn} is a set of collision-free moves {vi → wi | i = 1, . . . , n}.
Note that a robot is allowed to hold its position. For M ∈ N, a schedule is a sequence
C1 → · · · → CM+1 (also denoted as C1 ⇒ CM+1) of transformations, with a makespan
of M . A stable schedule C1 ⇒χ CM+1 uses only connected configurations. Let Cs, Ct be
two connected configurations with equally many robots called start and target configuration,
respectively. A matching is a one-to-one mapping between vertices from Cs and Ct. The
diameter of a matching is the maximal Manhattan distance between two matched vertices.
A bottleneck matching is a matching with a minimal diameter. The diameter d of (Cs, Ct)
is the diameter of a bottleneck matching. The stretch (factor) of a (stable) schedule is the
ratio between the makespan M of the schedule and the diameter d of (Cs, Ct).
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3 Makespan 1 and 2

As a first observation we note that it can be decided in polynomial time whether there is a
schedule Cs → Ct with a makespan of 1 between a start and a target configuration.

▶ Theorem 1. For a pair of configurations Cs and Ct, each with n vertices, it can be decided
in polynomial time whether there is a schedule with a makespan of 1 transforming Cs into Ct.

Proof. Given two connected configurations Cs and Ct, each with n vertices. We compute
the bipartite graph GCs,Ct = (Vs ∪ Vt, E), where Vs and Vt consist of all occupied positions
in Cs and Ct. For E, we add an edge if and only if an occupied position in Ct is adjacent (or
identical) to an occupied position in Cs. Consider a perfect matching in GCs,Ct . Because
edges only connect positions which are at most one unit step apart, all robots can move
along their respective matching edges without crossing the path of another robot. If there is
no perfect matching in GCs,Ct , at least one robot would have to move to a position further
away. Thus, a makespan of 1 would not be achievable. So, there is a schedule of makespan 1
if and only if GCs,Ct admits a perfect matching. Because the graph is sparse, this can be
checked in O(n3/2) time, using the method of Hopcroft and Karp [14]. ◀

Note that, because Cs and Ct have to be connected, a schedule with a makespan of 1 is
always stable. Even for a makespan of 2, the same problem becomes provably difficult.

▶ Theorem 2. For a pair of configurations Cs and Ct, each with n vertices, deciding whether
there is a stable schedule with a makespan of 2 transforming Cs into Ct is NP-hard.

The proof is based on a reduction from the NP-hard problem Planar Monotone
3Sat [4], which asks to decide whether a Boolean 3-CNF formula φ is satisfiable, for which
in each clause the literals are either all unnegated or all negated.

The reduction considers an instance φ of Planar Monotone 3Sat and constructs an
instance Iφ with start configuration Cs and target configuration Ct; see Figure 3, with start
configuration (red), target configuration (dark cyan), and positions in both configurations
(gray) indicated by colors. We consider a rectilinear planar embedding of the variable-clause
incidence graph Gφ of φ, with variable vertices placed horizontally in a row, and clauses
with unnegated and negated literals placed above and below, respectively. Variables of φ are
represented by horizontal variable gadgets (light red). Two additional auxiliary gadgets (light
blue) are positioned at the top and at the bottom boundary of the instance, connected to the
variable gadget via bridges at the right boundary, and a separation gadget (yellow) between
each adjacent and nested pair of clause gadgets (blue). All clause gadgets are connected
via bridges to separation gadgets and possibly to the auxiliary gadgets. Further, there are
bridges from a clause gadget to the respectively contained variables.

Now a stable schedule for Iφ transforming the start configuration Cs into the target
configuration Ct with a makespan of 2 requires some robots of the variable gadget to move
in a very particular way to ensure connectivity between the variable gadget and the clause
gadgets via corresponding bridges. As shown in technical detail in the full paper, this allows
variable robots to connect either to the negated or the unnegated literal of involved clauses,
inducing a satisfying variable assignment for φ.

Technical details of the proof of Theorem 2 are given in the full version [11].
As a consequence of Theorem 2, even approximating the makespan is NP-hard.

▶ Corollary 3. It is NP-hard to compute for a pair of configurations Cs and Ct, each with n

vertices, a stable schedule that transforms Cs into Ct within a constant of ( 3
2 − ε) (for any

ε > 0) of the minimum makespan.
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x5x4x3x2x1

gadget placement in Iϕ

x1 x2 x3 x4 x5

C1
C2

C3

C4 C5

clause-variable incidence graph Gϕ of ϕ

separation gadget clause / auxiliary gadget variable gadget

...

...

...

...

...

bridges

The complete instance Iϕ (consisting of Cs and Ct) constructed from ϕ

Figure 3 Symbolic overview of the NP-hardness reduction. The depicted instance is due to the
Planar Monotone 3Sat formula φ = (x1∨x2∨x4)∧(x2∨x4)∧(x1∨x4∨x5)∧(x1∨x3)∧(x3∨x4∨x5).
We use three different colors to indicate occupied positions in the start configuration (red), in the
target configuration (dark cyan), and in both configurations (gray).
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4 Bounded Stretch for Arbitrary Makespan

Now we describe our algorithm for computing stable schedules with constant stretch.

▶ Theorem 4. There is a constant c∗ such that for any pair of overlapping start and target
configurations with a scale of at least c∗, there is a stable schedule of constant stretch.

For clearer presentation, we do not focus on the specific value of the constant c∗, but
only argue its existence.

4.1 Algorithm Overview and Preliminaries

4.1.1 Informal Outline

Scaffold Construction Scaffold DeconstructionRefilling Phase

Cs CtC ′
tC ′

s

Figure 4 Overview of the computed schedule: (Left) Constructing the scaffold of cd-tiles,
(middle) the refilling phase, and (right) deconstructing the scaffold.

See Figure 4 for an overview. In two preprocessing phases, we first ensure that the
pair (Cs, Ct) overlaps in at least one position. For this, we move Cs towards Ct along a
bottleneck matching such that the respective positions that realize the bottleneck distance,
coincide. The overlap is necessary to successfully construct the auxiliary structure in the
third phase of our approach. Afterwards, we use another bottleneck matching algorithm for
mapping the start configuration Cs to the target configuration Ct, minimizing the maximum
distance d between a start and a target location. Furthermore, we establish the scale in both
configurations, set c to be the minimum of both scale values, and compute a suitable tiling
whose tile size is c · d, and that contain both Cs and Ct.

In a third phase, we build a scaffolding structure around Cs and Ct, based on the
boundaries of cd-tiles of the specific tiling, see Figures 4 (left) and 5. This provides connectivity
throughout the actual reconfiguration. Restricting robot motion to their current and adjacent
tiles also ensures constant stretch. Note that, as the size of the tiles is related to d, the
scaffolding structure is connected.

In a fourth phase, we perform the actual reconfiguration of the arrangement. This consists
of refilling the tiles of the scaffold structure, achieving the proper number of robots within
each tile, based on elementary flow computations. As a subroutine, we transform the robots
inside each tile into a canonical “triangle” configuration, see Figures 4 (middle), 6, and 7.

In a fifth and final phase, we disassemble the scaffolding structure and move the involved
robots to their proper destinations, see Figures 4 (right) and 5.
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4.1.2 Technical Key Components

On a technical level, the five phases can be summarized as follows; again, refer to Figure 4.
(1) Guaranteeing Overlap: Move the configurations towards each other along a bottleneck

matching to ensure that the pair (Cs, Ct) overlaps in at least one position.
(2) Preprocessing: Apply the following three preprocessing steps: (2.1) Set c to be the

minimum of c∗ and the minimum scale values of Cs and Ct. (2.2) Compute the diameter
d of (Cs, Ct). (2.3) Compute the tiling T of (Cs, Ct).
The algorithmic core of our algorithm consists of the following three phases.

(3) Scaffold Construction: Reconfigure the start configuration Cs to a tiled configuration
C ′

s such that the interior of C ′
s is a subset of the start configuration Cs, see Figure 5.

(4) Refilling Tiles: Reconfigure C ′
s to a tiled configuration C ′

t, such that the interior of C ′
t

is a subset of the target configuration Ct, see Figures 6 and 7.
(5) Scaffold Deconstruction: Reconfigure C ′

t to Ct, see Figure 5.

Note that the scaffold deconstruction is inverse to the scaffold construction.

4.1.3 Preliminaries for the Algorithm

Let c, d ∈ N be the scale and the diameter of the pair (Cs, Ct), respectively. For x, y ∈ N,
a cd-tile T , or tile T for short, with anchor vertex (x · cd, y · cd) ∈ V (G) is a set of (cd)2

vertices from the grid G with x-coordinates from the range between x · cd and x · cd + cd− 1
and y-coordinates from the range between y · cd and y · cd + cd− 1. The boundary of T is
the set of vertices from T with an x-coordinate equal to x · cd or equal to x · cd + cd − 1,
or with a y-coordinate equal to y · cd or equal to y · cd + cd − 1. The interior of T is T

without its boundary. The right, top, left, and bottom sides of T are the sets of vertices
from the boundary of T with maximum x-coordinates, maximum y-coordinates, minimum
x-coordinates, and minimum y-coordinates, respectively. The left and right sides of a tile
are vertical sides and the top and bottom sides are horizontal sides. Two tiles T1, T2 are
horizontal (vertical) neighbors if they have two vertical (horizontal) sides s1 ⊂ T1 and s2 ⊂ T2,
such that each vertex from s1 is adjacent in G to a vertex from s2. Two tiles T1 and T2 are
diagonal neighbors if there is another tile T , such that T and T1 are horizontal neighbors
and T and T2 are vertical neighbors. The neighborhood of a tile T is the set of all neighbors
of T . A configuration in the interior of a tile T is called monotone, if and only if for every
robot r in the interior of T all positions to the left and to the bottom are occupied.

A start tile is a tile containing a vertex from the start configuration. A target tile is a tile
containing a vertex from the target configuration. The cd-tiling T of (Cs, Ct) is the union
of all start tiles including their neighborhoods and all target tiles. The scaffold of T is the
union of all boundaries of tiles from T . A cd-tiled configuration C, or tiled configuration C

for short, is a configuration that is a subset of T and a superset of the scaffold of T . The
interior of a tiled configuration C is the set of all vertices from C not lying on the scaffold.
The filling level of a tile T ∈ T is the number of robots in the interior of T . The filling level
of a tiled configuration C is the mapping of each tile onto its filling level in C.

In the following we give the technical description of our algorithm and the corresponding
correctness analysis. In particular, we first assume that the start and target configurations
overlap in at least one position, resulting in an algorithm guaranteeing constant stretch, and
adapt this to the case in that an overlap initially does not exist, afterwards.



S. P. Fekete, P. Keldenich, R. Kosfeld, C. Rieck, and C. Scheffer 9:9

4.2 Scaffold Construction
▶ Lemma 5. For any configuration Cs of scale c there is a stable schedule of makespan O(d),
transforming Cs into a tiled configuration C ′

s, with the interior of C ′
s being a subset of Cs.

Outline of the Construction. For the construction we consider 5 · 5 different classes, based
on x- and y-coordinates modulo 5cd; see Figure 5. We process a single class as follows. For
each tile T we consider its indirect neighborhood N [T ] consisting of all neighbors of T and all
neighbors of neighbors of T , i.e., a 5× 5 arrangement of tiles centered at T . For constructing
the boundary of T , we make use of robots from the interior of a tile in N [T ].

Constructing the Boundary of T works in Two Phases.
(3.1) Constructing the boundaries of all start tiles.
(3.2) Constructing the boundaries of all neighbors of start tiles.
Note that it suffices to construct all boundaries of the start tiles and their neighboring tiles,
because each target tile shares a side with a start tile or a side with a tile adjacent to a start
tile. Furthermore, the scale condition is only necessary for the construction of the scaffold,
i.e., we need to ensure that enough robots are available to build the scaffolding structure.
Each additional step of the algorithm works independently from this condition. A very rough
estimate on the scale is that c∗ = 400 is sufficient.

For details of the construction and the proof, we refer to the full version [11].

Figure 5 Constructing the scaffold. Tiles with currently constructed boundaries are marked
in purple. The zoom into the start configuration Cs shows the indirect neighborhood N [T ] of a
tile T (middle) for which its boundary is currently constructed and a further zoom into T with
an associated robot motion (right). In each transformation step a robot from the interior of a tile
T ′ ∈ N [T ] is swapped with a free position on the boundary of T based on a path P on a BFS-tree.

4.3 Refilling Tiles
It remains to modify configurations within and between tiles. To this end, we first establish
how to efficiently perform reconfigurations between any two tiled configurations with the
same numbers of robots in the interior of respective tiles; see Section 4.3.1. As a second step,
we describe how to relocate robots between tiles such that efficient reconfigurations between
any two tiled configurations with different numbers of robots in the interior of respective tiles
are achieved; see Section 4.3.2.
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4.3.1 Reconfiguration Maintaining the Number of Robots inside Tiles
▶ Lemma 6. Let C ′

s, C ′
t be two tiled configurations such that for all tiles T , C ′

s and C ′
t have

the same filling levels, i.e., for any tile, the corresponding start and target configurations
consist of the same respective numbers of robots. Then there is a stable schedule transforming
C ′

s into C ′
t within a makespan of O(d).

In the following we describe reconfigurations that leave all robot movements within the
interior of their respective tiles T ; thus, all tiles can be reconfigured in parallel. Therefore,
we only have to describe the approach for a start configuration Cs and a target configuration
Ct within the interior of a single tile T of a tiled configuration C ′

s.

Outline of the Reconfiguration. First compute two stable schedules Cs ⇒χ Cm
s and

Ct ⇒χ Cm
t , where Cm

s and Cm
t are monotone configurations. These reconfigurations are

achieved by a sequence of down and left movements, maintaining connectivity after each
move (see Figure 6 (Phase 4.1)). Proceeding from these monotone configurations, the robots
are arranged into a triangular configuration C∆ that occupies the lower left positions (defined
by a diagonal line with a slope of −1) of the interior of T . This is achieved by swapping
pairs of occupied and empty positions within a carefully defined area in several one-step
moves along L-shaped paths (see Figure 6 (Phase 4.2)). The property of C∆ is that it is the
same for all initial configurations with equally many robots. Thus, to get the stable schedule
Cs ⇒χ C∆ ⇒χ Ct, we can simply revert Ct ⇒χ C∆ and combine the result with Cs ⇒χ C∆.

mountain valleylevel Ulevel L

repeat untilPhase (4.2)

Phase (4.1)Cs C∆

Figure 6 Turning arrangement Cs (top) into the canonical triangle configuration C∆ (bottom).
Phase (4.1) achieves a monotonic arrangement; light gray indicates previous positions of moved
robots (shown in green). Phase (4.2) transforms the monotonic configuration into C∆.

Technically, the approach consists of the following four phases, see Figure 6.
(4.1) Monotone Start Configuration: Reconfigure Cs into Cm

s .
(4.2) Canonical Triangle: Reconfigure Cm

s into C∆.
(4.3) Monotone Target Configuration: Reconfigure C∆ into Cm

t .
(4.4) Target Configuration: Reconfigure Cm

t into Ct.

Phase (4.4) corresponds to a reversal of Phase (4.1), and Phase (4.3) to one of Phase (4.2),
so we only have to describe the first two phases. We analyze them individually, leading to a
proof of Lemma 6. Note that we exclude the corners of a tile, so the robots on the tile’s side
now form four non-adjacent sides. Furthermore, only robots in a tile’s interior move.
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Constructing the Monotone Start Configuration (Phase (4.1)). In the first step, we only
consider robots for which the right side of their tile T is the only one to which they are
connected through the interior of T . We iteratively move these robots down until further
movement is blocked, i.e., any further down move is not collision-free. In the second and
third steps, we move all robots left, followed by moving all robots down, each time until
further movement is blocked.

For Phase (4.2), we use the following terminology. The level of a position in the tile’s
interior is the sum of its coordinates. A level is filled, if all of its positions are occupied by a
robot, and empty, if none is occupied by a robot. The highest filled level is denoted by L, the
lowest empty level by U . LetM be the set of all positions on level U −1 occupied by a robot,
and V be the set of all positions on level L + 1 that are not occupied by a robot (see Figure 6
(Phase 4.2 left)); we call the positions of M and V mountains and valleys, respectively.

Constructing the Canonical Triangle (Phase (4.2)). Choose two equally sized subsets
M′ ⊆ M and V ′ ⊆ V and push each robot from M′ to a different position in V ′ along
an L-shaped path; this can be done simultaneously in one parallel move for all paths. To
determine the paths, simply match mountains and valleys, iteratively, in a way that no pair
of paths cross each other. This results in reducing U , and raising L, i.e., the two levels move
towards each other. We distinguish two cases.

U−L > 2: If |M| ≥ |V|, choose an arbitrary subsetM′ ⊂M with |M′| = |V|. Otherwise,
choose an arbitrary subset V ′ ⊂ V with |V ′| = |M|.
U − L = 2: Note that mountains and valleys are on the same level, and |V| ≥ |M| hold.
Choose V ′ ⊂ V to be the subset of size |M| with smallest x-coordinates and setM′ =M.

Due to space constraints, the details can be found in the full version [11].

4.3.2 Refilling Tiled Configurations
Now we describe the final step for reconfiguring a tiled start configuration C ′

s into a tiled
target configuration C ′

t; because no robots are destroyed or created, this hinges on shifting
robots between adjacent tiles, such that the required filling levels are achieved.

▶ Lemma 7. We can efficiently compute a stable schedule transforming C ′
s into C ′

t within a
makespan of O(d).

Outline of the Refilling Phase. To compute the schedule of Lemma 7, we transfer robots
between tiles, so that each tile T contains the desired number in C ′

t. We model this robot
transfer by a supply and demand flow, see Figure 7, followed by partitioning the flow into
O(1) subflows, such that each subflow can be realized within a makespan of O(d). For
realizing a single subflow, we use the approach of Section 4.3.1 as a preprocessing step, i.e.,
to rearrange robots participating in a specific subflow and place them at suitable positions.

Modeling Transfer of Robots via a Supply and Demand Flow. We model the transfer of
robots between tiles as a flow F : E(G)→ N, using the directed graph G = (T , E) which is
dual to the tiling T . Let B be the bottleneck matching between vertices from the original
(non-tiled) Cs and vertices from the final (non-tiled) Ct. In G we have an edge (u, v) ∈ E, if
there is at least one matching edge (ru, rv) ∈ B, such that ru lies in the interior of the tile
u in configuration C ′

s, and rv lies in the interior of the tile v in configuration C ′
t. The flow

value F ((u, v)) of (u, v) is equal to the number of such edges (ru, rv) ∈ B. A vertex v ∈ V (G)
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12

(a) Supply - Demand flow (b) Flow partitioning (c) Preprocessings (d) Flow realizations

f1

f2

Figure 7 An overview of the schedule refilling tiles: transforming C′
s into C′

t by realizing a
partition of a supply and demand flow that is computed in advance.

has a demand of a > 0 if the sum of the flow values of outgoing edges from v plus a is equal
to the sum of the flows of incoming edges to v. Analogously, v has a supply of a > 0 if the
sum of flow values incoming to v plus a equals the sum of flow values outgoing from v.

Flow Partition and Algorithmic Computation. Now we define a flow partition of F .

▶ Definition 8. For k ∈ N, a k-subflow of F is a supply and demand flow f : E(G)→ N on
G with f(e) ≤ min{k, F (e)}. A k-partition of the flow F is a set {f1, . . . , fℓ} of k-subflows
of F , such that

∑
i=1,...,ℓ fi(e) = F (e) holds for all edges e ∈ E(G).

We describe our approach for computing a ϕ-partition of F , with ϕ := ⌊ (cd−2)2

9 ⌋; the
value ϕ arises from partitioning the interior (made up of (cd− 2)2 pixels) of each tile into
9 almost equally sized subtiles that are used for realizing a single set of paths as described
below, see Figure 7(d).

(a)

v

e

(b)

Figure 8 (a) We model the movements of robots between tiles as paths forming a tree. By
greedily assigning these paths to sets (here highlighted by different colors), such that inside each
set each edge is contained in no more than 3 paths, we obtain that at most Θ(d2) sets are needed.
(b) An example of a set containing three paths (dark red, pink, and red; assigned in that order to
Sj) having a common edge e caused by a vertex v of e with an incoming degree of 3.

We compute a 1-partition of G, with each 1-subflow being either a cycle or a path that
connects a supply vertex with a demand vertex. Because the robots are unlabeled, we can
simplify G by eliminating all cyclic 1-subflows, as they are not necessary to realize this
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specific transfer of robots; note that this also applies to bidirectional edges. Furthermore, we
replace diagonal edges (v, w) ∈ E(G) by a pair of adjacent edges (v, u), (u, w) ∈ E(G). After
all cyclic subflows are removed, G is a planar, directed forest consisting of 1-subflows that
are paths, see Figure 8(a). We process each tree A ⊂ G that is made up of paths P1, P2, . . .

separately as follows: We choose an arbitrary vertex of A as its root and consider the link
distance of Pi as the minimal length of the path between a vertex from Pi and the root of A.
Let P1, P2, · · · ⊆ G be sorted by increasing link distances, which is important for our next
argument, regarding that we can partition these paths into constant many subflows each
of which is realizable in time linear in d. We greedily assign each path Pi = P1, P2, . . . to a
set Sj , such that the first edge e1 of Pi is not part of another path inside Sj . If no such a
set Sj exists, we create a new set S ← {Pi}. For each tree we use the same sets S1, S2, . . . of
collected paths, because different trees of G are disjoint. Note, that the construction of the
sets Sj allow that an edge is part of at most three paths inside Sj . This is due to the fact
that the income degree of a head vertex of a directed edge is at most three in the setting of
a grid graph, resulting in at most three outgoing edges.

Finally, we greedily partition {S1, S2, . . . } into subsets G1, G2, . . . called groups, made
up of (cd−2)2

9·3 sets. For each group Gi, we define a subflow fi by setting fi(e) as the number
of paths from Gi containing the edge e. As for each set Si and each edge e, there are at most
three paths inside Si containing e, each resulting subflow fi is a

(
(cd−2)2

9·3 · 3
)

= ϕ-subflow.
Finally, we have to upper-bound the number of resulting subflows, i.e., the number of groups.

▶ Lemma 9. The constructed ϕ-partition {f1, f2, . . . } consists of at most 28 subflows.

Realizing a ϕ-Partition. Now we describe how to reconfigure a tiled configuration, such
that a ϕ-subflow is removed from G.

▶ Definition 10. A ϕ-subflow fi is realized by transforming the current configuration into
another configuration, such that for each edge e with fi((T, T ′)) > 0, the number of robots in
the interior of tile T is decreased by fi((T, T ′)) and the number of the robots in the interior
of tile T ′ is increased by fi((T, T ′)).

Next we realize a specific ϕ-subflow within a makespan of O(d). In particular, we
partition the interior of each tile T into 9 subtiles with equal side lengths (up to rounding),
see Figure 7(d). For each subflow fi, we place fi((T, T ′)) robots inside the middle subtile
of T that shares an edge with the boundary of T adjacent to T ′. In particular, robots placed
in the same subtile are arranged in layers of width ⌊ cd−2

9 ⌋ as close as possible to the boundary
of the tile, see Figure 7(d). The resulting arrangement of robots inside the subtile of T is a
cluster and T ′ the target tile of the cluster. By a single application of the approach from
Section 4.3.1, all clusters of all tiles are arranged simultaneously within a makespan of O(d).
Finally, simultaneously pushing all clusters of all tiles into the direction of their target tiles
realizes Si, see Figure 7(d). Note that not all robots are pushed into the target tile T ′ but
some replace robots on the boundaries between T and T ′, see Figure 7(d).

Repeating this approach for each subflow fi leads to a stable schedule that realizes
the entire flow F within a makespan linear in d, i.e., transforms C ′

s into C ′
t within O(d)

tranformation steps, see Figure 7.
The omitted proofs can be found in the full version [11].
This concludes the proof of Theorem 4. Finally, we adapt the result to the general case,

for which overlap of the start and target configurations is not guaranteed.

▶ Corollary 11. There is a constant c∗ such that for any pair of start and target configurations
with a scale of at least c∗, there is a stable schedule of constant stretch.
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Proof. In case of a pair (Cs, Ct), consisting of a start and a target configuration, that does
not overlap, our algorithm computes in a first step a minimum bottleneck matching mapping
Cs to Ct resulting in a bottleneck distance d, and translates Cs into a configuration Cs

overlapping the target configuration within a makespan of d. This results in a bottleneck
distance d between Cs and Ct which is at most 2d. As Theorem 4 guarantees a makespan
linear in d, we obtain a makespan linear in d+d, i.e., linear in d for the overall algorithm. ◀

As the diameter of the pair (Cs, Ct) is a lower bound for the makespan of any schedule
transforming Cs into Ct, we obtain the following.

▶ Corollary 12. There is a constant-factor approximation for computing stable schedules
with minimal makespan between pairs of start and target configurations with a scale of at
least c∗, for some constant c∗.

5 Conclusion

We have shown that connected coordinated motion planning is challenging even in relatively
simple cases, such as unlabeled robots that have to travel a distance of at most 2 units. On
the other hand, we have shown that (assuming sufficient scale of the swarm), it is possible to
compute efficient reconfiguration schedules with constant stretch.

It is straightforward to extend our approach to other scenarios, e.g., to three-dimensional
configurations. Other questions appear less clear. Is it possible to achieve constant stretch
for arrangements with very small scale factor? We believe that this may hinge on the ability
to perform synchronized shifts on long-distance “chains” of robots without delay, which
is not a valid assumption for many real-world scenarios. (A well-known example is a line
of cars when a traffic light turns green.) As a consequence, the answer may depend on
crucial assumptions on motion control; we avoid this issue in our approach. Can we provide
alternative approaches with either weaker scale assumptions or better stretch factors? Can
we extend our methods to the labeled case? All these questions are left for future work.
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1 Introduction

Medians are an important tool in the statistical analysis and visualization of data. Due
to the fact that medians only depend on the order of the data points, and not their exact
positions, they are very robust against outliers. However, in many applications, data sets
are multidimensional, and there is no clear order of the data set. For this reason, various
generalizations of medians to higher dimensions have been introduced and studied, see
e.g. [1, 17, 21] for surveys. Many of these generalized medians rely on a notion of depth of a
query point within a data set, a median then being a query point with the highest depth
among all possible query points. Several such depth measures have been introduced over
time, most famously Tukey depth [28] (also called halfspace depth), simplicial depth [16],
or convex hull peeling depth (see, e.g., [1]). In particular, just like the median, all of these
depth measures only depend on the relative positions of the involved points. More formally,
let SRd denote the family of all finite sets of points in Rd. A depth measure is a function
ϱ : (SRd

,Rd) → R≥0 which assigns to each pair (S, q) consisting of a finite set of data points
S and a query point q a value, which describes how deep the query point q lies within the
data set S. A depth measure ϱ is called combinatorial if it depends only on the order type of
S ∪ {q}, that is, if it only depends on the orientations of the simplices spanned by the points,
but not on their actual positions. In this paper, we consider general classes of combinatorial
depth measures, defined by a small set of axioms, and prove relations between them and
concrete depth measures, such as Tukey depth (TD) and Tverberg depth (TvD). Let us first
briefly discuss these two depth measures.

▶ Definition 1. Let S be a finite point set in Rd and let q be a query point. Then the Tukey
depth of q with respect to S, denoted by TD(S, q), is the minimum number of points of S in
any closed half-space containing q.
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S1

S2

S3

q

Figure 1 The point q has enclosing depth 5.

Tukey depth, also known as halfspace depth, was independently introduced by Joseph
L. Hodges in 1955 [11] and by John W. Tukey in 1975 [28] and has received significant
attention since, both from a combinatrial as well as from an algorithmic perspective, see
e.g. Chapter 58 in [27] and the references therein. Notably, the centerpoint theorem states
that for any point set S ⊂ Rd, there exists a point q ∈ Rd for which TD(S, q) ≥ |S|

d+1 [22].
In order to define Tverberg depth, we need a preliminary definition: given a point set S

in Rd, an r-partition of S is a partition of S into r pairwise disjoint subsets S1, . . . , Sr ⊂ S

with
⋂r

i=1 conv(Si) ̸= ∅, where conv(Si) denotes the convex hull of Si. We call
⋂r

i=1 conv(Si)
the intersection of the r-partition.

▶ Definition 2. Let S be a finite point set in Rd and let q be a query point. Then the Tverberg
depth of q with respect to S, denoted by TvD(S, q), is the maximum r such that there is an
r-partition of S whose intersection contains q.

Tverberg depth is named after Helge Tverberg who proved in 1966 that any set of
(d + 1)(r − 1) + 1 points in Rd allows an r-partition [29]. In particular, this implies that
there is a point q with TvD(S, q) ≥ |S|

d+1 . Just as for Tukey depth, there is an extensive body
of work on Tverbergs theorem, see the survey [4] and the references therein.

In R1, both Tukey and Tverberg depth give a very natural depth measure: it counts the
number of points of S to the left and to the right of q and then returns the minimum of the
two numbers. We call this measure the standard depth in R1. In particular, for all of them
there is always a point q ∈ R1 for which we have ϱ(S, q) ≥ |S|

2 , that is, a median.
Another depth measure that is important in this paper is called enclosing depth. For an

illustration of this depth measure, see Figure 1 We say that a point set S of size (d+1)k in Rd

k-encloses a point q if S can be partitioned into d + 1 pairwise disjoint subsets S1, . . . , Sd+1,
each of size k, in such a way that for every transversal p1 ∈ S1, . . . , pd+1 ∈ Sd+1, the point
q is in the convex hull of p1, . . . , pd+1. Intuitively, the points of S are centered around the
vertices of a simplex with q in its interior.

▶ Definition 3. Let S be a finite point set in Rd and let q be a query point. Then the
enclosing depth of q with respect to S, denoted by ED(S, q), is the maximum k such that
there exists a subset of S which k-encloses q.

It is straightforward to see that enclosing depth also gives the standard depth in R1. The
centerpoint theorem [22] and Tverberg’s theorem [29] show that both for Tukey as well as
Tverberg depth, there are deep points in any dimension. The question whether a depth
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measure enforces deep points is a central question in the study of depth measures. We will
show that this also holds for enclosing depth. In fact, we will show that enclosing depth can
be bounded from below by a constant fraction of Tukey depth. We will further show that
all depth measures considered in this paper can be bounded from below by enclosing depth.
From this we get one of the main results of this paper: all depth measures that satisfy the
axioms given later are a constant factor approximation of Tukey depth.

Another area of study in depth measures are depth regions, also called depth contours.
For some depth measure ϱ and α ∈ R, we define the α-region of a point set S ⊂ Rd as the set
of all points in Rd that have depth at least α with respect to S. We denote the α-region of
S by DS

ϱ (α) := {q ∈ Rd | ϱ(S, q) ≥ α}. Note that for α < β we have DS
ϱ (α) ⊃ DS

ϱ (β), that
is, the depth regions are nested. The structure of depth regions has been studied for several
depth measures, see e.g. [20, 32] In particular, depth regions in R2 have been proposed as a
tool for data visualization [28]. From a combinatorial point of view, Gil Kalai introduced the
following conjecture [13]

▶ Conjecture 4 (Cascade Conjecture). Let S be a point set of size n in Rd. For each
i ∈ {1, . . . , n}, denote by di the dimension of DS

TvD(i), where we set dim(∅) = −1. Then
n∑

i=1
di ≥ 0.

The conjecture is known to be true when S is in so-called strongly general position [23],
for general position in some dimensions [24, 25, 26] (see also [4] for more information), and
without any assumption of general position for d ≤ 2 in an unpublished M. Sc thesis in
Hebrew by Akiva Kadari (see [15]).

While Kalai’s conjecture is specifically about Tverberg depth, the sum of dimensions
of depth regions can be computed for any depth measure, and thus the conjecture can be
generalized to other depth measures. In fact, in a talk Kalai conjectured that the Cascade
conjecture is true for Tukey depth, mentioning on his slides that “this should be doable” [14].
In this work, we will prove the conjecture to be true for a family of depth measures that
includes Tukey depth.

Structure of the paper
We start the technical part by introducing a first set of axioms in Section 2, defining what we
call super-additive depth measures. For these depth measures, we show that they lie between
Tukey and Tverberg depth. In Section 3 we then prove the cascade conjecture for additive
depth measures whose depth regions are convex. We then give a second set of axioms in
Section 4, defining central depth measures, and show how to bound them from below by
enclosing depth. Finally, in Section 5, we give a lower bound for enclosing depth in terms of
Tukey depth. In order to prove this bound, we notice a close relationship of enclosing depth
with a version of Radon’s theorem on certain two-colored point sets.

2 A first set of axioms

The first set of depth measures that we consider are super-additive depth measures1. A
combinatorial depth measure ϱ : (SRd

,Rd) → R≥0 is called super-additive if it satisfies the
following conditions:

1 We name both our families of depth measures after one of the conditions they satisfy. The reason for
this is that the condition they are named after is the condition which separates this family from the
other one.
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(i) for all S ∈ SRd and q, p ∈ Rd we have |ϱ(S, q) − ϱ(S ∪ {p}, q)| ≤ 1 (sensitivity),
(ii) for all S ∈ SRd and q ∈ Rd we have ϱ(S, q) = 0 for q ̸∈ conv(S) (locality),
(iii) for all S ∈ SRd and q ∈ Rd we have ϱ(S, q) ≥ 1 for q ∈ conv(S) (non-triviality),
(iv) for any disjoint subsets S1, S2 ⊆ S and q ∈ Rd we have ϱ(S, q) ≥ ϱ(S1, q) + ϱ(S2, q)

(super-additivity).

It is not hard to show that a one-dimensional depth measure which satisfies these
conditions has to be the standard depth measure (in fact, the arguments are generalized to
higher dimensions in the following two observations) and that no three conditions suffice for
this. Further, it can be shown that both Tukey depth and Tverberg depth are super-additive.

We first note that the first two axioms suffice to give an upper bound:

▶ Observation 5. For every depth measure ϱ satisfying (i) sensitivity and (ii) locality and
for all S ∈ SRd and q ∈ Rd we have ϱ(S, q) ≤ TD(S, q).

Proof. By the definition of Tukey depth, TD(S, q) = k implies that we can remove a subset S′

of k points from S so that q is not in the convex hull of S \ S′. In particular, ϱ(S \ S′, q) = 0
by locality. By sensitivity we further have ϱ(S \ S′, q) ≥ ϱ(S, q) − k, which implies the
claim. ◀

Further, the last two axioms can be used to give a lower bound:

▶ Observation 6. For every depth measure ϱ satisfying (iii) non-triviality and (iv) super-
additivity and for all S ∈ SRd and q ∈ Rd we have ϱ(S, q) ≥ TvD(S, q).

Proof. Let TvD(S, q) = k and consider a k-partition S1, . . . , Sk with q in its intersection.
By non-triviality we have ϱ(Si, q) ≥ 1 for each Si. Using super-additivity and induction we
conclude that ϱ(

⋃k
i=1 Si, q) ≥

∑k
i=1 ϱ(Si, k) ≥ k. ◀

Finally, it is not too hard to show that TvD(S, q) ≥ 1
d TD(S, q), see e.g. [10] for an

argument. Combining these observations, we thus get the following.

▶ Corollary 7. Let ϱ be a super-additive depth measure. Then for every point set S and
query point q in Rd we have

TD(S, q) ≥ ϱ(S, q) ≥ TvD(S, q) ≥ 1
d

TD(S, q).

Let us note here that it could be that the factor 1
d in the last inequality could be

improved. Indeed, in the plane, we have that TvD = min{TD, ⌈ |S|
3 ⌉} [23]. This fails already

in dimension 3 [3]. It would be interesting to see how much the factor 1
d can be improved.

From Corollary 7 it follows that for any super-additive depth measure and any point
set there is always a point of depth at least |S|

d+1 , for example any Tverberg point. On the
other hand, there are depth measures which give the standard depth in R1 which are not
super-additive, for example convex hull peeling depth or enclosing depth.

▶ Observation 8. Enclosing depth satisfies conditions (i)–(iii) and (v), but not the super-
additivity condition (iv).

Proof. It follows straight from the definition that enclosing depth satisfies the conditions
(i)–(iii) and (v). To see that the super-additivity condition is not satisfied, consider the
example in Figure 2. The point q has enclosing depth 1 with respect to both the set of blue
points and the set of red points. However, it can be seen that the enclosing depth of q with
respect to both the red and the blue points is still 1. ◀
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q

Figure 2 Enclosing depth does not satisfy the super-additivity condition: the point q has enclosing
depth 1 with respect to both the blue and the red points, but its enclosing depth with respect to the
union of the two sets is still 1.

3 The Cascade Conjecture

In this section we prove the cascade conjecture for super-additive depth measures whose
depth regions are convex. In fact, we will prove the cascade conjecture for the case of weighted
point sets. A weighted point set is a point set S together with a weight function w : S → R≥0
which assigns a weight w(p) to each p ∈ S. We say that a weighted point set S′ is a strict
subset of S, denoted by S′ ⊂ S, if the underlying point set of S′ is a strict subset of the
underlying point set of S, and w′(p) ≤ w(p) for every p ∈ S′, where w′ is the weight function
on S′. In particular, if S′ ⊂ S, there is a point which is in S but not in S′. For two weighted
point sets A and B with weight functions wA and wB , respectively, the weight function on
their union A ∪ B is defined as the sum of the respective weight functions. That is, we have
w(p) = wA(p) for p ∈ A \ B, w(p) = wB(p) for p ∈ B \ A and w(p) = wA(p) + wB(p) for
p ∈ A ∩ B. Further, for a set S of points we define the weight of S as w(S) :=

∑
p∈S w(p).

Similarly, by a partition of a weighted point set S into parts A and B we mean two weight
functions wA and wB, such that w(p) = wA(p) + wB(p) for p ∈ S, and by a partition into
strict subsets A and B, we mean that both weighted point sets A and B must be strict
subsets of S, that is, there are points pA, pB in S for which wA(pA) = 0 and wB(pB) = 0.
The axioms for super-additive depth measures extend to weighted point sets in the following
way:

(i) for all S ∈ SRd and q, p ∈ Rd we have |ϱ(S, q) − ϱ(S ∪ {p}, q)| ≤ w(p) (sensitivity),
(ii) for all S ∈ SRd and q ∈ Rd we have ϱ(S, q) = 0 for q ̸∈ conv(S) (locality),
(iii) for all S ∈ SRd and q ∈ Rd we have ϱ(S, q) ≥ min{w(p) : p ∈ S} for q ∈ conv(S)

(non-triviality),
(iv) for any disjoint subsets S1, S2 ⊆ S and q ∈ Rd we have ϱ(S, q) ≥ ϱ(S1, q) + ϱ(S2, q)

(super-additivity).

Clearly, each point set can be considered as a weighted point set by assigning weight 1 to
each point. On the other hand, by placing several points at the same location, normalizing
and using the fact that Q is dense in R, each depth measure defined on point sets can be
extended to weighted point sets. Further, we can again define depth regions DS

ϱ (α) :=
{q ∈ Rd | ϱ(S, q) ≥ α}. We will also use a special depth region, called the median region,

ISAAC 2021
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denoted by Mϱ(S), which is the deepest non-empty depth region. More formally, let α0
be the supremum value for which DS

ϱ (α0) ̸= ∅. Then Mϱ(S) := DS
ϱ (α0). In the setting of

weighted point sets, the cascade condition translates to∫ w(S)

0
dαdα ≥ 0.

Note that the cascade conjecture for a depth measure on weighted point sets implies the
cascade conjecture for that depth measure on unweighted point sets. If for a depth measure
ϱ the above integral is non-negative for any weighted point set S, we say that ϱ is cascading.

In the following, we will show that super-additive depth measures whose depth regions
are convex are cascading in two steps. First we will show that if we partition a weighted
point set into two parts whose median regions intersect and the cascade condition holds for
both parts, then the cascade condition holds for the whole set. In a second step, we prove
that we can always partition a point set in such a way, further enforcing that none of the
parts contains all points, that is, each part is a strict subset. The claim then follows by
induction.

▶ Lemma 9. Let ϱ be a super-additive depth measure whose depth regions are convex and let
S1 and S2 be two weighted point sets in Rd whose median regions intersect. Assume that the
cascade condition holds for S1 and S2. Then the cascade condition holds for S1 ∪ S2.

Before we prove this, let us describe a way to compute
∫ w(S)

0 dαdα. Consider some depth
region DS

ϱ (α) of dimension k. Being convex, this depth region lies in some k-dimensional
affine subspace H ⊂ Rd. Considering all depth regions, they lie in a sequence of nested affine
subspaces, also known as a flag. Assuming that the origin lies in the median region, we can
find a basis F = {f1, . . . , fd} of Rd such that each relevant affine subspace is spanned by a
subset of the basis vectors. In fact, there are many choices of bases. Further, we can assign
to each basis vector fi a survival time αi defined by the following property: for each α ∈ R,
the affine subspace in which DS

ϱ (α) lies is spanned by the subset {fi ∈ F | αi ≥ α}. As
above, we let α0 be the supremum value for which DS

ϱ (α0) ̸= ∅, that is, we view α0 as the
survival time of the origin. Using this formulation, we note that∫ w(S)

0
dαdα =

d∑
i=0

αi − w(S),

see Figure 3 for an illustration.

Proof of Lemma 9. We may assume without loss of generality that the origin is in both
median regions. Further, we can choose a basis F = {f1, . . . , fd} of Rd such that all relevant
affine subspaces both of S1 and S2, and thus also of S1 ∪ S2, are spanned by subsets of F .
Let αi, βi and γi denote the survival times of fi for S1, S2 and S1 ∪ S2, respectively. It
follows from the super-additivity condition that γi ≥ αi + βi. Thus we get

d∑
i=0

γi − w(S1 ∪ S2) ≥
d∑

i=0
(αi + βi) − (w(S1) + w(S2))

≥
d∑

i=0
αi − w(S1) +

d∑
i=0

βi − w(S2) ≥ 0. (1)

◀
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Figure 3
∫ w(S)

0 dαdα =
∑d

i=0 αi − w(S).

▶ Lemma 10. Let ϱ be a super-additive depth measure whose depth regions are convex and
let S be a weighted point set in Rd with |S| ≥ d + 2. Then there exists a partition of S into
strict subsets S1 and S2 whose median regions intersect.

Proof. Assume without loss of generality that w(p) = 1 for every p ∈ S (otherwise just
multiply the weights of p in S1 and S2 with w(p) after finding the partition). Consider the
barycentric subdivision B of the boundary ∂∆ of the simplex with vertices S. There is a
natural identification of the vertices of B with strict subsets of S (see Figure 4). Linearly
extending this assignment to ∂∆ defines a map which assigns to each point b on ∂∆ a
strict weighted subset S(b) of S. Further, under the natural antipodality on ∂∆, we get
complements of the weighted subsets, that is, S(−b) = S(b)C .

We claim that for some point b on ∂∆ we have that the median regions of S(b) and S(−b)
intersect. If this is true, our claim follows by setting S1 = S(b) and S2 = S(−b). Using
Proposition 1 from [31], for each b we may assume that the median region of S(b) is a single
point m(b) in Rd ant that the map m which sends b to m(b) is continuous. We thus want
to find a point b for which m(b) = m(−b). Further, ∂∆ is homeomorphic to the sphere
S|S|−2, and the antipodality on ∂∆ corresponds to the standard antipodality on the sphere.
As |S| ≥ d + 2, the existence of a point b for which m(b) = m(−b) thus follows from the
Borsuk-Ulam theorem. ◀

While we have only shown that there is a partition, Bourgin-Yang-type theorems [6, 30]
tell us, that the space of possible partitions has to be large. In particular, it has dimension
at least |S| − d − 2. Depending on the application, this might be used to enforce other
conditions on the partitions.

▶ Theorem 11. Let ϱ be a super-additive depth measure whose depth regions are convex.
Then ϱ is cascading.

Proof. Let S be a weighted point set in Rd and assume without loss of generality that its
affine hull is Rd (otherwise, we can just consider S to be a weighted point set in some lower
dimensional space). We want to show that the cascade condition holds for S. We prove this
by induction on |S|. If |S| ≤ d + 1, then S must be the vertices of a simplex, and in this case
it is not hard to check that the cascade condition holds. So, assume now that |S| ≥ d + 2.
By Lemma 10, we can partition S into S1 and S2 whose median regions intersect. Note that
|S1|, |S2| < |S|, so by the induction hypothesis the cascade condition holds for both S1 and
S2. Thus, by Lemma 9, the cascade condition also holds for S. ◀
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{p1}

{p2} {p3}{p2, p3}

{p1, p2} {p1, p3}

w(p1) = 1, w(p2) = 0, w(p3) = α

w(p1) = 0, w(p2) = 1, w(p3) = 1− α

Figure 4 Vertices of the barycentric subdivision correspond to strict subsets.

As noted above, an example of a super-additive depth measure with convex depth regions
is Tukey depth. Thus, we get the following.

▶ Corollary 12. Tukey depth is cascading.

On the other hand, while Tverberg depth is super-additive, its depth regions are in
general not convex; in fact, they are not even connected. A weak version of Kalai’s cascade
conjecture claims that the cascade condition holds for the convex hull of Tverberg depth
regions. These depth regions are convex by definition, but the resulting depth measure is in
general not super-additive anymore. So while our approach proves the cascade conjecture for
an entire family of depth measures, solving Kalai’s cascade conjecture even in its weak form
likely requires additional ideas. As every super-additive depth measure is bounded from
below by Tverberg depth, solving the strong version of Kalai’s cascade conjecture would
imply that all super-additive depth measures are cascading. Further, it can be seen that
any cascading depth measure must enforce deep points. More precisely, if ϱ is a cascading
depth measure and S is a point set in Rd, then there must be a point q ∈ Rd for which
ϱ(S, q) ≥ |S|

d+1 . Indeed, if there was no such point, we would have d|S|/(d+1) = −1, and even
if di = d for all i < |S|

d+1 , the sum
∑|S|

i=1 di would still be negative. The existence of deep
points is the main feature of the next family of depth measures that we study.

4 A second set of axioms

The second family of depth measures we consider are central depth measures. A combinatorial
depth measure ϱ : (SRd

,Rd) → R≥0 is called central if it satisfies the following conditions:
(i) for all S ∈ SRd and q, p ∈ Rd we have |ϱ(S, q) − ϱ(S ∪ {p}, q)| ≤ 1 (sensitivity),
(ii) for all S ∈ SRd and q ∈ Rd we have ϱ(S, q) = 0 for q ̸∈ conv(S) (locality),
(iii’) for every S ∈ SRd there is a q ∈ Rd for which ϱ(S, q) ≥ 1

d+1 |S| (centrality).
(iv’) for all S ∈ SRd and q, p ∈ Rd we have ϱ(S ∪ {p}, q) ≥ ϱ(S, q) (monotonicity),

Note that conditions (i) and (ii) are the same as for super-additive depth measures, so
by Observation 5 we have ϱ(S, q) ≤ TD(S, q) for every central depth measure. Further, the
centrality condition (iii’) is stronger than the non-triviality condition (iii) for super-additive
depth measures. On the other hand, the super-additivity condition (iv) is stronger than
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the monotonicity condition (iv’), so at first glance, the families of super-additive depth
measures and central depth measures are not comparable. However, we have seen before that
any super-additive depth measure indeed satisfies the centrality condition, so central depth
measures are a superset of super-additive depth measures. It is actually a strict superset,
as for example the depth measure whose depth regions are defined as the convex hulls of
Tverberg depth regions is central but not super-additive.

While central depth measures enforce deep points by definition, they might still differ a
lot locally. In the following, we will show that we can bound by how much they differ locally,
showing that every central depth measure is a constant factor approximation of Tukey depth.

▶ Theorem 13. Let ϱ be a central depth measure in Rd. Then there exists a constant c = c(d),
which depends only on the dimension d, such that

TD(S, q) ≥ ϱ(S, q) ≥ ED(S, q) − (d + 1) ≥ c · TD(S, q) − (d + 1).

Here the first inequality is just Observation 5. As for the second inequality, we would like
to argue that if S k-encloses q then ϱ(S, q) = k. By centrality, there must indeed be a point
q′ with ϱ(S, q′) = k (note that |S| = k(d + 1) by definition of k-enclosing), but this point can
lie anywhere in the centerpoint region of S and not every point in the centerpoint region is
k-enclosed by S. However, by adding d + 1 points very close to q, we can ensure that q is
the only possible centerpoint in the new point set, and the second inequality then follows
from sensitivity and monotonicity after removing these points again.

This argument can be generalized even to a relaxation of central depth measures: We say
that a combinatorial depth measure as α-central if it satisfies conditions (i), (ii) and (iv’),
and the following weak version of condition (iii’): for every S ∈ SRd there is a q ∈ Rd for
which ϱ(S, q) ≥ α|S| (α-centrality)

▶ Lemma 14. Let α > 1
d+2 , and let ϱ be an α-central depth measure. Then there exists a

constant c1 = c1(d) such that

ϱ(S, q) ≥ c1 · ED(S, q) − (d + 1).

Proof. Let ED(S, q) = k and let S′ be a witness subset. Recall that by monotonicity, we
have ϱ(S, q) ≥ ϱ(S′, q). Further, note that TD(S′, q) = k and TD(S′, q′) ≤ k for all q′ ∈ Rd.
Let α′ := (d + 1)α and let m := ⌊ 1−α′

α′ k + 1⌋. Add (d + 1)m points very close to q such that
the new point set P (k + m)-encloses q. The new point set P has (d + 1)(k + m) many points,
and we have

α|P | = α′(k + m) > α′(k + 1 − α′

α′ k) = α′k + (1 − α′)k = k.

In particular, the only points q′ for which ϱ(P, q′) ≥ α|P | is possible are by construction very
close to q. As they were in the same cell as q before adding the new points, we can assume
without loss of generality that we have ϱ(P, q) ≥ α|P |. By sensitivity we now have

ϱ(S′, q) ≥ ϱ(P, q) − (d + 1)m
≥ α′(k + m) − (d + 1)m
≥ α′k − (d + 1 − α′)m

≥ α′k − (d + 1 − α′)(1 − α′

α′ + 1)

= α′k − (d + 1 − α′)(1 − α′)
α′ k − (d + 1) + α
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≥ (α′2 − (d + 1) + α′ + (d + 1)α′ − α′2) k

α′ − (d + 1)

= (d + 2)α′ − (d + 1)
α′ k − (d + 1). (2)

Plugging in α′ := (d + 1)α we get

ϱ(S, q) ≥ (d + 2)(d + 1)α − (d + 1)
(d + 1)α k − (d + 1) = (d + 2 − 1

α
)k − (d + 1).

As (d + 2 − 1
α ) > 0 for α > 1

d+2 , the claim follows. ◀

The most involved part of Theorem 13 is the last inequality, which we will prove in the
next section.

5 A lower bound for enclosing depth

In this section, we will prove a lower bound on the enclosing depth in terms of Tukey depth:

▶ Theorem 15 (E(d)). There is a constant c1 = c1(d) such that for all S ∈ SRd and q ∈ Rd

we have ED ≤ c1 · TD(S, q).

We will denote this statement in dimension d by E(d). Note that E(1) is true and
c1(1) = 1. The general result could be proved using the semi-algebraic same type lemma
due to Fox, Pach and Suk [9], combined with the first selection lemma (see e.g. [19]). Here
we will give a different proof for two reasons: first, the bounds on c1 that our proof gives
are better than the bounds we would get from the proof using the semi-algebraic same type
lemma. Second, our proof shows an intimate relation of enclosing depth to a positive fraction
Radon theorem on certain bichromatic point sets.

Let P = R ∪ B be a bichromatic point set with color classes R (red) and B (blue). We
say that B surrounds R if for every halfspace h we have |B ∩ h| ≥ |R ∩ h|. Note that this in
particular implies |B| ≥ |R|. The positive fraction Radon theorem is now the following:

▶ Theorem 16 (R(d)). Let P = R ∪ B be a bichromatic point set where B surrounds R.
Then there is a constant c2 = c2(d) such that there are integers a and b and pairwise disjoint
subsets R1, . . . , Ra ⊆ R and B1, . . . , Bb ⊆ B with
1. a + b = d + 2,
2. |Ri| ≥ c2 · |R| for all 1 ≤ i ≤ a,
3. |Bi| ≥ c2 · |R| for all 1 ≤ i ≤ b,
4. for every transversal r1 ∈ R1, . . . , ra ∈ Ra, b1 ∈ B1, . . . , bb ∈ Bb, we have

conv(r1, . . . , ra) ∩ conv(b1, . . . , bb) ̸= ∅.

In other words, the Radon partition respects the color classes. We will denote the above
statement in dimension d by R(d).

▶ Lemma 17. R(1) can be satisfied choosing a = 1, b = 2 and c2(1) = 1
3 .

Proof. Consider two points x1 and x2 such that there are exactly |R|
3 blue points to the

left of x1 and to the right of x2, respectively. Define B1 as the set of blue points left of
x1 and B2 as the set of blue points right x2. We then have |B1| = |B2| = 1

3 |R|. Further,
as B surrounds R, we have at most |R|

3 red points to the left of x1, and also to the right
of x2. In particular, there are at least |R|

3 red points between x1 and x2. Let now R1

be any subset of |R|
3 red points between x1 and x2. It follows from the construction that

conv(R1) ∩ conv(B1, B2) ̸= ∅. ◀
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In the following, we will prove that R(d − 1) ⇒ E(d) and that E(d − 1) ⇒ R(d). By
induction, these two claims then imply the above theorems.

▶ Lemma 18. R(d − 1) ⇒ E(d).

Proof. Assume that TD(S, q) = k and let h be a witnessing hyperplane which contains q

but no points of S. Without loss of generality, assume that q is the origin and that h is
the hyperplane through the equator on Sd−1 ⊆ Rd, with exactly k points below. Color the
points below h red and the points above h blue. Now, for every point p ∈ S, consider the
line through p and q and let p′ be the intersection of that line with the tangent hyperplane
to the north pole of Sd−1. Color p′ the same color as p. This gives a bichromatic point
set S′ = R ∪ B in Rd−1. Further, in S′, we have that B surrounds R: Assume there is a
hyperplane ℓ (in Rd−1) with r red points and b blue points on its positive side, where r > b.
In Rd, this lifts to a hyperplane containing q with k − r red points and b blue points on its
positive side (note that there are exactly k red points). However, k − r + b < k, whenever
r > b, thus we would have TD(s, q) < k, which is a contradiction.

As we now have a point set in Rd−1, in which B surrounds R, we can apply R(d − 1) to
find families of d + 2 subsets of S′, each of size c2 · k, some red and some blue, such that in
each transversal the color classes form a Radon partition. We claim that the corresponding
subsets of S c2 · k-enclose q. Pick some transversal (which we call the original red and blue
points) and consider the corresponding subset in S′. Let z be a point in the intersection of
the convex hulls of the two color classes, and let g be the line through z and q. As z is in
the convex hull of the blue points, there is a point z+ on g which is in the convex hull of the
original blue points, and thus above h. Similarly, there is a point z− on g which is in the
convex hull of the original red points, and thus below h. As q is in the convex hull of z+ and
z−, it is thus in the convex hull of the original blue and red points. ◀

In particular, this proof shows that c1(d) = c2(d − 1).
For the proof of the second implication, we need to recall a few results, starting with the

Same Type Lemma by Bárány and Valtr [5].

▶ Theorem 19 (Theorem 2 in [5]). For every two natural numbers d and m there is a
constant c3(d, m) > 0 with the following property: Given point sets X1, . . . , Xm ⊆ Rd such
that X1 ∪ . . . ∪ Xm is in general position, there are subsets Yi ⊆ Xi with |Yi| ≥ c3 · |Xi| such
that all transversals of the Yi have the same order type.

From the proof in [5], we get c3(d, m) = 2−mO(d) . This bound has been improved in [9]
to c3(d, m) = 2−O(d3m log m).

The second result that we will need is the Center Transversal Theorem, proved independ-
ently by Dol’nikov [8] as well as Zivaljević and Vrećica [31]. We will only need the version
for two colors, so we state it in this restricted version:

▶ Theorem 20 (Center Transversal for two colors). Let µ1 and µ2 be two finite Borel measures
on Rd. Then there exists a line ℓ such that for every closed halfspace H which contains ℓ

and every i ∈ {1, 2} we have µi(H) ≥ µi(Rd)
d .

Such a line ℓ is called a center transversal. By a standard argument (replacing points
with balls of small radius, see e.g. [18]), the same result also holds for two point sets P1, P2
in general position, where µi(H) is replaced by |Pi ∩ H|. As we will need similar ideas later,
we will briefly sketch a proof of the above Theorem. Consider some (d − 1)-dimensional
linear subspace F , i.e., a hyperplane through the origin, and project both measures to it.
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For each projected measure, consider the centerpoint region (i.e., the region of Tukey depth
≥ µi(Rd)

(d−1)+1 ). This is a non-empty, convex set, so it has a unique center of mass, which we
will denote by ci(F ). Rotating the subspace F in continuous fashion, these centers of mass
also move continuously, so the ci(F ) are two continuous assignments of points to the set of
all (d − 1)-dimensional linear subspaces. The result then follows from the following Lemma,
again proved independently by Dol’nikov [8] as well as Zivaljević and Vrećica [31]:

▶ Lemma 21. Let g1 and g2 be two continuous assignments of points to the set of all
(d − 1)-dimensional linear subspaces of Rd. Then there exists such a subspace F in which
g1(F ) = g2(F ).

Note that in order to apply this Lemma, we had to choose in a continuous way a
centerpoint. If the two measures can be separated by a hyperplane, we can do something
similar with the center transversal:

▶ Lemma 22. Let µ1 and µ2 be two finite Borel measures on Rd, which can be separated by
a hyperplane. Then there is a unique canonical choice of a center transversal.

Proof. Let x1, . . . , xd be the basis vectors of Rd and assume without loss of generality that
the hyperplane H : xd = 0 separates the two measures µ1, µ2. For any d − 1-dimensional
linear subspace F , consider the projection πF : Rd → F . Note that if F is orthogonal to H,
then πF (H) separates πF (µ1) and πF (µ1), so there is no center transversal parallel to H. It
thus suffices to consider only (oriented) subspaces which point upwards (in the sense that the
xd-component in their normal vector is > 0). The space of these subspaces is homeomorphic
to the upper hemisphere S+ of Sd−1. Let now C be the set of all such subspaces in which
we have g1(F ) = g2(F ). We claim that C is a convex set in S+. Consider two subspaces
F1 and F2 with g1(F1) = g2(F1) and g1(F2) = g2(F2). The shortest path between F1 and
F2 corresponds to a rotation around a (d − 2)-dimensional axis. Rotate from F1 to F2 with
constant speed and consider a point in the support of a measure. The projection of this
point moves along a line in the projection. In fact, all points in move along parallel lines
with direction

−→
d , and the points in the support of µ1 move in the opposite direction of the

points in the support of µ2. Further, for any points p1in the support of µ1 and p2in the
support of µ2, their projections move towards one another, until they are on a common
hyperplane with normal vector

−→
d , and the away from one another. The same arguments

hold for the centerpoint regions of the projections and their centers of mass, which shows
that if g1(F1) = g2(F1) and g1(F2) = g2(F2) then g1(F ) = g2(F ) for every subspace F along
the rotation. Thus, the set C is indeed convex, and we can choose the unique solution
corresponding to the center of mass of C. ◀

Again, the same statement holds for point sets in general position. With these tools at
hand, we are now ready to prove the second part of the induction.

▶ Lemma 23. E(d − 1) ⇒ R(d).

Proof. Let ℓ be a line through the origin. Sweep a hyperplane orthogonal to ℓ from one side
to the other (without loss of generality from left to right). Let h1 be a sweep hyperplane with
exactly |R|

3 blue points to the left, and let A1 be the set of these blue points. Similarly, let A2

be a set of exactly |R|
3 blue points to the right of a sweep hyperplane h2. Let c be the unique

center transversal of A1 and A2 given by Lemma 22 and let g be the (d − 1)-dimensional
linear subspace which is orthogonal to c. Note that it follows from the proof of Lemma 22
that g cannot be orthogonal to the sweep hyperplanes. We denote the projection of c to g as
cA. Note that cA is a centerpoint of the projections of A1 and of A2 to g. Now, consider the
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set M of all red points between h1 and h2 and note that as the blue points surround the
red points we have |M | ≥ |R|

3 . Project M to g and denote by cM the center of mass of the
centerpoint region of the projected point set. We claim that there exists a choice of a line ℓ,
such that cM = cA. Indeed, as g is not orthogonal to a sweep hyperplane, there is a unique
shortest rotation which rotates g to a hyperplane orthogonal to ℓ, thus the space of all g’s is
homeomorphic to the space of all (d − 1)-dimensional linear subspaces. Further, cA and cM

are continuous assignments of points, thus the above claim follows from Lemma 21.
So assume now that cM = cA. In particular, c is a center transversal for A1, A2 and M .

Project A1 to g. The projection of c is a centerpoint of the projection of A1 in g and g has
dimension d − 1, thus by the statement E(d − 1) there are three subsets A1,1, . . . A1,d of A1,
each of size c1 · |A1| whose projections enclose the projection of c. The analogous arguments
gives subsets A2,1, . . . , A2,d of A2 and M1, . . . , Md of M . Consider now these 3d subsets.
By Theorem 19 there are subsets A′

1,1, . . . , M ′
d, each of size linear in the size of the original

subset, such that each transversal of the subsets has the same order type. Consider such a
transversal. By construction, the d points of A1 contain in their convex hull a point on c

which is to the left of h1. Similarly, the d points of A2 contain in their convex hull a point
on c to the right of h2. Finally, the d points of M contain in their convex hull a point on c

between h1 and h2. Thus, the convex hulls of the blue points (from A1 and A2) and the red
points (from M) intersect. In particular, there is a subset of d + 2 red and blue points, which
form a Radon partition. By choosing the subsets from which these points were selected, we
now get the subsets required for R(d). ◀

This proof show that c2(d) = c3(d,d+2)
3d c1(d − 1). Using the bound on c3 from [9] and

c1(d) = c2(d − 1), we thus get c2(d) = Ω( c2(d−2)
3d·2d4 log d

) = . . . = Ω( 1
3d/2d!!·2d5 log d

), and as
c1(d) = c2(d − 1) we get the same asymptotics for c1.

Combining this with the results from Section 4, we get that any central depth measure is
an approximation of Tukey depth. In fact, by Lemma 14 this even holds for many α-central
depth measures.

▶ Corollary 24. Let ϱ be an α-central depth measure on Rd where α > 1
d+2 . Then there

exists a constant c = c(d) such that for every point set S and query point q in Rd we have

TD(S, q) ≥ ϱ(S, q) ≥ c · TD(S, q).

6 Conclusion

We have introduced two families of depth measures, called super-additive depth measures
and central depth measures, where the first is a strict subset of the second. We have shown
that all these depth measures are a constant-factor approximation of Tukey depth.

It is known that Tukey depth is coNP-hard to compute when both |S| and d is part of
the input [12], and it is even hard to approximate [2] (see also [7]). Our result is thus an
indication that central depth measures are hard to compute. However, this does not follow
directly, as our constant has a doubly exponential dependence on d. It is an interesting open
problem whether the approximation factor can be improved.

Further, we have introduced a new depth measure called enclosing depth, which is neither
super-additive nor central, but still is a constant-factor approximation of Tukey depth. As it
turns out, this depth measure is intimately related to a constant fraction Radon theorem on
bi-colored point sets. Finally, we have shown that any super-additive depth measure whose
depth regions are convex is cascading.
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This last result is motivated by Kalai’s cascade conjecture, which, in the terminology of
this paper, states that Tverberg depth is cascading. While this conjecture remains open, we
hope that our results might be useful for an eventual proof.

There is a depth measure which has attracted a lot of research, which does not fit into
our framework: simplicial depth (SD). The reason for this is that while the depth studied in
this paper are linear in the size of the point set, simplicial depth has values of size O(|S|d+1).
However, after the right normalization, simplicial depth can be reformulated to satisfy all
conditions except super-additivity and centrality. It would be interesting to see whether there
is some function g depending on point sets and query points such that the depth measure
SD(S,q)
g(S,q) is super-additive. Such a function, if it exists, could potentially be used to improve

bounds for the first selection lemma (see e.g. [19]).
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Abstract
Given a set S of regions with piece-wise linear boundary and a positive angle α < 90◦, we consider
the problem of computing the locations and orientations of the minimum number of α-floodlights
positioned at points in S which suffice to illuminate the entire x-axis. We show that the problem
can be solved in O(n log n) time and O(n) space, where n is the number of vertices of the set S.
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1 Introduction

An α-floodlight is a two-dimensional floodlight whose illumination cone angle is equal to a
positive angle α. We are interested in using the minimum number of α-floodlights positioned
at points of a given set S in the plane in order to illuminate the entire x-axis; in particular,
we consider that S is a collection of regions with piece-wise linear boundary which may
degenerate into a point. We assume that no point of S lies on the x-axis (otherwise, at most
two floodlights would suffice for any value of α) and that the entire S lies in the halfplane
above the x-axis (any point of S below the x-axis can be equivalently reflected about the
x-axis into the halfplane above the x-axis). Next, regarding the angle α of the α-floodlights,
we consider that α < 90◦ because for α ≥ 90◦ the problem admits a trivial solution: if
90◦ ≤ α < 180◦ then two floodlights are necessary and sufficient to illuminate the entire
x-axis, and if α ≥ 180◦ then one floodlight is necessary and sufficient. Thus, in this paper
we focus on the following problem.

The Axis α-Illumination Problem
Given a set S of regions with piece-wise linear boundary above the x-axis and a positive
angle α < 90◦, compute the locations and orientations of the minimum number of
α-floodlights positioned at points in S which suffice to illuminate the entire x-axis.
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11:2 Illuminating the x-Axis by α-Floodlights

As the number of required α-floodlights can be very large even for a set S of small
descriptive size, we designate that a solution to an instance of the Axis α-floodlight Problem
is a set of pairs (ti, Ri) where ti ∈ S and Ri is a maximal continuous range of the x-axis to
be illuminated by α-floodlights positioned at ti such that (i) the union of all the ranges Ri

is equal to the x-axis and (ii) over all pairs, the sum
∑

i

†
angle(Ri)

α

£
is minimized where

angle(Ri) is the angle subtended by the range Ri from ti; this sum is precisely the total
number of α-floodlights needed to illuminate the entire x-axis. We note that there may be
more than one pair associated with a location ti ∈ S but if it is so, then the corresponding
x-axis ranges do not intersect; see Figure 1(right). As we show (Corollary 12), the size of
such a solution is at most linear in the number of vertices of the given set S.

Figure 1 (left) An instance of the Axis α-Illumination Problem for two floodlight locations and
α = 40◦; (middle) A solution with five floodlights; (right) A solution with three floodlights.

Clearly, any instance of the Axis α-floodlight Problem admits a solution since a single point
in the set S can illuminate the entire x-axis by using

†
180◦

α

£
α-floodlights; see Figure 1(middle)

where five 40◦-floodlights can be used to illuminate the x-axis. Yet, the minimum number of
needed floodlights may be much smaller; in Figure 1(right), for the given set S containing
two locations, three 40◦-floodlights suffice to illuminate the entire x-axis.

Our Contribution. In this paper, we present an algorithm to solve the Axis α-Illumination
Problem. Our algorithm runs in O(n log n) time where n is the number of vertices of the given
set S of potential floodlight locations. Our algorithm can be used to illuminate arbitrary
lines as well as line segments.

Related Work. Floodlight illumination problems are considered a prominent class in
Computational Geometry [14, 20] and find applications in the field of directional sensor
networks [19]. The seminal Stage Illumination Problem [3] was posed by Urrutia in 1992
and later proved to be NP-complete even with some restrictions by Ito et al. [11]. This
problem takes as inputs a line segment and a set of floodlights Fi with angles αi and apexes
at predetermined locations pi on the same side of the segment, the goal being to rotate the
floodlights around their positions in such a way that the segment is completely illuminated.
Even more related to our work is the problem of the Optimal Floodlight Illumination of the
Real Line [5], which takes as inputs a line and a set S of n points, with the goal being to
determine a finite set of floodlights Fj of arbitrary angles αj and with apexes at pj ∈ S

(more than one floodlight can have the same point as apex) such that the line is illuminated
and the sum of the angles αj is the smallest possible. This problem was shown to be solvable
in Θ(n log n) time [5]. Further, the Optimal Floodlight Illumination of a Stage, similar to the
previous one but considering a segment instead of a line, has also been considered and solved
in Θ(n log n) time even if no more than one floodlight are allowed to have the same point
as apex [7]. On the other hand, the problem of whether a polygon can be illuminated by a
given number of α-floodlights is NP-hard and APX-hard [1].
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Figure 2 (left) A hyperbola with its foci (shown in blue) on a horizontal line; (right) A hyperbola
with its foci (shown in blue) on a vertical line. The red lines are the directrices of the hyperbola.

Finally, a wider perspective locates our problem as a variant of the Art Gallery Problem,
originally posed by Klee in 1973 as the question of determining the minimum number of
guards sufficient to see every point of the interior of a simple polygon; for more details,
see the book by O’Rourke [13], the survey article by Shermer [15], and the book chapter
by Urrutia [20]. Among all these variants, we only mention just a few, chronologically,
those the most related to our problem: the searchlight problem in polygons [18], floodlight
illumination of the plane [3], floodlight illumination of polygons [8], the two-floodlight
illumination problem [9], floodlight illumination of wedges [17], continuous surveillance of
points by rotating floodlights [2], and monitoring the plane with rotating radars [4].

2 Preliminaries

Our algorithm relies on the use of hyperbola arcs and of the farthest-point Voronoi diagram
of a point set in the plane. So, we present the definition and useful properties of these two
notions.

Hyperbola. A hyperbola with foci f1 and f2 is the locus of the points in the plane such that
the absolute value of the difference of their distances from f1 and f2 is constant (and less
than the distance of the foci) [21]; see Figure 2(left). Most commonly, the foci are located at
(x0 − c, y0) and (x0 + c, y0), where c > 0. Then, if the absolute value of the difference of the
distances from the foci is equal to 2a with 0 < a < c, the expression of the hyperbola is

(x− x0)2

a2 − (y − y0)2

c2 − a2 = 1. (1)

Such a hyperbola consists of two branches separated by any vertical line x = x0 + δ where
−a < δ < a. In fact, these branches can also be defined in terms of the two directrices
of the hyperbola which, in this case, are vertical lines; the directrices are symmetrically
positioned about the center (x0, y0) of the hyperbola at distance a2/c from it. Then, each
hyperbola branch is the locus of points whose distance from one of the foci divided by the
(perpendicular) distance from the corresponding directrix is greater than 1; for the hyperbola
satisfying Equation (1), this ratio of distances is equal to c/a > 1.

If the foci are located at (x0, y0 − c) and (x0, y0 + c) (i.e., the foci are on a vertical line),
we have a symmetric case by “exchanging” the x- and y-axis, as shown in Figure 2(right).

Farthest-point Voronoi diagram. The farthest-point Voronoi diagram of a planar point
set will also be exploited in our algorithm. For a given set of points S = {p1, p2, ..., pn} in
the plane, typically called sites, the farthest-point Voronoi diagram of S divides the plane
into cells such that each cell contains all the points of the plane with the same farthest site
among the sites in S [6]. It is well known that:
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11:4 Illuminating the x-Axis by α-Floodlights

▶ Lemma 1 ([6]).
(i) A point of a point-set S has a cell in the farthest-point Voronoi diagram of S if and

only if it is a vertex of the convex hull of S.
(ii) The farthest-point Voronoi diagram of n points in the plane has O(n) vertices, edges,

and cells.
As a result of Lemma 1(i), all cells of a planar farthest-point Voronoi diagram are unbounded
and its vertices and edges form a tree-like structure (Figure 9). Additionally, the definition
of the farthest-point Voronoi diagram readily implies the following corollary.

▶ Corollary 2. Let fVD(S) be the farthest-point Voronoi diagram of a planar point-set S

and let V (p) be the cell of p ∈ S in fVD(S). Then, a point r belongs to the closure of V (p)
if and only if the entire S is enclosed by the circle with center r and radius the distance of r

to p.

3 Illuminating unbounded and bounded ranges of the x-axis

In this section, we present how to efficiently illuminate unbounded and bounded ranges of
the x-axis and we introduce some useful notation. We first consider unbounded ranges of
the x-axis, i.e., a range (−∞, χ] or a range [χ, +∞). Then, the definition of an α-floodlight
implies the following observation.

▶ Observation 3. Let t be a two-dimensional point above the x-axis. The illumination cone
of any α-floodlight positioned at t and illuminating the maximum range (−∞, χ] of the x-axis
(i.e., χ is maximized) is delimited by the t-originating leftward-pointing horizontal ray and the
t-originating downward-pointing ray that forms an angle equal to α with the positive x-axis;
see Figure 3. Symmetrically, the illumination cone of any α-floodlight positioned at t and
illuminating the maximum range [χ′, +∞) of the x-axis (i.e., χ′ is minimized) is delimited by
the t-originating rightward-pointing horizontal ray and the t-originating downward-pointing
ray that forms an angle equal to 180◦ − α with the positive x-axis.

In light of this observation, in the next lemma we show how to efficiently illuminate the
unbounded ranges of the x-axis.

α

α

α

α

Figure 3 Illuminating a maximum x-axis range (−∞, χ].

▶ Lemma 4. For the given set S of potential floodlight locations, let t ∈ S lie on the line
supporting S from below and forming angle α with the positive x-axis. Then, the maximum
range (−∞, χt] of the x-axis illuminated by an α-floodlight positioned at t is no smaller
than the maximum range (−∞, χ] of the x-axis illuminated by an α-floodlight positioned
at any other point in S; see Figure 3. A symmetric result holds for the illumination of a
range [χ′, +∞) of the x-axis where the points in S that maximize the illuminated range are
those that lie on the line supporting S from below and forming angle 180◦−α with the positive
x-axis.
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Next, let (−∞, χleft] and [χright, +∞) be the maximum such ranges of the x-axis illumin-
ated by an α-floodlight positioned at any point in the given location set S; the values χleft

and χright can be computed as described in Lemma 4. Note that χleft < χright because
α < 90◦.

t
c

p q

α
αα

Figure 4 Illuminating a bounded range of the x-axis with an α-floodlight positioned at t.

Now, let us consider the illumination of bounded ranges of the x-axis. If an α-floodlight
positioned at a point t above the x-axis illuminates the range [χL, χR] of the x-axis with
−∞ < χL < χright, we write that illum(t, χL) = [χL, χR]; the range illum(t, χL) is uniquely
defined as the range of the x-axis swept by the counterclockwise rotation by an angle α

of the t-originating ray that goes through the point (χL, 0) on the x-axis. In addition, we
extend this notation and use illum(t,−∞) to denote the maximum range of the form (−∞, χ]
illuminated by an α-floodlight at t; see Observation 3.

Assuming that illum(t, χL) = [χL, χR], let p, q be the points p = (χL, 0) and q = (χR, 0)
and let r be the radius of the circle through t, p, q (see Figure 4). Then, the distance of the
center c of this circle from the x-axis is r cos α, that is, the ratio of its distance to t over its
distance to the x-axis is 1/ cos α, which is a constant greater than 1 for any fixed α < 90◦.
Therefore, from Section 2, the center c belongs to a hyperbola branch which we formally
define next.

▶ Definition 5. For any positive angle α < 90◦ and any point t above the x-axis, we define
the hyperbola branch Ht (with the point t as focus and the x-axis as directrix) that is the
locus of points whose distance from the point t divided by the (perpendicular) distance from
the x-axis is equal to 1/ cos α > 1.

Figure 5 A set of five point locations and the corresponding hyperbola branches Hi for α = 10◦.
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11:6 Illuminating the x-Axis by α-Floodlights

Figure 5 shows the hyperbola branches Ht for a set of five points and α = 10◦. Then, from
the above discussion and from Figure 4, we have:

▶ Lemma 6. Let t be a point above the x-axis and α a positive angle where α < 90◦. Consider
an α-floodlight positioned at t which illuminates a range [χL, χR] of the x-axis, and let p, q be
the points p = (χL, 0) and q = (χR, 0) on the x-axis. If C is the circle defined by t, p, q, then:

(i) The center c of the circle C lies on the hyperbola branch Ht (see Definition 5).
(ii) The line through p and c forms a fixed angle equal to 90◦ − α with the positive x-axis.

Symmetrically, the line through q and c forms a fixed angle equal to 90◦ + α with the
positive x-axis.

As we are interested in minimizing the total number of α-floodlights used, it is important
to use floodlights positioned at points of the given set S of locations such that the illuminated
range is maximized. Thus, for −∞ ≤ χ < χright, we denote by loc_max(χ) ⊆ S the set of
locations t ∈ S such that illum(t, χ) is maximized; Lemma 4 implies that if χ = −∞, all
these locations belong to a line forming angle α with the positive x-axis whereas Figure 4
implies that for −∞ < χ < χright, they belong to an arc of a circle with endpoints being the
endpoints of illum(t, χ).

In order to determine the points in loc_max(χ) for χ such that χleft ≤ χ < χright, we
use the properties stated in the following lemma.

▶ Lemma 7. Let t be a point in the location set S. For any real number χ such that
χleft ≤ χ < χright, assume that illum(t, χ) = [χ, χR] and let p, q be the points p = (χ, 0) and
q = (χR, 0) on the x-axis. If c is the center of the circle C through t, p, q, then:

(i) The point t belongs to loc_max(χ) if and only if the circle C encloses the entire set S.
(ii) The point t belongs to loc_max(χ) if and only if c belongs to the upper envelope of the

hyperbola branches Hu for all u ∈ S.
(iii) If t belongs to loc_max(χ), then no range [χ′

L, χ′
R] with χ′

L ≤ χ and χ′
R > χR can be

illuminated by an α-floodlight located at any point of S.

4 The Algorithm

First, we show that the Axis α-Illumination Problem admits solutions in which we use
one floodlight to illuminate the range (−∞, χleft] and another one to illuminate the
range [χright, +∞) (Figure 6) where χleft, χright are as defined in Section 3.

▶ Lemma 8. Let S be a given set of locations and let α < 90◦. Then, there exists a solution
of the Axis α-Illumination Problem on S in which one floodlight is used to illuminate the
range (−∞, χleft] and another one to illuminate the range [χright, +∞) of the x-axis.

Therefore, next, we concentrate on the illumination of the range [χleft, χright] of the x-axis.
First, we note that, as is the case in [5], any instance of the Axis α-Illumination Problem
on a (possibly continuous) location set S can be reduced into an instance on the set of the
convex hull vertices of S, that is, on a discrete location set.

▶ Lemma 9. The Axis α-Illumination Problem on a set S of planar regions with piece-wise
linear boundary has the same solution as the Axis α-Illumination Problem on the vertices of
the convex hull CH(S) of S.

Because of Lemma 9, in the following, we can assume that S is a discrete set, with |S| = n.
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α

α

χleft χright

Figure 6 The upper envelope H of the hyperbola branches in Figure 5 and the α-floodlights
(shown in red) illuminating the ranges (−∞, χleft] and [χright, +∞) of the x-axis.

For the illumination of the range [χleft, χright] of the x-axis, Lemma 7(iii) suggests
that it is advantageous to use locations that belong to the corresponding loc_max(·) set.
This is what we do in First Algorithm. The algorithm determines a location in the current
loc_max(χ) set (for χleft ≤ χ < χright) from the intersection of the upper envelope H of
the hyperbola branches with a line forming angle 90◦ − α with the positive x-axis that goes
through point (χ, 0) on the x-axis (see Lemma 6(ii)); any such line intersects a hyperbola
branch Ht at exactly one point.

First Algorithm
Input: a positive angle α < 90◦, a set S of regions with piece-wise linear boundary
above the x-axis, and the range [χleft, χright] of the x-axis to be illuminated
Output: a set F of α-floodlights at points in S illuminating the entire [χleft, χright], and
the corresponding illuminated ranges

1. F ← ∅; {F will store a solution}
current_χ← χleft;
while current_χ < χright do

p← the point (current_χ, 0) on the x-axis;
v ← a vertex in loc_max(current_χ);
q ← point on the x-axis to the right of p such that the angle p̂vq is equal to α;
χ′ ← the x-coordinate of q;
F ← F ∪

{ (
v, [current_χ, χ′]

) }
;

current_χ← χ′;
return the resulting F ;

Clearly, the algorithm can be used to illuminate any subset of the range [χleft, χright]
of the x-axis, and in general any line segment in the plane. First Algorithm places an
α-floodlight at a point in loc_max(χleft), which is computed from the arc in the upper
envelope H that is intersected by the line through the point (χleft, 0) and forming angle
90◦ −α with the positive x-axis (Lemma 6 and Lemma 7(ii)), and if the illuminated range is
[χleft, χ1], in a similar fashion, places an α-floodlight at a point in loc_max(χ1), and if the
new illuminated range is [χ1, χ2], it places an α-floodlight at a point in loc_max(χ2), and so
on so forth until χright gets illuminated. Figure 7 shows how Step 2 of the First Algorithm
works in order to illuminate the range [χleft, χright] of the x-axis for the set of five point
locations of Figure 5.
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χleft χright

Figure 7 Illustration of the operation of First Algorithm on the hyperbola branches of Figure 5
and the set of floodlights produced by the algorithm to optimally illuminate the range [χleft, χright]
of the x-axis.

If the upper envelope H of the hyperbola branches Ht of the vertices of the convex
hull CH(S) of the location set S is given as a left-to-right sequence of hyperbola arcs along
with the associated vertices of CH(S), First Algorithm takes O(n + k) time where k is the
number of α-floodlights that are eventually used. If the output consists of a list of the
required floodlights, this algorithm is output-size sensitive. However, the number k may be
very large even for a location set S of small descriptive size.

In the following, we propose a modified approach which, in one fell swoop, computes
a number of illuminated ranges corresponding to many α-floodlights placed at the same
location in S; once we reach an arc A of the upper envelope H , we determine all consecutive
α-floodlights that need to be placed at the convex-hull vertex corresponding to the arc A by
using the right endpoint of A. This approach is used in Step 2 of Second Algorithm for the
general Axis α-Illumination Problem, which we give below.

Second Algorithm
Input: a positive angle α < 90◦ and a set S of regions with piece-wise linear boundary above
the x-axis
Output: a set F of α-floodlights located at points in S illuminating the entire x-axis, and the
corresponding illuminated ranges on the x-axis

1. compute the convex hull CH(S) of the given location set S;
compute the upper envelope H of the hyperbola branches (each defined by a vertex in
CH(S) and the x-axis as directrix) and store it as a left-to-right sequence of hyperbola
arcs, each associated with the corresponding vertex in CH(S);
vfirst ← a vertex of CH(S) as described in Lemma 4 in order to place an α-floodlight to
illuminate the range (−∞, χleft] of the x-axis;
vlast ← a vertex of CH(S) as described in Lemma 4 in order to place an α-floodlight to
illuminate the range [χright, +∞) of the x-axis;
F ←

{ (
vfirst, (−∞, χleft]

) }
; {F will store a solution}

continued on next page...
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Second Algorithm (continued)
2. current_χ← χleft;

while current_χ < χright do
p ← the point (current_χ, 0) on the x-axis;
L← the line through p forming angle 90◦ − α with the positive x-axis;
A← the hyperbola arc (in the upper envelope H) intersected by the line L;
v ← the vertex in CH(S) associated with A;
if the arc A has a right endpoint in H then

L′ ← the line through the right endpoint of A forming angle 90◦ + α

with the positive x-axis;
q′ ← the point of intersection of the line L′ with the x-axis;
k ←

ö‘pvq′/α
ù
; {we do not go past the right endpoint of A}

else {the arc A is the rightmost arc in H}
q′ ← the point (χright, 0) on the x-axis;
k ←

†‘pvq′/α
£
; {we reach the point (χright, 0)}

q ← the point on the x-axis such that the angle p̂vq is equal to k · α;
χ′ ← the x-coordinate of q;
F ← F ∪

{ (
v, [current_χ, χ′]

) }
;

current_χ← χ′;
F ← F ∪

{ (
vlast, [χright, +∞)

) }
;

3. in the solution F , merge any pairs associated with the same vertex and with touching
ranges of the x-axis;
return the resulting F ;

An example of how Step 2 of Second Algorithm works to illuminate the range [χleft, χright]
of the x-axis is presented in Figure 8. It is important to note that a single iteration of
the while loop in Step 2 of the Second Algorithm corresponds to several iterations of the
while loop in Step 2 of the First Algorithm for the same floodlight location and for touching
illumination ranges; to see this, observe that in the while loop in Step 2 of the Second
Algorithm, if s is the point of intersection of the hyperbola branch Hv with a line through q

that forms the angle 90◦ +α with the positive x-axis and if χ′′ is the x-coordinate of the point
of intersection of the x-axis with the line through s that forms angle 90◦−α with the positive
x-axis, then, for each χ ∈ [current_χ, χ′′], v belongs to loc_max(χ)

(
see also Lemma 6(ii)

and (iii)
)
. The correctness of the algorithm follows from the previous observation, the

correctness of the First Algorithm, the x-monotonicity of the upper envelope H, and from
Lemmas 4, 7(ii), 8, and 9, respectively.

χleft χright

Figure 8 Illustration of the operation of the Second Algorithm on the set of five points shown in
Figure 5 for α = 10◦ to illuminate the range [χleft, χright] of the x-axis and the resulting floodlights.
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4.1 Complexity of Second Algorithm
The upper envelope H of the hyperbola branches Ht for t ∈ S can be efficiently computed
by using the farthest-point Voronoi diagram fVD(S) of the vertices of the convex hull of
the set S, which coincides with the farthest point Voronoi diagram of the vertices of S (see
Lemma 1(i)). The following lemma and the corollary give the relationship of the fVD(S)
with the arcs in the upper envelope H.

▶ Lemma 10. Let H be the upper envelope of the hyperbola branches of all the vertices in
the convex hull CH(S) of S and let fVD(S) be the farthest-point Voronoi diagram of the
vertices of CH(S). Moreover, let Hv be the hyperbola branch of a vertex v of the convex hull
of S and let t be a point of Hv. Then, the point t belongs to H if and only if t belongs to the
closure of the cell of v in fVD(S).

f

e

d c

b

V (b)

V (c)
V (d)

V (e)

V (f )

Figure 9 The upper envelope H of the five points shown in Figure 5 and their farthest-point
Voronoi diagram (shown in red).

Lemma 10 implies the following corollary; see Figure 9.

▶ Corollary 11. Let H, fVD(S), v, and Hv be as in Lemma 10. Then, the following hold.
(i) The part of the hyperbola branch Hv of a vertex v ∈ CH(S) that belongs to H is precisely

the intersection of Hv with the cell of v in fVD(S).
(ii) A point t ∈ H is a vertex of H if and only if t either lies on an edge or is a vertex of

fV D(S).
(iii) The size (number of vertices or hyperbola arcs) of the upper envelope H of the hyperbola

branches of all the vertices in the convex hull of the set S is O(|CH(S)|).
Since each arc of the upper envelope H produces at most one pair in the solution F in Step 2
of the Second Algorithm (see Figure 8), Corollary 11(iii) implies that:

▶ Corollary 12. The size of the solution computed by the Second Algorithm is O(n) where n

is the total number of vertices of the location set S. Hence, the same holds for any solution
to the Axis α-Illumination Problem as it is described in Section 1.
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Now we are ready to estimate the complexity of the Second Algorithm. Let n be the
number of vertices of the set S. The computation of the convex hull of the vertices of S,
which coincides with the convex hull of S, takes O(n log n) time [6]. The computation of the
upper envelope of H can be done by computing first the farthest-point Voronoi diagram of the
convex hull vertices of S, and then the vertices of H by taking advantage of Corollary 11(ii),
the proof of Corollary 11(iii), and the appropriate hyperbola arcs of H in accordance with
Corollary 11(i); the farthest point Voronoi diagram of O(n) points can be computed in
O(n log n) time [16] and has O(n) size (see Lemma 1(ii)), while the remaining work can be
done in O(n) time. Finally, computing vfirst and vlast takes O(n) time and the initialization
of F takes constant time. In total, Step 1 can be completed in O(n log n) time.

Each iteration of the while loop in Step 2 of the algorithm requires constant time for
everything but determining the arc A intersected by the line L. Finding the arc A can be
done in O(log n) time by using binary search on the x-monotone upper envelope H; in fact,
all the arcs A needed in the different iterations of the while loop can be found in O(n)
total time by walking along H from left to right as needed by the algorithm. Because each
iteration of the while loop involves a different arc in H and the total number of arcs is O(n)
(Corollary 11(iii)), the total number of iterations is O(n). In addition to the while loop,
Step 2 contains operations that require constant total time; thus, Step 2 can be completed in
O(n log n) time. Step 3 takes O(n) time because we can efficiently merge the appropriate
pairs in the set F computed after Step 2 by processing them in the order they are produced.

Overall, the algorithm takes O(n log n) time. The space for computing and storing the up-
per envelope H of the hyperbola branches, the farthest-point Voronoi diagram (Lemma 1(ii)),
and the solution F (Corollary 12) is O(n). Thus, we conclude with the following theorem.

▶ Theorem 13. The Second Algorithm correctly computes a solution to the Axis α-Illumina-
tion Problem and requires O(n log n) time and O(n) space, where n is the number of vertices
of the given location set.

5 Concluding Remarks

We proved that the Axis α-Illumination Problem admits an O(n log n)-time and O(n)-space
algorithm where n is the number of vertices of the given location set. The obvious open
question is whether there exists a matching lower bound for that problem or if not, to find a
faster algorithm.

A natural extension of our Axis α-Illumination Problem is the case of a set S of regions
(with piece-wise linear boundary) lying in a polygon and we want to illuminate the boundary
of that polygon. This problem may be thought of as a variant of the Art Gallery polygon
where the purpose is to guard only the boundary of the input polygon [12]. We believe that
the Second Algorithm can be extended to the case where S lies in a circle or in a convex
polygon and we want to illuminate the boundary of that circle/polygon. However, in the
case of a simple polygon, the problem is NP-hard [13] and APX-hard [10].
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Abstract
We study the priority set cover problem for simple geometric set systems in the plane. For pseudo-
halfspaces in the plane we obtain a PTAS via local search by showing that the corresponding set
system admits a planar support. We show that the problem is APX-hard even for unit disks in the
plane and argue that in this case the standard local search algorithm can output a solution that is
arbitrarily bad compared to the optimal solution. We then present an LP-relative constant factor
approximation algorithm (which also works in the weighted setting) for unit disks via quasi-uniform
sampling. As a consequence we obtain a constant factor approximation for the capacitated set cover
problem with unit disks. For arbitrary size disks, we show that the problem is at least as hard as
the vertex cover problem in general graphs even when the disks have nearly equal sizes. We also
present a few simple results for unit squares and orthants in the plane.
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1 Introduction

The priority set cover problem is defined as follows. Given a ground set X and a set S of
subsets of X, the where each element x ∈ X has an associated priority π(x) and each set
S ∈ S has an associated priority π(S), the goal is to pick the smallest cardinality subset
S ′ ⊆ S s.t. for each x ∈ X, there is some S ∈ S ′ contain x s.t. π(S) ≥ π(x).

We study the priority set cover problem for simple geometric regions in the plane. It is
a natural generalization of the set cover problem, and is interesting in its own right. It is
also related to the capacitated covering problem via the work of Chakarabarty et al. [11].
Another motivation for studying such problems is that it leads to a better understanding of
the limitations of the current techniques and forces us to extend them.

By treating the priority as an additional dimension, these problems can be seen as special
cases of three dimensional set cover problems. However, these problems turn out to be
significantly harder than the corresponding problems without priority. For example, while the
set cover problem with disks in the plane admits a PTAS, the same problem with priorities
surprisingly turns out to be APX-hard even for unit disks. This is one of the few problems
known that is APX-hard for unit disks. One standard technique that yields a constant factor
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approximation for many geometric covering problems is quasi-uniform sampling [28, 13].
However this fails for the priority set cover problem for unit disks since the shallow cell
complexity (defined in Section 2) of the corresponding set system can be quadratic. Another
common technique used to obtain approximation algorithms is local search. The analysis of
local search requires showing the existence of a support, or the existence of a local search
graph that come from a hereditary family with sublinear size separators (see [26] and the
references therein). However, even for the priority set cover problem with unit disks, such
graphs do not exist. In fact we show that the standard local search algorithm may produce
solutions that are arbitrarily bad compared to an optimal solution.

We develop techniques to obtain the first O(1)-factor approximation algorithms for the
priority set cover problem with unit disks. The algorithm relies on tools we develop to study
the priority set cover problem defined by points and pseudo-halfspaces in the plane. For the
latter problem we show that the shallow cell complexity of the corresponding set system is
linear. For the set cover problem without priorities (or equivalently the priority set cover
problem with uniform priorities), the problem is known to be solvable in polynomial time [21].
However, we show that the introduction of priorities renders the problem NP-hard.

The proof is non-trivial and uses a novel approach that might be useful in other settings.
We also obtain a PTAS for the priority set cover problem for pseudo-halfspaces via local
search. For this, we prove that the corresponding set system admits a planar support. Again
due to priorities, the proof is much more subtle than for pseudo-halfspaces without priorities.

An identical proof also yields an O(1)-approximation for the priority set cover problem
with unit squares. In this case, we do not know if the problem is APX-hard, and this remains
an intriguing open question.

As a consequence of our results for the priority problem, we immediately obtain O(1)-
approximation algorithms for the capacitated covering problems when combined with the
results of Bansal and Pruhs [6], and Chakrabarty et al. [11]. We start with the necessary
definitions and results in Section 2, and describe related work in Section 3. In Section 4 we
present our results for pseudo-halfspaces. We present our results for disks in Section 5. We
conclude with open problems in Section 6.

2 Preliminaries

Let P be a set of points and let R be a set of regions in the plane and let π : P ∪ R → R be a
function that assigns a priority to each point and each region. We say that a region R covers
a point p if R contains p and π(R) ≥ π(p). We use the notation p ≺ R for “R covers p”. For
any region R, we denote by R(P ), the set of points in P covered by R. We denote the set
system (P, {R(P ) : R ∈ R}) by (P, R, π) and call it the “set system defined by P and R”.
For any point p, we denote by p(R) the set of regions in R covering p and we denote the set
system (R, {p(R : p ∈ P}) by (R, P, π) and call it the “dual set system defined by P and R”.

The Priority Set Cover problem defined by P , R and π is the set cover problem on the
set system (P, R, π). In other words, the goal is to find the smallest subset R′ ⊆ R s.t. each
point in P is covered by at least one of the regions in R′. In the weighted variant of this
problem, we have a weight wR with each region R and the goal is to minimize the total
weight of the regions in R′ instead of its cardinality. We also consider the Capacitated Set
Cover problem studied by Chakrabarty et al. [11]. In this problem, we are given a set system
(X, S), where X is a set of elements, S is a collection of subsets of X with a weight function
w : S → R+, and a capacity function c : S → R+. Each element x ∈ X has a demand
d(x) > 0. The objective is to select the smallest weight sub-collection S ′ ⊆ S such that the
total capacity of the sets in S ′ containing any element x is at least d(x). A special case of
this problem is the Set Multicover problem where the capacity of each set in S ′ is 1.
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A finite collection of unbounded x-monotone curves is called a family of pseudolines if
every pair of curves intersect in at most one point and at this point the curves cross [3].
Pseudoline arrangements have a rich history and a rich combinatorial structure. See the
book [20] for further results on pseudolines. A family of pseudo-halfspaces is a collection of
closed unbounded regions in the plane whose boundaries form a family of pseudolines.

Given a set system (X, S), a support is a graph G = (X, E) s.t. any set S ∈ S induces a
connected subgraph of G. A planar support is a support that is planar.

A plane graph is a drawing of a planar graph in the plane where the vertices are drawn
as points and edges are drawn as interior disjoint simple Jordan curves connecting the points
corresponding to the incident vertices. A triangulation is a plane graph in which all faces
have three vertices.

Given a set system (X, S), let x(S) = {S ∈ S : x ∈ S}. The set system (X, S) has shallow
cell complexity [13] function f(·, ·) if for any subset S ′ ⊆ S, and any k ∈ N, the number of
sets of size at most k in {x(S ′) : x ∈ X} is at most f(|S ′|, k). If f(|S ′|, k) ≤ ϕ(|S ′|) · kc for
some constant c where ϕ(·) is a linear function of its argument, we say that the shallow
cell complexity of the set system is “linear”. Similarly, if ϕ(·) is a quadratic function of its
argument, we say that the shallow cell complexity is “quadratic”.

3 Related Work

Packing and covering problems are central topics in computational geometry literature, and
studied intensively over several decades. Broadly, there are three main algorithmic techniques:
LP-rounding, local search and separator based methods.

The technique of Bronimann and Goodrich [9] reduces any covering problem to an ϵ-net
question so that if the set system admits an ϵ-net of size 1

ϵ ·f( 1
ϵ ), then we obtain an LP-relative

approximation algorithm with approximation factor f(Opt) where Opt is the size of the
optimal solution. Since set systems of finite VC- dimension admit ϵ-nets of size O( 1

ϵ log 1
ϵ ),

this implies an O(log Opt) approximation algorithm for covering problems involving such set
systems. Similarly, for set systems with low shallow cell complexity, we obtain algorithms with
correspondingly small approximation factors (see [28, 13]). In particular if the shallow cell
complexity is linear, we obtain constant factor approximation algorithms. Varadarajan [28]
showed via the quasi-uniform sampling technique how these results can be made to work in
the weighted setting. His technique was optimized by Chan et al. [13] who also introduced the
notion of shallow cell complexity generalizing the notion of union complexity from geometric
set systems to abstract set systems. Some of these algorithms have also been extended to
work in the multicover setting (see [15], [6]). One limitation of the approach in [9] is that
even for simple set systems with linear shallow cell complexity, the lower bound on the size
of the ϵ-net may involve a large constant factor which then translates into a lower bound on
the approximation ratio of the corresponding rounding algorithm. For simple set systems,
such as that for points and halfspaces in the plane, Har-Peled and Lee [21] gave a polynomial
time dynamic programming algorithm. Bringmann et al. [8] show a tight O(n

√
k) exact

algorithm to check if there is a set cover of size at most k, while for dimensions larger than
3, they show that under ETH, it is not possible to improve upon brute force enumeration.

The local search framework, where one starts with any feasible solution and tries to
improve the solution by only making constant size swaps (i.e., adding/removing a constant
number of elements from the solution), yields a PTAS for several packing and covering
problems (see e.g. [25, 14, 5, 19, 26, 7]). This framework also has major limitations: it is
not as broadly applicable as the LP-rounding technique (in particular it works only for the
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unweighted setting so far), often hard to analyse, and the PTASes they yield have a running
time like nO(1/ϵ2) with large constants in the exponent, making them irrelevant for practical
applications.

The third type of algorithms consists of separator based methods where some kind of
separator is used to split the problem instance into smaller problems which can be solved
independently and combined to obtain an approximate solution. Hochbaum and Maass [22]
used this idea to obtain PTASes for several packing and covering problems. More recently,
Adamaszek and Wiese [1, 2] have used this kind of idea for obtaining a QPTAS for independent
set problems. Mustafa et al. [24] extend the idea of Adamaszek and Wiese to obtain a QPTAS
for weighted set cover problem with pseudodisks in the plane and halfspaces in R3. For unit
disks, there have also been attempts to obtain better approximation algorithms that run
fast. See [17] for an 18-approximation algorithm that runs in O(mn) for m points and n unit
disks.

The priority set cover problem was introduced by Chakrabarty et al. [11] as an approach
to solve the capacitated set cover problem. In particular, they showed that an LP-relaxation
for the capacitated covering problem with knapsack cover inequalities, introduced by Carr et
al. [10] in the context of approximation algorithms has an O(1)-approximation algorithm if
there is an LP-relative O(1)-approximation for the set multicovering problem, and an O(1)
LP-relative approximation for the priority set cover problem.

4 Pseudo-halfspaces

In this section we study the priority set cover problem for pseudo-halfspaces in the plane. For
the set cover problem without priorities (or equivalently the priority set cover problem with
uniform priorities), the problem is known to be solvable in polynomial time [21]. However, in
the full version of the paper we show that the introduction of priorities renders the problem
NP-hard.

Let H = {h1, · · · , hn} be a set of pseudo-halfspaces and let P be a set of points in R2.
We denote the boundary of hi by ℓi. We assume that curves ℓ1, · · · , ℓn lie in general position
i.e., no more that two of them intersect at any point in the plane. Each pseudo-halfspace
and each point also has an associated priority. We assume without loss of generality that
the priorities of all the pseudo-halfspaces are distinct. For any point p, let H(p) denote the
subset of pseudo-halfspaces covering p. We define depth(p) as |H(p)|.

▶ Lemma 1. Let t be a positive integer. Let P ′ be any subset of the points in P s.t. for any
point p ∈ P ′, depth(p) ≤ t and for any two distinct points p, q ∈ P ′, H(p) ̸= H(q). Then,
|P ′| is O(nt2).

Note that the above lemma implies that the shallow cell complexity of the set system
(P, {H(p) : p ∈ P}) is linear.

For any point p, we can assume without loss of generality that p is contained in a bounded
cell in the arrangement of the boundaries of the pseudo-halfspaces in H(p). This can be
guaranteed by adding three dummy pseudo-halfspaces of priority larger than all the points in
P so that P is contained in a bounded cell defined by them. The dummy halfspaces increase
the depth of each point by 3 but this does affect the upper bound claimed above.

In order to prove Lemma 1, we define a new set Q of points as follows. For every triple
of pseudo-halfspaces hi, hj , hk s.t. π(hi) < π(hj), π(hk) and hi contains ℓj ∩ ℓk, we define a
point q = q(i, j, k) located at ℓj ∩ ℓk with priority π(hi). Note that Q may contain several
points with the same location but with different priorities. However no two points in Q have
the same location and priority.
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We map each p ∈ P ′ to a point in Q as follows. We consider the arrangement of the
boundaries of all the pseudo-halfspaces whose priority is at least that of p. As mentioned
above, we can assume that p lies in a bounded cell C of this arrangement. Let hi be
the pseudo-halfspace with the lowest priority in H(p). Note that the cell C must have at
least three vertices since this is a pseudo-line arrangement. Thus, it must have a vertex
defined by the boundries of two pseudo-halfspaces hj and hk other than hi. Note that
π(hi) < π(hj), π(hk) and hi contains ℓj ∩ ℓk. We map p to q(i, j, k).

Since ℓj ∩ ℓk is adjacent to at most four cells in the arrangement each of which can contain
at most one point of P ′, at most four points in P ′ are mapped to q(i, j, k). Note also that
if p is mapped to q(i, j, k) then the depth of p and q(i, j, k) differ by at most 2 depending
on whether hj and hk contain p. Thus, in order to prove the upper bound in Lemma 1, it
suffices to prove the upper bound on the number of points in Q of depth at most t.

▷ Claim 2. Let t be a positive integer. The number of points in Q of depth at most t is
O(nt2).

Proof. First note that any point q = q(i, j, k) ∈ Q has depth at least three since it is contained
in the three pseudo-halfspaces hi, hj and hk. We first prove that the number of points q(i, j, k)
of depth 3 is O(n). We then use the Clarkson-Shor technique [16] to prove the lemma.

If a point q(i, j, k) ∈ Q has depth 3 then note that hi is the pseudo-halfspace of the
highest priority below min{π(hj), π(hk)} containing ℓj ∩ ℓk. This means that if we imagine
inserting the pseudo-halfspaces into an initially empty arrangement in the decreasing order
of their priorities then ℓj ∩ ℓk is a vertex on the boundary of the arrangement until hi is
inserted at which point it is no longer a vertex on the boundary of the arrangement. Since
inserting any pseudo-halfspace can create at most two new vertices on the boundary of the
arrangement, the total number of vertices that appear on the boundary of the arrangement
throughout the process is O(n) and since only one point of depth 3 in Q is located at any
such point, the number of points in Q of depth 3 is also O(n).

We now bound the number Nt of points in Q of depth ≤ t as follows. Imagine picking
a sample of the pseudo-halfspaces where each pseudo-halfspace is picked independently
with probability ρ = 1/t. Let Q′ be the subset of points in Q that are still present and
have depth 3 in the sample. The probability that a point q(i, j, k) is still present in the
sample and has depth 3 in the sample is ρ3(1 − ρ)t−3 since this happens iff hi, hj and hk are
in the sample but none of remaining t − 3 pseudo-halfspaces covering q(i, j, k) are. Thus,
E(Q′) ≥ Nt ·ρ3(1−ρ)t−3. On the other hand since the expected number of pseudo-halfspaces
in the sample is ρn, we also have E(Q′) = O(ρn). Thus, Nt = O

(
n

ρ2(1−ρ)t−3

)
= O(nt2). ◁

Lemma 1 now follows. The following theorem is an immediate consequence of Lemma 1 and
the results in [13].

▶ Theorem 3. There is a polynomial time O(1) LP-relative 2 approximation for the weighted
priority set cover problem defined by a set of points and a set of pseudo-halfspaces in the
plane.

▶ Theorem 4. The capacitated set cover problem defined by points and pseudo-halfspaces in
the plane has a polynomial time O(1)-approximation algorithm.

2 with respect to the standard LP relaxation for set cover
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Proof. Since the shallow-cell complexity of the set system defined by points and pseudo-
halfspaces (without priorities) is linear, the result of Bansal and Pruhs [6] implies an O(1)
LP-relative approximation for the multicover problem of this set system. Now, Lemma 1
implies that the set system defined by pseudo-halfspaces and points with priorities is linear,
and therefore implies an O(1) LP-relative approximation for the priority problem via the
result of Chan et al. [13]. Now, by the result of Chakrabarty et al. [11], the result follows. ◀

Next, we show that the set system (P, H, π) has a planar support. Our result only
requires the boundaries of the pseudo-halfspaces and not the direction of the pseudo-halfspace.
Therefore, we consider the following problem: the input is a set P of points and a set L of
pseudolines with priorities. We construct a plane graph G with vertex set P such that the
subgraphs induced on the points covered by h+(ℓ) and h−(ℓ) are connected. Here, h+(ℓ) and
h−(ℓ) are two pseudo-halfspaces with priority π(ℓ) and boundary ℓ. Such a graph G is called
a support on P with respect to L.

The proof is constructive: we process the points in increasing order of priority, and
maintain a support graph on the processed points with respect to L. We additionaly
maintain that this support graph is a triangulation on the processed points and has the
property that each edge in the graph is a simple curve that crosses any ℓ ∈ L at most once. In
order to construct the graph, we use the following well known result called the Levi extension
lemma.

▶ Lemma 5 (Levi extension Lemma [20]). Given a pseudoline arrangement L and two points
p and q not lying on the same pseudoline in L, there exists a simple curve ℓ through p and q

such that L ∪ ℓ is a pseudoline arrangement.

Using the Lemma above, we now construct a planar support.

▶ Theorem 6. Let P be a set of n points, L a family of pseudolines in R2, and π : P ∪L → R
be priorities. Then, there exists a graph T which is a support on P w.r.t. L such that
each edge in T crosses any pseudoline ℓ ∈ L at most once. Further, for any n ≥ 3, T is a
triangulation.

Proof. Let p1, . . . , pn be an ordering of the points P in increasing order of priority. We
process the points in this order, and for each i = 1, . . . , n, we maintain a graph Ti that is
a support graph on the points p1, . . . , pi with respect to L and such that: any edge of Ti

crosses the boundary of any pseudoline in L at most once. We call such a graph with its
embedding a nice graph.

For i = 1, the graph T1 consisting of p1 and no edges clearly satisfies both the conditions,
and is a nice graph. For i = 2, by Lemma 5, there is a curve γ12 between p1 and p2 such
that L2 = γ12 ∪ L is a pseudoline arrangement. The edge e12 is defined as γ12[p1, p2], i.e.,
the segment on γ12 between p1 and p2. It is clear that T2 is a nice graph.

For i = 3, we use Lemma 5 with the pseudoline arrangement L2 to construct a pseudoline
γ13 through points p1 and p3, such that L2 ∪ γ13 is a pseudoline arrangment. Invoking
Lemma 5 again with L2 ∪ γ13, we obtain a pseudoline γ23 between p2 and p3, such that
L3 = L2 ∪ γ13 ∪ γ23 is a pseudoline arrangement. The new pseudolines added define edges
e13 = γ13[p1, p3] and e23 = γ23[p2, p3]. Set T3 = T2 ∪ e13 ∪ e23. It is easy to see that T3 is a
nice graph.

Let Ti−1 be the graph constructed for the first i − 1 points, and let Li−1 be the union
of L and the additional pseudolines added in the first i − 1 iterations. We construct Ti

as follows: Let pi lie in a triangle ∆ defined by points pa, pb, and pc - note that pi may
lie in the external face. Suppose that pi lies in an interior face of Ti−1. Using Lemma 5
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with the arrangement Li−1 lets us construct a pseudoline γia through pi and pa, such that
Li−1 ∪ γia is a pseudoline arrangment. This gives us the edge eia = γia[pi, pa]. Note that
the interior of eia lies in ∆. Otherwise, if eia crosses ∆, it crosses one of the pseudolines
defining the boundaries of ∆, which it can not cross again without violating the assumption
that Li−1 ∪ γia is a pseudoline arrangement. If pi lies in an external face of Ti−1, we first
pick a point o that lies in an internal face of Ti−1, does lie on any pseudolines in Li−1 and is
not one of the points in P . Let C be a unit circle centered at o. We temporarily apply an
inversion3 with respect to C to turn the external face in which pi lies into an internal face.
We then proceed as before and apply the inversion again to undo the first inversion.

By a similar argument, we construct edges eib and eic, and set Li = Li−1 ∪ γia ∪ γib ∪ γic,
and Ti = Ti−1 ∪ eia ∪ eib ∪ eic. Since pi lies on γia, γib and γic it follows that the interiors of
eia, eib and eic are pairwise internally disjoint. By construction, the edges eia, eib and eic lie
in the same face of Ti−1, and therefore do not intersect the interiors of edges in Ti−1.

To show that Ti is a nice graph, we still need to show that Ti is a support on Pi with
respect to L. Consider a pseudo-halfspace h = h(ℓ) defined by a pseudoline ℓ ∈ L. First,
we will show that h′ = h \ ∪e∈Ti

interior(e) is path connected. If not, let p and q be two
points in h′ that cannot be connected by a continous path in h′. Let Hp be the set of points
reachable from p i.e., Hp is the set of points in h to which there is path from p in h′, and
let Hq be the set of points reachable from q. Since h is connected and we have removed
only the interiors of the edges that are pairwise non-intersecting, there are no vertices on
the boundary of Hp and Hq. Since each edge is a simple curve, it implies that there is an
edge e that separates Hp and Hq, i.e., the boundary of e crosses ℓ twice. This leads to a
contradiction.

Now, let u and v be any two points in Pi that are contained in h. We show that there is
a path between u and v in the subgraph of Ti induced by h ∩ Pi. Since u and v do not lie in
the interior of any of the edges in Ti, u, v ∈ h′. By the previous argument, there is a simple
curve σ in h′ joining u and v. Observe that adjacent points of Pi on σ lie in the same face of
Ti, and therefore are adjacent in Ti, since Ti is a triangulation. This implies that there is a
path in the subgraph of Ti induced by h ∩ Pi joining u and v.

Let pk be the point of highest priority that is contained h. Then, by the fact that Tk is
a support on Pk with respect to L and h covers exactly the points in Pk ∩ h, we conclude
that the subgraph of Tk induced by the points covered by h is connected. Since Tn contains
Tk as subgraph, the subgraph of Tn induced by the points in P = Pn covered by h is also
connected. The theorem follows. ◀

An immediate consequence of the above theorem is the following.

▶ Corollary 7. The set system (P, H, π) admits a planar support.

▶ Corollary 8. The set system (H, P, π) admits a planar support if the union of the pseudo-
halfspaces in H do not cover the entire plane.

Proof. If there is a point o in the plane that is not covered by any of the pseudo-halfspaces
in H then using the duality between points and pseudolines [4], we can map points to pseudo-
halfspaces and pseudo-halfspaces to points while maintaining incidences. Then, Corollary 7
implies that the set system (H, P, π) admits a planar support. ◀

3 https://en.wikipedia.org/wiki/Inversive_geometry
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The next theorem follows directly from the above result and the results in [26] and [27]
which show that the existence of a suitable planar support implies a PTAS.

▶ Theorem 9. The Set Cover, Hitting Set, Point Packing, and Region Packing problems
with priorities defined by a set of points and pseudo-halfspaces in the plane admit a PTAS.
The set multi-cover problem defined by a set of points and pseudo-halfspaces with priorities
admits a (2 + ϵ)-approximation algorithm for any ϵ > 0.

The definitions of the problems mentioned in the theorem above without the priorities can
be found in [26] and [27] and naturally extend to the version with priorities.

5 Disks

Chan et al. [12] showed that the set cover problem with horizontal and vertical strips in the
plane is APX-hard. The input is a set P of n points in the plane and a set S of vertical or
horizontal strips of the form V (a, b) = {(x, y) ∈ R2 : a ≤ x ≤ b} or H(a, b) = {(x, y) ∈ R2 :
a ≤ y ≤ b}. We show below that the set system defined by axis aligned strips and points
in the plane can be implemented using disks and points with priorities. This implies that
the set cover problem defined by points and axis aligned strips in the plane can be reduced
to the priority set cover problem defined by a set of points and unit disks in the plane in
polynomial time.

▶ Theorem 10. Given a set S of horizontal and vertical strips and a set of points P in the
plane, we can map each strip S ∈ S to a unit radius disk S′ and each point p ∈ P to another
point p′ with appropriate priorities so that S′ covers p′ iff S contains p.

Proof. Let n be the number of points in P . We can assume without loss of generality that
the points in P lie on an n × n grid G and have cartesian coordinates (i, j) where i, j ∈ [n].
For convenience, we will assume that P consists of all points in the grid since if the theorem
holds for such a P then it certainly holds for any subset of it. We refer to the point with
cartesian coordinates (i, j) in G as pij .

Let D be a unit radius disk centered at the origin o. We first define n + 2 points
z0, z1, · · · , zn+1 on the boundary of D as follows. The point zi has polar coordinates (1, θi)
i.e., cartesian coordinates (cos θi, sin θi) where θi = i · π

4(n+1) . Let û be a unit vector along
the positive x-axis. We map the point pij on the grid to the point qij = zi + j · ϵ

n û where ϵ is
a sufficiently small constant. We assign priority n − j to the point qij . Note that the points
on jth column of the grid are mapped to the points q1j , · · · , qnj that lie on the boundary of
a unit radius disk whose center is at o + j · ϵ

n û. We will call this disk Cj . The points on the
ith row of the grid G are mapped to points on a horizontal segment of length ϵ whose left
end-point is zi. We denote the set of points {qij : i, j ∈ [n]} by Q.

Consider any vertical strip S = V (a, b) which contains the points in columns a, a+1, · · · , b

of G. We map this strip to the disk S′ which is identical to Cb but has priority n − a. It can
be verified that a point qij ∈ Q is covered by S′ iff the corresponding point pij is covered
by S. Now consider any horizontal strip S = H(a, b) which contains the points in rows
a, a + 1, · · · , b of G. We map this strip to a disk S′ defined as follows. Let u be the mid-point
on the arc on ∂D joining za−1 and za. Similarly, let v be the mid-point on the arc on ∂D

joining zb and zb+1. S′ is the unique disk of unit radius whose center lies outside D and
whose boundary intersects the boundary of D at the points u and v. For sufficiently small ϵ,
S′ contains exactly the subset of points in Q that correspond to the points in P contained in
S. We assign a priority of n to S′ so that it covers all the points it contains. The theorem
follows. ◀
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The following is an immediate consequence of Theorem 10 and the results in [12].

▶ Corollary 11. The priority set cover problem defined by a set of points P and a set of unit
radius disks D in the plane is APX-hard.

▶ Corollary 12. The shallow cell complexity of the set system defined by unit radius disks
and points with priority is quadratic.

Proof. This follows from Theorem 10 and the fact that the shallow cell complexity of the set
system defined by axis aligned strips and points in the plane is quadratic. To see the latter,
consider n disjoint horizontal strips H1, · · · , Hn and n disjoint vertical strips V1, · · · , Vn.
Then for every pair of indices i, j ∈ [n], Hi and Vj intersect at a point in the plane that is
not contained in any other strip. ◀

▶ Remark. Since the shallow cell complexity is quadratic, the quasi-uniform sampling
technique [28, 13] cannot be directly applied to obtain a constant factor approximation for
the priority set cover problem defined by points and unit disks in the plane.

The next lemma shows that the standard local search algorithm does not work for the
priority set cover problem defined by unit disks and points in the plane. For minimization
problems, the standard local search algorithm is the following. It has a fixed parameter k.
The algorithm starts with any feasible solution and tries to decrease the size of the solution
by removing at most k elements from the current solution and adding fewer elements to the
solution without violating feasibility. When such improvements are not possible it returns
the current solution.

▶ Lemma 13. For any positive interger k, there exist instances of the priority set cover
problem defined by unit disks and points in the plane such that the standard local search
algorithm with parameter k does not yield a solution with a bounded approximation ratio.

Proof. We will construct an instance of the set cover problem defined by points and axis
aligned strips in the plane for which the standard local search algorithm with swap size k

does not yield a solution with a bounded approximation ratio. This along with Theorem 10
implies the statement in the theorem.

Let H1, · · · , Hm be m disjoint horizontal strips and let V1, · · · , Vn be n disjoint vertical
strips where m ≫ n > k. For any i, j ∈ [n], let pij be a point in Hi ∩ Vj . Consider the set
cover problem defined the all the horizontal and vertical strips and the points {pij : i, j ∈ [n]}.
Then, the horizontal strips form a locally optimal solution i.e., the solution cannot be
improved by swapping out at most k strips from this solution and swapping in fewer strips.
This is because if any horizontal strip is dropped, we would need to add all the vertical
strips, of which there are more than k, in order to obtain a feasible solution. Since m ≫ n

this solution is arbitrarily large compared to the optimal solution formed by the vertical
strips. ◀

We now show that we can construct an arbitrarily set of disks such that every pair
intersects at a depth 2. This implies that the shallow-cell complexity of this set system is is
quadratic.

▶ Theorem 14. For any positive integer n, there exist a set of n disks D = {D1, · · · , Dn}
whose radii are nearly equal (i.e., the ratio of any two of the radii can be made arbitrarily
close to 1) and a set of points P with

(
n
2
)

points s.t. for any pair of disks i, j ∈ [n] s.t. i < j,
there exists a point pij ∈ P which is covered by only the disks Di and Dj among the disks
in D.

ISAAC 2021



12:10 On the Geometric Priority Set Cover Problem

p

Dk

Dk+1

p

DkDk+1

Figure 1 Constructing disk Dk+1 from disk Dk. The radius of Dk+1 only slightly bigger than the
radius of Dk, the difference being arbitrarily small. The centers of the two disks are also arbitrarly
close to each other.

Proof. We show the existence of a family of disks D so that for any j ∈ [n], if we consider
the arrangement of the disks in Dj := {D1, · · · , Dj}, then i) the boundary of every disk in
Dj contributes at least one arc to the boundary of the union of the disks in Dj and ii) the
boundary of Dj intersects the boundary of every other disk non-tangentially on the boundary
of the union of the disks in Dj

We show the existence of such disks by induction on the number of disks. The base case
is n = 1 and is trivially true. Suppose that we have shown this for n = k for some k ≥ 1. We
now show that we can add a disk Dk+1 to the existing collection so that the above properties
i) and ii) hold for n = k + 1. By the inductive hypothesis, Dk contributes an arc to the
boundary of the union of the disks in Dk. Let p be the mid-point of such an arc. Without
loss of generality assume that the radius of Dk is 1. We construct the disk Dk+1 in two steps.
See Figure 1.

First we tentatively set Dk+1 to be a disk of radius 1 + δk+1 for some δk+1 > 0 so that
Dk+1 contains Dk and the boundaries of Dk and Dk+1 intersect tangentially at p. We set
δk+1 to be sufficiently small so that none of the vertices in the arrangement of disks in Dk lie
in the region Dk+1 \ Dk. At this point Dk+1 almost satisfies the required properties. Since
δk+1 is very small Dk+1 is almost the same as Dk and is obtained by “growing” Dk slightly.
This means that for each j < k, Dj still contributes an arc to the boundary of the union of
disks in Dk and the boundary of Dk+1 intersects the boundary Dj on the boundary of the
union of the disks in Dk+1. Dk+1 however intersects Dk tangentially at p which also means
that the boundary of Dk does not contribute any arc to the boundary of the union of the
disks in Dk+1. To fix these problems, we move the center of Dk+1 by a distance ϵk+1 > 0 in
the direction c − p where c is the center of Dk. We choose ϵk+1 to be sufficiently small so
that during the movement, the boundary of Dk does not touch any of the vertices in the
arrangement of the disks in Dk. It can be checked that after this movement the set of disks
Dk+1 satisfies the two properties. This concludes the inductive proof. By making ϵk+1 and
δk+1 appropriately small for every k, we can ensure that the disks have nearly equal radii.

We assign the priority n − i to the disk Di. For any i < j, we define the point pij to
be the point located where the boundaries of Di and Dj intersect on the boundary of the
union of the disks in Dj and having priority n − j. Note that the point pij is covered by
both Di and Dj . It is however not contained in any of other disks in {D1, · · · , Dj} and it is
not covered by any of the disks in {Dj+1, · · · , Dn} since those disks have a lower priority
than that of pij . ◀

▶ Remark. It can be shown that the values of ϵk+1 and δk+1 in the above proof can be
chosen so that they can be encoded using poly(n) bits. The formal proof of this statement
will appear in the extended version of the paper.
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▶ Corollary 15. The priority set cover problem defined by a set of points and nearly equal size
disks in the plane does not admit a strongly polynomial time approximation algorithm with
approximation factor smaller than 1.36 unless P = NP . Under the unique games conjecture,
this implies that the priority set cover problem does not admit a strongly polynomial time
algorithm with approximation factor smaller than 2.

Proof. We give an approximation preserving reduction from vertex cover to priority set cover
problem defined by a set of points and a set of nearly equal sized disks in the plane. The
corollary then follows from the results known for the vertex cover problem [18, 23]. Given a
graph G with n vertices v1, · · · , vn and m edges, we use Theorem 14 to obtain a set D of n

disks and a set P with
(

n
2
)

points. The disk Di corresponds to the vertex vi of G. For each
edge {vi, vj} in G, we retain the point pij ∈ P . We remove all other points. Let Q be the
set of points retained. Then, the priority set cover problem defined by the points in Q and
the disks in D is equivalent to the vertex cover problem in G. ◀

We now show that there exists a polynomial time constant factor approximation algorithm
for the weighted priority set cover problem defined by a set of points P and a set of unit
disks D in the plane. We first define an LP-relaxation for this problem:

minimize
∑

D∈D
wDxD s.t. for each p ∈ P :

∑
D∈D : p≺D

xD ≥ 1.

We will show that there is a polynomial time algorithm that outputs a solution of size at
most a constant times the value OptLP of an optimal solution to the above LP.

▶ Theorem 16. There is a polynomial time LP-relative O(1)-approximation algorithm for
the weighted priority set cover problem defined by a set of points P and a set of unit radius
disks D in the plane.

Proof. We first prove the theorem for disks containing a common point which without loss of
generality is assumed to be the origin o. Let x∗ be an optimal solution to the LP-relaxation.
Consider any one of the four quadrants formed by the axes and consider the priority set
cover problem restricted to that quadrant. Note that x∗ is also a feasible solution to this
problem. Since the boundaries of any two disks containing o intersect at most once in the
quadrant, they behave like pseudo-halfspaces with respect to the quadrant. By Lemma 1, the
shallow cell complexity of the corresponding set system is linear and therefore quasi-uniform
sampling [13] yields an LP-relative O(1)-approximation for this problem. Since there are
four quadrants, by taking the union of the solutions for each of the quadrants, we obtain an
LP-relative O(1) approximation for the priority set cover problem where all disks contain a
common point o.

Now, we consider the case of a general set of unit disks in the plane. We partition the
given set of disks into a constant number of families s.t. each family consists of disjoint
groups of disks so that disks in each group intersect at a common point but disks from
different groups do not intersect.

An O(1)-approximation for the priority set cover problem defined by such a family of
disks follows from the fact that disks in different groups don’t interact and for each group we
have an O(1)-approximation.

The families of the required type are obtained as follows. We place a uniform grid over
the plane having cells of size

√
2 ×

√
2 i.e., each cell is a square with diameter 2. Since

there are only a finite number of disks, we can also choose the grid in such a way that the
center of each disk lies in the interior of some cell. We associate each unit disk with the cell
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containing its center. Note that the disks associated with a cell contain the center of the
cell. Next we color the cells with a constant number of colors so that two cells whose centers
have distance less than 4 get distinct colors. The disks associated with cells of a single color
then is a family of the required type. Each distinct color defines a family. Let F1, · · · Fk be
the families obtained. As argued above, there is an O(1)-approximation algorithm for the
priority set cover problem defined by any particular family. However, a point can belong
to disks of several different families. So, we need a way to assign each point to a particular
family. To do this, we consider an optimal solution x∗ to the priority cover problem defined
by all disks and points. Since, for any point p, we have that

∑
D∈D : p≺D xD ≥ 1, there is

some family Fi s.t.
∑

D∈Fi : p≺D xD ≥ 1/k. We assign the point p to one such family.
Let Pi be the subset of points assigned to family Fi. Then note that x̂D = k · x∗

D, D ∈ Fi

is a feasible solution to the LP-relaxation for the priority set cover problem defined by the
points in Pi and the disks in Fi. Let Si be a solution to this problem using an LP-relative
O(1)-approximation. This means that Si has weight at most O(1) ·

∑
D∈Fi

wDx̂D. Note that
S =

⋃k
i=1 Si is a solution to the weighted priority set cover problem defined by all disks and

points and has weight at most

O(1) ·
k∑

i=1

∑
D∈Fi

wDx̂D ≤ O(1) ·
k∑

i=1

∑
D∈Fi

k · wDx∗
D = O(1) · k ·

∑
D

wDx∗
D = O(1) ·

∑
D

wDx∗
D

since k is a constant. S is therefore an LP-relative O(1)-approximation to the weighted
priority set cover problem defined by all disks and points. ◀

▶ Theorem 17. There is a polynomial time LP-relative O(1)-approximation algorithm for
the weighted priority set cover problem defined by a set of points P and a set of unit squares
S in the plane.

Proof. The proof is identical to the proof of Theorem 16, except that we have unit squares
instead of unit disks. ◀

▶ Theorem 18. The capacitated set cover problem with unit squares, or unit disks admits an
O(1)-approximation.

Proof. The result of Chakrabarty et al. [11] shows that there exists an O(1)-approximation
for the capacitated set cover problem whenever we have an O(1)-LP-relative approximation
for the multicover problem, and an O(1)-LP-relative approximation for the priority cover
problem. The result of Bansal and Pruhs [6] implies an O(1)-LP-relative approximation for
the multicover problem, and Theorem 16 implies an O(1)-LP-relative approximation for the
priority problem. The result for unit disks follows. For unit sqaures, the result similarly
follows from that of Bansal and Pruhs [6] and Theorem 17. ◀

6 Conclusion

We studied the priority set cover problem for several simple geometric set systems in the
plane. For pseudo-halfspaces in the plane we were able to obtain a PTAS but for unit disks
in the plane the problem is APX-hard and we obtained a constant factor approximation.
Obtaining a relatively small approximation factor is an interesting open question. For unit
squares in the plane we also obtain a constant factor approximation but it is not clear if the
problem is APX-hard. In fact even for orthants in the plane (possibly containing orthants
of opposite types), it is not clear if there is a PTAS. In particular, we do not know if the



A. Banik, R. Raman, and S. Ray 12:13

standard local search yields a PTAS. There are instances showing that the corresponding set
system does not admit a planar support. Another interesting open problem is to obtain a
constant factor approximation algorithms for disks or square of arbitrary size in the plane.
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The Complexity of Sharing a Pizza
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Abstract
Assume you have a 2-dimensional pizza with 2n ingredients that you want to share with your friend.
For this you are allowed to cut the pizza using several straight cuts, and then give every second
piece to your friend. You want to do this fairly, that is, your friend and you should each get exactly
half of each ingredient. How many cuts do you need?

It was recently shown using topological methods that n cuts always suffice. In this work, we
study the computational complexity of finding such n cuts. Our main result is that this problem is
PPA-complete when the ingredients are represented as point sets. For this, we give a new proof that
for point sets n cuts suffice, which does not use any topological methods.

We further prove several hardness results as well as a higher-dimensional variant for the case
where the ingredients are well-separated.
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1 Introduction

1.1 Mass partitions
The study of mass partitions is a large and rapidly growing area of research in discrete and
computational geometry. It has its origins in the classic Ham-Sandwich theorem [44]. This
theorem states that any d mass distributions in Rd can be simultaneously bisected by a
hyperplane. A mass distribution µ in Rd is a measure on Rd such that all open subsets
of Rd are measurable, 0 < µ(Rd) < ∞ and µ(S) = 0 for every lower-dimensional subset S

of Rd. A vivid example of this result is, that it is possible to share a 3-dimensional sandwich,
consisting of bread, ham and cheese, with a friend by cutting it with one straight cut such
that both will get exactly half of each ingredient. This works no matter how the ingredients
lie. In fact, as Edelsbrunner puts it, this even works if the cheese is still in the fridge [19].

But what if there are more ingredients, for example on a pizza? One way to bisect more
than d masses is to use more complicated cuts, such as algebraic surfaces of fixed degree [44]
or piece-wise linear cuts with a fixed number of turns [28, 40]. Another option is to use
several straight cuts, as introduced by Bereg et al. [8]: Consider some arrangement of n

hyperplanes in Rd. The cells of this arrangement allow a natural 2-coloring, where two
cells get a different color whenever they share a (d − 1)-dimensional face. We say that an
arrangement bisects a mass distribution µ if the cells of each color contain exactly half of
µ. See Figure 1 for an illustration. It was conjectured by Langerman that any nd mass
distributions in Rd can be simultaneously bisected by an arrangement of n hyperplanes ([30],
see also [5]). In a series of papers, this conjecture has been resolved for 4 masses in the
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Figure 1 A bisection of 6 masses with 3 cuts.

plane [5], for any number of masses in any dimension that is a power of 2 (and thus in
particular also in the plane) [26] and in a relaxed setting for any number of masses in any
dimension [41]. However, the general conjecture remains open.

There are many other variants of mass partitions that have been studied, see e.g. [27, 38]
for recent surveys. In this work, we focus on the algorithmic aspects of the 2-dimensional
variant of bisections with hyperplane arrangements, that is, bisections with line arrangements.
For this, let us formally define the involved objects.

▶ Definition 1 (Partition induced by an arrangement of oriented lines). Let A = (ℓ1, . . . , ℓn) be
a set of oriented lines in the plane. For each ℓi, define be R+

i and R−
i the part of the plane

on the positive and negative side of ℓi, respectively. Define R+(A) as the part of the plane
lying in an even number of R+

i and not on any of the ℓi. Similarly, define R−(A) as the
part of the plane lying in an odd number of R+

i and not on any of the ℓi. Now, R+(A) and
R−(A) are disjoint, and they partition R2 \ {ℓ1, . . . , ℓn} into two parts.

Note that reorienting one line just swaps R+(A) and R−(A), so up to symmetry, the two
sides are already determined by the underlying unoriented line arrangement. We will thus
often forget about the orientations and just say that a mass is bisected by a line arrangement.
Hubard and Karasev [26] have shown the following:

▶ Theorem 2 (Planar pizza cutting theorem [26]). Any 2n mass distributions in the plane
can be simultaneously bisected by an arrangement of n lines.

From an algorithmic point of view, we want to restrict our attention to efficiently
computable mass distributions.

▶ Definition 3 (Computable mass distribution). A computable mass distribution is a continuous
function µ which assigns to each arrangement of n oriented lines two values µ(R+(A))
and µ(R−(A)), such that µ(R+(A)) + µ(R−(A)) = µ(R+(A′)) + µ(R−(A′)) for any two
arrangements A and A′. We further assume that µ can be computed in time polynomial in
the description of the input arrangement.

We now have that the following problem always has a solution.

▶ Definition 4 (PizzaCutting). The problem PizzaCutting takes as input 2n computable
mass distributions µ1, . . . , µ2n and returns an arrangement A of oriented lines in the plane
such that for each i we have µi(R+(A)) = µi(R−(A)).
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An important special case of masses are point sets with the counting measure. They do
not quite fit the above framework of mass distributions, as the number of points on a line
can be non-zero. This can however be resolved by rounding: we say that a line arrangement
bisects a point set P , if there are at most ⌊ |P |

2 ⌋ many points of P in both parts. Note that if
the number of points in P is odd, this implies that at least one point needs to lie on some
line. In the following, we will assume that all point sets are in general position, that is,
no three points lie on a common line. With this, we can assume that for each point set at
most one point lies on a line. Standard arguments (see e.g. [33]) show that the existence of
partitions for mass distributions imply the analogous result for point sets with this definition
of bisection. Alternatively, we give a direct proof of the following in Section 4.

▶ Corollary 5 (Discrete planar pizza cutting theorem). Any 2n point sets in the plane can be
simultaneously bisected by an arrangement of n lines.

Thus, also the following discrete version always has a solution.

▶ Definition 6 (DiscretePizzaCutting). The problem DiscretePizzaCutting takes as
input 2n point sets P1, . . . , P2n in general position in the plane and returns an arrangement A

of oriented lines in the plane such that for each i we have |Pi∩R+(A)| = |Pi∩R−(A)| = ⌊ |Pi|
2 ⌋.

The pizza cutting problem can be viewed as a higher-dimensional generalization of the
consensus halving and necklace splitting problems.

▶ Definition 7 (ConsensusHalving/NecklaceSplitting). The problem ConsensusH-
alving takes as input n valuation functions v1, . . . , vn on the interval [0, 1] and returns a
partition of [0, 1] into n + 1 intervals (that is, using n cuts), each labeled “+′′ or “−′′, such
that for each valuation function we have vi(I+) = vi(I−) (where Ix denotes the union of
intervals labeled “x′′). The problem NecklaceSplitting is the same, but taking as input n

point sets, again using the above definition of bisections of point sets.

Again, a solution to the problems is always guaranteed to exist. In the case of mass
distributions, this result is known as the Hobby-Rice theorem [25]. For necklaces, the
statement holds even for the generalized problem of sharing with more than two people [2, 3].
In this work, whenever we refer to the Necklace splitting theorem, we mean the version for
two people.

Finally, for all above problems, we can also consider the decision version, where we are
given one more measure or point set than the number that can always be bisected, and
we need to decide whether there still is a bisection. We denote these problems by adding
“Decision” to their name.

1.2 Algorithms and complexity
Most proofs of existence of certain mass partitions use topological methods, which, by their
nature, are not algorithmic. Thus, there has been quite some effort in developing algorithms
that find these promised partitions, ideally efficiently. Arguably the most famous result in
this direction are the algorithms for Ham-Sandwich cuts by Lo, Steiger and Matoušek [32, 31].
While in the plane, their algorithm runs in linear time, in general the runtime shows an
exponential dependency on the dimension. This curse of dimensionality seems to be a
common issue for many algorithmic version of mass partition problems, and most problems
have only been studied from an algorithmic point of view in low dimensions, where the
constructed algorithms either rely on a relatively small space of solutions or a simplified
proof which allows for an algorithmic formulation, see e.g. [1, 6, 37].

ISAAC 2021
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PSPACE

FIXP TFNP
PPA

PPAD

UEOPL

Figure 2 Containment relations of some complexity classes for total problems.

The curse of dimensionality was made explicit for the first time by Knauer, Tiwary and
Werner, who showed that deciding whether there is a Ham-Sandwich cut through a given
point in arbitrary dimensions is W[1]-hard (and thus also NP-hard) [29]. More recently, in
several breakthrough papers, Filos-Ratsikas and Goldberg have shown that computing Ham-
Sandwich cuts in arbitrary dimensions is PPA-complete, and so are NecklaceSplitting
and ConsensusHalving, the latter even in an approximation version [23, 24].

The class PPA was introduced in 1994 by Papadimitriou [36]. It captures search problems,
where the existence of a solution is guaranteed by a parity argument in a graph. More
specifically, the defining problem is the following search problem in a (potentially exponentially
sized) graph G: given a vertex of odd degree in G, where G is represented via a polynomially-
sized circuit which takes as input a vertex and outputs its neighbors, find another vertex
of odd degree. The class PPA is a subclass of TFNP (Total Function NP), which are total
search problems where solutions can be verified efficiently.

A subclass of PPA that is of importance in this work is UEOPL [22], which is a subclass
of PPAD [36]. PPAD is similar to PPA, but instead of an undirected graph, we are given a
directed graph in which each vertex has at most one predecessor and at most one successor.
We are given a vertex without predecessor, and our goal is to find another vertex without
predecessor or successor. If we are further given a potential function which strictly increases
on a directed path such that there is a unique vertex with maximal potential, finding this
vertex is the defining problem for the class UEOPL.

The class UEOPL is related to mass partitions through the fact that finding the unique
discrete Ham-Sandwich cut in the case that the point sets are well-separated is in UEOPL [14]
We say that k point sets P1, . . . , Pk in Rd are well-separated, if for no d-tuple of them their
convex hulls can be intersected with a (d − 2)-dimensional affine subspace.1 This definition
extends to masses by forbidding intersections of affine subspaces with the convex hulls of their
supports. In fact, for well-separated masses and point sets, the α-Ham-Sandwich theorem
states that it is always possible to simultaneously cut off an arbitrary given fraction from
each mass or point set with a single hyperplane [4, 43].

The class PPAD has so far mostly been related to the computation of Nash and market
equilibria [10, 11, 12, 13, 15, 16, 20, 34, 39, 42, 45].

1 Admittedly, this would be a very weird pizza.
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Finally, the two last classes that are relevant for this work are FIXP and ∃R. The class
FIXP is the class of problems that can be reduced to finding a Brouwer fixed point [21],
whereas ∃R is the class of decision problems which can be written in the existential theory of
the reals.

In the context of mass partitions, apart from the above mentioned results on Ham-
Sandwich cuts, Consensus halvings and Necklace splittings, some of the above classes also
appear in the complexity of Square-Cut Pizza sharing. In this variant, introduced by Karasev,
Roldán-Pensado and Soberón, n masses in the plane are bisected by a cut which is a union
of at most n axis-parallel segments, or in other words, a piecewise linear cut with at most
n − 1 90◦-turns [28]. It was recently shown by Deligkas, Fearnley and Melissourgos that
finding such a cut even for restricted inputs is PPA-complete, finding a cut where a constant
number of additional turns are allowed is PPAD-hard, and that the corresponding decision
version is NP-hard [17]. For more general masses, they show the problem to be FIXP-hard
and the decision version to be ∃R-complete. This work was heavily influenced and motivated
by their paper: apart from the different setting, their results are very similar from the results
in this work, showing the relation between those two pizza cutting variants. Indeed, in a new
version of their paper, the authors of [17] prove some of the same hardness results as this
work, and also some stronger hardness results for approximate bisections.

1.3 Our contributions
Our main contribution is that DiscretePizzaCutting is PPA-complete. While the hardness
is rather straight-forward, the containment requires some more work. We give a new proof
for the existence of pizza cuttings for point sets which, while inspired by the ideas of Hubard
and Karasev, uses only elementary geometric techniques which allow us to place the problem
in PPA.

We further prove that PizzaCutting is FIXP-hard and that PizzaCuttingDecision
is ∃R-hard and that finding the minimum number of cuts required to bisect an instance of
DiscretePizzaCutting is NP-hard.

Finally, for well-separated masses, we show that the α-Ham-Sandwich theorem generalizes
to pizza cuttings. For point sets in fixed dimensions, we give a linear time algorithm to find
such a cut, whereas for arbitrary dimensions we place the problem in UEOPL.

Many of our results are more or less direct applications of known results. In particular,
all hardness results follow from a proof of the existence of a Consensus Halving from the
existence of a pizza cut. We present this proof and the hardness results in Section 2. In
Section 3, we consider the case of well-separates masses and point sets, as some of the
ideas are needed for our containment proof. The part where the most new ideas are used is
Section 4, where we show the containment of DiscretePizzaCutting in PPA.

2 Hardness results

In this section, we give a proof of existence of Consensus halvings and necklace splittings using
the planar pizza cutting theorem. This proof gives a natural reduction to the corresponding
algorithmic problems, and thus a variety of hardness results follow.

▶ Lemma 8. The planar pizza cutting theorem implies the Hobby-Rice theorem.

Proof. Consider the moment curve γ in R2, that is, the curve parametrized by (t, t2). Note
that any line ℓ intersects γ in at most two points, call them g1 and g2, with g1 being to the
left of g2 (in the case of a single or no intersection, we may consider g1 = −∞ or g2 = ∞
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or both). Let x1 and x2 be the projections of g1 and g2 to the x-axis under the projection
π(x, y) := x. Consider now a half-plane h bounded by ℓ and consider its intersection with
γ. If h lies below ℓ, then h ∩ γ projects to the interval [x1, x2]. If h lies above ℓ, then h ∩ γ

projects to (−∞, x1] ∪ [x2, ∞). Similarly, if ℓ is vertical, h ∩ γ projects either to (−∞, x1] or
[x2, ∞). Thus, in all cases h ∩ γ projects to an interval or the complement of an interval,
which, in a slight abuse of notation, we denote by π(h).

Given a valuation function v, we now want to define a mass distribution µ in the plane.
For this, it is enough to just define µ on all half-planes. This we can do using the above
observations: for any half-plane h, we define µ(h) := v(π(h)).

This way, we have defined n mass distributions. Now, we do the same thing, but shift
the interval [0, 1], which is the support of the valuation functions, to the interval [2, 3]. More
formally, we consider the projection φ(x, y) := x − 2 and, given a valuation function v, define
a mass distribution η as η(h) := v(φ(h)).

We have now defined 2n mass distributions. By the pizza cutting theorem, there exists and
arrangement A = (ℓ1, . . . , ℓn) of n lines which simultaneously bisects these mass distributions.
Consider the intervals I1 and I2 on γ defined by t ∈ [0, 1] and t ∈ [2, 3]. As there are at most
2n intersections of A and γ, by the pigeonhole principle there are at most n intersections
in one of them, say I1. Let i1, . . . , in be the projections of these intersections under the
projection π. We claim that i1, . . . , in simultaneously bisect v1, . . . , vn.

To show this, consider some valuation function vi. By construction, we now have that
vi(I+) = µi(R+(A)) = µi(R−(A)) = vi(I+), which proves the claim. In the case where
I2 has at most n intersections, we can do the same argument, replacing π with φ and µ

with η. ◀

Note that all the steps in the proof can be computed in polynomial time. Thus, as
ConsensusHalving is FIXP-hard [18], we immediately get the following:

▶ Corollary 9. PizzaCutting is FIXP-hard.

In the discrete setting, the above proof can be phrased even simpler: for each point x

in [0, 1], we just define two points (x, x2) and (x + 2, (x + 2)2). As NecklaceSplitting is
PPA-hard [24], we get that

▶ Corollary 10. DiscretePizzaCutting is PPA-hard.

Clearly, the construction in the proof above also works for more than n valuation functions.
In [18], it was shown that deciding whether n + 1 valuation functions can be bisected with n

cuts is ∃R-hard. It thus follows that it is ∃R-hard to decide whether 2n + 2 masses can be
bisected by n lines. However, in the case where n is even, we can also only use π and map
all valuation functions to a single interval on γ, which analogously proves the Hobby-Rice
theorem for even n. From an asymptotic point of view, this restriction to even values does
not matter, so using this reduction, we get the following slightly stronger statement.

▶ Corollary 11. PizzaCuttingDecision is ∃R-hard.

Finally, it was shown in [9, 35] that finding the minimal number of cuts required to split
a necklace is NP-hard. We again get the analogous result for discrete pizza cuttings.

▶ Corollary 12. Finding the minimal number of lines that simultaneously bisect a family of
2n point sets is NP-hard.



P. Schnider 13:7

3 Well-separated point sets

In this section we consider well-separated mass distributions and point sets. We generalize
the α-Ham-Sandwich theorem to pizza cuttings.

▶ Theorem 13. Let µ1, . . . , µnd be nd well-separated mass distributions in Rd. Given a
vector α = (α1, . . . , αnd), with each αi ∈ [0, 1], there exists an arrangement A of n oriented
hyperplanes such that for each i ∈ {1, . . . , nd} we have µi(R+(A)) = αiµi(Rd).

Proof. By the α-Ham-Sandwich theorem [4], for any d well-separated mass distributions
µ1, . . . , µd and any vector (α1, . . . , αd), there exists a unique single hyperplane cutting
each mass distribution in the required ratio. By the definition of well-separatedness, this
hyperplane does not intersect the support of any other mass distribution. Partition the point
set into n parts of d point sets each. For each part, pick some oriented hyperplane which
intersects the support of all masses in this part. This defines an arrangement B of oriented
hyperplanes. For each mass µi, consider the intersection of its support with the positive side
of the hyperplane intersecting it, as well as with R+(B). If these two coincide, set α′

i := αi,
otherwise set α′

i := 1 − αi. Now, taking the α-Ham-Sandwich cut for the vectors α′ gives the
required arrangement. ◀

We call such an arrangement an α-Pizza cut. From the discrete α-Ham-Sandwich
theorem [43], we analogously get the discrete version of the above.

▶ Corollary 14. Let P1, . . . , Pnd be nd well-separated point sets in Rd. Given a vector
α = (k1, . . . , knd), where each ki is an integer with 0 ≤ ki ≤ |Pi|, there exists an arrangement
A of n oriented hyperplanes such that for each i ∈ {1, . . . , nd} we have |Pi ∩ R+(A)| = ki.

In [14], it was shown that the problem of computing an α-Ham-Sandwich cut for point
sets is in UEOPL. As our α-Pizza cuts are just a union of α-Ham-Sandwich cuts, their result
generalizes to our setting.

▶ Corollary 15. The problem of computing an α-Pizza cut for point sets is in UEOPL.

▶ Remark 16. The computation of the vector α′ does not directly translate into the setting
of UEOPL. However, in [14], they start with an arbitrary hyperplane, and then rotate it in a
well-defined fashion to the solution. This immediately translates to our setting: we just start
with an arbitrary arrangement, and the choice of the direction of rotation works analogously
to the choice in [14].

Further, Bereg [7] has shown that an α-Ham-Sandwich cut for d point sets of m points
total in Rd can be computed in time m2O(d). In particular, if d is fixed, this algorithm runs
in linear time. Again, we get the same result for α-Pizza cuts.

▶ Corollary 17. Let P1, . . . , Pnd be well-separated points sets in Rd with
∑nd

i=1 |Pi| = m.
Then an α-Pizza cut for P1, . . . , Pnd can be computed in time m2O(d).

Proof. Partition the point sets into parts P(i−1)d+1, . . . , Pid, for i ∈ {1, . . . , n}. Compute
the vector α′ in time O(nd). As m ≥ nd, the runtime of the second part dominates the total
runtime. For each i ∈ {1, . . . , n}, use Bereg’s algorithm to compute the α-Ham-Sandwich
cut for P(i−1)d+1, . . . , Pid. It follows that the solution is an α-Pizza cut. The runtime of the
algorithm is

n∑
i=1

(|P(i−1)d+1|+, . . . , +|Pid|)2O(d) =
nd∑
i=1

|Pi|2O(d) = m2O(d). ◀
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4 Containment results

In this section, we prove that DiscretePizzaCutting is in PPA. We do this by giving
a new proof of the discrete planar pizza cutting theorem, which allows for an algorithm
in PPA. Before we go into the details of the proof, we briefly sketch the main ideas. The
main structure of our proof is similar to and inspired by the original proof of Hubard and
Karasev [26], but we replace their topological arguments with easier ones that only use
the combinatorics of point sets, but hence do not work for the more general case of mass
distributions.

The main idea is that we continuously transform well-separated point sets into the point
sets which we want to bisect. In the beginning of this process, we have several bisections,
namely one for each partition of the labels of the point sets into pairs, and this number is odd.
During the process, we pull these bisecting arrangements along. Every time the orientation
of some triple of points changes, it can happen that one of the arrangements is not bisecting
anymore. The main step in the proof is, that in these cases, we can always slightly change
this arrangement so that it is again bisecting, or that there is a second arrangement that also
is not bisecting anymore. In other words, some bisections might vanish during the process,
but if they do, then they always vanish in pairs. This step is also where our proof differs
from the one by Hubard and Karasev.

Once we have this, the remainder of the proof is rather simple: as we started with an odd
number of bisections, and they always vanish in pairs, the number of bisections is always odd,
and thus in particular at least 1. Further, we can build a graph where each vertex corresponds
to a point set in our process with an arrangement, where the vertices are connected whenever
one arrangement is the pulled along version of the other one, or when both point sets are
the same and the arrangements are the two arrangements that vanish at this point of the
process. (In the end, some of these connections will be paths instead of single edges.) Adding
an additional vertex which we connect to all starting arrangements, we get a graph in which
the only odd-degree vertices are this additional vertex and the final solutions.

4.1 A proof of the discrete planar pizza cutting theorem
We now proceed to give a detailed proof of the discrete planar pizza cutting theorem
(Corollary 5). Let P1, . . . , P2n be the point sets we wish to bisect. Let further m :=

∑2n
i=1 |Pi|.

▶ Lemma 18. We may assume that each Pi contains an odd number of points.

Proof. For each point set Pi with an even number of points, add some arbitrary new point qi

to Pi, such that the point sets are still in general position. Take some bisecting arrangement
A of the resulting point sets. As all of these point sets consist of an odd number of points in
general position, each of them must contain a point pi which lies on a line of A. As each
line in A can pass through at most two points by the general position assumption, there is
exactly one such point in each point set. Now, remove qi again. If pi = qi, the arrangement
still bisects Pi. Otherwise, one side, without loss of generality R+, contains one point too
few. Rotate the line through pi slightly so that pi lies in R+. Now the arrangement again
bisects Pi. ◀

So, from now on we may assume that each Pi contains an odd number of points. Let
Q1, . . . , Q2n be point sets of the same size, that is, |Qi| = |Pi|, that are well-separated.
Match each point q ∈ Qi with a point p ∈ Pi and consider for each such pair the map
φ(t) := tp + (1 − t)q. These maps define a map Φ(t), which assigns to each t the point set
defined by the φ(t)’s.
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During this process, some orientations of triples of points change. We may assume, that
no two triples change their orientation at the same time. Further, as each point crosses each
line spanned by two other points at most once, the total number of orientation changes is in
O(m3). Thus, the interval [0, 1] is partitioned into O(m3) subintervals, in each of which the
orientations of all triples stay the same, that is, the order type is invariant. At the boundaries
of these subintervals, some three points are collinear.

Taking a representative of each subinterval and the point sets at their boundaries, we
thus get a sequence of point sets

Qi = P
(0)
i , P

(0.5)
i , P

(1)
i , . . . , P

(k)
i , P

(k.5)
i , P

(k+1)
i , . . . , P

(C)
i = Pi,

where C ∈ O(m3) is the number of orientation changes, P (k) :=
⋃2n

i=1 P
(k)
i is a point set in

general position, and P (k.5):= ⋃2n
i=1 P

(k.5)
i is a point set with exactly one collinear triple. We

will mainly work with the sets P (k), the sets P (k.5) are just used to make some arguments
easier to understand.

As argued before, for each P (k), any bisecting arrangement A contains exactly one point
p

(k)
i (A) of each P

(k)
i on one of its lines. In particular, A is defined by a set of pairs of points

(p(k)
i (A), p

(k)
j (A)), where each pair defines one line of the arrangement.

▶ Lemma 19. For P (0), the number of bisecting arrangements is odd.

Proof. It is known that for 2 separated point sets, each of odd size, there is a unique Ham-
Sandwich cut (see e.g. [43]). We have seen in the proof of Theorem 13, that for well-separated
point sets, each bisecting arrangement corresponds to n Ham-Sandwich cuts, each for a pair
of point sets. Thus, the number of bisecting arrangements is the same as the number of
partitions of 2n elements into pairs. This number is (2n − 1)!! = (2n − 1)(2n − 3) · · · 3 · 1,
which is a product of odd numbers, and thus odd. ◀

Let us now follow some arrangement A through the process. More precisely, Let A(0)

be a bisecting arrangement for P (0), defined by pairs of points (p(0)
i (A), p

(0)
j (A)). We now

consider the sequence of arrangements A(k), where each A(k) is defined by the corresponding
pairs of points (p(k)

i (A), p
(k)
j (A)). Clearly, if A(k) is bisecting and the orientation change

from P (k) to P (k+1) is not a point moving over a line in the arrangement A(k), then A(k+1)

is still bisecting. For the other changes, we need the following lemma. Here, we say that an
arrangement A(k.5) is almost bisecting for P (k.5), if it bisects each P

(k.5)
i except for one, for

which two points are on a line of the arrangement, and for the remaining points one side
contains exactly one point more.

▶ Lemma 20. Let A(k) and A(k+1) be such that A(k) is bisecting and A(k+1) is not. Then
there either exists a sequence of arrangements

A(k), A(k.5) = A
(k.5)
0 , A

(k.5)
1 , . . . , A

(k.5)
L = B(k.5), B(k+1),

where each A
(k.5)
l is almost bisecting, B(k+1) is bisecting and B(k) is not bisecting, or there

exists a sequence of arrangements

A(k), A(k.5) = A
(k.5)
0 , A

(k.5)
1 , . . . , A

(k.5)
L = B(k.5), B(k),

where each A
(k.5)
l is almost bisecting, B(k) is bisecting and B(k+1) is not bisecting. Further,

in the second case, the sequence for B(k) is the reverse of the sequence for A(k).
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Figure 3 Going from A(k.5) (left) via B(k.5) (middle) to B(k+1) (right). In this example, B(k+1)

does not bisect the blue point set anymore.

In this lemma, the first case corresponds to a bisecting arrangement that can be changed
to a new bisecting arrangement, whereas the second case corresponds to two bisecting
arrangements disappearing at the same time.

Proof. As mentioned above, the situation of the lemma can only occur if the orientation
change from P (k) to P (k+1) corresponds to a point q(k) moving over a line ℓ of the arrangement
P (k). Without loss of generality, let ℓ be defined by the points p

(k)
1 ∈ P

(k)
1 and p

(k)
2 ∈ P

(k)
2 .

There are two cases we consider: either q(k) is in the same point set as one of the points
on ℓ, without loss of generality q(k) ∈ P

(k)
1 , or it is in a different point set, without loss of

generality q(k) ∈ P
(k)
3 . We start with the second case. For an illustration of that case, see

Figure 3.

Case 1: q(k) ∈ P
(k)
3 . Orient the arrangement in such a way that q(k) is in R+(A(k)). In

A(k.5) the line ℓ contains three points, namely p
(k)
1 , p

(k)
2 and q(k). Note that A(k.5) is

almost bisecting, and R+(A(k.5)) is the smaller side for P
(k.5)
3 . There exists another line

ℓ′ in A(k.5) which contains a second point p
(k.5)
3 of P

(k.5)
3 . Rotate ℓ′ around the other

point on it such that p
(k.5)
3 is in R+(A(k.5)). Note that this direction of rotation is unique.

Continue the rotation until ℓ′ hits another point q
(k.5)
j ∈ P

(k.5)
j which is not on some line

of A(k.5). The resulting arrangement is now A
(k.5)
1 .

Note that A
(k.5)
1 is again almost bisecting, and that the point set which is not exactly

bisected is P
(k.5)
j . While j ̸∈ {1, 2, 3}, we can now find another point in P

(k.5)
j lying

on a line of the arrangement A
(k.5)
l , rotate this line into the correct direction until a

new point is hit, to get a new arrangement A
(k.5)
l+1 . As all of these arrangements are

different, and there are only finitely many possible arrangements, at some point we will
have j ∈ {1, 2, 3}. This gives the arrangement B(k.5). There are now several options to
consider: there are 3 different ways how p

(k)
1 , p

(k)
2 and q(k) can lie on ℓ, j can be 1, 2 or

3, and the smaller side of P
(k.5)
j can be R+(B(k.5)) or R−(B(k.5)). In all of the cases, the

only change from the arrangements B(k) to B(k+1) are the defining points of ℓ. It follows
that exactly one of B(k) and B(k+1) can be bisecting, depending on whether the point on
ℓ is in R+(B(k+1)) or not.

Case 2: q(k) ∈ P
(k)
1 . In this case, we just have A(k.5) = B(k.5).

Finally, the last claim follows from the fact that the directions of rotations from A
(k.5)
l to

A
(k.5)
l+1 are unique. ◀
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(P (0), A(0))

(P (0.5), A(0.5))

(P (1), A(1))

(P (1.5), A(1.5))

(P (2), A(2))

(P (2.5), A(2.5))

(P (3), A(3))

(P (3.5), A(3.5))

(P (C−1), A(C−1))

(P ((C−1).5), A((C−1).5))

(P (C), A(C))

s

Figure 4 A schematic drawing of the graph whose leafs correspond to bisecting arrangements.

▶ Remark 21. During the process, it can also happen that two bisecting arrangement appear
at the same time. In this case, we immediately get the analogous lemma, just reversing k

and (k + 1).
With all these lemmas at hand, we can now finally give a

Proof of the discrete planar pizza cutting theorem. Let P = (P1, . . . , P2n) be in general
position. By Lemma 18, we may assume that each Pi contains an odd number of points.
Consider the sequence P (0), P (1), . . . , . . . , P (C) = P of point sets. By Lemma 19, P (0) has an
odd number of bisecting arrangements. When going from P (k) to P (k+1), either all bisecting
arrangements stay bisecting or, by Lemma 20, one of them can be changed into a new
bisecting arrangement or exactly two bisecting arrangements appear or disappear. It follows
that for each k, P (k) has an odd number of bisecting arrangements. In particular, also P has
an odd number of bisecting arrangements, and thus at least 1. ◀

4.2 Containment in PPA
In order to show that DiscretePizzaCutting is in PPA, we need to define a graph where
the neighborhoods of each vertex can be efficiently computed and all odd-degree vertices,
except the starting vertex, correspond to bisecting arrangements. In the following, we
describe such a graph. For an illustration of the graph, see Figure 4.

The vertex set. Our vertex set consists of a starting vertex s, as well as vertices of the
form (P (k), A(k)) and (P (k.5), A(k.5)). For vertices (P (k), A(k)), A(k) is an arrangement which
is not necessarily bisecting, but whose lines contain exactly one point of each P

(k)
i . Similarly,

for vertices (P (k.5), A(k.5)), the arrangement A(k.5) is not necessarily almost bisecting, but
its lines contain at least one point of each P

(k.5)
i and exactly 2 for one of them. In particular,

one of the lines of A(k.5) is the line ℓ through the unique three collinear points.

The edge set. The starting vertex s in connected to all vertices (P (0), A(0)), for which
A(0) is bisecting. A vertex of the form (P (k), A(k)), k < L is connected to the vertices
(P ((k−1).5), A((k−1).5)) and (P (k.5), A(k.5)) if and only if A(k) is bisecting. Otherwise, it
is not connected to any other vertex. Similarly, the vertices (P (C), A(C)) are connected
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to (P ((C−1).5), A((C−1).5)) if and only if A(C) is bisecting, and not connected to anything
otherwise. Also a vertex of the form (P (k.5), A(k.5)) where A(k.5) is not almost bisecting is
not connected to any other vertex. For vertices (P (k.5), A(k.5)) with A(k.5) almost bisecting
we distinguish two cases. If ℓ does not contain a point of the point set which is contained
twice in the lines of A(k.5), we connect (P (k.5), A(k.5)) to the two vertices which correspond
to the rotations defined in the proof of Lemma 20. Otherwise, we connect (P (k.5), A(k.5))
to the single vertex that we get by such a rotation, as well as to either (P (k), A(k)) or
(P (k+1), A(k+1)), depending on which one has the bisecting arrangement (note that we get
from Lemma 20 that exactly one of the two arrangements is bisecting).

Note that all vertices have degree 0 or 2, except s and the vertices (P (C), A(C)) with A(C)

bisecting, that is, the vertices corresponding to solutions. All the vertices corresponding
to solutions have degree 1. The starting vertex has degree (2n − 1)!!, which is exponential,
so we cannot compute its neighborhood in polynomial time. This is however not an issue,
as already noted in the paper where PPA is defined [36], provided that we can decide for
any two vertices in polynomial time whether the are connected, and there is an efficiently
computable pairing function, that is, a function ϕ(v, v′) which takes as input a vertex v and
an outgoing edge {v, v′} and computes another vertex v′′ such that {v, v′′} is also an edge.
If v has even degree, then ϕ(v, v′) ̸= v′ for all v′. If v has odd degree, then there is exactly
one v′ for which ϕ(v, v′) = v′. The exact statement from [36] is as follows:

▶ Lemma 22 ([36]). Any problem defined in terms of an edge recognition algorithm and a
pairing function is in PPA.

It remains to show that we have both these ingredients.

▶ Lemma 23. For any two vertices, we can decide in polynomial time whether they are
connected.

Proof. It follows from the construction that for any vertex except the starting vertex s, the
neighborhood can be computed in polynomial time. In particular, it can also be checked
whether two such vertices are connected. As for the starting vertex s, some other vertex can
only be connected to it if its point set is P (0) and its arrangement is bisecting. The first
is encoded in the label of the vertex and the second can easily be checked in polynomial
time. ◀

▶ Lemma 24. There is a pairing function ϕ which can be computed in polynomial time.

Proof. As all vertices except s have degree 0, 1 or 2, and the neighborhoods can be computed
in polynomial time, the pairing function follows trivially for these vertices. As for s, we note
that its neighbors correspond to partitions of the 2n point sets into pairs. In other words, its
neighbors can be interpreted as perfect matchings in the complete graph K2n with vertex set
{w1, . . . , w2n}. It is thus enough to describe a pairing function for these perfect matchings.
We do this in an algorithmic fashion.

Let M be some perfect matching. Consider the vertices w1 and w2. Assume first that they
are not connected to each other, that is, we have two distinct edges {w1, wa} and {w2, wb} in
M . In that case, define the pairing M ′ := M \ {{w1, wa}, {w2, wb}} ∪ {{w1, wb}, {w2, wa}},
that is, flip the edges incident to w1 and w2. Note that the pairing of M ′ is again M , that
is, it indeed is a pairing.

If w1 and w2 are connected to each other, repeat the same process with w3 and w4, and
so on. This process defines a pairing for each matching except {{w1, w2}, . . . , {w2n−1, w2n}}.
Further, the algorithm clearly runs in polynomial time. We thus get a valid pairing function.

◀
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We thus get from Lemma 22 that DiscretePizzaCutting is in PPA. Together with
Corollary 10, we can thus conclude our main result.

▶ Corollary 25. DiscretePizzaCutting is PPA-complete.

5 Conclusion

We have shown several complexity results related to the pizza cutting problem. Our main
result is that DiscretePizzaCutting is PPA-complete. While we have only considered
the planar case, the problem as well as our arguments extend to higher dimensions. More
precisely, the proof of the Hobby-Rice theorem using the pizza cutting theorem can be
adapted to work for any dimension of the pizza cutting theorem. Further, the proof of
the discrete pizza cutting theorem can be adapted to any dimension where the number of
initial solutions is odd. This is the case if the dimension is a power of 2 [26]. Thus, in all
these dimensions the analogous versions of DiscretePizzaCutting are also PPA-complete,
assuming the dimension is fixed. On the other hand, it is an open problem whether the pizza
cutting theorem also holds in other dimensions.

We have also shown that PizzaCutting is FIXP-hard. It is an interesting problem
whether the problem is in FIXP or even harder. One way to show that the problem is in
FIXP is to find a proof for the planar pizza cutting theorem using Brouwer’s fixpoint theorem.
Such a proof would have the potential to generalize to any dimension, resolving the above
question.
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Abstract
Our aim is to develop dynamic data structures that support k-nearest neighbors (k-NN) queries for
a set of n point sites in O(f(n) + k) time, where f(n) is some polylogarithmic function of n. The key
component is a general query algorithm that allows us to find the k-NN spread over t substructures
simultaneously, thus reducing a O(tk) term in the query time to O(k). Combining this technique
with the logarithmic method allows us to turn any static k-NN data structure into a data structure
supporting both efficient insertions and queries. For the fully dynamic case, this technique allows us
to recover the deterministic, worst-case, O(log2 n/ log log n+k) query time for the Euclidean distance
claimed before, while preserving the polylogarithmic update times. We adapt this data structure to
also support fully dynamic geodesic k-NN queries among a set of sites in a simple polygon. For this
purpose, we design a shallow cutting based, deletion-only k-NN data structure. More generally, we
obtain a dynamic k-NN data structure for any type of distance functions for which we can build
vertical shallow cuttings. We apply all of our methods in the plane for the Euclidean distance, the
geodesic distance, and general, constant-complexity, algebraic distance functions.
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1 Introduction

In the k-nearest neighbors (k-NN) problem we are given a set of n point sites S in some
domain, and we wish to preprocess these points such that given a query point q and an
integer k, we can find the k sites in S “closest” to q efficiently. This static problem has
been studied in many different settings [4, 5, 10, 18, 19]. We study the dynamic version of
the k-nearest neighbors problem, in which the set of sites S may be subject to updates; i.e.
insertions and deletions. We are particularly interested in two settings: (i) a setting in which
the domain containing the sites contains (polygonal) obstacles, and in which we measure the
distance between two points by their geodesic distance: the length of the shortest obstacle
avoiding path, and (ii) a setting in which only insertions into S are allowed (i.e. no deletions).

In many applications involving distances and shortest paths, the entities involved cannot
travel towards their destination in a straight line. For example, a person in a city center
may want to find the k closest restaurants that currently have seats available, but since he
or she cannot walk through walls, this should be reflected by the distances. This introduces
complications, as a shortest path in a polygon with m vertices may have complexity Θ(m).
We wish to limit the resulting dependency on m in the space and time bounds as much as
possible. In particular, we wish to avoid spending Ω(m) time every time the availability of
the seats in a restaurant changes (which may cause an insertion or deletion of a site in S).
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The second setting is motivated by classification problems. In k-nearest neighbor classifiers
the sites in S all have a label, and the label of a query point q is predicted based on the
labels of the k sites nearest to q [11]. When this label turns out to be sufficiently accurate, it
is customary to then extend the data set by adding q to S. This naturally gives an interest
in insertion-only data structures that can efficiently answer k-NN queries.

The static problem. If the set of sites is static, and k is known a-priori, one option is to build
the (geodesic) kth-order Voronoi diagram of S [20]. This yields very fast (O(log(n + m) + k))
query times. However it is costly in space, as even in a simple polygon the diagram has size
O(k(n − k) + km). For the Euclidean plane, much more space efficient solutions have been
developed. There is an optimal linear space data structure achieving O(log n + k) query
time after O(n log n) deterministic preprocessing time [1, 10]. Very recently, Liu [19] showed
how to achieve the same query time for general constant-complexity distance functions for
sites in R2, using O(n log log n) space and roughly O(n log4 n) expected preprocessing time
(the exact bound depends on the algebraic degree of the functions). In case the domain is a
simple polygon P, the problem has not explicitly been studied. The only known solution
using less space than just storing the kth-order Voronoi diagram is the dynamic 1-NN
structure of Agarwal et al. [2]. It uses O(n log3 n log m + m) space, and answers queries in
O(k polylog(n + m)) time (by deleting and reinserting the k-closest sites to answer a query).

Issues when inserting sites. Since nearest neighbor searching is decomposable, we can
apply the logarithmic method [23] to turn a static k-NN searching data structure into an
insertion-only data structure. In the Euclidean plane this yields a linear space data structure
with O(log2 n) insertion time. However, since this partitions the set of sites into O(log n)
subsets, and we do not know how many of the k-nearest sites appear in each subset, we may
have to consider up to k sites from each of the subsets. This yields an O(k log n) term in the
query time. We will present a general technique that allows us to avoid this O(log n) factor.

Fully dynamic data structures. In case we wish to support both insertions and deletions,
the problem becomes more complicated, and the existing solutions much more involved.
When we need to report only one nearest neighbor (i.e. 1-NN searching) in the plane, efficient
fully dynamic data structures exist [6, 8, 16]. Actually, all these data structures are variants
of the same data structure by Chan [6]. For the Euclidean distance, the current best result
uses linear space, and achieves O(log2 n) worst-case query time, O(log2 n) insertion time,
and O(log4 n) deletion time [8]. These results are deterministic, and the update times are
amortized. The variant by Kaplan et al. [16] achieves similar results for general distance
functions. These data structures can also be used to answer k-NN queries, but when used in
this way essentially suffer from the same problem as in the insertion-only case. That is, we
get a query time of O(log2 n + k log n) time [6].

Chan argues that the above data structure for Euclidean 1-NN searching can be extended
to answer k-NN queries in O(log2 n/ log log n + k) time, while retaining polylogarithmic
updates [7]. Chan’s data structure essentially maintains a collection of k-NN data structures
built on subsets of the sites. A careful analysis shows that some of these structures can
be rebuilt during updates, and that the cost of these updates is not too large. Queries are
then answered by performing ki-NN queries on several disjoint subsets of sites S1, .., St that
together are guaranteed to contain the k nearest sites. However – perhaps because the details
of the 1-NN searching data structure are already fairly involved – one aspect in the query
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algorithm is missing: how to determine the value ki to query subset Si with. While it seems
that this issue can be fixed using randomization [9]1, our general k-NN query technique
(Section 3) allows us to recover deterministic, worst-case O(log2 n/ log log n + k) query time.

Very recently, Liu [19] stated that one can obtain O(log2 n+k) query time while supporting
O(polylog n) expected amortized updates also for general distance functions by using the
data structure of Kaplan et al. [16]. However, it is unclear why that would be the case, as all
details are missing. Using the Kaplan et al. data structure as is yields an O(k log n) term in
the query time as with Chan’s original version [6]. If the idea is to also apply the ideas from
Chan’s later paper [7] the same issue of choosing the ki’s appears. Similarly, extending the
geodesic 1-NN data structure [2] to k-NN queries yields O(k polylog(n + m)) query time.

Organization and Results. We develop dynamic data structures for k-NN queries whose
query time are of the form O(f(n) + k), where f(n) is some function of n. In particular, we
wish to avoid an O(k log n) term in the query time. To this end, we present a general query
technique that given t disjoint subsets of sites S1, .., St, each stored in a static data structure
that supports k′-NN queries in O(Q(n) + k′) time, can report the k nearest neighbors
among

⋃t
i=1 Si in O(Q(n)t + k) time. Our technique, presented in Section 3, is completely

combinatorial, and is applicable to any type of sites. In Section 4, we then use this technique
to obtain a k-NN data structure that supports queries in O(Q(n) log n+k) time and insertions
in O((P (n)/n) log n) time, where P (n) is the time required to build the static data structure.
In the specific case of the Euclidean plane, we obtain a linear space data structure with
O(log2 n + k) query time and O(log2 n) insertion time. At a slight increase of insertion time
we can also match the query time of Chan’s [7] fully dynamic data structure. For general,
constant-complexity, algebraic distance functions, we obtain the same query and insertion
times (albeit the insertion time holds in expectation). In the case where the sites S are points
inside a simple polygon P with m vertices, we use our technique to obtain the first static
k-NN data structure that uses near-linear space, supports efficient (i.e. without the O(k log n)
term) queries, and can be constructed efficiently. We do get an O(log m) factor in the query
time, as computing the distance between two sites already takes O(log m) time. Our data
structure uses O(n log n + m) space, can be constructed in O(n(log n log2 m + log3 m) + m)
time, and supports O((log(n + m) + k) log m) time queries. In turn, this then leads to a
data structure supporting efficient insertions. In Section 5, we argue that our general query
algorithm is the final piece of the puzzle for the fully dynamic case. For the Euclidean plane,
this allows us to recover the deterministic, worst-case O(log2 n/ log log n + k) query time
claimed before [7, 19]. The amortized update times remain polylogarithmic. We obtain the
same query time and similar update times for more general distance functions.

For the geodesic case there is one final hurdle. Chan’s algorithm uses partition-tree based
“slow” dynamic k-NN data structure of linear size in its subroutines. Liu uses a similar trick
after linearizing the distance functions into Rc, for some constant c [19]. Unfortunately,
these ideas are not applicable in the geodesic setting, as it is unknown if an appropriate
partition tree can be built, and the dimension after linearization would depend on m. Instead,
we design a simple, shallow-cutting based, alternative “slow” dynamic (geodesic) k-NN
data structure. This way, we obtain an efficient (i.e. O(polylog(n + m)) expected updates,
O(log2 n log2 m + k log m) queries) fully dynamic k-NN data structure. Omitted proofs are
in the full version of this paper [12].

1 The main idea is that the data structure as is can be used to efficiently report all sites within a fixed
distance from the query point (reporting all planes below a query point in R3). Combining this with an
earlier random sampling idea [5] one can then also answer k-NN queries.
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Figure 1 A 2-shallow cut-
ting of a set of lines F in R2

consisting of 3 prisms. The at
most k-level L≤k(F ) is shown
in green for k = 0, 1, 2.

T1 T2 T3
qq q

Figure 2 Example of the dynamic 1-NN data structure. Only
one shallow cutting (Λkj ) is shown for each tower. The orange
planes in T1 and T2 are pruned when building Λkj−1 , but are not
removed from the conflict lists in Λkj . When querying for the
k-NN, the green prisms in Λkj of each tower are considered. Note
that the three orange planes occur in each of the conflict lists.

2 Preliminaries

We can easily transform a k-nearest neighbors problem in R2 to a k-lowest functions problem
in R3 by considering (the graphs of) the distance functions fs(x) of the sites s ∈ S. We
discuss these problems interchangeably, furthermore we identify a function with its graph.

2.1 Shallow cuttings
Let F be a set of bivariate functions. We consider the arrangement of F in R3. The level of
a point q ∈ R3 is defined as the number of functions in F that pass strictly below q. The at
most k-level L≤k(F ) is then the set of points in R3 that have level at most k.

A k-shallow cutting Λk(F ) of F is a set of disjoint cells covering L≤k(F ), such that each
cell intersects at most O(k) functions [21]. When F is clear from the context we may write
Λk rather than Λk(F ). We are interested only in the case where the cells are (pseudo-)prisms:
constant-complexity regions that are bounded from above by a function, from the sides by
vertical (with respect to the z-direction) planes, and unbounded from below. For example,
if F is a set of planes, we can define the top of each prism to be a triangle. This allows
us to find the prism containing a query point q by a point location query in the downward
projection of the cutting. See Figure 1. The subset F∇ ⊆ F intersecting a prism ∇ is the
conflict list of ∇. When, for every subset F ′ ⊆ F , the lower envelope L0(F ′) has linear
complexity (for example, in the case of planes), a shallow cutting of size (the number of cells)
O(n/k) can be computed efficiently [19]. In general, let T (n, k) be the time to construct
a k-shallow cutting of size S(n, k) on n functions, and Q(n, k) be the time to locate the
prism containing a query point. We assume these functions are non-decreasing in n and
non-increasing in k, and that S(n, k) = n

k f(n), for some function f(n).

2.2 A dynamic nearest neighbor data structure
We briefly discuss the main ideas used in the existing dynamic 1-NN data structures [6, 8, 16],
as these also form a key component in our fully dynamic k-NN data structures. For ease of
exposition, we describe the data structure when F is a set of linear functions (planes). To
ensure the analysis is correct for our definition of n (the current number of sites in S), we
rebuild the data structure from scratch whenever n has doubled or halved. The cost of this
is subsumed in the cost of the other operations [6].
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The data structure consists of t = O(logb n) “towers” T (1), .., T (t). Each tower T (i)

consists of a hierarchy of shallow cuttings that is built on a subset of planes F (i) ⊆ F . For
T (1) we have F (1) = F , and a sequence of ℓ = ⌊log(n/k0)⌋ shallow cuttings, for a fixed
constant k0. For j = 0, .., ℓ we have a kj-shallow cutting of a subset of the planes Fj ⊆ F (1),
where kj = 2jk0. We set Fℓ = F (1) and construct these cuttings from j = ℓ to 0. After
computing Λkj (Fj), we find the set F ×

j of “bad” planes that intersect more than c log n

prisms in all cuttings computed so far. We prune these planes by setting Fj−1 = Fj \ F ×
j

and removing all planes in F ×
j from the conflict lists of the prisms in Λkj (Fj). These bad

planes are removed only from the conflict lists of the current cutting, and can still occur
in conflict lists of higher level cuttings. In the final Λk0(F0) cutting, each conflict list has
a constant size of O(k0). By F

(1)
live we denote the set of planes that have not been pruned

during this process. We then set F (i+1) = F (i) \ F
(i)
live, and recursively build T (i+1) on the

functions in F (i+1). This partitions F into sets F
(1)
live, .., F

(t)
live. Chan [8] recently achieved an

overall construction time of O(n log n), by using information of previously computed cuttings
to efficiently build the cuttings later in the sequence. Kaplan et al. [16, Lemma 7.1] prove
that for any ζ ∈ (0, 1) choosing c ≥ γ

ζ , for a sufficiently large (but constant) γ, ensures that
|F (1)

live| ≥ (1 − ζ)n after building T (1). When ζ = 1/b, we get O(logb n) towers, for some fixed
b ≥ 2 as desired. A plane then occurs O(b log n) times in a tower.

Updates. When updates take place, planes can move from a set F
(i)
live to some F

(i′)
live , but the

live sets remain a partition of F . To insert a plane f into F , we create a new tower containing
only f . When |F (i+1) ∪ ... ∪ F (t)| reaches 3/4 · |F (i)| we rebuild the towers T (i), .., T (t). Such
a rebuild occurs only after Ω(|F (i)|) insertions, so the amortized insertion time is O(log2 n).

Deletions are not performed explicitly on the conflict lists. Instead, for each prism ∇
we keep track of the number of planes in F∇ that have been deleted so far, denoted by d∇.
When deleting a plane f , we increase d∇ for all prisms with f ∈ F∇, and remove f from
the set F

(i)
live that includes f . When too many planes in a conflict list have been deleted (i.e.

d∇ becomes too large), we purge the prism. When a prism in T (i) is purged, we mark it as
such, and we reinsert all planes f ′ ∈ F∇ ∩ F

(i)
live. These planes are effectively moved from

F
(i)
live to some other F

(i′)
live . Chan [8] shows that each increment of d∇ causes amortized O(1)

reinsertions. This gives an amortized deletion time of O(log4 n).

Queries. We can answer k-NN queries in O(log2 n+k logb n) time, and thus 1-NN queries in
O(log2 n) time, as follows. For each tower we consider the prism containing q in the shallow
cutting at level jk := ⌈log(Ck/n)⌉, for some large enough constant C. Each such prism has
a conflict list of size O(k), and thus we can find the k-lowest live planes in each conflict list
in O(k) time. Chan [6] proves that considering only these planes is sufficient.

Liu [19] recently claimed the data structure, in particular the version of Kaplan et al. [16],
supports k-NN queries in O(log2 n + k) time. However, we see an issue with this approach.
When a plane is pruned during the preprocessing, or when a prism is purged, the plane is
only removed from the conflict lists of the current shallow cutting. It can thus still occur
in other shallow cuttings in the hierarchy. This means that we can encounter the same
plane multiple times when querying each tower for the k-lowest planes. See Figure 2 for an
illustration. As there are O(logb n) towers, this yields an O(k logb n) term in the query time.

General distance functions. Kaplan et al. [16] showed that this data structure is applicable
for any set of functions F for which we can compute small k-shallow cuttings. The following
lemma summarizes the properties of the data structure in this setting.

ISAAC 2021
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Figure 3 Example of expansion. Blue elements are included in a clan, orange elements are not.
The expansion (building the next subheap) occurs when all elements have been included in a clan.

▶ Lemma 1. Let b ≥ 2 be any fixed value, and S(n, k) be the size of a k-shallow cutting of
F . There is a dynamic nearest neighbor data structure that has the following properties.
1. The data structure consists of O(logb n) towers.
2. A function occurs O(b log n · S(n, 1)/n) times in a conflict list in a single tower.
3. The insertion time is O(b logb n · P (n)/n), where P (n) is the preprocessing time.
4. A deletion causes amortized O(b logb n log n · S(n, 1)/n) reinsertions.
5. To find the k-NN of a query point q it is sufficient to consider the prisms containing q of

the shallow cuttings at level jk := ⌈log(Ck/n)⌉, for some large enough constant C.

3 Querying multiple k-NN data structures simultaneously

We introduce a method to find the k-nearest neighbors of a query point q among t (disjoint)
k′-NN data structures together storing a set of sites S. Suppose the query time of such a
k′-NN data structure is O(Q(n) + k′), for a non-decreasing function Q. Naively, querying
each data structure for the k closest sites would take O(Q(n)t + kt) time. Our method allows
us to find the k-NN over all these data structures in O(Q(n)t + k) time instead.

Query algorithm. We use the heap selection algorithm of Frederickson [13] to answer k-NN
queries efficiently. This algorithm finds the k smallest elements of a binary min-heap of
size N ≫ k in O(k) time by forming groups of elements, called clans, in the original heap.
Representatives of these clans are then added to another heap, and smaller clans are created
from larger clans and organised in heaps recursively. For our purposes, we need to consider
(only) how clans are formed in the original heap, because we do not construct the entire
heap beforehand. Instead, the heap is expanded during the query only when necessary. See
Figure 3 for an example. Note that any (non-root) element of the heap will only be included
in a clan by the Frederickson algorithm after its parent has been included in a clan.

The heap H, on which we call the heap selection algorithm, contains all sites s ∈ S

exactly once, with the distance d(s, q) as key for each site. Let S1, .., St be the partition of S

into t disjoint sets, where Si is the set of sites stored in the i-th k′-NN data structure. For
each set of sites Sj , j ∈ 1, .., t, we define a heap H(Sj) containing all sites in Sj . We then
“connect” these t heaps by building a dummy heap H0 of size O(t) that has the roots of all
H(Sj) as leaves. We set the keys of the elements of H0 to −∞. Let H be the complete data
structure that we obtain this way, see Figure 4. We can now compute the k sites closest to q

by finding the |H0| + k smallest elements in H and reporting the non-dummy sites.
What remains is how to (incrementally) build the heaps H(Sj) while running the heap se-

lection algorithm. Each such heap consists of a hierarchy of subheaps H1(Sj), .., HO(log n)(Sj),
such that every element of Sj appears in exactly one Hi(Sj). Moreover, since the sets
S1, .., Sj are pairwise disjoint, any site s ∈ S will appear in exactly one Hi(Sj). The level 1
heaps, H1(Sj), consist of the k1 = Q(n) sites in Sj closest to q, which we find by querying
the static k′-NN data structure on Sj . The subheap Hi(Sj) at level i > 1 is built only
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Level 1

Level 2

Level 3

Level 0

. . .

. . .

. . .

H(S1) H(S2) H(S3) H(St)

H0

Figure 4 The heap constructed for a k-NN query. Subheaps of which all elements have been
included in a clan are blue. Subheaps of which not all elements have been included are orange. The
white subheaps have not been built so far, as not all elements of their predecessor are in a clan yet.

after the last element e of Hi−1(Sj) is included in a clan. We then add a pointer from e to
the root of Hi(Sj), such that the root of Hi(Sj) becomes a child of e, as in Figure 3. To
construct a subheap Hi(Sj) at level i > 1, we query the static data structure of Sj using
ki = k12i−1. The new subheap is built using all sites returned by the query that have not
been encountered earlier. This ensures that the heap property is preserved.

Analysis of the query time. As stated before, finding the k-smallest non-dummy elements
of H takes O(k + |H0|) time [13]. Here, we analyse the time used to construct H.

First, the level 0 and level 1 heaps are built. Building H0 takes only O(t) time. To build
the level 1 heaps, we query each of the substructures using k1 = Q(n). In total these queries
take O((Q(n) + k1)t) = O(Q(n)t) time. Retrieving the next ki elements to build Hi(Sj) for
i > 1 requires a single query and thus takes O(Q(n) + ki) time. To bound the time used to
build all heaps at level greater than 1, we use the following lemma.

▶ Lemma 2. The size of a subheap Hi(Sj), j ∈ {1, .., t}, at level i > 1 is exactly k12i−2.

To pay for building Hi(Sj), we charge O(1) to each element of Hi−1(Sj). Because we
choose k1 = Q(n), Lemma 2 implies that |Hi−1(Sj)| = Ω(Q(n)), and that ki = k12i−1 =
22k12i−3 = O(|Hi−1(Sj)|). Note that the heap Hi(Sj), i > 1, is only built when all elements
of Hi−1(Sj) have been included in a clan. Thus, we only charge elements of heaps of which
all elements have been included in a clan (shown blue in Figure 4). In total, O(k) elements
(not in H0) are included in a clan, so the total size of these subheaps is O(k). From this,
and the fact that all subheaps are disjoint, it follows that we charge O(1) to only O(k) sites.

▶ Lemma 3. Let S1, .., St be disjoint sets of point sites of sizes n1, .., nt, each stored in a data
structure that supports k′-NN queries in O(Q(ni) + k′) time. There is a k-NN data structure
on

⋃
i Si that supports queries in O(Q(n)t + k) time. The data structure uses O(

∑
i C(ni))

space, where C(ni) is the space required by the k-NN structure on Si.

Throughout this section, we used the standard assumption that for any two points p, q

their distance d(p, q) can be computed in constant time. When evaluating d(p, q) takes T

time, our technique achieves a query time of O(Q(n)t + kT ) by setting k1 = Q(n)/T and
charging O(T ) to each site of Hi−1(Sj) to pay for building Hi(Sj).
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4 An insertion-only data structure

We describe a method that transforms a static k-NN data structure with query time
O(Q(n) + k) into an insertion-only k-NN data structure with query time O(Q(n) log n + k).
Insertions take O((P (n)/n) log n) time, where P (n) is the preprocessing time of the static data
structure, and C(n) is its space usage. We assume Q(n), P (n), and C(n) are non-decreasing.

To support insertions, we use the logarithmic method [23]. We partition the sites into
O(log n) groups S1, .., SO(log n) with |Si| = 2i for i ∈ {1, .., O(log n)}. To insert a site s, a new
group containing only s is created. When there are two groups of size 2i, these are removed
and a new group of size 2i+1 is created. For each group we store the sites in the static k-NN
data structure. This results in an amortized insertion time of O((P (n)/n) log n). This bound
can also be made worst-case [23]. The main remaining issue is then how to support queries
in O(Q(n) log n + k) time, thus avoiding an O(k log n) term in the query time. Applying
Lemma 3 directly solves this problem, and we thus obtain the following result.

▶ Theorem 4. Let S be a set of n point sites, and let D be a static k-NN data structure of size
O(C(n)), that can be built in O(P (n)) time, and answer queries in O(Q(n) + k) time. There
is a k-NN data structure on S of size O(C(n)) that supports queries in O(Q(n) log n + k)
time, and insertions in O((P (n)/n) log n) time.

4.1 Points in the plane
In the Euclidean metric, k-nearest neighbors queries in the plane can be answered in
O(log n + k) time, using O(n) space and O(n log n) preprocessing time [1, 10]. Hence:

▶ Corollary 5. There is an insertion-only data structure of size O(n) that stores a set of n

sites in R2, allows for k-NNs queries in O(log2 n + k) time, and insertions in O(log2 n) time.

If we increase the size of each group in the logarithmic method to bi, with b = logε n

and ε > 0, we get only O(logb n) groups instead of O(log n). This reduces the query
time to O(log2 n/ log log n + k), matching the fully dynamic data structure. However, this
also increases the insertion time to O(log2+ε n/ log log n). For general constant-complexity
distance functions, we achieve the same query time using Liu’s data structure [19], using
O(n log log n) space and expected O(polylog n) insertion time.

4.2 Points in a simple polygon
Next, we consider k-NN queries on a set S of n point sites inside a simple polygon P with m

vertices. For any two points p and q the (geodesic) distance d(p, q) is defined as the length of
the shortest path π(p, q) between p and q fully contained within P. Using O(m) space and
preprocessing time, we can store P so that d(p, q) can be computed in O(log m) time [15].

To apply Theorem 4, we need a static data structure for geodesic k-NN queries. As we
sketch below, we can obtain such a data structure by combining the approach of Chan [5]
and Agarwal et al. [2]. However, building this data structure takes O(nm) time. We show
that using more ideas from Agarwal et al. [2], together with our algorithm from Section 3,
we can obtain a static k-NN data structure that can also be built efficiently. This in turn
leads to an efficient insertion-only data structure.

A static data structure. The initial data structure consists of a hierarchy of lower envelopes
of random samples R0 ⊂ R1 ⊂ .. ⊂ Rlog n. For each sample, we store a (topological) vertical
decomposition of the downward projection of the lower envelope and the conflict lists of the
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Figure 5 A partial decomposition of P and the corresponding heap used in a k-NN query for q.

d

q

P` Pr

Figure 6 Approximation (in green) of the vertical decomposition of the Voronoi diagram of Sℓ in
Pr. To find the trapezoid containing q, we consider both colored trapezoids.

corresponding (pseudo-)prisms. We can then find a prism in one of the vertical decompositions
that contains the query point and whose conflict list has size O(k) in O(log(n + m) + k log m)
time [5, 22]. This allows us to answer k-NN queries in the same time. The crux in this
approach is in how to compute the conflict lists. We can naively compute these in O(mn) time
by explicitly constructing the geodesic distance function for each site [14], and intersecting it
with each of the O(n) pseudo-prisms. It is unclear how to improve on this bound.

▶ Theorem 6. Let S be a set of n sites in a simple polygon P with m vertices. In
O(n(log n log2 m + log3 m)) time we can build a data structure of size O(n log n log m),
excluding the size of the polygon, that can answer k-NN queries with respect to S in
O(log(n + m) log m + k log m) time.

Proof Sketch. To circumvent the issue above, we recursively partition the polygon P into
two subpolygons Pr and Pℓ of roughly the same size by a diagonal d [2]. We denote by Sr and
Sℓ the sites in Pr and Pℓ, respectively. Theorem 22 of [2] provides us with a data structure
that can find the k-NN among sites in Sℓ for a query point in Pr. This is essentially the data
structure that was described above. However, because the Voronoi diagram of sites in Sℓ

restricted to Pr is a Hamiltonian abstract Voronoi diagram [17], we can efficiently compute
the conflict lists by only considering the functions intersecting the corners of each prism. We
improve the query time of this data structure to O(log(n + m) + k log m) by incorporating
the idea of Oh and Ahn [22] to approximate a geodesic Voronoi diagram by a polygonal
subdivision, see Figure 6. Storing the points of both Sℓ and Sr at each of the O(log m) levels
of the decomposition in this data structure, and using our technique from Section 3 to query
the levels simultaneously, see Figure 5, results in the stated query time. ◀
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▶ Corollary 7. Let P be a simple polygon with m vertices. There is a data structure of
size O(n log n log m + m) that stores a set of n point sites in P, allows for geodesic k-
NN queries in O(log(n + m) log n log m + k log m) expected time, and inserting a site in
O(log2 n log2 m + log n log3 m) time.

5 A fully dynamic data structure

In this section, we consider k-NN queries while supporting both insertions and deletions,
building on the results of Chan [7]. We first fill in the part missing from Chan [7]’s query
algorithm. We then discuss a simple deletion-only k-NN structure. This allows us to adapt
Chan’s k-NN data structure to more general distance functions like the geodesic distance.

5.1 A dynamic data structure for planes
Chan [7] describes how to adjust his 1-NN data structure to efficiently perform k-NN queries.
There are two main changes: the conflict lists are stored in k-NN data structures D0, and the
number of towers is reduced by using b = logε n. Only the live planes of the conflict list of
each prism ∇ are stored in the D0 data structures. Each such structure uses linear space, can
perform k′-NN queries in O(Q0(|F∇|) + k′) time and deletions in D0(|F∇|) time. A different
data structure is used to store small and large conflict lists. After building T (i), each data
structure D0 of a prism ∇ is built on F∇ ∩ F

(i)
live. The total space usage is O(n log n).

The insertions remain unchanged, but deleting a plane h requires extra work. In addition
to increasing d∇ for each prism containing h, h is explicitly removed from the D0 data
structures. Note that T (i) for which h ∈ F

(i)
live is the only tower whose D0 data structures

contain h. When a prism in tower T (i) is purged, we also delete its planes from the other D0
data structures in T (i) to retain this property. This gives an amortized expected update time
of U(n) = O(log6+ε n) [7]. The improvement of Kaplan et al. [16] reduces this to O(log5+ε n).
It follows from Lemma 1 and the above modifications that:

▶ Lemma 8 (Chan [7]). Let q be a query point. In O(t log n) time, we can find t = O(logb n)
prisms ∇1, .., ∇t, such that: (i) all prisms contain q, (ii) the conflict list of each prism has
size O(k), (iii) the conflict lists are pairwise disjoint and stored in a D0 data structure, and
(iv) the k sites in S closest to q appear in the union of the conflict lists of those prims.

So, to answer k-NN queries we can use a ki-NN query on each D0 data structure of the
prisms ∇1, .., ∇t, where ki is the number of sites from the k-nearest neighbours of q that
appear in the conflict list of ∇i. This takes O(

∑t
i=1 Q0(k) + ki) = O(

∑t
i=1 Q0(k) + k) time.

However, it is unclear how to compute those ki values. Fortunately, we can use Lemma 3
to find the k-nearest neighbors over all of the substructures in O(Q0(k) logb n + k) time.
Plugging in the appropriate query time Q0(k) (see Chan [7] and Section 5.3), this achieves a
total query time of O(log2 n/ log log n + k) time as claimed.

5.2 A simple deletion-only data structure
Let H be a set of n planes, and let r ∈ N be a parameter. We develop a data structure
that supports reporting the t lowest planes above a query point q ∈ R2 in O(n/r + log r + t)
time, and deletions in O(r log n) time. Our entire data structure consists of just ℓ = O(log r)
ki-shallow cuttings Λk0 , .., Λkℓ

of the planes, where ki = ⌊2i(n/r)⌋. Hence, this uses O(n log r)
space. We can compute the shallow cuttings along with their conflict lists in O(n log n)
time [10]. Note that when r > n, it can be that ki = 0 for some i. In this case, we simply do
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not build any of the cuttings that have ki = 0. For our application, we are mostly interested
in the deletion time of the data structure, and less in the query time. By picking r to be
small, we can make deletions efficient at the cost of making the query time fairly terrible.

Deletions. If we delete a plane, we remove it from all conflict lists in all cuttings. Since
cutting Λki has size O(r/2i), each plane occurs at most O(r/2i) times in this cutting. Hence,
the total time to go through all of these prisms is

∑O(log r)
i=0 r/2i = O(r) time. When more

than half of the planes from any conflict list are removed, we rebuild the entire data structure.
Because every conflict list contains at least n/r planes, at least n

2r deletions take place before
a global rebuild. We charge the O(n log n) cost of rebuilding to these planes, so we charge
O(r log n) to each deletion. Deletions thus take amortized O(r log n) time.

Queries. We report the t-lowest planes at a query point q as follows. We consider the
cutting for which ki = 2i(n/r) = O(t), so at level i = ⌈log(Ctr/n)⌉, for some large enough
constant C. When t < n/r there is no such cutting, so we query the lowest level cutting
instead. We find the prism containing q by a point location query. As the largest cutting has
size O(r), this takes O(log r) time. We then simply report the t lowest planes at q by going
through the entire conflict list. This results in a query time of O(log r + n/r + t).

Reducing space usage. When n is large w.r.t. r, we can use a similar approach to Chan [6, 7]
to achieve linear space usage, by storing only the prisms of the shallow cuttings, and storing
the planes in an auxiliary data structure [3]. We then obtain the following result.

▶ Lemma 9. For any fixed r, we can construct a data structure of size O(n log r), or O(n)
when n ≥ r1/ε, in O(n log n) time that stores a set of n planes, allows for t-lowest planes
queries in O(log r + n/r + t) time and deletions in O(r log n) time.

General data structure. The general idea in the above data structure can be applied to any
type of functions for which we have an algorithm to compute k-shallow cuttings. Note that
the “lowest” cutting we use is an n/r-shallow cutting. It follows that constructing all shallow
cuttings takes O(T (n, n/r) log r) time. To delete a function, we remove it from the conflict
lists in

∑O(log r)
i=0 S(n, ki) = O((r/n)S(n, 1)) time, and we charge O((r/n)T (n, n/r) log r) to

the deletion to pay for the global rebuild. To answer a query, we simply find the prism
containing q in one cutting, so the query time is O(Q(n, n/r) + n/r + t). We thus have:

▶ Lemma 10. For any fixed r, we can construct a data structure of size O(S(n, 1) log r) in
O(T (n, n/r) log r) time that stores a set of n functions, allows for t-lowest functions queries
in O(Q(n, n/r) + n/r + t) time and deletions in O((r/n)(S(n, 1) + T (n, n/r) log r)) time.

5.3 A general dynamic data structure
To generalize the dynamic k-NN data structure from Section 5.1 to other types of distance
functions, we replace the D0 data structures by the data structure of Section 5.2. Queries
and updates are performed as before (see Sections 2.2 and 5.1). This results in a dynamic
k-NN data structure that can be used for any type of distance functions for which we can
construct k-shallow cuttings. Next, we analyze the space usage and the running time in
case of the Euclidean distance, as this is somewhat easier to follow, and then generalize to
arbitrary distance functions.
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Query time. Our D0 data structure has query time Q0(n′) = O(log r + n′/r) and deletion
time D0(n′) = O(r log n′). Because we query the cutting at level jk, the size of each
conflict list we query is O(k). By using our scheme to find the k-nearest neighbors over the
substructures simultaneously, the query time becomes:

Q(n) = O([log n + Q0(O(k))] logb n + k) = O((log n + (log r + k/r)) logb n + k).

If we set r = log n, and b = logε n, we get Q(n) = O(log2 n/ log log n + k), matching the
query time of Chan’s approach.

Update time. Lemma 1 states that insertion time is given by I(n) = O(b logb n · (P (n)/n)),
where P (n) is the preprocessing time of D. Our preprocessing time increases w.r.t. to the
original data structure, since after building the hierarchy of shallow cuttings for a tower, we
additionally need to build the structures D0 on each of the conflict lists. As before, building
the shallow cuttings takes O(n log n) time [8]. Next, we analyse the time to build all data
structures D0. Note that the cutting at level j in the hierarchy consists of O(n/kj) prisms,
and the size each conflict list in the cutting is O(kj). Let α be the constant bounding the
size of the conflict lists. Using that P0(n′) = O(n′ log n′), we find the following running time:

log n
k0∑

j=0
O

(
n

kj

)
· P0(αkj) =

log n
k0∑

j=0
O

(
n

kj

)
· O (αkj log(αkj))

=
log n

k0∑
j=0

O (n log(αkj)) = O(n log2 n).

The preprocessing time thus adheres to the recurrence relation P (n) ≤ P (n/b) + O(n log2 n),
which solves to P (n) = O(n log2 n). It follows that I(n) = O(b logb n · (P (n)/n)) =
O(b log2 n logb n) = O(log3+ε n/ log log n). Note that the improvement of building all shallow
cuttings in a tower in O(n log n) time does not improve the insertion time to O(log2 n) as in
the 1-NN data structure, because building the D0 data structures is the dominant term.

When deleting a plane h, with h ∈ F
(i)
live, we remove h from all D0 of T (i) with h ∈ D0.

There are at most O(b log n) such data structures D0. By Lemma 1, deleting a plane causes
amortized O(b log n logb n) reinsertions. Each reinserted plane is also removed from the struc-
tures D0 of a single tower. We can thus formulate the deletion time as D(n) = O(b log n logb n·
(b log n · D0(n) + I(n))). Plugging in D0(n) = O(log2 n) and I(n) = O(b log2 n logb n), we
find D(n) = O(b2 log4 n logb n + b2 log3 n log2

b n) = O(log5+ε n/ log log n).

Space usage. The space usage of a D0 data structure storing n′ planes is O(n′ log r). The
space usage is thus S(n) =

∑log n
k0

j=0
n
kj

· O(kj log r) = O(n log n log log n). Note that this can
be reduced to O(n log n) by using the space reduction idea mentioned in Section 5.2.

We can use the same scheme for any distance measure that allows for constructing a
k-shallow cutting. In the full version of this paper [12], we prove the following lemma
(Lemma 11), which we then apply to constant description complexity distance functions and
geodesic distance functions (refer to full version [12] for details) to obtain Theorem 12.

▶ Lemma 11. Given an algorithm to construct a k-shallow cutting of size S(n, k) on n

functions in T (n, k) time, such that locating the prism containing a query point takes Q(n, k)
time, we can construct a data structure of size O(S(n, 1)2/n · log n log log n) that maintains a
set of n functions and allows for k-lowest functions queries in O(Q(n, 1) log n/ log log n + k)
time. Inserting a function takes O((S(n, 1)T (n, 1)/n2) log2+ε n) amortized time, and deleting
a function takes O((T (n, 1)/ log log n + T (n, n/ log n)) · S(n, 1)2 log4+ε n/n3) amortized time.
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▶ Theorem 12. There is a fully dynamic data structure of size S(n) that stores a set of n

sites and allows for k-nearest neighbors queries in Q(n) time, insertions in I(n) expected
amortized time, and deletions in D(n) expected amortized time. P is a simple polygon with
m vertices, and λs(t) denotes the maximum length of a Davenport–Schinzel sequence of order
s on t symbols and s a constant depending on the functions.

Euclidean in R2 General in R2 Geodesic in P

Q(n) O
(

log2 n
log log n

+ k
)

O
(

log2 n
log log n

+ k
)

O
(

log2 n log2 m
log log n

+ k log m
)

I(n) O
(

log3+ε n
log log n

)
O(log5+ε nλs+2(log n)) O(log8+ε n log m + log7+ε n log3 m)

D(n) O
(

log5+ε n
log log n

)
O(log7+ε nλs+2(log n)) O

(
log12+ε n log m+log11+ε n log3 m

log log n

)
S(n) O(n log n) O(n log n) O(n log5 n log m log log n + m)

References
1 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three dimensions.

In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 180–186. SIAM, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496791.

2 Pankaj K. Agarwal, Lars Arge, and Frank Staals. Improved dynamic geodesic nearest neighbor
searching in a simple polygon. In 34th International Symposium on Computational Geometry,
SoCG, volume 99 of LIPIcs, pages 4:1–4:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.SoCG.2018.4.

3 Pankaj K. Agarwal and Jirí Matousek. Dynamic half-space range reporting and its applications.
Algorithmica, 13(4):325–345, 1995. doi:10.1007/BF01293483.

4 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM, 51(1):117–122, 2008. doi:10.1145/1327452.
1327494.

5 Timothy M. Chan. Random sampling, halfspace range reporting, and construction of
≤ k-levels in three dimensions. SIAM J. Comput., 30(2):561–575, 2000. doi:10.1137/
S0097539798349188.

6 Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor
queries. J. ACM, 57(3):16:1–16:15, 2010. doi:10.1145/1706591.1706596.

7 Timothy M. Chan. Three problems about dynamic convex hulls. Int. J. Comput. Geom. Appl.,
22(4):341–364, 2012. doi:10.1142/S0218195912600096.

8 Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. In 35th Interna-
tional Symposium on Computational Geometry, SoCG, volume 129 of LIPIcs, pages 24:1–24:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.SoCG.2019.24.

9 Timothy M. Chan. personal communication, 2021.
10 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d

and 3-d shallow cuttings. Discret. Comput. Geom., 56(4):866–881, 2016. doi:10.1007/
s00454-016-9784-4.

11 Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967.

12 Sarita de Berg and Frank Staals. Dynamic data structures for k-nearest neighbor queries,
2021. arXiv:2109.11854.

13 Greg N. Frederickson. An optimal algorithm for selection in a min-heap. Inf. Comput.,
104(2):197–214, 1993. doi:10.1006/inco.1993.1030.

14 Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E. Tarjan.
Linear-time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2(1):209–233, 1987.

15 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple polygon.
J. Comput. Syst. Sci., 39(2):126–152, 1989. doi:10.1016/0022-0000(89)90041-X.

ISAAC 2021

http://dl.acm.org/citation.cfm?id=1496770.1496791
https://doi.org/10.4230/LIPIcs.SoCG.2018.4
https://doi.org/10.1007/BF01293483
https://doi.org/10.1145/1327452.1327494
https://doi.org/10.1145/1327452.1327494
https://doi.org/10.1137/S0097539798349188
https://doi.org/10.1137/S0097539798349188
https://doi.org/10.1145/1706591.1706596
https://doi.org/10.1142/S0218195912600096
https://doi.org/10.4230/LIPIcs.SoCG.2019.24
https://doi.org/10.1007/s00454-016-9784-4
https://doi.org/10.1007/s00454-016-9784-4
http://arxiv.org/abs/2109.11854
https://doi.org/10.1006/inco.1993.1030
https://doi.org/10.1016/0022-0000(89)90041-X


14:14 Dynamic Data Structures for k-Nearest Neighbor Queries

16 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar voronoi diagrams for general distance functions and their algorithmic applications.
Discret. Comput. Geom., 64(3):838–904, 2020. doi:10.1007/s00454-020-00243-7.

17 Rolf Klein and Andrzej Lingas. Hamiltonian abstract voronoi diagrams in linear time. In
Algorithms and Computation, 5th International Symposium, ISAAC, Proceedings, volume
834 of Lecture Notes in Computer Science, pages 11–19. Springer, 1994. doi:10.1007/
3-540-58325-4_161.

18 Der-Tsai Lee. On k-nearest neighbor voronoi diagrams in the plane. IEEE Transactions on
Computers, C-31(6):478–487, 1982.

19 Chih-Hung Liu. Nearly optimal planar k nearest neighbors queries under general distance
functions. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 2842–2859. SIAM, 2020. doi:10.1137/1.9781611975994.173.

20 Chih-Hung Liu and D. T. Lee. Higher-order geodesic voronoi diagrams in a polygonal domain
with holes. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 1633–1645. SIAM, 2013. doi:10.1137/1.9781611973105.117.

21 Jiří Matoušek. Reporting points in halfspaces. Computational Geometry Theory and Applica-
tions, 2(3):169–186, 1992.

22 Eunjin Oh and Hee-Kap Ahn. Voronoi diagrams for a moderate-sized point-set in a simple
polygon. Discret. Comput. Geom., 63(2):418–454, 2020. doi:10.1007/s00454-019-00063-4.

23 Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes in
Computer Science. Springer, 1983. doi:10.1007/BFb0014927.

https://doi.org/10.1007/s00454-020-00243-7
https://doi.org/10.1007/3-540-58325-4_161
https://doi.org/10.1007/3-540-58325-4_161
https://doi.org/10.1137/1.9781611975994.173
https://doi.org/10.1137/1.9781611973105.117
https://doi.org/10.1007/s00454-019-00063-4
https://doi.org/10.1007/BFb0014927


Preference-Based Trajectory Clustering – An
Application of Geometric Hitting Sets
Florian Barth #

Universiät Stuttgart, Germany

Stefan Funke #

Universität Stuttgart, Germany

Claudius Proissl #

Universität Stuttgart, Germany

Abstract
In a road network with multicriteria edge costs we consider the problem of computing a minimum
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1 Introduction

It is well observable in practice that drivers’ preferences are not homogeneous. If we have two
alternative paths π1, π2 between a given source-target pair, characterized by 3 costs/metrics
(travel time, distance, and ascent along the route) each, e.g., c(π1) = (27min, 12km, 150m),
and c(π2) = (19min, 18km, 50m), there are most likely people who prefer π1 over π2 and
vice versa. In previous works, people have tried to formalize these preferences. The most
common model here assumes a linear dependency on the metrics. While typical real-world
trajectories are not necessarily optimal in such a model, they are usually decomposable into
very few optimal subtrajectories, see, e.g., [4]. This preference model allows for personalized
route planning, where a routing query not only consists of source and destination but also a
weighting of the metrics in the network.

Since this weighting of the metrics – often called preference – is hard to specify as a
user of such a personalized route planning system, methods have been developed which
infer the preferences from paths that the user has traveled before. The larger a set of paths
is, though, the less likely it is that a single preference/weighting exists which explains all
paths, i.e., for which all paths are optimal. One might, for example, think of different
driving styles/preferences when commuting versus leisure trips through the country side. So
a natural question to ask is, what is the minimum number of preferences necessary to explain
a set of given paths in a road network with multiple metrics on the edges. This can also be
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interpreted as a trajectory clustering task where routes are to be classified according to their
purpose. In our example, one might be able to differentiate between commute and leisure.
Or in another setting, where routes of different drivers are analyzed, one might be able to
cluster them into speeders and cruisers depending on the routes they prefer.

The goal of this paper is the formulation of this natural optimization problem in the
context of multicriteria routing and investigate the theoretical and practical challenges of
solving this problem.

Related Work

The linear preference model in the navigation context has been used in numerous works,
e.g., [13, 11, 12, 9], to allow for personalized route planning services. Fewer papers deal with
the inference of personal preferences like [17, 8]. The latter paper is also most related to
this work as it introduced preference inference based on a linear programming formulation,
which we will also instrument in our approach. Note, though, that while [8] already talked
about the problem of minimizing the number of preferences to explain a set of trajectories,
no serious attempt at getting optimal or close-to-optimal solutions has been made.

Our Contribution

In this paper we show how to mathematically formulate the problem of finding the minimum
number of preferences to explain a set of given paths in a road network with multiple edge
metrics. We investigate both theoretical challenges as well as practical solvability and provide
a guaranteed polynomial-time heuristic as well as an exact (but potentially superpolynomial-
time) solution. Our experimental results show that for problem instances based on data from
the OpenStreetMap project, we can compute optimal preference sets for thousands of paths
within few minutes on road networks with several million nodes and edges.

2 Preliminaries

Our work is based on a linear preference model, i.e., for a given directed graph G(V, E) we have
for every edge e ∈ E a d-dimensional cost vector c(e) ∈ Rd, where c1(e), c2(e), . . . , cd(e) ≥ 0
correspond to non-negative quantities like travel time, distance, non-negative ascent, . . . ,
which are to be minimized. A path π = e1e2 . . . ek in the network then has an associated
cost vector c(π) :=

∑k
i=1 c(ei).

A preference to distinguish between different alternative paths is specified by a vector
α ∈ [0, 1]d,

∑
αi = 1. For example, αT = (0.4, 0.5, 0.1) might express that the respective

driver does not care much about ascents along the route, but considers travel time and
distance similarly important. Alternative paths π1 and π2 are compared by evaluating the
respective scalar products of the cost vectors of the path and the preference, i.e., c(π1)T · α

and c(π2)T ·α. Smaller scalar values in our linear model correspond to a preferred alternative.
An st-path π (which is a path with source s and target t) is optimal for a fixed preference α

if no other st-path π′ exists with c(π′)T · α < c(π)T · α.
Of course, this linear model is a bold simplification of actual drivers’ preferences, yet it

has been observed that real-world trajectories can typically be decomposed into very few
optimal subtrajectories [4] (significantly less than for a single metric), so this linear model
appears to be a reasonable approximation of reality.
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2.1 Personalized Route Planning
Using the linear model it is easy to allow for personalized route planning, i.e., a query does
not only consist of a source s and a target t, but also specifies a preference α ∈ [0, 1]d.
The expected answer to such a query (s, t, α) is a path π that is optimal for preference α.
Dijkstra’s algorithm can be instrumented to answer such queries by evaluating the scalar
product of the edge cost vector and α when relaxing an edge in the course of the algorithm.

Since Dijkstra’s algorithm is not really useful for continent-sized road networks people
have come up with speed-up schemes, see [13, 12, 11], yet it appears considerably more
difficult to achieve the speed-up factors of respective schemes for the single metric case.

2.2 Preference Inference
From a practical point of view, it is very unintuitive (or rather: almost impossible) for a user
to actually express his driving preferences as such a vector α, even if he is aware of the units
of the cost vectors on the edges. Hence it would be very desirable to be able to infer his
preferences from paths he likes or which he has traveled before. [8] proposed a technique
for preference inference, which essentially instruments linear programming to determine an
α for which a given path π is optimal or certify that none exists. Given an st-path π in a
road network, in principle, their proposed LP has non-negative variables α1, . . . , αd and one
constraint for each st-path π′ which states, that “for the α we are after, π′ should not be
preferred over π”. So the LP looks as follows:

max α1

∀st-paths π′ : αT (c(π) − c(π′)) ≤ 0 optimality constraints
αi ≥ 0 non-negativity constraints∑

αi = 1 scaling constraint

Note, that an objective function is not really necessary, as we only care about feasibility, that
is, existence of an α satisfying all constraints. As such, this linear program is of little use,
since typically there is an exponential number of st-paths, so just writing down the complete
LP seems infeasible. Fortunately, due to the equivalence of optimization and separation, it
suffices to have an algorithm at hand which – for a given α – decides in polynomial time
whether all constraints are fulfilled or if not, provides a violated constraint (such an algorithm
is called a separation oracle). In our case, this is very straightforward: we simply compute
(using, e.g., Dijkstra’s algorithm) the optimum st-path for a given α. If the respective path
has better cost (wrt α) than π, we add the respective constraint and resolve the augmented
LP for a new α, otherwise we have found the desired α. Via the Ellipsoid method [14] this
approach has polynomial running time, in practice the dual Simplex algorithm has proven to
be very efficient.

3 Driving Preferences and Geometric Hitting Sets

The approach from Section 2.2 can easily be extended to decide for a set of paths (with
different source-target pairs) whether there exists a single preference α for which they are
optimal (i.e., which explains this route choice). It does not work, though, if different routes
for the same source-target pair are part of the input or simply no single preference can
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explain all chosen routes. The latter seems quite plausible when considering that one would
probably prefer other road types on a leisure trip on the weekend versus the regular commute
trip during the week. So the following optimization problem is quite natural to consider:

Given a set of trajectories T in a multiweighted graph, determine a set A of
preferences of minimal cardinality, such that each π ∈ T is optimal with respect to at
least one α ∈ A.

We call this problem preference-based trajectory clustering (PTC).
For a concrete problem instance from the real world, one might hope that each preference

in the set A then corresponds to a driving style like speeder or cruiser. Also note, that a
real-world trajectory often is not optimal for a single α (prime example for that would be a
round trip), yet, studies like in [4] show that it can typically be decomposed into very few
optimal subtrajectories if multiple metrics are available.

In [8], a sweep algorithm is introduced that computes an approximate solution of PTC. It
is, however, relatively easy to come up with examples where the result of this sweep algorithm
is by a factor of Ω(|T |) worse than the optimal solution. We aim to improve this result by
finding practical ways to solve PTC optimally as well as approximately with better quality
guarantees. Our (surprisingly efficient) strategy is to explicitly compute for each trajectory
π in T the polyhedron of preferences for which π is optimal and to translate PTC into a
geometric hitting set problem.

Fortunately, the formulation as a linear program as described in 2.2 already provides a
way to compute these polyhedra. The constraints in the LP from 2.2 exactly characterize
the possible values of α for which one path π is optimal. These values are the intersection
of half-spaces described by the optimality constraints and the non-negativity constraints of
the LP. We call this (convex) intersection preference polyhedron. A preference polyhedron P

of path π is d − 1 dimensional, where d is the number of metrics. This is because the LP’s
scaling constraint reduces the dimension by one and we can substitute αd by 1 −

∑
i<d αi. In

the remainder of this Section, we discuss how to construct preference polyhedra from given
paths and reformulate PTC as a minimum geometric hitting set problem.

3.1 Exact Polyhedron Construction
A straightforward, yet quite inefficient way of constructing the preference polyhedron for a
given path π is to actually determine all simple st-paths and perform the respective half-
space intersection. Even when restricting to pareto-optimal paths and real-world networks,
their number is typically huge. So we need more efficient ways to construct the preference
polyhedron.

3.1.1 Boundary Exploration
With the tool of linear programming at hand, one possible way of exploring the preference
polyhedron is by repeated invocation of the LP as in Section 2.2 but with varying objective
functions. For sake of simplicity let us assume that the preference polyhedron is full (that is,
d − 11) dimensional. We first determine d − 1 distinct extreme points of the polyhedron to
obtain a d − 1-simplex as first (inner) approximation of the preference polyhedron. We then
repeatedly invoke the LP with an objective function corresponding to the normal vectors of

1 after elimination of αd
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the facets of the current approximation of the polyhedron. The outcome is either that the
respective facet is part of the final preference polyhedron, or a new extreme point is found
which destroys this facet and induces new facets to be investigated later on. If the final
preference polyhedron has f facets, this approach clearly requires O(f) invocations of the LP
solver (and some effort to maintain the current approximation of the preference polyhedron
as the convex hull of the extreme points found so far). While theoretically appealing, in
practice this approach is not very competitive due to the overhead of repeated LP solving.

3.1.2 Corner Cutting Approach
We developed the following Corner Cutting Approach (CCA) which in practice turns out to
be extremely efficient to compute for a given path π its preference polyhedron, even though
we cannot bound its running time in terms of the complexity of the produced polyhedron.

CCA is an iterative algorithm, which computes the feasibility polyhedron via a sequence
of half-space intersections. Let Pπ be the preference polyhedron of path π. In the i-th
iteration CCA computes a polyhedron Pi with Pπ ⊆ Pi ⊆ Pi−1. P0 is the entire preference
space with a number of corners equal to the number of metrics. Each of these corners is
initially marked as unchecked.

In iteration i CCA takes one corner α(i) of Pi−1 that has not been checked before. If no
such corner exists, CCA terminates and returns PCCA := Pi−1. Otherwise, it marks the corner
α(i) as checked and computes the optimal path π(α(i)). If (α(i))T

(
c (π) − c

(
π(α(i))

))
=

0, the corner α(i) belongs to Pπ and there is nothing to do. Otherwise, the constraint
αT

(
c (π) − c

(
π(α(i))

))
≤ 0 is violated by a part of Pi−1. We call this part P ′

i . It is clear
that α(i) ∈ P ′

i . Finally, the polyhedron Pi := Pi−1\P ′
i is computed by intersecting Pi−1 with

the half-space αT
(
c (π) − c

(
π(α(i))

))
≤ 0. This intersection may introduce new corners,

which are marked as unchecked. Afterwards, the next iteration starts.
We prove that CCA indeed computes Pπ. Let PCCA be the output of CCA. We first

show that Pπ ⊆ PCCA. Pπ ⊆ P0 is trivially true. Furthermore, in each iteration i it is clear
that P ′

i ∩ Pπ = ∅. Hence, for each iteration i, we have Pπ ⊆ Pi and therefore Pπ ⊆ PCCA.
The other direction PCCA ⊆ Pπ follows from the fact that Pπ is convex and that all corners
of PCCA belong to Pπ as they are marked as checked.

CCA also terminates for finite graphs. Each optimal path π(α(i)) can add finitely many
corners to Pi only once. Since the number of optimal paths is finite the number of corners to
be considered is finite as well.

The great advantage of CCA compared to the boundary exploration approach is the
avoidance of the linear programming solver.

3.2 Minimum Geometric Hitting Set
Using the preference polyhedra we are armed to rephrase our original problem as a geometric
hitting set (GHS) problem. In an instance of GHS we typically have geometric objects
(possibly overlapping) in space and the goal is to find a set of points (a hitting set) of minimal
cardinality, such that each of the objects contains at least one point of the hitting set. Figure 1
shows an example of how preference polyhedra of different optimal paths could look like in
case of three metrics. In terms of GHS, our PTC problem is equivalent to finding a hitting
set for the preference polyhedra of minimum cardinality, and the “hitters” correspond to
respective preferences. In Figure 1 we have depicted two feasible hitting sets (white squares
and black circles) for this instance. Both solutions are minimal in that no hitter can be
removed without breaking feasibility. However, the white squares (in contrast to the black
circles) do not describe a minimum solution as one can hit all polyhedra with less points.
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Figure 1 Example of a geometric hitting set problem
as it may occur in the context of PTC. Two feasible
hitting sets are shown (white squares and black circles).

Figure 2 Inner (yellow) and
outer approximation (grey) of the
preference polyhedron (black).

While the GHS problem allows to pick arbitrary points as hitters, it is not hard to see
that it suffices to restrict to vertices of the polyhedra and intersection points between the
polyhedra boundaries, or more precisely vertices in the arrangement of feasibility polyhedra.
We describe the computation of these candidates for the hitting sets in Section 3.3.

The GHS instance is then formed in a straightforward manner by having all the hitting
set candidates as ground set, and subsets according to containment in respective preference
polyhedra. For an exact solution we can formulate the problem as an integer linear program
(ILP). Let α(1), α(2), . . . , α(l) be the hitting set candidates and U := {P1, P2, . . . , Pk} be
the set of preference polyhedra. We create a variable Xi ∈ 0, 1 indicating whether α(i) is
picked as a hitter and use the following ILP formulation:

min
∑

i

Xi

∀ P ∈ U :
∑

α(i)∈P

Xi ≥ 1

∀ i : Xi ∈ {0, 1}

While solving ILPs is known to be NP-hard, it is often feasible to solve ILPs derived
from real-world problem instances even of non-homeopathic size.

3.3 Hitting Set Instance Construction via Arrangements of Hyperplanes

To obtain the actual hitting set instance, we overlay the individual preference polyhedra.
This can be done via construction of the arrangement of the hyperplanes bounding the
preference polyhedra. Each vertex in this arrangement then corresponds to a candidate for
the hitting set. If N is the total number of hyperplanes bounding all preference polyhedra in
D-dimensional space, then this arrangement has complexity O(ND) and can be computed
by a topological sweep within the same time bound [6]. For K polyhedra with overall N

bounding hyperplanes we obtain a hitting set instance with K sets and O(ND) potential
hitter candidates.
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(a) Before inserting new optimal path. (b) After inserting new optimal path.

Figure 3 Example of preference polyhedra of optimal paths with the same source and target and
with equal cost in the third metric.

3.4 Challenges
While our proposed approach to determine the minimum number of preferences to explain
a set of given paths is sound, it raises two major issues. First, the complexity of a single
preference polyhedron might be exponential (or just too large for actual computation), so
just writing down the geometric hitting set instance becomes infeasible in practice. Second,
solving a geometric hitting set instance to optimality is far from trivial. In the following we
will briefly discuss these two issues and then in the next section come up with remedies.

3.4.1 Preference Polyhedron Complexity
In the following, we show that the complexity of preference polyhedra can be arbitrarily high.
We proceed in two steps. In the first step we show that if we find k optimal st-paths with
two metrics we can construct a preference polyhedron with more than k facets by adding a
third metric. In the second step we show that for a single st-pair there can be arbitrarily
many preference polyhedra with non-zero volume with two metrics.

Let us first assume we have two metrics and k > 1 optimal st-paths π1 to πk. Furthermore,
we assume that each of the k optimal paths has a preference polyhedron with non-zero
volume (a polyhedron is a line in the two-metrics case). We refer to the j-th entry of cost
vector c(πi) with c(πi)j . Let x := max1≤i≤k c(πi)1 + c(πi)2 be the maximum of the sums of
the cost vectors.

We now introduce a third metric with a constant cost of 3x for each path. It is clear
that each of the k optimal paths is optimal for the preference α3 = [0, 0, 1]. Hence, each
preference polyhedron is now a triangle as shown in Figure 3a.

Finally, we create a new optimal path πk+1 with the cost vector c(πk+1) := [2x, 2x, 2x].
This path is clearly optimal for the preference α3. Since αT

3 (c(πk+1) − c(πi)) is strictly less
than zero for each 1 ≤ i ≤ k the volume of the preference polyhedron of πk+1 is non-zero.
Furthermore, restricted to the first two metrics πk+1 is not optimal. This directly follows
from the definition of x. Hence, the preference polyhedron of πk+1 shares a constraint with
each of the k other optimal paths as shown in Figure 3b.

We now discuss that with two metrics there can be arbitrarily many shortest paths with
the same source and target that have a non-zero volume preference polyhedron.

Let us assume that there are k + 1 st-paths π0, π1, . . . , πk with cost vectors c (πi) :=[
i2, (k − i)2]

. This could be easily realized with one-edge paths. A preference is in this case
a tuple [1 − α, α] with 0 ≤ α ≤ 1.

ISAAC 2021



15:8 Preference-Based Trajectory Clustering – An Application of Geometric Hitting Sets

For any 0 ≤ i < k we have c(πi) − c(πi+1) = [−2i − 1, 2(k − i) − 1]. With α = 2i+1
2k

we get

[1 − α, α]T (c(πi) − c(πi+1)) =
[

2(k − i) − 1
2k

,
2i + 1

2k

]T

[−2i − 1, 2(k − i) − 1] = 0

Hence, for 0 < i < k the path πi is optimal for the range α ∈
[ 2i−1

2k , 2i+1
2k

]
. Path π0 is

optimal for the range α ∈
[
0, 1

2k

]
and path πk is optimal for the range α ∈

[ 2k−1
2k , 1

]
.

The question remains whether the number of optimal st-paths can be exponential in the
graph size. If this is the case, then it follows with the construction above that there are
preference polyhedra with exponential complexity.

3.4.2 MGHS Hardness
The minimum hitting set problem (or equivalently the set cover problem) in its general form
is known to be NP-hard and even hard to approximate substantially better than a ln n factor,
see [2]. A simple greedy algorithm yields a O(log n) approximation guarantee, which in the
general case is about the best one can hope for. For special instances, e.g., when the instance is
derived from a geometric setting (as ours), better approximation guarantees can sometimes be
achieved. While the exact solution remains still NP-hard even for seemingly simple geometric
instances [7], quite strong guarantees can be shown depending on the characteristics of the
objects to be hit. Sometimes even PTAS are possible, see, e.g. [16]. Unfortunately, apart
from convexity, none of the favourable characterizations seem to be applicable in our case.
We cannot even exclude infinite VC dimension in hope for a O(log OPT ) approximation [5],
as the preference polyhedra might have almost arbitrarily many corners.

4 Polynomial-Time Heuristics with Instance-based Lower Bounds

The previous section suggests that if we require worst-case polynomial running time, we
have to resort to approximation of some kind. Both, generation of the geometric hitting set
instance as well as solving of the instance might not be possible in polynomial time. We
address both issues in this section.

4.1 Approximate Instance Generation
It appears difficult to show polynomial bounds on the size of a single preference polyhedron,
so approximation with enforced bounded complexity seems a natural approach. There are
well-known techniques like coresets [1] that allow arbitrarily (specified by some ϵ) accurate
approximation of convex polyhedra in space polynomial in 1/ϵ (which is independent of the
complexity of the original polyhedron). We follow the coreset approach and also make use of
the special provenance of the polyhedron to be approximated.

For d metrics, our polyhedron lives in d − 1 dimensions, so we uniformly ϵ-sample the
unit (d − 2)-sphere using O((1/ϵ)d−2) samples. Each of the samples gives rise to an objective
function vector for our linear program, we solve each such LP instance to optimality. This
determines O((1/ϵ)d−2) extreme points of the polyhedron in equally distributed directions.
Obviously, the convex hull of these extreme points is contained within and with decreasing ϵ

converges towards the preference polyhedron. Guarantees for the convergence in terms of
ϵ have been proven before, but are not necessary for our (practical) purposes. We call the
convex hull of these extreme points the inner approximation of the preference polyhedron.
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What is interesting in our context is the fact that each extreme point is defined by d − 1
half-spaces. So we can also consider the set of half-spaces that define the computed extreme
points and compute their intersection. Clearly, this half-space intersection contains the
preference polyhedron. We call this the outer approximation of the preference polyhedron.

Let us illustrate our approach for a graph with d = 3 metrics, so the preference polyhedron
lives in the 2-dimensional plane, see the black polygon/polyhedron in Figure 2. Note
that we do not have an explicit representation of this polyhedron but can only probe it
via LP optimization calls. To obtain inner and outer approximation we determine the
extreme points of this implicitly (via the LP) given polyhedron, by using objective functions
max α1, max α2, min α1, min α2. We obtain the four solid red extreme points. Their convex
hull (in yellow) constitutes the inner approximation of the preference polyhedron. Each
of the extreme points is defined by 2 constraints (halfplanes supporting the two adjacent
edges of the extreme points of the preference polyhedron). In Figure 2, these are the light
green, blue, dark green, and cyan pairs of constraints. The half-space intersection of these
constraints form the outer approximation in gray.

4.1.1 Sandwiching the Optimum Hitting Set Size
If – by whatever means – we are able to solve geometric hitting set instances optimally, our
inner and outer approximations of the preference polyhedra yield upper and lower bounds to
the solution size for the actual preference polyhedra. That is, if for example the optimum
hitting set of the instance derived from the inner approximations has size 23 and the optimum
hitting set of the instance derived from the outer approximations has size 17, we know that
the optimum hitting set size of the actual exact instance lies between 17 and 23. Furthermore,
the solution for the instance based on the inner approximations is also feasible for the actual
exact instance. So in this case we would have an instance-based (i.e., not apriori, but only
aposteriori) approximation guarantee of 23/17 ≈ 1.35. If for the application at hand this
approximation guarantee is not sufficient, we can try improving by refining the inner and
outer approximations. In the limit, inner and outer approximations coincide with the exact
preference polyhedra.

4.2 Approximate Instance Solving
In this section, we discuss approximation algorithms to replace the ILP shown in Section 3.2,
which is not guaranteed to run in polynomial time.

The geometric objects to be hit are the preference polyhedra of the given set of paths, the
hitter candidates and which polyhedra they hit are computed via the geometric arrangement
as described in Section 3.3.

4.2.1 Naive Greedy Approach
The standard greedy approach for hitting set iteratively picks the hitter that hits most
objects, which have not been hit before. We call this algorithm Naive Greedy or short NG. It
terminates as soon as all objects have been hit. The approximation factor of this algorithm
is O(log n), where n is the number of objects to be hit, see [15]. The information which
preference hits which polyhedron comes from the arrangement described in Section 3.3.

After computing the cover, NG iterates over the picked hitters and removes them if
feasibility is not violated. In this way the computed hitting set is guaranteed to be minimal
(but not necessarily minimum).
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4.2.2 LP-guided Greedy Approach
While naive greedy performs quite well in practice, making use of a precomputed optimal
solution to the LP relaxation of the ILP formulation from Section 3.2 can improve the quality
of the solution. We call this algorithm LP Greedy or LPG. It starts with an empty set S∗

and iterates over a random permutation of the cover constraints of the LP. Note that each of
these constraints Ci corresponds to a preference polyhedron Pi.

At each constraint Ci LPG checks if Pi is hit by at least one preference in S∗. If not, one
of its hitters is randomly picked based on the weights of the LP solution and added to S∗.
To be more precise, the probability of a hitter α to be drawn is equal to its weight divided
by the sum of the weights of all hitters of Pi.

After iterating over all constraints it is clear that S∗ is a feasible solution. Finally, LPG
iterates over S∗ in random order removing elements if feasibility is not violated. This ensures
that S∗ is minimal. This process is repeated several times and the best solution is returned.

5 Experimental Results

In this section, we assess how real-world relevant the theoretical challenges of polyhedron
complexity and NP-hardness of the GHS problem are, and compare exact solutions to our
approximation approaches.

5.1 Experimental Setup
We run our experiments on a server with two intel Xeon E5-2630 v2 running Ubuntu Linux
20.04 with 378GB of RAM. The running times reported are wall clock times in seconds.
Some parts of our implementation make use of all 24 CPU threads. We cover two different
scenarios by extracting different graphs from OpenStreetMap of the German state of Baden-
Württemberg. This first graph is a road network with the cost types distance, travel time for
cars and travel time for trucks. It contains about 4M nodes and 9M edges. The second graph
represents a network for cyclists with the cost types distance, height ascent, and unsuitability
for biking. The latter metric was created based on the road type (big road ⇒ very unsuitable)
and bicycle path tagging. The cycling graph has a size of more than double of the road graph
with about 11M nodes and 23M edges. The Dijkstra separation oracle was accelerated using
a precomputed multi-criteria contraction hierarchy from [9]. For the Sections 5.3 to 5.5, we
used a set of 50 preferences chosen u.a.r. per instance and created different quantities of
paths with those preferences. We therefore know an apriori upper bound for the size of the
optimal hitting set for our instances. In Section 5.6, we show that the number of preferences
used does not change the characteristics of our approaches.

5.2 Implementation Details
Our implementation consists of multiple parts. The routing and the computation of the
(approximate) preference polyhedra of paths is implemented in the rust programming language
(compiled with rustc version 1.51) and uses GLPK [3] (version 4.65) as a library for solving
LPs. We intentionally refrained from using non-opensource solutions like CPLEX or GUROBI,
as they might not be accessible to everyone. The preference polyhedra are processed in a
C++ implementation (compiled with g++ version 10.2) which uses the CGAL library [18, 19]
(version 5.0.3) to compute the arrangements with exact arithmetic and output the hitting set
instances. We transform the hitting set instances into the ILP formulation from Section 3.2
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and solve this ILP formulation and its LP relaxation with GLPK. Finally, we implemented
the two greedy algorithms described in Section 4.2.1 and 4.2.2 which solve the hitting set
instances in C++. Source code and data under https://doi.org/10.17605/osf.io/4qkuv.

5.3 Geometric Hitting Set Instance Generation
First, we assess the generation of the GHS instances via preference polyhedra construction
and computation of the geometric arrangement. In our tables, we refer to the corner cutting
approach as “exact” and the approximate approach as “inner-k”/ “outer-k” where k is the
number of directions that were approximated. Since the hitter candidates from the geometric
arrangement contain a lot of redundancies (which slows down in particular the (I)LP solving),
e.g., some hitters being dominated by others, we prune the resulting candidate set in a
straightforward set minimization routine. The preference polyhedra construction as well as
the set minimization routine are the multithreaded parts of our implementation. Table 1
shows run times and the average polyhedron complexity for a problem instance with 10,000
paths. In this instance, approximating in twelve directions takes more time than the exact
calculation with CCA. This is due the polyhedron complexity being very low in practice. It
shows that CCA is a valid approach in practice. Set minimizing is particularly expensive for
the inner approximations since considerably more candidates are not dominated.

Table 1 Statistics about instance generation:
average number of polyhedron corners, polyhedra
construction time (multithreaded), construction
time for arrangement, time for set minimization
(multithreaded). Car graph with 10,000 paths.
Time in seconds.

Algo. Polyh. Polyh. Arr. SetMin
Compl Time Time Time

Inner-12 3.8 70.6 352.3 1450.0
Exact 4.7 54.9 356.7 414.8
Outer-12 4.5 70.6 361.4 473.0

Table 2 Instance generation and solving for
various polyhera approximations. Car graph
with 1,000 paths. Time in seconds.

Algo. Polyh. Arr. ILP ILP
Time Time Sol. Time

Inner-4 6.7 4.4 110 >3600
Inner-8 8.4 5.5 50 >3600
Inner-16 11.3 4.8 45 15.5
Inner-32 16.5 5.0 42 3.7
Inner-64 26.9 4.9 39 1.8
Inner-128 48.8 5.0 36 2.3
Exact 6.5 5.2 36 0.7
Outer-128 48.8 5.1 36 0.8
Outer-64 26.9 5.1 36 0.8
Outer-32 16.5 5.0 36 0.6
Outer-16 11.3 5.2 36 1.8
Outer-8 8.4 5.0 36 1.6
Outer-4 6.7 5.9 35 11.5

5.4 Geometric Hitting Set Solving
We now compare the two greedy approaches from Section 4.2 with the ILP formulation of
Section 3.2. For the ILP solver, we set a time limit of 1 hour after which the computation
was aborted and the best found solution (if any) was reported. The results for two instances
on the bicycle graph are shown in Table 3. The naive greedy approach has by far the smallest
run time but it also reports worse results than the LP-based greedy which was able to find
the optimal solution for exact and outer approximations of the two instances. The ILP solver
always reports the optimal solution but it might take a very long time to do so. Especially,
the inner approximations seem to yield hard GHS instances before they converge to the exact
problem instance. A state of art commercial ILP solver might improve run time drastically.
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Table 3 Comparison of GHS solving algorithms on two instances on the bicycle graph. The times
(given in seconds) for the LP-Greedy and ILP algorithm include solving the LP-relaxation first.

Algorithm Paths Greedy Greedy LP-Greedy LP-Greedy ILP ILP
Solution Time Solution Time Solution Time

Inner-12 5000 210 4.2 181 40.8 – >3600.0
Exact 5000 54 2.9 48 24.8 48 68.4
Outer-12 5000 57 3.1 48 30.5 48 95.5

Inner-12 10000 421 10.9 399 144.6 – >3600.0
Exact 10000 58 7.6 50 73.5 50 188.9
Outer-12 10000 59 8.1 50 81.1 50 114.6

5.5 Varying Polyhedron Approximation
In Table 2 we show that increasing the number of directions in the approximation approach
makes its results converge to the exact approach. Interestingly, the outer approximation
converges faster than the inner approximation. It typically yields good lower bounds already
for four approximation directions and higher. In Table 2 it yields a tight lower bound for
eight directions while the inner approximation only achieves a tight upper bound with 128
directions.

5.6 Dependence on the number of preferences
So far, we have only considered PTC problem instances that were derived from 50 initial
preferences. To ensure that the fixed number of preferences does not bias our results, we
also ran instances generated with 10, 20, 100 and 1000 preferences. Tables 4 and 5 hold
the results for instances with 1,000 paths on both graphs. As expected, we found larger
optimal solutions as the number of preferences increased. Although, the solution size did
increase only to 53 and 177 for the car and bicycle graph, respectively. We attribute this
to the probably bounded inherent complexity of the graphs and cost types used. We also
note a slight increase in ILP run times with spikes when computing the solution to the inner
approximation as discussed in Section 5.4. Otherwise, there is no performance difference.

6 Conclusions

We have exhibited an example for a real-world application where theoretical complexities
and hardness do not prevent the computation of optimal results even for non-toy problem
instances. The presented method allows the analysis of large trajectory sets as they are,
for example, collected within the OpenStreetMap project. Our results suggest that exact
solutions are computable in practice, even more so if commercial ILP solvers like CPLEX or
GUROBI are employed. From a theoretical point of view, it would be interesting to prove or
disprove our guess that exponentially (in the network size) many optimal paths between one
source-target pair exist. Another open problem is to find an explanation for the observed
average preference polyhedra complexity, which is surprisingly low. On a more abstract level,
our approach of approximating the hitting set problem with increasing precision by refining
the inner and outer approximations until an optimal solution can be guaranteed could also
be viewed as an extension of the framework of structural filtering ([10]), where the high-level
idea is to certify exactness of possibly error-prone calculations. It could be interesting to
apply this not only to the instance generation step but simultaneously also to the hitting set
solution process.
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Table 4 Run times and optimal solution of instances generated with varying amount of preferences.
The instances each consist of 1.000 paths on the car graph.

Algorithm α Polygon Arrangement Set Minimization ILP ILP
Time Time Time Solution Time

Inner-8 10 7.9 4.8 1.2 23 6.5
Exact 10 5.9 4.5 0.4 10 0.3
Outer-8 10 7.9 4.4 0.4 10 0.2

Inner-8 20 7.8 7.7 2.8 28 96.6
Exact 20 5.2 6.0 0.6 17 0.8
Outer-8 20 7.8 6.1 0.6 17 0.8

Inner-8 100 8.3 5.5 1.7 57 3601.0
Exact 100 6.3 5.8 0.6 49 23.1
Outer-8 100 8.3 5.6 0.6 49 21.1

Inner-8 1000 8.0 5.7 2.1 61 1166.5
Exact 1000 5.9 5.3 0.5 53 2.1
Outer-8 1000 8.0 5.2 0.5 53 21.9

Table 5 Run times and optimal solution of instances generated with varying amount of preferences.
The instances each consist of 1.000 paths on the bicycle graph.

Algorithm α Polygon Arrangement Set Minimization ILP ILP
Time Time Time Solution Time

Inner-8 10 47.9 3.0 0.6 45 0.9
Exact 10 57.9 2.9 0.4 10 0.1
Outer-8 10 47.9 3.0 0.5 10 0.1

Inner-8 20 42.4 2.9 0.7 69 3600.0
Exact 20 47.7 3.1 0.5 20 0.3
Outer-8 20 42.4 3.1 0.6 20 0.3

Inner-8 100 43.8 2.0 0.3 125 398.3
Exact 100 50.1 2.1 0.2 85 0.2
Outer-8 100 43.8 2.1 0.3 83 0.3

Inner-8 1000 43.9 2.0 0.4 193 1.2
Exact 1000 49.0 2.2 0.3 177 1.6
Outer-8 1000 43.9 2.2 0.3 177 3.7
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Abstract
1-planar graphs are graphs that can be drawn in the plane such that any edge intersects with at
most one other edge. Ackerman showed that the edges of a 1-planar graph can be partitioned into a
planar graph and a forest, and claims that the proof leads to a linear time algorithm. However, it is
not clear how one would obtain such an algorithm from his proof. In this paper, we first reprove
Ackerman’s result (in fact, we prove a slightly more general statement) and then show that the
split can be found in linear time by using an edge-contraction data structure by Holm, Italiano,
Karczmarz, Łącki, Rotenberg and Sankowski.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Dynamic graph algorithms

Keywords and phrases 1-planar graphs, edge partitions, algorithms, data structures

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.16

Funding Therese Biedl: Research supported by NSERC; FRN RGPIN-2020-03958.

1 Introduction

In this paper, we study the class of 1-planar graphs: graphs that can be drawn in the
plane such that every edge crosses at most one other edge. 1-planar graphs were introduced
by Ringel [21], motivated by the problem of coloring the vertices and faces of a planar
graph. Since then, there have been many publications concerning 1-planar graphs, both for
theoretical results such as coloring, as well as algorithmic results such as solving drawing
and optimization problems. The reader may refer to [18] for an annotated bibliography from
2017 and [15] for a more recent book that includes developments since then.

Many of the results for 1-planar graphs are obtained by first converting the 1-planar
graph G into a planar graph G′, applying results for planar graphs, and then expanding the
result from G′ back to G. (We will give specific examples below.) There are several ways
of how to create G′, e.g., by deleting edges or by replacing crossings with dummy-vertices.
Of particular interest to us here is to make a 1-planar graph planar by deleting edges. Put
differently, we want an edge partition, i.e., write E(G) = E′ ∪ E′′ such that E′ forms a planar
graph while E′′ has some special structure that makes it possible to expand a solution for G′

to one for G.

Previous Work. The main focus of this paper is a result by Ackerman [1]. He established
that the edges of a 1-planar graph can be partitioned such that one partition induces a
planar graph and the other induces a forest. This was an extension of an earlier result from
Czap and Hudák [8], who proved it for optimal 1-planar graphs (simple 1-planar graphs with
the maximum 4n − 8 edges). Other partitions of near-planar graphs have also been studied;
we list a few here. Lenhart et al. [19] show that optimal 1-planar graphs can be partitioned
into a maximal planar graph and a planar graph of maximum degree four (the bound of four
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is shown to be optimal). Bekos et al. [4] provide edge partition results for some k-planar
graphs (graphs that can be drawn in the plane such that any edge crosses at most k other
edges). Di Giacomo et al. [9] prove edge partition results for so-called NIC-graphs, a subclass
of 1-planar graphs.

For algorithmic purposes, we need to find such edge partitions in linear time. With one
exception, the above papers either explicitly come with a linear-time algorithm to find the
edge-partition, or such an algorithm can easily be derived from the proof. The one exception
is the paper by Ackerman [1]. He claims that the partition of a 1-planar graph into a planar
graph and a forest can be found in linear time, but provides no details. Moreover, while his
proof clearly gives rise to a polynomial-time algorithm, it is not clear how one would achieve
linear time (or even O(n log n) time), since he relies on contracting edges while repeatedly
testing whether two vertices share a face and occasionally splitting the graph into subgraphs,
and neither of these operations can trivially be done in constant time in planar graphs. (We
confirmed this in private communication with Ackerman.)

Our Results. In this paper, we show that a partition of a 1-planar graph into a planar
graph and a forest can be found in linear time. We were not able to use Ackerman’s proof
for this directly, so as a first step we re-prove the result in a slightly different way to avoid
some problematic situations and so that then a linear-time algorithm can be established. A
crucial ingredient for this is a data structure by Holm, Italiano, Karczmarz, Łącki, Rotenberg
and Sankowski [14] which allows for efficiently contracting edges of planar graphs. To our
knowledge, this data structure has not been implemented. Because of this, we also show that
the partition can be computed in O(n log n) time using a simpler data structure based on
incidence lists.

As a consequence of our result, a number of related problems can be solved in linear time:
Angelini et al. [3] studied the problem of finding simultaneous quasi-planar drawings of
graphs where some edges are fixed. They used Ackerman’s partition result in order to
find such a simultaneous drawing of a 1-planar graph and a planar graph and cited its
claimed linear runtime; with our result the linear runtime of [3] is established.
It is known that every 1-planar graph has arboricity 4, i.e., its edges can be partitioned
into 4 forests. (This follows from Nash-Williams formula for arboricity [20] since 1-planar
graphs have at most 4n − 8 edges [6].) The arboricity (and the corresponding edge-
partition) of a graph can be computed in polynomial time [11], but to our knowledge not
in linear time. For planar graphs, a split into 3 forests can be found in linear time [24].
So with our result, the partition of a 1-planar graph into 4 forests can be done in linear
time as well, by first partitioning into a forest and a planar graph and then applying [24]
onto the planar graph.
If G is a bipartite 1-planar graph, then it has at most 3n − 8 edges [16] and hence
arboricity 3. With our result we can partition it into a forest and a planar bipartite graph
in linear time. The planar bipartite graph can be partitioned into two forests in linear
time [22]. In consequence, every 1-planar bipartite graph can be partitioned into three
forests in linear time.
From a partition into d forests one easily obtains an edge orientation with in-degree at
most d. For bipartite graphs, such an edge-orientation can be used to prove (d+1)-list-
colorability [13], and this list-coloring can be found in O(dn) time [5]. Putting everything
together, therefore our paper fills the one missing gap to show that 1-planar bipartite
graphs can be 4-list-colored in linear time.
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Our paper is structured as follows: In Section 2 we go over necessary terminology and
present Ackerman’s proof in order to demonstrate that it does not immediately lead to a
linear time algorithm. In Section 3 we present our new proof. In Section 4 we use our
alternative proof to design an efficient algorithm for finding the partition, before concluding
in Section 5.

2 Background

We assume basic familiarity with graph theory (see e.g. [10]). All graphs in this paper are
finite and connected, but not necessarily simple.

For a (multi)graph G and a vertex x of G, d(x) is the number of edges incident to x.
We recall that a (multi)graph G is called planar if it can be drawn in the plane without

edges crossing. Let G be a planar (multi)graph given with a drawing Γ. The maximal regions
of R2 \ Γ are the faces of G. We add a chord to a face f by adding an edge between two
non-adjacent vertices on the boundary of f , and drawing the edge through the region of f .
For each vertex x with incident edges e1, . . . , ek, the drawing Γ places these edges in some
rotational clockwise order around x. The space between two edges which are adjacent in this
rotational order form an angle. The degree of a face f is the number of angles contained in
the face. We say that a face f is a quadrangle if it has degree 4. Note that this includes both
faces with 4 vertices on their boundary, and some faces with fewer than 4 vertices on their
boundary (see Figure 1(a)). If f is a quadrangle with exactly 4 vertices on its boundary,
then we call f a simple quadrangle (the quadrangles of a simple planar graph will all be
simple quadrangles). A face of degree 3 is a triangle, and a face of degree 2 is a bigon.

The facial cycle of a quadrangle f is a 4-tuple ⟨z0, z1, z2, z3⟩ such that each zi is on the
boundary of f and there are edges zizi+1 and zizi−1 (arithmetic modulo 4) which form an
angle in f . Note that z0, z1, z2, z3 need not be distinct if f has loops or parallel edges, or if
it is incident to a bridge. We say that z0 and z2 are opposing vertices in f (we will often
omit mentioning the face when it is clear from context). Likewise z1 and z3 are opposing
vertices in f . Note that it is possible for a vertex to oppose itself in a quadrangle.

Stellating a face f of a planar graph is the process of adding a new vertex s inside f , and
adding an edge from s to every vertex on the boundary of f . Given two vertices a and b, we
contract a and b by creating a new vertex c, adding an edge vc for each edge va and vb, and
deleting a and b and all their incident edges. If a and b were adjacent, then c has a loop,
and if a and b were both adjacent to a vertex v, then c will have parallel edges to v. If a and
b were both on the boundary of some face f in a planar graph, then we can contract a and b

through f by placing this new vertex c inside f . This preserves planarity, but destroys the
face f .

A 1-planar graph is a graph G that can be drawn in the plane such that any edge
intersects with at most one other edge. Here “drawing” always means a good drawing (see
e.g. [23]), in particular this means that no three edges cross in a point, that no edge intersects
itself, and that incident edges do not cross. From now on, whenever we speak of a 1-planar
graph, we assume that one particular 1-planar drawing has been fixed. A pair of edges that
intersect each other are a crossing pair, and the point where they intersect is known as the
crossing point. The planarization is the graph G× obtained by replacing each crossing point
with a new vertex. A 1-planar graph G is planar-maximal if no uncrossed edge (i.e., an edge
which does not intersect any other edge) can be added to the fixed drawing of G without
adding a loop or a bigon.
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For algorithmic purposes, a drawing of a planar graph can be specified by giving the
rotational clockwise order of edges at every vertex; this specifies the circuits bounding the
faces uniquely. A drawing of a 1-planar graph can be specified by giving a drawing of its
planarization, with the vertices resulting from a crossing point marked as such. Since testing
1-planarity is NP-hard [12], we assume that any 1-planar graph G is given with such a
drawing. We also assume that G is planar-maximal, because any 1-planar graph can be
made planar-maximal in linear time by adding edges [2], and having more edges can only
make partitioning more difficult.

For ease of notation, we define a shortcut for our partition problem.

▶ Definition 1. A graph G has a PGF-partition if its edge-set E(G) can be partitioned into
two sets A and B such that G[A] is a planar graph and G[B] is a forest.

2.1 Ackerman’s Proof
To establish the difficulties of achieving a linear time algorithm, we briefly review here
Ackerman’s proof for the existence of a PGF-partition.

Let G be a (planar-maximal) 1-planar graph without loops drawn in the plane. Remove
all crossing pairs of G. Call the resulting graph H the (planar) skeleton of G [2]. Observe
that the faces of H are either bigons, triangles, or quadrangles, and that there is a 1-1
mapping between the quadrangles of H and the crossing pairs of G. Moreover, by this 1-1
mapping and the fact that the two edges forming a crossing pair do not share an endpoint,
one can see that the quadrangles of H are in fact simple quadrangles. Ackerman, similarly
to Czap and Hudák [8], establishes the following.

▶ Lemma 2 (Ackerman [1]). Let G be a 1-planar graph, and let H be the skeleton of G. If
we can add a chord to every quadrangle of H such that the chords induce a forest, then G

has a PGF-partition.

Proof. Let C be the set of chords added to H. By the 1-1 mapping between quadrangles
of H and crossing pairs of G, we know that exactly one edge from each crossing pair of G

is contained in C. In particular, each edge e ∈ C forms a crossing pair with some edge e′

of G. Let C ′ be the set of these edges e′. By assumption G[C] is a forest. Moreover, the
graph H ∪ C ′ is the graph H plus a chord added to each quadrangle of H , and so is a planar
graph. As H ∪ C ′ is also the graph induced by the edge-set E(G) \ C, this gives us the
desired partition. ◀

Thus, in order to prove the existence of a PGF-partition, it suffices to show (typically by
induction on the number of quadrangles) that such a set of chords can be found. For the
induction to go through, Ackerman additionally forbids the chords from containing a path
between two adjacent pre-specified vertices x, y.

▶ Theorem 3 (Ackerman [1]). Let H be a planar multigraph without loops such that every
face has degree at most four and all quadrangles are simple. Let x, y be a pair of adjacent
vertices of H. Then we can add a chord to every simple quadrangle of H such that the
subgraph induced by the chords is a forest and does not contain a path between x and y.

Proof. Proceed by induction on the number of quadrangles in H. If H has no quadrangles,
then the statement is trivial. Otherwise, let f be a quadrangle with facial cycle ⟨z0, z1, z2, z3⟩;
by assumption f is simple.
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Case 1. The only face containing z0 and z2 is f ; in particular z0 and z2 are not adjacent.
Contract z0 and z2 through f . Let H ′ be the graph resulting from this contraction. Observe
that H ′ has one fewer quadrangle than H. All other quadrangles remain simple since f was
the only face containing z0 and z2. Apply induction on H ′ with the same pair of adjacent
vertices x, y to receive a set of chords C ′, and then further add the chord z0z2. Chords have
now been added to every quadrangle of H, and it is easy to see that we have not added a
cycle, or a path from x to y, in the chords.

Case 2. There is some face f ′ ̸= f containing z0 and z2, but the only face containing z1
and z3 is f . Proceed as in Case 1, except contract z1 and z3.

Case 3. None of the above. Then there is a face f ′ ̸= f containing z0 and z2, and
there is a face f ′′ ̸= f containing z1 and z3. Ackerman argues that f ′ = f ′′ (see also
Lemma 5), and therefore f ′ is also a simple quadrangle. Observe that G can be split into
four connected subgraphs H0, H1, H2, H3, where Hi contains zi and zi+1 (addition modulo 4)
on the boundary (see Figure 1(e)). One of these subgraphs, say H0, will contain the adjacent
pair x, y. Apply induction on H0 with x, y, and apply induction on the other Hi with the
pair zi, zi+1. After induction, add the chords z0z2 in f , and z1z3 in f ′. One verifies that
the added chords do not add a path between x and y and that the chords do not create a
cycle. ◀

3 An Alternative Existence Proof

While Ackerman’s proof clearly leads to a polynomial time algorithm for finding the partition,
it is not obviously linear since distinguishing between the cases and contracting are not
obviously doable in constant time:
1. We need to test whether a given pair of vertices share more than one face.
2. The graph changes via contractions, and it is not obvious whether the existing data

structures for efficiently contracting edges in planar graphs (e.g. [14]) would support (1)
in constant time.

3. In Case 3 of Ackerman’s proof, we need to identify the four subgraphs H0, H1, H2, H3.
Furthermore, we need to determine which of these subgraphs contains the pair x, y.
Neither operation is obviously doable in constant time.

We now give a different proof of the existence of a PGF-partition that either avoids these
issues or addresses explicitly how to resolve them. The biggest change is how we handle
Case 3 of Ackerman’s proof. Ackerman used here a split into four graphs, which is necessary
in order to maintain that all quadrangles are simple. We prove a more general statement
that permits non-simple quadrangles and hence avoids having to split the graph. Moreover,
we generalize Ackerman’s “forbidden pair” x and y by choosing chords in such a way that the
chords do not induce a path between any pair of vertices that were adjacent in the original
graph H. Doing so simplifies the induction since we no longer need to keep track of where
the vertices x and y are. Before we state this result we need a few helper-results that hold
for all quadrangles (simple or not).

▶ Lemma 4. Let H be a plane multigraph without loops, let f be a quadrangle of H, and
let ⟨z0, z1, z2, z3⟩ be the facial cycle of f . If zi = zi+2 (addition modulo 4) for some i, then
zi+1 ̸= zi+3, and there is no face f ′ ̸= f that contains zi+1 and zi+3.
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16:6 Partitioning the Edges of a 1-Planar Graph

Proof. Up to renaming, we may assume that i = 0, so z0 = z2 (see Figure 1(a)). Assume for
contradiction that z1 = z3. Then f consists of several parallel edges between z0 = z2 and
z1 = z3, and thus f is not a quadrangle.

Assume by way of contradiction that there is some face f ′ ≠ f which contains z1 and z3.
Subdivide one of the z0z3 edges to obtain a new vertex y adjacent to z0 and z3, and further
add an edge yz1 within f . We have split f and attained a simple quadrangle f ′′ with facial
cycle ⟨z0, z1, y, z3⟩. Stellate f ′′ with a new vertex c, and add an edge z1z3 through the face
f ′. All these steps maintain the planarity of H. Moreover, the five vertices z0, z1, y, z3, c are
pairwise adjacent. But this forms a K5 which is not planar, a contradiction. ◀

The following lemma was shown (without being stated explicitly) in Case 3 of Ackerman’s
proof.

▶ Lemma 5. Let H be a plane multigraph without loops, let f be a quadrangle of H, and let
⟨z0, z1, z2, z3⟩ be the facial cycle of f . If zi and zi+2 (addition modulo 4) are both on some
face f ′ ̸= f for some i, then no face f ′′ ̸= f, f ′ contains both zi+1 and zi+3.

Proof. Up to renaming we may assume that i = 0, so z0 and z2 are on f and f ′ (see
Figure 1(b-e)). Suppose for contradiction that such a face f ′′ exists. By Lemma 4, z1 ̸= z3
and z0 ̸= z2. Stellate f with a new vertex c, add an edge z0z2 through f ′, and add an edge
z1z3 through f ′′. The original multigraph H was planar, and all of these operations preserve
planarity. However, the five vertices z0, z1, z2, z3, and c are pairwise adjacent and form a K5,
which is not planar, a contradiction. ◀

f

z0(= x)

z2

z3z1
z1z1 f f f ′

z0(= x)

z1 z3

z2

f f ′
z1

z2

z3

z0(= x)

f

f ′

z0(= x)

z3

z2

z1

(a) (c)

(d) (e)

(b)

f

z1

z3

z0 = z2(= x)

z3

Figure 1 Some configurations where we contract z1 and z3.

Now we reprove the existence of quadrangle-chords that form a forest.

▶ Theorem 6. Let H be a plane multigraph without loops such that every face has degree
at most 4. Then it is possible to add a chord to every quadrangle of H such that the graph
induced by the chords is a forest. Moreover, for all pairs of adjacent vertices a and b of H,
there is no path from a to b in the chords.
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Proof. As in Ackerman’s proof, we prove the claim by induction on the number of quadrangles
in H and remove each quadrangle by contracting an opposing pair of vertices in the quadrangle.
If H has no quadrangles, the claim is trivial. Otherwise, there are quadrangles left. Pick an
arbitrary vertex x that is still incident to some quadrangles (later in our algorithm we will
deal with all its incident quadrangles). Let f be one of its incident quadrangles with facial
cycle ⟨x = z0, z1, z2, z3⟩. We first pick two opposing vertices of f to contract.

Case 1. This case covers when we choose to contract z1 and z3, and has three sub-cases.
We contract z1 and z3 whenever
Case 1.a x = z2 are the same vertex, or
Case 1.b x and z2 are adjacent, or
Case 1.c x and z2 are opposing vertices of some quadrangle f ′ ̸= f . 1

Figure 1 illustrates possible configurations of face f where Case 1 applies: Case 1.a applies
to (a), Case 1.b applies to (b), and Case 1.c applies to (c,d,e). Note that Case 1.c covers
Case 3 of Ackerman’s proof, where x, z1, z2, z3 all belong to two simple quadrangles f, f ′ (see
also Figure 1(e)). Our contraction turns f ′ into a non-simple quadrangle, but our proof can
handle this.

Case 2. Otherwise, we contract x and z2.

Table 1 demonstrates when we pick Case 1 and when we pick Case 2, and crucially shows
cases which are impossible by Lemmas 4 and 5. To see that these lemmas apply in the
second row and column, observe that adjacent vertices always share at least one face, and in
particular if two opposing vertices are adjacent then they must share two faces other than
the quadrangle they are opposing in.

Table 1 All possible cases for the quadrangle f with facial cycle ⟨x, z1, z2, z3⟩. We either indicate
which case in the proof of Theorem 6 would be chosen, or indicate the lemma that demonstrates
that this case is impossible.

x = z2
x ̸= z2;

(x, z2) ∈ E(H)

x ̸= z2;
x, z2 are

opposing in f ′
Otherwise

z1 = z3
Impossible
(Lemma 4)

Impossible
(Lemma 4)

Impossible
(Lemma 4) Case 2

z1 ̸= z3;
(z1, z3) ∈ E(H)

Impossible
(Lemma 4)

Impossible
(Lemma 5)

Impossible
(Lemma 5) Case 2

z1 ̸= z3;
z1, z3 are

opposing in f ′′

Impossible
(Lemma 4)

Impossible
(Lemma 5)

Impossible if f ′ ̸= f ′′

(Lemma 5),
Case 1.c otherwise

Case 2

Otherwise Case 1.a Case 1.b Case 1.c Case 2

Let zi, zi+2 be two vertices chosen for contraction and let H ′ be the graph resulting from
contracting zi and zi+2. By Table 1, zi and zi+2 are not adjacent, and they are distinct.
Therefore our contraction has destroyed the quadrangle f and not added any loops, so we
can apply induction on H ′. Let C ′ be the set of chords added to H ′. By the inductive

1 In fact, our proof does not require Case 1.c to be separated out; we could equally have contracted x and
z2 in this case.
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hypothesis, C ′ induces a forest and for any edge ab ∈ H ′, there is no path from a to b in C ′.
Uncontract zi and zi+2, and add a chord e := zizi+2 between them. Define C := C ′ ∪ {e}.
We now verify that C satisfies all conditions.

Let a, b be a pair of adjacent vertices of H . Assume by way of contradiction that there is
a path from a to b in C. By the inductive hypothesis, the path must use e. Furthermore,
e cannot be the edge ab since zi and zi+2 are not adjacent, so the path must use some
edges from C ′. Let c1, . . . , ck1 , e, ck1+1, . . . , ck2 be the edges on this path, k2 ≥ 1. But then
c1, . . . , ck2 would be a path from a to b within C ′ in H ′ = H/e, a contradiction.

Assume by way of contradiction that C induces a cycle in H. Since e is not a loop in
H, the cycle must use edges from C ′. Let e, c1, . . . , ck be the cycle, k ≥ 2. Then c1, . . . , ck

would induce a cycle within C ′ in H ′ = H/e, a contradiction. ◀

4 Efficient Implementation

It is still not immediately clear how one would implement the above theorem in order to
achieve linear runtime, since as in Ackerman’s proof we need to repeatedly test how many
quadrangles two vertices share. However, if we are more careful about the order in which we
contract each quadrangle, an efficient implementation can be achieved. The crucial idea will
be to pick some vertex x and contract all quadrangles incident to x. This will allow us to
store additional information relative to x and hence speed up testing which case applies. We
note that this idea alone would not suffice to make Ackerman’s proof run in linear time, as
one would still need to find a way to implement Case 3 (where he splits the graph into four
subgraphs and determines which subgraph contains a given pair of vertices) of Ackerman’s
proof efficiently.

4.1 Data Structure Interface

As mentioned earlier, one of the major ingredients to achieve fast run-time is to use the data
structure by Holm et al. [14] for contraction in planar graphs, but we will also provide a
(simpler but slower) alternative. We will discuss these later (in Subsection 4.4) when we
analyze the run-time, but note here the two operations provided by [14] that will be needed:

x = contract(e) takes a reference to an edge e, contracts e, and returns the vertex
resulting from the contraction.
Note that contracting e creates a loop in the graph, especially if there are multiple copies
of this edge, while the proof of Theorem 6 assumed that the graph has no loops. We
could remove loops (the data structure by Holm et al. can report newly created loops
after contract), but this turns out to be unnecessary: We will only contract edges at
artificial gadgets inserted into the graph, and the created loops are at quadrangles that
are destroyed afterwards and those will not pose problems.
neighbors(x) returns an iterator over {⟨xv, v⟩ : xv ∈ E} where E is the edge set of the
graph. In other words, it returns an iterator to tuples containing each edge incident to x

and the endpoint of this edge. No guarantee is given as to the order of the neighbors.
We assume that neighbors(x) has O(1) runtime and that the returned list can be iterated
over in O(d(x)) time (recall that d(x) denotes the number of edges incident to x). Since
edge-contraction can create parallel edges, it is possible that neighbors(x) contains
parallel edges, and hence the second element of the tuple need not be unique. Again this
will not pose problems later.
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In Subsection 4.2, we will add labels and other meta-data to vertices of our graph. We
make no assumptions as to how the meta-data are updated when two vertices are contracted,
and so we will maintain those manually.

4.2 Preprocessing
We take as input a 1-planar graph G, given by specifying its planarization via the rotational
clockwise order of edges at the vertices, and assuming that vertices of the planarization
resulting from crossing points are marked as such. G need not be simple, but we assume
that it has no loops (they can always be added to the planar part) and for ease of stating
bounds we assume that it has O(n) edges. From G, we can construct a planar-maximal
supergraph G+ in linear time [2], and along the way construct the planarization (G+)× of
G+. As before we use H to denote the skeleton of G+, but we do not construct it explicitly.
Instead, notice that the vertices of (G+)× marked as crossings correspond uniquely to the
quadrangles of H. For this reason, we assume that these vertices are marked with a label
quad and we call such a vertex a quadrangle-vertex (whereas the corresponding face of H is
called a quadrangle-face).

Our proof of Theorem 6 relies heavily on having faces, while the data structure of Holm et
al. makes no provisions for accessing faces. For this reason, we keep the quadrangle-vertices in
the graph as representatives of the quadrangle-faces. This will make it possible to implement
the operation of “contract zi and zi+2 within quadrangle f” used in Theorem 6 via edge-
contractions at the corresponding quadrangle-vertex f . (See Procedure 1 for details.) We
also assume that any quadrangle-vertex f has references to the two original edges in G that
crossed; when doing such a contraction within f we can hence also record the corresponding
edge zizi+2 for inclusion in the forest-part of the partition.

Procedure 1 ContractThrough(u, v, f).

Result: Contract two vertices u and v in H through a quadrangle-face f , and return
the resulting vertex y.

// pre: f is labelled quad
// pre: u and v are opposing on face of H corresponding to f

Find the original edge uv of G that is stored with f .
Record edge uv as belonging to the forest of the partition.
for ⟨e, w⟩ in neighbors(f) do

if v equals w or v equals u or w has label quadi for some 0 ≤ i ≤ 3 then
y := contract(e)

Remove labels quad, quadi from y

return y

Our proof of Theorem 6 also requires knowing the order of vertices along a quadrangle,
and the data structures do not support this directly. Therefore at any quadrangle-vertex f

we stellate each of the four incident triangular faces; see Figure 2. Since we have not yet
contracted any edges, we have access to the rotational clockwise order of edges at f ; we
can hence label the added vertices with quadi (for 0 ≤ i ≤ 3) in clockwise order around f .
With this, we can retrieve the clockwise order ⟨z0, . . . , z3⟩ of vertices on the quadrangle-face
corresponding to f in constant time. (See Procedure 2 for details.)

We use H♢ for the graph that results after all these modifications (it can be viewed as
the planar skeleton H with a “diamond”-gadget inserted into each quadrangle-face). We also
add the following meta-data to each vertex of H♢:

A boolean adj, initialized to false.
A boolean in_worklist, initialized to false.
An integer opposing, initialized to 0.
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Procedure 2 FacialCycle(f).

Result: Reconstruct the facial circuit of a quadrangle-face, given the corresponding
quadrangle-vertex.

// pre: f is a vertex of H♢ with label quad

for vertex v in neighbors(f) do
for i = 0, . . . , 3 do

if v has label quadi then fi := v

// By construction fi has neighbours {zi−1, zi, f} (indices are mod 4)
for i = 0, . . . , 3 do

Ni := neighbors(fi) ∩ neighbors(fi+1)
if |Ni| equals 2 then zi := Ni \ {f}

// If f is not simple then |Ni| = 3 for two values of i, see Fig.2.
But then zi is determined since we know zi−1 = zi+1 already

for i = 0, . . . , 3 do
if |Ni| equals 3 then zi := Ni \ Ni+2

return ⟨z0, z1, z2, z3⟩

The main idea of our algorithm is to iteratively contract all the quadrangles incident to some
vertex x. As we do this, we will use adj to mark vertices that are adjacent to x, in_worklist
to mark unprocessed quadrangles incident to x, and opposing to keep track of the number
of quadrangle-faces where vertex y is the opposing vertex of x.

Since G has O(n) edges, H has O(n) faces, so H♢ has O(n) edges. All steps in this
preprocessing can hence be done in linear time.

4.3 Handling the Quadrangles around a Vertex

The main subroutine of our algorithm handles all quadrangles incident to some vertex x by
contracting each of them using the criteria laid out in Theorem 6 to decide which vertices
to contract. To do so, we will initialize and maintain a work-list of faces incident to x that
we need to contract (using in_worklist to avoid putting duplicate quadrangles into the
worklist). We also mark vertices in H♢ as opposing and adj to x as needed; this can be
done in O(d(x)) time by retrieving all neighbours of x via neighbours. (See Procedure 3 for
details.)

Now we iteratively contract all the faces in the worklist according to Theorem 6; with
adj and opposing we can determine the correct case in constant time. (See Procedure 4
for details.) In Case 1, we need to update some values of opposing: the vertex z2 which
was opposing x now no longer opposes x in f (since f was destroyed), so we decrement
z2.opposing. Likewise the new vertex v resulting from the contraction will be opposing
x in all those quadrangles in which z1 and z3 previously opposed x, so we set v.opposing
correspondingly. In Case 2, when we contract some vertex z2 into x, we need to add the
quadrangles incident to z2 to our worklist, for which we can re-use Procedure 3.

Lastly, once our worklist is empty (and hence there are no more quadrangles incident to
x), we reset the meta-data of x and its neighbors, so that when repeating the procedure with
a different vertex as x there are no stray vertices with meta-data set to erroneous values.
(See Procedure 5.)
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Figure 2 The gadget added to every quadrangle of H, shown for both a quadrangle with four
vertices on its boundary (left) and one with three vertices on its boundary (right).

Procedure 3 InitializeAtOneVertex(y, worklist).

Result: Adds all quadrangle-vertices incident to a vertex y to a worklist, taking care
not to put duplicates in the worklist.

// pre: y is a vertex of H

// pre: y equals x (the vertex we currently work on), or y will be
contracted into x

for vertex v ∈ neighbors(y) do
v.adj := true
if v has label quad and not v.in_worklist then

v.in_worklist := true
worklist.push(v)
⟨z0, z1, z2, z3⟩ := FacialCycle(v)
relabel zi such that y equals z0
z2.opposing += 1

4.4 Putting it All Together
The following summarizes our algorithm: after preprocessing, and for as long as there is a
quadrangle-face f left, process all quadrangles at a vertex x on f and record all edges that
belong to the forest along the way. See Procedure 6 for a detailed description.

It remains to analyze the run-time. For now, we ignore the time required to perform the
contractions and analyze the time for handling all quadrangles at one vertex x. Initialization
takes O(d(x)) time, and most other steps take constant time per handled quadrangle, with
one notable exception: When we contract some vertex z2 into x, we must update the worklist,
which takes time O(d(z2)). Complicating matters further, z2 may actually be the result of
prior contractions, so its degree may be more than what it was in H♢, and we must ensure
that degrees of vertices are not counted repeatedly.

To handle this, let H♢
f be the graph that results from H♢ after all quadrangle-vertices

have been contracted, and let s(x) be the set of vertices that were contracted into x, either
directly (when handling the quadrangles at x) or indirectly (i.e., if they had been contracted
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Procedure 4 HandleQuadsAtOneVertex(x).

Result: Contract all the quadrangle-faces incident to a vertex x

worklist := []
InitializeAtOneVertex(x, worklist) // see Proc. 3
for quadrangle-vertex f in worklist do

⟨z0, z1, z2, z3⟩ := FacialCycle(f ) // see Proc. 2
relabel zi such that x equals z0
if z2 equals x or z2.adj is true or z2.opposing ≥ 2 then // Case 1

opposing1 := z1.opposing
opposing3 := z3.opposing
v := ContractThrough(z1, z3, f) // see Proc. 1
v.adj := true
v.opposing := opposing1 + opposing3
z2.opposing −= 1

else // Case 2
InitializeAtOneVertex(z2, worklist)
x := ContractThrough(x, z2, f)

CleanupAtOneVertex(x) // see Proc. 5

Procedure 5 CleanupAtOneVertex(y).

Result: Cleanup the metadata at a vertex y and its neighbors.
// pre: y is a vertex of H

for vertex v ∈ neighbors(y) ∪ {y} do
v.adj := false
v.in_worklist := false
v.opposing := 0

Procedure 6 FindPGFPartition(G).

Result: Find a PGF-partition of a graph G.
Add edges to make G planar maximal 1-planar
Compute planarization G×, mark vertices of crossings with quad
foreach vertex f marked quad do

Insert four vertices in four incident faces of f

Mark these vertices with quad0, . . . , quad3 according to embedding
while there remains a vertex f labeled quad do

x := some neighbor of f not labeled quadi

HandleQuadsAtOneVertex(x)

Return all edges that were recorded as forest F and G \ F as planar graph
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into one of the vertices z2 that later get contracted into x). Crucially, note that if x, x′ are
two vertices that are parameters during a call to Procedure 4 (i.e., we contract all quadrangles
incident to the vertex), then s(x) and s(x′) are disjoint. This holds because once we are done
with the first of them (say x), all vertices in s(x) have been combined with x and no longer
have any incident quadrangles. Since we only contract vertices into x′ that are incident to
quadrangles, none of the vertices in s(x) becomes part of s(x′).

Hence for each vertex x of H♢
f , the amount of work done in Procedure 4 is proportional

to the sum of the degrees dH♢(y) for each y ∈ s(x). Since H♢ has O(n) edges, and all other
parts of the algorithm take constant time per quadrangle-vertex, the total amount of work
done is at most

O

 ∑
x∈V (H♢

f )

∑
y∈s(x)

dH♢(y)

 = O

 ∑
x∈V (H♢)

dH♢(x)

 = O
(
|V

(
H♢)

|
)

= O(|V (G)|)

hence the algorithm is linear (ignoring the time for contractions).
Now we consider the run-time of possible data structures for contractions. Our first

approach is to represent the graph with incidence lists, where every vertex has a list of
incident edges, each edge knows both of its endpoints, and every list knows its length. We can
implement neighbors(x) in constant time by simply returning an iterator to the incidence
list at x. Contracting two vertices u and v can be done in O(min{d(u), d(v)}) time by
re-attaching the edges of the vertex with smaller degree to the vertex with larger degree. As
with Union-Find data structures implemented with linked lists (see e.g. Section 4.6 of [17]),
one shows that the amortized time for this is O(log n) per contraction. In particular, for
graphs with linearly many edges, a set of Θ(n) contractions can be done in O(n log n) time.
With this we have our first result.

▶ Theorem 7. Let G be a 1-planar graph implemented with incidence lists and given with a
1-planar embedding. It is possible to find a PGF-partition of G in O(n log n) time.

To improve this runtime, we appeal to the following result by Holm et al.

▶ Theorem 8 (Holm et al. [14]). Let G be a planar graph with n vertices and m edges.
Then there exists a data structure that supports contract and neighbors and that can be
initialized in O(n + m) time. Any calls to neighbors can be processed in worst case constant
time, and any sequence of calls to contract can be performed in time O(n + m).

Since our graph has O(n) edges, we have the main result of this paper.

▶ Theorem 9. Let G be a 1-planar graph with a given 1-planar embedding. Then in O(n)
time we can find an edge-partition of G into a forest and a planar graph.

5 Conclusion

In this paper, we reproved a result from Ackerman that all 1-planar graphs admit a partition
into a planar graph and a forest. Our proof is more general than Ackerman’s: the forest we
find is guaranteed to not contain a path between adjacent vertices of the input graph. Using
this proof and a data structure from Holm et al. for efficiently contracting the edges of a
planar graph, we were able to find this partition in linear time. In consequence, a number of
results for 1-planar graphs (such as splitting into 4 forests or 4-list-coloring if the graph is
bipartite) can now be achieved in linear time. We also showed that the same algorithm can
be implemented in O(n log n) time with a simpler data structure that uses only incidence
lists.
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As for open problems, the most interesting one is whether the partition could be found
even without being given the 1-planar drawing. (Recall that it is NP-hard to find such a
drawing [12], though it is polynomial for optimal 1-planar graphs [7].) All papers listed
in the introduction for finding various edge partitions of 1-planar graphs require such an
embedding. If this is difficult, could we at least do some of the implications (such as splitting
into 4 forests or orienting such that all in-degrees are at most 4) in linear time without a
given 1-planar drawing?
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Abstract
Given a digraph G, a set X ⊆ V (G) is said to be an absorbing set (resp. dominating set) if every
vertex in the graph is either in X or is an in-neighbour (resp. out-neighbour) of a vertex in X. A
set S ⊆ V (G) is said to be an independent set if no two vertices in S are adjacent in G. A kernel
(resp. solution) of G is an independent and absorbing (resp. dominating) set in G. The problem of
deciding if there is a kernel (or solution) in an input digraph is known to be NP-complete. Similarly,
the problems of computing a minimum cardinality kernel, absorbing set (or dominating set) and the
problems of computing a maximum cardinality kernel, independent set are all known to be NP-hard
for general digraphs. We explore the algorithmic complexity of these problems in the well known
class of interval digraphs. A digraph G is an interval digraph if a pair of intervals (Su, Tu) can be
assigned to each vertex u of G such that (u, v) ∈ E(G) if and only if Su ∩ Tv ̸= ∅. Many different
subclasses of interval digraphs have been defined and studied in the literature by restricting the kinds
of pairs of intervals that can be assigned to the vertices. We observe that several of these classes,
like interval catch digraphs, interval nest digraphs, adjusted interval digraphs and chronological
interval digraphs, are subclasses of the more general class of reflexive interval digraphs – which
arise when we require that the two intervals assigned to a vertex have to intersect. We see as our
main contribution the identification of the class of reflexive interval digraphs as an important class
of digraphs. We show that all the problems mentioned above are efficiently solvable, in most of
the cases even linear-time solvable, in the class of reflexive interval digraphs, but are APX-hard
on even the very restricted class of interval digraphs called point-point digraphs, where the two
intervals assigned to each vertex are required to be degenerate, i.e. they consist of a single point
each. The results we obtain improve and generalize several existing algorithms and structural results
for reflexive interval digraphs. We also obtain some new results for undirected graphs along the
way: (a) We get an O(n(n + m)) time algorithm for computing a minimum cardinality (undirected)
independent dominating set in cocomparability graphs, which slightly improves the existing O(n3)
time algorithm for the same problem by Kratsch and Stewart; and (b) We show that the Red Blue
Dominating Set problem, which is NP-complete even for planar bipartite graphs, is linear-time
solvable on interval bigraphs, which is a class of bipartite (undirected) graphs closely related to
interval digraphs.
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1 Introduction

Let H = (V, E) be an undirected graph. A set S ⊆ V (H) is said to be an independent set in
H if for any two vertices u, v ∈ S, uv /∈ E(H). A set S ⊆ V (H) is said to be a dominating
set in H if for any v ∈ V (H) \ S, there exists u ∈ S such that uv ∈ E(H). A set S ⊆ V (H)
is said to be an independent dominating set in H if S is dominating as well as independent.
Note that any maximal independent set in H is an independent dominating set in H, and
therefore every undirected graph contains an independent dominating set, which implies
that the problem of deciding whether an input undirected graph contains an independent
dominating set is trivial. On the other hand, finding an independent dominating set of
maximum cardinality is NP-complete for general graphs, since independent dominating sets
of maximum cardinality are exactly the independent sets of maximum cardinality in the
graph. The problem of finding a minimum cardinality independent dominating set is also
NP-complete for general graphs [12] and also in many special graph classes (refer [18] for a
survey). We study the directed analogues of these problems, which are also well-studied in
the literature.

Let G = (V, E) be a directed graph. A set S ⊆ V (G) is said to be an independent set in
G, if for any two vertices u, v ∈ S, (u, v), (v, u) /∈ E(G). A set S ⊆ V (G) is said to be an
absorbing (resp. dominating) set in G, if for any v ∈ V (G) \ S, there exists u ∈ S such that
(v, u) ∈ E(G) (resp. (u, v) ∈ E(G)). As any set of vertices that consists of a single vertex
is independent and the whole set V (G) is absorbing as well as dominating, the interesting
computational problems that arise here are that of finding a maximum independent set,
called Independent-Set, and that of finding a minimum absorbing (resp. dominating)
set in G, called Absorbing-Set (resp. Dominating-Set). A set S ⊆ V (G) is said to be
an independent dominating (resp. absorbing) set if S is both independent and dominating
(resp. absorbing). Note that unlike undirected graphs, the problem of finding a maximum
cardinality independent dominating (resp. absorbing) set is different from the problem of
finding a maximum cardinality independent set for directed graphs.

Given a digraph G, a collection {(Su, Tu)}u∈V (G) of pairs of intervals is said to be an
interval representation of G if (u, v) ∈ E(G) if and only if Su ∩ Tv ≠ ∅. A digraph G that
has an interval representation is called an interval digraph [6]. We consider a loop to be
present on a vertex u of an interval digraph if and only if Su ∩ Tu ̸= ∅. An interval digraph
is a reflexive interval digraph if there is a loop on every vertex. Let G be a digraph. If there
exists an interval representation of G such that Tu ⊆ Su for each vertex u ∈ V (G) then G is
called an interval nest digraph [26]. If G has an interval representation in which intervals Su

and Tu for each vertex u ∈ V (G) are required to have a common left end-point, the interval
digraphs that arise are called adjusted interval digraphs [9]. Note that the class of reflexive
interval digraphs is a superclass of both interval nest digraphs and adjusted interval digraphs.
Another class of interval digraphs, called interval-point digraphs arises when the interval Tu

for each vertex u is required to be degenerate (it is a point) [6]. Note that interval-point
digraphs may not be reflexive. We call a digraph G a point-point digraph if there is an
interval representation of G in which both Su and Tu are degenerate intervals for each vertex
u. Clearly, point-point digraphs form a subclass of interval-point digraphs and they are also
not necessarily reflexive.

In this paper, we show that the reflexivity of an interval digraph has a huge impact on
the algorithmic complexity of several problems related to domination and independent sets
in digraphs. In particular, we show that all the problems we study are efficiently solvable
on reflexive interval digraphs, but are NP-complete and/or APX-hard even on point-point
digraphs. Along the way we obtain new characterizations of both these graph classes, which
reveal some of the properties of these digraphs.
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An undirected graph is a comparability graph if its edges can be oriented in such a
way that it becomes a partial order. The complements of comparability graphs are called
cocomparability graphs.

Our results. We provide a vertex-ordering characterization for reflexive interval digraphs
and two simple characterizations for point-point digraphs including a forbidden structure
characterization. Our characterization of point-point digraphs directly yields a linear time
recognition algorithm for that class of digraphs (note that Müller’s [22] recognition algorithm
for interval digraphs directly gives a polynomial-time recognition algorithm for reflexive
interval digraphs). From our vertex-ordering characterization of reflexive interval digraphs,
it follows that the underlying undirected graphs of every reflexive interval digraph is a
cocomparability graph. Also a natural question that arises here is whether the underlying
graphs of reflexive interval digraphs is the same as the class of cocomparability graphs. We
show that this is not the case by demonstrating that the underlying graphs of reflexive
interval digraphs cannot contain an induced K3,3. This can be used to strengthen a result
of Prisner [26] about interval nest digraphs: our results imply that the underlying undirec-
ted graphs of interval nest digraphs and their reversals are K3,3-free weakly triangulated
cocomparability graphs. Also, as the Independent Set problem is linear time solvable on
cocomparability graphs [19], the problem is also linear time solvable on reflexive interval
digraphs. This improves and generalizes the O(nm)-time algorithm for the same problem
on interval nest digraphs. In contrast, we prove that the Independent Set problem is
APX-hard for point-point digraphs.

Domination in digraphs is a topic that has been explored less when compared to its
undirected counterpart. Even though bounds on the minimum dominating sets in digraphs
have been obtained by several authors (see the book [13] for a survey), not much is known
about the computational complexity of finding a minimum cardinality absorbing set (or
dominating set) in directed graphs. Even for tournaments, the best known algorithm for
Dominating-Set does not run in polynomial-time [20, 27]. In [20], the authors give an
nO(log n) time algorithm for the Dominating-Set problem in tournaments and they also
note that Sat can be solved in 2O(

√
v)nK time (where v is the number of variables, n is

the length of the formula and K is a constant) if and only if the Dominating-Set in a
tournament can be solved in polynomial time. Thus, determining the algorithmic complexity
of the Dominating-Set problem even in special classes of digraphs seems to be much more
challenging than the algorithmic question of finding a minimum cardinality dominating set
in undirected graphs.

For a bipartite graph having two specified partite sets A and B, a set S ⊆ B such that⋃
u∈B N(u) = A is called an A-dominating set. Note that the graph does not contain an

A-dominating set if and only if there are isolated vertices in A. The problem of finding an
A-dominating set of minimum cardinality in a bipartite graph with partite sets A and B is
more well-known as the Red-Blue Dominating Set problem, which was introduced for the
first time in the context of the European railroad network [30] and plays an important role
in the theory of fixed parameter tractable algorithms [7]. This problem is equivalent to the
well known Set Cover and Hitting Set problems [12] and therefore, it is NP-complete
for general bipartite graphs. The problem remains NP-complete even for planar bipartite
graphs [1]. The class of interval bigraphs are closely related to the class of interval digraphs.
These are undirected bipartite graphs with partite sets A and B such that there exists a
collection of intervals {Su}u∈V (G) such that uv ∈ E(G) if and only if u ∈ A, v ∈ B, and
Su ∩ Sv ̸= ∅.
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Our results. We observe that the problem of solving Absorbing-Set on a reflexive
interval digraph G can be reduced to the problem of solving Red-Blue Dominating Set
on an interval bigraph whose interval representation can be constructed from an interval
representation of G in linear time. Further, we show that Red-Blue Dominating Set
is linear time solvable on interval bigraphs (given an interval representation). Thus the
problem Absorbing-Set (resp. Dominating-Set1) is linear-time solvable on reflexive
interval digraphs, given an interval representation of the digraph as input. If no interval
representation is given, Müller’s algorithm [22] can be used to construct one in polynomial
time, and therefore these problems are polynomial time solvable on reflexive interval digraphs
even when no interval representation of the input graph is known. In contrast, we prove
that the Absorbing-Set (resp. Dominating-Set) problem remains APX-hard even for
point-point digraphs.

An independent absorbing set in a directed graph is more well-known as a kernel of the
graph, a term introduced by Von Neumann and Morgenstern [21] in the context of game theory.
They showed that for digraphs associated with certain combinatorial games, the existence of
a kernel implies the existence of a winning strategy. Most of the work related to domination
in digraphs has been mainly focused on kernels. We follow the terminology in [26] and call an
independent dominating set in a directed graph a solution of the graph. It is easy to see that
a kernel in a directed graph G is a solution in the directed graph obtained by reversing every
arc of G and vice versa. Note that unlike in the case of undirected graphs, a kernel need not
always exist in a directed graph. Therefore, besides the computational problems of finding a
minimum or maximum sized kernel, called Min-Kernel and Max-Kernel respectively, the
comparatively easier problem of determining whether a given directed graph has a kernel in
the first place, called Kernel, is itself a non-trivial one. In fact, the Kernel problem was
shown to be NP-complete in general digraphs by Chvátal [4]. Later, Fraenkel [10] proved
that the Kernel problem remains NP-complete even for planar digraphs of degree at most
3 having in- and out-degrees at most 2. It can be easily seen that the Min-Kernel and
Max-Kernel problems are NP-complete for those classes of graphs for which the Kernel
problem is NP-complete. A digraph is said to be kernel-perfect if every induced subgraph
of it has a kernel. Several sufficient conditions for digraphs to be kernel-perfect has been
explored [28, 8, 21]. The Kernel problem is trivially solvable in polynomial-time on any
kernel-perfect family of digraphs. But the algorithmic complexity status of the problem of
computing a kernel in a kernel-perfect digraph also seems to be unknown [24]. Prisner [26]
proved that interval nest digraphs and their reversals are kernel-perfect, and a kernel can be
found in these graphs in time O(n2) if a representation of the graph is given. Note that the
Min-Kernel problem can be shown to be NP-complete even in some kernel-perfect families
of digraphs that have polynomial-time computable kernels (see Remark 13).

Our results. We show that reflexive interval digraphs are kernel-perfect and hence the
Kernel problem is trivial on this class of digraphs. We construct a linear-time algorithm
that computes a kernel in a reflexive interval digraph, given an interval representation of

1 Note that the reversal of a reflexive interval digraphs is also a reflexive interval digraph. It is easy to see
that the reversal of any digraph can be constructed in linear time. Moreover, an interval representation
of the reversal of a reflexive interval digraph G can be obtained in linear time given an interval
representation of G (if {(Su, Tu)}u∈V (G) is the interval representation of G, then {(Tu, Su)}u∈V (G) is an
interval representation of the reversal of G). Therefore, all our results about the Kernel, Min-Kernel,
Max-Kernel, and Absorbing-Set problems can be adapted to obtain similar results about the
Solution, Min-Solution, Max-Solution, and Dominating-Set problems.
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a b c d a b c d a b c d

(i) (ii) (iii)

a b c d a b c d a b c d

(iv) (v) (vi)

Figure 1 Forbidden structures for reflexive interval digraphs (possibly b = c in (i), (ii), (iv) and
(v)). A dashed arc from u to v indicates the absence of the edge (u, v) in the graph.

digraph as an input. This improves and generalizes Prisner’s similar results about interval
nest digraphs mentioned above. Moreover, we give an O((n + m)n) time algorithm for the
Min-Kernel and Max-Kernel problems for a superclass of reflexive interval digraphs.
As a consequence, we obtain an improvement over the O(n3) time algorithm for finding a
minimum independent dominating set in cocomparability graphs that was given by Kratsch
and Stewart [17]. Our algorithms for Min-Kernel and Max-Kernel problems have a
better running time of O(n2) for adjusted interval digraphs. On the other hand, we show
that even the problem Kernel is NP-complete for point-point digraphs. Moreover, the
Min-Kernel and Max-Kernel problems are APX-hard on point-point digraphs.

1.1 Notation

For a closed interval I = [x, y] of the real line (here x, y ∈ R and x ≤ y), we denote by
l(I) the left end-point x of I and by r(I) the right end-point y of I. We use the following
observation throughout the paper: if I and J are two intervals, then I ∩ J = ∅ ⇔ (r(I) <

l(J)) ∨ (r(J) < l(I)).
Let G = (V, E) be a directed graph. For u, v ∈ V (G), we say that u is an in-neighbour

(resp. out-neighbour) of v if (u, v) ∈ E(G) (resp. (v, u) ∈ E(G)). For a vertex v in G, we
denote by N+

G (v) and N−
G (v) the set of out-neighbours and the set of in-neighbours of the

vertex v in G respectively. When the graph G under consideration is clear from the context,
we abbreviate N+

G (v) and N−
G (v) to just N+(v) and N−(v) respectively.

For i, j ∈ N such that i ≤ j, let [i, j] denote the set {i, i + 1, . . . , j}. Let G be a
digraph with vertex set [1, n]. Then for i, j ∈ [1, n], we define N+

>j(i) = N+(i) ∩ [j + 1, n],
N−

>j(i) = N−(i) ∩ [j + 1, n], N+
<j(i) = N+(i) ∩ [1, j − 1], and N−

<j(i) = N−(i) ∩ [1, j − 1]. We
shorten N+

>i(i) and N−
>i(i) to N+

> (i) and N−
> (i) respectively. Let N>(i) = N+

> (i) ∪ N−
> (i)

and N>(i) = [i + 1, n] \ N>(i).

2 Ordering characterization

We first show that a digraph is a reflexive interval digraph if and only if there is a linear
ordering of its vertex set such that none of the structures shown in Figure 1 are present.
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▶ Theorem 1 (⋆). 2 A digraph G is a reflexive interval digraph if and only if V (G) has an
ordering < in which for any a, b, c, d ∈ V (G) such that a < b < c < d, none of the structures
in Figure 1 occur (b and c can be the same vertex in (i), (ii), (iv), (v) of Figure 1).

Now we define the following.

▶ Definition 2 (DUF-ordering). A directed umbrella-free ordering (or in short a DUF-
ordering) of a digraph G is an ordering < of V (G) satisfying the following properties for
any three distinct vertices i < j < k:
1. if (i, k) ∈ E(G), then either (i, j) ∈ E(G) or (j, k) ∈ E(G), and
2. if (k, i) ∈ E(G), then either (k, j) ∈ E(G) or (j, i) ∈ E(G).

▶ Definition 3 (DUF-digraph). A digraph G is a directed umbrella-free digraph (or in short
a DUF-digraph) if it has a DUF-ordering.

Then the following corollary is an immediate consequence of Theorem 1.

▶ Corollary 4. Every reflexive interval digraph is a DUF-digraph.

Let G be an undirected graph. We define the symmetric digraph of G to be the digraph
obtained by replacing each edge of G by symmetric arcs.

The following is a characterization of cocomparability graphs due to Kratsch and Stew-
art [17].

▶ Theorem 5 ([17]). An undirected graph G is a cocomparability graph if and only if there is
an ordering < of V (G) such that for any three vertices i < j < k, if ik ∈ E(G), then either
ij ∈ E(G) or jk ∈ E(G).

Let G be a DUF-digraph with a DUF-ordering <. Let H be the underlying undirected graph
of G. Clearly, < is an ordering of V (H) that satisfies the property given in Theorem 5,
implying that H is a cocomparability graph. Thus we have the following corollary.

▶ Corollary 6. The underlying undirected graph of every DUF-digraph is a cocomparablity
graph.

Note that there exist digraphs which are not DUF-digraphs but their underlying undirected
graphs are cocomparability (for example, a directed triangle with edges (a, b), (b, c) and
(c, a)). But we can observe that the class of underlying undirected graphs of DUF-digraphs is
precisely the class of cocomparability graphs, since the symmetric digraphs of cocomparability
graphs are all DUF-digraphs (for any cocomparability graph H, a vertex ordering of H that
satisfies the property given in Theorem 5 is also a DUF-ordering of the symmetric digraph of
H). In contrast, the class of underlying undirected graphs of reflexive interval digraphs forms
a strict subclass of cocomparability graphs. We prove this by showing that no directed graph
that has K3,3 as its underlying undirected graph can be a reflexive interval digraph (K3,3
can easily be seen to be a cocomparability graph). This would also imply by Corollary 4
that the class of reflexive interval digraphs forms a strict subclass of DUF-digraphs.

▶ Theorem 7 (⋆). The underlying undirected graph of a reflexive interval digraph cannot
contain K3,3 as an induced subgraph.

2 The proofs of the statements marked with a (⋆) are omitted due to space constraints. Refer [11] for the
omitted proofs.
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Prisner [26] proved that the underlying undirected graphs of interval nest digraphs are
weakly triangulated graphs. By Corollaries 4, 6 and Theorem 7, we can conclude that the
underlying undirected graphs of reflexive interval digraphs are K3,3-free cocomparability
graphs. This strengthens the result of Prisner, since now we have that the underlying
undirected graphs of interval nest digraphs are K3,3-free weakly triangulated cocomparability
graphs.

3 Algorithms for reflexive interval digraphs

In this section, we present polynoimal-time algorithms for the Kernel, Min-Kernel,
Max-Kernel, Absorbing-Set, and Independent-Set problems on reflexive interval
digraphs.

3.1 Kernel
We use the following result of Prisner that is implied by Theorem 4.2 of [26].

▶ Theorem 8 ([26]). Let C be a class of digraphs that is closed under taking induced
subgraphs. If in every graph G ∈ C, there exists a vertex z such that for every y ∈ N−(z),
N+(z) \ N−(z) ⊆ N+(y), then the class C is kernel-perfect.

▶ Lemma 9 (⋆). Let G be a reflexive interval digraph G with interval representation
{(Su, Tu)}u∈V (G). Let z be the vertex such that r(Sz) = min{r(Sv) : v ∈ V (G)}. Then
for every y ∈ N−(z), N+(z) \ N−(z) ⊆ N+(y).

Since reflexive interval digraphs are closed under taking induced subgraphs, by Theorem 8
and Lemma 9, we have the following.

▶ Theorem 10. Reflexive interval digraphs are kernel-perfect.

It follows from the above theorem that the decision problem Kernel is trivial on reflexive
interval digraphs. As explained below, we can also compute a kernel in a reflexive interval
digraph efficiently, if an interval representation of the digraph is known.

Let G be a reflexive interval digraph with an interval representation {(Su, Tu)}u∈V (G).
Let G0 = G and z0 be the vertex in G such that r(Sz0) = min{r(Sv) : v ∈ V (G)}. For i ≥ 1,
recursively define Gi to be the induced subdigraph of G with V (Gi) = V (Gi−1) \ ({zi−1} ∪
N−(zi−1)) and if V (Gi) ̸= ∅, define zi to be the vertex such that r(Szi) = min{r(Sv) :
v ∈ V (Gi)}. Let t be smallest integer such that V (Gt+1) = ∅. Note that this implies that
V (Gt) = {zt} ∪ N−

Gt
(zt). Clearly t ≤ n and r(Sz0) < r(Sz1) < · · · < r(Szt

). By Lemma 9,
we have that for each i ∈ {1, 2, . . . , t}, zi has the following property: for any y ∈ N−

Gi
(zi) we

have N+
Gi

(zi) \ N−
Gi

(zi) ⊆ N+
Gi

(y).
We now recursively define a set Ki ⊆ V (Gi) as follows: Define Kt = {zt}. For each

i ∈ {t − 1, t − 2, . . . , 0},

Ki =
{

{zi} ∪ Ki+1 if (zi, zj) /∈ E(G), where j = min{l : zl ∈ Ki+1}
Ki+1 otherwise.

▶ Lemma 11 (⋆). For each i ∈ {1, 2, . . . , t}, Ki is a kernel of Gi.

By the above lemma, we have that K0 is a kernel of G. We can now construct an algorithm
that computes a kernel in a reflexive interval digraph G, given an interval representation of
it. We assume that the interval representation of G is given in the form of a list of left and

ISAAC 2021



17:8 Kernels in Interval Digraphs

Figure 2 Example of a DUF-digraph that has no kernel.

right endpoints of intervals corresponding to the vertices. We can process this list from left
to right in a single pass to compute the list of vertices z0, z1, . . . , zt in O(n + m) time. We
then process this new list from right to left in a single pass to generate a set K as follows:
initialize K = {zt} and for each i ∈ {t−1, t−2, . . . , 0}, add zi to K if it is not an in-neighbor
of the last vertex that was added to K. Clearly, the set K can be generated in O(n + m)
time. It is easy to see that K = K0 and therefore by Lemma 11, K is a kernel of G. Thus,
we have the following theorem.

▶ Theorem 12. A kernel of a reflexive interval digraph can be computed in linear-time, given
an interval representation of the digraph as input.

The linear-time algorithm described above is an improvement and generalization of a
result of Prisner [26], who showed that interval nest digraphs are kernel-perfect, and a kernel
can be found in these graphs in time O(n2) if an interval representation of the graph is given.

Now it is interesting to note that even for some kernel perfect digraphs with a polynomial-
time computable kernel, the problems Min-Kernel and Max-Kernel turn out to be
NP-complete. The following remark provides an example of such a class of digraphs.
▶ Remark 13. Let C be the class of symmetric digraphs of undirected graphs. Note that
the class C is kernel-perfect, as for any G ∈ C the kernels of the digraph G are exactly the
independent dominating sets of its underlying undirected graph. Note that any maximal
independent set of an undirected graph is also an independent dominating set of it. Therefore,
as a maximal independent set of any undirected graph can be found in linear-time, the
problem Kernel is linear-time solvable for the class C. On the other hand, note that the
problems Min-Kernel and Max-Kernel for the class C is equivalent to the problems
of finding a minimum cardinality independent dominating set and a maximum cardinality
independent set for the class of undirected graphs, respectively. Since the latter problems
are NP-complete for the class of undirected graphs, we have that the problems Min-Kernel
and Max-Kernel are NP-complete in C.

Note that unlike the class of reflexive interval digraphs, the class of DUF-digraphs are not
kernel-perfect. Figure 2 provides an example for a DUF-digraph that has no kernel. Since
that graph is a semi-complete digraph (i.e. each pair of vertices is adjacent), and every vertex
has an out-neighbor which is not its in-neighbor, it cannot have a kernel. The ordering of the
vertices of the graph that is shown in the figure can easily be verified to be a DUF-ordering.
In contrast to Remark 13, even though DUF-digraphs may not have kernels, we show in the
next section that the problems Kernel, Min-Kernel, and Max-Kernel can be solved in
polynomial time in the class of DUF-digraphs. In fact we give a polynomial time algorithm
that, given a DUF-digraph G with a DUF-ordering as input, either finds a minimum (or
maximum) sized kernel in G or correctly concludes that G does not have a kernel.

3.2 Minimum sized kernel
Let G be a DUF-digraph with vertex set [1, n]. We assume without loss of generality that
<= (1, 2, . . . , n) is a DUF-ordering of G.
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For any vertex i ∈ {1, 2, . . . , n}, let Pi = {j : j ∈ N>(i) such that [i + 1, j − 1] ⊆
N−(i) ∪ N−(j)} and let G[i, n] denote the subgraph induced in G by the set [i, n]. Note that
we consider [i + 1, j − 1] = ∅, if j = i + 1. For a collection of sets S, we denote by Min(S) an
arbitrarily chosen set in S of the smallest cardinality. For each i ∈ {1, 2, . . . , n}, we define a
set K(i) as follows. Here, when we write K(i) = ∞, we mean that the set K(i) is undefined.

K(i) =


{i}, if N−

> (i) = {i + 1, . . . , n}
{i} ∪ Min{K(j) ̸= ∞ : j ∈ Pi}, if Pi ̸= ∅ and ∃j ∈ Pi such that K(j) ̸= ∞
∞, otherwise

Note that it follows from the above definition that K(n) = {n}. For each i ∈ {1, 2, . . . , n},
let OPT (i) denote a minimum sized kernel of G[i, n] that also contains i. If G[i, n] has no
kernel that contains i, then we say that OPT (i) = ∞. We then have the following lemma.

▶ Lemma 14 (⋆). The following hold.
1. If K(i) ̸= ∞, then K(i) is a kernel of G[i, n] that contains i, and
2. if OPT (i) ̸= ∞, then K(i) ̸= ∞ and |K(i)| = |OPT (i)|.

Suppose that G has a kernel. Now let OPT denote a minimum sized kernel in G. Let
K = {K(j) ̸= ∞ : [1, j − 1] ⊆ N−(j)}. Note that we consider [1, j − 1] = ∅ if j = 1. By
Lemma 14(1), it follows that every member of K is a kernel of G. So if G does not have a
kernel, then K = ∅. The following lemma shows that the converse is also true.

▶ Lemma 15 (⋆). If G has a kernel, then K ̸= ∅ and |OPT | =
∣∣Min(K)

∣∣.
We thus have the following theorem.

▶ Theorem 16. The DUF-digraph G has a kernel if and only if K(j) ̸= ∞ for some j such that
[1, j − 1] ⊆ N−(j). Further, if G has a kernel, then the set {K(j) ̸= ∞ : [1, j − 1] ⊆ N−(j)}
contains a kernel of G of minimum possible size.

▶ Theorem 17 (⋆). The Min-Kernel problem can be solved for DUF-digraphs in O((n+m)n)
time if the DUF-ordering is known. Consequently, for a reflexive interval digraph, the Min-
Kernel problem can be solved in O((n + m)n) time if the interval representation is given as
input.

▶ Corollary 18 (⋆). An independent dominating set of minimum possible size can be found
in O((n + m)n) time in cocomparability graphs.

The above corollary is an improvement over the results of Kratsch and Stewart [17], who
proved that an independent dominating set of minimum possible size can be computed in
O(n3) time in cocomparability graphs.

We now show that a minimum sized kernel of an adjusted interval digraph, whose interval
representation is known, can be computed more efficiently than in the case of DUF-digraphs.

▶ Corollary 19 (⋆). The Min-Kernel problem can be solved in adjusted interval digraphs in
O(n2) time, given an interval representation of the digraph.

▶ Remark 20. Note that the Max-Kernel problem can also be solved in O((n + m)n)
time for the class of DUF-digraphs, by a minor modification of our algorithm that solves
Min-Kernel problem (replace Min{K(j) ̸= ∞ : j ∈ Pi} in the recursive definition of K(i)
by Max{K(j) ̸= ∞ : j ∈ Pi} and follow the same procedure. Then we have that if a kernel
exists, then a maximum sized kernel is given by Max(K)). Further, the recursive definition
can also be easily adapted to the weighted versions of the problems Min-Kernel and
Max-Kernel to obtain O((n + m)n) time algorithms for those problems too.
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3.3 Minimum absorbing set
Given any digraph G, the splitting bigraph BG is defined as follows: V (BG) is partitioned
into two sets V ′ = {u′ : u ∈ V (G)} and V ′′ = {u′′ : u ∈ V (G)}, and E(BG) = {u′v′′ : (u, v) ∈
E(G)}. Müller [22] observed that G is an interval digraph if and only if BG is an inter-
val bigraph (since if {(Su, Tu)}u∈V (G) is an interval representation of a digraph G, then
{{Su}u′∈V ′ , {Tu}u′′∈V ′′} is an interval bigraph representation of the bipartite graph BG).

Recall that for a bipartite graph having two specified partite sets A and B, a set S ⊆ B

such that
⋃

u∈B N(u) = A is called an A-dominating set (or a red-blue dominating set). If
G is a reflexive interval digraph, then every V ′-dominating set of BG corresponds to an
absorbing set of G and vice versa. To be precise, if S ⊆ V ′′ is a V ′-dominating set of BG,
then {u ∈ V (G) : u′′ ∈ S} is an absorbing set of G and if S ⊆ V (G) is an absorbing set of G,
then {u′′ ∈ V ′′ : u ∈ S} is a V ′-dominating set of BG (note that this is not true for general
interval digraphs). Thus finding a minimum cardinality absorbing set in G is equivalent to
finding a minimum cardinality V ′-dominating set in the bipartite graph BG. We show in
this section that the problem of computing a minimum cardinality A-dominating set is linear
time solvable for interval bigraphs. This implies that the Absorbing-Set problem can be
solved in linear time on reflexive interval digraphs.

Consider an interval bigraph H with partite sets A and B. Let {Iu}u∈V (H) be an interval
representation for H ; i.e. uv ∈ E(H) if and only if u ∈ A, v ∈ B and Iu ∩ Iv ≠ ∅. Let |A| = t.
We assume without loss of generality that A = {1, 2, . . . , t}, where r(Ii) < r(Ij) ⇔ i < j.
We also assume that there are no isolated vertices in A, as otherwise H does not have any
A-dominating set. For each i ∈ {1, 2, . . . , t}, we compute a minimum cardinality subset DS(i)
of B that dominates {i, i + 1, . . . , t}, i.e. {i, i + 1, . . . , t} ⊆

⋃
u∈DS(i) N(u). Then DS(1) will

be a minimum cardinality A-dominating set of H. We first define some parameters that will
be used to define DS(i).

Let i ∈ {1, 2, . . . , t}. We define ρ(i) = maxu∈N(i) r(Iu) and let R(i) be a vertex in N(i)
such that r(IR(i)) = ρ(i). Since A does not contain any isolated vertices, ρ(i) and R(i) exist
for each i ∈ {1, 2, . . . , t}. Let λ(i) = min{j : ρ(i) < l(Ij)}. Note that λ(i) may not exist.

▶ Lemma 21 (⋆). Let i ∈ {1, 2, . . . , t}. If λ(i) exists, then R(i) dominates every vertex in
{i, i + 1, . . . , λ(i) − 1} and otherwise, R(i) dominates every vertex in {i, i + 1, . . . , t}.

We now explain how to compute DS(i) for each i ∈ {1, 2, . . . , t}. We recursively define
DS(i) as follows:

DS(i) =
{

{R(i)} ∪ DS(λ(i)) if λ(i) exists
{R(i)} otherwise.

▶ Lemma 22 (⋆). For each i ∈ {1, 2, . . . , t}, the set DS(i) as defined above is a minimum
cardinality subset of B that dominates {i, i + 1, . . . , t}.

It is not difficult to verify that given an interval representation of the interval bigraph H

with partite sets A and B, the parameters R(i) and λ(i) can be computed for each i ∈ A in
O(n + m) time. Also, given a reflexive interval digraph G, the interval bigraph BG can be
constructed in linear time. Thus we have the following theorem.

▶ Theorem 23. The Red-Blue Dominating Set problem can be solved in interval bigraphs
in linear time, given an interval representation of the bigraph as input. Consequently, the
Absorbing-Set problem can be solved in linear time in reflexive interval digraphs, given an
interval representation of the input digraph.
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Note that even if an interval representation of an interval bigraph is not known, it can be
computed in polynomial time using Müller’s algorithm [22]. Thus given just the adjacency
list of the graph as input, the Red-Blue Dominating Set problem is polynomial-time
solvable on interval bigraphs and the Absorbing-Set problem is polynomial-time solvable
on reflexive interval digraphs.

3.4 Maximum independent set
We have the following theorem due to McConnell and Spinrad [19].

▶ Theorem 24 ([19]). An independent set of maximum possible size can be computed for
cocomparability graphs in O(n + m) time.

Let G be a DUF-digraph. Let H be the underlying undirected graph of G. Then by
Corollary 6, we have that H is a cocomparability graph. Note that the independent sets of
G and H are exactly the same. Therefore any algorithm that finds a maximum cardinality
independent set in cocomparability graphs can be used to solve the Independent-Set
problem in DUF-digraphs. Thus by the above theorem, we have the following corollary.

▶ Corollary 25. The Independent-Set problem can be solved for DUF-digraphs in O(n+m)
time. Consequently, the Independent-Set problem can be solved for reflexive interval
digraphs in O(n + m) time.

The above corollary generalizes and improves the O(mn) time algorithm due to Prisner’s [26]
observation that underlying undirected graph of interval nest digraphs are weakly triangulated
and the fact that maximum cardinality independent set problem can be solved for weakly
triangulated graphs in O(mn) time [14]. Note that the weighted Independent-Set problem
can also be solved in DUF-digraphs in O(n + m) time, as the problem of finding a maximum
weighted independent set in a cocomparability graph can be solved in linear time [16].

4 Hardness results for point-point digraphs

4.1 Characterizations for point-point digraphs
In this section we give a characterization for point-point digraphs which will be further useful
for proving our NP-completeness results for this class. Let G = (V, E) be a digraph. We say
that a, b, c, d is an anti-directed walk of length 3 if a, b, c, d ∈ V (G), (a, b), (c, b), (c, d) ∈ E(G)
and (a, d) /∈ E(G) (the vertices a, b, c, d need not be pairwise distinct, but it follows from
the definition that a ̸= c and b ̸= d). Recall that BG = (X, Y, E) is a splitting bigraph of
G, where X = {xu : u ∈ V (G)} and Y = {yu : u ∈ V (G)} and xuyv ∈ E(GB) if and only if
(u, v) ∈ E(G). We then have the following theorem.

▶ Theorem 26. Let G be a digraph. Then the following conditions are equivalent:
1. G is a point-point digraph.
2. G does not contain any anti-directed walk of length 3.
3. The splitting bigraph of G is a disjoint union of complete bipartite graphs.

Proof. (1 ⇒ 2): Let G be a point-point digraph with a point-point representation
{(Su, Tu)}u∈V (G). Suppose that there exist vertices a, b, c, d in G such that (a, b), (c, b), (c, d) ∈
E(G). By the definition of point-point representation, we then have Sa = Tb = Sc = Td.
This implies that (a, d) ∈ E(G). Therefore we can conclude that G does not contain any
anti-directed walk of length 3.
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(2 ⇒ 3): Suppose that G does not contain any anti-directed walk of length 3. Let BG =
(X, Y, E) be the splitting bigraph of G. Let xuyv be any edge in BG, where u, v ∈ V (G).
Clearly, by the definition of BG, (u, v) ∈ E(G). We claim that the graph induced in BG by
the vertices N(xu) ∪ N(yv) is a complete bipartite graph. Suppose not. Then it should be
the case that there exist two vertices xa ∈ N(yv) and yb ∈ N(xu) such that xayb /∈ E(BG),
where a, b ∈ V (G). By the definition of BG, we then have that (a, v), (u, v), (u, b) ∈ E(G) and
(a, b) /∈ E(G). So a, v, u, b is an anti-directed walk of length 3 in G, which is a contradiction
to 2. This proves that for every p ∈ X and q ∈ Y such that pq ∈ E(BG), the set N(p) ∪ N(q)
induces a complete bipartite subgraph in BG. Therefore, each connected component of BG is
a complete bipartite graph. (This can be seen as follows: Suppose that there is a connected
component C of BG that is not complete bipartite. Choose p ∈ X ∩ C and q ∈ Y ∩ C such
that pq /∈ E(BG) and the distance between p and q in BG is as small as possible. Let t

be the distance between p and q in BG. Clearly, t is odd and t ≥ 3. Consider a shortest
path p = z0, z1, z2, . . . , zt = q from p to q in BG. By our choice of p and q, we have that
z1zt−1 ∈ E(BG). But then p ∈ N(z1), q ∈ N(zt−1) and pq /∈ E(BG), contradicting our
observation that N(z1) ∪ N(zt−1) induces a complete bipartite graph in BG.)
(3 ⇒ 1): Suppose that G is a digraph such that the splitting bigraph BG is a disjoint
union of complete bipartite graphs, say H1, H2, . . . , Hk. Now we can obtain a point-point
representation {(Su, Tu)}u∈V (G) of the digraph G as follows: For each i ∈ {1, 2, . . . , k}, define
Su = i if xu ∈ V (Hi) and Tv = i if yv ∈ V (Hi). Note that (u, v) ∈ E(G) if and only if
xuyv ∈ E(BG) if and only if xu, yv ∈ V (Hi) for some i ∈ {1, 2, . . . , k}. Therefore we can
conclude that (u, v) ∈ E(G) if and only if Su = Tv = i for some i ∈ {1, 2, . . . , k}. Thus the
digraph G is a point-point digraph. ◀

▶ Corollary 27. Point-point digraphs can be recognized in linear time.

4.2 Subdivision of an irreflexive digraph
For an undirected graph G, the k-subdivision of G, where k ≥ 1, is defined as the graph H

having vertex set V (H) = V (G) ∪
⋃

ij∈E(G){u1
ij , u2

ij , . . . , uk
ij}, obtained from G by replacing

each edge ij ∈ E(G) by a path i, u1
ij , u2

ij , . . . , uk
ij , j. The 0-subdivision of an undirected graph

G is defined to be G itself.
The following theorem is adapted from Theorem 5 of Chlebík and Chlebíková [3].

▶ Theorem 28 ([3]). Let G be an undirected graph having m edges.
1. The problem of computing a maximum cardinality independent set is APX-complete when

restricted to 2k-subdivisions of 3-regular graphs for any fixed integer k ≥ 0.
2. The problem of finding a minimum cardinality dominating set (resp. independent domin-

ating set) is APX-complete when restricted to 3k-subdivisions of graphs having degree at
most 3 for any fixed integer k ≥ 0.

Note that the independent sets, dominating sets and independent dominating sets of
an undirected graph G are exactly the independent sets, dominating sets (which are also
the absorbing sets), and solutions (which are also the kernels) of the symmetric digraph
of G. Clearly the symmetric digraph of G is irreflexive. Since the Max-Kernel problem
is equivalent to the Independent-Set problem in symmetric digraphs, we then have the
following corollary of Theorem 28.

▶ Corollary 29 (⋆). The problems Independent-Set, Absorbing-Set, Min-Kernel and
Max-Kernel are APX-complete on irreflexive symmetric digraphs of in- and out-degree at
most 3.
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Note that for k ≥ 1, the symmetric digraph of the 2k-subdivision or 3k-subdivision of an
undirected graph contains an anti-directed walk of length 3 (unless the graph contains no
edges), and therefore by Theorem 26, is not a point-point digraph. Thus we cannot directly
deduce the APX-hardness of the problems under consideration for point-point digraphs from
Theorem 28.

We define the subdivision of an irreflexive digraph, so that the techniques of Chlebík and
Chlebíková can be adapted for proving hardness results on point-point digraphs.

▶ Definition 30. Let G be an irreflexive digraph (i.e. G contains no loops). For k ≥ 1,
define the k-subdivision of G to be the digraph H having vertex set V (H) = V (G) ∪⋃

(i,j)∈E(G){u1
ij , u2

ij , . . . , uk
ij}, obtained from G by replacing each edge (i, j) ∈ E(G) by a

directed path i, u1
ij , u2

ij , . . . , uk
ij , j.

Note that the k-subdivision of any irreflexive digraph is also an irreflexive digraph. We then
have the following lemma.

▶ Lemma 31. For any k ≥ 1, the k-subdivision of any irreflexive digraph is a point-point
digraph.

Proof. Let k ≥ 1 and let G be any irreflexive digraph. By Theorem 26, it is enough to show
that the k-subdivision H of G does not contain any anti-directed walk of length 3. Note that
by the definition of k-subdivision, all the vertices in V (H) \ V (G) have both in-degree and
out-degree exactly equal to one. Further, for every vertex v in H such that v ∈ V (G), we have
that N+(v), N−(v) ⊆ V (H) \ V (G). Suppose for the sake of contradiction that u, v, w, x is
an anti-directed walk of length 3 in H . Recall that we then have (u, v), (w, v), (w, x) ∈ E(H),
u ̸= w and v ̸= x. By the above observations, we can then conclude that v ∈ V (G) and
further that u, w ∈ V (H) \ V (G). Then since (w, x) ∈ E(H) and v ̸= x, we have that w

has out-degree at least 2, which contradicts our earlier observation that every vertex in
V (H) \ V (G) has out-degree exactly one. This proves the lemma. ◀

Now we have the following theorem.

▶ Theorem 32 (⋆). The problem Independent-Set is APX-hard for point-point digraphs.

4.3 Kernels
As a first step towards determining the complexity of the problems Kernel, Min-Kernel
and Max-Kernel for point-point digraphs, we show the following.

▶ Lemma 33 (⋆). Let G be an irreflexive digraph and let k ≥ 1. Then G has a kernel if and
only if the 2k-subdivision of G has a kernel. Moreover, G has a kernel of size q if and only
if the 2k-subdivision of G has a kernel of size q + km. Further, given a kernel of size q + km

of the 2k-subdivision of G, we can construct a kernel of size q of G in polynomial time.

The above lemma can be used to show the existence of a polynomial-time reduction from
the Kernel problem in general digraphs to the Kernel problem in point-point digraphs.
Thus we have the following theorem.

▶ Theorem 34 (⋆). The problem Kernel is NP-complete for point-point digraphs.

Note that Kernel is known to be NP-complete even on planar digraphs having degree at
most 3 and in- and out-degrees at most 2 [10]. The above reduction transforms the input
digraph in such a way that every newly introduced vertex has in- and out-degree exactly
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1 and the in- and out-degrees of the original vertices remain the same. Moreover, if the
input digraph is planar, the digraph produced by the reduction is also planar. Thus we
can conclude that the problem Kernel remains NP-complete even for planar point-point
digraphs having degree at most 3 and in- and out-degrees at most 2.

An L-reduction as defined below is an approximation-preserving reduction for optimization
problems.

▶ Definition 35 ([23]). Let A and B be two optimization problems with cost functions cA

and cB respectively. Let f be a polynomially computable function that maps the instances of
problem A to the instances of problem B. Then f is said to be an L-reduction form A to B

if there exist a polynomially computable function g and constants α, β ∈ (0, ∞) such that the
following conditions hold:
1. If y′ is a solution to f(x) then g(y′) is a solution to x, where x is an instance of the

problem A.
2. OPTB(f(x)) ≤ αOPTA(x), where OPTB(f(x)) and OPTA(x) denote the optimum value

of respective instances for the problems B and A respectively.
3. |OPTA(x) − cA(g(y′))| ≤ β|OPTB(f(x) − cB(y′)|.

In order to prove that a problem P is APX-hard, it is enough to show that the problem
P has an L-reduction from an APX-hard problem. Using Lemma 33, one can construct an
L-reduction from the Min-Kernel and Max-Kernel problems for irreflexive symmetric
digraphs having in- and out-degree at most 3 to the Min-Kernel and Max-Kernel
problems for 2k-subdivisions of irreflexive symmetric digraphs having in- and out-degree at
most 3. Thus, by Corollary 29, we have the following theorem.

▶ Theorem 36 (⋆). For k ≥ 1, the problems Min-Kernel and Max-Kernel are APX-hard
for 2k-subdivisions of irreflexive symmetric digraphs having in- and out-degree at most 3.
Consequently, the problems Min-Kernel and Max-Kernel are APX-hard for point-point
digraphs.

4.4 Minimum Absorbing set

In order to show the approximation hardness of the Absorbing-set problem for point-point
digraphs, first we prove the following lemma.

▶ Lemma 37 (⋆). Let G be an irreflexive digraph and let k ≥ 1. Then G has an absorbing
set of size at most q if and only if the 2k-subdivision of G has an absorbing set of size at
most q + km. Further, given an absorbing set of size at most q + km in the 2k-subdivision of
G, we can construct in polynomial time an absorbing set of size at most q in G.

The above lemma can be used to construct an L-reduction from the Absorbing-Set problem
for irreflexive symmetric digraphs having in- and out-degree at most 3 to the Absorbing-Set
problem for 2k-subdivisions of irreflexive symmetric digraphs having in- and out-degree at
most 3. By Corollary 29, we then have the following theorem.

▶ Theorem 38 (⋆). For k ≥ 1, the problem Absorbing-set is APX-hard for 2k-subdivisions
of irreflexive symmetric digraphs having in- and out-degree at most 3. Consequently, the
problem Absorbing-set is APX-hard for point-point digraphs.
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5 Conclusion

The class of interval nest digraphs coincides with the class of totally bounded bitolerance
digraphs which was introduced by Bogart and Trenk [2]. Thus totally bounded bitolerance
digraphs are a subclass of reflexive interval digraphs, and all the results that we obtain for
reflexive interval digraphs hold also for this class of digraphs. Figure 3 shows the inclusion
relations between the classes of digraphs that were studied in this paper (⋆). After work on
this paper had been completed, we have been made aware of a recent manuscript of Jaffke,
Kwon and Telle [15], in which unified polynomial time algorithms have been obtained for the
problems considered in this paper for some classes reflexive intersection digraphs including
reflexive interval digraphs. Since their algorithms are more general in nature, their time
complexities are much larger than the ones for the algorithms presented in this paper.

Interval digraphs DUF-digraphs∗

Reflexive∗

DUF-digraphs

Reflexive interval
digraphs

Interval-point
digraphs

Point-point
digraphs

Adjusted interval
digraphs

Chronological
interval digraphs

Interval nest digraphs
= Totally bounded
bitolerance digraphs

Interval catch di-
graphs = Reflexive

interval-point digraphs

Reflexive point-
point digraphs

Figure 3 Inclusion relations between graph classes. In the diagram, there is an arrow from A
to B if and only if the class B is contained in the class A. Moreover, each inclusion is strict. The
problems studied are efficiently solvable in the classes shown in white, while they are NP-hard
and/or APX-hard in the classes shown in gray (∗ the complexity of the Absorbing-Set problem on
DUF-digraphs and reflexive DUF-digraphs remain open).

Müller [22] showed the close connection between interval digraphs and interval bigraphs
and used this to construct the only known polynomial time recognition algorithm for both
these classes. Since this algorithm takes O(nm6(n + m) log n) time, the problem of finding
a forbidden structure characterization for either of these classes or a faster recognition
algorithm are long standing open questions in this field. But many of the subclasses of
interval digraphs, like adjusted interval digraphs [29], chronological interval digraphs [5],
interval catch digraphs [25], and interval point digraphs [26] have simpler and much more
efficient recognition algorithms. It is quite possible that simpler and efficient algorithms for
recognition exist also for reflexive interval digraphs. As for the case of interval nest digraphs,
no polynomial time recognition algorithm is known. The complexities of the recognition
problem and Absorbing-set problem for DUF-digraphs also remain as open problems.
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Interval Query Problem on Cube-Free Median
Graphs
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Abstract
In this paper, we introduce the interval query problem on cube-free median graphs. Let G be a
cube-free median graph and S be a commutative semigroup. For each vertex v in G, we are given
an element p(v) in S. For each query, we are given two vertices u, v in G and asked to calculate the
sum of p(z) over all vertices z belonging to a u − v shortest path. This is a common generalization
of range query problems on trees and grids. In this paper, we provide an algorithm to answer each
interval query in O(log2 n) time. The required data structure is constructed in O(n log3 n) time and
O(n log2 n) space. To obtain our algorithm, we introduce a new technique, named the staircases
decomposition, to decompose an interval of cube-free median graphs into simpler substructures.
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1 Introduction

The range query problem [18] is one of the most fundamental problems in the literature
on data structures, particularly for string algorithms [19]. Let f be a function defined
on arrays. In the range query problem, we are given an array P = (p(1), . . . , p(n)) of n

elements and a range query defined by two integers i, j with 1 ≤ i ≤ j ≤ n. For each
query (i, j), we are asked to return the value f((p(i), . . . , p(j))). The main interest of this
problem is the case where f is defined via a semigroup operator [27]. Let S be a semigroup
with operator ⊕, and let P consist of elements in S. Then, the function f is defined as
f((p(i), . . . , p(j))) = p(i) ⊕ · · · ⊕ p(j). Typical examples of semigroup operators are sum,
max, and min. The fundamental result [27, 28] is that for any constant integer k, a range
query can be answered in O(αk(n)) time, where αk is a slow-growing function related to the
inverse of the Ackermann function. The required data structure is constructed in linear time
and space. Range minimum query problem, i.e., ⊕ = min, is one of the well-studied problems
in the literature, and it admits a constant-time algorithm with a data structure constructed
in linear time and space [1, 4, 5, 18, 20].

This problem is generalized into trees and grids. In these settings, we are given a tree/grid
G and an element p(v) for each vertex of G. As a query, given two vertices u, v in G, we are
asked to calculate the sum 1 of the elements assigned at the vertices on a u− v shortest path.
In particular, we are asked to calculate the sum of the elements on the unique u− v path for
trees and the axis-parallel rectangle with corners (u, v) on its diagonal for grids. For constant

1 In this paper, for simplicity, we represent the semigroup operation by the terms of summation; that is,
we denote a ⊕ a′ by the word sum of a and a′ for a, a′ ∈ S.
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dimensional grids, an almost-constant time algorithm [11] with linear space on semigroup
operators and a constant-time algorithm for range minimum query is known [29]. For range
query problem on trees, an almost-constant time algorithm [9] with linear space is known
on semigroup operators; see [8] for further survey on the problem on trees, particularly for
dynamic version.

In this paper, we introduce a common generalization of the two above mentioned cases,
named interval query problem on median graphs. Let G = (V (G), E(G)) be a connected
graph with n vertices. For two vertices u, v ∈ V (G), let the interval I[u, v] be the set
of vertices belonging to a u − v shortest path, where the length of a path is defined by
the number of its edges. The graph G is called a median graph if for all u, v, w ∈ V (G),
I[u, v]∩ I[v, w]∩ I[w, u] is a singleton [2, 7, 23]. The median graph G is said to be cube-free if
G does not contain a cube as an induced subgraph. Trees and grids are examples of cube-free
median graphs. In our problem, we are given a median graph G and an element p(v) of
a commutative semigroup S for each vertex v of G. As a query, given two vertices u, v in
G, we are asked to calculate p(I[u, v]) 2. The interval query problem on cube-free median
graphs is a common generalization of the range query problems on trees and grids.

In this paper, we provide an algorithm to the interval query problem on cube-free median
graphs. The main result here is presented as follows:

▶ Theorem 1. There is an algorithm to answer interval queries on cube-free median graphs in
O(log2 n) time. The required data structure is constructed in O(n log3 n) time and O(n log2 n)
space, where n is the number of vertices in a given cube-free median graph.

The time complexity of answering a query matches the complexity for the two-dimensional
range tree [21] in the orthogonal range query problem, without acceleration via fractional
cascading [10].

To obtain the algorithm, we introduce a new technique, named the staircases decomposition.
This technique provides a new method to decompose an interval of cube-free median graphs
into a constant number of smaller intervals. Most of the candidates of the smaller intervals,
which we refer to as staircases, are well-structured, and an efficient algorithm to answer the
interval queries can be constructed. The rest are not necessarily staircases; however, each of
them are one of the O(n log n) candidates, and we can precalculate all the answers of the
interval queries on these intervals.

Designing fast algorithms for median graphs is a recently emerging topic. The distance
labeling scheme [24] is a type of data structure that is defined by the encoder and decoder
pair. The encoder receives a graph and assigns a label for each vertex, whereas the decoder
receives two labels and computes the distance of the two vertices with these labels. For
cube-free median graphs, there is a distance labeling scheme that assigns labels with O(log3 n)
bits for each vertex [13]. Very recently, a linear-time algorithm to find the median of median
graphs was built [6]. This paper continues with this line of research and utilizes some of the
techniques presented in these previous studies.

Various applications can be considered in the interval query problem on median graphs.
The solution space of a 2-SAT formula forms a median graph, where two solutions are
adjacent if one of them can be obtained by negating a set of pairwise dependent variables
of the other [3, 22, 26]. For two solutions u and v, the interval I[u, v] corresponds to the
set of the solutions x, such that for each truth variable, if the same truth value is assigned
in u and v, so does x. Suppose we can answer the interval queries to calculate sum (resp.

2 For a vertex subset X, we denote the sum of p(z) over all z ∈ X by p(X).
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min) in polylogarithmic time with a data structure of subquadratic time and space. Then, if
we have the list of all feasible solutions of the given 2-SAT formula, we can calculate the
number (resp. minimum weight) of these solutions in polynomial time of the number of
variables for each query, without precalculating the answers for all possible queries. Note
that, there is a polynomial-delay algorithm to enumerate all solutions to the given 2-SAT
formula [16]. Therefore, if the number of the feasible solutions (and thus the number of
vertices in the corresponding median graph) is small, we can efficiently list them. In social
choice theory, the structure of median graphs naturally arises as a generalization of single-
crossing preferences [15, 17] and every closed Condorcet domains admits the structure of
a median graph [25]. For two preferences u and v, the voters with their preferences in
interval I[u, v] prefer candidate x to candidate y whenever both u and v prefer x to y.
Therefore, using interval query, we can count the number of voters w such that for all pairs
of candidates, at least one of u and v has the same preference order as w between these
candidates. Although these structures are not necessarily cube-free, we hope that our result
will be the first and important step toward obtaining fast algorithms for these problems.

1.1 Algorithm Overview
Here we give high-level intuition to our algorithm. More detailed outline is given in Section 3.

Let G be a cube-free median graph. The first idea for our algorithm is to decompose G

recursively. We recursively divide V (G) into some parts, called fibers. Roughly speaking, a
fiber is a set of the vertices located on the similar direction from the special vertex m (see
Figure 1). Each fiber induces a cube-free median graph and, if we take m properly, has at
most |V (G)|/2 vertices; there are at most O(log n) recursion steps.

Let u, v be vertices of G. Consider calculating p(I[u, v]). If u and v are in the same
fiber, we calculate it recursively. Otherwise, we can show that I[u, v] intersects with only a
constant number of fibers and the intersections are intervals with one end on the boundary
of the fiber (Section 6, see Figure 8). Thus, it is sufficient to construct an algorithm on such
intervals.

To do this, we further decompose such an interval into more well-structured intervals,
using our main technique named staircases decomposition (Section 4, see Figure 4, 5, and 6).
Roughly speaking, we decompose the interval into at most two structured substructures
names staircases (Figure 2) and a special interval of O(n) candidates. For special intervals
I, we just use the precalculated p(V (I)). For staircases L, we construct an algorithm to
calculate p(V (L)) in O(log2 n) time (Section 5), using the fact that the boundary of the fiber
is actually a tree [13]. We decompose this tree into paths by heavy-light decomposition and
build segment trees to answer the queries.

2 Basic Tools for Cube-Free Median Graphs and Trees

In this section, we introduce basic facts about cube-free median graphs and trees.
Let G be a connected, undirected, finite graph. We denote the vertex set of G by V (G).

For two vertices u and v in G, we write u ∼ v if u and v are adjacent. For two vertices
u and v of G, the distance d(u, v) between them is the minimum number of edges on a
path connecting u and v, and the interval I[u, v] is the set of vertices w which satisfies
d(u, v) = d(u, w) + d(w, v). The graph G is a median graph if for any three vertices u, v, w,
I[u, v] ∩ I[v, w] ∩ I[w, u] contains exactly one vertex, called median of u, v and w. Median
graphs are bipartite and do not contain K2,3 as a subgraph. A median graph is cube-free if it
does not contain a (three-dimensional) cube graph as an induced subgraph. The followings
hold.
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▶ Lemma 2 ([14]). Any interval in a cube-free median graph induces an isometric subgraph
of a two-dimensional grid.

▶ Lemma 3 ([13]). Let u, v, w1, w2 be four pairwise distinct vertices of a median graph such
that v ∼ w1, v ∼ w2 and d(u, v) − 1 = d(u, w1) = d(u, w2). Then, there is unique vertex z

with w1 ∼ z, w2 ∼ z and d(u, z) = d(u, v)− 2.

From now on, let G be a cube-free median graph with n vertices. Let X be a subset of
V (G). For vertex z ∈ V (G) and x ∈ X, x is the gate of z in X if for all w ∈ X, x ∈ I[z, w].
The gate of z in X is unique (if it exists) because it is the unique vertex in X that minimizes
the distance from z. X is gated if all vertices z ∈ V (G) have a gate in X. The following
equivalence result is known.

▶ Lemma 4 ([12, 13]). Let X be a vertex subset of the median graph G. Then, following
three conditions are equivalent.
(a) X is gated.
(b) X is convex, i.e., I[u, v] ⊆ X for all u, v ∈ X.
(c) X induces a connected subgraph and X is locally convex, i.e., I[u, v] ⊆ X for all u, v ∈ X

with d(u, v) = 2.

An induced subgraph of G is gated (resp. convex, locally convex) if its vertex set is gated
(resp. convex, locally convex). The intersection of two convex subsets is convex. Any interval
of median graphs are convex.

For a convex subset X and a vertex x ∈ X, the fiber FX(x) of x with respect to X is the
set of vertices in G whose gate in X is x. Two fibers FX(x), FX(y) are neighboring if there
are vertices x′ ∈ FX(x) and y′ ∈ FX(y) such that x′ ∼ y′, which is equivalent to x ∼ y [13].
Fibers for all x ∈ X define a partition of V (G). For two adjacent vertices x, y ∈ X, the
boundary TX(x, y) of FX(x) relative to FX(y) is the set of the vertices which have a neighbor
in FX(y). TX(x, y) and TX(y, x) are isomorphic. A vertex in TX(x, y) has a unique neighbor
in TX(y, x), which is the corresponding vertex under that isomorphism. For vertex x ∈ X,
a total boundary TX(x) of FX(x) is the union of all TX(x, y) for y ∈ X with x ∼ y. The
subgraph H is isometric in G if for all u, v ∈ V (H), there is a path in H with length d(u, v).
A rooted tree has gated branches if any of its root-leaf path is convex. The next lemma
exploits the structures of the boundaries of fibers of cube-free median graphs.

▶ Lemma 5. Let X be a convex vertex subset of cube-free median graph G. Let x, y ∈ X

and assume x ∼ y. Then, the followings hold.
(i) ([13]) TX(x, y) induces a tree, which is convex.
(ii) ([13]) TX(x) induces a tree with gated branches, which is isometric in G.

The following is folklore in a literature of median graphs. A proof is in full version.

▶ Lemma 6 (folklore). Let X be a convex vertex set of a median graph and let Y be a convex
subset of X. For x ∈ X, let F (x) be the fiber of x with respect to X. Then,

⋃
y∈Y F (y) is

convex.

Let T be a tree with gated branches. For a vertex v ∈ V (G) and w ∈ T , w is an imprint
of v if I[v, w]∩T = {w}. If T is convex, the imprint is equal to the gate and therefore unique.
Even if it is not the case, we can state following.

▶ Lemma 7. Let T be a tree with gated branches rooted at r. Let u ∈ V (G). Then, the
following statements hold.

(i) ([13]) There are at most two imprints of u in T .
(ii) Assume u has two distinct imprints w1, w2 in T . Then, w1, w2 ∈ I[r, u].
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Proof. We prove (ii). From symmetry, we only prove w1 ∈ I[r, u]. Let P1 be the root-leaf
path of T that contains w1. Then, P1 is convex and therefore d(r, u) = d(r, w1)+d(w1, u). ◀

▶ Lemma 8. Let T be a tree with gated branches and w ∈ V (T ). Then, the set of vertices
with an imprint w in T is convex.

Proof. Assume the contrary. Then, there are distinct vertices z1, z2, z3 with z1 ∼ z2 ∼ z3,
such that z1 and z3 have an imprint w but z2 doesn’t. We have d(w, z2) = d(w, z1) + 1;
otherwise, d(w, z2) = d(w, z1) − 1 because of bipartiteness of G holds and in this case,
I[w, z2] ⊆ I[w, z1] holds and z2 has an imprint w. By the same reason we have d(w, z2) =
d(w, z3) + 1. From definition of the imprint, there is a z2 − w shortest path that contains
a vertex of T other than w. Let z4 be the neighbor of z2 in this shortest path. Then, z4
does not have an imprint w and especially, z1 ̸= z4 ̸= z3. Now we have d(w, z4) + 1 =
d(w, z1) + 1 = d(w, z3) + 1 = d(w, z2) and obtain three squares that all two intersect at an
edge from Lemma 3, which contradicts Lemma 2. ◀

For a vertex m ∈ V (G), the star St(m) of m is the set of vertices x ∈ V (G) such that
there is an edge or a square that contains both m and x. St(m) is convex. The vertex
m ∈ V (G) is a median of G if it minimizes the sum of distances to all vertices in G. The
following holds.

▶ Lemma 9 ([13]). All the fibers of St(m) of a median graph contains at most n
2 vertices.

For a rooted tree T that is rooted at r, a vertex u ∈ V (T ) is an ancestor of v and v is a
descendant of u if there is a path from u to v, only going toward the leaves. The vertex subset
X is a column of T if for any two vertices x, y in X, x is either an ancestor or a descendant
of y. The vertex t is the lowest common ancestor [20] of u and v if t is an ancestor of both u

and v that minimizes the distance between u and t (or equivalently, v and t) in T . There is
a data structure that is constructed in linear time and space such that, given two vertices on
T , it returns the lowest common ancestor of them in constant time [5]. u is a parent of v

and v is a child of u if u is an ancestor of v and u ∼ v. Let X ⊆ V (T ) and u ∈ V (T ). The
nearest ancestor of u in X on T is the vertex v ∈ X such that v is an ancestor of u and
minimizes d(u, v).

Let T be a rooted tree rooted at r. For a vertex v ∈ V (T ), let Tv be the subtree of T rooted
at v. An edge (u, v) in G such that u is the parent of v is a heavy-edge if |V (Tu)| ≤ 2|V (Tv)|
and a light-edge otherwise. Each vertex has at most one child such that the edge between
them is a heavy-edge. The heavy-path is a maximal path that only contains heavy-edges.
The heavy-light decomposition is the decomposition of T into heavy-paths. Note that, there
is at most O(log n) light-edges on any root-leaf path on T .

3 Outline and Organization

Here we roughly describe our algorithm using the notions in Section 2. Let G be a cube-free
median graph. Let m be a median of G, St(m) be the star of m, and for each x ∈ St(m), let
F (x) be the fiber of x in St(m) (see Figure 1). Let u, v be vertices of G.

Consider calculating p(I[u, v]). If u and v are in the same fiber F (x) of St(m), we
calculate the answer by using the algorithm on F (x), which is recursively defined. Lemma 9
ensures that the recursion depth is at most O(log n). Otherwise, we can show that I[u, v]
intersects with only a constant number of fibers, and for each fiber F (x) that intersects
I[u, v], I[u, v] ∩ F (x) can be represented as I[ux, vx] for some vertices ux, vx ∈ F (x) such
that vx is on the total boundary of F (x). Thus, it is sufficient to construct an algorithm to
answer the query on the interval, such that one of the ends is on the total boundary of F (x).
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Figure 1 A median graph
and its decomposition into
fibers of St(m).

m

x

s t

u

w w′ v

e e′ w

t v

e

u

L

L′

vw t

e

u

L

L′

vt

w

w1

u

w2

L
L′

u

v

1

Figure 2 Staircases with
top x with base starts at s

and ends at t.
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Figure 3 Decomposition of
I[u, v] into an interval I[u, w]
and staircases I[e′, v].
The bold line represents P .

To do this, we introduce a technique to decompose intervals, which we name the staircases
decomposition. Let T be a tree with gated branches and assume u ∈ V (G) and v ∈ V (T ).
We partition an interval I[u, v] into an interval I and at most two special structures, which
we name a staircases (Figure 2), which we describe in Section 4. Such a decomposition can
be calculated in O(log n) time with appropriate preprocessing. Here, we can take I as one
of the O(n) candidates of intervals. We just precalculate and store the value p(I) for each
candidate, and recall it when we answer the queries.

Now we just need an algorithm to calculate the value p(V (L)) quickly for a staircases L.
Let P be a root-leaf path of T . The segment trees can answer the staircases queries whose
base is a subpath of P in O(log n) time. To answer the general queries, we use a heavy-light
decomposition of T .

The rest of the paper is organized as follows. In Section 4, we introduce the staircases
decomposition of the intervals with one end on the tree with gated branches. In Section 5,
we construct an algorithm and a data structure for the interval queries for the same cases. In
Section 6, we prove that we can decompose a given interval into constant number of intervals
with one of the ends on the total boundaries of the fibers of St(m). This technique can also
be applied to the query that asks the median of given three vertices. Some detailed parts
in these sections are found in full version. An algorithm to construct our data structure
efficiently is given in full version.

4 The Staircases Decomposition of the Intervals with One End on the
Boundary

Let T be a tree with gated branches. In this section, we introduce a technique, staircases
decomposition, to decompose an interval I[u, v] such that v is on T .

Let P = (s = w0, . . . , wk = t) be a convex path. For a vertex x with gate s in P , the
interval I[x, t] induces staircases if for all i = 0, . . . , k, the set of vertices in I[x, t] with gate
wi in P induces a path. P is the base of L and the vertex x is the top of L. The base starts
at s and ends at t (see Figure 2). Our staircases decomposition decomposes I[u, v] into an
interval and at most two staircases such that their bases are columns of T .

4.1 The case with One End on a Convex Path
Here we investigate the structure of an interval such that one of the endpoints is on a convex
path P . Consider an interval I[u, v] such that v is on P . Let w be the gate of u in P . The
purpose here is to prove that I[u, v] can be decomposed into the disjoint union of an interval
I[u, w] and a staircases (see Figure 3), if w ̸= v. We assume w ̸= v because otherwise we
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Figure 4 Staircases
decomposition of I[u, v]
(single imprint, first case).
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Figure 5 Staircases decomposition
of I[u, v] (single imprint, second case).
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Figure 6 Staircases
decomposition of I[u, v]
(double imprints).

have no need of decomposition. Let w′ be the neighbor of w in P between w and v. We take
the isometric embedding of I[u, v] into a two-dimensional grid (see Lemma 2). We naively
introduce a xy-coordinate system with w = (0, 0), w′ = (1, 0), u = (xu, yu) with yu ≥ 0, and
v = (xv, yv) with yv ≤ 0. Now, we can state the following.

▶ Lemma 10. If a vertex z = (xz, yz) on I[u, v] ∩ V (P ) is not on the x-axis, there is no
vertex other than z in I[u, v] with gate z in P .

Proof. Assume the contrary and let z′ = (xz′ , yz′) be a vertex in I[u, v] with gate z in P .
Because of the isometricity, xz > 0 and yz < 0 holds. Since z ∈ I[w, z′], we have xz′ ≥ xz.
Since z′ ∈ I[u, v], xv ≥ xz′ holds. Therefore, we can take a vertex z′′ in P with x-coordinate
xz′ , but it means z′ ∈ I[w, z′′] and contradicts to the convexity of P . ◀

Since such z does not affect the possibility of decomposition (we can just add such
vertices at the end of the staircases), we can assume that v = (xv, 0) for xv > 0. Moreover,
from convexity, we have that all vertices in I[u, v] have non-negative y-coordinate. Thus,
I[u, v] \ I[u, w] is the set of vertices with positive x-coordinate and forms staircases (see
Figure 3), which is the desired result.

To build an algorithm to calculate p(I[u, v]) as the sum of p(I[u, w]) and p(I[u, v]\I[u, w]),
we should identify the top e′ of the staircases. Instead of direct identification, we rather
identify the unique neighbor of it in I[u, w], named the entrance e of the staircases: The
top e′ can be determined as the neighbor of e with gate w′ on P . Here, we have that e is
the gate of u in the boundary of F (w) with respect to F (w′), where F (w) (resp. F (w′))
is the fiber of w (resp. w′) with respect to P . Indeed, this gate should be in I[u, w] from
the definition of the gate and e is the only candidate for it. We can calculate e in O(log n)
time by working on the appropriate data structure on total boundary of the fiber of w with
respect to P . We discuss this algorithm in full version.

4.2 Single Imprint
Here we give the staircases decomposition of the interval I[u, v], where v is on a tree T with
gated branches, rooted at r. First, we treat the case that there is exactly one imprint w of
u in T in I[u, v]. Let t be a lowest common ancestor of w and v in T . Note that, t might
coincide with w or v. Let P (resp. P ′) be the root-leaf path of T that contains w (resp. v).

Since P ′ is convex, we can decompose I[u, v] into a staircases L′ with base on P ′ and
an interval I[u, t]. Since P is convex, we can further decompose the interval I[u, t] into a
staircases L with base on P and an interval I[u, w]. Now, for fixed T , I[u, w] is one of the
O(n) candidates of the intervals, because it is specified only by a vertex u and one of at most
two imprints of u on T . This is the staircases decomposition we obtain here.
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To bound the size of the data structure we construct in Section 5, we should ensure that
staircases L and L′ contains only vertices with an imprint on P and P ′, respectively. Let
BL (resp. BL′) be the base of L (resp. L′). We prove the following.

▶ Lemma 11. The following statements hold.
(i) I[u, v] contains no vertices in T other than the vertices on the w − v path on T .
(ii) For a vertex z in L′, the gate of z in P ′ is an imprint of z in T .
(iii) For a vertex z in L, the gate of z in P is an imprint of z in T .

Proof. (i) Let z ∈ I[u, v] ∩ V (T ). Then, d(u, v) = d(u, z) + d(z, v) holds. Since w is the
unique imprint of u in T , d(u, z) = d(u, w) + d(w, z) and d(u, v) = d(u, w) + d(w, v) holds.
Therefore d(w, v) = d(w, z) + d(z, v) and it means z is on the unique path between w and
v on T . (ii) Let w′

z be the gate of z in P ′. We prove I[z, w′
z] ∩ V (T ) = {w′

z}. Assume
x ∈ (I[z, w′

z] ∩ V (T )) \ {w′
z}. From (i), x is on w − t path. From isometricity of T ,

t ∈ I[x, w′
z] ⊆ I[z, w′

z] holds and it contradicts the definition of w′
z. (iii) Similar to (ii). ◀

We should also make algorithms to identify the top of the staircases L and L′. The top
of L can be found by applying the discussion in previous subsection by precalculating the
entrances for all possible patterns of u and w, because the start of the base of L is uniquely
determined as a parent of w, independent of v. However, we cannot apply it to find the top
of L′, because the start of the base of L′ is a child of t, not a parent. Instead, we calculate
the top of L′ by case-analysis of the positional relation of the staircases. Intuitively, we
divide cases by the angle formed by BL and BL′ . We have essentially two cases3 to tract,
which this angle is π/2 (Figure 4) or π (Figure 5) (we formally define these cases and prove
that they cover all cases in full version). In the case in Figure 4, the entrance e of L′ can be
found on BL. In the case in Figure 5, e can be found on the total boundary of the vertex set
with imprint t. In both case, by appropriate data structure given in full version, we can find
the entrance in O(log n) time.

4.3 Double Imprints
Here we consider the staircases decomposition for the case that there are two imprints w1, w2

of u in T in I[u, v]. Let w be the lowest common ancestor of w1 and w2 in T . From (ii) of
Lemma 7 and isometricity of T , d(u, w1) + d(w1, w) = d(u, r)− d(w, r) = d(u, w2) + d(w2, w)
holds and particularly we have w1, w2 ∈ I[u, w]. From isometricity of T , we have w ∈
I[w1, w2] ⊆ I[u, v]. Let t be the lowest common ancestor of w and v. Then, from isometricity
of T , we have t ∈ I[w, v] ⊆ I[u, v]. Note that, the lowest common ancestor of v and w1 (resp.
w2) is also t, because otherwise we have w ̸∈ I[u, v]. Let P (resp. P ′) be any root-leaf path
of T that contains w (resp. v).

Since P ′ is convex, we can decompose I[u, v] into a staircases L′ with base on P ′ and an
interval I[u, t]. Since the subpath of P between r and w is convex, we can further decompose
the interval I[u, t] into a staircases L with base on P and an interval I[u, w] (actually, we
can prove that L is a line). Now, for fixed T , I[u, w] is one of the O(n) candidates of the
intervals, because w is specified only by a vertex u, as the lowest common ancestor of two
imprints of u in T . This is the staircases decomposition we obtain here.

Let BL (resp. BL′) be the base of L (resp. L′). From the same reason as the case with a
single imprint, we prove the following lemma. The proof is similar to the proof of Lemma 11.

3 To explain all cases by these two, we take T as the maximal tree with gated branches that contains the
fiber we consider, rather than the fiber itself.
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▶ Lemma 12. The following statements hold.
(i) I[u, v] contains no vertices in T other than vertices in w1 − v and w2 − v path on T .
(ii) For a vertex z in L′, the gate of z in P ′ is an imprint of z in T .
(iii) For a vertex z in L, the gate of z in P is an imprint of z in T .

Proof. (i) Let z ∈ I[u, v] ∩ V (T ). Then, d(u, v) = d(u, z) + d(z, v) holds. Let wi be the
imprint of u in T with d(u, z) = d(u, wi) + d(wi, z). Then, d(u, v) = d(u, wi) + d(wi, v) holds.
Therefore d(wi, v) = d(wi, z) + d(z, v) and it means z is on the unique path between wi

and v on T . (ii) Let w′
z be the gate of z in P ′. We prove I[z, w′

z] ∩ V (T ) = {w′
z}. Assume

x ∈ (I[z, w′
z]∩V (T )) \ {w′

z}. From (i), x is on t−w1 or t−w2 path. From isometricity of T ,
t ∈ I[x, w′

z] ⊆ I[z, w′
z] holds and it contradicts the definition of w′

z. (iii) Similar to (ii). ◀

We should also provide a way to identify the top of the staircases L′. We have only one
case to tract, shown in Figure 6, which we can find the entrance on w1 − t or w2 − t path
on T (we formally define the case in full version). We can find it in O(log n) time in the
algorithm in full version.

5 Query Processiing of the Case with One End on the Tree with
Gated Branches

In this section, we construct an algorithm and a data structure that answers the queries with
one of the endpoints on the tree with gated branches. That part is the core of our algorithm.

5.1 Query Processing for Maximal Staircases with Base on Convex Path
Here we construct an algorithm and a data structure for the staircases whose base is contained
in a convex path P . For simplicity, we assume that P contains 2q vertices for some integer q.
We do not lose generality by this restriction because we can safely attach dummy vertices
at the end of P . Let P = (w0, . . . , w2q−1). Our data structure uses a segment tree defined
on P . The information of the vertices with base wi in P are stored by linking to wi.

It is convenient to consider the direction of P , as if P is directed from w0 to w2q−1. The
reverse P̄ of P is the same path as P as an undirected path but has different direction, i.e.,
P̄ = (w2q−1, . . . , w0). We represent the path between wx and wy on P by P [x, y].

Let us formally define the queries to answer here. A query is represented by three vertices
x, wa, wb such that the gate of x on P is wa, and asks to answer the value p(L(x, wa, wb)),
where L(x, wa, wb) represents the staircases with top x and base starts at wa and ends at
wb. We construct two data structures, the first one treats the case a ≤ b and the second one
treats the case a > b. The second data structure is just obtained by building the first data
structure on the reverse of P , therefore we can assume that for all queries, wa ≤ wb holds.

For i = 0, . . . , 2q − 1, let Fi be the fiber of wi with respect to P . For i = 0, . . . , 2q − 2 and
z ∈ Fi, the successor succP (z) of z is the gate of z in Fi+1 (see Figure 7). Intuitively, succP (z)
represents the next step of z in the staircases with base in P ; more precisely, for a < i < b, if
Fi ∩ V (L(x, wa, wb)) induces z − wi path, Fi+1 ∩ V (L(x, wa, wb)) induces succP (z) − wi+1
path.

Here we construct a complete binary tree, which is referred to as segment tree, to
answer the queries. For each d = 0, . . . , q and for each i = 0, 1, . . . , 2q−d − 1, we prepare
a node that corresponds to P [i × 2d, (i + 1) × 2d − 1]. For each node v that corresponds
to P [l, r] and for each z ∈ Fl, we store the vertex s(z, l, r) = succr−l

P (z) and the value
S(z, l, r) = p(L(z, wl, wr)) = p(I[succ0

P (z), wl])⊕· · ·⊕p(I[succr−l
P (z), wr]), where the succk

P (z)
is recursively defined by succ0

P (z) = z and succk+1
P (z) = succP (succk

P (z)) for all 0 ≤ k.
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The Algorithm 1 calculates p(L(x, wa, wb)). We call the procedure StaircasesQueryP (0, 2q−
1, a, b, x) to calculate it, and the algorithm returns the pair of the vertex succb−a+1

P (x) and
the value p(L(x, wa, wb)). The time complexity is O(q) = O(log n).

Algorithm 1 StaircasesQueryP (l, r, a, b, x).

1: if [l, r] ⊆ [a, b] then
2: return (s(x, l, r), S(x, l, r))
3: med← ⌊ l+r

2 ⌋
4: if b ≤ med then
5: return StaircasesQueryP (l, med, a, b, x)
6: if med < a then
7: return StaircasesQueryP (med + 1, r, a, b, x)
8: (x′, S1)← StaircasesQueryP (l, med, a, b, x)
9: (x′′, S2)← StaircasesQueryP (med + 1, r, a, b, succP (x′))

10: return (x′′, S1 ⊕ S2)

This data structure is constructed as in Algorithm 2. The correctness is clear and the
time complexity is O(nq) ≤ O(n log n), assuming that we know the vertex succP (x) and the
value p(I[x, wi]) for all i = 0, . . . , 2q − 1 and x ∈ Fi. The size of the data structure is clearly
O(nq) ≤ O(n log n). We give algorithms to calculate succP (x) and p(I[x, wi]) in full version.

Algorithm 2 Construction of the Data Structure for Staircases with Base on Convex Path.

Input: A cube-free median graph G, a convex path P = (w0, . . . , w2q−1)
1: for i = 0, . . . , 2q − 1 do
2: for all x ∈ Fi do
3: s(x, i, i)← x

4: S(x, i, i)← p(L(x, wi, wi)) = p(I[x, wi])
5: for d = q − 1, . . . , 0 do
6: for i = 0, . . . , 2q−d − 1 do
7: a← i× 2d, b← (i + 1

2 )× 2d, c← (i + 1)× 2d

8: for all x ∈ Fi do
9: s(x, a, c− 1)← s(succP (s, a, b− 1), b, c− 1)

10: S(x, a, c− 1)← S(x, a, b− 1)⊕ S(succP (s(x, a, b− 1)), b, c− 1)

5.2 Query Processing for Staircases with Base on the Tree with Gated
Branches

Let T be a tree with gated branches. Here we construct an algorithm and a data structure
for the staircases whose base is a column of T . The simplest idea is to prepare the data
structure discussed in the previous subsection for all root-leaf paths on T , but in this case the
total size of the data structure can be as bad as O(n2 log n). To reduce the size, we instead
prepare the above data structure on every heavy-path of heavy-light decomposition of T .

For a vertex w ∈ V (T ), let F (w) be the set of vertices with an imprint w. For an edge
(w, w′) of T and a vertex z ∈ F (w), we denote succw,w′(z) by the gate of z in F (w′). For
the staircases L whose base starts at w1 and ends at w2 such that w1, w, w′, w2 are located
on some column of T in this order, if F (w) ∩ V (L) induces z − w path, F (w′) ∩ V (L) is
succw,w′(z)− w′ path.
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Figure 7 The arrows go from v to
succP (v). The bold line represents P .
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Figure 8 Decomposition of I[u, v].

Let P be a heavy-path of T . Let VP be the set of vertices that has an imprint in P .
We build a data structure discussed in the previous subsection on the graph induced by VP

together with the convex path P ; Lemma 11 and Lemma 12 ensures that, for any staircases
L we want to treat, all the vertices in L has an imprint in the base of L. We can calculate
the answer for the queries by Algorithm 3, where the vertices in a heavy-path is represented
as P = (wP,0, . . . , wP,wqP ).

Algorithm 3 StaircasesQuery(u, w, v).

Input: w, v ∈ V (T ), u ∈ V (G) such that w and v are on the same column of T and u ∈ F (w)

1: Let Q be the w − v path on T and P1, . . . , Pk be the list of heavy-paths that contains
vertices in Q, in the same order appearing in Q

2: Let P1 ∩ Q = (w = wP1,s1 , . . . , wP1,t1), P2 ∩ Q = (wP2,s2 , . . . , wP2,t2), . . . , Pk ∩ Q =
(wPk,sk

, . . . , wPk,tk
= v)

3: (x, S)← StaircasesQueryP1(0, 2qP1 − 1, s1, t1, u)
4: for i = 2, . . . , k do
5: (x′, S′)← StaircasesQueryP1(0, 2qPi − 1, si, ti, succwPi−1,ti−1 ,wPi,si

(x))
6: x← x′, S ← S ⊕ S′

7: return (x, S)

The correctness of the algorithm is clear. The size of the data structure is bounded
by O(n log n), because the size of the data structure on a heavy-path P is bounded by
O(|VP | log |VP |) and each vertex is in VP for at most two heavy-paths P . We should make
an algorithm to calculate the successor efficiently. We describe an algorithm that works in
O(log n) time in full version.

Now, the time complexity of Algorithm 3 is O(log2 n) because k in the algorithm is at
most O(log n).

5.3 Putting them Together
Here we summarize our work on the interval query problem with one end on the tree with
gated branches. In Section 4, for the fixed tree T with gated branches, we have seen that
any interval with one end on T can be decomposed to at most two staircases (say, L and L′,
for instance we allow any of them to be empty) and a special interval I that is one of O(n)
candidates. As we roughly described in Section 4, such decomposition can be calculated in
O(log n) time (See full version for details).
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Now we consider calculating the answer as p(L) + p(L′) + p(I). p(L) and p(L′) can be
calculated in O(log2 n) time by above algorithm. Furthermore, p(I) is precalculated in the
construction of our data structure and we can take this value in constant time. Therefore we
can answer the interval query in the case with one end on the tree with gated branches in
O(log2 n) time. We summarize our algorithm in full version.

Here we describe how p(I) can be precalculated. Recall that, we construct our data
structure recursively on each fibers. Therefore, after constructing the smaller data structure
on each fiber, we can calculate the value p(I) in O(log2 n) time by using an interval query
on them to complete construction. This is the bottleneck part of our construction algorithm,
along with O(log n) recursion steps. Note that, this procedure can be implemented during
preprocessing because there are only O(n) candidates of I. When answering to the queries,
we do not need to use the smaller data structure; we have only to refer these precalculated
values.

6 Decomposing Intervals into intervals with One End on the Boundary

In this section, we consider decomposing an interval with both ends in different fibers into
smaller intervals with one end on boundaries (see Figure 8). Specifically, we bound the
number of such fibers by 9. Let m be the median of G. For x ∈ St(m), let F (x) be the fiber
of x with respect to St(m). For v ∈ V (G), let r(v) be the vertex in St(m) that is nearest
from v. From definition of fibers, v ∈ F (r(v)) holds.

First, we prove that the intersection of an interval and a fiber is indeed an interval. The
following lemma holds.

▶ Lemma 13. Let u, v be vertices and let x ∈ St(m). Let gu, gv be the gate of u, v in F (x),
respectively. Then, I[u, v] ∩ F (x) coincides with I[gu, gv] if it is nonempty.

Proof. Assume z ∈ I[u, v] ∩ F (x). From the definition of the gate, there is a u − z (resp.
v − z) shortest path that passes through gu (resp. gv). Therefore there is a u− v shortest
path that passes through u, gu, z, gv, v in this order, which means z ∈ I[gu, gv]. Converse
direction is clear from I[gu, gv] ⊆ I[u, v], which is from the definition of the gate. ◀

Note that, unless r(u) = r(v), one of the gates of u or v in F (x) is on the total boundary
of F (x). Therefore, to obtain the desired structural result, we just need to bound the number
of fibers with non-empty intersection with I[u, v]. We use the following lemma from [13].

▶ Lemma 14 ([13]). Let u, v be vertices with r(u) ̸= r(v). Then, one of the m ∈ I[u, v],
r(u) ∼ r(v), or d(m, r(u)) = d(m, r(v)) = d(r(u), r(v)) = 2 holds.

Assume m ∈ I[u, v]. Then, I[u, v] ∩ F (x) ̸= ∅ means x ∈ I[u, v]. Therefore the number
of such fibers F (x) is same as the number of vertices in I[u, v] ∩ St(m). Now, from the fact
that I[u, v] has a grid structure (see Lemma 2) and St(m) consists of the vertices in an edge
or a square that contains m, we have that |I[u, v] ∩ St(m)| ≤ 9.

If r(u) ∼ r(v), from Lemma 6, we have I[u, v] ⊆ F (r(u)) ∪ F (r(v)). If d(r(u), r(v)) = 2,
let w be the unique common neighbor of r(u) and r(v). Then, from Lemma 6, we have
I[u, v] ⊆ F (r(u)) ∪ F (w) ∪ F (r(v)). Therefore, in all cases, the number of fibers with
nonempty intersection with I[u, v] is bounded by 9.

In all of these cases, we can list the fibers F (x) with nonempty intersection with the
given interval I[u, v]; it is the set of the fibers of the vertices in I[r(u), r(v)] because⋃

x∈I[r(u),r(v)] F (x) is convex, and, we can list them efficiently by using the list of all squares
in G. Now it is sufficient to give a way to calculate the gate of u and v in each of these fibers
for our algorithm. We give the algorithm in full version.
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Above technique can also be applied for the following query. We are given three vertices
v1, v2, v3 in a cube-free median graph G and asked to answer the median v of these three
vertices. Let x be the median of r(v1), r(v2) and r(v3). x can be calculated in O(log n) time
because each of I[r(v1), r(v2)], I[r(v2), r(v3)] and I[r(v3), r(v1)] contains at most 9 vertices
and x is the unique vertex in the intersection of these intervals. Now, we can state that
v ∈ F (x), because F (x) is the only fiber that can intersect all of I[v1, v2], I[v2, v3] and
I[v3, v1].

Let gv1 (resp. gv2 , gv3) be the gate of v1 (resp. v2, v3) in F (x), which can be calculated
in O(log n) time. Then, from Lemma 13, v coincides with the median of gv1 , gv2 and gv3 .
Therefore we can reduce the median query on the original graph into the median query on
the fiber F (x) in O(log n) time. By recursively working on the fiber, we can calculate v

after O(log n) recursion steps. Therefore the query can be answered in O(log2 n) time in
total. The data structure required here is constructed in O(n log2 n) time just by taking the
necessary parts of the algorithm in full version.
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drawings, in which a single edge is involved in all the crossings. In this case we provide a tight upper
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1 Introduction

The family of outerplanar graphs, i.e., the graphs that admit a planar drawing where all
vertices are incident to the outer face, is an important subclass of planar graphs and exhibits
interesting properties in algorithm design, e.g., they have treewidth at most 2. Being
defined by the existence of a certain type of drawing, outerplanar graphs are a fundamental
topic in the field of graph drawing and information visualization; they are relevant to
circular graph drawing [28] and book embedding [3,5]. Several aspects of outerplanar graphs
have been studied over the years, e.g., characterization [9, 14, 29], recognition [1, 31], and
drawing [15, 21, 27]. Moreover, outerplanar graphs and their drawings have been applied
to various scientific fields, e.g., network routing [16], VLSI design [10], and biological data
modeling and visualization [20,32].
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In this paper we study the untangling problem for non-planar circular drawings of
outerplanar graphs, i.e., we are interested in restoring the planarity property of a straight-line
circular drawing with a minimum number of vertex shifts. Similar untangling concepts
have been used previously for eliminating edge crossings in non-planar drawings of planar
graphs [18]. More precisely, let G = (V, E) be an n-vertex outerplanar graph and let δG

be an outerplanar drawing of G, which can be described combinatorially as the (cyclic)
order σ = (v1, v2, . . . , vn) of V when traversing vertices on the boundary of the outer face
counterclockwise. This order σ corresponds to a circular drawing by mapping each vertex
vi ∈ V to the point pi on the unit circle O with polar coordinate pi = (1, 2πi/n) and drawing
each edge (vi, vj) ∈ E as the straight-line segment between its endpoints pi and pj . Two
edges e, e′ cross in δG if and only if their endpoints alternate in the order σ. We note that it
is sufficient to consider circular drawings since any outerplanar drawing can be transformed
into an equivalent circular drawing by morphing the boundary of the outer face to O.

Our untangling problem is motivated by the problem of maintaining an outerplanar
drawing of a dynamic outerplanar graph, which is subject to edge or vertex insertions and
deletions, while maximizing the visual stability of the drawing [22,23], i.e., the number of
vertices that can remain in their current position. Such problems of maintaining drawings
with specific properties for dynamic graphs have been studied before [2, 4, 12, 13], but not for
the outerplanarity property.

The notion of untangling is often used in the literature for a crossing elimination procedure
that makes a non-planar drawing of a planar graph crossing-free; see [11, 19, 25, 26]. Given a
straight-line drawing δG of a planar graph G, the problem to decide if one can untangle δG

by moving at most k vertices, is proved to be NP-hard [18,30]. Lower bounds on the number
of vertices that can remain fixed in an untangling process have also been studied [7,8,18].
Bose et al. [7] proved that Ω(n1/4) vertices can remain fixed when untangling a drawing.
Cano et al. [8] on the other hand provide a family of drawings, where at most O(n0.4948)
vertices can remain fixed during untangling. Goaoc et al. [18] proposed an algorithm, which
allows at least

√
(log n) − 1)/ log log n vertices to be fixed when untangling a drawing. If

the graph is outerplanar, the algorithm proposed by Goaoc et al. could eliminate all edge
crossings while keeping at least

√
n/2 vertices fixed. Notice that the drawing obtained by

this algorithm is planar but not necessarily outerplanar. In this paper, we study untangling
procedures to obtain an outerplanar drawing from a non-outerplanar drawing. To the best
of our knowledge, there are no previous studies about untangling circular drawings.

Preliminaries and Problem Definition. Given a graph G = (V, E), we say two vertices are
2-connected if they are connected by two internally vertex-disjoint paths. A 2-connected
component of G is a maximal set of pairwise 2-connected vertices. Two subsets A, B ⊆ V are
adjacent if there is an edge ab ∈ E with a ∈ A and b ∈ B. A bridge (resp. cut-vertex) of G is
an edge (resp. vertex) whose deletion increases the number of connected components of G.

A drawing of a graph is planar if it has no crossings, it is almost-planar if there is a single
edge that is involved in all crossings, and it is outerplanar if it is planar and all vertices are
incident to the outer face. A graph G = (V, E) is outerplanar if it admits an outerplanar
drawing. In addition, a drawing where the vertices lie on a circle and the edges are drawn
as straight-line segments is called a circular drawing. Every outerplanar graph G admits a
planar circular drawing, as one can start with an arbitrary outerplanar drawing δG of G

and transform the outer face of δG to a circle [28]. In this paper, we exclusively work with
circular drawings of outerplanar graphs; we thus simply refer to them as drawings.

Given a non-planar circular drawing δG of an n-vertex outerplanar graph G where vertices
lie on the unit circle O, we can transform the drawing δG to an outerplanar drawing by
moving the vertices on the circle O. We call a sequence of moving operations that results in
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an outerplanar drawing an untangling of δG. Formally, given a circular drawing δG, a vertex
move operation (or shift) changes the position of one vertex in δG to another position on the
circle O [18]. We define the circular shifting number shift◦(δG) of an outerplanar drawing
δG to be the minimum number of vertices that are required to shift in order to untangle
δG. We say an untangling is optimal if the number of vertex moves of this untangling is the
minimum over all valid untanglings of δG. We study the following problems.

▶ Problem 1.1 (Minimum Circular Untangling (MinCU)). Given a circular drawing
δG of an outerplanar graph G, find a sequence of shift◦(δG) vertex moves that untangles δG.

▶ Problem 1.2 (Circular Untangling (CU)). Given a circular drawing δG of an
outerplanar graph G and an integer K, decide if shift◦(δG) ≤ K.

Contributions. In Section 2, we show that the problem Circular Untangling is NP-
complete. We then consider almost-planar drawings. In this case, we provide a tight upper
bound on the circular shifting number in Section 3 and design a quadratic algorithm to
compute a circular untangling with the minimum number of vertex moves in Section 4.
Details of the omitted/sketched proofs (marked with ⋆) are available in the full version [6] of
the paper.

2 Complexity of Circular Untangling

The goal of this section is to prove the following theorem.

▶ Theorem 2.1. Circular Untangling is NP-complete.

Ultimately, the NP-completeness follows by a reduction from the well-known NP-complete
problem 3-Partition. However, we do not give a direct reduction but rather work via an
intermediate problem, called Distinct Increasing Chunk Ordering with Reversals
that concerns increasing subsequences. A chunk is a sequence S = (si)i=1,...,n of positive
integers. For a chunk C, we denote C−1 as its reversal. In the following, we introduce two
longest increasing subsequence problems.

▶ Problem 2.2 (Increasing Chunk Ordering (ICO)). Given ℓ chunks C1, . . . , Cℓ and
a positive number M , the question is if there exists a permutation π of {1, . . . , ℓ} such that
the concatenation Cπ(1)Cπ(2) · · · Cπ(ℓ) contains a strictly increasing subsequence (SISS) of
length M .

▶ Problem 2.3 (Increasing Chunk Ordering with Reversals (ICORev)). Given
ℓ chunks C1, . . . , Cℓ and a positive integer M , the question is to determine whether a
permutation π of {1, . . . , ℓ} and a function ε : {1, . . . , ℓ} → {−1, 1} exist such that the
concatenation C

ε(1)
π(1)C

ε(2)
π(2), . . . , C

ε(n)
π(ℓ) contains a SISS of length M .

These two problems also come in distinct variants, denoted by Distinct-ICO and
Distinct-ICORev, respectively, where all numbers in all input chunks need to be distinct.
In the following, for two problem A and B, we write A ≤p B if there is a polynomial-time
reduction from A to B. It is readily seen that Circular Untangling lies in NP. Therefore,
Theorem 2.1 follows immediately from the following two reduction lemmas, whose proofs are
given in the next two subsections.

▶ Lemma 2.4. Distinct-ICORev ≤p Circular Untangling

▶ Lemma 2.5. (⋆) 3-Partition ≤p Distinct-ICORev

ISAAC 2021
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Figure 1 The reduction from Distinct-ICORev to Circular Untangling. (a) The
circular drawing δG constructed from a Distinct-ICORev instance with chunk set C =
{C1 = (1, 8, 4), C2 = (2, 5), C3 = (6, 7, 9, 3)}. (b) An example drawing obtained by applying an
optimum untangling on δG. Fixed vertices are marked in .

2.1 Proof of Lemma 2.4
Let I = (C, M) be an instance of Distinct-ICORev with chunks C1, . . . , Cℓ. By replacing
each number with its rank among all occuring numbers, we may assume without loss of
generality, that the numbers in the sequence are 1, . . . ,

∑ℓ
i=1 |Ci| =: L.

We construct an instance I ′ = (δG, K) of Circular Untangling as follows; see
Figure 1a. We create vertices v1, . . . , vL and an additional vertex v0. For each chunk Ci,
we create a cycle Ki that starts at v0, visits the vertices that correspond to the elements
of Ci in the given order, and then returns to v0. That is, G consists of ℓ cycles that are
joined by the cut-vertex v0. The drawing δG is obtained by placing the vertices in the
order σG = v0, v1, v2, . . . , vL clockwise. Finally, we set K := L − M . Clearly, I ′ can be
constructed from I in polynomial time. It remains to prove the following.

▶ Lemma 2.6. I is a yes-instance of Distinct-ICORev if and only if I ′ is a yes-instance
of Circular Untangling.

Proof. Observe that, since in δG the vertices are ordered clockwise according to their
numbering, the problem of untangling with at most L − M vertex moves is equivalent to
finding a planar circular drawing of G whose clockwise ordering contains an increasing
subsequence of at least M vertices, which can then be kept fixed; see Figure 1b.

The key observation is that, in every planar circular drawing of G, the vertices of each
cycle Ki are consecutive, and the order of its vertices is the order along Ki, i.e., it is fixed
up to reversal. Hence the choice of a circular drawing whose clockwise ordering contains
an increasing subsequence of at least M vertices directly corresponds to a permutation and
reversal of the chunks Ci. ◀

2.2 Proof of Lemma 2.5
Let I = (A, K) be an instance of 3-Partition. The input to the 3-Partition problem
consists of a multiset A = {a1, . . . , a3m} of 3m positive integers and a positive integer K

such that K
4 < ai < K

2 , for i = 1, . . . , 3m. The question is whether A can be partitioned into
m disjoint triplets T1, . . . , Tm such that

∑
a∈Tj

a = K, for all j = 1, . . . , m. It is well-known



S. Bhore, G. Li, M. Nöllenburg, I. Rutter, and H.-Y. Wu 19:5

that 3-Partition is strongly NP-complete, i.e., the problem is NP-complete even if the
integers in A and K are polynomially bounded in m; see [17]. We show the following simpler
lemma and then extend its proof to a proof of Lemma 2.5.

▶ Lemma 2.7. 3-Partition ≤p Increasing Chunk Ordering.

Proof. Let I = (A, K) with A = {a1, . . . , a3m} be an instance of 3-Partition. We create
for each element ai a corresponding chunk Ci as follows. For two integers a < l, we denote
the consecutive integer sequence (a, a + 1, . . . , a + l − 1) as the incremental sequence of length
l starting at a.

We say that an incremental sequence crosses a multiple of K if it contains cK + 1 and cK

for some integer c. We take all the incremental sequences of length ai that start at a value
in {1, . . . , mK} except for those that cross a multiple of K. The chunk Ci is formed by
concatenating these sequences in decreasing order of their first number. For example, for
ai = 3, m = 2, K = 6, Ci is the concatenation of sequences (10, 11, 12), (9, 10, 11), (8, 9, 10),
(7, 8, 9),(4, 5, 6), (3, 4, 5), (2, 3, 4), (1, 2, 3).

We obtain an instance I ′ = (C, M) of Increasing Chunk Ordering by setting C =
{C1, . . . , C3m} and M := mK. We claim that I is a yes-instance of 3-Partition if and
only if I ′ is a yes-instance of Increasing Chunk Ordering. For the proof, we rely on the
following observations:

(i) every strictly increasing subsequence in Ci has length at most ai.
(ii) every strictly increasing subsequence in Ci of length ai is consecutive and does not

cross a multiple of K.
(iii) every incremental sequence of {1, . . . , mK} that has length ai and does not cross a

multiple of K is a subsequence of Ci.

Assume there is a partition of the elements of A into m triples, each of which sums
to K. We arbitrarily order these triples, and within each triplet, we order the elements
according to their index. This defines a total ordering on the elements, and therefore on
the chunks. Let Ti = {ax, ay, az} with x < y < z be the ith triplet and let Cx, Cy, Cz

be the corresponding chunks. By observation (iii) Cx, Cy, and Cz contain respectively
three incremental subsequences of length ax, ay, and az starting at iK + 1, iK + ax + 1,
and iK +ax +ay +1. Concatenating the subsequences for all chunks hence gives the increasing
subsequence 1, . . . , mK.

Conversely, assume that there is a chunk ordering so that we obtain the incremental
subsequence 1, . . . , mK. By observation (i), each chunk Ci can contribute a subsequence of
at most ai elements; therefore each chunk Ci must contribute an increasing subsequence Si of
length ai. By observation (ii), the subsequence Si does not cross a multiple of K. Therefore,
partitioning the sequence 1, . . . , mK into k incremental sequences ((c − 1)K + 1, . . . , cK) for
c ∈ {1, . . . , m}, each of which corresponds to a triplet of A with the sum K. Together, these
triplets define a solution of the instance I of 3-Partition. ◀

The proof of the stronger claim of Lemma 2.5 follows the same ideas but requires several
additional ingredients. First of all, to achieve distinctness of the elements, we use strings
of numbers, called words, which we order lexicographically. Then the main information is
encoded in the first elements of the sequence, whereas the later entries are used to make the
words pairwise distinct. At the end of the construction, each word can be replaced by its
rank in a lexicographic ordering of all words that occur in the instance.

A second complication stems from the fact that chunks can be reversed. The chunks we
construct in the proof of Lemma 2.7 contain a significantly longer increasing subsequence
after reversal, as it may include one element from each incremental subsequence of the chunk,

ISAAC 2021
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of which there may be mK many. To alleviate this, we add a sufficiently long tailing sequence
of length X to each increasing subsequence so that one cannot benefit from a reversal. Then
chunk Ci can provide an increasing subsequence of length ai + X, and all chunks together
shall provide an increasing subsequence of mK + 3mX. Implementing this naively by simply
adding X to each element in the 3-Partition instance does not work, as the possible starting
positions for the increasing subsequences provided by a chunk then grows to mK + 3mX,
thus providing an incremental sequence of length mK + 3mX after reversal. We can however
observe that the only reasonable starting points for the increasing subsequence provided by
a chunk Ci are the original mK, each of which can be shifted by cX, where c is the number
of chunks placed before Ci. This makes for a total of only 3m2K possible starting values.
By choosing X > 3m2K, it is then ensured that reversing a chunk only provides a shorter
increasing subsequence than ai + X.

3 A Tight Upper Bound for Almost-Planar Drawings

Let G = (V, E) be an outerplanar graph, let δG be an almost-planar circular drawing of G.
In this section, we present an untangling procedure for such almost-planar circular drawings
that provides a tight upper bound of ⌊ n

2 ⌋ − 1 on shift◦(δG).

▶ Theorem 3.1. Given an almost-planar drawing δG of an n-vertex outerplanar graph G

the circular shifting number shift◦(δG) ≤ ⌊ n
2 ⌋ − 1, and this bound is tight.

To see that the bound is tight, let n ≥ 4 be an even number and let G be the cycle
on vertices v1, . . . , vn, v1 (in this order) and let δG be a drawing with the clockwise order
v2, . . . , v2i . . . , vn, vn−1, . . . , v2i+1, . . . , v1; see Figure 2.

v6

vn−4

v1
v2

v3
v4

v5

vn
vn−1

vn−2

vn−5

vn−3

Figure 2 An almost-planar drawing δG with shift◦(δG) = n
2 − 1.

We claim that shift◦(δG) ≥ n
2 − 1. Clearly, the clockwise circular ordering of its vertices

in a crossing-free circle drawing is either v1, v2, . . . , vn or its reversal. Assume that we turn it
to the clockwise ordering v1, v2, . . . , vn; the other case is symmetric. In δG, the n

2 odd-index
vertices v1, . . . , v2i+1 . . . , vn−1 and vn are ordered counterclockwise. To reach a clockwise
ordering, we need to move all but two of these vertices. Thus, at least n

2 − 1 vertices in total
are required to move.

The remainder of this section is devoted to proving the upper bound. Let e = uv be the
edge of δG that contains all the crossings, and let G′ = G − e and δG′ be the circular drawing
of G′ by removing the edge e from δG. The edge uv partitions the vertices in V \ {u, v} into
the sets L and R that lie on the left and right side of the edge uv (directed from u to v).
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(a) Case 1 (b) Case 2.2 (non-connecting component)

v

u

shift

C ∩ L
v′

C ′v

u

C

w

x

flip

y

y′

Figure 3 Moving a left component, keeping/reversing the clockwise ordering of its vertices.

▶ Theorem 3.2. Let δG be an almost-planar drawing of an outerplanar graph G. An
outerplanar drawing of G can be obtained by moving only vertices of L or only vertices of
R to the other side in δG and fixing all the remaining vertices. The untangling moves only
min{|L|, |R|} vertices and can be computed in linear time.

This immediately implies the upper bound from Theorem 3.1, since |L ∪ R| = n − 2,
and therefore min{|L|, |R|} ≤ ⌊ n

2 ⌋ − 1. To prove Theorem 3.2, we distinguish different cases
based on the connectivity of u and v in G′.

Case 1: u, v are not connected in G′. Consider a connected component C of G′ that
contains vertices from L and from R.

▶ Proposition 3.3. Suppose u, v are not connected in G′. Let C be a connected component
of G′ that contains vertices from L and from R. It is possible to obtain a new almost-planar
drawing δ′

G of G from δG by moving only the vertices of C ∩ L (resp. C ∩ R) such that C lies
entirely on the right (resp. left) side of uv.

Proof. Since u, v are not connected in G′, C contains at most one of u, v. Without loss of
generality, we assume that v /∈ C; see Figure 3a. Let v′ be the first clockwise vertex after
v that lies in C. Let δ′

G be the drawing obtained from δG by moving the vertices of C ∩ L

clockwise just before v′ without changing their clockwise ordering. Observe that this removes
all crossings of e with C. The choice of v′ ensures that no edge of C alternates with an
edge whose endpoints lie in V \ C. Finally, the vertices of C maintain their clockwise order.
This shows that no new crossings are introduced, and the crossings between e and C are
removed. ◀

By applying Proposition 3.3 for each connected component of G′ that contains vertices from
L and from R, we obtain an outerplanar drawing of G.

Case 2: u, v are connected in G′. Let C be the connected component in G′ that contains
both vertices u and v. Note that if C ′ is another connected component of G′, then it must
lie entirely to the left or entirely to the right of edge e. Here, we ignore such components as
they never need to be moved. We may hence assume that G′ is connected.

Case 2.1: u, v are 2-connected in G′. We claim that in this case δG is already planar.

▶ Proposition 3.4. If u and v are 2-connected in G′, then δG is planar.

ISAAC 2021
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Proof. If vertices u, v ∈ V are 2-connected in G′, then G′ contains a cycle C that includes
both u and v. In δG′ , this cycle is drawn as a closed curve. Any edge that intersects the
interior region of this closed curve therefore has both endpoints on C. If there exists an
edge e′ = xy that intersects e = uv, then contracting the four subpaths of C connecting
each of {x, y} to each of {u, v} yields a K4-minor in G, which contradicts the outerplanarity
of G. ◀

Case 2.2: u, v are connected but not 2-connected in G′. In this case G′ contains at
least one cut-vertex that separates u and v. Notice that each path from u to v visits all
such cut-vertices between u and v in the same order. Let f and l be the first and the last
cut-vertex on any uv-path. Additionally, add u to the set of L, R that contains f and likewise
add v to the set of L, R that contains l. Let X denote the set of edges of G′ that have
one endpoint in L and the other in R. Each connected component of G′ − X is either a
subset of L or a subset of R, which are called left and right components, respectively. We
call a component of G′ − X connecting if it contains either u or v, or removing it from G′

disconnects u and v. For a left component CL and a right component CR, we denote by
E(CL, CR) the set of edges of G′ that connect a vertex from CL to a vertex in CR. We can
observe that since G′ is connected, for any edge that connects a left and a right component,
at least one of the components must be connecting. We use the following observation.

▶ Observation 3.5. If P is an xy-path in a left (right) component C, then it contains all
vertices of C that are adjacent to a vertex of a right (left) component and lie between x and
y on the left (right) side.

(a) (b)

C ′
C

u

v

P y

t

w

s

x

C

u

C ′

dc

a

v

b

t

s

e1

e2

P

PL PR

Figure 4 The K2,3-minors we use in the proofs of (a) Lemma 3.6 and (b) Lemma 3.8.

▶ Lemma 3.6. Every non-connecting component C of G′ − X is adjacent to exactly one
component C ′ of G′ − X. Moreover, C ′ is connecting, there are at most two vertices in C ′

that are incident to edges in E(C, C ′), and if there are two such vertices w, x ∈ C ′, then they
are adjacent and removing wx disconnects C ′.

Proof. Without loss of generality, we assume that C is a left component. Since C is non-
connecting, any component adjacent to it must be connecting. Moreover, if there are two
distinct such components, they lie on the right side of the edge uv. Then either there is
a path on the right side that connects them (but then they are not distinct), or removing
C disconnects these components, and therefore uv, contradicting the assumption that C is
a non-connecting component. Therefore C is adjacent to exactly one other component C ′,



S. Bhore, G. Li, M. Nöllenburg, I. Rutter, and H.-Y. Wu 19:9

which must be a right connecting component. Let w and x be the first and the last vertex
in C ′ that are adjacent to vertices in C when sweeping the vertices of G clockwise in δG

starting at v; see Figure 4a. The lemma holds trivially if w = x. Suppose w ̸= x. Next we
show that wx ∈ E and that wx is a bridge of C. Let P be an arbitrary path from w to x in
C. If P contains an internal vertex y, then the path P together with a path from w to x

whose internal vertices lie in C forms a cycle, where x and w are not consecutive. Note that
at least one of u, v, say u, is not identical to w, x, otherwise, u, v are 2-connected. This cycle,
together with disjoint paths from w to v and x to u and the edge uv yields a K2,3-minor
in G; see Figure 4a. Such paths exist, by the outerplanarity of δG′ and the fact that C ′ is
connecting, but C is not. Since G is outerplanar, and therefore cannot contain a K2,3-minor,
this immediately implies that P consists of the single edge wx, which must be a bridge of C ′

as otherwise there would be a wx-path with an internal vertex. Observation 3.5 implies that
w and x are the only vertices of C that are adjacent to vertices in C ′. ◀

▶ Proposition 3.7. Let C be a left (right) non-connecting component of G′ − X. It is always
possible to obtain a new almost-planar drawing δ′

G of G from δG by moving only the vertices
of C \ {u, v} to the right (left) side.

Proof. Without loss of generality, we assume that C is a left component. Since C is non-
connecting, then by Lemma 3.6, it is adjacent to at most two vertices on the right side.
If there are two such vertices, denote them by w and x such that w occurs before x on
a clockwise traversal from v to u. Note that wx is a bridge of a right component C ′ by
Lemma 3.6; see Figure 3b. Consider the two components of C ′ − wx and let y be the last
vertex that lies in the same component as w when traversing vertices clockwise from w to x.
If C is connected to only one vertex, then we denote this by y. In both cases, let y′ be the
vertex of L that immediately succeeds y in clockwise direction (If y = u, let y′ be the vertex
that immediately precedes y.).

We obtain δ′
G by moving all vertices of C \ {u, v} between y and y′, reversing their

clockwise ordering. Observe that the choice of y and y′ guarantees that δ′
G is almost-planar

and all crossings lie on uv. ◀

It remains to deal with connecting components.

▶ Lemma 3.8. The connecting component of G′ − X containing u or v is adjacent to at
most one connecting component. Every other connecting component is adjacent to exactly
two connecting components. Moreover, if C and C ′ are two adjacent connecting components,
then there is a vertex w that is incident to all edges in E(C, C ′).

Proof. The claims concerning the adjacencies of the connecting components follows from
the fact that every uv-path visits all connecting components in the same order. It remains
to prove that all edges between two connecting components share a single vertex. If u and v

are in one component, then this component is the only connecting component and there is
nothing to show.

Now let C and C ′ be adjacent connecting components and assume that C or C ′ may
contain one of u or v but not both. Furthermore, we assume without loss of generality, that
C is a left and C ′ is a right component. For the sake of contradiction, assume there exist
two edges e1, e2 ∈ E(C, C ′) that do not share an endpoint. Let e1 = ab and e2 = cd where
a, c ∈ C and b, d ∈ C ′ such that their clockwise order is a, b, d, c; see Figure 4b. Note that
one of u, v is not in the set {a, b, c, d}. Otherwise, u and v are 2-connected, which contradicts
our case assumption. In the following, we assume without loss of generality that a, b, c, d, v

ISAAC 2021



19:10 Untangling Circular Drawings: Algorithms and Complexity

are five distinct vertices in G′. Let P be a path from u to v in G′. Since C and C ′ are both
connecting, P contains vertices from both components. When traversing P from u to v, let
s and t denote the first and the last vertex of C ∪ C ′ that is encountered, respectively. Here,
we assume without loss of generality that s ∈ C and t ∈ C ′. Let PL be a path in C that
connects s to a and let PR be a path in C ′ that connects d to t. By Observation 3.5, PL

contains c and PR contains b. We then obtain a K2,3-minor of G by contracting each of the
paths PL[c, a], PR[d, b], vuP [u, s]PL[s, c], and PR[b, t]P [t, v] into a single edge. ◀

By Lemma 3.6 and Lemma 3.8, all vertices of a connecting component of G′ − X can be
moved to the other side, similarly as in Proposition 3.7.

▶ Proposition 3.9. (⋆) Let C be a left (right) connecting component of G′ − X. It is
possible to obtain a new almost-planar drawing δ′

G of G from δG by moving only the vertices
of C \ {u, v} to the right (left) side.

Proposition 3.7 and Proposition 3.9 together imply Theorem 3.2.

4 Untangling Almost-Planar Drawings

In this section, we consider how to untangle an almost-planar circular drawing δG of an
n-vertex outerplanar graph G = (V, E) with the minimum number of vertex moves. Firstly,
we study this problem in several restricted settings (Sections 4.1–4.3), which leads us to the
design of an O(n2)-time algorithm to compute shift◦(δG) in Section 4.4. Let e = uv be the
edge of δG that contains all the crossings, and let G′ = G − e and δG′ be the straight-line
circular drawing of G′ by removing the edge e from δG. The edge uv partitions the vertices
in V \ {u, v} into the sets L and R that lie on the left and right side of the edge uv (directed
from u to v). Let Cu and Cv be the connected components of G′ that contain u and v,
respectively. Note that Cu = Cv if u, v are connected.

4.1 Fixed Edge Untangling
Here we consider untangling under the restriction that the positions of u and v are fixed. We
denote such untangling as fixed edge untangling. From very similar arguments as in Section 3,
we derive the following statements.

▶ Lemma 4.1. (⋆) Let C be a connected component of G′. It is always possible to obtain
an almost-planar drawing δ′

G of G from δG by moving all vertices in L ∩ C (resp. R ∩ C) to
the right (resp. left) side.

▶ Theorem 4.2. (⋆) Given an almost-planar drawing δG of an outerplanar graph G, a fixed
edge untangling of δG with the minimum number of vertex moves can be computed in linear
time.

4.2 Single Component Untangling
Next, we study an untangling variant, called Single Component Untangling, which moves
vertices of one particular connected component of G′ that contains the vertices u or v, while
the other components remain fixed. We claim that δG can always be untangled in this way.

▶ Theorem 4.3. It is always possible to untangle δG by moving only the vertices of Cu or
only the vertices of Cv and such a single component untangling procedure can be found in
linear time.
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Proof. If Cu = Cv the claim is trivially true. So let’s consider the case that u and v are not
connected in G′ and assume that |Cu| ≤ |Cv|. We move the vertices of Cu as follows. Let σu

be the clockwise order of Cu in δG′ , starting with u. We insert the vertices of Cu in the order
σu clockwise right after v to obtain a new drawing δ′

G′ of G′. Since Cu was crossing-free
before and is placed consecutively on the circle, it remains crossing-free. No other edges
have been moved. Furthermore, u and v are now neighbors on the circle, so we can insert
the edge uv without crossings and have untangled δG with min{|Cu|, |Cv|} moves. ◀

4.3 Component-Fixed Untangling
An untangling under the restriction that both of Cu and Cv must contain fixed vertices, is
denoted as Component-Fixed Untangling.

We introduce some notions and provide basic observations. Let G be a connected
outerplanar graph. Let B be a 2-connected component of G and E(B) the set of edges in
B. Since G is connected and B is 2-connected, each connected component of G − E(B)
contains exactly one vertex in B. Given a vertex b in B, let Cb be the connected component
of G − E(B) that contains b. We denote Cb as the attachment of the 2-connected component
B at the vertex b.

Let H(B) be the cyclic vertex ordering of B in the order of its Hamiltonian cycle1. We
get Observation 4.4; see Figure 5.

▶ Observation 4.4. Let δG be an outerplanar drawing of an outerplanar graph G and B

be a 2-connected component of G. Then, the clockwise cyclic vertex ordering of B in δG

is either H(B) or its reverse. Furthermore, for each attachment of B, its vertices appear
consecutively on the circle in δG.

B

Figure 5 A 2-connected component B (in blue) and its attachments (gray boxes) in an outerplanar
drawing.

Given a connected outerplanar graph G, a 2-connected component B of G and a circular
drawing δG, we say a sequence S of vertex moves of G is canonical, associated with B,
if in the drawing obtained by applying S to δG, the clockwise cyclic vertex ordering of
each attachment of B remains unchanged. Now we are ready to show that an optimal
component-fixed untangling with the restriction that fixed vertices exist in both of Cu and
Cv can be found in O(n2) time; see Theorem 4.5.

▶ Theorem 4.5. A component-fixed untangling procedure U with the minimum number of
vertex moves can be found in O(n2) time.

The reminder of this section is devoted to describing the procedure U . We distinguish
between the following two cases based on the connectivity of u, v in G′. In each case,
we present a procedure that runs in O(n2) time and reports an optimal component-fixed
untangling procedure.

1 In every outerplanar biconnected graph, there is a unique Hamiltonian cycle that visits each node
exactly once [29].
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Case 1: u and v are connected in G′. Let C be a connected component of G′ that does not
contain u, v. We claim now that C must lie entirely on one side of uv in δG. Otherwise, let P

be a path of δG′ that connects u and v. Then there would exist crossings between edges of P

and edges of C in δG′ which contradicts the fact that δG′ has no crossings. Thus, we can ignore
such components as they do not need to be involved in an untangling. Hence, we may assume
G′ is a connected graph. If u and v are 2-connected in G′, then δG is already outerplanar; see
Proposition 3.4. Now we consider the case that u and v are connected, but not 2-connected
in G′. Note that u, v are 2-connected in G. Let B be the 2-connected component of G that
contains u, v. We prove that each component-fixed untangling U can be transformed into a
canonical untangling with smaller or the same number of vertex moves; see Lemma 4.6. Thus,
we restrict our attention to canonical untanglings. Let H(B) = b1, . . . bk be the cyclic vertex
ordering of the Hamiltonian cycle of B. Let Ai be the attachment of B at the vertex bi and
let σ(Ai) be the clockwise vertex ordering of Ai in δG for i ∈ {1, . . . , k}. We consider an
optimal canonical component-fixed untangling Uo which orders B clockwise as H(B). Let δ

′′

G

be the outerplanar drawing obtained by applying Uo. Then the clockwise vertex ordering of
δ

′′

G is exactly the concatenation of σ(A1), σ(A2), . . . , σ(Ak). Given δ
′′

G, an optimal untangling
transforming δG to δ

′′

G can be computed in O(n2) time; see [24]. Analogously, we obtain an
optimal component-fixed untangling Ur which orders B counterclockwise as H(B). From
the two untanglings Uo and Ur, we report the one which moves less vertices as the optimal
component-fixed untangling.

▶ Lemma 4.6. Let B be the 2-connected component of G that contains u, v. Each component-
fixed untangling U of δG can be transformed into a canonical vertex move sequence Uc

(associated with B) that untangles δG. Furthermore, the number of vertex moves in Uc is not
greater than the number of vertex moves in U .

Proof. Given a component-fixed untangling U of δG, let δU
G be the drawing obtained after

applying U on δG. In δU
G , the cyclic vertex ordering of B (clockwise or counterclockwise)

must correspond to its Hamiltonian cycle ordering H(B). Furthermore, the vertices of each
attachment of B appear consecutively in δU

G , including one vertex of B; see Observation 4.4.
Let A1, . . . , Ak be the attachments of B in G (indexed in clockwise order as in δU

G) and let
σ(Ai) be the clockwise vertex ordering of Ai in δG for i ∈ {1 . . . k}. Now consider the vertex
ordering σ′

G =(σ(A1), · · · , σ(Ak)) and let δ′
G be an arbitrary circular drawing where the

vertices are ordered as σ′
G. Note that the vertex ordering of each attachment is σ(Ai) in δ′

G

as in the almost-planar drawing δG, thus each attachment in δ′
G is crossing-free. Moreover,

in δ′
G the vertices of B are ordered as in the planar drawing δU

G , thus there is no crossing
inside B. Overall, δ′

G is a planar circular drawing. Let Uc be the untangling of δG with
minimum number of vertex moves such that the clockwise vertex ordering of the resulting
drawing is σ′

G.
To see that Uc does not move more vertices than U , let σG and σU

G be the clockwise
vertex orderings of δG and δU

G , respectively. We can observe that any common subsequence
of σG, σU

G is a subsequence of σ′
G. ◀

Case 2: u and v are not connected in G′. Note that a connected component of G′

that lies entirely on one side of uv in δG can be ignored, since there is no need to move
any vertices in such components. After ignoring such components, we can assume that a
connected component C of G′ either contains u, v or C contains vertices from L and also
vertices from R.
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▶ Observation 4.7. In δG′ , vertices of Cu (resp. Cv) lie consecutively on the cycle.

The first step of our untangling procedure U deals with the connected components of
G′ that neither contain u nor v. Let Ufix be an arbitrary component-fixed untangling of δG,
and let δfix

G be the outerplanar drawing of G obtained from δG by applying Ufix.

▶ Lemma 4.8. Let C be a connected component of G′ that does not contain vertices u or v.
Let fu, fv be two vertices in Cu and Cv, respectively, which are fixed in δfix

G . Then, C must
lie entirely on one side of fufv

2 in δfix
G .

Proof. In the graph G, due to the definition of fu and fv, there exists a path P1 in Cu

connecting fu to u, and a path P2 in Cv connecting v to fv; see Figure 6. Then, the path
P = P1uvP2 in G connects fu to fv. In δfix

G , suppose that the connected component C is
not entirely on one side of fufv, it implies that at least one edge xy in C has endpoints
x, y alternate with fu, fv in clockwise ordering of δfix

G and then has crossings with P . It
contradicts the outerplanarity of the drawing δfix

G . ◀

v

u

fv

fu

C

P2

P1

Cv

Cu

δfix
G

x
y

Figure 6 An example illustration for the proof of Lemma 4.8.

Now let C be a connected component that does not contain u.v. Vertices fu and fv

partition the vertices of C in drawing δG into two sets LC and RC that are encountered
clockwise and counter-clockwise from fu to fv in δG, respectively. Observe that, LC = L ∩ C

and RC = R ∩ C; see Observation 4.7. Let m(C) = min{|L ∩ C|, |R ∩ C|}. By Lemma 4.8,
m(C) is a lower bound of the moved vertices in C in a component-fixed untangling. By
Lemma 4.1, there is a procedure moving m(C) vertices of C such that C lies entirely on
one side of uv. In the first step of our untangling procedure U , we repeat this step for each
component not containing u or v. After that, an almost-planar drawing of G remains that
has already each component not containing u, v placed entirely on one side of uv. We can
ignore such components from now on since they never need to be moved again.

Now we assume that G′ has exactly two connected components, namely Cu and Cv.
Consider an arbitrary outerplanar drawing δ′

G of G. Let σ(δ′
G) be the circular ordering of

vertices in δ′
G encountered clockwise. Observe that, in σ(δ′

G), the vertices of Cu (resp. Cv)
are in a consecutive subsequence σ(Cu) (resp. σ(Cv)). Otherwise, alternating vertices of two
connected components would introduce crossings.

2 Given a circular drawing of G = (V, E), two vertices a, b partitions the vertices in V \ {a, b} into two
sets that lie on the left side and right side of the ray −→ab.
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Bv Bu

v u

Figure 7 In any clockwise vertex ordering of an outerplanar drawing, u, v must be the extreme
vertices in the 2-connected components Bv and Bu, respectively.

Given an edge e′ in Cv, we say e′ covers v if the endpoints of e alternate with u and v in
δG′ . Note that there is no edge covering v in σ(Cv). Otherwise, such an edge would cross
with edge uv. Therefore, in a valid untangling of δG, it is necessary to move vertices of Cv

in δG such that no crossing is introduced in Cv and v is not covered by any edges in Cv.
Similarly, the same claim holds also for Cu. We call such vertex moves vertex unwrapping.
In the following, we consider how to find a valid unwrapping of v with the minimum number
of vertex moves. The same operation will be also applied to Cu. Observe that, once u, v are
both unwrapped, adding the edge e into the drawing does not introduce any crossings. The
combination of these two unwrappings makes an optimal untangling. Here, we also consider
the canonical vertex sequences and get the following Lemma 4.10. The proof is quite similar
to the proof of Lemma 4.6 which concerns canonical untanglings.

▶ Observation 4.9. There exists at least one 2-connected component B of Cv such that B

contains v and no edge in the attachment of v (associated with B) covers v in δG.

The reason for this observation is that either no 2-connected component B containing v

contains an edge covering v, in which case v is already unwrapped and the statement is true
for any such B. Or some 2-connected component B does contain a covering edge, but then
the attachment of v in B cannot cover v due to planarity of δG′ .

▶ Lemma 4.10. Let B be a 2-connected component of Cv that contains v such that the
attachment of v contains no edge covering v. Each unwrapping U of v can be transformed
into a canonical unwrapping Uc (associated with B). Furthermore, the number of vertex
moves in Uc is not greater than the number of vertex moves in the original unwrapping U .

Proof. Given a unwrapping procedure U of v, let δU
G be the drawing obtained after applying U

on δG. In δU
G , the cyclic vertex ordering of B (clockwise or counterclockwise) must correspond

to its Hamiltonian cycle ordering H(B). Furthermore, the vertices of each attachment of
B appear consecutively in δU

G , including one vertex of B; see Observation 4.4. Let A1, ...Ak

be the attachments of B in Cv (in this clockwise order in δU
G), let σ(Ai) be the clockwise

vertex ordering of Ai in δG for i ∈ {1 . . . k}. Consider the clockwise vertex ordering σ′
G

where the vertices of B ∪ Cu are ordered as in δU
G . Furthermore, for each attachment Ai the

vertices of Ai appear consecutively in the clockwise ordering σ(Ai). Let δ′
G be an arbitrary

circular drawing where the vertices are ordered as σ′
G. Note that the vertex ordering of each

attachment of B is σ(Ai) in δ′
G as in the almost-planar drawing δG, thus each attachment in

δ′
G is crossing-free. Moreover, in δ′

G the vertices of B are ordered as in the planar drawing
δU

G , thus there is no crossing inside B. Overall, the vertex v is unwrapped in δ′
G. It remains

to prove that the untangling U ′, which transforms δG to δ′
G, moves less than or equally many

vertices as U . By construction each common subsequence of δG and δU
G is also a subsequence

of δ′
G, which implies this fact. ◀

By Lemma 4.10, we restrict our attention to canonical unwrappings. Fixing a 2-connected
component Bv of Cv containing v such that no edge in the attachment (associated with Bv)
of v covers v, we consider the two possible canonical unwrappings of v, which respectively
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order vertices of B clockwise along H(B) or its reversal, and compute the corresponding
resulting clockwise vertex ordering σv and σrev

v of Cv. With the same idea, we get the
clockwise vertex orderings σu and σrev

u of Cu by the canonical unwrappings of u. We then get
the four optimal unwrappings, each of them transforming δG to one of the vertex orderings
(σvσu), (σrev

v σu), (σvσrev
u ) and (σrev

v σrev
u ). Such optimal unwrappings can be computed in

O(n2) time; see [24]. We report the one that moves the minimum number of vertices as an
optimal component-fixed untangling.

4.4 Circular Untangling

Given an almost-planar drawing δG, we claim that it is always possible to compute an optimal
untangling procedure for δG in O(n2) time, where n is the number of vertices of G. In our
approach, we use procedures described in Sections 4.1–4.3 as subroutines.

The Approach. Step 1 : we compute an optimal component-fixed untangling U by applying
the approach described in Section 4.3. An optimal component-fixed untangling U can be
reported in O(n2) time (see Theorem 4.5). Step 2 : let m(U) be the number of vertex moves
in U . we compare m(U) with min{|Cu|, |Cv|}. If m(U) ≤ min{|Cu|, |Cv|}, then we report U .
Otherwise, if m(U) > min{|Cu|, |Cv|}, we know U is not an optimal untangling procedure.
Because there exists a specific untangling procedure U ′ which moves exactly min{|Cu|, |Cv|}
vertices; see its description in the proof of Theorem 4.3. In this case, we compute and report
this procedure U ′. The second step takes linear time. In total, the whole procedure needs
O(n2) time.

Correctness. Let Ua be the untangling reported by our approach. Now, we show that Ua

is indeed an optimal untangling of δG by contradiction. Note that Ua has size bounded by
min{|Cu|, |Cv|} (Step 2 ). Suppose there exists an untangling Ua′ which moves less vertices
than Ua. Then Ua′ moves less vertices than min{|Cu|, |Cv|}. If so, there are vertices in
both of |Cu|, |Cv| that remain fixed in Ua′ . Thus, Ua′ is a component-fixed untangling. It
leads to a contradiction to the fact that Ua has its size bounded by the size of optimal
component-fixed untangling (Step 1 ). Therefore, Ua is indeed an untangling of δG with the
minimum number of vertex moves.

▶ Theorem 4.11. Given an almost-planar drawing δG of an outerplanar graph G, an
untangling of δG with the minimum number of vertex moves can be computed in O(n2) time,
where n denotes the number of vertices in G.

5 Conclusions and Discussions

We introduced and investigated the problem of untangling non-planar circular drawings. First
from the computational side, we demonstrated the NP-hardness of the problem Circular
Untangling. Second, we studied the almost-planar circular drawings, where all crossings
involve a single edge. We gave a tight upper bound of ⌊ n

2 ⌋ − 1 on the shift number and
an O(n2)-time algorithm to compute it. Open problems for future work include: (i) The
parameterized complexity of computing the circular shifting, e.g., with respect to the number
of crossings or the number of connected components. (ii) Generalization of our results for
almost-planar drawings. (iii) Investigation of minimum untangling by other elementary
moves such as swapping vertex pairs or moving larger chunks of vertices.
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Abstract
We study the problem of matching a string in a labeled graph. Previous research has shown that
unless the Orthogonal Vectors Hypothesis (OVH) is false, one cannot solve this problem in strongly
sub-quadratic time, nor index the graph in polynomial time to answer queries efficiently (Equi et al.
ICALP 2019, SOFSEM 2021). These conditional lower-bounds cover even deterministic graphs with
binary alphabet, but there naturally exist also graph classes that are easy to index: E.g. Wheeler
graphs (Gagie et al. Theor. Comp. Sci. 2017) cover graphs admitting a Burrows-Wheeler transform
-based indexing scheme. However, it is NP-complete to recognize if a graph is a Wheeler graph
(Gibney, Thankachan, ESA 2019).

We propose an approach to alleviate the construction bottleneck of Wheeler graphs. Rather
than starting from an arbitrary graph, we study graphs induced from multiple sequence alignments.
Elastic degenerate strings (Bernadini et al. SPIRE 2017, ICALP 2019) can be seen as such graphs,
and we introduce here their generalization: elastic founder graphs. We first prove that even such
induced graphs are hard to index under OVH. Then we introduce two subclasses that are easy
to index. Moreover, we give a near-linear time algorithm to construct indexable elastic founder
graphs. This algorithm is based on an earlier segmentation algorithm for gapless multiple sequence
alignments inducing non-elastic founder graphs (Mäkinen et al., WABI 2020), but uses more involved
techniques to cope with repetitive string collections synchronized with gaps. Finally, we show that
one of the subclasses admits a reduction to Wheeler graphs in polynomial time.
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1 Introduction

In string research, many different problems relate to the common question of how to handle
a collection of strings. When such a collection contains very similar strings, it can be
represented as some “high scoring” Multiple Sequence Alignment (MSA), i.e., as a matrix
MSA[1..m, 1..n] whose m rows are the individual strings each of length n, which may include
special “gap” symbols such that the columns represent the aligned positions. While it is
NP-hard to find an optimal MSA even under the simplest score of maximizing the number of
identity columns (i.e., longest common subsequence length) [21], the central role of MSA as
a model of biological evolution has resulted into numerous heuristics to solve this problem in
practice [9]. In this paper, we assume an MSA as an input.

A simple way to define the problem of finding a match for a given string in the MSA
is to ask whether the string matches a substring of some row (ignoring gap symbols).
This leads to the widely studied problem of indexing repetitive text collections, see, e.g.,
references [24, 29, 30, 28, 27, 14, 15]. These approaches reducing an MSA to plain text reach
algorithms with linear time complexities.

One feature worth considering is the possibility to allow a match to jump from any row to
any other row of the MSA between consecutive columns. This property is usually referred to
as recombination due to its connection to evolution, and leads to the graph representation of
the MSA [26]. Figure 1a shows a simple solution, which consists in turning distinct characters
of each column into nodes, and then adding the edges supported by row-wise connections. In
this graph, a path whose concatenation of node labels matches a given string represents a
match in the original MSA (ignoring gaps).

Aligning a sequence against a graph is not a trivial task. Only quadratic solutions are
known [3, 25, 32], and this was recently proved to be a conditional lower bound for the
problem [10]. Moreover, even attempting to index the graph to query the string faster presents
significant difficulties. On one hand, indexes constructed in polynomial time still require
quadratic-time queries in the worst case [35]. On the other hand, worst-case linear-time
queries are possible, but this has the potential to make the index grow exponentially [34].
These might be the best results possible for general graphs and DAGs without any specific
structural property, as the need for exponential indexing time to achieve sub-quadratic time
queries constitutes another conditional lower bound for the problem [11].

Thus, if we want to achieve better performances, we have to make more assumptions
on the structure of the input, so that the problem might become tractable. Following this
line, a possible solution consists in identifying special classes of graphs that, while still
able to represent any MSA, have a more limited amount of recombination, thus allowing
for fast matching or fast indexing. This is the case for Elastic Degenerate Strings (EDS)
[4, 5, 7, 6, 18], which can represent an MSA as a sequence of sets of strings, in which a match
can span consecutive sets, using any one string in each of these (see Figure 1b, graph in
the center). The advantage of this structure is that it is possible to perform expected-case
subquadratic time queries [5]. However, EDS are still hard to index [16], and there is a lack
of results on how to derive a “suitable” EDS from an MSA.

In this context, we propose a generalization of an EDS to what we call an Elastic Founder
Graph (EFG). An EFG is a DAG that, as an EDS, represents an MSA as a sequence of sets of
strings; each set is called a block, and each string inside a block is represented as a labeled
node. The difference with EDSes is that the nodes of two consecutive blocks are not forced
to be fully connected. This means that, while in an EDS a match can always pair any string
of a set with any string of the next set, in an EFG it might be the case that only some of
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(a) A column-by-column segmentation of an MSA on the left, leading to the variation graph on the right.
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(b) A different segmentation of the MSA, leading to the EDS in the center, and the EFG on the right.
Notice that in an EDS every node is connected with all nodes to the right, while in an EFG edges are
added only if their endpoints are consecutive in some row of the MSA (as in the case of variation graphs).
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(c) A segmentation of the MSA that leads to a repeat-free EFG (i.e. no node label has another occurrence
on some path of the EFG).
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(d) A segmentation of the MSA that leads to a semi-repeat-free EFG (i.e. no node label has another
occurrence on some path of the EFG, except as a prefix of another node in the same segment). An
occurrence of query Q = CGACTAGTA in EFG is depicted in red. As can be seen, such query does not have
an occurrence in a single row of the MSA.

Figure 1 An MSA on the left, and various graph-based representations of it on the right. Notice
that in all graphs (except the EDS) edges are added only between nodes that are observed as
consecutive in some row of the MSA.

these pairings are allowed. Figure 1b illustrates these differences. Allowing for more selective
connectivity between consecutive blocks also means that finding a match for a string in an
EFG is harder than in an EDS. This is because EDSes are a special case of EFGs, hence the
hardness results for the former carry to the latter. Specifically, a previous work [17] showed
that, under the Orthogonal Vectors Hypothesis (OVH), no index for EDSes constructed in
polynomial time can provide queries in time O(|Q|+ |T̃ |δ|Q|β), where |T̃ | is the number of
sets of strings, |Q| is the length of the pattern and β < 1 or δ < 1. Nevertheless, in this
work we present an even tighter quadratic lower bound for EFGs, proving that, under OVH,
an index built in time O(|E|α) cannot provide queries in time O(|Q|+ |E|δ|Q|β), where |E|
is the number of edges and β < 1 or δ < 1. Notice that |T̃ | could even be o(|E|) (e.g. an
EFG of two fully connected blocks), hence our lower bound more closely relates to the total
size of an EFG. Additionally, the earlier lower bound [17] naturally applies only to indexing
EDSes, and is obtained by performing many hypothetical fast queries; ours is derived by first
proving a quadratic OVH-based lower bound for the online string matching problem in EFGs,
and then using a general result [11] to simply translate this into an indexing lower bound.

ISAAC 2021
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Then, in order to break through these lower bounds, we identify two natural classes of
EFGs, which respect what we call repeat-free and semi-repeat-free properties. The repeat-free
property (Figure 1c) forces each string in each block to occur only once in the entire graph,
and the semi-repeat-free property (Figure 1d) is a weaker form of this requirement. Thanks
to these properties, we can more easily locate substrings of a query string in repeat-free EFGs
and semi-repeat-free EFGs. In particular, (semi-)repeat-free EFGs and EDSes can be indexed
in polynomial time for linear time string matching.

One might think that these time speedups come with a significant cost in terms of
flexibility. Instead, the special structure of these EFGs do not hinder their expressive power.
Indeed, we show that an MSA can be “optimally” segmented into blocks inducing a repeat-free
or semi-repeat-free EFG. Clearly, this depends on how one chooses to define optimality. We
consider three optimality notions: maximum number of blocks, minimum maximum block
width, and minimum maximum block length. In Figure 1d, the first score is 3, second is 3,
and the third is 5. The two latter notions stem from the earlier work on segmentations [31, 8],
now combined with the (semi)-repeat-free constraint. The first is the simplest optimality
notion, now making sense combined with the (semi)-repeat-free constraint.

For each of these optimality notions, we give a polynomial-time dynamic programming
algorithm that converts an MSA into an optimal (semi-)repeat-free EFG if such exists. For
the first and the third notion combined with semi-repeat-free constraint, we derive more
involved solutions with almost optimal O(mn log m) and O(mn log m + n log log n) running
time, respectively. In previous work [23], an (optimal) O(mn) time solution was given for
the special case of MSA without gap symbols. Our new solution does not much build on
the previous approach, which was based on a monotonicity property not anymore holding
with gaps. Instead, we delve into the combinatorial properties of repetitive string collections
synchronized with gaps and show how to use string data structures in this setting. The
techniques can be easily adapted for other notions of optimality.

Another class of graphs that admits efficient indexing are Wheeler graphs [13], which
offer an alternative way to model an EFG and thus a MSA. However, it is NP-complete to
recognize if a given graph is a Wheeler graph [17], and thus, to use the efficient algorithmic
machinery around Wheeler graphs [1] one needs to limit the focus on indexable graphs that
admit efficient construction. Indeed, we show that any EFG that respects the repeat-free
property can be reduced to a Wheeler graph in polynomial time. Interestingly, we were not
able to modify this reduction to cover the semi-repeat-free case, leaving it open if these two
notions of graph indexability have indeed different expressive power, and whether there are
more graph classes with distinctive properties in this context.

2 Definitions

Strings. We denote integer intervals by [i..j]. Let Σ = {1, . . . , σ} be an alphabet of size
|Σ| = σ. A string T [1..n] is a sequence of symbols from Σ, i.e. T ∈ Σn, where Σn denotes
the set of strings of length n under the alphabet Σ. A suffix of string T [1..n] is T [i..n] for
1 ≤ i ≤ n. A prefix of string T [1..n] is T [1..i] for 1 ≤ i ≤ n. A substring of string T [1..n]
is T [i..j] for 1 ≤ i ≤ j ≤ n. The length of a string T is denoted |T |. The empty string is
the string of length 0. In particular, substring T [i..j] where j < i is the empty string. The
lexicographic order of two strings A and B is naturally defined by the order of the alphabet:
A < B iff A[1..i] = B[1..i] and A[i+1] < B[i+1] for some i ≥ 0. If i+1 > min(|A|, |B|), then
the shorter one is regarded as smaller. However, we usually avoid this implicit comparison
by adding end marker 0 to the strings. Concatenation of strings A and B is denoted AB.
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Elastic founder graphs. As mentioned in the introduction, our goal is to compactly represent
an MSA using an elastic founder graph. In this section we formalize these concepts.

A multiple sequence alignment MSA[1..m, 1..n] is a matrix with m strings drawn from
Σ∪{-}, each of length n, as its rows. Here - /∈ Σ is the gap symbol. For a string X ∈ (Σ ∪ {-})∗,
we denote spell(X) the string resulting from removing the gap symbols from X.

Let P be a partitioning of [1..n], that is, a sequence of subintervals P = [x1..y1],
[x2..y2], . . . , [xb..yb], where x1 = 1, yb = n, and for all j > 2, xj = yj−1 + 1. A seg-
mentation S of MSA[1..m, 1..n] based on partitioning P is a sequence of b sets Sk =
{spell(MSA[i, xk..yk]) | 1 ≤ i ≤ m} for 1 ≤ k ≤ b; in addition, we require for a (proper)
segmentation that spell(MSA[i, xk..yk]) is not an empty string for any i and k. We call set Sk

a block, while MSA[1..m, xk..yk] or just [xk..yk] is called a segment. The length of block Sk

is L(Sk) = yk − xk + 1 and the width of block Sk is W (Sk) = |Sk|. Segmentation naturally
leads to the definition of a founder graph through the block graph concept:

▶ Definition 1 (Block Graph). A block graph is a graph G = (V, E, ℓ) where ℓ : V → Σ+ is a
function that assigns a string label to every node and for which the following properties hold.
1. Set V can be partitioned into a sequence of b blocks V 1, V 2, . . . , V b, that is, V = V 1 ∪

V 2 ∪ · · · ∪ V b and V i ∩ V j = ∅ for all i ̸= j;
2. If (v, w) ∈ E then v ∈ V i and w ∈ V i+1 for some 1 ≤ i ≤ b− 1; and
3. if v, w ∈ V i then |ℓ(v)| = |ℓ(w)| for each 1 ≤ i ≤ b and if v ̸= w, ℓ(v) ̸= ℓ(w).

With gapless MSAs, block Sk equals segment MSA[1..m, xk..yk], and in that case the
founder graph is a block graph induced by segmentation S [23]. The idea is to have a graph
in which the nodes represent the strings in S while the edges retain the information of how
such strings can be recombined to spell any sequence in the original MSA. With general
MSAs with gaps, we consider the following extension, with an analogy to EDSes [5]:

▶ Definition 2 (Elastic block and founder graphs). We call a block graph elastic if its third
condition is relaxed in the sense that each V i can contain non-empty variable-length strings.
An elastic founder graph (EFG) is an elastic block graph G(S) = (V, E, ℓ) induced by a
segmentation S as follows: For each 1 ≤ k ≤ b we have Sk = {spell(MSA[i, xk..yk]) | 1 ≤
i ≤ m} = {ℓ(v) : v ∈ V k}. It holds (v, w) ∈ E if and only if there exists k ∈ [1..b− 1] and
t ∈ [1..m] such that v ∈ V k, w ∈ V k+1 and spell(MSA[t, xk..yk+1]) = ℓ(v)ℓ(w).

By definition, (elastic) founder and block graphs are acyclic. For convention, we interpret
the direction of the edges as going from left to right. Consider a path P in G(S) between
any two nodes. The label ℓ(P ) of P is the concatenation of labels of the nodes in the path.
Let Q be a query string. We say that Q occurs in G(S) if Q is a substring of ℓ(P ) for any
path P of G(S). Figure 1 illustrates such a query.

We use the same repeat-free definition as in the non-elastic case [23]:

▶ Definition 3. EFG G(S) is repeat-free if each ℓ(v) for v ∈ V occurs in G(S) only as prefix
of paths starting with v.

We also consider a variant that is relevant due to variable-length strings in the blocks:

▶ Definition 4. EFG G(S) is semi-repeat-free if each ℓ(v) for v ∈ V occurs in G(S) only as
prefix of paths starting with w ∈ V , where w is from the same block as v.

These definitions also apply to general elastic block graphs and to elastic degenerate
strings as their special case.
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Figure 2 Gadgets Gbe, G0 and G1. Each gadget is organized into three rows, each row encoding
a different partitioning of the strings bbbb, eeee, 0000, 1111. This ensures that, when combining
these gadgets in Figure 3, edges can be controlled to go within the same row, or to the row below.

We note that not all MSAs admit a segmentation leading to a (semi-)repeat-free EFG,
e.g. an alignment with rows -A and AA. However, our algorithms detect such cases, thus one
can build an EFG consisting of just one block with the rows of the MSA (with gaps removed).
Such EFGs can be indexed using standard string data structures to support efficient queries.

3 Conditional Hardness of Indexing EFGs

We show a reduction from Orthogonal Vectors (OV) to the problem of matching a query
string in an EFG, continuing the line of research conducted on many related (degenerate)
string problems [19, 10, 2, 16]. The OV problem is to find out if there exist x ∈ X and y ∈ Y

such that x · y = 0, given two sets X and Y of n binary vectors each. We construct string Q

using X and graph G using Y . Then, we show that Q has a match in G if and only if X and
Y form a “yes”-instance of OV. We condition our results on the following OV hypothesis,
which is implied by the Strong Exponential Time Hypothesis [20].

▶ Definition 5 (Orthogonal Vectors Hypothesis (OVH) [36]). Let X, Y be the two sets of an
OV instance, each containing n binary vectors of length d.1 For any constant ϵ > 0, no
algorithm can solve OV in time O(poly(d)n2−ϵ).

Query String. We build string Q by combining string gadgets Q1, . . . , Qn, one for each
vector in X, plus some additional characters. To build string Qi, first we place four b
characters, then we scan vector xi ∈ X from left to right. For each entry of xi, we place
substring Qi,h consisting of four 0 characters if xi[h] = 0, or four 1 characters if xi[h] = 1.
Finally, we place four e characters. For example, vector xi = 101 results into string

Qi = bbbb Qi,1 Qi,2 Qi,3 eeee, where Qi,1 = 1111, Qi,2 = 0000, Qi,3 = 1111.

Full string Q is then the concatenation Q = bbbbQ1Q2 . . . Qneeee. The reason behind these
specific quantities will be clear when discussing the structure of the graph.

Elastic Founder Graph. We build graph G combining together three different sub-graphs:
GL, GM , GR (for left, middle and right). Our final goal is to build a graph structured in
three logical “rows”. We denote the three rows of GM as GM1, GM2, GM3, respectively. The

1 In this section, keeping in line with the usual notation in the OV problem, we use n to denote the size
of X and Y , instead of the number of columns of the MSA.
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first and the third rows of G, along with subgraphs GL and GR (introduced to allow slack),
can match any vector. The second row matches only sub-patterns encoding vectors that are
orthogonal to the vectors of set Y . The key is to structure the graph such that the pattern
is forced to utilize the second row to obtain a full match. We present the full structure of
the graph in Figure 3, which shows the graph built on top of vector set {100, 011, 010}. In
particular, GM consists of n gadgets Gj

M , one for each vector yj ∈ Y . The key elements of
these sub-graphs are gadgets Gbe, G0 and G1 (see Figure 2), which allow to stack together
multiple instances of strings b4, e4, 14, 04. The overall structure mimics the one by Equi et
al. [10], except for the new idea from Figure 2.

Detailed structure of the graph. Sub-graph GL (Figure 3a) consists of a starting segment
with a single node labeled b4, followed by n−1 sub-graphs G1

L, . . . , Gn−1
L , in this order. Each

Gi
L has d + 2 segments, and is obtained as follows. First, we place a segment containing only

one node with label b4, then we place d other segments, each one containing two nodes with
labels 14 and 04. Finally, we place a segment containing two nodes with labels b4 and e4.

The nodes in each segment are connected to all nodes in the next segment, with the
exception of the last segment of each Gi

L: in this case, the node with label 14 and the one
with label 04 are connected only to the e4-node of the next (and last) segment of such Gi

L.
Sub-graph GR (Figure 3c) is similar to sub-graph GL, and it consists in n− 1 parts

G1
R, . . . , Gn−1

R , followed by a segment with a single node labeled e4. Part Gi
R has d + 2

segments, and is constructed almost identically to Gi
L. The differences are that, in the first

segment of Gi
R, we place two nodes labeled b4 and e4, while in the last segment we place

only one node, which we label e4.
As in GL, the nodes in each segment are connected to all nodes in the next segment,

with the exception of the first segment of each Gi
R: in this case, the node labeled e4 has no

outgoing edge.
Sub-graph GM (Figure 3b) implements the main logic of the reduction, and it uses three

building blocks, Gbe, G0 and G1, which are organized in three rows, as shown in Figure 2.
Sub-graph GM has n parts, G1

M , . . . , Gn
M , one for each of the vectors y1, . . . , yn in set

Y . Each Gj
M is constructed, from left to right, as follows. First, we place a Gbe gadget.

Then, we scan vector yj from left to right and, for each position h ∈ {1, . . . , d}, we place a
G0 gadget if the h-th entry is yj [h] = 0, or a G1 if yj [h] = 1. Finally, we place another Gbe

gadget.
For the edges, we first consider each gadget Gj

M separately. Let Gh and Gh+1, be the
gadgets encoding yj [h] and yj [h + 1], respectively. We fully connect the nodes of Gh to the
nodes of Gh+1 row by row, respecting the structure of the segments. Then we connect, row
by row, the b-nodes of the left Gbe to the leftmost Gh, which encodes yj [1], and the nodes of
the rightmost Gh, which encodes yj [d], to the e-nodes of the right Gbe, again row by row.
We repeat the same placement of the edges for every vector Gh, Gh+1, 1 ≤ h ≤ d− 1; this
construction is shown in Figure 3b.

To conclude the construction of GM , we need to connect all the Gj
M gadgets together.

Consider the right Gbe of gadget Gj
M , and the left Gbe of gadget Gj+1

M . The edges connecting
these two gadgets are depicted in Figure 3b, which shows that following a path we can either
remain in the same row or move to the row below, but we cannot move to the row above.
Moreover, sub-pattern b8 can be matched only in the first and second row, while sub-pattern
e8 only in the second and third rows.

In proving the correctness of the reduction, we will refer to graphs GM1, GM2 and
GM3 as the sub-graphs of GM consisting of only the nodes and edges of the first, second
and third row, respectively. Formally, for t ∈ {1, 2, 3}, VMt ⊂ V VMt ⊂ V is the set of
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(a) Sub-graph GL. The last segment belongs to sub-graph GM and shows the connection.
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(b) Sub-graph GM for vectors y1 = 100, y2 = 011 and y3 = 010. The dashed rectangles highlight the
single Gj

M gadgets.
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(c) Sub-graph GR. The first segment belongs to sub-graph GM and shows the connection.

Figure 3 An example of graph G. To visualize the entire graph, watch the three sub-figures from
top to bottom and from left to right. We also show two example occurrences of a query string Q

constructed from x1 = 101, x2 = 110, x3 = 100 (left-most), and from x1 = 101, x2 = 100, x3 = 110
(right-most), respectively. We highlight each Qi with a different color. Any such occurrence must
pass through the middle row of GM .

nodes placed in the t-th row of each Gbe, G0 or G1 gadget belonging to sub-graph GM , and
EMt = {(v, w) ∈ E | v, w ∈ VMt}. Thus, GMt = (VMt, EMt). We will use the notation Gj

M2
to refer to the nodes belonging to both Gj

M and GM2, excluding the ones in GM1 and GM3,
and the edges connecting them.

Final graph G is obtained by combining sub-graphs GL, GM and GR. To this end, we
connect the nodes in the last segment of GL with the b-nodes in the first and second row
of the left Gbe gadget of G1

M . Finally, we connect the e-nodes in the second and third row
of the right Gbe gadget of Gn

M with both the b4-node and e4-node in the first segment of
GR. Figures 3a, 3b and 3c can be visualized together, in this order, as one big picture of
final graph G. In Figures 3a and 3c we placed the adjacent segment of GM to show the
connection.

OVH Conditional Hardness. The proof of correctness is similar to the one by Equi et
al. [10], but with adaptations to the elastic founder graph. The following technical lemma
(whose proof is deferred to the full version of this paper) summarizes the structure of the
possible matches of Q inside G. In it, we use the notation Gj

M2 to indicate the nodes and
edges that belong to the second row of Gj

M .
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▶ Lemma 6.
If string Qi has a match in GM2, then the path matching Qi is fully contained in Gj

M2,
for some 1 ≤ j ≤ n. Moreover, each Qi,h substring matches a path of two nodes which
belong to the G0 or G1 gadget encoding yj [h].
String Qi has a match in GM2 if and only if there exist yj ∈ Y such that xi · yj = 0.
String Q has a match in G if and only if a substring Qi of Q has a match in the underlying
sub-graph GM2 of GM .

Our first lower bound is on matching a query string in an EFG without indexing.

▶ Theorem 7. For any constant ϵ > 0, it is not possible to find a match for a query string Q

into an EFG G = (V, E, ℓ) in either O(|E|1−ϵ |Q|) or O(|E| |Q|1−ϵ) time, unless OVH fails.
This holds even if restricted to an alphabet of size 4.

Proof sketch. First, Lemma 6 guarantees that string Q has a match in G if and only if there
exist orthogonal vectors xi ∈ X and yj ∈ Y . Second, it is easy to check that the reduction
requires linear time and space in the size O(nd) of the OV problem. Third, if we find a match
for Q in G in O(|E|1−ϵ|Q|) or O(|E| |Q|1−ϵ) time, then we can decide if there is a pair of
orthogonal vectors in O(nd · (nd)1−ϵ) = O(n2−ϵpoly(d)) time, contradicting OVH. ◀

We obtain the indexing lower bound by proving that the above reduction is a linear
independent-components (lic) reduction, as defined by [11, Definition 3].

▶ Theorem 8. For any α, β, δ > 0 such that β + δ < 2, there is no algorithm preprocessing
an EFG G = (V, E, ℓ) in time O(|E|α) such that for any query string Q we can find a match
for Q in G in time O(|Q|+ |E|δ|Q|β), unless OVH is false. This holds even if restricted to
an alphabet of size 4.

Proof. It is enough to notice that the reduction from OV that we presented is a lic reduction.
Namely, (1) the reduction is correct and can be performed in linear time and space O(nd)
(recall the proof of Theorem 7), and (2) query string |Q| is defined using only vector set X

and it is independent from vector set Y , while elastic founder graph G is built using only
vector set Y and it is independent from vector set X. Hence, Corollary 1 in [11] can be
applied, proving our thesis. ◀

4 Indexing (Semi-)Repeat-Free EFGs

Since indexing a general EFG is hard, we turn our attention to repeat-free and semi-repeat-free
EFGs. We show in this section that such EFGs are easy to index.

Let G = (V, E) be a (semi-)repeat-free founder/block graph. We show that it is sufficient
to build an index on a string formed by concatenating labels of neighboring nodes. Namely,
consider string D =

∏
i∈{1,2,...,b}

∏
v∈V i,(v,w)∈E ℓ(w)−1ℓ(v)−10, where X−1 is the reverse

xmxm−1 · · ·x1 of string X = x1x2 · · ·xm. The key feature requiring this reversed direction is
that the lexicographic ranges of suffixes of D starting with ℓ(v)−1 for each v ∈ V are distinct;
this would not (on all inputs) hold on suffixes starting with ℓ(v) in a forward concatenation
if ℓ(v) is a prefix of some ℓ(u), as it can be in the semi-repeat-free case.

As the reader can easily verify, the expanded backward search [23] developed for the case
of gapless MSAs applied on D (in place of the forward concatenation therein) works also for
repeat-free founder/block graphs; the feature of having variable-length of strings in a block
is not used in the correctness analysis. In the following, we give an alternative solution for
the semi-repeat-free case using suffix trees.
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Let us consider a solution based on the descending suffix walk. This search can be
supported e.g. by any (compressed) suffix tree [12, 33]. In the following, we assume the
reader is familiar with the basic notions on suffix tree [22, Chapter 8]. Consider searching
query Q[1..q] from right to left from the suffix tree of D. Consider finding a match for
Q[j..q], but there is no branch with Q[j − 1]. If there is a branch with 0, there may be j′

such that Q[j..j′] is a label of some node v of the semi-repeat-free EFG, for some j′ ≤ q.
To find such j′ (or to find out it does not exist), we can then take suffix links to reach the
locus corresponding to Q[j..j′], and continue the search with Q[1..j′ − 1]. This process is
repeated until Q is found, or, if one cannot proceed, Q does not occur in G. For this to work,
we need to have marked all loci of the suffix tree reached by ℓ(v)−1 for all nodes v of the
semi-repeat-free EFG. We stop taking suffix links when reaching a marked loci.

▶ Theorem 9. A (semi-)repeat-free founder/block graph G = (V, E) or a (semi-)repeat-free
elastic degenerate string can be indexed in polynomial time into a data structure occupying
O(|D| log |D|) bits of space, where |D| = O(L|E|) and L is the maximum length of a node
label. Later, one can find out in O(|Q|) time if a given query string Q occurs in G.

Proof. Consider the approach above. If and only if Q is reported to be found, there is a
path in G that spells Q: If Q is found without taking any suffix links, it is a substring of D

and thus a substring of a concatenation of labels of two neighboring nodes of G. Otherwise,
suffix Q[j..q] is a prefix of a path starting with ℓ(w) = Q[j..j′] for some w ∈ V . Since ℓ(w)−1

occurs in D only when followed by 0 or ℓ(v)−1 for (v, w) ∈ E, the search continues only on
the in-neighbors of w. If Q is found before taking suffix links again, Q[1..j − 1] is a suffix of
ℓ(v) for some v such that (v, w) ∈ E, and thus there is a path in G spelling Q. Otherwise,
suffix Q[k..q] is a prefix of a path starting with ℓ(v)ℓ(w), for some k ≤ j − 1. Continuing
this shows that the claim is correct.

Clearly, the length of D is bounded by O(L|E|). Construction of suffix tree on D can be
done in linear time [12]. In polynomial time, the nodes of the suffix tree can be preprocessed
with perfect hash functions, such that following a downward path takes constant time per
step. Following a suffix link takes amortized constant time. ◀

Observe that |D| ≤ 2mn, where m and n are the number of rows and number of columns,
respectively, in the MSA from where the elastic founder graph is induced. That is, the index
size is linear in the (original) input size. We also note that the index can be modified to
report only matches that are (gap-oblivious) substrings of the MSA rows: Short patterns
spanning only one edge are already such. Longer patterns can have only one occurrence
in G, and it suffices to verify them with a regular string index on the MSA. Such modified
scheme makes the approach functionality equivalent with wide range of indexes designed for
repetitive collections [24, 29, 30, 28, 27, 14, 15] and shares the benefit of alignment-based
indexes of Na et al. [29, 30, 28, 27] in reporting the aligned matches only once, where e.g.
r-index [15] needs to report all occurrences.

Using compressed suffix trees, different space-time tradeoffs can be achieved. We develop
an alternative compressed indexing scheme in Section 6 using Wheeler graphs.

5 Construction of (Semi-)Repeat-Free EFGs

Now that we have seen that (semi-)repeat-free EFGs are easy to index, it remains to consider
their construction.

Consider a segmentation S = S1, S2, . . . , Sb that induces an EFG G(S) = (V, E). We call
such a segmentation (semi-)repeat-free or simply valid, if the resulting EFG is (semi-)repeat-
free. A segment MSA[1..m, xk..yk] corresponding to block Sk = spell(MSA[1..m, xk..yk]) of
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such (semi-)repeat-free S is then analogously called a (semi-)repeat-free segment. In an
earlier work on gapless MSAs [23], it was observed that a sufficient and necessary condition to
check if a segment MSA[1..m, xk..yk] is repeat-free is to check that no string MSA[i, xk..yk],
1 ≤ i ≤ m, occurs elsewhere in the MSA except at MSA[i′, xk..yk], for some 1 ≤ i′ ≤ m. Let
us refine this condition with gaps. We say that segment MSA[1..m, xk..yk] is repeat-free
(semi-repeat-free) if no string spell(MSA[i, xk..yk]), 1 ≤ i ≤ m, occurs elsewhere in the
MSA except at (as a prefix of, respectively) spell(MSA[i′, 1..n])[g(i′, xk)..g(i′, yk)], for some
1 ≤ i′ ≤ m, where g(i′, j) is j subtracted with the number of gaps at row i′ of MSA up to
column j. The earlier arguments [23, Sect. 5.1] carry over to showing that these are sufficient
and necessary conditions for inducing a repeat-free and semi-repeat-free EFGs, respectively.

We consider three score functions for the valid segmentations, one maximizing the number
of blocks, one minimizing the maximum width of a block, and one minimizing the maximum
length of a block. The latter two have been studied earlier without the (semi-)repeat-free
constraint, and non-trivial linear time solutions have been found [31, 8], while the first score
function makes sense only with this new constraint.

Let s(j′) be the optimal score of a semi-repeat-free segmentation S1, S2, . . . , Sb of prefix
MSA[1..m, 1..j′] for a selected scoring scheme. Then

s(j) =
⊕

j′ : 0 ≤ j′ < j,

MSA[1..m, j′ + 1..j] is semi-repeat-free segment

w(s(j′), j′, j), (1)

gives the optimal score of a semi-repeat-free segmentation S1, S2, . . . , Sb, Sb+1 of MSA[1..m,

1..j], where
⊕

is an operator depending on the scoring scheme and w(x, j′, j) is a function
on the score x of the segmentation of S1, S2, . . . , Sb and on the last block Sb+1 corresponding
to MSA[1..m, j′ + 1..j]. To fix this recurrence so that s(n) equals the maximum number of
blocks over valid segmentations of MSA[1..m, 1..n], set

⊕
= max and w(x, j′, j) = x + 1.

For initialization, set s(j) = 0. Moreover, when there is no valid segmentation for some
j, set s(j) = −∞. To fix this recurrence so that s(n) equals the minimum of maximum
widths of blocks over valid segmentations of MSA[1..m, 1..n], set

⊕
= min and w(x, j′, j) =

max(x, |{spell(MSA[i, j′ + 1..j]) | 1 ≤ i ≤ m}|). For initialization, set s(j) = 0. Moreover,
when there is no valid segmentation for some j, s(j) = ∞. Finally, to fix this recurrence
so that s(n) equals the minimum of maximum length of blocks over valid segmentations of
MSA[1..m, 1..n], set

⊕
= min and w(x, j′, j) = max(x, j− j′). For initialization, set s(j) = 0.

Moreover, when there is no valid segmentation for some j, set s(j) =∞.
The recurrence fixed for the latter case can be solved in O(mn) time when the input is a

gapless MSA [23]. However, gaps affect most of the more involved techniques [23, 31, 8], so
that we only know of a rather straightforward solution working in O(mn2 log m) time for
this general case with gaps, for all three score functions and also for the repeat-free case
(explicit proof omitted here, but the techniques developed later in this paper are sufficient
for deriving such result). In what follows, we develop a different approach that works in
O(mn log m) time for the first and the last score function in the semi-repeat-free case. We
leave it as an open question to obtain a faster algorithm for the second score function, and
for the repeat-free case. We start with a simple observation:

▶ Observation 10. If segment MSA[1..m, j + 1..f(j)] is semi-repeat-free, then segment
MSA[1..m, j + 1..j′] is semi-repeat-free for all j′ such that f(j) < j′ ≤ n.

Our goal is to compute for each j the smallest integer f(j) such that MSA[1..m, j +1..f(j)]
is a semi-repeat-free segment. These values can then be used for efficient evaluation of Eq. (1).
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....GC-AGTA

....AC-AGTA

.GC.AC-AGTA

....G-CAGTA

....AC-AGTA

....ACAAGTA

....AG-AGTA

....AC-AGTA

j f( j)

ACA

A
GCAAGA

GC

Figure 4 Illustrating the O(m log m) time algorithm to compute value f(j) for a given j. Node
labels correspond to the string spelled from the root to the node. We assume ACA, AGA, and GCA
only appear in the region of the MSA visualized, while GC and A appear also elsewhere.

▶ Lemma 11. Let f(j) be the smallest integer such that MSA[1..m, j + 1..f(j)] is a semi-
repeat-free segment. We can compute all values f(j) in O(mn log m) time.

Proof sketch. Full proof is deferred to the full version of this paper. Here we explain the
algorithm through the example of Fig. 4. We build a compact trie on the suffixes of the
concatenation of MSA rows with gaps removed and special markers added between rows,
that is, a generalized suffix tree [22, Chapter 8] on set {spell(MSA[i, 1..n]) | 1 ≤ i ≤ m}.
For each column j, locate the subset W of (implicit) suffix tree nodes corresponding to
{spell(MSA[i, j + 1..n]) | 1 ≤ i ≤ m}; these are the colored nodes in Fig. 4. If the number
of leaves covered by the subtrees rooted at W is greater than m, f(j) remains undefined.
Otherwise, we know that f(j) ≤ n, and our aim is to decrease the right boundary, starting
with n, until we have reached column f(j). The algorithm picks an arbitrary node in W and
tries to replace it with its parent. This replacement is safe, if the new subtree covers only
leaves already covered by W . Safe replacements are continued as long as possible; these are
the black nodes in Fig. 4, while the gray nodes are unsafe replacements. These replacements
place the rows into equivalence classes, each sharing the identified common prefix. For row
i in an equivalence class with common prefix length k, one can then locate the smallest
column f i(j) with |spell(MSA[i, j + 1..f i(j)]| = k. E.g. for row i = 2 in Fig. 4, we have
f2(j) = j + 3, as |spell(AC− A)| = 3 = |ACA|. Finally, f(j) = maxi:1≤i≤m f i(j). At each
column, at most m replacements are required and each replacement can be done in O(log m)
time, by maintaining the non-overlapping lexicographic intervals corresponding to the suffix
tree nodes in a balanced search tree. ◀

Using these precomputed f(j) values, Algorithms 1 and 2 compute the scores of an
optimal semi-repeat-free segmentation under the maximum number of blocks score and
minimum of maximum block length score, respectively.

▶ Theorem 12. After an O(mn log m) time preprocessing, Algorithms 1 and 2 compute the
scores maxblocks(n) = b and minmaxlength(n) = max

i:1≤i≤b
L(Si) of optimal semi-repeat-free

segmentations S1, S2, . . . , Sb of MSA[1..m, 1..n] in O(n) and O(n log log n) time, respectively.

Proof sketch. Regarding running time, Algorithm 1 and Algorithm 2 clearly take O(n) and
O(n log n) time, respectively, when implemented as described in their pseudo-codes. The
correctness for Algorithm 1 follows from the fact that when computing the score at column
j, all earlier segmentations that are safe to be extended with a new segment ending at j are
considered. This argument can be formalized analogously for Algorithm 2, whose detailed
proof of correctness, as well as running time improvement to O(n log log n) (by using a more
efficient data structure for semi-infinite range queries) are given in the full version of this
paper. ◀
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Algorithm 1 An O(n) time algorithm for finding an optimal semi-repeat-free segmentation
maximizing the number of blocks.

Input: Right-extensions (j, f(j)) sorted from smallest to largest order by second
component: (j1, f(j1)), (j2, f(j2)), . . . , (jn−J , f(jn−J)), where J is such that
f(jn−J+1), f(jn−J+2), . . . , f(jn) are not defined.

Output: Score of an optimal semi-repeat-free segmentation maximizing the number
of blocks.

1 x← 1; maxblocks(0)← 0; maxblocks(j) = maxscore = −∞ for all 0 < j ≤ n;
2 for j ← 1 to n do
3 while j = f(jx) do
4 maxscore← max(maxscore, maxblocks(jx));
5 x← x + 1;
6 maxblocks(j)← maxscore + 1;
7 return maxblocks(n);

Algorithm 2 An O(n log n) time algorithm for finding an optimal semi-repeat-free
segmentation minimizing the maximum segment length. Minimization over an empty set is
assumed to return ∞. Operation Upgrade(k, v) sets key k to value v if the previous value is
larger. Operation RangeMin(a, b) returns the smallest value associated with keys in range
[a..b]. Both operations can be supported in O(log n) time with standard balanced search
trees.

Input: Right-extensions (j, f(j)) sorted from smallest to largest order by second
component: (j1, f(j1)), (j2, f(j2)), . . . , (jn−J , f(jn−J)), where J is such that
f(jn−J+1), f(jn−J+2), . . . , f(jn) are not defined.

Output: Score of an optimal semi-repeat-free segmentation minimizing the
maximum segment length.

1 Initialize one-dimensional search trees T and I with keys 0, 1, 2, . . . , 2n, with all keys
associated with values ∞;

2 x← 1;
3 minmaxlength(0)← 0;
4 for j ← 1 to n do
5 while j = f(jx) do
6 T .Upgrade(jx + minmaxlength(jx), minmaxlength(jx));
7 I.Upgrade(jx + minmaxlength(jx),−jx);
8 x← x + 1;
9 minmaxlength(j)← min(T .RangeMin(j + 1,∞), I.RangeMin(−∞, j) + j);

10 return minmaxlength(n);
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6 Connection to Wheeler Graphs

Wheeler graphs, also known as Wheeler automata, are a class of labeled graphs that admit
an efficient index for path queries [13]. We now give an alternative way to index repeat-free
elastic block graphs by transforming the graph into an equivalent Wheeler automaton.

We view a block graph as a nondeterministic finite automaton (NFA) by adding a new
initial state and edges from the source node to the starts of the first block, and expanding
each string of each block to a path of states. To conform with automata notions, we define
that the label of an edge is the label of the destination node.

We denote the repeat-free NFA with F . First we determinize it with the standard subset
construction for the reachable subsets of states. The states of the DFA are subsets of states
of the NFA such that there is an edge from subset S1 to subset S2 with label c iff S2 is
the set of states at the destinations of edges labeled with c from S1. We only represent the
subsets of states reachable from the subset containing only the initial state. We call the
deterministic graph G. See Figures 5 and 6 for an example.

A DFA is indexable as a Wheeler graph if there exists an order < on the nodes such
that if u < v, then every incoming path label to u is colexicographically smaller than every
incoming path label to v (recall that the colexicographic order of strings is the lexicographic
order of the reverses of the strings). The repeat-free property guarantees that the nodes at
the ends of the blocks can be ordered among themselves by picking an arbitrary incoming
path as the sorting key.

To make sure that the rest of the nodes are sortable, we modify the graph so that if a
node is not at the end of a block, we make it so that the incoming paths to the node do not
branch backward before the backward path reaches the end of a previous block. This is done
by turning each block into a set of disjoint trees, where the roots of the trees are the ending
nodes of the previous block, in a way that preserves the language of the automaton. The
roots may have multiple incoming edges from the leaves of the previous tree. See Figure 7
for an example. The formal definition of the transformation and the proof of sortability are
deferred to the full version of this paper. We denote the transformed graph with G′ and
obtain the following result:

▶ Lemma 13. The number of nodes in G′ is at most O(NW ), where W is the maximum
number of strings in a block of F and N is the total number of nodes in F .

The Wheeler order < of the transformed graph can be found by running the XBWT
sorting algorithm on a spanning tree of the graph, as shown by Alanko et al. [1]. Finally,
we can find the minimum equivalent Wheeler graph by running the general Wheeler graph
minimization algorithm of Alanko et al. [1].

With the input graph now converted into a Wheeler graph, one can deploy succinct data
structures supporting fast pattern matching [13, Lemma 4], leading to the following result:

▶ Corollary 14. A repeat-free founder/block graph G or a repeat-free elastic degenerate
string can be indexed in O(NW ) time into a Wheeler-graph-based data structure occupying
O(NW log |Σ|) bits of space, where N is the total number of characters in the node labels of
G, W is the width of G (maximum number of strings in a block of G), and Σ is the alphabet.
Later, using the data structure, one can find out in O(|Q| log |Σ|) time if a given query string
Q occurs in G.
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Figure 5 Repeat-free block NFA. The last columns of each block are highlighted.
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Figure 6 The DFA resulting from the subset construction for the NFA in Figure 5. The numbers
above the nodes specify the subset of NFA states corresponding to the DFA state.
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Figure 7 The Wheeler DFA resulting from running our Wheeler expansion algorithm on the DFA
in Figure 6.

7 Discussion

There are many options how to optimize among the valid segmentations [31, 8]. We studied
some of these here under the (semi-)repeat-free indexability constraint, but left open how
to e.g. minimize the maximum number of distinct strings in a segment (i.e. width of the
graph) [31], or how to control the over-expressiveness of the graph, in this context.

Other open problems include strengthening the conditional indexing lower bound to cover
non-elastic founder graphs, and improving the running time for constructing (semi-)repeat-free
elastic founder graphs.

We focused on the theoretical aspects of indexable founder graphs. Our preliminary ex-
periments [23] show that the approach works well in practice on multiple sequence alignments
without gaps. In our future work, we will focus on making the approach practical also in the
general case.
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Abstract
A natural way of increasing our understanding of NP-complete graph problems is to restrict the input
to a special graph class. Classes of H-free graphs, that is, graphs that do not contain some graph H

as an induced subgraph, have proven to be an ideal testbed for such a complexity study. However, if
the forbidden graph H contains a cycle or claw, then these problems often stay NP-complete. A
recent complexity study (MFCS 2019) on the k-Colouring problem shows that we may still obtain
tractable results if we also bound the diameter of the H-free input graph. We continue this line
of research by initiating a complexity study on the impact of bounding the diameter for a variety
of classical vertex partitioning problems restricted to H-free graphs. We prove that bounding the
diameter does not help for Independent Set, but leads to new tractable cases for problems closely
related to 3-Colouring. That is, we show that Near-Bipartiteness, Independent Feedback
Vertex Set, Independent Odd Cycle Transversal, Acyclic 3-Colouring and Star 3-
Colouring are all polynomial-time solvable for chair-free graphs of bounded diameter. To obtain
these results we exploit a new structural property of 3-colourable chair-free graphs.
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1 Introduction

Many well-known graph problems are NP-complete in general but become polynomial-time
solvable under input restrictions. We focus on problems that partition the vertex set V of
a graph G into sets V1, . . . , Vk such that each Vi satisfies some property πi and where V1
might have the extra condition of being large or being small. For instance, the k-Colouring
problem is to decide if V can be partitioned into sets V1, . . . , Vk, called colour classes, such
that each Vi is an independent set. To give another example, the Independent Set problem
is to decide if V can be partitioned into sets V1 and V2 where V1 is independent and |V1| ≥ p

for some given integer p. Our underlying goal is to understand which graph properties ensure
tractability of these problems and which properties cause the computational hardness. In
the literature, input is restricted in various ways. In particular, hereditary graph classes have
been considered.

Hereditary graph classes are the classes of graphs closed under vertex deletion. They form
a natural and rich framework that cover many well-known graph classes (see, for example, [7]).
Moreover, they enable a systematic study on the computational complexity of graph problems
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21:2 Partitioning H-Free Graphs of Bounded Diameter

under input restrictions. The reason is that a graph class G is hereditary if and only if G can
be characterized by a set FG of forbidden induced subgraphs; we also say that G is FG-free. A
natural starting point for a systematic study is the case where FG has size 1, say FG = {H}
for some graph H. In this case the graphs in G are said to be H-free. In other words, no
graph G ∈ G can be modified into H by a sequence of vertex deletions.

In the literature, there are extensive studies on H-free graphs; for example, on bull-free
graphs [11] and claw-free graphs [12, 17]. There also exist several surveys on graph problems
or graph parameters for hereditary graph classes that are characterized by a small set of
forbidden induced subgraphs, for example, on Colouring [16, 27] and clique-width [13].

A well-known dichotomy on Colouring restricted to H-free graphs is due to Král’,
Kratochvíl, Tuza, and Woeginger [19]. Namely, Colouring on H-free graphs is polynomial-
time solvable if H is an induced subgraph of P4 (the 4-vertex path) or of P1 + P3 (the disjoint
union of P1 and P3) and it is NP-complete otherwise. Recently, similar but almost-complete
dichotomies (up to one missing case each) were established for Acyclic Colouring, Star
Colouring and Injective Colouring [4]. In particular, all these problems stay NP-
complete if the forbidden induced subgraph H has a cycle or claw (the 4-vertex star K1,3).
Moreover, the latter holds even if the number of colours k is fixed, i.e., not part of the input.

Several other vertex partitioning problems on H-free graphs stay NP-complete as well
if H has a cycle or claw. Examples of such problems include (Independent) Feedback
Vertex Set [6, 23, 26], (Independent) Odd Cycle Transversal [6, 10] and Even
Cycle Transversal [24]. Hence, for all these problems, if H is a cycle or claw, then we
need to add more structure to the class of input graphs in order to find tractable results for
H-free graphs. One way of doing this is to bound the diameter of the input graph G for
some problem. Our research question then becomes:
Does bounding the diameter of an H-free graph lead to new tractability results?
We note that graph classes of diameter at most d are hereditary if and only if d ≤ 1. Many
graph problems, such as Colouring, Acyclic Colouring, Star Colouring, Clique
and Independent Set stay NP-complete even for graphs of diameter 2. The reason is that
we can take an arbitrary graph G from such a problem and add a dominating vertex: the
graph G is a yes-instance if and only if the new graph G′ is a yes-instance.

This approach of adding a dominating vertex does not work if we consider 3-Colouring.
Mertzios and Spirakis [22] proved in a highly nontrivial way that 3-Colouring is NP-complete
even for triangle-free graphs of diameter at most 3. However, determining the complexity of
3-Colouring for graphs of diameter 2 is a notoriously open problem (see [3, 9, 20, 22, 25]);
we refer to [22] and [14] for subexponential-time algorithms for List 3-Colouring on graphs
of diameter at most 2. It is also known that Acyclic 3-Colouring and Star Colouring,
restricted to graphs of diameter at most d, are polynomial-time solvable if d = 2 or d = 3,
respectively, but NP-complete if d = 5 or d = 8, respectively [8]. Moreover, the related
problems Near Bipartiteness and Independent Feedback Vertex Set, which we
define below, are polynomial-time solvable for d = 2 but NP-complete for d = 3 [5]. These
results also show that bounding the diameter on its own (without forbidding any induced
graph H) does not suffice.

We refer to [20, 21] for a number of results on 3-Colouring and List 3-Colouring for
H-free graphs of bounded diameter, where H is a cycle or a polyad, which is a tree where
exactly one vertex has degree at least 3 (polyads are also known as subdivided stars). One
crucial observation in [20], based on an application of Ramsey’s Theorem, was the starting
point of this investigation: for all integers d, k, the k-Colouring problem is constant-time
solvable on claw-free graphs of diameter at most d. In the same paper [20], this result was
generalized to the case where H is the chair, which is the graph obtained from the claw after
subdividing exactly one of its edges. The chair is also known as the fork.
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Our Results. We first consider the Independent Set problem. For this problem we will
prove new NP-hardness results that show that bounding the diameter does not help. To
explain this, let the graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, be the subdivided claw, which is the
tree with one vertex x of degree 3 and exactly three leaves, which are at distance h, i and j

from x, respectively. Note that S1,1,1 is the claw K1,3, the graph S1,1,2 is the chair and that
every subdivided claw is a polyad. Let S be the set of graphs, each connected component
of which is a subdivided claw or a path. Alekseev [1] proved that for every finite set of
graphs F , if no graph from F belongs to S, then Independent Set is NP-complete for the
class of F -free graphs. In Section 2, we show that exactly the same NP-completeness result
holds for the class of F -free graphs of diameter 2 if and only if |F| = 1.

We then turn to the class of H-free graphs where H is a polyad. First, we focus on the case
where H is the chair. In Section 3, we prove that for every integer d ≥ 1, a number of vertex
partitioning problems that require yes-instances to be 3-colourable become polynomial-time
solvable on chair-free graphs of diameter at most d. The problems are Acyclic 3-Colouring,
Star 3-Colouring, Near-Bipartiteness, Independent Feedback Vertex Set and
Independent Odd Cycle Transversal. We define these problems below.

Our proof is based on a common strategy. Namely, we determine the following for every
chair-free 3-colourable non-bipartite input graph G of bounded diameter: either G has a
constant number of 3-colourings or there exists a set S such that G − S has this property.
We prove that we can let S be the set of private neighbours of some vertex u of a triangle on
vertices u, v, w, that is, the vertices of S are adjacent to neither v nor w. We then consider
each constructed 3-colouring c and determine in polynomial time if we can extend c to a
solution for the vertex partitioning problem under consideration.

In Section 4 we prove that there is little hope of a full extension from the chair to
arbitrary polyads H. To be more precise, we prove that for Acyclic 3-Colouring, Star
3-Colouring and Independent Odd Cycle Transversal, there exists a polyad H and
a constant d such that each of these problems is NP-complete for the class of H-free graphs
of diameter at most d. In the same section we give some relevant open problems.

Additional Terminology. A graph is acyclic 3-colourable or star 3-colourable if it is 3-
colourable and every two colour classes induce a forest or a star forest, respectively (in this
context, the P1 and P2 are seen as stars). The corresponding decision problems are Acyclic
3-Colouring and Star 3-Colouring. A graph G is near-bipartite if its vertex set can be
partitioned into an independent set I and a forest F ; we also say that I is an independent
feedback vertex set of G. The problems Near-Bipartiteness and Independent Feedback
Vertex Set are to decide if a graph is near-bipartite or has an independent feedback vertex
set of size at most k for some given integer k. A subset S ⊆ V of a graph G = (V, E) is
an independent odd cycle transversal if S is independent and G − S is bipartite. Note that
a graph is 3-colourable if and only if it has an independent odd cycle transversal. The
Independent Odd Cycle Transversal problem is to decide if a given graph has an
independent odd cycle transversal of size at most k for some given integer k.

Let Cr, Pr and Kr be the cycle, path and complete graph on r vertices. The graph
G + H = (V (G) ∪ V (H), E(G) ∪ E(H)) is the disjoint union of graphs G and H, and sG is
the disjoint union of s copies of G. A graph G is H-free if G is H-free for every H ∈ H.
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21:4 Partitioning H-Free Graphs of Bounded Diameter

2 Independent Set

We let S denote the set of graphs, each connected component of which is either a subdivided
claw or a path. The following well-known result is due to Alekseev.

▶ Theorem 1 ([1]). Let F be a finite set of graphs. If no graph from F belongs to S, then
Independent Set is NP-complete for F-free graphs.

We strengthen Theorem 1 to F -free graphs of diameter 2 if |F| = 1. We need two lemmas.
We sketch the proof of the first lemma.

▶ Lemma 2. For every r ≥ 3, Independent Set is NP-complete for Cr-free graphs of
diameter 2.

Proof. First suppose that r = 3. By Theorem 1, Independent Set is NP-complete for
C3-free graphs. Let (G, k) be an instance of Independent Set, where G is an n-vertex
C3-free graph. We may assume without loss of generality that n ≥ 2 and k ≥ 2; otherwise,
the problem is trivial. We also assume that G has no dominating vertex. Otherwise, if u is a
dominating vertex, then G has an independent set of size at least k ≥ 2 if and only if G − u

has an independent set of size at least k. Hence, by the iterative deletion of universal vertices,
we either solve the problem or obtain an equivalent instance without universal vertices. From
G we now construct a graph G′ as follows:

Construct a copy of G.
For every pair {u, v} of nonadjacent vertices of G,

construct an arbitrary inclusion maximal independent set Iuv of G containing u and v,
construct a vertex xuv and make xuv adjacent to every vertex of Iuv.

Denote by X the set of all vertices xuv constructed for the pairs of nonadjacent u and v.
Construct an independent set of n2 vertices Y and make every vertex of Y adjacent to
every vertex of X.

Observe that for every pair {u, v} of nonadjacent vertices of G, Iuv can be constructed by
the straightforward greedy procedure starting from the set {u, v}. This implies that G can
be constructed in polynomial time. Our construction immediately implies that G′ is triangle
free, because the initial graph G is triangle-free and the neighbourhood of every vertex from
X ∪ Y is an independent set. We claim that the diameter of G′ is at most 2, and moreover
that G has an independent set of size at least k if and only if G′ has an independent set of
size at least k′. Proof details are omitted. ◀

▶ Lemma 3. Independent Set is NP-complete for K1,4-free graphs of diameter 2.

Proof. By Theorem 1, Independent Set is NP-hard for (C3, K1,4)-free graphs. Let (G, k)
be an instance of Independent Set, where G is a (C3, K1,4)-free graph of order n and size
m. We may assume without loss of generality that G is connected. Note that G is subcubic,
that is, has maximum degree at most 3. We may assume without loss of generality that G

has no vertices of degree 1 (as we can pick such vertices to be in the independent set and
remove their neighbours from G until this operation can no longer be applied). To G, we add
for every pair of edges e1 and e2 of G that do not share an end-vertex, a new vertex xe1,e2

and an edge between xe1,e2 and the two end-vertices of both e1 and e2. We also add a new
vertex y and all edges such that {xe1,e2 : e1, e2} ∪ {y} induces a complete subgraph. Let G′

be the resulting graph and let X := {xe1,e2 : e1, e2} ∪ {y}. See also Fig. 1.
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e1 e2 e3 e4

e5

y

Figure 1 The graph G′ in the proof of Lemma 3 if G = C5. The black vertices are those of G

and the white vertices in the middle are xe1e3 , xe2e5 , xe1e4 , xe3e5 , and xe2e4 from left to right.

For a contradiction, assume that there is some induced K1,4 in G′, say z is its centre
vertex and z1, z2, z3, z4 are its leafs. Since NG′(x) can be partitioned into at most 3 cliques
for each x ∈ X, we have z ∈ V (G). Furthermore, since G is subcubic and X is a clique,
X contains at least and at most one vertex of {z1, z2, z3, z4}, respectively. As we see now,
NG(z) ⊆ {z1, z2, z3, z4}. However, each vertex of X that is adjacent to z, has a neighbour in
NG(z), which contradicts our supposition that z is the centre vertex of an induced K1,4.

To show that G′ has diameter 2, first consider an arbitrary vertex u of G. As G is
connected, there is a vertex v ∈ NG(u). As G has minimum degree at least 2 and G is
triangle-free, there are vertices u′ ∈ NG(u) \ {v} and v′ ∈ NG(v) \ {u, u′}. For e1 = uu′ and
e2 = vv′, e1 and e2 do not have a common end-vertex, u, x ∈ NG′ [xe1,e2 ], and distG′(u, x) ≤ 2
for each x ∈ X. Additionally, if w ∈ V (G) \ {u} is a vertex with distG(u, w) ≥ 3, then, since
G is connected, there are edges e3, e4 ∈ E(G) such that u is incident to e3, w is incident to
e4, and the two edges e3, e4 have no common incident vertex. Thus, u, w ∈ NG(xe3,e4) and
so distG′(u, w) ≤ 2. As X is a clique, we conclude that G′ has diameter 2.

We observe that I ∪ {y} is an independent set of size k + 1 in G′ if I is an independent
set of size k in G. Vice versa, given an independent set I ′ of size k + 1 in G′, at most one of
its vertices belongs to Y and I ′ \ X is an independent set of size at least k in G.

The graph G′ can be constructed in time O(m2) and has at most n + m2 vertices. Vice
versa, given an independent set I ′ in G′, the set I ′ \X can be constructed in time O(m2). ◀

We now strengthen Theorem 1, but can only do this for the case where |F| = 1. For example,
if F = {C3, K1,4}, every F -free graph has maximum degree 3. Then every F -free graph with
bounded diameter has constant size. Hence, Independent Set is NP-complete for F-free
graphs by Theorem 1 but constant-time solvable for F -free graphs of bounded diameter.

▶ Theorem 4. Let H be a graph. If H /∈ S, then Independent Set is NP-complete for
H-free graphs of diameter at most 2. If H ∈ S, then Independent Set for H-free graphs
is polynomially equivalent to Independent Set for H-free graphs of diameter at most 2.

Proof. Let H be a graph. First assume that H /∈ S. If H contains an induced cycle Cr for
some r ≥ 3, then the class of H-free graphs contains the class of Cr-free graphs, and we use
Lemma 2. Otherwise H is a forest with either an induced K1,4 or a connected component that
has at least two vertices of degree 3. In the first case, we use Lemma 3. In the second case,
we reduce from Independent Set for H-free graphs, which is NP-complete by Theorem 1.
Let (G, k) be an instance of Independent Set, where G is an H-free graph. We add a
dominating vertex to G to obtain a graph G′. As H has no dominating vertex, G′ is H-free.
We also note that (G, k) and (G′, k) are equivalent instances.
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21:6 Partitioning H-Free Graphs of Bounded Diameter

Now assume that H ∈ S. Any polynomial-time algorithm for Independent Set on H-free
graphs can be used on H-free graphs of diameter 2. As Independent Set is polynomial-
time solvable for K1,3-free graphs [28], we may assume that H /∈ {K1,3, P1, P2, P3}. Any
polynomial-time algorithm for Independent Set on H-free graphs of diameter 2 can be
used on H-free graphs of arbitrary diameter as follows. To the H-free input graph G we
add a dominating vertex. As H ∈ S \ {K1,3, P1, P2, P3}, this yields an H-free graph G′ of
diameter 2. We then observe that G has an independent set of size at least k if and only if
G′ has an independent set of size at least k. ◀

3 Chair-Free Graphs of Bounded Diameter

It follows from Ramsey’s Theorem that every k-colourable K1,r-free graph of diameter at
most d has order bounded by a function in d, k, r; see [20] for a proof of this observation. As
a consequence, every problem that has the property that all its yes-instances are k-colourable
for some constant k is constant-time solvable on K1,r-free graphs of diameter at most d.
We aim to extend the above observation to H-free graphs of bounded diameter when H is
obtained from a star after at least one edge subdivision. In [20], a number of results are given
for 3-Colouring for such graph classes. We consider a variety of problems that require all
the yes-instances to be 3-colourable. We focus on the first interesting case which is where H

is the chair S1,1,2 (recall that the chair is obtained from the claw after subdividing one edge).
We need the following characterization of bipartite chair-free graphs, due to Alekseev. A

complex is a bipartite graph that can be obtained by removing the edges of a possibly empty
matching from a complete bipartite graph.

▶ Theorem 5 ([2]). If G is a connected bipartite chair-free graph, then G is a cycle or a
path or a complex.

It is well-known (cf. [18]) that finding the components of a graph by breadth-first search
takes O(n + m) time. Let p be the number of components of a graph G, n be its order, and
m be its size. Then G is a forest if and only if p = n − m, which implies the following result.

▶ Observation 6. If G is a graph, then we can decide if G is a forest in O(n + m) time.

If T is a tree of order n, then its diameter is at most 2 if and only if its maximum degree
equals n − 1. Therefore, we can decide whether a given graph is a forest each component of
which is of diameter at most 2 in O(n + m) time. When working with vertex labellings, our
findings imply the following observation.

▶ Observation 7. If G is a graph and ℓ is a vertex labelling of G with labels 1, 2, and 3, then
we can decide whether ℓ is a 3-colouring, star 3-colouring, or acyclic 3-colouring of G in
O(n + m) time.

It is also well-known that we can use breadth-first search for deciding whether a given
graph G is bipartite and, if so, we are in a position to determine its parts in the same time.
By this fact, we obtain the following result.

▶ Observation 8. If G is a graph, k is an integer, and ℓ is a vertex labelling of G with labels
1, 2, and 3, then we can decide whether one colour class of ℓ is an independent feedback vertex
set or an independent odd cycle transversal (of size at most k) in O(n + m) time.

To prove our results we need some more terminology. A list assignment of a graph
G is a function L that gives each vertex u ∈ V (G) a (finite) list of admissible colours
L(u) ⊆ {1, 2, . . .}. A colouring c respects L if c(u) ∈ L(u) for every u ∈ V (G). If |L(u)| ≤ 2
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for each u ∈ V (G), then L is a 2-list assignment. The 2-List Colouring problem is to
decide if a graph G with a 2-list assignment L has a colouring that respects L. We use the
following result.

▶ Lemma 9 ([15]). The 2-List Colouring problem is solvable in O(n + m) time on graphs
with n vertices and m edges.

Let G be a graph of diameter d for some d ≥ 1 and S be some set of vertices of G. A
vertex u /∈ S is a private neighbour of a vertex v ∈ S with respect to S if u is adjacent to v

but non-adjacent to any other vertex of S. We let P (v) be the set of private neighbours of v

with respect to S. Let N0 = S and, for i ∈ {1, . . . d}, let Ni be the set of vertices that do
not belong to N0 ∪ N1 ∪ . . . ∪ Ni−1 but do have a neighbour in Ni−1. As G has diameter at
most d, we partition V (G) into the sets N0, N1, . . . , Nd (where some sets might be empty).
We say that we partition V (G) from S. Note that this partitioning takes O(n + m) time by
breadth-first search on the graph G′ which is obtained from G by adding a new vertex u and
all edges from u to every vertex of S.

In [20], it was shown that 3-Colouring is polynomial-time solvable for chair-free graphs
of bounded diameter. The first statement of Theorem 10 below is proven by similar but more
precise arguments. The second statement is a new result that requires new arguments.

▶ Theorem 10. Let d ≥ 1 be an integer and G be a chair-free non-bipartite graph of
diameter d with n vertices and m edges.
1. We can decide whether G is 3-colourable in O(n + m) time.
2. If G is 3-colourable, then we find in O(n + m) time either all 3-colourings of G, or a

triangle xyzx in G with exactly one vertex, say x, that has private neighbours and all
3-colourings of G − P (x) that can be extended to 3-colourings of G. In both cases, we
find at most 39·2d+8 3-colourings.

Proof. We first check in constant time whether G is of order at most 2d + 1. If so, then we
can determine in constant time all 3-colourings of G and these are at most 32d+1. Note that
32d+1 < 39·2d+8. We proceed by assuming that G is of order at least 2d + 2 and claim that
G contains a triangle. We prove this claim by contradiction: assume that G is triangle-free.
As G is not bipartite, there is an odd cycle in G. Let x1x2 . . . xpx1 be a shortest one. As
G is triangle-free and of diameter d, we find 5 ≤ p ≤ 2d + 1, respectively. Moreover, as G

is of order at least 2d + 2, there is some vertex outside this cycle that has a neighbour on
this cycle. Without loss of generality let us assume y with y /∈ {x1, x2, . . . , xp} is adjacent to
x1. As G is triangle-free, y does not have two consecutive neighbours on x1x2 . . . xpx1. As G

is chair-free and y is neither adjacent to x2 nor to xp, we find that y must be adjacent to
x3. We repeat this argument and obtain that y is adjacent to x2q+1 for every 0 ≤ q ≤ ⌊ p

2 ⌋.
In particular y is adjacent to the two consecutive vertices x1 and xp, a contradiction. We
conclude that our assumption is false and that G contains a triangle.

We continue and show that we can compute a triangle, say T , of G in O(n + m) time.
Let u be a vertex of G. We partition V (G) from {u} and note that breadth-first search
computes a breadth-first tree F , that is, F is a spanning tree of G such that each vertex
of Ni has distance i to u in F for any i. As G is not bipartite, there has to be an edge e

and an integer i such that e is incident to two vertices of Ni. We can compute such an edge
that additionally minimizes i in O(n + m) time. By adding this edge to F , we find an odd
cycle C in G. As F is of diameter at most 2d, we find that C has at most 2d + 1 vertices.
Hence, we can determine in constant time a shortest induced odd cycle, say C ′, in G[V (C)].
We check in constant time whether C ′ is a triangle. If not, then C ′ is of order at least 5. As
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21:8 Partitioning H-Free Graphs of Bounded Diameter

G is of order at least 2d + 2, there is a vertex outside C ′ that has a neighbour on C ′. We
compute such a vertex, say y, in O(n + m) time. As shown above, y has two consecutive
neighbours on C ′. As C ′ has at most 2d + 1 vertices, we can find such two vertices, and thus
a triangle in G, in constant time.

Let {x, y, z} be the vertex set of the triangle T . We partition V (G) from V (T ) in O(n+m)
time. We additionally determine all private neighbours of the vertices of T and all vertices of
N1 that are adjacent to all vertices of T in linear time. If there is a vertex of the latter type,
then G is not 3-colourable. Thus, we focus on the case where each vertex of N1 is adjacent
to at most two vertices of T . We compute in linear time the set N∗

1 of all vertices of N1 that
have two neighbours of T . Clearly, S = N1 \ N∗

1 consists of all private neighbours of the
vertices of T , and its computation takes linear time. We proceed by considering G − N1. We
check in linear time if this graph has at most 9 · 2d + 2 vertices.

Let us consider the subcase where G − N1 has at least 9 · 2d + 3 vertices. We claim that
G is not 3-colourable and prove this claim by contradiction: assume that G is 3-colourable.
Hence, G is K4-free. Recall that every vertex of N1 has at most two neighbours on T . Let
i ≥ 1 and u be a vertex of Ni. As G is chair-free, the neighbours of u in Ni+1 form a clique.
As G is K4-free, we obtain that u has at most 2 neighbours in Ni+1. It follows that

3 + 9 · 2d ≤ |N0| + |N2| + |N3| + . . . + |Nd| ≤ 3 + |N2| ·
d∑

i=2
2i−2 < 3 + |N2| · 2d−1.

Hence, |N2| > 18. We let N∗
2 be the neighbours of N∗

1 in N2. Consider the set Nxy of
common neighbours of x and y in N∗

1 . The set Nxy is an independent set as G is K4-free.
Every vertex u ∈ N∗

2 with a neighbour v in Nxy must be adjacent to every vertex in Nxy, as
G is chair-free. For the same reason, no vertex of N∗

1 has two non-adjacent neighbours in N∗
2 .

As G is K4-free, this means that there are at most two vertices in N∗
2 that are adjacent to the

vertices of Nxy. By applying the same reasoning for every other pair of vertices of T , we find
that N∗

2 has size at most 6. Thus, |N2 \ N⋆
2 | > 12. As every vertex of N1 has at most two

neighbours in N2, it follows that |S| > 6. We consider the subcase where at least two vertices,
say x and y, of T have a private neighbour. Assume that x has two non-adjacent private
neighbours u and v in S. Then these three vertices, together with y and a private neighbour
w ∈ S of y induce a chair unless w is adjacent to at least one of u and v. If w is adjacent to
u but not to v, then {u, v, w, x, z} induces a chair. Hence, w is adjacent to both u and v, but
then {u, v, w, y, z} induces a chair. Therefore, the private neighbours of every vertex of T

form a clique. As G is 3-colourable, we find |S| ≤ 6 if at least two vertices of T have private
neighbours. Thus, we obtain that all vertices of S are adjacent to a common vertex, say x,
of T . As G is 3-colourable, we find that G[S] is bipartite. Therefore, we partition S into
two independent sets A and B (one of these two sets might be empty). As G is chair-free
and as A is independent, the vertices of A share the same set of neighbours in N2. Similarly,
the vertices of B share the same set of neighbours in N2. As G is chair-free and K4-free,
the neighbourhood of every vertex of A ∪ B is a clique of size at most 2. We conclude that
the total number of vertices in N2 with a neighbour in S is at most 4, a contradiction as
|N2 \ N∗

2 | > 12. We find that G is not 3-colourable and proceed by assuming that G − N1
has at most 9 · 2d + 2 vertices.

We consider every vertex labelling of G−N1 with labels 1, 2, 3 and determine in O(n+m)
time which ones lead to a 3-colouring of G. We discard those labellings which are not
a 3-colouring of G − N1. Given a 3-colouring of G − N1, each vertex of N∗

1 receives the
remaining available label that is not used for its neighbours of T . Note that this assignment
takes linear time. We discard in O(n + m) time those labellings which do not lead to a
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3-colouring of G − S. Let us take an arbitrary 3-colouring of G − S. We assign lists to the
vertices of G as follows: we set L(u) = {i}, where i is the label of u, if u /∈ S and we set
L(u) = {1, 2, 3} \ {i}, where i is the label of the unique neighbour of u on T , if u ∈ S. Thus,
checking whether a given 3-colouring of G−S leads to a 3-colouring of G takes O(n+m) time
as (G, L) is an instance of 2-List Colouring (cf. Lemma 9). We discard those 3-colouring
of G − S which do not lead to a 3-colouring of G. If no 3-colouring of G − S lead to a
3-colouring of G, then G is not 3-colourable. Hence, we proceed by assuming that at least
one does, and so we find that G is 3-colourable. As there are at most 39·2d+2 vertex labellings
of G − N1, we can determine all 3-colourings of G − S that can be extended to 3-colourings
of G in O(n + m) time, and there are at most 39·2d+2 such colourings of G − S.

If S = ∅, then G − S equals G. We consider the subcase where at least two vertices of T

have a private neighbour. As shown above, the private neighbours of every vertex of T form
a clique. If |S| > 6, which we check in constant time, then G is not 3-colourable. Otherwise,
as we have at most 39·2d+2 3-colourings of G − S, we find at most 39·2d+8 3-colourings of
G and their computation takes O(n + m) time. We finally consider the subcase where all
vertices of S are adjacent to a single vertex, say x, of T . We conclude that S = P (x), which
completes our proof. ◀

We are now in a position to prove our main result of this section.

▶ Theorem 11. If d ≥ 1, then 3-Colouring, Acyclic 3-Colouring, Star 3-Colouring,
Independent Odd Cycle Transversal, Independent Feedback Vertex Set, and
Near-Bipartiteness can be solved in O(n + m) time for chair-free graphs of diameter at
most d.

Proof. Let G be a chair-free graph of diameter at most d with n vertices and m edges. Note
that G is acyclic 3-colourable or star 3-colourable only if G is 3-colourable. Moreover, if I is
an independent set of G for which G − I is a bipartite graph, then G is 3-colourable. Hence,
our problems require all the yes-instances to be 3-colourable. If d = 1, then G is 3-colourable
if and only if G has at most 3 vertices, and so each of our problems can be solved in constant
time. We proceed by assuming d ≥ 2 and check in O(n + m) time whether G is bipartite.

Case 1. G is bipartite.
Note that G is 3-colourable, near-bipartite, and has an independent odd cycle transversal of
size at most k for any integer k. We can determine the parts, say S1 and S2, of G in O(n+m)
time. We may assume without loss of generality that |S1| ≥ |S2|. We check in constant
time whether |S1| + |S2| ≤ max{8, 2d} and if so, then we can solve each of our problems in
constant time. Otherwise, we find that |S1| ≥ 5. As bipartite graphs of maximum degree at
most 2 and diameter at most d are paths or cycles of at most 2d vertices, we find that G has
a vertex of degree at least 3, and so G is a complex by Theorem 5.

We first claim that in the case where G is a complex with |S1| ≥ 5, G is star 3-colourable
if |S2| ≤ 2 and acyclic 3-colourable only if |S2| ≤ 2. Note that this claim completes the
bipartite case for Acyclic 3-Colouring and Star 3-Colouring as we can decide whether
|S2| ≤ 2 or not in constant time and as every star 3-colouring of a graph is acyclic. We prove
our claim as follows: If |S2| ≤ 2, then, for any s ∈ S2, G − s is a forest each component of
which is of diameter at most 2, and thus G is star 3-colourable with colour classes S1, S2 \{s},
and {s}. If |S2| ≥ 3, then let c be an arbitrary 3-colouring of G. By the pigeonhole principle
there exists a colour class X of c that contains at least two vertices of S1, and so X ∩ S2 = ∅.
As |S2| ≥ 3, there are two vertices s2, s′

2 ∈ S2 that are coloured alike. As |S1| ≥ 5, and as s2
and s′

2 are of degree at least |S1| − 1, we find that s2 and s′
2 have at least three common
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neighbours in S1 two of which, say s1 and s′
1, are coloured alike. Hence, s1s2s′

1s′
2s1 is a

bichromatic 4-cycle. We conclude that every 3-colouring of G is not acyclic, which completes
the proof of our claim.

It remains to consider Independent Feedback Vertex Set for complexes with at
least 9 vertices. Let k be an arbitrary integer. We claim that in the case where G is a
complex with |S1| ≥ 5, G has an independent feedback vertex set of size at most k if and
only if k ≥ |S2| − 1. Note that the latter can be decided in linear time. We prove our claim
as follows: If |S2| ≤ 2, then G − s is a forest for any s ∈ S2 and G has an independent
feedback vertex set of size at most k. Hence, we may assume |S2| ≥ 3. Let I be a minimum
independent feedback vertex set in G. Such a set exists as G is bipartite. As S2 \ {s} is
independent and as G[S1 ∪ {s}] is a forest for each vertex s ∈ S2, we find |I| ≤ |S2| − 1. For
the sake of a contradiction, let us assume |I| ≤ |S2| − 2. Hence, any two vertices of S2 \ I

have at least |S1| − 2 common neighbours in S1, and so |I ∩ S1| ≥ |S1| − 3 ≥ 2. Moreover,
I = I ∩ S1 as every vertex of S2 has a neighbour in I ∩ S1 and as I is independent. As I is
an independent feedback vertex set with |I| ≤ |S1| − 2, any two vertices of S1 \ I do not have
two common neighbours in S2 and so |S2| ≤ 3. Hence, 5 ≤ |S1| ≤ |I| + 3 ≤ |S2| + 1 ≤ 4, a
contradiction. As |I| = |S2| − 1, the proof of our claim is complete.

Case 2. G is not bipartite.
Outline. As our problems require all the yes-instances to be 3-colourable, we check first
whether G is 3-colourable. If so, then we compute an induced subgraph H of G and determine
the set C of all its 3-colourings that can be extended to 3-colourings of G. As we compute H

by applying Theorem 10, we find that |C| ≤ 39·2d+8. We then distinguish some subcases. In
some of them we further branch by extending our 3-colourings. However, in some of them we
find that H equals G, and so Observations 7 and 8 imply that our six problems are solvable
in O(n + m) time as C is of constant size. As an implicit step, we apply this finding whenever
H is the whole graph G.

Full Proof. We first apply Theorem 10. We continue by assuming that G is 3-colourable.
In fact, the only remaining case is that where the lemma provides a triangle T on vertex
set {x, y, z}, a vertex x of T that has private neighbours, and the set of all 3-colourings of
G − P (x) that can be extended to 3-colourings of G. Note that we have at most 39·2d+8 such
3-colourings. We partition V (G) from V (T ).

We find that G[P (x)] is bipartite, as G is 3-colourable, but not necessarily connected.
We extend each 3-colouring of G − P (x) that can be extended to a 3-colouring of G to some
vertices of P (x). Let c be an arbitrary 3-colouring of G − P (x) that can be extended to a
3-colouring of G. For i ∈ {0, 1, 2}, we compute in O(n + m) time the set Si of all vertices of
P (x) which have i available colours with respect to c, that is, Si is the set of all vertices of
P (x) which have neighbours in 3 − i colours. As c can be extended to a 3-colouring of G,
we find that S0 is empty. It takes O(n + m) time to determine the available colour of each
vertex in S1. Furthermore, we can extend c by breadth-first search in the same time to the
vertices of those components of G[P (x)] that contain at least one vertex of S1.

Let Sc be the set of vertices that induce those components of G[P (x)] that do not contain
a vertex of S1. Note that Sc can be computed in O(n + m) time and that all neighbours
of all vertices of Sc in V (G) \ Sc are coloured alike. Moreover, every vertex of Sc has its
neighbours in [N(y) ∩ N(z)] ∪ N2 ∪ Sc ∪ {x} by definition. As c can be extended to a
3-colouring of G, we find that our approach leads to a 3-colouring, say c′, of G − Sc. As there
are at most 39·26+2 3-colourings of G − P (x), we find at most 39·26+2 such triples (c, c′, Sc).
Furthermore, for each 3-colouring cs of G − P (x), there exists a triple (cs, cs

′, Scs
) if cs can



C. Brause, P. Golovach, B. Martin, D. Paulusma, and S. Smith 21:11

be extended to a 3-colouring of G. We proceed by considering the case where Sc ≠ ∅ as
otherwise G = G − Sc. We continue by distinguishing on the problems we are considering.
Recall that G is 3-colourable.

Subcase 2.1. Acyclic 3-Colouring and Star 3-Colouring
We check whether for some triple (c, c′, Sc), the 3-colouring c′ of G − Sc that can be extended
to an acyclic 3-colouring or star 3-colouring of G. By this approach, we clearly solve Acyclic
3-Colouring and Star 3-Colouring.

Let (c, c′, Sc) be an arbitrary triple as defined above. Recall that a star 3-colouring of a
graph is acyclic. In time O(n + m), we can determine the components of G[Sc] and check
whether G[Sc] is a forest. If not, then G[Sc ∪ {x}], and thus G, is not acyclic 3-colourable.
We continue and assume that G[Sc] is a forest. We check in O(n + m) time if a vertex of
Sc has a neighbour in N(y) ∩ N(z). If so, say s ∈ Sc is adjacent to v ∈ N(y) ∩ N(z), then
c′ cannot be extended to an acyclic 3-colouring of c as either s and x are coloured alike or
one of {svyxs, svzxs} is a bichromatic 4-cycle. We proceed by assuming that Sc has its
neighbours in N2 ∪ Sc ∪ {x}. As G is chair-free, every two non-adjacent vertices of Sc share
the same neighbours in N2 and, if there exists such a neighbour, then these two vertices have
to be coloured differently to avoid a bichromatic 4-cycle. Therefore, in any acyclic extension
of c′ to G, each of the two colour classes in Sc either has size at most 1 or has no neighbour
in N2. We check in constant time if Sc is of size at most 2. If so, then there are at most 4
possibilities to extend c′ to a 3-colouring of G and for each we apply Observation 7. Hence,
we may assume |Sc| ≥ 3. We check in O(n + m) time if a vertex of Sc has a neighbour in N2.

Let us consider the subcase where s ∈ Sc has a neighbour, say v, in N2. Let Gs be the
component of G[P (x)] that contains s. Note that there are at most two possibilities to extend
c′ to the vertices of Gs. We check in linear time if Sc \ V (Gs) is of size at least 2. If so, say
s1, s2 ∈ Sc \ V (Gs), then v is a neighbour of s, s1, and s2. Thus, xs′

1vs′
2x is a bichromatic

4-cycle for two vertices s′
1 and s′

2 of {s, s1, s2}. We conclude that c′ cannot be extended to
an acyclic 3-colouring of G. Hence, we may assume |Sc \ V (Gs)| ≤ 1, and so there are at
most four possibilities to extend c′ to a 3-colouring of G each of which can be obtained in
O(n + m) time. We apply Observation 7 for each. We proceed by assuming that no vertex of
Sc has a neighbour in N2. In other words, each vertex of Sc has its neighbours in Sc ∪ {x}.

As x is a cut-vertex of G, any extension of c′ to a 3-colouring of G is acyclic if and only
if c′ is acyclic. Hence, we apply Observation 7 on G − Sc and c′ in order to solve Acyclic
3-Colouring.

We now check in O(n + m) time if each component of G[Sc] is of diameter at most 2.
If not, then G[Sc ∪ {x}], and thus G is not star 3-colourable. Let us proceed by assuming
that each component of G[Sc] is of diameter at most 2. We find that every 3-colouring of
G[Sc ∪{x}] is a star 3-colouring. In other words, we can restrict ourselves to those 3-colouring
extensions of c′ to G that assign one colour to all vertices of Sc if Sc is independent, and
an arbitrary 3-colouring extensions of c′ to G if Sc is not independent. Note that we can
check in O(n + m) time whether Sc is independent. We find in both subcases at most two
extensions of c′ to G and apply Observation 7 for each in order to solve Star 3-Colouring.

Subcase 2.2. Independent Odd Cycle Transversal
Let k be an arbitrary integer. We check whether some triple (c, c′, Sc) consists of a 3-
colouring c′ of G − Sc that can be extended to a 3-colouring of G whose one colour class is
an independent odd cycle transversal of size at most k. As all the yes-instances require G to
be 3-colourable, this approach clearly solves Independent Odd Cycle Transversal.
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Let (c, c′, Sc) be an arbitrary triple as defined above. Moreover, let X, Y, Z be the colour
classes of c′ with x ∈ X, y ∈ Y , and z ∈ Z. Clearly, X, Y, and Z can be computed in linear
time. We decide in linear time which of {Y, Z} is of smaller size, say |Y | ≤ |Z|. Recall that all
vertices of Sc have their neighbours in Sc ∪ X. Note that c′ can be extended to a 3-colouring
of G by 2-colourings of G[Sc] on the colours that c′ assigns to y and z, and these are the only
possibilities. We find that the smallest possible colour class of a 3-colouring of G that extends
c′ consists of the vertices either in X or in Y ∪ W , where W is the smallest possible colour
class of a 2-colouring of G[Sc]. As we can compute the components of G[Sc] and its parts in
O(n + m) time, we find W in the same time. Hence, the smallest possible independent odd
cycle transversal of G that is a colour class of an extension of c′ to a 3-colouring of G is of
size min{|X|, |Y ∪ W |}. We can compare the sizes of X and Y ∪ W with k in linear time.

Subcase 2.3. Independent Feedback Vertex Set and Near-Bipartiteness
Let k be an arbitrary integer. We check whether some triple (c, c′, Sc) consists of a 3-
colouring c′ of G − Sc that can be extended to a 3-colouring of G whose one colour class is
an independent feedback vertex set (of size at most k). As all the yes-instances require G to
be 3-colourable, this approach clearly solves Independent Feedback Vertex Set and
Near-Bipartiteness.

Let (c, c′, Sc) be an arbitrary triple as defined above. Moreover, let X, Y, Z be the colour
classes of c′ with x ∈ X, y ∈ Y , and z ∈ Z. Clearly, X, Y, and Z can be computed in linear
time. We check first whether G − X is a forest in O(n + m) time. If so, then we find that
X is an independent feedback vertex set of G and we can determine its size in linear time.
Hence, we proceed by assuming that G − X contains a cycle or |X| > k. As we aim to find
an extension of c′ to a 3-colouring of G whose one colour class is an independent feedback
vertex set (of size at most k), we find that such a set consists of the vertices of Y or of Z,
and the vertices of some set A ⊆ Sc. Recall that all vertices of Sc have their neighbours
in [N(y) ∩ N(z)] ∪ N2 ∪ Sc ∪ {x} and their neighbours in [N(y) ∩ N(z)] ∪ N2 ∪ {x} form
an independent set. Note that c′ can be extended to a 3-colouring of G by 2-colourings
of G[Sc] on the colours that c′ assigns to y and z, and these are the only possibilities. If
G[Sc] is connected, which can be tested in O(n + m) time, then there are at most two such
possibilities, and so we apply Observation 8 for each. We proceed by assuming that G[Sc] is
disconnected, and so |Sc| ≥ 2.

We claim that all vertices of Sc have the same neighbours in N2. Let us assume that v is an
arbitrary vertex of N2 that is adjacent to some vertex of Sc. Let Sv be the set of neighbours
of v in Sc. By definition, we find that Sv is non-empty. As G is chair-free, we obtain that
every vertex of Sv is adjacent to every vertex of Sc \ Sv as otherwise {s1, s2, v, x, y} would
induce a chair for some possible vertices s1 ∈ Sv and s2 ∈ Sc \ Sv. As G[Sc] is disconnected,
we find that Sc \ Sv = ∅, which completes the proof of our claim as v is arbitrarily chosen.

We can check if there is a vertex in N(y) ∩ N(z) in O(n + m) time. First assume there is
such a vertex, say w. As {s1, s2, w, x, y} does not induce a chair for each two vertices s1, s2
of an independent set I of G[Sc], we find that w is adjacent to all but at most one vertex of
I. As G[Sc] is bipartite, it follows that w has at least |Sc| − 2 neighbours in Sc. For each
s ∈ N(w) ∩ Sc, we find s ∈ A as sxyws and sxzws are 4-cycles. Note that N(w) ∩ Sc can be
computed in O(n + m) time. As |N(w) ∩ Sc| ≥ |Sc| − 2, we find at most eight possibilities to
extend c′ to a 3-colouring of G by a 2-colouring of G[Sc] in which one colour class contains
all the vertices of N(w) ∩ Sc. We apply Observation 8 for each. Hence, we may assume that
N(y) ∩ N(z) = ∅, and so every two vertices of Sc share the same neighbours in V (G) \ Sc.
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If no vertex of N2 has a neighbour in Sc, then x is a cut-vertex. In this case we find that
G has an independent feedback vertex set of size at most k if and only if G − Sc has an
independent feedback vertex set (of size at most k − |W |, where W is the smallest possible
colour class of a 2-colouring of G[Sc]. As W can be computed in O(n + m) time, we apply
Observation 8 for G − Sc and c′.

We proceed by considering the situation where v ∈ N2 has a neighbour in Sc. Recall that
all vertices of Sc are adjacent to v. As xs1vs2x is a 4-cycle for any two vertices s1, s2 ∈ Sc,
we find that A has size at least |Sc| − 1. In other words, we aim for such a 2-colouring of
G[Sc] whose one colour class is of size at most 1. If Sc is not independent, we have at most
two such possibilities, and each leads to a 3-colouring of G. We apply Observation 8 for each.
Now suppose that Sc is independent. We find that any two vertices of Sc have the same
neighbours in G. Let us fix one vertex, say, s of Sc. As there is at most one vertex of Sc

that is not in the independent feedback vertex set, we may assume that s is that vertex. We
have four ways of colouring the vertices of Sc such that all vertices of Sc \ {s} receive the
same colour. It remains to apply Observation 8 for each case. ◀

4 A Final Result and Some Open Problems

We showed that bounding the diameter does not help for Independent Set for H-free
graphs. We proved that this does help for some problems related to 3-Colouring if H is
the chair. Whether these results can be extended to larger polyads H is an interesting but
challenging task. For three of these problems, however, we should not seek to extend the
theorems from the previous section to omission of arbitrary polyads: in our next result, we
give a polyad H such that these problems are NP-complete for H-free graphs of diameter d

for some constant d. We reduce from Not-all-Equal 3-Sat, which is well-known to be
NP-complete [29]. We omit the proof details.

▶ Theorem 12. For Star 3-Colouring, Independent Odd Cycle Transversal and
Acyclic 3-Colouring, there exists a polyad H and integer d so that the problem remains
NP-complete on H-free graphs of diameter d.

Finally, we ask if there exists a polyad H and an integer d such that Near-Bipartiteness
and Independent Feedback Vertex Set are NP-complete for H-free graphs of diameter
at most d. Such a polyad H was already known to exist for 3-Colouring of graphs of
diameter at most 4 [20].
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Abstract

Let F be a set of n objects in the plane and let G×(F ) be its intersection graph. A balanced
clique-based separator of G×(F ) is a set S consisting of cliques whose removal partitions G×(F ) into
components of size at most δn, for some fixed constant δ < 1. The weight of a clique-based separator
is defined as

∑
C∈S log(|C| + 1). Recently De Berg et al. (SICOMP 2020) proved that if S consists

of convex fat objects, then G×(F ) admits a balanced clique-based separator of weight O(
√

n). We
extend this result in several directions, obtaining the following results.

Map graphs admit a balanced clique-based separator of weight O(
√

n), which is tight in the
worst case.

Intersection graphs of pseudo-disks admit a balanced clique-based separator of
weight O(n2/3 log n). If the pseudo-disks are polygonal and of total complexity O(n) then
the weight of the separator improves to O(

√
n log n).

Intersection graphs of geodesic disks inside a simple polygon admit a balanced clique-based
separator of weight O(n2/3 log n).

Visibility-restricted unit-disk graphs in a polygonal domain with r reflex vertices admit a balanced
clique-based separator of weight O(

√
n + r log(n/r)), which is tight in the worst case.

These results immediately imply sub-exponential algorithms for Maximum Independent Set (and,
hence, Vertex Cover), for Feedback Vertex Set, and for q-Coloring for constant q in these
graph classes.
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1 Introduction

The famous Planar Separator Theorem states that any planar graph G = (V, E) with n nodes2

admits a subset S ⊂ V of size O(
√

n) nodes whose removal decomposes G into connected
components of size at most 2n/3. The subset S is called a balanced3 separator of G. The
theorem was first proved in 1979 by Lipton and Tarjan [19], and it has been instrumental
in the design of algorithms for planar graphs: it has been used to design efficient divide-
and-conquer algorithms, to design sub-exponential algorithms for various np-hard graph
problems, and to design approximation algorithms for such problems.

The Planar Separator Theorem has been extended to various other graph classes. Our
interest lies in geometric intersection graphs, where the nodes correspond to geometric objects
and there is an arc between two nodes iff the corresponding objects intersect. If the objects
are disks, the resulting graph is called a disk graph. Disk graphs, and in particular unit-disk
graphs, are a popular model for wireless communication networks and have been studied
extensively. Miller et al. [22] and Smith and Wormald [27] showed that if F is a set of
balls in Rd of ply at most k – the ply of F is the maximum number of objects in F with a
common intersection – then the intersection graph of F has a separator of size O(k1/dn1−1/d).
This was generalized by Chan [4] and Har-Peled and Quanrud [14] to intersection graphs of
so-called low-density sets. Separators for string graphs – a string graph is an intersection
graph of sets of curves in the plane – have also been considered [13, 18, 21], with Lee [18]
showing that a separator of size O(

√
m) exists, where m is the number of arcs of the graph.

Even for simple objects such as disks or squares, one must restrict the ply to obtain a
separator of small size. Otherwise the objects can form a single clique, which obviously does
not have a separator of sublinear size. To design subexponential algorithms for problems such
as Maximum Independent Set, however, one can also work with a separator consisting of
a small number of cliques instead of a small number of nodes. Such clique-based separators
were introduced recently by De Berg et al. [8]. Formally, a clique-based separator of a graph G
is a collection S of node-disjoint cliques whose union is a balanced separator of G. The
weight of S is defined as weight(S) :=

∑
C∈S log(|C| + 1). De Berg et al. [8] proved that the

intersection graph of any set F of n convex fat objects in the plane admits a clique-based
separator of weight O(

√
n), and they used this to obtain algorithms with running time 2O(

√
n)

for many classic np-hard problems on such graphs. This running time is optimal, assuming
the Exponential-Time Hypothesis (ETH). The result generalizes to convex fat objects in Rd,
where the bound on the weight of the clique-based separator becomes O(n1−1/d).

The goal of our paper is to investigate whether similar results are possible for non-fat
objects in the plane. Note that not all intersection graphs admit clique-based separators of
small weight. String graphs, for instance, can have arbitrarily large complete bipartite graphs
as induced subgraphs, in which case any balanced clique-based separator has weight Ω(n).

The first type of intersection graphs we consider are map graphs, which are a natural
generalization of planar graphs. The other types are generalizations of disk graphs. One way
to generalize disk graphs is to consider fat objects instead of disks, as done by De Berg et
al. [8]. We will study three other generalizations, involving non-fat objects: pseudo-disks,
geodesic disks, and visibility-restricted unit disks. Next we define the graph classes we
consider more precisely; see Fig. 1 for an example of each graph class.

2 We use the terms node and arc when talking about graphs, and vertex and edge for geometric objects.
3 For a separator to be balanced it suffices that the components have size at most δn for some constant δ < 1.

When we speak of separators, we always mean balanced separators, unless stated otherwise.
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Figure 1 A map graph, a pseudo-disk graph, a geodesic-disk graph, and a visibility restricted
unit-disk graph. For the latter class, the grey disks in the picture have radius 1

2 .

In the following, we use G×(F ) to denote the intersection graph induced by a set F of
objects. For convenience, we do not distinguish between the objects and the corresponding
nodes, so we use F to denote the set of objects as well as the set of nodes in G×(F ). We
assume that the objects in F are connected, bounded, and closed.

Map graphs. Let M be a planar subdivision and F be its set of faces. The graph with
node set F that has an arc between every pair of neighboring faces is called the dual graph
of M, and it is planar. Here two faces are neighbors if their boundaries have an edge of
the subdivision in common. A map graph [6] is defined similarly, except now two faces
are neighbors even if their boundaries meet in a single point. Alternatively, we can define
a map graph as the intersection graph of a set F of interior-disjoint regions in the plane.
Since arbitrarily many faces can share a vertex on their boundary, map graphs can contain
arbitrarily large cliques. If at most k faces meet at each subdivision vertex, the graph is
called a k-map graph. Chen [5] proved that any k-map graph has a (normal, not clique-based)
separator of size O(

√
kn), which is also implied by Lee’s recent result on string graphs [18].

Pseudo-disk graphs. A set F of objects is a set of pseudo-disks if for any f, f ′ ∈ F the
boundaries ∂f and ∂f ′ intersect at most twice. Pseudo-disks were introduced in the context
of motion planning by Kedem et al. [15], who proved that the union complexity of n pseudo-
disks is O(n). Since then they have been studied extensively. We consider two types of
pseudo-disks: polygonal pseudo-disks with O(n) vertices in total, and arbitrary pseudo-disks.

Geodesic-disk graphs and visibility-restricted unit-disk graphs. As mentioned, unit-disk
graphs are popular models for wireless communication networks. We consider two natural
generalizations of unit-disk graphs, which can be thought of as communication networks in a
polygonal environment that may obstruct communication.

Geodesic-disk graphs in a simple polygon P are intersection graphs of geodesic disks
inside P . (The geodesic disk with center q ∈ P and radius r is the set of all points in P

at geodesic distance at most r from q, where the geodesic distance between two points is
the length of the shortest path between them inside P .)

ISAAC 2021



22:4 Clique-Based Separators for Geometric Intersection Graphs

In visibility-restricted unit-disk graphs the nodes correspond to a set Q of n points inside
a polygon P , which may have holes, and two points p, q ∈ Q are connected by an arc iff
|pq| ⩽ 1 and p and q see each other (meaning that pq ⊂ P ).4 A more general, directed
version of such graphs was studied by Ben-Moshe et al. [2] under the name range-restricted
visibility graph. They presented an output-sensitive algorithm to compute the graph.

Our results: clique-based separator theorems

So far, clique-based separators were studied for fat objects: De Berg et al. [8] consider convex
or similarly-sized fat objects, Kisfaludi-Bak et al. [17] study how the fatness of axis-aligned
fat boxes impacts the separator weight, and Kisfaludi-Bak [16] studies balls in hyperbolic
space. The O(

√
n) bound on the separator weight is tight even for unit-disk graphs. Indeed,

a
√

n ×
√

n grid graph can be realized as a unit-disk graph, and any separator of such a grid
graph must contain Ω(

√
n) nodes. Since the maximum clique size in a grid graph is two, any

separator must contain Ω(
√

n) cliques. All graph classes we consider can realize a
√

n ×
√

n

grid graph, so Ω(
√

n) is a lower bound on the weight of the clique-based separators we
consider. We obtain the following results.

In Section 2 we show that any map graph has a clique-based separator of weight O(
√

n).
This gives the first ETH-tight algorithms for Maximum Independent Set (and, hence,
Vertex Cover), Feedback Vertex Set, and Coloring in map graphs; see below.

In Section 3 we show that any intersection graph of pseudo-disks has a clique-based sepa-
rator of weight O(n2/3 log n). If the pseudo-disks are polygonal and of total complexity O(n)
then the weight of the separator improves to O(

√
n log n).

In Section 4 we consider intersection graphs of geodesic disks inside a simple polygon.
At first sight, geodesic disks seem not much harder to deal with than fat objects: they
can have skinny parts only in narrow corridors and then packing arguments may still be
feasible. Unfortunately another obstacle prevents us from applying a packing argument:
geodesic distances in a simply connected polygon induce a metric space whose doubling
dimension depends on the number of reflex vertices of the polygon. Nevertheless, by showing
that geodesic disks inside a simple polygon behave as pseudo-disks, we are able to obtain a
clique-based separator of weight O(n2/3 log n), independent of the number of reflex vertices.

In Section 5 we study visibility-restricted unit-disk graphs. We give an
Ω(min(n, r log(n/r)) +

√
n) lower bound for the separator weight, showing that a clique-

based separator whose weight depends only on n, the number of points defining the visi-
bility graph, is not possible. We then show how to construct a clique-based separator of
weight O(min(n, r log(n/r)) +

√
n).

All separators can be computed in polynomial time. For map graphs and for the pseudo-
disk intersection graphs, we assume the objects have total complexity O(n). If the objects
have curved edges, we assume that basic operations (such as computing the intersection
points of two such curves) take O(1) time.

Applications

We apply our separator theorems to obtain subexponential algorithms in the graph
classes discussed above, for Maximum Independent Set, Feedback Vertex Set, and
q-Coloring for constant q. The crucial property of these problems that makes our separator

4 Visibility-restricted unit-disk graphs are, strictly speaking, not intersection graphs. In particular, if Rq

is defined as the region of points within P that are visible from q and lie within distance 1/2, then the
visibility-restricted unit-disk graph is not the same as the intersection graph of the objects Rq.
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(i) (ii) (iii)

Figure 2 (i) A witness graph for the map graph induced by the grey regions. Points in P are
blue, points in Q are red. (ii) The gadget used to replace a witness point. The edges of Tq are black,
the cycles connecting nodes at the same level are grey and thick, the edges to triangulate the 4-cycle
are grey and thin. (iii) The green paths show an example of how the separator can intersect a gadget.
(Note that the tree “wraps around”, as in part (ii) of the figure; see also one of the green paths.)
The objects added to the clique Cq correspond to the leaves indicated by the blue rectangles.

applicable, is that the possible ways in which a solution can “interact” with a clique of size k

is polynomial in k. We use known techniques (mostly from De Berg et al. [8]) to solve the
three problems on any graph class that has small clique-based separators.

All our graph classes are subsumed by string graphs. Bonnet and Rzazewski [3] showed
that string graphs have 2O(n2/3 log n) algorithms for Maximum Independent Set and 3-
Coloring, and a 2n2/3 logO(1) n algorithm for Feedback Vertex Set, and that string
graphs do not have subexponential algorithms for q-Coloring with q ⩾ 4 under ETH. One
can also obtain subexponential algorithms in some of our classes from results of Fomin et
al. [12, 5] or Marx and Philipczuk [20]. The running times we obtain match or slightly
improve the results that can be obtained from these existing results. It should be kept in mind,
however, that the existing results are for more general graph classes. An exception are our
results on map graphs, which were explicitly studied before and where we improve the running
time for Maximum Independent Set and Feedback Vertex Set from 2O(

√
n log n) to

2O(
√

n). (But, admittedly, the existing results apply in the parameterized setting while
ours don’t.) In any case, the main advantage of our approach is that it allows us to solve
Maximum Independent Set, Feedback Vertex Set and q-Coloring on each of the
mentioned graph classes in a uniform manner. Refer to the arXiv version [10] for more details
on the state of the art, and the specific results we obtain.

2 Map graphs

Recall that a map graph is the intersection graph of a set F of interior-disjoint objects in the
plane. We construct a clique-based separator for G×(F ) in four steps. First, we construct
a bipartite plane witness graph H1 with node set P ∪ Q, where the nodes in P correspond
to the objects in F and the nodes in Q (with their incident arcs) model the adjacencies
in G×(F ). Next, we replace each node q ∈ Q by a certain gadget whose “leaves” are the
neighbors of q, and we triangulate the resulting graph. We then apply the Planar Separator
Theorem to obtain a separator for the resulting graph H2. Finally, we turn the separator for
H2 into a clique-based separator for G×(F ). Next we explain these steps in detail.

Step 1: Creating a witness graph

To construct a witness graph for G×(F ) we use the method of Chen et al. [6]: take a point
pf in the interior of each object f ∈ F , and take a witness point q ∈ ∂f ∩ ∂f ′ for each
pair of touching objects f, f ′ ∈ F and add arcs from q to the points pf and pf ′ . Let
P = {pf : f ∈ F} and let Q be the set of all witness points added. We denote the resulting

ISAAC 2021
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bipartite graph with node set P ∪ Q by H1; see Figure 2(i) for an example. Observe that
points where many objects meet can serve as witness points for many neighboring pairs in
G×(F ). Chen et al. [6, Lemma 2.3] proved that any map graph admits a witness set Q of
size O(n). If the objects in F are polygons with O(n) vertices in total then Q can be found
in O(n) time (since the vertices can serve as the set Q.)

Step 2: Replacing witness points by gadgets and triangulating

We would like to construct a separator for H1 using the Planar Separator Theorem, and
convert it to a clique-based separator for G×(F ). For every witness point q ∈ Q in the
separator for H1, the conversion would add a clique Cq to the clique-based separator, namely,
the clique corresponding to all objects f ∈ F such that pf is adjacent to q. However, the
node q adds 1 to the separator size, but the clique Cq adds log(|Cq| + 1) to the weight of the
clique-based separator. To deal with this we modify H1, as follows.

Consider a node q ∈ Q. Let N(q) ⊆ P denote the set of neighbors of q. For all nodes
q ∈ Q with |N(q)| ⩾ 3, we replace the star induced by {q} ∪ N(q) by a gadget Gq, which is
illustrated in Figure 2(ii) and defined as follows.

First, we create a tree Tq with root q and whose leaves are the nodes in N(q), as follows.
Define the level ℓ(v) of a node v in Tq to be the distance of v to the root; thus the root has
level 0, its children have level 1, and so on. All leaves in Tq are at the same level, denoted ℓmax.
The root has degree 3, nodes at level ℓ with 1 ⩽ ℓ < ℓmax − 1 have degree 2, and nodes at
level ℓmax − 1 have degree 2 or 1. For each ℓ < ℓmax we connect the nodes at level ℓ into a
cycle. After doing so, all faces in the gadget (except the outer face) are triangles or 4-cycles.
We finish the construction by adding a diagonal in each 4-cycle. Define the height of a node v

as height(v) := ℓmax − ℓ(v). The following observation follows from the construction.

▶ Observation 1. Let v be a node at height h > 0 in the gadget Gq.
(i) The subtree of Tq rooted at v, denoted Tq(v), has at most 3 · 2h−1 leaves.
(ii) The distance from v to any leaf in Tq is at least h.

To unify the exposition, it will be convenient to also create a gadget for the case where q has
only two neighbors in H1, say pf and pf ′ . We then define Tq to consist of the arcs (q, pf )
and (q, pf ′). Note that Observation 1 holds for this gadget as well.

By replacing each witness point q ∈ Q with a gadget Gq as above, we obtain a (still
planar) graph. We triangulate this graph to obtain a maximal planar graph H2.

Step 3: Constructing a separator for H2

We now want to apply the Planar Separator Theorem to H2. Our final goal is to obtain
a balanced clique-based separator for G×(F ). Hence, we want the separator for H2 to be
balanced with respect to P . We will also need the separator for H2 to be connected. Both
properties are guaranteed by the following version of the Planar Separator Theorem, which
was proved by Djidjev and Venkatesan [11].

Planar Separator Theorem. Let G = (V, E) be a maximal planar graph with n nodes.
Let each node v ∈ V have a non-negative cost, denoted cost(v), with

∑
v∈V cost(v) = 1.

Then V can be partitioned in O(n) time into three sets A, B, S such that (i) S is a
simple cycle of size O(

√
n), (ii) G has no arcs between a node in A and a node in B,

and (iii)
∑

v∈A cost(v) ⩽ 2/3 and
∑

v∈B cost(v) ⩽ 2/3.
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When applying the Planar Separator Theorem to H2, we set cost(p) := 1/n for all nodes
pf ∈ P and cost(v) := 0 for all other nodes. We denote the resulting separator for H2 by
S(H2) and the node sets inside and outside the separator by A(H2) and B(H2), respectively.

Step 4: Turning the separator for H2 into a clique-based separator for G×(F )

We convert S(H2) into a clique-based separator S for G×(F ) as follows.
For each node pf ∈ S(H2) ∩ P we put the (singleton) clique {f} into S.
For each gadget Gq we proceed as follows. Let Vq be the set of all nodes v ∈ Tq that
are in S(H2), and define Cq := {f ∈ F : pf is a leaf of Tq(v) that has an ancestor in Vq};
see Figure 2(iii). Observe that Cq is a clique in G×(F ). We add5 Cq to S.

The clique-based separator S induces a partition of F \
⋃

C∈S C into two parts A and B, with
|A|, |B| ⩽ 2n/3, in a natural way, namely as A := {f ∈ F : f ̸∈

⋃
C∈S C and pf ∈ A(H2)}

and B := {f ∈ F : f ̸∈
⋃

C∈S C and pf ∈ B(H2)}. The proof that S is a valid separator,
that is, there are no edges between objects in A and B, can be found in the full version [10].
It follows from the fact that for any arc (f, f ′) with witness q, either an ancestor of pf or pf ′

is in Vq (and so f or f ′ is in the separator) or pf and pf ′ (and, hence, f and f ′) are in the
same component after removing the separator. It remains to prove that S has the desired
weight.

▶ Lemma 2. The total weight of the separator S satisfies
∑

C∈S log(|C| + 1) = O(
√

n).

Proof. Since S(H2) contains O(
√

n) nodes, it suffices to bound the total weight of the
cliques added for the gadgets Gq. Consider a gadget Gq. Recall that Vq is the set of all
nodes v ∈ Tq that are in S(H2). We claim that log(|Cq| + 1) = O(|Vq|), which implies that∑

q log(|Cq| + 1) =
∑

q O(|Vq|) = O(
√

n), as desired. It remains to prove the claim.
Since S(H2) is a simple cycle, its intersection with Gq consists of one or more paths. Each

path π enters and exits Gq at a node in N(q). Let Dπ denote the set of all descendants of the
nodes in π. We will prove that log(|Dπ|+1) = O(|π|), where |π| denotes the number of nodes
of π. This implies the claim since log(|Cq| + 1) ⩽

∑
π log(|Dπ| + 1) =

∑
π O(|π|) = O(|Vq|).

To prove that log(|Dπ| + 1) = O(|π|), let hmax be the maximum height of any node in π.
Thus |π| ⩾ hmax by Observation 1(ii). Consider all subtrees of height hmax in Tq. If π visits
t such subtrees, then |π| ⩾ t. Moreover, |Dπ| ⩽ 3t · 2hmax−1 by Observation 1(i). Hence,
log(|Dπ| + 1) ⩽ log

(
3t · 2hmax−1 + 1

)
< hmax + log(3t) = O(max(hmax, t)) = O(|π|). ◀

By putting everything together we obtain the following theorem.

▶ Theorem 3. Let F be a set of n interior-disjoint regions in the plane. Then the intersection
graph G×(F ) has a clique-based balanced separator of weight O(

√
n). The separator can be

computed in O(n) time, assuming that the total complexity of the objects in F is O(n).

3 Pseudo-disk graphs

Our clique-based separator construction for a set F of pseudo-disks uses so-called planar
supports, defined as follows. Let H be a hypergraph with node set Q and hyperedge set H.
A graph Gsup is a planar support [26] for H if Gsup is a planar graph with node set Q such
that for any hyperedge h ∈ H the subgraph of Gsup induced by the nodes in h is connected.
In our application we let the node set Q correspond to a set of points stabbing all pairwise

5 We tacitly assume that if an object is in multiple cliques in S, we remove all but one of its occurrences.
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intersections between the pseudo-disks, that is, for each intersecting pair f, f ′ ∈ F there will
be a point q ∈ Q that lies in f ∩ f ′. The goal is to keep the size of Q small, by capturing all
intersecting pairs with few points. The hyperedges are defined by the regions in F , that is, for
every f ∈ F there is a hyperedge hf := Q ∩ f . Let HQ(F ) denote the resulting hypergraph.

▶ Lemma 4. Let F be a set of n objects in the plane, let Q be a set of points stabbing all
pairwise intersections in F , and let HQ(F ) denote the hypergraph as defined above. If HQ(F )
has a planar support Gsup then G×(F ) has a clique-based separator of size O(

√
|Q|) and

weight O(
√

|Q| log n).

Proof. Let S(Gsup) be a separator for Gsup of size O(
√

|Q|), which exists by the Planar
Separator Theorem, and let A(Gsup) and B(Gsup) be the corresponding separated parts. To
ensure an appropriately balanced separator we use the cost-balanced version of the Planar
Separator Theorem, as stated in the previous section. For each object f ∈ F we give one
point qf ∈ Q ∩ f a cost of 1/n and all other points cost 0. We call qf the representative
of f . (We assume for simplicity that each f ∈ F intersects at least one other object f ′ ∈ F ,
so we can always find a representative. Objects f ∈ F not intersecting any other object
are singletons in G×(F ) and can be ignored.) For a point q ∈ Q, define Cq to be the clique
in G×(F ) consisting of all objects f ∈ F that contain q. Our clique-based separator S for
G×(F ) is now defined as S := {Cq : q ∈ S(Gsup)}, and the two separated parts are defined
as: A := {f ∈ F : f ̸∈ S and qf ∈ A(Gsup)} and B := {f ∈ F : f ̸∈ S and qf ∈ B(Gsup)}.
Clearly, the size of S is O(

√
|Q|) and its weight is O(

√
|Q| log n). Moreover, |A|, |B| ⩽ 2n/3

because S(G∗) is balanced with respect to the node costs.
We claim there are no arcs in G×(F ) between a node in A and a node in B. Suppose

for a contradiction that there are intersecting objects f, f ′ such that f ∈ A and f ′ ∈ B. By
definition of Q there is a point q ∈ Q that lies in f ∩ f ′. By the planar-support property, the
hyperedge hf induces a connected subgraph of Gsup, so there is a path π that connects q

to the representative qf and such that all nodes of π are points in f ∩ Q. No node on the
path π can be in S(Gsup), otherwise f is in a clique that was added to S. Similarly, there
is a path π′ connecting qf ′ to q such that no point on π′ is in S(Gsup). But then there is a
path from qf to qf ′ in Gsup after the removal of S(Gsup). Hence, qf and qf ′ are in the same
part of the partition, which contradicts that f and f ′ are in different parts.

We conclude that S is a clique-based separator with the desired properties. ◀

▶ Remark 5. The witness set Q in the previous section stabs all pairwise intersections of
objects in the map graph, and so P ∪ Q stabs all pairwise intersections as well. P ∩ Q has
planar support, so we can get a separator for map graphs using Lemma 4. Its weight would
be O(

√
n log n), however, while in the previous section we managed to get O(

√
n) weight.

Polygonal pseudo-disks

We now apply Lemma 4 to obtain a clique-based separator for a set F of polygonal pseudo-
disks. To this end, let Q be the set of vertices of the pseudo-disks in F . Observe that
whenever two pseudo-disks intersect, one must have a vertex inside the other. Indeed, either
one pseudo-disk is entirely inside the other, or an edge e of f intersects an edge e′ of f ′. In
the latter case, one of the two edges ends inside the other pseudo-disk, otherwise there are
three intersections between the boundaries. Furthermore, pseudo-disks have the non-piercing
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property: f \ f ′ is connected for any two pseudo-disks f, f ′. Raman and Ray [26] proved6

that the hypergraph HQ(F ) of a set of non-piercing regions has a planar support for any set
Q, so in particular for the set Q just defined. We can thus apply Lemma 4 to compute a
clique-based separator for G×(F ). The time to compute the separator is dominated by the
computation of the planar support, which takes O(n3) time [26].

▶ Theorem 6. Let F be a set of n polygonal pseudo-disks in the plane with O(n) vertices in
total. Then the intersection graph G×(F ) has a clique-based balanced separator of size O(

√
n)

and weight O(
√

n log n), which can be found in O(n3) time.

Arbitrary pseudo-disks

To construct a clique-based separator using Lemma 4 we need a small point set Q that stabs
all pairwise intersections. Unfortunately, for general pseudo-disks a linear-size set Q that
stabs all intersections need not exist: there is a collection of n disks such that stabbing
all pairwise intersections requires Ω(n4/3) points. (Such a collection can be derived from a
construction with n lines and n points with Ω(n4/3) incidences [23].) Hence, we need some
more work before we can apply Lemma 4.

Our separator result for arbitrary pseudo-disks works in a more general setting, namely
for sets from a family F with linear union complexity. (We say that F has union complexity
U(n) if, for any n ⩾ 1 and any subset F ⊂ F of size n, the union complexity of F is U(n).)
Recall that the union complexity of a family of pseudo-disks is O(n) [15]. The next theorem
states that such sets admit a clique-based separator of sublinear weight. Note that the bound
only depends on the number of objects, not on their complexity.

▶ Theorem 7. Let F be a set of n objects from a family F of union complexity U(n),
where U(n) ⩾ n. Then G×(F ) has a clique-based separator of size O((U(n))2/3) and
weight O((U(n))2/3 log n). In particular, if F is a set of pseudo-disks then G×(F ) has
a clique-based separator of size O(n2/3) and weight O(n2/3 log n). The separator can be
computed in O(n3) time, assuming the total complexity of the objects is O(n).

Proof. We construct the separator S in two steps.
The first step proceeds as follows. For a point p in the plane, let Cp denote the set

of objects from the (current) set F containing p. As long as there is a point p such that
|Cp| > n1/3, we remove Cp from F and put Cp into S; here n refers to the size of the initial
set F . Thus the first step adds O(n2/3) cliques to S with total weight O(n2/3 log n). This
step can easily be implemented in O(n3) time.

In the second step we have a set F ∗ ⊆ F of n∗ objects with ply k, where n∗ ⩽ n

and k ⩽ n1/3. Let A(F ∗) denote the arrangement induced by F ∗. Since F ∗ has ply k,
the Clarkson-Shor technique [7] implies that the complexity of the arrangement A(F ∗)
is O(k2 · U(n∗/k)). We can compute this arrangement in O(k2 · U(n∗/k) log n) = O(n2 log n)
time [9]. Take a point q in each face of the arrangement, and let Q be the resulting set
of O(k2 · U(n∗/k)) points. The set Q stabs all pairwise intersections and the dual graph
G∗ of the arrangement A(F ∗) is a planar support for the hypergraph HQ(F ). Hence, by
Lemma 4 there is a clique-based separator S∗ for G×(F ) of size O

(
k
√

U (n∗/k)
)

and

6 Raman and Ray assume the sets F and Q defining the hypergraph are in general position. Therefore we
first slightly perturb the pseudo-disks in F to get them into general position (while keeping the same
intersection graph), then we take Q to be a point set coinciding with the vertex set of F , and then we
slightly move the points in Q such that the hypergraph remains the same.
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D∗
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yq1
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(i) (ii) (iii)
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γ3 q

γ∗1
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γ∗3

Figure 3 (i) A geodesic disk D with center q and radius r. The set Γ(D) has three pieces, γ1, γ2

and γ3, shown in blue. (ii) The result of the perturbation. Note that |γ1| < |γ2| < |γ3| and so
εγ1 > εγ2 > εγ3 . (iii) Illustration for the proof of Theorem 8.

weight O
(

k
√

U (n∗/k) log n∗
)

. Note that U(n) is a superadditive function [1] which implies
that U(n/k) ⩽ U(n)/k and therefore k

√
U (n∗/k) ⩽

√
k U(n) ⩽ (U(n))2/3. By adding S∗

to the set S of cliques generated in the first step, we obtain a clique-based separator with
the desired properties. ◀

4 Geodesic disks inside a simple polygon

Let P be a simple polygon. We denote the shortest path (or: geodesic) in P between two
points p, q ∈ P by π(p, q); note that π(p, q) is unique since P is simple. The geodesic distance
between p and q is defined to be ∥π(p, q)∥, where ∥π∥ denotes the Euclidean length of a path π.
For a given point q ∈ P and radius r > 0, we call the region D(q, r) := {p ∈ P : ∥π(p, q)∥ ⩽ r}
a geodesic disk. Let D = {D1, . . . , Dn} be a set of geodesic disks in P . To construct a
clique-based separator for G×(D) we will show that D behaves as a set of pseudo-disks so we
can apply the result of the previous section.

The structure of a geodesic disk

The boundary ∂D(q, r) of a geodesic disk D(q, r) consists of circular arcs lying in the interior
of P (centered at q or at a reflex vertex of P ) and parts of the edges of P . We split ∂D(q, r)
into boundary pieces at the points where the circular arcs meet ∂P . This generates two sets
of boundary pieces: a set containing the pieces that consist of circular arcs, and a set Γ(D)
containing the pieces that consist of parts of edges of P . An example can be seen in Fig. 3.

A region R ⊆ P is geodesically convex if for any points p, q ∈ R we have π(p, q) ⊆ R.
Pollack et al. [25] showed that geodesic disks inside a simple polygon are geodesically convex.
An immediate consequence is that the intersection of two geodesic disks is connected.

Geodesic disks behave as pseudo-disks

Geodesic disks in a simple polygon are not proper pseudo-disks. For example, if D1 and
D2 are the blue and pink pseudo-disk in the third image in Fig. 1, then D1 \ D2 has two
components, which is not allowed for pseudo-disks. Nevertheless, we will show that D behaves
as a set of pseudo-disks in the sense that a small perturbation turns them into pseudo-disks,
while keeping the intersection graph the same.

As a first step in the perturbation, we increase the radius of each geodesic disk Di ∈ D
by some small εi. We pick these εi such that the intersection graph G×(D) stays the same
while all degeneracies disappear. In particular, the boundary pieces of different geodesic
disks have different lengths after this perturbation, and no two geodesic disks touch. With a
slight abuse of notation, we still denote the resulting set of geodesic disks by D.
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The second step in the perturbation moves each γ ∈ ∪n
i=1Γ(Di) into the interior of the

polygon over some distance εγ , which is smaller than any of the perturbation distances
chosen in the first step. More formally, for each γ ∈ Γ(Di) we remove all points from Di that
are at distance less than εγ from γ; see Fig. 3(ii). To ensure this gives a set of pseudo-disks
we choose the perturbation distances εγ according to the reverse order of the Euclidean
lengths of the pieces. That is, if ∥γ∥ > ∥γ′∥ then we pick εγ < εγ′ . The crucial property of
this scheme is that whenever γi ⊂ γj then γi is moved more than γj .

We denote the perturbed version of Di by D∗
i and define D∗ := {D∗

i : Di ∈ D}. The
perturbed versions have the following important property: every connected component of
D∗

i \ D∗
j contains a point u with u ∈ Di \ Dj , see [10].

▶ Theorem 8. Any set D of geodesic disks inside a simple polygon P can be slightly perturbed
such that the resulting set D∗ is a set of pseudo-disks with G×(D) = G×(D∗).

Proof. Consider the set D∗ resulting from the perturbation described above. Suppose for a
contradiction that there exist two objects D∗

1 , D∗
2 ∈ D∗ such that ∂D∗

1 and ∂D∗
2 cross four or

more times. Recall that the intersection of two geodesic disks is connected. This property is
not invalidated by the perturbation. Hence, if ∂D∗

1 and ∂D∗
2 cross four or more times then

D∗
1 \ D∗

2 (and, similarly, D∗
2 \ D∗

1) has two or more components.
For i = 1, 2, let qi and ri denote the center and radius of Di. Without loss of generality

assume that r1 ⩽ r2. Let x and y be points in different components of D∗
1 \D∗

2 ; see Fig. 3 (iii).
We can pick x and y such that x, y ∈ D1 \ D2. By concatenating the geodesics π(x, q1) and
π(q1, y) we obtain a curve that splits D∗

2 into at least two parts – this is independent of where
q1 lies, or whether π(x, q1) and π(q1, y) partially overlap. (Note that these geodesics lie in D1
but not necessarily in D∗

1 . However, they cannot “go around” a component of D∗
2 \D∗

1 , because
D1 cannot fully contain such a component. Hence, π(x, q1) ∪ π(q1, y) must indeed go through
D∗

2 .) Not all components of D∗
2 \ D∗

1 can belong to the same part, otherwise x and y would
not be in different components of D∗

1 \ D∗
2 . Take a point z ∈ D∗

2 \ D∗
1 that lies in a different

part than q2, the center of D2. Again we can pick z such that z ∈ D2 \D1. Then the geodesic
π(q2, z) must cross π(x, q1)∪π(q1, y), say at a point w ∈ π(q1, y). Since z ̸∈ D1 and y ̸∈ D2 we
must have ∥π(q1, w)∪π(w, z)∥+∥π(q2, w)∪π(w, y)∥ > r1 +r2. But this gives a contradiction
because y ∈ D1 and z ∈ D2 implies ∥π(q1, w) ∪ π(w, y)∥ + ∥π(q2, w) ∪ π(w, z)∥ ⩽ r1 + r2.

It remains to show that G×(D) = G×(D∗). As mentioned earlier, the increase of the radii
in the first step of the perturbation is chosen sufficiently small so that no new intersections
are introduced. The second step shrinks the geodesic disks, so no new intersections are
introduced in that step either. Finally, the fact that the perturbations in the second step are
smaller than in the first step guarantees that no intersections are removed. ◀

Theorem 8 allows us to apply Theorem 7. When doing so, we actually do not need to perturb
the geodesic disks. We only use the perturbation to argue that the number of faces in the
arrangement defined by n geodesic disks of ply k is O(nk). Computing the geodesic disks
(and then computing the separator) can be done in polynomial time in n and the number of
vertices of P . We obtain the following result.

▶ Corollary 9. Let D be a set of n geodesic disks inside a simple polygon with m vertices.
Then G×(D) has a clique-based separator of size O(n2/3) and weight O(n2/3 log n), which can
be computed in time polynomial in n and m.
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u

R(u)

R∗(u)

A1 A2
A r

2
−1 A r

2

B1 B2 B r
2
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2

(i) (ii)
n/r points

Figure 4 (i) Each cluster Ai sees any of the clusters Bj completely and all distances are at most 1,
so a separator that splits G×

vis,P

(⋃
Ai ∪

⋃
Bj

)
into two or more components must fully contain⋃

Ai or
⋃

Bj . Since the clusters Ai (and similarly Bj) do not see each other, such a separator has
size at least r/2 and weight at least ((r/2) log(n/r)). (ii) Splitting R∗(u) into two convex parts.

5 Visibility-restricted unit-disk graphs inside a polygon

Let P be a polygon, possibly with holes, and let Q be a set of n points inside P . We
define G×

vis,P (Q) to be the visibility-restricted unit-disk graph of Q. The nodes in G×
vis,P (Q)

correspond to the points in Q and there is an edge between two points p, q ∈ Q iff |pq| ⩽ 1
and p and q see each other. A vertex of P is reflex if its angle within the polygon is more
than 180 degrees; note that for a vertex of a hole we look at the angle within P , not within
the hole. Below we sketch a proof of the following theorem; a detailed proof is in the arXiv
version of the paper [10].

▶ Theorem 10. Let Q be a set of n points inside a polygon (possibly with holes) with r

reflex vertices. Then G×
vis,P (Q) admits a clique-based separator of size O(min(n, r) +

√
n)

and weight O(min(n, r log(n/r) +
√

n)). The bounds on the size and weight of the separator
are tight in the worst case, even for simple polygons.

The lower bound

Recall that even for non-visibility restricted unit-disk graphs, Ω(
√

n) is a lower bound on the
worst-case size of the separator. Hence, to prove the lower bound of Theorem 10 it suffices
to give an example where the size and weight are Ω(min(n, r)) and Ω(min(n, r log(n/r))),
respectively. This example is given in Fig. 4(i).

The upper bound

We now sketch our separator construction for the case where P is a simple polygon. The
extension to polygons with holes can be found in the full version [10].

Step 1: Handling points that see a nearby reflex vertex. Let Vref be the set of reflex
vertices of P , and let Q1 ⊆ Q be the set of points that can see a reflex vertex within
distance

√
2. Consider the geodesic Voronoi diagram of Vref within P . Let R(u) be the

Voronoi region of vertex u ∈ Vref and define R∗(u) := R(u) ∩ D(u,
√

2). Note that all points
in R(u) can see u and that all points in Q1 are in S∗(u) for some vertex u ∈ Vref . By
extending one of the edges of P incident to u, we can split R∗(u) into two convex parts; see
Fig. 4(ii). Since R∗(u) has diameter O(1), this means that Q1 ∩ R∗(u) can be partitioned
into O(1) cliques. We collect all these cliques into a set S1. Since there are r reflex vertices,
S1 consists of O(r) cliques of total weight is O(r log(n/r)).
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(i)

si
T

(ii)

Figure 5 (i) The grid G defining the chords si. (ii) The points in the top-left cell see a reflex
vertex so they are not in Q2(si). The points in the top-right cell can be split into O(1) cliques.

Step 2: Handling points that do not see a nearby reflex vertex. Our separator S consists
of the cliques in S1 plus a set S2 of cliques that are found as follows. Let Q2 := Q \ Q1 be
the set of points that do not see a reflex vertex within distance

√
2. Let c be a centerpoint

for Q2 inside P , that is, a point such that any (maximal) chord through c splits P into
half-polygons containing at most 2|Q2|/3 points from Q2. Such a point always exists; see
[10]. Let G be a

√
n ×

√
n grid of unit cells centered at c. For each of the

√
n points gi in

the rightmost column of the grid (even if gi ̸∈ P ), we define a chord si by taking the line ℓi

through c and gi and then taking the component of ℓi ∩ P that contains c; see Fig. 5(i).
For each chord si, we define Q2(si) to be the set of points q ∈ Q2 such that there is a

point z ∈ si that sees q with |qz| ⩽ 1/2. Note that G×
vis,P (Q) cannot have an arc between a

point p ∈ Q2 \ Q2(si) above si and a point q ∈ Q2 \ Q2(si) below si; otherwise p and/or q

see a point on si within distance 1/2, and so at least one of p, q is in Q2(si). Since si is a
chord through the centerpoint c, this means that si induces a balanced separator.

It remains to argue that at least one chord si induces a separator of small weight. We
will do this by creating a set S(si) of cliques for each chord si, and prove that the total
weight of these cliques, over all chords si, is O(n). Since there are

√
n chords, one of them

has the desired weight.

First, we put all points from Q2(si) that lie outside the grid G into S(si), as singletons.
By definition of the chords si, a point q outside the grid G lies at distance at most 1/2 from
O(1) chords. Hence, the total number of singleton cliques over all sets S(si) is O(n).

Next, consider a cell T of the grid G. Suppose a point q ∈ Q2(si) sees a point z ∈ T ∩ si

with |qz| ⩽ 1/2. Then q must lie inside one of the nine grid cells surrounding and including T .
Consider such a cell T ′. The points in Q2(si) ∩ T ′ that can see a point on si ∩ T can be
partitioned into O(1) cliques; we prove this by showing that if two such points do not see
each other, then they must see a reflex vertex within distance

√
2 and, hence, be in Q1. We

thus create O(1) cliques for T ′ and put them into S(si). This adds at most O(log(nT ′ + 1))
weight to S(si), where nT ′ := |Q2 ∩ T ′|.

Overall, a cell T ′ adds O(log(nT ′ + 1)) weight for the chords si that cross the nine cells
surrounding it. Since there are n cells in total, this immediately gives a total weight of
O(n log n) over all sets S(si). A more careful analysis shows that the total weight of the
cliques is actually O(n). Hence, one of the

√
n chords induces a separator of the desired

weight. This finishes the sketch of the construction of the clique-based separator for G×
vis,P (Q).

6 Concluding Remarks

We showed how clique-based separators with sub-linear weight can be constructed for various
classes of intersection graphs which involve non-fat objects. The main advantage of our
approach is that we can solve different problems in the graph classes we study in a uniform
manner. There are several natural questions that are left open. Some are listed below.
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Improving the bound for geodesic disks and adding holes. Our bound on geodesic
disks is directly derived by our result on pseudo-disks. However, geodesic disks are much
less general than pseudo-disks (and “closer” to regular disks). Hence, one would expect
that the optimal weight is closer to O(

√
n). If we allow our polygon to have holes, then

our approach for geodesic disks no longer works. Indeed, it is easy to see that even after
applying our perturbation scheme, the resulting objects can intersect each other more
than two times.
Improving the bound for pseudo-disks. Regarding pseudo-disks, an interesting
result [24] states that in every finite family of pseudo-disks in the plane one can find
a “small” one, in the sense that it is intersected by only a constant number of disjoint
pseudo-disks. This property is also shared by, for instance, convex fat objects. Does
this mean that the two graph classes are related in some natural way? If yes, could this
connection be exploited to construct separators with better bounds?
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Abstract
Given an undirected n-vertex planar graph G = (V, E, ω) with non-negative edge weight function
ω : E → R and given an assigned label to each vertex, a vertex-labeled distance oracle is a data
structure which for any query consisting of a vertex u and a label λ reports the shortest path
distance from u to the nearest vertex with label λ. We show that if there is a distance oracle for
undirected n-vertex planar graphs with non-negative edge weights using s(n) space and with query
time q(n), then there is a vertex-labeled distance oracle with Õ(s(n))1 space and Õ(q(n)) query
time. Using the state-of-the-art distance oracle of Long and Pettie [12], our construction produces a
vertex-labeled distance oracle using n1+o(1) space and query time Õ(1) at one extreme, Õ(n) space
and no(1) query time at the other extreme, as well as such oracles for the full tradeoff between space
and query time obtained in their paper. This is the first non-trivial exact vertex-labeled distance
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1 Introduction

Efficiently answering shortest path distance queries between pairs of vertices in a graph is
a fundamental algorithmic problem with a wide range of applications. An algorithm like
Dijkstra’s can answer such a query in near-linear time in the size of the graph. If we allow
for precomputations, we can break this bound, for instance by simply storing the answers
to all possible queries in a look-up table. However, a fast query time should preferably not
come at the cost of a large space requirement. A distance oracle is a compact data structure
that can answer a shortest path distance query in constant or close to constant time.

1 We use Õ-notation to suppress poly(log n)-factors.
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A lot of research has focused on approximate distance oracles which allow for some
approximation in the distances output. This is reasonable since there are graphs for which
the trivial look-up table approach is the best possible for exact distances. However, for
restricted classes of graphs, it may be possible to obtain exact oracles with a much better
tradeoff between space and query time. Indeed, for any planar n-vertex digraph, there is an
exact distance oracle with space close to linear in n and query time close to constant [7, 2, 12].

A related problem is that of obtaining a vertex-labeled distance oracle. Here, we are
given a graph with each vertex assigned a label. A query consists of a pair (u, λ) of a vertex
u and a label λ and the output should be the distance from u to the nearest vertex with
label λ. Each vertex is given only one label but the same label may be assigned to multiple
vertices. To give some practical motivation, if the graph represents a road network, a label λ

could represent supermarkets and the output of query (u, λ) gives the distance to the nearest
supermarket from the location represented by u.

Note that this is a generalization of the distance oracle problem since vertex-to-vertex
distance queries can be answered by a vertex-labeled distance oracle if each vertex is given
its own unique label. If L is the set of labels, a trivial vertex-labeled distance oracle with
constant query time is a look-up table that simply stores the answers to all possible queries,
requiring space O(n|L|). This bound can be as high as quadratic in n.

Our main result, which we shall state formally later in this section, is that for undirected
edge-weighted planar graphs, the vertex-labeled distance oracle problem can be reduced
to the more restricted distance oracle problem in the sense that up to log n-factors, any
space/query time tradeoff for distance oracles also holds for vertex-labeled distance oracles.
Hence, the tradeoff from [12] translates to vertex-labeled distance oracles, assuming that
the planar graph is undirected. To the best of our knowledge, this is the first non-trivial
upper bound for vertex-labeled distance oracles in any interesting graph class other than
trees [8, 15]. A strength of our result is that any future progress on distance oracles in
undirected planar graphs immediately translates to vertex-labeled distance oracles.

1.1 Related work on vertex-labeled distance oracles
Vertex-labeled distance oracles have received considerably more attention in the approximate
setting. With (1 + ϵ) multiplicative approximation, it is known how to get Õ(n) space and
Õ(1) query time both for undirected [11] and directed planar graphs [13] and it has been
shown how oracles with such guarantees can be maintained dynamically under label changes
to vertices using Õ(1) time per vertex relabel.

For general graphs, vertex-labeled distance oracles with constant approximation have
been presented [9, 3, 14] with state of the art being an oracle with O(kn|L|1/k) space, 4k− 5
multiplicative approximation, and O(log k) query time, for any k ∈ N.

1.2 Our contributions
We now state our reduction and its corollary:

▶ Theorem 1. If there is an exact distance oracle for n-vertex undirected edge-weighted
planar graphs with s(n) space, q(n) query time, and t(n) preprocessing time, then there exists
an exact vertex-labeled distance oracle for such graphs with s(n) + O(n log2 n) space, and
with O(q(n) log n + log3 n) query time, and t(n) + poly(n) preprocessing time.

Plugging in the distance oracle of Long and Pettie et al. [12] gives the following corollary
which can be seen as a generalization of their result:



J. Evald, V. Fredslund-Hansen, and C. Wulff-Nilsen 23:3

▶ Corollary 2. For n-vertex undirected edge-weighted planar graphs, there exist exact vertex-
labeled distance oracles with the following tradeoffs between space and query time:
1. n1+o(1) space and Õ(1) query time,
2. Õ(n) space and no(1) query time.
All oracles have preprocessing time polynomial in n.

Up to logarithmic factors, the full tradeoff between space and query time in their paper
similarly extends to vertex-labeled distance oracles in undirected edge-weighted planar graphs.

The rest of the paper is organized as follows. In Section 2, we introduce basic definitions
and notation and present tools from the literature that we will need for our oracle. In
Section 3 we state the key lemmas but defer their proofs until later sections, and thus
immediately present our reduction by describing how to obtain a vertex-labeled distance
oracle given a distance oracle as a black box. In Section 4, we present a point location
structure similar to [7] but with some important modifications to improve space in our
setting.

2 Preliminaries

Let G = (V, E, ω) be a graph with edge weight function ω : E → R ∪ {∞}. We denote by
V (G) = V and E(G) = E the vertex and edge-set of G, respectively, and by n = |V (G)| the
number of vertices of G. A graph G′ is said to be a subgraph of G if V (G′) ⊆ V (G) and
E(G′) ⊆ E(G). We denote by u ⇝G v a shortest path from u to v in G, by dG(u, v) the
weight of u⇝G v, and write u⇝ v = u⇝G v and d(u, v) = dG(u, v) when G is clear from
context. For a shortest path p = u⇝ v = (u = p1), p2, . . . , (pk = v) we define vertex pi to
occur before pj on p if i < j and similarly for edges pipi+1 and pjpj+1. Thus statements such
as “the first/last vertex/edge on p satisfying some property P” will always be made w.r.t.
this ordering. We also write p ◦ p′ to denote the concatenation of paths (or edges) p and p′,
assuming the last vertex of p equals the first vertex of p′. Given u, v, v′ ∈ V ; we say that v is
closer than v′ to u in G if dG(u, v) < dG(u, v′) or dG(u, v) = dG(u, v) and v < v′, assuming
some lexicographic ordering on vertices. We denote by V (p), respectively E(p), the set of
vertices, respectively edges, on a path p.

Assume in the following that G is undirected. G is said to be connected, respectively
biconnected, if any pair of vertices are connected by at least one, respectively two, vertex-
disjoint paths. For a rooted spanning tree T in G and for any edge e = uv not in T , we
define the fundamental cycle of uv w.r.t. T as the cycle obtained as the concatenation of uv

and the two paths of T from the root to u and v, respectively.

2.1 Planar graphs and embeddings
An embedding of a planar graph G assigns to each vertex a point in the plane and to each
edge a simple arc such that its endpoints coincide with those of the points assigned to its
vertices. A planar embedding of G is an embedding such that no two vertices are assigned the
same point and such that no pair of arcs coincide in points other than those corresponding
to vertices they share. A graph is said to be planar if it admits a planar embedding. When
we talk about a planar graph we assume that it is planar embedded and hence some implicit,
underlying planar embedding of the graph. When it is clear from the context we shall refer
interchangeably to a planar graph and its embedding, its edges and arcs and its vertices and
points. Thus the term graph can refer to its embedding, an edge to its corresponding arc
and a vertex to its corresponding point in the embedding.
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Assumptions about the input

Unless stated otherwise, we shall always assume that G refers to a graph which is weighted,
undirected and planar with some underlying embedding. Furthermore, we shall make the
structural assumption that G is triangulated. Triangulation can be achieved by standard
techniques, i.e. adding to each face f an artificial vertex and artificial edges from the artificial
vertex to each vertex of V (f) with infinite weight. This transformation preserves planarity,
shortest paths and ensures that the input graph consists only of simple faces. We also assume
that shortest paths in the input graph are unique; this can be ensured for any input graph
by either randomly perturbing edge weights or with e.g. the deterministic approach in [6]
which gives only an O(1)-factor overhead in running time. Finally, it will be useful to state
the following lemma when talking about separators in a graph with unique shortest paths:

▶ Lemma 3. Let u, v, x, y ∈ V (G). Then u⇝ v and x⇝ y share at most one edge-maximal
subpath.

Proof. Assume that x⇝ y intersects u⇝ v and let a resp. b be the first resp. last intersection
along u ⇝ v. Since G is undirected, uniqueness of shortest paths implies that a ⇝ b is a
subpath of u⇝ v shared by x⇝ y. ◀

Edge orderings, path turns and path intersections

For an edge e = uv of a planar embedded graph H, we let <H
e be the clockwise ordering

of edges of H incident to v starting at e (ignoring edge orientations). Hence <H
e is a strict

total order of these edges and e is the first edge in this order.
For vertices u, v ∈ V (H), x ∈ V (u⇝ v) \ {u, v} and y ∈ V (H) \ V (u⇝ v), let pq be the

last edge shared by u⇝ v and x⇝ y. Furthermore let qz resp. qz′ be the edge following pq

in the traversal of u⇝ v and x⇝ y, respectively. We say that x⇝ y emanates from the left
of u⇝ v if qz′ <H

pq qz, and otherwise it emanates from the right. We dually say that y ⇝ x

intersects u⇝ v from the left (right) if x⇝ y emanates from the left (right).
Given a face f of H, vertices u ∈ V (f), and v, v′ ∈ V , let H ′

f be a copy of H with an
artificial vertex f∗ embedded in the interior of f along with an additional edge f∗u. Define
the paths pv = f∗u ◦ u⇝H′

f
v and pv′ = f∗u ◦ u⇝H′

f
v′ and assume that neither path is a

prefix of the other. By assumption and Lemma 3, pv and pv′ share exactly one edge-maximal
subpath f∗ ⇝ x. We say that u ⇝H v makes a left turn w.r.t u ⇝H v′ from f if x ⇝ v

emanates from the left of pv, and otherwise it makes a right turn; we will omit mention of
f when the context is clear. Note that the notion of a turn is symmetric in the sense that
u⇝H v makes a left turn w.r.t u⇝H v′ iff u⇝H v′ makes a right turn w.r.t u⇝H v.

2.2 Voronoi Diagrams
The definitions in this subsection will largely be made in a manner identical to those
of [7], but are included as they are essential to a point location structure which will be
presented in Section 4. Given a planar graph G = (V, E, ω), S ⊆ V , the Voronoi diagram
of S in G, denoted by VD(S) in G is a partition of V into disjoint sets, Vor(u), referred
to as Voronoi cells, with one such set for each u ∈ S. The set Vor(u) is defined to be
{v ∈ V | d(u, v) < d(u′, v) for all u′ ∈ S \ {u}}, that is the set of vertices that are closer to
u than any other site in terms of d(·, ·). We shall simply write VD when the context is clear.

It will also be useful to work with a dual representation of Voronoi diagrams. Let VD∗
0

be the subgraph of G∗ s.t. E(VD∗
0) is the subset of edges of G∗ where uv∗ ∈ VD∗

0 iff u and
v belong to different Voronoi cells in VD. Let VD∗

1 be the graph obtained by repeatedly
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contracting edges of VD∗
0 incident to degree 2 vertices until no such vertex remains2. We

refer to the vertices of VD∗
1 as Voronoi vertices, and each face of the resulting graph VD∗

1
can be thought of as corresponding to some Voronoi cell in the sense that its edges enclose
exactly the vertices of some Voronoi cell in the embedding of the primal. We shall restrict
ourself to the case in which all vertices of S lie on a single face h. In particular, h∗ is a
Voronoi vertex, since each site is a vertex on the boundary of h in the primal. Finally, let
VD∗ be the graph obtained by replacing h∗ with multiple copies, one for each edge. We
note that since there are |S| Voronoi sites (and thus faces in VD∗), the number of Voronoi
vertices in VD∗ is O(|S|) due to Euler’s formula. Furthermore, [7] show that when assuming
unique shortest paths and a triangulated input graph, VD∗ is a ternary tree. It follows that
the primal face corresponding to a Voronoi vertex f∗ consists of exactly three vertices, each
belonging to different Voronoi cells. We refer to the number of sites in a Voronoi diagram as
its complexity.

Finally, they also note that a centroid decomposition, T ∗, can be computed from VD∗ s.t.
each node of T ∗ corresponds to a Voronoi vertex f∗ and the children of f∗ in T ∗ correspond
to the subtrees resulting from splitting the tree at f∗, and s.t. the number of vertices of
each child is at most a constant fraction of that of the parent. We remark that VD∗(S) can
be computed by connecting all sites to a super-source and running a single-source shortest
paths algorithm, and its centroid decomposition in time proportional to |V (VD∗(S))|.

2.3 Separators and decompositions
In the following, we will outline the graph decomposition framework used by our construction.
As part of the preprocessing step, we will recursively partition the input graph using balanced
fundamental cycle separators until the resulting graphs are of constant size. We shall associate
with the recursive decomposition of G a binary decomposition tree, T , which is a rooted tree
whose nodes correspond to the regions of the recursive decomposition of G. We will refer to
nodes and their corresponding regions interchangeably. The root node of T corresponds to
all of G. The following lemma states the invariants of the decomposition that will be used in
our construction:

▶ Lemma 4. Let G = (V, E, ω) be an undirected, planar embedded, edge-weighted, triangulated
graph and let T be a spanning tree3 of G. Then there is an Õ(n) time algorithm that returns
a binary decomposition tree T of G s.t.
1. for any non-leaf node G′ ∈ T , its children G′

l, respectively G′
r corresponds to the non-strict

interior, respectively non-strict exterior of some fundamental cycle in G′ w.r.t. T ,
2. for any child node, it contains at most a constant fraction of the faces of its parent,
3. for any leaf node it contains a constant number of faces of G,
4. for all nodes at depth i, Ti,

∑
G′∈Ti

|V (G′)| = O(n)

Properties 1-3 follow from recursively applying a classic linear time algorithm for finding
fundamental cycles. Property 4 follows from employing standard techniques that involve
contracting degree-two vertices of the separators found at each level of recursion and weighting
the resulting edges accordingly. This transformation results in a decomposition where the
sum of faces of all regions at any level is preserved. We stress that our construction does
not rely on the usual sparse simple cycle separators (of size O(

√
n)) but rather fundamental

cycle separators of size O(n).

2 Formally, given a degree 2 vertex v with incident edges vw, vw′, we replace these edges by ww′,
concatenate their arcs and embed ww′ using this arc in the embedding.

3 For our purposes, the spanning tree will be a shortest path tree.
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3 The vertex labeled distance oracle

In this section we describe our reduction which shows our main result. The reduction can be
described assuming Lemma 4 and the existence of the point location structure which we will
state in the following lemma, the proof of which is deferred to Section 4:

▶ Lemma 5. Let G = (V, E, ω) be an undirected, planar embedded, edge-weighted graph with
labeling l : V → L and let p be a shortest path in G. There is a data structure OG,p with
O(|V | log |V |) space which given u ∈ V and λ ∈ L returns a subset C ⊂ V of constant size,
s.t. if v is the vertex with label λ closest to u and v ⇝ u intersects p, then v ∈ C. Each such
query takes time at most O(log2 |V |).

3.1 Preprocessing
Given the input graph G = (V, E, ω), the preprocessing phase initially computes the decom-
position tree, T , of Lemma 4. Associated with each non-leaf node G′ ∈ T is a fundamental
cycle separator of ab ∈ E(G′) w.r.t. the shortest path tree T rooted at some c ∈ V (G′). For
such a G′ we shall refer to S1(G′) = c⇝G′ a and S2(G′) = c⇝G′ b. Thus the fundamental
cycle separator is given by S1(G′) ◦ ab ◦ S2(G′). The preprocessing phase proceeds as follows:
For all non-leaf nodes G′ ∈ T , compute and store data structures OG′,S1(G′) and OG′,S2(G′)
of Lemma 5. Finally, a distance oracle D with O(s(|V |)) space capable of reporting vertex-
to-vertex shortest path distances in time O(t(|V |)) is computed for G and stored alongside
the decomposition tree and the point location structures.

Space complexity

The decomposition tree T can be represented with O(|V | log |V |) space and D with O(s(n))
space. For each node G′ ∈ T , we store data structures S1(G′) and S2(G′), so by Lemma 4
and 5, we get

∞∑
i=0

∑
G′∈Ti

|V (G′)| log |V (G′)| =
c log n∑

i=0
O(|V | log |V |) = O(|V | log2 |V |)

for a total space complexity of O(s(|V |) + |V | log2 |V |).

3.2 Query
Let G′ ∈ T and consider the query dG′(u, λ). If G′ is a leaf node, the query is resolved in
time O(t(n)) by querying D once for each vertex of G′. If G′ is a non-leaf node, the query is
handled as follows: First, data structures OG′,S1(G′) and OG′,S2(G′) are queried with u and
λ, resulting in two “candidate sets”, C1 and C2, one for each query. By Lemma 5, C1 ∪ C2
contains the nearest vertex with label λ for which u⇝G′ v′ intersects either S1 or S2 if such
a vertex exists. Compute dG′ = min {dG(u, c) | c ∈ C1 ∪ C2} ∪ {∞} by querying D once for
each vertex of C1 ∪ C2. The query then recursively resolves dG′′ = dG′′(u, λ) where G′′ is a
child of G′ in T containing u. Finally, the query returns min {dG′ , dG′′}.

Correctness

Denote by v the vertex of G with label λ nearest to u in G′, and consider the case in which
u⇝G′ v intersects S1(G′) or S2(G′). In this case, v ∈ C by Lemma 5 and C ̸= ∅, so

dG′ = min {dG(u, c) | c ∈ C} = dG(u, v) = dG′(u, v) = dG′(u, λ) ≤ dG′′
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Algorithm 1 Query procedure for the distance oracle.

1: procedure Query(u, λ, G′)
2: if G′ is a leaf node in T then
3: return min {dG′(u, v) | v ∈ V (G′) and l(v) = λ}
4: else
5: C1 ← OG′,S1(G′)(u, λ); C2 ← OG′,S2(G′)(u, λ)
6: G′′ ← A child of G′ in T containing u

7: dG′ ← min {dG(u, c) | c ∈ C1 ∪ C2} ∪ {∞}
8: dG′′ ← Query(u, λ, G′′)
9: return min {dG′ , dG′′}

with the inequality following from definition of v. Note that in case u is a vertex of either S1
or S2, the correct estimate is returned at the current level, but for a simpler description, the
recursion proceeds anyways. Otherwise u⇝′

G v intersects neither S1 and S2 in which case,
the path must be fully contained in the (unique) child node, G′′, of G′ containing u. In this
case, the query reports dG′′ = dG′′(u, λ) = dG′′(u, v) ≤ dG′ , showing the correctness.

Time complexity

At each level of the recursion, OG′,S1(G′) and OG′,S2(G′) are queried in time O(log2 |V |).
Furthermore, D is queried |C| = O(1) times in total time O(1) · O(t(|V |)) = O(t(|V |)).
By Lemma 4, the query is recursively resolved on a problem instance which is a constant
fraction smaller at each level of recursion, giving rise to the recurrence relation T (n) =
T (n/a)+O(t(n)+log2 n). When G′ is a leaf node, then by Lemma 4, G′ consists of a constant
number of faces, described by the base case T (n) = O(t(n)) when n ≤ b for sufficiently small
b. It is easily verified that a solution to the recurrence is bounded by O(log3 n + t(n) log n).
This shows the main theorem, and the rest of this paper is devoted to proving Lemma 5.

4 The point location data structure

Our point-location data-structure uses techniques similar to those of [7] for point location
in additively weighted Voronoi diagrams, but with some crucial differences in order to save
space.

Both structures rely on being able to determine left/right turns of shortest paths in
shortest path trees rooted at sites in G, but to facilitate this, the data structure of [7]
explicitly stores an (augmented) shortest path tree rooted at each site as well as a data
structure for answering least common ancestor (LCA) queries. The point location structure
thus requires Θ(|S|n) space where S is the number of sites, and since S may be large as
Θ(
√

n) (corresponding to the size of a sparse balanced separator in a planar graph), this
translates to Θ(n3/2) space for their problem. This will not work in our case since the number
of sites can in fact be as high as Θ(n), leading to a quadratic space bound.

The second issue with applying the techniques from [7] directly to our setting, is that it
requires us to store a Voronoi diagram for each label, for each shortest path. Each vertex of
the path separator would then be a site in the stored Voronoi diagram but as each separator
may be large, i.e. Θ(n), we may use as much as Θ(n|L|) space over all labels of L for a single
separator. What we need is for the number of sites involved for a label λ to be proportional
to the number of vertices with label λ; this would give a near-linear bound on the number
of sites when summing over all λ ∈ L across all levels of the recursive decomposition. We
address these issues in the following sections.
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4.1 MSSP structure
To compactly represent shortest path trees, our point location structure uses an augmented
version of the multiple-source shortest-path (MSSP) data structure of Klein [10]. It cleverly
uses the persistence techniques of [5] in conjunction with top trees [1] to obtain an implicit
representation of shortest path trees rooted at each site. Top-trees allow for shortest path
distance queries and least-common ancestor (LCA) queries in time O(log n) per query while
using O(n log n) space, and can easily be augmented to support turn queries, as we shall see
shortly. To be used as a black box, the MSSP structure relies on being initialized from a
face of G. In our construction, we wish to use it for querying left/right turns of paths and
distances from vertices residing on shortest paths of fundamental cycle separators, and thus
some further preprocessing is required. The guarantees of the augmented MSSP structure
used for the point location structure are summarized in the following lemma:

▶ Lemma 6. Let G = (V, E, ω) be an edge-weighted planar graph, f be a face of G and let
Tu denote the shortest path tree rooted at u. Then there exists a data structure MSSP(G, f)
with O(n log n) space which given u ∈ V (f) and c, v ∈ V supports queries
1. Dist(u, v): report dG(u, v),
2. LCA(u, c, v): report the least common ancestor of v, c in Tu,
3. Turn(u, c, v): report whether u ⇝Tu

c makes a left or right turn w.r.t. u ⇝Tu
v or if

one is a prefix of the other.
in time O(log n) per query. The data structure can be preprocessed in O(n log n) time.

Descriptions of Dist and LCA are available in [10] and [1], and a description of how
to implement Turn is provided in Appendix A in terms of the vocabulary and interface
specified in [1] for completeness. A top-tree representing any shortest path tree rooted at a
vertex on f can be accessed in time O(log n) by using persistence in the MSSP structure.
Lemma 6 then readily follows from applying the bound of Lemma 13 in Appendix A.

4.2 Label sequences
To address the second issue, we first need to make the following definition and state some of
its properties when applied in the context of planar graphs:

▶ Definition 7. Let G = (V, E) be a graph, p = p1, . . . , pk a sequence of vertices and
S ⊆ V . The label-sequence of p w.r.t. S is a sequence MG,S,p ∈ Sk satisfying MG,S,p(i) =
arg mins∈S distG(s, pi). The alternation number on p w.r.t. S in G is defined as |MG,S,p| =∑k−1

i=1 [MG,S,p(i) ̸= MG,S,p(i + 1)].

When G, S and p are clear from the context, we shall simply write M , and also note that
the sequence is well-defined due the tie-breaking scheme chosen in the preliminaries. The
alternation number can be thought of as the number of times consecutive vertices on p change
which vertex they are closest to among S when “moving along” p.

When G is an undirected planar graph and p is a shortest path in G, it can be observed4

that M is essentially a Davenport-Schinzel sequence of order 2, and it immediately follows
that the alternation number is “small” in the sense it is proportional to S while being agnostic
towards the length of p altogether.

4 We thank the anonymous reviewer for this observation which saved a tedious proof.
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(a) Vertex v not contained in C.

vi1
vi2 vi3 vi4

u
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x

f

(b) Vertex v contained in C.

Figure 1 Illustration of the proof of Lemma 10. The concatenation of u⇝ vi1 , vi1 ⇝ vi3 , and
the reverse of u⇝ vi3 forms a cycle C and v ⇝ vi2 intersects u⇝ vi3 in x. Note that w.l.o.g. C is
not necessarily simple, that v ⇝ vi2 may intersect the cycle more than once and that v may be a
vertex of C.

▶ Definition 8 (Davenport-Schinzel [4]). A sequence u1, u2, . . . , uk over an alphabet Σ on n

symbols is said to be a (n, s)-Davenport-Schinzel sequence if
1. ui ̸= ui+1 for all 1 ≤ i < k and
2. There do not exist s + 2 indices 1 ≤ i1 < i2 < . . . < is+2 ≤ k for which ui1 = ui3 = . . . =

uis+1 = u and ui2 = ui4 = . . . = uis+2 = v for u ̸= v ∈ Σ.

▶ Lemma 9 (Davenport-Schinzel [4]). Let U be a (n, 2)-Davenport-Schinzel sequence of length
m. Then |U | ≤ 2n− 1.

For a sequence of S = u1, u2, . . . , uk over an alphabet Σ, the contraction of S is the
subsequence obtained from S by replacing every maximal substring s, s, . . . , s of S consisting
of identical symbols s by a single occurence of s. As an example with Σ = {0, 1, 2}, the
contraction of 0, 0, 1, 2, 2, 1, 1, 0, 1, 0, 0, 2 is 0, 1, 2, 1, 0, 1, 0, 2.

▶ Lemma 10. Let G be an undirected, weighted planar graph, let S ⊆ V , and let p be a
shortest path of G contained in (the boundary of) a face of G. Then the contraction of M is
a (|S|, 2)-Davenport-Schinzel sequence.

Proof. Define v1, . . . , vk = p and assume for the sake of contradiction that for some 1 ≤
i1 < i2 < i3 < i4 ≤ k and u, v ∈ S with u ̸= v, it holds that u = M(i1) = M(i3) and
v = M(i2) = M(i4). Then the concatenation of u ⇝ vi1 , vi1 ⇝ vi3 , and the reverse of
u⇝ vi3 forms a cycle. Thus, either v ⇝ vi2 intersects u⇝ vi1 ∪u⇝ vi3 or v ⇝ vi4 intersects
u⇝ vi1 ∪ u⇝ vi3 ; see Figure 1a and 1b. By symmetry, we only need to consider the former
case. If v ⇝ vi2 intersects u ⇝ vi3 in some vertex x then v ⇝ x has the same weight as
u⇝ x. By the “closer than”-relation, u = M(i3) = M(i2) = v, contradicting our assumption
that u ̸= v. A similar contradiction is obtained if v ⇝ vi2 intersects u⇝ vi1 . ◀

▶ Corollary 11. Let G, S and p be as in Lemma 10. Then |MG,S,p| = O(|S|).

We remark that M can be readily computed in polynomial time by adding a super-source
connected to each vertex of S and running an SSSP algorithm. Furthermore M can be
represented with O(S) space, by storing only the indices for which M(i) ̸= M(i + 1) and
M(i) for each such index.

We will now describe how to achieve O(n) space for storing Voronoi diagrams for all
labels λ ∈ L at any level of the recursive decomposition. We do so by modifying the
preprocessing steps and query scheme of [7] in a manner suitable for application of Lemma
10 and Corollary 11.

ISAAC 2021
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p1 pl

(a) G before incision. Here p as indicated by the
dashed line.

p1 plfp?

(b) The resulting graph Gp after the incision; p is
replaced by two paths p′ and p′′ that enclose the
face fp.

r1 r2 r3
a1 b1/a2

b2/a3
b3

f ′
p?

(c) The face f ′
p resulting from adding edges to ri.

Here b1 = a2 and b2 = a3.

r1 r2 r3f ′
p?

(d) The Voronoi diagram is represented by a colored
shortest-path tree for each site ri.

Figure 2 Preprocessing steps for the point-location structure.

4.3 Preprocessing

Let us briefly recall the statement of Lemma 5; that is, we let G be an undirected, edge-
weighted, planar embedded graph with associated labeling l : V → L and let p = p1 ⇝ pk be
a shortest path in G. Given a query (u, λ) ∈ V × L, we want to identify a small “candidate”
set of vertices C ⊆ V such that if v is the vertex with label λ closest to u and u⇝ v intersects
p, then v ∈ C.

Here, we first describe how to compute a data structure which provides the guarantees
of Lemma 5, but restricts itself to the case only where u ⇝ v intersects p from the left.
The description of the data structure for handling paths that intersect p from the right is
symmetric (e.g. by swapping the endpoints of p). Lemma 5 thus readily follows from the
existence of such structures.

First, a copy, Gp, of G is stored and an incision is added along p in Gp. This results in a
planar embedded graph Gp, which has exactly one more face than G. Define by p′ = p′

1, . . . , p′
l

and p′′ = p′′
1 , . . . , p′′

l the resulting paths along the incision, where p′
1 = p′′

1 and p′
l = p′′

l . We
denote by fp the face whose boundary vertices are V (p′) ∪ V (p′′). An illustration of this is
provided in Figure 2a and 2b.

Next, the MSSP data structure of Lemma 6, MSSP(Gp, fp), is computed and stored as
part of the point-location data structure. This structure will be used for the point location
query.

Centroid decompositions of Voronoi diagrams

The following preprocessing is now done for each label λ ∈ L: First a copy, Gλ
p , of Gp is

made. Next, MGp,Sλ,p′ is computed for Sλ = {v ∈ V | l(v) = λ}. For convenience we assume
that M(0) = nil. The preprocessing phase now consists of modifying Gλ

p before computing
the Voronoi diagram and the associated centroid decomposition associated with λ as follows:
For i← 1, . . . , l, whenever M(i) ̸= M(i− 1), a new vertex is added to Gλ

p and embedded in
fp along the curve formed by the deleted arc of the embedding of p. Denoting by ri the most
recently added vertex after iteration i, edge p′

iri with ω(p′
iri) = dG(M(i), p′

i) is added to Gλ
p
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and embedded for all i. Once again, it is fairly easy to see that Gλ
p is planar embedded. See

Figure 2c for an illustration of this. Denote by ai and bi the endpoints of the first and last
edges added incident to ri (w.r.t. the order in which they were added). Denote by f ′

p that
has {ri, ai, bi | 1 ≤ i ≤ l} ∪ V (p′′) as its boundary vertices. Now the Voronoi diagram, its
dual and subsequently its corresponding centroid decomposition, T ∗

p,λ, is computed in (the
now modified) Gλ

p using R = {ri | 1 ≤ i ≤ l} as Voronoi sites, see Figure 2d. The intuition is
that each site in R corresponds to a contiguous subsequence M(k), . . . , M(l) of M for which
M(j) = M(j + 1) = v where v is the vertex with label λ closest to p′

j for k ≤ j < l. This
implies that the number of sites is proportional to the number of vertices with label λ instead
of the length of the original separator p: By Lemma 11, |M | = O(|Sλ|) and since |R| = |M |
it follows that |R| = O(|Sλ|) bounds the complexity of T ∗

p,λ, which is stored as part of the
data structure. As aforementioned, each centroid c ∈ T ∗

p,λ corresponds to some degree three
Voronoi vertex, f∗

c , with vertices, {x1, x2, x3} in the corresponding primal face fc s.t. each
xj belongs to a different Voronoi site rij

for j ∈ {1, 2, 3}. For each such j, the centroid c

stores a pointer to its corresponding face fc, the first vertex pkj of p′ on rij ⇝G′
p

xj and the
weight ω(pkj

rij
).

Space complexity

The space used for storing the MSSP structure is O(|V | log |V |) by Lemma 6. For each
centroid, we store a constant amount of data, so the space required for storing the centroid
decompositions is∑

λ∈L

O(1) · |T ∗
p′,λ| =

∑
λ∈L

O(|Sλ|) = O(V )

since Sλ ∩ Sλ′ = ∅ for λ ̸= λ′ ∈ L as each vertex has exactly one label. The total space used
is thus O(|V | log |V |).

4.4 Handling a point location query
We now show how to handle a point location query. Note that in the following, we can
assume that the vertices of p′ appear in increasing order of their indices when traversing
the boundary of fp in a clockwise direction. Recall that given u ∈ V and λ ∈ L, we wish to
find a subset C ⊂ V of constant size, s.t. if v is the closest vertex with label λ where u⇝ v

intersects p from the left, then v ∈ C. The query works by identifying a subset P ⊆ V (p′)
s.t. for some p′

k ∈ P it holds that MGp,Sλ,p′(k) = v. We first show how to identify the subset
by recursively querying the centroid decomposition T ∗

p,λ according to the following lemma,
which we note is modified version of the query in [7]:

▶ Lemma 12. Given a query (u, λ) ∈ V × L, consider the centroid decomposition tree T ∗
p,λ

computed from Gλ
p in the preprocessing. Let c be a centroid c ∈ T ∗

p,λ corresponding to some
Voronoi vertex, f∗

c , with associated primal triangle containing vertices {x0, x1, x2} = V (fc)
where xj belongs to the Voronoi cell of rij

for j ∈ {0, 1, 2} and i0 < i1 < i2. Furthermore
let e∗

j be the dual edge incident to f∗
c , s.t. ej = xjx(j+1) mod 3, let pkj

be the successor
of rij

on rij
⇝Gλ

p
xj, let Pj = pkj

⇝Gp
u, and let T ∗

j be the subtree of T ∗
p,λ attached

to c by e∗
j for j ∈ {0, 1, 2}. Finally, let j∗ = arg minj∈{0,1,2}{dGp(pkj , u) + ω(rij pkj )} =

arg minj∈{0,1,2}{dGλ
p
(rij

, u)}. Then
1. If pkj∗ ⇝Gp u emanates from the left of Pj∗ or u ∈ Pj∗ , then the site closest to u in

Gλ
p belongs to R− = {r(i(j∗−1) mod 3 , . . . , rij∗ } and the second vertex on the shortest path

from that site to u in Gλ
p belongs to P − = {p(i(j∗−1) mod 3 , . . . , pij∗ }; furthermore, T ∗

j∗ is
the centroid decomposition tree for Gλ

p when restricted to shortest paths from sites in R−

through successors in P −.
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x0

x2

x1

ri0 ri1

ri2

pk1

pk2

e∗0

e∗1

e∗2

u

pk0

R+, P+R−, P−

p′

T ∗1

Figure 3 Illustration of Lemma 12. The dashed green lines represent Voronoi edges in the centroid
decomposition and the red lines the primal shortest paths to the primal vertices of the centroid.
In this case, j∗ = 1, so u is contained in primal faces spanned by the subtree T ∗

1 contained in the
region highlighted in yellow.

2. otherwise, the site closest to u in Gλ
p belongs to R+ = {rij∗ , . . . , ri(j∗+1) mod 3}

and the second vertex on the shortest path from that site to u belongs to P + =
{pij∗ , . . . , pi(j∗+1) mod 3}; furthermore, T ∗

(j∗+1) mod 3 is the centroid decomposition tree for
Gλ

p when restricted to shortest paths from sites in R+ through successors in P +.

Proof. By symmetry, we only consider the first case since the second case occurs when
pkj∗ ⇝Gp u emanates from the right of Pj∗ and the first case also includes the case where
u ∈ Pj∗ .

By the choice of j∗, pkj∗ ⇝Gp u cannot intersect any of the paths Pj′ with j′ ∈ {(j∗ − 1)
mod 3, (j∗ + 1) mod 3} since these two paths are subpaths of shortest paths from sites
rij′ ≠ rij∗ in Gλ

p and we assume unique shortest paths. Let x be the first vertex of pkj∗ ⇝Gp u

such that either x = u or the path emanates from the left of Pj∗ at x. The rest of pkj∗ ⇝Gp
u

following x will not intersect Pj∗ again due to uniqueness of shortest paths. Thus u belongs
to the region of the plane enclosed by paths P(j∗−1) mod 3, Pj∗ , edge e(j∗−1) mod 3, and
path pk(j∗−1) mod 3 , . . . , pkj∗ . Note that T ∗

j∗ is the subtree of T ∗
p′,λ spanning the primal faces

contained in this region. Hence, T ∗
j∗ is the centroid decomposition tree for Gλ

p when restricted
to shortest paths from sites in R− through successors in P −. ◀

For an illustration of Lemma 12, see Figure 3. The Lemma implies a fast recursive point
location scheme. On query (u, λ), obtain centroid c from T ∗

p′,λ. Since weights of edges from
sites have been precomputed, MSSP(Gp, fp) is applied to find j∗. MSSP(Gp, fp) is also used
to determine if pkj∗ ⇝Gp

u emanates from the left of Pj∗ and hence whether the first or
second case of the lemma applies. The point location structure now recurses on a subset of
sites and vertices of p′ and on a subtree of T ∗

p′,λ, depending on which case applies.
The recursion stops when reaching a subtree corresponding to a bisector for two sites.

The vertices of V with label λ corresponding to these two sites are reported as the set C,
yielding the desired bound.

Time complexity

The O(log2 |V |) query time bound of Lemma 5 follows since there are O(log |V |) recursion
levels and in each step, a constant number of queries to MSSP(Gp, fp) are executed, each
taking O(log |V |) time.
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A Appendix

A description of how to implement Turn in Lemma 6 is provided here in terms of the
terminology and the interface specified in [1]. Readers that are not familiar with the
terminology and interface pertaining to top-trees are referred to [1].

▶ Lemma 13. Let G = (V, E, ω) be a weighted planar graph, and let T be the root-cluster of
a top-tree corresponding to some tree T in G. Then in addition to Dist and LCA, we can
support Turn queries: For u, c, v ∈ V , report whether u⇝ c makes a left or right turn w.r.t.
u⇝T v, or if one is a prefix of the other in time O(log n) per query.

Proof. A description of how to perform LCA queries is found in [1]. Assume that u, c, v ∈ T

and w.l.o.g. that u is strictly more rootward in T than v. First use T to determine the LCA
c′ of (v, c). If c′ is on both u ⇝ c and u ⇝ v one path is a prefix of the other. Otherwise
invoke expose(u, c′) and traverse T until a leaf of T corresponding to the edge, ev ∈ E(T )
is reached, which connects c′ to the subtree containing v in T . This can be done in time
O(log n). The same is done for (u, c′) and (c, c′), exposing edges eu, ec ∈ T . Now, if ec = ev

or ec = eu, c must be on u ⇝T v. Otherwise it is easily checked, by maintaining a cyclic
order of edges in the adjacency list of c′, in constant time, whether ec emanates to the left or
right of the subpath euev and hence u⇝T v. The total time spent is O(log n). ◀
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Individualization-Refinement (IR) algorithms form the standard method and currently the only
practical method for symmetry computations of graphs and combinatorial objects in general.
Through backtracking, on each graph an IR-algorithm implicitly creates an IR-tree whose order is
the determining factor of the running time of the algorithm.

We give a precise and constructive characterization which trees are IR-trees. This characterization
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colored object where vertex colors stem from a node invariant. We also provide a construction that
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1 Introduction

The individualization-refinement (IR) framework is a general backtracking technique employed
by algorithms solving tasks related to the computation of symmetries of combinatorial
objects [16]. These include algorithms computing automorphism groups, isomorphism solvers,
canonical labeling tools used for computing normal forms, and to some extent recently also
machine learning computations in convolutional neural networks [1,17]. In fact all competitive
graph isomorphism/automorphism solvers, specifically nauty/Traces [15,16], bliss [11,12],
saucy [8, 9], conauto [13, 14], and dejavu [3, 4] fall within the framework. These tools
alternate color-refinement techniques (such as the 1-dimensional Weisfeiler-Leman algorithm)
with backtracking steps. The latter perform artificial individualization of indistinguishable
vertices. This leads to recursive branching and overall to a tree of recursive function calls,
the so called IR-tree.

Using clever invariants and heuristics, the tools manage to prune large parts of the
IR-tree. Since the non-recursive work is quasi-linear, it has long been known that the number
of traversed nodes of the IR-tree is the determining factor in the running time for all the
tools (see for example [20, Theorem 9] and [19]). And in fact, the running times of the
various tools closely reflect this [4,16]. Indeed, variation in the traversal strategies among the
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tools leads to a different number of traversed nodes which in turn leads to different running
times. However, explicit bounds that rigorously show asymptotic advantages of randomized
traversals over deterministic ones have only recently been obtained [5]. For this, a specific
problem – a search problem in trees with symmetries – is defined. It captures precisely the
parameters within which IR-algorithms operate.

While these results are quite general within an abstract model, the bounds proven in [5]
apply to the search problem in arbitrary trees with symmetries, independent of whether
they originate from actual IR-computations or not. Granted, the vast benchmark library of
Traces [15,16] shows that IR-trees come in an abundance of forms and shapes. However, to
date there have been no comprehensive results actually analyzing which trees can arise as an
IR-tree.

Contribution. In this paper we study which trees are IR-trees. Arising from a branching
process, all IR-trees are rooted and all inner vertices have at least 2 children. Such trees
are called irreducible (or series reduced). Despite a vast variety of IR-trees arising from
benchmark libraries, it turns out that not all irreducible trees are IR-trees. However, we can
give a full, constructive characterization of IR-trees.

▶ Theorem 1. An irreducible tree is an IR-tree if and only if there is no node that has
exactly two children of which exactly one is a leaf.

To prove the theorem we first provide and justify necessary conditions for a tree to be an
IR-tree. We then prove that, indeed, these conditions are sufficient by providing graphs
on which the execution of an IR-algorithm yields the desired tree. In fact, our proof is
constructive, meaning that we obtain an algorithm with the following property. Given a
tree T satisfying the necessary conditions, the algorithm produces a graph whose IR-tree
is T .

As we describe in our definition of IR-trees in Section 2, the trees are naturally associated
with a coloring of the vertices. This coloring is a crucial component that is related to the
automorphism group structure of the graph. Our characterization also fully describes how
color classes may be distributed in a given tree. It turns out that there are several simple
restrictions, in particular for vertices that have precisely two children, but apart from that
all colorings can be realized and in particular any number of symmetries can be ensured (see
Section 4).

Our characterization provides a fundamental argument transferring the analysis of abstract
tree traversal strategies performed in [5] to backtracking trees of IR-algorithms on actual
instances. Specifically, we may conclude that the abstract trees used for the lower bounds of
probabilistic algorithms in [5] indeed appear as IR-tees. However, interestingly, the abstract
trees used for the lower bounds of deterministic algorithms (Theorem 13, [5]) are not IR-trees.
In fact these trees have nodes with two children, one child that is a leaf and another that
is not. This breaks the necessary conditions as laid out by Theorem 1. Fortunately, it also
immediately follows from our results that a slight modification can rectify this: by simply
replacing the respective leaves with inner nodes that have two attached leaves, the trees
become actual IR-trees, due to our characterization. Overall, we therefore prove that the
lower bounds of [5] hold true in the IR-paradigm.

Cell Selectors and Invariants. Formally, the IR-paradigm allows for different design choices
in some of its components. For most of these, competitive practical solvers actually make
very similar choices: the refinement is always color refinement and solvers commonly choose
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as their pruning invariant (essentially) the so-called quotient graph. The way in which the
actual implementations differ from color refinement and quotient graphs is usually only in
minor details and done to achieve practical speed-ups. This only leads to a slightly weaker
refinement and invariants in some specific cases. In this paper, we therefore comply with
these common design choices.

Many other design choices, such as how IR-trees are traversed, have no effect on the
characterization of the IR-trees themselves.

There is however one integral design choice where competitive IR-solvers do indeed vary
in a way that affects which trees are IR-trees, namely the so-called cell selectors. We should
emphasize that Theorem 1 only says that for the trees satisfying the necessary conditions
there is some cell selector for which the graph is an IR-tree.

However, we can also say something about specific cell selectors. Considering the
characterization for a given cell selector, there are two possibilities: either, fewer trees turn
out to be IR-trees or the same characterization applies. We can use our results to argue that
for some cell selectors that are used in practice our necessary conditions are sufficient, while
for others they are not (see Section 5 for a discussion).

Techniques. Many properties of a graph, e.g. symmetries, are directly tied to properties of
its IR-tree. When modeling a graph that is supposed to produce a particular IR-tree, two
major difficulties arise, roughly summarized as follows:

1. The effect of color refinement on the graph needs to be kept under control.

2. The shape of the IR-tree may dictate that symmetries must be simultaneously represented
in distinct parts of the graph.

We resolve these issues using various gadget constructions specifically crafted for this purpose.
We introduce concealed edges, which allow us to precisely control the point in time at which
the IR-process is able to see a certain set of edges and thus color refinement to take effect
(resolving issue (1)). By combining concealed edges with gadgets enforcing particular regular
abelian automorphism groups we can synchronize symmetries across multiple branches of
the tree (resolving issue (2)).

Here, as the main tool we show the following. As an additional restriction, which stems
from the structure of IR-trees, we consider only trees where all leaves can be mapped to the
same number of other leaves via symmetries (i.e., under automorphisms all leaf orbits have
the same size). We show that each such tree T can be embedded into a graph HT , such
that HT restricts the symmetries of T in a particular way. Intuitively, we keep just enough
symmetries to allow leaves to be mapped to each other whenever this is possible in T . We
thereby effectively couple leaf orbits so that when fixing one leaf, all other leaves are fixed as
well. More formally we prove the following theorem.

▶ Theorem 2. Let T be a colored tree in which all leaf orbits have the same size. There
exists a graph HT containing T as an automorphism invariant induced subgraph so that
the action of Aut(HT ) is faithful on T and semiregular on the set of leaves of T . More-
over, Aut(HT ) induces the same orbits on T as Aut(T ).

Again, we prove the theorem in a constructive manner. All steps can be easily converted into
an algorithm that takes as input an admissible (i.e., compatible with our necessary conditions
from Section 3) colored tree T and produces a graph and cell selector with IR-tree T .
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2 Individualization-Refinement Trees

Following [16] closely, we introduce the notion of an IR-tree. Algorithms based on the
IR-paradigm explore these trees using various traversal strategies to solve graph isomorphism,
graph automorphism or canonical labeling problems.

Colored Graphs. An undirected, finite graph G = (V, E) consists of a set of vertices V ⊆ N
and a set of edges E ⊆ V 2, where E is symmetric. Set n := |V |.

The IR framework relies on coloring the vertices of a graph. A coloring is a surjective
map π : V → {1, . . . , k}. The i-th cell for i ∈ {1, . . . , k} is π−1(i) ⊆ V . Elements in the
same cell are indistinguishable. If |π| = n, i.e., whenever each vertex has its own distinct
color in π, then π is called discrete. A coloring π is finer than π′ (and π′ coarser than π) if
π(v) = π(v′) implies π′(v) = π′(v′) for all v, v′ ∈ V . Whenever convenient, we may also view
colorings as ordered partitions instead of maps. A colored graph (G, π) consists of a graph
and a coloring.

The symmetric group on {1, . . . , n} is denoted Sym(n). An automorphism of a graph G is
a bijective map φ : V → V with Gφ := (φ(V ), φ(E)) = (V, E) = G. With Aut(G) we denote
the automorphism group of G. For a colored graph (G, π) we require automorphisms to
also preserve colors, i.e., π(v) = π(φ(v)) for all v ∈ V . We define the colored automorphism
group Aut(G, π) accordingly.

Color Refinement and Individualization. IR-algorithms use a procedure to heuristically
refine colorings based on the degree of vertices. The intuition is that if two vertices have
different degree, then they can not be mapped to each other by an automorphism. We assign
vertices of different degrees distinct colors to indicate this phenomenon. This process is
iterated using color degrees: for example, two vertices can only be mapped to each other
if they have the same number of neighbors of a particular color i. Therefore vertices can
be distinguished according to the number of neighbors they have in color i. This gives us a
new, refined coloring that (potentially) distinguishes more vertices. This is repeated until
the process stabilizes.

The colorings resulting from this process are called equitable colorings. A coloring π

is equitable if for every pair of (not necessarily distinct) colors i, j ∈ {1, . . . , k} the number
of j-colored neighbors is the same for all i-colored vertices. For a colored graph (G, π) there
is (up to renaming of colors) a unique coarsest equitable coloring finer than π [16]. We denote
this coloring by Ref(G, π, ϵ), where ϵ is the empty sequence.

IR-algorithms also use individualization. This process artificially forces a vertex into its
own cell. We can record which vertices have been individualized in a sequence ν ∈ V ∗. We
extend the refinement function so that Ref(G, π, ν) is the unique coarsest equitable coloring
finer than π in which every vertex in ν is a singleton with its own artificial color. Specifically,
the artificial colors used to individualize ν are not interchangeable with colors introduced by
the refinement itself and are ordered: the i-th vertex in ν is always colored using the i-th
artificial color.

We require this coloring to be isomorphism invariant (which means that Ref(G, π, ν)(v) =
Ref(Gφ, πφ, νφ)(vφ) for φ ∈ Sym(n)). There are efficient color refinement algorithms to
compute Ref(G, π, ν), for which we refer to [16].

We say two colored graphs (G1, π1) and (G2, π2) are distinguishable (by color refinement),
if with respect to the colorings Ref(G1, π1, ϵ) and Ref(G2, π2, ϵ)
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1. there is a color c with differently sized cells in G1 and G2 (i.e., | Ref(G1, π1, ϵ)−1(c)| ̸=
| Ref(G2, π2, ϵ)−1(c)|)),

2. or there are vertices v1 ∈ V (G1), v2 ∈ V (G2) of the same color (i.e., Ref(G1, π1, ϵ)(v1) =
Ref(G2, π2, ϵ)(v2)), such that there is a color c within which v1 and v2 have a differing
number of neighbors (i.e., |{(v1, w) ∈ E(G1) | Ref(G1, π1, ϵ)(w) = c}| ̸= |{(v2, w) ∈
E(G2) | Ref(G2, π2, ϵ)(w) = c}|).

Sequences (or t-tuples) of vertices ν1 ∈ (G1, π1)t and ν2 ∈ (G2, π2)t are distinguishable, if
the graphs (G1, Ref(G1, π1, ν1)) and (G2, Ref(G2, π2, ν2)) are.

Cell Selector. In a backtracking fashion, the goal of an IR-algorithm is to reach a discrete
coloring using color refinement and individualization. For this, color refinement is first applied.
If this does not yield a discrete coloring, individualization is applied, branching over all
vertices in one non-singleton cell. The task of the cell selector is to isomorphism invariantly
pick the non-singleton cell. After individualization, color refinement is applied again and the
process continues recursively. Formally, a cell selector is a function Sel : G × Π → 2V (where
G denotes the set of all graphs and Π denotes the set of all colorings), satisfying:

Isomorphism invariance, i.e., Sel(Gφ, πφ) = Sel(G, π)φ for φ ∈ Sym(n).
If π is discrete then Sel(G, π) = ∅.
If π is not discrete then | Sel(G, π)| > 1 and Sel(G, π) is a cell of π.

IR-Tree. We describe the IR-tree ΓSel(G, π) of a colored graph (G, π), which depends on
a chosen cell selector Sel. Essentially, IR-Trees simply describe the call-trees stemming
from the aforementioned backtracking procedure. Nodes of the search tree are sequences of
vertices of G. The root of ΓSel(G, π) is the empty sequence ϵ. If ν is a node in ΓSel(G, π) and
C = Sel(G, Ref(G, π, ν)), then the set of children of ν is {ν.v | v ∈ C}, i.e., all extensions
of ν by one vertex v of C.

By ΓSel(G, π, ν) we denote the subtree of ΓSel(G, π) rooted in ν. We omit the index Sel
when apparent from context.

We recite the following fact on isomorphism invariance of the search tree as given in [16],
which follows from the isomorphism invariance of Sel and Ref:

▶ Lemma 3. If ν is a node of Γ(G, π) and φ ∈ Aut(G, π), then νφ is a node of Γ(G, π) and
Γ(G, π, ν)φ = Γ(G, π, νφ).

Quotient Graph. The IR-tree itself can be exponentially large in the order of G [18]. To
decrease its size IR-algorithms use a pruning mechanism. For this a node invariant is used.
A node invariant is a function Inv : G × Π × V ∗ → I that assigns to each sequence of nodes
of the tree a value in a totally ordered set I. It satisfies the following.

Isomorphism invariance, i.e., Inv(G, π, ν1) = Inv(Gφ, πφ, νφ
1 ) for φ ∈ Sym(n).

If |ν1| = |ν2| and Inv(G, π, ν1) < Inv(G, π, ν2), then for all nodes ν′
1 ∈ Γ(G, π, ν1) and

ν′
2 ∈ Γ(G, π, ν2) it holds that Inv(G, π, ν′

1) < Inv(G, π, ν′
2).

The particular way the node invariant can be exploited depends on the problem to be
solved. When solving for graph isomorphism, the algorithm may prune all nodes with an
invariant differing from an arbitrary node invariant. However, when algorithms want to
compute a canonical labeling, they must find a specific canonical node invariant to continue
with. However, in the context of the present work these details are not important.

Most IR-algorithms use a specific invariant, the so-called quotient graph, which is naturally
produced by color refinement.
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Figure 1 Forbidden structures in asymmetric binary IR-trees.

For an equitable coloring π of a graph G, the quotient graph Q(G, π) captures the
information of how many neighbors vertices from one cell have in another cell. Quotient
graphs are complete directed graphs in which each vertex has a self-loop. They include vertex
colors as well as edge colors. The vertex set of Q(G, π) is the set of all colors of (G, π), i.e.,
V (Q(G, π)) := π(V (G)). The vertices are colored with the color of the cell they represent
in G. We color the edge (c1, c2) with the number of neighbors a vertex of cell c1 has in cell c2
(possibly c1 = c2). Since π is equitable, all vertices of c1 have the same number of neighbors
in c2.

A crucial fact is that graphs are indistinguishable by color refinement if and only if their
quotient graphs on the coarsest equitable coloring are equal.

We should also remark that quotient graphs are indeed complete invariants, yielding the
following property.

▶ Lemma 4. Let ν, ν′ be leaves of Γ(G, π). There exists an automorphism φ ∈ Aut(G, π)
with ν = φ(ν′) if and only if Q(G, Ref(G, π, ν)) = Q(G, Ref(G, π, ν′)).

Consistent with the colors of trees used in [5], we may also view quotient graphs as a way to
color IR-trees themselves, i.e., where we color a node ν with Q(G, Ref(G, π, ν)).

3 Necessary Conditions for IR-Trees

We collect necessary conditions for the structure of IR-trees. Since IR-trees are the result of
a branching process, they are naturally irreducible (no node has exactly one child). Also,
indistinguishable leaves can be mapped to each other.

▶ Lemma 5. IR-trees are irreducible.

▶ Lemma 6. Let l1, l2 be two leaves of an IR-tree (T, π). If l1 and l2 are indistinguishable,
there is an automorphism φ ∈ Aut(T, π) mapping l1 to l2.

▶ Lemma 7 (see e.g. [4]). A leaf l can be mapped to exactly | Aut(G, π)| leaves in Γ(G, π)
using elements of the automorphism group Aut(G, π).

It follows that all classes of indistinguishable leaves have equal size.
Since in color refinement, partitionings and hence quotient graphs only ever become finer

and more expressive, the following properties hold.

▶ Lemma 8. Let n1, n2 be two nodes of an IR-tree where ni is on level li.
1. If l1 ̸= l2, then n1 and n2 are distinguishable.
2. Consider the two walks starting in the root and ending in n1 and in n2, respectively.

If in these walks two nodes on the same level are distinguishable then n1 and n2 are
distinguishable.

Some further restrictions apply specifically in the case of cells of size 2.
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▶ Lemma 9 (Forbidden Binary Structures).
1. If a node n has two children n1 and n2, then it cannot be that exactly one of the children n1

or n2 is a leaf (see Figure 1, left).
2. If n1, n2 are any two nodes and n1 has exactly 2 children then the multiset of colors of

the children of n1 and n2 are equal or disjoint (Figure 1, middle and right).

Proof. Part 1 follows from the fact that individualizing one vertex in a cell of size 2 also
individualizes the other vertex of the cell.

For Part 2 we note that individualization of a child of n1 also individualizes the other
child of n1 and vice versa. This implies that if a child c2 of n2 has the same color as some
child c1 of n1, then by definition, individualization of c1 and c2, respectively, produces
indistinguishable colorings. So in this case there is a one-to-one correspondence between the
colors of the children of n1 and those of n2. ◀

It is easy to see that if at any point the cell selector chooses differently sized cells in different
branches, the branches subsequently become distinguishable. However, if we assume cell
selectors only base their decision on the quotient graph, this restriction applies earlier. More
specifically, we call a cell selector quotient-graph-based, whenever the result of the cell selector
depends only on the quotient graph rather than other aspects of G and π (i.e., we have
Sel(Q(G, π)) rather than Sel(G, π)). Then, we have the following.

▶ Lemma 10. If two nodes n and n′ in an IR-tree are indistinguishable, then their parents
have the same number of children. If additionally the cell selector is quotient-graph-based
then n and n′ also have the same number of children.

Restricting the cell selector to quotient graphs thus changes whether we can distinguish
nodes with a differing number of children before or after individualizing one more vertex. We
may even distinguish cells before individualization in both cases, if we include the decision of
the cell selector into the invariant itself (i.e., using (Q(G, π), Sel(G, π)) instead of Q(G, π),
which is clearly only more expressive in case the cell selector is not quotient-graph-based).

In the following, we assume cell selectors are indeed quotient-graph-based. Since we only
require a less powerful cell selector, our construction becomes more general. However, in
the construction, we could alternatively drop the additional restriction above with minor
adjustments by allowing a more powerful cell selector.

For the remainder of this paper we say that a tree fulfills the necessary conditions, if
none of the conditions laid out by this section are violated.

4 Graph Constructions

Given a colored tree (T, π) which satisfies the necessary conditions, we describe how to
construct a graph G(T, π) and a cell selector S(T, π) for which (T, π) is (up to renaming of
colors) the IR-tree ΓS(T,π)(G(T, π)). We make abundant use of gadget constructions, which
we describe first. We give a concise description of the construction, details (i.e., the long
version) can be found in the full version of the paper [2] (including omitted correctness
arguments).

4.1 Gadgets
All our gadgets have multiple input and output gates. Each gate is a pair of vertices that
together form their own color class in the gadget. Vertices in the gates are the only vertices
of the gadgets connected to other vertices outside the gadget. We say that vertices labeled
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b0

b1

b2

b3

a0

a1

(a) AND2 gadget.

a0

a1

b0

b1

(b) Unidirectional gadget.

a0

a1

b0

b1

(c) Dead End gadget.

Figure 2 The AND2 gadget and two variants of directional gadgets.

with bi denote the “input”, while ai indicates “output”. Gates can be activated, by which we
mean the process of distinguishing the vertices of the gate pair into distinct color classes,
and applying color refinement afterwards. We say activation discretizes the gadget if the
resulting stable coloring on the gadget vertices is discrete.

Three of the gadgets we present (ANDi, Unidirectional and Dead End gadget) have
already been used in other contexts related to color refinement [6, 7, 10].

ANDi Gadget [6, 7, 10]. The AND2 gadget as illustrated in Figure 2a, realizes the logical
conjunction of gates with respect to color refinement, and an XOR gadget with respect to
automorphisms.

Given i > 2, we can realize an ANDi gadget with i input gates by combining multiple
AND2 gadgets in a tree-like fashion. The ANDi gadget is constructed by attaching the first
and second input gate to an AND2, whose output is connected to another AND2 together
with the third input gate, and so on. We use colors to order the input gates, i.e., we color
the i-th input gate with color i.

We define the special case of the AND1 gadget to simply consist of a pair of vertices that
functions as the input and output gate at the same time.

▶ Lemma 11 ( [10]). The ANDi gadget admits automorphisms that flip the output gate
and either one of the input gates while fixing other input gates. As long as some input gate
remains unsplit, the output gate is not split but activating all inputs discretizes the gadget .

Unidirectional and Dead End Gadget [6,10]. Next, we describe gadgets through which gate
activation can be propagated or blocked depending on the direction of the gadget. Specifically
we construct the unidirectional gadget (Figure 2b) and the dead end gadget (Figure 2c).
Note that the two gadgets are indistinguishable from each other by color refinement. The
smaller vertices depicted in Figure 2 have been included to guarantee that the gadgets become
discrete after the input and output gate has been split and can otherwise be ignored.

▶ Lemma 12. The unidirectional and dead end gadget are indistinguishable by color refine-
ment. In the unidirectional case, activating the input discretizes the gate but activating the
output does not split the input gate. In the dead end case, both input and output have to be
activated to discretize the gadget.

Asymmetry Gadgets. Our next gadgets only have one gate (see Figure 3, F denotes the
Frucht graph). The crucial property of the asymmetry gadgets A1 and A2 (Figures 3a
and 3b) is for the two gate vertices to be initially indistinguishable by color refinement, but
to ensure that individualizing one of the gate vertices leads to a different quotient graph
than individualizing the other gate vertex.
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F

(a) Asym. gadget A1.

F

(b) Asym. gadget A2.

A1

(c) A true edge.

A2

(d) A fake edge.

Figure 3 Asymmetry gadgets and concealed edges based on asymmetry gadgets.

▶ Lemma 13. A1 and A2 are asymmetric and stable under color refinement. Activating the
input gate discretizes the gadget and we obtain two non-isomorphic colorings depending on
which vertex was individualized. Furthermore, A1 ≇ A2.

Concealed Edges. Lastly, we describe the concealed edge gadget that is used to hide edges
from color refinement. The gadget has two vertices that represent the endpoints of an edge
(the blue vertices in Figure 3c). The idea is that instead of an edge connecting the two
vertices, we insert a concealed edge gadget. For this the gadget has a pair consisting of
two inner vertices (the green vertices in Figure 3c), which are both connected to each input
vertex. This pair is then connected to an asymmetry gadget. We define two classes of edges,
where one type of edge attaches the gadget A1 (true edges) and the other A2 (fake edges).

The crucial property is that as long as inner vertices of the gadgets are not distinguished,
color refinement can not distinguish between true edges and fake edges. However, if we
distinguish the inner vertices, true edges can indeed be distinguished from fake edges.

We always employ this gadget within the following design pattern. Whenever we want
to connect two sets of vertices V1 and V2 with edges E ⊆ V1 × V2 in a concealed manner,
we first add a concealed edge gadget between all pairs (v1, v2) ∈ V1 × V2. However, only if
(v1, v2) ∈ E, we use a true edge, and whenever (v1, v2) /∈ E we use a fake edge. Finally, we
connect all pairs of inner vertices of the concealed edge gadgets to some construction that is
used to reveal the edges.

The asymmetry gadget prohibits automorphisms from flipping the concealed edge gadget
itself. However, care has to be taken when connecting the inner vertices to other constructions:
it is imperative to connect the inner vertices of multiple concealed edge gadgets that are on
the, say, left side of the asymmetry gadget, in the same manner. Otherwise, once revealed,
edges could possibly be distinguished into even more categories than just fake and true edges.

4.2 A construction for asymmetric trees
For our construction, we first restrict ourselves to asymmetric trees, i.e., all leaves have
different colors. Building on this, the following section takes symmetries into account. Let
(T, π) be an asymmetric, colored tree that satisfies the necessary conditions (see Section 3).
We describe a graph G(T, π) and cell selector S(T, π) such that (T, π) is (up to renaming of
colors) the IR-tree ΓS(T,π)(G(T, π)).

The goal is to model the graph and cell selector in such a way that there is a one-
to-one correspondence between paths in T and sequences of individualizations in G(T, π).
Such sequences are precisely the paths in the IR-tree ΓS(T,π)(G(T, π)). To guarantee this
correspondence, certain properties of paths in T must translate into specific properties for
their respective sequence of individualizations. In particular, when modeling G(T, π), we
ensure the following.
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T G(T )

Figure 4 Connecting levels of the selector tree. Blue/red edges on the right symbolize true/fake
edge gadgets.

T
G(T )

Figure 5 Colors of T are encoded in G(T ) by concealed edges to special color nodes.

1. Two paths must end in nodes of different color exactly if the corresponding sequences of
individualizations result in different quotient graphs.

2. A path must end in a leaf exactly if the corresponding sequence of individualizations
(when followed by color refinement) results in a discrete coloring.

Selector Tree. We start by describing the part of the graph on which the cell selector
operates, i.e., within which cells are chosen. We use a copy of T itself for this purpose. One
of the central difficulties is that color refinement executed on T may actually result in a
coloring that is finer than π.

Hence, the selector tree consists of the nodes of T but encodes the edges of T in the
selector tree using concealed edges (see Figure 4). This guarantees that our copy of T is stable
under color refinement. At some point, we will need to add another gadget construction
to ensure that edges between the levels are actually revealed at the right time. Assuming
this for now, the cell selector S(T, π) always chooses as next cell the cell that consists of the
children of the node chosen last.

Colors. Next, we consider the colors π of T . Colors indicate whether a sequence of
individualizations should lead to differing quotient graphs. We make use of fake edges again
to encode this: we encode a one-to-one correspondence between selector tree nodes and their
color in π using concealed edges (see Figure 5). We will discuss how edges are revealed
further below. Specifically, we will reveal edges incident with node n at the point in time
when node n is individualized.

Leaf Detection. Whenever we individualize a node n in the selector tree, we want to react
to this by revealing a specific set of edges. Therefore, we now add a construction that detects
whether a specific node n in a cell was individualized. Let s ≥ 2 be the size of the current
cell (in the tree T the current cell is always the set of children of some node). For each node
n in the cell, consider all s − 1 pairs with other nodes of the cell. We add an ANDs−1 gadget
and connect the left node of every input pair to n, and the other to one of the s − 1 other
nodes. An ANDs−1 gadget is not symmetric in its input gates, so in order to keep things
symmetrical, we add (s − 1)! many ANDs−1 gadgets for every possible order of nodes in the
input. We connect the output gates of the ANDs−1 gadgets to the individualization output of
n (see Figure 6). Crucially, the individualization output is activated (i.e., split) whenever n

is individualized, and not immediately activated if only some other node n′ is individualized.
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AND3

receiver broadcast

individualization output

Figure 6 Leaf detection mechanism for the leftmost node of the cell. If this node is individualized,
the AND3 gadget is activated. The figure only shows true edges.

We again ensure the construction is stable under color refinement by using concealed
edges. We use concealed edges between nodes of level i and the ANDs−1 of level i gadgets,
using true edges instead of the edges described above.

If a node corresponds to a leaf and its individualization output is activated, we want to
propagate discretization to other nodes. We add some control structures for every node n in
the selector tree, namely a broadcast and receiver gadget as illustrated in Figure 6. We use
a dead end gadget instead of a unidirectional as the broadcast gadget whenever n is not a
leaf in T . Next, we connect the output of the broadcast gadget to the input of all receiver
gadgets in the graph.

The idea is that if n is a leaf and individualized, we propagate this split to all indi-
vidualization outputs through the broadcast and receiver gadgets, eventually causing a
discretization of the graph, as explained below. If n is not a leaf, the broadcast gadget is a
dead end gadget and no further split occurs.

Revealing Edges. We now describe when concealed edges are revealed. Assume we are
individualizing a node at level i of the tree. At this point, we need to reveal the edges in the
selector tree connecting level i to level i + 1. We use the individualization outputs at level i

to reveal edges of the selector tree to level i + 1: we connect every individualization output
through a unidirectional gadget with the internal nodes of the concealed edges between level
i and level i + 1.

In order to activate the individualization outputs, we also need to reveal edges from
level i + 1 nodes to their ANDs−1 gadgets. Hence, we do the same construction as above,
connecting the unidirectional gadgets we added on level i to reveal these edges on level i + 1.
For the first level of the selector tree (children of the root) we do not use concealed edges,
such that the level is initially revealed.

Finally, the same technique is also used to reveal colors. The individualization output of
node n reveals the concealed edges between n and the color nodes. This reveals the color of
n whenever we individualize n. Due to broadcasting, all colors are revealed whenever a leaf
is activated, leading to a discrete coloring.

4.3 Generating symmetries
We expand our construction so that it can also handle colored trees (T, π) with prescribed
symmetries. As such, the graph G(T, π) can also be build from a tree (T, π) that is not
necessarily asymmetric. In this case, sequences of individualizations along root-to-leaf paths
still produce the desired tree (T, π) as a subtree of ΓS(T,π)(G(T, π)). However, G(T, π) is
supposed to become discrete after the IR-process reaches a leaf, but at this point the selector
tree is only split up to orbits prescribed by T .
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Figure 7 Symmetry cycles couple leaf orbits across multiple branches of the selector tree. The
illustration omits fake edges. In the construction, cycles do not contain directed edges, but specially
colored nodes that indicate direction.

Discretization of orbits is challenging since we need to make sure that the symmetries
are not destroyed by the addition of new gadgets. Once leaf orbits have been discretized,
discretization propagates through the selector tree and the whole construction becomes
discrete.

Overall we need to construct the graph HT mentioned in Theorem 2. To construct HT ,
we introduce symmetry cycles and symmetry couplings. The basic idea is shown in Fig.
7, a detailed explanation can be found in the full version [2]. This in turn defines a new
construction G̃(T, π) by adding a concealed version of HT to the selector tree.

Discretization of Orbits. We remark that the way we construct HT has additional conse-
quences on color refinement: individualization of a root-to-leaf path in HT discretizes all
symmetry cycles. In terms of G̃(T, π), since different leaf orbits have different colors in T ,
this means that individualization of a root-to-leaf path now discretizes the set of leaves as
well.

Concealing Symmetry Couplings. We hide HT from color refinement using concealed edges.
In the construction of HT , we replace edges with true edge gadgets. All other connections
between selector tree nodes and symmetry cycles become fake edges. To reveal the edges
whenever a leaf is individualized, we connect the inner nodes of the concealed edges to the
output of all broadcast gadgets.

5 Conclusion and Future Work

We have shown that every tree that meets some simple necessary conditions is an IR-tree.
Regarding invariant pruning we should highlight that of course every pruned tree is a subtree
of an unpruned tree, so our techniques extend to IR-algorithms with pruning.

Regarding refinement, we use the standard color refinement used by all IR-algorithms.
However regarding cell selectors there is no clear standard. In this paper, we did not optimize
the construction for any specific cell selector, but rather used the cell selector as part of the
construction.

Let us now assume we are given a fixed cell selector. For a particular cell selector,
there are two possibilities: either, fewer trees turn out to be IR-trees or the same necessary
conditions apply. For the latter, we suspect that for many natural examples the construction
of this paper can be adapted. Consider for example the cell selector that always chooses a
smallest non-trivial cell. In this case, by adding more concealed structure enforcing specific
cell sizes it can be shown that the same necessary conditions are indeed sufficient again.
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In contrast to this, consider the cell selector that always chooses a largest non-trivial
cell. Here, the degree of the vertices on root-to-leaf walks in a corresponding IR-tree must
monotonically decrease. Hence, fewer trees turn out to be IR-trees and the necessary
conditions are not sufficient. If interested in specific cell selectors one might therefore want
to refine the necessary conditions.

Another interesting direction of research might be to investigate bounds for the order
graphs realizing a given tree since this is related to the running time of IR-tools.
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Abstract
We present a truly subquadratic size distance oracle for reporting, in constant time, the exact
shortest-path distance between any pair of vertices of an undirected, unweighted planar graph G. For
any ε > 0, our distance oracle requires O(n5/3+ε) space and is capable of answering shortest-path
distance queries exactly for any pair of vertices of G in worst-case time O(log(1/ε)). Previously
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1 Introduction

Efficiently answering shortest path distance queries between pairs of vertices in a graph is a
fundamental algorithmic problem. Given an n-vertex graph G = (V, E) a distance oracle
is a compact data-structure capable of efficiently answering shortest path distance queries
between pairs of vertices u, v ∈ V . Ideally one would like the data structure to be of linear
size and the query time to be constant. However, it is well known that there are graphs
for which no distance oracle with o(n2) bits of space and O(1) query time exists. In fact,
even resorting to approximation, Pǎtraşcu and Roditty [21] showed that there are sparse
graphs on O(n polylog n) edges for which constant query-time distance oracles with stretch
less than 2 must be of size Ω(n2 polylog n), assuming the set intersection conjecture. These
impossibility results make it natural to consider the problem in restricted classes of graphs.

In this paper we consider exact distance oracles for planar graphs. Distance oracles for
planar graphs are well motivated by important real-world applications, notably in routing,
navigation of road and sea maps as well as in the context of computational geometry. To
the best of our knowledge there are no non-trivial lower bounds for (static) distance oracles
for planar graphs, and thus achieving the “holy grail” of a linear-size distance oracle with
constant query time may be possible. Indeed, there has been numerous works over at least
three decades developing exact distance oracles for planar graph [10, 2, 3, 8, 11, 19, 20].
However, only in 2017, Cohen-Addad et al. [9] gave the first oracle with truly subquadratic
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space and polylogarithmic query time. Their result was inspired by Cabello’s [4] breakthrough
result, who gave the first truly sub-quadratic time algorithm for computing the diameter of
planar graphs by a novel use of Voronoi diagrams. The approach of [9] was subsequently
improved by [12, 7, 18], who gave an elegant point-location mechanism for Voronoi diagrams
in planar graphs, and combined it with a clever recursive scheme to obtain exact distance
oracles for directed weighted planar graphs with O(n1+o(1)) space and O(log2+o(1) n) query
time. We note that even though the oracles of [7, 18] get quite close to optimal, it remains
wide open to support exact queries in constant time using truly subquadratic space, even in
the most basic case of unweighted undirected planar graphs [26, 5, 25].

Allowing approximate answers does help in planar graphs. Many results reporting
(1 + ε)-approximate distances with various tradeoffs exist, all with (nearly) linear size and
polylogarithmic, or even O(1/ε) query-time [24, 15, 14, 27]. Gu and Xu [13] presented a size
O(n polylog n) distance oracle capable of reporting (1 + ε)-approximate distances in time
O(1). While their query time is a constant independent of ε, the preprocessing time and
space are nearly linear, but with an exponential dependency on (1/ε). This exponential
dependency can be made polynomial, but then the query time increases to O(log(1/ε)) [6].

Thus, despite the large body of work on distance oracles for planar graphs, it has remained
an open question to determine whether an exact distance oracle with of size O(n2−ε) with
constant query-time can be constructed for some constant ε > 0.

1.1 Our contributions
We answer this question in the affirmative, and discuss our techniques in the following section.
Our result is summarized in the following theorem:

▶ Theorem 1. Let G = (V, E) be an undirected unweighted n-vertex planar graph. For any
ε > 0 there exists a data-structure requiring O(n5/3+ε) space that, for any s, t ∈ V , reports
the shortest path distance between s and t in G in time O(log(1/ε)).

We also present another denser subquadratic distance oracle in Section 4, and remark
that it can be distributed into a distance labeling scheme with size O(n3/4) per label, such
that the distance between any two vertices s, t can be computed in O(1) time given just the
labels of s and t.

1.2 Technical overview
The main concept we use to obtain our result is that of a pattern capturing distances between
a vertex and a cycle. This concept was used by [26] and by [17] (where it was called a
“distance tuple”). Consider a vector storing the distances from a vertex u to the vertices of
a cycle β in their cyclic order. The pattern of u w.r.t. β is simply the discrete derivative
of this vector. That is, the vector obtained by taking the difference between every pair of
consecutive values. Li and Parter [17] showed that when the input graph is planar, the
number of different patterns w.r.t. a face with r vertices is O(r3), regardless of the size of
the graph. We next outline how this observation can be used to break the quadratic space
barrier.

Roughly speaking, any planar graph can be decomposed into O(n/r) subgraphs, called
regions, of size r each, where the boundary of each region (i.e., the vertices that have
neighbors outside the region) is a single cycle h.1 Applying Li and Parter’s observation in

1 In fact, a constant number of cycles. To readers familiar with the concept, this is just an r-division
with a few holes, but without the important feature that each region has just O(

√
r) boundary vertices.

This is because one cannot triangulate unweighted graphs without changing the distances.
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this setting, the number of different patterns for the hole of each region R is O(r3). Hence,
we can represent the distances from any vertex s /∈ R to h by just storing the distance from
s to an arbitrarily chosen canonical vertex vh of h, and a pointer to the pattern of s with
respect to h. This requires just a total of O(n) space for all vertices not in R plus O(r3 · r)
for storing all the patterns for h. Summing over all O(n/r) regions, the space required is
O(n2/r + nr3).

We then define the notion of distance from a pattern to a vertex (see Definition 6). While
this definition is simple, it is somewhat unnatural because the distance from a pattern to
a vertex does not necessarily correspond to the length of any specific path in the graph!
However, the distance between s and any vertex t ∈ R is just the sum of the distance between
s and the canonical vertex vh and the distance from the pattern of s with respect to h to t.

We therefore store the distances from each of the O(r3) possible patterns of R to each
vertex of R. This requires O(r3 · r) space per region, so O(nr3) space overall. This way we
can report the distance between s and t in constant time by (i) retrieving the pattern p of s

w.r.t. h, and (ii) adding the distance from s to the canonical vertex vh of h and the distance
from the pattern p to t. These ideas alone already imply an oracle with space Õ(n7/4) and
constant query time. Combining these ideas with recursion yields the improved space bound
of Theorem 1.

1.3 Technical differences from previous oracles
As we previously mentioned, breaking the quadratic space barrier for constant query time
has remained a long standing open question and can therefore be considered an important
and significant result in its own right. We highlight the following difference between the
approach taken in our recursive oracle and the approaches used in all existing distance oracles
we are aware of. To the best of our knowledge, all existing distance oracles, both exact and
approximate, and both for general graphs and planar graphs, recover the distance from s to
t by identifying a vertex or vertices on some (possibly approximate) shortest path between s

and t, for which distances have been stored in the preprocessing stage. These vertices are
usually referred to as landmarks, portals, hubs, beacons, seeds, or transit nodes (cf. [23]).
Our oracle, on the other hand, reports the exact shortest path without identifying vertices
on the shortest path from s to t. Instead, it “zooms in” on t by recovering distances to the
canonical vertices of a sequence of subgraphs of decreasing size that terminates at a constant
size graph containing t. We emphasize that none of these canonical vertices necessarily lies
on a shortest path from s to t. This property may be viewed as a disadvantage if we also want
to report the shortest path, but when reporting multiple edges on long paths, constant query
time is no longer relevant. On the other hand, it may be that just reporting the distance
is easier than also reporting an internal vertex on a shortest path. Hence, it may be that
developing oracles based on this new approach may lead to further advances on the way to
linear size distance oracles for planar graphs with constant query time, and in other related
problems.

2 Preliminaries

Let G be a graph. We denote by V (G) and E(G) the vertex and edge-set of G, and denote
by n = |V (G)| the number of vertices of G.

For a subset S of edges or vertices we denote by G[S] the subgraph of G induced on S.
We denote by u⇝H v a shortest path from u to v in the subgraph H , by dH(u, v) the length
of u⇝H v, and define u⇝ v ≡ u⇝G v.
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The following definitions will be useful when talking about decompositions of G. A region
R of G is an edge-induced subgraph of G, and its boundary ∂R is the set of vertices of R

that are adjacent to some vertex of V (G) \ V (R) in G. Vertices of V (R) \ ∂R are called
interior vertices of R. Observe that for a region R and for u ∈ R and v ∈ V \ V (R), any
path from u to v in G must intersect ∂R.

It will be useful to assume some global strict order on a vertex set V s.t. for any U ⊆ V

there is a minimum vertex min U ∈ U w.r.t this order. We refer to this as the canonical
vertex of U .

We assume the reader is familiar with the the basic definitions of planarity and of planar
embeddings.

2.1 Faces and holes
The edges of a plane graph induce maximal open portion of the plane that do not intersect
any edges. A face of the graph is the closure of one such portion of the plane. We refer
to the edges bounding a face as the boundary of that face. Given a face f , V (f) is the
set of vertices on the boundary of f . We denote by w(f) the facial walk of f which is the
sequence of vertices encountered when walking along f starting at min V (f) and going in the
clockwise direction. Note that f may be non-simple, so some vertices may appear multiple
times in w(f). A hole h in a region R of a graph G is a face of R which is not a face in G.
We say that a vertex u ∈ V (G) \ V (R) is inside hole h if u lies in the region of the plane
corresponding to the face h of R. We denote by V +(h) = {u ∈ V (G) | u is inside h} all the
vertices that are inside h.

2.2 Decompositions of unweighted planar graphs
An r-division is a widely used decomposition of planar graphs into regions with small
boundary. We use the r-divisions with a few holes as studied in [16], which works for
triangulated biconnected graphs:

▶ Lemma 2 (r-division with few holes for triangulated graphs [16]). Let G be a biconnected,
triangulated n-vertex planar embedded graph, and let 0 < r ≤ n. G can be decomposed into
Θ(n/r) connected regions, each of which with O(r) vertices and O(

√
r) boundary vertices.

Each region has a constant number of holes. Every boundary vertex lies on some hole, and
each hole has O(

√
r) vertices.

The fact that the boundaries of regions are small (only O(
√

r) boundary vertices for
a region with r vertices) is the basis for many efficient algorithms and data structures for
planar graphs. Unweighted planar graphs posses additional structure (in comparison to
weighted planar graphs), which may also be useful algorithmically. See for example the
unit-Monge property in [1], or the limited number of patterns [26, 17], which we use in this
work. However, exploiting such additional structure in conjunction with a decomposition into
regions with small boundaries has been elusive because of the seemingly technical requirement
in Lemma 2 that the graph be triangulated and biconnected.

Any graph can be triangulated and biconnected by adding to each face f an artificial
vertex and infinitely weighted artificial edges from the artificial vertex to each vertex of V (f).
This transformation preserves planarity and shortest paths, and ensures that the graph
consists only of simple faces of size 3. However, the graph is no longer unweighted. We refer
to an artificial vertex (edge) of G as a vertex (edge) which was added in the triangulation
step, and a natural vertex (edge) of G as a vertex (edge) which is not artificial. In order to
exploit the structure of the unweighted input graph we will remove the artificial edges and
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vertices after computing the decomposition using Lemma 2. On the one hand the graph is
again unweighted. On the other hand, while the number of boundary vertices in each region
remains O(

√
r), the holes may now contain new non-boundary vertices, and the total size of

the holes in each region may be Θ(r). We note, however, that the deletion of artificial edges
and vertices does not disconnect regions [16]. We therefore restate the decomposition lemma
for unweighted graphs that are not necessarily triangulated or biconnected.

▶ Lemma 3 (r-division with few holes for non-triangulated graphs). Let G be a n-vertex planar
embedded graph G, and let 0 < r ≤ n. G can be decomposed into Θ(n/r) connected regions,
each with O(r) vertices and O(

√
r) boundary vertices. Each region has a constant number of

holes, and each boundary vertex lies on some hole.

2.3 Recursive r-divisions
Our second construction relies on a recursive r-division which is a recursive decomposition of
G into r-divisions for varying values of r. Specifically, for a decreasing sequence r = r1, r2, . . .,
where n ≥ r1 > r2 > . . . ≥ 1, we want ri-divisions for all i = 1, 2, . . ., such that each region
in the ri division is the union of regions in the ri+1-division on the next level. We associate
with the recursive r-division a decomposition tree, Tr, which is a rooted tree whose nodes
correspond to the regions of the recursive decomposition of G. We will refer to nodes and
their corresponding regions interchangeably. The root node corresponds to all of G. A node
x of Tr at depth i corresponds to a region of the ri-division, and its children are the regions
of the ri+1-division whose union is the region corresponding to x. We denote by T i

r all the
nodes at level i. It was shown in [16] that recursive r-divisions can be computed efficiently:

▶ Lemma 4 (Recursive r-division). Given a biconnected, triangulated n-vertex planar graph
G and an exponentially decreasing sequence r = n ≥ r1, r2, . . . ≥ 1, a decomposition tree, Tr
can be computed in linear time s.t. T i

r corresponds to an ri-division of G with few holes for
each i.

3 Patterns

Both [26] and [17] introduce a notion of a “distance tuple” which can be thought of as a
vector of shortest-path distances from a vertex to consecutive vertices of some hole. We
introduce the following similar notion of a pattern (See Figure 1 for an illustration):

▶ Definition 5 (Pattern). Let G be a graph. Let H be a subgraph of G. Let u be a vertex in
H, and let β = b0, b1, . . . , bk be a path in H. The pattern of u (w.r.t. β in H) is a vector
pβ,H(u) ∈ {−1, 0, 1}k satisfying pβ,H(u)[i] = dH(u, bi) − dH(u, bi−1) for 1 ≤ i ≤ k. When
the path β is the boundary walk w(h) of a hole h of a region R, we write ph,H(u) instead of
pw(h),H(u).

▶ Definition 6 (pattern to vertex distance). Let R be a region in a graph G. Let h be a hole
of R. Let b0, b1, . . . , bk be the vertices of w(h) in their cyclic order. Let p be some pattern
w.r.t. h (i.e., p = ph,G(u) for some u ∈ V +(h)). For a vertex v ∈ R we define dG(p, v) the
distance between p and v to be mink

i=0

{
dG(bi, v) +

∑i
j=0 p[j]

}
.

▶ Lemma 7. Let R be a region of a graph G. Let h be a hole of R. For every u ∈ V +(h)
and every v ∈ R, dG(u, v) = dG(u, b0) + dG(ph,G(u), v)).

ISAAC 2021



25:6 Subquadratic Distance Oracles for Planar Graphs

s

10
10

11

12

11

11

b1
b2

b3
b4

b5

b6

pf∗ (s) = [0, 0, 1, 1,−1, 0, ...]

G

SP tree from S in G

10

f∗

Figure 1 Illustration of the pattern of the vertex s w.r.t. f∗ in an undirected graph. In this case
f∗ is the external face of the embedding. The numeric labels indicate the shortest path distances
from s to each bi where bi ∈ V (f∗) for 1 ≤ i ≤ 6.

Proof. By definition of pattern and by a telescoping sum, for every 0 ≤ i ≤
k, dG(u, bi) = dG(u, b0) +

∑i
j=0 p[j]. Let bℓ be any vertex of w(h) on a

shortest u-to-v path (bℓ exists since u ∈ V +(h) and v ∈ R). By choice
of bℓ, dG(u, v) = dG(u, bℓ) + dG(bℓ, v) = min0≤i≤k {dG(u, bi) + dG(bi, v)} =
min0≤i≤k

{
dG(u, b0) +

∑i
j=0 p[j] + dG(bi, v)

}
= dG(u, b0) + dG(p, v). ◀

3.1 Bounding the number of patterns

As mentioned, in a recent paper Li and Parter [17] achieve improved bounds for diameter
computation for planar graphs by showing that in unweighted undirected planar graphs the
number of patterns is quite small. More specifically, they show that the VC-dimension of a
set corresponding to all patterns is at most 3. By the Sauer-Shelah lemma [22], this implies
that the number of distinct patterns w.r.t. a sequence S of consecutive vertices on a face is
in O(|S|3). Their result is stated in the following lemma:

▶ Lemma 8 (Pattern compression [17]). Let G′ = (V, E) be an n-vertex unweighted undirected
planar graph, let f be a face in G′, and let S be a sequence of consecutive vertices on f .
Then the number of distinct patterns w.r.t. S, |

⋃
u∈V {pS,G′(u)} |, is bounded by O(|S|3).

We observe that the bound of Lemma 8 also holds for patterns w.r.t. the entire set of
vertices on a hole h of a region R even when distances are defined in the entire graph G.

▶ Corollary 9. Let R be a region in an n-vertex unweighted undirected planar graph G, and
let h be a hole of R. Then the number of distinct patterns w.r.t. h, | ∪u∈V +(h) {ph,G(u)} |, is
bounded by O(|h|3).

Proof. For any u ∈ V +(h) and v ∈ h, a shortest u-to-v path in G can be decomposed into
the concatenation of a shortest u-to-v′ path in G \ (R \ h), for some v′ ∈ h, and a shortest
v′-to-v path in G. Note that the former depends on u, but the latter does not. Hence, for
every two vertices u, u′ ∈ V +(h), ph,G\(R\h)(u) = ph,G\(R\h)(u′) implies ph,G(u) = ph,G(u′).
Hence | ∪u∈V +(h) {ph,G(u)} | = | ∪v∈V +[h]

{
ph,G\(R\h)(v)

}
|.

The corollary now follows since h is a hole of R implies that h is a face of G− (R− h),
so by Lemma 8, | ∪v∈V +[h]

{
ph,G−(R−h)(v)

}
| = O(|h|3). ◀

For the remainder of the paper we only deal with distances in G and with patterns in G,
so we will omit the subscript G, and write d(·, ·) and ph(·) instead of dG(·, ·) and ph,G(·).
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4 O(n7/4) space distance oracle

Before presenting our main result, we describe a simpler construction which yields a distance
oracle with a larger space requirement of O(n7/4) and O(1) query time.

4.1 Preprocessing

The preprocessing consists of computing an r-division R of G with a parameter r to be
determined later. For every vertex v of G and every region R of R, we store the hole h of R

s.t. v is in V +(h). This requires O(n · n/r) = O(n2/r) space.
For every region R ∈ R, for every hole h of R, we maintain the O(r3) patterns of the

vertices in V +(h) w.r.t. h as follows. Let k denote the size of the boundary walk w(h) of h.
let vh be the canonical (i.e., first) vertex of w(h). We maintain the patterns seen so far in
a ternary tree A whose edges are labeled by {−1, 0, 1}. The depth of A is k − 1, and the
labels along each root-to-leaf path correspond to a unique pattern, which we associate with
that leaf. For every vertex v ∈ V +(h), we compute the pattern ph(v) and we make sure that
ph(v) is represented in the tree A by adding the corresponding labeled edges that are not
yet present in A. After all the vertices in V +(h) are handled, the tree A has O(r3) leaves.
For each leaf of A with an associated pattern p, we compute and store (i) the distance from
p to each vertex of R. Storing (i) requires O(r4) time and space for all leaves of A, so a total
of O(n/r · r4) = O(nr3) space for storing all this information over all regions.

For each vertex v ∈ V +(h) we store (ii) a pointer to (the leaf of A that is associated with)
the pattern ph,G(v), as well as (iii) the distance d(v, vh) between v and the canonical vertex of
h. The total space required to store all these pointers and distances is O(n · n/r) = O(n2/r).

To complete the preprocessing we also store (iv) for each region R ∈ R, the distance
d(u, v) for all pairs of vertices u, v ∈ R. This takes O(n/r · r2) = O(nr) additional space,
which is dominated by the above terms.

The total space required by the oracle is thus O(n2/r) + O(nr3). This is minimized for
r = n1/4, resulting in an O(n7/4)-space data structure.

We note that once this information has been computed we no longer need to store the
entire tree A. Rather, it suffices to store just the list of leaves of A and the distances stored
with each of them. In particular, we no longer need to remember what is the actual pattern
associated with each leaf, we only need to have some identifier for each pattern, and the
distances from this pattern to the vertices of the region R. In the current scheme this has no
asymptotic effect on the size of the data structure, since each pattern is of size O(r), and
we anyway store the O(r) distances from each pattern to all vertices of R. However, in the
recursive scheme in the next section this observation will become useful.

4.2 Handling a query

To answer a query for the distance between vertices s and t we proceed as follows. If s and t

are in the same region, we simply return the distance d(s, t) stored in item (iv). Otherwise,
let R be the region containing t, and let h be the hole of R such that s ∈ V +(h). Let vh be
the canonical vertex of h. We return d(s, vh) + d(ph,G(s), t). The correctness is immediate
from Lemma 7. We note that d(s, vh) is stored in item (iii), a pointer to ph,G(s) is stored in
item (ii), and d(ph,G(s), t) is stored in item (i). The query is illustrated in Figure 2.
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s

bℓ

t
s →G bℓ

bℓ →R t

R

v0

s →G v0

Figure 2 Illustration of the query in Section 4. By Lemma 7 the query returns d(s, b0)+dR(p, t) =
d(s, bℓ) + dR(bℓ, t) = d(s, t) where bℓ is some boundary vertex of R on s⇝ t.

4.3 Distributed Labels
This oracle can be distributed into a distance labeling scheme of size O(n3/4) per label. Each
vertex v in a region R stores its distance from each of the patterns of R (item (i)) using
O(r3) = O(n3/4) space, as well as its part of items (ii) and (iii) in O(n/r) = O(n3/4) space.
Finally, v stores its distance to each other vertex in R in O(r) = O(n1/4) space. Using the
same query algorithm, the distance between any two vertices s, t can be computed in O(1)
time given just the labels of s and t.

5 O(n5/3+ε) space distance oracle

A bottleneck in the above approach comes from having to store, for each pattern p of a
hole h of a region R, the distances from p to all vertices of R. Instead, we use a recursive
r-division, in which we store for p, only the distances to the canonical vertex of a hole h′ of
each child region R′ of R instead of all the vertices in the region. For this information to be
useful we also store the pattern induced by p on the hole h′, which is defined as follows.

▶ Definition 10 (Pattern induced by a pattern). Let R be a region in a graph G. Let h be a
hole of R and ph be a pattern of h (w.r.t. a vertex or another pattern). Let R′ be a child
region of R. Let b0, b1, . . . , bk be the vertices of the boundary walk of a hole of h′ of R′. The
pattern induced by ph on h′ is the vector ph′ satisfying ph′ [i] = d(ph, bi) − d(ph, bi−1) for
1 ≤ i ≤ k.

▶ Lemma 11. Consider the settings of Definition 10. If ph = ph(u) for some u ∈ V +(h),
then ph′ = ph′(u).

Proof. By Lemma 7, for every 0 ≤ i ≤ k, d(u, bi) − d(u, vh) = d(ph, bi). Hence for all
1 ≤ i ≤ k, ph′ [i] = d(ph, bi) − d(ph, bi−1) = d(u, bi) − d(u, vh) − (d(u, bi−1) − d(u, vh)) =
d(u, bi)− d(u, bi−1), which is, by definition, ph′(u)[i]. ◀

5.1 Preprocessing
We first compute an r = (r0, r1, . . . , rk, rk+1)-division of G for r to be determined later, and
denote by Tr the associated decomposition tree. For convenience, we let r0 = n, rk+1 = 1
and define C(R) = {R′ | R′ is a child of R in Tr}. In the following we let Ph denote the set
{ph(u) : u ∈ V (G)}. We store the following:

1. For each u ∈ V (G) we store a list of regions R0 ⊃ R1 ⊃ · · · ⊃ Rk containing u, where
Ri ∈ T i

r . (Recall that T i
r is the set of all nodes of Tr at level i).
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2. For each u ∈ V (G), for each 0 ≤ i ≤ k − 1, for each region R ∈ T i
r containing u, for each

child region R′ ⊂ R at level-(i + 1), let h be the hole of R′ such that u ∈ V +(h). We
associate with the pair (u, R′) (i) a pointer to ph(u), (ii) the canonical vertex vh, and (iii)
the distance d(u, vh)).

3. For each 1 ≤ i ≤ k, for each R ∈ T i
r , for each hole h in R, for each p ∈ Ph and for each

R′ ∈ C(R), let h′ be the hole of R′ such that vh ∈ V +(h′). We associate with the pair
(p, R′) (i) a pointer to the pattern ph′(p) induced by p on h′, (ii) the canonical vertex vh′ ,
and (iii) the distance d(p, vh′)).

5.2 Space analysis
Storing 1 requires space O(kn). To bound the space for item 2, we note that the number
of regions at level i to which a vertes u belongs is bounded by the degree of u. Since the
average vertex degree in a planar graph is at most 6, the average number of regions at level i

to which u belongs is at most 6. Each such region has ri/ri+1 subregions at level-(i + 1),
so storing 2 requires space O(n

∑k−1
i=0 ri/ri+1) = O(n2/r1) + O(n

∑k−1
i=1 ri/ri+1). Storing 3

requires space O(
∑k

i=1(n/ri) · r3
i · ri/ri+1) = O(n

∑k
i=1 r3

i /ri+1). The total space is thus,
O(nk + n2/r1 + n

∑k
i=1 r3

i /ri+1).

5.3 Handling a query
Algorithm 1 shows pseudocode describing the query procedure.

Algorithm 1 Query procedure for the O(n5/3+ε) construction.

1: procedure Query(s, t)
2: i← the largest i s.t. the region Ri stored in item 1 for t contains both s and t

3: Rt ← level (i + 1) region stored in item 1 for t

4: (p, d)← the tuple associated with (s, Rt)
5: i← i + 1
6: while i ≤ k do
7: R′

t ← level (i + 1) subregion of Rt stored in item 1 for t

8: (p′, d′)← the tuple associated with (p, R′
t)

9: d← d + d′ ; p← p′ ; Rt ← R′
t ; i← i + 1

10: return d

To process a query d(s, t) the query procedure first determines the largest value i for which
s and t belong to the same region in T i

r . Note that such a region must always exists as the
root of Tr is all of G. This level can be found in O(k) time by traversing Tr, starting from a
leaf region containing s and a leaf region containing t.

Let Rt be the level-(i + 1) region stored for t in item 1. Note that, t ∈ Rt, and, by
choice of i, s /∈ Rt. Hence, s is in some hole h of Rt. We retrieve the pattern ph(s) and the
distance d(s, vh) associated with (s, Rt) in item 2. We then proceed iteratively, “zooming”
into increasingly smaller regions containing t.

We show that the algorithm maintains the invariant that, at the beginning of each
iteration, we have a level-i region Rt containing t, the variable d stores d(s, vh), where h

is the hole of Rt such that s ∈ V +(h), and the variable p stores (a pointer) to the pattern
ph(t). Thus, when we reach the singleton region containing t, the variable d stores d(s, t).
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We have already established that the invariant is maintained just before the loop is entered
for the first time. In each iteration of the loop we retrieve R′

t, a level-(i + 1) subregion or Rt

containing t (available in item 1), and retrieve d′ ← d(p, vh′) and p′ ← ph′(p) (associated
with the pair (p, R′

t) in item 3). By Lemma 7, d + d′ = d(s, vh) + d(ph(u), vh′) = d(s, vh′).
By Lemma 11, p′ = ph′(t). Hence, after the assignements in Line 9, the invariant is restored.

The time complexity of the query is clearly O(k).

5.4 Choosing parameters
Recall that the space requirement is O(nk + n2/r + n

∑k
i=1 r3

i /ri+1). Picking each ri s.t.
ri/ri+1 = rε

1 results in rk = Θ(1) when k = Θ(1/ε), and in a query time of O(1/ε). Choosing
r1 = n1/3+ε, the total space used becomes

O

(
n

k∑
i=1

r3
i /ri+1

)
= O(nr2

1rε
1) = O(n1+2/3+2ε+ε/3+ε2

) = O(n5/3+ε′
)

for a suitable choice of ε′.
One can decrease the sizes of regions more aggressively to get the query time of k =

O(log(1/ε)) of Theorem 1. To this end we choose r such that r3
i /ri+1 = n2/3+ε, and r1 = n1/3.

Then the space requirement is O(n5/3 + nkn2/3+ε) = O(kn5/3+ε). It is not hard to verify
that one gets ri = O(n1/3−ε 3i−2−1

2 ), so rk = O(1) with k = O(log(1/ε)).
As a last remark we note that the smallest interesting choice of ε in Theorem 1 is

Θ(1/ log n), giving O(n5/3) space and O(log log n) query-time, which is a faster query-time
than was previously known for this amount of space [9, 7].
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Abstract
An edge coloring of a graph G is called interval edge coloring if for each v ∈ V (G) the set of colors on
edges incident to v forms an interval of integers. A graph G is interval colorable if there is an interval
coloring of G. For an interval colorable graph G, by the interval chromatic index of G, denoted by
χ′

i(G), we mean the smallest number k such that G is interval colorable with k colors. A bipartite
graph G is called (α, β)-biregular if each vertex in one part has degree α and each vertex in the other
part has degree β. A graph G is called (α∗, β∗)-bipartite if G is a subgraph of an (α, β)-biregular
graph and the maximum degree in one part is α and the maximum degree in the other part is β.

In the paper we study the problem of interval edge colorings of (k∗, 2∗)-bipartite graphs, for
k ∈ {3, 4, 5}, and of (5∗, 3∗)-bipartite graphs. We prove that every (5∗, 2∗)-bipartite graph admits
an interval edge coloring using at most 6 colors, which can be found in O(n3/2) time, and we prove
that an interval edge 5-coloring of a (5∗, 2∗)-bipartite graph can be found in O(n3/2) time, if it
exists. We show that every (4∗, 2∗)-bipartite graph admits an interval edge 4-coloring, which can
be found in O(n) time. The two following problems of interval edge coloring are known to be
N P-complete: 6-coloring of (6, 3)-biregular graphs (Asratian and Casselgren (2006)) and 5-coloring
of (5∗, 5∗)-bipartite graphs (Giaro (1997)). In the paper we prove N P-completeness of 5-coloring of
(5∗, 3∗)-bipartite graphs.
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1 Introduction

We use standard definitions and notations of graph theory. In the following, by a graph we
mean a nonempty simple graph (i.e., without multiple edges or loops), and by a multigraph
we mean a multigraph with possible multiple edges, but without loops.

Let G be a multigraph with vertex set V (G) and edge set E(G). For some technical
reasons, we assume that V (G) ∩ N = ∅. For each vertex v ∈ V (G), by NG(v) we mean the
set of neighbours of v in G, and by EG(v) we mean the set of edges incident with v. The
degree of vertex v in G, denoted by degG(v), is the number |EG(v)|. By n(G), m(G), ∆(G)
and δ(G) we denote the number of vertices of G, the number of edges of G, the maximum
and the minimum degree of a vertex of G, respectively. By isolated vertex we mean a vertex
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of degree 0, and by pendant vertex a vertex of degree 1. The set of all pendant vertices of
G we denote by P (G). By G[A], where A ⊂ V (G), we denote a subgraph of G induced by
set A, and by G \ A we mean the graph G[V \ A]. We write H ⊂ G if and only if H is a
subgraph of G, and H ❁ G if and only if H is an induced subgraph of G, i.e., H = G[V (H)].

A set of integers [a, b] = {a, a + 1, . . . , b − 1, b}, where a, b ∈ N and a ≤ b, is said to be an
interval of integers. Let X×Y = {{r, s} : r ∈ X ∧ s ∈ Y }.

A bipartite graph G is called (α, β)-biregular if all vertices in one part of G have degree α

and all vertices in the other part have degree β. If G is a subgraph of an (α, β)-biregular graph
with the maximum degree in one part α and the maximum degree in the other part β, it is
called an (α∗, β∗)-bipartite graph. If all vertices in the first part of an (α∗, β∗)-bipartite graph
have the same degree α, then it is called an (α, β∗)-bipartite graph. Analogously, we define
(α∗, β)-bipartite graphs. If we take the partition (A, B) of V (G) of an (α∗, β∗)-bipartite
graph G, we mean that the vertices from set A are of degree α or less, and the vertices from
set B are of degree β or less.

1.1 Interval coloring and interval χ′
i-coloring problems

Let G be a graph. Let c : E(G) → N be an edge coloring, i.e., a function assigning different
colors to adjacent edges. By an interval edge coloring we mean an edge coloring c such that
for each v ∈ V (G), the set c(EG(v)) is an interval of integers. An interval edge coloring
c such that c(E(G)) = {1, 2, . . . , k} is called interval k-coloring. We say that graph G is
interval colorable (k-colorable) if there is an interval coloring (k-coloring) of G. If G is
interval l-colorable for some l ≤ k, then we say that G is interval k∗-colorable or there is
an interval k∗-coloring of G. The problem of interval coloring of graphs is the problem of
veryfing if an arbitrary graph G is interval colorable. If G is interval colorable, then by
interval chromatic index of G, denoted by χ′

i(G), we mean the smallest number k such that
G is interval k-colorable. The problem of interval χ′

i-coloring in the class of interval colorable
graphs is to find an interval χ′

i(G)-coloring for an arbitrary interval colorable graph G. Let
A be an interval edge coloring algorithm for some class C of interval colorable graphs. We
say that A is k∗-algorithm for class C if for every graph G ∈ C it gives an interval k∗-coloring
of G, and we say that A is (χ′

i + k)∗-algorithm for class C if for each graph G ∈ C it gives an
interval (χ′

i(G) + k)∗-coloring of G (i.e., A is an additive k-approximation algorithm for the
interval χ′

i-coloring problem).
The problem of finding school timetables without idle times for both teachers and classes,

which may be modelled by edge colorings of bipartite graphs, probably motivated Asratian
and Kamalian to introduce in [2, 3] the concept of interval edge coloring of graphs. The
open shop scheduling models with unit time operations, no wait&idle criterion, and some
special bipartite scheduling graphs were considered in [10, 9], where the authors studied
schedules with the minimum makespan which corresponds to the interval χ′

i-coloring problem
of bipartite scheduling graphs.

In general, not every graph has an interval coloring, since interval colorable graphs are
∆-colorable [2]. Moreover, the problem of determining whether a bipartite graph has an
interval coloring turned out to be N P-complete [19], and the smallest known maximum
degree of a bipartite graph without an interval coloring is 11 [16].

Interval colorable graphs, which are known to be interval χ′
i-colored in a polynomial time,

are regular bipartite graphs (by König theorem) (in O(n∆ log ∆) time with χ′
i(G) = ∆(G)

colors, for a regular graph G) [5], trees [14, 15, 11, 3] (in O(n) time with χ′
i(T ) = ∆(T ) colors,

for a tree T ) and complete bipartite graphs (in O(m) time with χ′
i(Ka,b) = a + b − gcd(a, b)

colors, for a complete bipartite graph Ka,b) [14, 15, 11, 12]. In [8] the authors constructed
an O(n) time algorithm for interval χ′

i-coloring of a grid G with χ′
i(G) = ∆(G) colors.
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In [9] the authors proposed the linear time algorithm for interval coloring of any outerplanar
bipartite graph, but the complexity of the interval χ′

i-coloring problem of outerplanar bipartite
graphs seems to be open. In [10] the authors proposed the linear time algorithm giving
an interval coloring of bipartite cacti graph G with ∆(G) + 1 colors, which is an (χ′

i + 1)∗-
algorithm.

In [11] the author proved that any (3∗, 3∗)-bipartite graph has an interval 4-coloring,
which can be constructed in O(n) time. In [7] the author proved that an interval α-coloring
of (α∗, α∗)-bipartite graph can be found in O(n3/2) time (if it exists), for α ∈ {3, 4}.

In [12] the authors proved that if an (α, β)-biregular graph has an interval k-coloring,
then k ≥ α + β − gcd(α, β). In [11] the author proved that every (2α, 2)-biregular graph
admits an interval 2α-coloring (i.e., χ′

i-coloring), for each α ≥ 1, and this construction can
be done in O(n∆ log ∆) time. In [13] the authors proved that every (2α + 1, 2)-biregular
graph admits an interval (2α + 2)-coloring (i.e., χ′

i-coloring), for every α ≥ 1, and to the best
of our knowledge this construction can be done in O(n3/2∆2) time.

The following problems of interval χ′
i-coloring are N P-complete: 6-coloring of (6, 3)-

biregular graphs [1] and 5-coloring of (5∗, 5∗)-bipartite graphs [7].
In [4] the authors proved that every (6, 3)-biregular graph admits an interval 7-coloring.

The problems of interval coloring of (4, 3)-biregular and (5, 3)-biregular graphs are still open.
In the paper we solve the interval χ′

i-coloring problem for (α∗, 2∗)-bipartite graphs, for
α ∈ {3, 4, 5}. We show that if G is a (5∗, 2∗)-bipartite graph, then χ′

i(G) ≤ 6, and the
interval χ′

i-coloring problem for (5∗, 2∗)-bipartite graphs can be solved in O(n3/2) time. If
G is a (4∗, 2∗)-bipartite graph, then χ′

i(G) ≤ 4, and the interval χ′
i-coloring problem for

(4∗, 2∗)-bipartite graphs can be solved in O(n) time. In section 3 we prove N P-completeness
of the interval 5-coloring of (5∗, 3∗)-bipartite graphs.

1.2 General and interval factor problem
We introduce the general factor problem [17, 6] as follows: let G be a graph and let F : V (G) →
2N \ {∅}, where F(v) ⊂ {0, . . . , degG(v)}. Does G admit an F-factor, i.e., a set F ⊂ E(G)
such that for each vertex v ∈ V (G), |{e : v ∈ e ∧ e ∈ F}| ∈ F(v)? Lóvasz [17] proved that the
general factor problem is N P-complete for general graphs and mappings taking values {0, 3}
for some vertices. In [6] Cornuéjols showed that the general factor problem is N P-complete
for planar bipartite graphs and mappings taking values {0, 3} for some vertices. A finite set
A ⊂ N is said to have a gap of length k ≥ 1 if a, a + k + 1 ∈ A and a + 1, . . . , a + k /∈ A, for
some a. A finite set A ⊂ N has no gaps if and only if it is an interval. Thus, the general
factor problem is N P-complete for planar bipartite graphs and mappings taking values,
i.e., sets, having gaps of length of at least two. In [6] the author proved the conjecture of
Lóvasz [17]: there is a polynomial time algorithm for deciding whether a graph G has an
F -factor, where the sets F(v) have no gap of length of two or more. The complexity of the
proposed algorithm is O(n4) [6].

If for each v ∈ V (G), set F(v) is an interval, then F-factor is called an interval factor.
A special case of interval factors is F-factor, where F ≡ {k}, k ∈ N, which we denote by
k-factor, e.g., perfect matching is 1-factor.

Let us assume that there is an O(ϕ(m, n)) time algorithm (ϕ(m, n) = Ω(m + n) and
ϕ(m, n) = O(mn1/2) [18]) solving perfect matching problem in the class of connected bipartite
graphs with at most m edges and n vertices. Combining the idea of replacing an edge with
a complete bipartite graph [6] and the idea of doubling a graph [7] we prove the following
theorem.

ISAAC 2021



26:4 Interval Edge Coloring of Bipartite Graphs with Small Vertex Degrees

▶ Theorem 1. There is an O(ϕ(m∆, m)) time algorithm solving the interval factor problem
in the class of connected bipartite graphs with at most m edges and the degree bounded by ∆.

Proof. Let G be a connected bipartite graph and let F : V (G) → 2N \ {∅}, such that F(v) =
[av, bv], 0 ≤ av ≤ bv ≤ degG(v). We construct a bipartite graph H with ∆(H) ≤ ∆(G) + 1,
n(H) ≤ 8m(G) and m(H) ≤ 4m(G)(∆(G) + 1) + n(G)∆(G) such that there is 1-factor in H

if and only if there is F -factor in G.
For each vertex v ∈ V (G), we denote dv = degG(v), pv = bv − av and qv = dv − av.

Obviously, bv ≤ dv and pv ≤ qv. In the first step we construct graph H1 from graph G,
by replacing each vertex v ∈ V (G) with the complete bipartite graph isomorphic to Kdv,qv

with parts A1
v = {v1

u : u ∈ NG(v)} and B1
v = {v1

1 , . . . , v1
qv

}, and by replacing each edge
{u, v} ∈ E(G) with an edge {u1

v, v1
u}. In the second step, we take the resultant graph H1 and

its isomorphic copy H2, where v1
∗ and v2

∗ are corresponding vertices (under isomorphism),
and, for each v ∈ V (G), we add edges {v1

1 , v2
1}, . . . , {v1

pv
, v2

pv
}.

Let V (H) = V (H1) ∪ V (H2) and E(H) = E(H1) ∪ E(H2) ∪ E∗ , where V (Hi) =⋃
v∈V (G) Ai

v ∪ Bi
v, E(Hi) =

⋃
v∈V (G) Ai

v×Bi
v ∪ F i, and F i =

⋃
{u,v}∈E(G) {{ui

v, vi
u}}, for

i ∈ {1, 2}, and E∗ =
⋃

v∈V (G)
⋃

j∈{1,...,pv} {{v1
j , v2

j }}.
We prove that there is an F -factor in G iff there is a 1-factor in H.
(⇒) Let F be F -factor in G.
Let us define Fv = {u ∈ NG(v) : {v, u} ∈ F}, F̂v = NG(v) \ Fv and fv = |Fv|, for

each v ∈ V (G). Since F is F-factor, then for each v ∈ V (G), av ≤ fv ≤ bv. Hence,
dv − fv ≤ qv and 0 ≤ fv − av ≤ pv. Let v ∈ V (G). Let F i

v = {vi
u ∈ V (Hi) : u ∈ Fv}

and F̂ i
v = Ai

v \ F i
v, for i ∈ {1, 2}. Observe that |F̂ i

v| = dv − fv, and vi
u ∈ F i

v ⇐⇒ ui
v ∈

F i
u. Since Hi[Ai

v ∪ Bi
v] ≃ Kdv,qv , there is a 1-factor in Hi[F̂ i

v ∪ {vi
fv−av+1, . . . , vi

dv−av
}],

denote it by Êi
v. Thus, Q =

⋃
{v,u}∈F {{v1

u, u1
v}, {v2

u, u2
v}} ∪

⋃
v∈V (G) Ê1

v ∪ Ê2
v ∪ E12

v , where
E12

v = {{v1
1 , v2

1}, . . . , {v1
fv−av

, v2
fv−av

}}, is a 1-factor in H. This construction can be done in
O(m(H)) time.

From definition of H, ∆(H) ≤ ∆(G) + 1, n(H) = 2n(H1) ≤ 2
∑

v∈V (G) 2dv = 8m(G),
and m(H) ≤ 4m(G) +

∑
v∈V (G) (2dv(dv − av) + bv − av) ≤ 4m(G) +

∑
v∈V (G) (2d2

v + dv) ≤
4m(G) + ∆(G)

∑
v∈V (G) (2dv + 1) ≤ 4m(G)(∆(G) + 1) + n(G)∆(G). Since G is bipartite,

H1 and H2 are bipartite, and hence H is bipartite. Since there is an O(ϕ(m(H), n(H))) time
algorithm finding 1-factor in H, we get the thesis.

(⇐) Let Q be a 1-factor in H.
Let v ∈ V (G) and i ∈ {1, 2}. Since |{{v1

1 , v2
1}, . . . , {v1

pv
, v2

pv
}} ∩ Q| ≤ pv, qv − pv ≤

|(Ai
v×Bi

v) ∩ Q| ≤ qv. Hence, av ≤ |{u ∈ NG(v) : {vi
u, ui

v} ∈ Q}| ≤ bv. Thus, F = {{v, u} ∈
E(G) : {v1

u, u1
v} ∈ Q} is an F-factor in G. This construction can be done in O(m(H))

time. ◀

In Fig. 1 there is a graph G with an interval factor and in Fig. 2 the constructed graph
H with a 1-factor corresponding to the interval factor of G. White and black vertices form
the partition of a bipartite graph.

Since the problem of 1-factor in the class of bipartite graphs with bounded degrees can
be solved in O(n3/2) time [18], we have the following corollary.

▶ Corollary 2. There is an O(n3/2) time algorithm solving the interval factor problem in the
class of bipartite graphs with bounded degree.
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Figure 1 A bipartite graph G with
an interval factor (bold edges).

Figure 2 A bipartite graph H with a 1-factor (bold edges)
corresponding to the interval factor of G.

2 Interval χ′
i-coloring problem of (α∗, 2∗)-bipartite graphs

In this section we construct polynomial time algorithms for the interval χ′
i-coloring problem

for (α∗, 2∗)-bipartite graphs, for α ∈ {3, 4, 5}, and give some other minor results.

2.1 Introductory properties
▶ Observation 3. Let G be an interval colorable graph, and let H be an induced subgraph of
G such that for each v ∈ V (H), degH(v) = degG(v) or degH(v) = 1. Then, for any interval
edge coloring c of G, the coloring c′ = c|E(H) is an interval edge coloring of H.

Let G be an (α∗, 2∗)-bipartite graph with partition (X, Y ) of V (G) and let P2(G) =
P (G) ∩ Y . Let G′ be the graph obtained from G by adding and joining the unique vertex
xv to each pendant vertex v ∈ Y . Formally, V (G′) = V (G) ∪ {xv : v ∈ P2(G)} and
E(G′) = E(G) ∪ {{xv, v} : v ∈ P2(G)}. In the following, this operation (transformation)
we denote by G →p G′. Since the extension of an interval k-coloring of G to an interval
k-coloring of G′ is trivial, by Observation 3 we get the properties.

▶ Proposition 4. Let α ∈ N, α ≥ 1. Let G be an interval colorable (α∗, 2∗)-bipartite graph
and let G′ be the graph obtained by the operation G →p G′. Then, G′ is an interval colorable
(α∗, 2)-bipartite graph and χ′

i(G) = χ′
i(G′).

Observe that for each (α∗, 2∗)-bipartite graph G we have m(G) ≤ 2n(G).

▶ Proposition 5. Let k, α ∈ N, α ≥ 1. If there is an O(ϕ(n)) time k∗-algorithm for (α∗, 2)-
bipartite graphs with at most n vertices, then there is an O(ϕ(n)) time k∗-algorithm for
(α∗, 2∗)-bipartite graphs with at most n vertices.

Let G be an (α, 2∗)-bipartite graph with the partition (X, Y ) and let G′ be an isomorphic
copy of G. Let us denote by v′ the image of v under isomorphism. Let P2(G) = P (G) ∩ Y ,
q = |P2(G)|, and for each v ∈ P2(G), let pG(v) be the only one neighbour of v in G.
Let W = {wv : v ∈ P2(G)}, such that W ∩ (V (G) ∪ V (G′)) = ∅ and |W | = q. Let H

be a graph defined as follows: V (H) = (V (G) ∪ V (G′)) \ (P2(G) ∪ P2(G′)) ∪ W , and
E(H) = E(G \ P2(G)) ∪ E(G′ \ P2(G′)) ∪

⋃
v∈P2(G) {{wv, pG(v)}, {wv, pG′(v′)}}. In the

following, this operation (transformation) is denoted by G →d H. Note that G ≃ GW =
H[(V (G) \ P2(G)) ∪ W ], hence GW ≃ G′

W = H[(V (G′) \ P2(G′)) ∪ W ]. Thus, if GW is

ISAAC 2021
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an interval colorable graph, then for any interval k-coloring c of GW , we can extend the
coloring c to the coloring of the whole graph H by defining a coloring c′ of G′

W as follows:
c′(e′) = c(e) + 1, where e and e′ are isomorphic edges. Thus, by Observation 3 we get the
following properties.

▶ Proposition 6. Let α ∈ N, α ≥ 1. Let G be an interval colorable (α, 2∗)-bipartite graph
and let H be the graph obtained by the operation G →d H. Thus, H is an interval colorable
(α, 2)-biregular graph and χ′

i(G) ≤ χ′
i(H) ≤ χ′

i(G) + 1.

▶ Proposition 7. Let k, α ∈ N, α ≥ 1. If there is an O(ϕ(n)) time k∗-algorithm for (α, 2)-
biregular graphs with at most n vertices, then there is an O(ϕ(n)) time k∗-algorithm for
(α, 2∗)-bipartite graphs with at most n vertices.

Let us recall that χ′
i(G) = 2α if G is an (2α, 2)-biregular graph [11], and χ′

i(G) = 2α + 2
if G is an (2α + 1, 2)-biregular graph [13].

▶ Corollary 8. Let α ∈ N, α ≥ 1. If there is an O(ϕ(n)) time χ′
i-algorithm for (2α, 2)-

biregular graphs with at most n vertices, then there is an O(ϕ(n)) time χ′
i-algorithm for

(2α, 2∗)-bipartite graphs with at most n vertices, and for every (2α, 2∗)-bipartite graph G,
χ′

i(G) = 2α.

▶ Corollary 9. Let α ∈ N. If there is an O(ϕ(n)) time χ′
i-algorithm for (2α + 1, 2)-biregular

graphs with at most n vertices, then there is an O(ϕ(n)) time (χ′
i + 1)∗-algorithm for

(2α + 1, 2∗)-bipartite graphs with at most n vertices, and for every (2α + 1, 2∗)-bipartite graph
G, χ′

i(G) ≤ 2α + 2.

2.2 Operations on multigraphs and pom-graphs
Let H be a multigraph. Since H may have multiple edges incident with the same two
vertices, we introduce the notation ei(x, y) or e(x, y, i), where i is an identifier, to distinguish
two or more edges incident with x and y, e.g., e1(x, y) and e2(x, y). Let u, v ∈ V (H) such
that there is no edge in E(H) incident with u and v. We say that a multigraph H ′ is
obtained from H by contracting vertices v and u if vertices v, u are replaced by a new
vertex w(u, v) and each edge ei(x, t) ∈ E(H), where x ∈ {u, v}, t ∈ V (H), is replaced
with ei(w(u, v), t) (we say further that ei(x, t) and ei(w(u, v), t) are corresponding edges).
Formally, H ′ = ((V (H) \ {v, u}) ∪ {w(u, v)}, E(H \ {u, v}) ∪ {ei(w(u, v), t) : x ∈ {u, v} ∧ t ∈
V (H) ∧ ei(x, t) ∈ E(H)}.

In the following by a multidigraph we mean a multidigraph without loops. Let D be
a multidigraph. If a = (x, y) is an arc, then y is said to be the head and x the tail of the
arc a. Since D may have multiple arcs with the same head and the same tail, we introduce
the notation ai(x, y) or a(x, y, i), to distinguish two or more arcs with the same head and
tail, e.g., a1(x, y) and a2(x, y). By indegD(v) we mean the number of arcs with the head
at v, and by outdegD(v) we mean the number of arcs with the tail at v in D. We say that
v ∈ V (D) is a pendant vertex in D if and only if indegD(v) + outdegD(v) = 1.

Let G be an (α∗, 2)-bipartite graph with partition (X, Y ) of V (G), α ∈ N, α ≥ 1. Let H

be the multigraph obtained from G by replacing each two edges {u, v} and {w, v}, where
v ∈ Y , with one new edge ev(u, w) joining u and w (we allow multiple edges between u and
w). Formally, V (H) = X, and E(H) = {ev(u, w) : v ∈ Y }. In the following, the multigraph
H is said to be the contraction multigraph of G, which we denote by G →cn H. Let c be
an interval k-coloring of G. We replace each edge ev(u, w) ∈ E(H) with the arc ac

v, where
ac

v has the tail at u, if c({u, v}) is an odd number, otherwise ac
v has the tail at w. Since
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c is an interval edge coloring and degG(v) = 2, then only one of c({u, v}) and c({w, v}) is
an odd number. Formally, Dc(G) is the directed multigraph (multidigraph) with vertex set
V (Dc(G)) = V (H) and arc set A(Dc(G)) = {ac

v : v ∈ Y }.
By a partially oriented multigraph or a pom-graph P = (V, E ∪ A) we mean the union

of a multigraph G = (V, E) and a directed multigraph D = (V, A) on the same vertex set
V , which we denote by P = G ∪ D. In the following, by Gr(P ) we mean the multigraph
G, by Di(P ) we mean the multidigraph D, by E(P ) we mean E(G), and by A(P ) we mean
A(D). The underlying multigraph of a pom-graph P , denoted by Un(P ), is the multigraph
obtained from P by replacing each arc ai(x, y) ∈ A(P ) with a new edge ei(x, y). Formally,
Un(P ) = (V (P ), E(P ) ∪ EA(P )), where EA(P ) = {ei(x, y) : ai(x, y) ∈ A(P )}. For each
e ∈ E(Un(P )), by o(e) we mean e, if e ∈ E(P ), or ai(x, y), if e ∈ EA(P ) and e = ei(x, y).
Let H = Un(P ) and let v ∈ V (P ). By EAP (v) we mean {o(e) : e ∈ EH(v)}. By degP (v) we
mean degH(v), and hence ∆(P ) = ∆(H). Let B ⊂ V (P ), by P [B] we denote a pom-graph
G[B] ∪ D[B], and by P \ B we mean the pom-graph P [V \ B]. We say that two vertices
u, v ∈ V (P ) are neighbours in P if and only if E(Un(P [{u, v}])) is a non-empty set.

Let P be a pom-graph and let a ≤ b ≤ ∆(P ), a, b ∈ N. By Va,b(P ) we denote the set
{v ∈ V (P ) : degP (v) ∈ [a, b]} and by Ga,b(P ) we mean Gr(P [Va,b(P )]). If a = b, then we
write Ga(P ) instead of Ga,a(P ).

Let P ′ be the multigraph obtained from pom-graph P by adding new vertices on each
edge and each arc. If we add vertex we on an edge e = ei(x, y), then we add two new edges
ei(we, x) and ei(we, y). If we add vertex wa on an arc a = ai(x, y), then we add an edge
ei(x, wa) and an arc ai(wa, y). Formally, V (P ′) = V (P ) ∪ {we : e ∈ E(P )} ∪{wa : a ∈ A(P )},
E(P ′) = {ei(we, x), ei(we, y) : e ∈ E(P )∧e = ei(x, y)}∪{ei(x, wa) : a ∈ A(P )∧a = ai(x, y)},
A(P ′) = {ai(wa, y) : a ∈ A(P ) ∧ a = ai(x, y)}. In the following, the pom-graph P ′ is said to
be the subdivision pom-graph of pom-graph P , which we denote by P →sd P ′.

2.3 Interval χ′
i-coloring problem of (α∗, 2∗)-bipartite graphs for

α ∈ {3, 4}
▶ Theorem 10. Let G be a (3∗, 2∗)-bipartite graph. Then, χ′

i(G) = 3 if and only if each
connected component of G contains at most one cycle. The construction of interval 3-coloring
can be done in linear time.

Proof. Let G be a (3∗, 2∗)-bipartite graph with partition (X, Y ) of V (G), and let P2(G) =
P (G) ∩ Y . By definition ∆(G) = 3.

(⇒) Let us assume that χ′
i(G) = 3, and let G contain at least one cycle.

Let G′ be the graph obtained from G by the operation G →p G′. By Proposition 4, G′ is
(3∗, 2)-bipartite graph and G′ is interval 3-colorable if and only if G is interval 3-colorable.

Let c be an interval 3-coloring of G′, and let D = Dc(G′). Obviously, indegD(v) ≤ 1, for
each v ∈ V (D). Let D′ be a digraph obtained from D by successively removing pendant
vertices. Hence, for each v ∈ V (D′), 2 ≤ indegD′(v) + outdegD′ ≤ 3, and indegD′(v) ≤
1. Thus, outdegD′(v) ≥ 1. Since

∑
v∈V (D′) indegD′(v) =

∑
v∈V (D′) outdegD′(v), each

component of D′ is a directed cycle. Thus, each component of G contains at most one cycle.
(⇐) Let us assume that each connected component of G has at most one cycle. First, we

color each cycle with colors 1 and 2, alternately. Next, for each vertex v of degree 3 that
belongs to a colored cycle, color edge {v, u} with 3, where u does not belong to the colored
cycle. In the last step, color the remaining trees in a greedy way using 3 colors, preserving
intervals at vertices. Thus, we get an interval 3-coloring of G in linear time. ◀

ISAAC 2021



26:8 Interval Edge Coloring of Bipartite Graphs with Small Vertex Degrees

▶ Theorem 11. Let G be a (4∗, 2)-bipartite graph. Then, χ′
i(G) = 4. The construction of an

interval 4-coloring of G can be done in linear time.

Proof. Let G be a (4∗, 2)-bipartite graph. The construction proceeds in two crucial stages:
first, we construct a pom-graph P from graph G, then we use the structure of P to build the
interval 4-coloring of graph G. In the first stage we apply to G the sequence of transformations
G →cn P0 99K1 P1 99K2 P2 →sd P , where P0 is the contraction multigraph of G, P1 and
P2 are some pom-graphs, and P is the subdivision pom-graph of P2. In the second stage
we start from an edge&arc 4-coloring of P , preserve this coloring on the underlying graph
G∗ = Un(P ), and in the final step we transform the edge colored graph G∗ to an interval
edge colored initial graph G, by contracting vertices that come from vertices splitted in the
transformations 99K1 or 99K2.

(P0 99K1 P1) Initially, let H ′ = P0, D′ = (V (P0), ∅), and let P ′ = H ′ ∪D′ be a pom-graph.
We proceed with the following successive steps in a loop until there is no cycle in G3,4(P ′).
1. (find a cycle) Let C be a subgraph of G3,4(P ′), which is a cycle. Let V (C) = {v1, . . . , vk}

and let E(C) = {e(v1, v2, i1), . . . , e(vk−1, vk, ik−1), e(vk, v1, ik)}. Note that C may have
two vertices.

2. (orient the cycle) Remove E(C) from E(P ′) and add k arcs a(v1, v2, i1), . . .,
a(vk−1, vk, ik−1), a(vk, v1, ik) to A(P ′).

3. (split vertices of the cycle) For each v ∈ V (C) such that degP ′(v) = 3, or degP ′(v) = 4
and indegD′(v) = 2, split v into vertices vi and vo as shown in Fig. 3 and 4. Note that in
this case each dashed line is an arc with the tail at v or vo. Formally, add new vertices vi

and vo to V (P ′), for each arc ad(u, v) add new arc ad(u, vi), for each arc ad(v, x) add
new arc ad(vo, x), and for each edge ed(v, x) add new edge ed(vo, x), and remove v from
V (P ′).

Knowing that there is no cycle in G3,4(P ′), let P1 = P ′.

▷ Claim 12. For each v ∈ V (P1),
if degP1(v) = 1, then v is incident with an edge or an arc with the head at v,
if degP1

(v) = 2, then v is incident with two edges or an edge and an arc with the tail at
v, or two arcs with tails at v, or two arcs with heads at v,
if degP1

(v) = 3, then v is incident with three edges,
if degP1(v) = 4, then v is incident with four edges or two edges and two arcs, one with
the tail at v and one with the head at v.

Figure 3 Splitting vertex v of degP ′ (v) = 3. Figure 4 Splitting vertex v of degP ′ (v) = 4.

(P1 99K2 P2) Let P1 = H1 ∪ D1, where H1 is a multigraph and D1 is a multidigraph.
Initially, let P ′ = P1, H ′ = H1 and D′ = D1. We proceed with the following successive
steps in a loop until there is no path in G3,4(P ′). Note that if V (G3,4(P ′)) ̸= ∅, then there
is a path in G3,4(P ′) with at least one vertex, and by Claim 12, degH′(v) ≥ 2, for each
v ∈ V (G3,4(P ′)).
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1. (find a maximal path) Let T be a subgraph of G3,4(P ′), which is a maximal path. Let
V (T ) = {v1, . . . , vk} and let E(T ) = {e(v1, v2, i1), . . . , e(vk−1, vk, ik−1)}. Note that T

may have one vertex.
2. (orient the path) Since T is a maximal path in G3,4(P ′) and degH′(v) ≥ 2, for each

v ∈ V (G3,4(P ′)), where H ′ = Gr(P ′), there is a vertex v ∈ V (P ′) with degP ′(v) ≤ 2
such that ed(v, v1) ∈ E(P ′). Remove E(T ) ∪ {ed(v, v1)} from E(P ′) and add k arcs
a(v, v1, i1), . . . , a(vk−1, vk, ik−1) to A(P ′).

3. (split vertices of the path) For each v ∈ V (T ) such that degP ′(v) = 3, or degP ′(v) = 4
and indegD′(v) = 2, split v into vertices vi and vo as shown in Fig. 3 and 4. Note that in
this case each dashed line may be an edge or an arc with the tail at v or vo. Formally,
add new vertices vi and vo to V (P ′), for each arc ad(u, v) add new arc ad(u, vi), for each
arc ad(v, x) add new arc ad(vo, x), and for each edge ed(v, x) add new edge ed(vo, x), and
remove v from V (P ′).

Knowing that there is no path in G3,4(P ′), let P2 = P ′ and let P2 = H2 ∪ D2, where H2 is a
multigraph and D2 is a multidigraph.

▷ Claim 13. For each v ∈ V (P2), degP2
(v) ≤ 2. If degP2

(v) = 2 and there is an arc with
the head at v, then v is incident with two arcs with heads at v.

Proof. If v ∈ V (P2) is a vertex such that v = wo or v = wi, for some w ∈ V (P0), then
degP2(v) ≤ 2. Let v ∈ V (P1) and degP1(v) > 2. Then, v ∈ V (G3,4(P1)), and by Claim
12, there is u ∈ V (P1) such that ed(u, v) ∈ E(P1). Thus, v ∈ V (T ) for some path T while
applying step (1) in the transformation P1 99K2 P2. After orienting the path T in step (2),
vertex v is splitted in the next step (3) or its degree is 4 and there are two edges incident
with v. In the latter case, v ∈ V (T ′) for some other path T ′ while applying step (1). Thus,
after orienting the path T ′ in step (2), v is splitted in the successive step (3).

Let degP2(v) = 2, for some v ∈ V (P2), and let us assume that there is an arc with the
head at v. If v ∈ V (P0), then there is no arc with the head at v in pom-graph P2. Thus,
v = wi for some splitted vertex w, and v is incident with two arcs with heads at v. ◁

Let P be the pom-graph obtained by the transformation P2 →sd P , and let H = Gr(P )
and G∗ = Un(P ). Obviously, H and G∗ are simple graphs, and by Claim 13, ∆(P ) ≤ 2.

▷ Claim 14. Let T ❁ H be a maximal path. Let v, u ∈ V (T ) such that degH(v) =
degH(u) = 1. If there are arcs (v, x), (u, y) ∈ A(P ), then |E(T )| is even.

▷ Claim 15. The graph G∗ is bipartite and each component of G∗ is a path of length of at
least 2 or a cycle of length at least 4.

We define c′ : E(P ) ∪ A(P ) → {1, 2, 3, 4} separately for each P ′ ⊂ P such that P ∗ is a
connected component of G∗, where P ∗ = Un(P ′). By Claim 15, P ∗ is a path or a cycle. Let
V (P ′) = {v1, . . . , vl} and let k = |E(P ′) ∪ A(P ′)|. If P ∗ is a cycle, let us denote vk+1 = v1
and vk+2 = v2. Let us assume that for each i ∈ {1, . . . , k}, vi and vi+1 are neighbours in P ′.
For each i ∈ {1, . . . , k}, let oi = o({vi, vi+1}), where {vi, vi+1} ∈ E(P ∗).

First, color arcs in A(P ′). For each i ∈ {1, . . . , k}, if oi is an arc with the head at vi,
then let c′(oi) = 1, and if oi is an arc with head at vi+1, then let c′(oi) = 4. Next, we color
edges in E(P ′). If o1 is an edge, then let c′(o1) = 3. For each i ∈ {1, . . . , k − 1} (if P ∗ is a
cycle, also for i = k), if oi is an arc and oi+1 is an edge, then by Claim 13, oi has the head at
vi. Since c′(oi) = 1, let c′(oi+1) = 2. We extend c′ to the rest of uncolored edges of E(P ′),
coloring them with colors 2 and 3 such that no two adjacent edges have the same color.
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Observe that if for some i ∈ {1, . . . , k}, oi is an edge and oi+1 is an arc with the tail at
vi+1, then c′(oi+1) = 4, and by Claim 14, c′(oi) = 3. If oi and oi+1 are arcs, then by Claim
13, oi and oi+1 have heads at vi+1, hence c′(oi) = 4 and c′(oi+1) = 1.

Let us define c∗ : E(G∗) → {1, 2, 3, 4} as follows: c∗(e) = c′(o(e)), where o(e) ∈ E(P ) ∪
A(P ). By the above construction of c′, c∗ is an edge 4-coloring.

Now, we define c : E(G) → {1, 2, 3, 4}. We contract all the pairs of vertices from V (G∗)
that come from vertices splitted in the transformations 99K1 or 99K2 and we preserve the colors
on the corresponding edges, and thus we get the initial graph G that is edge colored. Formally,
for each vi, vo ∈ V (G∗), where v ∈ V (P0) (see Fig. 3 and 4), we contract vertices vi, vo and we
preserve the colors on the corresponding edges {v∗, x} and {v, x}, i.e., c({v, x}) = c∗({v∗, x}),
where v∗ is vi or vo. Since c∗(EG∗(vi)) is equal to {1}, {4} or {1, 4} and c∗(EG∗(vo)) = {2, 3},
we get c(EG(v)) = {1, 2, 3} or c(EG(v)) = {2, 3, 4}, or c(EG(v)) = {1, 2, 3, 4}. Thus, c is an
interval 4-coloring of G.

Since the transformation of G into P2 can be done in linear time, and the coloring of P

can be done in linear time, the final construction of the coloring of G can be done in linear
time. ◀

By Theorem 11, and Propositions 4 and 5 we get the following theorem.

▶ Theorem 16. Let G be a (4∗, 2∗)-bipartite graph. Then, χ′
i(G) = 4. The construction of

an interval 4-coloring of G can be done in linear time.

2.4 Interval χ′
i-coloring problem of (5∗, 2∗)-bipartite graphs

Let G be a (5∗, 2∗)-bipartite graph. Let F5 : V (G) → 2N \ {∅} be defined as follows: if
degG(v) = 2i + 1, for i ∈ {0, 1}, then let F5(v) = {i, i + 1}, if degG(v) = 2i, for i ∈ {1, 2},
then let F5(v) = {i}, and if degG(v) = 5, then let F5(v) = {2}.

Let G be a (5∗, 2∗)-bipartite graph. If c is an interval 5-coloring of G, then F = {e ∈
E(G) : c(e) ∈ {2, 4}} is an F5-factor of G.

▶ Theorem 17. Let G be a (5∗, 2∗)-bipartite graph with n vertices. Then, χ′
i(G) = 5 if and

only if G admits an F5-factor. The construction of an interval 5-coloring can be done in
O(n3/2) time.

▶ Theorem 18. Let G be a (5∗, 2)-bipartite graph. Then, 5 ≤ χ′
i(G) ≤ 6 and the construction

of an interval 6∗-coloring of G can be done in O(n3/2) time.

By Theorems 17 and 18, and by Propositions 4 and 5 we get

▶ Theorem 19. Let G be a (5∗, 2∗)-bipartite graph. Then, χ′
i(G) ≤ 6 and the construction

of an interval χ′
i-coloring of G can be done in O(n3/2) time.

3 N P-completeness results

▶ Theorem 20. The problem of interval 5-coloring of (5∗, 3∗)-bipartite graphs is N P-complete.

The Table 1 contains the state-of-art and our results presented in this paper, and some
open problems for further research.
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Table 1 The complexity of the algorithms for the interval χ′
i-coloring problem.

Interval edge χ′
i-coloring problem for (α∗, β∗)-bipartite or (α, β)-biregular graphs

Graphs χ′
i Complexity Comments

(α∗, 1∗) k O(n) stars
(2∗, 2∗) 2 O(n) paths and cycles
(3∗, 2∗) 3 or 4 O(n) Thm. 10 (χ′

i = 3), [11] (χ′
i ≤ 4)

(4∗, 2∗) 4 O(n) Thm. 16
(5∗, 2∗) 5 or 6 O(n3/2) Thm. 17 (χ′

i = 5), Thm. 19 (χ′
i ≤ 6)

(6∗, 2∗) ? ? interval coloring problem is open
(3∗, 3∗) 3 or 4 O(n3/2) or O(n) [7] (χ′

i = 3) [11] (χ′
i ≤ 4)

(4, 3) ? ? interval coloring problem is open
(5, 3) ? ? interval coloring problem is open
(6, 3) ≤ 7 O(n) [4] ((χ′

i + 1)∗-algorithm)
(5∗, 3∗) 5 N P-complete Thm. 20
(6, 3) 6 N P-complete [1]

(2α, 2) 2α O(n∆ log ∆) [11]
(2α + 1, 2) 2α + 2 O(n3/2∆2) [13] (compl. of 2-factor by Thm. 1)

(2α, 2∗) 2α O(n∆ log ∆) [11] and Cor. 8
(2α + 1, 2∗) ≤ 2α + 2 O(n3/2∆2) [13] and Cor. 9 ((χ′

i + 1)∗-algorithm)
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Abstract
The classical degree realization problem is defined as follows: Given a sequence d̄ = (d1, . . . , dn)
of positive integers, construct an n-vertex graph in which each vertex ui has degree di (or decide
that no such graph exists). In this article, we present and study the related selected neighbor degree
realization problem, which requires that each vertex ui of G has a neighbor of degree di. We solve
the problem when G is required to be acyclic (i.e., a forest), and present a sufficient and necessary
condition for a given sequence to be realizable.
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1 Introduction

Background and motivation. Different properties of a given network can be described
using “profiles” of the network. As a classical example, the degree profile (or degree sequence)
of an n-vertex graph G is the sequence DEG(G) = (d1, . . . , dn), where di = deg(ui) is the
degree of the vertex ui.

The extensively studied degree realization problem concerns the situation where given
a sequence of positive integers d̄ = (d1, . . . , dn), we are asked whether there exists a graph
whose degree sequence conforms to d̄. (If so, then the sequence d̄ is called graphic.) Erdös
and Gallai [15] gave a necessary and sufficient condition for deciding if a given degree profile
is realizable (also implying a Θ(n) time decision algorithm), and Havel and Hakimi [18, 19]
gave a Θ(

∑
i di) time algorithm that given a degree profile d̄ computes a realizing graph, or

proves that the profile is not realizable. The problem is known to be particularly simple
when the realizing graph is required to be acyclic, in which case the necessary and sufficient
condition for realizability is simply that

∑
i di = 2(n − k), where k ∈ {1, . . . , n} (see [16] for

a short analysis for trees). Many extensions and variations of the degree realization problem
were studied in the past, cf. [1, 11, 20, 24, 26, 31, 32, 34, 35]. Interesting applications in the
context of social networks are studied in [9, 13, 21].

Other aspects of the graph structures may be described using other types of profiles. We
focus on profiles that capture aspects of the vertex neighborhoods in the given graph. One
reason for our interest in neighbor degrees is that in the context of social networks, it is often
informative to observe not only the individual degree of each vertex, but also the degrees of
nearby vertices, since obtaining a more complete picture of the degree distribution in a given
neighborhood may reveal useful information regarding the interrelationships among vertices,
and their relative standing in their immediate society.
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Let N [u] denote the closed (inclusive) neighborhood of the vertex u in G, namely
N [u] = {v | (v, u) ∈ E} ∪ {u}. Clearly, the profile N(G) = ⟨N [u1], . . . , N [un]⟩ tells us
everything we may need to know. However, this profile is costly, or “heavy”, in the sense
that storing it requires as much memory as storing the entire graph. Instead, one is often
interested in studying “lighter” profiles, storing only a small amount of information per
vertex.

For a graph G(V, E), V = {u1, . . . , un}, let ctr : V → V be a neighbor selection function,
such that ctr(u) ∈ N [u] for each vertex u. We refer to the vertex ctr(u) as u’s selected
neighbor or center. For each vertex u, denote the degree of u’s selected neighbor by snd(u) =
deg(ctr(u)). Then the sequence SND(G, ctr) = (snd(u1), . . . , snd(un)) is referred to as the
selected neighbor degree (SND) profile of the pair (G, ctr).

Interesting special cases of the selected neighbor degree profile SND arise when the neighbor
selection function ctr targets some specific neighbor for each vertex. The ordinary degree
profile is obtained by using ctrself (u) = u. Picking the function ctrmax, which selects for
every vertex u its neighbor of maximum degree, yields

maxnd(u) = deg(ctrmax(u)) = max{deg(w) | w ∈ N [u]} ,

which gives the maximum neighbor degree profile MaxND(G) = (maxnd(u1), . . . , maxnd(un)).
The functions ctrmin and minnd and the minimum neighbor degree profile MinND(G) can be
defined analogously. Note that the profile MaxND(G) (resp., MinND(G)) is independent of
the choice of ctrmax (resp., ctrmin). This is not the case for general SND profiles.

Recently, we studied the realization problem for the MinND and MaxND profiles. In
particular, the minimum neighbor degree realization problem, where given a sequence d̄ of n

integers one must decide if there is a graph G such that MinND(G) = d̄ and construct such a
graph (if exists), was studied in [3]. A complete characterization was given for realization by
forests (i.e., acyclic graphs), but the problem over general graphs was left open. Surprisingly,
when studying the realizability of the maximum neighbor degree profile MaxND [6], the
picture was reversed: we were able to give a complete characterization for the realization
problem of maximum neighbor degrees on general graphs, but on forests the problem appears
to be harder, and was left open.

It is therefore natural to investigate the problem’s behavior when, instead of MaxND and
MinND, we look at general selected neighbor degree profiles. The current study addresses
this question. We resolve the realizability of SND profiles by forests, although surprisingly
even this more relaxed variant turned out to be subtle and considerably more difficult
than anticipated initially. Formally, we study the selected neighbor degree Forest realization
(SNDF) problem. Consider a given n-integer SNDF-specification d̄. We say that d̄ is a
forest-realizable SNDF-profile if there exists an n-vertex forest F , and a neighbor selection
function ctr, whose SNDF-profile satisfies SND(F, ctr) = d̄.

Our Contribution. We study an optimization version of the SNDF problem. As mentioned
earlier, not every SNDF-specification d̄ is realizable. To cope with unrealizable profiles, we
define a measure for the deviation of a given profile d̄ from realizability in Sect. 2, where we
also introduce the basic elements of the problem, as well as some preliminary notions used in
our solution. In Sect. 3 we introduce the framework, give a high-level overview of the general
approach and present basic tools for handling SNDF profiles. In Section 4 we present a
tight lower bound on the deviation of SNDF-profiles. This lower bound lays the foundation
for our algorithm. We also outline our construction algorithm for the problem, which is
optimal in the sense that when d̄ is realizable by a forest, the resulting construction (F, ctr)
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is a realization of d̄, and when it is not realizable, the resulting (F, ctr) has the minimum
possible deviation (matching the lower bound). Both the lower bound and the algorithm are
rather involved, hence most of the details are omitted for lack of space and can be found
in [36]. As a byproduct, our analysis also yields necessary and sufficient conditions for a
specification d̄ to be realizable by a forest, as well as a fast algorithm for deciding realizability,
thus providing a complete solution for the SNDF problem. Finally, our algorithm can be
easily modified into one that minimizes the number of centers.

Related Work. Over the years, various extensions of the degree realization problem were
studied, cf. [1, 34]. Many studies have addressed related questions such as finding all
the (non-isomorphic) graphs that realize a given degree sequence, counting all the (non-
isomorphic) realizing graphs of a given degree sequence, sampling a random realization for a
given degree sequence as uniformly as possible, or determining the conditions under which
a given degree sequence defines a unique realizing graph (a.k.a. the graph reconstruction
problem), cf. [11, 15, 18, 19, 20, 24, 26, 31, 32, 35]. Interesting applications in the context
of social networks are studied in [9, 21, 13]. The somewhat related shotgun assembly
problem [22] studies graph specifications consisting of a description of the r-neighborhood
(up to radius r) of each vertex i. Realization questions of a similar nature were studied
for other applications, where given some type of information profile specifying the desired
vertex properties (concerning distances, connectivity, centrality, or any other property of
significance), one may ask whether there exists a graph conforming to the specified profile
(see, e.g., [2, 4, 5, 7, 8, 12, 14, 10, 17, 23, 25, 27, 28, 29, 30, 33, 37]). The selected neighbor
degree realization problem belongs to this class of problems.

2 Preliminaries

Let F = (V, E) be a forest. For a vertex set U ⊆ V , let N [U ] =
⋃

u∈U N [u] be the closed
neighborhood of U . Let ctr : V → V be a neighbor function on F ’s vertices such that
ctr(u) ∈ N [u] for each u ∈ V . For every u ∈ V , define

snd(u) = snd(F,ctr)(u) = degF (ctr(u)) .

When F and ctr are clear from the context, we omit them and write snd(u). We refer to
snd(u) as the snd value of u. The SND profile of (F, ctr) is the sequence

SND(F, ctr) = (snd(u))u∈V .

It is convenient to represent an SNDF profile in a condensed form as a list of non-
negative integers (kni

i )ℓ
i=1, meaning that each value ki appears in the list ni times and the

list contains ℓ distinct values, i.e. there are ni vertices that have snd value ki. We assume
n − 1 ≥ k1 > . . . > kℓ ≥ 0. Overall n =

∑ℓ
i=1 ni.

We are interested in the following SNDF realization problem. A given sequence d̄ =
(kni

i )ℓ
i=1 is viewed as an SNDF profile. It is realizable if there exists a pair, (F, ctr), where

F is a forest, such that SND(F, ctr) = d̄. We call (F, ctr) an SNDF realization of d̄. (Note
that d̄ may or may not be realizable.) The problem concerns finding a realizing (F, ctr) for
a given profile d̄, if exists. Observe that the snd value 0 can only be realized by singleton
vertices, independently of the rest of the profile. So hereafter assume that kℓ ≥ 1.

Star formations. When ki + 1 vertices are required by the profile to have a neighbor
of degree ki, the requirement can be easily satisfied in a self-sufficient manner by a star
composed of a root v and ki leaves, all pointing at the root (i.e., with ctr(u) = v). Likewise,
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if the profile contains kni
i where ni = c · (ki + 1) for some integer c, then this component of

the profile can be realized on its own, using c stars of size ki (where by the size of a star we
refer to the number of leaves). This motivates the following alternative representation for a
profile d̄, using two sequences (ci)ℓ

i=1 and (ρi)ℓ
i=1 such that

ni = ci(ki + 1) − ρi and 0 ≤ ρi ≤ ki, (1)

where ρi = ci(ki + 1) − ni is the ith residue. We refer to the tuple (ci, ρi)ℓ
i=1 as the star

formation of d̄. Note that

n =
ℓ∑

i=1
ni =

ℓ∑
i=1

(ci(ki + 1) − ρi) .

As mentioned before, not every profile d̄ is realizable. We therefore seek approximate solutions
to the SNDF realization problem.

Upper realizations and deviation. Let F = (V, E) be a forest and let ctr : V → V . We
say that (F, ctr) is an upper realization (or U-realization) of the profile d̄ = (kni

i )ℓ
i=1 if

the SNDF profile of (F, ctr) is of the form SND(F, ctr) = d̄′ = (kn′
i

i )ℓ
i=1 (so in particular

snd(u) ∈ {k1, · · · , kℓ} for every u) and n′
i ≥ ni for every i. Denote n(F ) =

∑ℓ
i=1 n′

i. Denote
by cc(F ) the number of connected components in F . Define the deviation of (F, ctr) from
the profile d̄ as

Dev(d̄, (F, ctr)) =
ℓ∑

i=1
(n′

i − ni) = n(F ) − n .

The trivial U-realization. Observe that there is a straightforward way for constructing a
U-realization to a given profile d̄ = (kni

i )ℓ
i=1. Define (ci)ℓ

i=1 and (ρi)ℓ
i=1 as above. For each

1 ≤ i ≤ ℓ create ci stars of size ki, and for each leaf v in a star with center u define ctr(v) = u

and ctr(u) = u. The resulting forest F̃ contains cc(F̃ ) =
∑ℓ

i=1 ci connected components and∑ℓ
i=1 ci(ki + 1) vertices. We refer to this construction as the trivial construction and denote

it by (F̃ (d̄), c̃tr(d̄)). Note that

Dev(d̄, (F̃ , c̃tr)) =
ℓ∑

i=1
(ci(ki + 1) − ni) =

ℓ∑
i=1

ρi . (2)

While this realization may in some cases be near-optimal, our goal is to construct a U-
realization (F, ctr) whose number of vertices, n(F ), is as close as possible to n, the specified
number of vertices. Define the realizable size of a given profile d̄ as the minimal size of any
U-realization for it,

n∗(d̄) = min{n(F ) | ∃ctr : (F, ctr) is a U-realization for d̄}.

Define the deviation of a given profile d̄ as the minimum deviation over all of its U-realizations,

Dev(d̄) = n∗(d̄) − n = min{Dev(d̄, (F, ctr)) | (F, ctr) is a U-realization for d̄}. (3)

In this way, we can redefine realizability of SNDF profiles as follows. A given SNDF profile
d̄ is realizable if and only if n∗(d̄) = n, or alternatively, Dev(d̄) = 0. Denote by (F ∗, ctr∗) an
optimal U-realization of d̄ (note that (F ∗, ctr∗) is not necessarily unique), namely, such that
n(F ∗) = n∗(d̄), or, Dev(d̄, (F ∗, ctr∗)) = Dev(d̄). Our goal is to find such a realization.
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6

3 3 3 3 3

Figure 1 Realization of d̄1 = (61, 316) using s = (1, 5). The centers are marked by their degrees.

Centers and members. The sets of ki-centers and ki-members in upper realization (F, ctr)
for a profile d̄ = (kni

i )ℓ
i=1 are

Ci(F, ctr) = {u ∈ F | deg(u) = ki, ∃v ∈ N [u] s.t. ctr(v) = u} ,

Mi(F, ctr) = {u ∈ F | snd(u) = ki} .

(We may write simply Ci and Mi when clear from context.) Clearly, Ci ∩ Cj = ∅ and
Mi ∩ Mj = ∅ for every i ≠ j, and

⋃
i Mi = V , i.e., the sets Mi form a partition of the vertices

of F . Set σi(F, ctr) = |Ci(F, ctr)|, and let

C(F, ctr) =
ℓ⋃

i=1
Ci(F, ctr)

and

σ(F, ctr) = (σ1(F, ctr), . . . , σℓ(F, ctr)) .

Center specification sequences (CSS). Clearly, any U-realization (F, ctr) for d̄ must use
at least ci centers on layer i, so σi ≥ ci for every i (see also Lemma 5(1)). Unfortunately, for
some profiles, using exactly ci centers for every i yields a suboptimal upper realization (with
deviation greater than Dev(d̄)). A key component of the problem is thus to decide, given d̄,
on the right number of centers for each layer. These numbers are represented as a center
specification sequence (or CSS) s = (s1, . . . , sℓ), which must satisfy si ≥ ci for every i. A
U-realization (F, ctr) conforms to (d̄, s) if the number of centers on each layer is as specified
by s, i.e., σ(F, ctr) = s. In our construction, we first select a CSS s, and then look for a
conforming U-realization (F, ctr) for it.

For example, the profile d̄1 = (61, 316) requires at least c = (1, 4) centers, but any U-
realization with this many centers has deviation at least 1 (as follows from Thm. 8), whereas
using the CSS s = (1, 5) yields the optimal Dev(d̄1) = 0, as demonstrated in the Figure 1.

Intuitively, in a conforming U-realization (F, ctr), each x ∈ Ci acts as the center of a
star of degree ki, potentially allowing its “clients” y ∈ Mi to have snd(y) = ki by setting
ctr(y) = x. Each center is also a member, possibly for a different i. Also, ctr(u) ∈ Ci ∩ N [u]
for every i ∈ [ℓ] and u ∈ Mi, so Mi ⊆ N [Ci] and |Mi| ≤ si(ki + 1). Define the residue of ki

w.r.t. a CSS s as

ρs
i = si(ki + 1) − ni. (4)

Note that Eq. (4) for s = σ(F, ctr) = (s1, . . . , sℓ) and ρs = ρσ(F, ctr) = (ρs
1, . . . , ρs

ℓ) is
analogous to Eq. (1) for our star formation (c, ρ), since

ni = si(ki + 1) − ρs
i = ci(ki + 1) − ρi, (5)

which is related to our definition of star formation, since each ki-center u has |N [u]| = ki + 1.
We break the forest F into (possibly overlapping) stars centered around the ki-centers in Ci.
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The following two assumptions on U-realizations (F, ctr) are used hereafter without loss
of generality.
Member independence. In (F, ctr), the non-centers are independent, namely, F contains no

edge (u, v) between any u, v /∈ C. (Such edges can always be removed without changing
the profile of F , and our constructions never use them.)

No cross-pointing. In (F, ctr), there is no cross-pointing, i.e., there are no two centers u

and v such that ctr(u) = v and ctr(v) = u. (If cross-pointing occurs, one can change the
two ctr values to ctr(u) = u and ctr(v) = v without changing the profile. Again, our
constructions never use cross-pointing.)

3 Framework and basic tools

In this section, we describe the basic framework and the tools we use for realizing SNDF
profiles.

Handling leaf centers

We first show how to handle the cases where kℓ = 1. Consequently, in the rest of this article,
we consider only SNDF profiles d̄ = (kni

i )ℓ
i=1 where kℓ ≥ 2.

Trivial profiles of the form d̄ = (1n) for n ≥ 2 can be realized by a star (F, ctr) with n − 1
leaves, such that ctr(u) = u for each leaf u, and for the center, v, ctr(v) is defined to be one
of the leaves.

It remains to handle profiles d̄ = (kni
i )ℓ

i=1 where ℓ ≥ 2 and kℓ = 1. This is done by the
following approach. Given such a profile d̄, denote the truncated profile (without kℓ) by
d̄′ = (kni

i )ℓ−1
i=1 . We show that the deviation of d̄ is Dev(d̄) = max

{
Dev(d̄′) − nℓ, 0

}
, and

moreover, there is a polynomial time algorithm that given an optimal U-realization (of a
special type, referred to as a leaf-covered U-realization) for d̄′, transforms it into an optimal
U-realization for d̄. Hence the problem is reduced to finding optimal leaf-covered realizations
for truncated profiles (with kℓ ≥ 2).

Leaf-covered U-realizations

Let d̄ = (kni
i )ℓ

i=1 be an SNDF profile with U-realization (F, ctr). Denote ei = |Mi| − ni,
namely, the number of excess vertices with snd value ki. Let L = {u ∈ V (F ) | deg(u) = 1} be
the set of leaves of F . We say that (F, ctr) is a leaf-covered U-realization for d̄ if |L∩Mi| ≥ ei

for every i.
Intuitively, a leaf-covered U-realization is easy to work with, since we may think of all

the excess vertices as being among the leaves.
The reduction and its analysis are deferred to the full paper (see [36]). We get:

▶ Proposition 1. Let d̄ = (kni
i )ℓ

i=1 be a profile with ℓ ≥ 2 and kℓ = 1. Let (F ′, ctr′) be an
optimal leaf-covered U-realization for d̄′ = (kni

i )ℓ−1
i=1 , namely, Dev(d̄′, (F ′, ctr′)) = Dev(d̄′).

Then (F ′, ctr′) can be converted, in polynomial time, into an optimal U-realization (F, ctr)
for d̄, with Dev(d̄, (F, ctr)) = Dev(d̄).

By Prop. 1, it suffices to focus on finding optimal leaf-covered U-realizations for profiles
without degree 1. Our main result is the following.

▶ Theorem 2. Let d̄ = (kni
i )ℓ

i=1 be an SNDF profile such that kℓ ≥ 2. There exists an al-
gorithm that constructs an optimal U-realization (F ∗, ctr∗) for d̄, namely, Dev(d̄, (F ∗, ctr∗)) =
Dev(d̄). In addition, (F ∗, ctr∗) is leaf-covered. The run-time of the algorithm is O(n∗(d̄)),
which is optimal.
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Overview of the general approach

Consider a profile d̄ = (kni
i )ℓ

i=1 and let (F, ctr) be some U-realization of d̄ with center classes
C1, . . . , Cℓ and C =

⋃
i Ci. Consider a collection of stars {Su}u∈C , where Su is centered at

u and contains all of u’s neighbors in F and their respective edges. Note that Su and Sv are
not necessarily disjoint, but they can share at most two vertices, namely, |N [u] ∩ N [v]| ≤ 2,
since otherwise, there is a cycle in F . The trivial U-realization for d̄, (F̃ , c̃tr) is wasteful,
since it employs

∑ℓ
i=1 ci pairwise disjoint stars, resulting in

∑ℓ
i=1 ci(ki + 1) vertices. To

improve it, we construct a realization by starting from disjoint stars and then forcing them
to share vertices by performing certain merge operations. The key operation performed by
our algorithm involves merging stars. Specifically, the algorithm employs two operations,
referred to as head-merges and leaf-merges.

1
23

4 5

6
78

9 10

(a) (F2, ctr2).

1

2+83

4 5
6

7

9 10

(b) (F3, ctr3).

1
3

4 5
6

7

9 10

⟨2, 8⟩

(c) (F4, ctr4).

Figure 2 The forests F2, F3 and F4.

To illustrate these operations, consider the example profile d̄2 = (410). As 10 = 2 · (4 + 1),
an exact realization of this profile is obtained by the trivial U-realization composed of the
following pair (F2, ctr2), consisting of two stars of size 4 (see Figure 2a). The directional
edges represent the value of the ctr pointer of a specific vertex.

A leaf-merge of two stars fuses together two leaves, one of each star, into a single vertex,
thus creating a single tree. Consider, for example, the profile d̄3 = (49). As 9 = 2 · (4 + 1) − 1,
the trivial U-realization composed of two stars of size 4, has one excess vertex (namely, a
deviation of 1). To overcome this problem, we can leaf-merge vertices 2 and 8 of the forest
F2 into a single vertex denoted 2 + 8, yielding the following pair (F3, ctr3) (see Figure 2b).

A head-merge of two stars is obtained by discarding one leaf of each star and connecting
the star roots by a new edge. For example, to realize the profile d̄4 = (48), whose trivial
U-realization has a deviation of two excess vertices, we can head-merge the two stars of forest
F2 by completely removing vertices 2 and 8 and connecting the star heads by a new edge
(marked by ⟨2, 8⟩ in the figure), yielding the following pair (F4, ctr4) (see Figure 2c).

Generally, satisfying part kni
i of the profile requires using stars with ki leaves, but this

will satisfy the profile only if ni is a multiple of ki + 1. For other ni values, using ci = ⌈ ni

ki+1 ⌉
stars yields more vertices than needed. We therefore use head and leaf merges to get rid of
the excess vertices.

For example, consider the profile d̄5 = (412, 37). As 12 = 3(4 + 1) − 3 and 7 = 2(3 + 1) − 1,
we start by creating three size 4 stars and two size 3 stars, yielding the pair (F5, ctr5) shown
in Figure 3.

The forest F5 has three excess vertices with snd value 4 and one excess vertex with snd
value 3. To correct it, we apply a head-merge operation and a leaf-merge operation on the
size 4 stars, and a leaf-merge operation on the size 3 stars. This creates the following desired
forest (F ′

5, ctr′
5) depicted in Figure 4, which satisfies d̄.
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Figure 3 (F5, ctr5).
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Figure 4 (F ′
5, ctr′

5).

Our algorithm also exploits the fact that the value of ctr can be set so as to change the
snd value of a vertex, by applying head or leaf merge operation to two stars of different sizes.

To illustrate this point, let us consider the following example. The profile d̄6 = (44, 34)
has one excess vertex with snd value 4. This profile is realizable in this way by starting from
stars of size 3 and 4, and applying a leaf merge, to get the forest (F6, ctr6) shown in Figure 5.

1
23

4 5+8
6

7

9

Figure 5 (F6, ctr6).

The analysis of our algorithm, and its proof of optimality, are based on the crucial
observation that the only way to merge two individual stars is by head or leaf merges, namely,
discarding one or two vertices, since trying to modify two stars by fusing together three or
more vertices will create a cycle. This implies that certain profiles cannot be satisfied. For
example, consider the profile d̄7 = (47). Again, we must start with a forest F2. However,
there is no way to discard three vertices from F2 and end up with a satisfying forest of 7
vertices. Indeed, based on Lemma 5 one can show that Dev(d̄7) ≥ 1.

The LM operation and Procedure Connect

We now present Procedure LM , which reduces the deviation (and the number of connected
components in the forest) by 1, by performing a single leaf merge. Formally, given a profile
d̄ = (kni

i )ℓ
i=1 and a U-realization (F, ctr) of d̄ with Dev(d̄, (F, ctr)) > 0, such that F has

q = cc(F ) ≥ 2 connected components, the operation constructs a U-realization (F ′, ctr′) for
d̄ with Dev(d̄, (F ′, ctr′)) = Dev(d̄, (F, ctr)) − 1, such that F ′ has cc(F ′) = q − 1 connected
components.

While the leaf merge operation is straightforward, applying it to an arbitrary forest raises
some subtle points, as discussed next. Let i ∈ [ℓ] such that |Mi(F, ctr)| > ni namely, the
snd value ki appears in (F, ctr) more than ni times. Let u ∈ V (F ) be a ki-center in F . The
procedure aims to remove one of its ki-members from F (possibly, u itself) in order to reduce
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the number of appearances of the snd value ki in F (hence reducing the deviation of (F, ctr)
from d̄). However, this cannot always be done directly, since removing vertices from F results
in an undesired change in the degree of their neighbors, which might affect the snd values
of other vertices in F . Hence, removing vertices from F needs to be done carefully. The
method details, as well as formal code and analysis, are deferred to the full paper (see [36]).

▶ Lemma 3. Given d̄ and (F, ctr) such that cc(F ) ≥ 2 and Dev(d̄, (F, ctr)) ≥ 1, LM

returns a U-realization (F ′, ctr′) for d̄ such that cc(F ′) = cc(F ) − 1 and Dev(d̄, (F ′, ctr′)) =
Dev(d̄, (F, ctr)) − 1.

We now present a simple construction algorithm named Connect, based on performing
only leaf merges. Given a profile d̄ and a U-realization (F, ctr), The algorithm produces a
new U-realization (F ′, ctr′) by repeatedly invoking LM and applying leaf merges as long as
possible. It halts when either the forest becomes connected, or the deviation becomes zero,
yielding a proper realization.

Note that if the constructed (F ′, ctr′) is a U-realization of d̄, then Dev(d̄, (F ′, ctr′)) = 0.
Otherwise, LM was invoked exactly cc(F ) − 1 times, each decreasing the deviation by 1. We
thus have the following.

▶ Lemma 4. Let d̄ = (kni
i )ℓ

i=1 be a profile with a U-realization (F, ctr). Also, let (F ′, ctr′)
be the construction returned by Algorithm Connect. Then

Dev(d̄, (F ′, ctr′)) = max{Dev(d̄, (F, ctr)) − cc(F ) + 1, 0}.

A basic lower bound on Dev(d̄). We next establish preliminary lower bounds on Dev(d̄)
and on the number of connected components in specific types of U-realizations.

For a forest F and a vertex subset U ⊆ V (F ), denote by F [U ] the induced forest on
U ’s vertices, i.e., V (F [U ]) = U and E(F [U ]) = E(F ) ∩ (U × U). For an SNDF profile
d̄ = (kni

i )ℓ
i=1 with a U-realization (F, ctr), our first lower bound expression involves σ and

ρσ as defined in Sect. 2, and cc(F [C]), the number of connected components in the centers
forest F [C] induced by the centers:

LBdev
1 = LBdev

1 (d̄, F, ctr) = max
{

ℓ∑
i=1

ρσ
i − 2

ℓ∑
i=1

σi + cc(F [C]) + 1, 0
}

. (6)

The intuition for the lower bound is as follows. To minimize the deviation, we use head and
leaf merges, each of which reduces cc(F ), the number of connected components, by 1. Hence
the total number of both head and leaf merges that can be performed on some U-realization
(F, ctr) is bounded by cc(F ) − 1. However, a head-merge reduces the deviation by 2, whereas
a leaf-merge reduces the deviation by 1. Since both of these merges “cost” the same (in the
sense that they both decrease cc(F ) by 1), it is desirable to use as many head-merges as
possible.

Now consider a given U-realization (F̃ , c̃tr) consisting of si stars with ki leaves for each
i ∈ [ℓ], for some predetermined CSS s. This U-realization has deviation Dev(d̄, (F̃ , c̃tr)) =∑ℓ

i=1 ρs
i and the number of connected components in F̃ is cc(F̃ ) =

∑ℓ
i=1 si. In the best case,

one can perform only head-merges to construct the final (F, ctr). Each head-merge reduces
the deviation by 2 and cc(F ) by 1, therefore

Dev(d̄, (F, ctr)) =
ℓ∑

i=1
ρs

i − 2
ℓ∑

i=1
si + 2 .
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However, in many profiles it is not possible to use only head-merges. So assume we used
only x head-merges, and removed 2x excess vertices. Since the total number of merges is
bounded by cc(F ) − 1 =

∑ℓ
i=1 si − 1, it is now possible to perform up to

∑ℓ
i=1 si − x − 1

leaf-merges, removing
∑ℓ

i=1 si − x − 1 additional excess vertices, totalling to
∑ℓ

i=1 si + x − 1
excess vertices being removed. Note that each head-merge adds an edge (u, v) for some
u, v ∈ C, so we have x = |E(F [C])|, where E(F [C]) is the set of edges in the centers forest
F [C]. Since F [C] is a forest,

|E(F [C])| = |V (F [C])| − cc(F [C]) =
ℓ∑

i=1
si − cc(F [C]) ,

and therefore x =
∑ℓ

i=1 si − cc(F [C]). In summary, at most

ℓ∑
i=1

si + x − 1 = 2 ·
ℓ∑

i=1
si − cc(F [C]) − 1

out of the
∑ℓ

i=1 ρs
i initial excess vertices were removed.

This lower bound idea is formalized in the following lemma. (Proofs are deferred to the
full paper, see [36].)

▶ Lemma 5. For every profile d̄ and U-realization (F, ctr):
1. σi(F, ctr) ≥ ci, for every i,
2. Dev(d̄, (F, ctr)) ≥ LBdev

1 .

Reducing the error via head merges

We now present the main idea used later to construct an optimal U-realization (F, ctr) for a
profile d̄, namely, s.t. Dev(d̄, (F, ctr)) = Dev(d̄). Our construction has two stages. In the first,
we select a CSS s = (s1, . . . , sℓ) specifying the number of ki-centers for every i. The selection
ensures s is a CSS and has minimum deviation. The second stage builds a realization (F, ctr)
that conforms to (d̄, s). A key observation, formalized by combining Lemmas 5(2) and 6, is
that while (d̄, s) has many different conforming realizations (F, ctr), with different deviations,
their deviations directly depend on cc(F [C]), the number of connected components in the
centers forest F [C] (where C = C(F, ctr) is the set of centers). Recall that a head merge is
performed by taking two centers u, v ∈ C, removing one neighbor with degree 1 from each,
and connecting u, v by an edge, thus it decreases the deviation by 2 while decreasing cc(F [C])
by 1. This means that in order to construct an optimal U-realization (with minimal cc(F [C]))
that conforms to (d̄, s) for a CSS s, we need to perform the maximal number of head merges.
Suppose the resulting U-realization (F, ctr) allows no more head-merges. By Lemma 5(2),
Dev(d̄, (F, ctr)) ≥ LBdev

1 (d̄, F, ctr). This bound can be matched by transforming (F, ctr)
using leaf-merges.

▶ Lemma 6. Consider a profile d̄ = (kni
i )ℓ

i=1 with a U-realization (F, ctr). There exists a
U-realization (F ′, ctr′) with deviation Dev(d̄, (F ′, ctr′)) = LBdev

1 (d̄, F, ctr).

We conclude the discussion by stating that, given a profile d̄, constructing an optimal
U-realization for d̄ boils down to
1. Choosing the “right” CSS s.
2. Constructing a U-realization (F, ctr) that conforms to (d̄, s), such that cc(F [C]) is minimal

among all other U-realizations with this property.
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To formalize this workplan, we make the following definitions. Let d̄ = (kni
i )ℓ

i=1 be a
profile with star formation (ci, ρi)ℓ

i=1, and let s be a CSS for d̄. Define the minimum number
of connected components in a centers forest F [C] for F that admits a conforming realization
for d̄ as

cc∗(d̄, s) = min
{

cc(F [C]) | ∃ctr : (F, ctr) conforms to (d̄, s)
}

, (7)

and define the expression obtained from Eq. (6) by replacing cc(F [C]) with cc∗(d̄, s) as

LBdev
3 (d̄, s) = max

{
ℓ∑

i=1
ρs

i − 2
ℓ∑

i=1
si + cc∗(d̄, s) + 1, 0

}
(8)

A CSS s∗ is optimal for d̄ if s∗ minimizes LBdev
3 (d̄, s∗) over all CSS’s for d̄. With the above

definition, we state the following lemma.

▶ Lemma 7. Dev(d̄) = LBdev
3 (d̄, s∗) = min{LBdev

3 (d̄, s) | s is a CSS for d̄}.

Hereafter, we focus on constructing, for a given profile d̄ and any s, a leaf-covered
U-realization (F, ctr) conforming to (d̄, s). This U-realization has a minimal number of
connected components in the centers forest, namely, cc(F [C]) = cc∗(d̄, s). In addition, in
Section 4 we show how to find an optimal CSS s∗ for d̄. Combining these results, Theorem 2
follows.

Layer classification

To construct an optimal solution and analyze the structure of a profile d̄ = (kni
i )ℓ

i=1, we
classify each of its ℓ layers according to the values si and the residues ρs

i ; later, the algorithm
and analysis treat each class differently.

Consider a profile d̄ = (kni
i )ℓ

i=1 with a U-realization (F, ctr). Recall that the centers
forest F [C] is the induced forest of F on C. Note that for each u ∈ V (F ), ctr(u) ∈ C. For d̄,
(F, ctr), a residue sequence (ρs

i )ℓ
i=1 and I ⊆ [ℓ], define the partial residual deviation of I as

DI =
∑

i∈I ρs
i .

For a profile d̄ and a CSS s, define the following four sets of layers, referred to as very
good, good, bad, and very bad layers.

V G = {i | ρs
i ≤ si − 1},

G = {i | si ≤ ρs
i ≤ 2si − 1},

B = {i | 2si ≤ ρs
i ≤ 3si − 1},

V B = {i | ρs
i ≥ 3si}.

As intuition for the terminology, note that a “very good” layer i ∈ V G can take care of its
deviation on its own (namely, by merging its own stars into a single tree) using leaf-merges
alone. A good layer i ∈ G can also take care of its deviation on its own, but it must apply
some head-merges. In contrast, bad layers (in B ∪ V B) require the help of other layers in
order to reduce their deviation.

In particular, our SNDF problem is easy for benign profiles, namely, profiles in which all
layers are good or very good w.r.t. c, as well as for profiles in which each layer is either very
good for c or (ci = 1 and ρi = 2). (See the full paper or [36].) Hereafter, we consider only
profiles that are not benign.
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The completion forest

As described earlier, given a profile d̄ and a CSS s, it is sufficient to construct a U-realization
(F, ctr) conforming to (d̄, s), such that the number of connected components in the centers
forest cc(F [C]) is minimal. The completion forest serves as a basic tool in our algorithm for
constructing a U-realization for d̄, where we first construct the centers forest and then add
the non-centers. This tool allows us to focus only on the centers forest for some U-realization
(F, ctr), and use its structure to deduce lower and upper bounds on properties of F .

Consider a profile d̄ = (kni
i )ℓ

i=1 with star formation (ci, ρi)ℓ
i=1, a forest F = (C, E) and a

neighbor function ctr : C → C where ctr(u) ∈ N [u] for every u ∈ C. (Note that (F , ctr) is
not a U-realization of d̄.) Let C = (C1, . . . , Cℓ) be a partition of C. The tuple (d̄, F , ctr, C)
is legal if deg(u) ≤ ki for every u ∈ Ci.

The completion forest for a legal (d̄, F , ctr, C) is a pair (F, ctr) constructed by the following
Procedure CompForest. For every i and every u ∈ Ci, the procedure adds ki − deg(u) new
vertices to the forest, connects them to u thus increasing its degree to ki and making it a
proper ki-center. For each vertex v that was connected to u, the procedure sets ctr(v) = u,
thus making it a ki-member of its center.

Note that the tuple (d̄, F , ctr, C) is legal if and only if its completion forest is well defined,
since it has to satisfy deg(u) ≤ ki for each u ∈ Ci. Also note that the completion forest (F, ctr)
for (d̄, F , ctr, C) is not necessarily a U-realization of d̄, since the number of ki-members in
(F, ctr) might happen to be smaller than ni. For convenience, we refer to (F, ctr) as the
completion forest for F .

For example, consider the profile d̄ = (48, 36), where k1 = 4, k2 = 3. Let (F = (C, E), ctr),
where the center set C = {1, 2, 3, 4} is partitioned into C1 = {1, 2} and C2 = {3, 4}, the
sets of k1 and k2 centers respectively. The completion forest of the above tuple is defined
by “completing” the neighborhoods of C centers according to d̄ and the layers of C. See
Figure 6.

1 2

3 4

F = (C, E)

1 2

3 4

The completion forest of F

Figure 6 Completion forest example.

4 Lower bound and algorithm

Tight lower bound for SNDF profiles

Finally, we derive a tight lower bound on the minimum deviation of a given SNDF profile.
To do that, we first lower bound cc∗(d̄, s), defined in Eq. (7), and then combine it with our
lower bound on LBdev

3 (d̄, s) from Lemma 7. Our bound on cc∗(d̄, s) depends only on the
CSS s and the profile d̄. Our method of proving the bound is by considering an arbitrary
U-realization (F, ctr), that conforms to (d̄, s), and proving a lower bound on cc(F [C]), which
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imply a lower bound on cc∗(d̄, s). This is done by decomposing the centers forest F [C] in
a special manner, and then reconstructing F [C] while keeping track of the number of its
connected components. As mentioned earlier, we may assume that the profile d̄ is not benign.

The entire derivation of the lower bound is deferred to the full paper (see [36]). Letting

LBdev
4 (d̄, s) = max

{
0 , 2 +

ℓ∑
i=1

ρs
i − 2

ℓ∑
i=1

si

+ max
{ ∑

i∈V G

si −
(

DV G +
∑

i∈G∪B

⌊(ρs
i − si)/2⌋ +

∑
i∈V B

si

)
, 0

}}
we get the following.

▶ Theorem 8. Let d̄ = (kni
i )ℓ

i=1 be an SNDF-profile and let s′ be a CSS for d̄. Assume that
s′ minimizes LBdev

4 over all choices of CSS s (Note that s′ does not necessarily minimizes
LBdev

3 ). Then Dev(d̄) ≥ LBdev
4 (d̄, s′).

Optimal algorithm

While our algorithm is based on the components introduced above, its actual operation is
rather involved, hence its description is deferred to the full paper (see [36]) due to space
constraints. It provides an optimal explicit construction of SNDF-realizations, which for a
given profile d̄ and sequence s yields a realization with deviation at most LBdev

4 (d̄, s), and
also show how to select a sequence s′ that minimizes LBdev

4 . Combining the above with
Theorem 8 yields an explicit construction for optimal realizations. In the full paper (see [36])
we also show a more efficient solution for the decision version of SNDF, namely, decide if a
given SNDF-profile d̄ is realizable (i.e., Dev(d̄) = 0).

5 Discussion

In this paper we introduced the selected neighbor degree realization problem and solved it
when the graph is required to be acyclic. We presented a necessary and sufficient condition
for realizability. In addition, we provided an algorithm that given a specification computes
an upper realization with minimum deviation from the given specification. In particular, if
the specification is realizable, the algorithm computes a realization.

A natural open question is to solve the realization problem on general graphs. One may
also consider the problem on other graph families, such as trees or bipartite graphs. (Note
that the realization problem is easy in regular graphs.) Finally, another interesting direction
for future study is to consider variants of the realization problem on directed graphs.
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Abstract
Let V be a set of n vertices, M a set of m labels, and let R be an m × n matrix of independent
Bernoulli random variables with probability of success p; columns of R are incidence vectors of label
sets assigned to vertices. A random instance G(V, E, RT R) of the weighted random intersection
graph model is constructed by drawing an edge with weight equal to the number of common labels
(namely [RT R]v,u) between any two vertices u, v for which this weight is strictly larger than 0. In
this paper we study the average case analysis of Weighted Max Cut, assuming the input is a
weighted random intersection graph, i.e. given G(V, E, RT R) we wish to find a partition of V into
two sets so that the total weight of the edges having exactly one endpoint in each set is maximized.

In particular, we initially prove that the weight of a maximum cut of G(V, E, RT R) is concentrated
around its expected value, and then show that, when the number of labels is much smaller than
the number of vertices (in particular, m = nα, α < 1), a random partition of the vertices achieves
asymptotically optimal cut weight with high probability. Furthermore, in the case n = m and
constant average degree (i.e. p = Θ(1)

n
), we show that with high probability, a majority type

randomized algorithm outputs a cut with weight that is larger than the weight of a random cut by a
multiplicative constant strictly larger than 1. Then, we formally prove a connection between the
computational problem of finding a (weighted) maximum cut in G(V, E, RT R) and the problem of
finding a 2-coloring that achieves minimum discrepancy for a set system Σ with incidence matrix
R (i.e. minimum imbalance over all sets in Σ). We exploit this connection by proposing a (weak)
bipartization algorithm for the case m = n, p = Θ(1)

n
that, when it terminates, its output can be used

to find a 2-coloring with minimum discrepancy in a set system with incidence matrix R. In fact,
with high probability, the latter 2-coloring corresponds to a bipartition with maximum cut-weight in
G(V, E, RT R). Finally, we prove that our (weak) bipartization algorithm terminates in polynomial
time, with high probability, at least when p = c

n
, c < 1.
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1 Introduction

Given an undirected graph G(V, E), the Max Cut problem asks for a partition of the vertices
of G into two sets, such that the number of edges with exactly one endpoint in each set of the
partition is maximized. This problem can be naturally generalized for weighted (undirected)
graphs. A weighted graph is denoted by G(V, E, W), where V is the set of vertices, E is the
set of edges and W is a weight matrix, which specifies a weight Wi,j = wi,j , for each pair of
vertices i, j. In particular, we assume that Wi,j = 0, for each edge {i, j} /∈ E.

▶ Definition 1 (Weighted Max Cut). Given a weighted graph G(V, E, W), find a partition
of V into two (disjoint) subsets A, B, so as to maximize the cumulative weight of the edges
of G having one endpoint in A and the other in B.

Weighted Max Cut is fundamental in theoretical computer science and is relevant in
various graph layout and embedding problems [10]. Furthermore, it also has many practical
applications, including infrastructure cost and circuit layout optimization in network and
VLSI design [20], minimizing the Hamiltonian of a spin glass model in statistical physics [3],
and data clustering [19]. In the worst case Max Cut (and also Weighted Max Cut) is
APX-hard, meaning that there is no polynomial-time approximation scheme that finds a
solution that is arbitrarily close to the optimum, unless P = NP [18].

The average case analysis of Max Cut, namely the case where the input graph is
chosen at random from a probabilistic space of graphs, is also of considerable interest and is
further motivated by the desire to justify and understand why various graph partitioning
heuristics work well in practical applications. In most research works the input graphs are
drawn from the Erdős-Rényi random graphs model Gn,m, i.e. random instances are drawn
equiprobably from the set of simple undirected graphs on n vertices and m edges, where
m is a linear function of n (see also [13, 7] for the average case analysis of Max Cut and
its generalizations with respect to other random graph models). One of the earliest results
in this area is that Max Cut undergoes a phase transition on Gn,γn at γ = 1

2 [8], in that
the difference between the number of edges of the graph and the Max-Cut size is O(1), for
γ < 1

2 , while it is Ω(n), when γ > 1
2 . For large values of γ, it was proved in [4] that the

maximum cut size of Gn,γn normalized by the number of vertices n reaches an absolute limit
in probability as n → ∞, but it was not until recently that the latter limit was established
and expressed analytically in [9], using the interpolation method; in particular, it was shown
to be asymptotically equal to ( γ

2 + P∗
√

γ
2 )n, where P∗ ≈ 0.7632. We note however that these

results are existential, and thus do not lead to an efficient approximation scheme for finding
a tight approximation of the maximum cut with large enough probability when the input
graph is drawn from Gn,γn. An efficient approximation scheme in this case was designed
in [8], and it was proved that, with high probability, this scheme constructs a cut with at
least

(
γ
2 + 0.37613√

γ
)

n = (1 + 0.75226 1√
γ ) γ

2 n edges, noting that γ
2 n is the size of a random

cut (in which each vertex is placed independently and equiprobably in one of the two sets of
the partition). Whether there exists an efficient approximation scheme that can close the gap
between the approximation guarantee of [8] and the limit of [9] remains an open problem.

In this paper, we study the average case analysis of Weighted Max Cut when input
graphs are drawn from the generalization of another well-established model of random graphs,
namely the weighted random intersection graphs model (the unweighted version of the model
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was initially defined in [15]). In this model, edges are formed through the intersection of
label sets assigned to each vertex and edge weights are equal to the number of common labels
between edgepoints.

▶ Definition 2 (Weighted random intersection graph). Consider a universe M = {1, 2, . . . , m}
of labels and a set of n vertices V . We define the m × n representation matrix R whose
entries are independent Bernoulli random variables with probability of success p. For ℓ ∈ M
and v ∈ V , we say that vertex v has chosen label ℓ iff Rℓ,v = 1. Furthermore, we draw an
edge with weight [RT R]v,u between any two vertices u, v for which this weight is strictly
larger than 0.The weighted graph G = (V, E, RT R) is then a random instance of the weighted
random intersection graphs model Gn,m,p.

Random intersection graphs are relevant to and capture quite nicely social networking;
vertices are the individual actors and labels correspond to specific types of interdependency.
Other applications include oblivious resource sharing in a (general) distributed setting,
efficient and secure communication in sensor networks [20], interactions of mobile agents
traversing the web etc. (see e.g. the survey papers [6, 16] for further motivation and recent
research related to random intersection graphs). In all these settings, weighted random
intersection graphs, in particular, also capture the strength of connections between actors
(e.g. in a social network, individuals having several characteristics in common have more
intimate relationships than those that share only a few common characteristics). One of
the most celebrated results in this area is equivalence (measured in terms of total variation
distance) of random intersection graphs and Erdős-Rényi random graphs when the number
of labels satisfies m = nα, α > 6 [12]. This bound on the number of labels was improved
in [23], by showing equivalence of sharp threshold functions among the two models for α ≥ 3.
Similarity of the two models has been proved even for smaller values of α (e.g. for any
α > 1) in the form of various translation results (see e.g. Theorem 1 in [22]), suggesting
that some algorithmic ideas developed for Erdős-Rényi random graphs also work for random
intersection graphs (and also weighted random intersection graphs).

In view of this, in the present paper we study the average case analysis of Weighted
Max Cut under the weighted random intersection graphs model, for the range m = nα, α ≤ 1
for two main reasons: First, the average case analysis of Max Cut has not been considered
in the literature so far when the input is a drawn from the random intersection graphs model,
and thus the asymptotic behaviour of the maximum cut remains unknown especially for the
range of values where random intersection graphs and Erdős-Rényi random graphs differ
the most. Furthermore, studying a model where we can implicitly control its intersection
number (indeed m is an obvious upper bound on the number of cliques that can cover all
edges of the graph) may help understand algorithmic bottlenecks for finding maximum cuts
in Erdős-Rényi random graphs.

Second, we note that the representation matrix R of a weighted random intersection
graph can be used to define a random set system Σ consisting of m sets Σ = {L1, . . . , Lm},
where Lℓ is the set of vertices that have chosen label ℓ; we say that R is the incidence
matrix of Σ. Therefore, there is a natural connection between Weighted Max Cut
and the discrepancy of such random set systems, which we formalize in this paper. In
particular, given a set system Σ with incidence matrix R, its discrepancy is defined as
disc(Σ) = minx∈{±1}n maxL∈Σ

∣∣∑
v∈L xv

∣∣ = ∥Rx∥∞, i.e. it is the minimum imbalance of
all sets in Σ over all 2-colorings x. Recent work on the discrepancy of random rectangular
matrices defined as above [1] has shown that, when the number of labels (sets) m satisfies
n ≥ 0.73m log m, the discrepancy of Σ is at most 1 with high probability. The proof of the
main result in [1] is based on a conditional second moment method combined with Stein’s
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method of exchangeable pairs, and improves upon a Fourier analytic result of [14], and also
upon previous results in [11, 21]. The design of an efficient algorithm that can find a 2-
coloring having discrepancy O(1) in this range still remains an open problem. Approximation
algorithms for a similar model for random set systems were designed and analyzed in [2];
however, the algorithmic ideas there do not apply in our case.

1.1 Our Contribution

In this paper, we introduce the model of weighted random intersection graphs and we study
the average case analysis of Weighted Max Cut through the prism of Discrepancy of
random set systems. We formalize the connection between these two combinatorial problems
for the case of arbitrary weighted intersection graphs in Corollary 4. We prove that, given
a weighted intersection graph G = (V, E, RT R) with representation matrix R, and a set
system with incidence matrix R, such that disc(Σ) ≤ 1, a 2-coloring has maximum cut weight
in G if and only if it achieves minimum discrepancy in Σ. In particular, Corollary 4 applies
in the range of values considered in [1] (i.e. n ≥ 0.73m log m), and thus any algorithm that
finds a maximum cut in G(V, E, RT R) with large enough probability can also be used to
find a 2-coloring with minimum discrepancy in a set system Σ with incidence matrix R, with
the same probability of success.

We then consider weighted random intersection graphs in the case m = nα, α ≤ 1,
and we prove that the maximum cut weight of a random instance G(V, E, RT R) of Gn,m,p

concentrates around its expected value (see Theorem 5). In particular, with high probability
(whp, i.e. with probability tending to 1 as n → ∞) over the choices of R, Max-Cut(G) ∼
ER[Max-Cut(G)], where ER denotes expectation with respect to R. The proof is based
on the Efron-Stein inequality for upper bounding the variance of the maximum cut. As a
consequence of our concentration result, we prove in Theorem 6 that, in the case α < 1, a
random 2-coloring (i.e. biparition) x(rand) in which each vertex chooses its color independently
and equiprobably, has cut weight asymptotically equal to Max-Cut(G), with high probability
over the choices of x(rand) and R.

The latter result on random cuts allows us to focus the analysis of our randomized
algorithms of Section 4 on the case m = n (i.e. α = 1), and p = c

n , for some constant c (see
also the discussion at the end of Subsection 3.1), where the assumptions of Theorem 6 do
not hold. It is worth noting that, in this range of values, the expected weight of a fixed edge
in a weighted random intersection graph is equal to mp2 = Θ(1/n), and thus we hope that
our work here will serve as an intermediate step towards understanding when algorithmic
bottlenecks for Max Cut appear in sparse random graphs (especially Erdős-Rényi random
graphs) with respect to the intersection number. In particular, we analyze a Majority Cut
Algorithm 1 that extends the algorithmic idea of [8] to weighted intersection graphs as
follows: vertices are colored sequentially (each color +1 or −1 corresponding to a different
set in the partition of the vertices), and the t-th vertex is colored opposite to the sign
of

∑
i∈[t−1][RT R]i,txi, namely the total available weight of its incident edges, taking into

account colors of adjacent vertices. Our average case analysis of the Majority Cut Algorithm
shows that, when m = n and p = c

n , for large constant c, with high probability over the
choices of R, the expected weight of the constructed cut is at least 1 + β times larger than
the expected weight of a random cut, for some constant β = β(c) ≥

√
16

27πc3 − o(1). The fact
that the lower bound on beta is inversely proportional to c3/2 was to be expected, because,
as p increases, the approximation of the maximum cut that we get from the weight of a
random cut improves (see also the discussion at the end of Subsection 3.1).
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In Subsection 4.2 we propose a framework for finding maximum cuts in weighted random
intersection graphs for m = n and p = c

n , for constant c, by exploiting the connection
between Weighted Max Cut and the problem of discrepancy minimization in random set
systems. In particular, we design a Weak Bipartization Algorithm 2, that takes as input an
intersection graph with representation matrix R and outputs a subgraph that is “almost”
bipartite. In fact, the input intersection graph is treated as a multigraph composed by
overlapping cliques formed by the label sets Lℓ = {v : Rℓ,v = 1}, ℓ ∈ M. The algorithm
attempts to destroy all odd cycles of the input (except from odd cycles that are formed
by labels with only two vertices) by replacing each clique induced by some label set Lℓ by
a random maximal matching. In Theorem 11 we prove that, with high probability over
the choices of R, if the Weak Bipartization Algorithm terminates, then its output can be
used to construct a 2-coloring that has minimum discrepancy in a set system with incidence
matrix R, which also gives a maximum cut in G(V, E, RT R). It is worth noting that this
does not follow from Corollary 4, because a random set system with incidence matrix R has
discrepancy larger than 1 with (at least) constant probability when m = n and p = c

n . Our
proof relies on a structural property of closed 0-strong vertex-label sequences (loosely defined
as closed walks of edges formed by distinct labels) in the weighted random intersection graph
G(V, E, RT R) (Lemma 8). Finally, in Theorem 12, we prove that our Weak Bipartization
Algorithm terminates in polynomial time, with high probability, if the constant c is strictly
less than 1. Therefore, there is a polynomial time algorithm for finding weighted maximum
cuts, with high probability, when the input is drawn from Gn,n, c

n
, with c < 1. We believe

that this part of our work may also be of interest regarding the design of efficient algorithms
for finding minimum disrepancy colorings in random set systems.

Due to lack of space, some proofs have been omitted; the full proofs of this paper can be
found in our technical report [17].

2 Notation and preliminary results

We denote weighted undirected graphs by G(V, E, W); in particular, V = V (G) (resp.
E = E(G)) is the set of vertices (resp. set of edges) and W = W(G) is the weight matrix,
i.e. Wi,j = wi,j is the weight of (undirected) edge {i, j} ∈ E. We allow W to have non-zero
diagonal entries, as these do not affect cut weights. We also denote the number of vertices
by n, and we use the notation [n] = {1, 2, . . . , n}. We also use this notation to define parts
of matrices, for example W[n],1 denotes the first column of the weight matrix.

A bipartition of the sets of vertices is a partition of V into two sets A, B such that
A ∩ B = ∅ and A ∪ B = V . Bipartitions correspond to 2-colorings, which we denote by
vectors x such that xi = +1 if i ∈ A and xi = −1 if i ∈ B.

Given a weighted graph G(V, E, W), we denote by Cut(G, x) the weight of a cut defined
by a bipartition x, namely Cut(G, x) =

∑
{i,j}∈E:i∈A,j∈B wi,j = 1

4
∑

{i,j}∈E wi,j(xi − xj)2.
The maximum cut of G is Max-Cut(G) = maxx∈{−1,+1}n Cut(G, x).

For a weighted random intersection graph G(V, E, RT R) with representation matrix R, we
denote by Sv the set of labels chosen by vertex v ∈ V , i.e. Sv = {ℓ : Rℓ,v = 1}. Furthermore,
we denote by Lℓ the set of vertices having chosen label ℓ, i.e. Lℓ = {v : Rℓ,v = 1}. Using
this notation, the weight of an edge {v, u} ∈ E is |Sv ∩ Su|; notice also that this is equal
to 0 when {v, u} /∈ E. We also note here that we may also think of a weighted random
intersection graph as a simple weighted graph where, for any pair of vertices v, u, there are
|Sv ∩ Su| simple edges between them.
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A set system Σ defined on a set V is a family of sets Σ = {L1, L2, . . . , Lm}, where
Lℓ ⊆ V, ℓ ∈ [m]. The incidence matrix of Σ is an m × n matrix R = R(Σ), where for any
ℓ ∈ [m], v ∈ [n], Rℓ,v = 1 if v ∈ Sℓ and 0 otherwise. The discrepancy of Σ with respect to
a 2-coloring x of the vertices in V is disc(Σ, x) = maxℓ∈[m]

∣∣∑
v∈V Rℓ,vxv

∣∣ = ∥Rx∥∞. The
discrepancy of Σ is disc(Σ) = minx∈{−1,+1}n disc(Σ, x).

It is well-known that the cut size of a bipartition of the set of vertices of a graph G(V, E)
into sets A and B is given by 1

4
∑

{i,j}∈E(xi − xj)2, where xi = +1 if i ∈ A and xi = −1 if
i ∈ B. This can be naturally generalized for multigraphs and also for weighted graphs. In
particular, the Max-Cut size of a weighted graph G(V, E, W) is given by

Max-Cut(G) = max
x∈{−1,+1}n

1
4

∑
{i,j}∈E

Wi,j(xi − xj)2. (1)

In particular, we get the following Corollary (refer to the full version of our paper [17] for
the proof):

▶ Corollary 3. Let G(V, E, RT R) be a weighted intersection graph with representation matrix
R. Then, for any x ∈ {−1, +1}n,

Cut(G, x) = 1
4

 ∑
i,j∈[n]2

[
RT R

]
i,j

− ∥Rx∥2

 (2)

and so

Max-Cut(G) = 1
4

 ∑
i,j∈[n]2

[
RT R

]
i,j

− min
x∈{−1,+1}n

∥Rx∥2

 , (3)

where ∥ · ∥ denotes the 2-norm. In particular, the expectation of the size of a random
cut, where each entry of x is independently and equiprobably either +1 or -1 is equal to
Ex [Cut(G, x)] = 1

4
∑

i̸=j,i,j∈[n]
[
RT R

]
i,j

, where Ex denotes expectation with respect to x.

Since
∑

i,j∈[n]2

[
RT R

]
i,j

is fixed for any given representation matrix R, the above
Corollary implies that, to find a bipartition of the vertex set V that corresponds to a
maximum cut, we need to find an n-dimensional vector in arg minx∈{−1,+1}n ∥Rx∥2. We
thus get the following (refer to the full version of our paper [17] for the proof):

▶ Corollary 4. Let G(V, E, RT R) be a weighted intersection graph with representation
matrix R and Σ a set system with incidence matrix R. If disc(Σ) ≤ 1, then x∗ ∈
arg minx∈{−1,+1}n ∥Rx∥2 if and only if x∗ ∈ arg minx∈{−1,+1}n disc(Σ, x). In particular,
if the minimum discrepancy of Σ is at most 1, a bipartition corresponds to a maximum cut
iff it achieves minimum discrepancy.

Notice that above result is not necessarily true when disc(Σ) > 1, since the minimum of
∥Rx∥ could be achieved by 2-colorings with larger discrepancy than the optimal.

2.1 Range of values for p

Concerning the success probability p, we note that, when p = o
(√

1
nm

)
, direct application of

the results of [5] suggest that G(V, E, RT R) is chordal with high probability, but in fact the
same proofs reveal that a stronger property holds, namely that there is no closed vertex-label
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sequence (refer to the precise definition in Subsection 4.2) having distinct labels. Therefore, in
this case, finding a bipartition with maximum cut weight is straightforward: indeed, one way
to construct a maximum cut is to run our Weak Bipartization Algorithm 2 from Subsection 4.2,
and then to apply Theorem 11 (noting that Weak Bipartization termination condition trivially
holds, since the set Codd(G(b)) defined in Subsection 4.2 is empty). Furthermore, even though
we consider weighted graphs, we will also assume that mp2 = O(1), noting that, otherwise,
G(V, E, RT R) will be almost complete with high probability (indeed, the unconditional edge
existence probability is 1 − (1 − p2)m, which tends to 1 for mp2 = ω(1)). In particular,
we will assume that C1

√
1

nm ≤ p ≤ C2
1√
m

, for arbitrary positive constants C1, C2; C1 can
be as small as possible, and C2 can be as large as possible, provided C2

1√
m

≤ 1. We note
that, when p is asymptotically equal to the upper bound C2

1√
m

, there is no constant weight
upper bound that holds with high probability, whereas, when p is asymptotically equal to
the lower bound C1

√
1

nm , all weights in the graph are bounded by a small constant with
high probability. Our results in Section 3 assume this range of values for p, and thus graph
instances may contain edges with large (but constant) weights. On the other hand, in the
analysis of our randomized algorithms in section 4, we assume n = m and p = Θ

( 1
n

)
; this

range of values gives sparse graph instances (even though the distribution is different from
sparse Erdős-Rényi random graphs).

3 Concentration of Max-Cut

In this section we prove that the size of the maximum cut in a weighted random intersection
graph concentrates around its expected value. We note however, that the following Theorem
does not provide an explicit formula for the expected value of the maximum cut.

▶ Theorem 5. Let G(V, E, RT R) be a random instance of the Gn,m,p model with m =
na, α ≤ 1, and C1

√
1

nm ≤ p ≤ 1, for arbitrary positive constant C1, and let R be its
representation matrix. Then Max-Cut(G) ∼ ER[Max-Cut(G)] with high probability, where
ER denotes expectation with respect to R, i.e. Max-Cut(G) concentrates around its expected
value.

Proof. Let G = G(V, E, RT R) be a weighted random intersection graph, and let D denote
the (random) diagonal matrix containing all diagonal elements of RT R. In particular,
equation (3) of Corollary 3 can be written as

Max-Cut(G) = 1
4

 ∑
i̸=j,i,j∈[n]

[
RT R

]
i,j

− min
x∈{−1,+1}n

xT
(
RT R − D

)
x

 .

Furthermore, for any given R, notice that, if we select each element of x independently and
equiprobably from {−1, +1}, then Ex[xT

(
RT R − D

)
x] = 0, where Ex denotes expectation

with respect to x. Therefore, by the probabilistic method, minx∈{−1,+1}n xT
(
RT R − D

)
x ≤

0, implying the following bound:

1
4

∑
i̸=j,i,j∈[n]

[
RT R

]
i,j

≤ Max-Cut(G) ≤ 1
2

∑
i̸=j,i,j∈[n]

[
RT R

]
i,j

, (4)

where the second inequality follows trivially by observing that 1
2

∑
i̸=j,i,j∈[n]

[
RT R

]
i,j

equals
the sum of the weights of all edges.
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By linearity, ER

[∑
i̸=j,i,j∈[n]

[
RT R

]
i,j

]
= ER

[∑
i̸=j,i,j∈[n]

∑
ℓ∈[m] Rℓ,iRℓ,j

]
= n(n −

1)mp2 = Θ(n2mp2), which goes to infinity as n → ∞, because np = Ω
(√

n
m

)
= Ω(1) in the

range of parameters that we consider. In particular, by (4), we have

ER[Max-Cut(G)] = Θ(n2mp2). (5)

By Chebyshev’s inequality, for any ϵ > 0, we have

Pr
(
|Max-Cut(G) − ER[Max-Cut(G)]| ≥ ϵn2mp2)

≤ VarR(Max-Cut(G))
ϵ2n4m2p4 , (6)

where VarR denotes variance with respect to R. To bound the variance on the right hand
side of the above inequality, we use the Efron-Stein inequality. In particular, we write
Max-Cut(G) := f(R), i.e. we view Max-Cut(G) as a function of the label choices. For
ℓ ∈ [m], i ∈ [n], we also write R(ℓ,i) for the matrix R where entry (ℓ, i) has been replaced by
an independent, identically distributed (i.i.d.) copy of Rℓ,i, which we denote by R′

ℓ,i. By the
Efron-Stein inequality, we have

VarR(Max-Cut(G)) ≤ 1
2

∑
ℓ∈[m],i∈[n]

E
[(

f(R) − f
(

R(ℓ,i)
))2

]
. (7)

Notice now that, given all entries of R except Rℓ,i, the probability that f(R) is different from
f

(
R(ℓ,i)) is at most Pr(Rℓ,i ̸= R′

ℓ,i) = 2p(1 − p). Furthermore, if Lℓ\{i} is the set of vertices
different from i which have selected ℓ, we then have that

(
f(R) − f

(
R(ℓ,i)))2 ≤ |Lℓ\{i}|2,

because the intersection graph with representation matrix R differs by at most |Lℓ\{i}|
edges from the intersection graph with representation matrix R(ℓ,i). Also note that, by
definition, |Lℓ\{i}| follows the Binomial distribution B(n−1, p). In particular, E

[
|Lℓ\{i}|2

]
=

(n − 1)p(np − 2p + 1), implying E
[(

f(R) − f
(
R(ℓ,i)))2]

≤ 2p(1 − p)(n − 1)p(np − 2p + 1),
for any fixed ℓ ∈ [m], i ∈ [n].

Putting this all together, (7) becomes

VarR(Max-Cut(G)) ≤ 1
2

∑
ℓ∈[m],i∈[n]

2p(1 − p)(n − 1)p(np − 2p + 1)

= nmp(1 − p)(n − 1)p(np − 2p + 1) = O(n3mp3), (8)

Therefore, by (6), we get

Pr
(
|Max-Cut(G) − ER[Max-Cut(G)]| ≥ ϵn2mp2)

≤ O(n3mp3)
ϵ2n4m2p4 = O

(
1

ϵ2nmp

)
,

which goes to 0 in the range of values that we consider. Together with (5), the above bound
proves that Max-Cut(G) is concentrated around its expected value. ◀

3.1 Max-Cut for small number of labels
Using Theorem 5, we can now show that, in the case m = nα, α < 1, and p = O

(
1√
m

)
, a

random cut has asymptotically the same weight as Max-Cut(G), where G = G(V, E, RT R)
is a random instance of Gn,m,p. In particular, let x(rand) be constructed as follows: for each
i ∈ [n], set x

(rand)
i = −1 independently with probability 1

2 , and x
(rand)
i = +1 otherwise.
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The proof details of the following Theorem can be found in the full version of our
paper [17]. In view of equation (3), the main idea is to prove that, with high probability over
random x and R, ∥Rx∥2 is asymptotically smaller than the expectation of the weight of the
cut defined by x(rand), in which case the theorem follows by concentration of Max-Cut(G)
around its expected value (Theorem 5), and straightforward bounds on Max-Cut(G).

▶ Theorem 6. Let G(V, E, RT R) be a random instance of the Gn,m,p model with m =
na, α < 1, and C1

√
1

nm ≤ p ≤ C2
1√
m

, for arbitrary positive constants C1, C2, and let R be
its representation matrix. Then the cut weight of the random 2-coloring x(rand) satisfies
Cut(G, x(rand)) = (1 − o(1))Max-Cut(G) with high probability over the choices of x(rand), R.

We note that the same analysis also holds when n = m and p is sufficiently large (e.g.
p = ω( ln n

n )); more details can be found in our technical report [17]. In view of this, in the
following sections we will only assume m = n (i.e. α = 1) and also p = c

n , for some positive
constant c. Besides avoiding complicated formulae for p, the reason behind this assumption
is that, in this range of values, the expected weight of a fixed edge in G(V, E, RT R) is equal
to mp2 = Θ(1/n), and thus we hope that our work will serve as an intermediate step towards
understanding algorithmic bottlenecks for finding maximum cuts in Erdős-Rényi random
graphs Gn,c/n with respect to their intersection number.

4 Algorithmic results (randomized algorithms)

4.1 The Majority Cut Algorithm
In the following algorithm, the 2-coloring representing the bipartition of a cut is constructed
as follows: initially, a small constant fraction ϵ of vertices are randomly placed in the two
partitions, and then in each subsequent step, one of the remaining vertices is placed in
the partition that maximizes the weight of incident edges with endpoints in the opposite
partition.

Algorithm 1 Majority Cut.

Input: G(V, E, RT R) and its representation matrix R ∈ {0, 1}m×n

Output: Large cut 2-coloring x ∈ {−1, +1}n

1 Let v1, . . . , vn an arbitrary ordering of vertices;
2 for t = 1 to ϵn do
3 Set xt to either −1 or +1 independently with equal probability;
4 for t = ϵn + 1 to n do
5 if

∑
i∈[t−1][RT R]i,txi ≥ 0 then

6 xt = −1;
7 else
8 xt = +1;

9 return x;

Clearly the Majority Algorithm runs in polynomial time in n, m. Furthermore, the
following Theorem provides a lower bound on the expected weight of the cut constructed
by the algorithm in the case m = n, p = c

n , for large constant c, and ϵ → 0. The full proof
details can be found in our technical report [17].
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▶ Theorem 7. Let G(V, E, RT R) be a random instance of the Gn,m,p model, with m = n,
and p = c

n , for large positive constant c, and let R be its representation matrix. Then, with
high probability over the choices of R, the majority algorithm constructs a cut with expected
weight at least (1 + β) 1

4E
[∑

i̸=j,i,j∈[n]
[
RT R

]
i,j

]
, where β = β(c) ≥

√
16

27πc3 − o(1) is a
constant, i.e. at least 1 + β times larger than the expected weight of a random cut.

Proof sketch. Let G(V, E, RT R) be a random instance of the Gn,m,p model, with m = n,
and p = c

n , for some large enough constant c. For t ∈ [n], let Mt denote the constructed
cut size just after the consideration of a vertex vt, for some t ≥ ϵn + 1. By equation (3)
for n = t, and since the values x1, . . . , xt−1 are already decided in previous steps, we have
Mt = 1

4

(∑
i,j∈[t]2

[
RT R

]
i,j

− minxt∈{−1,+1}
∥∥R[m],[t]x[t]

∥∥2
)

, and after careful calculation
we get the recurrence

Mt = Mt−1 + 1
2

∑
i∈[t−1]

[
RT R

]
i,t

+ 1
2 |Zt| ,

where Zt = Zt(x, R) =
∑

i∈[t−1]
[
RT R

]
i,t

xi =
∑

ℓ∈[m] Rℓ,t

∑
i∈[t−1] Rℓ,ixi. Observe that,

in the latter recursive equation, the term 1
2

∑
i∈[t−1]

[
RT R

]
i,t

corresponds to the expected
increment of the constructed cut if the t-vertex chose its color uniformly at random. Therefore,
lower bounding the expectation of 1

2 |Zt| will tell us how much better the Majority Algorithm
does when considering the t-th vertex.

Towards this end, we note that, given x[t−1] = {xi, i ∈ [t − 1]}, and R[m],[t−1] = {Rℓ,i, ℓ ∈
[m], i ∈ [t − 1]}, Zt is the sum of m independent random variables, since the Bernoulli
random variables Rℓ,t, ℓ ∈ [m], are independent, for any given t (note that the conditioning
is essential for independence, otherwise the inner sums in the definition of Zt would also
depend on the xi’s, which are not random when i is large). By using a domination argument,
we can then prove that

E[|Zt|
∣∣x[t−1], R[m],[t−1]] ≥ MD(ZB

t ),

where ZB
t is a certain Binomial random variable (formally defined in the full proof), and

MD(·) is the mean absolute difference of (two independent copies of) ZB
t , namely MD(ZB

t ) =
E[

∣∣ZB
t − Z ′B

t

∣∣]. Even though we are aware of no simple closed formula for MD(ZB
t ), we resort

to Gaussian approximation of ZB
t − Z ′B

t through the Berry-Esseen Theorem, ultimately
showing that |ZB

t − Z ′B
t | follows approximately the folded normal distribution. In particular,

we show that MD(ZB
t ) ≥

√
c(t−1)

3πn − o(1), and since the right hand side is independent of
x[t−1], R[m],[t−1], we get the same lower bound on the expectation of |Zt|, namely, E[|Zt|] ≥√

c(t−1)
3πn − o(1). Summing over all t ≥ ϵn + 1, we get

∑
t≥ϵn+1

E [|Zt|] ≥
√

c

3π

(
2
3 − ϵ3/2

)
n − o(n),

and the result follows by noting that the expected weight of a random cut is equal to
1
4 n(n − 1)mp2 = c2

4 n + o(n), and taking ϵ → 0. ◀

4.2 Intersection graph (weak) bipartization
Notice that we can view a weighted intersection graph G(V, E, RT R) as a multigraph,
composed by m (possibly) overlapping cliques corresponding to the sets of vertices having
chosen a certain label, namely Lℓ = {v : Rℓ,v}, ℓ ∈ [m]. In particular, let K(ℓ) denote the
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clique induced by label ℓ. Then G = ∪+
ℓ∈[m]K

(ℓ), where ∪+ denotes union that keeps multiple
edges. In this section, we present an algorithm that takes as input an intersection graph G

given as a union of overlapping cliques and outputs a subgraph that is “almost” bipartite.
To facilitate the presentation of our algorithm, we first give some useful definitions. A

closed vertex-label sequence is a sequence of alternating vertices and labels starting and ending
at the same vertex, namely σ := v1, ℓ1, v2, ℓ2, · · · , vk, ℓk, vk+1 = v1, where the size of the
sequence k = |σ| is the number of its labels, vi ∈ V , ℓi ∈ M, and {vi, vi+1} ⊆ Lℓi

, for all
i ∈ [k] (i.e. vi is connected to vi+1 in the intersection graph). We will also say that label ℓ

is strong if |Lℓ| ≥ 3, otherwise it is weak. For a given closed vertex-label sequence σ, and
any integer λ ∈ [|σ|], we will say that σ is λ-strong if |Lℓi

| ≥ 3, for λ indices i ∈ [|σ|]. The
structural Lemma below is useful for our analysis (refer to the full version of our paper [17]
for the proof).2

▶ Lemma 8. Let G(V, E, RT R) be a random instance of the Gn,m,p model, with m = n, and
p = c

n , for some constant c > 0. With high probability over the choices of R, 0-strong closed
vertex-label sequences in G do not have labels in common.

The following definition is essential for the presentation of our algorithm.

▶ Definition 9. Given a weighted intersection graph G = G(V, E, RT R) and a subgraph
G(b) ⊆ G, let Codd(G(b)) be the set of odd length closed vertex-label sequences σ := v1, ℓ1, v2,

ℓ2, · · · , vk, ℓk, vk+1 = v1 that additionally satisfy the following:
(a) σ has distinct vertices (except the first and the last) and distinct labels.
(b) vi is connected to vi+1 in G(b), for all i ∈ [|σ|].
(c) σ is λ-strong, for some λ > 0.

Algorithm 2 initially replaces each clique K(ℓ) by a random maximal matching M (ℓ),
and thus gets a subgraph G(b) ⊆ G. If Codd(G(b)) is not empty, then the algorithm selects
σ ∈ Codd(G(b)) and a strong label ℓ ∈ σ, and then replaces M (ℓ) in G(b) by a new random
matching of K(ℓ). The algorithm repeats until all odd cycles are destroyed (or runs forever
trying to do so).

Algorithm 2 Intersection Graph Weak Bipartization.

Input: Weighted intersection graph G = ∪+
ℓ∈[m]K

(ℓ)

Output: A subgraph of G(b) that has only 0-strong odd cycles
1 for each ℓ ∈ [m] do
2 Let M (ℓ) be a random maximal matching of K(ℓ);
3 Set G(b) = ∪+

ℓ∈[m]M
(ℓ) ;

4 while Codd(G(b)) ̸= ∅ do
5 Let σ ∈ Codd(G(b)) and ℓ a label in σ with |Lℓ| ≥ 3;
6 Replace the part of G(b) corresponding to ℓ by a new random maximal matching

M (ℓ);
7 return G(b);

The following results are the main technical tools that justify the use of the Weak
Bipartization Algorithm for Weighted Max Cut. The proof details for Lemma 10 can be
found in our technical report [17].

2 We conjecture that the structural property of Lemma 8 also holds if we replace 0-strong with λ-strong,
for any constant λ, but this stronger version is not necessary for our analysis.
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▶ Lemma 10. If Codd(G(b)) is empty, then G(b) may only have 0-strong odd cycles.

▶ Theorem 11. Let G(V, E, RT R) be a random instance of the Gn,m,p model, with n = m

and p = c
n , where c > 0 is a constant, and let R be its representation matrix. Let also Σ

be a set system with incidence matrix R. With high probability over the choices of R, if
Algorithm 2 for weak bipartization terminates on input G, its output can be used to construct
a 2-coloring x(disc) ∈ arg minx∈{±1}n disc(Σ, x), which also gives a maximum cut in G, i.e.
x(disc) ∈ arg maxx∈{±1}n Cut(G, x).

Proof. By construction, the output of Algorithm 2, namely G(b), has only 0-strong odd
cycles. Furthermore, by Lemma 8 these cycles correspond to vertex-label sequencies that are
label-disjoint. Let H denote the subgraph of G(b) in which we have destroyed all 0-strong
odd cycles by deleting a single (arbitrary) edge eC from each 0-strong odd cycle C (keeping
all other edges intact), and notice that eC corresponds to a weak label. In particular, H is
a bipartite multi-graph and thus its vertices can be partitioned into two independent sets
A, B constructed as follows: In each connected component of H, start with an arbitrary
vertex v and include in A (resp. in B) the set of vertices reachable from v that are at an
even (resp. odd) distance from v. Since H is bipartite, it does not have odd cycles, and thus
this construction is well-defined, i.e. no vertex can be placed in both A and B.

We now define x(disc) by setting x
(disc)
i = +1 if i ∈ A and x

(disc)
i = +1 if i ∈ B. Let

M0 denote the set of weak labels corresponding to the edges removed from G(b) in the
construction of H. We first note that, for each ℓC ∈ M0 corresponding to the removal of
an edge eC , we have

∣∣∣∑i∈LℓC
x

(disc)
i

∣∣∣ = 2. Indeed, since eC belongs to an odd cycle in G(b),
its endpoints are at even distance in H, which means that either they both belong to A

or they both belong to B. Therefore, their corresponding entries of x(disc) have the same
sign, and so (taking into account that the endpoints of eC are the only vertices in LℓC

),
we have

∣∣∣∑i∈LℓC
x

(disc)
i

∣∣∣ = 2. Second, we show that, for all the other labels ℓ ∈ [m]\M0,∣∣∣∑i∈Lℓ
x

(disc)
i

∣∣∣ will be equal to 1 if |Lℓ| is odd and 0 otherwise. For any label ℓ ∈ [m]\M0,
let M (ℓ) denote the part of G(b) corresponding to a maximal matching of K(ℓ), and note that
all edges of M (ℓ) are contained in H . Since H is bipartite, no edge in M (ℓ) can have both its
endpoints in either A or B. Therefore, by construction, the contribution of entries of x(disc)

corresponding to endpoints of edges in M (ℓ) to the sum
∑

i∈Lℓ
x

(disc)
i is 0. In particular, if

|Lℓ| is even, then M (ℓ) is a perfect matching and
∣∣∣∑i∈Lℓ

x
(disc)
i

∣∣∣ = 0, otherwise (i.e. if |Lℓ|

is odd) there is a single vertex not matched in M (ℓ) and
∣∣∣∑i∈Lℓ

x
(disc)
i

∣∣∣ = 1.
To complete the proof of the theorem, we need to show that Cut(G, x(disc)) is maximum.

By Corollary 3, this is equivalent to proving that ∥Rx(disc)∥ ≤ ∥Rx∥ for all x ∈ {−1, +1}n.
Suppose that there is some x(min) ∈ {−1, +1}n such that ∥Rx(disc)∥ > ∥Rx(min)∥. As
mentioned above, for all ℓ ∈ [m]\M0, we have [Rx(disc)]ℓ ≤ 1, and so [Rx(disc)]ℓ ≤ [Rx(min)]ℓ.
Therefore, the only labels where x(min) could do better are those corresponding to edges
eC that are removed from G(b) in the construction of H, i.e. ℓC ∈ M0, for which we have
[Rx(disc)]ℓC

= 2. However, any such edge eC belongs to an odd cycle C, and thus any
2-coloring of the vertices of C will force at least one of the 0-strong labels corresponding
to edges of C to be monochromatic. Taking into account the fact that, by Lemma 8, with
high probability over the choices of R, all 0-strong odd cycles correspond to vertex-label
sequences that are label-disjoint, we conclude that ∥Rx(disc)∥ ≤ ∥Rx(min)∥, which completes
the proof. ◀
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The fact that Theorem 11 is not an immediate consequence of Corollary 4 follows from the
observation that a random set system with incidence matrix R has discrepancy larger than 1
with (at least) constant probability when m = n and p = c

n . Indeed, by a straightforward
counting argument, we can see that the expected number of 0-strong odd cycles is at least
constant. Furthermore, in any 2-coloring of the vertices at least one of the weak labels
forming edges in a 0-strong odd cycle will be monochromatic. Therefore, with at least
constant probability, for any x ∈ {−1, +1}n, there exists a weak label ℓ, such that xixj = 1,
for both i, j ∈ Lℓ, implying that disc(Lℓ) = 2.

We close this section by a result indicating that the conditional statement of Theorem 11
is not void, namely there is a range of values for c where the Weak Bipartization Algorithm
terminates in polynomial time.

▶ Theorem 12. Let G(V, E, RT R) be a random instance of the Gn,m,p model, with n = m

and p = c
n , where 0 < c < 1 is a constant, and let R be its representation matrix. With high

probability over the choices of R, Algorithm 2 for weak bipartization terminates on input G

in O
(

(n +
∑

ℓ∈[m] |Lℓ|) · log n
)

polynomial time.

The proof of the above theorem uses the following structural Lemma regarding the
expected number of closed vertex label sequences.

▶ Lemma 13. Let G(V, E, RT R) be a random instance of the Gn,m,p model. Let also Ck

denote the number of distinct closed vertex-label sequences of size k in G. Then

E[Ck] = 1
k

n!
(n − k)!

m!
(m − k)!p

2k. (9)

In particular, when m = n → ∞, p = c
n , c > 0, and k ≥ 3, we have E[Ck] ≤ e

2π c2k.

Proof. Notice that there are 1
k

n!
(n−k)! ways to arrange k out of n vertices in a cycle. Further-

more, in each such arrangement, there are m!
(m−k)! ways to place k out of m labels so that

there is exactly one label between each pair of vertices. Since labels in any given arrangement
must be selected by both its adjacent vertices, (9) follows by linearity of expectation.

Setting m = n and p = c
n , and using the inequalities

√
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n,

E[Ck] = 1
k

(
n!

(n − k)!

)2 ( c

n

)2k

≤ 1
k

e2n2n+1e−2n

2π(n − k)2n−2k+1e2k−2n

( c

n

)2k

= 1
k

e2

2π

(
n

n − k

)2n−2k+1 ( c

e

)2k

≤ e2

2π

n

k(n − k)e
k

n−k (2n−2k)
( c

e

)2k

= e2

2π

n

k(n − k)c2k.

When n goes to ∞ and k ≥ 3, then the above is at most e
2π c2k as needed. ◀

We are now ready for the proof of the Theorem.

Proof of Theorem 12. We will prove that, when m = n → ∞, p = c
n , c < 1, and k ≥ 3,

with high probability, there are no closed vertex-label sequences that have labels in common.
To this end, recalling Definition 9 for Codd(G(b)), we provide upper bounds on the following
events: A

def= {∃k ≥ log n : Ck ≥ 1}, B
def= {|Codd(G(b))| ≥ log n} and C

def= {∃σ ̸= σ′ ∈
Codd(G(b)) : ∃ℓ ∈ σ, ℓ ∈ σ′}.

By the union bound, Markov’s inequality and Lemma 13, we get that, whp all closed
vertex-label sequences have less than log n labels:

ISAAC 2021



28:14 MAX CUT in Weighted Random Intersection Graphs

Pr (A) ≤
∑

k≥log n

E[Ck] ≤
∑

k≥log n

e

2π
c2k = e

2π

c2 log n

1 − c2 = O
(
c2 log n

)
= o(1), (10)

where the last equality follows since c < 1 is a constant. Furthermore, by Markov’s inequality
and Lemma 13, and noting that any closed vertex-label sequence in Codd(G(b)) must have at
least k ≥ 3 labels, we get that, whp there less than log n closed vertex-label sequences in
Codd(G(b)):

Pr (B) ≤ 1
log n

∑
k≥3

E[Ck] ≤ 1
log n

∑
k≥3

e

2π
c2k = 1

log n

e

2π

c6

1 − c2 = O

(
1

log n

)
. (11)

To bound Pr(C), fix a closed vertex-label sequence σ, and let |σ| ≥ 3 be the number of
its labels. Notice that, the probability that there is another closed vertex-label sequence that
has labels in common with σ implies the existence of a vertex-label sequence σ̆ that starts
with either a vertex or a label from σ, ends with either a vertex or a label from σ, and has at
least one label or at least one vertex that does not belong to σ. Let |σ̆| denote the number
of labels of σ̆ that do not belong to σ. Then the number of different vertex-label sequences σ̆

that start and end in labels from σ is at most |σ|2n|σ̆|+1m|σ̆|; indeed σ̆ in this case has |σ̆|
labels and |σ̆| + 1 vertices that do not belong to σ. Therefore, by independence, each such
sequence σ̆ has probability p2|σ̆|+2 to appear. Similarly, the number of different vertex-label
sequences σ̆ that start and end in vertices from σ is at most |σ|2n|σ̆|−1m|σ̆| and each one
has probability p2|σ̆| to appear. Finally, the number of different vertex-label sequences σ̆

that start in a vertex from σ and end in a label from σ (notice that this also covers the case
where σ̆ starts in a label from σ and ends in a vertex from σ) is at most |σ|2n|σ̆|m|σ̆| and
each one has probability p2|σ̆|+1 to appear. Overall, for a given sequence σ, the expected
number of sequences σ̆ described above that additionally satisfies |σ̆| < log n, is at most

log n−1∑
k=0

|σ|2nk+1mkp2k+2 +
log n−1∑

k=1
|σ|2nk−1mkp2k +

log n−1∑
k=1

|σ|2nkmkp2k+1 ≤ c|σ|2 log n

n
, (12)

where in the last inequality we used the fact that m = n, p = c
n and c < 1. Since the existence

of a sequence σ̆ for σ that additionally satisfies |σ̆| ≥ log n implies event A, and on other
hand the existence of more than log n different sequences σ ∈ |Codd(G(b))| implies event B,
by Markov’s inequality and (12), we get

Pr(C) ≤ Pr(A)+Pr(B)+c
(log n)4

n
= O

(
c2 log n

)
+O

(
1

log n

)
+O

(
(log n)4

n

)
= O

(
1

log n

)
.

We have thus proved that, with high probability over the choices of R, closed vertex-label
sequences in Codd(G(b)) are label disjoint, as needed.

In view of this, the proof of the Theorem follows by noting that, since closed vertex
label sequences in Codd(G(b)) are label disjoint, steps 5 and 6 within the while loop of the
Weak Bipartization Algorithm will be executed exactly once for each sequence in Codd(G(b)),
where G(b) is defined in step 3 of the algorithm; indeed, once a closed vertex label sequence
σ ∈ Codd(G(b)) is destroyed in step 6, no new closed vertex label sequence is created. In
fact, once σ is destroyed we can remove the corresponding labels and edges from G(b), as
these will no longer belong to other closed vertex label sequences. Furthermore, to find a
closed vertex label sequences in Codd(G(b)), it suffices to find an odd cycle in G(b), which
can be done by running DFS, requiring O(n +

∑
ℓ∈[m] |Lℓ|) time, because G(b) has at most
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∑
ℓ∈[m] |Lℓ| edges. Finally, by (11), we have |Codd(G(b))| < log n with high probability, and

so the running time of the Weak Bipartization Algorithm is O((n +
∑

ℓ∈[m] |Lℓ|) log n), which
concludes the proof of Theorem 12. ◀

5 Discussion and some open problems

In this paper, we introduced the model of weighted random intersection graphs and we
studied the average case analysis of Weighted Max Cut through the prism of discrepancy
of random set systems. In particular, in the first part of the paper, we proved concentration
of the weight of a maximum cut of G(V, E, RT R) around its expected value, and we used
it to show that, with high probability, the weight of a random cut is asymptotically equal
to the maximum cut weight of the input graph, when m = nα, α < 1. On the other hand,
in the case where the number of labels is equal to the number of vertices (i.e. m = n), we
proved that a majority algorithm gives a cut with weight that is larger than the weight of a
random cut by at least a constant factor, when p = c

n and c is large.
In the second part of the paper, we highlighted a connection between Weighted Max

Cut of sparse weighted random intersection graphs and Discrepancy of sparse random
set systems, formalized through our Weak Bipartization Algorithm and its analysis. We
demonstrated how our proposed framework can be used to find optimal solutions for these
problems, with high probability, in special cases of sparse inputs (m = n, p = c

n , c < 1).
One of the main problems left open in our work concerns the termination of our Weak

Bipartization Algorithm for large values of c. We conjecture the following:

▶ Conjecture 14. Let G(V, E, RT R) be a random instance of the Gn,m,p model, with m = n,
and p = c

n , for some constant c ≥ 1. With high probability over the choices of R, on input
G, Algorithm 2 for weak bipartization terminates in polynomial time.

We also leave the problem of determining whether Algorithm 2 terminates in polynomial
time, in the case m = n and p = ω(1/n), as an open question for future research.

Towards strengthening the connection between Weighted Max Cut under the Gn,m,p

model, and Discrepancy in random set systems, we conjecture the following:

▶ Conjecture 15. Let G(V, E, RT R) be a random instance of the Gn,m,p model, with
m = nα, α ≤ 1 and mp2 = O(1), and let R be its representation matrix. Let also Σ be a set
system with incidence matrix R. Then, with high probability over the choices of R, there
exists xdisc ∈ arg minx∈{−1,+1}n disc(Σ, x), such that Cut(G, xdisc) is asymptotically equal to
Max-Cut(G).
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Abstract
Schelling’s classical segregation model gives a coherent explanation for the wide-spread phenomenon
of residential segregation. We introduce an agent-based saturated open-city variant, the Flip Schelling
Process (FSP), in which agents, placed on a graph, have one out of two types and, based on the
predominant type in their neighborhood, decide whether to change their types; similar to a new
agent arriving as soon as another agent leaves the vertex.

We investigate the probability that an edge {u, v} is monochrome, i.e., that both vertices u and v

have the same type in the FSP, and we provide a general framework for analyzing the influence of
the underlying graph topology on residential segregation. In particular, for two adjacent vertices,
we show that a highly decisive common neighborhood, i.e., a common neighborhood where the
absolute value of the difference between the number of vertices with different types is high, supports
segregation and, moreover, that large common neighborhoods are more decisive.

As an application, we study the expected behavior of the FSP on two common random graph
models with and without geometry: (1) For random geometric graphs, we show that the existence of
an edge {u, v} makes a highly decisive common neighborhood for u and v more likely. Based on
this, we prove the existence of a constant c > 0 such that the expected fraction of monochrome
edges after the FSP is at least 1/2 + c. (2) For Erdős–Rényi graphs we show that large common
neighborhoods are unlikely and that the expected fraction of monochrome edges after the FSP is
at most 1/2 + o (1). Our results indicate that the cluster structure of the underlying graph has a
significant impact on the obtained segregation strength.
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1 Introduction

Residential segregation is a well-known sociological phenomenon [49] where different groups
of people tend to separate into largely homogeneous neighborhoods. Studies, e.g., [18], show
that individual preferences are the driving force behind present residential patterns and bear
much to the explanatory weight. Local choices therefore lead to a global phenomenon [47].
A simple model for analyzing residential segregation was introduced by Schelling [46, 47] in
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the 1970s. In his model, two types of agents, placed on a grid, act according to the following
threshold behavior, with τ ∈ (0, 1) as the intolerance threshold: agents are content with
their current position on the grid if at least a τ -fraction of neighbors is of their own type.
Otherwise they are discontent and want to move, either via swapping with another random
discontent agent or via jumping to a vacant position. Schelling demonstrated via simulations
that, starting from a uniform random distribution, the described process drifts towards strong
segregation, even if agents are tolerant and agree to live in mixed neighborhoods, i.e., if τ ≤ 1

2 .
Many empirical studies have been conducted to investigate the influence of various parameters
on the obtained segregation, see [8, 9, 25, 41, 45]. On the theoretical side, Schelling’s model
started recently gaining traction within the algorithmic game theory and artificial intelligence
communities [1, 11, 16, 17, 21, 22, 33], with focus on core game theoretic questions, where
agents strategically select locations. Henry et al. [31] described a simple model of graph
clustering motivated by Schelling where they showed that segregated graphs always emerge.
Variants of the random Schelling segregation process were analyzed by a line of work that
showed that residential segregation occurs with high probability [5, 7, 10, 13, 32, 51].

We initiate the study of an agent-based model, called the Flip Schelling Process (FSP),
which can be understood as the Schelling model in a saturated open city. In contrast to closed
cities [7, 13, 32, 51], which require fixed populations, open cities [4, 5, 10, 27] allow resident
to move away. In saturated city models, also known as voter models [20, 35, 36], vertices are
not allowed to be unoccupied, hence, a new agent enters as soon as one agent vacates a vertex.
In general, in voter models, two types of agents are placed on a graph. Agents examine their
neighbors and, if a certain threshold is of another type, they change their types. Also in
this model, segregation is visible. There is a line of work, mainly in physics, that studies
the voting dynamics on several types of graphs [3, 14, 37, 43, 50]. Related to voter models,
Granovetter [30] proposed another threshold model treating binary decisions and spurred a
number of research, which studied and motivated variants of the model, see [2, 34, 38, 44].

In the FSP, agents have binary types. An agent is content if the fraction of agents in
its neighborhood with the same type is larger than 1

2 . Otherwise, if the fraction is smaller
than 1

2 , an agent is discontent and is willing to flip its type to become content. If the fraction
of same type agents in its neighborhood is exactly 1

2 , an agent flips its type with probability 1
2 .

Starting from an initial configuration where the type of each agent is chosen uniformly at
random, we investigate a simultaneous-move, one-shot process and bound the number of
monochrome edges, which is a popular measurement for segregation strength [19, 26].

Close to our model is the work by Omidvar and Franceschetti [39, 40], who initiated an
analysis of the size of monochrome regions in the so called Schelling Spin Systems. Agents of
two different types are placed on a grid [39] and a geometric graph [40], respectively. Then
independent and identical Poisson clocks are assigned to all agents and, every time a clock
rings, the state of the corresponding agent is flipped if and only if the agent is discontent w.r.t.
a certain intolerance threshold τ regarding the neighborhood size. The model corresponds to
the Ising model with zero temperature with Glauber dynamics [15, 48].

The commonly used underlying topology for modeling the residential areas are (toroidal)
grid graphs [11, 32, 39], regular graphs [11, 17, 21], paths [11, 33], cycles [4, 6, 7, 13, 51]
and trees [1, 11, 22, 33]. Considering the influence of the given topology that models the
residential area regarding, e.g., the existence of stable states and convergence behavior
leads to phenomena like non-existence of stable states [21, 22], non-convergence to stable
states [11, 17, 21], and high-mixing times in corresponding Markov chains [10, 28].

To avoid such undesirable characteristics, we suggest to investigate random geometric
graphs [42], like in [40]. Random geometric graphs demonstrate, in contrast to other random
graphs without geometry, such as Erdős–Rényi graphs [23, 29], community structures, i.e.,
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Figure 1 The fraction of monochrome edges after the Flip Schelling Process (FSP) in Erdős–Rényi
graphs and random geometric graphs for different graph sizes (number of vertices n) and different
expected average degrees. Each data point shows the average over 1000 generated graphs with one
simulation of the FSP per graph. The error bars show the interquartile range, i.e., 50 % of the
measurements lie between the top and bottom end of the error bar.

densely connected clusters of vertices. An effect observed by simulating the FSP is that the
fraction of monochrome edges is significantly higher in random geometric graphs compared
to Erdős–Rényi graphs, where the fraction stays almost stable around 1

2 , cf. Fig 1.
We set out for rigorously proving this phenomenon. In particular, we prove for random

geometric graphs that there exists a constant c such that, given an edge {u, v}, the probability
that {u, v} is monochrome is lower-bounded by 1

2 + c, cf. Theorem 6. In contrast, we show
for Erdős–Rényi graphs that segregation is not likely to occur and that the probability that
{u, v} is monochrome is upper-bounded by 1

2 + o (1), cf. Theorem 17.
We introduce a general framework to deepen the understanding of the influence of the

underlying topology on residential segregation. To this end, we first show that a highly decisive
common neighborhood supports segregation, cf. Section 3.1. In particular, we provide a lower
bound on the probability that an edge {u, v} is monochrome based on the probability that
the difference between the majority and the minority regarding both types in the common
neighborhood, i.e., the number of agents which are adjacent to u and v, is larger than their
exclusive neighborhoods, i.e., the number of agents which are adjacent to either u or v. Next,
we show that large sets of agents are more decisive, cf. Section 3.2. This implies that a large
common neighborhood, compared to the exclusive neighborhood, is likely to be more decisive,
i.e., makes it more likely that the absolute value of the difference between the number of
different types in the common neighborhood is larger than in the exclusive ones. These
considerations hold for arbitrary graphs. Hence, we reduce the question concerning a lower
bound for the fraction of monochrome edges in the FSP to the probability that, given {u, v},
the common neighborhood is larger than the exclusive neighborhoods of u and v, respectively.

For random geometric graphs, we prove that a large geometric region, i.e., the intersecting
region that is formed by intersecting disks, leads to a large vertex set, cf. Section 3.3, and
that random geometric graphs have enough edges that have sufficiently large intersecting
regions, cf. Section 3.4, such that segregation is likely to occur. In contrast, for Erdős–Rényi
graphs, we show that the common neighborhood between two vertices u and v is with high
probability empty and therefore segregation is not likely to occur, cf. Section 4.

Overall, we shed light on the influence of the structure of the underlying graph and
discovered the significant impact of the community structure as an important factor on the
obtained segregation strength. We reveal for random geometric graphs that already after
one round a provable tendency is apparent and a strong segregation occurs.

ISAAC 2021
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2 Model and Preliminaries

Let G = (V, E) be an unweighted and undirected graph, with vertex set V and edge set E. For
any vertex v ∈ V , we denote the neighborhood of v in G by Nv = {u ∈ V : {u, v} ∈ E} and
the degree of v in G by δv = |Nv|. We consider random geometric graphs and Erdős–Rényi
graphs with a total of n ∈ N+ vertices and an expected average degree δ > 0.

For a given r ∈ R+, a random geometric graph G ∼ G(n, r) is obtained by distributing n

vertices uniformly at random in some geometric ground space and connecting vertices u and v

if and only if dist(u, v) ≤ r. We use a two-dimensional toroidal Euclidean space with total
area 1 as ground space. More formally, each vertex v is assigned to a point (v1, v2) ∈ [0, 1]2
and the distance between u = (u1, u2) and v is dist(u, v) =

√
|u1 − v1|2◦ + |u2 − v2|2◦ for

|ui − vi|◦ = min{|ui − vi|, 1 − |ui − vi|}. We note that using a torus instead of, e.g., a unit
square, has the advantage that we do not have to consider edge cases, for vertices that are
close to the boundary. In fact, a disk of radius r around any point has the same area πr2.
Since we consider a ground space with total area 1, r ≤ 1√

π
. As every vertex v is connected

to all vertices in the disk of radius r around it, its expected average degree is δ = (n − 1)πr2.
For a given p ∈ [0, 1], let G(n, p) denote an Erdős–Rényi graph. Each edge {u, v} is

included with probability p, independently from every other edge. It holds that δ = (n − 1)p.
Consider two different vertices u and v. Let Nu∩v := |Nu ∩ Nv| be the number of vertices

in the common neighborhood, let Nu\v := |Nu \ Nv| be the number of vertices in the exclusive
neighborhood of u, and let Nv\u := |Nv \ Nu| be the number of vertices in the exclusive
neighborhood of v. Furthermore, with Nu∪v := |V \ (Nu ∪ Nv)|, we denote the number of
vertices that are neither adjacent to u nor to v.

Let G be a graph where each vertex represents an agent of type t+ or t−. The type of
each agent is chosen independently and uniformly at random. An edge {u, v} is monochrome
if and only if u and v are of the same type. The Flip Schelling Process (FSP) is defined as
follows: an agent v whose type is aligned with the type of more than δv/2 of its neighbors
keeps its type. If more than δv/2 neighbors have a different type, then agent v changes its
type. In case of a tie, i.e., if exactly δv/2 neighbors have a different type, then v changes its
type with probability 1

2 . FSP is a simultaneous-move, one-shot process, i.e., all agents make
their decision at the same time and, moreover, only once.

For x, y ∈ N, we define [x..y] = [x, y] ∩ N and for x ∈ N+, we define [x] = [1..x].

2.1 Useful Technial Lemmas
In this section, we state several lemmas that we will use in order to prove our results in the
next sections.

▶ Lemma 1. Let X ∼ Bin(n, p) and Y ∼ Bin(n, q) with p ≥ q be independent. Then
Pr [X ≥ Y ] ≥ 1

2 .

Proof. Let Y1, . . . , Yn be the individual Bernoulli trials for Y , i.e., Y =
∑

i∈[n] Yi. Define new
random variables Y ′

1 , . . . , Y ′
n such that Yi = 1 implies Y ′

i = 1 and if Yi = 0, then Y ′
i = 1 with

probability (p − q)/(1 − q) and Y ′
i = 0 otherwise. Note that for each individual Y ′

i , we have
Y ′

i = 1 with probability p, i.e., Y ′ =
∑

i∈[n] Y ′
i ∼ Bin(n, p). Moreover, as Y ′ ≥ Y for every

outcome, we have Pr [X ≥ Y ] ≥ Pr [X ≥ Y ′]. It remains to show that Pr [X ≥ Y ′] ≥ 1
2 .

As X and Y ′ are equally distributed, we have Pr [X ≥ Y ′] = Pr [X ≤ Y ′]. Moreover, as
one of the two inequalities holds in any event, we get Pr [X ≥ Y ′] + Pr [X ≤ Y ′] ≥ 1, and
thus equivalently 2Pr [X ≥ Y ′] ≥ 1, which proves the claim. ◀
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▶ Lemma 2. Let n ∈ N+, p ∈ [0, 1), and let X ∼ Bin(n, p). Then, for all i ∈ [0..n], it holds
that Pr [X = i] ≤ Pr [X = ⌊p(n + 1)⌋].

Proof. We interpret the distribution of X as a finite series and consider the sign of the
differences of two neighboring terms. A maximum of the distribution of X is located at
the position at which the difference switches from positive to negative. To this end, let
b : [0, n − 1] → [−1, 1] be defined such that, for all i ∈ [0, n − 1] ∩ N, it holds that

b(d) =
(

n

d + 1

)
pd+1(1 − p)n−d−1 −

(
n

d

)
pd(1 − p)n−d.

We are interested in the sign of b. In more detail, for any d ∈ [0, n − 2] ∩ N, if sgn
(
b(d)

)
≥ 0

and sgn
(
b(d + 1)

)
≤ 0, then d + 1 is a local maximum. If the sign is always negative, then

there is a global maximum in the distribution of X at position 0.
In order to determine the sign of b, for all i ∈ [0..n − 1], we rewrite

b(i) = n!
i!(n − i − 1)!p

i(1 − p)n−i−1 p

i + 1 − n!
i!(n − i − 1)!p

d(1 − p)n−i−1 1 − p

n − i

= n!
i!(n − i − 1)!p

i(1 − p)n−i−1
(

p

i + 1 − 1 − p

n − i

)
.

Since the term n!pi(1 − p)n−i−1 is always non-negative, the sign of b(i) is determined by the
sign of p/(i + 1) − (1 − p)/(n − i).

Solving for i, we get that

p

i + 1 − 1 − p

n − i
≥ 0 ⇔ i ≤ p(n + 1) − 1.

Note that p(n + 1) − 1 may not be integer. Further note that the distribution of X is
unimodal, as the sign of b changes at most once. Thus, each local maximum is also a global
maximum. As discussed above, the largest value d ∈ [0, n − 2] ∩ N such that sgn

(
b(d)

)
≥ 0

and sgn
(
b(d + 1)

)
≤ 0 then results in a global maximum at position d + 1. Since d needs to

be integer, the largest value that satisfies this constraint is ⌊p(n + 1) − 1⌋. If the sign of b

is always negative (p ≤ 1/(n + 1)), then the distribution of X has a global maximum at 0,
which is also satisfied by ⌊p(n + 1) − 1⌋ + 1, which concludes the proof. ◀

▶ Theorem 3 (Stirling’s Formula [24, page 54]). For all n ∈ N+, it holds that
√

2πnn+1/2 e−n · e(12n+1)−1
< n! <

√
2πnn+1/2 e−n · e(12n)−1

.

▶ Corollary 4. For all n ≥ 2 with n ∈ N, it holds that

n! >
√

2πnn+1/2 e−n and (1)

n! < e nn+1/2 e−n . (2)

Proof. For both inequalities, we aim at using Theorem 3.
Equation (1): Note that e(12n+1)−1

> 1, since 1
12n+1 > 0. Hence,

√
2πnn+1/2 e−n <

√
2πnn+1/2 e−n · e(12n+1)−1

.

Equation (2): We prove this case by showing that
√

2π e(12n)−1
< e . (3)

ISAAC 2021
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Note, that e(12n)−1 is strictly decreasing. Hence, we only have to check whether Equation (3)
holds for n = 2.

√
2π e(12n)−1

≤
√

2π e 1
24 < 2.7 < e . ◀

▶ Lemma 5. Let A, B, and C be random variables such that Pr [A > C ∧ B > C] > 0 and
Pr [A > C ∧ B ≤ C] > 0. Then Pr [A > B ∧ A > C] ≥ Pr [A > B] · Pr [A > C].

Proof. Using the definition of conditional probability, we obtain

Pr [A > B ∧ A > C] = Pr [A > B | A > C ] · Pr [A > C] .

Hence, we are left with bounding Pr [A > B | A > C ] ≥ Pr [A > B]. Partitioning the sample
space into the two events B > C and B ≤ C and using the law of total probability, we obtain

Pr [A > B | A > C] = Pr [B > C | A > C ] · Pr [A > B | A > C ∧ B > C]
+ Pr [B ≤ C | A > C ] · Pr [A > B | A > C ∧ B ≤ C] .

Note that the condition A > C ∧ B ≤ C already implies A > B and thus the last probability
equals to 1. Moreover, using the definition of conditional probability, we obtain

Pr [A > B | A > C] = Pr [B > C | A > C ] · Pr [A > B ∧ A > C ∧ B > C]
Pr [A > C ∧ B > C]

+ Pr [B ≤ C | A > C ] .

Using that Pr [B > C | A > C ] ≥ Pr [A > C ∧ B > C], that A > B ∧ B > C already
implies A > C, that Pr [B ≤ C | A > C ] ≥ Pr [A > B ∧ B ≤ C], and finally the law of total
probability, we obtain

Pr [A > B | A > C] ≥ Pr [A > B ∧ A > C ∧ B > C] + Pr [B ≤ C | A > C ]
= Pr [A > B ∧ B > C] + Pr [B ≤ C | A > C ]
≥ Pr [A > B ∧ B > C] + Pr [A > B ∧ B ≤ C]
= Pr [A > B] . ◀

3 Monochrome Edges in Geometric Random Graphs

In this section, we prove the following main theorem.

▶ Theorem 6. Let G ∼ G(n, r) be a random geometric graph with expected average degree
δ = o (

√
n). The expected fraction of monochrome edges after the FSP is at least

1
2 + 9

800 ·

1
2 − 1√

2π⌊δ/2⌋

2

·
(

1 − e−δ/2
(

1 + δ

2

))
· (1 − o (1)).

Note that the bound in Theorem 6 is bounded away from 1
2 for all δ ≥ 2. Moreover, the two

factors depending on δ go to 1
2 and 1, respectively, for a growing δ.

Given an edge {u, v}, we prove the above lower bound on the probability that {u, v} is
monochrome in the following four steps.
1. For a vertex set, we introduce the concept of decisiveness that measures how much the

majority is ahead of the minority in the FSP. With this, we give a lower bound on
the probability that {u, v} is monochrome based on the probability that the common
neighborhood of u and v is more decisive than their exclusive neighborhoods.
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2. We show that large neighborhoods are likely to be more decisive than small neighborhoods.
To this end, we give bounds on the likelihood that two similar random walks behave
differently. This step reduces the question of whether the common neighborhood is more
decisive than the exclusive neighborhoods to whether the former is larger than the latter.

3. Turning to geometric random graphs, we show that the common neighborhood is suf-
ficiently likely to be larger than the exclusive neighborhoods if the geometric region
corresponding to the former is sufficiently large. We do this by first showing that the ac-
tual distribution of the neighborhood sizes is well approximated by independent binomial
random variables. Then, we give the desired bounds for these random variables.

4. We show that the existence of the edge {u, v} in the geometric random graph makes it
sufficiently likely that the geometric region hosting the common neighborhood of u and v

is sufficiently large.

3.1 Monochrome Edges via Decisive Neighborhoods
Let {u, v} be an edge of a given graph. To formally define the above mentioned decisiveness,
let N+

u∩v and N−
u∩v be the number of vertices in the common neighborhood of u and v that

are occupied by agents of type t+ and t−, respectively. Then Du∩v := |N+
u∩v − N−

u∩v| is the
decisiveness of the common neighborhood of u and v. Analogously, we define Du\v and Dv\u

for the exclusive neighborhoods of u and v, respectively.
The following theorem bounds the probability for {u, v} to be monochrome based on the

probability that the common neighborhood is more decisive than each of the exclusive ones.

▶ Theorem 7. In the FSP, let {u, v} ∈ E be an edge and let D be the event {Du∩v >

Du\v ∧ Du∩v > Dv\u}. Then {u, v} is monochrome with probability at least 1/2 + Pr [D] /2.

Proof. If D occurs, then the types of u and v after the FSP coincide with the predominant
type before the FSP in the shared neighborhood. Thus, {u, v} is monochrome.

Otherwise, assuming D, w.l.o.g., let Du∩v ≤ Du\v and assume further the type of v has
already been determined. If Du∩v = Du\v, then u chooses a type uniformly at random,
which coincides with the type of v with probability 1

2 . Otherwise, Du∩v < Du\v and thus u

takes the type that is predominant in u’s exclusive neighborhood, which is t+ and t− with
probability 1

2 , each. Moreover, this is independent from the type of v as v’s neighborhood is
disjoint to u’s exclusive neighborhood.

Thus, for the event M that {u, v} is monochrome, we get Pr [M | D] = 1 and Pr
[
M | D

]
=

1
2 . Hence, we get Pr [M ] > Pr [D] + 1

2 (1 − Pr [D]) = 1
2 + Pr [D] /2. ◀

3.2 Large Neighborhoods are More Decisive
The goal of this section is to reduce the question of how decisive a neighborhood is to the
question of how large it is. To be more precise, assume we have a set of vertices of size a and
give each vertex the type t+ and t−, respectively, each with probability 1

2 . Let Ai for i ∈ [a]
be the random variable that takes the value +1 and −1 if the i-th vertex in this set has type
t+ and t−, respectively. Then, for A =

∑
i∈[a] Ai, the decisiveness of the vertex set is |A|. In

the following, we study the decisiveness |A| depending on the size a of the set. Note that
this can be viewed as a random walk on the integer line: Starting at 0, in each step, it moves
one unit either to the left or to the right with equal probabilities. We are interested in the
distance from 0 after a steps.

Assume for the vertices u and v that we know that b vertices lie in the common neigh-
borhood and a vertices lie in the exclusive neighborhood of u. Moreover, let A and B be
the positions of the above random walk after a and b steps, respectively. Then the event

ISAAC 2021
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Du∩v > Du\v is equivalent to |B| > |A|. Motivated by this, we study the probability of
|B| > |A|, assuming b ≥ a. The core difficulty here comes from the fact that we require |B|
to be strictly larger than |A|. Also note that a + b corresponds to the degree of u in the
graph. Thus, we have to study the random walks also for small numbers of a and b. We note
that all results in this section are independent from the specific application to the FSP, and
thus might be of independent interest.

Before we give a lower bound on the probability that |B| > |A|, we need the following
technical lemma. It states that doing more steps in the random walk only makes it more
likely to deviate further from the starting position.

▶ Lemma 8. For i ∈ [a] and j ∈ [b] with 0 ≤ a ≤ b, let Ai and Bj be independent random
variables that are −1 and 1 each with probability 1

2 . Let A =
∑

i∈[a] Ai and B =
∑

j∈[b] Bj.
Then Pr [|A| < |B|] ≥ Pr [|A| > |B|].

Proof. Let ∆k be the event that |B| − |A| = k. First note that

Pr [|A| < |B|] =
∑
k∈[b]

Pr [∆k] and Pr [|A| > |B|] =
∑

k∈[a]

Pr [∆−k] .

To prove the statement of the lemma, it thus suffices to prove the following claim.

▷ Claim 9. For k ≥ 0, Pr [∆k] ≥ Pr [∆−k].

We prove this claim via induction on b − a. For the base case a = b, A and B are equally
distributed and thus Claim 9 clearly holds.

For the induction step, let B+ be the random variable that takes the values B + 1 and
B − 1 with probability 1

2 each. Note that B+ represents the same type of random walk as A

and B but with b + 1 steps. Moreover B+ is coupled with B to make the same decisions in
the first b steps. Let ∆+

k be the event that |B+| − |A| = k. It remains to show that Claim 9
holds for these ∆+

k . For this, first note that the claim trivially holds for k = 0. For k ≥ 1,
we can use the definition of ∆+

k and the induction hypothesis to obtain

Pr
[
∆+

k

]
= Pr [∆k−1]

2 + Pr [∆k+1]
2

≥ Pr [∆−k+1]
2 + Pr [∆−k−1]

2 = Pr
[
∆+

−k

]
. ◀

Using Lemma 8, we now prove the following general bound for the probability that |A| < |B|,
depending on certain probabilities for binomially distributed variables.

▶ Lemma 10. For i ∈ [a] and j ∈ [b] with 0 ≤ a ≤ b, let Ai and Bj be independent random
variables that are −1 and 1 each with probability 1

2 . Let A =
∑

i∈[a] Ai and B =
∑

j∈[b] Bj.
Moreover, let X ∼ Bin(a, 1

2 ), Y ∼ Bin(b, 1
2 ), and Z ∼ Bin(a + b, 1

2 ). Then

Pr [|A| < |B|] ≥ 1
2 − Pr

[
Z = a + b

2

]
+

Pr
[
X = a

2
]

· Pr
[
Y = b

2
]

2 .

Proof. Using that Pr [|A| < |B|] ≥ Pr [|A| > |B|] (see Lemma 8), we obtain

Pr [|A| < |B|] + Pr [|A| > |B|] + Pr [|A| = |B|] = 1
⇒ 2Pr [|A| < |B|] + Pr [|A| = |B|] ≥ 1

⇔ Pr [|A| < |B|] ≥ 1
2 − Pr [|A| = |B|]

2 . (4)

Thus, it remains to give an upper bound for Pr [|A| = |B|].
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Using the inclusion–exclusion principle and the fact that B is symmetric around 0, i.e.,
Pr [B = x] = Pr [B = −x] for any x, we obtain

Pr [|A| = |B|] = Pr [A = B ∨ A = −B]
= Pr [A = B] + Pr [A = −B] − Pr [A = B = 0]
= 2Pr [A = −B] − Pr [A = B = 0] . (5)

We estimate Pr [A = −B] and Pr [A = B = 0] using bounds for binomially distributed vari-
ables. To this end, define new random variables Xi = Ai+1

2 for i ∈ [a] and let X =
∑

i∈[a] Xi.
Note that the Xi are independent and take values 0 and 1, each with probability 1

2 . Thus,
X ∼ Bin(a, 1

2 ). Moreover, A = 2X − a. Analogously, we define Y with Y ∼ Bin(b, 1
2 ) and

B = 2Y − b. Note that X and Y are independent and thus Z = X + Y ∼ Bin(a + b, 1
2 ).

With this, we get

Pr [A = −B] = Pr [2X − a = −2Y + b] = Pr
[
Z = a + b

2

]
, and

Pr [A = B = 0] = Pr [A = 0] · Pr [B = 0] = Pr
[
X = a

2

]
· Pr

[
Y = b

2

]
.

This, together with Equations (4) and (5) yield the claim. ◀

The bound in Lemma 10 becomes worse for smaller values of a and b. Considering this worst
case, we obtain the following specific bound.

▶ Theorem 11. For i ∈ [a] and j ∈ [b] with 0 ≤ a ≤ b, let Ai and Bj be independent random
variables that are −1 and 1 each with probability 1

2 . Let A =
∑

i∈[a] Ai and B =
∑

j∈[b] Bj.
If a = b = 0 or a = b = 1, then Pr [|A| < |B|] = 0. Otherwise Pr [|A| < |B|] ≥ 3

16 .

Proof. Clearly, if a = b = 0, then A = B = 0 and thus Pr [|A| < |B|] = 0. Similarly, if
a = b = 1, then |A| = |B| = 1 and thus Pr [|A| < |B|] = 0. For the remainder, assume that
neither a = b = 0 nor a = b = 1, and let X, Y , and Z be defined as in Lemma 10, i.e.,
X ∼ Bin(a, 1

2 ), Y ∼ Bin(b, 1
2 ), and Z ∼ Bin(a + b, 1

2 ).
If a + b is odd, then Pr

[
Z = a+b

2
]

= 0. Thus, by Lemma 10, we have Pr [|A| < |B|] ≥ 1
2 .

If a + b is even and a + b ≥ 6, then

Pr
[
Z = a + b

2

]
=
(

a + b
a+b

2

)(
1
2

)a+b

≤
(

6
3

)(
1
2

)6
= 5

16 .

Hence, by Lemma 10, we have Pr [|A| < |B|] ≥ 1
2 − 5

16 = 3
16 .

If a + b < 6 (and a + b is even), there are four cases: a = 0, b = 2; a = 0, b = 4;
a = 1, b = 3; a = 2, b = 2. If a = 0 and b = 2, then A = 0 with probability 1 and |B| = 2
with probability 1

2 . Thus, Pr [|A| < |B|] = 1
2 . If a = 0 and b = 4, then |A| < |B| unless

B = 0. As Pr [B = 0] =
(4

2
)

· ( 1
2 )4 = 3

8 , we get Pr [|A| < |B|] = 1 − 3
8 = 5

8 . If a = 1 and b = 3,
then |A| = 1 with probability 1 and |B| = 3 with probability 1

4 (either B1 = B2 = B3 = 1
or B1 = B2 = B3 = −1). Thus, Pr [|A| < |B|] = 1

4 . If a = b = 2, then |A| = 0 with
probability 1

2 and |B| = 2 with probability 1
2 . Thus Pr [|A| < |B|] = 1

4 .
We note that the bound of Pr [|A| < |B|] = 3

16 is tight for a = b = 3. ◀
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3.3 Large Common Regions Yield Large Common Neighborhoods

To be able to apply Theorem 11 to an edge {u, v}, we need to make sure that the size of their
common neighborhood (corresponding to b in the theorem) is at least the size of the exclusive
neighborhoods (corresponding to a in the theorem). In the following, we give bounds for the
probability that this happens. Note that this is the first time we actually take the graph
into account. Thus, all above considerations hold for arbitrary graphs.

Recall that we consider random geometric graphs G(n, r) and u and v are each connected
to all vertices that lie within a disk of radius r around them. As u and v are adjacent, their
disks intersect, which separates the ground space into four regions; cf. Fig 2a. Let Ru∩v be
the intersection of the two disks. Let Ru\v be the set of points that lie in the disk of u but
not in the disk of v, and analogously, let Rv\u be the disk of v minus the disk of u. Finally,
let Ru∪v be the set of points outside both disks. Then, each of the n − 2 remaining vertices
ends up in exactly one of these regions with a probability equal to the corresponding measure.
Let µ(·) be the area of the respective region and p = µ(Ru∩v) and q = µ(Ru\v) = µ(Rv\u)
be the probabilities for a vertex to lie in the common and exclusive regions, respectively.
The probability for Ru∪v is then 1 − p − 2q.

We are now interested in the sizes Nu∩v, Nu\v, and Nv\u of the common and the exclusive
neighborhoods, respectively. As each of the n − 2 remaining vertices ends up in Nu∩v with
probability p, we have Nu∩v ∼ Bin(n−2, p). For Nu\v and Nv\u, we already know that v is a
neighbor of u and vice versa. Thus, (Nu\v −1) ∼ Bin(n−2, q) and (Nv\u −1) ∼ Bin(n−2, q).
Moreover, the three random variables are not independent, as each vertex lies in only exactly
one of the four neighborhoods, i.e., Nu∩v, (Nu\v − 1), (Nv\u − 1), and the number of vertices
in neither neighborhood together follow a multinomial distribution Multi(n − 2, p) with
p = (p, q, q, 1 − p − 2q).

The following lemma shows that these dependencies are small if p and q are sufficiently
small. This lets us assume that Nu∩v, (Nu\v − 1), (Nv\u − 1) are independent random
variables following binomial distributions if the expected average degree is not too large.

▶ Lemma 12. Let X = (X1, X2, X3, X4) ∼ Multi (n, p) with p = (p, q, q, 1 − p − 2q). Then
there exist independent random variables Y1 ∼ Bin (n, p), Y2 ∼ Bin (n, q), and Y3 ∼ Bin (n, q)
such that Pr [(X1, X2, X3) = (Y1, Y2, Y3)] ≥ 1 − 3n · max(p, q)2.

Proof. Let Y1 ∼ Bin (n, p), and Y2, Y3 ∼ Bin (n, q) be independent random variables. We
define the event B to hold, if each of the n individual trials increments at most one of
the random variables Y1, Y2, or Y3. More formally, for i ∈ [3] and j ∈ [n], let Yi,j be the
individual Bernoulli trials of Yi, i.e., Yi =

∑
j∈[n] Yi,j . For j ∈ [n], we define the event Bj to

be Y1,j + Y2,j + Y3,j ≤ 1, and the event B =
⋂

j∈[n] Bj .
Based on this, we now define the random variables X1, X2, X3, and X4 as follows.

If B holds, we set Xi = Yi for i ∈ [3] and X4 = n − X1 − X2 − X3. Otherwise, if B,
we draw X = (X1, X2, X3, X4) ∼ Multi (n, p) independently from Y1, Y2, and Y3 with
p = (p, q, q, 1 − p − 2q). Note that X clearly follows Multi (n, p) if B. Moreover, conditioned
on B, each individual trial increments exactly one of the variables X1, X2, X3, or X4 with
probabilities p, q, q, and 1 − p − 2q, respectively, i.e., X ∼ Multi (n, p).

Thus, we end up with X ∼ Multi (n, p). Additionally, we have three independent random
variables Y1 ∼ Bin (n, p), and Y2, Y3 ∼ Bin (n, q) with (X1, X2, X3) = (Y1, Y2, Y3) if B holds.
Thus, to prove the lemma, it remains to show that Pr [B] ≥ 1 − 3n max(p, q)2. For j ∈ [n],
the probability that the jth trial goes wrong is
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Pr
[
Bj

]
= 1 −

(
(1 − p)(1 − q)2)−

(
p(1 − q)2)− 2 (q(1 − p)(1 − q))

= 2pq − 2pq2 + q2 ≤ 2pq + q2 ≤ 3 · max(p, q)2.

Using the union bound it follows that Pr
[
B
]

≤
∑

j∈[n] Pr
[
Bj

]
≤ 3n · max(p, q)2. ◀

As mentioned before, we are interested in the event Nu∩v ≥ Nu\v (and likewise Nu∩v ≥ Nv\u),
in order to apply Theorem 11. Moreover, due to Lemma 12, we know that Nu∩v and (Nu\v −1)
almost behave like independent random variables that follow Bin(n − 2, p) and Bin(n − 2, q),
respectively. The following lemma helps to bound the probability for Nu∩v ≥ Nu\v. Note
that it gives a bound for the probability of achieving strict inequality (instead of just ≥),
which accounts for the fact that (Nu\v −1) and not Nu\v itself follows a binomial distribution.

▶ Lemma 13. Let n ∈ N with n ≥ 2, and let p ≥ q > 0. Further, let X ∼ Bin(n, p)
and Y ∼ Bin(n, q) be independent, let d = ⌊p(n + 1)⌋, and assume d = o (

√
n), then

Pr [X > Y ] ≥
( 1

2 − 1/
√

2πd
)
(1 − o (1)).

Proof. By Lemma 1, we get Pr [X ≥ Y ] ≥ 1
2 , and we bound

Pr [X > Y ] = Pr [X ≥ Y ] − Pr [X = Y ] ≥ 1
2 − Pr [X = Y ] ,

leaving us to bound Pr [X = Y ] from above. By independence of X and Y , we get

Pr [X = Y ] =
∑
i∈[n]

Pr [X = i] · Pr [Y = i] . (6)

Note that, by Lemma 2, for all i ∈ [0..n], it holds that Pr [X = i] ≤ Pr [X = d]. Assume that
we have a bound B such that Pr [X = d] ≤ B. Substituting this into Equation (6) yields

Pr [X = Y ] ≤ B
∑
i∈[n]

Pr [Y = i] = B,

resulting in Pr [X > Y ] ≥ 1
2 − B. Thus, we now derive such a bound for B and apply the

inequality that for all x ∈ R, it holds that 1 + x ≤ ex, as well as Equation (1). We get(
n

d

)
pd(1 − p)n−d ≤ nd

d!

(
d

n

)d(
1 − d

n

)n(
1 − d

n

)−d

≤ dd

d! e−d

(
1 − d

n

)−d

≤ dd

√
2πdd+1/2e−d

e−d

(
1 − d

n

)−d

= 1√
2πd

1
(1 − d/n)d

. (7)

By Bernoulli’s inequality, we bound (1 − d/n)d ≥ 1 − d2/n = 1 − o (1) by the assumption
d = o (

√
n). Substituting this back into Equation (7) concludes the proof. ◀

Finally, in order to apply Theorem 11, we have to make sure not to end up in the special
case where a = b ≤ 1, i.e., we have to make sure that the common neighborhood includes at
least two vertices. The probability for this to happen is given by the following lemma.
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Ru∩v

Ru\v Rv\u
u v

(a) The geometric re-
gions corresponding to
the common and exclus-
ive neighborhoods, re-
spectively, with yellow
illustrating Ru∩v and
blue illustrating Ru\v

and Rv\u.

xα

j

i

(b) Let α be the cent-
ral angle determined by
the intersection points i
and j, and let x be
the corresponding circu-
lar sector (illustrated in
yellow).

y

`

(c) Let y be a triangle
in the intersection (il-
lustrated in green) de-
termined by the radical
axis ℓ and the central
angle α, cf. Fig 2b.

h
`

r

(d) The height h di-
vides the area µ(y)
(illustrated in green)
of the triangle y, cf.
Fig 2c, into two sub-
areas of equal size, since
adjacent and opposite
legs have the same
length r.

Figure 2 The neighborhood of two adjacent vertices u and v in a random geometric graph.

▶ Lemma 14. Let X ∼ Bin(n, p) and let c = np ∈ o (n). Then it holds that Pr [X > 1] ≥
(1 − e−c (1 + c)) (1 − o (1)).

Proof. As X > 1 holds if and only if X ̸= 0 and X ̸= 1, we get

Pr [X > 1] = 1 − Pr [X = 0] − Pr [X = 1] = 1 − (1 − p)n − n · p · (1 − p)n−1.

Using that for all x ∈ R it holds that 1 − x ≤ e−x, we get

Pr [X > 1] ≥ 1 − e−pn − n · p · e−p(n−1)

= 1 − e−c − c · ec/n · e−c

= 1 − e−c
(

1 + c · ec/n
)

.

As ec/n goes to 1 for n → ∞, we get the claimed bound. ◀

3.4 Many Edges Have Large Common Regions
In Section 3.3, we derived a lower bound on the probability that Nu∩v ≥ Nu\v provided that
the probability for a vertex to end up in the shared region Ru∩v is sufficiently large compared
to Ru\v. In the following, we estimate the measures of these regions depending on the distance
between u and v. Then, we give a lower bound on the probability that µ(Ru∩v) ≥ µ(Ru\v).

▶ Lemma 15. Let G ∼ G(n, r) be a random geometric graph with expected average degree δ,
let {u, v} ∈ E be an edge, and let τ := dist(u,v)

r . Then,

µ(Ru∩v) = δ

(n − 1)π

(
2 arccos

(τ

2

)
− sin

(
2 arccos

(τ

2

)))
and (8)

µ(Ru\v) = µ(Rv\u) = δ

n − 1 − µ(Ru∩v). (9)

Proof. We start with proving Equation (8). Let i and j be the two intersection points of the
disks of u and v, let α be the central angle enclosed by i and j, and let x be the corresponding
circular sector, cf. Fig 2b. Moreover, let the triangle y be a subarea of x determined by α
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and the radical axis ℓ, cf. Fig 2c. Let h denote the height of the triangle y, cf. Fig 2d.
For our calculations, we restrict the length of ℓ by the intersection points i and j. Since
we consider the intersection between disks and thus ℓ divides the area µ(Ru∩v) into two
subareas of equal sizes, it holds that µ(Ru∩v) = 2 (µ(x) − µ(y)). Considering the two areas
µ(x) and µ(y), it holds that

µ(x) = α

2 r2 and µ(y) = h · ℓ

2 = cos
(α

2

)
r · sin

(α

2

)
r = sin(α)

2 r2. (10)

For the central angle α we know cos (α/2) = h/r = τ/2 and therefore α = 2 arccos
(

τ
2
)
.

Together with Equation (10), we obtain

µ(Ru∩v) = 2 (µ(x) − µ(y)) = 2
(

2 arccos
(

τ
2
)

2 r2 −
sin
(
2 arccos

(
τ
2
))

2 r2

)
. (11)

The area of a general circle is equal to πr2. Since we consider a ground space with total
area 1, the area of one disk in the random geometric graph equals δ

n−1 , i.e., r2 = δ
(n−1)π .

Together with Equation (11), we obtain Equation (8).
Equation (9): We get the claimed equality by noting that µ(Ru∩v) + µ(Ru\v) = πr2. ◀

▶ Lemma 16. Let G ∼ G(n, r) be a random geometric graph, and let {u, v} ∈ E be an edge.
Then Pr

[
µ(Ru∩v) ≥ µ(Ru\v)

]
≥
( 4

5
)2.

Proof. Let τ = dist(u,v)
r . By Lemma 15 with µ(Ru∩v) ≥ µ(Rv\u), we get(

2 arccos
(τ

2

)
− sin

(
2 arccos

(τ

2

)))
≥ π

2 ,

which is true for τ ≥ 4
5 . The area of a disk of radius 4

5 r is
(
π( 4

5 r)2) /
(
πr2) =

( 4
5
)2 times

the area of a disk of radius r. Hence, the fraction of edges with distance at most 4
5 r is at

least
( 4

5
)2, concluding the proof. ◀

3.5 Proof of Theorem 6
By Theorem 7, the probability that a random edge {u, v} is monochrome is at least 1

2 +
Pr [D] /2, where D is the event that the common neighborhood of u and v is more decisive
than each exclusive neighborhood. It remains to bound Pr [D].

Existence of an edge yields a large shared region. Let R be the event that µ(Ru∩v) ≥
µ(Ru\v). Note that this also implies µ(Ru∩v) ≥ µ(Rv\u) as µ(Ru\v) = µ(Rv\u). Due to the
law of total probability, we have

Pr [D] ≥ Pr [R] · Pr [D | R] .

Due to Lemma 16, we have Pr [R] ≥
( 4

5
)2. By conditioning on R in the following, we can

assume that µ(Ru∩v) ≥ δ
2n ≥ µ(Ru\v) = µ(Rv\u), where δ is the expected average degree.

Neighborhood sizes are roughly binomially distributed. The next step is to go from the
size of the regions to the number of vertices in these regions. Each of the remaining n′ = n−2
vertices is sampled independently to lie in one of the regions Ru∩v, Ru\v, Rv\u, or Ru∪v.
Denote the resulting numbers of vertices with X1, X2, X3, and X4, respectively. Then
(X1, X2, X3, X4) follows a multinomial distribution with parameter p = (p, q, q, 1 − p − 2q)
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for p = µ(Ru∩v) and q = µ(Ru\v) = µ(Rv\u). Note that Nu∩v = X1, Nu\v = X2 + 1, and
Nv\u = X3 + 1 holds for the sizes of the common and exclusive neighborhoods, where the +1
comes from the fact that v is always a neighbor of u and vice versa.

We apply Lemma 12 to obtain independent binomially distributed random variables Y1,
Y2, and Y3 that are likely to coincide with X1 = Nu∩v, X2 = Nu\v − 1, and X3 = Nv\u − 1,
respectively. Let B denote the event that (Nu∩v, Nu\v − 1, Nv\u − 1) = (Y1, Y2, Y3). Again,
using the law of total probabilities and due to the fact that R and B are independent, we get

Pr [D | R] ≥ Pr [B | R] · Pr [D | R ∩ B] = Pr [B] · Pr [D | R ∩ B] .

Note that p, q ≤ δ
n for the expected average degree δ. Thus, Lemma 12 implies that

Pr [B] ≥
(

1 − 3δ
2
/n
)

. Conditioning on B makes it correct to assume that Nu∩v ∼ Bin(n′, p),
(Nu\v − 1) ∼ Bin(n′, q), (Nv\u − 1) ∼ Bin(n′, q) are independently distributed. Additionally
conditioning on R gives us p ≥ δ

2n ≥ q.

A large shared region yields a large shared neighborhood. In the next step, we consider
an event that makes sure that the number Nu∩v of vertices in the shared neighborhood is
sufficiently large. Let N1, N2, and N3 be the events that Nu∩v ≥ Nu\v, Nu∩v ≥ Nv\u, and
Nu∩v > 1, respectively. Let N be the intersection of N1, N2, and N3. We obtain

Pr [D | R ∩ B] ≥ Pr [N | R ∩ B] · Pr [D | R ∩ B ∩ N ]
≥ Pr [N1 | R ∩ B] · Pr [N2 | R ∩ B] · Pr [N3 | R ∩ B] · Pr [D | R ∩ B ∩ N ] ,

where the last step follows from Lemma 5 as the inequalities in N1, N2, and N3 all go in
the same direction. Note that Nu∩v ≥ Nu\v is equivalent to Nu∩v > Nu\v − 1. Due to the
condition on B, Nu∩v and Nu\v − 1 are independent random variables following Bin(n′, p)
and Bin(n′, q), respectively, with p ≥ q due to the condition on R. Thus, we can apply
Lemma 13, to obtain

Pr [N1 | R ∩ B] = Pr [N2 | R ∩ B] ≥ 1
2 − 1√

2π⌊δ/2⌋(1 − o (1))
,

and Lemma 14 gives the bound

Pr [N3 | R ∩ B] ≥ 1 − e−δ/2
(

1 + δ

2 · (1 + o (1))
)

.

Note that both of these probabilities are bounded away from 0 for δ ≥ 2. Conditioning on N

lets us assume that the shared neighborhood of u and v contains at least two vertices and
that it is at least as big as each of the exclusive neighborhoods.

A large shared neighborhood yields high decisiveness. The last step is to actually bound
the remaining probability Pr [D | R ∩ B ∩ N ]. Note that, once we know the number of vertices
in the shared and exclusive neighborhoods, the decisiveness no longer depends on R or B, i.e.,
we can bound Pr [D | N ] instead. For this, let D1 and D2 be the events that Du∩v > Du\v

and Du∩v > Dv\u, respectively. Note that D is their intersection. Moreover, due to Lemma 5,
we have Pr [D | N ] ≥ Pr [D1 | N ] · Pr [D2 | N ]. To bound Pr [D1 | N ] = Pr [D2 | N ], we use
Theorem 11. Note that the b and a in Theorem 11 correspond to Nu∩v and Nu\v + 1 (the
+1 coming from the fact that Nu\v does not count the vertex v). Moreover conditioning on
N implies that a ≤ b and b > 1. Thus, Theorem 11 implies Pr [D1 | N ] ≥ 3

16 .
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Conclusion. The above arguments give us that the fraction of monochrome edges is

1
2 + Pr [D]

2 ≥ 1
2 + 1

2 · Pr [R]︸ ︷︷ ︸
≥( 4

5 )2

· Pr [B]︸ ︷︷ ︸
1−o(1)

·
(

Pr [N1 | R ∩ B]︸ ︷︷ ︸
≥ 1

2 − 1√
2π⌊δ/2⌋

)2 · Pr [N3 | R ∩ B]︸ ︷︷ ︸
≥1−e−δ/2

(
1+ δ

2

) ·
(

Pr [D1 | N ]︸ ︷︷ ︸
≥ 3

16

)2
,

where we omitted the o (1) terms for Pr [N1 | R ∩ B] and Pr [N3 | R ∩ B], as they are already
covered by the 1 + o (1) coming from Pr [B]. This yields the bound stated in Theorem 6:

1
2 + 9

800 ·

1
2 − 1√

2π⌊δ/2⌋

2

·
(

1 − e−δ/2
(

1 + δ

2

))
· (1 − o (1)).

4 Monochrome Edges in Erdős–Rényi Graphs

In the following, we are interested in the probability that an edge {u, v} is monochrome
after the FSP on Erdős–Rényi graphs. In contrast to geometric random graphs, we prove
an upper bound. To this end, we show that it is likely that the common neighborhood is
empty and therefore u and v choose their types to be the predominant type in their exclusive
neighborhood, which is t+ and t− with probability 1

2 , each.

▶ Theorem 17. Let G ∼ G(n, p) be an Erdős–Rényi graph with expected average degree
δ = o (

√
n). The expected fraction of monochrome edges after the FSP is at most 1

2 + o (1).

Proof. Given an edge {u, v}, let M be the event that {u, v} is monochrome. We first split M

into disjoint sets with respect to the size of the common neighborhood and apply the law of
total probability and get

Pr [M ] = Pr [M | Nu∩v = 0] · Pr [Nu∩v = 0] + Pr [M | Nu∩v > 0 ] · Pr [Nu∩v > 0]
≤ Pr [M | Nu∩v = 0] · 1 + 1 · Pr [Nu∩v > 0] .

We bound each of the summands separately. For estimating Pr [M | Nu∩v = 0], we note
that the types of u and v are determined by the predominant type in disjoint vertex sets. By
definition of the FSP this implies that the probability of a monochrome edge is equal to 1

2 .
We are left with bounding Pr [Nu∩v > 0]. Note that Nu∩v ∼ Bin

(
n, p2). Thus, by

Bernoulli’s inequality we get Pr [Nu∩v > 0] = 1 − Pr [Nu∩v = 0] = 1 −
(
1 − p2)n ≤ np2.

Noting that np2 = o (1) holds due to our assumption on δ, concludes the proof. ◀

References
1 Aishwarya Agarwal, Edith Elkind, Jiarui Gan, and Alexandros A. Voudouris. Swap stability

in Schelling games on graphs. In AAAI’20, pages 1758–1765, 2020. URL: https://aaai.org/
ojs/index.php/AAAI/article/view/5541.

2 Jennifer Badham, Frank Kee, and Ruth F. Hunter. Network structure influence on simulated
network interventions for behaviour change. Social Networks, 64:55–62, 2021.

3 Paul Balister, Béla Bollobás, J. Robert Johnson, and Mark Walters. Random majority
percolation. Random Structures & Algorithms, 36(3):315–340, 2010.

4 George Barmpalias, Richard Elwes, and Andrew Lewis-Pye. Tipping points in 1-dimensional
Schelling models with switching agents. Journal of Statistical Physics, 158(4):1572–9613, 2015.

5 George Barmpalias, Richard Elwes, and Andrew Lewis-Pye. Unperturbed Schelling segregation
in two or three dimensions. Journal of Statistical Physics, 164(6):1460–1487, 2016.

ISAAC 2021

https://aaai.org/ojs/index.php/AAAI/article/view/5541
https://aaai.org/ojs/index.php/AAAI/article/view/5541


29:16 The Flip Schelling Process on Random Graphs

6 George Barmpalias, Richard Elwes, and Andrew Lewis-Pye. Minority population in the one-
dimensional Schelling model of segregation. Journal of Statistical Physics, 173(5):1572–9613,
2018.

7 George Barmpalias, Richard Elwes, and Andy Lewis-Pye. Digital morphogenesis via Schelling
segregation. In FOCS’14, pages 156–165, 2014.

8 Stephen Benard and Robb Willer. A wealth and status-based model of residential segregation.
Journal of Mathematical Sociology, 31(2):149–174, 2007.

9 Itzhak Benenson, Erez Hatna, and Ehud Or. From Schelling to spatially explicit modeling
of urban ethnic and economic residential dynamics. Sociological Methods and Research,
37(4):463–497, 2009.

10 Prateek Bhakta, Sarah Miracle, and Dana Randall. Clustering and mixing times for segregation
models on Z2. In SODA’14, pages 327–340, 2014.

11 Davide Bilò, Vittorio Bilò, Pascal Lenzner, and Louise Molitor. Topological influence and
locality in swap Schelling games. In MFCS’20, pages 15:1–15:15, 2020.

12 Thomas Bläsius, Tobias Friedrich, Martin S. Krejca, and Louise Molitor. The flip Schelling
process on random geometric and Erdös-Rényi graphs, 2021. arXiv:2102.09856.

13 Christina Brandt, Nicole Immorlica, Gautam Kamath, and Robert Kleinberg. An analysis of
one-dimensional Schelling segregation. In STOC’12, pages 789–804, 2012.

14 Paulo R. A. Campos, Viviane M. de Oliveira, and F. G. Brady Moreira. Small-world effects in
the majority-vote model. Physical Review E, 67:026104, February 2003.

15 Claudio Castellano, Santo Fortunato, and Vittorio Loreto. Statistical physics of social dynamics.
Review of Modern Physics, 81:591–646, 2009.

16 Hau Chan, Mohammad T. Irfan, and Cuong Viet Than. Schelling models with localized social
influence: A game-theoretic framework. In AAMAS’20, pages 240–248, 2020.

17 Ankit Chauhan, Pascal Lenzner, and Louise Molitor. Schelling segregation with strategic
agents. In SAGT’18, pages 137–149. Springer, 2018.

18 William A. V. Clark. Residential segregation in american cities: A review and interpretation.
Population Research and Policy Review, 5(2):95–127, 1986.

19 Vasco Cortez and Sergio Rica. Dynamics of the Schelling social segregation model in networks.
Procedia Computer Science, 61:60–65, 2015.

20 Richard Durrett and Jeffrey E. Steif. Fixation results for threshold voter systems. Annals of
Probability, 21(1):232–247, 1993.

21 Hagen Echzell, Tobias Friedrich, Pascal Lenzner, Louise Molitor, Marcus Pappik, Friedrich
Schöne, Fabian Sommer, and David Stangl. Convergence and hardness of strategic Schelling
segregation. In WINE’19, pages 156–170, 2019.

22 Edith Elkind, Jiarui Gan, Atushi Igarashi, Warut Suksompong, and Alexandros A. Voudouris.
Schelling games on graphs. In IJCAI’19, pages 266–272, 2019.

23 Paul Erdős and Alfréd Rényi. On random graphs I. Publicationes Mathematicae Debrecen,
6:290–297, 1959.

24 William Feller. An Introduction to Probability Theory and Its Applications, volume 1. John
Wiley & Sons, 3rd edition, 1968.

25 Mark A Fossett. Simseg–a computer program to simulate the dynamics of residential segregation
by social and ethnic status. Race and Ethnic Studies Institute Technical Report and Program,
Texas A&M University, 1998.

26 Linton C. Freeman. Segregation in social networks. Sociological Methods & Research, 6(4):411–
429, 1978.

27 Laetitia Gauvin, Jean-Pierre Nadal, and Jean Vannimenus. Schelling segregation in an
open city: A kinetically constrained blume-emery-griffiths spin-1 system. Physical Review E,
81:066120, 2010.

28 Stefan Gerhold, Lev Glebsky, Carsten Schneider, Howard Weiss, and Burkhard Zimmermann.
Computing the complexity for Schelling segregation models. Communications in Nonlinear
Science and Numerical Simulation, 13(10):2236–2245, 2008.

http://arxiv.org/abs/2102.09856


T. Bläsius, T. Friedrich, M. S. Krejca, and L. Molitor 29:17

29 Edgar N. Gilbert. Random graphs. Annals of Mathematical Statistics, 30(4):1141–1144, 1959.
30 Mark S. Granovetter. Threshold models of collective behavior. American Journal of Sociology,

83:1420–1443, 1978.
31 Adam Douglas Henry, Paweł Prałat, and Cun-Quan Zhang. Emergence of segregation in

evolving social networks. Proceedings of the National Academy of Sciences, 108(21):8605–8610,
2011.

32 Nicole Immorlica, Robert Kleinberg, Brendan Lucier, and Morteza Zadomighaddam. Exponen-
tial segregation in a two-dimensional Schelling model with tolerant individuals. In SODA’17,
pages 984–993, 2017.

33 Panagiotis Kanellopoulos, Maria Kyropoulou, and Alexandros A. Voudouris. Modified Schelling
games. In SAGT’20, pages 241–256, 2020. doi:10.1007/978-3-030-57980-7_16.

34 David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’03, pages 137–146, 2003.

35 Thomas M. Liggett. Coexistence in threshold voter models. The Annals of Probability,
22(2):764–802, 1994.

36 Thomas M. Liggett. Voter Models, pages 139–208. Springer, 1999.
37 Francisco W.S. Lima, Alexandre O. Sousa, and Muneer A. Sumuor. Majority-vote on dir-

ected Erdős–Rényi random graphs. Physica A: Statistical Mechanics and its Applications,
387(14):3503–3510, 2008.

38 Michael W. Macy. Chains of cooperation: Threshold effects in collective action. American
Sociological Review, 56(6):730–747, 1991.

39 Hamed Omidvar and Massimo Franceschetti. Self-organized segregation on the grid. Journal
of Statistical Physics, 170(4):1572–9613, 2018.

40 Hamed Omidvar and Massimo Franceschetti. Shape of diffusion and size of monochromatic
region of a two-dimensional spin system. In STOC’18, pages 100–113, 2018.

41 Romans Pancs and Nicolaas J. Vriend. Schelling’s spatial proximity model of segregation
revisited. Journal of Public Economics, 91(1):1–24, 2007.

42 Mathew Penrose. Random Geometric Graphs. Oxford University Press, 1st edition, 2003.
43 Luiz F. C. Pereira and F. G. Brady Moreira. Majority-vote model on random graphs. Physical

Review E, 71:016123, 2005.
44 Alexis Poindron. A general model of binary opinions updating. Mathematical Social Sciences,

109:52–76, 2021.
45 Tim Rogers and Alan J McKane. A unified framework for Schelling’s model of segregation.

Journal of Statistical Mechanics: Theory and Experiment, 2011(07):P07006, 2011.
46 Thomas C. Schelling. Models of segregation. American Economic Review, 59(2):488–93, 1969.
47 Thomas C Schelling. Micromotives and Macrobehavior. WW Norton & Company, 2006.
48 Sorin Solomon and Dietrich Stauffer. Ising, Schelling and self-organising segregation. The

European Physical Journal B, 57(4):473–479, 2007.
49 Miehelle J. White. Segregation and diversity measures in population distribution. Population

index, 52 2:198–221, 1986.
50 Zhi-Xi Wu and Petter Holme. Majority-vote model on hyperbolic lattices. Physical Review E,

81:011133, 2010.
51 H. Peyton Young. Individual strategy and social structure: An evolutionary theory of institutions.

Princeton University Press Princeton, N.J, 1998.

ISAAC 2021

https://doi.org/10.1007/978-3-030-57980-7_16




Piecewise-Linear Farthest-Site Voronoi Diagrams
Franz Aurenhammer #

Institute for Theoretical Computer Science, TU Graz, Austria

Evanthia Papadopoulou #

Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland

Martin Suderland #

Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland

Abstract
Voronoi diagrams induced by distance functions whose unit balls are convex polyhedra are piecewise-
linear structures. Nevertheless, analyzing their combinatorial and algorithmic properties in dimen-
sions three and higher is an intriguing problem. The situation turns easier when the farthest-site
variants of such Voronoi diagrams are considered, where each site gets assigned the region of all
points in space farthest from (rather than closest to) it.

We give asymptotically tight upper and lower worst-case bounds on the combinatorial size of
farthest-site Voronoi diagrams for convex polyhedral distance functions in general dimensions, and
propose an optimal construction algorithm. Our approach is uniform in the sense that (1) it can
be extended from point sites to sites that are convex polyhedra, (2) it covers the case where the
distance function is additively and/or multiplicatively weighted, and (3) it allows an anisotropic
scenario where each site gets allotted its particular convex distance polytope.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Voronoi diagram, farthest-site, polyhedral distance, polyhedral sites, general
dimensions

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.30

Funding The first author was supported by Projects I 1836-N15 and I 5270-N, Austria Science
Fund (FWF). The last two authors were supported in part by Projects 200021E_154387 and
200021E_201356, Swiss National Science Foundation (SNF).

1 Introduction

The Voronoi diagram of a set of n geometric objects, called sites, is a well-known space
partitioning structure with numerous applications in diverse fields of science. In its closest-site
variant, this diagram partitions the underlying space into maximal regions such that all
points within one region have the same closest site. The Euclidean Voronoi diagram of point
sites in Rd is well studied; see e.g. [4, 7, 11, 15]. It is a piecewise-linear cell complex of
worst-case complexity Θ(n⌈ d

2 ⌉) and can be constructed in O(n⌈ d
2 ⌉ + n log n) time. There

are many ways to modify this standard diagram, for example, by using different distance
measures, by considering sites of more general shape, or by assigning individual weights to
them. Adapting to practical needs, such generalizations (among several others) have been
studied extensively, and many satisfactory results are available nowadays [4, 18].

For most of these generalized Voronoi diagrams, the partition of space they define
is not piecewise linear any more, but is rather composed of curved geometric objects of
various dimensions and shapes. This complicates their structural analysis as well as their
computational construction, especially in dimensions higher than two (where results are
becoming comparatively sparse). For instance, already in three-dimensional space R3, the
algebraic description of the edges and facets of the Euclidean Voronoi diagram of straight
lines becomes exceedingly complicated [12]. What is more, the combinatorial complexity of
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this diagram is a major open problem in computational geometry [17]. There is a gap of an
order of magnitude between the Ω(n2) lower bound [1] and the only known upper bound of
O(n3+ε), for any ε > 0 [21].

Certain types of Voronoi diagrams retain their piecewise linear structure, however. For
example, the so-called power diagram [2] has this property. Another prominent class, and
the one of interest in the present note, is induced by (convex) polyhedral distance functions.
Intuitively speaking, the distance from a point x to a site s is now measured as the extent at
which a given convex polyhedron P, which being centered at x, has to expand till it starts
touching s.

Several authors succeeded in deriving strong bounds on the combinatorial complexity of
such Voronoi diagrams. If the n sites are points and the distance polytope P is a simplex or a
cube – the latter just giving the L∞ distance – then this complexity in Rd is Θ(n⌈ d

2 ⌉), see [6].
(The dimension d is considered a constant throughout this paper.) In R3, the same bound
still applies when any constant-sized convex polytope is chosen for P [13]. For the sites being
n straight lines in R3, with P defined as before, near-quadratic bounds of Ω(n2α(n)) and
O(n2α(n) log(n)) can be obtained [9]. Here α(n) is the extremely slowly growing inverse
Ackermann function. If we consider as sites disjoint convex polyhedra with n faces in total,
then the complexity is O(n2+ϵ), as has been shown in [16]; this sharpens to O(n2α(n) log(n))
if all the sites are line segments.

Though Voronoi diagrams for convex polyhedral distance functions – in comparison to
Euclidean Voronoi diagrams – thus proved easier to deal with concerning their combinatorial
aspects, this does not seem to carry over to their algorithmic aspects. In fact, the papers
cited above do not provide algorithms for computing such diagrams, and we are not aware of
any construction algorithm particular to them.

As we shall show in this note, the situation changes if the so-called farthest-site variant
of the diagram is considered (rather than the closest-site variant as above). The farthest-site
Voronoi diagram is a partition of the underlying space into regions, such that the points
within one region have the same farthest site (with respect to a given convex polyhedral
distance function, in our case). We will show that the complexity of this diagram in Rd is
Θ(n⌈ d

2 ⌉) in the worst-case, and that it can be computed in optimal time O(n⌈ d
2 ⌉ + n log n),

mainly by using higher-dimensional convex hull algorithms. This result holds under rather
general conditions: Sites can be arbitrary convex polyhedra (which may be unbounded
or overlapping, having a total of n faces of various dimensions), the distance polytope P
may be unbounded (though constant-sized), and the resulting distance function can be
additively and/or multiplicatively weighted for each site. Moreover, each site may get allotted
a particular distance polytope, in order to generate an anisotropic scenario where sites can
influence their surrounding in an individual way.

Farthest-site Voronoi diagrams are useful for performing farthest neighbor queries among
the sites, for computing the smallest ball that contacts all sites, and for finding the largest
gap to be bridged between any two sites – to name a few or their applications. Unfortunately,
Euclidean farthest-site Voronoi diagrams have their peculiarities (unless all sites are points,
in which case their combinatorial and computational behavior is much like their closest-point
counterparts [20]). Their regions may disconnect into a large number of nonconvex parts, and
the close relationship between nonempty regions and the convex hull of the sites is lost; see [3]
for line segment sites in R2, and [19] for a generalization to arbitrary Lp-metrics. The only
result for non-point sites in higher dimensions we are aware of is [5], who derive structural and
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(a) (b) (c)

Figure 1 Two approximations (a) and (b) of a Euclidean farthest-site Voronoi diagram (c). The
sites are three overlapping triangles. Their boundaries are visualized in individual colors, and their
farthest regions are painted accordingly. The distance polygons used – a square in (a) and a regular
8-gon in (b) – are shown in the bottom-left corner.

combinatorial properties for the farthest-site diagram of lines and line segments in Rd. They
characterize its unbounded cells, of which there are up to Θ(nd−1) many in the worst-case,
and describe an algorithm to compute these in near-optimal time.

With our results in the present note, a large class of Euclidean farthest-site Voronoi
diagrams for convex sites in Rd, even in their weighted and/or anisotropic variants, can be
approximated in a piecewise-linear manner, and are computable by a simple and uniform
approach: In R3 for example, being probably the most interesting case, the Euclidean ball
can be β-approximated by a convex polytope P with O(1/β) vertices [16], such that the
convex distance induced by P is at most 1+β times the Euclidean distance. As a particularly
useful result, a simple method for computing a piecewise-linear approximation of size O(n2)
of the Euclidean farthest-site Voronoi diagram for lines and/or line segments in R3 becomes
available. Even the planar instance is interesting: The fastest known algorithm for the
Euclidean farthest-site Voronoi diagram for polygonal sites in R2 runs in time O(n log3 n) [8],
whereas our approximation can be computed in time O(n log n) if the polygonal sites are
convex. Figure 1 illustrates the similarity between these diagrams.

2 Convex polyhedral distance

We define a polyhedron in Rd as the nonempty and finite (but possibly unbounded) intersection
of closed halfspaces of Rd. Note that a polyhedron does not need to be full-dimensional: For
example lines, line segments, and single points are included as lower-dimensional instances.

Any d-dimensional polyhedron P which contains the origin in its interior can be used to
define a so-called convex polyhedral distance, from a point x ∈ Rd to a point q ∈ Rd:

δP(x, q) = inf
t≥0

{ t | q ∈ x + t · P } .

In other words, δP(x, q) describes the amount t ≥ 0 by which P , when being placed at x,
has to be scaled so as to cover q; see Figure 2. Note that δP is a directed distance. We shall
call P the distance polytope that induces the distance function δP .

Let PR = { −p | p ∈ P } denote the reflection of the distance polytope about the origin.
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▶ Observation 1. We have δP(x, q) = δPR(q, x).

Proof. Suppose that q ∈ x + t · P. Then there is a point p ∈ P with q = x + t · p, that
is, x = q − t · p. Thus we have x ∈ q − t · P, which by the identity −t · P = t · PR means
x ∈ q + t · PR. ◀

Consider a set S of point sites in Rd, and identify Rd with the hyperplane xd+1 = 0 in
(d+1)-dimensional space Rd+1. Observation 1 suggests to associate the distance polytope P
with a distance cone CP in Rd+1, such that CP reflects with its height the polyhedral distance
induced by P.

CP =
⋃
t≥0

(
t · PR

t

)
(1)

CP is a polyhedral cone obtained from scaling the reflected polytope PR. Its apex is at
the origin. Let CP(qi) be the translate of CP with its apex at some point site qi ∈ S. Then
for any point x ∈ Rd, the (d+1)st coordinate (called height) of the vertical projection of x to
CP(qi) equals the distance δP(x, qi).

Let now, more generally, the set S consist of polyhedral sites si in Rd. We construct for
each site si ∈ S a distance cone as follows. Take the Minkowski sum si ⊕CP . (The Minkowski
sum of point sets A and B is defined as A ⊕ B = { a + b | a ∈ A ∧ b ∈ B }.) Because the
Minkowski sum of two convex polyhedra is again a convex polyhedron, the object si ⊕ CP is
the intersection of halfspaces of Rd+1. One of them is bounded from below by the hyperplane
xd+1 = 0 (if the site si is full-dimensional). We ignore this halfspace, and intersecting the
remaining ones we obtain an unbounded polyhedron in Rd+1, which we call the distance cone
of si, and denote with CP(si).

CP(si) exhibits the following useful properties.

For the special case of si being a point site qi, the definition of CP(si) is consistent with
that of CP(qi) before.
Let dP(x, si) be the height of the vertical projection of a point x ∈ Rd to CP(si). If x

does not lie in the interior of si, then dP(x, si) is non-negative and equals the polyhedral
distance of x to si, which is commonly defined as

δP(x, si) = inf
t≥0

{ t | x + (t · P) ∩ si ̸= ∅ } .

If x lies in the interior of si then dP(x, si) is negative, and measures how much x is inside
the (full-dimensional) polyhedral site si by taking the minimum polyhedral distance to
its facets; see Figure 1. This is because the part of CP(si) that lies below the hyperplane
xd+1 = 0 is determined solely by halfspaces which stem from si (and not from CP in
Formula (1)). That is, dP is related to a generalized medial axis of si in this case.

3 Farthest-site Voronoi diagram

The so-called farthest-site Voronoi diagram of a set S of sites in Rd, for short FVD(S), is a
partition of Rd into regions such that all points within a fixed region have the same farthest
site. As before, let the sites si in S be polyhedra. These may be of any dimension k, for
0 ≤ k ≤ d, and are not required to be disjoint or bounded.
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O

P

x
q

q’

x+2P

x+0.7P

Figure 2 Polyhedral distance induced by P: dP(x, q) = 2 and dP(x, q′) = 0.7.

We are interested in the diagram FVD(S) induced by the convex polyhedral distance
function dP in Section 2, for a given distance polytope P. Being a farthest-site diagram,
FVD(S) corresponds to the pointwise maximum of the functions dP(x, si), for si ∈ S, on Rd.
FVD(S) thus corresponds to the upper envelope of the boundaries of the distance cones
CP(si) that define these functions, which, in turn, is given by the common intersection of
these cones. Let us formulate this result in the following way.

▶ Theorem 2. Let I be the (unbounded) convex polyhedron in Rd+1 that results from
intersecting the distance cones CP(si), for all sites si ∈ S. Then FVD(S) is the vertical
projection of I onto the hyperplane xd+1 = 0 of Rd+1.

One of the consequences of Theorem 2 is that FVD(S) is a piecewise linear diagram.
Each region of FVD(S) is pre-partitioned into convex polyhedra (the projected facets of I),
and these regions define a partition of Rd. Let us point out that, in earlier papers on Voronoi
diagrams for polyhedral distance functions (e.g. in [16]), the distance of a point x to a site
was set to zero in case x falls in the interior of that site. As a consequence, when the sites
are not chosen to be pairwise disjoint, the part of Rd covered by their union does not get
partitioned by the diagram. Our more general definition of polyhedral distance, via distance
cones, remedies this shortcoming.

The combinatorial complexity of FVD(S) is given by that of the projection polyhedron I

in Rd+1. I is the intersection of distance cones, and each distance cone CP(si), in turn, is
the intersection of halfspaces of Rd+1. It is clear from Section 2 that the number of such
halfspaces per cone is bounded by the number of facets of the Minkowski sum si ⊕ PR, for
the reflected distance polytope PR. A single face of si, combined with a single face of PR,
can yield at most one facet of si ⊕PR; see e.g. [10]. Therefore, if we assume that P (and with
it PR) is of constant size, and that si has a total of ni faces of different dimensions, then
CP(si) is defined by O(ni) halfspaces of Rd+1. In conclusion, when putting n =

∑
si∈S ni,

the polyhedron I is the intersection of O(n) halfspaces of Rd+1, and its complexity is bounded
from above by O(n⌈ d

2 ⌉) (provided d = O(1)), by the well-known upper bound theorem. We
will show in Section 4 that this complexity can be asymptotically attained in the worst
case. Observe that I has O(n) facets, and that FVD(S) thus has this very number of
full-dimensional cells.

Concerning computational aspects, the halfspaces defining a particular cone CP(si) can
be singled out by (basically) computing the Minkowski sum si ⊕ PR. This can be done [10],
for instance, by pairwise adding up the O(ni) vertices of si and the O(1) vertices of PR,
and computing the convex hull of the resulting O(ni) points in Rd, spending a total of
O(n⌊ d

2 ⌋ + n log n) time for all sites si ∈ S, when the optimal convex hull algorithm in [7]
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is applied. The construction of the projection polyhedron I is more time-consuming and
takes O(n⌈ d

2 ⌉ + n log n) time; we use the convex hull algorithm in [7] again, but now for
intersecting O(n) halfspaces in Rd+1.

We may summarize as follows:

▶ Theorem 3. Let S be a set of arbitrary polyhedral sites in Rd, with a total combinatorial
complexity of n. The farthest-site Voronoi diagram FVD(S) of S under the convex distance
function induced by a polytope of constant size is of complexity O(n⌈ d

2 ⌉), and it can be
computed in O(n⌈ d

2 ⌉ + n log n) time. The number of d-dimensional cells of FVD(S) is
bounded by O(n).

The dependence on d of the bounds stated above is the same as for convex hulls of finite
point sets.

4 More properties of FVD

The maximal size of farthest-site diagrams may be much smaller than that of their closest-site
counterparts; several examples can be found in [4]. The question arises whether the upper
bound given in Theorem 3 is asymptotically tight.

For special sets of polyhedral sites in Rd, the diagram FVD(S) is indeed small, namely,
when the sites in S have only a constant number of orientations. Then the halfspaces defining
the projection polyhedron I in Rd+1 will have only a constant number of orientations as well,
and all but O(1) of them will be redundant because their bounding hyperplanes are parallel.
Consequently, the polyhedron I and its projection FVD(S) will be of constant size, and can
be found in O(n) time.

Observe that the case of S being a set of n point sites in Rd is covered above, because
each point site can be described by the intersection of d+1 halfspaces of Rd, having the same
fixed orientations. Not included, however, is the case of n line segment sites in Rd, because
the d + 2 halfspaces describing a line segment will be of different orientation for different sites,
in general. In fact, sites of very simple shape can induce large diagrams, as is shown below.

▶ Lemma 4. There exists a set S of n sites in Rd of constant description such that the
diagram FVD(S) has a complexity of Ω(n⌈ d

2 ⌉).

Proof. There exist two hyperplanes h1, h2 in Rd+1, and two point sets Y1 ⊂ h1 and Y2 ⊂ h2

each of size n
2 , such that the lower convex hull of Y1 ∪ Y2 has Θ(n⌊ d+1

2 ⌋) = Θ(n⌈ d
2 ⌉)

complexity; this follows from Corollary 12 in [14]. W.l.o.g., we may assume (by applying an
affine transformation) that

h1 :
d∑

i=1
xi = 1, h2 :

d−1∑
i=1

xi − xd = 1, and

Y1 ⊂ R ×
(

0,
1
d

]d

, Y2 ⊂ R ×
(

0,
1
d

]d−1
×
[
−1

d
, 0
)

,

(2)

which fixes the hyperplanes and guarantees that most coordinates in Y1 ∪ Y2 are small. We
now choose a distance polytope P and a set S = S1 ∪ S2 of sites such that the projection
polyhedron I for FVD(S) is dual to the lower convex hull of Y1 ∪ Y2.
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Let the hypercube [−1, 1]d serve as P. The set S1 ∪ S2 will consist of n halfspace sites
in Rd. For S1, each of its halfspaces s is constructed from a point y = (y1, . . . , yd+1) ∈ Y1.
In particular, we describe s by the inequality

∑d
i=1 aixi ≤ b, where

a1 = 1, ai = yi

1 −
∑d

j=2 yj

for i = 2, . . . d, and b = yd+1

1 −
∑d

j=2 yj

. (3)

Note that all ai and b are positive because of our assumption (2). Moreover, we have PR = P .
Therefore, the Minkowski sum s ⊕ PR is just a translate of s by the vector (1, 1, . . . , 1)T

in Rd, which implies that the distance cone CP(s) is a single halfspace in Rd+1, bounded
from below by the hyperplane

xd+1 = 1
A

·

(
d∑

i=1
aixi − b

)
, where A =

d∑
j=1

aj . (4)

By a well-known duality transform, the hyperplane in (4) is dual to the point

q = (q1, . . . , qd+1) = 1
A

· (a1, . . . , ad, b)

in Rd+1. Substituting the values in (3) and simple calculations give

qi = yi for i = 2, . . . , d + 1, and q1 = 1 −
d∑

j=2
yj . (5)

But this implies q = y, because both points lie in the hyperplane h1 in (2): We have y ∈ h1
by assumption, and q ∈ h1 by (5).

In a similar manner, we can construct suitable halfspace sites s for S2 from the points y

in Y2. (We omit these details here.) In conclusion, the projection polyhedron I, being the
intersection of all the sites’ distance cones, is the intersection of the upper halfspaces CP(s)
for all s ∈ S1 ∪ S2, and thus I is dual to the lower convex hull of Y1 ∪ Y2. ◀

By Lemma 4, the runtime in Theorem 3 is asymptotically optimal in the worst case for
d ≥ 3. For d = 2, a reduction from sorting proves optimality.

Being the projection of I, the diagram FVD(S) is a polyhedral cell complex in Rd which
is face-to-face. Its cells (polyhedra of dimension d) are nonconvex in general, as are its
facets (polyhedra of dimension d−1). Since the distance polytope P is (more or less) an
approximation of the Euclidean ball, quite a few properties of the Euclidean farthest-site
diagram of S carry over to FVD(S); see e.g. [3, 5]. For example, the region of a site si ∈ S

in FVD(S) (the set of all points in Rd being farthest from si) is disconnected in general, and
it may consist of various cells of FVD(S). Moreover, the following properties of the cells are
preserved.

▶ Lemma 5. All cells of FVD(S) are unbounded, and cells cannot contain voids of any
dimension.

Proof. Let C be some cell of FVD(S), and assume that C is part of the region of the site
s ∈ S. The assertion of the lemma can be easily derived from the following fact: Let x be
an arbitrary point in C, and consider the point y on the boundary of s that realizes the
polyhedral distance dP(x, s). Then the infinite ray r that starts at x and is directed away
from y is totally contained in C.
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Figure 3 Illustrations of the proofs of Lemma 5 (left) and Lemma 6 (right).

To prove this fact, refer to Figure 3 (left). Assume first that x /∈ s. Then t = dP(x, s) ≥ 0,
and the homothet H = x + t · P touches s at y. Since s is the site in S farthest from x,
H intersects all the other sites. Let now x′ be any point on r such that x lies between x′

and y. Put t′ = dP(x′, s). Then H ′ = x′ + t′ · P touches s at y too, and H is covered by H ′,
which implies that H ′ intersects all other sites as well. This implies that x′ lies in the region
of s.

If x ∈ s, on the other hand, then t = dP(x, s) < 0, and we have t · P = u · PR with
u = −t > 0, for the reflected polytope PR. The homothet H = x + u · PR touches s at y,
and since s is farthest from x, H is contained in all other sites now. For any point x′ on r

between x and y, and u′ = −dP(x′, s), H ′ = x′ +u′ ·PR touches s at y again, but is contained
in H now and therefore also in all other sites. So x′ has to lie in the region of s.

In summary, we conclude that the entire ray r lies in the cell C of the region of s. ◀

Let us define the (d−1)-skeleton of FVD(S) as the union of all the facets of FVD(S).
This skeleton can be disconnected, as a simple construction with only two sites shows; see
Figure 4(a): Let site s1 be some polyhedron which approximates a line segment, and take
as site s2 any polyhedron which contains the segment’s midpoint but none of its endpoints.
Then the region of s1 disconnects the (d−1)-skeleton of FVD({s1, s2}). On the other hand,
by the same argument as in [5], the following holds:

▶ Lemma 6. The (d−1)-skeleton of FVD(S) is connected, provided that the sites in S are
pairwise disjoint.

Proof. Assume that this skeleton is not connected; see Figure 3 (right). Then there exists
some cell C of FVD(S) that splits the skeleton into at least two parts. Let s be the farthest
site corresponding to C. The site s does not touch the boundary of C, because of our
assumption on the disjointness of the sites. Thus there exists some point x /∈ C which is
separated from s by C. Let y be the point on s that realizes the polyhedral distance from x

to s. By construction, the line segment xy intersects C, and we choose a point p in this
intersection. Now, by the reasoning in the proof of Lemma 5, the infinite ray emanating from p

in direction x is entirely contained in C. But this implies x ∈ C, which is a contradiction. ◀
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(a) (b)

Figure 4 (a) The (d−1)-skeleton can be disconnected for non-disjoint sites. (b) A weighted
farthest Voronoi diagram of three sites: The blue quadrangle has an additive weight of −1, and the
red pentagon has a multiplicative weight of 1

2 .

5 Variants

In certain applications, a model of Voronoi diagram is required where the sites are capable of
influencing their surrounding in an individual way; see [4, 18] for comprehensive treatments
of this topic. One way to achieve this goal is to assign so-called weights to the sites, which
affect the underlying distance function in an additive and/or multiplicative way.

Let each site si ∈ S have assigned two real numbers a(si) and m(si) > 0, and consider
the weighted polyhedral distance:

dP(x, si)
m(si)

− a(si)

In contrast to the nearest version, the sites’ regions in the farthest Voronoi diagram
shrink with increasing weights. Interestingly, and unlike the situation for the Euclidean
farthest-site diagram, the FVD(S) induced by this distance is still a piecewise-linear cell
complex. This becomes evident when the respective distance cones are considered: Additive
weighting results in a vertical shift of these cones by an amount of a(si), and multiplicative
weighting enlarges by a factor of m(si) the value tan αj of the dihedral angles αj of aperture
of a cone’s facets. In particular, each distance cone still is the intersection of O(ni) halfspaces
of Rd+1 when site si is of complexity ni.

Multiplicative weighting leads to the occurrence of bounded regions in FVD(S), as simple
examples show (Figure 4 (b)). However, purely additive weighting preserves the properties
listed in Lemma 5. In particular, all cells are still unbounded: All facets of the projection
polyhedron I for the unweighted FVD(S) are unbounded, and this fact cannot be altered by
vertically shifting any of its defining halfspaces.

We may push things even further, and create an anisotropic scenario by allotting an
individual distance polytope Pi to each site si. In this way, each site is able to “interpret”
its surrounding space in its own way – a concept useful in many situations [4]. In fact, the
multiplicative weighting scheme is just the special case where Pi = m(si) · P .

ISAAC 2021



30:10 Piecewise-Linear Farthest-Site Voronoi Diagrams

In all the extensions above, the properties of the distance cones needed for Theorem 3 to
hold are preserved. We obtain the following general result:

▶ Theorem 7. Theorem 3 remains valid for all the weighted and anisotropic variants of
FVD(S) described above.

Note finally that all these extensions can be combined, and lead to a very general class
of easy-to-compute piecewise-linear farthest-site Voronoi diagrams in Rd, where the impact
of each site can be tuned by its shape, its weights, and its distance polytope including the
choice of the polytope’s center.
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Abstract
We investigate generalizations of the graph theoretic notions of effective resistance and capacitance
to simplicial complexes and prove analogs of formulas known in the case of graphs. In graphs the
effective resistance between two vertices is O(n); however, we show that in a simplicial complex the
effective resistance of a null-homologous cycle may be exponential. This is caused by relative torsion
in the simplicial complex. We provide upper bounds on both effective resistance and capacitance that
are polynomial in the number of simplices as well as the maximum cardinality of the torsion subgroup
of a relative homology group denoted Tmax(K). We generalize the quantum algorithm deciding
st-connectivity in a graph and obtain an algorithm deciding whether or not a (d−1)-dimensional cycle
γ is null-homologous in a d-dimensional simplicial complex K. The quantum algorithm has query
complexity parameterized by the effective resistance and capacitance of γ. Using our upper bounds
we find that the query complexity is O

(
n5/2 · d1/2 · Tmax(K)2). Under the assumptions that γ is the

boundary of a d-simplex (which may or may not be included in the complex) and that K is relative
torsion-free, we match the O(n3/2) query complexity obtained for st-connectivity. These assumptions
always hold in the case of st-connectivity. We provide an implementation of the algorithm whose
running time is polynomial in the size of the complex and the relative torsion. Finally, we prove a
duality theorem relating effective resistance and capacitance when K is d-dimensional and admits an
embedding into Rd+1.
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1 Introduction

The effective resistance between two vertices s and t in a graph is a quantity that measures
how “well-connected” s and t are; specifically, the more, shorter paths connecting s and t, the
lower the effective resistance between s and t. While effective resistance was originally defined
in the context of resistor networks, it has since been discovered that effective resistance has
many other interpretations. It is a metric on the vertices of a graph [17]; it is proportional to
the expected number of steps in a random walk from s to t and back to s [3]; if {s, t} is an
edge, it is propotional to the probabilty {s, t} is in a random spanning tree of G [15]. Effective
resistance also has applications. Sampling edges in a graph with probability proportional
to the effective resistance between their endpoints produces a graph that approximates the
spectrum of the Laplacian of the original graph [27]. Effective resistance is also a parameter
in the running time of a quantum algorithm to decide if s and t are connected [1].

Recently, effective resistance has independently been generalized from graphs to simplicial
complexes by several groups of authors, although each group defines effective resistance
for a different object or objects in a simplicial complex. Kook and Lee [18] and Osting,
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31:2 Effective Resistance and Capacitance in Simplicial Complexes

Palande, and Wang [23] both define effective resistance as a quantity associated with the
boundary of a simplex.1 This definition is analogous to the graph definition, as a pair of
vertices is the boundary of an edge. Hansen and Ghrist [9] give a more general definition and
define effective resistance as a quantity between two homologous cycles2. Our definition is
equivalent to Hansen and Ghrist’s, as we define effective resistance as a quantity associated
with a null-homologous cycle.

Recent research has shown that some properties of effective resistance in graphs generalize
to simplicial complexes. For example, Kook and Lee prove that the effective resistance of the
boundary a simplex is the probability that the simplex is in the high-dimensional equivalent
of a spanning tree [18]. Osting, Palande, and Wang show that sampling d-simplices according
to the effective resistance of their boundaries approximately preserves the spectrum of the
(d−1)-dimensional up-Laplacian [23].

1.1 Our Contributions
In this paper, we continue this trend of investigating effective resistance in simplicial complexes.
Our main contribution is to show that there is a quantum algorithm for testing if a cycle is
null-homologous in a simplicial complex that is parameterized by the effective resistance and
effective capacitance of a cycle. The effective capacitance of a cycle is inspired by a quantity
on graphs, and to our knowledge, we are the first to explore effective capacitance in simplicial
complexes. Null-homology testing is an important primitive in computational topology. For
example, the iterative algorithm for computing Betti numbers works by adding simplices one
by one to the complex and testing if the boundary of each is already null-homolgous in the
previous complex [4].

Motivated by our quantum algorithm, we investigate bounds on the effective resistance
and effective capacitance. We prove a negative result. While the effective resistance between
a pair of vertices in a graph is bounded above by the number of vertices in the graph,
the effective resistance of a (d−1)-cycle in a simplical complex can be exponential in the
number of the d-simplices in the complex. The classical algorithm to determine if a cycle is
null-homologous is to solve a system of linear equations in the dth boundary matrix, so the
quantum algorithm is slower than the classical algorithm in the worst case. On the positive
side, we prove this exponential behavior is the result of relative torsion in dimension (d−1),
and we prove bounds on effective resistance and effective capacitance in terms of the size of
relative torsion groups of the complex.

We also prove a duality result between effective resistance and effective capacitance. For
a d-dimensional simplicial complex K embedded in Rd+1, the effective capacitance of certain
d-cycles in K is the effective resistance between a pair of nodes in the dual graph. Our proof
relies on a high dimensional generalization of planar graphs with two nodes s and t appearing
on the same face. Due to space constraints, this result can be found in Appendix C.

2 Preliminaries

Given a set of vertices V , a simplicial complex K on V is a subset of the power set
K ⊆ P (V ) with the following property: for each τ ∈ K, if σ ⊂ τ , then σ ∈ K. We assume
there is a fixed but arbitrary order on the vertices V = (v1, . . . , vn). A simplex σ ∈ K of size

1 Kook and Lee do not require the simplex to be in the complex.
2 Hansen and Ghrist define effective resistance on a cellular sheaf, which is a generalization of a simplicial

complex.
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|σ| = d+ 1 is a d-simplex. The set of all d-simplices of K is denoted Kd. The d-skeleton
of K, denoted Kd, is the simplicial complex of all simplices of K of size at most d+ 1. The
dimension of K is the largest d such that K contains a d-simplex; a 1-dimensional simplicial
complex is a graph.

The dth chain group Cd(K) is the vector space over R with orthonormal basis Kd.
Unless otherwise stated, all vectors and matrices will be in the basis Kd. An element of
Cd(K) is a d-chain. Let σ = {vi0 , . . . , vid} be a d-simplex in K with vij ≤ vik whenever
j ≤ k. The boundary of σ is the (d − 1)-chain ∂σ =

∑d
j=0(−1)j(σ \ {vij }). The dth

boundary map is the linear map ∂d : Cd(K) → Cd−1(K) defined ∂df =
∑
σ∈Kd

f(σ)∂σ
where f(σ) denotes the component of f indexed by the simplex σ. A key property of the
boundary map is that ∂d−1 ◦ ∂d = 0. An element in ker ∂d is a cycle, and an element in
im ∂d is a boundary or a null-homologous cycle. The boundary maps have the property
that ∂d ◦ ∂d+1 = 0, so im ∂d+1 ⊂ ker ∂d. The dth homology group is the quotient group
Hd(K) = ker(∂d)/ im(∂d+1). The dth Betti number βd is the dimension of Hd(K). The
dth coboundary map is the map δd := ∂Td+1 : Cd(K) → Cd+1(K). An element of ker δd
is a cocycle, and an element in im δd−1 is a coboundary. We will use the notation ∂[K]
and δ[K] when we want to specify the complex associated with the (co)boundary operator.
For some of our results we will need to consider integral homology. The integral chain
group Cd(K,Z) is the free abelian group generated by the set Kd whose elements are formal
sums

∑
σi∈Kd

αiσi for αi ∈ Z. The integral homology groups Hd(K,Z) are constructed in
the same way as with coefficients over the reals.

The dth up Laplacian3 is Ld = ∂d+1δd. There are two variants of the up Laplacian: the
weighted up Laplacian and the normalized up Laplacian. Let w : Kd+1 → R+ be a weight
function on the (d+1)-simplices. Let W : Cd+1(K) → Cd+1(K) be the diagonal matrix with
Wτ,τ = w(τ). The dth weighted up Laplacian is LWd = ∂d+1Wδd. The degree of a
d-simplex σ is deg(σ) =

∑
τ∈Kd+1 : σ⊂τ w(τ). Let D : Cd(K) → Cd(K) be the diagonal matrix

with Dσ,σ = deg(σ). The dth normalized up Laplacian is L̃d = D−1/2∂d+1WδdD
−1/2.

We will make use of the bra-ket notation for vectors when discussing the quantum
algorithm as this is the convention in the quantum computing literature. A bra is a row
vector represented by the notation ⟨v|. A ket is a column vector represented by the notation
|v⟩. The inner product of u and v is represented as ⟨u|v⟩.

Finally, we will often want to refer to the set of simplices given a non-zero value by a
chain f . We call this set the support of f and denote it supp(f) = {σi ∈ Kd : f(σi) ̸= 0}.

3 Effective Resistance and Effective Capacitance

Let γ ∈ Cd−1(K) be a cycle in a simplicial complex. We associate two quantities with γ,
its effective resistance and effective capacitance. The effective resistance is finite if and
only if γ is null-homologous, and the effective capacitance is finite if and only if γ is not
null-homologous. We begin with the definition of effective resistance.

▶ Definition 1. Let K be a simplicial complex with weight function w : Kd → R+. Let γ be
a (d−1)-cycle in K. If γ is null-homologous, the effective resistance of γ is Rγ(K,W ) =
γT
(
LWd

)+
γ, where

(
LWd

)+ is the Moore-Penrose pseudoinverse of LWd ; if γ is not null-
homologous, then Rγ(K,W ) = ∞. When obvious, we drop the weights from the notation and
write Rγ(K).

3 There are related operators called the down Laplacian and the Laplacian (see [8]), but we won’t use
either in this paper.
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This definition of effective resistance is consistent with effective resistance in graphs
(see [26]) and other definitions of effective resistance in simplicial complexes [18, 23, 9].
However, this definition gives little intuition about effective resistance. We now prove there
is an alternative definition of effective resistance in terms of chains with boundary γ. We
begin with two definitions.

▶ Definition 2. Given a d-dimensional simplicial complex K and a (d − 1)-dimensional
null-homologous cycle γ, a unit γ-flow is a d-chain f ∈ Cd(K) such that ∂f = γ.

In the case of graphs a unit γ-flow is a flow sending 1 unit of flow from its source to its
sink. We now define the flow energy of a unit γ-flow, which quantifies the size of the flow.

▶ Definition 3. Given a d-dimensional simplicial complex K with weight function w :
Cd(K) → R+ and a unit γ-flow f , the flow energy of f on K is J(f) =

∑
σ∈K(d)

f(σ)2

w(σ) =
fTW−1f where W is the diagonal matrix whose entries are the weights of the d-simplices.

We will now relate unit γ-flows and their energy to the definition of effective resistance.

▶ Lemma 4. Let K be a simplicial complex and let γ be a null-homologous d-cycle. The
effective resistance of γ is the minimum flow energy over all unit γ-flows, i.e. Rγ(K) =
min{J(f) | ∂f = γ}

Proof. We use two well-known properties of the pseudoinverse.
1. If a matrix B = AAT , then B+ = (AT )+A+.
2. Let B be a matrix and |v⟩ ∈ imB. The vector B+v is the minimum-norm vector that B

maps to v, i.e. B+v = arg min{∥u∥ : Bu = v}.
Our first observation is that we can factor the weighted Laplacian as

LWd = ∂d+1Wδd

= (∂d+1W
1/2)(∂d+1W

1/2)T .

By property 1 above, (LWd )+ = ((∂d+1W
1/2)T )+(∂d+1W

1/2)+. Therefore,

Rγ(K) = γT ((∂d+1W
1/2)T )+(∂d+1W

1/2)+γ

= ||(∂W 1/2)+γ||2.

By property 2 above, Rγ(K) is the minimum squared-norm of a vector that ∂d+1W
1/2 maps

to γ. Let f = (∂W 1/2)+γ; the vector f is the unit γ-flow of minimum flow energy, which we
now prove. A vector v is mapped to γ by ∂W 1/2 if and only if W 1/2v is mapped to γ by ∂
as W 1/2 is a bijection, i.e. W 1/2v is a unit γ-flow. Moreover, the flow energy of W 1/2v is
J(W 1/2v) = (W 1/2v)TW−1(W 1/2v) = vT v = ||v||2. Therefore, the minimum flow energy of
a unit γ-flow is the minimum squared-norm of a vector that ∂W 1/2 maps to γ, which we
previously saw was Rγ(K). ◀

We say that (∂W 1/2)+γ is the minimum-energy unit γ-flow.
The definition of effective capacitance is less intuitive than the definition for effective

resistance, both in graphs and simplicial complexes. As well, there are fewer results about
effective capacitance in graphs than effective resistance and no previous results about effective
capacitance in simplicial complexes. The effective capacitance of γ in a graph is the minimum
energy of any unit γ-potential, which is analogous to effective resistance that was the minimum
energy of any unit γ-flow. Before providing the definition of unit γ-potential in a simplicial
complex we will begin by reviewing the definition of a unit st-potential in a graph, which
can be found in [12].
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Let G be a graph such that s and t are connected in G, and let H ⊆ G be a subgraph
such that s and t are not connected in H. A unit st-potential is a function p : V (G) → R
such that p(t) = 1, p(s) = 0, and for any two vertices u, v in the same connected component
of H, p(u) = p(v). Viewing p as a 0-chain we see by the last property that its coboundary
is zero in H. Intuitively, our definition of a unit γ-potential measures “how far” a cycle γ
is from null-homologous in a subcomplex L of K. The definition of a unit γ-potential is
analogous to the defintion of a unit st-potential.

▶ Definition 5. Let L ⊂ K be simplicial complexes, and let γ ∈ Cd−1(L) be a (d−1)-cycle
such that γ is null-homologous in K but not L. A unit γ-potential in L is a (d−1)-chain p

such that δ[L]p = 0 and pT γ = 1.

▶ Definition 6. Given simplicial complexes L ⊂ K with weight function w : Cd(K) → R and
a γ-potential p in L, the potential energy of p on K is J (p) =

∑
σ∈Kd

((δ[K]p)Tσ)2w(σ) =
(δ[K]p)TW (δ[K]p).

Figure 1 in the appendix shows a γ-potential. It is not obvious from the definition that a
unit γ-potential will even exist for γ. We prove this in the following lemma.

▶ Lemma 7. Let L ⊂ K be simplicial complexes whose (d− 1)-skeletons are equal, and let
γ ∈ Cd−1(L) be a cycle. Then there exists a unit γ-potential in L if and only if γ is not
null-homologous in L.

Proof. Observe that ker δd−1[L] = (im ∂d[L])⊥ as δd−1[L] = ∂[L]T . Assume there is a γ-
potential p in L. As δ[L]p = 0, then p ∈ ker δd−1[L] = (im ∂d[L])⊥. As pT γ = 1 we see that
γ has a non-zero component in (im ∂d[L])⊥, so γ ̸∈ im ∂[L]. Alternatively, suppose that γ is
not null-homologous in L. Then γ has a non-zero component in (im ∂d[L])⊥ = ker δ[L]. Let
q = Πker δ[L]γ, where Πker δ[L] is the projection onto ker δ[L]. Then qT γ ̸= 0 and δ[L]q = 0.
The vector q is not necessarily a unit γ-potential as it is not necessarily the case that qT γ = 1,
but the scaled vector p = 1

qT γ
is a unit γ-potential. ◀

Just as the effective resistance of γ was the minimum energy of any unit γ-flow, the
effective capacitance of γ is the minimum energy of any unit γ-potential.

▶ Definition 8. Let L ⊂ K be simplicial complexes, and let γ ∈ Cd−1(L) be a (d− 1)-cycle
that is null-homologous in K. If γ is not null-homologous in L, the effective capacitance
of γ in L is Cγ(L) = minp J (p) where p is a γ-potential. If γ is null-homologous in L, then
Cγ(L) = ∞.

4 Basic Properties: Parallel, Series, and Monotonicity Formulas

We now prove there are formulas for effective resistance in simplicial complexes analogous to
the series and parallel formulas for effective resistance in graphs. These formulas not only
are useful for calculating effective resistance, but they also provide intuition for effective
resistance. In particular, they provide justification for the claim that effective resistance
measures “how null-homologous” a cycle is in a complex.

▶ Theorem 9 (Series Formula). Let K1 and K2 be simplicial complexes with γ ∈ Cd−1(K1) ∩
Cd−1(K2), Cd(K1) ∩ Cd(K2) = ∅, and γ null-homologous in K1 and K2. Let K = K1 ∪ K2.
Then Rγ(K) ≤ Rγ1(K1) + Rγ2(K2). Equality is achieved when γ1 and γ2 are the unique
chains in K1 and K2 that sum to γ.
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Proof. Let γ1 and γ2 be null-homologous cycles in K1 and K2 respectively that sum to γ,
and let f1 and f2 be the minimum-energy unit γ1- and γ2-flows, respectively. Then f1 + f2
is a unit γ-flow, and we can bound Rγ(K) ≤ J(f) = J(f1) + J(f2) = Rγ1(K1) + Rγ2(K2);
the equality J(f) = J(f1) + J(f2) follows from the fact that K1 and K2 have disjoint sets of
d-simplices.

To prove the other direction, observe that γ can always be written as the sum of two
null-homologous chains γ1 ∈ Cd−1(K1) and γ2 ∈ Cd−1(K2). Any unit γ-flow g defines null-
homologous (d− 1)-cycles γ1 and γ2 that sum to γ; namely, if g1 and g2 are the restriction
of g to K1 and K2 respectively, then γ1 = ∂g1 and γ2 = ∂g2.

If γ can be uniquely decomposed as γ = γ1 +γ2, then any unit γ-flow f can be decomposed
as a unit γ1-flow f1 and a unit γ2-flow f2. It follows that the energy of f is minimized when
the energy of f1 and f2 are both minimized. Hence, Rγ(K) = Rγ(K1) + Rγ(K2). ◀

▶ Theorem 10 (Parallel Formula). Let K1 and K2 be simplicial complexes with γ ∈ Cd−1(K1)∩
Cd−1(K2), Cd(K1) ∩ Cd(K2) = ∅, and γ null-homologous in K1 and K2. Let K = K1 ∪ K2.
Then Rγ(K) ≤

(
1

Rγ (K1) + 1
Rγ (K2)

)−1
. Equality is achieved when im ∂[K1] ∩ im ∂[K2] =

span{γ}.

Proof. Let f1 and f2 be the minimum energy unit γ-flows in K1 and K2 resp. For any real
number t, the chain gt = tf1 + (1 − t)f2 is a unit γ-flow in K. We can therefore bound the
effective resistance as Rγ(K) ≤ mint J(gt).

To get the tighest bound of Rγ(K), we now derive topt := arg mint J(gt). Observe that
J(gt) = t2J(f1) + (1 − t)2J(f2) = t2Rγ(K1) + (1 − t)2Rγ(K2); this follows from the fact that
K1 and K2 have disjoint sets of d-simplices. The quantity J(gt) is a positive quadratic in
t, so topt is the value of t where the derivative of J(gt) with respect to t is 0. Taking the
derivative, we find that topt = Rγ(K2)/(Rγ(K1) + Rγ(K2)). Plugging topt into J(gtopt), we
find that

J(gtopt) =
(

Rγ(K2)
Rγ(K1) + Rγ(K2)

)2
Rγ(K1) +

(
1 − Rγ(K2)

Rγ(K1) + Rγ(K2)

)2
Rγ(K2)

=
(

Rγ(K2)
Rγ(K1) + Rγ(K2)

)2
Rγ(K1) +

(
Rγ(K1)

Rγ(K1) + Rγ(K2)

)2
Rγ(K2)

=
(

1
Rγ(K1) + Rγ(K2)

)2 (
Rγ(K1) + Rγ(K2)

)
Rγ(K1)Rγ(K2)

= Rγ(K1)Rγ(K2)
Rγ(K1) + Rγ(K2)

=
(

1
Rγ(K1) + 1

Rγ(K2)

)−1
.

This implies the upper bound on Rγ(K) in the theorem statement. To get the lower bound,
observe that any unit γ-flow g in K can be orthogonally decomposed into chains g1 ∈ Cd(K1)
and g2 ∈ Cd(K2), so ∂[K]g1 +∂[K]g2 = γ. We claim that ∂[K1]g1 = tγ and ∂[K2]g2 = (1− t)γ
for some value of t; if not, then ∂[K1]g1 = tγ+η and ∂[K2]g2 = (1− t)γ−η for some non-zero
η ̸∈ span{γ}, which cannot be the case as im ∂[K1] ∩ im ∂[K2] = span{γ}. This proves the
chain g is a linear combination of a unit γ-flow in K1 and a unit γ-flow in K2. The chain gt
is the lowest energy such linear combination. ◀
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Figure 2 in the appendix shows examples of unit γ-flows in series and parallel. These
formulas justify the claim that the effective resistance of a null-homologous cycle γ is a
measure of how null-homologous γ is. The more chains with boundary γ, the smaller the
effective resistance of γ by the parallel formula. The smaller the chains bounding γ, the
lower the effective resistance by the series formula.

A similar result to the series and parallel formula for effective resistance in graphs is
Rayleigh monotonicity. Rayleigh monotonicity says that adding edges to a graph can only
decrease the effective resistance between any pair of vertices; this reinforces the notion that
effective resistance measures how well-connected a pair of vertices are, as adding an edge
can only make a pair of vertices better connected. We prove a similar result for simplicial
complexes.

▶ Theorem 11 (Rayleigh Monotonicity). Let K ⊂ L be simplicial complexes. Let |γ⟩ ∈
Cd−1(K) ∩ Cd−1(L) be a null-homologous cycle in both complexes. Then Rγ(L) ≤ Rγ(K).

Proof. As Cd(K) ⊂ Cd(L), then any unit γ-flow in K is also a unit γ-flow in L. As the
effective resistance is the minimum energy of a unit γ-flow, then clearly Rγ(L) ≤ Rγ(K). ◀

5 Bounds on resistance and capacitance

In this section, we provide upper bounds on the resistance and capacitance of a cycle γ
in an unweighted simplicial complex K. Our upper bounds are polynomial in the number
of d-simplices and the cardinality of the torsion subgroup of the relative homology groups.
In particular, our bounds on resistance and capacitance are dependent on the maximum
cardinality of the torsion subgroup of the relative homology group Hd−1(L,L0,Z), where
L ⊂ K is a d-dimensional subcomplex and L0 ⊂ L is a (d−1)-dimensional subcomplex. In
the worst case, our upper bounds are exponential in the number of d-simplices. There exist
simplicial complexes such that the torsion subgroup of Hd−1(K,Z) has cardinality n while
K only has O(log1/d n) vertices [22]. Note that such a complex contains at most O(nd)
d-simplices.

In Theorem 17 we provide an example of a simplicial complex containing a cycle γ whose
effective resistance is exponential in the number of simplices in the complex. It is important
to reiterate that our bounds are in terms of the torsion of the relative homology groups.
There exist simplicial complexes with no torsion in their homology groups but that do have
torsion in their relative homology groups. An example of this is the Möbius strip. The
Möbius strip has no torsion, but it has torsion relative to its boundary [5].

Our results rely on a change of basis on the boundary matrix called the normal form
which reveals information about the torsion subgroup of Hd−1(K,Z). We state the normal
form theorem below.

▶ Theorem 12 (Munkres, Chapter 1 Section 11 [21]). There are bases for Cd(K,Z) and
Cd−1(K,Z) such that the matrix for the boundary operator ∂d : Cd(K,Z) → Cd−1(K,Z) is

in normal form, i.e. ∂̃d =
[
D 0
0 0

]
where D is a diagonal matrix with entries d1, . . . , dm

such that each di divides di+1 and each 0 is a zero matrix of appropriate dimensionality. The
normal form of ∂d satisfies the following properties:
1. The entries d1, . . . , dm correspond to the torsion coefficients of Hd−1(K,Z) ∼= Zβd ⊕Zd1 ⊕

· · · ⊕ Zdm
(where Z1 = 0),

2. The number of zero columns is equal to the dimension of ker(∂d).
Moreover, the boundary matrix ∂ in the standard basis can be transformed to ∂̃ by a set of
elementary row and column operations. If ∂ is square, these operations multiply det ∂ by ±1.
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Using Theorem 12, we obtain an upper bound on the determinants of the square sub-
matrices of the boundary matrix ∂d[K] in terms of the relative homology groups of K. Let
L be d-dimensional subcomplex of K, and let L0 be a (d−1)-dimensional subcomplex of K.
The relative boundary matrix ∂d[L,L0] is the submatrix of ∂d obtained by including
the columns of the d-simplices in L and excluding the rows of the (d−1)-simplices in L0.
With the relative boundary matrices, one can define the relative homology groups as
Hk(L,L0,Z) = ker ∂k[L,L0]/ im ∂k+1[L,L0]. More information on the relative boundary
matrix can be found in [5]. We denote the cardinality of the torsion subgroup of the relative
homology group Hd−1(L,L0,Z) by T (L,L0). Similarly, we denote the maximum T (L,L0)
over all relative homology groups as Tmax(K).

▶ Lemma 13. Let ∂d[L,L0] be a k × k square submatrix of ∂d constructed by including
columns for the d-simplices L and excluding rows for the (d−1)-simplices L0. The magnitude
of the determinant of ∂d[L,L0] is bounded above by the cardinality of the torsion subgroup of
Hd−1(L,L0,Z), i.e. | det (∂d[L,L0]) | ≤ T (L,L0).

Proof. Without loss of generality, we assume that det(∂d[L,L0]) ̸= 0; if det(∂d[L,L0]) = 0,
the bound is trivial. Since ∂d[L,L0] is a non-singular square matrix, its normal form
∂̃d[L,L0] is a diagonal matrix D = diag(d1, . . . , dk). By Theorem 12, the determinant of
∂d[L,L0] is equal to ± det(∂̃d[L,L0]) =

∏k
i=1 di. Also by Theorem 12, the torsion subgroup

of Hd−1(L,L0) is Zd1 ⊕ · · · ⊕ Zdk
which has cardinality T (L,L0) =

∏k
i=1 di. ◀

We are now ready to upper bound the effective resistance of a cycle γ in a simplicial
complex K.

▶ Theorem 14. Let K be an unweighted d-dimensional simplicial complex with n d-simplices.
Let γ be a unit-length null-homologous (d−1)-cycle in K. The effective resistance of γ is
bounded above as Rγ(K) = O

(
n2 · Tmax(K)2).

Proof. First, we remove d-simplices from K to create a new complex L such that ker(∂d[L]) =
0 and im ∂d[K] = im ∂d[L]. Theorem 11 proves that removing d-simplices only increases the
effective resistance, so Rγ(K) ≤ Rγ(L). As ker(∂d[L]) = 0, there is a unique unit γ-flow
f ∈ Cd−1(L), which implies Rγ(L) = ||f ||2.

The matrix ∂d[L] has full column rank, so we can find a non-singular nd × nd square
submatrix of ∂d[L]; call this submatrix B. Let L0 be the (d− 1)-dimensional subcomplex
that contains the (d− 1)-simplices corresponding to rows excluded from B; B is the relative
boundary matrix ∂d[L,L0]. We have that Bf = c, where c is the restriction of γ to the rows
of B. Observe that ∥c∥ ≤ ∥γ∥ = 1

We will apply Cramer’s rule to upper bound the size of f . Let f(σ) denote the component
of f indexed by the d-simplex σ. Cramer’s rule gives the equality f(σ) = det(Bσ,c)

det(B) where
Bσ,c is the matrix obtained by replacing the column of B indexed by σ with the vector c.
Since det(B) is integral, | det(B)| ≥ 1, we can drop the denominator and use the inequality
|f(σ)| ≤ | det(Bσ,c)|. We bound | det(Bσ,c)| by its cofactor expansion on the column c,
specifically | det(Bσ,c)| =

∣∣∑nd

i=1(−1)i+j · ci · det(Bc,iσ,c)
∣∣ ≤

∑nd

i=1 |ci|·t(K) = O (
√
n · Tmax(K))

where Bc,iσ,c denotes the submatrix obtained by removing the column c and removing the
ith row and ci denotes the ith component of c. The first inequality comes from Lemma 13,
as Bc,iσ,c is the relative boundary matrix ∂[L \ {σ},L0 ∪ σi], where σi is the (d−1)-simplex
corresponding to the ith row of B. The factor of

√
n comes from our assumption that

∥c∥ ≤ 1 and the fact that
∑nd

i=1 |ci| = ∥c∥1 ≤
√

| supp(c)| · ∥c∥2 ≤
√
n · ∥c∥2, which can be

shown using the Cauchy-Schwarz inequality. Finally, we compute the flow energy of f as
J(f) =

∑
σ∈Kd f(σ)2 ≤

∑nd

i=1 n · Tmax(K)2 = O
(
n2 · Tmax(K)2). The effective resistance of γ

is the flow energy of f , so the result follows. ◀
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The same argument also applies for any subcomplex L ⊂ K where γ is null-homologous
in L which gives us the following corollary.

▶ Corollary 15. Let L ⊂ K be an unweighted d-dimensional simplicial complex and γ a
null-homologous (d−1)-cycle in L. The effective resistance of γ in L is bounded above by
Rγ(L) = O

(
n2 · Tmax(K)2).

In order to upper bound the effective capacitance of γ, we need to make two additional
assumptions. We need to assume that as input γ has integral coefficients and that each
coefficient is bound above by a constant. Even though γ is given as input as an integral cycle,
we still normalize γ as a preprocessing step. Normalizing γ does not change whether or not
γ is null-homologous. We state the theorem but leave the proof to the appendix. The proof
idea is similar to that of the bound on effective resistance, but with a few extra technical
details.

▶ Theorem 16. Let L ⊂ K be an unweighted d-dimensional simplicial complexes, and let
γ̂ ∈ Cd−1(L) be a (d− 1)-cycle that is null-homologous in K but not in L. Assume also that
γ̂ is integral and each of the coefficients |γ̂i| = O(1). The effective capacitance of γ := γ̂/∥γ̂∥
in K(x) is bounded above by Cγ(L) = O

(
n3 · d · Tmax(K)2).

Recall that t(K) could be exponential in the size of the complex. To end the section, we
now provide an example of a simplicial complex containing a cycle γ such that the effective
resistance of γ is exponential in the size of the complex.

▶ Theorem 17. There exists a 2-dimensional simplicial complex with Θ(n) triangles and a
cycle γ such that the effective resistance of γ is Θ(22n).

Proof. Let RPγ denote a simplicial complex homeomorphic to the real projective plane with
a disk removed; the cycle γ boundary of the removed disk. Hence, we have that the boundary
of the sum of the triangles in the complex is ∂2RPγ = 2α+ γ for some 1-cycle α. We require
RPγ to be triangulated in such a way that | supp(α)| = | supp(γ)|; that is, α and γ contain
the same number of edges. Let the constant c denote the number of triangles in RPγ . See
Figure 3 in the appendix for a triangulation of RPγ .

We consider a collection of disjoint complexes RPγ0 ,RPγ1 , . . . ,RPγn−1 ,Dγn
. Each RPγi

is constructed in the same way was RPγ , and Dγn triangulation of a disk using c triangles
with boundary γn such that | supp(γn)| = | supp(γ)|. The sum of the triangles of each RPγi

has boundary ∂2RPγi
= 2αi + γi.

We consider the simplicial complex K constructed by taking the quotient space under
the identification αi ∼ γi+1. That is, we glue the cycle αi in RPγi

along the cycle γi+1 in
RPγi+1 . The resulting complex contains a unique unit γ0-flow f . The chain f assigns a value
of 1 to each triangle in RPγ0 , a value of -2 to each triangle in RPγ1 , and in general, a value
of (−1)i2i+1 to each triangle in RPγi

and Dγn
. To see that f is indeed a unit γ0-flow we

compute the boundary

∂f =
(
n−1∑
i=0

(−1)i · 2i∂RPγi

)
+ (−1)n · 2n∂Dγn

=
(
n−1∑
i=0

(−1)i · 2i(γi + 2γi+1)
)

+ (−1)n · 2nγn

= γ0.
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The chain f is unique because the value of f must be equal to 1 on each triangle in RPγ0 ,
and the values on the triangles of RPγi

determines the values on the triangles of RPγi+1 and
Dγn

as the γi terms must cancel out in ∂f .
As f is the unique unit γ0-flow, the effective resistance of f is the flow energy of γ. The

flow energy of f is J(f) =
∑n
i=0 c · (2i)2 = c

3
(
22n+2 − 1

)
= Θ(22n). ◀

6 A Quantum Algorithm for Null-Homology Testing

In this section we provide an application of effective resistance and capacitance in simplicial
complexes. We show that a quantum algorithm based on the span program model can
be used to decide whether or not a cycle γ is null-homologous in a simplicial complex K.
An introduction to the span program model can be found in Appendix 6.1. The query
complexity of this algorithm is parameterized by the maximum (finite) effective resistance
and capacitance of γ over all subcomplexes of K.

Our algorithm is a generalization of the quantum algorithm developed by Belovs and
Reichardt to decide st-connectivity in a graph [1]. Their algorithm is parameterized by the
effective resistance and capacitance of the 0-cycle |t⟩ − |s⟩ in the graph. Upper bounds on
the effective resistance and capacitance imply a query complexity of O(n3/2), where n is the
number of vertices [12].

Our upper bounds on effective resistance and capacitance imply that the query complexity
is polynomial in both the number of d-simplices as well as the cardinality of the largest
torsion subgroup of a relative homology group of K. In the case that K is a graph, we
match the O(n3/2) upper bound. Under the assumptions that K is relative torsion free and
that γ is the boundary of a d-simplex (which may or may not be included in the complex)
we also match the O(n3/2) upper bound. Note that these assumptions are always true for
st-connectivity in graphs.

6.1 A brief introduction to span programs

Span programs were first defined by Karchmer and Wigderson [14] and were first used for
quantum algorithms by Reichardt and Špalek [24]. Intuitively, a span program is a model of
computation which encodes a boolean function f : {0, 1}n → {0, 1} into the geometry of two
vector spaces and a linear operator between them. Encoding f into a span program implies
the existence of a quantum query algorithm evaluating f (Theorem 20.)

▶ Definition 18. A span program P = (H,U , |τ⟩, A) over the set of strings {0, 1}n is a
4-tuple consisting of:
1. A finite dimensional Hilbert space H = H1 ⊕ · · · ⊕ Hn where Hi = Hi,0 ⊕ Hi,1,
2. a vector space U ,
3. a non-zero vector |τ⟩ ∈ U , called the target vector
4. a linear operator A : H → U .
For every string x = (x1, . . . , xn) ∈ {0, 1}n we associate the Hilbert space H(x) = H1,x1 ⊕
· · · ⊕ HN,xn

and the linear operator A(x) = AΠH(x) : H → U where ΠH(x) is the projection
of H onto H(x).

The quantum query complexity of evaluating P depends on the sizes of the positive and
negative witnesses, which we now define.
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▶ Definition 19. Let P be a span program and let x ∈ {0, 1}N . A positive witness for x is
a vector |w⟩ ∈ H(x) such that A|w⟩ = |τ⟩. The positive witness size of x is

w+(x,P) = min{∥|w⟩∥2 : |w⟩ ∈ H(x), A|w⟩ = |τ⟩}.

If no positive witness exists for x, then w+(x,P) = ∞. If there is a positive witness for x,
then x is a positive instance.

A negative witness for x is a linear map ⟨w| : U → R such that ⟨w|AΠH(x) = 0 and
⟨w|τ⟩ = 1. The negative witness size of x is

w−(x,P) = min{∥⟨w|A∥2 : ⟨w| : U → R, ⟨w|AΠH(x) = 0, ⟨w|τ⟩ = 1}.

If no negative witness exists for x, then w−(x,P) = ∞. If there is a negative witness for x,
then x is a negative instance.

A string x ∈ {0, 1}N will either be a positive or negative instance of P . A span program
P decides the function f : {0, 1}n → {0, 1} if f(x) = 1 when x is a positive instance and
f(x) = 0 when x is a negative instance. A span program can also evaluate a partial boolean
function g : D → {0, 1} where D ⊂ {0, 1}n by the same criteria.

Span programs are a popular method in quantum computing because there are upper
bounds on the complexity of evaluating span programs in the query model. The query
model evaluates the complexity of a quantum algorithm by its query complexity, the
number of times it queries an input oracle. In our case, the input oracle returns the bits
of the binary string x. The input oracle Ox takes Ox : |i⟩|b⟩ → |i⟩|b⊕ xi⟩ where i ∈ [N ].
Observe that the states |i⟩ can be stored on ⌈logN⌉ qubits. Reichardt [25] showed that the
query complexity of a span program is a function of the positive and negative witness sizes
of the program.

▶ Theorem 20 (Reichardt [25]). Let D ⊂ {0, 1}N and f : D → {0, 1}. Let P be a
span program that decides f . Let W+(f,P) = maxx∈f−1(1) w+(x,P) and W (f,P)− =
maxx∈f−1(0) w−(x,P). There is a bounded error quantum algorithm that decides f with
query complexity O

(√
W+(f,P)W−(f,P)

)
.

A caveat to the query complexity model is that in general the time complexity of an algorithm
can be much larger than the query complexity. We will provide details on bounding the time
complexity of our problem in Section A.

6.2 A span program to decide if a cycle is null-homologous
In this section we present a span program for testing if a cycle is null-homologous in a
simplicial complex. This span program is a generalization of the span program for st-
connectivity defined in [14] and used to develop quantum algorithms in [1, 2, 12, 13]. Let
K be a d-dimensional simplicial complex. Let |γ⟩ ∈ Cd−1(K) be a (d − 1)-cycle. Let n be
the number of d-simplices in K. Order the d-simplices {σ1, . . . , σn}. Let w : Kd → R be a
weight function on the d-simplices. We define a span program over the strings {0, 1}n in the
following way.
1. H = Cd(K), with Hi,1 = span{|σi⟩} and Hi,0 = {0}.
2. U = Cd−1(K)
3. A = ∂d

√
W : Cd(K) → Cd−1(K)

4. |τ⟩ = γ
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We denote the above span program by PK. Let x ∈ {0, 1}N be a binary string. We define
the subcomplex K(x) := Kd−1 ∪ {σi : xi = 1}. That is, K(x) contains the d-simplices σi such
that xi = 1. There exists a solution to the linear system ∂d

√
WΠK(x)|v⟩ = |γ⟩ if and only if

the cycle |γ⟩ is null-homologous in K(x) if and only if x is a positive instance of PK. The
span program PK decides the boolean function f : {0, 1}n → {0, 1} where f(x) = 1 if and
only if γ is a null-homologous cycle in the subcomplex K(x).

Given a string x ∈ {0, 1}n we show in the following two lemmas that w+(x,PK) =
Rγ(K(x)) and w−(x,PK) = Cγ(K(x)). The proofs are simple calculations following from the
definitions of effective resistance and capacitance.

▶ Lemma 21. Let x ∈ {0, 1}N be a positive instance. There is a bijection between positive
witnesses |w⟩ for x and unit γ-flows |f⟩ in K(x). Moreover, the positive witness size is equal
to the effective resistance of γ in K(x); that is, w+(x,PK) = Rγ(K(x)).

Proof. Let |w⟩ ∈ Cd(K) be a positive witness for x, so ∂d
√
W |w⟩ = |γ⟩. We con-

struct a unit γ-flow |f⟩ in K(x) by f |=⟩
√
W |w⟩; |f⟩ is indeed a unit γ-flow as ∂d|f⟩ =

∂d
√
W |w⟩ = |γ⟩. Moreover, |w⟩ = W−1/2|f⟩. The flow energy of γ is J(f) = ⟨f |W−1|f⟩ =

⟨W−1/2f |W−1/2f⟩ = ⟨w|w⟩ = ∥|w⟩∥2. Hence, the flow energy of |f⟩ equals the witness size
of |w⟩. Conversely, let |f⟩ be a unit γ-flow in K(x) and define the positive witness for x as
|w⟩ = W−1/2|f⟩. The same computation in the above paragraph shows that the flow energy
of f equals the positive witness size of |w⟩. ◀

▶ Lemma 22. Let x ∈ {0, 1}N be a negative instance. There is a bijection between negative
witnesses ⟨w−| for x and unit γ-potentials ⟨p| in K(x). Moreover, the negative witness size
is equal to the effective capacitance of γ in K(x); that is, w−(x,PK) = Cγ(K(x)).

Proof. Let ⟨w| be a negative witness for x. We will verify that ⟨w| is a unit γ-potential. We
have by the definition of negative witness that ⟨w|γ⟩ = 1. We must show that the coboundary
of ⟨w| is zero in K(x). By the definition of a negative witness we have ⟨w|∂d

√
WΠK(x) = 0

Since
√
W is a diagonal matrix and ΠK(x) restricts the coboundary to the subcomplex K(x),

we see that ⟨w|∂d|σ⟩ = 0 for any σ ∈ K(x)d. To show that the witness size of ⟨w| is equal to
the potential energy, we have

∥⟨w|∂d
√
W∥2 = ⟨w|∂d

√
W

√
W∂Td |w⟩

= ⟨δd−1w|W |δd−1w⟩
= J (w).

Conversely, let ⟨p| be a unit γ-potential for K(x). We will prove that ⟨p| is a negative
witness for γ. Since the coboundary of ⟨p| is zero in K(x) we have ⟨δp|σ⟩ = 0 for each
σ ∈ K(x)d, which implies ⟨p|∂d

√
WΠK(x) = 0 by the reasoning in the previous paragraph.

Also by the previous paragraph, we have that the potential energy of ⟨p| is equal to the
negative witness size of ⟨p| which concludes the proof. ◀

From these two lemmas we obtain the main theorem of the section, the quantum query
complexity of the span program.

▶ Theorem 23. Given a d-dimensional simplicial complex K, a (d− 1)-dimensional cycle
γ that is null-homologous in K, and a d-dimensional subcomplex K(x) ⊆ K, there exists a
quantum algorithm deciding whether or not γ is null-homologous in K(x) whose quantum
query complexity is O

(√
Rmax(γ)Cmax(γ)

)
, where Rmax is the maximum effective resistance

of γ in any subcomplex K(y) and Cmax is the maximum effective capacitance γ in any
subcomplex K(y).
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Proof. By Theorem 20, the span program PK can be converted into a quantum al-
gorithm whose query complexity is O

(√
W+(f,PK)W−(f,PK)

)
where W+(f,PK) =

maxx∈f−1(1) Rγ(K(x)) = Rmax(γ) and W−(f,PK) = maxx∈f−1(0) Cγ(K(x)) = Cmax(γ). ◀

By Theorems 14 and 16 we obtain an upper bound on the query complexity parameterized
by the number of simplices and the cardinality of the torsion subgroups of the relative
homology groups.

▶ Theorem 24. Let K be an unweighted d-dimensional simplicial complex and K(x) a
d-dimensional subcomplex K(x) ⊆ K. Let γ̂ ∈ Cd−1(K) be a (d − 1)-cycle such that γ̂ is
integral and each of the coefficients |γ̂i| = O(1). There exists a quantum algorithm deciding
whether or not γ := γ̂/∥γ̂∥ is null-homologous in K(x) whose quantum query complexity is
O
(
n5/2 · d1/2 · Tmax(K)2).
Finally, we state the query complexity under some assumptions that arise in the case

of st-connectivity in graphs. In this case, the input cycle is |t⟩ − |s⟩, and the support of
|t⟩ − |s⟩ is equal to 2. A factor of n in both the upper bounds on resistance and capacitance
is actually a factor of | supp(γ)| as seen in the proofs of these bounds. Under the assumption
that the support of γ is bounded above by O(d), we can replace a factor of n from both the
flow energy and potential energy of any unit γ-flow and unit γ-potential with a factor of d.
This assumption on the size of supp(γ) is true when γ is the boundary of a d-simplex.

Furthermore, graphs do not contain relative torsion4, so we make the additional assumption
that K is relative torsion-free. Under these assumptions our query complexity matches the
query complexity arising from the span program deciding st-connectivity.

▶ Corollary 25. Let K be an unweighted d-dimensional simplicial complex and K(x) ⊆ K
be a d-dimensional subcomplex. Let γ̂ ∈ Cd−1(K) be a (d− 1)-cycle such that γ̂ is integral
and each of the coefficients |γ̂i| = O(1). Further assume that K is relative torsion-free and
| supp(γ)| = O(d). There exists a quantum algorithm deciding whether or not γ := γ̂/∥γ̂∥ is
null-homologous in K(x) whose quantum query complexity is O

(
(dn)3/2).

6.3 Time efficient implementations
We have given bounds on the query complexity of null-homology testing; however, this does
not imply a bound on the time complexity of evaluating this span program. There are two
obstacles to a time-efficient implementation of the span program: the weights and the input
cycle γ. The weights on the d-simplices make it difficult to implement the matrix ∂

√
W , as

the weights on the simplices can be arbitrary real numbers. The input cycle γ is difficult to
create on a quantum computer for the same reason, as the entries of γ can also be arbitrary
real numbers. We explore the implementation details of this algorithm in the appendix.

We can give a quantum algorithm of bounded time complexity in one particular instance:
when K is unweighted and γ is the boundary of a d-simplex. We do not require said d-simplex
to actually appear in the complex. The time complexity of this case is given in the following
theorem.

4 Graphs do not have relative torsion as the boundary matrix of a graph ∂1[G] is totally unimodular. See
Section 5.1 of the paper [5] for an explanation of the relationship between totally unimodularity of the
boundary matrix and relative torsion of a simplicial complex.
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▶ Theorem 26. Let K be a simplicial complex, γ ∈ Cd−1(K) a null-homologous
cycle, and K(x) ⊂ K be a simplicial complex. Furthermore, assume that γ

is the boundary of a d-simplex and the complex is unweighted. There is a
quantum algorithm for deciding if γ is null-homologous in K(x) that runs in time
Õ
(

(dn)3/2·Tmax(K)2
√
λ

(√
d+

√
dmax

)
+
(√

1
Rγ (K) +

√
Rγ(K)

)(√
d+

√
dmax

))
where dmax is

the maximum degree of a (d−1)-simplex in K and λ is the smallest eigenvalue of the normal-
ized up-Laplacian.

The factor of Õ
((√

1
Rγ (K) +

√
Rγ(K)

)
+
(√

d+
√
dmax

))
comes from the time neces-

sary to create the initial state to the algorithm. Assuming such a state is already provided
the running time reduces to Õ

(
(dn)3/2·Tmax(K)2

√
λ

(√
d+

√
dmax

))
.

We can get a tighter anaylsis when K is a pseudomanifold. When K is a pseudomanifold,
the maximum degree dmax ≤ 2 and the running time reduces to Õ

(
d2·n3/2·Tmax(K)2

√
λ

)
. Steen-

bergen, Klivans, and Mukherjee provide a lower bound on λ for pseudomanifolds similar
to the Cheeger inequality for graphs [28]. Their lower bound is in terms of the boundary
expansion of the complex which is defined as hd := minϕ∈Cd(Z2)

ϕ/∈im ∂d+1

∥∂dϕ∥
minϕ∈im ∂d+1 ∥ϕ+ψ∥ . For

pseudomanifolds they prove a lower bound of λ ≥ h2
d

2(d+1) .
Finally, in the case of graphs there is no relative torsion and we can state the running

time as Õ
(
n3/2
√
λ

)
where λ is bounded below by the well-known Cheeger inequality.
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A Evaluating the span program for null-homology

In this section, we give a quantum algorithm for evaluating the null-homology span program.
Our algorithm is inspired by the quantum algorithm for evaluating st-connectivity span
program in graphs. The first quantum algorithm for evaluating the st-connectivity span
program was given by Belovsz and Reichardt in [1]; however, we follow the slightly different
algorithm introduced by Ito and Jefferies in [11]. We are also greatly indebted to the
presentation of this algorithm given by Jeffery and Kimmel in [13].

The algorithm for evaluating a general span program P = (H,U , |τ⟩, A) is to perform
phase estimation of the vector |w0⟩ := A+|τ⟩ on the unitary operator U = RH(x)RkerA where
the notation RS denotes the reflection about the subspace S. (The unitary RS = 2ΠS − I,
where ΠS is the projection onto S.) Intuitively, if x is a positive instance, then |w0⟩ will be
close to an eigenvector of U with phase 0. If x is a negative instance, then |w0⟩ will be far
from any eigenvector of U of phase 0. If we want to evaluate the function f : D → {0, 1}, we
need to perform phase estimation to precision O

(
1/
√
W−(f,P)W+(f,P)

)
. The algorithm

for phase estimation of a unitary U to precision O(δ) performs O(1/δ) implementations
of the unitary U [16], so the algorithm for evaluating the span program P = (H,U , |τ⟩, A)
requires O

(√
W−(f,P)W+(f,P)

)
implementations of U .

We now analyze the time complexity of implementing the unitary U . The reflection
RH(X) can be implemented with one query to Ox. This reflection is the same as the reflection
across the good states in Grover’s Algorithm. The rest of this section is devoted to an
implementation of Rker ∂ .

Recall that ker ∂d ⊂ Cd(K). The idea behind the implementation of Rker ∂ is that instead
of reflecting across ker ∂d directly, we can embed Cd(K) into Cd−1(K) ⊗ Cd(K) by sending
|τ⟩ → c|∂τ⟩|τ⟩ (where c is a normalization constant). We can then implement the reflection
Rker ∂ by implementing a series of “local reflections” on the basis |∂τ⟩|τ⟩.

We consider two subspaces B and C of Cd−1(K) ⊗ Cd(K). The spaces B and C are
defined:

B = span
{

|bτ ⟩ := 1√
d+ 1

|∂τ⟩|τ⟩ : τ ∈ Kd

}
and

C = span
{

|cσ⟩ :=
∑
σ⊂τ

√
w(σ)

deg(σ) |σ⟩|τ⟩ : σ ∈ Kd−1

}
.

The space Cd−1(K) ⊗ Cd(K) has basis {|σ⟩|τ⟩ | σ ∈ Kd−1, τ ∈ Kd}. The vector |bτ ⟩ is
non-zero on a basis element |σ⟩|τ⟩ if and only if σ is on the boundary of τ . Similarly, a
component of |cσ⟩ is non-zero on |σ⟩|τ⟩ if and only if τ is on the coboundary of σ. The vector
|bτ ⟩ can be thought of as being like the boundary of τ , with the additional property that the
set {|bτ ⟩ | τ ∈ Cd(K)} is orthonormal. Similarly, the vector |cσ⟩ is like the coboundary of σ
but orthonormal.

We also define operators that embed Cd(K) and Cd−1(K) into B and C respectively. We
define linear operators MB : Cd(K) → B and MC : Cd−1(K) → C as follows:

MB :=
∑
τ∈Kd

|bτ ⟩⟨τ |,

and

MC :=
∑

σ∈Kd−1

|cσ⟩⟨σ|.

As the columns of MB and MC are orthonormal, both operators are isometries.
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We introduce the matrices MC and MB as they have the property that kerM†
CMB = ker ∂,

which we prove in the follow lemma. This fact will give us a way to implement Rker ∂ .

▶ Lemma 27. kerM†
CMB = ker ∂.

Proof. We first calculate the matrix M†
CMB . We then argue that kerM†

CMB = ker ∂. For a
(d−1)-simplex σ and a d-simplex τ , we have that

⟨cσ|bτ ⟩ =
∑

τ ′∈Kd:σ⊂τ ′

w(τ)√
deg(σ)

⟨σ|∂τ⟩⟨τ ′|τ⟩ =


√

w(τ)
(d+1) deg(σ) ⟨σ|∂τ⟩ if σ ⊂ τ

0 otherwise
.

So ⟨cσ|bτ ⟩ is non-zero if and only if σ is in the boundary of τ. We use this to calculate the
product M†

CMB :

M†
CMB =

∑
σ∈Kd−1

∑
τ∈Kd

|σ⟩⟨cσ|bτ ⟩⟨τ |

= 1√
(d+ 1)

∑
σ⊂τ

√
w(τ)⟨σ|∂τ⟩√

deg(σ)
|σ⟩⟨τ |

= 1√
(d+ 1)

 ∑
σ∈Kd−1(K)

|σ⟩⟨σ|√
deg(σ)

 ∑
τ∈Kd

√
w(τ)|∂τ⟩⟨τ |

= 1√
(d+ 1)

 ∑
σ∈Kd−1(K)

|σ⟩⟨σ|√
deg(σ)

 ∂
√
W =: ∂̂.

The term |σ⟩⟨σ|√
deg(σ)

is all-zeros matrix except for the (σ, σ)-entry, which is 1√
deg(σ)

. The

sum
∑
σ∈Kd−1

|σ⟩⟨σ|√
deg(σ)

is a diagonal matrix. Accordingly, the matrix ∂̂ is ∂
√
W with each

row scaled. Scaling the rows of a matrix does not change its row space or kernel, so
kerM†

CMB = ker ∂. ◀

The spaces B and C and the matrices MB and MC are inspired by the follow lemma of
Szegedy which is necessary for implementing Rker ∂ .

▶ Lemma 28 (Szegedy [29], Theorem 1). Let MB and MC be matrices with the same number
of rows and orthonormal columns, and let B = spanMB and C = spanMC . The matrix
M†
CMB has singular values at most 1. Let cos θ1, . . . , cos θk be the singular values of M†

CMB

in the range (0, 1). Let U = RCRB. We can decompose the eigenspaces of U as
The (+1)-eigenspace of U is (B ∩ C) ⊕ (B⊥ ∩ C⊥).
The (-1)-eigenspace of U is (B ∩ C⊥) ⊕ (B⊥ ∩ C).
The remaining eigenvalues of U are e±2iθj for 1 ≤ j ≤ k.

The following lemma gives us a way to implment the Rker ∂ . Let RU− be the rotation about
(−1)-eigenspace of U , and let V = M†

BRU−MB. The matrix V embeds Cd(K) into B with
MB, performs a reflection on B about the (−1)-eigenspace of U , and unembeds with M†

B.
The following lemma proves that V = Rker ∂ .

▶ Lemma 29. The matrix V = M†
BRU−MB satisfies the equality V = Rker ∂ .

Proof. We first verify that V is a reflection; that is, we show the eigenvalues of V are 1
and −1. The matrices MB and MC have orthonormal columns, so we can use Lemma 28 to
characterize the eigenspaces of U . The (−1)-eigenspace of U is (B ∩C⊥) ⊕ (B⊥ ∩C) and the
(+1)-eigenspace of U is (B ∩C) ∩ (B⊥ ∩C⊥). As the spaces (B ∩C) and (B ∩C⊥) span B,
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then RU− restricted to B has eigenvalues 1 and −1. As B = imMB and V = M†
BRU−MB ,

then we conclude that V has eigenvalues 1 and −1 as well.
Now that we have determined that V is a reflection, we need to determine which subspace

V reflects across. A corollary of the previous paragraph is that a vector |ψ⟩ ∈ Cd(K) is in
the (+1)-eigenspace of V if and only if MB |ψ⟩ is in the (−1)-eigenspace of U . Specifically,
a vector |ψ⟩ is in the (+1)-eigenspace of V if and only if MB |ψ⟩ ∈ C⊥. As C⊥ = kerM†

C ,
the vector |ψ⟩ is in the (+1)-eigenspace of V if and only if |ψ⟩ ∈ kerM†

CMB . We proved in
Lemma 27 that kerM†

CMB = ker ∂, so we conclude that V = Rker ∂ ◀

We have a matrix V that implements Rker ∂ ; next, we analyze the complexity of imple-
menting V . We start by analyzing the complexity of implementing RU− , the reflection across
the (−1)-eigenspace of U .

We implement the reflection around the (−1)-eigenspace of U using phase estimation, an
algorithm introduced by Magniez et al. [19]. The algorithm is as follows. We first estimate
the phase of U to some degree of accuracy to be specified shortly. Intuitively, we need to
estimate the phase of U to high enough accuracy to distinguish between −1 eigenvalues of U
and eigenvalues of U close to −1. We then perform a reflection controlled on the estimated
phase.

The phase gap of a unitary U with eigenvalues {eiθ1 , . . . , eiθk } is min{|θi| : θi ̸= 0}. The
following lemma shows that the phase gap determines the complexity of reflecting across the
1-eigenspace of U .

▶ Lemma 30 (Magniez et al. [19], Paraphrase of Theorem 6). Let U be a unitary with phase
gap θ. A reflection around the 1-eigenspace of U can be performed to constant precision with
O
( 1
θ

)
applications of U .

The phase gap measures gap between the 1-eigenspace of a unitary and all other eigenvalues.
We are interested in the gap in phase between the (−1)-eigenspace of U and the other
eigenvalues of U . This is precisely the phase gap of −U . The following lemma analyzes the
phase gap of −U and gives the complexity of reflecting about the (−1)-eigenspace of U .

▶ Lemma 31. We can implement RU− with O
(√

d+1
λ

)
calls to U , where λ is the smallest

non-zero eigenvalue of the normalized up-Laplacian.

Proof. We need to calculate the phase gap of −U to determine the precision to which we
need to estimate the phase of U . Observe that if θ is the phase of an eigenvalue of U ,
then θ + π is the phase of an eigenvalue of −U . We can bound the phase gap of −U using
Lemma 28. The non-zero eigenvalues of U are {e±i2θj }j , where {cos θj}j were the singular
values of M†

CMB . Therefore, the phases of −U are {±|π − 2θj |}j . Using the inequality that
π/2 − θj ≥ cos θj for θj ∈ [0, π/2], then the phase gap of −U is bounded below by

|π − 2θj | ≥ 2 cos θj ≥ 2 · σmin(M†
CMB)

where σmin(M†
CMB) is the smallest singular value of M†

CMB .
We can actually relate the smallest singular value of M†

CMB to something more mean-
ingful. By the proof of Lemma 27, the matrix M†

CMB = 1√
d+1D

−1/2∂
√
W , where D

is the diagonal matrix with the degrees of the (d−1)-simplices on the diagonal. Thus,
(M†

CMB)(M†
CMB)† = 1

d+1D
−1/2∂WδD−1/2 = 1

d+1D
−1/2LD−1/2. Recall from Section 2 that

the matrix D−1/2LD−1/2 is the normalied up-Laplacian. The singular values of a matrix A
are the square roots of the eigenvalues of AAT . Thus, the smallest singular value of M†

CMB ,
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and the phase gap of −U , is Ω
(√

λ
d+1

)
, where λ is the smallest eigenvalue of ∆. Therefore,

by Lemma 30, we can implement RU− with O

(√
d+1
λ

)
calls to U . ◀

We are almost ready to give the running time for V = Rker ∂ , but first, we need to make a
delicate distinction. The matrices MB and MC have orthonormal columns, but they are not
unitary. We can see this as kerM†

B ≠ 0 and kerM†
C ̸= 0. As MB and MC are not unitary,

they cannot be implemented on a quantum computer. Fortunately, it suffices to implment
unitaries UB and UC such that UB |Cd(K) = MB and UC |Cd−1(K) = MC . Now we can give
the running time for V = Rker ∂ .

▶ Lemma 32. There is an algorithm to perform Rker ∂ in time Õ
(√

d+1
λ (TB + TC)

)
, where

TB and TC are the times to perform UB and UC respectively.

Proof. Lemma 29 shows that Rker ∂ = V = M†
BRU−MB. We can equivalently run

U†
BRU−UB. As UB takes TB by definition, we only need to show we can implement

RU− in Õ
(√

(d+ 1)/λ (TB + TC)
)

time. Lemma 31 shows we can implement RU− with
O(
√

(d+ 1)/λ) calls to U , so we need to show we can implment U in Õ(TB + TC). The
unitary U = RCRB, and we claim we can implement RC and RB in Õ(TB) and Õ(TC)
respectively. We can implement RB as UBRKd

U†
B , where RKd

reflects across the basis states
{|0⟩|σ⟩ | σ ∈ Kd}. We can check if a quantum state is of the form |0⟩|σ⟩ in O(log nd) gates
(specifically, by checking if the basis state is within a certain range), so the unitary RKd

takes O(log nd) gates, and RB takes Õ(TB) time. The unitary RC takes Õ(TC) time by the
same argument. ◀

The running time TB is dependent on how the boundary maps are loaded into the
quantum algorithm. We propose a method of storing the boundary maps in a quantum
computer called the incidence array. The incidence array is adapted from the adjency
array introduced by Durr et al. in [7] to store the adjancy between pairs of vertices in a
graph.

For a d-simplex τ = {v0, . . . , vd}, the down-incidence array is the function g :
|τ⟩|j⟩|0⟩ → |τ⟩|j⟩|τ \ {vj}⟩ for 0 ≤ j ≤ d. The simplices in the boundary of τ have al-
ternating sign. To address this, we also perform a negation conditioned on the parity of |j⟩
to compute (−1)j |τ⟩|j⟩|τ \ {vj}⟩.

Durr et al. [7] claim that queries to the incidence array can be performed in logarithmic
time. As the down-incidence array is identical to the adjacency array5, queries to the
down-incidence also take logarithmic time. We can compute the state |∂τ⟩|τ⟩ with the
down-incidence array and the following lemma.

▶ Lemma 33 (Cade, Montanaro, Belovs [2], Implicit in the proof of Lemma 2). Let f : [m] → [k]
be a function, and let Of be an oracle that computes Of : |i⟩|0⟩ → |i⟩|f(i)⟩. The state

1√
m

∑m
i=1|f(i)⟩ can be computed with O(

√
m) queries to Of and O(polylog(m)) additional

gates.

▶ Corollary 34. The unitary UB can be implemented in O(
√
d) queries to the down-incidence

array and Õ(
√
d) time.

5 The down-incidence array is actually an adjacency array of a graph related to simplicial complexes,
namely, the incidence graph between the (d−1)- and d-simplices.
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It is harder to produce a generic implementation of UC than UB . The d-simplices can have
arbitrary weights, so constructing the states |cσ⟩ in general requires constructing arbitrary
quantum states with real coefficients. However, the weights on the simplices do not affect
whether or not a cycle is null-homologous. Therefore, we can always run our null-homology
test on the unweighted complex; the trade-off is that the effective resistance or effective
capacitance might be higher in the unweighted complex. We analyze the running time of
this case in Section A.

We now analyze the complexity of constructing the initial state |w0⟩/|||w0⟩||. To construct
the dummy state, we start by adding an additional “d-cell” |∅⟩ to the complex with boundary
|γ⟩ (really, we just add |γ⟩ as a column to ∂.) The new cell will have non-trivial overlap
with |w0⟩, so we can construct |w0⟩ by amplifying this component of |∅⟩. We outline this
method in the proof of Theorem 36, but first, we state Lemma 35 which is a generalization
of the parallel formula for effective resistance; its proof is nearly identical to the proof of
Theorem 10.

▶ Lemma 35. Let V = V1 ⊕ V2 be a vector space. Let A : V → U be a linear map,
and let A1 : U1 → V and A2 : U2 → V be the restriction of A to U1 and U2. Let
|t⟩ ∈ imA1 ∩ imA2 ⊂ U . If |s⟩ = A+|t⟩, |s1⟩ = A+

1 |t⟩, and |s2⟩ = A+
2 |t⟩, then

||s||2 ≤
(

1
||s1||2

+ 1
||s2||2

)−1

Equality is achieved when imA1 ∩ imA2 = span{|t⟩}. In this case, |s⟩ = t|s1⟩ + (1 − t)|s2⟩
where t = ||s2||2/(||s1||2 + ||s2||2).

▶ Theorem 36. Let Oγ be the oracle that takes Oγ : |0⟩ → |γ⟩. Let Tγ be the time it takes to
implement Oγ. The state |w0⟩ = ∂+|γ⟩ can be created in Õ((

√
1/Rγ(K) +

√
Rγ(K))(TB +

TC + Tγ)) time.

Proof. We append |γ⟩ as a column to ∂ to create a new matrix ∂̂. Let |∅⟩ be index of the
new column, so ∂̂ = ∂+ |γ⟩⟨∅|. Let |w′

0⟩ = ∂̂+|γ⟩. We conclude that |∅⟩ = |w′
0⟩ + |w′⊥

0 ⟩ where
|w′⊥

0 ⟩ ∈ ker ∂̂, as the projection Πker ∂̂⊥ |∅⟩ = ∂̂+∂̂|∅⟩ = ∂̂+|γ⟩ = |ŵ0⟩.
We construct |w0⟩/∥|w0⟩∥ in two steps. First, we use amplitude amplification to amplify

the |w′
0⟩ component of |∅⟩. We then use a second amplitude amplification to amplify the

|w0⟩ component of |w′
0⟩. These amplitude amplifications are nested, as we need to perform

the first to create the initial state for the second.
If we perform constant time phase estimation of |∅⟩ on the unitary Rker ∂̂ , then we can

map |∅⟩ to |0⟩|w′
0⟩ + |1⟩|w⊥

0 ⟩. We can then amplify the amplitude of |0⟩|w0⟩ part arbitrarily
close to |w0⟩/∥|w0⟩∥ using O(∥|w0⟩∥−1) calls to Rker ∂̂ .

We calculate ∥|w0⟩∥ using the formula from the lemma. The vector |∅⟩ has length 1, so
Lemma 35 shows that

∥|w′
0⟩∥2 =

(
1

Rγ(K) + 1
)−1

= Rγ(K)
Rγ(K) + 1 .

Thus, we need to perform the reflection Rker ∂̂ a total of O(∥|w0⟩∥−1) =
O(
√

(Rγ(K) + 1)/Rγ(K)) times to create |ŵ0⟩/∥|ŵ0⟩∥.
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The next step in our algorithm is to amplify the |w0⟩/∥|w0⟩∥ component of |w′
0⟩/∥|w′

0⟩∥.
By Lemma 35, the state ∥|w′

0⟩∥ = t∥|w0⟩∥ + (1 − t)∥|∅⟩∥ for t = 1/(Rγ(K) + 1). Therefore,
the |w0⟩/∥|w0⟩∥ component of |w′

0⟩/∥|w′
0⟩∥ has norm

t∥|w0⟩∥/∥|w′
0⟩∥ = 1

Rγ(K) + 1

√
Rγ(K)

√
Rγ(K) + 1

Rγ(K)

=
√

1
Rγ(K) + 1

To return the state |w0⟩/∥|w0⟩∥, we need to perform amplitude amplification again. We can
create the state |w′

0⟩ using the amplitude amplification from the previous two paragraphs with
O(
√

(Rγ(K) + 1)/Rγ(K)) applications of Rker ∂′ , and we can reflect across |∅⟩ in constant
time as it is a basis state. To create |w0⟩/∥|w0⟩∥, we need

O

(√
(Rγ(K) + 1)/Rγ(K)

√
(Rγ(K) + 1)

)
= O

(√
Rγ(K) +

√
1

Rγ(K)

)
applications of Rker ∂̂ .

We now argue that we can compute Rker ∂̂ in O(TC + TB + Tγ) time. As was the case
with Rker ∂ , we decompose Rker ∂̂ = M†

B̂
RÛ−MB̂ for space B̂ and Ĉ defined

B̂ = B ∪ {|b∅⟩ := |γ⟩}

Ĉ = span
{

|cσ⟩ := 1√
deg(σ) + 1

|σ⟩|∅⟩ +
∑
σ⊂τ

w(σ)√
deg(σ) + 1

|σ⟩|τ⟩ : σ ∈ Kd−1

}
.

The unitaries MB̂ MĈ , and RÛ− are defined analogously to MB and MC . We can implement
the unitary version of these matrices UB̂ in O(TB + Tγ) and UĈ in O(TC). ◀

We summarize this section in the following theorem.

▶ Theorem 37. Let K be a simplicial complex, γ ∈ Cd−1(K) a null-homologous cycle,
and K(x) ⊂ K be a simplicial complex. There is a quantum algorithm for deciding if γ is
null-homologous in K(x) that runs in time

Õ

(√
(d+ 1)Rmax(K)Cmax(K)

λ
(
√
d+ TC) +

(√
1

Rγ(K) +
√

Rγ(K)
)

(
√
d+ TC + Tγ)

)

Special cases
We now consider a few special cases of the null-homology span program. These special cases
will allow us to replace the terms TB and Tγ in Theorem 37 with concrete running times.

Unweighted simplicial complexes

We now consider the case where there are no weights on the d-simplices, or equivalently, when
w(τ) = 1 for each d-simplex τ . While computing MC is hard in general, in the unweighted
case, we can implement the unitary MC using a straightforward oracle. For a (d−1)-simplex
σ that is incident to the d-simplices {τ1, . . . , τm}, the up-incidence array is the oracle is the
function that maps h : |σ⟩|j⟩|0⟩ → |σ⟩|j⟩|τj⟩. By Lemma 33, the up-incidence array can be
used to compute |cτ ⟩ = 1√

m
|τ⟩|δτ⟩ in O(

√
m) time. The unitary MC computes the state |cσ⟩

in parallel, so computing MC will take
√
dmax queries, where dmax = maxτ∈Cd−1(K) deg(τ)

time. This is summarized in the following lemma.
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▶ Lemma 38. If K is an unweighted simplicial complex, the unitary UC can be implemented
in O(

√
dmax) queries to the up-incidence array and Õ(

√
dmax) time.

Cycle is the boundary of a d-simplex

We now consider the case that the input cycle γ is the boundary of a d-simplex. In this case,
we can implement the oracle Oγ with the down incidence array used to implement MB . We
get the same running time for Tγ as TB .

▶ Lemma 39. If γ is the boundary of a d-simplex, there is a quantum algorithm implementing
Oγ in O(

√
d) queries to the down incidence array and Õ(

√
d) time.

B Omitted proofs

Proof of Theorem 16
Before obtaining our upper bound on the effective capacitance of a cycle we need to prove
one lemma. In the following lemma, we provide an upper bound on the largest singular value
of the coboundary matrix.

▶ Lemma 40. The largest singular value of the coboundary matrix δd−1 is σmax(δd−1) =
O(

√
dn).

Proof. Recall that the (d− 1) up-Laplacian is L = δTd−1δd−1. The squared singular values of
δd−1 are the eigenvalues of L; this follows from the generic theorem that the squared singular
values of a matrix A are the eigenvalues of ATA. Thus, σmax(δd−1)2 ≤

∑
i σi(δd−1)2 =

trace(L), where the σi(δd−1) are the singular values of δd−1. We can obtain an upper bound
on σmax(δd−1) by computing the trace of L. The diagonal elements of L are the degrees of the
(d− 1)-simplices [8, Proposition 3.3.2]. Each d-simplex is the coface of d+ 1 (d−1)-simplices,
so summing up the diagonal of L, we find trace(L) = O(dn). Thus, σmax(δd−1 is O(

√
dn). ◀

▶ Theorem 16. Let L ⊂ K be an unweighted d-dimensional simplicial complexes, and let
γ̂ ∈ Cd−1(L) be a (d− 1)-cycle that is null-homologous in K but not in L. Assume also that
γ̂ is integral and each of the coefficients |γ̂i| = O(1). The effective capacitance of γ := γ̂/∥γ̂∥
in K(x) is bounded above by Cγ(L) = O

(
n3 · d · Tmax(K)2).

Proof. Observe that because the coefficients γ̂i = O(1) then ∥γ̂∥ = O(
√
n). We will use this

fact later in the proof. Let p be a γ-potential. By definition, δ[L]p = 0 and γT p = 1. We can
express these constraints as the linear systemδ[L]

γT

 p =


0
0
...
1


We first remove linearly-dependent columns from this linear system until this system has
full column rank. Columns of the matrix correspond to (d−1) simplices of L, and rows
correspond to d-simplices of L. Removing columns from δ[L] changes δ[L] to the relative
coboundary matrix δ[L,L0] where L0 is the (d−1)-subcomplex corresponding to the columns
that were removed.
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Removing linearly-dependent columns does not change the image of the system of equation,
so there is still a solution r, i.e.δ[L,L0]

c

 r =


0
0
...
1


where c is the subvector of γT after removing the columns. The vector r is not a γ-potential
as it is a vector in Cd−1(L \ L0), not Cd−1(L). However, we can extend r to be a γ-potential
by adding zeros in the entries indexed by L0. Adding zero-valued entries preserves the length
of r.

We now want to remove rows from this matrix so that it has full row rank. Topologically,
removing rows corresponds to removing d-simplices from the complex L to create a new
complex L1. Note that we must always include the row c to have full row rank; otherwise, r
would be a non-zero vector in the kernel of this system, meaning the system does not have
full rank. Removing these rows gives the linear systemδ[L1,L0]

c

 r =


0
0
...
1

 .

Let C =
[
δ[L1,L0]T cT

]T and b =
[
0 0 · · · 1

]T . Note that C is an square matrix of
size (say) m×m.

We now use Cramer’s rule to bound the size of ∥r∥. By Cramer’s rule, ri, the ith entry
of r, is ri = det(Ci,b)

det(C) . where Ci,b is the matrix obtained by replacing the ith column with b.
We first lower bound | det (C)|. We can express det (C) by its cofactor expansion on the row
of c as det(C) =

∑m
i=1(−1)i · ci · det(δ[L1,L0]i) where δ[L1,L0]i is δ[L1,L0] without the ith

column. Each term δ[L1,L0]i is integral as δ[L1,L0] is an integral matrix. Moreover, each
term ci = γ̂ji

/∥γ̂∥ where γ̂ji
is an integer, as c is a subvector of γ. We can then derive the

lower bound

| det(C)| =

∣∣∣∣∣
m∑
i=1

(−1)i · ci · det(δ[L1,L0]i)

∣∣∣∣∣
= 1

∥γ̂∥

∣∣∣∣∣
m∑
i=1

(−1)i · γ̂ji
· det(δ[L1,L0]i)

∣∣∣∣∣
≥ 1

∥γ̂∥
(as

∑m
i=1(−1)i · γ̂ji

· det(δ[L1,L0]i) is integral)

= Ω
(

1√
| supp(γ̂)|

)
(as each entry γ̂i is O(1))

= Ω
(

1√
n

)
.

We now upper bound | det(Ci,b)|. We calculate det(Ci,b) with the cofactor expansion on the
column replaced by b. As b has 1 in its last entry and 0s elsewhere, the cofactor expansion
is det(Ci,b) = det(Ci,ci,b ) where Ci,ci,b is the matrix where we dropped the ith column and
the row c from Ci,b. The matrix Ci,ci,b is a square submatrix of δ[K], so we can bound
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| det(Ci,b)| ≤ T (K). Thus, ri = det(Ci,b)/ det(C) ≤
√
n · Tmax(K) and ∥r∥ =

√∑m
i=1 r

2
i ≤√

n2 · Tmax(K)2 = n · Tmax(K) The potential energy of r is ∥δ[K]r∥2. We can bound this
using Lemma 40 to obtain ∥δ[K]r∥2 = O

(
n3 · d · Tmax(K)2). ◀

C Embedded complexes

In this section, we consider the special case when K is a d-dimensional simplicial complex
with a given embedding into Rd+1. In this case, K is an embedded complex. Embedded
complexes serve as a high dimensional generalization of planar graphs and naturally admit
a dual graph. More specifically, we will generalize the special case of planar graphs for
which the vertices s and t appear on the boundary of the same face. Throughout this
section we assume we are given the embedding as input. Computing the dual graph from an
embedding can be done in polynomial time [6]. We will show that the effective capacitance
of a (d− 1)-dimensional cycle γ in K is equal to the effective resistance between a pair of
vertices that are “dual” to γ. Hence, we can parameterize the quantum algorithm deciding if
γ is null-homologous in terms of the effective resistance in K and the effective resistance in
the dual graph of K. This section generalizes the analysis of planar graphs given by Jeffery
and Kimmel [13]. The setup for our analysis has appeared in the author’s previous work [20].

The Alexander duality theorem [10, Corollary 3.45], states that for a d-dimensional
simplicial complex K with an embedding into Rd+1 the subspace Rd+1 \ K consists of
βd + 1 connected components where βd is the dimension of Hd(K). We call these connected
components voids and exactly one of these voids is unbounded. We denote the bounded
voids as Vi for 1 ≤ i ≤ βd and the unbounded void as V∞. Moreover, the boundaries of
the bounded voids generate the homology group Hd(K). The embedding implies that each
d-simplex is contained on the boundary of at most two voids, and we make the assumption
that the d-simplices are oriented consistently with respect to the voids. That is, if a d-simplex
is on the boundary of two voids it is oriented positively on one void, and negatively on the
other. We have a boundary matrix ∂d+1 whose columns are the voids and whose rows are
the d-simplices. From the embedding and the consistent orientation we see that ∂d+1 is
the edge-vertex incident matrix of the directed dual graph: the directed graph whose
vertices are in bijection with the voids and whose edges are in bijection with the d-simplices
of K. The direction of the edges are inherited from the orientations of the d-simplices. For a
d-simplex σ on the boundary of voids V1 and V2 we denote the dual edge by σ∗ = (v∗

1 , v
∗
2)

and we define the dual weight function by w∗(σ∗) = 1/w(σ).
We construct an additional chain group Cd+1(K) whose basis elements are the bounded

voids. This is a purely algebraic construction and gives rise to a new chain complex
· · · → Cd+1(K) ∂d+1−−−→ Cd(K) ∂d−→ . . .

∂1−→ C0(K). Since the boundaries of the voids generate
the dth homology group of K and Cd+1(K) is generated by these voids we obtain a valid chain
complex. Moreover, we have that dimHd(K) = 0 in our new chain complex. More generally,
we define the dual complex of K, denoted K∗, by the isomorphism Cd−k+1(K) ∼= Ck(K).
That is, the (d − k + 1)-simplices of K are in bijection with the k-simplices of K∗. The
dual graph is the 1-skeleton of K∗. Moreover, we define the dual boundary operator
∂∗
k : Ck(K∗) → Ck−1(K∗) to be the coboundary operator δd−k+1 : Cd−k+1(K) → Cd−k(K) of

K, and the dual coboundary operator δ∗
k : Ck−1(K∗) → Ck(K∗) to be the boundary operator

∂d−k+1 : Cd−k+1(K) → Cd−k(K) of K. In other words the (co)boundary operators commute
with the duality isomorphism. We summarize the construction in Figure 4 in the appendix.

We need to make one additional assumption on the location of the input (d−1)-dimensional
cycle γ which makes our setup a generalization of a planar graph with two vertices s and t

appearing on the same face. To achieve this we assume that there exists a void Vi with two unit
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γ-flows Γ1 and Γ2 such that supp(Γ1)∩supp(Γ2) = ∅ and supp(Γ1)∪supp(Γ2) = supp(∂d+1Vi).
That is, there exist two unit γ-flows whose supports partition the boundary of the void Vi.
This generalizes the fact in planar graphs that when s and t are on the same face we can find
two st-paths which partition the boundary of the face. In planar graphs we are guaranteed
to find two such paths, however for an arbitrary (d− 1)-cycle γ we are not guaranteed to
find two unit γ-flows partitioning the boundary of some void. More specifically, we take Γ2
to be a unit (−γ)-flow so that ∂dΓ2 = −γ. In the planar graph analogy this is equivalent as
viewing Γ1 as a path from s to t and viewing Γ2 as a path from t to s. We add an additional
basis element Σ to Cd(K) such that ∂dΣ = −γ. In planar graphs this is equivalent to adding
an edge directed from t to s. In a planar graphs the addition of this edge splits the face
containing s and t into two. In higher dimensions the geometry is more complicated, but the
addition of Σ allows us to perform a purely algebraic operation makes our chain complex
behave as if Vi has been split into two. We remove Vi from Cd+1(K) and replace it with two
new basis elements Vs and Vt. Next, we extend the boundary operator to Vs and Vt in the
following way: ∂d+1Vs = Γ1 − Σ and ∂d+1Vt = Γ2 + Σ. In the dual complex the vertices
dual to Vs and Vt are denoted s∗ and t∗. Dual to Σ is an edge Σ∗ = (t∗, s∗). In the next
section we will show that the effective capacitance of γ in a subcomplex K(x) is equal to
the effective resistance between s∗ and t∗ in the subgraph of the dual graph which is the
1-skeleton of K∗(x). Note that the 1-skeleton of K∗(x) contains all of the vertices of K∗ but
only includes the edges dual to the d-simplices in K(x).

Effective capacitance is dual to effective resistance
The effective resistance between s∗ and t∗ in K∗(x) is determined by the unit s∗t∗-flows
in K∗(x). However, it will be convenient to work with circulations instead of flows. A
unit s∗t∗-circulation f is a cycle; that is, an element of ker ∂∗

1 , such that f(Σ∗) = 1. Recall
that Σ∗ is the edge directed from t∗ to s∗, so a unit s∗t∗-circulation is just a unit s∗t∗-flow
with the additional edge Σ∗ completing the cycle. Clearly, there is a bijection between unit
s∗t∗-flows and unit s∗t∗-circulations and we define the flow energy of a circulation to be
equal to the flow energy of its corresponding flow.

▶ Theorem 41. Let K be a d-dimensional simplicial complex embedded into Rd+1, and let γ
be a (d− 1)-cycle such that there exist two unit γ-flows Γ1 and Γ2 whose supports partition
the boundary of some void Vi. The effective capacitance Cγ(K(x)) is equal to the effective
resistance Rs∗t∗(K∗(x)).

Proof. Let p be a unit γ-potential in K(x) and we define f to be the image of δp under the
duality isomorphism; that is, f = ∂∗

2p
∗, which makes f a circulation in the 1-skeleton of

K∗(x). Further, since Σ∗ = (t∗, s∗) the circulation f corresponds to a unit s∗t∗-flow by the
following calculation: fTΣ∗ = pT (∂dΣ) = pT γ = 1. Next, we calculate the flow energy of f
and show it is equal to the potential energy of p.

J(f) =
∑

e∗∈K∗(x)1

f(e∗)2

w∗(e∗)

=
∑

e∗∈K∗(x)1

f(σ∗)2w(e)

=
∑

σ∈K(x)d

((δp)Tσ)2w(σ)

= J (p)
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Conversely, let f∗ be a unit s∗t∗-circulation in K∗(x). By the assumptions outlined in
the beginning of the section we have dimHd(K) = 0 which in turn gives us dimH1(K∗) = 0.
Hence, f∗ can be written as a linear combination of boundaries f∗ =

∑
αiBi where Bi ∈ im ∂∗

2 .
Let p∗ be the 2-chain in K∗(x) with ∂∗

2p
∗ = f∗; we will show that p is the unit γ-potential in

K(x) in bijection with f∗. To see that p is a unit γ-potential we compute its inner product
with γ:

pT γ = pT (∂dΣ)
= (δd−1p)TΣ
= (∂∗

2p
∗)TΣ∗

= (f∗)TΣ∗

= 1.

It remains to show that the potential energy of p is equal to the flow energy of |f∗⟩. We have
the following calculation:

J (p) =
∑

σ∈K(x)d

((δd−1p)Tσ)2w(σ)

=
∑

σ∈K(x)d

((δd−1p)Tσ)2

w∗(σ∗)

=
∑

σ∈K(x)d

((∂∗
2p

∗)Tσ∗)2

w∗(σ∗)

=
∑

σ∈K(x)d

f∗(σ)2

w∗(σ∗)

= J(f∗). ◀

D Figures

L
K\L
γ
p

Figure 1 Left: A 1-cycle γ. Right: A unit γ-potential p. If this complex is unweighted, then the
potential energy of p is 1.
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Figure 2 Left: The unique unit γ-flow is the 6 triangles in series. If the complex is unweighted,
then the effective resistance of γ is 6. Right: The cycle γ is the equator of the sphere, and the two
hemispheres are two unit γ-flows in parallel. If each hemisphere has potential energy 1, then the
effective resistance of γ is 1
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Figure 3 The complex RPγ . The inner cycle is γ, and half of the outer cycle is α. The boundary
of the sum of the triangles is 2α + γ.

Cd+1(K) Cd(K) . . . C0(K)

C0(K∗) C1(K∗) . . . Cd+1(K∗)

∼=

∂d+1
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∂d

δd

∂1

δd−1 δ1

∼=
δ∗

0

∂∗
1

δ∗
1

∂∗
2

δ∗
d

∂∗
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Figure 4 The commutative diagram summarizing the dual complex construction.
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Abstract
We consider a multidimensional space partitioning problem, which we call Anonymity-Preserving
Partition. Given a set P of n points in Rd and a collection H of m axis-parallel hyperplanes,
the hyperplanes of H partition the space into an arrangement A(H) of rectangular cells. Given
an integer parameter t > 0, we call a cell C in this arrangement deficient if 0 < |C ∩ P | < t; that
is, the cell contains at least one but fewer than t data points of P . Our problem is to remove the
minimum number of hyperplanes from H so that there are no deficient cells. We show that the
problem is NP-complete for all dimensions d ≥ 2. We present a polynomial-time d-approximation
algorithm, for any fixed d, and we also show that the problem can be solved exactly in time
(2d − 0.924)kmO(1) + O(n), where k is the solution size. The one-dimensional case of the problem,
where all hyperplanes are parallel, can be solved optimally in polynomial time, but we show that a
related Interval Anonymity problem is NP-complete even in one dimension.
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1 Introduction

Consider the following geometric problem. We are given a set P of n points and a family
H of m axis-parallel hyperplanes in Rd. The hyperplanes of H partition the space into an
arrangement A(H) of rectangular cells. Given an integer parameter t > 0, we call a cell
C deficient if 0 < |C ∩ P | < t; that is, the cell contains at least one but fewer than t data
points of P . We then ask: What is the minimum number of hyperplanes we must delete
so that there are no deficient cells? See Figure 1 for an example. The problem turns out
to be nontrivial even in two dimensions and, in fact, also in one dimension under a dual
formulation.

While we are mainly interested in this as a natural geometric problem, it can also be
relevant in the study of data anonymity. For instance, given a real-valued scalar data set, a
common technique for group anonymization is to partition the domain into buckets, defined
by a set of boundary values {x1, x2, . . . , xl}. Given an integer target t > 0, the buckets are
chosen to ensure that any bucket [xi, xi+1] is either empty or contains at least t different
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Figure 1 A 2-dimensional Anonymity-Preserving Partition instance with t = 4. The deficient
cells are highlighted in gray and the two bold lines denote the optimal solution.

data records, thereby ensuring t-anonymity for each individual data value. Generalizing
this to multidimensional data, the buckets are defined independently for each of the d axes,
which geometrically creates a set of axis-parallel hyperplanes – the hyperplanes with normals
parallel to the i-th coordinate axis correspond to the bucketing of the i-th dimension. Given
a set of multidimensional data points and a set of candidate hyperplanes, the problem of
discarding the fewest number of hyperplanes to achieve t-anonymity is precisely our space
partitioning problem. For instance, one can imagine points being user locations in a two-
dimensional coordinate system, and the problem is to specify those locations to within some
“longitude” and “latitude” values so that every user’s location is t-anonymized. Inspired by
these connections, we have chosen to call our problem Anonymity-Preserving Partition
for convenience, but our research focus in this work is purely algorithmic, and not related to
anonymity.

Space partitioning problems are fundamental to many domains, including computational
geometry, databases, robotics, etc. [12, 4, 6, 9, 5, 2]; however, to the best of our knowledge,
this particular partition problem has not been studied. In computational geometry, for
instance, space partitioning is frequently used for range query data structures such as kD-
trees, range trees, etc. [7, 22, 1, 18, 20]. The primary focus in those algorithms is a hierarchical
partitioning of the space to represent a set of points so that all points inside a query range
can be reported efficiently. In contrast, our goal is to sparsify the (flat) partition induced by
a given set of hyperplanes. A different type of multidimensional partitioning is investigated
in [15, 21], where the goal is to partition a d-dimensional array, with nonnegative entries, into
a fixed number of subarrays with roughly equal weights. Those approaches are motivated by
an interest in constructing a compact histogram of the multidimensional data. In contrast,
in our anonymizing partition, the goal is not to balance the weight but rather to avoid
small-weight regions. In addition, while in the histogram problem the array is partitioned
into arbitrarily arranged rectangular boxes, in our setting the partition is induced by full
hyperplanes. In [17], LeFevre et al. also consider an anonymity-related partitioning problem,
but they compute an arbitrary rectangular subdivision, not an arrangement of hyperplanes.
They also show that their problem is NP-complete, but their proof requires the dimension of
the space to be unbounded – in particular, d ≥ n in the constructed instances. In contrast,
we show our problem is NP-complete even for dimension d = 2.

1.1 Our Contributions

We now discuss the main results of this paper. Given a set P of n points in Rd, a set H of
m axis-parallel hyperplanes, and an integer target 0 < t ≤ n, we define a deletion set to be a
subset of hyperplanes so that no cell in the remaining arrangement is deficient. The goal of
the Anonymity-Preserving Partition problem is to find a minimum deletion set.
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For notational convenience, suppose Hi ⊆ H is the subset of planes whose normals are
parallel to the i-th coordinate axis, for i = 1, 2, . . . , d. Then, if the number of nonempty
families Hi is p, then our problem is essentially a p-dimensional problem, for p ≤ d. If p = 1,
then it is easy to solve the problem optimally using dynamic programming in time O(nm).
Surprisingly, we show that the problem is already NP-hard if p = 2, namely, the input is
two-dimensional.

We then propose a polynomial-time p-approximation algorithm for the problem for any
fixed p ≤ d. For this, we reduce the problem to a variant of the well-known Hitting
Set problem which we show to have an approximation algorithm using LP rounding. The
approximate solution for the reduced Hitting Set instance will yield a p-approximate
solution for our problem. We also give an FPT algorithm for the problem, with running
time (2d − 0.924)kmO(1) + O(n). From now on, for convenience of the reader, we assume
that p = d and state the results in terms of d.

Finally, we also introduce an interval anonymity problem in one dimension which can be
viewed as a geometric dual of Anonymity-Preserving Partition when d = 1 – the roles
of lines and points are interchanged. Specifically, we are given a set P of n points, which
we call markers, a multiset S of m segments (intervals) on the real line R, and an (integer)
anonymity parameter 0 < t ≤ n. The set of markers P partitions S into equivalence classes,
where two segments s, s′ are in the same class if they contain the same set of marker points,
namely, s ∩ P = s′ ∩ P . We say a segment is nonempty if it contains at least one marker.
We call an equivalence class consisting of nonempty segments deficient if it contains less
than t segments. In the Interval Anonymity problem, the aim is to remove a minimum
number of points from P so that every nonempty segment of S belongs to a non-deficient
equivalence class. For motivation, one can imagine segments as movement trajectories of m

users, and markers as location sensors, and the goal is to report user locations in such a way
that each user has t-anonymity. Somewhat surprisingly, this one-dimensional problem turns
out to be NP-hard.

2 NP-Hardness of Anonymity-Preserving Partition

In this section, we prove that Anonymity-Preserving Partition is NP-hard even in two
dimensions. This problem is easy to solve in one dimension, which we discuss in Section 3.

Let (P, H, t) be an instance of Anonymity-Preserving Partition in two dimensions.
Without loss of generality, we assume that H1, H2 ⊆ H are the sets of hyperplanes having
normals parallel to the x- and y-axes, respectively. Furthermore, we denote the hyperplanes
h1 ∈ H1 and h2 ∈ H2 by equations of the form h1 = x′ and h2 = y′, respectively, where
x′, y′ ∈ R are constants. To show NP-hardness, we reduce from a structured variant of
SAT called Linear Near Exact Satisfiability (LNES), which is known to be NP-
complete [11]. The main idea here is to associate literals with hyperplanes and clauses with
deficient cells, and to make satisfying assignments correspond to deletion sets.

▶ Theorem 1. Anonymity-Preserving Partition is NP-complete for all dimensions
d ≥ 2.

Proof. Clearly, the decision version of our problem belongs to NP. We now show NP-hardness
for just d = 2 as these instances can be easily embedded into any higher dimension. An
instance J of LNES consists of 5s clauses, for s ∈ N, and is denoted by

C = {U1, V1, U ′
1, V ′

1 , · · · , Us, Vs, U ′
s, V ′

s} ∪ {C1, · · · , Cs}.
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y3

y4

y1 y2

(a) This figure shows nine nonempty cells
corresponding to an auxiliary clause C :=
(y1 ∨y2 ∨y3 ∨y4). The middle cell with one
point is an auxiliary cell, and the four gray
cells on its boundary are shadow auxiliary
cells. The nonempty white cells denote the
helpers.

· · ·

· · ·

...
...

y1 xi y3 y4

xi

y2

(b) This figure shows core cells and variable cells. We
consider the following four core clauses: Ui := (y1 ∨
xi), Vi := (y2∨xi), U ′

i := (y3, xi), V ′
i := (y4, xi). Moreover,

we assume the literals y1, y3, y4 are associated with the
hyperplanes in H2 forming the auxiliary cells, and y2 is
associated with the hyperplane in H1. The core cells are
colored light gray, and the variable cell is colored dark
gray.

Figure 2 Example construction of auxiliary, core, and variable cells.

We refer to the first 4s clauses as the core clauses, and the remaining s clauses as the
auxiliary clauses. The set of variables consists of s main variables x1, . . . , xs and 4s shadow
variables y1, . . . , y4s. Each core clause consists of two literals (one corresponding to a
main variable, and the other to a shadow variable) and it has the following structure:
∀ i ∈ [s], Ui ∩ Vi = {xi} and U ′

i ∩ V ′
i = {xi}.

Each main variable xi occurs exactly twice as a positive literal and twice as a negative
literal. The main variables only occur in the core clauses. Each shadow variable makes
two appearances: as a positive literal in an auxiliary clause and as a negative literal in a
core clause. Each auxiliary clause consists of four literals, each corresponding to a positive
occurrence of a shadow variable.

The LNES problem asks whether, given a set of clauses with the aforementioned structure,
there exists an assignment τ of truth values to the variables such that exactly one literal in
every core clause and exactly two literals in every auxiliary clause evaluate to true under τ .

Construction. We construct the set of hyperplanes H = H1 ∪H2 by adding hyperplanes
placed at integer coordinates starting at one, i.e., H = {h1 = x′ | x′ ∈ {1, 2, . . . , 3qs}}∪{h2 =
y′ | y′ ∈ {1, 2, . . . , 3qs}}. These hyperplanes are numbered from left to right and top to
bottom. For i, j ∈ N, let □(i,j) denote a 1 × 1 cell [i, i + 1] × [j, j + 1] on A(H). We set
q = 5s + 4 (recall s is a parameter from the LNES instance) which is sufficiently larger
than the desired size of the deletion set (5s). During the construction, we use q hyperplanes
between a cluster of non-empty cells introduced so the sets remain independent, i.e., deleting
lines from one cluster does not affect the other. We set the target t to 4. We associate a
hyperplane from H with each of the 10s literals (H may contain additional hyperplanes
which are not associated with any literal). Of these 10s hyperplanes, 8s are associated with
the shadow literals and 2s with the main literals. By default, each cell in A(L) is empty. We
introduce the nonempty cells and organize them into the following three groups (also, we
describe the locations of the 4s hyperplanes associated with the positive shadow literals in
the auxiliary cells group, and the locations of the remaining hyperplanes in the core cells
group):

Auxiliary cells: We introduce a set of nine nonempty cells for each auxiliary clause.
For i ∈ [s], we call □(qi,qi) the auxiliary cell for clause Ci. The first two literals in Ci are
associated with the two adjacent hyperplanes x = qi and x = qi + 1 from H1, and the
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remaining two literals are associated with the hyperplanes y = qi and y = qi + 1 from
H2.1 We add one point to □(qi,qi) (note that 1 < t/2). Moreover, we add t/2 points
to each of □(qi−1,qi), □(qi+1,qi), □(qi,qi+1), □(qi,qi−1), and refer to them as shadow cells,
while we add t points to each of □(qi−1,qi−1),□(qi−1,qi+1), □(qi+1,qi−1), □(qi+1,qi+1), and
refer to them as helpers (see Fig. 2a). Observe that for each Ci, one needs to remove
at least two of the four hyperplanes associated with the shadow literals appearing in Ci

forming the corresponding auxiliary cell □(qi,qi). This is to ensure that we have at least
t points in all the remaining cells among the nine initial cells without exceeding the 5s

deletion limit.
Core cells: For each core clause, we introduce two nonempty cells. For each main
variable xi, we construct eight cells for the four core clauses Ui, Vi, U ′

i , V ′
i together.

Without loss of generality, let Ui := (y1∨xi), and Vi := (y2∨xi). Define zi = q(s+2i) for
convenience.2 We call □(zi,zi) and □(zi+1,zi) the core cells corresponding to the clauses
Ui, Vi, respectively. We add two points to each of these cells and associate the common
hyperplane x = zi + 1 from H1 to the literal xi. Next, two cases arise according to the
orientation of the hyperplanes associated with the literals y1, y2, say p(y1), p(y2) (recall
that orientation of these hyperplanes is decided while constructing the auxiliary cells):

1. p(y1) ∈ H1: We associate the hyperplane y = zi from H2 which forms the upper
boundary of □(zi,zi) with y1, and add four points to □(zi,zi−1). Similarly, if p(y2) ∈ H1,
we associate the hyperplane y = zi + 1 from H2 which forms the lower boundary of
□(zi+1,zi) with y2, and add four points to □(zi+1,zi+1).

2. p(y1) ∈ H2: We associate the hyperplane x = zi from H1 which is the left boundary
of □(zi,zi) with y1, and add four points to □(zi−1,zi). Similarly, if p(y2) ∈ H2, we
associate the hyperplane x = zi + 1 from H1 which is the right boundary of □(zi+1,zi)
with y2, and add four points to □(zi+2,zi).

The construction above ensures that hyperplanes associated with yi and yi have orthogonal
normals. We call the two nonempty cells introduced in either of the cases above as shadow
core cells.
We associate the literal xi to the hyperplane y = zi + q + 1 from H2, and use a procedure
symmetric to the one above to construct four nonempty cells. Here, □(zi+1,zi+q) and
□(zi+1,zi+q+1) are core cells for the clauses U ′

i , V ′
i , respectively (note that, here, the two

core cells are one below the other as opposed to side-by-side as we did for xi). We complete
the rest of the construction as described above. For an example, refer to Fig. 2b. Observe
that removal of the hyperplane associated with the positive literal xi makes both core
cells (corresponding to Ui, Vi) non-deficient as these are merged together. Alternatively,
removing the hyperplane corresponding to each y1, y2 makes the core cells non-deficient.
The case of the literal xi and the core clauses U ′

i , V ′
i is symmetric.

Variable cells: Recall that our construction of core cells ensures that for each main and
shadow variable, the two hyperplanes associated with its two literals have orthogonal
normals. Next, we introduce three nonempty cells for each of these variables. For each
main variable xi, the two hyperplanes associated with xi and xi form the top and left
boundaries of the cell □(zi+1,zi+q+1). We refer to □(zi+1,zi+q+1) as a variable cell, and
add two points to it. Furthermore, we add four points each to □(zi,zi+q+1),□(zi+1,zi+q),
and call them literal cells. These cells are adjacent to the left and the upper boundaries
of the variable cell. Refer to Fig. 2b.

1 If for a main variable xi, the two shadow variables appearing in the core clauses Ui, Vi are also the first
two or the last two literals for some auxiliary clause, then we associate those literals with a pair of
orthogonal hyperplanes y = qi and x = qi rather than with the default of a pair of parallel hyperplanes
described earlier.

2 Observe that we add an offset of qs so that the core and auxiliary cells are independent.
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Next, we repeat the same procedure of introducing three nonempty cells for each shadow
variable at the intersection of the hyperplanes associated with its literals. Notice that
it is imperative to remove at least one of the two hyperplanes associated with the two
literals for every variable so as to merge and make the variable cell non-deficient while
staying within the deletion budget of 5s hyperplanes.

For the constructed Anonymity-Preserving Partition instance I, we ask if there exists
a deletion set with size at most 5s. We now turn to the argument of equivalence.

Forward direction. Recall that we start with an instance J of LNES. Let τ be a satisfying
assignment for J ; then we claim that the set S consisting of 5s hyperplanes associated with
5s literals set to true under τ gives a valid deletion set for I. We now show that A(H\S)
does not contain any deficient cell. First, we observe that τ sets exactly one of the two literals
associated with each of the 5s variables to true (since τ is a valid assignment). Hence, the
deficient variable cell introduced for each variable (see the dark gray cell from Fig. 2b) is
merged with one of the literal cells and becomes non-deficient. Next, for each auxiliary clause
Ci for 1 ≤ i ≤ s, exactly two literals are set to true. From the construction of the auxiliary
cells group, one can verify that removing exactly two of the four hyperplanes associated
with the four literals in Ci makes the auxiliary cell and the four shadow cells non-deficient
(see Fig. 2a). Similarly, τ sets exactly one literal from each core clause to true. Hence, we
remove exactly one hyperplane on the boundary of each deficient core cell. Due to this, the
core cell merges with either a shadow core cell or another core cell, making it non-deficient
(see Fig. 2b). This accounts for all the deficient cells in I; hence, we conclude our argument
for the forward direction.

Reverse direction. Let S be a valid deletion set of size at most 5s; we construct an
assignment τ for J by setting the literals associated with hyperplanes in S to true. From
the construction of the variable cells, we first observe that S contains exactly one of the two
hyperplanes associated with the two literals for each of the 5s variables in J (since |S| ≤ 5s).
Hence, S is a valid SAT assignment, i.e., each variable is either set to true or false. Next,
using a counting argument, we show that τ is a satisfying assignment for J . Recall that
each main variable xi occurs twice as a positive literal and twice as a negative literal in the
core clauses. Hence, the s literals associated with the s main variables set to true under τ

satisfy exactly 2s core clauses. Next, for the remaining 2s core clauses, τ sets exactly one
negative shadow literal appearing in each of those clauses to true. This is because from
the construction of a core cell corresponding to each core clause, at least one of the two
hyperplanes associated with the literals in the clause must be in S (and literals corresponding
to main variables cannot be set to true for this set of core clauses). Similarly, τ sets at least
two positive shadow literals appearing in each auxiliary clause to true. At this stage, we use
a counting argument: Among the 4s shadow literals set to true under τ , exactly 2s negative
shadow literals and exactly 2s positive shadow literals are true (due to the argument above).
Hence, with s main literals and 2s negative shadow literals set to true, each core clause is
satisfied exactly once. With 2s positive shadow literals set to true, each auxiliary clause is
satisfied exactly twice. This completes the proof for the reverse direction. ◀

3 Approximation and FPT Algorithms

In this section, we present a d-approximation algorithm for Anonymity-Preserving
Partition. We first note that an O(d)-approximation can be easily achieved using a
Hitting Set approximation, since we have a set system of VC dimension O(d) [13, 8].
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Unfortunately, the constant factors in these Hitting Set approximations tend to be large,
and in fact a much simpler greedy algorithm can directly give us a 2d-approximation as
follows: while there exists a deficient cell C, we remove all of its (at most) 2d bounding
hyperplanes, and iterate until no deficient cell remains. The approximation guarantee follows
because for each deficient cell, the optimal solution must remove at least one hyperplane and
the greedy algorithm removes 2d hyperplanes. Thus, the main challenge is to improve on
this naive bound, which is the main result of this section.

Our algorithm first reduces the Anonymity-Preserving Partition problem to a
special case of Hitting Set in which all sets have a small size, and then we design an
LP-rounding-based algorithm to obtain a d-approximation for this problem. We also present a
fixed-parameter tractable algorithm running in time (2d−0.924)kmO(1) +O(n) parameterized
by the solution size k.3

The one-dimensional case of Anonymity-Preserving Partition can be easily solved
in linear time; please see Appendix A for a proof of the following result:

▶ Theorem 2. The Anonymity-Preserving Partition problem in one dimension can
be solved in time O(mn), where m is the number of hyperplanes and n is the number of
points. Further, if every cell in the arrangement is nonempty, then it can be solved in time
O(m + n).4

3.1 A d-Approximation Algorithm
We start by defining a Hitting Set variant. Given a universe of elements U and a family
F of subsets of U , the Hitting Set problem asks us to find a minimum-sized set S ⊆ U

such that S intersects with every set in F . When every set in F has size at most l, we call it
the l-Hitting Set problem.

▶ Lemma 3. Given an instance (P, H, t) of the d-dimensional Anonymity-
Preserving Partition problem, we can construct an instance (U,F) of 2d-Hitting
Set such that U = H, |F| ≤ |H|2d, and (U,F) has a hitting set of size k if and only if
(P, H, t) has a deletion set of size k, for any k ∈ N.

Proof. Given an instance (P, H, t) of Anonymity-Preserving Partition, we construct
a 2d-Hitting Set instance with universe U = H and the family F being the set of all
nonempty subsets X of H such that A(X) has a deficient cell and such that X contains at
most two hyperplanes from each Hi with 1 ≤ i ≤ d.

▷ Claim 4. If (P, H, t) has a deletion set of size k, then (U,F) has a hitting set of size k.

Proof. Let H ′ ⊆ H be a deletion set of size k for (P, H, t). Then, there is no deficient cell
in A(H\H ′). Since U = H, we now show that H ′ is also a hitting set of (U,F). Suppose
not; then there is a set X in F that has no hyperplanes from H ′ in it. We know by the
construction of F that X has a cell that is deficient in A(X). Observe that even if we add
any new hyperplanes to the arrangement A(X), there will still be a deficient cell. Thus,
A(H\H ′) will have a deficient cell, which contradicts our assumption that H ′ was a deletion
set. ◁

3 Fixed-parameter tractability (FPT) is studied in the realm of parameterized complexity. FPT algorithms
admit running time of the form f(k)nO(1), where k is the parameter under consideration and n is the
size of the instance [10].

4 We assume the points and hyperplanes in the input are sorted.
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minimize
∑
h∈H

xh

s.t.
∑
h∈F

xh ≥ 1 ∀ F ∈ F

xh ∈ [0, 1] ∀ h ∈ H

Figure 3 LP for 2d-Hitting Set.

▷ Claim 5. If (U,F) has a hitting set of size k, then (P, H, t) has a deletion set of size k.

Proof. Let H ′ be a hitting set of (U,F) of size k. Since U = H , we now show that H ′ is also
a deletion set of (P, H). Suppose not; then there is a cell C that is deficient in A(H\H ′).
Let X be the set of hyperplanes adjacent to C in this arrangement. Since all the hyperplanes
in H are axis parallel and we are in the d-dimensional version of the problem, it follows that
X contains at most two hyperplanes from each Hi with 1 ≤ i ≤ p. Also, observe that A(X)
has the cell C in it. Since C is deficient, by construction of the family F , we know X must
be in F . But since H ′ ∩X = ∅, this contradicts the fact that H ′ is a hitting set. ◁

This completes the proof of Lemma 3. Observe that the V C-dimension of the constructed
set system is 2d, hence, rounding algorithm from [13] would give an O(d)-approximation. ◀

We now observe the following simple fact:

▶ Lemma 6. For each set X ∈ F of the 2d-Hitting Set instance (U,F) obtained by
applying the reduction in Lemma 3 to (P, H, t), it holds that |Hi ∩X| ≤ 2, for 1 ≤ i ≤ d.

Our approximation algorithm uses LP rounding; see Figure 3. While the integrality gap of
this LP is known to be at most d, the proof is non-constructive [3, Theorem 1]5 and therefore
it is not known how to efficiently compute a rounded solution with approximation factor
less than 2d. (The size of each set in the LP is 2d and so in any fractional LP solution each
set is only guaranteed to have some variable with value at least 1

2d . Thus a straightforward
rounding of the LP solution only leads to a 2d-approximation.) Our main contribution,
therefore, is to design a polynomial-time rounding algorithm that achieves a d-approximation
for 2d-Hitting Set, and thus also for d-dimensional Anonymity-Preserving Partition.

▶ Theorem 7. For every fixed dimension d ≥ 2, there exists a polynomial-time algorithm that
given a d-dimensional Anonymity-Preserving Partition instance, computes a deletion
set with size at most d times the optimal size.

Proof. We describe our rounding algorithm for d = 2 and defer the general case to Appendix B.
We first use Lemma 3 to reduce the 2-dimensional Anonymity-Preserving Partition
instance to a Hitting Set instance (U = H1 ∪ H2,F). Observe that by Lemma 6, for
each set X ∈ F , we have |H1 ∩X| ≤ 2 and |H2 ∩X| ≤ 2. We now give a 2-approximation
algorithm for (U,F) by extending the integrality gap result for the LP in [3] (see Figure 3).

5 Note that in [3], Theorem 1 shows the integrality gap for a variant of hypergraph Vertex Cover. It
is fairly straightforward to see that the Hitting Set instances obtained by applying the reduction in
Lemma 3 can be equivalently expressed as instances of that same hypergraph Vertex Cover variant;
hence, Lemma 3 also gives a reduction to hypergraph Vertex Cover.
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For completeness, we first include the proof that the integrality gap is at most 2, and then
describe our algorithm.

Let g : U → [0, 1] be an optimal fractional hitting set of (U,F) with value τ∗(U,F). Also,
let τ(U,F) be the size of an optimal integral hitting set of (U,F). Let B = {(x1, x2) ∈
[0, 1

2 ]× [0, 1
2 ] : x1 + x2 = 1

2}, and for each x = (x1, x2) ∈ B, let

T (x) = {h ∈ H1 : g(h) ≥ x1} ∪ {h ∈ H2 : g(h) ≥ x2}.

In other words, B can be viewed as the set of all points on the line segment x1 + x2 = 1
2 for

x1, x2 ∈ [0, 1
2 ], and T (x) can be viewed as the set obtained by rounding g using xi as the

threshold for each Hi.
We now prove that for any x ∈ B, T (x) is a hitting set of (U,F). Suppose not; then

there must be a set X ∈ F such that X ∩ T (x) = ∅. By the definition of T (x), for each
hyperplane h ∈ X ∩Hi, i ∈ {1, 2}, it holds that g(h) < xi. Combining this with the fact
that |X ∩H1| ≤ 2 and |X ∩H2| ≤ 2, we get

∑
h∈X g(h) < 2(x1 + x2) = 1. This contradicts

the fact that g is a feasible fractional hitting set of (U,F), and thus T (x) is a hitting set.
Observe that for any given a, b ∈ [0, 1/2] with a ≤ b, for a uniformly random x =

(x1, x2) ∈ B, we have Pr(a ≤ xi ≤ b) = b−a
1/2 for i ∈ {1, 2}, i.e., x1 and x2 have a uniform

distribution over the interval [0, 1/2]. We will now use a probabilistic argument to prove that
the integrality gap is bounded by 2. If we choose a uniformly random x = (x1, x2) from B,
and let E(·) denote the expected value, then we have

τ(U,F) ≤ E(|T (x)|) =
∑

h∈Hi,i∈{1,2}

Pr(g(h) ≥ xi) =
∑
h∈U

min
(

1,
g(h)
1/2

)
≤

∑
h∈U

2g(h) = 2τ∗(U,F).

Let T := {T (x) : x ∈ B}. By the above argument, there exists x ∈ B such that T (x)
is a hitting set of size at most 2τ⋆(U,F). Thus, to get a 2-approximation we will show
that |T | ≤ 2m + 2 and that T can be constructed in polynomial time (see Appendix B,
Algorithm 1 for pseudocode). We now build a set B′ ⊂ B of size at most 2m + 2 such
that T ′ := {T (x) : x ∈ B′} = T . We include one point for each hyperplane h ∈ Hi with
g(h) ≤ 1/2, and we include an arbitrarily chosen point between each consecutive pair of
these points on the line x1 + x2 = 1/2.

Formally, define B1 and B2 as follows: For each h ∈ H1, add (g(h), 1/2− g(h)) to B1 if
g(h) ≤ 1/2, and for each h ∈ H2, add (1/2− g(h), g(h)) to B1 if g(h) ≤ 1/2. Finally, add the
point (1/2, 0) to B1. Choose a value ε > 0 such that for any distinct (x1, x2), (x′

1, x′
2) ∈ B1,

we have ε < |x′
1−x1|. For each x = (x1, x2) ∈ B1 such that x1 ̸= 1/2, add (x1 +ε, 1/2−x1−ε)

to B2. Finally, add (0, 1/2) to B2. Now let B′ = B1 ∪B2.
We now prove that T ′ = T . We only need to argue that for all x ∈ B\B′, T (x) ∈ T ′.

Given x = (x1, x2) ∈ B\B′, let x′ = (x′
1, x′

2) be the pair in B1 having the largest x′
1 such

that x′
1 < x1. If such an x′ does not exist, then it is easy to see that T (y = (0, 1/2)) = T (x).

If x′ exists, then T (y = (x1 + ε, 1/2 − x1 − ε)) = T (x) since x /∈ B′. In both cases y is in
B′ and thus T (y) = T (x) is in T ′. This proves that T ′ = T and that |T | ≤ 2m + 2. Our
approximation algorithm constructs T and outputs the set in T having the smallest size.
This completes the proof for d = 2. The complete algorithm as well as the details of the
general case for dimensions d > 2 are presented in Appendix B. ◀

The approximation ratio in Theorem 7 is the best possible that can be obtained using
the particular LP formulation from Fig. 3 because it has an integrality gap of d for the
constructed hitting set instances [3].
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3.2 Fixed-Parameter Tractable Algorithm

Given the equivalence of 2d-Hitting Set and Anonymity-Preserving Partition (refer
to Lemma 3), an FPT algorithm follows easily (when d is a constant). This is because
the l-Hitting Set problem is known to admit an exact algorithm running in time6 (l −
0.924)k|U |O(1) [14], where k is the size of the hitting set.

▶ Theorem 8. The Anonymity-Preserving Partition problem in d dimensions can be
solved in time (2d− 0.92)k(m)O(1) + O(n), where k is the size a minimum deletion set, m is
the number of hyperplanes, and n is the number of points.

4 An NP-hard Anonymity Problem on the Line

In this section, we show that the Interval Anonymity problem is NP-complete and
give an exact algorithm running in time 3.08knO(1) + O(m), where k is the solution size.
Recall that here we are given a set P of n points, which we call markers, a multiset S of
m segments (intervals) on the real line R, and an integral anonymity parameter t > 0. For
convenience, when we consider any set of points, we consider them to be ordered from left to
right according to their relative positions on the line. The set of markers P partitions S into
equivalence classes, where two segments s and s′ are in the same class if they contain the
same set of marker points, namely, s ∩ P = s′ ∩ P . We call an equivalence class consisting of
nonempty segments deficient if it contains less than t segments. The Interval Anonymity
problem asks us to remove a minimum number of points from P so that every segment of S

belongs to a non-deficient equivalence class. We now show that Interval Anonymity is
NP-complete.

▶ Theorem 9. Interval Anonymity is NP-complete, and is NP-hard to approximate
within a factor of (2− ε), for any ε > 0, assuming the unique games conjecture (UGC).

Proof. Clearly, the decision version of Interval Anonymity belongs to NP. We give a
polynomial-time approximation-preserving reduction from Vertex Cover, which is NP-hard
to approximate within a factor less than 2, assuming UGC [16].

Construction. Let G be a graph for which we seek a vertex cover of size at most k, and
let n = |V (G)|. We can assume k ≤ n. We construct an instance (P, S, t) of Interval
Anonymity having |P | = n + (n− 1)k and t = 2, where we seek the same solution size k.
Let v1, . . . , vn be the vertices of G. For each vertex vi, we create k + 2 markers labeled as
vi, v

(1)
i , v

(2)
i , . . . , v

(k+1)
i , with one exception: the last vertex corresponds to just one marker,

vn. These markers occur in the following order:

v1, v
(1)
1 , . . . , v

(k+1)
1 , . . . , vn−1, v

(1)
n−1, . . . , v

(k+1)
n−1 , vn.

For each (vi, vj) ∈ E(G) with i < j, we add the following five (closed) intervals to S: [vi, vj ],
two copies of [vi, v

(k+1)
j−1 ], and two copies of [v(1)

i , vj ]. Since t = 2, we can see that the deficient
intervals are exactly the ones of the form [vi, vj ].

6 When 2d ≥ 15, there is an algorithm that runs in time O(ck + m), c = d − 1 + 1
d−1 [19].
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Proof of equivalence. For any vertex cover S of G, if we remove the markers (without
superscripts) corresponding to the vertices in S, we obtain a solution for the Interval
Anonymity instance. For the reverse direction, suppose we have a deletion set S for (P, S, t)
of size at most k. Since our segments only have endpoints of the form vi, v

(1)
i , or v

(k+1)
i ,

we would have had to include in S all of the (k + 1)-superscripted markers between two
consecutive vertices if we wished for these to affect feasibility. Therefore, we can remove
from S any superscripted markers and still maintain a feasible solution. Now, S naturally
corresponds to a vertex cover for G. ◀

We now turn to a 4-approximation and an exact algorithm for the Interval Anonymity
problem. Since this problem only cares about segments s such that s ∩ P ̸= ∅, we will from
now on assume that for all segments s ∈ S, s ∩ P ̸= ∅. Given an instance (P, S, t) of the
Interval Anonymity problem, we now associate a set of at most four markers from P to every
equivalence class X. We denote this set by MX . Let s be a segment in X, and let l and r be
the leftmost and the rightmost markers in the set s∩ P . Also, let l′ and r′ be the markers in
P to the left of l and to the right of r, respectively, if they exist. Then, MX = {l′, l, r, r′} is
the set containing these markers. Note that l might be equal to r and l′ and r′ might not
exist, and thus MX is a set of size at most four.

4-Approximation. The idea that each equivalence class can be associated with a set of at
most four markers immediately gives us a polynomial-time 4-approximation algorithm and
an exact algorithm running in time 4k(m + n)O(1), where k is the size of a minimum deletion
set. The key here is to observe that (i) All segments in an equivalence class will remain in the
same equivalence class in the final solution, and (ii) In order to make a deficient equivalence
class X non-deficient, we need to remove at least one of the markers from MX .

Then, the 4-approximation algorithm is as follows: (i) Initialize the deletion set D = ∅;
(ii) Repeatedly pick an arbitrary deficient equivalence class X and add all the markers in
MX to D, as long as there is a deficient equivalence class; (iii) Finally, output D. For the
exact algorithm, instead of adding all of the markers from MX to the deletion set, we guess
which one of these markers to add to the deletion set (branching).

We obtain a better exact algorithm for this problem, similarly to the Anonymity-
Preserving Partition problem, by reducing to 4-Hitting Set.

▶ Theorem 10. The Interval Anonymity problem can be solved in time 3.08knO(1)+O(m),
where k is the size a minimum deletion set.

Proof. We first reduce our problem to 4-Hitting Set and then use the known (3.08)k|U |O(1)

time algorithm [14] for 4-Hitting Set to solve our problem. Our focus now is to describe the
reduction. Given an instance (P, S, t) of the Interval Anonymity problem, we construct a
4-Hitting Set instance with universe U = P and family F being the set of all nonempty
subsets Q of P of size at most four such that the instance (Q, S, t) contains some deficient
equivalence class.

Now we prove the forward direction: If (P, S, t) has a deletion set of size k, then (U,F)
has a hitting set of size k. Let P ′ ⊆ P be a deletion set of size k of (P, S, t). Then, there is
no equivalence class in (P\P ′, S, t) that is deficient. Since U = P , we now show that P ′ is
also a hitting set of (U,F). Suppose not; then there is a set Q ∈ F that contains no markers
from P ′. We know by construction of F that there is some deficient equivalence class X in
(Q, S, t). Let s be a segment in X, and let X ′ be the equivalence class that s belonged to
in (P\P ′, S, t). Since segments in X ′ always remain together in their resulting equivalence
class even after removing additional markers, it is easy to see that if X ′ is not deficient in
(P\P ′, S, t), then X is not deficient in (Q, S, t). This contradicts the fact that X is deficient
and thus completes the forward direction.
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Next, we show the reverse direction: If (U,F) has a hitting set of size k, then (P, S, t) has
a deletion set of size k. Let P ′ be a hitting set of (U,F) of size k. Since U = P , we now show
that P ′ is also a deletion set of (P, S, t). Suppose not; then there is a deficient equivalence
class X in (P\P ′, S, t). We show that MX from (P\P ′, S, t) belongs to F , thus contradicting
the fact that P ′ is a hitting set of (U,F) since MX does not have any marker from P ′. To
satisfy an equivalence class E, at least one of the markers in ME must be deleted. Therefore,
deleting all markers from P\P ′ except those from MX will make X a deficient equivalence
class in (MX , S, t). Thus, by construction, MX belongs to F . ◀

5 Conclusion

We considered a natural multidimensional space partitioning problem, showed that it is
NP-complete in all dimensions d ≥ 2, and designed a d-approximation algorithm and an
FPT algorithm parameterized by solution size. Although we described our results for the
case p = d, it is easy to see that the algorithm in fact guarantees a p-approximation for the
more general case, where p ≤ d is the number of nonempty families of hyperplanes. We also
showed that a simple Interval Anonymity problem is NP-complete even in one dimension,
and gave approximation and FPT algorithms for that as well. Improving our approximation
factors is an interesting open problem.
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A Proof of Theorem 2

We show that the Anonymity-Preserving Partition problem is easy to solve in the one-
dimensional case in time O(mn). Furthermore, this special case can be solved in time
O(m + n) if every cell in the arrangement is nonempty. In both cases, we assume the points
and hyperplanes in the input are pre-sorted.

Proof (of Theorem 2). We design a dynamic-programming algorithm to solve the problem
in the one-dimensional case. Let i be the dimension in which we have a nonempty set of
hyperplanes. We have m = |Hi| = |H|. We will denote the cells by f1, . . . , fm+1 and the
hyperplanes by h1, . . . , hm, so that they occur in the following order in space:

f1, h1, f2, h2 . . . , hm, fm+1.

Let ni be the number of points in the cell fi. We will think of hyperplanes and cells with
smaller indices in this ordering as being “to the left.”

For each 1 ≤ i ≤ m + 1, let Li be the set of hyperplanes to the left of the cell fi. We
have L1 = ∅. For a set of hyperplanes H ′, let fi(H ′) denote the cell containing fi in the
arrangement A(H\H ′). For example, if H ′ = {h1}, then f2(H ′) is the cell formed by the
union of f1 and f2. For every 1 ≤ i ≤ m + 1 and every 0 ≤ s ≤ t, we define the following
value:

f(i, s) = minimum possible size of a set H ′ ⊆ Li such that in the arrangement A(H\H ′),
any nonempty cell to the left of fi(H ′) contains at least t points, and the cell fi(H ′)
contains at least s points.
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The value we need to compute is f(m + 1, t). We compute f(m + 1, t) using the following
recursive formula:

f(i, s) =


0 if i = 1 and s ≤ n1

∞ if i = 1 and s > n1

min
(

f(i− 1, 0) + 1, f(i− 1, t)
)

if i > 1 and s ≤ ni

f(i− 1, s− ni) + 1 if i > 1 and s > ni.

The return value f(m + 1, t) is always finite since we assume n ≥ t. This concludes the
algorithm – we leave the formal proof of correctness to the reader. It is easy to see that the
running time is O(mt + n), which is bounded by O(mn).

We now proceed to the case when the instance is not only one-dimensional, but also has
the property that every cell in the arrangement is nonempty. In this case, the problem can
be solved by a greedy algorithm, which proceeds as follows:

Initially, set q = 1 and set S = ∅.
Repeat the following steps while q ≤ m + 1:

Set j to be the smallest j such that
∑j

i=q ni ≥ t. Set S′ = {hq, . . . , hj−1}. (If j = q,
then S′ is empty.) If there is no such j, this means we have reached the last of the cells.
In that case, set j to be the largest j such that

∑m+1
i=j ni ≥ t, set S′ = {hj , . . . , hm},

and break once this iteration is complete.
Set S = S ∪ S′.
Set q = j + 1.

Return S.

Note that there always exists a j such that
∑m+1

i=j ni ≥ t since we assume
∑m+1

i=1 ni = n ≥ t.
The formal proof of correctness is straightforward, and we leave it to the reader. ◀

B Proof of Theorem 7 for d ≥ 3

In this section, we prove Theorem 3 for d ≥ 3 and provide the pseudocode for the d = 2
case. Recall that Theorem 7 promises a d-approximation algorithm for the d-dimensional
Anonymity-Preserving Partition problem.

Proof (of Theorem 3 – for d ≥ 3). Given an instance (P, H, t) of the d-dimensional Ano-
nymity-Preserving Partition problem, we use the reduction in Lemma 3 to obtain a 2d-Hitting
Set instance (U,F). Recall that U = H =

⋃
1≤i≤d Hi, i.e., U is a union of d disjoint sets of

hyperplanes Hi.
Next, we partition U into three sets S1, S2, S3 such that for all X ∈ F , |X ∩ Si| ≤ d for

1 ≤ i ≤ 3. When d is even, we let

S1 =
⋃

1≤i≤ d
2

Hi, S2 =
⋃

d
2 +1≤i≤d

Hi, S3 = ∅.

When d is odd, we let

S1 =
⋃

1≤i≤⌊ d
2 ⌋

Hi, S2 =
⋃

⌊ d
2 ⌋+1≤i≤d−1

Hi, S3 = Hd.

We define si = max
X∈F
|X ∩ Si|, for i ∈ {1, 2, 3}. From Lemma 2, we know that for all X ∈ F ,

|X ∩Hi| ≤ 2; hence, s1 + s2 + s3 ≤ 2d. We now describe a d-approximation algorithm for
(U,F). To this end, we first use a result from [3] which bounds the integrality gap for the
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LP from Fig. 3 on the instance (U,F) by d. For completeness, we include the proof from [3],
and then build upon it to give an approximation algorithm.

Let g : U → [0, 1] be an optimal fractional hitting set of (U,F) with value τ∗(U,F).
Furthermore, let τ(U,F) be the size of an optimal integral hitting set. We now construct a
set B ⊆ [0, 1/d]3. Fix four points:

q1 =
(

s1 + s2 − s3

2ds1
, 0,

1
d

)
, q2 =

(
1
d

,
s2 + s3 − s1

2ds2
, 0

)

q3 =
(

s1 + s3 − s2

2ds1
,

1
d

, 0
)

, q4 =
(

0,
s1 + s2 − s3

2ds2
,

1
d

)
and let

B(1) = [q1, q2], B(2) = [q3, q4], B(3) = [q1, q3], B(4) = [q2, q4],

where [qi, qj ] denotes the line segment between the points qi and qj . We define B =
B(1) ∪B(2) ∪B(3) ∪B(4).

Notice that the coordinates of q1, q2, q3, q4 all satisfy the equation s1x1 + s2x2 + s3x3 = 1,
and hence, this equation is satisfied by all tuples x = (x1, x2, x3) ∈ B. Hence, using an
argument similar to that used for d = 2, the sets T (x) constructed as follows are indeed
hitting sets:

T (x) = {h ∈ S1 : g(h) ≥ x1} ∪ {h ∈ S2 : g(h) ≥ x2} ∪ {h ∈ S3 : g(h) ≥ x3}.

Let T = {T (x) : x ∈ B}. Next, we define a probability measure µ over B such that for
any given a, b ∈ [0, 1/d] with a ≤ b, for a randomly chosen tuple (x1, x2, x3) ∈ B, we have
Pr(a ≤ xi ≤ b) = b−a

1/d for 1 ≤ i ≤ 3, i.e., the xi’s have a uniform distribution over the
interval [0, 1/d]. For 1 ≤ i ≤ 4, let µi be the uniform measures on the line segments B(i)

such that

µ1(B(1)) = µ2(B(2)) = (s1 + s3 − s2)(s2 + s3 − s1)
2s3(s1 + s2 − s3) ,

µ3(B(3)) = (s2 − s3)(s2 + s3 − s1)
s3(s1 + s2 − s3) ,

µ4(B(4)) = (s1 − s3)(s1 + s3 − s2)
s3(s1 + s2 − s3) .

We set µ = µ1 + µ2 + µ3 + µ4. It can be verified that
∑4

i=1 µi(B(i)) = 1, and hence,
µ(B) = 1. At this stage, to argue as in the case d = 2 in order to show the bound on the
integrality gap, it remains to show that xi indeed has a uniform distribution on [0, 1/d] for
all 1 ≤ i ≤ 3.

It is easy to see that for a randomly chosen x = (x1, x2, x3) ∈ B, x3 has a uniform
distribution over [0, 1/d]. This is because each µi is a uniform measure over B(i), and
x3 takes all values from [0, 1/d] on each B(i) with 1 ≤ i ≤ 4. It is easy to see that x1
is uniform over B(4) using the same argument. Next, we observe that x1 is uniform on
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each of the line segments
[
0, s1+s3−s2

2ds1

]
,

[
s1+s3−s2

2ds1
, s1+s2−s3

2ds1

]
,

[
s1+s2−s3

2ds1
, 1

d

]
. Recall that

µ1(B(1)) = µ2(B(2)); hence, the situation for the first and the third line segment is the same.
Without loss of generality, assume that 0 ≤ s3 ≤ s2 ≤ s1 ≤ d. Hence, we only need to check

µ3(B(3))
µ2(B(2))

=
s1+s2−s3

2ds1
− s1+s3−s2

2ds1
s1+s3−s2

2ds1

,

which indeed holds. Hence, x1 is uniformly distributed. With a similar argument, it can be
shown that x2 is uniformly distributed. At this stage, similarly to the d = 2 case, we can
compute the expected size of T (x) to obtain the desired bound d on the integrality gap.

Next, we show that there are only O(m) distinct rounded hitting sets T (x) constructed
using x ∈ B. Observe that while traversing on any line segment B(i) for 1 ≤ i ≤ 4, the
hitting set T (x) may change at points x ∈ B(i) for which there exists 1 ≤ j ≤ 3 such that
g(h) = xj for some h ∈ Sj , i.e., when the plane xj = g(h) intersects B. Note that the hitting
set T (x) does not change for the points on the open line segment between two consecutive
intersection points on B(i) obtained from the aforementioned planes (here, the open line
segment (xi, xj) is the set of all points on the line segment [xi, xj ] except for the endpoints).
Since each such plane can have at most four intersection points with B, the number of
distinct rounded solutions is O(m), where m = |U |.

We iterate through all distinct rounded solutions and return a hitting set with minimum
cardinality. This completes the proof of Theorem 7. ◀

Algorithm 1 2-approximation for Anonymity-Preserving Partition in 2 dimensions.

1: Input: Anonymity-Preserving Partition instance (P, H = H1 ∪H2, t)
2: Output: 2-approximate Deletion Set
3: U ← H

4: F ← {X ⊆ U : A(X) is deficient, |X ∩Hi| ≤ 2, ∀i ∈ {1, 2}}
5: g ← optimum fractional hitting set of (U,F) ▷ g : U → [0, 1]
6: B1 ← {(g(v), 1/2− g(v)) : v ∈ H1, g(v) ≤ 1/2}

⋃
{(1/2− g(v), g(v)) : v ∈ H2, g(v) ≤ 1/2}

⋃
{(1/2, 0)}

7: ε← arbitrary positive value less than min
(x1,x2),(x′

1,x′
2)∈B1

|x1 − x′
1|

8: B2 ← {(x1 + ε, x2 − ε) : (x1, x2) ∈ B1, x1 ̸= 1/2} ∪ {(0, 1/2)}
9: B ← B1 ∪B2

10: for x = (x1, x2) ∈ B do
11: Tx ← {v1 ∈ H1 : g(v1) ≥ x1} ∪ {v2 ∈ H2 : g(v2) ≥ x2}
12: xmin ← arg min

x∈B
|Tx|

13: return Txmin ▷ Txmin is a 2-approximate deletion set
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PPSZ is the fastest known algorithm for (d, k)-CSP problems, for most values of d and k. It goes
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our new “impatient PPSZ” outperforms PPSZ exponentially for all k and all d ≥ 3 on formulas with
a unique satisfying assignment.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Randomized algorithms, Constraint Satisfaction Problems, exponential-time
algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.33

Related Version Full Version: https://arxiv.org/abs/2109.02795

Funding Both authors acknowledge support from the National Natural Science Foundation of China
under grant 61502300 and 11671258.

Acknowledgements Dominik Scheder wants to thank Timon Hertli, Isabelle Hurbain, Sebastian
Millius, Robin A. Moser, and May Szedlák, his co-authors of [4]. The idea of impatient assignment
came up when we were working on [4].

1 Introduction

A Constraint Satisfaction Problem, or CSP for short, consists of a finite set of variables
x1, . . . , xn, a domain [d] := {1, . . . , d} of potential values, called colors, and a set of constraints.
A constraint is of the form (xi1 , . . . , xik

) ∈ S, where S ⊆ [d]k. In analogy to CNF-SAT, we
assume in this paper that |S| = dk − 1, i.e., all but one possible assignments satisfy the
constraint. We speak of a (d, k)-CSP if all constraints are over k variables. In a slight abuse of
notation, we also use (d, k)-CSP to denote the associated decision problem: is there a way to
assign values in [d] to the variables that satisfies all constraints? This is NP-complete except
when d = 1 or k = 1 or k = d = 2, so researchers focus on finding moderately exponential-time
algorithms: algorithms of running time cn for c < d. Examples include Beigel and Eppstein’s
randomized algorithm for (d, 2)-CSP with running time O((0.4518d)n) [1];Schöning’ s random
walk algorithm of running time O∗(( d(k−1)

k )n) [11]; Paturi, Pudlák, and Zane encoding-based
randomized algorithm called PPZ [7] for k-SAT (i.e., d = 2), which runs in time O(2(1−1/k)n).
Paturi, Pudlák, Saks and Zane [6] improved PPZ by introducing a pre-processing step using
small-width resolution. Both PPZ and PPSZ can be easily modified to work for (d, k)-CSP
as well, as done by Scheder [8] for PPZ and Hertli et al. [4] for PPSZ. In both cases, several
subtleties and technical difficulties arise, which are not present for k-SAT. Furthermore, [4]
is the currently fastest algorithm for (d, k)-CSP when k ≥ 4.
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1.1 The PPSZ Algorithm

Let us give an informal description of PPSZ, first for SAT, and then for CSP. In either case, it
chooses a random ordering π on the variables x1, . . . , xn. Then it goes through the variables
one by one, in the order of π; when processing xi, it fixes xi randomly to true or false,
unless there is a set of up to D clauses that logically implies xi = b for some b ∈ {0, 1}; in
the latter case, we fix xi to b and say that xi has been inferred by D-implication. For CSP,
the only difference is that when processing xi, it checks (with brute force) for which colors
c ∈ [d] the statement [xi ̸= c] can be inferred by a set of up to D constraints; if so, we say
[xi ̸= c] is D-implied, and color c is obviously ruled out. It then fixes xi randomly to one of
the colors not yet ruled out (or declares failure if all colors have been ruled out).

Unique-SAT versus general-SAT. A peculiar feature of PPSZ, as analyzed in the seminal
paper [6], is that it performs better if the input instance F has a unique satisfying assignment.
Certain properties, such as the existence of critical clause trees, break down once F has
multiple solutions. In [6], the authors proposed a clever but technical workaround, which
incurred an exponential overhead for k = 3, 4. In his 2011 breakthrough paper, Hertli [3]
showed that this peculiarity is in fact an artifact of the analysis, and gave a very abstract and
high-level proof that PPSZ on formulas with many solutions is indeed no worse. His proof
was later simplified by Scheder and Steinberger [10]. The proofs in [3] and [10] work only
provided that the internal machinery of the PPSZ algorithm (e.g., checking D-implication)
is “not too good”. Curiously, in [4] it turned out that, for k = 2, 3 and certain values of d,
the PPSZ machinery is indeed “too good”, and consequently their time complexity for the
general case (multiple solutions) is worse than for the unique case (exactly one solution). For
formulas with a unique solution, their analysis gives a running time of O

(
dnSd,k+o(n)), for

Sd,k defined below. This is the best known running time for all d, k except for (d, k) = (3, 2)
and (d, k) = (4, 2).

Improvements to PPSZ for k-SAT. Two recent results improve PPSZ. Hansen, Kaplan,
Zamir, and Zwick [2] define a biased version of PPSZ and show that it achieves an improvement
for all k ≥ 3. Scheder [9] shows that PPSZ itself performs exponentially better than in the
analysis of [6]. We would not be surprised if both improvements carry over to (d, k)-CSP,
although to our knowledge, this has not been analyzed so far. The improvement presented
in this work is of a different quality: it is not a generalization of some idea for k-SAT; in
fact, the main idea only makes sense for d ≥ 3 and thus is particular to (d, k)-CSP problems.

The time complexity of PPSZ for Unique (d, k)-CSP. A main result of [4] is that PPSZ
solves Unique (d, k)-CSP in time O

(
2Sd,k n+o(n)), where Sd,k is defined by the following

random experiment: let T ∞ be the infinite rooted tree in which each node on even depth
(which includes the root at depth 0) has k−1 children and every node on odd depth has d−1
children. Let T1, . . . , Td−1 be disjoint copies of T ∞, sample p ∈ [0, 1] uniformly, and delete
every odd-level node with probability p, independently. Let Jc be the indicator variable that
is 1 if the root of Tc is contained in an infinite component after this deletion step. Then

Sd,k := E[log2(J1 + · · ·+ Jd−1 + 1)] . (1)
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Approximate values of Sd,k for small values of d, k can be found in Hertli et al. [4]1 To
understand Sd,k for large values d, it is most advantageous to write cd,k := log2(d)− Sd,k.
Intuitively, log2(d) is the number of bits required to specified a color and Sd,k is the number
of coin tosses used by PPSZ to determine it, so cd,k is the number of coin tosses per variable
saved by PPSZ. Theorem 1.4 of [4] states that limd→∞ cd,k = −

∫ 1
0 log2(1− rk−1).

Thus, for large d, PPSZ saves a constant number of bits per variable; this is somewhat
unsatisfactory; we would like to save a constant fraction of bits, i.e., an algorithm of running
time d(1−ck)n for some ck > 0 for arbitrary d. The existence of such an algorithm is posed
as an open problem by Koucký, Rödl, and Talebanfard [5]. In the same paper, they give
such an algorithm for CSP formulas where every variable appears in a constant number
of constraints. Formally, their algorithm runs in time d(1−ck,r)n on (d, k)-CSP formulas F

where each of the n variables occurs in at most r constraints.

1.2 Our Contribution
In this work, we focus on the case that F has a unique satisfying assignment α∗, without loss
of generality α∗ := (d, d, . . . , d). The idea behind our improvement is as follows: suppose
x, y, z are variables appearing in the order y, x, z in π. Focus on the point in time when
PPSZ processes x, and assume every assignment prior to x has been correct. For example,
the variable y has already been replaced by the constant d. In other words, when PPSZ
tries to infer statements like [x ̸= c] from small sets of constraints, it can use the information
[y = d]. It cannot use [z = d], however. Or can it? Maybe PPSZ can already infer
[z ̸= 1], . . . , [z ̸= d− 1]; in this case, it can also infer [z = d], and it would be safe to fix z to
d. Let us propose the following rule:

Rule of One. Whenever [z = c] can be inferred by D-implication, fix z to c.

This rule is “uncontroversial” in the sense that it will never make a mistake. Indeed, the
reader who is familiar with the literature about PPSZ, in particular with its original version
using small-width resolution, will notice that resolution implicitly implements the above rule.
We propose the following more aggressive rule:

Rule of Two. Whenever [z = c1 ∨ z = c2] can be inferred by D-implication, i.e.,
if all but 2 colors can be ruled out, pick c ∈ {c1, c2} uniformly at random and fix z

to c.

Obviously, this rule can introduce mistakes. On the plus side, it might be very unlikely
that the range of plausible (i.e., not ruled out) colors for z further decreases from 2 to
1. Better to bite the bullet now, decide on a value for z, hope that it is correct, and use
that information for subsequent D-implications. For example, it might be that using the
information [z = d] lets us rule out additional colors for x, the variable currently being
processed by PPSZ. Unfortunately, this rule does more bad than good: consider the variables
coming towards the very end of π. For each of them, it is very likely that all but one color
can be ruled out; thus, PPSZ would set them correctly with high probability; using our Rule
of Two, this probability would go down from (almost) 1 to (roughly) 1/2 since we decide on
a value once only two values are left. We propose a less impatient rule:

1 In [4] they define Sd,k with logd instead of log2. We prefer the binary logarithm for purely cosmetic
reasons: otherwise some of our expressions would contain the expression “logd(2)”, but “1” is undoubtedly
nicer.
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Conservative Rule of Two. Apply the Rule of Two only to variables z that are
among the first θn in π; don’t apply it to the last (1− θ)n variables.

We will show that for those early variables, it is extremely unlikely that the set of plausible
colors gets narrowed down to only one color; and that it is somewhat more likely that the
Rule of Two helps us rule out one additional colors for a variable. In particular, we prove
the following theorem:

▶ Theorem 1. For every d ≥ 3 and k ≥ 2, there is some ϵ > 0 and a randomized algorithm
solving (d, k)-CSP in time 2n(Sd,k−ϵ)poly(n), where Sd,k is as defined in (1).

Note that the Rule of Two does not make any sense in the Boolean context. For every
variable z we can trivially 0-imply [z = 0 ∨ z = 1], and thus every variable immediately
qualifies for impatient assignment. We thus lose all control over the ordering π in which we
process the variables. The Rule of One does of course make sense in the Boolean setting and
is implicitly implement if you are running “strong” PPSZ, i.e., with small-width resolution.

1.3 Notation
Let V = {x1, . . . , xn} be a set of variables and [d] = {1, . . . , d} be the set of possible colors.
A literal is an expression (x ̸= c), where x ∈ V, c ∈ [d]. A clause is a disjunction of literals:
(v1 ̸= c1 ∨ v2 ̸= c2 ∨ ... ∨ vk ̸= ck). A (d, k)-CSP is a conjunction of clauses of size k each.
An assignment α is a function V → [d]. It satisfies a literal (x ̸= c) if α(v) ̸= c; it satisfies
a clause if it satisfies at least one literal therein; it satisfies a (d, k)-CSP F if it satisfies all
clauses in F . If V ′ ⊆ V and α : V ′ → [d], we call α a partial assignment; vbl(α) denotes
its domain, i.e., V ′. F [α] is the simplified formula after setting all variables in V ′ according
to α. We will write partial assignments like this: [x 7→ 2, y 7→ 3, ...] and therefore F [x 7→2]

will denote the formula after replacing x with 2. For a set V ′ ⊆ V of variables, we take the
liberty to write F [V ′ 7→d], where [V ′ 7→ d] is the partial assignment [x 7→ d for each x ∈ V ′].
For a clause C and a (d, k)-CSP F , vbl(C) and vbl(F ) denote the sets of variables in C and
F , respectively. For a rooted tree T and a node v therein, the subtree of T rooted at v is the
tree containing v (as root) and all its descendants. We use the notation [statement], which
evaluate to 1 if statement holds, and to 0 otherwise.

1.4 PPSZ and impatient PPSZ
▶ Definition 2 (D-implication [4]). Let F be a (d, k)-CSP formula and u be a literal of F .
We say F implies u and write F ⊨ u if all assignment satisfying F also satisfy u. We say F

D-implies u and write F ⊨D u if there is some G ⊆ F with |G| ≤ D and G ⊨ u.

For the rest of the paper, D = D(n) will be some slowly growing function in n, so F |=D u

can be checked in time O(|F |Dpoly(n)), which is subexponential in n.

▶ Definition 3 (Plausible values). Let F be a (d, k)-CSP formula and x a variable. We say
color c ∈ [d] is D-plausible for x in F if F does not D-imply (x ̸= c). Let Plaus(x, F, D)
denote the set of all colors that are D-plausible for x. We will drop the parameter D if it is
understood from the context.

Note that our code specifies π as an explicit input parameter; it is the responsibility of
the “user” to make sure PPSZ(F, π) is called with a random π; furthermore, we implicitly
assume that PPSZ declares failure if the set Plaus(x, F [α]) in Line 4 is empty.
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Algorithm 1 PPSZ algorithm.

1: procedure PPSZ(F, π)
2: α← the empty assignment
3: for x ∈ vbl(F ) in the order of π do
4: choose ι ∈ Plaus(x, F [α]) uniformly at random
5: α := α ∪ [x 7→ ι]
6: end for
7: return α if it satisfies F , else failure
8: end procedure

From now on, we view π not as a permutation of the variables but as a placement, i.e.,
a function V → [0, 1]; note that if π : V → [0, 1] is sampled uniformly at random, it will
be an injection with probability 1; sorting V in ascending order by their π-value will give
a permutation of V . Additionally, we fix two parameters θ (to be determined later) and
ζ := 2− log2(3), and mark every variable x as eligible for impatient assignment as follows:

▶ Definition 4 (Eligible for impatient assignment). For each variable x, define Ix ∈ {0, 1} as
follows. (1) If π(x) ≥ θ, set Ix := 0; (2) if π(x) < θ, set Ix := 1 with probability ζ and to 0
with probability 1− ζ, independently of all other choices. If Ix = 1 we say x is eligible for
impatient assignment.

The reasoning behind condition (1) is that a “late” variable x (one with π(x) ≥ θ) is
likely to end up with a unique plausible value when PPSZ reaches it; setting it prematurely
will do more bad than good; our decision to mark “early” variables with π(x) < θ as eligible
only with probability ζ (and not with probability 1) has technical reasons: we want a certain
function to become concave, and our choice of ζ is the largest value for which this happens.

Algorithm 2 Impatient PPSZ.

1: procedure ImpatientPPSZ(F, π)
2: α := the empty assignment
3: for x ∈ vbl(F ) in ascending order of π do
4: while ∃y ∈ vbl(F ) \ vbl(α) with Iy = 1 and |Plaus(y, F [α])| ≤ 2 do
5: choose ι ∈ Plaus(y, F [α]) uniformly at random
6: α := α ∪ [y 7→ ι]
7: end while
8: if x ̸∈ vbl(α) then
9: choose ι ∈ Plaus(x, F [α]) uniformly at random

10: α := α ∪ [x 7→ ι]
11: end if
12: end for
13: return α if it satisfies F , else failure
14: end procedure

Proof sketch of Theorem 1. As the analysis of PPSZ, our proof relies heavily on the concept
of critical clause trees. Intuitively, those trees are a neat and tidy way to describe all ways
how [x = c] can be ruled out. For PPSZ, this can be described as an extinction event in a
Galton-Watson process; for ImpatientPPSZ however, we need a more complicated notion.
To make matters worse, while [6] and [4] showed that the worst case for their PPSZ analysis
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happens if all trees are “nice”, this fails for our algorithm. We have to come up with a (short)
list of non-niceties, and for each of them show that [x = c] is a bit more likely to be ruled
out; we can then finally analyze the “nice” case. ◀

2 Conceptual Framework

Notation for sets of variables coming before variable x: Vx and V imp
x . To analyze

PPSZ and our variant ImpatientPPSZ, we need to talk about the point in time where the
algorithm processes a variable x, and in particular, we need to talk about the set of variables
that have already been assigned a value at this point. For PPSZ, this is easy: we define
Vx := {y ∈ vbl(F ) | π(y) < π(x)}. For ImpatientPPSZ, it’s a bit more complicated: imagine
we run ImpatientPPSZ but feed it the “correct” values in every assignment; that is, whenever
a color c is chosen, make sure that c = d (we manipulate this random source to always choose
the correct color); pause the algorithm in the iteration when variable x is being processed, just
after line 7, and look at the partial assignment α built so far. We set V imp

x := vbl(α) \ {x}.
We remove x for purely technical reasons; if x happens to be already set at that time, then
line 9 and 10 will be skipped by the algorithm anyway.

▶ Observation 5. If line 9 is executed then c is chosen uniformly at random from the set
Plaus(x, F [V imp

x 7→d]).

We define the following indicator variables:

Ax,c :=
{

1 if c ∈ Plaus(x, F [Vx 7→d], D)
0 else.

Aimp
x,c :=

{
1 if c ∈ Plaus(x, F [V imp

x 7→d], D)
0 else.

and Ax :=
∑

c Ax,c and Aimp
x :=

∑
c Aimp

x,c . These are random variables in our random
placement π. Note that Ax,d = Aimp

x,d = 1 because color d is always plausible; also, Aimp
x,c ≤ Ax,c

simply because Vx ⊆ V imp
x , i.e., ImpatientPPSZ has at least as much information as PPSZ.

▶ Lemma 6 ([4]). For a fixed permutation π, Pr[PPSZ(F, π) finds α∗] =
∏

x
1

Ax(π) . For a

random permutation, Prπ[PPSZ(F, π) finds α∗] ≥ 2−
∑

x
Eπ [log2 Ax(π)].

The second statement follows from the first by Jensen’s inequality. To obtain a similar
formula for ImpatientPPSZ, we need to take into account that a variable x might be assigned
in line 6 or in line 10.

▶ Lemma 7. For a fixed permutation π, we have Pr[ImpatientPPSZ(F, π) finds α∗] ≥∏
x

1
max(1+Ix,Aimp

x (π)) . For a random permutation, the probability that ImpatientPPSZ succeeds
is at least

Pr
π

[ImpatientPPSZ(F, π) finds α∗] ≥ 2−Eπ[
∑

x
log2(max(1+Ix,Aimp

x (π)))].

Proof. If Ix = 0 then x will be assigned in line 10 and thus its value will be correct with
probability 1/Aimp

x (π), conditioned on all prior assignments being correct. If Ix = 1 then
either it is assigned in line 6, and is correct with probability 1/2; or it is still assigned regularly
in line 10, and is correct with probability 1/Aimp

x (π). This proves the first inequality. The
second inequality in the lemma follows from the first by Jensen’s inequality. ◀
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2.1 Independence between colors
The crucial quantity in the analysis of ImpatientPPSZ is the random variable Aimp

x =
∑

c Aimp
x,c .

The next lemma states that we can focus on analyzing the indicator variables Aimp
x,c individually;

that is, if we condition on π(x) = p, then the d indicator variables are independent in the
worst case. More formally:

▶ Lemma 8 (Independence between colors). Let π : V → [0, 1] be uniformly random and set
p := π(x). We sample d random variables Ãimp

x,c ∈ {0, 1}, c = 1, . . . , d by setting each Ãimp
x,c

to 1 with probability Pr[Aimp
x,c = 1 | π(x) = p], independently. Set Ãimp

x :=
∑

c Ãimp
x,c . Then

E
π

[
log2

(
max

(
1 + Ix, Aimp

x (π)
))]
≤ E

π

[
log2

(
max

(
1 + Ix, Ãimp

x (π)
))]

(2)

Proof idea. We would like to prove this along the lines of Lemma 3.5 of [4]. The additional
problem here is that although the function f : t 7→ log(t) is concave, the function g : t 7→
log(max(2, t)) isn’t. This is why, if π(x) < θ, we set Ix to 1 with probability ζ and to 0
with probability 1− ζ. The convex combination (1− ζ) · f + ζ · g is concave2 and the proof
goes through just as for Lemma 3.5 in [4]. See Lemma 24 in the appendix for a complete
proof. ◀

The upshot is that it is sufficient to bound Pr[Aimp
x,c = 1 | π(x) = p] from above, for each

variable x and color c, individually.

2.2 Critical Clause Trees and Brief Analysis of PPSZ
In this section, we define critical clause trees and review some results from [4]. We assume
that d = (d, . . . , d) is our unique satisfying assignment. Note that every unsatisfied literal
is of the form (y = d) and every satisfied literal is of the form (y ̸= c) for some c ̸= d. Let
x ∈ vbl(F ) and c ∈ {1, . . . , d − 1}. The critical clause tree T h

x,c of height h has two types
of nodes: a node u on an even level (which includes the root at level 0) is a clause node,
has a clause label clauselabel(u) and an assignment label βu; it has at most k − 1 children
(in fact, one for each unsatisfied literal in clauselabel(u)). A node v on an odd level is a
variable nodes and has a variable label varlabel(v); it has exactly d − 1 children. An edge
(v, w) from a variable node v to a clause node w has an edge color EC(e) ∈ [d− 1]. Thus, if
varlabel(v) = y and (v, w) edge color EC(v, w) = i, then this edge represents the alternative
assignment [y 7→ i]. The critical clause tree T h

x,c is constructed as in algorithm 3.
Let us assume h is always odd, so the lowest layer of T h

x,c consists of variable nodes. T h
x,c

has two types of leaves: those variable nodes at height h; we call them safe leaves; and clause
nodes whose clause label does not contain any literal of the form (y ̸= d); we call them unsafe
leaves.

▶ Proposition 9 ([4]).
1. Suppose v is a clause node in T h

x,c with clause label C and (y ̸= i), i ∈ [d] is a literal in C.
Then if i = d, v has a child whose variable label is y. If i < d and y ̸= x then v has an
ancestor node whose variable label is y.

2. No variable appears more than once as variable label on a path from root to a leaf.

2 The attentive reader might notice: it’s not concave; however, if we change the definition of “log” in the
definition of f and g from the usual log to “log on N and linear between integers, then it is concave,
provided that ζ ≤ 2 − log2 3.
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Algorithm 3 BuildCCT(F, x, c, h).

1: Create a root node and set βroot := α[x = c]
2: while ∃ clause node u of height less than h− 1 without a clause label do
3: Find a clause C which is not satisfied by βu

4: Set clauselabel(u) := C

5: for each unsatisfied literal (y ̸= d) in C do
6: Create a new child v of u

7: varlabel(v) := y

8: for i ∈ [d− 1] do
9: Create a new child w of v

10: Set βw := βv[y = i]
11: Set EC(v, w) = i

12: end for
13: end for
14: end while
15: remove clause nodes at height h + 1
16: return T h

x,c

▶ Definition 10 (labeled tree). A labeled tree is a possibly infinite tree such that: (1) every node
is either a variable node or a clause node; (2) a variable node u has a label varlabel(u) ∈ L
in some label space L ⊇ V ; (3) they alternate, i.e., if a variable node has children, they are
all clause nodes, and vice versa; (4) its degree is bounded: there is some ∆ ∈ N such that
every node has at most ∆ children. A leaf in a labeled tree is a safe leaf if it is a variable
node; Otherwise, it is an unsafe leaf.

Note that each subtree of a critical clause tree is a labeled tree. A safe path in a labeled tree
is a path that starts at the root and is either infinite or ends at a safe leaf.

▶ Definition 11 (Cutp and Cut). Let T be a labeled tree. The event Cutp(T ) is an event
in the probability space of all placements π : L→ [0, 1] that happens if every safe path in T

contains a node v with π(varlabel(v)) < p. Let x be the label of the root of T . We define
Cut(T ) := Cutπ(x)(T ).

Suppose T is a labeled tree, and let T1, . . . , Tl be the subtrees rooted at the l children
of the root of T . Note that the Ti are themselves labeled trees. If the root of T is a clause
node then Cutp(T ) =

∧l
i=1 Cutp(Ti). If it is a variable node, let y := varlabel(root(T )),

and observe that Cutp(T ) = [π(y) < p] if root(T ) itself is a safe leaf (i.e., if l = 0) and
Cutp(T ) = [π(y) < p] ∨

∧l
i=1 Cutp(Ti) else .

Next, we connect the notion of cuts to our notion of being a plausible color. For this, set
L := (d− 1)(k − 1) and observe that T h

x,c has at most Li clause nodes at depth 2i. Choose
h̃ to be the largest integer for which 1 + L + L2 + · · · + Lh̃ ≤ D (recall D, our strength
parameter in the definition of D-implication), and set h := 2 h̃ + 1. Then T h

x,c has at most D

clause nodes and h is also a slowly growing function in n.

▶ Lemma 12 ([4]). Let p = π(x). If Cutp(T h
x,c) happens then Ax,c = 0.

Recall the infinite trees T ∞ and T1, . . . , Td−1 and the indicator variables J1, . . . , Jd−1
defined above, just before (1), and observe that Jc = 1 iff Cutp(Tc) does not happen. Let
T∞ be the subtree of T ∞ rooted at the first child of the root. Define Q(p) := Pr[Cutp(T ∞)]
and R(p) := Pr[Cutp(T∞)]. The next proposition is from [4], adapted for our purposes.
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▶ Proposition 13 ([4]). Set L = (k−1)(d−1). If p ≥ 1− 1
L then Q(p) = R(p) = 1; otherwise,

Q(p) and R(p) are the unique roots in [0, 1] of the equations Q =
(
p + (1− p)Qd−1)k−1 and

R = p + (1− p)RL, respectively. Furthermore, Q(p) = R(p)k−1.

As our height parameter h grows (roughly logarithmic with our strength parameter D),
the critical clause trees T h

x,c will look more and more like T ∞, and thus the cut probability
will converge to Q(p). Formally, let error(d, k, h, p) and error(d, k, h) stand for any functions
that converge to 0 as h→∞.

▶ Proposition 14 (Lemma 3.6 in [4]). Pr[Cutp(T h
x,c)] ≥ Pr[Cutp(Tc)]− error(d, k, p, h).

To summarize: conditioned on π(x) = p, the sum Ax = Ax,1+· · ·+Ax,d has the worst behavior
if all Ax,c are independent (Lemma 8); furthermore, Ax,c ≤ Jc except with probability
error(d, k, p, h), for all c ≤ d− 1, and therefore:

▶ Lemma 15 ([4]). Eπ[log2(Ax)] ≤ E[log2(J1 + · · · + Jd−1 + 1)] + error(d, k, h) = Sd,k +
error(d, k, h).

3 The Probability of Inferring x ̸= c

Just as [4] analyzes PPSZ by studying the random variables Ax,c, we have to study Aimp
x,c .

We can always resort to the “old” analysis via Aimp
x,c ≤ Ax,c. However, the whole point of

this work is to show that this inequality is often strict. To understand how and when this
might happen, we discuss an example for d = 3.

xyz 6= 133

y z

yuv 6= 133 yab 6= 233 zew 6= 133 zrs 6= 233

z 7→
2

y
7→

2y 7→
1

z
7→

1

u v a b e w r s

This is T 3
x,1, the critical clause tree for x and 1 built up to height 3. The formula F in

question contains the constraints shown as clause labels, but of course contains many more
constraints. Suppose that u, v, a, b, z come before x in π, and e, w, r, s, y come later. In the
normal PPSZ, we have already set u, v, a, c, z 7→ 3 when considering x, and thus the clauses
of F will have shrunk:

(yuv ̸= 133) shrinks to (y ̸= 1);
(yab ̸= 233) shrinks to (y ̸= 2);
(zew ̸= 133) and (zrs ̸= 233) don’t shrink but disappear: they are satisfied by z 7→ 3;
(xyz ̸= 133) shrinks to (xy ̸= 13).

Together, the three shrunk clauses (y ̸= 1), (y ̸= 2), and (xy ̸= 13) imply (x ̸= 1); since
D ≥ 3 this means that x = 1 can be ruled out, i.e., Ax,1 = 0. Next, suppose π, viewed as a
placement π : V → [0, 1], looks like this:

θ 10 x z e wr s u v y a b
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and assume for simplicity that all variables l with π(l) < θ in vbl(F ) are eligible for impatient
assignment (i.e., have Il = 1). Note that Cut(T 3

x,1) does not happen. Namely, the path
from root to c contains two variable labels, y and b, and π(y), π(b) ≥ π(x). Analogously, the
alternative assignment α∗[x 7→ 1, y 7→ 2, b 7→ 2] satisfies all clauses in the figure above, and
thus the algorithm cannot infer x ̸= 1 from those clauses alone, and Ax,1 = 1. Observe now
what happens in ImpatientPPSZ:

r, s, u, v 7→ 3 before x is even considered;
(yuv ̸= 133) shrinks to (y ̸= 1), and thus Plaus(y, F [α]) shrinks to {2, 3};
y is assigned a value in line 6;
the analogous thing happens to z;
r, s, u, v ∈ Vx, and r, s, u, v, y, z ∈ V imp

x ;
(xyz ̸= 133) shrinks to (x ̸= 1) and thus Aimp

x,1 = 0.

We can now try to work out a formula for the probability that x = c is ruled out in
this manner; however, our above example and analysis contains two silent assumptions that
cannot be taken for granted in general:
1. All variable labels in T 3

x,c are distinct.
2. All clause labels of T 3

x,c are critical clauses, i.e., k − 1 of its literals are of the form y ̸= d.
The original PPSZ paper [6] addresses Point 1 by using the FKG inequality to show that
having multiple labels can never hurt us. But now we are talking about a more complicated
event; it is not clear whether an FKG-like result applies. Point 2 is more troublesome.
Consider the alternative scenario that T 3

x,c looks like this:

xyz 6= 133

y z

yxu 6= 113 yab 6= 233 zew 6= 133 zxr 6= 213

z 7→
2

y
7→

2y 7→
1

z
7→

1

u a b e w r

and consider the same π as above: r, s, u, v, x, z, y, θ, e, w, a, b. After setting r, s, u, v 7→ 3,
the shrunk clauses are (yx ̸= 11), (yab ̸= 233), (zew ̸= 133), and (zx ̸= 21). Neither for y

nor for z can we rule out any color, and therefore our impatient mechanism will not kick in.
We will have Vx = V imp

x = {r, s, u, v}. In other words, non-critical clauses seem useless for
ImpatientPPSZ. But looking at the above example tree, we see what comes to the rescue:
the right-most clause node is missing a child; it has at most k − 2 children instead of k − 1.
This alone will be enough to improve our success probability by a bit. It is time for some
formal definitions.

▶ Definition 16 (Privileged variables). A variable x is privileged if there is some color
c ∈ {1, . . . , d− 1} such that
1. T h

x,c has fewer than (k − 1)2(d− 1) variable nodes at level 3 or
2. T 3

x,c has two variable nodes u and w with varlabel(u) = varlabel(w).

▶ Proposition 17. There is an ϵprivileged > 0 for variable x which is privileged, depending
only on d and k, such that

E [log2(Ax)] ≤ Sd,k − ϵprivileged + error(d, k, h) ,

for every privileged variable x in F .
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See Proposition 25 in the appendix for a proof.

▶ Corollary 18. For every privileged variable x ∈ vbl(F ) it holds that
E [log2(max(1 + Ix, Aimp

x ))] ≤ Sd,k − ϵprivileged + cθ + error(d, k, h)

Proof. Since max(a, b) ≤ a · b when a, b ≥ 1, we get

E
[
log2(max(1 + Ix, Aimp

x ))
]
≤ E

π
[log2(1 + Ix)] + E

π
[log2(Aimp

x )] .

The first term equals Pr[Ix = 1] = cθ; the second is at most E [log2(Ax)], which by Proposi-
tion 17 is at most Sd,k − ϵprivileged + error(d, k, h). This concludes the proof. ◀

▶ Lemma 19. There is a constant ϵ > 0, depending only on d and k, such that

E
[
log2(max(1 + Ix, Aimp

x ))
]
≤ Sd,k − 0.1699

(
c

L + 1θL+1 + O
(
θL+2))+ error(d, k, h) .

for all non-privileged variables x. The constant factor hidden in the O(·) depends only on d

and k.

By choosing θ sufficiently small, we can make sure that the bounds in Lemma 19 and
Corollary 18 are both at most Sd,k − ϵd,k + error(d, k, h), for some ϵd,k depending only on d

and k. Together with Lemma 7, this proves Theorem 1.

Proof of Lemma 19. For a color 1 ≤ c ≤ d − 1, fix the critical clause tree T h
x,c and let us

introduce a bit of notation. The root of T h
x,c has a label

Croot = (x ̸= c ∨ y1 ̸= d · · · ∨ yk−1 ̸= d) .

It has k − 1 children v1, . . . , vk−1, whose respective variable labels are y1, . . . , yk−1. Let Ti

denote the subtree of T h
x,c rooted at vi. Each yi in turn has d− 1 children; each such level-2

node v has a clause label Cv; note that Cv is a critical clause, i.e., k − 1 of its literals are of
the form (z ̸= d), since otherwise it would have fewer than k − 1 children, and T h

x,c would
have fewer than (k − 1)2(d− 1) nodes at level 3; in other words, x would be privileged.

We need to define an event ImpCutp(T h
x,c) which, analogous to Cutp(T h

x,c), describes the
event Aimp

x,c = 0 in terms of T h
x,c only. Going for a full such characterization is possible but

messy, and it is not clear what the worst-case structure of such T h
x,c will be; this is the reason

why we, when considering our impatient assignment mechanism, will look only up to depth
3 in T h

x,c. For each node w of T h
x,c at level 1, 2, or 3, we define event LocalImpCutp(v) as

follows:
1. If v is at level 3 of T h

x,c then LocalImpCutp(v) happens if π(varlabel(v)) < p.
2. If v is at level 2 of T h

x,c then LocalImpCutp(v) happens if LocalImpCutp(w) happens for
the k − 1 children w of v (recall that clauselabel(v) is a critical clause and therefore v

has exactly k − 1 children);
3. If v is at level 1, set y := varlabel(v); LocalImpCutp(v) happens if

a. π(y) < p or
b. Iy = 1 and LocalImpCutp(v) happens for at least d− 2 of the d− 1 children of v.

Finally, we define

ImpCutp(T h
x,c) :=

k−1∧
i=1

(
Cutp(Ti) ∨ LocalImpCutp(vi)

)
(3)

The next lemma is the “impatient analog” of Lemma 12.
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▶ Lemma 20. Let p = π(x). If ImpCutp(T h
x,c) happens then Aimp

x,c = 0.

The proof is very similar to that of Lemma 12, just taking into account the impatient
assignment mechanism. We restate and prove it as Lemma 26 in the appendix. Next, we
prove a lower bound on Pr[ImpCutp(T h

x,c)]. For q ∈ [0, 1] and l ∈ N, define

abamo(q, l) := ql + l(1− q)ql−1 . (4)

The name abamo is the acronym of “all but at most one” and is indeed the probability that,
among l independent events of probability q each, all or all but one happen. Recall the
definition of Q(p) := Pr[Cutp(T ∞)] just before Proposition 13.

▶ Lemma 21. If p < θ then Pr[ImpCutp(T h
x,c) | π(x) = p] is at least(

p + c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1)k−1 − error(d, k, h) .

If p ≥ θ then it is at least Q(p)− error(d, k, h).

Proof sketch. For each subtree Ti of T h
x,c, either Cutp(Ti) or LocalImpCutp(vi) must happen.

Now this happens if either (1) π(y) < p, which explains the first term of the sum in the
parentheses; (2) π(y) ≥ p and Iyi

= 1 and LocalImpCutp(vi), which is the second term; or
(3) π(y) ≥ p and Iyi = 0 and Cutp(Ti), which is the third term. See Lemma 27 for a complete
proof. ◀

Let us summarize our reasoning so far. Define an ensemble J imp
1 , . . . , J imp

d−1 of random
variables in {0, 1} as follows: set p := π(x); then independently set each J imp

c to 0 with
probability W k−1 and 1 with probability 1−W k−1, where

W = W (p) :=
{

p + c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1 if p < θ

R(p) else.

One checks that W (p) is continuous at p = θ since R(p) = p + (1 − p)R(p)(k−1)(d−1) =
p + (1− p)Q(p)d−1. Set J imp := J imp

1 + · · ·+ J imp
d−1 + 1. We have shown so far that

E
[
log2 max(1 + Ix, Aimp

x,c )
]
≤ E

[
log2 max(1 + Ix, J imp)

]
+ error(d, k, h)

= Pr[J imp = 1 ∧ Ix] + E
[
log2(J imp)

]
+ error(d, h, k) . (5)

▶ Proposition 22. Pr[J imp = 1 ∧ Ix] ≤ c
L+1 θL+1 + O

(
θL+2).

▶ Proposition 23. E [log2(J imp)]− Sd,k ≤ (d− 1) log2(1− 1/d) ·
(

c
L+1 θL+1 + O

(
θL+2)).

We prove the two propositions in Section E in the appendix. Together with (5), they imply
that E

[
log2 max(1 + Ix, Aimp

x,c )
]
− Sd,k is at most(

c

L + 1θL+1 + O
(
θL+2)) (1 + (d− 1) log2(1− 1/d)) + error(d, k, h) .

The expression in the first parenthesis is positive for sufficiently small θ; in fact, we have to
choose θ small enough to beat the hidden constant in the O(·), which in turn depends only
on d and k. The expression in the second parenthesis, 1 + (d− 1) log2(1− 1/d), is negative
for all d ≥ 3. It is maximized for d = 3, where it becomes 2− 2 log2(3) < −0.1699. Thus, we
can choose θ such that the whole expression is at most Sd,k − ϵd,k + error(d, k, h) for some
ϵd,k > 0 depending only on d and k. This concludes the proof of Lemma 19. ◀
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4 Future Work

In the analysis of PPSZ, the worst case happens if all everything looks “nice”: all variable
nodes in Tx,1, . . . , Tx,d−1 have different labels; all clause labels are critical clauses.

In this scenario, our analysis for impatient assignment could go deeper than level 3; we
could define a more powerful event ImpCut and obtain much better bounds on the running
time. Indeed, future work hopefully will identify the worst-case shape of the T h

x,c and allow
us to analyze the full power impatient assignment.

The condition |Plaus(y, F [α])| ≤ 2 in Line 4 in Algorithm 2 is arbitrary. Why “≤ 2”?
Why not “≤ 3”? For large d, what would the optimal cut-off value be?
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A Independence between colors

▶ Lemma 24 (Lemma 8, restated). Let π : V → [0, 1] be uniformly random and set p := π(x).
We sample d random variables Ãimp

x,c ∈ {0, 1}, c = 1, . . . , d by setting each Ãimp
x,c to 1 with

probability Pr[Aimp
x,c = 1 | π(x) = p], independently. Set Ãimp

x :=
∑

c Ãimp
x,c . Then

E
π

[
log2

(
max

(
1 + Ix, Aimp

x (π)
))]
≤ E

π

[
log2

(
max

(
1 + Ix, Ãimp

x (π)
))]

(6)
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Proof. We prove (6) conditioned on π(x) = p. Let Z ∈ {0, 1}V \{x} be defined by Zy :=
[π(y) ≥ p]. Note that each Zy is 1 with probability 1 − p, independently. Next, observe
that each Aimp

x,c is a monotone increasing Boolean function fc(Z): moving some π(y) above
p can only increase Aimp

x,c . Let Z(1), . . . , Z(d) be d independent copies of Z; that is, each
has the same distribution as Z but they are independent. Conditioned on π(x) = p, we
have (f1(Z), . . . , fd(Z)) ∼ (Aimp

x,1 , . . . , Aimp
x,d ) and (f1(Z(1)), . . . , fd(Z(d))) ∼ (Ãimp

x,1 , . . . , Ãimp
x,d ),

where A ∼ B means that the random variables A and B have the same distribution.
Now if p > θ and therefore Ix = 0, then the function log2(max(1 + Ix, ·)) in (6) becomes

log2(·) and we can directly apply the Concave Correlation Lemma (Lemma A.1 of the full
version of [4]).

If Ix = 1, the trouble is that the function t 7→ log2(max(2, t)) is not concave anymore.
However, note that if π(x) < θ, we set Ix to 1 with probability ζ and 0 with probability 1− ζ.
Conditioned on π(x) = p, the randomness in (6) comes from two sources: (1) the choice of
Ix; (2) the randomness in Z (or Z(1), . . . , Z(d) for the right-hand side). We can break down
both sides of (6) as follows:

E
Z,Ix

[log2(max(1 + Ix, Aimp
x ))] = E

Z

[
ζ log2(max(2, Aimp

x )) + (1− ζ) log2(Aimp
x )

]
, (7)

where ζ = 2− log2(3). Now the function t 7→ ζ log2(max(2, t)) + (1 − ζ) log2(t) is still not
concave. However, note that the arguments of log2(t) in (6) and (7) are integers; define g(t)
to be the function that equals log2(t) if t is an integer, and is linear between integers. Now
g is concave and t 7→ ζg(max(2, t)) + (1 − ζ)g(t) is concave, too. In fact, this function is
linear on [1, 3] and agrees with g for t ≥ 3. Now the lemma again follows by the Concave
Correlation Lemma (Lemma A.1 of [4]). ◀

B PPSZ for privileged variables

▶ Proposition 25 (Proposition 17, restated). Suppose x ∈ vbl(F ) is a priviledged variable.
Then there is an ϵprivileged > 0, depending only on d and k, such that

E [log2(Ax)] ≤ Sd,k − ϵprivileged + error(d, k, h) ,

for every privileged variable x in F .

Proof. This proof is similar in spirit and also technical details to the proof of Lemma 19
in [9], except that the latter is concerned with SAT (i.e., the case d = 2).

Note that a variable x can be privileged for two reasons: first, there is some color c such
that the critical clause tree T h

x,c has fewer than (k − 1)L leaves at level 3; in other words,
some clause node v at level 2 has fewer than k − 1 children (note that the nodes at level
0 and 1 have the “right” numer of children; the clause label of 0 is a critical clause, and
therefore the root has always k − 1 children; an odd-level node always has d− 1 children).
The second reason would be that, for some color c, level 1 and 3 of the critical clause tree
T h

x,c contain nodes u and v with varlabel(u) = varlabel(v).

It is easy to see that the first kind of privilege is stronger: let v be the level-2 node with
fewer than k − 1 children. We can add “fictitious” subtrees until v has k − 1 children, and
make sure that one of the added children shares its variable label with an already-existing
level-3 node. The result of this operation, T ′

x,c, exhibits a privilege of the second kind, and
Cutp(T h

x,c) ⊇ Cutp(T ′
x,c).

Thus, let us assume that x is privileged because T h
x,c contains two nodes v and w with

varlabel(v) = varlabel(w) = z and the depths of v and w are in {1, 3}. Analogous to the proof
of Proposition 14 (Lemma 3.5 in [4], we start with iteratively assign fresh labels to variable
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nodes; as shown in [4], this never increases Pr[Cutp(T h
x,c)]. We apply this to all variable nodes

except v and w, and obtain a new tree T . We make sure that there are no “missing children”
in T , i.e., that every clause has k − 1 children; this can be achieved by attaching fictitious
subtrees, which does not increase Pr[Cutp(T )]. Also, we will for convenience assume that T

is infinite, i.e., has no safe leaves (and no unsafe leaves, either). This does increase Pr[Cutp],
but by at most error(d, k, h). In T we still have varlabel(v) = varlabel(w) = z, but all other
labels are distinct. Let T ′ be the tree where v and w receive fresh labels zv, zw. We already
know that Pr[Cutp(T ′)] = Q(p). It remains to show that Pr[Cutp(T )] is substantially larger
than Pr[Cutp(T ′)]. For this, let L be the set of variable labels appearing in T and T ′, and
let τ : L \ {z, zv, zw} → [0, 1]. We will analyze the difference

Pr[Cutp(T ) | τ ]− Pr[Cutp(T ′) | τ ] (8)

for fixed τ . Introduce the three Boolean variables a := [π(z) < p], av := [π(zv) < p], and
aw := [π(zw) < p]. Note that under τ , the event Cutp(T ′) reduces to fτ (av, aw) for some
monotone Boolean function and Cutp(T ′) reduces to fτ (a, a), for the same function fτ . There
are only six possible such functions: fτ (av, aw) is either 0, 1, av, aw, av ∧aw, or av ∨aw. If it
is one of the first four, then Pr[fτ (av, aw)] = Pr[fτ (a, a)] and (8) is 0. It cannot be av ∨ aw:
the nodes v and w are not ancestors of each other. Finally, if fτ (av, aw) = av ∧ aw then we
call τ pivotal and observe that (8) becomes p− p2.

From here on, our plan is to lower bound the probability that τ is pivotal. We give a
necessary and sufficient criterion for τ to be pivotal.3 It is best illustrated with a figure.

v w

. . . . . .

. . . . . .

. . .. . .

. . . . . .

aunts aunts

aunts

uncles uncles

children

grandparent of v grandparent of w

Squares are the clause nodes and circles are the variable nodes. Note that we assume that v

and w are both on level 3, and their lowest common ancestor is the root. In the other cases,
the picture and the subsequent calculation will be slightly different. To ease notation, we
adopt the notation Cutp(u) := Cutp(Tu), where Tu is the subtree of T ′ rooted at u (note
that T ′ and T have the same node set, only some labels differ). In the case depicted in the
figure, τ is pivotal if and only if
1. Cutp(u) happens for all aunts and uncles u;
2. Cutp(u) does not happen for all children u of v; neither for all children u of w.
3. π(grandparent of v), π(grandparent of w) ≥ p.

3 Actually, it is sufficient for our purposes that the criterion be sufficient, and not necessary that it be
necessary.
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Furthermore, note that Pr[Cutp(u)] equals Q(p) if u is an uncle and R(p) if u is an aunt.
Therefore,

Pr[Cutp(T )]− Pr[Cutp(T ′)] ≥ (p− p2) · Pr[τ is pivotal] =

(p− p2)Q(p)uncles ·R(p)aunts ·
(
1−Q(p)d−1)2 (1− p)2

=: δ(p) .

It is clear that δ(p) > 0 for 0 < p < 1− 1/N and δ(p) = 0 for p ≥ 1− 1/N . Recalling the
definition of Sd,k = E[log(J1 + · · ·+ Jd−1 + 1)] comparing it to E[log2(Ax)] = E[log2(Ax,1 +
· · · + Ax,d−1 + 1)], we can couple the ensembles A := (Ax,c)d−1

c=1 and J := (Jc)d−1
c=1 such

that A ≤ J except with probability error(d, k, p, h), and Ax,c = 0, Jc = 1, conditioned on
π(x) = p, happens with probability at least δ(p)− error(d, k, p, h). In fact, let us ignore the
term error(d, k, h) for now and simply assume that A ≤ J (more rigorously, we would have to
replace every T h

x,c by the appropriate infinite version; we decide to simply ignore error(d, k, h)
in the following, lest we overload the reader with our notation). Set ∆ := J − Ax, and
observe that ∆ ≥ 0 and Pr[∆ ≥ 1 | π(x) = p] ≥ δ(p).

E[log2(J)]− E[log2(Ax)] = −E
[
log2

(
J −∆

J

)]
= −E

[
log2

(
1− ∆

J

)]
≥ −E

[
log2

(
1− ∆

d

)]
≥ log2(e)

d
E [∆]

≥ log2(e)
d

∫ 1

0
δ(p) dp =: ϵprivileged .

This is some positive number, and it depends only on d and k. ◀

C Local reasoning for ImpatientPPSZ

▶ Lemma 26 (Lemma 20, restated). Suppose x ∈ vbl(F ) is non-priviledged. Let p = π(x). If
ImpCutp(T h

x,c) happens then Aimp
x,c = 0.

Proof. We will prove the contrapositive: assume that Aimp
x,c = 1 and show that ImpCutp(T h

x,c)
does not happen. Let F (T h

x,c) denote the set of clause labels appearing in T h
x,c. Since Aimp

x,c = 1
by assumption, the formula F [V imp

x 7→d] does not D-imply (x ̸= c). In particular, |F (T h
x,c)| ≤ D

and therefore F (T h
x,c)[V imp 7→d] does not imply (x ̸= c). This means that there is an assignment

γ that (1) satisfies F (T h
x,c), (2) γ(x) = c, (3) γ(y) = d for all y ∈ V imp

x .

As a first step, we will show that Cutp(T h
x,c) does not happen. For this, we will construct

a sequence of clause nodes u0, u1, . . . , with u0 being the root andn ui+1 being a grandchild
of ui, keeping the following invariant:

Invariant. For every clause node u in the sequence, βu(y) ̸= d⇒ γ(y) = βu(y).

Note that the invariant is satisfied for the root: x is the only variable with βroot(x) ̸= d,
and γ(x) = c = βroot(x). To find ui+1 from ui, let Ci be the clause label of ui, and write
Ci as

Ci = (y1 ̸= c1 ∨ · · · ∨ yl ̸= cl ∨ zl+1 ̸= d ∨ · · · ∨ zk−1 ̸= d) ,
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where c1, . . . , cl ̸= d. By construction, βui violates Ci, and therefore βui(yj) = cj for
1 ≤ j ≤ l; by the invariant, γ(yj) = cj , too. But γ satisfies Ci (it satisfies every clause
label in T h

x,c), and therefore γ(zj) = c ̸= d for some l + 1 ≤ j ≤ k − 1. In particular, ui has
children. Let v be the child of ui with variable label zj . If v is a leaf (a safe leaf), terminate
the process and call the path from root to v the witness path. Otherwise, and let ui+1 be the
child of v with EC(v, ui+1) = c. Note that ui+1 satisfies the invariant.

Since T h
x,c is finite, this process terminates with a witness path. Note that γ(y) ̸= d for

all variable labels y appearing on that path. In particular, this means that y ̸∈ V imp
x , thus

y ̸∈ Vx, thus π(y) ≥ π(x). In other words, Cutp(T h
x,c) does not happen.

Without loss of generality, let v1 be the level-1-node on the witness path, and T1 be
the tree rooted at v1, and y1 := varlabel(v1). Observe that Cutp(T1) does not happen. We
will now show that LocalImpCutp(v1) does not happen, either. Assume, for the sake of
contradiction, that LocalImpCutp(v1) happens. Does it happen because of Point 3a in the
definition? Certainly not: γ(y1) ̸= d since v1 is on the witness path, and thus π(y1) ≥ p.
So it happens because of Point 3b, and Iy1 = 1; without loss of generality, this means that
LocalImpCutp(v1) happens for the first d−2 children w1, . . . , wd−2 of v1; let C1, . . . , Cd−2 be
the respective clause labels. All those Ci are critical clauses (x is non-priviledged, remember),
and have k − 1 children each. So LocalImpCutp happens for the first (k − 1)(d− 2) of the
(k − 1)(d− 1) grandchildren of v1. In other words, all their variable labels z have π(z) < p

and thus z ∈ Vx. Under the assignment [Vx 7→ d], each of Ci reduces to a unit clause; this
unit clause is still violated by βwi

and is therefore either (y1 ̸= i) or (x ̸= c). If it was
(x ̸= c) then F (T h

x,c)[Vx 7→d] would imply (x ̸= c) and therefore Ax,c = Aimp
x,c = 0, contradicting

our assumption. So it is (y1 ̸= i). In other words, F (T h
x,c)[Vx 7→d] contains the unit clauses

(y1 ̸= 1), . . . , (y1 ̸= d − 2); thus, when x is being processed by ImpatientPPSZ, the set of
plausible values for y has been reduced to at most two values: d − 1 and d; since Iy1 = 1,
the algorithm will assign y1 a value in Line 6, and y1 ∈ V imp

x . This is again a contradiction:
γ(y1) ̸= d since v1 is on the witness path; γ(y1) = d since y1 ∈ V imp

x . This concludes the
proof. ◀

D ImpCut probability

Suppose x ∈ vbl(F ) is non-priviledged and T h
x,c is a critical clause tree for x and c ∈ [d].

▶ Lemma 27 (Lemma 21, restated). If p < θ then Pr[ImpCutp(T h
x,c) | π(x) = p] is at least(

p + c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1)k−1 − error(d, k, h) .

If p ≥ θ then it is at least Q(p)− error(d, k, h).

Proof. If p ≥ θ then this is obvious since already Cutp(T h
x,c) has probability at least

Q(p)− error(d, k, h), by Proposition 14. Thus we assume p < θ. The root of T h
x,c has k − 1

children v1, . . . , vk−1, whose respective variable labels are y1, . . . , yk−1. Let Ti denote the
subtree of T h

x,c rooted at vi.

Pr
[
ImpCutp(T h

x,c)
]

= Pr
[

k−1∧
i=1

(
Cutp(Ti) ∨ LocalImpCutp(vi)

)]

≥
k−1∏
i=1

(
Pr[Cutp(Ti) ∨ LocalImpCutp(vi)]

)
. (FKG inequality)
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We can apply the FKG inequality because each event Cutp(Ti) ∨ LocalImpCutp(vi) is a
monotone increasing Boolean function in the variables [π(z) < p] and Iyi

. It remains to
show that, for each 1 ≤ i ≤ k − 1, the event Cutp(Ti) ∨ LocalImpCutp(vi) happens with
probability at least

p + c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1 − error(d, k, h) (9)

For this, let us abbreviate T := Ti, v := vi its root, and y := varlabel(v) = yi; also, we define
the events A := LocalImpCutp(v) and B := Cutp(T ). We distinguish three cases:

(i) if (1) π(y) < p then the desired event A ∨B happens;
(ii) if π(y) ≥ p and Iy = 1 (which implies π(y) < θ) then we ignore B and focus on A;
(iii) if π(y) ≥ p and Iy = 0, then A does not happen, so focus on B.

Formally,

Pr[A ∨B] ≥ Pr[(i)] + Pr[(ii)] · Pr[A | (ii)] + Pr[(iii)] · Pr[B | (iii)]

Next, let us look at each case.
1. Pr[(i)] = p; this explains the first term in (9).
2. Pr[(ii)] = c(θ − p). Furthermore, if if (ii) happens, then A happens if and only if for

at least d− 2 of the children w1, . . . , wd−1, the event Aj := LocalImpCutp(wj) happens.
Each Aj happens with probability ρ := pk−1; they are independent since all (d− 1)(k− 1)
grandchildren of v have distinct labels. Therefore,

Pr[A | (ii)] = Pr[A1 ∧ · · · ∧ Ad−1] +
d−1∑
j∗=1

Pr[¬Aj∗ ∧
∧

j ̸=j∗

Aj ]

= ρd−1 + (d− 1)(1− ρ)ρd−2 = abamo(pk−1, d− 1) .

This explains the second term in (9).
3. Pr[(iii)] = 1 − p − c(θ − p). If (iii) happens, then B happens if and only if Cutp(T ′)

happens for each of the d − 1 subtrees of T . By Proposition 14, this happens with
probability (Q(p)− error(d, k, h))d−1. This explains the third and fourth term in (9).

This concludes the proof. ◀

E Bounding losses and gains. Proofs of Propositions 22 and 23

First, we need some good-enough estimates for our probabilities R(p), Q(p), and W (p). Note
that R(p) and Q(p) are the roots of certain polynomials, and we do not have an explicit
formula for them. The bounds in Proposition 28 are somewhat crude but sufficient for our
purposes.

▶ Proposition 28. R(p) ≤ p + 4 pL; Q(p) ≤
(
p + 4 pL

)k−1; and W (p) ≤ p + O(θp(d−2)(k−1)).
The hidden constant in the O depends on d and k only.

Proof. One checks that R(p) is convex on the interval [0, 1− 1/L]. To see this, note that for
p ≤ 1− 1/L, R(p) is the unique solution in [0, 1] of the equation

R = p + (1− p)RL ,
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by Proposition 13. We can solve explicitly for p and check that p(R) is concave, by elementary
calculus. Since R is convex, R(0) = 0, and R(1− 1/L) = 1, the graph of R(p) is below the
line from (0, 0) to (1 − 1/L, 1), and therefore R(p) ≤ L

L−1 p. This is not enough yet, but
applying the equation of R to this estimate gives

R = p + (1− p)RL ≤ p + (1− p)
(

L

L− 1 p

)L

≤ p + 4 pL .

The upper bound for Q follows directly from Q(p) = R(p)k−1. It remains to prove the upper
bound on W (p):

W (p) = p + c(θ − p)abamo(pk−1, d− 1) + (1− p− c(θ − p))Q(p)d−1

≤ p + θabamo(pk−1, d− 1) + Q(p)d−1

= p + θp(k−1)(d−1) + θ(d− 1)(1− pk−1)p(k−1)(d−2) + Q(p)d−1

≤ p + (d− 1)θp(d−2)(k−1) + RL

≤ p + (d− 1)θp(d−2)(k−1) + (p + 4 pL)L

≤ p + O
(

θp(d−2)(k−1)
)

. ◀

▶ Proposition 29 (Proposition 22, restated). Pr[J imp = 1 ∧ Ix] ≤ c
L+1 θL+1 + O

(
θL+2).

Proof. Recall that if π(x) < θ then Ix is 1 with probability c and 0 with probability 1− c.
If π(x) ≥ θ then Ix = 0. Also, J imp = 1 if and only if J imp

1 = · · · = J imp
d−1 = 0. Therefore,

Pr[J imp = 1 ∧ Ix] = c ·
∫ θ

0
Pr[J imp = 1 | π(x) = p] dp = c ·

∫ θ

0
W (d−1)(k−1) dp

= c ·
∫ θ

0
(p + O(θp(d−2)(k−1)))L dp ≤ c ·

∫ θ

0
pL(1 + O(θ)) dp

(since (d− 2)(k − 1) ≥ 1)

= c

L + 1θL+1 + O
(
θL+2)

This proves the proposition. ◀

▶ Proposition 30 (Proposition 23, restated). E [log2(J imp)]− Sd,k ≤ (d− 1) log2(1− 1/d) ·(
c

L+1 θL+1 + O
(
θL+2)).

Proof. Recall the definition of Sd,k: sample random variables J1, . . . , Jd−1 by setting p :=
π(x) and setting each Jc to 0 with probability Q(p) and to 1 with probability 1 − Q(p),
and J = J1 + · · · + Jd−1 + 1. So the Jc are independent conditioned on π(x) = p. Then
Sd,k = E[log2(J)]. Set ∆c := Jc − J imp

c and ∆ =
∑

c ∆c. Note that all ∆c have the same
distribution.

▶ Proposition 31. E[∆1 | π(x) = p] ≥ c(θ − p)L
(
pL−1 −O(pL)

)
for all 1 ≤ c ≤ d− 1.

In particular, if p < θ and θ is sufficiently small then E[∆1] ≥ 0. Therefore, E[Jc] ≤
E[J imp

c ] and we can couple the ensemble (J1, . . . , Jd−1) and (J imp
1 , . . . , J imp

d−1) on a common
probability space on which Jc ≤ J imp

c , always, and thus ∆ ≥ 0. We therefore see that
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E [log2(J imp)]− Sd,k is

E[
[
log2(J imp)− log2(J)

]
= E

[
log2

(
1− ∆

J

)]
≤ E

[
log2

(
1− ∆

d

)]
≤ E

[
log2

((
1− 1

d

)∆
)]

= E[∆] log2

(
1− 1

d

)
.

Conditioned on π(x) = p and using Proposition 31, this is at most

c(θ − p)L
(
pL−1 −O(pL)

)
(d− 1) log2

(
1− 1

d

)
.

We integrate this over p to get rid of the condition π(x) = p and see that

E
[
log2(J imp)

]
− Sd,k ≤ (d− 1) log2

(
1− 1

d

)
·
(

c

L + 1θL+1 + O
(
θL+2)) .

This concludes the proof of Proposition 30. ◀

It remains to prove Proposition 31.

Proof of Proposition 31.

E[∆1 | π(x) = p] = E[Jc − J imp
c | π(x) = p] = (1−Q)− (1−W k−1) = W k−1 −Rk−1

≥ (k − 1)(W −R)Rk−2 ,

where the last inequality follows because W k−1 = (R + W −R)k−1 = Rk−1 (1 + W −R
R

)k−1 ≥
Rk−1

(
1 + (k−1)(W −R)

R

)
= Rk−1 + (k − 1)(W − R)Rk−2. Now let us bound W − R from

below. If p ≥ θ then W (p) = R(p) and W −R = 0. If p < θ, we expand R(p) as follows:

R = p + (1− p)Q(d−1) = p + c(θ − p)Qd−1 + (1− p− c(θ − p))Qd−1

and therefore

W −R = c(θ − p)
(
abamo(pk−1, d− 1)−Qd−1)

= c(θ − p)
(

p(k−1)(d−1) + (d− 1)
(
1− pk−1) p(k−1)(d−2) −Qd−1

)
≥ c(θ − p)

(
pL + (d− 1)p(k−1)(d−2) − (d− 1)pL − (p + O(p2))L

)
≥ c(θ − p)(d− 1)

(
p(k−1)(d−2) −O(pL)

)
.

Next, combining the previous two calculations, we see that

E[∆1 | π(x) = p] ≥ (k − 1)(W −R)Rk−2 ≥ (k − 1)(W −R)pk−2

≥ (k − 1)c(θ − p)(d− 1)
(

p(k−1)(d−2) −O(pL)
)

pk−2

≥ c(θ − p)L
(
pL−1 −O(pL)

)
. ◀
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Abstract
Vertex Integrity is a graph measure which sits squarely between two more well-studied notions,
namely vertex cover and tree-depth, and that has recently gained attention as a structural graph
parameter. In this paper we investigate the algorithmic trade-offs involved with this parameter from
the point of view of algorithmic meta-theorems for First-Order (FO) and Monadic Second Order
(MSO) logic. Our positive results are the following: (i) given a graph G of vertex integrity k and an
FO formula ϕ with q quantifiers, deciding if G satisfies ϕ can be done in time 2O(k2q+q log q) + nO(1);
(ii) for MSO formulas with q quantifiers, the same can be done in time 22O(k2+kq)

+ nO(1). Both
results are obtained using kernelization arguments, which pre-process the input to sizes 2O(k2)q and
2O(k2+kq) respectively.

The complexities of our meta-theorems are significantly better than the corresponding meta-
theorems for tree-depth, which involve towers of exponentials. However, they are worse than the
roughly 2O(kq) and 22O(k+q)

complexities known for corresponding meta-theorems for vertex cover. To
explain this deterioration we present two formula constructions which lead to fine-grained complexity
lower bounds and establish that the dependence of our meta-theorems on k is best possible. More
precisely, we show that it is not possible to decide FO formulas with q quantifiers in time 2o(k2q),
and that there exists a constant-size MSO formula which cannot be decided in time 22o(k2)

, both
under the ETH. Hence, the quadratic blow-up in the dependence on k is unavoidable and vertex
integrity has a complexity for FO and MSO logic which is truly intermediate between vertex cover
and tree-depth.
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1 Introduction

An algorithmic meta-theorem is a general statement proving that a large class of problems is
tractable. Such results are of great importance because they allow one to quickly classify the
complexity of a new problem, before endeavoring to design a fine-tuned algorithm. In the
domain of parameterized complexity theory for graph problems, possibly the most well-studied
type of meta-theorems are those where the class of problems in question is defined using a
language of formal logic, typically a variant of First-Order (FO) or Monadic Second-Order
(MSO) logic, which are the logics that allow quantification over vertices or sets of vertices
respectively1. In this area, the most celebrated result is Courcelle’s theorem [6], which states

1 Note that the version of MSO logic we use in this paper is sometimes also referred to as MSO1 to
distinguish from the version that also allows quantification over sets of edges.
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that all properties expressible in MSO logic are solvable in linear time, parameterized by
treewidth and the size of the MSO formula. In the thirty years since the appearance of this
fundamental result, numerous other meta-theorems in this spirit have followed (we give an
overview of some such results below).

Despite its great success, Courcelle’s theorem suffers from one significant weakness: the
algorithm it guarantees for deciding an MSO formula ϕ on a graph G with n vertices and
treewidth k has running time f(k, ϕ) ·n, where f is, in the worst case, a tower of exponentials
whose height can only be bounded as a function of ϕ. Unfortunately, it has been known
since the work of Frick and Grohe [20] that this terrible parameter dependence cannot be
avoided, even if one only considers FO logic on trees (or MSO logic on paths [40]). This has
motivated the study of the complexity of FO and MSO logic with parameters which are more
restrictive than treewidth. In the context of such parameters, fixed-parameter tractability
for all MSO-expressible problems is already given by Courcelle’s theorem, so the goal is to
obtain more “fine-grained” meta-theorems which achieve a better dependence on ϕ and k.

The two results from this line of research which are most relevant to our paper are the
meta-theorems for vertex cover given in [39], and the meta-theorem for tree-depth given by
Gajarský and Hliněný [21]. Regarding vertex cover, it was shown in [39] that FO and MSO
formulas with q quantifiers can be decided on graphs with vertex cover k in time roughly
2O(kq+q log q) and 22O(k+q) respectively. Both of these results were shown to be tight, in the
sense that improving their dependence on k would violate the Exponential Time Hypothesis
(ETH). For tree-depth, it was shown in [21] that FO and MSO formulas with q quantifiers can
be decided on graphs with tree-depth k with a complexity that is roughly k-fold exponential.
Hence, for fixed k, the complexity we obtain is elementary, but the height of the tower of
exponentials increases with k, and this cannot be avoided under the ETH [40].

Vertex cover and tree-depth are among the most well-studied measures in parameterized
complexity. In all graphs G we have vc(G)+1 ≥ td(G) ≥ pw(G) ≥ tw(G), so these parameters
form a natural hierarchy with pathwidth and treewidth, with vertex cover being the most
restrictive. As explained above, the distance between the performance of meta-theorems for
vertex cover (which are double-exponential for MSO) and for tree-depth (which give a tower
of exponentials of height td) is huge, but conceptually this is perhaps not surprising. Indeed,
one could argue that the structural distance between graphs of vertex cover k from the class
of graphs of tree-depth k is also huge. As a reminder, a graph has vertex cover k if we can
delete k vertices to obtain an independent set; while a graph has tree-depth k if there exists
k′ ≤ k such that we can delete k′ vertices to obtain a disjoint union of graphs of tree-depth
k − k′. Clearly, the latter (inductive) definition is more powerful and covers vastly more
graphs, so it is natural that model-checking should be significantly harder for tree-depth.

The landscape of parameters described above indicates that there should be space to
investigate interesting structural parameters between vertex cover and tree-depth, exactly
because the distance between these two is large in terms of generality and complexity. One
notion that has recently attracted attention in this area is Vertex Integrity [11], denoted as
ι(G). A graph has vertex integrity k if there exists k′ ≤ k such that we can delete k′ vertices
and obtain a disjoint union of graphs of size at most k − k′. Hence, the definition of vertex
integrity is the same as for tree-depth, except that we replace the inductive step by simply
bounding the size of the components that result after deleting a separator of the graph. This
produces a notion that is more restrictive than tree-depth, but still significantly more general
than vertex cover (where the resulting components must be singletons). In all graphs G,
we have vc(G) + 1 ≥ ι(G) ≥ td(G), so it becomes an interesting question to investigate the
complexity trade-off associated with these parameters, that is, how the complexity of various
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problems deteriorates as we move from vertex cover, to vertex integrity, to tree-depth. This
type of study was recently undertaken systematically for many problems by Gima et al. [29].
In this paper we make an investigation in the same direction from the lens of algorithmic
meta-theorems.

Our results. We consider the problem of verifying whether a graph G satisfies a property
given by an FO or MSO formula with q quantifiers, assuming ι(G) ≤ k. Our goal is to give a
fine-grained determination of the complexity of this problem as a function of k. We obtain
the following two positive results:

1. FO formulas with q quantifiers can be decided in time 2O(k2q+q log q) + nO(1).
2. MSO formulas with q vertex and set quantifiers can be decided in time 22O(k2+kq) + nO(1).

Hence, we obtain meta-theorems stating that any problem that can be expressed in
FO or MSO logic can be solved in the aforementioned times. Both of these results are
obtained through a kernelization argument, similar in spirit to the arguments used in the
meta-theorems of [21, 39]. To describe the main idea, recall that if ι(G) ≤ k, then there
exists a separator S of size at most k, such that removing it will disconnect the graph into
components of size at most k. The key now is that these components can be partitioned into
2k2 equivalence types, where components of the same type are isomorphic. We then argue
that if we have a large number of isomorphic components, it is always safe to delete any one
of them from the graph, as this does not change whether the given formula holds (Lemmas
12 and 14). We then complete the argument by applying the standard brute-force algorithms
for FO and MSO logic on the kernels.

We complement the results above by showing that the approach of kernelizing and then
executing the brute-force algorithm is best possible. More precisely, we show that, under
the ETH, it is not possible to obtain a model-checking algorithm for FO logic running in
time 2o(k2q)nO(1); while for MSO we construct a constant-sized formula which cannot be
model-checked in time 22o(k2) . Hence, the quadratic dependence on k, which distinguishes our
meta-theorems from the corresponding meta-theorems for vertex cover, cannot be avoided.

Related work. The study of structural parameters which trade off the generality of treewidth
for improved algorithmic properties is by now a standard topic in parameterized complexity.
The most common type of work here is to consider a problem that is intractable parameterized
by treewidth and see whether it becomes tractable parameterized by vertex cover or tree-
depth [2, 10, 13, 16, 17, 31, 32, 35, 34, 36, 42, 41]. See [1] for a survey of results of this type.
In this context, vertex integrity has only recently started being studied as an intermediate
parameter between vertex cover and tree-depth, and it has been discovered that fixed-
parameter tractability for several problems which are W-hard by tree-depth can be extended
from vertex cover to vertex integrity [4, 12, 25, 27, 29]. Note that some works use a measure
called core fracture number, which is an equivalent notion to vertex integrity.

Algorithmic meta-theorems are a well-studied topic in parameterized complexity (see
[30] for a survey). Courcelle’s theorem has been extended to the more general notion of
clique-width [7], and more efficient versions of these meta-theorems have been given for the
more restricted parameters twin-cover [22], shrub-depth [24, 23], neighborhood diversity and
max-leaf number [39]. Meta-theorems have also been given for even more general graph
parameters, such as [5, 14, 19, 18], and for logics other than FO and MSO, with the goal
of either targeting a wider class of problems [26, 37, 38, 44], or achieving better complexity
[43]. Meta-theorems have also been given in the context of kernelization [3, 15, 28] and
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approximation [9]. To the best of our knowledge, the complexity of FO and MSO model
checking parameterized by vertex integrity has not been explicitly studied before, but since
vertex integrity is a restriction of tree-depth and a generalization of vertex cover, the
algorithms of [21] and the lower bounds of [39] apply in this case.

2 Definitions and Preliminaries

First, let us formally define the notion of vertex integrity of a graph.

▶ Definition 1. A graph G is said to have vertex integrity ι(G) when there exists a set
S ⊂ V (G) such that, if S′ ⊂ V (G) is the set of vertices of the largest connected component
of G \ S then |S| + |S′| ≤ ι(G).

We recall that Drange et al. [11] have shown that deciding if a graph has ι(G) ≤ k admits
a kernel of order O(k3). Hence, given a graph G that is promised to have vertex integrity k,
we can execute this kernelization algorithm and then look for the optimal separator S in the
kernel. As a result, finding a separator S proving that ι(G) ≤ k can be done in kO(k) +nO(1).
Since this running time is dominated by the running times of our meta-theorems, we will
always silently assume that the separator S is given in the input when the input graph has
vertex integrity k.

A main question that will interest us is whether a graph satisfies a property expressible in
First-Order (FO) or Monadic Second-Order (MSO) logic. Let us briefly recall the definitions
of these logics. We use xi, i ∈ IN to denote vertex (FO) variables and Xi, i ∈ IN to denote set
(MSO) variables. Vertex variables take values from a set of vertex constants U = {ui, i ∈ IN},
whereas vertex set variables take values from a set of vertex set constants D = {Di, i ∈ IN}.

Now, given a graph G, in order to say that the assignment of a vertex variable xi or a
vertex set variable Xi to a constant corresponds to a particular vertex or vertex set of G, we
make use of a labeling function ℓ that maps vertex constants to vertices of V (G) and of a
coloring function C that maps vertex set constants to vertex sets of V (G). More formally,
ℓ, C are partial functions ℓ : U → V (G) and C : D → 2V (G). The functions may be undefined
for some constants, for example, if ℓ is not defined for the constant ui we write ℓ(ui) ↑.

▶ Definition 2. Given a triplet G, ℓ, C, a vertex v ∈ V (G) is said to be unlabeled if ̸ ∃ui ∈ U

such that ℓ(ui) = v. A set of vertices C1 ⊆ V (G) is unlabeled if all the vertices of C1 are
unlabeled.

▶ Definition 3. We say that two labeling functions ℓ, ℓ′ agree on a constant ui if either they
are both undefined on ui or ℓ(ui) = ℓ′(ui). Similarly, two coloring functions C, C′ agree on
Di if they are both undefined or C(Di) = C′(Di).

▶ Definition 4. Given two triplets G1, ℓ1, C1 and G2, ℓ2, C2 and a bijective function f :
V (G1) → V (G2). For C1 ⊆ V (G1), we define f(C1) =

⋃
v∈C1

{f(v)}. We say that V (G1)
and V (G2) have the same labelings for f if ∀ui ∈ U , either both ℓ1(ui), ℓ2(ui) are undefined or
f(ℓ1(ui)) = ℓ2(ui); we say that V (G1) and V (G2) have the same colorings for f if ∀Di ∈ D,
either both C1(Di), C2(Di) are undefined or f(C1(Di)) = C2(Di).

▶ Definition 5. An isomorphism between two triplets G1, ℓ1, C1 and G2, ℓ2, C2 is a bijective
function f : V (G1) → V (G2) such that (i) for all v, w ∈ V (G1) we have (v, w) ∈ E(G1) if and
only if (f(v), f(w)) ∈ E(G2), (ii) V (G1) and V (G2) have the same labelings and colorings
for f . Two triplets G1, ℓ1, C1 and G2, ℓ2, C2 are isomorphic if there exists an isomorphism
between them.
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▶ Definition 6. Given a triplet G, ℓ, C. We say that two sets C1 ⊆ V (G) and C2 ⊆ V (G)
have the same type if there exist ℓ′, C′ and an isomorphism f : V (G) → V (G) between the
triplets G, ℓ, C and itself such that f maps elements of C1 to C2 and vice versa and elements
from V (G) \ (C1 ∪ C2) to themselves.

Notice that only for vertices that don’t belong in the sets C1 and C2 (which f maps to
themselves) we can have that f(ℓ(ui)) = ℓ(ui). This leads to the following observation:

▶ Observation 7. In order for two disjoint sets C1 and C2 to have the same type, they
should necessarily be unlabeled (that is, ∀ui, ℓ(ui) ̸∈ C1 ∪ C2).

▶ Definition 8. Given a triplet G, ℓ, C and a set C1 ⊂ V (G). The restriction of C to G \ C1
is a function C′ : D → V (G) \ C1 such that C′(Di) = C(Di) \ C1 for all Di ∈ D for which
C(Di) ∩ C1 ̸= ∅ and C, C′ agree on the rest of Di.

An MSO formula is a formula produced by the following grammar, where X represents a
set variable, x a vertex variable, y a vertex variable or vertex constant, and Y a set variable
or constant:

ϕ → ∃X.ϕ | ∃x.ϕ | ϕ ∨ ϕ | ¬ϕ | y ∼ y | y = y | y ∈ Y

The operations above are vertex set quantification, vertex quantification, disjunction,
negation, edge relation, vertex equality, and set inclusion respectively. Their semantics are
defined inductively in the usual way: given a triplet G, ℓ, C and an MSO formula ϕ, we say
that the graph satisfies the property described by ϕ, or simply that G, ℓ, C models ϕ, and
write G, ℓ, C |= ϕ according to the following rules:

G, ℓ, C |= ui ∈ Dj if ℓ(ui) is defined and ℓ(ui) ∈ C(Dj).
G, ℓ, C |= ui = uj if ℓ(ui), ℓ(uj) are defined and ℓ(ui) = ℓ(uj).
G, ℓ, C |= ui ∼ uj if ℓ(ui), ℓ(uj) are defined and (ℓ(ui), ℓ(uj)) ∈ E(G).
G, ℓ, C |= ϕ ∨ ψ if G, ℓ, C |= ϕ or G, ℓ, C |= ψ.
G, ℓ, C |= ¬ϕ if it is not the case that G, ℓ, C |= ϕ.
G, ℓ, C |= ∃xi.ϕ if there exists v ∈ V (G) such that G, ℓ′, C |= ϕ[xi \ ui], where ℓ(ui) ↑,
ϕ[xi \ ui] is the formula obtained from ϕ if we replace every occurence of xi with the
(new) constant ui and ℓ′ : U → V (G) is a partial function for which ℓ′(ui) = v, and ℓ′, ℓ

agree on all other values uj ̸= ui.
G, ℓ, C |= ∃Xi.ϕ if there exists S ⊆ V (G) such that G, ℓ, C′ |= ϕ[Xi \Di], where C(Di) ↑,
ϕ[Xi \Di] is the formula obtained from ϕ if we replace every occurence of Xi with the
(new) constant Di and C′ : D → 2V (G) is a partial function for which C′(Di) = S and
C′, C agree on all other values Dj ̸= Di.

If none of the above applies then G, ℓ, C does not model ϕ and we write G, ℓ, C ̸|= ϕ.
Observe that, from the syntactic rules presented above, a formula can have free (non-
quantified) variables. However, we will only define model-checking for formulas without
free variables (also called sentences). Slightly abusing notation, we will write G |= ϕ to
mean G, ℓ, C |= ϕ for the nowhere defined functions ℓ, C. Note that our definition does not
contain conjunctions or universal quantifiers, but these can be obtained from disjunctions
and existential quantifiers using negations in the usual way, so we will use them freely when
constructing formulas.

An FO formula is defined as an MSO formula that uses no set variables Xi. In the
remainder, we will assume that all formulas are given to us in prenex form, that is, all
quantifiers appear in the beginning of the formula. We call the problem of deciding whether
G, ℓ, C |= ϕ the model-checking problem.
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We recall the following basic fact:

▶ Lemma 9. Let G1, ℓ1, C1 and G2, ℓ2, C2 be two isomorphic triplets. Then, for all MSO
formulas ϕ we have G1, ℓ1, C1 |= ϕ if and only if G2, ℓ2, C2 |= ϕ.

Proof. G1, ℓ1, C1 and G2, ℓ2, C2 are isomorphic. Thus there exists a bijective function f :
V (G1) → V (G2) such i) f preserves in G2 the (non-)edges between the pairs of images of
vertices in G1 and ii) V (G1) and V (G2) have the same labelings and colorings for f .

We proceed by induction on the structure of ϕ.
For ϕ := ui ∈ Dj . G1, ℓ1, C1 |= ϕ iff ℓ1(ui) ∈ C1(Dj) iff f(ℓ1(ui)) ∈ f(C1(Dj)) iff
ℓ2(ui) ∈ C2(Dj) iff G2, ℓ2, C2 |= ϕ

For ϕ := ui = uj . G1, ℓ1, C1 |= ϕ iff ℓ1(ui) = ℓ1(uj) iff f(ℓ1(ui)) = f(ℓ1(uj)) iff
ℓ2(ui) = ℓ2(uj) iff G2, ℓ2, C2 |= ϕ

For ϕ := ui ∼ uj . G1, ℓ1, C1 |= ϕ iff (ℓ1(ui), ℓ1(uj)) ∈ E(G1) iff (f(ℓ1(ui)), f(ℓ1(uj))) ∈
E(G2) iff (ℓ2(ui), ℓ2(uj)) ∈ E(G2) iff G2, ℓ2, C2 |= ϕ

For ϕ := ϕ′∨ϕ′′, or ϕ := ¬ϕ′ By the inductive hypothesis, G1, ℓ1, C1 |= ϕ′ iff G2, ℓ2, C2 |= ϕ′

and G1, ℓ1, C1 |= ϕ′′ iff G2, ℓ2, C2 |= ϕ′′. Thus the statement also holds for ϕ.
For ϕ := ∃xi.ϕ

′. We prove the one direction, the other is identical if we use f−1 instead
of f in our arguments.
G1, ℓ1, C1 |= ∃xi.ϕ

′ if there exists v ∈ V (G1) such that G1, ℓ
′
1, C1 |= ϕ[xi \ ui], where

ℓ1(ui) ↑, ℓ′
1(ui) = v, and ℓ′

1, ℓ1 agree on all other values uj ≠ ui. We define a partial
labeling function ℓ′

2 : U → V (G2), such that ℓ′
2(ui) = f(ℓ′

1(ui)) = f(v) and ℓ′
2, ℓ2 agree

on all other values. It is easy to see that G1, ℓ
′
1, C1 and G2, ℓ

′
2, C2 are isomorphic, thus

by the inductive hypothesis G2, ℓ
′
2, C2 |= ϕ[xi \ ui]. Since ∃f(v) ∈ V (G2) such that

G2, ℓ
′
2, C2 |= ϕ[xi \ ui] and ℓ2(ui) ↑ (since ℓ1(ui) ↑ and V (G1) and V (G2) have the same

labelings for f), therefore G2, ℓ2, C2 |= ∃xi.ϕ
′.

For ϕ := ∃Xi.ϕ
′. The proof is similar with the above case. Once again we will only show

the one direction.
G1, ℓ1, C1 |= ∃Xi.ϕ

′ if there exists S ⊆ V (G1) such that G1, ℓ1, C′
1 |= ϕ[Xi \ Di], where

C1(Di) ↑, C′
1(Di) = S and C′

1, C1 agree on all other values Dj ̸= Di.
We define a partial coloring function C′

2 : D → 2V (G2) such that C′
2(Di) = f(C′

1(Di)) =
f(S) and C′

2, C2 agree on all other values. Once again, G1, ℓ1, C′
1 and G2, ℓ2, C′

2 are
isomorphic, thus by the inductive hypothesis G2, ℓ2, C′

2 |= ϕ[Xi\Di]. Since ∃f(S) ⊆ V (G2)
such that G2, ℓ2, C′

2 |= ϕ[Xi \ Di] and we have that C2(Di) ↑, therefore G2, ℓ2, C2 |=
∃Xi.ϕ

′. ◀

3 FPT algorithms for FO and MSO Model-Checking parameterized by
vertex integrity

In this section we prove Theorems 10 and 11. The statements appear right below.

▶ Theorem 10. Given a graph G with ι(G) ≤ k and an FO formula ϕ in prenex form having
at most q quantifiers. Then deciding if G |= ϕ can be solved in time (2O(k2) · q)q + poly(|G|).

▶ Theorem 11. Given a graph G with ι(G) ≤ k and an MSO formula ϕ in prenex form
having at most q1 vertex variable quantifiers and at most q2 vertex set variable quantifiers.
Then deciding if G |= ϕ can be solved in time

(
22O(k2+kq2) · q1

)q1
+ poly(|G|).

The proofs are heavily based on Lemmata 12 and 14. The first, which is about FO
Model-Checking, says that if we have at least q+ 1 components of the same type then we can
erase one such component from the graph. The reason essentially is that, if G, ℓ, C models ϕ
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by labeling a vertex v that belongs to the component to be removed, we can replace that
vertex by a corresponding vertex in another component having the same type. Notice that
the formula has q quantifiers and thus the graph will have q labels after the assignment.
Since we have q + 1 components of the same type, for one of these components the vertex
that corresponds to v will be unlabeled.

The second, which is about MSO Model-Checking, says that since we can quantify over
sets of vertices, unlike the case for FO, each set quantification can potentially affect a large
number of components that originally had the same type (by coloring its intersection with
each of them). However, since each component has size at most k, we have 2k ways that
the quantified set can overlap with the components. Thus, if we originally had a sufficiently
large number of same type components, even after the coloring, we will still have a sufficient
number of components that are of the same type, such that even if we remove one such
component the answer of the problem won’t change.

Lemmata 12 and 14, together with the fact that there exist a bounded number of types
of components, give the kernels (Lemma 13 for FO and Lemma 15 for MSO).

▶ Lemma 12. Given a triplet G, ℓ, C having q + 1 vertex sets C1, C2, . . . , Cq+1 of the same
type and ϕ an FO formula in prenex form having q quantifiers. Then G, ℓ, C |= ϕ if and only
if G \ C1, ℓ, C′ |= ϕ, where C′ is the restriction of C to V (G) \ C1.

Proof. We proceed by induction on the structure of the formula ϕ.
1. For ϕ := ui ∈ Dj , ϕ := u1 = u2, or ϕ := u1 ∼ u2. From Observation 7 the sets are

unlabeled. Thus ̸ ∃v ∈ C1 for which ℓ(u1) = v or ℓ(u2) = v. Thus the statement of the
lemma holds for the base case.

2. For ϕ := ϕ1 ∨ ϕ2 or ϕ := ¬ϕ1. From the inductive hypothesis, we have that G, ℓ, C |= ϕ1
if and only if G \ C1, ℓ, C′ |= ϕ1 and that G, ℓ, C |= ϕ2 if and only if G \ C1, ℓ, C′ |= ϕ2.
It is easy to see that the statement of the lemma holds also for ϕ.

3. The most interesting case is for ϕ := ∃xi.ϕ
′. If G, ℓ, C |= ϕ then from the definition of

the semantics of ϕ there exists v ∈ V (G) such that G, ℓ′, C |= ϕ[xi \ ui] with ℓ(ui) ↑ and
ℓ′ : U → V (G) being a partial function for which ℓ′(ui) = v, and ℓ′ agrees with ℓ on all
other values uj ̸= ui.
First we prove that without loss of generality v ̸∈ C1. Suppose that v ∈ C1. Since C1 and
C2 have the same type on G, ℓ, C, by Definition 6 there exists an isomorphism f : C1 → C2.
Consider now a labeling function ℓ′′ : U → V (G) where ℓ′′(ui) = f(ℓ′(ui)) = f(v),
otherwise ℓ′, ℓ′′ agree on uj ̸= ui. Observe that G, ℓ′, C and G, ℓ′′, C are isomorphic, thus
from Lemma 9 we have that G, ℓ′, C |= ϕ iff G, ℓ′′, C |= ϕ. In that case, instead of v ∈ C1
we shall consider f(v) ∈ C2. Thus, from now on we can assume that v ̸∈ C1
For the triplet G, ℓ′, C q of the sets C1, C2, . . . , Cq+1 are still unlabeled and have the
same type (C1 is among them). Also ϕ′ has q − 1 quantifiers. Thus, by the inductive
step, G, ℓ′, C |= ϕ′ if and only if G \ C1, ℓ

′, C′ |= ϕ′. Since v ∈ V (G) \ C1, we have that
G \ C1, ℓ, C′ |= ϕ.
For the other direction, observe that v ∈ V (G) \ C1 implies that v ∈ V (G). Thus the
statement holds with similar reasoning as above. ◀

▶ Lemma 13. For a triplet G, ℓ, C with vertex integrity ι(G) ≤ k and with ℓ, C everywhere
undefined and for a formula ϕ with q quantifiers, FO Model Checking has a kernel of size
O(2k2 · q · k), assuming we are given in the input S ⊆ V (G) such that the largest component
of G \ S has size at most k − |S|.
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Proof. We give a polynomial-time algorithm to calculate an upper bound on the number of
components of G \ S having the same type. Observe that types are only specified by the
neighborhoods of the vertices of the components (ℓ and C are everywhere undefined thus
there are no labels or colors on G).

First, we arbitrarily number the vertices of S and of each component. In order to classify
the components into types, we map each component Ci to a vector [N1, N2, . . . , N|Ci|], where
Nj is an ordered set containing the (numbered) neighbors of the jth vertex of Ci (starting
from the neighbors in S). Clearly, two components having the same vectors also have the
same type, using the isomorphism that maps the i-th vertex of one to the i-th vertex of the
other.

Since each component has at most k vertices and each vertex has at most 2k different
types of neighborhoods Nj , we can have at most 2k2 vectors, thus at most 2k2 types of
components. Furthermore, since we are given S, we can test in polynomial time if two
components have the same type under the arbitrary numbering we used. From Lemma 12, if
more than q components have the same type we can remove one such component without
changing the answer of the problem, thus we can in polynomial time either reduce the graph
or conclude that each component type appears at most q times. In the end we will have at
most 2k2 · q components, each having at most k vertices, thus the result. ◀

By applying the straightforward algorithm which runs in time |V (G)|q · poly(|G|) for FO
Model Checking, together with Lemma 13 we get the complexity promised by Theorem 10.

In order to prove Theorem 11 we need a stronger version of Lemma 12.

▶ Lemma 14. Given a triplet G, ℓ, C with at least q′ = 2k·q2 ·q1 +1 vertex sets C1, C2, . . . , Cq′

having the same type and sizes at most k and an MSO formula ϕ in prenex form with q1 FO
quantifiers and q2 MSO quantifiers. Then G, ℓ, C |= ϕ if and only if G \ C1, ℓ, C1 |= ϕ, where
C1 is the restriction of C to V (G) \ C1.

Proof. We proceed by induction on the structure of ϕ. We can reuse the arguments of
Lemma 12, except for the case where ϕ := ∃Xi.ϕ

′, so we focus on this case.
For the one direction, if G, ℓ, C |= ϕ, from the definition of the semantics of ϕ, then there

exists S ⊆ V (G) such that G, ℓ, C′ |= ϕ[Xi \ Di] with C(Di) ↑ and C′ : D → 2V (G) being a
partial function for which C′(Di) = S, and C′ agrees with C on all other values Dj ̸= Di.

Since each of the vertex sets C1, C2, . . . , Cq′ has size at most k, there are at most 2k

possible ways for S to intersect with each of them. Therefore, by pigeonhole principle, one
such intersection appears in at least ⌈ q′

2k ⌉ = 2k(q2−1) · q1 + 1 sets, call that group M . In
order to be able to apply the inductive hypothesis, we need to prove that, without loss of
generality, C1 ∈ M .

Suppose that C1 ̸∈ M . We will do a “swapping” of C1 with a vertex set (say C2 without
loss of generality) that does belong in the group M . Since C1 and C2 have the same type,
that means that there exists an isomorphism f : C1 → C2.

We consider a new coloring function C′′ that agrees with C′ everywhere but on the constant
Di. This new coloring function will map Di to the set of vertices S′ (instead of S), where we
have replaced every v ∈ S ∩ C1 with f(v) and every v ∈ S ∩ C2 with f−1(v) (see Figure 1).
More formally, C′′(Di) = S′ where S′ = (S \ (C1 ∪ C2)) ∪ f(C1 ∩ S) ∪ f−1(C2 ∩ S). Then
the triplets G, ℓ, C′ and G, ℓ, C′′ are isomorphic and from Lemma 9 we have that G, ℓ, C′ |= ϕ

iff G, ℓ, C′′ |= ϕ. From now on we assume that C1 belongs in M .
For the triplet G, ℓ, C′, the sets in M have all the same type and |M | ≥ 2k(q2−1) · q1 + 1.

Furthermore, the function ϕ′ has q1 FO and q2 − 1 MSO quantifiers. Therefore, by the
inductive hypothesis we can remove a set from M and the answer of the problem won’t
change, in other words we have that G, ℓ, C′ |= ϕ′ iff G \ C1, ℓ, C′

1 |= ϕ′, where C′
1 is the

restriction of C′ on V (G) \ C1. From the semantics of ϕ we have that G \ C1, ℓ, C1 |= ϕ.
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C1

S S'

2

f

C C1 2C

Figure 1 The way the vertex set S′ intersects the vertex sets C1 and C2.

For the other direction, if G \ C1, ℓ, C1 |= ϕ then there exists S1 ⊆ V (G) \ C1 such that
G \ C1, ℓ, C′

1 |= ϕ[Xi \Di] with C1(Di) ↑ and C1 being a partial coloring function for which
C′

1(Di) = S1, and C′
1 agrees with C1 on all other values Dj ̸= Di.

As previously, S1 partitions C2, . . . , Cq′ into 2k equivalence classes, depending on the
intersection of each set with S1, such that sets placed in the same class (i.e. having isomorphic
intersection with S1) have the same type in G \C1, ℓ, C′

1. Hence, one of these classes has size
at least q′−1

2k = 2k(q2−1) · q1, call this class M ′. We construct a triplet G, ℓ, C∗ as follows: let
Cj ∈ M ′ and f ′ be the isomorphism from Cj to C1; We set that C∗ agrees with C on all sets
except Di; and for Di we have C∗(Di) = C′

1(Di) ∪ f ′(S1 ∩ Cj). In other words, we define C∗

in such a way that the set C1 has the same type as all sets of the class M ′. But then we
have |M ′ ∪ {C1}| ≥ 2k(q2−1) · q1 + 1 sets of the same type and by inductive hypothesis we
have G, ℓ, C∗ |= ϕ[Xi \Di]. Therefore, by the semantics of MSO we have G, ℓ, C |= ϕ. ◀

▶ Lemma 15. For a triplet G, ℓ, C with vertex integrity ι(G) ≤ k and with ℓ, C everywhere
undefined and for a formula ϕ with q1 FO quantifiers and q2 MSO quantifiers, MSO Model
Checking has a kernel of size O(2(k2+kq2) · q1 · k), assuming we are given in the input
S ⊆ V (G) such that the largest component of G \ S has size at most k − |S|.

Proof. The proof is the same as for Lemma 13. The only thing that changes is the number
of same-type components required to have before removing one such component (q′ required
by Lemma 14 versus q + 1 required by Lemma 12). ◀

Applying the straightforward algorithm for MSO Model-Checking that runs in 2q2·V (G) ·
V (G)q1 · poly|G| and Lemma 15 gives the complexity promised by Theorem 11.

4 Lower Bounds

In this section we show that the dependence of our meta-theorems on vertex integrity cannot
be significantly improved, unless the ETH is false. Our strategy will be to present a unified
construction which, starting from an arbitrary graph G with n vertices, produces a new
graph H(G), with small vertex integrity, such that we can deduce if two vertices of G are
connected using appropriate constant-sized FO formulas of H. This will, in principle, allow
us to express an FO or MSO-expressible property of G as a corresponding property of H(G),
and hence, if the original property is hard, to obtain a lower bound on model-checking on H .
Let us describe this construction in more details.

Construction. We are given a graph G on n vertices, say V (G) = {v1, . . . , vn}, and m edges.
Let k = ⌈

√
log n⌉. We construct a graph H as follows:

1. We begin constructing V (H) by forming n+m+ 1 sets of vertices, called S, W1, . . . ,Wn,
and Y1, . . . , Ym. We have |S| = 2k, |Wi| = k for all i ∈ [n], and |Yj | = 2k + 1 for all
j ∈ [m]. The vertices of S are numbered arbitrarily as s1, s2, . . . , s2k.
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S W47

w

s

(47,3)

w(47,2)

w(47,1)

1

s6
s5
s4
s3
s2

  

Figure 2 The connection between S and the set W47. For this example k = 3, we can represent
up to 29 numbers in binary. In order to represent 4710 = 0001011112, we shall connect w(47,1) with
s4, s5 and s6 in order to represent the three least significant bits (which are all 1), and w(47,2) with
s4 and s6 to represent the next triad of bits. The three most significant bits are all 0.

2. Internally, S induces an independent set, each Wi, for i ∈ [n] induces a clique, and each
Yj , for j ∈ [m] induces a graph made up of two disjoint cliques of size k, denoted Y 1

j , Y
2

j ,
and a vertex connected to all 2k vertices of the cliques Y 1

j , Y
2

j .
3. For each i ∈ [n], we attach a leaf to each vertex of Wi. For each j ∈ [m], we attach two

leaves to each vertex of Y 1
j , three leaves to each vertex of Y 2

j , and four leaves to the
remaining vertex of Yj .

4. For each i ∈ [n], number the vertices of Wi arbitrarily as w(i,1), w(i,2), . . . , w(i,k). For each
β ∈ [k] we connect w(i,β) to sβ . Furthermore, let b1b2 . . . bk2 be the binary representation of
i−1 with the least significant digit first, that is, a sequence of bits such that

∑
β bβ2β−1 =

i− 1. Note that k2 ≥ log n, therefore k2 bits are sufficient to represent all numbers from
0 to n− 1. We partition this binary representation into k blocks of k bits. For β ∈ [k]
we consider the bits b(β−1)k+1 . . . bβk and we use these bits to determine the connections
between w(i,β) and the vertices sk+1, . . . , s2k. More precisely, for β, γ ∈ [k], we set that
w(i,β) is connected to sk+γ if and only if b(β−1)k+γ is equal to 1.

5. For each j ∈ [m] we do the following. Suppose the j-th edge of G has endpoints vi1 , vi2 .
We number the vertices of Y 1

j as y1
(j,1), . . . , y

1
(j,k), and the vertices of Y 2

j as y2
(j,1), . . . , y

2
(j,k)

in some arbitrary way. Now for all β ∈ [k] we set that y1
(j,β) has the same neighbors in S

as w(i1,β) and y2
(j,β) has the same neighbors in S as w(i2,β).

The construction of our graph is now complete. The intuition behind this construction is
that each clique Wi represents a vertex vi ∈ V (G). In order to distinguish the vertices, we
use the k2 ≥ log n possible edges between vertices in Wi and the second part of S, that is
{sk+1, . . . , s2k}. These edges should represent the binary representation of i. See Figure 2
for an example.

Vertices of H may be (arbitrarily) labeled for the purpose of the construction but for the
purpose of Model-Checking the graph H is unlabeled. In order to give a numbering to the
vertices of Wi, we use the matching between Wi and the first k vertices of the set S (the
first vertex of Wi connects to the first vertex of S, etc).

The sets Yj represent edges in G. If the jth edge in E(G) is the edge (vi1vi2), then Y 1
j

should have the same connections with S as the set Wi1 (similarly Y 2
j , Wi2). In order to

check in H whether (vi1 , vi2) is an edge, we shall check if there exists a set Yj such that each
vertex of Y 1

j has the same neighborhood in S as a vertex of Wi1 and each vertex of Y 2
j has

the same neighborhood in S as a vertex of Wi2 .
It is crucial here that the construction is such that Wi,Wi′ are distinguishable for i ̸= i′ in

terms of their neighborhoods in S, that is, there always exists w ∈ Wi for which no w′ ∈ Wi′

has N(w) ∩ S = N(w′) ∩ S. We will show that it is not hard to express this property in FO
logic. Furthermore, the leaves we have attached to various vertices will allow us to distinguish
in FO logic whether a vertex belongs in a set Wi, Y 1

j , or Y 2
j .
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We now establish some basic properties about H and what can be expressed about its
vertices in FO logic:

▶ Lemma 16. The graph H satisfies the following properties, for any coloring function C.
1. We have ι(H) = O(

√
log n) and |V (H)| = O(n2√

log n).
2. For each i, i′ ∈ [n] with i ̸= i′, there exists a vertex w ∈ Wi such that for all w′ ∈ Wi′ we

have N(w) ∩ S ̸= N(w′) ∩ S.
3. There exist constant-sized FO formulas ϕW (x1), ϕY 1(x1), ϕY 2(x1), ϕS(x1) using one free

variable x1, such that H, ℓ, C |= ϕW [x1 \ u1] (respectively H, ℓ, C |= ϕY 1[x1 \ u1], H, ℓ, C |=
ϕY 2[x1 \u1], H, ℓ, C |= ϕS [x1 \u1]) if and only if ℓ(u1) ∈ Wi for some i ∈ [n] (respectively
ℓ(u1) ∈ Y 1

j , ℓ(u1) ∈ Y 2
j , for some j ∈ [m], ℓ(u1) ∈ S).

4. There exists a constant-sized FO formula ϕW Y using only two free variables x1, x2 such
that H, ℓ, C |= ϕW Y [x1 \u1][x2 \u2] if and only if ℓ(u1) ∈ Wi for some i ∈ [n], ℓ(u2) ∈ Y α

j

for some j ∈ [m], α ∈ {1, 2}, and for all β ∈ [k] we have N(w(i,β)) ∩ S = N(yα
(j,β)) ∩ S.

5. There exists a constant-sized FO formula ϕadj using only two free variables x1, x2 such
that H, ℓ, C |= ϕadj [x1 \ u1][x2 \ u2] if and only if ℓ(u1) ∈ Wi and ℓ(u2) ∈ Wi′ for some
i, i′ ∈ [n] such that (vi, vi′) ∈ E(G).

Proof. For the first property, we observe that the largest component of H \ S has size at
most 10

√
log n+ 2, while |S| ≤ 2

√
log n+ 2. Furthermore, we have at most m+ n = O(n2)

components after removing S.
For the second property, since i ̸= i′, their binary representations differ in some bit. Let

β, γ ∈ [k] be such that if b1 . . . bk2 is the binary representation of i− 1 and b′
1 . . . b

′
k2 is the

binary representation of i′ − 1, we have b(β−1)k+γ ≠ b′
(β−1)k+γ . But then, exactly one of

w(i,β), w(i′,β) is connected to sk+γ . Furthermore, w(i,β) is connected to sβ , but the only
neighbor of sβ in Wi′ is w(i′,β). Hence, w(i,β) is the claimed vertex.

For the third property, observe that, in H , vertices of S have no leaves attached, vertices
of each Xi have one leaf attached, vertices of Y 1

j have two leaves attached, vertices of Y 2
j have

three leaves attached, and the remaining vertices have four leaves attached. Hence, it suffices
to be able to express in FO, with a constant-sized formula, the property “x1 has exactly c leaves
attached”, where c ∈ {0, 1, 2, 3}. This is not hard to do. For example, the formula ϕ2(x1) :=
∃x2∃x3∀x4 ((x2 ∼ x1) ∧ (x3 ∼ x1) ∧ (x2 ̸= x3) ∧ ((x4 = x1) ∨ (¬(x4 ∼ x2) ∧ ¬(x4 ∼ x3))))
expresses the property that x1 has at least two leaves attached to it. Using the
same ideas we can construct ϕc(x1), for c ∈ {1, 2, 3, 4} and then ϕS(x1) := ¬ϕ1(x1),
ϕW (x1) := ϕ1(x1) ∧ ¬ϕ2(x1), ϕY 1 := ϕ2(x1) ∧ ¬ϕ3(x1), ϕY 2(x1) := ϕ3(x1) ∧ ¬ϕ4(x1).

For the fourth property, we set ϕW Y (x1, x2) := ϕW Y 1(x1, x2) ∨ ϕW Y 2(x1, x2), where we
define two formulas ϕW Y α depending on whether α = 1 or α = 2. We have

ϕW Y α(x1, x2) := ϕW (x1) ∧ ϕY α(x2) ∧ ∀x3
(
(¬ϕW (x3)) ∨ (¬(x3 ∼ x1) ∧ ¬(x3 = x1)) ∨

∃x4 (ϕY 1(x4) ∧ (x4 ∼ x2 ∨ x4 = x2) ∧ ∀x5 (ϕS(x5) → (x5 ∼ x3 ↔ x5 ∼ x4)))
)

What we are saying here is that ϕW Y 1[x1 \u1][x2 \u2] is satisfied if ℓ(u1) ∈ Wi, ℓ(u2) ∈ Y 1
j ,

for some i ∈ [n], j ∈ [m], and for every x3 ∈ Wi there exists x4 ∈ Y 1
j such that N(x3) ∩ S =

N(x4) ∩ S. Therefore, if this property holds, then Wi and Y 1
j represent the same vertex of

V (similarly for ϕW Y 2).
For the last property, we set

ϕadj(x1, x2) := ϕW (x1) ∧ ϕW (x2) ∧ ∃x3∃x4
(
(ϕY 1(x3) ∧ ϕY2 (x4)) ∨ (ϕY 1(x4) ∧ ϕY2 (x3))

)
∧

ϕW Y (x1, x3) ∧ ϕW Y (x2, x4) ∧ ∃x5(¬ϕS(x5) ∧ x3 ∼ x5 ∧ x4 ∼ x5)
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In other words, H, ℓ, C |= ϕadj [x1 \ u1][x2 \ u2] if (i) ℓ(u1) ∈ Wi and ℓ(u2) ∈ Wi′ , for some
i, i′ ∈ [n] (ii) there exist x3, x4 such that x3 ∈ Y 1

j and x4 ∈ Y 2
j for the same j; this is verified

because x3, x4 have a common neighbor x5 that does not belong in S (iii) Wi,Wi′ correspond
to the same pair of vertices as the set Yj = Y 1

j ∪ Y 2
j , which means that (vi, vi′) ∈ E(G). ◀

We are now ready to prove our lower bounds.

▶ Theorem 17. If there exists an algorithm which, given a graph G with n vertices and
ι(G) = k and an FO formula ϕ with q quantifiers, decides whether G |= ϕ in time 2o(k2q)nO(1),
then the ETH is false.

Proof. We perform a reduction from q-Clique. It is well-known that, given a graph G on n
vertices it is not possible to decide if G contains a clique of size q in time no(q), unless the
ETH is false [8]. We claim that we will construct the graph H(G), as previously described,
and an FO formula ϕC such that ϕC will contain O(q) quantifiers and H, ℓ, C |= ϕC for the
nowhere defined functions ℓ, C if and only if G has a q-clique. If we achieve this, then, since
by Lemma 16 we have k = O(

√
log n), and the size of H is polynomially related to the size

of G, the stated running time would become 2o(q(
√

log n)2)nO(1) = no(q) and we refute the
ETH. Our goal is then to define such an FO formula ϕC . We define

ϕC := ∃x1∃x2 . . . ∃xq

∧
i∈[q]

ϕW (xi) ∧
∧

i,i′∈[q],i ̸=i′

(xi ̸= xi′)

∀xq+1∀xq+2
∧

i∈[q]

(
¬(xq+1 = xi)

)
∨

∧
i∈[q]

(
¬(xq+2 = xi)

)
∨ (xq+1 = xq+2) ∨

ϕadj(xq+1, xq+2)

We now claim that by the construction of H, we have that H, ℓ, C |= ϕC if and only if G
has a clique. If G has a clique {vi1 , vi2 , . . . , viq }, we map x1, x2, . . . , xq to arbitrary vertices
of Wi1 , . . . ,Wiq

. For the next part of the formula, either xq+1, xq+2 correspond to some
(different) xi, xi′ or the formula is true. Last, we claim that H, ℓ′, C |= ϕadj [xq+1\ui][xq+2]\ui′ ],
where xi, xi′ are substituted by ui, ui′ and ℓ′(ui) ∈ Wi, ℓ

′(ui′) ∈ Wi′ . Indeed, because we
have a clique in G, by construction there exists a Yj such that each vertex of Y 1

j has the
same neighborhood in S as Wi and each vertex of Y 2

j has the same neighborhood in S as
Wi′ (or the same with the roles of Y 1

j , Y
2

j reversed). Hence, ϕadj is satisfied.
For the converse direction, suppose that H, ℓ, C |= ϕC for the nowhere defined labeling

function ℓ. Then there exists a labeling function ℓ′ that assigns ℓ′(u1), ℓ′(u2), . . . , ℓ′(uq) to
some vertices of

⋃
i∈[n] Wi and is undefined everywhere else such that ℓ′(ui) ̸= ℓ′(ui′) for

i ̸= i′ and H, ℓ′, C |= ϕC′ where

ϕC′ := ∀xq+1∀xq+2
∧

i∈[q]

(
¬(xq+1 = ui)

)
∨

∧
i∈[q]

(
¬(xq+2 = ui)

)
∨ (xq+1 = xq+2) ∨ ϕadj(xq+1, xq+2)

We extract a multi-set S of q vertices of G as follows: for β ∈ [q], if ℓ′(uβ) ∈ Wi, then
we add vi to S. We claim that for any two elements vi, vi′ of S we have (vi, vi′) ∈ E. If we
prove this, then the vertices of S are distinct and form a q-clique in G.

Since we have universal quantifications for xq+1, xq+2, we can define a new labeling
function ℓ′′, with ℓ′′(uq+1) = ℓ′(ui) and ℓ′′(uq+2) = ℓ′(ui′), for any i, i′ ∈ [q], i ̸= i′, with ℓ′′, ℓ′

agreeing everywhere else. Observe that this selection imposes that H, ℓ′′, C |= ϕadj [xq+1 \
ui][xq+2 \ ui′ ] and from property 5 of Lemma 16 we get that ℓ′(ui), ℓ′(ui′) belong to two
different Wj ,Wj′ that correspond to the endpoints of an edge of G. ◀
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▶ Theorem 18. If there exists an algorithm which, given a graph G with n vertices and
ι(G) = k and an MSO formula ϕ with constant size, decides whether G |= ϕ in time
22o(k2)

nO(1), then the ETH is false.

Proof. Our strategy is similar to that of Theorem 17, except that we will now reduce
from 3-Coloring, which is known not to be solvable in 2o(n) on graphs on n vertices,
under the ETH [33]. We will produce a constant-sized formula ϕCol with the property that
H, ℓ, C |= ϕCol for the nowhere defined functions ℓ, C if and only if G is 3-colorable. Since
k = O(

√
log n) an algorithm running in 22o(k2) would imply a 2o(n) algorithm for 3-coloring

G, contradicting the ETH. We define

ϕCol := ∃X1∃X2∃X3∀x1∀x2(x1 ∈ X1 ∨ x1 ∈ X2 ∨ x1 ∈ X3) ∧∧
i=1,2,3

ϕadj(x1, x2) →
(
x1 ∈ Xi → ¬(x2 ∈ Xi)

)
Assume that G has a proper 3-coloring c : V → [3]. Then we define, for α ∈ [2]

Sα =
⋃

i:c(vi)=α Wi and S3 = V (H) \ (S1 ∪ S2). Let C′ be a coloring function such that
C′(Dα) = Sα for α = 1, 2, 3 and C′(Dα′) ↑ for α′ ̸∈ [3]. We claim that H, ℓ, C′ |= ϕCol[X1 \
D1][X2 \ D2][X3 \ D3]. Indeed, for any labeling function ℓ′ that defines only ℓ′(u1) and
ℓ′(u2) we have (i) H, ℓ′, C′ |= u1 ∈ D1 ∨ u1 ∈ D2 ∨ u1 ∈ D3 (since C′(D1), C′(D2), C′(D3) is
a partition of V (H)); (ii) If H, ℓ′, C′ |= ϕadj [x1 \ u1][x2 \ u2] then ℓ′(u1) ∈ Wi, ℓ

′(u2) ∈ Wi′

for some i, i′ ∈ [n], i ≠ i′ with (vi, vi′) ∈ E(G) (from property 5 of Lemma 16). Therefore
c(vi) ̸= c(vi′) so for α ∈ [3] H, ℓ′, C′ |= u1 ∈ Dα → ¬u2 ∈ Dα.

For the converse direction, suppose that H, ℓ, C |= ϕCol for the nowhere defined ℓ, C.
Then there exists a coloring function C′ such that C′(Dα) = Sα, for α ∈ [3] and H, ℓ, C′ |=
ϕCol[X1 \D1][X2 \D2][X3 \D3]. We extract a coloring of V (G) as follows: for i ∈ [n] we set
c(vi) to be the minimum α such that Wi ∩Sα ̸= ∅. We show that the coloring c : V (G) → [3]
defined in this way is proper. Consider i, i′ ∈ [n] such that (vi, vi′) ∈ E(G). Let ℓ′ be a
labeling function such that ℓ′(u1) ∈ Wi ∩ Sc(vi) and ℓ′(u2) ∈ Wi′ ∩ Sc(vi′ ). Observe that
Wi ∩Sc(vi) ̸= ∅ by the definition of c(vi). Then H, ℓ′, C′ |= ϕadj [x1 \u1][x2 \u2]. Therefore we
have that for α ∈ [3], H, ℓ′, C′ |= u1 ∈ Dα → ¬(u2 ∈ Dα). Therefore Sc(vi) ≠ Sc(vi′ ), which
means that c(vi) ̸= c(vi′). ◀
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Abstract
We study kernelization of classic hard graph problems when the input graphs fulfill triadic closure
properties. More precisely, we consider the recently introduced parameters closure number c and
weak closure number γ [Fox et al., SICOMP 2020] in addition to the standard parameter solution
size k. The weak closure number γ of a graph is upper-bounded by the minimum of its closure
number c and its degeneracy d. For Capacitated Vertex Cover, Connected Vertex Cover,
and Induced Matching we obtain the first kernels of size kO(γ), kO(γ), and (γk)O(γ), respectively.
This extends previous results on the kernelization of these problems on degenerate graphs. These
kernels are essentially tight as these problems are unlikely to admit kernels of size ko(γ) by previous
results on their kernelization complexity in degenerate graphs [Cygan et al., ACM TALG 2017].
For Capacitated Vertex Cover, we show that even a kernel of size ko(c) is unlikely. In contrast,
for Connected Vertex Cover, we obtain a problem kernel with O(ck2) vertices. Moreover, we
prove that searching for an induced subgraph of order at least k belonging to a hereditary graph
class G admits a kernel of size kO(γ) when G contains all complete and all edgeless graphs. Finally,
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a parameterized problem comes equipped with a parameter k which describes the structure of
the input or is a bound on the solution size. A kernelization for a parameterized problem L

is an algorithm that replaces every input instance (I, k) of L in polynomial time by an
equivalent instance (I ′, k′) of L (the kernel) whose size depends only on the parameter k,
that is, |I ′| + k′ ≤ g(k) for some computable function g. The kernel is guaranteed to be
small if k is small and g grows only modestly. A particularly important special case is thus a
kernelization where g is a polynomial function. Such kernels are referred to as polynomial
kernelizations.

Many problems do not admit a kernel simply because they are believed to be not fixed-
parameter tractable. That is, it is assumed that they are not solvable in f(k) · |I|O(1) time.
A classic example is Dominating Set parameterized by the solution size k. Moreover, even
problems that do admit kernels are known to not admit polynomial kernels [2, 7, 21, 22]1; a
classic example is Connected Vertex Cover parameterized by the solution size k [7].

To devise kernelization algorithms for such problems, one considers either additional
parameters or restricted classes of input graphs. One example for this approach is kernelization
in degenerate graphs [4, 5, 24]. A graph G is d-degenerate if every subgraph of G contains
at least one vertex with degree at most d. Dominating Set, for example, admits a kernel
of size kO(d2) where d is the degeneracy of the input graph [24]. Thus, the exponent of the
kernel size depends on d; we will say that Dominating Set admits a polynomial kernel on
d-degenerate graphs. This kernelization was shown to be tight in the sense that there is no
kernel of size ko(d2) [4]. The situation is different for Independent Set which admits a
trivial problem kernel with O(dk) vertices: here the kernel size is polynomial in d + k.

Real-world networks have small degeneracy d, making d an interesting parameter from an
application point of view. Moreover, bounded degeneracy imposes combinatorial structure
that can be exploited algorithmically as evidenced by the discussion above. Recently, Fox et
al. [13] discovered two new parameters that share these two features; they are well-motivated
from a practical standpoint and describe interesting and useful combinatorial features of
graphs. The first parameter is the closure of a graph, defined as follows.

▶ Definition 1.1 ([13, Definition 1.1]). Let clG(v) := maxw∈V (G)\N [v]{|N(v) ∩ N(w)|, 0}
denote the closure number of a vertex v in a graph G. A graph G is c-closed if clG(v) < c

for all v ∈ V (G).

In other words, a graph is c-closed if every pair of nonadjacent vertices has at most c − 1
common neighbors. The parameter models triadic closure in social networks, the observation
that people with many common acquaintances are likely to know each other. Fox et al. [13]
devised a another parameter, the weak closure which relates to c-closure as degeneracy relates
to maximum degree: instead of demanding a bounded closure number for every vertex, one
demands that every induced subgraph has some vertex with bounded closure number.

▶ Definition 1.2 ([13, Definition 1.3]). A graph G is weakly γ-closed if
there exists a weak closure ordering σ := v1, . . . , vn of the vertices of G such that
clGi

(vi) < γ for all i ∈ [n] where Gi := G[{vi, . . . , vn}], or, equivalently, if
every induced subgraph G′ of G has a vertex v ∈ V (G′) such that clG′(v) < γ.

The weak closure number of a graph G is the minimum integer γ such that the graph G is
weakly γ-closed.

1 All kernelization lower bounds mentioned in this work are based on the assumption coNP ̸⊆ NP/poly.
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Let G be a graph and let d, c, and γ be the degeneracy, the closure number and the weak
closure number of G. The three parameters d, c, and γ are related as follows:
1. The weak closure number γ is at most max(d + 1, c).
2. The weak closure number γ can be arbitrarily smaller than d as witnessed by large

complete graphs.
3. The degeneracy d and the closure number c are incomparable as witnessed by large

complete graphs (these have large degeneracy and are 1-closed) and large complete
bipartite graphs where one part has size two (these are 2-degenerate and have large
closure number).

4. The latter example also shows that γ can be much smaller than the closure number c

which is very often the case in real-world data [13, 19].
Akin to degeneracy, c-closure and weak γ-closure have proven to be very useful parameters.

In particular, all maximal cliques of a graph can be enumerated in 3γ/3 · nO(1) time [13].
By the above discussion on the relation of γ and d, this result thus extends the range of
tractable clique enumeration instances from the class of bounded-degeneracy graphs [9] to
the larger class of graphs with bounded weak closure. The clique enumeration algorithm
for weak closed graphs [13] has also been extended to the enumeration of other clique-like
subgraphs [16, 19]. Concerning kernelization, in previous work, we showed that Independent
Set and Induced Matching admit polynomial kernels with respect to the parameter k + c

and that Dominating Set admits a polynomial kernel on c-closed graphs [20]. Later, we
extended the kernelization result for Independent Set to parameterization by weak closure.
More generally, we showed that G-Subgraph, where one wants to find a subgraph on at
least k vertices belonging to G admits a kernel with O(γk2) vertices if G is closed under
taking subgraphs [19]. To the best of our knowledge, this is is the only known kernelization
result for the weak closure parameterization.

In this work we study the kernelization of several further hard graph problems on weakly
closed graphs. In a nutshell, we provide kernels for a range of problems that have not been
considered on weakly closed graphs so far. Our kernels are based on several combinatorial
observations on the structure of weakly closed graphs that might be of more general interest.

Our Results. Building on a combinatorial lemma of Frankl and Wilson [14], we obtain a
general lemma (Lemma 2.2) which can be used to bound the size of graphs in terms of their
vertex cover number and weak closure number. More precisely, we show that in a graph G

with vertex cover S of size k and weak closure γ, the number of different neighborhoods in
the independent set I := V (G) \ S is kO(γ). Lemma 2.2 gives a general strategy for obtaining
kernels in weakly closed graphs: Devise reduction rules that 1) bound the size of the vertex
cover and 2) decrease the size of neighborhood classes. We also show that Lemma 2.2 can be
extended to a more general notion of neighborhood types (Lemma 2.4).

We then show that this strategy helps in obtaining kernels on weakly closed graphs for
Capacitated Vertex Cover, Connected Vertex Cover, Connected ℓ-Component
Order Connectivity (Connected ℓ-COC), and Induced Matching all parameterized
by the natural parameter solution size k. For these problems, polynomial kernels in degenerate
graphs are known [4, 5, 11, 17]. Our results thus extend the class of graphs for which
polynomial kernels are known for these problems. The kernels have size kO(γ) and (γk)O(γ),
respectively, and by previous results on degenerate graphs the dependence on γ in the exponent
cannot be avoided [4, 5]. We complement these findings with a study of Capacitated
Vertex Cover and Connected Vertex Cover on c-closed graphs. Interestingly, the
kernelization complexity of the problems differs: Capacitated Vertex Cover does not
admit a kernel of size O(k c−1

2 −ϵ) for all ϵ > 0 whereas Connected Vertex Cover admits
a kernel with O(ck2) vertices.

ISAAC 2021
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Next, we study the kernelization complexity of Independent Set on c-closed graphs.
We show that Independent Set does not admit a kernel of size O(k2−ϵ) on c-closed graphs
for constant c. This complements previous kernels of size O(c2k3) [20] and O(γ2k3) [19],
narrowing the gap between upper and lower bound for the achievable kernel size on (weakly)
closed graphs. We also obtain a lower bound of Ω(k4/3−ϵ) on the number of vertices in the
graph in case of constant c and show that at least a linear dependence on c is necessary in any
kernelization of Independent Set in c-closed graphs: under standard assumptions, there
is no kernel of size c(1−ϵ) · kO(1). Some of our results also hold for Ramsey-type problems
where one wants to find a large subgraph belonging to a class G containing all complete
and all edgeless graphs. In this context, we observe that weakly γ-closed graphs fulfill the
Erdős–Hajnal property [10] with a linear dependence on γ: There is a constant q such that
every weakly γ-closed graph on kqγ vertices has either a clique of size k or an independent
set of size k. We believe that this observation is of independent interest and that it will be
useful in the further study of weakly γ-closed graphs.

Finally, we consider Dominating Set which admits a kernel of size kO(c) [20]. It is
open whether Dominating Set admits a kernel of size kf(γ) for some function f , which
would extend the class of kernelizable input graphs from degenerate to weakly closed. We
make partial progress towards answering this question by showing that there is a kernel of
size kO(γ2) on graphs with constant clique number (such as bipartite graphs) and a kernel of
size (γk)O(γ) in split graphs. In both cases these bounds are tight in the sense that kernels
of size ko(d2) and of size ko(c) are unlikely to exist [4, 19].

Due to lack of space, several proofs (marked with (∗)) and all results for Dominating
Set on bipartite and split graphs are deferred to the full version of this article.

Preliminaries. By [n] we denote the set {1, . . . , n} for some n ∈ N. For a graph G, let V (G)
denote its vertex set, E(G) its edge set, and n := |V (G)| the number of vertices. Let X ⊆ V (G)
be a vertex set. By G[X] we denote the subgraph induced by X and by G−X := G[V (G)\X]
we denote the graph obtained by removing the vertices of X. If the vertices of X are
pairwise adjacent (nonadjacent), then X is a clique (an independent set, respectively). We
denote by NG(X) := {y ∈ V (G) \ X | xy ∈ E(G), x ∈ X} the open neighborhood of X

and by NG[X] := NG(X) ∪ X the closed neighborhood of X. The maximum degree of G

is ∆G := maxv∈V (G) degG(v). In the remainder of this paper we fix a weak closure ordering σ.
Note that such an ordering can be computed in polynomial time [13]. We define P σ

G(v) :=
{u ∈ NG(v) | u appears before v in σ} and Qσ

G(v) := {u ∈ NG(v) | u appears after v in σ}.
We say that P σ

G(v) are prior neighbors of v and Qσ
G(v) are posterior neighbors of v. A

matching M is a set of vertex-disjoint edges. By V (M) we denote the union of all endpoints
of edges in M . We omit the superscripts and subscripts when they are clear from the context.
The following observation follows from the definition of weak closure.

▶ Observation 1.3. For nonadjacent vertices u, v ∈ V (G), it holds that |Q(u) ∩ Q(v)| ≤
|Q(u) ∩ N(v)| ≤ γ − 1.

Proof. Let Gu and Gv be the graph induced by the vertices that appear after u and v,
respectively. We have two cases based on whether u or v appears first in the weak closure
ordering σ.

u precedes v. By the definition of Q-neighbors, we have QG(u) ∩ QG(v) ⊆ QG(u) ∩ NG(v)
and QG(u) ∩ NG(v) = NGu

(u) ∩ NGu
(v). Since |NGu

(u) ∩ NGu
(v)| ≤ clGu

(u), it follows
from the definition of weak closure that |NGu(u) ∩ NGu(v)| ≤ γ − 1.
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v precedes u. Clearly, QG(u) ∩ PG(v) = ∅. We then have QG(u) ∩ NG(v) = QG(u) ∩
(PG(v) ∪ QG(v)) = QG(u) ∩ QG(v). It follows from the definition of Q-neighbors
that |QG(u) ∩ QG(v)| = |NGu

(u) ∩ NGv
(v)| ≤ |NGv

(u) ∩ NGv
(v)| ≤ clGv

(v) ≤ γ − 1.
We have shown that |Q(u) ∩ Q(v)| ≤ |Q(u) ∩ N(v)| ≤ γ − 1 for both cases. ◀

A parameterized problem is fixed-parameter tractable if every instance (I, k) can be solved
in f(k) · |I|O(1) time for some computable function f . An algorithm with such a running
time is an FPT algorithm. A kernelization is a polynomial-time algorithm which transforms
every instance (I, k) of a parameterized language Q into an equivalent instance (I ′, k′) of Q

such that |I ′| + k′ ≤ g(k) for some computable function g. A compression of a parameterized
language Q into a language R is an algorithm that takes as input an instance (x, k) ∈ Σ∗ ×N

and returns a string y in time polynomial in |x| + k such that |y| is bounded by some
polynomial in k, and y ∈ R if and only if (x, k) ∈ Q. It is widely believed that W[t]-hard
problems (t ∈ N) do not admit an FPT algorithm. For more details on parameterized
complexity, we refer to the standard monographs [3, 8].

2 Bounding the Size of Weakly Closed Graphs with Small Twin Sets

Frankl and Wilson [14] proved the following bound on the size of set systems where the
number of different intersection sizes is bounded.

▶ Proposition 2.1 ([14, Theorem 11]). Let F be a collection of pairwise distinct subsets
of [n] and let L ⊆ {0} ∪ [n] be some subset. If |S ∩ S′| ∈ L for all distinct S, S′ ∈ F ,
then |F| ∈ O(n|L|).

We now use this proposition to achieve a bound on the size of weakly closed graphs
when every vertex has few false twins and the size of the vertex cover is small. Herein, two
vertices u and v are false twins if N(u) = N(v).

▶ Lemma 2.2. Let G be a weakly γ-closed graph and let I be an independent set of G.
Suppose that each vertex v ∈ I has at most t − 1 false twins. Then, |I| ∈ t · O(3γ/3 · k2γ+3),
where k := n − |I|.

Proof. We say that two vertices v, v′ ∈ I are P -equivalent, Q-equivalent, and N -equivalent if
P (v) = P (v′), Q(v) = Q(v′), and N(v) = N(v′), respectively. Let P, Q, and N denote the
collection of P -equivalence, Q-equivalence, and N -equivalence classes, respectively. We extend
the notation of P , Q, and N to an equivalence classes A by defining P (A) := P (v), Q(A) :=
Q(v), and N(A) := N(v) for some v ∈ A. Since there is at most one N -equivalence class
for every pair of P -equivalent and Q-equivalent classes, we have |N | ≤ |P| · |Q|. By the
assumption that there are at most t vertices in each N -equivalence class, we also have
|I| ≤ t · |N |. Thus, it suffices to show suitable bounds on |P| and |Q|.

First, we prove that |Q| ∈ O(kγ), using the result of Frankl and Wilson (Proposi-
tion 2.1 [14]). Since I ⊇ A is an independent set, Q(A) ⊆ S := V (G) \ I. Moreover, for two
distinct Q-equivalence classes A and A′, we have |Q(A) ∩ Q(A′)| < γ by Observation 1.3,
and equivalently, |Q(A) ∩ Q(A′)| ∈ L for L := {0} ∪ [γ − 1]. By Proposition 2.1 we obtain
|Q| ∈ O(|S||L|) = O(kγ).

Next, we bound the size of P. Let I0 := {v ∈ I | ∃u, w ∈ P (v) : uw /∈ E(G)} be the
set of vertices in I with nonadjacent prior neighbors. By the definition of weak γ-closure,
there are at most γ − 1 vertices of I0 for every pair of nonadjacent vertices in S. Thus, we
have |I0| < γ

(|S|
2

)
∈ O(γk2).
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Let I1 := I \ I0 and let P1 be the collection of P -equivalence classes in I1. Note that
for every A ∈ P1, its neighborhood P (A) is a clique. Since a weakly γ-closed graph on n

vertices has O(3γ/3n2) maximal cliques [13], there are O(3γ/3k2) equivalence classes A such
that P (A) constitutes a maximal clique in G[S]. Consider an equivalence class A such
that P (A) ⊂ C for some maximal clique C in G[S]. We will show that there are kO(γ) such
equivalence classes. Let u be the first vertex of C \ P (A) in the weak closure ordering σ.
Since P (A) ⊂ C ⊆ N(u) = P (u) ∪ Q(u), we have P (A) = (P (A) ∩ P (u)) ∪ (P (A) ∩ Q(u)).
As P (A) ∩ P (u) = C ∩ P (u) by the choice of u, we can rewrite P (A) = (C ∩ P (u)) ∪ B,
where B := P (A) ∩ Q(u). Thus, there is at most one equivalence class of P1 for every
maximal clique C in G[S], vertex u ∈ S, and vertex subset B ⊆ S, and thereby, we have
|P1| ∈ O(3γ/3k2·k·b), where b denotes the number of choices for B. Observe that P (A) = P (v)
for some vertex v ∈ I1 and thus that B = Q(u) ∩ P (v) ⊆ Q(u) ∩ N(v). Recall that u and v

are not adjacent by the choice of u. It follows that |B| ≤ |Q(u) ∩ N(v)| ≤ γ − 1 by
Observation 1.3, and hence b ∈ O(kγ) and |P1| ∈ O(3γ/3 · k3 · kγ) = O(3γ/3 · kγ+3). Overall,
we have |P| ≤ (|I0| + |P1|) ∈ O(3γ/3 · kγ+3). The total number of N -equivalence classes is
thus at most |Q| · |P| ∈ O(3γ/3 · k2γ+3). ◀

We now show that Proposition 2.1 can be also applied to bound the graph size in terms
of the ℓ-COC number, which is the smallest size of a vertex set S such that every connected
component in G − S has size at most ℓ, where ℓ is a fixed constant. The 1-COC number is
the vertex cover number. To obtain this generalization, we extend the notion of twins.

▶ Definition 2.3. Let G = (V, E) be a graph and let A, B ⊆ V (G) such that |A| = |B| = ℓ.
The sets A and B are ℓ-twins if there exists an ordering a1, . . . , aℓ of A and an order-
ing b1, . . . , bℓ of B such that N(ai) \ A = N(bi) \ B for each i ∈ [ℓ].

Note that u and v are false twins if and only if {u} and {v} are 1-twins.

▶ Lemma 2.4 (*). Let G be a graph and let D ⊆ V (G) be such that each connected component
in G[D] has size at most ℓ. Suppose that for every connected component Z in G[D], there are
at most t − 1 other connected components Z ′ in G[D] − Z such that Z and Z ′ are |Z|-twins.
Then, |D| ∈ O(t · kO(γ)), where k = n − |D|.

3 Applications of our Framework

We now apply Lemma 2.2 and Lemma 2.4 to obtain kernels for several well-known problems.

3.1 Capacitated Vertex Cover
The first problem to which we apply Lemma 2.2 is Capacitated Vertex Cover.

Capacitated Vertex Cover
Input: A graph G, a capacity function cap : V (G) → N, and k ∈ N.
Question: Is there a set S of at most k vertices and a function f mapping each edge

of E(G) to one of its endpoints in S such that |{e ∈ E(G) | f(e) = v}| ≤
cap(v) for all v ∈ S?

Capacitated Vertex Cover admits a kernel with O(kd+1) vertices. Furthermore, this
kernel is essentially tight: a kernel with O(kd−ϵ) vertices would imply coNP ⊆ NP/poly [4].
We will show that the reduction rule used to obtain a kernel in degenerate graphs also leads
to a kernel in graphs with bounded weak closure. One may view this result as a way of
showing that the rules are more powerful than what was previously known. The kernel uses
the following rule.
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▶ Reduction Rule 3.1 ([4, Rule 3]). If S ⊆ V (G) is a subset of false twin vertices with
a common neighborhood N(S) such that |S| = k + 2 ≥ |N(S)|, then remove a vertex with
minimum capacity in S from G, and decrease all the capacities of vertices in N(S) by one.

We omit the proof for the correctness of Reduction Rule 3.1, referring to Cygan et al. [4,
Lemma 20]. One can easily verify that it does not increase the weak γ-closure. In the following
theorem, we show that Reduction Rule 3.1 indeed gives us a kernel with kO(γ) vertices.

▶ Theorem 3.2. Capacitated Vertex Cover has a kernel of size kO(γ).

Proof. We show that a Yes-instance which is reduced with respect to Reduction Rule 3.1 has
size kO(γ). Let S be a capacitated vertex cover of size at most k of (G, cap). Let I := V (G)\S.
By definition, I is an independent set and N(v) ⊆ S for all v ∈ I. Moreover, since (G, cap)
is reduced with respect to Reduction Rule 3.1 there is no set of k + 2 vertices in I that
have the same neighborhood. Hence, I fulfills the condition of Lemma 2.2 with t = k + 2.
Thus, |I| ∈ k · kO(γ) which implies |V (G)| = |S| + |I| ∈ kO(γ). ◀

We also show that this kernel is essentially tight even if γ is replaced by c.

▶ Theorem 3.3 (*). For c ≥ 4, Capacitated Vertex Cover has no kernel of size
O(k c−1

2 −ϵ) unless coNP ⊆ NP/poly.

3.2 Connected Vertex Cover

We now provide kernels for Connected Vertex Cover, a well-studied variant of Vertex
Cover which is notoriously hard and does not admit a polynomial kernel when parameter-
ized k [7].

Connected Vertex Cover
Input: A graph G and k ∈ N.
Question: Is there a vertex cover S of size at most k in G such that G[S] is connected?

We will show that by applying Lemma 2.2 we obtain a kernel of size kO(γ). We may use
the following known rule.

▶ Reduction Rule 3.4 ([4, Rule 2]). If S ⊆ V (G) is a set of at least two twin vertices with a
common neighborhood N(S) such that |S| > |N(S)|, then remove one vertex v of S from G.

After exhaustive application of Reduction Rule 3.4 we have, again by Lemma 2.2, that
every Yes-instance has size kO(γ). The proof is completely analogous to that of Theorem 3.2.

▶ Theorem 3.5. Connected Vertex Cover admits a kernel of size kO(γ).

This kernel is essentially tight, because there is no kernel of size ko(d) [4]. We now show
a polynomial kernel for k + c.

▶ Theorem 3.6 (*). Connected Vertex Cover has a kernel with O(ck2) vertices.

This result stands in contrast to Capacitated Vertex Cover, which has no kernel of
size ko(c) unless coNP ⊆ NP/poly (Theorem 3.3).
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An Extension to Connected ℓ-COC. In Connected ℓ-COC the task is to find a set S of
at most k vertices such that G[S] is connected and every connected component of G − S has
size at most ℓ, where ℓ is a fixed constant. We show that this problem also admits a kernel
of size kO(γ). The main idea lies in the extension of Reduction Rule 3.4:

▶ Reduction Rule 3.7. Let T1, . . . , Tx ⊆ V (G) be a set of x many r-twins, for some r ∈ [ℓ].
If x ≥ k + ℓ + 2 , then remove all vertices in Tx from G.

Note that Reduction Rule 3.7 can be exhaustively performed in polynomial time since
the r-twin relation can be computed in n2r+O(1) time. We then obtain the following theorem
from Lemma 2.4.

▶ Theorem 3.8 (*). Connected ℓ-COC has a kernel of size kO(γ) for constant ℓ.

3.3 Induced Matching
In this section, we provide a kernel of size (γk)O(γ) for Induced Matching:

Induced Matching
Input: A graph G and k ∈ N.
Question: Is there a set M of at least k edges such that the endpoints of distinct

edges are pairwise nonadjacent?

Induced Matching is W[1]-hard for the parameter k on general graphs. For c-closed
graphs, we developed a kernel with O(c7k8) vertices [20]. For d-degenerate graphs, Kanj et
al. [17] and Erman et al. [11] independently presented kernels of size kO(d). Later, Cygan et
al. [4] provided a matching lower bound ko(d) on the kernel size. Note that this also implies
the nonexistence of ko(γ)-size kernels unless coNP ⊆ NP/poly.

It turns out that Lemma 2.2 is again helpful in designing a kO(γ)-size kernel for Induced
Matching. In a nutshell, we show that the application of a series of reduction rules results in
a graph with a (γk)O(1)-size vertex cover. We do so by combining the kernelization of Erman
et al. [11] for degenerate graphs with our previous one for c-closed graphs [20]. Lemma 2.2
and the reduction rule which removes twin vertices then give us a kernel of size (γk)O(γ).

Erman et al. [11] use the following observation for degenerate graphs.

▶ Lemma 3.9 ([11, Proof of Theorem 2.10]). Any graph G with a matching M has an induced
matching of size |M |/(4dG + 1).

Ideally, we would like to prove a lemma analogous to Lemma 3.9 on weakly γ-closed
graphs. Note, however, that a complete graph on n vertices (which is weakly 1-closed) has
no induced matching of size 2, although it contains a matching of size ⌊n/2⌋. So we follow a
different route, and prove an analogous lemma on weakly γ-closed bipartite graphs (there
exist bipartite 2-closed graphs whose degeneracy is unbounded; see e.g. Eschen et al. [12]).
As we shall see, this serves our purposes.

▶ Lemma 3.10. Suppose that G is a bipartite graph with a bipartition (A, B). If G has a
matching M of size fγ(k) := 4γk2 + 3k, then G has an induced matching of size k.

Proof. Recall that Qσ(v) := {u ∈ N(v) | u appears after v in σ}. Let S ⊆ V (G) be the
set of vertices v such that |Q(v)| ≥ γk. Suppose that |S| ≥ 2k. Then, we may assume
that |A ∩ S| ≥ k. Let A′ ⊆ A ∩ S be an arbitrary vertex set of size exactly k and consider
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some vertex v ∈ A′. Since |Q(v) ∩ N(v′)| < γ for every v′ ∈ A′ \ {v} by Observation 1.3,
we have |Q(v) \

⋃
v′∈A′\{v} N(v′)| > 0 for each v ∈ A′. Consequently, there is at least one

vertex qv ∈ Q(v) \
⋃

v′∈A′\{v} N(v′). Then, the edge set {vqv | v ∈ A′} forms an induced
matching of size k in G.

Now, consider the case |S| < 2k. By the definition of S, it holds that |QG−S(v)| ≤
|QG(v)| ≤ γk for each vertex v ∈ V (G) \ S. Hence, the degeneracy of G − S is at most γk.
Since G − S has a matching MG−S of size at least |M | − |S| ≥ fγ(k) − 2k = 4γk2 + k,
Lemma 3.9 yields an induced matching of size |MG−S |/(4dG−S + 1) ≥ k. ◀

We use the following reduction rule to sparsify the graph G so that every sufficiently
large vertex set contains a large independent set (see Lemma 3.13).

▶ Reduction Rule 3.11. If for some vertex v ∈ V (G), there is a maximum matching Mv of
size at least 2γk in G[Q(v)], then delete v.

▶ Lemma 3.12. Reduction Rule 3.11 is correct.

Proof. Let G′ := G − v. Suppose that G has an induced matching M of size k. If v /∈ V (M),
then M is also an induced matching in G′. So assume that vv′ ∈ V (M) for some vertex v′ ∈
V (G). Then, we have |N(u) ∩ Q(v)| < γ for any vertex u ∈ V (M \ {vv′}) by Observation 1.3
and thus |V (Mv)\

⋃
u∈V (M\{vv′}) N(u)| ≥ 2|Mv|−(γ −1)(2k−2) > |Mv|. By the pigeon-hole

principle, this implies that there is an edge e ∈ Mv not incident with any vertex in V (M)
and no endpoint of e is adjacent to any vertex in V (M \ {vv′}). Then, (M \ {vv′}) ∪ {e} is
an induced matching of size k in G′. ◀

▶ Lemma 3.13. Suppose that G is a graph in which Reduction Rule 3.11 is applied on every
vertex. Then, every vertex set S ⊆ V (G) of size at least gγ(k) := 4γk2 + k2 contains an
independent set I ⊆ S of size k.

Proof. Suppose that there is no independent set of size k in G′ := G[S] for some vertex
set S of size gγ(k). For every vertex v ∈ S, let Mv be a maximum matching in QG′(v)
and let Iv := QG′(v) \ V (Mv). By Reduction Rule 3.11, we have |V (Mv)| = 2|Mv| ≤ 4γk.
Since Iv is an independent set, we then have |QG′(v)| = |Mv| + |Iv| < 4γk + k for every
vertex v ∈ S, and thus dG′ < 4γk + k. Note, however, that G′ has an independent set of
size |S|/(dG′ + 1) ≥ k, which is a contradiction. ◀

To identify a part of the graph with a sufficiently large induced matching, we rely on
the LP relaxation of Vertex Cover, following our approach [20] to obtain a polynomial
kernel on c-closed graphs. Recall that Vertex Cover can be formulated as an integer linear
program as follows, using a variable xv for each v ∈ V (G):

min
∑

v∈V (G)

xv subject to xu + xv ≥ 1 ∀uv ∈ E(G),
xv ∈ {0, 1} ∀v ∈ V (G).

We will refer to the LP relaxation of Vertex Cover as VCLP. We use the well-known facts
that VCLP always admits an optimal solution in which xv ∈ {0, 1/2, 1} for each v ∈ V (G)
and that such a solution can be found in polynomial time. Suppose that we have such an
optimal solution (xv)v∈V (G). Let V0 := {v ∈ V (G) | xv = 0}, V1 := {v ∈ V (G) | xv = 1},
and V1/2 := {v ∈ V (G) | xv = 1/2}. Also, let opt(G) be the optimum of VCLP. We show
that we can immediately return Yes, whenever opt(G) is sufficiently large:

▶ Reduction Rule 3.14. If opt(G) ≥ 2gγ(gγ(fγ(k))), then return Yes.
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Here, the functions fγ and gγ are as specified in Lemmas 3.10 and 3.13, respectively.

▶ Lemma 3.15. Reduction Rule 3.14 is correct.

Proof. We show that G has an induced matching of size k whenever opt(G) ≥ 2gγ(gγ(fγ(k))).
Let M be an arbitrary maximal matching in G. Since V (M) is a vertex cover, we
have opt(G) ≤ |V (M)| = 2|M |, and hence |M | ≥ opt(G)/2 ≥ gγ(gγ(fγ(k))). Let M :=
{a1b1, . . . , a|M |b|M |} and let A := {a1, . . . , a|M |} and B := {b1, . . . , b|M |}. By Lemma 3.13,
there exists an independent set A′ ⊆ A of size s′ := gγ(fγ(k)). Without loss of generality,
suppose that A′ = {a′

1, . . . , a′
s′} and let B′ := {b′

1, . . . , b′
s′} be the set of vertices matched

to A′ in M . Again by Lemma 3.13, we obtain an independent set B′′ ⊆ B′ of size s′′ := fγ(k).
We assume without loss of generality that B′′ = {b′′

1 , . . . , b′′
s′′}. Let A′′ := {a′′

1 , . . . , a′′
s′′} be

the set of vertices matched to B′′ in M . Then, G[A′′ ∪ B′′] is a bipartite graph with a
matching of size at least s′′ = fγ(k). By Lemma 3.10, G[A′′ ∪ B′′] has an induced matching
of size k. ◀

Since opt(G) = |V1/2|/2 + |V1|, it holds that |V1/2|/2 + |V1| ≤ 2gγ(gγ(fγ(k))) ∈ O(γ7k8)
after the application of Reduction Rule 3.14. Hence, it remains to bound the size of V0. To
do so, it suffices to remove twins:

▶ Reduction Rule 3.16. If N(u) = N(v) for some vertices u, v ∈ V (G), then delete v.

Since an induced matching contains at most one of u and v, the rule is obviously correct.
We are finally ready to utilize Lemma 2.2 to derive an upper bound on V0: Since V0 is an
independent set, Lemma 2.2 gives us |V0| ∈ |V1/2 ∪ V1|O(γ) ∈ (γk)O(γ). Thus, we have the
following result.

▶ Theorem 3.17. Induced Matching has a kernel of size (γk)O(γ).

4 Independent Set and Ramsey-Type Problems

We now investigate the kernelization complexity of Independent Set, where we are given a
graph G and an integer k, and ask whether G has an independent set of size k. Independent
Set admits a kernel with O(ck2) vertices and O(c2k3) edges [20] and a kernel with O(γk2)
and O(γ2k3) edges [19]. We show a lower bound for these parameterizations: unless coNP
⊆ NP/poly, Independent Set admits no kernel of size k2−ϵ and no kernel with k4/3−ε

vertices even if the c-closure is constant. We also show a kernel lower bound of size c1−εkO(1)

for any ε. We also consider the following related problem where G is a hereditary graph class
containing all complete graphs and edgeless graphs.

G-Subgraph
Input: A graph G and k ∈ N.
Question: Is there a set S of at least k vertices such that G[S] ∈ G?

Khot and Raman [18] showed that G-Subgraph is FPT when parameterized by k, using
Ramsey’s theorem: for any k ∈ N, any graph G on at least R(k) ∈ 2O(k) vertices contains
a clique of size k or an independent set of size k. Ramsey, the special case where G is
the family of all complete and edgeless graphs, admits no polynomial kernel unless coNP
⊆ NP/poly [21]. Similarly, G-Subgraph admits no polynomial kernel for several graph
classes G, such as cluster graphs [23]. Our contribution for G-Subgraph is two-fold: First, we
observe that the lower bounds for Independent Set on graphs with constant c-closure also
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Figure 1 An illustration of P i
r and P i+1

r for t = 5.

hold for Ramsey. This complements a kernel for G-Subgraph with O(ck2) vertices [20].2
Second, we provide a kernel of size kO(γ). To show our kernel lower bounds, we will use
weak q-compositions. Weak q-compositions exclude kernels of size O(kq−ε) for ε > 0.

▶ Definition 4.1 ([6, 15]). Let q ≥ 1 be an integer, let L1 ⊆ {0, 1}∗ be a decision problem,
and let L2 ⊆ {0, 1}∗ ×N be a parameterized problem. A weak q-composition from L1 to L2 is
a polynomial-time algorithm that on input x1, . . . , xtq ∈ {0, 1}n outputs an instance (y, k′) ∈
{0, 1}∗ × N such that:

(y, k′) ∈ L2 ⇔ xi ∈ L1 for some i ∈ [tq], and
k′ ≤ t · nO(1).

▶ Lemma 4.2 ([3, 6, 15]). Let q ≥ 1 be an integer, let L1 ⊆ {0, 1}∗ be an NP-hard problem,
and let L2 ⊆ {0, 1}∗ ×N be a parameterized problem. If there is a weak q-composition from L1
to L2, then L2 has no compression of size O(kq−ϵ) for any ϵ > 0, unless coNP ⊆ NP/poly.

Weak Composition. We give a weak composition from the following problem:

Multicolored Independent Set
Input: A graph G and a partition (V1, . . . , Vk) of V (G) into k cliques.
Question: Is there an independent set of size exactly k?

A standard reduction from a restricted variant of 3-SAT (for instance, each literal
appears exactly twice [1]) shows that Multicolored Independent Set is NP-hard even
when ∆G ∈ O(1) and |Vi| ∈ O(1) for all i ∈ [k]. Let [t]q be the set of q-dimensional
vectors whose entries are in [t]. Suppose that q ≥ 2 is a constant and that we are given tq

instances Ix = (Gx, (V 1
x , . . . , V k

x )) for x ∈ [t]q, where ∆Gx ∈ O(1) and |V i
x | ∈ O(1) for

all x ∈ [t]q and i ∈ [k]. We construct an Independent Set instance (H, k′). The kernel
lower bound of size k2−ϵ will be based on the special case q = 2. To obtain the lower bound
of c1−ϵkO(1), however, we need the composition to work for all q ∈ N. Hence, we give a
generic description in the following. First, we construct a graph Hi as follows for every i ∈ [k]:

For every x ∈ [t]q, include V i
x into V (Hi).

For every r ∈ [q], introduce a path P i
r on 2t − 2 vertices. We label the (2j − 1)-th

vertex as pi
r,j,1 and the 2j-th vertex as pi

r,j+1,2 (see Figure 1 for an illustration). Note
that V (P i

r) = {pi
r,j,1, pi

r,j+1,2 | j ∈ [t − 1]}. For every j ∈ [t], we new define the set P i
r,j :

let P i
r,1 = {pi

r,1,1}, P i
r,t = {pi

r,t,2}, and P i
r,j = {pi

r,j,1, pi
r,j,2} for j ∈ [2, t − 2].

For every r ∈ [q] and j ∈ [t], add edges such that P i
r,j ∪

⋃
x∈[t]q,xr=j V i

x forms a clique
(see Figure 1 for an illustration).

2 Any c-closed n-vertex graph contains a clique or an independent set of size Ω(
√

n/c) [20].
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Now, construct H by taking the disjoint union of the Hi, i ∈ [k], and adding the following:
For every x ∈ [t]q, add edges such that H[V (Gx)] = Gx.
For every i ∈ [k − 1], r ∈ [q], and j ∈ [t − 1], add edges pi

r,j,1pi+1
r,j+1,2 and pi+1

r,j,1pi
r,j+1,2.

This concludes the construction of H. Let k′ := qkt − qk + k.
We call the vertices of

⋃
x∈[t]q,i∈[k] V i

x the instance vertices. The other vertices, which
are on P i

r for some i ∈ [k] and r ∈ [q], serve as instance selectors: As we shall see later,
any independent set J of size k′ in H contains exactly t − 1 vertices of P i

r for every i ∈ [k]
and r ∈ [q]. In fact, there is exactly one j ∈ [t] such that J ∩ P i

r,j = ∅ and |J ∩ P i
r,j′ | = 1 for

all j′ ∈ [t] \ {j}. Consequently, J contains no instance vertex in V i
x for xr ̸= j, and thereby, j

is selected for the r-th dimension. We bound the c-closure of H and prove the correctness.

▶ Lemma 4.3 (*). It holds that clH ∈ O(tq−2).

▶ Lemma 4.4 (*). The graph Gx has a multicolored independent set of size k for some x ∈ [t]q
if and only if the graph H has an independent set I of size k′.

For q = 2, we have a weak 2-composition from Multicolored Independent Set
to Independent Set on O(tq−2) = O(1)-closed graphs by Lemmas 4.3 and 4.4. Since
the constructed graph H has no clique of size k′, the construction also constitutes a weak
2-composition to Ramsey on O(1)-closed graphs. Thus, Lemma 4.2 implies the following:

▶ Theorem 4.5. For any ε > 0, neither Independent Set nor Ramsey has a kernel of
size k2−ε on graphs of constant c-closure, unless coNP ⊆ NP/poly.

By Theorem 4.5, neither Independent Set nor Ramsey admit a kernel of k1−ε vertices.
We improve this bound on the number of vertices, taking advantage of the fact that any
n-vertex c-closed graph can be encoded using O(cn1.5 log n) bits in polynomial time [12].
Assume for a contradiction that Independent Set or Ramsey admit a kernel of k4/3−ε′

vertices for constant c. Using the above-mentioned encoding, we obtain a string with
O(k(4/3−ε′)1.5 log k) = O(k2−ε) bits. So a kernel of k4/3−ε′ vertices implies that there is a
compression of Independent Set or Ramsey with bitsize O(k2−ε), a contradiction. Thus,
we have the following:

▶ Theorem 4.6. For any ε > 0, neither Independent Set nor Ramsey has a compression
of k4/3−ε vertices on graphs of constant c-closure, unless coNP ⊆ NP/poly.

We also obtain another kernel lower bound for Independent Set; this bound excludes
the existence of polynomial kernels (in terms of c + k) whose dependence on c is sublinear.

▶ Theorem 4.7. For any ε > 0, Independent Set has no kernel of size c1−εkO(1) unless
coNP ⊆ NP/poly.

Proof. We show that Independent Set admits no kernel of size c1−εki for any ε, i > 0,
unless coNP ⊆ NP/poly. Let q be a sufficiently large integer with q−ε−i

q−2 > 1 − ε (that
is, q > i+3ε−2

ε ). Recall, that in the constructed instance we have c ∈ O(tq−2) and k′ :=
qkt − qk + k. A straightforward calculation shows that ℓ := c

1
q−2 (1− i

q−ε )k′ i
q−ε ∈ O(t), and

hence Independent Set admits a weak q-decomposition for the parameterization ℓ. Thus,
Lemma 4.2 implies that there is no kernel of size ℓq−ε = c

q−ε−i
q−2 k′i > c1−εk′i. ◀

Finally, we show that G-Subgraph has a kernel of size kO(γ) for any graph class G
containing all complete graphs and empty graphs.
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▶ Proposition 4.8. Any graph G on at least Rγ(a, b) ∈ (a · b)γ+O(1) vertices has a clique of
size a or an independent set of size b.

Proof. The Ramsey number R(a, b) denotes the smallest number such that every graph
on R(a, b) vertices contains a clique of size a or an independent set of size b. It is known
that R(a, b) ≤

(
a+b

b

)
. So whenever a ≤ γ or b ≤ γ, we have Rγ(a, b) ≤

(
a+b

γ

)
∈ O((a + b)γ).

For a, b > γ, let Rγ(a, b) be some number greater than ab
(

b
γ

)
+ b

(
a
γ

) ∑
b′∈[b]

(
b′−1

γ

)
.

Let n = |V (G)| and let v1, . . . , vn be a weak closure ordering σ of G. Divide V (G)
into b subsets V1, . . . , Vb of equal size3: let Vi = {v((b−i)n/b)+1, . . . , v(b−i+1)n/b} for each
i ∈ [b]. Notably, V1 is the set of n/b vertices occurring last in σ and Vb is the set of n/b

vertices occurring first in σ. Moreover, let Gi := G[{v(b−i)n/b+1, . . . , vn}] be the subgraph
induced by

⋃
i′∈[i] Vi′ for each i ∈ [b]. Suppose that G contains no clique of size a. We show

that G contains an independent set of size b. More precisely, we prove by induction that Gi

contains an independent set of size i for each i ∈ [b].
This clearly holds for i = 1. For i > 1, assume that there is an independent set I of

size i − 1 in Gi−1 by the induction hypothesis. In the following, we consider subsets X of
size at most γ of I to obtain an independent set I ′ of size at least i.

First, consider vertex sets X ⊆ I of size γ and VX := {v ∈ Vi | NG(v) ⊇ X}. Note
that X ⊆ Q(v) for each v ∈ VX . Hence, since G is weakly γ-closed, VX is a clique. It follows
that |VX | < a. Therefore, less than a

(
b
γ

)
vertices of Vi are adjacent to at least γ vertices in I.

Second, consider vertex sets X ⊆ I with X ̸= ∅ and |X| < γ. Furthermore, let V ′
X =

{v ∈ Vi | NG(v) ∩ I = X}. Since n > Rγ(a, b), there exists X ⊆ I of size at most γ − 1 such
that |V ′

X | > R(a, γ). By Ramsey’s theorem, we then find an independent set I ′ ⊆ V ′
X of

size γ (recall that G has no clique of size a). It follows that (I \ X) ∪ I ′ is an independent
set of size at least i in Gi. ◀

Now, we directly obtain to a kernel for G-Subgraph where G contains all cliques and all
independent sets since each graph on kO(γ) vertices contains either a clique or an independent
set of size at least k by the bound on the Ramsey number in weakly closed graphs shown in
Proposition 4.8.

▶ Corollary 4.9. Let G be a class of graphs containing all cliques and independent sets.
G-Subgraph has a kernel of size kO(γ).

5 Conclusion

We have provided several kernelization algorithms and kernelization lower bounds for classic
graph problems on (weakly) closed graphs. How far can our results for Connected Vertex
Cover and Capacitated Vertex Cover be extended to other cases of connected or
capacitated vertex deletion problems? We did show that Connected ℓ-COC admits a
kernel of size kO(γ). In contrast, Connected Feedback Vertex Set does not admit a
polynomial kernel for the solution size k even in 2-closed graphs [5]. Drawing a borderline
between those desired graph properties where connected and capacitated vertex deletion
problems do admit a kernel on (weakly) closed graphs and those where they do not would
improve our understanding when (weak) closure can be exploited algorithmically. It is also
open whether the Ramsey number of weakly closed graphs can be bounded by (a + b + γ)O(1),
such a bound would immediately improve some of our kernels. The most important open

3 For ease of presentation we assume that |V (G)| is divisible by b.
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problem is arguably whether Dominating Set parameterized by the solution size k admits
a polynomial kernel on weakly closed graphs. We made partial progress by showing that
Dominating Set admits a kernel on weakly closed bipartite graphs and on weakly closed
split graphs. Answering this question positively would need further insights into the structure
of weakly closed graphs, however.
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Abstract
We revisit a classical crossword filling puzzle which already appeared in Garey&Jonhson’s book. We
are given a grid with n vertical and horizontal slots and a dictionary with m words and are asked
to place words from the dictionary in the slots so that shared cells are consistent. We attempt to
pinpoint the source of intractability of this problem by carefully taking into account the structure
of the grid graph, which contains a vertex for each slot and an edge if two slots intersect. Our
main approach is to consider the case where this graph has a tree-like structure. Unfortunately, if
we impose the common rule that words cannot be reused, we discover that the problem remains
NP-hard under very severe structural restrictions, namely, if the grid graph is a union of stars
and the alphabet has size 2, or the grid graph is a matching (so the crossword is a collection of
disjoint crosses) and the alphabet has size 3. The problem does become slightly more tractable
if word reuse is allowed, as we obtain an mtw algorithm in this case, where tw is the treewidth of
the grid graph. However, even in this case, we show that our algorithm cannot be improved to
obtain fixed-parameter tractability. More strongly, we show that under the ETH the problem cannot
be solved in time mo(k), where k is the number of horizontal slots of the instance (which trivially
bounds tw).

Motivated by these mostly negative results, we also consider the much more restricted case
where the problem is parameterized by the number of slots n. Here, we show that the problem does
become FPT (if the alphabet has constant size), but the parameter dependence is exponential in
n2. We show that this dependence is also justified: the existence of an algorithm with running time
2o(n2), even for binary alphabet, would contradict the randomized ETH. Finally, we consider an
optimization version of the problem, where we seek to place as many words on the grid as possible.
Here it is easy to obtain a 1

2 -approximation, even on weighted instances, simply by considering only
horizontal or only vertical slots. We show that this trivial algorithm is also likely to be optimal,
as obtaining a better approximation ratio in polynomial time would contradict the Unique Games
Conjecture. The latter two results apply whether word reuse is allowed or not.
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1 Introduction

Crossword puzzles are one-player games where the goal is to fill a (traditionally two-
dimensional) grid with words. Since their first appearance more than 100 years ago, crossword
puzzles have rapidly become popular. Nowadays, they can be found in many newspapers
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Figure 1 Place valid words in this grid. In a possible instance, letters S, U, I, V, R, E, and T
have weight 7, 5, 4, 2, 6, 1, and 3, respectively. Any other letter has null weight. Try to obtain at
least 330 points.

and magazines around the world like the New York Times in the USA, or Le Figaro in
France. Besides their obvious recreational interest, crossword puzzles are valued tools in
education [2] and medicine. In particular, crossword puzzles participation seems to delay the
onset of memory decline [14]. They are also helpful for developing and testing computational
techniques; see for example [16]. In fact, both the design and the completion of a puzzle
are challenging. In this article, we are interested in the task of solving a specific type of
crossword puzzle.

There are different kinds of crossword puzzles. In the most famous ones, some clues are
given together with the place where the answers should be located. A solution contains
words that must be consistent with the given clues, and the intersecting pairs of words are
constrained to agree on the letter they share. Fill-in crossword puzzles do not come with
clues. Given a list of words and a grid in which some slots are identified, the objective is to
fill all the slots with the given words. The list of words is typically succinct and provided
explicitly.

In a variant of fill-in crossword puzzle currently proposed in a French TV magazine [12],
one has to find up to 14 words and place them in a grid (the grid is the same for every
instance, see Figure 1 for an illustration). The words are not explicitly listed but they must
be valid (for instance, belong to the French language). In an instance of the game, some
specified letters have a positive weight; the other letters have weight zero. The objective is
to find a solution whose weight – defined as the total sum of the letters written in the grid –
is at least a given threshold.

The present work deals with a theoretical study of this fill-in crossword puzzle (the grid is
not limited to the one of Figure 1). We are mainly interested in two problems: Can the grid
be entirely completed? How can the weight of a solution be maximized? Hereafter, these
problems are called Crossword Puzzle Decision and Crossword Puzzle Optimization
(CP-Dec and CP-Opt in short), respectively.

CP-Dec is not new; see GP14 in [5]. The proof of NP-completeness is credited to a
personal communication with Lewis and Papadimitriou. Thereafter, an alternative NP-
completeness proof appeared in [4] (see also [10]). Other articles on crossword puzzles exist
and they are mostly empirically validated techniques coming from Artificial Intelligence and
Machine Learning; see for example [6, 13, 11, 1, 16, 15] an references therein.

Our Results. Our goal in this paper is to pinpoint the relevant structural parameters that
make filling crossword puzzles intractable. We begin by examining the structure of the given
grid. It is natural to think that, if the structure of the grid is tree-like, then the problem
should become easier, as the vast majority of problems are tractable on graphs of small
treewidth. We only partially confirm this intuition: by taking into account the structure of a
graph that encodes the intersections between slots (the grid-graph) we show in Section 3
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that CP-Opt can be solved in polynomial time on instances of constant treewidth. However,
our algorithm is not fixed-parameter tractable and, as we show, this cannot be avoided, even
if one considers the much more restricted case where the problem is parameterized by the
number of horizontal slots, which trivially bounds the grid-graph’s treewidth (Theorem 4).
More devastatingly, we show that if we also impose the natural rule that words cannot
be reused, the problem already becomes NP-hard when the grid graph is a matching for
alphabets of size 3 (Theorem 6), or a union of stars for a binary alphabet (Theorem 5). Hence,
a tree-like structure does not seem to be of much help in rendering crosswords tractable.

We then go on to consider CP-Opt parameterized by the total number of slots n. This
is arguably a very natural parameterization of the problem, as in real-life crosswords, the
size of the grid can be expected to be significantly smaller than the size of the dictionary.
We show that in this case the problem does become fixed-parameter tractable (Corollary 9),
but the running time of our algorithm is exponential in n2. Our main result is to show that
this disappointing dependence is likely to be best possible: even for a binary alphabet, an
algorithm solving CP-Dec in time 2o(n2) would contradict the randomized ETH (Theorem
12). Note that all our positive results up to this point work for the more general CP-Opt,
while our hardness results apply to CP-Dec.

Finally, in Section 5 we consider the approximability of CP-Opt. Here, it is easy to
obtain a 1

2 -approximation by only considering horizontal or vertical slots. We are only able
to slightly improve upon this, giving a polynomial-time algorithm with ratio 1

2 + O( 1
n ). Our

main result in this direction is to show that this is essentially best possible: obtaining an
algorithm with ratio 1

2 + ϵ would falsify the Unique Games Conjecture (Theorem 15).

2 Problem Statement and Preliminaries

We are given a dictionary D = {d1, . . . dm} whose words are constructed on an alphabet
L = {l1, . . . lℓ}, and a two-dimensional grid consisting of horizontal and vertical slots. A slot
is composed of consecutive cells. Horizontal slots do not intersect each other; the same goes
for vertical slots. However horizontal slots can intersect vertical slots. A cell is shared if it
lies at the intersection of two slots. Unless specifically stated, n, m and ℓ denote the total
number of slots, the size of D, and the size of L, respectively. Finally, let us mention that we
consider only instances where the alphabet is of constant size, i.e., ℓ = O(1).

In a feasible solution, each slot S receives either a word of D of length |S|, or nothing (we
sometimes say that a slot receiving nothing gets an empty word). Each cell gets at most one
letter, and the words assigned to two intersecting slots must agree on the letter placed in the
shared cell. All filled horizontal slots get words written from left to right (across) while all
vertical slots get words written from top to bottom (down).

There is a weight function w : L → N. The weight of a solution is the total sum of the
weights of the letters placed in the grid. Observe that, for a given solution, the total weight
of all filled-in words is not the same as the weight of this solution as, in the latter, the letters
of the shared cells are counted only once.

The two main problems studied in this article are the following. Given a grid, a dictionary
D on alphabet L, and a weight function w : L → N, the objective of Crossword Puzzle
Optimization (CP-Opt in short) is to find a feasible solution of maximum weight. Given
a grid and a dictionary D on alphabet L, the question posed by Crossword Puzzle
Decision (CP-Dec in short) is whether the grid can be completely filled or not?

Two cases will be considered: whether each word is used at most once, or if each word
can be assigned multiple times. In this article, we will sometimes suppose that some cells are
pre-filled with some elements of L. In this case, a solution is feasible if it is consistent with
the pre-filled cells. Below we propose a first result when all the shared cells are pre-filled.
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▶ Proposition 1. CP-Dec and CP-Opt can be solved in polynomial time if all the shared
cells in the grid are pre-filled, whether word reuse is allowed or not.

Proof. If word reuse is allowed, then for each combination of letters placed in these cells, we
greedily fill out the rest of each slot with the maximum value word that can still be placed
there. This is guaranteed to produce the optimal solution. On the other hand, if word reuse
is not allowed, we construct a bipartite graph, with elements of D on one side and the slots
on the other, and place an edge between a word and a slot if the word can still be placed
in the slot. If we give each edge weight equal to the value of its incident word reduced by
the weight of the letters imposed by the shared cells of the slot, then an optimal solution
corresponds to a maximum weight matching. ◀

One can associate a bipartite graph, hereafter called the grid graph, with each grid: each
slot is a vertex and two vertices share an edge if the corresponding slots overlap. The grid
(and then, the grid graph) is not necessarily connected.

Let us also note that so far we have been a bit vague about the encoding of the problem.
Concretely, we could use a simple representation which lists for each slot the coordinates of
its first cell, its size, and whether the slot is horizontal or vertical; and then supplies a list of
all words in the dictionary and an encoding of the weight function. Such a representation
would allow us to perform all the basic operations needed by our algorithms in polynomial
time, such as deciding if it is possible to place a word d in a slot S, and which letter would
then be placed in any particular cell of S. However, one drawback of this encoding is that its
size may not be polynomially bounded in n + m, as some words may be exponentially long.
We can work around this difficulty by using a more succinct representation: we are given
the same information as above regarding the n slots; for each word we are given its total
weight; and for each slot S and word d, we are told whether d fits exactly in S, and if yes,
which letters are placed in the cells of S which are shared with other slots. Since the number
of shared cells is O(n2) this representation is polynomial in n + m and it is not hard to see
that we are still able to perform any reasonable basic operation in polynomial time and that
we can transform an instance given in the simple representation to this more succinct form.
Hence, in the remainder, we will always assume that the size of the input is polynomially
bounded in n + m.

We will rely on the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi, and
Zane [8], which states the following:

▶ Conjecture 2. Exponential Time Hypothesis: there exists an ϵ > 0, such that 3-SAT on
instances with n variables and m clauses cannot be solved in time 2ϵ(n+m).

Note that it is common to use the slightly weaker formulation which states the ETH as
the assumption that 3-SAT cannot be solved in time 2o(n+m). This is known to imply that
k-Independent Set cannot be solved in time no(k)[3]. We use this fact in Theorem 4. In
Section 4 we will rely on the randomized version of the ETH, which has the same statement
as Conjecture 2 but for randomized algorithms with expected running time 2ϵ(n+m).

3 When the Grid Graph is Tree-like

In this section we are considering instances of CP-Dec and CP-Opt where the grid graph is
similar to a tree. First, we give an algorithm for both problems in cases where the grid graph
has bounded treewidth and we are allowed to reuse words and we show that this algorithm
is essentially optimal. Then, we show that CP-Dec and CP-Opt are much harder to deal
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with, in the case where we are not allowed to reuse words, by proving that the problems are
NP-hard even for instances where the grid graph is just a matching. For the instances such
that CP-Dec is NP-hard, we know that CP-Opt is NP-hard. That happens because we
can assume that all the letters have weight equal to 1 hence a solution for CP-Dec is an
optimal solution for CP-Opt.

3.1 Word Reuse
We propose a dynamic programming algorithm for CP-Opt and hence also for CP-Dec.
Note that it can be extended to the case where some cells of the instance are pre-filled.

▶ Theorem 3. If we allow word reuse, then CP-Opt can be solved in time (m+1)tw(n+m)O(1)

on inputs where tw is the treewidth of the grid graph.

Proof. As the techniques we are going to use are standard we are sketching some details. For
more details on tree decomposition (definition and terminology) see [3, Chap. 7]. Assuming
that we have a rooted nice tree decomposition of the grid graph, we are going to perform
dynamic programming on the nodes of this tree decomposition. For a node Bt of the given
tree decomposition of the grid graph we denote by B↓

t the set of vertices of the grid graph
that appears in the nodes of the subtree with Bt as a root. Since each vertex of the grid
graph corresponds to a slot, we interchangeably mention a vertex of the grid graph and its
corresponding slot. In particular, we say that a solution σ assigns words to the vertices of
the grid graph, and σ(v) denotes the word assigned to v.

For each node Bt of the tree decomposition we are going to keep all the triplets (σ, W, Wt)
such that:

σ is an assignment of words to the vertices of Bt;
W is the weight of σ restricted to the vertices appearing in Bt;
and Wm is the maximum weight, restricted to the vertices appearing in B↓

t , of an
assignment consistent with σ.

In order to create all the possible triplets for all the nodes of the tree decomposition we are
going to explore the nodes from leaves to the root. Therefore, each time we visit a node we
assume that we have already created the triplets for all its children. Let us explain how we
deal with the different types of nodes.

In the Leaf nodes we have no vertices so we keep an empty assignment (σ does not assign
any word) and the weights W and Wm are equal to 0.

For an Introduce node Bt we need to take in consideration its child node. Assume that u

is the introduced vertex; for each triplet (σ, W, Wm) of the child node we are going to create
all the triplets (σ′, W ′, W ′

m) for the new node as follows. First we find all the words d ∈ D
that fit in the corresponding slot of u and respect the assignment σ (i.e., if there are cells
that are already filled under σ and d uses these cells then it must have the same letters). We
create one triplet (σ′, W ′, W ′

m) for each such a d as follows:
We set σ′(u) := d and σ′(v) := σ(v) for all v ∈ Bt \ {u}.
We can easily calculate the total weight, W ′, of the words in Bt where the shared letters
are counted only once under the assignment σ′.
For the maximum weight W ′

m we know that it is increased by the same amount as W ; so
we set W ′

m = Wm + W ′ − W .
Observe that we do not need to consider the intersection with slots whose vertices appear in
B↓

t \ Bt as each node of a tree decomposition is a cut set.
Finally, we need to take in consideration that we can leave a slot empty. For this case we

create a new word d∗ which, we assume that, fits in all slots and d∗ has weight 0. Because
the empty word has weight 0, W ′ and W ′

m are identical to W and Wm so for each triplet of
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the child node, we only need to extend σ by assigning d∗ to u. In the case we assign the
empty word somewhere we will consider that the cells of this slot are empty unless another
word d ̸= d∗ uses them.

For the Forget nodes we need to restrict the assignments of the child node to the vertex
set of the Forget node, as it has been reduced by one vertex (the forgotten vertex), and
reduce the weight W (which we can calculate easily). The maximum weight is not changed
by the deletion.

However, if we restrict the assignments we may end up with several triplets (σ, W, Wm)
with identical assignments σ. In that case we are keeping only the triplet with maximum
Wm. Observe that we are allowed to keep only triplets with the maximum Wm because each
node of a tree decomposition is a cut set so the same holds for the Forget nodes. Specifically,
the vertices that appear in the nodes higher than a Forget node Bt of the tree decomposition
do not have edges incident to vertices in B↓

t \ Bt so we only care for the assignment in Bt.
Finally, we need to consider the Join nodes. Each Join node has exactly two children.

For each possible assignment σ on the vertices of this Join node, we create a triplet iff this σ

appears in a triplet of both children of the Join node.
Because W is related only to the assignment σ, it is easy to see that it will be the same

as in the children of the Join node. So we need to find the maximum weight Wm. Observe
that between the vertices that appear in the subtrees of two children of a Join node there are
no edges except those incident to the vertices of the Join node. Therefore, we can calculate
the maximum weight Wm as follows: first we consider the maximum weight of each child of
the Join node reduced by W , we add all these weights and, in the end, we add again the W .
It is easy to see that this way we consider the weight of the cells appearing in each subtree
without those of the slots of the Join node and we add the weight of the words assigned to
the vertices of the Join node in the end.

For the running time we need to observe that the number of nodes of a nice tree
decomposition is O(tw · n) and all the other calculations are polynomial in n + m so we only
need to consider the different assignments for each node. Because for each vertex we have
|D| + 1 choices, the number of different assignments for a node is at most (|D| + 1)tw+1. ◀

It seems that the algorithm we propose for CP-Dec is essentially optimal, even if we
consider a much more restricted case.

▶ Theorem 4. CP-Dec with word reuse is W[1]-hard parameterized by the number of
horizontal slots of the grid, even for alphabets with two letters. Furthermore, under the ETH,
no algorithm can solve this problem in time mo(k), where k is the number of horizontal slots.

Proof. We perform a reduction from k-Independent Set, where we are given a graph
G = (V, E) with |V | vertices and |E| edges and are looking for an independent set of size
k. This problem is well-known to be W[1]-hard and not solvable in |V |o(k) time under the
ETH [3]. We assume without loss of generality that |E| ̸= k. Furthermore, we can safely
assume that G has no isolated vertices.

We first describe the grid of our construction which fits within an area of 2k − 1 lines
and 2|E| − 1 columns. We construct:
1. k horizontal slots, each of length 2|E| − 1 (so each of these slots is as long horizontally as

the whole grid). We place these slots in the unique way so that no two of these slots are
in consecutive lines. We number these horizontal slots 1, . . . , k from top to bottom.

2. |E| vertical slots, each of length 2k − 1 (so each of these slots is long enough to cover the
grid top to bottom). We place these slots in the unique way so that no two of them are
in consecutive columns. We number them 1, . . . , |E| from left to right.
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Before we describe the dictionary, let us give some intuition about the grid. The main
idea is that in the k horizontal slots we will place k words that signify which vertices we
selected from the original graph. Each vertical slot represents an edge of E, and we will be
able to place a word in it if and only if we have not placed words representing two of its
endpoints in the horizontal slots.

Our alphabet has two letters, say 0, 1. In the remainder, we assume that the edges of the
original graph are numbered, that is, E = {e1, . . . , e|E|}. The dictionary is as follows:
1. For each vertex v we construct a word of length 2|E| − 1. For each i ∈ {1, . . . , |E|}, if

the edge ei is incident on v, then the letter at position 2i − 1 of the word representing v

is 1. All other letters of the word representing v are 0. Observe that this means that if ei

is incident on v and we place the word representing v on a horizontal slot, the letter i

will appear on the i-th vertical slot. Furthermore, the word representing v has a number
of 1s equal to the degree of v.

2. We construct k + 1 words of length 2k − 1. One of them is simply 02k−1. The remaining
are 02j−2102k−2j , for j ∈ {1, . . . , k}, that is, the words formed by placing a 1 in an
odd-numbered position and 0s everywhere else. Observe that if we place one of these k

words on a vertical slot, a 1 will be placed on exactly one horizontal slot.

This completes the construction. We now observe that the k horizontal slots correspond
to a vertex cover of the grid-graph. Therefore, if the reduction preserves the answer, the
hardness results for k-Independent Set transfer to our problem, since we preserve the
value of the parameter.

We claim that if there exists an independent set of size k in G, then it is possible to fill
the grid. Indeed, take such a set S and for each v ∈ S we place the word representing v in a
horizontal slot. Consider the i-th vertical slot. We will place in this slot one of the k + 1
words of length 2k − 1. We claim that the vertical slot at this moment contains the letter 1
at most once, and if 1 appears it must be at an odd position (since these are the positions
shared with the horizontal slots). If this is true, clearly there is a word we can place. To see
that the claim is true, recall that since S is an independent set of k distinct vertices, there
exists at most one vertex in S incident on ei.

For the converse direction, recall that |E| ̸= k. This implies that if there is a way to fill
out the whole grid, then words representing vertices must go into horizontal slots and words
of length 2k − 1 must go into vertical slots. By looking at the words that have been placed
in the horizontal slots we obtain a collection of k (not necessarily distinct) vertices of G.
We will prove that these vertices must actually be an independent set of size exactly k. To
see this, consider the i-th vertical slot. If our collection of vertices contained two vertices
incident on ei, it would have been impossible to fill out the i-th vertical slot, since we would
need a word with two 1s. Observe that the same argument rules out the possibility that
our collection contains the same vertex v twice, as the column corresponding to any edge ei

incident on v would have been impossible to fill. ◀

3.2 No Word Reuse

If a word cannot be reused, then CP-Dec looks more challenging. Indeed, in the following
theorem we prove that if reusing words is not allowed, then the problem becomes NP-hard
even if the grid graph is acyclic and the alphabet size is 2. (Note that if the alphabet size is
1, the problem is trivial, independent of the structure of the graph).
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▶ Theorem 5. CP-Dec is NP-hard, even for instances where all of the following restrictions
apply: (i) the grid graph is a union of stars (ii) the alphabet contains only two letters (iii)
words cannot be reused.

Proof. We show a reduction from 3-Partition. Recall that in 3-Partition we are given a
collection of 3n distinct positive integers x1, . . . , x3n and are asked if it is possible to partition
these integers into n sets of three integers (triples), such that all triples have the same sum.
This problem has long been known to be strongly NP-hard [5] and NP-hardness when the
integers are distinct was shown by Hulett et al. [7]. We can assume that

∑3n
i=1 xi = nB and

that if a partition exists each triple has sum B. Furthermore, we can assume without loss
of generality that xi > 6n for all i ∈ {1, . . . , 3n} (otherwise, we can simply add 6n to all
numbers and adjust B accordingly without changing the answer).

Given an instance of 3-Partition as above, we construct a crossword instance as follows.
First, the alphabet only contains two letters, say the letters ∗ and !. To construct our
dictionary we do the following:
1. For each i ∈ {1, . . . , 3n}, we add to the dictionary one word of length xi that begins with

! and n − 1 words of length xi that begin with ∗. The remaining letters of these words
are chosen in an arbitrary way so that all words remain distinct.

2. For each i, j, k ∈ {1, . . . , 3n} with i < j < k we check if xi + xj + xk = B. If this is the
case, we add to the dictionary the word ∗2i−2!∗2j−2i−1!∗2k−2j−1!∗6n−2k. In other words,
we constructed a word that has ∗ everywhere except in positions 2i − 1, 2j − 1, and 2k − 1.
The length of this word is 6n − 1. Let f be the number of words added to the dictionary
in this step. We have f ≤ (3n

3 ) = O(n3).

We now also need to specify our grid. We first construct f horizontal slots, each of length
6n − 1. Among these f slots, we select n, which we call the “interesting” horizontal slots.
For each interesting horizontal slot, we construct 3n vertical slots, such that the i-th of these
slots has length xi and its first cell is the cell in position 2i − 1 of the interesting horizontal
slot. This completes the construction, which can clearly be carried out in polynomial time.
Observe that the first two promised restrictions are satisfied as we have an alphabet with
two letters and each vertical slot intersects at most one horizontal slot (so the grid graph is
a union of stars).

We claim that if there exists a partition of the original instance, then we can place all
the words of the dictionary on the grid. Indeed, for each i, j, k ∈ {1, . . . , 3n} such that
{xi, xj , xk} is one of the triples of the partition, we have constructed a word of length 6n − 1
corresponding to the triple (i, j, k), because xi + xj + xk = B. We place each of these n

words on an interesting horizontal slot and we place the remaining words of length 6n − 1 on
the non-interesting horizontal slots. Now, for every i ∈ {1, . . . , 3n} we have constructed n

words, one starting with ! and n − 1 starting with ∗. We observe that among the interesting
horizontal slots, there is one that contains the letter ! at position 2i−1 (the one corresponding
to the triple containing xi in the partition) and n−1 containing the letter ∗ at position 2i−1.
By construction, the vertical slots that begin in these positions have length xi. Therefore,
we can place all n words corresponding to xi on these vertical slots. Proceeding in this way
we fill the whole grid, fulfilling the third condition.

For the converse direction, suppose that there is a way to fill the whole grid. Then, vertical
slots must contain words that were constructed in the second step and represent integers xi,
while horizontal slots must contain words constructed in the first step (this is a consequence
of the fact that xi > 6n for all i ∈ {1, . . . , 3n}). We consider the n interesting horizontal
slots. Each such slot contains a word that represents a triple (i, j, k) with xi + xj + xk = B.
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We therefore collect these n triples and attempt to construct a partition from them. To do
this, we must prove that each xi must belong to exactly one of these triples. However, recall
that we have exactly n words of length xi (since all integers of our instance are distinct)
and exactly n vertical slots of this length. We conclude that exactly one vertical slot must
have ! as its first letter, therefore xi appears in exactly one triple and we have a proper
partition. ◀

Actually, the problem remains NP-hard even in the case where the grid graph is a
matching and the alphabet contains three letters. This is proved for grid graphs composed
of T s, where a T is a horizontal slot solely intersected by the first cell of a vertical slot.

▶ Theorem 6. CP-Dec is NP-hard, even for instances where all of the following restrictions
apply: (i) each word can be used only once (ii) the grid is consisted only by T s and (iii) the
alphabet contains only three letters.

▶ Remark 7. Theorem 4 can be adjusted to work also for the case where word reuse is not
allowed. We simply need to add a suffix of length log m to all words of length 2k − 1 and add
rows to the grid accordingly. Hence, under the ETH, no algorithm can solve this problem in
time mo(k), where k is the number of horizontal slots.

Finally, observe that by filling the slots of a vertex cover of the grid graph, all the shared
cells are pre-filled. Since there are at most mk (where k is the size of the vertex cover) ways
to assign words to these slots, by Proposition 1, we get the following corollary.

▶ Corollary 8. Given a vertex cover of size k of the grid graph we can solve CP-Dec
and CP-Opt in time mk(n + m)O(1). Furthermore, as vertex cover we can take the set of
horizontal slots.

Therefore, the bound given in Remark 7 for the parameter vertex cover is tight.

4 Parameterized by Total Number of Slots

In this section we consider a much more restrictive parameterization of the problem: we
consider instances where the parameter is n, the total number of slots. Recall that in
Theorem 4 (and Remark 7) we already considered the complexity of the problem parameterized
by the number of horizontal slots of the instance. We showed that this case of the problem
cannot be solved in mo(k) and that an algorithm with running time roughly mk is possible
whether word reuse is allowed or not.

Since parameterizing by the number of horizontal slots is not sufficient to render the
problem FPT, we therefore consider our parameter to be the total number of slots. This is,
finally, sufficient to obtain a simple FPT algorithm.

▶ Corollary 9. There is an algorithm that solves CP-Dec and CP-Opt in time O∗(ℓn2/4),
where n is the total number of slots and ℓ the size of the alphabet, whether word reuse is
allowed or not.

Even though the running time guaranteed by Corollary 9 is FPT for parameter n, we
cannot help but observe that the dependence on n is rather disappointing, as our algorithm is
exponential in the square of n. It is therefore a natural question whether an FPT algorithm
for this problem can achieve complexity 2o(n2), assuming the alphabet size is bounded. The
main result of this section is to establish that this is likely to be impossible.
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Overview. Our hardness proof consists of two steps. In the first step we reduce 3-SAT to
a version of the same problem where variables and clauses are partitioned into O(

√
n + m)

groups, which we call Sparse 3-SAT. The key property of this intermediate problem is that
interactions between groups of variables and groups of clauses are extremely limited. In
particular, for each group of variables Vi and each group of clauses Cj , at most one variable
of Vi appears in a clause of Cj . We obtain this rather severe restriction via a randomized
reduction that runs in expected polynomial time. The second step is to reduce Sparse
3-SAT to CP-Dec. Here, every horizontal slot will represent a group of variables and every
vertical slot a group of clauses, giving O(

√
n + m) slots in total. Hence, an algorithm for

CP-Dec whose dependence on the total number of slots is subquadratic in the exponent will
imply a sub-exponential time (randomized) algorithm for 3-SAT. The limited interactions
between groups of clauses and variables will be key in allowing us to execute this reduction
using a binary alphabet.

Let us now define our intermediate problem.

▶ Definition 10. In Sparse 3-SAT we are given an integer n which is a perfect square and
a 3-SAT formula ϕ with at most n variables and at most n clauses, such that each variable
appears in at most 3 clauses. Furthermore, we are given a partition of the set of variables V

and the set of clauses C into
√

n sets V1, . . . , V√
n and C1, . . . , C√

n of size at most
√

n each,
such that for all i, j ∈ [

√
n] the number of variables of Vi which appear in at least one clause

of Cj is at most one.

Now, we are going to prove the hardness of Sparse 3-SAT, which is the first step of our
reduction.

▶ Lemma 11. Suppose the randomized ETH is true. Then, there exists an ϵ > 0 such that
Sparse 3-SAT cannot be solved in time 2ϵn.

We are now ready to prove the main theorem of this section.

▶ Theorem 12. Suppose the randomized ETH is true. Then, there exists an ϵ > 0 such that
CP-Dec on instances with a binary alphabet cannot be solved in time 2ϵn2 · mO(1). This
holds also for instances where all slots have distinct sizes (so words cannot be reused).

Proof. Suppose for the sake of contradiction that for any fixed ϵ > 0, CP-Dec on instances
with a binary alphabet can be solved in time 2ϵn2 · mO(1). We will then contradict Lemma 11.
In particular, we will show that for any ϵ′ we can solve Sparse 3-SAT in time 2ϵ′N , where
N is the upper bound on the number of variables and clauses. Fix some ϵ′ > 0 and suppose
that ϕ is an instance of Sparse 3-SAT with at most N variables and at most N clauses,
where N is a perfect square. Recall that the variables are given partitioned into

√
N sets,

V1, . . . , V√
N and the clauses partitioned into

√
N sets C1, . . . , C√

N . In the remainder, when
we write V (Cj) we will denote the set of variables that appear in a clause of Cj . Recall
that the partition satisfies the property that for all i, j ∈ [

√
N ] we have |Vi ∩ V (Cj)| ≤ 1.

Suppose that the variables of ϕ are ordered x1, x2, . . . , xN .
We construct a grid as follows: for each group Vi we construct a horizontal slot and for

each group Cj we construct a vertical slot, in a way that all slots have distinct lengths. More
precisely, the i-th horizontal slot, for i ∈ [

√
N ] is placed on row 2i − 1, starts in the first

column and has length 2
√

N + 2i. The j-th vertical slot is placed in column 2j − 1, starts
in the first row and has length 5

√
N + 2j. (As usual, we number the rows and columns

top-to-bottom and left-to-right). Observe that all horizontal slots intersect all vertical slots;
in particular, the cell in row 2i − 1 and column 2j − 1 is shared between the i-th horizontal
and j-th vertical slot, for i, j ∈ [

√
N ]. We define L to contain two letters {0, 1}.
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What remains is to describe the dictionary.

For each i ∈ [
√

N ] and for each assignment function σ : Vi → {0, 1} we construct a word
wσ of length 2

√
N + 2i. The word wσ has the letter 0 in all positions, except positions

2j − 1, for j ∈ [
√

N ]. For each such j, we consider σ restricted to Vi ∩ V (Cj). By the
properties of Sparse 3-SAT, we have |Vi ∩ V (Cj)| ≤ 1. If Vi ∩ V (Cj) = ∅ then we place
letter 0 in position 2j − 1; otherwise we set in position 2j − 1 the letter that corresponds
to the value assigned by σ to the unique variable of Vi ∩ V (Cj).
For each j ∈ [

√
N ] and for each satisfying assignment function σ : V (Cj) → {0, 1}, that

is, every assignment function that satisfies all clauses of Cj , we construct a word w′
σ of

length 5
√

N + 2j. The word w′
σ has the letter 0 in all positions, except positions 2i − 1,

for i ∈ [
√

N ]. For each such i, we consider σ restricted to Vi ∩ V (Cj). If Vi ∩ V (Cj) = ∅
then we place letter 0 in position 2i − 1; otherwise we set in position 2i − 1 the letter
that corresponds to the value assigned by σ to the unique variable of Vi ∩ V (Cj).

The construction is now complete. We claim that if ϕ is satisfiable, then it is possible to
fill out the grid we have constructed. Indeed, fix a satisfying assignment σ to the variables of
ϕ. For each i ∈ [

√
N ] let σi be the restriction of σ to Vi. We place in the i-th horizontal slot

the word wσi
. Similarly, for each j ∈ [

√
N ] we let σ′

j be the restriction of σ to V (Cj) and
place w′

σ′
j

in the j-th vertical slot. Now if we examine the cell shared by the i-th horizontal
and j-th vertical slot, we can see that it contains a letter that represents σ restricted to (the
unique variable of) Vi ∩ V (Cj) or 0 if Vi ∩ V (Cj) = ∅, and both the horizontal and vertical
word place the same letter in that cell.

For the converse direction, if the grid is filled, we can extract an assignment σ for the
variables of ϕ as follows: for each x ∈ Vi we find a Cj such that x appears in some clause of
Cj (we can assume that every variable appears in some clause). We then look at the cell
shared between the i-th horizontal and the j-th vertical slot. The letter we have placed
in that cell gives an assignment for the variable contained Vi ∩ V (Cj), that is x. Having
extracted an assignment to all the variables, we claim it must satisfy ϕ. If not, there is a
group Cj that contains an unsatisfied clause. Nevertheless, in the j-th vertical slot we have
placed a word that corresponds to a satisfying assignment for the clauses of Cj , call it σj .
Then σj must disagree with σ in a variable x that appears in Cj . Suppose this variable is
part of Vi. Then, this would contradict the fact that we extracted an assignment for x from
the word placed in the i-th horizontal slot.

Observe that the new instance has n = 2
√

N slots. If there exists an algorithm that
solves CP-Dec in time 2ϵn2

mO(1) for any ϵ > 0, we set ϵ = ϵ′/8 (so ϵ only depends on ϵ′)
and execute this algorithm on the constructed instance. We observe that m ≤ 2

√
N · 7

√
N ,

and that 2ϵn2 ≤ 2ϵ′N/2. Assuming that N is sufficiently large, using the supposed algorithm
for CP-Dec we obtain an algorithm for Sparse 3-SAT with complexity at most 2ϵ′N . Since
we can do this for arbitrary ϵ′, this contradicts the randomized ETH. ◀

5 Approximability of CP-Opt

This section begins with a
( 1

2 + O( 1
n )

)
-approximation algorithm which works when words

can, or cannot, be reused. After that, we prove that under the unique games conjecture, an
approximation algorithm with a significantly better ratio is unlikely.

▶ Theorem 13. CP-Opt is ( 1
2 + 1

2(εn+1) )-approximable in polynomial time, for all ε ∈ (0, 1].
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Proof. Fix some ε ∈ (0, 1]. Let kv := min(⌈ 1
ε ⌉, n − h) and rv := ⌈ n−h

kv
⌉, where h is the

number of horizontal slots in the grid. Create rv groups of vertical slots G1, . . . , Grv
such

that |Gi| ≤ kv for all i ∈ [rv] and G1 ∪ . . . ∪ Grv
covers the entire set of vertical slots. For

each Gi, guess an optimal choice of words, i.e., identical to a global optimum, and complete
this partial solution by filling the horizontal slots (use the aforementioned matching technique
where the words selected for Gi are excluded from D). Each slot of

⋃
j ̸=i Gj gets the empty

word.
Since |Gi| ≤ kv, guessing an optimal choice of words for Gi by brute force requires

at most mkv combinations. This is done rv times (once for each Gi). The maximum
matching runs in time O((m + n)2 · mn). In all, the time complexity of the algorithm is
O(mkv · rv · (m + n)2 · mn) ≤ O(m1/ε · εn · (m + n)2 · mn).

Assume that, given an optimal solution, W ∗
H and W ∗

V are the total weight of the words
assigned to the horizontal and vertical slots, respectively, both including the shared cells.
Furthermore, let W ∗

S be the weight of the letters assigned to the shared cells in the optimal
solution. Observe that the weight of the optimal solution is W ∗

H + W ∗
V − W ∗

S and the weight
of our solution is at least W ∗

H + 1
rv

(W ∗
V − W ∗

S).
We repeat the same process, but the roles of vertical and horizontal slots are interchanged.

Fix a parameter kh := min(⌈ 1
ε ⌉, h). Create rh := ⌈ h

kh
⌉ groups of horizontal slots G1, . . . , Grh

such that |Gi| ≤ kh for all i ∈ [rh] and G1 ∪ . . . ∪ Grh
covers the entire set of horizontal slots.

For each Gi, guess an optimal choice of words and complete this partial solution by filling
the vertical slots. Each slot of

⋃
j ̸=i Gj gets the empty word.

Using the same arguments as above, we can conclude that the time complexity is
O(m1/ε ·εn·(m+n)2 ·mn) and that we return a solution of weight at least W ∗

V + 1
rh

(W ∗
H −W ∗

S).
Finally, between the two solutions, we return the one with the greater weight. It remains

to argue about the approximation ratio. We need to consider two cases: W ∗
H ≥ W ∗

V and
W ∗

V > W ∗
H .

Suppose W ∗
H ≥ W ∗

V . The first approximate solution has value W ∗
H + 1

rv
(W ∗

V − W ∗
S) ≥

1+1/rv

2 (W ∗
H+W ∗

V −W ∗
S). If kv = n−h then rv = 1 and our approximation ratio is 1. Otherwise,

kv = ⌈ 1
ε ⌉ and rv = ⌈ n−h

⌈1/ε⌉ ⌉ ≤ n−h
⌈1/ε⌉ + 1 = n−h+⌈1/ε⌉

⌈1/ε⌉ . It follows that 1
rv

≥ ⌈1/ε⌉
n−h+⌈1/ε⌉ . Use

n − h + ⌈1/ε⌉ ≤ n + 1
ε and ⌈1/ε⌉ ≥ 1/ε to get that 1

rv
≥ 1/ε

n+1/ε = 1
εn+1 . Our approximation

ratio is at least 1+1/(εn+1)
2 .

Suppose W ∗
V > W ∗

H . The second approximate solution has value W ∗
V + 1

rh
(W ∗

H − W ∗
S) >

1+1/rh

2 (W ∗
H + W ∗

V − W ∗
S). If kh = h, then our approximation ratio is 1. Otherwise, kh = ⌈ 1

ε ⌉
and, using the same arguments, our approximation ratio is at least 1+1/(εn+1)

2 .
Note that 1+1/(εn+1)

2 ≤ 1. In all, we have a 1+1/(εn+1)
2 -approximate solution in O(m1/ε ·

εn · (m + n)2 · mn) for all ε ∈ (0, 1]. ◀

The previous approximation algorithm only achieves an approximation ratio of 1
2 + O( 1

n ),
which tends to 1

2 as n increases. At first glance this is quite disappointing, as someone can
observe that a ratio of 1

2 is achievable simply by placing words only on the horizontal or the
vertical slots of the instance. Nevertheless, we are going to show that this performance is
justified, as improving upon this trivial approximation ratio would falsify the Unique Games
Conjecture (UGC).

Before we proceed, let us recall some relevant definitions regarding Unique Games. The
Unique Label Cover problem is defined as follows: we are given a graph G = (V, E), with
some arbitrary total ordering ≺ of V , an integer R, and for each (u, v) ∈ E with u ≺ v a
1-to-1 constraint π(u,v) which can be seen as a permutation on [R]. The vertices of G are
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considered as variables of a constraint satisfaction problem, which take values in [R]. Each
constraint π(u,v) defines for each value of u a unique value that must be given to v in order
to satisfy the constraint. The goal is to find an assignment to the variables that satisfies
as many constraints as possible. The Unique Games Conjecture states that for all ϵ > 0,
there exists R, such that distinguishing instances of Unique Label Cover for which it is
possible to satisfy a (1 − ϵ)-fraction of the constraints from instances where no assignment
satisfies more than an ϵ-fraction of the constraints is NP-hard. In this section we will need a
slightly different version of this conjecture, which was defined by Khot and Regev as the
Strong Unique Games Conjecture. Despite the name, Khot and Regev showed that this
version is implied by the standard UGC. The precise formulation is the following:

▶ Theorem 14 (Theorem 3.2 of [9]). If the Unique Games Conjecture is true, then for all
ϵ > 0 it is NP-hard to distinguish between the following two cases of instances of Unique
Label Cover G = (V, E):

(Yes case): There exists a set V ′ ⊆ V with |V ′| ≥ (1 − ϵ)|V | and an assignment for V ′

such that all constraints with both endpoints in V ′ are satisfied.
(No case): For any assignment to V , for any set V ′ ⊆ V with |V ′| ≥ ϵ|V |, there exists a
constraint with both endpoints in V ′ that is violated by the assignment.

Using the version of the UGC given in Theorem 14 we are ready to present our hardness
of approximation argument for the crossword puzzle.

▶ Theorem 15. Suppose that the Unique Games Conjecture is true. Then, for all ϵ with
1
4 > ϵ > 0, there exists an alphabet Σϵ such that it is NP-hard to distinguish between the
following two cases of instances of the crossword problem on alphabet Σϵ:

(Yes case): There exists a valid solution that fills a (1 − ϵ)-fraction of all cells.
(No case): No valid solution can fill more than a ( 1

2 + ϵ)-fraction of all cells.

Moreover, the above still holds if all slots have distinct lengths (and hence reusing words
is trivially impossible).

Proof. Fix an ϵ > 0. We will later define an appropriately chosen value ϵ′ ∈ (0, ϵ) whose
value only depends on ϵ. We present a reduction from a Unique Label Cover instance,
as described in Theorem 14. In particular, suppose we have an instance G = (V, E), with
|V | = n, alphabet [R], such that (under UGC) it is NP-hard to distinguish if there exists a
set V ′ of size (1 − ϵ′)n that satisfies all its induced constraints, or if all sets V ′ of size ϵ′n

induce at least one violated constraint for any assignment. Throughout this proof we assume
that n is sufficiently large (otherwise the initial instance is easy). In particular, let n > 20

ϵ .
We construct an instance of the crossword puzzle that fits in an N × N square, where

N = 4n + n2. We number the rows 1, . . . , N from top to bottom and the columns 1, . . . , N

from left to right. The instance contains n horizontal and n vertical slots. For i ∈ [n], the
i-th horizontal slot is placed in row 2i, starting at column 1, and has length 2n + n2 + i.
For j ∈ [n], the j-th vertical slot is placed in column 2j, starts at row 1 and has length
3n + n2 + j. Observe that all horizontal slots intersect all vertical slots and in particular, for
all i, j ∈ [n] the cell in row 2i, column 2j belongs to the i-th horizontal slot and the j-th
vertical slot. Furthermore, each slot has a distinct length, as the longest horizontal slot has
length 3n + n2 while the shortest vertical slot has length 3n + n2 + 1.

We define the alphabet as Σϵ = [R]∪{∗}. Before we define our dictionary, let us give some
intuition. Let V = {v1, . . . , vn}. The idea is that a variable vi ∈ V of the original instance
will be represented by both the i-th horizontal slot and the i-th vertical slot. In particular,
we will define, for each α ∈ [R] a pair of words that we can place in these slots to represent
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the fact that vi is assigned with the value α. We will then ensure that if we place words
on both the i-th horizontal slot and the j-th horizontal slot, where (vi, vj) ∈ E, then the
assignment that can be extracted by reading these words will satisfy the constraint π(vi,vj).
The extra letter ∗ represents an indifferent assignment (which we need if (vi, vj) ̸∈ E).

Armed with this intuition, let us define our dictionary.

For each i ∈ [n], for each α ∈ [R] we define a word d(i,α) of length 2n + n2 + i. The word
d(i,α) has the character ∗ everywhere except at position 2i and at positions 2j for j ∈ [n]
and (vi, vj) ∈ E. In these positions the word d(i,α) has the character α.
For each j ∈ [n], for each α ∈ [R] we define a word d′

(j,α) of length 3n + n2 + j. The word
d′

(j,α) has the character ∗ everywhere except at position 2j and at positions 2i for i ∈ [n]
and (vi, vj) ∈ E. In position 2j we have the character α. In position 2i with (vi, vj) ∈ E,
we place the character β ∈ [R] such that the constraint π(vi,vj) is satisfied by assigning
β to vi and α to vj . (Note that β always exists and is unique, as the constraints are
permutations on [R], that is, for each value α of vj there exists a unique value β of vi

that satisfies the constraint).

This completes the construction. Suppose now that V = {v1, . . . , vn} and that we started
from the Yes case of Unique Label Cover, that is, there exists a set V ′ ⊆ V such that
|V ′| ≥ (1 − ϵ′)n and all constraints induced by V ′ can be simultaneously satisfied. Fix an
assignment σ : V ′ → [R] that satisfies all constraints induced by V ′. For each i ∈ [n] such
that vi ∈ V ′ we place in the i-th horizontal slot (that is, in row 2i) the word d(i,σ(vi)). For
each j ∈ [n] such that vj ∈ V ′ we place in the j-th vertical slot the word d′

(j,σ(vj)). We leave
all other slots empty. We claim that this solution is valid, that is, no shared cell is given
different values from its horizontal and vertical slot. To see this, examine the cell in row 2i

and column 2j. If both of the slots that contain it are filled, then vi, vj ∈ V ′. If (vi, vj) ̸∈ E

and i ̸= j, then the cell contains ∗ from both words. If i = j, then the cell contains σ(vi)
from both words. If i ̸= j and (vi, vj) ∈ E, then the cell contains σ(vi). This is consistent
with the vertical word, as the constraint π(vi,vj) is assumed to be satisfied by σ. We now
observe that this solution covers at least 2(1 − ϵ′)n3 cells, as we have placed 2(1 − ϵ′)n words,
each of length at least n2 + 2n, that do not pairwise intersect beyond their first 2n characters.

Suppose now we started our construction from a No instance of Unique Label Cover.
We claim that the optimal solution in the new instance cannot cover significantly more than
half the cells. In particular, suppose a solution covers at least (1 + ϵ′)n3 + 10n2 cells. We
claim that the solution must have placed at least (1 + ϵ′)n words. Indeed, if we place at most
(1 + ϵ′)n words, as the longest word has length n2 + 4n, the maximum number of cells we
can cover is (1 + ϵ′)n(n2 + 4n) ≤ (1 + ϵ′)n3 + 4(1 + ϵ′)n2 < (1 + ϵ′)n3 + 10n2. Let x be the
number of indices i ∈ [n] such that the supposed solution has placed a word in both the i-th
horizontal slot and the i-th vertical slot. We claim that x ≥ ϵ′n. Indeed, if x < ϵ′n, then
the total number of words we might have placed is at most (n − x) + 2x < (1 + ϵ′)n, which
contradicts our previous observation that we placed at least (1 + ϵ′)n words. Let V ′ ⊆ V

be defined as the set of vi ∈ V such that the solution places words in the i-th horizontal
and vertical slot. Then |V ′| ≥ ϵ′n. We claim that it is possible to satisfy all the constraints
induced by V ′ in the original instance, obtaining a contradiction. Indeed, we can extract an
assignment for each vi ∈ V ′ by assigning to vi value α if the i-th horizontal slot contains the
word d(i,α). Note that the i-th horizontal slot must contain such a word, as these words are
the only ones that have an appropriate length. Observe that in this case the i-th vertical
slot must also contain d′

(i,α). Now, for vi, vj ∈ V ′, with (vi, vj) ∈ E we see that π(vi,vj) is
satisfied by our assignment, otherwise we would have a conflict in the cell in position (2i, 2j).
Therefore, in the No case, it must be impossible to fill more than (1 + ϵ′)n3 + 10n2 cells.
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The only thing that remains is to define ϵ′. Let C be the total number of cells in the
instance. Recall that we proved that in the Yes case we cover at least 2(1 − ϵ′)n3 cells
and in the No case at most (1 + ϵ′)n3 + 10n2 cells. So we need to define ϵ′ such that
2(1 − ϵ′)n3 ≥ (1 − ϵ)C and (1 + ϵ′)n3 + 10n2 ≤ ( 1

2 + ϵ)C. To avoid tedious calculations, we
observe that 2n3 ≤ C ≤ 2n3+8n2. Therefore, it suffices to have 2(1−ϵ′)n3 ≥ 2(1−ϵ)(n3+4n2)
and (1 + ϵ′)n3 + 10n2 ≤ (1 + 2ϵ)n3. The first inequality is equivalent to (ϵ − ϵ′)n ≥ 4(1 − ϵ)
and the second inequality is equivalent to (2ϵ − ϵ′)n ≥ 10. Since we have assumed that
n ≥ 20/ϵ, it is sufficient to set ϵ′ = ϵ/2. ◀

6 Conclusion

We studied the parameterized complexity of some crossword puzzles under several different
parameters and we gave some positive results followed by proofs which show that our
algorithms are essentially optimal. Based on our results the most natural questions that arise
are: What is the complexity of CP-Dec when the grid graph is a matching and the alphabet
has size 2? Can Theorem 12 be strengthened by starting from ETH instead of randomized
ETH? Can we beat the 1/2 approximation ratio of CP-Opt if we restrict our instances? Can
Theorem 14 be strengthened by dropping the UGC? Furthermore, it would be interesting to
investigate if there exist non trivial instances of the problem that can be solved in polynomial
time. Finally, we could consider a variation of the crossword puzzle problems where each
word can be used a given number of times. This would be an intermediate case between
word reuse and no word reuse.
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1 Introduction

Geometrically, a grid graph is a graph that can be drawn on the Euclidean plane so that all
vertices are drawn on points having positive integer coordinates, and all edges are drawn
as axis-parallel straight line segments of length 1;1 when the maximum x-coordinate is at
most r and the maximum y-coordinate is at most k, we may use the term k × r grid graph
(see Figure 2). Grid graphs form one of the simplest and most intuitive classes of geometric
graphs. Over the past few decades, algorithmic research of grid graphs yielded a large
body of works on the tractability or intractability of various computational problems when
restricted to grid graphs (e.g., see [14, 15, 3, 37, 48, 17, 4] for a few examples). Even for
problems that remain NP-hard on grid graphs, we know of practical algorithms for instances
of moderate size (e.g., the Steiner Tree problem on grid graphs is NP-hard [27], but
admits practical algorithms [25, 49]). Thus, the recognition of a graph as a grid graph
unlocks highly efficient tools for its analysis. In practice, grid graphs can represent layouts or
environments, and have found applications in several fields, such as VLSI design [45], motion
planning [32] and routing [46]. Indeed, grid graphs naturally arise to represent entities and
the connections between them in existing layouts or environments. However, often we are
given just a (combinatorial) graph G – i.e., we are given entities and the connections desired
to have between them, and we are to construct the layout or environment; specifically, we
wish to test whether G can be embedded into a grid graph (where if it can so, realize it as
such a graph). Equivalently, the recognition of a grid graph can be viewed as an embedding
problem, where a given graph is to be embedded within a rectangular solid grid.

Accordingly, the problem of recognizing (as well as realizing) grid graphs is a basic
recognition problem in Graph Drawing. In what follows, we discuss only recognition –
however, it would be clear that all of our results hold also for realization (with the same time
complexity in case of algorithms). Formally, in the Grid Embedding problem, we are given
a (simple, undirected) n-vertex graph G, and need to decide whether it can be embedded
into a grid graph. In many cases, taking into account physical constraints, compactness or
visual clarity, we would like to not only have a grid graph, but also restrict its dimensions.
This yields the k × r-Grid Embedding problem, where given an n-vertex graph G and
positive integers k, r ∈ N, we need to decide whether G is a k × r grid graph. Notice that
Grid Embedding is the special case of k × r-Grid Embedding where k = r = n (which
virtually means that no dimension restriction is posed).

The Grid Embedding problem has been proven to be NP-hard already in 1987, even on
trees of pathwidth 3 [9]. Shortly afterwards, it has been proven to be NP-hard even on binary
trees [29]. On the positive side, there is research on practical algorithms for this problem [7].
The related upward planarity testing and rectilinear planarity testing problems are also
known to be NP-hard [28], as well as HV-planarity testing even on graphs of maximum
degree 3 [20]. We remark that when the embedding is fixed, i.e., the clockwise order of the
edges is given for each vertex, the situation becomes drastically easier computationally; then,
for example, a rectangular drawing of a plane graph of maximum degree 3, as well as an
orthogonal drawing without bends of a plane graph of maximum degree 3, were shown to be
computable in linear time in [43] and [44], respectively.

In this paper, we study the classical and parameterized complexity of the Grid Embed-
ding and k × r-Grid Embedding problems. To the best of our knowledge, this is the first
time that these problems are studied from the perspective of parameterized complexity. Let

1 Some papers in the literature use the term grid graphs to refer to induced grid graphs, where we require
also that every pair of vertices at distance 1 from each other have an edge between them.
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Π be an NP-hard problem. In the framework of parameterized complexity, each instance
of Π is associated with a parameter k. We say that Π is fixed-parameter tractable (FPT) if
any instance (I, k) of Π is solvable in time f(k) · |I|O(1), where f is an arbitrary computable
function of k. Nowadays, Parameterized Complexity supplies a rich toolkit to design FPT
algorithms as well as to prove that some problems are unlikely to be FPT [22, 16, 24].
In particular, the term para-NP-hard refers to problems that are NP-hard even when the
parameter is fixed, which implies that they are not FPT unless P=NP.

Research at the intersection of graph drawing and parameterized complexity (and para-
meterized algorithms in particular) is in its infancy. Most (in particular, the early efforts)
have been directed at variants of the classic Crossing Minimization problem, introduced by
Turán in 1940 [47], parameterized by the number of crossings (see, e.g., [30, 38, 23, 35, 36, 39]).
However, in the past few years, there is an increasing interest in the analysis of a variety of
other problems in graph drawing from the perspective of parameterized complexity (see, e.g.,
[1, 10, 2, 31, 13, 34, 6, 19, 18, 11, 21, 41, 40].

Our Contribution and Main Proof Ideas
I. Parameterized Complexity: Maximum Connected Component Size. Our contribution
is threefold. First, we prove that k × r-Grid Embedding is FPT parameterized by mcc + k.
Here, the idea of the proof is first to recognize all possible embeddings of any choice of
connected components or parts of connected components of G into k × mcc(G) grids, called
blocks. These blocks then serve as vertices of a new digraph, where there is an arc from one
vertex to another if and only if the corresponding blocks can be placed one after the other.
After that, we also guess which blocks should occur at least once in the solution, as well as a
spanning tree of the underlying undirected graph of the graph induced on them. This then
leads us to a formulation of an Integer Linear Program (ILP), where we ensure that each
connected component is used as many times as it is in the input, and that overall we get an
Eulerian trail in the graph – having such a trail allows us to place the blocks one after the
other, so that every pair of consecutive blocks are compatible. The ILP can then be solved
using known tools.
▶ Theorem 1.1. k × r-Grid Embedding is FPT parameterized by mcc + k where mcc is
the maximum size of a connected component in the input graph.

One almost immediate corollary of this theorem concerns the 2-Strip Packing problem.
In this problem, we are given a set of n rectangles S, and positive integers k, W ∈ N, and
the objective is to decide whether all the rectangles in S can be packed in a rectangle (called
a strip) of dimensions k × W . In [5], it was shown that if the maximum of the dimensions of
the input rectangles, denoted by ℓ, is fixed, then the problem is FPT by k. Thus, the question
whether the problem is FPT parameterized by k + ℓ remained open. By a straightforward
reduction, we resolve this question as a corollary of our theorem.
▶ Corollary 1.2. 2-Strip Packing is FPT parameterized by ℓ + k where ℓ is the maximum
of the dimensions of the input rectangles.

We remark that in case k and r are unrestricted, the problem is trivially FPT with respect
to mcc, since one can embed each connected component (using brute-force) individually.
This implies that Grid Embedding is FPT parameterized by mcc.

As a corollary of Theorem 1.1 and the above observation, we obtain that k × r-Grid
Embedding is FPT parameterized by td+k, and Grid Embedding is FPT parameterized by
td, where td is the treedepth of the input graph. This finding is of interest when contrasted
with the hardness of these problems when pathwidth equals 2 and k = 3 or unrestricted.
Thus, this also charts a tractability border between pathwidth and treedepth.

ISAAC 2021
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II. Parameterized Complexity: Difference Between Graph and Geometric Distances.
Secondly, we introduce a new parameterization that relates graph distance to geometric
distance, and may be of independent interest. Roughly speaking, the rationale behind this
parameterization is to bound the difference between them, so that graph distances may act
as approximate indicators to geometric distances. In particular, vertices that are close in the
graph, are to be close in the embedding, and vertices that are distant in the graph, are to be
distant in the embedding as well. Specifically, with respect to an embedding f of G in a grid,
we define the grid distance between any two vertices as the distance between them in f in L1
norm. Then, we define the measure of distance approximation of f as the maximum of the
difference between the graph distance (in G) and the grid distance of two vertices, taken
over all pairs of vertices in G. Here, it is implicitly assumed that G is connected. Then,
the parameter aG is the minimum distance approximation af of any embedding f of G in a
(possibly k × r) grid, defined as |V (G)| if no such embedding exists. A more formal definition
as well as motivation is given in Section 2.

We first prove that the problems are para-NP-hard parameterized by aG. This reduction
is quite technical. On a high level, we present a construction of “blocks” that are embedded
in a grid-like fashion, where we place an outer “frame” of the form of a grid to guarantee
that the boundary (which is a cycle) of each of these blocks must be embedded as a square.
Each variable is associated with a column of blocks, and each clause is associated with a row
of blocks. Within each block, we place two gadgets, one which transmits information in a
row-like fashion, to ensure that the clause corresponding to the row has at least one literal
that is satisfied, and the other (which is very different than the first) transmits information
in a column-like fashion, to ensure consistency between all blocks corresponding to the same
variable (i.e., that all of them will be embedded internally in a way that represents only
truth, or only false). For clarity, in the full version we split the reduction into two, and use
as an intermediate problem a new problem that we call the Batteries problem.

▶ Theorem 1.3. Grid Embedding (and hence also k×r-Grid Embedding) is para-NP-hard
parameterized by aG.

When we enrich the parameterization by k, then k × r-Grid Embedding problem
becomes FPT. (Recall that parameterized by k alone, the problem is para-NP-hard). The
idea of the proof is to partition a rectangular solid k × r grid in which we embed our graph
into blocks of size k × (aG + k), and “guess” one vertex that is to be embedded in the leftmost
column of the leftmost block. Then, the crux is in the observation that, for every vertex,
the block in which it should be placed is “almost” fixed – that is, we can determine two
consecutive blocks in which the vertex may be placed, and then we only have a choice of one
among them. This, in turn, leads us to the design of an iterative procedure that traverses
the blocks from left to right, and stores, among other information, which vertices were used
in the previous block.

▶ Theorem 1.4. k × r-Grid Embedding is FPT parameterized by aG + k.

Lastly, we prove that when restricted to trees, the problems become FPT parameterized
by aG alone. Here, a crucial ingredient is to understand the structure of the tree, including
a bound on the number of vertices of degree at least 3 in the tree that split it to “large”
subtrees. For this, one of the central insights is that, with respect to an internal vertex v

and any two “large” subtrees attached to it (there can be up to four subtrees attached to
it), in order not to exceed the allowed difference between the graph and geometric distances,
one of the subtrees must be embedded in the “opposite” direction of the other (so, both



S. Gupta, G. Sa’ar, and M. Zehavi 37:5

af1 = 6

af2 = 0

af3 = 0

Figure 1 Example of a path P on 8 vertices with three different grid graph embeddings f1, f2

and f3. Since af2 = af3 = 0, we get that aP = 0.

are embedded roughly on the same vertical or horizontal line in opposite sides). Now, for
an internal vertex of degree at least 3, there must be two attached subtrees that are not
embedded in this fashion (as a line can only accommodate two subtrees), which leads us
to the conclusion that all but two of the attached subtrees are small. Making use of this
ingredient, we argue that a dynamic programming procedure (somewhat similar to the one
mentioned for the previous theorem but much more involved) can be used.

▶ Theorem 1.5. k × r-Grid Embedding (and hence also Grid Embedding) on trees is
FPT parameterized by aG.

III. Classical Complexity. Lastly, we extend current knowledge of the classical complexity
of Grid Embedding and k × r-Grid Embedding at several fronts. Here, we begin
by developing a refinement of the classic reduction from Not-All-Equal 3SAT in [9]
(which asserted hardness on trees of pathwidth 3) to derive the following result. While
the reduction itself is similar, our proof is more involved and requires, in particular, new
inductive arguments.

▶ Theorem 1.6. Grid Embedding is NP-hard even on trees of pathwidth 2. Thus, it is
para-NP-hard parameterized by pw, where pw is the pathwidth of the input graph.

In particular, now the hardness result is tight with respect to pathwidth due to the simple
observation that Grid Embedding is polynomial time solvable on graphs of pathwidth 1.
Because Grid Embedding is a special case of k × r-Grid Embedding, the above theorem
has the following result as an immediate corollary: k × r-Grid Embedding is NP-hard even
on trees of pathwidth 2.

Additionally, we show that k × r-Grid Embedding is NP-hard on graphs of pathwidth
2 even when k = 3. Here, we give a relatively simple reduction from 3-Partition (whose
objective is to partition a set of numbers encoded in unary into sets of size 3 that sum up to
the same number), where the idea is to encode “containers” by special identical connected
components whose embedding is essentially fixed, and then each number as a simple path on
a corresponding number of vertices.

▶ Theorem 1.7. k × r-Grid Embedding is NP-hard even on graphs of pathwidth 2 when
k = 3. Thus, it is para-NP-hard parameterized by k + pw, where pw is the pathwidth of the
input graph.

ISAAC 2021
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2 Preliminaries

Definitions of various standard concepts can be found in the full version. For every k ∈ N,
denote [k] = {1, 2, . . . k}, and for i, j ∈ N, denote [i, j] = {i, i + 1, . . . , j}. Given a set W of
integers,

∑
W denotes the sum of its elements. Given a function g defined on a set W , we

denote the set of images of its elements by g(W ). Given a graph G, we denote its vertex set
and edge set by V (G) and E(G), respectively. For a vertex v ∈ V (G), we denote the degree
of v in G by degG(v). Given a set V ′ ⊆ V (G), the subgraph of G induced by V is denoted
by G[V ′]. Given u, v ∈ V (G), the distance d(u, v) between u and v in G is the length of a
shortest path between them. The pathwidth of a graph G is denoted by pw(G).

We now define basic notions related to grids and grid embeddings. Let f : V (G) → N×N
be a function that maps each vertex v of G to a point (i, j) of an integer grid; then, i and
j are also denoted as frow(v) and fcol(v), respectively, that is, f(v) = (frow(v), fcol(v)). Let
u, v ∈ V (G) be two vertices. The grid graph distance of u and v induced by f , denoted
by df (u, v), is defined to be df (u, v) = |frow(u) − frow(v)| + |fcol(u) − fcol(v)|. A k × r grid
graph embedding of G is an injection f : V (G) → [k] × [r] such that for every {u, v} ∈ E(G)
it follows that df (u, v) = 1. Moreover, a grid graph embedding of G is a |V (G)| × |V (G)|
grid graph embedding of G. We say that G is a (resp. k × r) grid graph if there exists a
(resp. k × r) grid graph embedding of G. Now, the k × r-Grid Embedding and Grid
Embedding problems are defined as follows. Given a graph G and two positive integers k, r,
the k × r-Grid Embedding and Grid Embedding problems ask whether G is a k × r grid
graph or a grid graph, respectively.

We now define the distance approximation parameter formally and discuss some of the
motivation behind it. Towards this, we first present the following simple observation. Let G be
a connected grid graph with a grid embedding f , and let u, v ∈ V (G). Then, df (u, v) ≤ d(u, v).
Keeping this in mind, we drop the absolute value notation from the following definition: For
any k × r grid graph embedding f of G, define af = maxu,v∈V (G)(d(u, v) − df (u, v)). Then,
if G is a k × r grid graph, let aG(k, r) = min{af | f is a k × r grid graph embedding of G};
otherwise, aG(k, r) = |V (G)|. When k and r are clear from context, we write “distance
approximation parameter” and aG rather than “k ×r distance approximation parameter” and
aG(k, r), respectively. When k and r are unrestricted, aG(k, r) = aG(|V (G)|, |V (G)|). See
Figure 1. We also remark that whenever G is a k × r grid graph, then aG(k, r) ≤ |V (G)| − 2
(because for any grid graph embedding f of G and two different vertices u, v ∈ V (G),
d(u, v) ≤ |V (G)| − 1 and df (u, v) ≥ 1).

This rationale behind this parameter makes sense in various scenarios. Suppose that
vertices represent utilities, factories or organizations, or, very differently, components to
be placed on a chip. On the one hand, those that are closer to each other in the graph
might need to cooperate more often: they have direct and indirect (through other entities
on the path) connections between them; the more “links on the chain”, the less is directed
interaction required. On the other hand, we may have a competitive constraint – we may
want these entities to also be “as far as possible”. In particular, if they are far in the graph, we
will take advantage of this to place them far in the embedding (proportionally). For example,
these entities may cause pollution, radiation or heat [8, 26]. Alternatively, in the case of
utilities, we may want to cover as large area as we can. Recently, due to the COVID-19
pandemic, many governments around the world have introduced social distancing. Briefly,
social distancing means that people should be physically away from each other, if possible.
According to experts, one of the most effective ways to reduce the spread of coronavirus is
social distancing [12, 33, 42]. Suppose that the vertices represent people, the edges represent
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social (or other) relations between them, and we want to find a seating arrangement. In
order to preserve the social distancing, we would like that people who do not need to be
close to each other, to be relatively far away from each other. In another example, suppose
that the vertices represent some facilities that “attract” people, like stores. Placing the
stores far away from each other, if possible, contributes to social distancing. More intuition
is given in the full version. We remark that the embeddings that our algorithms compute
satisfy the conditions of being a grid graph embedding, in particular, the embeddings are
planar. Furthermore, we do not need to know the value of aG in advance, in order to use our
algorithm, as we iterate over all the potential values for aG.

3 FPT Algorithm on General Graphs

In this section, we show that k × r-Grid Embedding is FPT parameterized by mcc(G) + k.
We first give the definition of a k × r rectangular grid graph and some related terms. An
undirected graph H is a k×r rectangular grid graph if there exists a bijection f : V → [k]× [r],
such that for every pair of vertices u, v ∈ V (H), {v, u} ∈ E(H) if and only if df (u, v) = 1.
Given a k × r rectangular grid graph H and a corresponding bijective function f , we define
the columns of H as follows: For every and j ∈ [r], let Cj(H) = {u ∈ V (H)|fcol(u) = j}.
Clearly, V (H) =

⋃r
j=1 Cj(H). We refer to C1(H) and Cr(H) as the left boundary column

and right boundary column, respectively, of H.
Given a subgraph S of a k × r rectangular grid graph H, we denote by FC(S) the set of

fully contained connected components of S defined as all the connected components of S that
either do not intersect the boundary columns of H or intersect both boundary columns of H .
Moreover, we denote by LC(S) (RC(S)) the set of left contained (right contained) connected
components of S defined as all the connected components of S that intersect the left (right)
boundary column of H but do not intersect the right (left) boundary column of H . Note that
the three sets FC(S), LC(S) and RC(S) are pairwise disjoint and S = FC(S)∪LC(S)∪RC(S).
See Figure 2. We now prove that k × r-Grid Embedding is FPT.

Proof Sketch of Theorem 1.1. The FPT algorithm is based on ILP. To this end, let G be
an instance of the k × r-Grid Embedding problem. Due to lack of space, we only give a
sketch of the algorithm. For completeness, please refer to the full version.

Algorithm. Let H be a k×r rectangular grid graph. Let B = {B1, B2, . . . , Bp} be an almost
partition of H into blocks of size k × mcc(G) such that V (Bi) =

⋃i(mcc(G)−1)+1
j=(i−1)(mcc(G)−1)+1 Cj(H),

for each i ∈ [p] where p = (r − 1)/(mcc(G) − 1). Here, we consider the case where r − 1 is a
multiple of mcc(G) − 1. Note that each block Bi is a k × mcc(G) rectangular grid graph,
and for all i ∈ [p − 1], Bi and Bi+1 share a boundary column.

We can restate the k × r-Grid Embedding problem as follows: is G a subgraph of
H? As H is a planar graph, G must be planar. So, we first check if G is planar. Let
Comp(G) = {G1, G2, . . . , Gt} be the set of all non-isomorphic connected components of G.
For every i ∈ [t], let num(Gi) be the number of times Gi appears in G. As the size of any
connected component of G is at most mcc(G), any connected component C of G (when
embedded as a subgraph of H, if possible) intersects (i) only one block Bi (in particular, it
does not intersect either the right or the left boundary of Bi), or (ii) exactly two consecutive
blocks Bi and Bi+1 through the right boundary column of Bi, or (iii) exactly three consecutive
blocks Bi−1, Bi and Bi+1 through the left and right boundary columns of Bi.

Based on the above observation, we compute the set S of all the possible snapshots of
a k × mcc(G) rectangular grid graph R, i.e. the set of all the subgraphs of R, and the left
and right adjacencies between snapshots. For every subgraph S of R, if FC(S) ⊆ Comp(G),

ISAAC 2021
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C1(H) C6(H)

Figure 2 A 5 × 6 rectangular grid graph H, its boundary columns and a subgraph S of H shown
by colored vertices and thick colored edges. The blue, red and orange colored connected components
belong to FC(S), LC(S) and RC(S), respectively.

then we add S to S. Note that, if there exists a connected component of S in FC(S) that
does not belong to Comp(G), then S cannot “contribute to” a valid solution. We also find
the set, denoted Source, of snapshots that may correspond to B1 and the set, denoted Sink,
of snapshots that may correspond to Bp. Note that we make this distinction, as except for
blocks B1 and Bp, all the other blocks share both boundary columns, but B1 (Bp) only share
their right (left) boundary column. So for every S ∈ S, if LC(S) ⊆ Comp(G), then add S to
Source, and if RC(S) ⊆ Comp(G), then add S to Sink. For every snapshot S ∈ S and i ∈ [t],
let freqcen(Gi, S) be the number of times Gi appears in FC(S). Similarly, for every snapshot
S ∈ Source (S ∈ Sink) and i ∈ [t], let freqleft(Gi, S) (freqright(Gi, S)) be the number of times
Gi appears in LC(S) (RC(S)).

We now find the set Adj ⊆ S × S of all possible adjacencies between pairs of snapshots in
S. Let R′ be a k×(2mcc(G)−1) rectangular grid graph. We divide R′ into two blocks B′

1 and
B′

2 of size k × mcc(G) such that V (B′
1) =

⋃mcc(G)
i=1 Ci(R′) and V (B′

2) =
⋃2mcc(G)−1

i=mcc(G) Ci(R′).
For every i ∈ {1, 2} and subgraph S′ of R′, let S′

i = S′[V (S′) ∩ V (B′
i)] be the subgraph of

S′ in block B′
i. We look only at those subgraphs S′ for which both S′

1 and S′
2 belong to

S. For every such S′, we add the pair (S′
1, S′

2) to Adj if all the connected components of
S′

1 ∪ S′
2 = S′ that intersect both B′

1 and B′
2 (i.e., intersect column Cmcc(G)(R′)) belong to

Comp(G). Let BC(S′
1, S′

2) be the set of all the connected components of S′
1 ∪ S′

2 = S′ that
intersect the column Cmcc(G)(R′) but intersect neither C1(R′) nor C2mcc(G)−1(R′). For every
i ∈ [t], we denote the number of times Gi appears in BC(S′

1, S′
2), by freqboun(Gi, (S′

1, S′
2)).

For every pair of snapshots (start, end) such that start ∈ Source and end ∈ Sink and a set
S ′ ⊆ S of snapshots, we create a directed graph D as follows. We add all the snapshots in S ′

as vertices of D, and for every pair of snapshots S, S′ ∈ S ′, if (S, S′) ∈ Adj, then add an arc
from S to S′ in D. We then add both start and end as vertices of D and for every snapshot
S ∈ S, if (start, S) ∈ Adj ((S, end) ∈ Adj), add an arc from start to S (S to end) in D. We
then find the number of times X(S, S′), each arc (S, S′) should be duplicated in D to get a
new multidigraph D′ such that we get a (connected) Eulerian trail in D′ from start to end

of length p and all the connected components of G are covered by the Eulerian trail. Finally,
we use the path to get the correspondence between the blocks of H and the snapshots in S ′

with a correct placement from left to right. The algorithm to find D′ proceeds as follows.
Find the set T of all spanning trees of the underlying undirected graph of D.
For every spanning tree T ∈ T , solve the following ILP to find X(S, S′) for every edge
(S, S′) ∈ E(D).

∀S ∈ V (D) \ {start, end} :
∑

(S,S′)∈E(D)

X(S, S′) =
∑

(S′′,S)∈E(D)

X(S′′, S). (1a)
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∑
(start,S)∈E(D)

X(start, S) = 1. (1b)

∑
(S,end)∈E(D)

X(S, end) = 1. (1c)

∑
(S,S′)∈E(D)

X(S, S′) = p − 1. (1d)

∀i ∈ [t] : freqleft(Gi, start) +
∑

(S,S′)∈E(D)

X(S, S′) · freqboun(Gi, (S, S′))+

∑
S∈V (D)

( ∑
(S,S′)∈E(D)

X(S, S′)
)

· freqcen(Gi, S) + freqright(Gi, end) = num(Gi). (1e)

∀(S, S′) ∈ E(T ) : X(S, S′) + X(S′, S) ≥ 1. (1f)
∀(S, S′) ∈ E(D) \ E(T ) : X(S, S′) ≥ 0. (1g)

If the ILP returns a feasible solution, then return Yes.

Recall that we run the algorithm for every possible D. If for none of them we return
Yes, we eventually return No. Equation 1f ensures that the digraph D′ is connected, and, in
this context, recall that we go over all the possible spanning trees to check all the different
possible connectivities between the vertices of D′. Equations 1a, 1b and 1c ensure that there
exists an Eulerian trail in D from start to end. Equation 1d ensures that the total number
of edges in D′ is p − 1, which in turn means that the Eulerian trail from start to end in D′ is
of length p, which is equal to the number of required blocks. Given a multidigraph D′, each
connected component of G can “contribute to” only one set out of LC(start), BC(S′, S′′),
FC(S) and RC(end), for S, S′, S′′ ∈ S ′ such that (S′, S′′) ∈ E(D), as there exists no S ∈ S ′

such that (S, start) ∈ E(D) or (end, S) ∈ E(D). So, Equation 1e ensures that all the
connected components of G are covered by the path exactly once. ◀

4 Distance Approximation Parameter

In this section, we consider the distance approximation parameter, and sketch the proofs of
Theorems 1.3 and 1.4. The proof of Theorem 1.5 is deferred to the full version.

4.1 Para-NP-hardness with Respect to aG on General Graphs
We show a reduction from SAT to Grid Embedding where aG is upper bounded by a
constant if the output is a Yes instance. For this purpose, we present the battery gadget (see
Figure 3), composed of a 13 × 9 rectangle. It has a positive side and a negative side, two
wire vertices and six synchronization vertices attached to the top and bottom sides of the
rectangle. On the top and bottom halves of the gadget, it has an optional extra edge, called
the positive voltage and the negative voltage, respectively. We describe the battery gadget
by a boolean pair H = (x1, x2), x1, x2 ∈ {0, 1} where x1 = 1 (resp. x2 = 1) if and only if we
added the positive voltage edge (resp. negative voltage edge).

Given an instance π of SAT with variables x1, . . . , xn and clauses µ1, . . . , µm, the reduction
output is reduc(π) = Gπ where Gπ defined as follows. Gπ is composed of m · n battery
gadgets ordered in a “matrix shape”, i.e. the battery gadget Hi,j is located at the i-th
“row” and j-th “column” (see Figure 4). Every column j ∈ [n] of gadgets corresponds to the
variable xj , and every row i ∈ [m] of gadgets corresponds to the clause µi. Now, for each
i ∈ [m] and j ∈ [n] we set Hi,j = (xi,j

1 , xi,j
2 ) where xi,j

1 = 0 (resp. xi,j
2 = 0) if and only if
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1 2

3 4 5

6 7 8

Figure 3 The battery gadget. The positive side is in blue and the negative side is in red. The
positive voltage is in dashed blue and the negative voltage is in dashed red. The wire vertices are
numbered 1, 2. The synchronization vertices are numbered 3 to 8.

the literal xj (resp. xj) appears in µi. We add the positive (resp. negative) voltage edge to
the gadget Hi,j if and only if the literal xj (resp. x̄j) does not appear in µi. In addition,
the “matrix” of battery gadgets is encircled by an m × n-grid frame (see Figure 4). Lastly,
we delete the “redundant” topmost and bottommost synchronization edges, i.e. those not
attached to a side shared by two rectangles. More precisely, for every j ∈ [n], we delete the
three edges attached to the top side of the rectangle of H1,j and the three edges attached
to the bottom side of the rectangle of Hm,j . Observe that each synchronization vertex is
common to two battery gadgets, that is, for every i ∈ [m−1] and j ∈ [n], the synchronization
vertices 3, 4, 5 of Hi+1,j are the synchronization vertices 6, 7, 8 of Hi,j .

For the correctness of the reduction, we distinguish between “parts” (of the graph) that
must have a fixed embedding and “parts” that might have several embeddings. We show
that the embedding of the m × n-grid frame is “almost fixed”. More precisely, the embedding
is fixed once we choose an embedding of three specific vertices of it. Intuitively, the “shape”
of the m × n-grid frame is fixed in every embedding, up to “rotation” of the frame in 90, 180
or 270 degrees, or “movement” (shifting) to another “location”, which are immaterial for our
purposes. In addition to the m × n-grid frame, the embeddings of the sides of the rectangles,
as well as the “middle crossing lines”, of the battery gadgets are also fixed once we choose an
embedding for the aforementioned three vertices.

Now, observe that given a battery gadget, we might be able to choose to embed the
positive or the negative side on the top of the gadget. For a battery gadget H with a grid
graph embedding f , we set pf (H) = + if the positive side of the gadget is embedded to the
top of the gadget; otherwise the negative side is embedded to the top of the gadget, and
we set pf (H) = −. In addition, we denote by Vf (H) the voltage of the side of the battery
gadget that f embeds at the top of H. That is, given H = (x1, x2), if pf (H) = +, then
Vf (H) = x1, and if pf (H) = −, then Vf (H) = x2.

Next, we show that for any j ∈ [n], the gadgets in the j-th column are “synchronized”: for
every 1 ≤ i, i′ ≤ m, pf (Hi,j) = pf (Hi′,j). For intuition, observe that the six synchronization
vertices in the battery gadget maybe embedded inside or outside the rectangle and consider
two adjacent battery gadget in the same column, Hi,j and Hi+1,j . If pf (Hi+1,j) = +, then
vertices 1 and 3 of Hi+1,j (see Figure 3) must be embedded outside Hi+1,j , so they are
embedded inside Hi,j . Then, in Hi,j the positive side cannot be embedded at the bottom,
and hence pf (Hi,j) = +. Similarly, if pf (Hi+1,j) = −, then vertex 4 must be embedded
outside Hi+1,j , so it is embedded inside Hi,j . Then, in Hi,j the negative side cannot be
embedded at the bottom, and hence pf (Hi,j) = −. Formally, we prove the following.
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H1,1 H1,2

H2,1 H2,2

Figure 4 Construction of Gπ where π = (x̄1 ∨ x2) ∧ (x1 ∨ x2). The 2 × 2-grid frame is in blue.

▶ Lemma 4.1 (*). Let π be an instance of SAT with n variables and m clauses. Let f be a
grid graph embedding of Gπ. For every j ∈ [n], there exists pj ∈ {+, −} such that for every
i ∈ [m] it follows that pf (Hi,j) = pj.

Next, we show that for every i ∈ [m], there exists j ∈ [n] such that Vf (Hi,j) = 0. As
intuition, note that if vertex 1 of Hi,j is embedded inside Gi,j and Vf (Gi,j) = 1, then it must
be that vertex 2 is embedded outside Gi,j . So, since vertex 1 must be embedded inside Gi,1
and vertex 2 must be embedded inside Gi,n, there must be a j such that Vf (Hi,j) = 0.

▶ Lemma 4.2 (*). Let π be an instance of SAT with n variables and m clauses. Let f be a
grid graph embedding of Gπ. For every i ∈ [m], there exists j ∈ [n] such that Vf (Hi,j) = 0.

We are ready to prove the reverse direction of the correctness of the reduction. Due to
lack of space, we omit proof of the forward direction.

▶ Lemma 4.3. Let π be an instance of SAT with n variables and m clauses. Then Gπ is a
grid graph if and only π is a Yes instance of SAT.

Partial proof. Let f be a grid graph embedding of Gπ. By Lemma 4.1, for every j ∈ [n], there
exists pj ∈ {+, −} such that for every i ∈ [m], pf (Hi,j) = pj . We define s : {x1, . . . , xn} →
{T, F} as follows. For j ∈ [n], s(xj) = T if pj = +; otherwise, s(xj) = F . We show that s

is a satisfying assignment for π. Let i ∈ [m]. By Lemma 4.2, there exists j ∈ [n] such that
Vp(i, j) = 0. If p(i, j) = pj = +, then x

(i,j)
1 = 0, and by the definition of Gπ, xj appears

in µi. By the definition of s, since pj = +, we get that s(xj) = T , therefore µi is satisfied.
Similarly, if p(i, j) = pj = −, then x

(i,j)
2 = 0, and by the definition of Gπ, x̄j appears in µi.

By the definition of s, since pj = −, we get that s(xj) = F , therefore µi is satisfied. So, π is
a Yes instance of SAT. ◀

It only remains to show is that the distance approximation of Gπ is bounded by a constant
if Gπ is a grid graph. Due to lack of space, we omit this proof.

▶ Lemma 4.4 (*). Let π be an instance of SAT. If Gπ is a grid graph, then for every grid
graph embedding f of Gπ it follows that af ≤ 234.

Using Lemma 4.3 and Lemma 4.4, we can conclude Theorem 1.3.
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d(v, u) ∈
[
0, k + af

)

d(v, u) ∈
[
k + af , 2(k + af )

)

d(v, u) ∈
[
(dr/(k + af )e − 1)(k + afs), r

]
v

Figure 5 Sorting the vertices u of a k × r grid into small rectangles.

4.2 k × r-Grid Embedding is FPT with Respect to k + aG

We present an FPT algorithm with respect to k + aG for k × r-Grid Embedding. The
idea is as follows. We guess a leftmost vertex v in the k × r grid (i.e. satisfying fcol(v) = 0).
Then, going from left to right, we divide the k × r grid into

⌈
r

k+aG

⌉
“small rectangles” of

size k × (aG + k), except the last which might be smaller. After this, we sort the vertices
into the small rectangles: We put each vertex u, having graph distance d(v, u) from v, in the⌈

d(v,u)
k+aG

⌉
-th rectangle; if no such rectangle exists, we put u in the (

⌈
d(v,u)
k+aG

⌉
− 1)-th rectangle,

if this rectangle does not exist as well (as
⌈

d(v,u)
k+aG

⌉
− 1 is too large), we can conclude that

we have a no-instance. In particular, we show that in every k × r grid graph embedding f

of G with af = aG where v is a leftmost vertex, every u is embedded either in its sorted
rectangle or the previous one. For intuition, observe that u cannot be embedded into a
farther rectangle as then its shortest path(s) from v cannot be embedded. On the other hand,
if u is embedded into a closer rectangle, then the embedding does not respect the distance
approximation. After we know the “approximate location” of each vertex, we try to find a
k × r grid graph embedding of G using an iterative algorithm.

We start by proving the correctness of the “location approximation” of each vertex.
To this end, for any 0 ≤ s ≤ t, we define Cf (s, t) = {u ∈ V | s ≤ fcol(u) ≤ t} and
Dv(s, t) = {u ∈ V | s ≤ d(v, u) ≤ t}. See Figure 5.

▶ Lemma 4.5 (*). Let G = (V, E) be a k × r grid graph, and let f be a k × r grid
graph embedding of G. Let v ∈ V such that fcol(v) = 0. Let u ∈ V be a vertex. Then
u ∈ Cf (d(u, v) − af − k, d(u, v)), and u ∈ Dv(fcol(u), fcol(u) + af + k).

Therefore, every vertex must be embedded either in its sorted rectangle or in the one
to its left. In light of this, we try to find a k × r embedding of G by iteration on the small
rectangles from left to right. At each step, we seek k × (af + k) embeddings for the vertices in
the current rectangle and for a subset U of the vertices of the next rectangles. For each such
embedding, we only need to store the following information: the subset U and the “right
column” of the embedding (so as to “glue” embeddings of adjacent rectangles properly). In
the next rectangle, we try to embed (using brute-force) the vertices we did not embed in the
previous rectangle (those outside U) and some of the vertices of its next rectangle, such that
the left column of the current embedding “agrees” with the right column of the embedding of
the previous rectangle. Note that at each step we only store “FPT amount” of information,
and so we use only “FPT runtime”. A formal description of the algorithm can be found in
the full version. Here, we directly proceed to state the correctness.

▶ Lemma 4.6 (*). There exists an algorithm that given a graph and k, r ∈ N runs in time
O(|V |2(kaG)O(kaG+k2)) and returns “Yes instance” if and only if G is a k × r grid graph.

Using Lemma 4.6, we can conclude Theorem 1.4.
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Abstract
We present a 5

3 -approximation algorithm for the matching augmentation problem (MAP): given a
multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching,
find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost.
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1 Introduction

The design and analysis of algorithms for problems in network design is a core topic in
Theoretical Computer Science and Combinatorial Optimization. Algorithmic research on
problems such as the minimum spanning tree problem and the Traveling Salesman Problem
(TSP) started decades ago and is a thriving area even today. One of the key problems in this
area is the minimum-cost 2-ECSS (2-edge connected spanning subgraph) problem: Given an
undirected graph G = (V, E) and a nonnegative cost for each edge e ∈ E, denoted cost(e),
find a minimum-cost spanning subgraph H = (V, F ), F ⊆ E, that is 2-edge connected.
Throughout, we use n := |V | to denote the number of nodes of G. (Recall that a graph
is 2-edge connected if it is connected and has no “cut edges”, or equivalently, each of its
nontrivial cuts has ≥ 2 edges.) This problem is NP-hard, and the best approximation
guarantee known, due to [22], is 2.

On the other hand, the best “hardness of approximation threshold” known is much
smaller; for example, it is (1 + ρV C3

104 ) for the unweighted problem, where 1 + ρV C3 is the
“hardness of approximation threshold” for the minimum vertex cover problem on a graph with
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maximum degree 3, [10, Theorem 5.2]. Also, the best lower bound known on the integrality
ratio of the standard LP relaxation (for minimum-cost 2-ECSS) is around 1.5 (thus, well
below 2), see [5].

1.1 FAP, TAP and MAP
Given this significant gap between the lower bounds and the upper bounds, research in this
area over the last two decades has focused on the case of zero-one cost functions (every edge
has a cost of zero or one). Let us call an edge e ∈ E with cost(e) = 0 a zero-edge, and
let us call an edge e ∈ E with cost(e) = 1 a unit-edge. Intuitively, the zero-edges define
some existing network that we wish to augment (with unit-edges) such that the augmented
network is resilient to the failure of any one edge. We may assume that the zero-edges form
a forest; otherwise, there is at least one cycle C formed by the zero edges, and in that case,
we may contract C, solve the problem on the resulting graph G/C, find a solution (edge set)
F , and return F ∪ C as a solution of the original problem. Consequently, the minimum-cost
2-ECSS problem with a zero-one cost function is called the Forest Augmentation Problem
or FAP. The challenge is to design an approximation algorithm with guarantee strictly less
than 2 for FAP.

A well known special case of FAP is TAP, the Tree Augmentation Problem: the set of
zero-edges forms a spanning tree. The first publication to break the “2-approximation barrier”
for TAP is [14] (2003), and since then there have been several important advances, including
recent work, see [11, 17, 1, 19, 4, 9, 13].

Recently, see [2], there has been progress on another important (in our opinion) special case
of FAP called the Matching Augmentation Problem or MAP: Given a multi-graph with edges
of cost either zero or one such that the zero-edges form a matching, find a 2-ECSS of minimum
cost. From the view-point of approximation algorithms, MAP is “complementary” to TAP, in
the sense that the forest formed on V (G) by the zero-edges has many connected components,
each with one node or two nodes, whereas this forest has only one connected component in
TAP.

1.2 Previous literature and possible approaches for attacking MAP
There is a large body of work on network design and the design of algorithms (for finding
optimal solutions, as well as for finding approximately optimal solutions); see the books in
the area [20, 25, 18]. Unfortunately, none of these results and methods has helped to break
the “2-approximation barrier” for FAP (to the best of our knowledge).

Powerful and versatile methods such as the primal-dual method (see [25, 12]) and the
iterative rounding method (see [18, 16]) have been developed for problems in network design,
but the proveable approximation guarantees for these methods are ≥ 2.

(
These methods

work by rounding LP relaxations; informally speaking, the approximation guarantee is proved
via an upper bound of 2 per iteration on the “integral cost incurred” versus the “chargeable
LP cost”, and it is plausible that the factor of 2 cannot be improved for this type of analysis.

)
Combinatorial methods that may also exploit lower-bounds from LP relaxations have

been developed for approximation algorithms for unweighted minimum-cost 2-ECSS, e.g.,
4
3 -approximation algorithms are presented in [24, 21, 15]. For the unweighted problem, there
is a key lower bound of n on opt (since any solution must have ≥ n edges, each of cost one).
This fails to holds for MAP; indeed, the analogous lower bound on opt is 1

2 n for MAP. This
rules out any direct extension of these combinatorial methods (for the unweighted problem)
to prove approximation guarantees below 2 for MAP.
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Recently, Traub and Zenklusen [23] presented an approximation algorithm for Weighted
TAP with guarantee 1 + (ln 2) + ϵ < 1.7, via a so-called relative greedy algorithm, based on
previous work by Cohen and Nutov [6] that, in turn, is based on earlier work by Zelikovsky
on the Steiner Tree problem [26]. While the result of Traub and Zenklusen is a major advance
in the area, the core ideas of the relative greedy algorithm are well known, and, as yet, there
is no advance on FAP via relative greedy algorithms. (Informally speaking, Weighted TAP
is a special case of SCP (the Set Covering Problem), and the method of Cohen and Nutov
exploits special properties of the SCP instances associated with TAP, whereas, to the best of
our knowledge, this paradigm does not extend to FAP.)

1.3 Our results and techniques
Our main contribution is a 5

3 -approximation algorithm for MAP, improving on the 7
4 approx-

imation guarantee of [2], see Theorems 12, 13.
At a high level (hiding many important points), our algorithm is based on a “discharging

scheme” where we compute a lower bound on opt (the optimal value) and fix a “budget” of α

times this lower bound (where α > 1 is a constant), “scatter” this budget over the graph G,
use the budget to buy some edges to obtain a “base graph”, then traverse the “base graph”
and buy more edges to augment the “base graph”, so that (eventually) we have a 2-ECSS
whose cost is within the budget of α times our lower bound. We mention that several of the
results cited above are based on discharging schemes, e.g., [24, 11, 17, 15, 2]. In some more
detail, but still at a high level, we follow the method of [2].

(
Our presentation can be read

independently of [2]; we have repeated a few definitions and statements of results from [2].
)

We first pre-process the input instance G, with the goal of removing all “obstructions” (e.g.,
cut nodes), and we decompose G into a list of “well structured” sub-instances G1, G2, . . .

that are pairwise edge-disjoint. Now, consider one of these sub-instances Gi (it has none of
the “obstructions”). We compute a subgraph Hi whose cost is a lower bound on opt(Gi).
Finally, we augment Hi to make it 2-edge connected, and use a credit-based analysis to prove
an approximation guarantee.

A 2-edge cover is a subgraph that has at least two edges incident to every node. The
minimum-cost 2-edge cover is the key subgraph used as a lower bound in our algorithm;
we refer to it as D2. (D2 can be computed in polynomial time via extensions of Edmonds’
algorithm for computing a minimum-cost perfect matching.) Since every 2-ECSS is a 2-
edge cover, we have cost(D2) ≤ opt. So, by transforming D2 to a 2-ECSS of cost ≤ 5

3 cost(D2),
we achieve our claimed approximation guarantee.

Our pre-processing includes several new ideas, and moreover, it is essential to handle
new “obstructions” that are not handled in [2]; indeed, [2] has tight examples such that
opt/cost(D2) ≥ 7

4 − ϵ (for some ϵ > 0). Although our algorithm handles several new
“obstructions”, our analysis and proofs for the pre-processing are simple. One of our key tools
(for our pre-processing analysis) is to prove a stronger guarantee of max(opt, 5

3 opt − 2) rather
than just 5

3 opt. When we analyze our decomposition of an instance into sub-instance(s),
then this additive term of −2 is useful in combining solutions back together at the end of the
algorithm (when we “undo” the decomposition of G into sub-instances G1, G2, . . . ).

(
Our

analysis of pre-processing is omitted in this paper, due to space constraints; it is given in the
full paper, [3].

)
Our main algorithm (following [2]) has two key subroutines for transforming a D2 of a

“well structured” sub-instance Gi to a 2-ECSS of Gi while ensuring that the total cost is
≤ 5

3 cost(D2).

ISAAC 2021
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(i) Bridge covering step: The goal is to augment edges such that each connected
component of our “current solution graph” Hi is 2-edge-connected; we start with
Hi := D2(Gi). Our analysis is a based on a new and simple credit scheme that bypasses
some difficulties in the credit scheme of [2].

(ii) Gluing step: Finally, this step merges the (already 2-edge connected) connected
components of Hi to form a 2-ECSS of the sub-instance Gi. A key part of this step
handles so-called “small 2ec-blocks”; these are cycles of cost 2 that occur as connected
components of D2(Gi) and stay unchanged through the bridge covering step. Observe
that a “small 2ec-block” has only 4

3 credits (it has a “budget” of ( 5
3 )(2), and after paying

for its two unit-edges, there is only 4
3 credits available). Our gluing step applies a

careful swapping of unit-edges for the “small 2ec-blocks” while it merges the connected
components of Hi into a 2-ECSS, and ensures that the net augmentation cost does not
exceed the available credit.

There are well-known polynomial time algorithms for implementing all of the basic
computations in this paper, see [20]. We state this explicitly in all relevant results (e.g.,
Theorem 12), but we do not elaborate on this elsewhere.

2 Preliminaries

This section has definitions and preliminary results. Our notation and terms are consistent
with [7], and readers are referred to that text for further information.

Let G = (V, E) be a (loop-free) multi-graph with edges of cost either zero or one such
that the edges of cost zero form a matching. We take G to be the input graph, and we use n

to denote |V (G)|. Let M denote the set of edges of cost zero. Throughout, the reader should
keep in mind that M is a matching; this fact is used in many of our proofs without explicit
reminders. We call an edge of M a zero-edge and we call an edge of E − M a unit-edge.

We denote the cost of an edge e of G by cost(e). For a set of edges F ⊆ E(G),
cost(F ) :=

∑
e∈F cost(e), and for a subgraph G′ of G, cost(G′) :=

∑
e∈E(G′) cost(e).

For ease of exposition, we often denote an instance G, M by G; then, we do not have
explicit notation for the edge costs of the instance, but the edge costs are given implicitly by
cost : E(G) → {0, 1}, and M is given implicitly by {e ∈ E(G) : cost(e) = 0}.

For a positive integer k, we use [k] to denote the set {1, . . . , k}.
We use the standard notion of contraction of an edge, see [20, p.25]. For a graph H and

a set of its nodes S, ΓH(S) := {w ∈ V (H) − S : v ∈ S, vw ∈ E(H)}, thus, ΓH(S) denotes
the set of neighbours of S. For a graph H and a set of nodes S ⊆ V (H), δH(S) denotes the
set of edges that have one end node in S and one end node in V (H) − S. Moreover, H[S]
denotes the subgraph of H induced by S, and H − S denotes the subgraph of H induced
by V (H) − S. For a graph H and a set of edges F ⊆ E(H), H − F denotes the graph
(V (H), E(H) − F ). For any subgraph K of a graph H with V (K) ⊊ V (H), an attachment
of K is a node of K that has a neighbour in V (H) − V (K).

We may use relaxed notation for singleton sets, and, we may not distinguish between a
subgraph and its node set; for example, given a graph H and a set S of its nodes, we use
E(S) to denote the edge set of the subgraph of H induced by S.
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2.1 2EC, 2NC, bridges and D2
A multi-graph H is called k-edge connected if |V (H)| ≥ 2 and for every F ⊆ E(H) of
size < k, H − F is connected. Thus, H is 2-edge connected if it has ≥ 2 nodes and the
deletion of any one edge results in a connected graph. A multi-graph H is called k-node
connected if |V (H)| > k and for every S ⊆ V (H) of size < k, H − S is connected. We use
the abbreviations 2EC for “2-edge connected,” and 2NC for “2-node connected.”

We assume w.l.o.g. that the input G is 2EC. Moreover, for some (but not all) of our
discussions, we assume that there are ≤ 2 copies of each edge (in the multi-graph under
consideration); this is justified since an edge-minimal 2-ECSS cannot have three or more
copies of any edge (see Proposition 1 below).

For any instance H, let opt(H) denote the minimum cost of a 2-ECSS of H . When there
is no danger of ambiguity, we use opt rather than opt(H).

By a bridge we mean an edge of a connected (sub)graph whose removal results in two
connected components, and by a cut node we mean a node of a connected (sub)graph whose
deletion results in two or more connected components. We call a bridge of cost zero a
zero-bridge and we call a bridge of cost one a unit-bridge.

By a 2ec-block we mean a maximal connected subgraph with two or more nodes that has
no bridges. We call a 2ec-block pendant if it is incident to exactly one bridge. We call a
2ec-block small if it has ≤ 2 unit-edges, and we call it large otherwise.

For a 2EC graph G and a cut node v of G, a 2ec-v-block means the subgraph of G induced
by {v} ∪ V (C) where C is one of the connected components of G − v.

The next result characterizes edges that are not essential for 2-edge connectivity.

▶ Proposition 1. Let H be a 2EC graph and let e = vw be an edge of H. If H − e has two
edge-disjoint v, w paths, then H − e is 2EC.

The next lemma partially characterizes the cuts of size ≤ 2 in a graph obtained by
“uncontracting” a set of nodes of a 2EC graph.

▶ Lemma 2. Let H be a 2EC graph and let C ⊊ V (H) be a set of nodes such that the
induced subgraph H[C] is connected. Suppose that H∗ is a 2-ECSS of H/C. Let H ′ be the
spanning subgraph of H with edge set E(C) ∪ E(H∗). Then H ′ is a connected graph such
that each of its bridges (if any) is in E(C).

By a 2-edge cover (of G) we mean a set of edges F of G such that each node v is incident
to at least two edges of F (i.e., F ⊆ E(G) : |δF (v)| ≥ 2, ∀v ∈ V (G)). By D2(G) we mean
any minimum-cost 2-edge cover of G (G may have several minimum-cost 2-edge covers, and
D2(G) may refer to any one of them); when there is no danger of ambiguity, we use D2
rather than D2(G).

By a bridgeless 2-edge cover (of G) we mean a 2-edge cover (of G) that has no bridges.
The next result follows from Theorem 34.15 in [20, Chapter 34].

▶ Proposition 3. There is a polynomial-time algorithm for computing D2.

The next result states the key lower bound used by our approximation algorithm.

▶ Lemma 4. Let H be any 2EC graph. Then we have opt(H) ≥ cost(D2(H)).

For any fixed positive integer z (thus, z = O(1)) and any instance of MAP, in time O(1),
we can determine whether the instance has opt > z, and if not, then we can find an optimal
2-ECSS of the instance.

ISAAC 2021
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▶ Lemma 5. Let H be an instance of MAP, and let z be a fixed positive integer. There is
an O(1)-time algorithm to determine whether opt(H) ≥ z. Moreover, if opt(H) ≤ z, then a
minimum-cost 2-ECSS of H can be found in O(1) time.

2.2 Obstructions for the approximation guarantee

There are several obstructions (e.g., cut nodes) that prevent our algorithm (and analysis)
from achieving our target approximation factor of 5

3 . We eliminate all such obstructions
in a pre-processing step that takes the given instance G of MAP (the input) and replaces
it by a list of sub-instances G1, G2, . . . , such that (a) none of the obstructions occurs in a
sub-instance Gi, (b) the edge-sets of the sub-instances are pairwise-disjoint, and (c) given a
2-ECSS of each sub-instance Gi of approximately optimal cost, we can construct a 2-ECSS
of G of cost ≤ 5

3 opt(G). (Precise statements are given later.) The obstructions for our
algorithm are:

(i) cut nodes,
(ii) parallel edges,
(iii) zero-cost S2,
(iv) unit-cost S2,

(v) S{3, 4},

(vi) R4,

(vii) R8.

Below, we formally define each of these obstructions. Four of these obstructions were
introduced in [2], and readers interested in a deeper understanding may refer to that paper, in
particular, see the remark after [2, Theorem 6] and see [2, Figure 2] for instances G of MAP
that contain cut nodes, parallel edges, zero-cost S2s, or R4s such that opt(G)/cost(D2(G)) ≈ 2;
informally speaking, an approximation algorithm based on the lower bound cost(D2(G)) on
opt(G) fails to beat the approximation threshold of 2 in the presence of any of these four
obstructions.

▶ Definition 6. By a zero-cost S2 (also called a bad-pair), we mean a zero-edge e and its
end nodes, u, v, such that G − {u, v} has ≥ 2 connected components.

▶ Definition 7. By a unit-cost S2, we mean a unit-edge e and its end nodes, u, v, such that
G − {u, v} has ≥ 2 connected components; moreover, in the graph G/{u, v}, there exist two
distinct 2ec-v̂-blocks B1, B2 incident to the contracted node v̂ such that opt(Bi) ≥ 3 and Bi

has a zero-edge incident to the contracted node, ∀i ∈ [2].

▶ Definition 8. By an S{3, 4}, we mean an induced 2NC subgraph C of G with |V (C)| ∈ {3, 4}
that has a spanning cycle of cost two such that G − V (C) has ≥ 2 connected components,
and the cut δ(V (C)) has no zero-edges; moreover, in the graph G/C, there exist two distinct
2ec-v̂-blocks B1, B2 incident to the contracted node v̂ that have opt(B1) ≥ 3 and opt(B2) ≥ 3.

▶ Definition 9. By an R4 (also called a redundant 4-cycle), we mean an induced subgraph
C of G with four nodes such that V (C) ̸= V (G), C contains a 4-cycle of cost two, and C

contains a pair of nonadjacent nodes that each have degree two in G.

▶ Definition 10. By an R8, we mean an induced subgraph C of G with eight nodes such that
V (C) ̸= V (G), C contains two disjoint 4-cycles C1, C2 with cost(Ci) = 2, ∀i ∈ [2], C has
exactly two attachments a1, a2 where ai ∈ Ci, ∀i ∈ [2], and both end nodes of the (unique)
unit-edge of Ci − ai are adjacent to C3−i, ∀i ∈ [2].
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3 Outline of the algorithm

This section has an outline of our algorithm. We start by defining an instance of MAP⋆.

▶ Definition 11. An instance of MAP⋆ is an instance of MAP with ≥ 12 nodes that contains

no cut nodes,
no parallel edges,
no zero-cost S2,
no unit-cost S2,

no S{3, 4},
no R4, and
no R8.

In this section and Section 4, we sketch how to “decompose” any instance of MAP G

with |V (G)| ≥ 12 into a collection of instances G1, . . . , Gk of MAP such that (a) either
|V (Gi)| < 12 or Gi is an instance of MAP⋆, ∀i ∈ [k], (b) the edge sets E(G1), . . . , E(Gk)
are pairwise disjoint (thus E(G1), . . . , E(Gk) forms a subpartition of E(G)), and (c) a 2-
ECSS H of G can be obtained by computing 2-ECSSes H1, . . . , Hk of G1, . . . , Gk. Moreover,
the approximation guarantee is preserved, meaning that cost(H) ≤ 5

3 opt(G) − 2 provided
cost(Hi) ≤ max(opt(Gi), 5

3 opt(Gi) − 2), ∀i ∈ [k].

Algorithm (outline).
(0) apply the pre-processing steps (see below and see Section 4) to obtain a collection

of instances G1, . . . , Gk such that either |V (Gi)| < 12 or Gi is an instance of MAP⋆,
∀i ∈ [k];
for each Gi (i = 1, . . . , k),
if |V (Gi)| < 12

(1) exhaustively compute an optimum 2-ECSS Hi of Gi via Lemma 5;
else

(2.1) compute D2(Gi) in polynomial time (w.l.o.g. assume D2(Gi) contains all zero-edges
of Gi);

(2.2) then apply “bridge covering” from Section 5 to D2(Gi) to obtain a bridgeless
2-edge cover H̃i of Gi;

(2.3) then apply the “gluing step” from Section 6 to H̃i to obtain a 2-ECSS Hi of Gi;
endif ;
endfor;

(3) finally, output a 2-ECSS H of G from the union of H1, . . . , Hk by undoing the
transformations applied in step (0).

The pre-processing of step (0) consists of several reductions; most of these reductions are
straightforward, but we have to prove that the approximation guarantee is preserved when
we “undo” each of these reductions. These proofs are given in the full paper, [3].

Pre-processing – Step (0) of Algorithm.

While the current list of sub-instances G1, G2, . . . has a sub-instance Gi that has ≥ 12
nodes and is not an instance of MAP⋆ (assume that Gi is 2EC):

if Gi is not 2NC:
(i) (handle a cut-node)

let v be a cut node of Gi, and let B1, . . . , Bk be the 2ec-v-blocks of Gi; replace Gi by
B1, . . . , Bk in the current list;
else apply exactly one of the following steps to Gi:
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(ii) (handle a pair of parallel edges)
let {e, f} be a pair of parallel edges of Gi (one of the edges in {e, f} is a unit-edge);
discard a unit-edge of {e, f} from Gi;

(iii) (handle an “S obstruction”)
(a) (handle a unit-cost S2)
(b) (handle a zero-cost S2)
(c) (handle an S{3, 4})

let C denote a subgraph of Gi that is, respectively, (a) a unit-cost S2, (b) a zero-cost S2,
or (c) an S{3, 4};
contract C to obtain Gi/C and let v̂ denote the contracted node; let B1, . . . , Bk be the
2ec-v̂-blocks of Gi/C; replace Gi by B1, . . . , Bk in the current list;

(iv) (handle an “R obstruction”)
(a) (handle an R4)
(b) (handle an R8)
let C denote a subgraph of Gi that is, respectively, (a) an R4, or (b) an R8;
contract C to obtain Gi/C, and replace Gi by Gi/C in the current list;

Our 5
3 approximation algorithm for MAP follows from the following theorem.

▶ Theorem 12. Given an instance of MAP⋆ G′, there is a polynomial-time algorithm that
obtains a 2-ECSS H ′ such that cost(H ′) ≤ max(opt(G′), 5

3 opt(G′) − 2).

We use a credit scheme to prove this theorem; the details are presented in Sections 5
and 6. The algorithm starts with D2(G′) as the current graph, and assigns 5

3 tokens to each
unit-edge of D2(G′); each such edge keeps one unit to pay for itself and the other 2

3 is taken
to be credit of the edge; thus, the algorithm has 2

3 cost(D2(G′)) credits at the start; the
algorithm uses the credits to pay for the augmenting edges “bought” in steps (2.2) or (2.3)
(see the outline); also, the algorithm may “sell” unit-edges of the current graph (i.e., such an
edge is permanently discarded and is not contained in the 2-ECSS output by the algorithm).

The factor 5
3 in our approximation guarantee is tight in the sense that there exists an

instance G of MAP⋆ such that opt(G)/cost(D2(G)) ≥ 5
3 − ϵ, for any small positive number

ϵ. The instance G consists of a root 2ec-block B0, say a 6-cycle of cost 6, v1, . . . , v6, v1, and
ℓ ≫ 1 copies of the following gadget that are attached to B0. The gadget consists of a
6-cycle C = u1, . . . , u6, u1 of cost 3 that has alternating zero-edges and unit-edges; moreover,
there are three unit-edges between C and B0: v1u1, v3u3, v5u5. Observe that a (feasible)
2-edge cover of this instance consists of B0 and the 6-cycle C of each copy of the gadget,
and it has cost 6 + 3ℓ. Observe that for any 2-ECSS and for each copy of the gadget, the
six edges of C as well as (at least) two of the edges between C and B0 are contained in the
2-ECSS. Thus, opt(G) ≥ 6 + 5ℓ, whereas cost(D2(G)) ≤ 6 + 3ℓ.

4 Pre-processing

Due to space constraints, we only the state our main result for pre-processing and skip several
lemmas that are needed to prove this result. These lemmas and their proofs are given in the
full paper, [3].

▶ Theorem 13. Suppose that there is an approximation algorithm that given an instance
H of MAP⋆, finds a 2-ECSS of cost ≤ max(opt(H), α opt(H) − 2). Then, given an
instance G of MAP, there is a polynomial-time algorithm to find a 2-ECSS of cost ≤
max(opt(G), α opt(G) − 2).
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5 Bridge covering

The results in this section are based on the prior results and methods of [2, 8], but the goal
in these previous papers is to obtain an approximation guarantee of 7

4 for MAP, whereas
our goal is an approximation guarantee of 5

3 . Our credit invariant is presented in Section 5.1
below, and it is based on the credit invariant in [8].

In this section and in Section 6, we assume that the input is an instance of MAP⋆. For
notational convenience, we denote the input by G. Recall that G is a simple, 2NC graph
on ≥ 12 nodes, and G has no zero-cost S2, no unit-cost S2, no S{3, 4}, no R4, and no R8.
Recall that a 2ec-block is called small if it has ≤ 2 unit-edges, and is called large otherwise.
Since G is 2NC and simple, a small 2ec-block is either a 3-cycle with one zero-edge and two
unit-edges, or a 4-cycle with alternating zero-edges and unit-edges.

Each unit-edge e of D2 starts with 5
3 tokens, and from this, one unit is kept aside (to

pay for e), and the other 2
3 is defined to be the credit of e. Our overall goal is to find a

2-ECSS H ′ of G of cost ≤ 5
3 cost(D2), and we keep 2

3 cost(D2) from our budget in the form
of credit while using the rest of our budget for “buying” the unit-edges of D2. We use the
credit for “buying” unit-edges that are added to our current graph during the bridge covering
step or the gluing step. (In the gluing step, we may “sell” unit-edges of our current graph,
that is, we may permanently discard some unit-edges of our current graph; thus, our overall
budgeting scheme does not rely solely on credits.)

We use H to denote the current graph of the bridge covering step; initially, H = D2.
The outcome of the bridge covering step is stated in the following result.

▶ Proposition 14. At the termination of the bridge covering step, H is a bridgeless 2-
edge cover; moreover, every small 2ec-block of H has ≥ 4

3 credits and every large 2ec-block of
H has ≥ 2 credits. The bridge covering step can be implemented in polynomial time.

r u
R

C0

C1

C2

r u

f1

f2

f3

R

C0

C1

C2

Figure 1 Illustration of an iteration of our bridge-covering step. Solid lines indicate edges
of the graph H, and (blue) dash-dotted lines indicate edges of E(G) − E(H). The pseudo-ear
R, f1, C1, f2, C2, f3 covers the bridge ru of C0 (right subfigure). Thick lines indicate the edges
f1, f2, f3 of the pseudo-ear.

A brief overview of the bridge covering step follows: The goal is to add “new” edges
to H to obtain a bridgeless 2-edge cover, and to pay for these “new” edges from credits
available in H while preserving a credit invariant (stated below). In each iteration, we
pick a connected component C0 of H such that C0 has a bridge, then we pick any pendant
2ec-block R of C0, then we add a set of edges {f1, . . . , fk} ⊆ E(G) − E(H) that “covers” the
unique bridge of C0 incident to R (possibly, k = 1). Informally speaking, this step merges
k − 1 connected components C1, C2, . . . , Ck−1 of H with C0 (see the discussion below). Each
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connected component of H has one unit of so-called c-credit (by the credit invariant stated
below), and we take this credit from each of C1, C2, . . . , Ck−1 and use that to pay for k − 1
of the newly added edges. The challenge is to find one more unit of credit (since we added k

edges), and this is the focus of our analysis given below.
By [2, Section 5.1,Proposition 5.20], we may assume without loss of generality that D2

has the following properties:
(*) D2 contains all the zero-edges. Every pendant 2ec-block of D2 that is incident to a
zero-bridge is a large 2ec-block.

Recall that H denotes the current graph, and initially, H = D2. We call a node v of H a
white node if v belongs to a 2ec-block of H, otherwise, we call v a black node.

It is convenient to define the following multi-graphs: let H̃ be the multi-graph obtained
from H by contracting each 2ec-block Bi of H into a single node that we will denote by Bi.
Observe that each connected component of H̃ is a tree (possibly, an isolated node). We call
a node v of the multigraph H̃ black if it is the image of a black node of H , otherwise, we call
v a white node. Each 2ec-block of H maps to a white node of H̃ . Each bridge of H maps to
a bridge of H̃. Clearly, each black node of H̃ is incident to ≥ 2 bridges of H̃.

Similarly, let G̃ be the multi-graph obtained from G by contracting each 2ec-block Bi of
H into a single node.

5.1 Credit invariant
We re-assign the credits of D2 such that the following credit invariant holds for H at the
start/end of every iteration in the bridge covering step.

For a black node v of H, we use deg(1)
H (v) to denote the number of unit-bridges incident

to v in H.

Credit invariant for H

(a) each connected component is assigned at least one credit (called c-credit);
(b) each connected component that is a small 2ec-block is assigned 1

3 credits (called
b-credit);

(c) every other 2ec-block is assigned at least one credit (called b-credit);
(d) each black node v is assigned 1

3 deg(1)
H (v) credits (called n-credit).

Note that the four types of credit are distinct, and the invariant gives lower bounds. For
example, a connected component that is a large 2ec-block has one c-credit and at least one
b-credit.

▶ Lemma 15. The initial credits of D2 can be re-assigned such that (the initial) H = D2
satisfies the credit invariant.

5.2 Analysis of a pseudo-ear augmentation
In this subsection, our goal is to show that a so-called pseudo-ear augmentation can be
applied to H whenever a connected component of H has a bridge, such that the cost of the
newly added unit-edges is paid from the credits released by the pseudo-ear augmentation,
and moreover, the credit invariant is preserved.

In the graph H, let C0 be a connected component that has a bridge, let R be a pendant
2ec-block of C0, and let ru be the unique bridge (of C0) incident to R, where r ∈ V (R).
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▶ Definition 16. A pseudo-ear of H w.r.t. C0 starting at R is a sequence R, f1, C1, f2, C2, . . . ,

fk−1, Ck−1, fk, where C0, C1, . . . , Ck−1 are distinct connected components of H, f1, . . . , fk ∈
E(G) − E(H), each fi, i ∈ [k − 1], has one end node in Ci−1 and the other end node in Ci,
f1 has an end node in R, and fk has one end node in Ck−1 and one end node in C0 − V (R).
The end node of fk in C0 − V (R) is called the head node of the pseudo-ear.

Any shortest (w.r.t. the number of edges) path of C0 between r and the head node of the
pseudo-ear is called the witness path of the pseudo-ear.

Our plan is to find a pseudo-ear (as above) such that for any witness path Q, there is
at least one unit of credit in Q − r. Let Rnew denote the 2ec-block that results from the
addition of the pseudo-ear; thus, Rnew contains R ∪ Q. The b-credit of R is transferred to
Rnew; thus, Rnew satisfies part (c) of the credit invariant; see Proposition 19 below. After
we add the pseudo-ear to H, the credits of Q − r are released (they are no longer needed for
preserving the credit invariant, because Q ∪ R is merged into Rnew). Informally speaking,
we use the credits released from Q − r to pay for the cost of the last unit-edge added by the
pseudo-ear augmentation.

In the graph G̃, let C̃0 denote the tree corresponding to C0 and let R̃ denote the leaf of C̃0
corresponding to R. Let P̃ be a shortest (w.r.t. the number of edges) path of G̃ − E(C̃0) that
has one end node at R̃ and the other end node at another node of C̃0. Then P̃ corresponds to
a pseudo-ear R, f1, C1, . . . , Ck−1, fk; the sequence of edges of E(G̃) − E(H̃) of P̃ corresponds
to f1, . . . , fk and the sequence of trees C̃1, . . . , C̃k−1 of P̃ corresponds to C1, . . . , Ck−1.

It is easy to find a pseudo-ear such that any witness path Q has ≥ 2 edges. To see this,
observe that G − u is connected (since G is 2NC); let P be a shortest (w.r.t. the number
of edges) path between R and C0 − V (R) in G − u; then P corresponds to our desired
pseudo-ear, and the head node is the end node of P in C0 − u − V (R). Clearly, any path of
C0 between r and the head node has ≥ 2 edges, hence, any witness path of the pseudo-ear
has ≥ 2 edges.

In each iteration (of bridge covering), we compute a pseudo-ear using a polynomial-time
algorithm that is presented in the proof of Proposition 18, see below.

The next lemma is used to lower bound the credit of a witness path.

▶ Lemma 17. Let Ψ be a pseudo-ear of H w.r.t. C0 starting at R, let Q be a witness path
of Ψ, and let ru be unique bridge of C0 incident to R. Suppose that Q satisfies one of the
following:
(a) Q contains a white node distinct from r, or
(b) Q contains exactly one white node and ≥ 3 bridges, or
(c) Q contains exactly one white node, exactly two bridges, and a black node v such that

deg(1)
H (v) ≥ 2.

Then Q − r has at least one credit, and that credit is not needed for the credit invariant of
the graph resulting from the pseudo-ear augmentation that adds Ψ to H.

▶ Proposition 18. There is a polynomial-time algorithm for finding a pseudo-ear (of H

w.r.t. C0 starting at R ) such that any witness path Q of the pseudo-ear satisfies one of the
three conditions of Lemma 17.

▶ Proposition 19. Suppose that H satisfies the credit invariant, and a pseudo-ear augment-
ation is applied to H. Then the resulting graph Hnew satisfies the credit invariant.

Proof of Proposition 14. The proof follows from Lemmas 15, 17, and Propositions 18, 19,
and the preceding discussion.
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Each iteration, i.e., each pseudo-ear augmentation, can be implemented in polynomial
time, and the number of iterations is ≤ |E(D2)|.

At the termination of bridge covering, each connected component of H is a 2ec-block
that has one c-credit and either one b-credit, or (in the case of a small 2ec-block) 1

3 b-credits.
By summing the two types of credit, it follows that each small 2ec-block has 4

3 credits and
each large 2ec-block has ≥ 2 credits. ◀

6 The gluing step

In this section, we focus on the gluing step, and we assume that the input is an instance of
MAP⋆. For notational convenience, we denote the input by G. Recall that G is a simple,
2NC graph on ≥ 12 nodes, and G has no zero-cost S2, no unit-cost S2, no S{3, 4}, no R4, and
no R8. (In this section, we use all the properties of G except the absence of unit-cost S2s.)

There are important differences between our gluing step and the gluing step of [2]. Our
gluing step (and overall algorithm) beats the 7

4 approximation threshold because our pre-
processing step eliminates the S{3, 4} obstruction and the R8 obstruction (these obstructions
are not relevant to other parts of our algorithm). In the full version of the paper, see [3,
Appendix], we present instances G of MAP that contain S{3, 4}s (respectively, R8s) and
contain none of the other six obstructions such that opt(G)/cost(D2(G)) ≈ 7

4 .
We use H to denote the current graph of the gluing step. At the start of the gluing step,

H is a simple, bridgeless graph of minimum degree two; thus, each connected component of
H is 2EC; clearly, the 2ec-blocks of H correspond to the connected components of H . Recall
that a 2ec-block of H is called small if it has ≤ 2 unit-edges, and is called large otherwise.
Observe that a small 2ec-block of H is either a 3-cycle with one zero-edge and two unit-edges,
or a 4-cycle with alternating zero-edges and unit-edges.

The following result summarizes this section:

▶ Proposition 20. At the termination of the bridge-covering step, let H denote the bridgeless
2-edge cover computed by the algorithm and suppose that each small 2ec-block of H has 4

3
credits and each large 2ec-block of H has ≥ 2 credits. Let γ denote credit(H). Assume that
H contains all zero-edges. Then the gluing step augments H to a 2-ECSS H ′ of G (by adding
edges and deleting edges) such that cost(H ′) ≤ cost(H) + γ − 2. The gluing step can be
implemented in polynomial time.

Our gluing step applies a number of iterations. Each iteration picks two or more 2ec-blocks
of H, and merges them into a new large 2ec-block by adding some unit-edges and possibly
deleting some unit-edges such that the following invariant holds for H at the start/end of
every iteration of the gluing step.

Invariants for the gluing step:
H is a simple, bridgeless graph of minimum degree two (hence, the 2ec-blocks of H

correspond to the connected components of H);
(credit invariant) each small 2ec-block of H has 4

3 credits and each large 2ec-block of
H has ≥ 2 credits.

It is convenient to define the following multi-graph: let G̃ be the multi-graph obtained
from G by contracting each 2ec-block Bi of H into a single node that we will denote by Bi

(thus, the notation Bi refers to either a 2ec-block of H or a node of G̃). Observe that G̃ is
2EC. We call a node of G̃ small (respectively, large) if the corresponding 2ec-block of H is
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small (respectively, large). The gluing step “operates” on G and never refers to G̃; but, for
our discussions and analysis, it is convenient to refer to G̃. (Note that G̃ changes in each
iteration, since the current graph H changes in each iteration.)

Suppose that G̃ has ≥ 2 nodes and has no small nodes. Then, we pick any (large) node ṽ

of G̃. Since G̃ is 2EC, it has a cycle C̃ incident to ṽ. Let |C̃| denote the number of edges of
C̃; note that |C̃| ≥ 2. Our iteration adds to H the unit-edges corresponding to C̃. The credit
available in H for the 2ec-blocks incident to C̃ is ≥ 2|C̃| and the cost of the augmentation is
|C̃|; hence, we have surplus credit of 2|C̃| − |C̃| ≥ 2. The surplus credit is given to the new
large 2ec-block. Clearly, the credit invariant is preserved.

In general, small nodes may be present in G̃. If we apply the above scheme and find
a cycle C̃ incident only to small nodes with |C̃| ≤ 5, then we fail to maintain the credit
invariant (since only |C̃|/3 credits are available for the new large 2ec-block). Consider a
special case when G̃ has a small node A that has a unique neighbour B and B is large; clearly,
there are ≥ 2 parallel edges between A and B. Below, we show that A and B can be merged
to form a new large 2ec-block using an augmentation of net cost one, rather than two, by
deleting one or more unit-edges of A; then we have surplus credit ≥ 2 for the new large
2ec-block. For example, if A is a 3-cycle of H, then there exists a unit-edge uw of A such
that G has edges uv1 and wv2 where v1, v2 ∈ B; so the augmentation adds the unit-edges
uv1 and wv2 to H and discards uw from H.

u

v

B1

B2

B3

B4

(a)

B1

B2

B3

B4

C̃

(b)

u

v

B1

B2

Bnew

(c)

B1

B2

Bnew

C̃

(d) (e)

Figure 2 Two iterations of our gluing step are illustrated. At each iteration, solid lines indicate
unit-edges of H, dashed lines indicate zero-edges of H, and (blue) dash-dotted lines indicate edges
of E(G) − E(H). Subfigures (a), (b) show Iteration 1. (a) The input graph G and a bridgeless
2-edge cover H of G. (b) The graph G̃ of the graphs G, H in (a). The small node B4 has a unique
neighbour B3 which is large. The first iteration augments via C̃ = B4, B3, B4. Subfigures (c),
(d) show Iteration 2. (c) The graphs G and H after the first iteration. B3 and B4 have been
merged to form Bnew by adding two unit-edges to H and deleting the unit-edge uv from H. (d) The
graph G̃ of the graphs G, H in (c). All nodes of G̃ are large. The second iteration augments via
C̃ = B1, B2, Bnew, B1. Subfigure (e) shows the output 2-ECSS of our gluing step.
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We present key definitions and results on small 2ec-blocks in Section 6.1. Our algorithm
for the gluing step is presented in Section 6.2.

6.1 Analysis of small 2ec-blocks
In this subsection, we focus on the small 2ec-blocks of H and we present the definitions and
results that underlie our algorithm for the gluing step. Recall that G has ≥ 12 nodes.

u

v

x

y

B0B1
B2

(a)

u
v

w

xy

B1

B2

B3

(b)

Figure 3 Illustrations of swappable edges and swappable pairs of small 2ec-blocks. Solid lines
indicate unit-edges of H, dashed lines indicate zero-edges of H, and (blue) dash-dotted lines indicate
edges of E(G) − E(H). (a) The 2ec-block B1 has a swappable edge uv, and the 2ec-block B2 has a
swappable pair {x, y}. (b) The 2ec-block B1 has two swappable edges: uv is good, and vw is bad.
The swappable pair {x, y} of the 2ec-block B2 is good.

▶ Definition 21. Let A be a small 2ec-block of H. A unit-edge uw of A is called swappable
if both u and w are attachments of A in G (that is, G has an edge ux where x ∈ V (G) − A
and G has an edge wy where y ∈ V (G) − A).

▶ Definition 22. Let A be a small 2ec-block of H. A pair of nodes {u, w} of A is called a
swappable pair if either (i) uw is a swappable edge of A, or (ii) both u and w are attachments
of A in G, u, w are not adjacent in A (note that A is a 4-cycle in this case), and the other
two nodes of A are adjacent in G (that is, E(G) − E(H) has a “diagonal edge” between the
other two nodes of A).

▶ Definition 23. Let A be a small 2ec-block of H. A swappable pair {u, w} of A is called
good if there are distinct 2ec-blocks Bu and Bw (A ̸= Bu ̸= Bw ̸= A) such that G has an
edge ux where x ∈ Bu and G has an edge wy where y ∈ Bw; otherwise, {u, w} is called a
bad swappable pair of A. A good (respectively, bad) swappable edge of A is defined similarly.

▶ Remark 24. Observe that each iteration merges two or more 2ec-blocks of H (see the
discussion following Proposition 20). Consider a small 2ec-block A of H that stays unchanged
over several iterations. After one of these iterations, a swappable pair {u, w} of A may change
from good to bad, but {u, w} cannot change from bad to good.

▶ Lemma 25. Let A be a small 2ec-block of H. If A is adjacent (in G) to a unique 2ec-block
B, then B is large. (That is, if there is 2ec-block B such that ΓG(V (A)) ⊆ V (B), then B is
large.)

▶ Lemma 26. Let A be a small 2ec-block of H. Then A has at least one swappable pair.
Moreover, if A is a 3-cycle, then A has at least one swappable edge.

▶ Lemma 27. Let A be a small 2ec-block of H. If A is a 3-cycle, and A is adjacent (in G)
to at least two other 2ec-blocks, then it has a good swappable edge.
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Suppose that the current graph H has no good swappable pairs, that is, for every small
2ec-block A of H, every swappable pair of A is bad. To “merge away” the remaining small
2ec-blocks of H, we construct the following auxiliary digraph Daux: there is a node for
each 2ec-block of H, and we call the nodes corresponding to the small 2ec-blocks the red
nodes, and the other nodes the green nodes; for each small 2ec-block A of H and each of its
swappable pairs {u, w}, Daux has an arc (A, B) where B corresponds to the unique 2ec-block
B of H such that ΓG({u, w}) ⊆ V (B) ∪ V (A). Observe that each red node of Daux has at
least one outgoing arc.

▶ Lemma 28. Suppose that there exist no good swappable pairs. Then, Daux does not have
a pair of red nodes A1, A2 such that (A1, A2) is the unique outgoing arc of A1 and (A2, A1) is
the unique outgoing arc of A2 (that is, if Daux has a directed 2-cycle C on the red nodes,
then one of the red nodes incident to C has ≥ 2 outgoing arcs).

By the above lemma, Daux either has an arc (A, B) from a red node A to a green node
B, or it has a directed path A1, A2, A3 on three red nodes. In both cases, we can apply a
merge step to obtain a new large 2ec-block (i.e., a green node) while preserving the credit
invariant. More details are presented in the next subsection.

6.2 Algorithm for the gluing step
In this subsection, we explain the working of the algorithm for the gluing step, based on the
results in the previous subsection.

Consider any small 2ec-block A that has a good swappable pair {u, w} such that u is
adjacent (in G) to another 2ec-block Bu, and w is adjacent (in G) to another 2ec-block Bw,
and A ̸= Bu ≠ Bw ̸= A. Observe that G − V (A) is connected, otherwise, A would be an
S{3, 4} of G (the arguments in the proof of Lemma 25 can be used to verify this statement).
Hence, G̃ − A has a path between Bu and Bw; adding the edges ABu and ABw to this path
gives a cycle C̃ of G̃. We merge the 2ec-blocks incident to C̃ into a new large 2ec-block by
adding the unit-edges corresponding C̃ to H. Moreover, if uw ∈ E(A), then we discard uw

from H, otherwise, A is a 4-cycle (with two zero-edges) and E(G) − E(H) has a unit-edge
f between the two nodes of A − {u, w}, and in this case, we add the edge f to H and we
discard the two unit-edges of A from H. The credit available in H for C̃ is ≥ 4

3 |C̃| and the
net cost of the augmentation is |C̃| − 1; hence, we have surplus credit of 1

3 |C̃| + 1 ≥ 2 (since
|C̃| ≥ 3). The surplus credit is given to the new large 2ec-block.

The gluing step applies the above iteration until there are no good swappable pairs in
the current graph H. Then the auxiliary digraph Daux is constructed. By Lemma 28, Daux

has either (i) an arc (A, B) from a red node A to a green node B, or (ii) a directed path
A1, A2, A3 on three red nodes.

In the first case, A is a small 2ec-block, B is a large 2ec-block, and A has a swappable pair
{u, w} such that A ∪ B contains all neighbours (in G) of {u, w}. We merge A and B into a
new large 2ec-block as follows. We add two unit-edges between A and B to H (one edge is
incident to u and the other edge is incident to w). Moreover, if uw ∈ E(A), then we discard
uw from H , otherwise, A is a 4-cycle (with two zero-edges) and E(G) −E(H) has a unit-edge
f between the two nodes of A − {u, w}, and in this case, we add the edge f to H and we
discard the two unit-edges of A from H . The credit available in H for A ∪B is ≥ 4

3 +2 and the
net cost of the augmentation is one; hence, we have surplus credit of 1

3 + 2 ≥ 2. The surplus
credit is given to the new large 2ec-block. Consider the second case. Then A1, A2, A3 are small
2ec-blocks such that A1 has a swappable pair u1w1 such that ΓG({u1, w1}) ⊆ V (A1) ∪ V (A2),
and A2 has a swappable pair u2w2 such that ΓG({u2, w2}) ⊆ V (A2) ∪ V (A3). We add two
unit-edges between A1 and A2 to H (one edge is incident to u1 and the other edge is incident
to w1), and then we either discard one unit-edge from H (if u1w1 ∈ E(A1)) or we add another

ISAAC 2021



38:16 5/3-Approximation Algorithm for MAP

edge to H and discard two unit-edges of A1 from H (if u1w1 ̸∈ E(A1)). We apply a similar
augmentation to A2 and A3 using the swappable pair {u2, w2}. The credit available in H for
A1 ∪ A2 ∪ A3 is ≥ (3 · 4

3 ) = 4 and the net cost of the augmentation is two; hence, we have
surplus credit of ≥ 4 − 2. The surplus credit is given to the new large 2ec-block.

By repeatedly applying the above iteration (that merges red nodes of Daux into green
nodes), we obtain a current graph H that has no small 2ec-blocks. As discussed above, the
merge step is straightforward when all 2ec-blocks of H are large.

▶ Lemma 29. After every merge step, the subgraph Bnew constructed by that step (that is a
so-called large 2ec-block) is 2EC.
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Abstract
Many public transportation systems are unable to keep up with growing passenger demand as
the population grows in urban areas. The slow or lack of improvement for public transportation
pushes people to use private transportation modes, such as carpooling and ridesharing. However,
the occupancy rate of personal vehicles has been dropping in many cities. In this paper, we describe
a centralized transit system that integrates public transit and ridesharing, which matches drivers
and transit riders such that the riders would result in shorter travel time using both transit and
ridesharing. The optimization goal of the system is to assign as many riders to drivers as possible for
ridesharing. We give an exact approach and approximation algorithms to achieve the optimization
goal. As a case study, we conduct an extensive computational study to show the effectiveness of the
transit system for different approximation algorithms, based on the real-world traffic data in Chicago
City; the data sets include both public transit and ridesharing trip information. The experiment
results show that our system is able to assign more than 60% of riders to drivers, leading to a
substantial increase in occupancy rate of personal vehicles and reducing riders’ travel time.
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1 Introduction

As the population grows in urban areas, commuting between and within large cities is
time-consuming and resource-demanding. Due to growing passenger demand, the number of
vehicles on the road for both public and private transportation has increased to handle the
demand. Public transportation systems are unable to keep up with the demand in terms of
service quality. This pushes people to use personal vehicles for work commute. In the United
States, personal vehicles are the main transportation mode [6]. However, the occupancy rate
of personal vehicles in the U.S. is 1.6 persons per vehicle in 2011 [12, 24] (and decreased to
1.5 persons per vehicle in 2017 [6]), which can be a major cause for congestion and pollution.
This is the reason municipal governments encourage the use of public transit; the major
drawback of public transit is the inconvenience of last mile and/or first mile transportation
compared to personal vehicles [28]. With the increasing popularity in ridesharing/ridehailing
service, there may be potential in integrating private and public transportation. From the
research report of [9], it is recommended that public transit agencies should build on mobility
innovations to allow public-private engagement in ridesharing because the use of shared
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modes increases the likelihood of using public transit. As pointed out by Ma et al. [20], some
basic form of collaboration between MoD (mobility-on-demand) services and public transit
already exists (for first and last mile transportation). There is an increasing interest for
collaboration between private companies and public sector entities [22].

The spareness of transit networks usually is the main cause of the inconvenience in public
transit. Such transit networks have infrequent transit schedule and can cause customers to
have multiple transfers. In this paper, we investigate the potential effectiveness of integrating
public transit with ridesharing to increase ridership in such sparse transit networks and
reduce traffic congestion for work commute (not very short trips). For example, people who
drive their vehicles to work can pick-up riders, who use public transit regularly, at designated
locations and drop-off them at some transit stops, and then those riders can take public
transit to their destinations. In this way, riders are presented with a cheaper alternative
than ridesharing for the entire trip, and it is more convenient than using public transit only.
The transit system also gets a higher ridership, which matches the recommendation of [9] for
a more sustainable transportation system. Our research focuses on a centralized system that
is capable of matching drivers and riders satisfying their trips’ requirements while achieving
some optimization goal; the requirements of a trip may include an origin and a destination,
time constraints, capacity of a vehicle, and so on. When a rider is assigned a driver, we call
this ridesharing route, and it is compared with the fastest public transit route for this rider
which uses only public transit. If the ridesharing route is faster than the public transit route,
the ridesharing route is provided to both the rider and driver. To increase the number of
rider participants, our system-wide optimization goal is to maximize the number of riders,
each of whom is assigned a ridesharing route. We call this the maximization problem (formal
definition in Section 2).

In the literature, there are many papers about standalone ridesharing/carpooling, from
theoretical to empirical studies (e.g., [1, 4, 14, 29]). For literature reviews on ridesharing,
readers are referred to [2, 10, 21, 27]. On the other hand, there are only few papers study
the integration of public transit with dynamic ridesharing. Aissat and Varone [3] and Huang
et al. [17] proposed approaches which find a route with ridesharing that substitutes part of a
public transit route for each rider in the first-come first-serve basis (system-wide optimization
goal is not considered). Ma [19] and Stiglic et al. [26] proposed models to integrate ridesharing
and public transit as graph matching problems to achieve system-wide optimization goals;
their approaches are similar, except the work in [26] supports more rideshare match types.
The graph matching problems in [19, 26] are formulated as integer linear program (ILP) and
solved by standard branch and bound (CPLEX). The optimization goal in [19] is to minimize
the cost related to waiting time and travel time, but ridesharing routes are not guarantee to
be better than transit route. Although the optimization goal in [26] aligns with ours, there
are some limitations in their approach; they limit at most two riders for each rideshare match,
each rider must travel to the transit stop that is closest to the rider’s destination, and more
importantly, ridesharing routes assigned to riders can be longer than public transit routes.

In this paper, we use a similar model as in [19, 26]. We extend the work in [26] to eliminate
the limitations described above and give approximation algorithms for the optimization
problem to ensure solution quality. Our discrete algorithms allow to control the trade-off
between quality and computational time. Our main contributions are summarized as follows:
1. We give an exact algorithm approach (an ILP formulation based on a hypergraph

representation) for integrating public transit and ridesharing.
2. We prove our maximization problem is NP-hard and give a 2-approximation algorithm

for the problem. We show that previous O(k)-approximation algorithms [5, 7] for the
k-set packing problem are 2-approximation algorithms for our maximization problem.
Our algorithm is more time and space efficient than previous algorithms.
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3. As a case study, we conduct an extensive numerical study based on real-life data in
Chicago City to evaluate the potential of having an integrated transit system and the
effectiveness of different approximation algorithms.

The rest of the paper is organized as follows. In Section 2, we give the preliminaries of the
paper, describe a centralized system that integrates public transit and ridesharing, and define
the maximization problem. In Section 3, we describe our exact algorithm approach. We then
propose approximation algorithms in Section 4. We discuss our numerical experiments and
results in Section 5. Finally, Section 6 concludes the paper.

2 Problem definition and preliminaries

In the problem multimodal transportation with ridesharing (MTR), we have a centralized
system, and for every fixed time interval, the system receives a set A = D ∪ R of trips with
D ∩ R = ∅, where D is the set of driver trips and R is the set of rider trips. Each trip is
expressed by an integer label i and consists of an individual, a vehicle (for driver trip) and
some requirements. A connected public transit network with a fixed timetable T is given.
We assume that for any source o and destination d in the public transit network, T gives the
fastest travel time from o to d. A ridesharing route πi for a rider i ∈ R is a travel plan using
a combination of public transportation and ridesharing to reach i’s destination satisfying i’s
requirements, whereas a public transit route π̂i for a rider i is a travel plan using only public
transportation. The multimodal transportation with ridesharing problem asks to provide at
least one feasible route (πi or π̂i) for every rider i ∈ R. We denote an instance of multimodal
transportation with ridesharing problem by (N, A, T ), where N is an edge-weighted directed
graph (network) for both private and public transportation. We call a public transit station
or stop just station. The terms rider and passenger are used interchangeably (although
passenger emphasizes a rider has been provided with a ridesharing route).

The requirements of each trip i in A are specified by i’s parameters submitted by the
individual. The parameters of a trip i contain an origin location oi, a destination location di,
an earliest departure time αi, a latest arrival time βi and a maximum trip time γi. A driver
trip i also contains a capacity ni of the vehicle, a limit δi on the number of stops a driver
wants to make to pick-up/drop-off passengers, and an optional path to reach its destination.
The maximum trip time γi of a driver i includes a travel time from oi to di and a detour time
limit i can spend for offering ridesharing service. A rider trip i also contains an acceptance
rate θi for a ridesharing route πi, that is, πi is given to rider i if t(πi) ≤ θi · t(π̂i) for every
public transit route π̂i and 0 < θi ≤ 1, where t(·) is the travel time. Such a route πi is called
an acceptable ridesharing route (acceptable route for brevity). For example, suppose the best
public transit route π̂i takes 100 minutes for i and θi = 0.9. An acceptable route πi implies
that t(πi) ≤ θi · t(π̂i) = 90 minutes. We consider two match types for practical reasons.

Type 1 (rideshare-transit): a driver may make multiple stops to pick-up different
passengers, but makes only one stop to drop-off all passengers. In this case, the pick-up
locations are the passengers’ origin locations, and the drop-off location is a public station.
Type 2 (transit-rideshare): a driver makes only one stop to pick-up passengers and
may make multiple stops to drop-off all passengers. In this case, the pick-up location is a
public station and the drop-off locations are the passengers’ destination locations.

Riders and drivers specify one of the match types to participate in; they are allowed to choose
both in hope to increase the chance being selected, but the system will assign them only one
of the match types such that the optimization goal of the MTR problem is achieved, which
is to assign acceptable routes to as many riders as possible. Formally, the maximization
problem we consider is to maximize the number of passengers, each of whom is assigned an
acceptable route πi for every i ∈ R.
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For a driver i and a set J ⊆ R of riders, σ(i) = {i} ∪ J is called a feasible match if the
routes for all trips of σ(i) satisfy the requirements (constraints) specified by the parameters
of the trips collectively as listed below (a summary of notation and constraints can be found
in [13], Section 3.2):
1. Ridesharing route constraint: for J = {j1, . . . , jk}, there is a path (oi, oj1 , . . . , ojk

, s, di) in
N , where s is the drop-off location for Type 1 match; or there is a path (oi, s, dj1 , ..., djk

, di)
in N , where s is the pick-up location for Type 2 match.

2. Capacity constraint: 1 ≤ |J | ≤ ni.
3. Acceptable constraint: each passenger j ∈ J is given an acceptable route πj offered by i.
4. Travel time constraint: each trip j ∈ σ(i) departs from oj no earlier than αj , arrives at

dj no later than βj , and the total travel duration of j is at most γj .
5. Stop constraint: the number of unique locations visited by driver i to pick-up (for Type 1)

or drop-off (for Type 2) all passengers of σ(i) is at most δi.
Two feasible matches σ(i), σ(i′) are disjoint if σ(i) ∩ σ(i′) = ∅. Then, the maximization
problem considered is to find a set of pairwise disjoint feasible matches such that the number
of passengers included in the feasible matches is maximized.

Intuitively, a rideshare-transit (Type 1) feasible match σ(i) is that all passengers in σ(i)
are picked-up at their origins and dropped-off at a station, and then i drives to destination
di while each passenger j of σ(i) takes transit to destination dj . A transit-rideshare (Type 2)
feasible match σ(i) is that all passengers in σ(i) are picked-up at a station and dropped-off
at their destinations, and then i drives to destination di after dropping the last passenger.
We give algorithms to find pairwise disjoint feasible matches to maximize the number of
passengers included in the matches. We describe our algorithms for Type 1 only. Algorithms
for Type 2 can be described with the constraints on the drop-off location and pick-up location
of a driver exchanged, and we omit the description. Further, it is not difficult to extend to
other match types, such as rideshare only and park-and-ride, as described in [26].

3 Exact algorithm

An exact algorithm for the maximization problem is presented in this section, which is similar
to the matching approach described in [4, 23] for ridesharing and in [19, 26] for MTR. The
exact algorithm is summarized as follows. First, we compute all feasible matches for each
driver i. Then, we create a bipartite (hyper)graph H(D, R, E), where D(H) is the set of
drivers, and R(H) is the set of riders. There is a hyperedge e = (i, J) in E(H) between
i ∈ D(H) and a non-empty subset J ⊆ R(H) if {i} ∪ J is a feasible match, denoted by σJ (i),
for driver i. An example is given in Figure 1. Any driver i and rider j with no feasible match
is removed from D(H) and R(H) respectively, namely, no isolated vertex (such riders must
use public transit routes). For an edge e = (i, J), let A(e) = {i} ∪ J and p(e) = |J | be the

Figure 1 A bipartite hypergraph for all possible matches of an instance (N, A, T ).
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number of riders represented by e. For a trip j ∈ A, define Ej = {e ∈ E | j ∈ A(e)} to be
the set of edges in E associated with j. To solve the maximization problem, we give an
integer program (ILP) formulation:

maximize
∑

e∈E(H)

p(e) · xe (1)

subject to
∑

e∈Ej

xe ≤ 1, ∀ j ∈ A (2)

xe ∈ {0, 1}, ∀ e ∈ E(H) (3)

The binary variable xe indicates whether the edge e = (i, J) is in the solution (xe = 1)
or not (xe = 0). If xe = 1, it means that all passengers in J are served by i. Inequality
(2) in the ILP formulation guarantees that each driver serves at most one feasible set of
passengers and each passenger is served by one driver. Note that the ILP (1)-(3) is similar
to a set packing formulation. An advantage of this ILP formulation is that the number of
constraints is substantially decreased, compared to traditional ridesharing formulation. From
Observation 1 in [25], it is not difficult to see that the following result holds (a proof of
Theorem 1 is given in [13], Sections 3.1).

▶ Theorem 1. Given a bipartite graph H(D, R, E) representing an instance of the multimodal
transportation with ridesharing maximization problem, an optimal solution to the ILP (1)-(3)
is an optimal solution to the maximization problem and vice versa.

Computing feasible matches. Let i be a driver in D and ni be the capacity of i (maximum
number of riders i can serve). The maximum number of feasible matches for i is

∑ni

p=1
(|R|

p

)
.

Assuming the capacity ni is a small constant (which is reasonable in practice), the above
summation is polynomial in R, that is, O((|R| + 1)ni). Let K = maxi∈D ni be the maximum
capacity among all vehicles (driver trips). Then, in the worst case, |E(H)| = O(|D|·(|R|+1)K).
We compute all feasible matches for each trip in two phases. In phase one, for each driver i,
we find all feasible matches σ(i) = {i, j} with one rider j. In phase two, for each driver i, we
compute all feasible matches σ(i) = {i, j1, .., jp} with p riders, based on the feasible matches
σ(i) with p − 1 riders computed previously, for p = 2 and upto the number of passengers i

can serve. Complete description and algorithms (Algorithm 1 for phase one and Algorithm 2
for phase two) for computing the feasible matches can be found in Sections 3.2.1 and 3.2.2
of [13]. We make two simplifications in our algorithms:

Given a source station so and a destination di of trip i with departure time t at so, we
use a simplified transit system in our experiments to calculate the fastest public transit
route from so to di.
We use a simplified model for the transit waiting time and ridesharing service time (time
it takes to pick-up and drop-off riders, walking time between locations and stations).

As shown in [13](Section 3.2.2), we compute a feasible path with minimum travel time for
driver i to pick-up p passengers in each feasible match σ(i).

4 NP-hardness and approximation algorithms

We show that the maximization problem is NP-hard and give approximation algorithms for
the problem. When every edge in H(D, R, E) consists of only two vertices (one driver and
one passenger), the maximization problem is equivalent to the maximum matching, which
can be solved in polynomial time (e.g., [16]). However, if the edges consist of more than two
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vertices, they become hyperedges. In this case, the ILP (1)–(3) becomes a formulation of
the maximum weighted set packing problem (MWSP), which is NP-hard [11, 18]. In fact,
ILP (1)–(3) formulation gives a special case of MWSP (due to the structure of H(D, R, E)).
We prove that this special case is also NP-hard, and by Theorem 1, the maximization problem
is NP-hard (a proof of Theorem 2 is in [13], Section 4.1).

▶ Theorem 2. The maximization problem is NP-hard.

Next, we describe approximation algorithms for the maximization problem. For consistency,
we follow the convention in [5, 7] that a ρ-approximation algorithm for a maximization
problem is defined as ρ · w(C) ≥ OPT for ρ > 1, where w(C) and OPT are the values of
approximation and optimal solutions respectively.

4.1 2-Approximation algorithm
We first give a simple 2-approximation algorithm for our maximization problem. For a
maximization problem instance H(D, R, E), we use Γ to denote a current partial solution,
which consists of a set of matches represented by the hyperedges in E(H). Let P (Γ) =

⋃
e∈Γ Je

(called covered passengers). Initially, Γ = ∅. In each iteration, we add a match with the most
number of uncovered passengers to Γ, that is, select an edge e = (i, Je) such that |Je \ P (Γ)|
is maximum, and then add e to Γ. Remove Ee = ∪j∈A(e)Ej from E(H) (Ej is defined in
Section 3). Repeat until P (Γ) = R or |Γ| = |D|. The pseudo code of ImpGreedy is shown
in Algorithm 3. In the ImpGreedy algorithm, when an edge e is added to Γ, Ee is removed
from E(H), so Property 3 holds for Γ.

▶ Property 3. For every i ∈ D, at most one edge e from Ei can be selected in any solution.

Algorithm 3 ImpGreedy Algorithm.

input : The hypergraph H(D, R, E) for problem instance (N, A, T )
output : A solution Γ to (N, A, T ) with 2-approximation ratio

1 Γ = ∅; P (Γ) = ∅;
2 while (P (Γ) ̸= R and |V (Γ)| < |D|) do
3 compute e = argmaxe∈E(H)|Je \ P (Γ)|, Γ = Γ ∪ {e}, and remove Ee from E(H);
4 update P (Γ);
5 end

4.1.1 Analysis of ImpGreedy Algorithm
Let Γ = {x1, x2, . . . , xa} be a solution found by Algorithm 3, where xi is the ith edge
added to Γ. Throughout the analysis, we use OPT to denote an optimal solution, that is,
P (OPT ) ≥ P (Γ). Further, Γi =

⋃
1≤b≤i xb for 1 ≤ i ≤ a, Γ0 = ∅ and Γa = Γ. The driver

of match xi is denoted by d(xi). The main idea of our analysis is to add up the maximum
difference between the number of covered passengers by selecting xi in Γ and not selecting xi

in OPT . For each xi ∈ Γ, by Property 3, there is at most one y ∈ OPT with d(y) = d(xi).
We order OPT and introduce dummy edges to OPT such that d(yi) = d(xi) for 1 ≤ i ≤ a.
Formally, for 1 ≤ i ≤ a, define

OPT (i) = {y1, . . . , yi | 1 ≤ b ≤ i, d(yb) = d(xb) if yb ∈ OPT, otherwise yb a dummy edge}.
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A dummy edge yb ∈ OPT (i) is defined as d(yb) = d(xb) with Jyb
= ∅. The gap of an edge

xi ∈ Γ is defined as

gap(xi) = |Jyi | − |Jxi \ P (Γi−1)| + |J ′
xi

|,

where J ′
xi

= (Jxi
\P (Γi−1))∩P (OPT \Γ) is the maximum subset of passengers in Jxi

\P (Γi−1)
that are also covered in OPT \Γ. The intuition is that the sum of gap(xi) for all xi ∈ Γ states
the maximum possible number of passengers may not be covered by Γ. Let P (OPT (i)) =⋃

1≤b≤i Jyb
and P (OPT ′(i)) =

⋃
1≤b≤i J ′

xb
for any i ∈ [1, . . . , a]. Then the maximum gap

between Γ and OPT can be calculated as
∑

x∈Γa
gap(x) = |P (OPT (a))| + |P (OPT ′(a))| −

|P (Γa)|. First, we show that P (OPT ) = P (OPT (a)) ∪ P (OPT ′(a)).

▶ Proposition 4. Let Γ = {x1, . . . , xa}, P (OPT (a)) =
⋃

1≤i≤a Jyi
and P (OPT ′(a)) =⋃

1≤i≤a J ′
xi

. Then, P (OPT ) = P (OPT (a)) ∪ P (OPT ′(a)).

Proof. By definition, P (OPT ) = P (OPT (a)) ∪ P (OPT \ OPT (a)). For any z in OPT \
OPT (a), d(z) ̸= d(x) for every x ∈ Γ. If Jz \ P (Γ) ̸= ∅, then z would have been found
and added to Γ by Algorithm 3. Hence, Jz \ P (Γ) = ∅, implying Jz ⊆ P (OPT ′(a)) and
P (OPT \ OPT (a)) ⊆ P (OPT ′(a)). ◀

▶ Lemma 5. Let OPT be an optimal solution and Γ = {x1, x2, . . . , xa} be a solution found by
the algorithm. For any 1 ≤ i ≤ a,

∑
x∈Γi

gap(x) = |P (OPT (i))| − |P (Γi)| + |P (OPT ′(i))| ≤
|P (Γi)|.

Proof. Recall that OPT (i) = {y1, . . . , yi} as defined above. For yb ∈ OPT (i), 1 ≤ b ≤
i, d(yb) = d(xb). We prove the lemma by induction on i. Base case i = 1: |P (OPT (1))| −
|P (Γ1)| + |P (OPT ′(1))| ≤ |P (Γ1)|. By definition, gap(x1) = |Jy1 | − |Jx1 \ Γ0| + |J ′

x1
|. Since

x1 is selected by the algorithm, it must be that |Jx1 | ≥ |Ju| for all u ∈ V (G′), so |Jy1 | ≤ |Jx1 |.
Thus,

gap(x1) = |Jy1 | − |Jx1 \ Γ0| + |J ′
x1

|
≤ |J ′

x1
| ≤ |Jx1 |.

Assume the statement is true for i−1 ≥ 1, that is,
∑

x∈Γi−1
gap(x) ≤ |P (Γi−1)|, and we prove

for i ≤ a. By the induction hypothesis, both P (OPT (i−1)) and P (OPT ′(i−1)) are included
in the calculation of

∑
x∈Γi−1

gap(x). More precisely,
∑

x∈Γi−1
gap(x) = |P (OPT (i − 1))| −

|P (Γi−1)| + |P (OPT ′(i − 1))| ≤ |P (Γi−1)|. If |Jyi
| ≤ |Jxi

\ P (Γi−1)|, the lemma is true since
we can assume |J ′

xi
| ≤ |Jxi

|. Suppose |Jyi
| > |Jxi

\ P (Γi−1)|. Before xi is selected, the
algorithm must have considered yi and found that |Jxi

\ P (Γi−1)| ≥ |Jyi
\ P (Γi−1)|. Then,

|Jyi | > |Jxi \ P (Γi−1)| ≥ |Jyi \ P (Γi−1)|, implying Jyi ∩ P (Γi−1) ̸= ∅. We have

|Jxi
\ P (Γi−1)| + |Jyi

∩ P (Γi−1)| ≥ |Jyi
\ P (Γi−1)| + |Jyi

∩ P (Γi−1)| = |Jyi
|. (4)

Let J ′′
yi

⊆ (Jyi
∩P (Γi−1)) be the set of passengers covered by P (OPT (i−1))∪P (OPT ′(i−1)),

namely J ′′
yi

⊆ (P (OPT (i − 1)) ∪ P (OPT ′(i − 1))). Then by the induction hypothesis,∑
x∈Γi−1

gap(x) ≤ P (Γi−1) − |Jyi ∩ P (Γi−1)| + |J ′′
yi

|. (5)

Adding
∑

x∈Γi−1
gap(x) and gap(xi) together:
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(
∑

x∈Γi−1

gap(x)) + (gap(xi))

= |P (OP T (i − 1))| − |P (Γi−1)| + |P (OP T ′(i − 1))| + |Jyi \ J ′′
yi

| − |Jxi \ P (Γi−1)| + |J ′
xi

|
≤ (|P (Γi−1)| − |Jyi ∩ P (Γi−1)| + |J ′′

yi
|) + |Jyi \ J ′′

yi
| − |Jxi \ P (Γi−1)| + |J ′

xi
| by (5)

= |P (Γi−1)| − |Jyi ∩ P (Γi−1)| + |Jyi | − |Jxi \ P (Γi−1)| + |J ′
xi

|
≤ |P (Γi−1)| − |Jyi ∩ P (Γi−1)| + |Jyi ∩ P (Γi−1)| + |J ′

xi
| by (4)

= |P (Γi−1)| + |J ′
xi

| ≤ |P (Γi−1)| + |Jxi \ P (Γi−1)| by defintion of J ′
xi

= P (Γi)

Therefore, by the property of induction, the lemma holds. ◀

▶ Theorem 6. Given the hypergraph instance H(D, R, E). Algorithm 3 computes a solution
Γ to H such that 2|P (Γ)| ≥ |P (OPT )|, where OPT is an optimal solution, with running
time O(|D| · |E|) and |E| ≤ |D| · (|R| + 1)K .

Proof. Let Γ = {x1, . . . , xa}, P (OPT (a)) =
⋃

1≤i≤a Jyi and P (OPT ′(a)) =
⋃

1≤i≤a J ′
xi

. By
Proposition 4, P (OPT ) = P (OPT (a)) ∪ P (OPT ′(a)), and by Lemma 5, |P (OPT (a))| +
|P (OPT ′(a))| − |P (Γa)| ≤ |P (Γa)|. We have

|P (OPT )| ≤ |P (OPT (a))| + |P (OPT ′(a))| ≤ 2|P (Γ)|.

In each iteration of the while-loop, it takes O(E) to find an edge x with maximum |Jx \P (Γ)|,
and there are at most |D| iterations. Hence, Algorithm 3 runs in O(|D| · |E|) time. ◀

4.2 Approximation algorithms for maximum weighted set packing
We briefly explain the algorithms for the maximum weighted set packing problem, which
solve our maximization problem. Given a universe U and a family S of subsets of U , a
packing is a subfamily C ⊆ S of sets such that all sets in C are pairwise disjoint. Every subset
S ∈ S has at most k elements and is given a real weight. The maximum weighted k-set
packing problem (MWSP) asks to find a packing C with the largest total weight. We can see
that the maximization problem on H(D, R, E) is a special case of the maximum weighted
k-set packing problem, where the trips of D ∪ R is the universe U and E(H) is the family
S of subsets, and every e ∈ E(H) represents at most k = K + 1 trips (K is the maximum
capacity of all vehicles). Hence, solving MWSP also solves our maximization problem. Hazan
et al. [15] showed that the k-set packing problem cannot be approximated to within O( k

lnk )
in general unless P = NP. Chandra and Halldórsson [7] presented a 2(k+1)

3 -approximation
and a 2(2k+1)

5 -approximation algorithms (refer to as BestImp and AnyImp respectively),
and Berman [5] presented a ( k+1

2 + ϵ)-approximation algorithm (refer to as SquareImp) for
the weighted k-set packing problem (here, k = K + 1), where the latter still has the best
approximation ratio. These three algorithms in [5, 7] (AnyImp, BestImp and SquareImp)
solve the weighted k-set packing problem by first transferring it into a weighted independent
set problem, which consists of a vertex weighted graph G(V, E) and asks to find a maximum
weighted independent set in G(V, E). These algorithms use a greedy algorithm (refer to as
Greedy) to find an initial independent set solution I and then use local searches to improve
the weight of the solution. Algorithm Greedy can be summarized as follows: Select a vertex
u ∈ V (G) with largest weight and add u to I. Eliminate u and all u’s neighbors from being
selected. Repeatedly select the largest weight vertex until all vertices are eliminated from G.
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To apply these algorithms to our maximization problem, we need to convert the bipartite
hypergraph H(D, R, E) to a weighted independent set instance G(V, E). The details of the
conversion can be found in [13], Section 4.3. Notice that Algorithm 3 is a simplified version
of algorithm Greedy, and Greedy is used to get an initial solution in algorithms AnyImp,
BestImp and SquareImp. From Theorem 6, we have Corollary 7.

▶ Corollary 7. Greedy, AnyImp, BestImp and SquareImp algorithms compute a solution to
H(D, R, E) with 2-approximation ratio.

Since Algorithm 3 finds a solution directly on H(D, R, E) without converting it to G(V, E)
and solving the independent set problem of G(V, E), it is more time and space efficient than
the algorithms for MWSP. In the rest of this paper, Algorithm 3 is referred to as ImpGreedy.

5 Numerical experiments

We create a simulation environment consists of a centralized system that integrates public
transit and ridesharing. We implement our proposed approximation algorithm (ImpGreedy)
and Greedy, AnyImp and BestImp algorithms for the k-set packing problem to evaluate
the benefits of having an integrated transportation system supporting public transit and
ridesharing. The exact algorithm, ILP (1)-(3), is not evaluated because it takes too long to
complete for the instances in our study. The results of SquareImp are not discussed because its
performance is same as AnyImp; this is due to the implementation of the search/enumeration
order of the vertices and edges in the independent set instance G(V, E) being fixed, and
each vertex in V (G) has integer weight. We use a simplified transit network of Chicago to
simulate the public transit and ridesharing.

5.1 Description and characteristics of datasets
We built a simplified transit network of Chicago to simulate practical scenarios of public
transit and ridesharing. The roadmap data of Chicago is retrieved from OpenStreetMap1.
We used the GraphHopper2 library to construct the logical graph data structure of the
roadmap. The Chicago city is divided into 77 officially community areas, each of which is
assigned an area code. We examined two different dataset in Chicago to reveal some basic
traffic pattern (the datasets are provided by the Chicago Data Portal (CDP) and Chicago
Transit Authority (CTA)3, maintained by the City of Chicago). The first dataset is bus
and rail ridership, which shows the monthly averages and monthly totals for all CTA bus
routes and train station entries. We denote this dataset as PTR, public transit ridership.
The PTR dataset contains data for the month June, 2019. The second dataset is rideshare
trips reported by Transportation Network Providers (sometimes called rideshare companies)
to the City of Chicago. We denote this dataset as TNP. The TNP dataset range is chosen
from June 3rd, 2019 to June 30th, 2019, total of 4 weeks of data. Table 1 and Table 2 show
some basic stats of both datasets.

We examined the 12 busiest bus routes based on the total ridership and selected 7 out of
the 12 routes as listed in Table 1 to build the transit network. We also selected all major
trains/metro lines within Chicago. Each record in the TNP dataset describes a passenger trip

1 Planet OSM. https://planet.osm.org
2 GraphHopper 1.0. https://www.graphhopper.com
3 CDP. https://data.cityofchicago.org. CTA. https://www.transitchicago.com
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Table 1 Basic stats of the PTR dataset.

Total Bus Ridership 20,300,416
Total Rail Ridership 19,282,992
12 busiest bus routes 3, 4, 8, 9, 22, 49, 53,

66, 77, 79, 82, 151
The busiest bus routes
selected

4, 9, 49, 53, 77, 79,
82

Table 2 Basic stats of the TNP dataset.

# of original records 8,820,037
# of records considered 7,427,716
# of shared trips 1,015,329
# of non-shared trips 6,412,387
The most visited com-
munity areas selected

1, 4, 5, 7, 22, 23,
25, 32, 41, 64, 76

served by a driver who provides the rideshare service; a trip record consists of the pick-up and
drop-off time and the pick-up and drop-off community area of the trip, and exact locations
are provided sometimes. We selected 11 of the 20 most visited areas as listed in Table 2
(area 32 is Chicago downtown, areas 64 and 76 are airports) to build the transit network
for our simulation. From the selected bus routes, trains and community areas, we create a
simplified public transit network connecting the selected areas, depicted in Figure 2. More
details on selecting areas and the public transit network are included in [13] (Section 5.1).

Figure 2 Simplified public transit network of Chicago with 13 urban communities and 3 designated
locations. Figure on the right has the Chicago city map overlay for scale.

The travel time between two locations uses the fastest/shortest route computed by
GraphHopper, based on personal cars. The shortest paths are computed in real-time,
unlike many previous simulations where the shortest paths are precomputed and stored. As
stated in Section 3, waiting time and service time are considered in a simplified model; we
multiply a small constant ϵ > 1 to the fastest route to mimic waiting time and service time.

5.2 Generating instances
In our simulation, we partition each day from 6:00 to 23:59 into 72 time intervals (each has
15 minutes), and we only focus on weekdays. To see ridesharing traffic pattern, we calculated
the average number of served trips per hour for each day of the week using the TNP dataset.
The dashed (orange) line and solid (blue) line of the plot in Figure (3a) represent shared
trips and non-shared trips respectively. A set of trips are called shared trips if this set of trips
are matched for the same vehicle consecutively such that their trips may potentially overlap
(one or more passengers are in the same vehicle). For all other trips, we call them non-shared
trips. The number of trips generated for each interval is plotted in Figure (3b), which is a
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(a) Average numbers of shared and non-shared trips in TNP
dataset.

(b) Total number of driver and rider
trips generated for each time interval.

Figure 3 Plots for the number of trips for every hour from data and generated.

scaled down and smoothed version of the TNP dataset for weekdays. The ratio between
the number of drivers and riders generated is roughly 1:3 (1 driver and 3 riders) for each
interval. Such a ratio is chosen because it should reflect the system’s potential as capacity of
3 is common for most vehicles. For each time interval, we first generate a set R of riders and
then a set D of drivers. We do not generate a trip where its origin and destination are close.

The main idea of generating rider trips is described as follows. Each day is divided into 6
different consecutive time periods (each consists of multiple time intervals): morning rush,
morning normal, noon, afternoon normal, afternoon rush, and evening time periods. Each
time period determines the probability and distribution of origins and destinations. Based
on the PTR dataset and Rail Capacity Study [8], many riders are going into downtown in
the morning and leaving downtown in the afternoon. To generate a rider trip j during a time
period, we first select a pick-up area and a drop-off area randomly following the probability
distribution for the time period (e.g., downtown is selected with higher probability as drop-off
area for the morning rush period). The origin oj and destination dj are random points
within the pick-up and drop-off areas respectively. The above is repeated until at riders are
generated, where at + at/3 (riders + drivers) is the total number of trips for time interval
t shown in Figure (3b). The probability distribution for each time period and detailed
description of generating rider trips can be found in Section 5.2 of [13].

The main idea of generating driver trips is described as follows. We examined the TNP
dataset to create a grid heatmap (Figure 8 in [13]) for traffic for each hour. Each cell (c, r)
in the heatmap represents the the average number of trips per hour originated from area c

to destination area r in the transit network (Figure 2). Let d(c, r, h) be the value at the cell
(c, r) for origin c, destination r and hour h in the heatmap. Let P (c, h) =

∑
r d(c, r, h) be

the sum of the values of the whole column c for hour h. Given a time interval t in hour h, let
ct be the number of generated riders with origin in area c; and for each area c, we generate
ct/3 drivers such that each driver i has origin oi = c and destination di = r with probability
d(c, r, h)/P (c, h). The probability of selecting an airport as destination is fixed at 5%.

After the origin and destination of a rider/driver trip have been determined, we decide
other parameters of the trip (e.g., the vehicle capacity of a driver i is at most 6). Details of
these parameters are specified in Section 5.2 of [13].

When the number of trips increases, the running time for Algorithm 2 and the time needed
to construct the k-set packing instance also increase. In a practical setup, we may restrict
the number of feasible matches a driver can have. Each match produced by Algorithm 1 is
called a base match. To make the simulation feasible, we heuristically limit the numbers of
base matches for each driver and each rider and the number of total feasible matches for each
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driver. We use (x%, y, z), called reduction configuration (Config for short), to denote that for
each driver i, the number of base matches of i is reduced to x percentage and at most y total
feasible matches are computed for i; and for each rider j, at most z base matches containing
j are used. Details of the reduction procedure can be found in the end of Section 5.2 of [13].

5.3 Computational results
We use the same transit network and same set of generated trip data for all algorithms.
All experiments were implemented in Java and conducted on Intel Core i7-2600 processor
with 1333 MHz of 8 GB RAM available to JVM. Since the optimization goal is to assign
feasible acceptable routes to as many riders as possible, the performance measure is focused
on the number of riders served by ridesharing routes, followed by the total time saved for the
riders as a whole. The base case instance uses the parameter setting described in Section 5.2
and Config (30%, 600, 20). The experiment results are shown in Table 3. The results of

Table 3 Base case solution comparison between the approximation algorithms.

ImpGreedy Greedy AnyImp BestImp
Total number of riders served 27413 27413 28248 28258
Avg number of riders served per interval 380.736 380.736 392.333 392.472
Total time saved of all riders (minute) 354568.2 354568.2 365860.6 365945.8
Avg time saved of riders per interval (minute) 4924.56 4924.56 5,081.40 5082.58
Total number of riders and public transit duration 45314 and 1383743.97 minutes

ImpGreedy and Greedy are aligned since they are essentially the same algorithm – 60.5%
of total passengers are assigned ridesharing routes and 25.6% of total time are saved. The
results of AnyImp and BestImp are similar because of the density of the graph G(V, E). For
AnyImp and BestImp, roughly 62.4% of total passengers are assigned ridesharing routes
and 26.4% of total time are saved. On average, passengers are able to reduce their travel
duration from 30.5 minutes to 22.5 minutes by using public transit plus ridesharing. The
results of these four algorithms are not too far apart. However, it takes too long for AnyImp
and BestImp to run to completion. A 10-second limit is set for both algorithms in each
iteration for finding an independent set improvement. With this time limit, AnyImp and
BestImp run to completion within 15 minutes for almost all intervals. We also recorded the
mean occupancy rate of drivers. The mean occupancy rate is calculated as, in each interval,
the number of passengers served divided by the number of drivers who serve them. The
results are depicted in Figure 9 in [13], which show that mean occupancy rate of a personal
vehicle is 2.9–3 (including the driver) on average. Further discussions can be found in [13]
(Section 5.3).

Another major component of the experiment is to measure the computational time of the
algorithms, which is highly affected by the base match reduction configurations. By reducing
more matches, we are able to improve the running time of AnyImp and BestImp significantly,
but sacrifice performance slightly. We tested 12 different Configs:

Small1 (20%,300,10), Small2 (20%,600,10), Small3 (20%,300,20), Small4-10 (20%,600,20), Medium1
(30%,300,10), Medium2 (30%,600,10), Medium3 (30%,300,20), Medium4-10 (30%,600,20), Large1
(40%,300,10), Large2 (40%,600,10), Large3-10 (40%,300,20), and Large4-10 (40%,600,20).

Configs with label “-10” have a 10-second limit to find an independent set improvement,
and all other Configs have 20-second limit. Notice that all 12 Configs have the same sets
of driver/rider trips and base match sets but generate different feasible match sets. The
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Figure 4 Average performance of peak and off-peak hours for different configurations.

performance and running time results of all 12 Configs are depicted in Figures 4 and 5
respectively. The results are divided into peak and off-peak hours for each Config (averaging
all intervals of peak hours and off-peak hours). The running time of ImpGreedy and Greedy
are within seconds for all Configs for each interval. On the other hand, it may not be practical
to use AnyImp and BestImp for peak hours since they require around 15 minutes for most
Configs. Since AnyImp and BestImp provide better performance than ImpGreedy/Greedy
when each Config is compared side-by-side, one can use ImpGreedy/Greedy for peak hours
and AnyImp/BestImp for off-peak hours so that it becomes practical. The increase in
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Figure 5 Average running time of peak and off-peak hours for different configurations.

performance from Small1 to Small3 is much larger than that from Small1 to Small2 (same
for Medium and Large), implying any parameter in a Config should not be too small.
The increase in performance from Large1 to Large4 is higher than that from Medium1 to
Medium4 (similarly for Small). Therefore, a balanced configuration is more important than
a configuration emphasizes only one or two parameters.

Because ImpGreedy does not create the independent set instance, it runs quicker than
Greedy. More importantly, ImpGreedy uses less memory space than Greedy does. We
tested ImpGreedy and Greedy with the following Configs: Huge1 (100%,600,10), Huge2
(100%,2500,20) and Huge3 (100%,10000,30) (these Configs have the same sets of driver/rider
trips and base match sets as those in the previous 12 Configs). The focus of these Configs
is to see if Greedy can handle large number of feasible matches. The results are shown in
Table 4. Greedy cannot run to completion for all Configs because in many intervals, the whole
graph G(V, E) of the independent set instance is too large to hold in memory. The average
number of edges for afternoon peak hours is 0.02, 0.38 and 5.47 billion for Huge1, Huge2 and
Huge3 respectively. Further, the time it takes to create G(V, E) excess practicality. Hence,
using Greedy (AnyImp/BestImp) for large instances may not be practical. In addition, the
performance of ImpGreedy with Huge3 is better than that of AnyImp/BestImp with Large4.

ISAAC 2021
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Table 4 The results of ImpGreedy and Greedy using Unlimited reduction configurations.

ImpGreedy Huge1 Huge2 Huge3
Avg running time for peak/off-peak hours (sec) 0.08 / 0.03 0.43 / 0.12 1.2 / 0.29
Avg number of riders served for peak/off-peak hours 406.9 / 339.0 458.8 / 355.4 484.1 / 361.9
Avg time saved of riders per interval (sec) 284891.8 302774.1 310636.9
Greedy Huge1 Huge2 Huge3
Avg running time N/A N/A N/A
Avg instance size G(V, E) of afternoon peak (|E(G)|) 0.02 billion 0.38 billion 5.47 billion
Avg time creating G(V, E) of afternoon peak (sec) 14.6 320.9 3726.79

We also looked at the total running times of the approximation algorithms including the
time for computing feasible matches (Algorithms 1 and 2). The running time of Algorithm 1
solely depends on computing the shortest paths between the trips and stations. Table 5
shows that Algorithm 1 runs to completion within 500 seconds for each interval on average
for peak hours. As for Algorithm 2, when many trips’ origins/destinations are concentrated

Table 5 Average computational time (in seconds) of peak hours for all algorithms.

Alg1 Alg2 ImpGreedy Greedy AnyImp BestImp Total computational time
ImpGreedy Greedy AnyImp BestImp

Small3 485.2 26.8 0.021 2.0 840.5 876.4 512.1 514.1 1352.5 1388.5
Small4 485.2 28.2 0.029 3.6 599.1 629.9 513.4 517.0 1112.5 1143.3
Medium3 485.2 43.6 0.031 3.7 1312.1 1371.0 532.5 543.0 1840.9 1899.9
Medium4 485.2 50.1 0.048 7.7 971.5 990.0 535.3 543.0 1506.8 1525.3
Large4 485.2 72.0 0.076 12.2 1121.3 1167.2 557.3 569.5 1678.6 1724.4
Huge3 485.2 339.4 1.2 N/A N/A N/A 825.8 N/A N/A N/A

in one area, the running time increases significantly, especially for drivers with high capacity.
Combining the results of this and previous (Table 4) experiments, ImpGreedy is capable of
handling large instances while providing quality solution compared to other approximation
algorithms.

From the experiment results in Figures 4 and 5, it is beneficial to dynamically select
different algorithms and reduction configurations for each interval depending on the number
of trips. With large problem instances, previous approximation algorithms are not efficient
(time and memory consuming), so they require aggressive reduction to reduce the instance
size. On the other hand, ImpGreedy is much faster and capable of handling large instances.
The running time of ImpGreedy can also be an advantage to improve the quality of solutions.
For example, as shown in Figures 4 and 5, for the same set of drivers and riders, ImpGreedy
assigns more riders when taking Meduim/Medium4 as inputs than AnyImp/BestImp on
Small1/Small2, and uses less time than AnyImp/BestImp. When the size of an instance
is not small and a solution must be computed within some time-limit, ImpGreedy has a
distinct advantage over the previous approximation algorithms.

6 Conclusion

Based on real-world transit datasets in Chicago, our study has shown that integrating public
and private transportation can benefit the transit system as a whole, more than 60% of the
passenger are assigned ridesharing routes and able to save 25% of travel time. Majority of the
drivers are matched with at least one passenger, and vehicle occupancy rate has improved
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close to 3 (including the driver) on average. These results suggest that ridesharing can be a
complement to public transit. Our experiments show that the whole system is capable of
handling more than 1100 trip requests in real-time using ordinary computer hardware. The
performance results of ImpGreedy may be further improved by extending it with the local
search strategy. Perhaps the biggest challenge for scalability comes from computing the base
matches (Algorithm 1) since it has to compute many shortest paths; it may be worth to apply
heuristics to speed-up Algorithm 1. To better understand practicality, a more sophisticated
simulation incorporating traffic and transit schedule and demand may be needed.
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Abstract
Sequence alignment supports numerous tasks in bioinformatics, natural language processing, pattern
recognition, social sciences, and other fields. While the alignment of two sequences may be performed
swiftly in many applications, the simultaneous alignment of multiple sequences proved to be naturally
more intricate. Although most multiple sequence alignment (MSA) formulations are NP-hard, several
approaches have been developed, as they can outperform pairwise alignment methods or are necessary
for some applications. Taking into account not only similarities but also the lengths of the compared
sequences (i.e. normalization) can provide better alignment results than both unnormalized or
post-normalized approaches. While some normalized methods have been developed for pairwise
sequence alignment, none have been proposed for MSA. This work is a first effort towards the
development of normalized methods for MSA. We discuss multiple aspects of normalized multiple
sequence alignment (NMSA). We define three new criteria for computing normalized scores when
aligning multiple sequences, showing the NP-hardness and exact algorithms for solving the NMSA
using those criteria. In addition, we provide approximation algorithms for MSA and NMSA for
some classes of scoring matrices.
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1 Introduction

Sequence alignment lies at the foundation of bioinformatics. Several procedures rely on
alignment methods for a range of distinct purposes, such as detection of sequence homology,
secondary structure prediction, phylogenetic analysis, identification of conserved motifs or
genome assembly. On the other hand, alignment techniques have also been reshaped and
found applications in other fields, such as natural language processing, pattern recognition,
or social sciences [1, 3, 8, 18].
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Given its range of applications in bioinformatics, extensive efforts have been made to
improve existing or developing novel methods for sequence alignment. The simpler ones
compare a pair of sequences in polynomial time on their lengths, usually trying to find
editing operations (insertions, deletions, and substitutions of symbols) that transform one
sequence into another while maximizing or minimizing some objective function called edit
distance [16]. This concept can naturally be generalized to align multiple sequences [28],
adding another new layer of algorithmic complexity, though. In this case, most multiple
sequence alignment (MSA) formulations lead to NP-hard problems [13]. Nevertheless, a
variety of methods suitable for aligning multiple sequences have been developed, as they
can outperform pairwise alignment methods on tasks such as phylogenetic inference [21],
secondary structure prediction [12] or identification of conserved regions [24].

In order to overcome the cost of exact solutions, a number of MSA heuristics have
been developed in recent years, most of them using the so-called progressive or iterative
methods [17, 23, 25, 27]. Experimental data suggest that the robustness and accuracy of
heuristics can still be improved, however [28].

Most approaches for pairwise sequence alignment define edit distances as absolute values,
lacking some normalization that would result in edit distances relative to the lengths of the
sequences. However, some applications may require sequence lengths to be taken into account.
For instance, a difference of one symbol between sequences of length 5 is more significant
than between sequences of length 1000. In addition, experiments suggest that normalized
edit distances can provide better results than both unnormalized or post-normalized edit
distances [18]. While normalized edit distances have been developed for pairwise sequence
alignment [6, 18], none have been proposed for MSA to the best of our knowledge.

In this work, we propose exact and approximation algorithms for normalized MSA
(NMSA). This is a first step towards the development of methods that take into account the
lengths of sequences for computing edit distances when multiple sequences are compared.

The remainder of this paper is organized as follows. Section 2 introduces concepts related
to sequence alignment and presents normalized scores for NMSA, followed by the complexity
analysis of NMSA using those scores in Section 3. Next, Sections 4 and 5 describe exact and
approximation algorithms, respectively. Section 6 closes the paper with the conclusion and
prospects for future work.

2 Preliminaries

An alphabet Σ is a finite non-empty set of symbols. A finite sequence s with n symbols in Σ
is seen as s(1) · · · s(n). We say that the length of s, denoted by |s|, is n. The (sub)sequence
s(p) · · · s(q) of s, with 1 ≤ p ≤ q ≤ n, is denoted by s(p : q). If p > q, s(p : q) is the empty
sequence, whose length is zero, and it is denoted by ε. We denote the sequence resulting from
the concatenation of sequences s and t by st. A sequence of n symbols a is denoted by an.
A k-tuple S over Σ∗ is called a k-sequence and we write s1, . . . , sk to refer to S, where si is
the i-th sequence in S. Let Σ- := Σ ∪ {-}, where - ̸∈ Σ and the symbol - is called a space.
Let S = s1, . . . , sk be a k-sequence. An alignment of S is a k-tuple A = [s′

1, . . . , s′
k] over Σ∗

- ,
where (a) each sequence s′

h is obtained by inserting spaces in sh; (b) |s′
h| = |s′

i| for each pair
h, i, with 1 ≤ h, i ≤ k; and (c) there is no j in {1, . . . , k} such that s′

1(j) = . . . = s′
k(j) = -.

Notice that k-tuples over Σ∗
- are written enclosed by square brackets “[ ]”. The sequence

[s′
1(j), . . . , s′

k(j)] is the column j of the aligment [s′
1, . . . , s′

k]. We denote the column j of the
alignment A by A(j) and by A[j1 : j2] the columns j1, j1 + 1, . . . , j2 of A. We say that the
pair [s′

h(j), s′
i(j)] aligns in A or, simply, that s′

h(j) and s′
i(j) are aligned in A, and |A| = |s′

i|
is the length of the alignment A. It is easy to check that maxi{|si|} ≤ |A| ≤

∑
i |si|.
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An alignment can be used to represent editing operations of insertions, deletions and
substitutions of symbols in sequences, where the symbol - represents insertions or deletions. An
alignment can also be represented in the matrix format. Thus, alignments [aaa-, ab--, -cac]
and [-aaa-, ab---, -ca-c] of aaa, ab, cac can be represented respectively as a a a -

a b - -
- c a c

 and

 - a a a -
a b - - -
- c a - c

 .

Let I = {i1, . . . , im} ⊆ {1, . . . , k} be a set of indices such that i1 < · · · < im and let
A = [s′

1, . . . , s′
k] be an alignment of S = s1, . . . , sk. We write SI to denote the m-tuple

si1 , . . . , sim . The alignment of SI induced by A is the alignment AI obtained from the
alignment A, considering only the corresponding sequences in SI and, from the resulting
structure, removing columns where all symbols are -. In the following example, A =
[aaa-, ab--, -cac] is an alignment of aaa, ab, cac and[

a a a
a b -

]
is an alignment of aaa, ab induced by A. We denote by AS the set of all alignments of S.

For a problem P, we call IP the set of instances of P. If P is a decision problem, then
P(I) ∈ {Yes, No} is the image of an instance I. If P is an optimization (minimization)
problem, there is a set Sol(I) for each instance I, a function v defining a non-negative
rational number for each X ∈ Sol(I), and a function optv(I) = minX∈Sol(I){v(X)}. We use
opt instead of optv if v is obvious. Let A(I) be a solution computed by an algorithm A with
input I, and A(I) ≥ opt(I). We say that A is an α-approximation for P if A(I) ≤ α opt(I),
for each I ∈ IP, with α ≥ 1. We say that α is an approximation factor for P.

The alignment problem is a collection of decision and optimization problems whose
instances are finite subsets of Σ∗ and Sol(S) = AS , for each instance S. Function v, used for
scoring alignments, is called criterion for P and we call v[A] the cost of the aligment A. The
v-optimal alignment A of S is such that v[A] = opt(S). Thus, we state the following general
optimization problems using the criterion v:
▶ Problem 1 (Alignment with criterion v). Given a k-sequence S, with k ∈ N, find a v-optimal
alignment of S.

We also need the decision version of the alignment problem with criterion v, where we
are given a k-sequence S and a number d ∈ Q≥, and we want to decide whether there exists
an alignment A of S such that v[A] ≤ d.

Usually the cost of an alignment v is defined from a scoring matrix. A scoring matrix γ

is a rational matrix such that the elements in Σ- are indices of its rows and columns. For
a, b ∈ Σ- and a scoring matrix γ, we denote by γa→b the entry of γ in line a and column b.
The value γa→b defines the score for a substitution if a, b ∈ Σ, for an insertion if a = -, and
for a deletion if b = -. The entry γ-→- is not defined.

Given a scoring function vγ for alignments that depends on a scoring matrix γ, we say
that two scoring matrices γ and ρ are equivalent considering v when vγ [A] ≤ vγ [B] if and
only if vρ[A] ≤ vρ[B] for any pair of alignments A, B of sequences s, t. If ρ is a matrix
obtained from γ by multiplying each entry of γ by a constant c > 0, then vAρ[A] = c vAγ [A]
and vNρ[A] = c vNγ [A], which implies that γ and ρ are equivalent. As a consequence, when
the scoring function is vAγ or vNγ and it is convenient, we can suppose that all entries of γ

are integers instead of rationals, according to the definition.
A k-vector ȷ⃗ = [j1, . . . , jk] is a k-tuple, where ji ∈ N = {0, 1, 2, . . .}. We say that ji is

the i-th element of ȷ⃗. The k-vector 0⃗ is such that all its elements are zero. If ȷ⃗ and h⃗ are
k-vectors, we write ȷ⃗ ≤ h⃗ if ji ≤ hi for each i; and ȷ⃗ < h⃗ if ȷ⃗ ≤ h⃗ and ȷ⃗ ̸= h⃗. A sequence of
k-vectors ȷ⃗1, ȷ⃗2, . . . is in lexicographical order if ȷ⃗i ≤ ȷ⃗i+1 for each i.
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Consider S = s1, . . . , sk a k-sequence with ni = |si| for each i and n⃗ = [n1, . . . , nk]. Let
Vn⃗ = {ȷ⃗ : ȷ⃗ ≤ n⃗} be the set of all k-vectors ȷ⃗ such that ȷ⃗ ≤ n⃗. For example, if k = 3 and
n⃗ = [1, 2, 1], then Vn⃗ = {[x, y, z] : x, y, z ∈ N, x ≤ 1, y ≤ 2, z ≤ 1}. Notice that if ni = n for
all i, then |VS | = (n + 1)k. Define S(ȷ⃗) = s1(j1), . . . , sk(jk) a column ȷ⃗ in S and we say that
S(1 : ȷ⃗) = s1(1 : j1), . . . , sk(1 : jk) is the prefix of S ending in ȷ⃗. Thus, S = S(1 : n⃗). Besides
that, if A is an alignment and v⃗ = [j, j, . . . , j], then A[v⃗] = A(j).

Denote by Bk the set of k-bit vectors [b1, . . . , bk], where bi ∈ {0, 1} for each i. Now,
for b⃗ ≤ ȷ⃗, define b⃗ · S(ȷ⃗) = [x1, . . . , xk] ∈ Σk

- such that xi = si(ji) if bi = 1 and xi = -
otherwise. Therefore, given an alignment A of S(1 : ȷ⃗), there exists b⃗ ∈ Bk, with b⃗ ≤ ȷ⃗, such
that A(|A|) = b⃗ ·S(n⃗). In other words, if n⃗ = [n1, . . . , nk] and b⃗ = [b1, . . . , bk], we have bi = 1
if and only if si(ni) is in the i-th row of the last column of A. We also define the operation
ȷ⃗− b⃗ = [j1 − b1, . . . , jk − bk]. Notice that |Bk| = 2k.

Consider a scoring matrix γ. Let s, t ∈ Σ∗, with n = |s| , m = |t|. A simple criterion for
scoring alignments using the function vAγ follows. For an alignment [s′, t′] of s, t we define

vAγ [s′, t′] =
∑|[s′,t′]|

j=1 γs′(j)→t′(j) .

We say that vAγ [s′, t′] is a vAγ-score of s, t. The optimal function for this criterion is
denoted by optAγ and an alignment A of s, t is called an A-optimal alignment of s, t if
vAγ [A] = optAγ(s, t).

Now, suppose that n ≥ m. Needleman and Wunch [20] proposed an O(n2)-time algorithm
for computing optAγ(s, t). If optAγ is a Levenstein distance, Masek and Paterson [19]
presented an O(n2/ log n)-time algorithm using the “Four Russian’s Method”. Crochemore,
Landau and Ziv-Ukelson [11] extended this result for real arrays, describing an O(n2/ log n)-
time algorithm. Indeed, there is no algorithm to determine optAγ(s, t) in O(n2−δ)-time
for any δ > 0, unless SETH is false [7]. Andoni, Krauthgamer and Onak [2] described a
nearly linear time algorithm approximating the edit distance within an approximation factor
poly(log n). Later, Chakraborty et al. [10] presented an O(n2−2/7)-time α-approximation for
this problem, where α is constant.

Marzal and Vidal [18] defined another criterion for scoring alignments of two sequences
called vNγ-score, which is a normalization of vAγ-score, as follows:

vNγ [A] =
{

0 , if |A| = 0 ,

vAγ [A]/ |A| , otherwise .

The optimal function for this criterion is optNγ(s, t) = minA∈As,t

{
vNγ [A]

}
, and an N-optimal

alignment A of s, t is such that vNγ [A] = optNγ(s, t).
A naive dynamic programming algorithm was proposed by Marzal and Vidal [18] to obtain

an N-optimal alignment of two sequences in O(n3)-time. Using fractional programming,
Vidal, Marzal and Aibar [26] presented an algorithm with running time O(n3), requiring
O(n2)-time in practice, similarly to the classical (unnormalized) edit distance algorithm.
Further, Arslan and Egecioglu [6] described an O(n2 log n)-time algorithm to solve this
problem.

Let A be an A-optimal alignment of maximum length of 2-sequence S = s, t, with |s| = n

and |t| = m. Considering n⃗ = [n, m] and b⃗ a bit vector such that A(|A|) = b⃗ · S(n⃗), the
length of a maximum length A-optimal alignment of S(1 : n⃗− b⃗) must be |A| − 1. Thus, the
maximum length L(n, m) can be found by a dynamic programming formula as following:

L(0, 0) = 0 , L(0, j) = j , L(i, 0) = i ,
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L(i, j) = max


L(i− 1, j) , if d(i, j) = d(i− 1, j) + γs(i)→-

L(i, j − 1) , if d(i, j) = d(i, j − 1) + γ-→t(j)
L(i− 1, j − 1) , if d(i, j) = d(i− 1, j − 1) + γs(i)→s(j)

+1 , i, j > 0 ,

where d(i, j) = optAγ(s(1 : i), t(1 :j)). Therefore, the maximum length A-optimal alignment
of s, t can be obtained in O(nm)-time. The following theorem shows that we can propose a
simple approximation algorithm to find an A-optimal alignment of maximum length.

▶ Theorem 2.1. Let s, t be sequences of lengths n, m, respectively, and let L(n, m) be the
maximum length of an A-optimal alignment of s, t. Then,

optAγ(s, t)/L(n, m) ≤ 2 optNγ(s, t) ,

and it can be computed in O(n2)-time if n = m. Moreover, this ratio is tight, i.e., for any
positive rational ε, there exists a scoring matrix γ, sequences s, t and an A-optimal alignment
of s, t with maximum length A such that optAγ(s, t)/ |A| = vAγ [A]/ |A| = (2− ε) optNγ(s, t).

Proof. Let A be an A-optimal alignment with maximum length computed by the heuristic
above in O(nm)-time and space. Let B be an N-optimal alignment. Thus, vAγ [A] ≤ vAγ [B].
Moreover, |B| ≤ n + m ≤ 2 max{n, m} ≤ 2 |A|, that is, |A| ≥ |B| /2. Therefore, vNγ [A] =
vAγ [A]

|A| ≤ vAγ [B]
|A| ≤ vAγ [B]

|B|/2 = 2 optNγ(s, t) .

We present now two sequences and a scoring matrix γ such that the solution given by the
heuristic is at least 2− ε times the vNγ-score of an N-optimal alignment, for any ε in Q>.
Let Σ = {a, b}, γ be a scoring matrix such that γa→- = γb→- = 1/ε and γa→b = 2/ε− 1 and
an, bn ∈ Σ∗, with n in N∗. Observe that the vAγ-score of any alignment of (an, bn), where
[a, b] is aligned in k columns, is 2n/ε − k. Thus, optAγ(an, bn) = min0≤k≤n{2n/ε − k} =
2n/ε − n = (2/ε − 1) n which implies [an, bn] is the A-optimal alignment with maximum
length. Since optNγ(an, bn) ≤ vNγ([an-n, -nbn]) = 1/ε, it follows

optAγ(s, t)
|[an, bn]| = vAγ(s, t)

|[an, bn]| = (2/ε− 1) n

n
= (2− ε)/ε ≥ (2− ε) optNγ(an, bn) . ◀

We define now classes of scoring matrices. The usual class of scoring matrices MC has the
following properties: for all symbols a, b, c,∈ Σ-, we have (a) γa→b > 0 if a ̸= b, and γa→b = 0
if a = b; (b) γa→b = γb→a; and (c) γa→c ≤ γa→b + γb→c. The class MA of scoring matrices is
such that, for all symbols a, b, c ∈ Σ, we have (a) γa→- = γ-→a > 0; (b) γa→b > 0 if a ̸= b,
and γa→b = 0 if a = b; (c) if γa→b < γa→- +γ-→b, then γa→b = γb→a; (d) γa→- ≤ γa→b +γb→-;
and (e) min{γa→c, γa→- + γ-→c} ≤ γa→b + γb→c. Moreover, the class MN is such that (a)
MN ⊆MA and (b) γa→- ≤ 2 γb→- for each a, b ∈ Σ.

For a set S, we say that the (distance) function f : S × S → R is a metric on S if, for all
s, t, u ∈ S, the distance f satisfies: (1) f(s, s) = 0 (reflexive); (2) f(s, t) > 0 if s ̸= t (positive);
(3) f(s, t) = f(t, s) (symmetry); and (4) f(s, u) ≤ f(s, t) + f(t, u) (triangle inequality).

If a given criterion v depends on a scoring matrix γ and it is a metric on Σ∗, we say that
the scoring matrix γ induces a v-distance on Σ∗. Sellers [22] showed that matrices in MC

induce an optAγ-distance on Σ∗ and Araujo and Soares [5] showed that γ ∈MA if and only
if γ induces an optAγ-distance on Σ∗. Furthermore, γ ∈ MN if and only if γ induces an
optNγ-distance on Σ∗. Figure 1 shows the relationship between these classes.

2.1 vSPγ-score for k sequences
Consider a scoring matrix γ. Let S = s1, . . . , sk be a k-sequence and A = [s′

1, . . . , s′
k] be an

alignment of S. The criterion vSPγ , also called SP-score, for scoring the alignment A is

vSPγ [A] =
∑k−1

h=1
∑k

i=h+1 vAγ [A{h,i}] . (1)
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MA

MC MN

Figure 1 Relationship between scoring matrices. Araujo and Soares [5] showed that MC ⊆ MA,
MN ⊆ MA, MC ̸⊆ MN and MN ̸⊆ MC. Moreover, the scoring matrix γ such that γa→a = 0 for each
a and γa→b = 1 for each a ̸= b is in MC ∩ MN, which implies that MC ∩ MN ̸= ∅.

We define optSPγ as the optimal function for the criterion vSPγ . An alignment A of S

such that vSPγ [A] = optSPγ(S) is called vSPγ-optimal alignment. Regardless its decision or
optimization version, we call this the multiple sequence alignment problem (MSA). Formally,
▶ Problem 2 (Multiple sequence alignment). Let γ be a fixed scoring matrix. Given a
k-sequence S, find a vSPγ-optimal alignment of S.

In order to compute optSPγ , we extend the definition of vSPγ considering a column of an
alignment A = [s′

1, . . . , s′
k] as its parameter. Thus, vSPγ(A(j)) =

∑
i<h γs′

i
(j)→s′

h
(j) assuming

that γ-→- = 0 and

optSPγ(S) = optSPγ(S(1 : n⃗)) = minb⃗∈Bk ,⃗b≤ȷ⃗

{
optSPγ(S(1 : n⃗− b⃗)) + vSPγ [⃗b · S(n⃗)]

}
. (2)

Recurrence (2) can be computed using a dynamic programming algorithm, obtaining
D(ȷ⃗) = optSPγ(S(1 : ȷ⃗)) for all ȷ⃗ ≤ n⃗. This task can be performed by generating all indexes
of D in lexicographical order, starting with D(⃗0) = 0, as presented in Algorithm 1.

Algorithm 1 vSPγ-optimal alignment of S.

Input: S = s1, . . . , sk ∈ (Σ∗)k

Output: optSPγ(S)
1: D(⃗0)← 0
2: for each ȷ⃗ ≤ n⃗ in lexicographical order do
3: D(ȷ⃗)← minb⃗∈Bk, b⃗≤ȷ⃗

{
D(ȷ⃗− b⃗) + vSPγ [⃗b · S(ȷ⃗)]

}
4: return D(n⃗)

Suppose that |si| = n for each i. Notice that the space to store the matrix D is Θ((n+1)k)
and thus Algorithm 1 uses Θ((n + 1)k)-space. Besides that, Algorithm 1 checks, in the worst
case, Θ(2k) entries for computing all entries in the matrix D and each computation spends
Θ(k2)-time. Therefore, its running time is O(2kk2(n + 1)k). Observe that when the distances
between sequences are small, not all entries in D need to be computed, such as in the Carrillo
and Lipman’s algorithm [9].

2.2 Vi
γ-score for k sequences

In this section we define a new criteria to normalize the vSPγ-score of a multiple alignment.
The symbol - aligned to the same symbol - does not contribute to the definition of scoring,
and thus this entry is not defined. However, as all the criteria are additive, it is convenient
to consider γ-→- = 0. The new criteria for aligning sequences takes into account the length
of the alignments according to the following:

V1
γ [A] =

{
0 , if |A| = 0 ,
vSPγ [A]/ |A| , otherwise ,

(3)
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V2
γ [A] =

∑k−1
h=1

∑k
i=h+1 vNγ [A{h,i}] , (4)

V3
γ [A] =

{
0 , if |A| = 0 ,
vSPγ [A]

/( ∑k−1
h=1

∑k
i=h+1 |A{h,i}|

)
, otherwise .

(5)

We define optNSPz
γ as the optimal function for the criterion Vz

γ . An alignment A of S

such that Vz
γ [A] = optNSPz

γ (S) is called Vz
γ -optimal alignment. Moreover, regardless its

decision or optimization version, we establish the criterion Vz
γ for the normalized multiple

sequence alignment problem (NMSA-z), for z = 1, 2, 3. Formally,
▶ Problem 3 (Normalized multiple sequence alignment with score Vz

γ ). Let γ be a fixed scoring
matrix and z ∈ {1, 2, 3}. Given a k-sequence S, find a Vz

γ -optimal alignment of S.

3 Complexity

We study now the complexity of the multiple sequence alignment problem for each new
criterion defined in Section 2. We consider the decision version of the computational problems
and we prove NMSA-z is NP-complete for each z when the following additional restrictions
for the scoring matrix γ hold: γa→b = γb→a and γa→b = 0 if and only if a = b for each pair
a, b ∈ Σ-. Elias [13] shows that, even considering such restrictions, MSA is NP-complete.
We show a polynomial time reduction from MSA to NMSA-z.

Consider a fixed alphabet Σ and a scoring matrix γ with the restrictions above. Let
σ ̸∈ Σ- be a new symbol and Σσ = Σ ∪ {σ}. Let G be a fixed (constant) positive integer
such that each entry in γ is at most G. We define a scoring matrix γσ such that γσ

a→b =
γa→b, γσ

a→σ = γσ
σ→a = G and γσ

σ→σ = 0, for each pair a, b ∈ Σ-.
For an instance (S = s1, . . . , sk, C) of MSA, let SL = s1σL, . . . , skσL, where L =

Nk2MG, M = maxi{|si|} and N =
(

k
2
)
M . Define l as the tail length of an alignment A

if A[i, j] = σ for each i = 1, . . . , k and j = l + 1, l + 2, . . . , |A|, i.e., every symbol in the
last l columns of A is σ. We say that an alignment of SL is canonical if its tail length
is L. If A = [s′′

1 , . . . , s′′
k ] is an alignment of S, we denote by AL the canonical alignment

[s′′
1σL, . . . , s′′

kσL] of SL. The two following results are useful to prove Theorem 3.3, which is
the main result of this section. The proofs of these two lemmas can be found in [4].

▶ Lemma 3.1. There exists a canonical alignment of SL which is Vz
γσ -optimal for each z.

▶ Lemma 3.2. If C ≥ k2MG, then MSA(S, C) = NMSA-z(SL, Cz) = Yes, for each z.

▶ Theorem 3.3. NMSA-z is NP-complete for each z.

Proof. Given a k-sequence S over Σ∗, an alignment A of S and a integer C, it is easy to
check in polynomial time on the length of A that Vz

γ [A] ≤ C, for z ∈ {1, 2, 3}, and then
NMSA-z is in NP.

Consider now C1 := C2 := C/L, C3 := C/
((

k
2
)
L

)
and L := Nk2MG and then we prove

that MSA(S, C) = Yes if and only if NMSA-z(SL, Cz) = Yes for each z ∈ {1, 2, 3}. If
C ≥ k2MG, the Lemma 3.2 holds trivially. Thus, we assume C < k2MG. Suppose that
MSA(S, C) = Yes and, hence, there exists an alignment A such that vSPγ [A] ≤ C:

V1
γσ [AL]= vSPγσ [AL]

|AL|
≤ vSPγσ [AL]

L
= vSPγ [A]

L
≤ C

L
= C1 ,

V2
γσ [AL]=

k−1∑
h=1

k∑
i=k+1

vAγσ [AL
{h,i}]

|AL
{h,i}|

≤
k−1∑
h=1

k∑
i=h+1

vAγσ [AL
{h,i}]

L
= vSPγσ [AL]

L
= vSPγ [A]

L
≤ C

L
=C2,
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V3
γσ [AL]= vSPγσ [AL]

k−1∑
h=1

k∑
i=k+1

|AL
{h,i}|

≤ vSPγσ [AL]
k−1∑
h=1

k∑
i=k+1

L

= vSPγσ [AL](
k
2
)
L

= vSPγ [A](
k
2
)
L
≤ C(

k
2
)
L

= C3 ,

where the first inequality in each equation follows since either AL or each alignment induced
by AL has length at least L and the second inequality follows since vSPγ [A] ≤ C. Thus, if
MSA(S, C) = Yes then NMSA-z(SL, Cz) = Yes.

Suppose that NMSA-z(SL, Cz) = Yes. It follows from Lemma 3.1 that, for each z, there
exists a canonical alignment AL such that Vz

γσ [AL] ≤ Cz. Thus, considering V1
γσ [AL] ≤ C1,

we have

vSPγ [A] = vSPγσ [AL] = (N + L) vSPγσ [AL]
N + L

≤ (N + L) vSPγσ [AL]
|AL|

= (N + L) V1
γσ [AL]

≤ (N + L) C1 = (N + L) C

L
= NC

L
+ C <

Nk2MG

L
+ C = 1 + C ,

where the first equality holds since AL is canonical, the first inequality holds since |AL| ≤ N+L

and the second and the third inequalities hold by hypothesis. Considering V2
γσ [AL] ≤ C2, we

have

vSPγ [A] = vSPγσ [AL] = (N + L) vSPγσ [AL]
N + L

= (N + L)
k−1∑
h=1

k∑
i=h+1

vAγσ [AL
{h,i}]

N + L

≤ (N + L)
k−1∑
h=1

k∑
i=h+1

vAγσ [AL
{h,i}]

|AL
{h,i}|

= (N + L) V2
γσ [AL]

≤ (N + L) C2 = (N + L) C

L
= NC

L
+ C <

Nk2MG

L
+ C = 1 + C ,

where the first equality holds since AL is canonical, the first inequality holds since, for each
h, i, |AL

{h,i}| ≤ N + L, and the second and the third inequalities hold by hypothesis. And
finally, considering V3

γσ [AL] ≤ C3, we have

vSPγ [A] = vSPγσ [AL] =
(
N +

(
k
2
)
L

) vSPγσ [AL]
N +

(
k
2
)
L

≤
(
N +

(
k
2
)
L

) vSPγσ [AL]
k−1∑
h=1

k∑
i=h+1

∣∣AL
{h,i}

∣∣ =
(
N +

(
k
2
)
L

)
V3

γσ [AL] ≤
(
N +

(
k
2
)
L

)
C3

=
(
N +

(
k
2
)
L

) C(
k
2
)
L

= NC(
k
2
)
L

+ C <
Nk2MG(

k
2
)
L

+ C = 1(
k
2
) + C ≤ 1 + C ,

where the first equality holds since AL is canonical, the first inequality holds since the sum
of lengths of two sequences induced by a canonical alignment is at most N +

(
k
2
)
L and the

second and the third inequalities hold by hypothesis.
Therefore, if NMSA-z(SL, Cz) = Yes then vSPγ [A] < 1 + C, for any z ∈ {1, 2, 3}. Since

the entries in the scoring matrix are integers, we have that vSPγ [A] is an integer. And since
C is an integer, it follows that vSPγ [A] ≤ C. ◀
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4 Exact algorithms

4.1 NMSA-1
Let S = s1, . . . , sk be a k-sequence and A = [s′

1, . . . , s′
k] be an alignment of S. As defined in

Equation (3), V1
γ [A] takes into account the length of A, and the optimal function is given

by optV1
γ (S) = minA∈AS

{
V1

γ [A]
}

. The V1
γ -optimal alignment of S is an alignment A such

that V1
γ [A] = optV1

γ (S). Thus, in NMSA-1 we are given a k-sequence S and we want to
compute optV1

γ (S) for a fixed matrix γ. We can solve NMSA-1 by calculating the minimum
SP-score considering every possible length of an alignment. That is, we compute the entries
of a table D indexed by VS × {0, 1, . . . , N}, where N =

∑k
i=1 |si|. The entry D(v⃗, L) stores

the score of an alignment of S(v⃗) of length L with lowest SP-score. Notice that D(⃗0, 0) = 0,
D(v⃗ ̸= 0⃗, 0) = D(⃗0, L ̸= 0) =∞. Therefore, the table entries can be calculated as:

D(v⃗, L)=


0 , if v⃗ =0⃗, L=0 ,

∞ , if v⃗ =0⃗, L ̸=0 or v⃗ ̸=0⃗, L=0 ,

minb⃗∈Bk ,⃗b≤v⃗

{
D(v⃗ − b⃗, L− 1) + vSPγ [⃗b · S(v⃗)]

}
, otherwise .

Table D is computed for all possible values of L = 0, . . . , N . Consequently, optV1
γ (S) =

minL {D(n⃗, L)/L} is returned. Algorithm 2 describes this procedure more precisely.

Algorithm 2 V1
γ -optimal alignment of S.

Input: k-sequence S = s1, . . . , sk such that ni = |si|
Output: optV1

γ (S)
1: D(⃗0, 0)← 0
2: for each L ̸= 0 do D(⃗0, L)←∞
3: for each v⃗ ̸= 0⃗ do D(v⃗, 0)←∞
4: for each 0⃗ < v⃗ ≤ n⃗ in lexicographical order do
5: for each L← 1, 2, . . . , N do
6: D(v⃗, L)← minb⃗∈Bk ,⃗b≤v⃗

{
D(v⃗ − b⃗, L− 1) + vSPγ [⃗b · S(v⃗)]

}
7: return minL

{
D(n⃗, L)/L

}
Suppose that ni = |si| = n for each i. Notice that the space to store the matrix D is

Θ(N(n + 1)k). The time consumption of Algorithm 2 corresponds to the time needed to
fill the table D up, plus the running time of line 7. Each entry of D can be computed in
O(2kk2)-time. Therefore, the algorithm spends O(2kk2 ·N(n+1)k)-time to compute the entire
table D, since D has Θ(N(n + 1)k) entries. Line 7 is computed in Θ(N)-time. Therefore,
the running time of Algorithm 2 is O(2kk2 ·N(n + 1)k) + Θ(N) = O(2kk2 ·N(n + 1)k). If
N = kn, it follows that the total running time is O(2kk3(n + 1)k+1).

4.2 NMSA-2
Let S = s1, . . . , sk be a k-sequence and A = [s′

1, . . . , s′
k] be an alignment of S. As defined

in Equation (4), V2
γ [A] takes into account the length of the induced alignment A, and the

optimal function is given by optV2
γ (S) = minA∈AS

{
V2

γ [A]
}

. The V2
γ -optimal alignment

of S is an alignment A such that V2
γ [A] = optV2

γ (S). Then, in NMSA-2 we are given a
k-sequence S and we want to compute optV2

γ (S) for a fixed matrix γ.
Let L⃗ = [L12, L13, . . . , L1k, L23, . . . L2k, . . . , L(k−1)k] be a

(
k
2
)
-vector indexed by sets of

two integers {h, i} such that 1 ≤ h < i ≤ k and Lhi denotes the element of L⃗ of index
{h, i}. The lengths of the induced alignments by an alignment can be represented by a vector
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L⃗. Thus, if A is an alignment and |A{h,i}| = Lhi for each pair h, i, we say that L⃗ is the
induced length of A. For a k-sequence S = s1, . . . , sk, where ni = |si| for each i, we define
L =

{
L⃗ = [L12, L13, . . . , L1k, L23, . . . L2k, . . . , L(k−1)k] : 0 ≤ Lhi ≤ nh + ni

}
. Note that if n

is the length of each sequence in S, then |L| = (2n + 1)(
k
2). Let b⃗ = [b1, . . . , bk] be a k-bit

vector. Overloading the minus operator “−”, we define L⃗− b⃗ to be a
(

k
2
)
-vector L⃗′ which is

obtained from L⃗ and from b⃗ such that, for each pair h, i, we have L′
hi = Lhi if bh = bi = 0,

and L′
hi = Lhi − 1, otherwise. Observe that if L⃗ is the induced length of an alignment A of

S(v⃗) and b⃗ is a k-bit vector such that b⃗ · S(v⃗) is the last column of A, then L⃗′ = L⃗− b⃗ is the
induced length of the alignment A(1 : |A| − 1).

Let γ⃗ be a vector of
(

k
2
)

scoring matrices indexed by two integers {h, i}, with 1 ≤
h < i ≤ k. We denote by γ(hi) the element of γ⃗ with index {h, i}. Then, we have
γ⃗ = [γ(12), γ(13), . . . , γ(1k), γ(23), . . . , γ(2k), . . . , γ((k−1)k)], and define the γ⃗-SP-score of A

as vSP⃗γ [A] =
∑k−1

h=1
∑k

i=h+1 vAγ(hi) [A{h,i}]. If we define the γ⃗-SP-score of a vector σ⃗ =
[σ1, . . . , σk] in Σ- as vSP⃗γ [σ⃗] =

∑k−1
h=1

∑k
i=h+1 γ

(hi)
σh→σi , then we can alternatively calculate

the γ⃗-SP-score of the alignment A as vSP⃗γ [A] =
∑

j vSP⃗γ [A(j)].

4.2.1 Computing optV2
γ

In this section we describe an algorithm in two steps for computing optV2
γ for a given

k-sequence S: in Step 1 we consider the particular case where we have three sequences, and
in Step 2 we treat the general case.

Step 1: k = 3

Let S = s1, s2, s3 be a 3-sequence. Suppose that we have induced lengths L⃗ = [L12,L13,L23]
of a V2

γ -optimal alignment A of S. In consequence, we have that Lhi = |A{h,i}| for each
pair h, i. Notice that knowing the lengths L12,L13 and L23 does not imply knowing the
V2

γ -optimal alignment A. In general, we cannot even infer what |A| is. For example, the
alignments s1(1) s1(2) -

s2(1) - s2(2)
- s3(1) s3(2)

 and

 s1(1) s1(2) - -
s2(1) - s2(2) -
s3(1) - - s3(2)


have different lengths but same induced lengths for s1, s2, s3, where |s1| = |s2| = |s3| = 2
and L12 = L13 = L23 = 3. However, if we know L⃗ = [L12,L13,L23], we have

optV2
γ (S) = minA∈AS :Lhi=|A{h,i}|,∀h,i

{ ∑k−1
h=1

∑k
i=h+1 vAγ [A{h,i}]/Lhi

}
= minA∈AS

{ ∑k−1
h=1

∑k
i=h+1 vAγ(hi) [A{h,i}]

}
,

where γ(hi) is a scoring matrix obtained by multiplying the elements of γ by 1/Lhi. Since we
guarantee it is the induced length of an alignment V2

γ -optimal, we fix L⃗ and compute γ⃗ in
order to calculate the entries of a table DL⃗, such that

DL⃗(v⃗ =[v1, v2, v3],L⃗=[L12, L13, L23])=minA∈AS(⃗1:v⃗),Lhi=|A{h,i}|,∀h,i

{∑
h<i vAγ(hi) [A{h,i}]

}
corresponds to the score of an alignment with the lowest γ⃗-SP-score when the induced length
is L⃗. The table DL⃗ can then be computed using the following recurrence

DL⃗(v⃗, L⃗)=


0 , if v⃗ =0⃗, L⃗=0⃗,

∞ , if v⃗ =0⃗, L⃗ ̸=0⃗ or v⃗ ̸=0⃗, L⃗=0⃗,

minb⃗∈Bk ,⃗b≤v⃗,⃗b≤L⃗

{
DL⃗(v⃗−b⃗, L⃗−b⃗)+vSP⃗γ [⃗b·S(v⃗)]

}
, otherwise,

where b⃗ ≤ L⃗ is also an overloading, meaning that L⃗− b⃗ ≥ 0⃗.
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In this case, if L⃗ is the induced length of a V2
γ -optimal alignment of S, then optV2

γ (S) =
DL⃗(n⃗, L⃗). If each sequence has length n, then the total space to store the table DL⃗ is
(2n + 1)(

3
2) · (n + 1)3 = Θ(n6). When L⃗ is unknown, the computation must be repeated for

each L⃗ ∈ L, but the space can be reused and no additional space required. If L⃗ is known,
the algorithm runs to compute all entries of DL⃗. As DL⃗ has Θ(n6) entries and each entry
takes O(1)-time to be computed, the total time spent is O(n6). If L⃗ is unknown, the time
needed to compute L⃗ must be multiplied by the total of elements in L which is (2n + 1)3.
Therefore, in the latter case, the total time is O(n6 · (2n + 1)3) = O(n9).

Step 2: k > 3

Algorithm 3 is a natural extension of the algorithm described in Step 1. Given a scoring
matrix γ and an induced length L⃗, let γ × L⃗ = [γ(12), . . . , γ(k(k−1))] be the vector of

(
k
2
)

scoring matrices, where γ(hi) is obtained dividing each entry of γ by Lhi for each h < i.

Algorithm 3 V2
γ -optimal alignment of S.

Input: A k-sequence S = s1, . . . , sk such that ni = |si|
Output: optV2

γ (S)
1: for each L⃗ ∈ L⃗ do
2: DL⃗(⃗0, 0⃗)← 0
3: for each L⃗ ̸= 0⃗ do DL⃗(⃗0, L⃗)←∞
4: for each v⃗ ̸= 0⃗ do DL⃗(v⃗, 0⃗)←∞
5: γ⃗ ← γ × L
6: for each 0⃗ < v⃗ ≤ n⃗ in lexicographical order do
7: for each L⃗ ̸= 0⃗ in lexicographical order do
8: DL⃗(v⃗, L⃗) = minb⃗∈Bk ,⃗b≤v⃗,⃗b≤L⃗

{
DL⃗(v⃗ − b⃗, L⃗− b⃗) + vSP⃗γ [⃗b · S(v⃗)]

}
9: return minL⃗∈L⃗{DL⃗(n⃗, L⃗)}

For k sequences of length n, Algorithm 3 needs (2n + 1)(
k
2) · (n + 1)k space to store the

table DL⃗. For each of the (2n + 1)(
k
2) values L⃗ ∈ L⃗, table DL⃗ is recalculated. Since the

computation of each entry takes O(2kk2)-time, the total time is

O
(
2kk2 · (2n + 1)(

k
2) · (2n + 1)(

k
2)(n + 1)k

)
= O

((
1 + 1/(2n + 1)

)k(2n + 1)k2
k2)

.

If k ≤ 2n + 1, the total time can be written as O
(
(2n + 1)k2

k2)
)
, since (1 + 1/k)k ≤ e =

2.718281828 . . . Notice that (1 + 1/(2n + 1))k ≤ (1 + 1/k)k ≤ e is also constant.

4.3 NMSA-3
Let S = s1, . . . , sk be a k-sequence and A = [s′

1, . . . , s′
k] be an alignment of S. As defined in

Equation (5), V3
γ [A] takes into account the length of A, and the optimal function is given

by optV3
γ (S) = minA∈AS

{
V3

γ [A]
}

. The V3
γ -optimal alignment of S is an alignment A such

that V3
γ [A] = optV3

γ (S). Then NMSA-3 is defined as follows: for a fixed matrix γ, given a
k-tuple S, determine optV3

γ (S).

4.3.1 Computing optV3
γ

Here, each entry D(v⃗, L) of D stores the SP-score of an alignment A of the prefix S(v⃗) with
the lowest SP-score, such that

∑
i<h |A{i,h}| = L. If b⃗ is a k-vector, define ∥⃗b∥ =

∑
h<i bhbi.

Notice that if v⃗ − b⃗ is the last column of an alignment A and L =
∑k−1

h=1
∑k

i=h+1 |A{h,i}|
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is the sum of lengths of the alignments induced by A. Thus, the sum of lengths of the
alignments induced by A(1 : |A| − 1) is L− ∥⃗b∥. Therefore,

D(v⃗,L)=


0 , if v⃗ =0⃗,L=0,

∞ , if v⃗ =0⃗,L ̸=0 or v⃗ ̸=0⃗,L=0,{
D(v⃗−b⃗, L−∥⃗b∥)+vSPγ [⃗b·S(v⃗)]

}
, otherwise .

Algorithm 4 provides more details about the procedure for computing optV3
γ .

Algorithm 4 V3
γ -optimal alignment of S.

Input: a k-sequence S = s1, . . . , sk such that ni = |si|
Output: optV3

γ (S)
1: D(⃗0, 0)← 0
2: for each L ̸= 0 do D(⃗0, L)←∞
3: for each v⃗ ̸= 0⃗ do D(v⃗, 0)←∞
4: for each 0⃗ < v⃗ ≤ n⃗ in lexicographical order do
5: for L← 1, 2, . . . , N(k − 1) do
6: D(v⃗, L)← minb⃗∈Bk ,⃗b≤v⃗,∥⃗b∥≤L

{
D(v⃗ − b⃗, L− ∥⃗b∥) + vSPγ [⃗b · S(v⃗)]

}
7: return minL

{
D(n⃗, L)/L

}
Assume that all sequences in S have length n. The table D is computed for all possible

values of L = 1, . . . ,
(

k
2
)
(2n)(= nk2 − nk) and, after this, we determine optSPγ(S) =

minL

{
D(n⃗, L)/L

}
. Thus, table D needs space equivalent to (nk2 − nk + 1) · (n + 1)k =

Θ(k2(n + 1)k+1). Since the time required to determine each entry of D is O(2kk2), the
running time of Algorithm 4 is O(2kk4(n + 1)k+1).

5 Approximation algorithms for MSA and NMSA-2

Gusfield [15] described a 2-approximation algorithm for MSA. It assumes that γ ∈MC. In
this section, we adapt Gusfield’s algorithm, proposing a 6-approximation algorithm for MSA
when γ ∈MA and a 12-approximation algorithm for NMSA-2 problem when γ ∈MN.

We consider here a generic function v to score an alignment of a 2-sequence such that
opt(s, s) = 0 (identity) and opt(s, t) = opt(t, s) (symmetry), where opt(s, t) is the score of
a v-optimal alignment of a 2-sequence s, t. Notice that vAγ and vNγ have these properties
when γ ∈ MA and γ ∈ MN, respectively. Let S be a k-sequence and A in AS be an
alignment. We define V and OPT as functions such that V [A] =

∑k−1
h=1

∑k
i=h+1 v[A{h,i}]

and OPT(S) = minA∈AS
V (A). Thus, a V -optimal alignment is an alignment A such that

V [A] = OPT(S).
Let c be an integer with 1 ≤ c ≤ k. A star X with center c of S = s1, . . . , sk, also

called a c-star, is a collection of k − 1 alignments: alignment Xh = [s′
h, sh

c ] of sh, sc, for
each h < c, where v[s′

h, sh
c ] = v[sh

c , s′
h], and alignment Xh = [sh

c , s′
h] of sc, sh, for each

h > c, where v[sh
c , s′

h] = v[s′
h, sh

c ]. The set of all c-stars is denoted by Xc. The score
of the c-star X is cStar(X) =

∑
h ̸=c v[Xh] and a v-optimal star is one whose score is

optStar(S) = minX∈Xc,c∈N{cStar(X)}. Notice that optStar(S) = minc

{ ∑
h ̸=c opt(sh, sc)

}
,

and if v = vAγ and γ ∈MA, optStar(S) can be computed in O(k2n2)-time, and if v = vNγ

and γ ∈MN, optStar(S) can be computed in O(k2n3)-time when |si| ≤ n, for each si in S.
We say that an alignment A of a k-sequence S and a c-star X of S are compatible (A is

compatible with X or X is compatible with A) in S when either A{h,c} or A{c,h} is equal to
Xh, for each h. It is easy to obtain, from an alignment A and c in N, the unique c-star X
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that is compatible with A. On the other hand, it is known from Feng and Doolitte [14] that
one can find an alignment A compatible with a given c-star X in O(kn)-time, where |si| ≤ n

for each sequence si in the k-sequence S. In this case, there exists one or more compatible
alignments with X.

The next result is a straightforward consequence of a result from Gusfield [15], where v is
the scoring function. See the proof in [4].

▶ Lemma 5.1. Given a k-sequence S, optStar(S) ≤ (2/k) OPT(S).

From now on, we consider v = vAγ , or v = vNγ and γ = MA or γ = MN, respectively.
Let s, t ∈ Σ∗ be sequences. Suppose that A = [s′, t′] is an alignment of s, t. We say that a
column j is splittable in A if s′(j) ̸= -, t′(j) ̸= - and min{γt′(j)→-, γs′(j)→-} ≤ γs′(j)→t′(j).
Let J := {ji ∈ N : 1 ≤ j1 < · · · < jm ≤ |A| and ji is splittable in A}. An A-splitting is the
alignment[

s′(1 :j1 − 1) s′(j1) - s′(j1 + 1:j2 − 1) s′(j2) - . . . s′(jm + 1: |A|)
t′(1 :j1 − 1) - t′(j1) t′(j1 + 1:j2 − 1) - t′(j2) . . . t′(jm + 1: |A|)

]
.

We say that J is required to split A. The following proposition is used to check properties of
an A-splitting. See its proof in [4].

▶ Proposition 5.2. Consider γ ∈ MA and a, b ∈ Σ. If γa→- > γa→b or γa→- > γb→a, then
γa→b = γb→a.

Let X = {X1, . . . , Xc−1, Xc+1, Xk} be a c-star. The X-starsplitting is the c-star Y =
{Y1, . . . , Yc−1, Yc+1, Yk}, where Yj is the Xj-splitting for each j. The next result shows that
the v-score of the star Y is bounded by the v-score of the star X when γ ∈MA and v = vAγ ,
or γ ∈MN and v = vNγ . Thus, as a consequence of Preposition 5.2, we have the following
lemma. The formal proof can be seen in [4].

▶ Lemma 5.3. Let S = s1, . . . , sk be a k-sequence, X be a c-star of S, Y be the X-starsplitting
and v be a function to score alignments. Consider γ ∈ MA and v = vAγ, or γ ∈ MA and
v = vNγ . Then, Y is also a c-star and cStar(Y ) ≤ 3 cStar(X).

Proof sketch. As a consequence of γ ∈ MA and Proposition 5.2, we have that Y is also a
c-star. Let h ∈ {1, . . . , k} and J be a set required to split X. We prove that vAγ [Yh] ≤
3 vAγ [Xh] and vNγ [Yh] ≤ 3 vNγ [Xh] hold since γ ∈ MA when v = vAγ and γ ∈ MN when
v = vNγ , and J ⊆ {1, 2, . . . , |A|}. Therefore, in these cases, we have

cStar(Y ) =
∑
h ̸=c

v[Yh] =
∑
h<c

v[Yh] +
∑
h>c

v[Yh] ≤ 3
∑
h ̸=c

v[Xh] = 3 cStar(X) . ◀

Notice that the time consumption for computing an X-splitting from X is O(kn) when
|si| ≤ n, for each si ∈ S. Considering a star X of S = s1, . . . , sk, there can exist many
compatible alignments with a v-star Y which is a X-splitting. Let CompatibleAlign be
a subroutine that receives the c-star Y and returns an alignment A compatible with Y .
It is quite simple: if symbols sh(j1) and sc(j2) are aligned in Xh, they are also aligned
in A; otherwise, sh(j) aligns only with - in A. This property is enough to guarantee the
approximation factor of MSA and NMSA-2.

Let Qmax := maxa∈Σ{γa→-, γ-→a} and consider the following result, whose proof can be
found in [4].
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▶ Proposition 5.4. Let S be a k-sequence, X be a c-star of S and Y be a X-starsplitting.
Assume that γ ∈MA and that CompatibleAlign(Y ) returns A = [s′

1, . . . , s′
k]. If h ̸= c and

i ̸= c, we have that
(i) γs′

h
(j)→s′

i
(j) ≤ γs′

h
(j)→s′

c(j) + γs′
c(j)→s′

i
(j) for each j = 1, . . . , |A|, and

(ii) vNγ [A{h,i}] ≤ 2 Qmax when γ ∈MN.

Proposition 5.4 is an auxiliary result to show the following lemma.

▶ Lemma 5.5. Let S be a k-sequence, X be a c-star of S, Y be a X-starsplitting and
CompatibleAlign(Y ) = A. Then, for each h < i, h ̸= c and i ̸= c,

(i) vAγ [A{h,i}] ≤ vAγ [A{h,c}] + vAγ [A{c,i}] when γ ∈MA, and
(ii) vNγ [A{h,i}] ≤ 2

(
vNγ [A{h,c}] + vNγ [A{c,i}]

)
when γ ∈MN.

Proof. Let A = [s′
1, . . . , s′

k] and Z = {j : s′
c(j) ̸= - and s′

h(j) = s′
i(j) = -}. We have

vAγ [A{h,i}] ≤ vAγ [A{h,c}] + vAγ [A{c,i}]−
∑

j∈Z(γ-→s′
c(j) + γs′

c(j)→-) from a consequence of
Proposition 5.4. Besides, since γ ∈MA, we have that γ-→s′

c(j), γs′
c(j)→- > 0. It implies that

(i) is proven.
For proving (ii), observe first that, by definition of MN, we have that Qmax ≤ γ-→s′

c(j) +
γs′

c(j)→- for every j. Furthermore, following these statements, we have that

vNγ [A{h,i}] =
vAγ [A{h,i}]
|A{h,i}|

≤
vAγ [A{h,i}] + 2 ·Qmax |Z|

|A{h,i}|+ |Z|

≤ 2 ·
vAγ [A{h,i}] + Qmax |Z|

|A{h,i}|+ |Z|
(6)

≤ 2 ·
vAγ [A{h,c}] + vAγ [A{c,i}]−

∑
j∈Z(γ-→s′

c(j) + γs′
c(j)→-)+Qmax |Z|

|A{h,i,c}| − |Z|+ |Z|
(7)

≤ 2 ·
vAγ [A{h,c}] + vAγ [A{c,i}]−Qmax |Z|+ Qmax |Z|

|A{h,i,c}| − |Z|+ |Z|

= 2 ·
(

vAγ [A{h,c}]
|[A{h,i,c}]| +

vAγ [A{c,i}]
|[A{h,i,c}]|

)
(8)

≤ 2 ·
(

vNγ [A{h,c}] + vNγ [A{c,i}]
)

, (9)

where the first inequality of (6) is a consequence of Proposition 5.4 and the second inequality
follows since every entry of γ is nonnegative, (7) follows from the result in the first paragraph
and from |A{h,i}| = |A{h,i,c}| − |Z|, (8–9) follow as a consequence of the definition of Qmax,
and as a consequence of |A{h,c}| ≤ |A{h,i,c}| and |A{c,i}| ≤ |A{h,i,c}|. ◀

We can now describe the approximation algorithm (Algorithm 5).

Algorithm 5 Approximation algorithm for MSA and NMSA-2.

Input: k-sequence S = s1, . . . , sk

Output: v[A], where A is an alignment of S, and vSPγ [A] ≤ 6 optSPγ(S) if v = vAγ and
γ ∈MA, and V2

γ [A] ≤ 12 optNSP2
γ (S) if v = vNγ and γ ∈MN.

1: Let X be a v-optimal star of S with center c

2: Compute the X-splitting Y

3: A← CompatibleAlign(Y )
4: return v[A]
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Clearly, Algorithm 5 is correct. Furthermore, Lemmas 5.1, 5.3 and 5.5 are auxiliary to
prove its approximation factor. Since the running time of CompatibleAlign is O(k2n), a
straightforward running time analysis allows us to state the following theorem. The detailed
proof is presented in [4].

▶ Theorem 5.6. Let S = s1, . . . , sk be a k-sequence and γ be a scoring matrix. Then,
Algorithm 5 computes v[A] correctly:

(i) in O(k2n2)-time such that vSPγ [A] ≤ 6 optSPγ(S), if v = vAγ and γ = MA, or
(ii) in O(k2n3)-time such that V2

γ [A] ≤ 12 optNSP2
γ (S), if v = vNγ and γ ∈MN, where A

is the alignment of S computed by the algorithm.

6 Conclusion and future work

We presented and discussed several aspects of normalized multiple sequence alignment
(NMSA). We defined three new criteria for computing normalized scores when aligning
multiple sequences, showing the NP-hardness and exact algorithms for solving the NMSA-z
given criterion Vz

γ for each z. In addition, we adapted an existing 2-approximation algorithm
for MSA when the scoring matrix γ is in the common class MC, leading to a 6-approximation
algorithm for MSA when γ is in the broader class MA ⊇ MC, and to a 12-approximation
for NMSA-2 when γ is in MN ⊆MA, a slightly more restricted class compared to MA such
that the cost of a deletion for any symbol is at most twice the cost for any other.

This work is an effort to expand the boundaries of multiple sequence alignment algorithms
towards normalization, an unexplored domain that can produce results with higher accuracy
in some applications. In future work, we will implement our algorithms in order to verify
how large are the sequences that our algorithms are able to handle. Also, we plan to
perform practical experiments, measuring how well alignments provided by our algorithms
and other MSA algorithms agree with multiple alignment benchmarks. In addition, we intend
to measure the accuracy of phylogenetic tree reconstruction based on our alignments for
simulated and real genomes. Finally, we will work on heuristics and parallel versions of our
algorithms in order to faster process large datasets.
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Abstract
We study a generalization of k-center clustering, first introduced by Kavand et. al., where instead
of one set of centers, we have two types of centers, p red and q blue, and where each red center is
at least α distant from each blue center. The goal is to minimize the covering radius. We provide
an approximation algorithm for this problem, and a polynomial-time algorithm for the constrained
problem, where all the centers must lie on a line ℓ.
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1 Introduction

The k-center problem is a well-known geometric location problem, where we are given a set
P of n points in a metric space and a positive integer k, and the task is to find k balls of
minimum radius whose union covers P . This problem can be used to model the following
facility location scenario. Suppose we want to open k facilities (such as supermarkets) to
serve the customers in a city. It is common to assume that a customer shops at the facility
closest to their residence. Thus, we want to locate k locations to open the facilities, so that
the maximum distance between a customer and their nearest facility is minimized. The
problem was first shown to be NP-hard by Megiddo and Supowit [12] for Euclidean spaces.
We consider a variation of this classic problem where instead of just one set of centers, we
consider two sets of centers, one of size p, and the other of size q, but with the constraint
that each center of the first set is separated by a distance of at least some given α from each
center of the second set. This follows from a more practical facility location scenario, where
we want to open two types of facilities (say “Costco’s” and “Sam’s club”). Each facility
type wants to cover all the customers within the minimum possible distance (similar to the
k-center clustering objective), but the facilities want to be separated from each other to
avoid crowding or getting unfavorably affected by competition from the other.

The k-center problem has a long history. In 1857 Sylvester [15] presented the 1-center
problem for the first time, and Megiddo [11] gave a linear time algorithm for solving
this problem, also known as the minimum enclosing ball problem, in 1983, using linear
programming. Hwang et al. [9] showed that the Euclidean k-center problem in the plane
can be solved in nO(

√
k). Agarwal and Procopiuc [1] presented an nO(k1−1/d)-time algorithm

for solving the k-center problem in IRd and a (1 + ϵ)-approximation algorithm with running
time O(n log k) + (k/ϵ)O(k1−1/d).
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Due to the importance of this problem, many researchers have considered variations of the
basic problem to model different situations. Brass et al. studied the constrained version of
the k-center problem in which the centers are constrained to be co-linear [4], also considered
previously for k = 1 by Megiddo [11]. They gave an O(n log2 n)-time algorithm when the
line is fixed in advance. Also, they solved the general case where the line has an arbitrary
orientation in O(n4 log2 n) expected time. They presented an application of the constrained
k-center in wireless network design: For a given set of n sensors (which are modeled as
points), we want to locate k base servers (centers of balls) for receiving the signal from the
sensors. The servers should be connected to a power line, so they have to lie on a straight
line which models the power line. Other variations have also been considered [8, 2, 3] for
k = 1. For k ≥ 2, variants have been studied as this has applications to the placement of
base stations in wireless sensor networks [5, 13, 14].

Hwang et al. [9] studied a variant somewhat opposite to our variant. In their variant,
for a given constant 0 ≤ α ≤ 1, the α-connected two-center problem is to find two balls of
minimum radius r whose union covers the points, and the distance of the two centers is at
most 2(1− α)r, i.e., any two of those balls intersect such that each ball penetrates the other
to a distance of at least 2αr. They presented an O(n2 log2 n) expected-time algorithm.

The variant we consider was first considered by Kavand et. al. [10]. They termed it as
the (n, 1, 1, α)-center problem. They aimed to find two balls each of which covers the entire
point set, the radius of the bigger one is minimized, and the distance of the two centers is
at least α. They presented an O(n log n)-time algorithm for this problem and a linear time
algorithm for its constrained version using the furthest point Voronoi diagram.

This paper considers the generalization of the problem defined by [10], and we denote
it by (n, p ∧ q, α) problem. We explain our choice of notation, particularly the ∧ sign, in
Section 2. For a given set P of n points in a metric space and integers p, q ≥ 1, we want
to find p + q balls of two different types, called red and blue with the minimum radius
such that P is covered by the p red balls and also covered by the second type of q blue
balls, and the distance of the centers of each red ball from the centers of the blue balls is
at least α. In addition to one example mentioned before, another motivating application of
the (n, p ∧ q, α) problem would be to locate p police stations and q hospitals in an area such
that the distance between each police station and a hospital is not smaller than a predefined
distance α for the convenience of patients. By locating hospitals and police stations at an
admissible distance from each other, patients stay away from crowd and noise while the
clients have access to hospitals and police stations that are close enough to them. Moreover,
it is obviously desirable that the maximum distance between a client and its nearest police
station as well as its nearest hospital is minimized. In addition to this general problem we
also consider the constrained version due to its applicability in many situations, where the
centers are constrained to lie on a given line.

Paper organization. In Section 2, we present the formal problem statement and the
definitions required in the sequel. In Section 3, we present an O(1) factor approximation
algorithm for the problem in Euclidean spaces. Then, in Section 4, we present a polynomial-
time algorithm for the constrained problem. We conclude in Section 5.

2 Problem and Definitions

Let M denote a metric space. Let dist(p, q) denote the distance between points p, q in M.
For a point x ∈ M and a number r ≥ 0 the ball B(x, r) is the set of points with distance
at most r from x, i.e., B(x, r) = {p ∈ M|dist(x, p) ≤ r} is the closed ball of radius r with
center x.
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In the α-separated red-blue clustering problem we are given a set P with n points in
some metric space M, integers p > 0, q > 0, and a real number α > 0. For a given number
r ≥ 0, p points c1, . . . , cp in M (with possibly repeating points) called the red centers and q

points d1, . . . , dq in M (with possibly repeating points) called the blue centers are said to be
a feasible solution for the problem, with radius of covering r if they satisfy,

Covering constraints: The union of the balls
⋃p

i=1 B(ci, r) (called the red balls) covers
P , and the union of the balls

⋃q
j=1 B(dj , r) (called the blue balls) covers P .

Separation constraint: For each 1 ≤ i ≤ p, 1 ≤ j ≤ q we have dist(ci, dj) ≥ α, i.e., the
red and blue centers are separated by at least a distance of α.

If there exists a feasible solution for a certain value of r, such an r is said to be feasible for
the problem. The goal of the problem is to find the minimum possible value of r that is
feasible.

We denote this problem as the (n, p ∧ q, α)-problem. The ∧ in the notation stresses the
fact that both the red balls and the blue balls cover P . Let rp∧q,α(P ) denote the optimal
radius for this problem. When P, p, q, α are clear from context sometimes we will also denote
this by r∗. Also, let rk(P ) denote the optimal k-center clustering radius, for all k ≥ 1. To be
clear, the centers in the k-center clustering problem can be any points in M, not necessarily
belonging to P . If that is the requirement, the problem is the discrete k-center clustering
problem.

For this paper, we will always be concerned with M = IRd, but we will use the notations
as defined above without qualifying the metric space. We let P = {p1, . . . , pn} where
pi = (pi1, pi2, . . . , pid). We also consider the constrained α-separated red-blue clustering
problem (whenM = IRd) we are given a line ℓ and all the red and blue centers are constrained
to lie on the line ℓ. Without loss of generality, we will assume that ℓ is the x-axis since
this can be achieved by an appropriate affine transformation of space. Moreover, we will
use the same notation for the optimal radii and centers. For the constrained problem we
need some additional definitions and notations. We assume that no two points in P have
the same distance from ℓ. (This general position assumption can however be removed.)
For each point pi, we consider the set of points on the line (x-axis) such that the ball of
radius r centered at one of those points can cover pi. This is the intersection of B(pi, r)
with the x-axis, see Figure 1. Assuming this intersection is not empty, let the interval be
Ii(r) = [ai(r), bi(r)]. Denote the set of all intervals as I(r) = {I1(r), . . . , In(r)} where we
assume that the numbering is in the sorted order of intervals: those with earlier left endpoints
are before, and for the same left endpoints the ones with earlier right endpoint occurs earlier
in the order. Notice that feasibility of radius r means that there exist two hitting sets for
the set of intervals I(r), the red centers and the blue centers such that they satisfy the
separation constraint.

The interval endpoints ai(r), bi(r) can be computed by solving the equation,

(x− pi1)2 + p2
i2 + . . . + p2

id = r2,

for x. Thus, they are given by ai(r) = pi1−
√

r2 −
∑d

j=2 p2
ij , and bi(r) = pi1+

√
r2 −

∑d
j=2 p2

ij .
It is easy to see that for the range of r where the intersection is non-empty, ai(r) is a strictly
decreasing function of r and bi(r) is a strictly increasing function of r.

Model of computation. We remark that our model of computation is the Real RAM model,
where the usual arithmetic operations are assumed to take O(1) time.

ISAAC 2021
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r

r

bi(r)ai(r)

pi = (pi1, . . . , pid)

Figure 1 The functions ai(r), bi(r).

3 Approximation algorithms for the (n, p ∧ q, α) problem in IRd

The (n, p ∧ q, α) problem is NP-hard when p, q are part of the input, since the k center
problem clearly reduces to the (n, p ∧ q, α) problem when α = 0 and p = q = k. Here we
show an approximation algorithm for the problem as well as one with a better approximation
factor for the constrained problem. We assume that p ≤ q, wlog.

Here we show that there is a constant factor algorithm for the (n, p ∧ q, α) problem in
IRd. We need a few preliminary results.

▶ Lemma 1. Suppose that r ≥ α/2 is a number such that there are points x1, . . . , xp

satisfying P ⊆
⋃p

i=1 B(xi, r). Then, there are (p + q) points c1, . . . , cp, d1, . . . , dq all such that
the following are met,

(I) Separation constraint: dist(ci, dj) ≥ α for all i, j, and,
(II) Covering constraints: P ⊆

⋃p
i=1 B(ci, 7r), and, P ⊆

⋃q
j=1 B(dj , 7r).

Proof. First, from the points x1, . . . , xp we choose a maximal subset of them such that the
distance between each pair of them is at least 4r. This can be done by a simple scooping
algorithm that starts with x1 as first point, then throws away all points xi (for i > 1) with
dist(x1, xi) < 4r, then choose any one of the remaining points and proceed analogously.

Suppose after this (with some renaming) the points that remain are, x1, . . . , xt, where
1 ≤ t ≤ p. Then, one can easily show that, P ⊆

⋃t
i=1 B(xi, 5r).

x1
xb

xa

xt+2

xt+1

d4, ...

d2, d3, ...

c1, c2, . . .
c4, . . .

ci, . . .

dj, . . .

α ≤ 2r≥ 4r

≥ 2r ≥ α

Figure 2 Illustration for proof of Lemma 1.
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Now, we choose the p red centers c1, . . . , cp at the points x1, . . . , xt such that each of
them is chosen. Notice that this is possible since t ≤ p. If t < p, some may be co-located at
one xi, though. Then, let d1, . . . , dq be any points on the surface of those balls (i.e., on the
spheres). Since t ≤ q we have enough points to hit all the balls. If necessary we can co-locate
some points dj to hit the target number q. See Figure 2.

The covering constraints are met since as remarked above, the balls of radius 5r around
all ci (i.e., around all xi) covers P . Similarly, by the triangle inequality and because α ≤ 2r,
the balls of radius 7r around the dj cover P .

To see the separation constraint, let ci, dj be any red and blue centers as defined above.
Suppose ci is located at the center xa where 1 ≤ a ≤ t, and dj is located on the surface
of the ball B(xb, α) where 1 ≤ b ≤ t. If a = b, then since ci is at the center and dj on the
surface of the ball B(xa, α) their distance is exactly α. If, on the other hand, a ̸= b, then
by the triangle inequality we have that, dist(xa, dj) + dist(dj , xb) ≥ dist(xa, xb) ≥ 4r. Now,
ci = xa, and dist(dj , xb) = α ≤ 2r, and so, dist(ci, dj) ≥ 4r − 2r = 2r ≥ α, as desired. ◀

▶ Lemma 2. We have that, rp∧q,α(P ) ≥ α/2.

Proof. Consider any point pl. This point is in some red ball B(ci, r) and in some blue ball
B(dj , r). Thus, by the triangle inequality, dist(ci, dj) ≤ dist(ci, pl) + dist(pl, dj) ≤ 2r. On the
other hand, α ≤ dist(ci, dj). Thus, α ≤ 2r and the claim follows. ◀

Observe that since p ≤ q, rp(P ) ≥ rq(P ).

▶ Lemma 3. We have that, rp∧q,α(P ) ≥ rp(P ).

Proof. Consider a feasible solution with the radius r∗ = rp∧q,α(P ). The p red balls cover
P with radius r∗. Thus, r∗ ≥ rp(P ), since by definition, rp(P ) is the minimum p-center
clustering radius. ◀

Now, for the O(1) approximation to rp∧q,α(P ) notice that we can easily compute by adapting
Gonzalez’s algorithm [7] a 2-approximation to the p-center clustering problem, i.e., to rp(P ).
(This is standard and well-known so we omit the details.) In other words we have now
computed, p centers x1, . . . , xp all in P , and a radius r ≤ 2rp(P ) such that balls B(xi, r)
cover P . We now consider the radius r′ = max(r, α/2), and clearly the balls B(xi, r′) also
define such a covering. Now, using Lemma 1 we can find a feasible solution with radius at
most 7r′ ≤ 14r. Thus, we have shown the following theorem.

▶ Theorem 4. Let r∗ be the optimal radius for the α-separated red blue clustering problem
on an n point set P with parameters p, q ≥ 1. Then, we can compute in polynomial-time, a
feasible solution where the covering radius is at most 14r∗.

This approximation factor can be improved for the constrained problem, i.e., where all the
centers are constrained to be on a fixed line ℓ. The details can be found in the full version of
this paper [6].

4 Polynomial-time algorithm for the constrained problem

Our basic approach will be to do a binary search for the optimal radius. We first present an
algorithm to decide if a given value of the radius r is feasible. Then, we present an algorithm
to determine a finite set of values such that the optimal radius must be within that set.
Then, a binary search using the feasibility testing algorithm gives us the optimal radius.

ISAAC 2021
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4.1 Deciding feasibility for given radius r

Given a radius r > 0 we give a polynomial-time method to decide if there is a solution to
the constrained (n, p ∧ q, α) problem with covering radius r. The algorithm is a dynamic
programming algorithm. One of the challenges encountered is that the centers can be
anywhere on the line, and thus a naive implementation of dynamic programming does not
work since there are not finitely many sub-problems. As such, we first show how we can
compute a finite set C(r) of O(n2) points such that if r is feasible, one can find a feasible
solution with covering radius r with centers belonging to C(r).

4.1.1 Candidate points for the centers
Consider all the end-points of the intervals in I(r), i.e., ai(r), bi(r), and consider the sorted
order of them. Assume that in sorted order the points are renamed to x1, x2, . . . , x2n (possibly
some of them are co-located). As remarked before, the feasibility problem is equivalent to
finding two hitting sets for the intervals in I(r) that satisfy the separation constraints. As in
standard in such hitting set problems, we look at the faces of the arrangement of the intervals.
Some of these faces might be open intervals, or half-open intervals, or even singleton points.
Notice that all faces are disjoint by definition. It is easy to see that if F is such a face, then
a point in the closure F̄ of F will hit at least the same intervals as points in F hit. To avoid
confusion when we refer to faces vs. their closures, in the remaining discussion we will always
say face F for the original face and closure face F̄ when referring to one of the closures (even
though they may be the same set of points).

We explain now, why considering face closures is valid. Suppose a certain center belongs
to a face F and suppose it is allowable to choose any point close enough to one of its
boundary points, such that the separation constraints are met. Then, it is also valid to
choose it at the boundary point and respecting the separation constraint since the separation
constraint is that distance between the red and blue centers is ≥ α as opposed to a strict
inequality > α. Therefore, it is valid to replace faces with their closures.

To compute all the closures of the faces in the arrangement of the I(r), we sort the xi and
we retain all the consecutive intervals [xi, xi+1] that do not lie outside any of the intervals
Ii(r). This can be done by a simple line sweep algorithm. Notice that there are only O(n)
such closure faces.

Next, we define a sequence for each such closure face. Consider such a closure face,
[xi, xi+1] that is the starting closure face for this sequence. Consider the sequence,
xi, xi + α, xi + 2α, . . .. We only want to retain, for each closure face, (at most) the first
three points that hit the closure face. So, given any starting closure face [xi, xi+1] there are
only O(n) points in this sequence since it is bounded by the number of closure faces (in fact
beyond the starting closure face [xi, xi+1]) times three. Let the sequence of points that result
due to starting closure face [xj , xj+1] be denoted by SEQj . We have the following lemma,

▶ Lemma 5. For each starting closure face, [xi, xi+1] the associated sequence SEQi can be
computed in O(n) time.

Proof. We consider each closure face and compute the points of this sequence that possibly
lie in this closure face. Consider such a closure face [xj , xj+1]. For a member of SEQi to lie
in this closure face there is an integer k such that xj ≤ xi + kα ≤ xj+1. This is equivalent
to, xj−xi

α ≤ k ≤ xj+1−xi

α . Thus, to find the first three points of SEQi hitting the closure face,
we only need to find the three smallest integers in the interval, [ xj−xi

α ,
xj+1−xi

α ], if there are
such. This can be done in O(1) time per closure face. Since there are O(n) closure faces, the
entire sequence can be constructed in O(n) time. ◀
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Computing such sequence for each closure face as starting closure face leads to a total
of O(n2) points, and can be computed in O(n2) time overall by the previous lemma. The
set C(r) is the set of the points in all these sequences. Let the sorted order of points in this
set be denoted by c1, c2, . . . , cm where m = O(n2). Thus C(r) = {c1, . . . , cm}. For any such
point ck denote by s(k) the first index j such that cj − ck ≥ α. If there is no such point, let
s(k) = m + 1. Notice that we can compute s(k) by a successor query in O(log n) time if the
set C(r) is sorted. The following lemma says that we can assume that the centers (of both
colors) are in C(r).

▶ Lemma 6. Suppose that the constrained (n, p ∧ q, α) problem has a feasible solution with
covering radius r. Then there is a solution with all centers belonging to C(r).

Proof. Consider a feasible solution with p red centers and q blue centers. First, we remark
that we can assume, wlog, that in any face F there are at most two points, one red and
one blue. This is true because having more than one red or more than one blue point in a
face does not affect the covering constraints, as each point in a face hits (i.e., belongs to)
the exact same set of intervals by definition. Thus, we may assume that there are at most
T ≤ (p + q) such centers, since we might need to throw away some of them when two centers
of the same color belong to one face. Let the T centers be u1, . . . , uT where any of them can
be red or blue. We show how to construct iteratively another feasible solution where all the
centers are in C(r).

We will proceed face by face, and consider all the centers within the face. We know that
there are at most two centers within a face. Moreover, if there are two they are of different
colors. Our basic strategy is to move the first center left till we can, while remaining within
the closure of the face, without violating any separation constraint. If there is only one point
in a face, we are done. Otherwise, once the position of the first point is fixed, the second
point can be similarly moved left until its position is determined within C(r). Let the sorted
order of faces be F1, F2, . . . , FN where N = O(n).

We construct a new sequence v1, . . . , vT where vi is assigned color of ui and is obtained
by shifting ui to the left (so that it will lie in C(r), but never leaving closure of the face it
belongs to). We prove the following claim by induction, which implies the claim that all the
vi belong to C(r).

▷ Claim 7. For each k ≥ 1, all the points ui belonging to face Fk are mapped to points vi

(belonging to F̄k) such that, the at most two such vi, lie on consecutive points of the same
sequence SEQj for some j.

Consider the base case k = 1. If there are no points in F1, the claim holds vacuously. If
there is only one point in F1, slide it left until it hits the boundary of F1. This does not
violate any constraints. The claim holds true trivially. Suppose there are two points in F1.
Now, F̄1 = [x1, x2] and after sliding the first point left till it coincides with x1, and thus
in SEQ1, the second point clearly satisfies u2 − x1 ≥ α since even before the sliding the
inequality was satisfied. Notice that the points are of different color. Thus we can place the
second point v2 at x1 + α ∈ SEQ1 and they are consecutive points of SEQ1.

Suppose that the claim is true up-to k. We now consider the case k + 1. Again, as before
if there are no points in Fk+1 the claim holds vacuously. If there is only one point, we slide
it left to the first point in C(r) which is allowable for it. The meaning of allowable is the
following. Suppose this point is vs. Then, if vs−1, which is in a previous face, is of the same
color as vs, then vs can be anywhere within its face. If it is of different color, then vs has to
be at least at vs−1 + α. Since the starting point of the closure F̄k+1 is in C(r), as is vs−1 + α
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if it lies in F̄k+1, while sliding left we will hit a point in C(r) eventually and we stop there.
Now consider, the case where there are two points ui, ui+1 in Fk+1. After vi has been placed
at its position in C(r) as outlined for the case of single point in Fk+1, suppose it belongs to
SEQj for some j. Clearly it is at most the second point, of SEQj in F̄k+1 as the second point
is already α ahead of the first point of SEQj in F̄k+1. Now, ui+1 − vi ≥ α. Thus, we can
place the second point of Fk+1 at the next point of SEQj in F̄k+1, which exists in F̄k+1 since
the next point is vi + α which is in F̄k+1 by assumption. We observe that all claims hold
true. ◀

4.1.2 The dynamic programming algorithm
The dynamic programming algorithm computes two tables, CanCoverR[I1, I2, a, b, k], and
CanCoverB[I1, I2, a, b, k] of Boolean True, False. Here, I1, I2 are prefixes of intervals of
C(r) (when they are ordered by their left and right end-points), and 0 ≤ a ≤ p, 0 ≤ b ≤ q are
integers, and 1 ≤ k ≤ (m + 1) is also an integer. The table entry CanCoverR[I1, I2, a, b, k] is
True, if there is a hitting set consisting of (at most) a red points that hit the intervals in I1,
(at most) b blue points that hit the intervals in I2 and with the constraint that the first point
to be possibly put is red and at ck if k < m. Here k > m represents that there is no where to
really put the first red point. Notice that the separation constraint between red/blue points
must be met. Similarly the table entry CanCoverB[I1, I2, a, b, k] is true if the first point is
blue and at ck (for k ≤ m). Assuming that the above tables have been computed, we can
answer whether the radius r is feasible by computing the following expression, where we
denote I(r) by I for brevity,

CanCoverR[I, I, p, q, 1]∨ . . . ∨ CanCoverR[I, I, p, q, m]∨
CanCoverB[I, I, p, q, 1]∨ . . . ∨ CanCoverB[I, I, p, q, m].

In the above expression, we try to hit all the intervals in I by both red and blue points and
we try all possible starting locations and color for the first point. We know that the centers
can be assumed to belong to C(r) = {c1, . . . , cm}.

Now we present the recursive definition of the algorithm to fill the tables. We only present
the definitions for CanCoverR[·] but there is an entirely similar definition for CanCoverB[·]
with the roles of red and blue interchanged.

CanCoverR[I1, I2, a, b, k] =
False if (I1 ̸= ∅ ∧ a = 0) ∨ (I2 ̸= ∅ ∧ b = 0) ∨ (I1 ∪ I2 ̸= ∅ ∧ k > m),
True if (I1 = ∅ ∧ I2 = ∅),
False if there exists an interval in I1 ∪ I2 ending before ck,

Ba ∨Bb otherwise.

The first case means that if there are not any red centers to put while some unhit intervals
remain in I1, or not any blue centers to put but unhit intervals in I2, or if we have already
passed over all centers (k > m) but any unhit red or blue intervals remain, we return false.
The next case means that if that all intervals have been hit already we should return true.
The penultimate case means that if the first point ck is so far ahead that at least one interval
in I1 ∪I2 ends before it, then there can be no solution. This is true because any later points,
red or blue, will only be ahead of ck and thus the ended interval cannot be hit. The last case
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uses Boolean variables Ba, Bb that are defined as follows, and they also capture the main
recursive cases. As required by the definition of the function, we must put the next center
as red and at ck. This would cause some intervals in I1 to be hit by ck. We remove those
intervals from I1. Let I ′

1 be the intervals in I1 not hit by ck. It is easy to see that if I1 is a
prefix of I, then so is I ′

1. The definitions of Ba, Bb are as follows.

Ba ← (I1 = ∅) ∨
m∨

j=k+1
CanCoverR[I ′

1, I2, a− 1, b, j]

This assignment ensures that if I1 = ∅, then we never really try to put any red point. If
not, then we try all possibilities for the next position of the red point. Notice that putting
another red point at ck is not necessary so we start with the remaining positions and go up
to m. The coverage requirements for blue points and their numbers remain unchanged. The
red number decreases by 1. The Boolean Bb has the following definition,

Bb ← (I2 = ∅) ∨
m∨

j=s(k)

CanCoverB[I ′
1, I2, a− 1, b, j].

This is because, if the next point (after the current red one) is to be blue, it can only be
at index s(k) or later. Thus we look-up CanCoverB[I ′

1, I2, a − 1, b, j] for all such possible
j. The first check I2 = ∅ means that if the blue intervals have already been hit, we do
not need to put any blue point later. Both the tables CanCoverR[·], CanCoverB[·] are filled
simultaneously by first filling in the entries fitting the base cases, and then traversing them
in order of increasing a, increasing b, decreasing k, and increasing I1, I2 (i.e., the smaller
prefixes come earlier). It is easy to see that the traversal order meets the dependencies as
written in the recursive definitions.

Analysis. First, observe that computing the candidate centers can be done in O(n2) time
as implied by Lemma 5 and the following discussion. Moreover, the successor points s(k) can
all be computed in total O(n2 log n) time by first sorting C(r) and then followed by successor
queries. The time however is dominated by the main dynamic programming algorithm.
Observe that there are O(n) prefixes, and m = O(n2) possible center locations. Thus there
are in total O(n4pq) entries to be filled. Except for the base cases, filling in an entry requires
looking up O(n2) previous entries, as well as some computation such as finding which intervals
are not hit by the current point. Such queries can be handled easily for all the intervals say
in I1 wrt the point ck in O(n) time. Thus for a particular table entry, we require O(n2) time.
Overall we will take O(n6pq) time. We get the following theorem,

▶ Theorem 8. For the constrained (n, p∧q, α) problem where the centers are constrained to lie
on the x-axis, given a radius r, it can be decided if r is feasible in time TDP (n, p, q) = O(n6pq).
Moreover, if r is feasible, a feasible solution with covering radius r can also be computed in
the same time.

To justify the comment about the feasible solution, note that by standard dynamic program-
ming techniques, we can also remember while computing the table entries the solution, and
it can be output at the end.

4.2 Candidate values for r

In this section, we will find a discrete candidate set for the optimal radii that facilitates a
polynomial-time algorithm for solving the constrained (n, p ∧ q, α) problem as presented in
Section 4.3. For this purpose, we need to determine some properties of an optimal solution.
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First, we define a standard form solution and describe an easy approach to convert a feasible
solution to the standard form. Then we present a lemma for proving a property of an optimal
solution. Finally, we compute a finite candidate set for optimal radii.

Let U = {u1, u2, . . . , up+q} be a feasible solution with covering radius r. The closure face
that contains ui is denoted by [xi,1(r), xi,2(r)], where xi,1(r) and xi,2(r) are the endpoints
of some intervals (i.e., aj(r) or bj(r)). Since uis are on the x-axis, be a slight abuse of
notation, we let ui denotes the x-coordinate of point ui. For a given feasible solution
U = {u1, u2, . . . , up+q}, its standard form has two following properties:
1. If u1 and up+q are on the endpoints.
2. Any two consecutive same color centers are on the endpoints.

Converting a given solution to standard form. If u1 (resp. up+q) is not on an endpoint,
we move it to the left (resp. right) to hit x1,1(r) (resp. xp+q,2(r)). For every pair of two
consecutive same color centers ui and ui+1, 1 ≤ i ≤ p + q− 1, if ui is not on an endpoint, we
move it to the right to hit xi,2(r) and if ui+1 is not on an endpoint we move it to the left to
hit xi+1,1(r).

Clearly, the standard form solution as constructed above satisfies the covering and
separation constraints. Let S(k, j) denote a sequences of j + 1 consecutive centers in U

starting from uk, i.e., (uk, uk+1, . . . , uk+j). A sequence S(k, j) is called alternate if for all
i, k ≤ i ≤ k + j − 1, ui and ui+1 have different colors and centers uk and uk+j are on the
endpoints and the other centers of the sequence are not on the endpoints (such a center is
called internal).

Now note that if U is a standard solution, then the consecutive red-blue centers can be
clustered in some alternate sequences. These alternate sequences can be provided by scanning
the centers from left to right and clustering a couple of consecutive blue-red centers between
two endpoints that include a center. To this end, we have the following simple approach:

Clustering centers in alternate sequences. Let ucur be the first center that has not been
visited yet. At the beginning, ucur = u1. Let ui be the next closest different color center to
ucur. All centers from ucur to ui−1 should be on the endpoints since they are the same color.
We can construct the next sequence from k = i− 1, i.e., we add ui−1 and ui to a sequence.
There are two events:
Event 1: ui is on an endpoint, so the sequence is completed. If there are any unvisited

centers, we continue scanning the centers by starting from ui, i.e., we mark ui as unvisited,
set ucur = ui, and proceed as before until there is no unvisited center.

Event 2: ui is not on an endpoint. Consider ui+1. ui+1 and ui should have different colors
since U is standard. We add ui+1 to the sequence. If there are any unvisited centers,
consider ui+2 and check Events 1 or 2 for i = i + 2.

Note that some of the centers may belong to two alternate sequences (e.g., a center on an
endpoint with different color adjacent centers) and some of them may not be in a sequence
(e.g., a center with same-color adjacent centers).

Now we prove a property of the optimal solutions in standard form for being able to find
a discrete candidate set for the optimal radii.

▶ Lemma 9. Let U = {u1, u2, . . . , up+q} be a feasible solution for the constrained (n, p∧ q, α)
problem with radius of covering r. If the distance between any two endpoints of the intervals
in C(r) is not tα, where t ∈ Z, 0 ≤ t ≤ p + q − 1, then the constrained (n, p ∧ q, α) problem
has a feasible solution with radius less than r.



M. Eskandari, B. Khare, and N. Kumar 41:11

Proof. We will show that there is a real number 0 < ϵ < r such that the constrained
(n, p ∧ q, α) problem has a feasible solution with radius of covering r − ϵ. To this end, we
obtain a set of centers, Ū , from the given feasible solution U and show that the set of balls
centered at the points in Ū with radius r − ϵ is a feasible solution for the problem. First, we
need to modify U to find a feasible solution with the property that any two consecutive blue
and red centers are at a distance strictly greater than α (not exactly α). Then we use it for
finding a solution, Ū , with radius of covering r − ϵ (that is explained later).

First of all, we convert U to standard form and compute all alternate sequences of the
standard solution. Then we use them to find a feasible solution with the property that
any two consecutive blue and red centers are at a distance of strictly greater than α. Note
that by the Lemma’s assumption, each alternate sequence S(k, j) has at least a pair of two
consecutive centers at a distance of strictly greater than α (since each distance is at least α

and sum of them is not jα). But we need to have this strict inequality for all such pairs. So
in each sequence S(k, j), if there are two consecutive centers uk+i and uk+i+1 at a distance
of exactly α, we should perturb the internal centers such that the distance between any two
consecutive blue and red centers is strictly greater than α.

For perturbing the internal centers of each alternate sequence S(k, j), if j = 1, then
uk+1 − uk > α, because uk and uk+1 are on the endpoints so uk+1 − uk ̸= α. If j > 1, we
proceed by induction on the number of the pairs with the distance of α which is denoted by
nk,j . For nk,j = 1, let uk+i, uk+i+1 ∈ S(k, j) such that uk+i+1 − uk+i = α. Since j > 1, at
least one of uk+i and uk+i+1 is internal, say uk+i. Since nk,j = 1, uk+i − uk+i−1 > α. So we
can shift uk+i toward uk+i−1 infinitesimally such that uk+i − uk+i−1 > α and we still have
uk+i+1 − uk+i > α. Assume for the induction hypothesis that for all integers m > 1, in a
sequence S(k, j) with nk,j < m, including a pair of consecutive red and blue centers at a
distance greater than α, we can perturb the internal centers such that all distances between
two consecutive centers are strictly greater than α. Now assume that nk,j = m > 1. For
some 0 ≤ i ≤ j − 1, let uk+i, uk+i+1 ∈ S(k, j) such that uk+i+1 − uk+i = α. S(k, j) has a
pair of two consecutive centers at a distance greater than α. This pair belongs to one of the
sequences S(k, i) or S(k + i + 1, j), say S(k, i). It is clear that nk,i < m, so by the induction
hypothesis, we can perturb the internal centers of S(k, i) such that all distances between
two consecutive centers are strictly greater than α. Next, we can move uk+i toward uk+i−1
infinitesimally such that uk+i − uk+i−1 > α and we now also have uk+i+1 − uk+i > α. Now
we add uk+i to S(k + i + 1, j) to obtain S(k + i, j) in which the distance between centers
uk+i and uk+i+1 is greater than α. Since nk+i,j < m, again by the induction hypothesis, we
can perturb the internal centers of S(k + i, j) such that all distances between two consecutive
centers are strictly greater than α. It means that S(k, j) no longer contains a consecutive
pair with distance α.

Now we can compute Ū . Let 0 < ϵ < r be a positive real number to be fixed later. If ui

is on an endpoint, say xi,1(r), let ūi = xi,1(r − ϵ), otherwise, ūi = ui. Notice that by our
assumptions, there is no solution for t = 0 so all endpoints are distinct. As such for an ui on
an endpoint, it is never on two endpoints simultaneously and its movement is unambiguously
determined. We will show that there exists an ϵ such that Ū = {ū1, ū2, . . . , ūp+q} is a feasible
solution with radius of covering r − ϵ, i.e., Ū should satisfy the covering and separation
constraints. To this end, firstly, after decreasing r to r− ϵ, the relative order of the endpoints
of the intervals should not change, i.e., the displacement of an endpoint of a face Fi should
be less than ||Fi||/2, where ||Fi|| is the distance between the endpoints of face Fi. Secondly,
for satisfying the covering constraint, the internal centers should remain in their faces, i.e.,
xi,1(r − ϵ) < ūi < xi,2(r − ϵ). So the displacement of point xi,1 (resp. xi,2) should be less
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than ui − xi,1(r) (resp. xi,2(r) − ui). Finally, for satisfying the separation constraint, in
each sequence S(k, j), we should have ūk+1 − ūk ≥ α and ūk+j − ūk+j−1 ≥ α (note that the
distance between two internal centers does not change), i.e., the displacement of the endpoint
that contains uk (resp. uk+j) should be less than uk+1 − uk − α (resp. uk+j − uk+j−1 − α).
Therefore, by choosing real numbers δ1, δ2, δ3 as follows, and 0 < δ < min{δ1, δ2, δ3}, because
of continuity of the movement of endpoints on line ℓ, we can obtain a positive ϵ such that
the displacement of an endpoint becomes at most δ when the radius decreases to r − ϵ.

0 < δ1 < 1/2 min
1≤i≤2n−1

{||Fi||}

0 < δ2 < min
∀S(k,j)

{ min
k+1≤i≤k+j−1

{ui − xi,1(r), xi,2(r)− ui}}

0 < δ3 < min
∀S(k,j)

{uk+1 − uk − α, uk+j − uk+j−1 − α}

Consequently, there exists a non-zero ϵ > 0 such that the balls centered at points in Ū with
covering radius r − ϵ is a feasible solution. ◀

By Lemma 9, in the optimal solution, there is at least a pair of two endpoints at distance
tα, where t ∈ Z, 0 ≤ t ≤ p + q − 1. The interval endpoints ai(r) and bi(r) are given by
ai(r) = pi1 −

√
r2 −

∑d
j=2 p2

ij , and bi(r) = pi1 +
√

r2 −
∑d

j=2 p2
ij , so, a candidate set for the

optimal radius can be computed by solving the following equations for all 1 ≤ i, k ≤ n and
t ∈ Z, 0 ≤ t ≤ p + q − 1:

pi1 ±

√√√√r2 −
d∑

j=2
p2

ij − pk1 ±

√√√√r2 −
d∑

j=2
p2

kj = tα,

since at least one of those equalities holds true. Due to our general position assumption,
i.e., no two points in P have the same distance from ℓ, these equations have a finite number
of solutions. This is not too hard to show. See the full version of this paper [6] for the
details. (We remark that the general position assumption can be removed. Without the
assumption, Lemma 9 needs an amended statement and proof. Due to space constraints, we
do not show this here. The amended statement and proof can be found in the full version of
this paper [6].)

By solving these equations, we obtain O(n2(p + q)) candidates for the optimal radius and
this proves the following lemma.

▶ Lemma 10. There is a set of O(n2(p+ q)) numbers, such that the optimal radius rp∧q,α(P )
is one among them, and this set can be constructed in O(n2(p + q)) time.

4.3 Main result

By first computing the candidates for r∗ and then performing a binary search over them
using the feasibility testing algorithm, we can compute the optimal radius. Thus we have
the following theorem.

▶ Theorem 11. The constrained (n, p ∧ q, α) problem can be solved in O(n2(p + q) +
TDP (n, p, q) log n) = O(n6pq log n) time.
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5 Conclusions

Improving the approximation factor of our main approximation algorithm (Theorem 4) and
the running time of our polynomial-time algorithm for the constrained problem (Theorem 11)
are obvious candidates for problems for future research work. Apart from this, it seems that
a multi-color generalization of the k-center problem is worth studying for modeling similar
practical applications. Here we want k different colored centers, and balls of each color
covering all of P but with the separation constraints more general, i.e., between the centers
of colors i, j the distance must be at least some given αij . It seems that new techniques
would be required for this general problem.
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Abstract
We initiate the theoretical study of Ext-TSP, a problem that originates in the area of profile-guided
binary optimization. Given a graph G = (V, E) with positive edge weights w : E → R+, and a
non-increasing discount function f(·) such that f(1) = 1 and f(i) = 0 for i > k, for some parameter
k that is part of the problem definition. The problem is to sequence the vertices V so as to maximize∑

(u,v)∈E
f(|du − dv|) · w(u, v), where dv ∈ {1, . . . , |V |} is the position of vertex v in the sequence.

We show that Ext-TSP is APX-hard to approximate in general and we give a (k + 1)-
approximation algorithm for general graphs and a PTAS for some sparse graph classes such as planar
or treewidth-bounded graphs.

Interestingly, the problem remains challenging even on very simple graph classes; indeed, there
is no exact no(k) time algorithm for trees unless the ETH fails. We complement this negative result
with an exact nO(k) time algorithm for trees.
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1 Introduction

Profile-guided binary optimization (PGO) is an effective technique in modern compilers to
improve performance by optimizing how binary code is laid out in memory. At a very high
level, the idea is to collect information about typical executions of an application and then use
this information to re-order how code blocks are laid out in the binary to minimize instruction
cache misses, which in turn translates into running time performance gains. Newell and
Pupyrev [20] recently introduced an optimization problem, which they call the Extended
TSP (Ext-TSP) problem that aims at maximizing the number of block transitions that do
not incur a cache miss.

The input to the Ext-TSP problem is a weighted directed graph G = (V, E), which in
the context of PGO corresponds to the control flow representation of the code we are trying
to optimize: Every node u ∈ V corresponds to a basic block of code (for the purposes of this
paper we can think of each of these blocks as a single instruction that takes a fixed amount of
memory to encode); every edge (u, v) ∈ E represents the possibility of an execution jumping
from u to v, and the weight w(u, v) captures how many times the profiler recorded said
jump during the data collection phase. Our ultimate goal is to find a linear ordering of
the nodes, each of which represents a possible code layout of the binary; we let this linear
ordering be encoded by a one-to-one function d : V → {1, . . . , |V |}. Finally, each edge (u, v)
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42:2 On the Extended TSP Problem

contributes f(|du − dv|) · w(u, v) to the objective, where |du − dv| is the distance between
the edge endpoints in the linear ordering, and f(·) is a non-increasing discount function such
that f(1) = 1 and f(i) = 0 for i > k, where k = O(1) is part of the problem definition.

Newell and Pupyrev [20] designed and evaluated heuristics for Ext-TSP leading to
significantly faster binaries. Their implementation is available in the open source project
Binary Optimization and Layout Tool (BOLT) [17, 20, 22]. In their experiments, they found
that setting k to be a small constant1 and f(|du − dv|) =

(
1 − |du−dv|

k

)
for 1 < |du − dv| < k,

yields the best results. The high level intuition is that the discount factor is a proxy for the
probability that taking the jump causes a cache miss. Thus, the Ext-TSP objective aims at
maximizing the number of jumps that do not cause a cache miss.

In this paper we initiate the theoretical study of Ext-TSP by providing a variety of
hardness and algorithmic results for solving the problem both in the approximate and the
exact sense in both general and restricted graph classes.

1.1 Our results
We show that Ext-TSP is APX-hard to approximate in general. We give a polynomial
time (k + 1)-approximation algorithm and a nO( k

ϵ ) time (2 + ϵ)-approximation for general
graphs. We also give a nO( k

ϵ ) time (1 + ϵ)-approximation for some sparse graphs classes such
as planar or treewidth-bounded graphs.

Interestingly, the problem remains challenging even on very simple graph classes; indeed,
there is no exact no(k) time algorithm for trees unless the ETH fail. Finally, we complement
this negative result with an exact nO(k) time algorithm for trees.

1.2 Related work
PGO techniques have been studied extensively in the compiler’s community. Code re-
ordering is arguably the most impactful optimization among existing PGO techniques [22].
The classical approach for code layout is initiated by Pettis and Hansen [24], who formulated
the problem of finding an ordering of basic blocks as a variant of the maximum directed
TRAVELING SALESMAN PROBLEM on a control flow graph. They describe two
greedy heuristics for positioning of basic blocks. Later, one of the heuristics (seemingly
producing better results) has been adopted by the community, and it is now utilized by
many modern compilers and binary optimizers, including LLVM and GCC. Very recently,
Newell and Pupyrev [20] extended the classical model and suggested a new optimization
problem, called Extended-TSP. With an extensive evaluation of real-world and synthetic
applications, they found the objective of Ext-TSP is closely related to the performance of a
binary; thus, an improved solution of the problem yields faster binaries. We refer to [20] for
a complete background on this literature.

The problem of laying out data in memory to minimize the cache misses has been studied
in the Algorithms community [1, 12, 19, 30]. In this setting a number of requests arrives
online and our job is to design an eviction policy [31]. Even though ultimately, we are also
concerned with minimizing cache misses, there are two main differences: first, the profile data
gives us information about future request that we can exploit to improve locality; second,
this optimization is done at the compiler, which does not have control over the operating
system’s cache eviction policy. The benchmark used for online algorithms is the competitive

1 To be more specific, k is the number of blocks that can fit into 1024 bytes of memory.
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ratio: the number of cache misses incurred by the online algorithm divided by the number of
cache misses incurred by an optimal algorithm that knows the entire sequence of requests in
advance. It is known that the best competitive ratio is Θ(k) for deterministic algorithms
and is Θ(log k) [1], where k is the size of the cache.

There are many classical optimization problems that seek for to sequence the vertex set of
a graph to optimizing some objective function. The two most closely related to our problem
are Max TSP and Min Bandwidth.

An instance of Max TSP consists of a weighted undirected graph and our objective is
sequence the vertex set to maximize the weight of adjacent nodes. The problem is known to be
APX-hard [23] and a number of approximation algorithms are known [4,7,13,15,16,18,21,28],
with the best being the 5/4-approximation of Dudycz et al. [7] that runs in O(n3).

An instance of Min Bandwidth consists of an undirected graph and our objective is to
sequence the vertex set to minimize the maximum distance between the endpoints of any
edge in the graph. The problem admits an nO(b) time exact algorithm [26], where b is the
bandwidth of the graph. On the negative side, there is no exact g(b)no(b) time algorithm [5]
and unless the ETH fails, even in trees of pathwidth at most two. Several poly-logarithmic
approximation algorithms exist for different graphs classes [9, 11, 14]; on the other hand, it is
NP-hard to approximate the problem within any constant even for caterpillars [6].

A somewhat related problem is the Min Linear Arrangement problem. An instance
consists of an undirected graph and our objective is to sequence the vertex set to minimize
the sum of the distances between the endpoints of each edge in the graph. Minimizing this
objective function is equivalent to maximizing the Ext TSP objective function with the
discount function f(i) = 1− i/n. Min Linear Arrangement admits polynomial-time exact
algorithms on trees [29]; however, we are not aware of any results for higher treewidth. There
are several poly-logarithmic approximation algorithms [3,8,10,25] based on the spreading
metrics technique of Even et al. [8]; however it is unclear how these techniques can be made
to work for Ext TSP. Moreover, for our applications, we are interested in the regime where
k ≪ n, so this connection does not yield a result of practical relevance.

2 Problem definition and hardness

An instance of Ext-TSP problem consists of a directed graph G = (V, E) with positive
edge weights w : E → R+ and a non-increasing discount function f(·) where f(1) = 1 and
f(i) = 0 for i > k, where k, where k is a parameter that is part of the problem definition.
The problem is to sequence the vertices V so that dv ∈ {1, . . . , |V |} is position of vertex v

with the objective to maximize∑
(u,v)∈E

f(|du − dv|) · w(u, v)

The first thing to notice is that the fact that we could have defined the problem on an
undirected graph since the contribution of an edge (u, v) to the objective only depends on its
weight and the distance between its two endpoints, and is independent of whether it is a
forward or a backward jump. Indeed, we can reduce the undirected case to the directed case
and vice versa: Given an undirected graph, we can orient the edges arbitrarily; while given a
directed graph we can combine pairs of anti-parallel edges into a single edge by adding up
their weight.

In order to simplify our exposition, from now on we assume the input graph is undirected.
Right away, this allows us to relate Ext-TSP to Max TSP and Min Bandwidth, which
in turn yields the following hardness results. Finally, for the sake of succinctness, we extend
the edge weight function to subsets of edges; namely, w(S) =

∑
e∈S w(e) for S ⊆ E.

ISAAC 2021



42:4 On the Extended TSP Problem

node in C
node in V \ C
dangling node

C

Figure 1 Dangling nodes of a root connected component C.

▶ Theorem 1. The Ext-TSP problem exhibits the following hardness:
1. it is APX-hard, even when k = 1,
2. does not admit an exact no(k) time algorithm unless the ETH fails, even in trees.

Proof. For the first part, we use the relation between Ext-TSP and Max TSP, which is
known to be APX-hard [23]. Recall that the objective of the latter problem is to maximize∑

(u,v)∈E:|du−dv|=1 w(u,v) given an undirected graph. We can reduce an instance of Max
TSP to an undirected instance of Ext-TSP with k = 1 where f(1) = 1 and f(2) = 0.
Therefore, Ext-TSP is APX-hard even when k = 1.

For the second part, we use the relation to Min Bandwidth. Recall that the objective
of the latter problem is to minimize max(u,v)∈E |du − dv|, the optimal value of this objective
is called the bandwidth of the graph. Given an instance G with bandwidth b, consider the
Ext-TSP instance where f(i) = 1 for 0 ≤ i ≤ k and f(k + 1) = 0; if k = b then the objective
of this instance must be w(E) as there exists a sequencing where the endpoints of every
edge are within at most k of one another. It follows that, if we could have an no(k) time
algorithm for Ext-TSP that implies an no(b) time algorithms, which does not exist even for
very simple trees unless the ETH fails [5]. ◀

3 Exact Algorithms

In this section we complement the hardness from the previous section by developing an exact
algorithm for trees whose running time is polynomial when k = O(1).

▶ Theorem 2. There is an nO(k) time algorithm for solving Ext-TSP optimally on trees.

Proof. Let T be the input tree. Consider an optimal solution opt, and let O be the set of
realized edges, that is, the subset of edges whose endpoints are at distance at most k in opt.
Without loss of generality we assume that each connected component of O is laid out in a
contiguous stretch in the optimal sequencing. Using this simple insight, we use dynamic
programming (DP) to build a solution for the connected component C that has the root
of the tree, and solve separately the subtree rooted at nodes that are not in C but that
have a parent in C; we call such nodes dangling nodes of C (see Figure 1). Without loss of
generality, we assume that |C| ≥ k. If C happens to be smaller, we can guess the optimal
sequencing for C (there are only nk−1 choices), solve separately the subproblems rooted at
dangling nodes of C, and keep the best solution.

Our algorithm is based on a subtle DP formulation. Each DP state represents succinctly
a partial solution for a subtree of T , and it is defined by a tuple (z, σ, R), where

z ∈ V is the root of the subtree of T we are trying to solve,
σ is a sequence of exactly k nodes in Tz, the subtree of T rooted at z,
R is the set of edges incident on σ that have already been realized.
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t t
node in σ
node in Tz \ σ
entry port of t
reachable from an entry port
realized edge in R

Figure 2 Two example showing the entry ports of a node t ∈ Tz \ σ. On the left, all entry ports
of t are open, while on the right all entry ports of t are closed.

It is worth noting that although the structure of the DP states builds on that used in the
algorithm of Saxe [26] for Min Bandwidth, the fact that we do not necessarily realize all
edges means we need new ideas and a more involved DP formulation to solve Ext-TSP.

Our high level goal is to build an edge weighted graph H over these tuples plus two
dummy source and sink nodes s and t such that every optimal solution to the Ext-TSP
problem on the subtree Tz induces an s-t path whose weight equals the value of this solution;
and conversely, every s-t path induces an Ext-TSP solution of Tz whose value equals the
weight of the path. Thus, once the graph is defined and the equivalence established, solving
Ext-TSP amounts to a shortest path computation in H.

To provide some motivation and intuition on the definitions that will follow, consider an
optimal solution of Tz realizing a subset of edges O, where C is the connected component
of (Tz, O) that contains the root z, and let τ be the optimal sequence for C. Note that τ

realizes O[C], and by our earlier assumption |τ | ≥ k. For each j ∈ {1, . . . , |C| − k + 1} we let
σj be the subsequence of τ from j to j + k − 1 and we let Rj be the subset of edges realized
by the first j + k − 1 positions of τ that have at least one endpoint in σj . Then the path
induced by τ in H will be

s → (z, σ1, R1) → (z, σ2, R2) → · · · → (z, σ|C|−k+1, R|C|−k+1) → t

The weight of the first edge s → (z, σ1, R1) will be defined as the contribution of σ1 to
the objective, that is the total discounted (according to σ1) weight of edges R1. The weight
of the last edge (z, σ|C|−k+1, R|C|−k+1) → t will be defined as the value of the subproblems
defined by dangling nodes of σ|C|−k+1 not spanned by R|C|−k+1. Finally, the weight of an
edge (z, σj , Rj) → (z, σj+1, Rj+1) will be defined as the value of the subproblem defined by
dangling nodes of σj \ σj+1 not spanned by Rj+1 plus the discounted weight of Rj+1 \ Rj .
Since we do not double count any contributions, the weight of the path adds up to the value
of the optimal solution for Tz.

Our goal is to impose some restrictions on the vertices and edges in H so that every s-t
path induces a solution of equal value in Tz. To that end we will define the notion of valid
tuples and valid edges, but before we do that, we must introduce a few more concepts.

Given a tuple (z, σ, R) we say that a node u ∈ σ is an entry port for a node t ∈ Tz \ σ if
the unique path P from t to u in T does not go through any other vertex in σ; furthermore,
we say that u is a closed entry port of t if the edge in P out of u is in R, otherwise, we say u

is an open entry port of t. Finally, we say that t ∈ Tz \ σ is reachable if all the entry ports of
t are open. See Figure 2 for an example illustrating these definitions.

A tuple (z, σ, R) is valid if for every t ∈ Tz \ σ the entry ports u ∈ σ for t are either all
closed or all open. Indeed if (z, σ, R) was part of the path induced by some τ then either t

comes before σ in τ , in which case t subtree spanned between the entry ports of t must have
been already realized; or t comes after σ in τ , in which case said subtree will be realized
later on. Thus, we can focus only on valid tuples. We define a graph H over the valid tuples
where we put a directed edge (z, σ, R) → (z, σ′, R′) if:

ISAAC 2021
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σ′ is obtained from σ by appending a reachable node (reachable with respect to the first
tuple) v to σ and removing the first node u in σ,
R′ equals R minus edges in R that are incident on u but not on any other node in σ, plus
edges from v to σ,
(u, parent(u)) ∈ R ∪ R′,
for each child c of u such that (c, u) /∈ R ∪ R′, u is the unique (open) entry port of c

(defined with respect to the first tuple) and v /∈ Tc; we call such c, a dangling child of u.

Furthermore, we define the weight of such an edge to be the discounted weight of newly
realized edges (namely, R′ \ R) plus the total value of the optimal solutions for subtrees
defined by dangling children of u. Note that the R′ \ R must connect v to other nodes in σ,
so we have all the information needed to discount their weight.

Finally, we connect s to each tuple (z, σ, R) where R is the set of edges with both
endpoints in σ and the weight of the edge is the discounted (w.r.t. σ) weight of R; and
we connect each tuple (z, σ, R) to t if the only reachable nodes adjacent to σ are dangling
children and we set the weight of the edge to be the total value of the subproblems defined
by those dangling children.

Given a path P in H we define τ to be the induced solution by taking the σ of the first
tuple in the path, and then extending the ordering by appending the new node of the σ in
the next tuple and so on. Similarly, we can define the inverse operation: Given a sequencing
τ realizing a connected component of nodes that have the root of the tree, then we can define
a sequence of tuples such that the sequence of tuples induces τ .

▷ Claim 3. Let P be a path out of s in H inducing some ordering τ . Then τ realizes exactly
the union of all the R-sets in P .

The claim is easy to prove by induction on the length of the sequence. If the sequence
has only one tuple (z, σ, R), then τ = σ and R is the set of edges realized by σ, so the claim
follows. Otherwise, if the last two tuples are (z, σ, R) and (z, σ′, R′) and v is the last node
in τ then R′ \ R is the set of edges realized by τ incident on v and we can use induction to
account for the rest.

In order to prove the correctness of our dynamic programming formulation, we need to
argue that every solution τ to the original problem induces a path of equivalent cost, and
vice-verse.

▷ Claim 4. Let τ be the sequence of nodes in the connected component C of edges realized
by the optimal solution opt having z. The sequence of tuples induced by τ forms a valid s-t
path whose weight equals∑

(u,v)∈T [C]

f(|du − dv|)w(u, v) +
∑
u/∈C

parent(u)∈C

opt[Tu],

where du is the position of u in τ .

If the sequence is a path, then by Claim 3, τ realizes precisely the union of the R-sets in
the sequence, and the weight of the path is precisely as stated in the claim. It only remains
to show that the sequence is indeed a path. Consider two consecutive tuples (z, σ, R) and
(z, σ′, R′) along the sequence. Our goal is to show that there is an edge connecting them.
The first two conditions of a valid edge definition hold by definition of the induced sequence
of tuples. For the third condition, note that (u, parent(u)) must be realized by τ and so
parent(u) must occur within k positions of u so the edge must appear in R ∪ R′ and the
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condition holds. For the fourth condition, if we let c be a child of u such that (c, u) /∈ R ∪ R′,
we note that τ cannot realize this edge after σ′, so it must be the case that v /∈ T [c] (otherwise
v would be disconnected from the root in C) and that c is dangling child of u (otherwise c

has a descendant in σ that would be disconnected from the root in C).

▷ Claim 5. For a given s-t path in H, let τ be the ordering induced by the path. Then the
set of edges realized by τ forms a connected component C that contains the root and the
weight of the path equals∑

(u,v)∈T [C]

f(|du − dv|)w(u, v) +
∑
u/∈C

parent(u)∈C

opt[Tu],

where du is the position of u in τ .

By Claim 3, τ realizes precisely the union of the R-sets in the sequence. For every v ∈ τ

other than z, we argue that (v, parent(v)) is realized by τ . Indeed, let (z, σ, R) be the last
tuple such that v ∈ σ. If (z, σ, R) is not the last tuple, by the third existence condition on the
edge to the next tuple guarantees that (u, parent(u)) is realized. If (z, σ, R) is the last tuple,
by the existence condition on the edge to t, all reachable nodes adjacent to σ are dangling,
in particular parent(u) is not reachable. Therefore, since (v, parent(v)) is realized for all v,
using induction we get that v must be connected all the way to the root with realized edges.
Therefore the vertices in τ form a connected subtree containing the root z, and the set of
realized edges is precisely this subtree.

All this effort would be for naught, unless we could represent H succinctly. Recall that
every node in H is a tuple (z, σ, R); clearly, there are only n choices for z and only nk choices
for σ; furthermore, for an edge to be in R, since σ is a contiguous chunk of size k, they
can only realize edges with connection to the previous k nodes, thus, we can represent R

succinctly by listing those additional k nodes. Overall, there are n2k+1 edges in H; we can
list the outgoing neighboring tuples in O(n) time per tuple2. Therefore, we can run Dijkstra
in O(n2k+2) time and identify the connected component of z. Since this has to be done for
every node in T , we gain an extra factor of n for a running time of O(n2k+3). ◀

4 Approximation Algorithms for special graph classes

In this section, we shows that we can get very good approximations for special graph classes
that go beyond trees.

▶ Theorem 6. There is an nO( kt
ϵ ) time (1 + ϵ)-approximation for Ext-TSP in graphs with

a tree decomposition of tree-width t.

Proof. Let T be the tree decomposition of our input graph G and let h = ⌈1/ϵ⌉. To simplify
the presentation of our algorithm we define an auxiliary problem, where the goal is to
partition the vertex set into clusters of size at most hk and order each part separately, the
Ext-TSP objective is computed for each part and summed up. If we let opt be the value of
the optimal solution for the original problem, we claim that opt’, the value of the optimal
solution for the auxiliary problem is not much lower; more precisely,

opt′ ≥ h − 1
h

opt.

2 We do not attempt to optimize this running time.
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To see this, suppose that opt lists the vertices in the order v1, v2, . . . , vn. We pick a random
threshold α u.a.r. from {0, 1, . . . , k − 1}, and cluster vertices together so that for each j we
have a cluster {vhkj+1+α, . . . , vhk(j+1)+α}, yielding a solution to the auxiliary problem. Note
that the probability of an edge that is realized by opt must have endpoints that are at most
k apart in the ordering, so there is only a 1/h chance of that edge not being present in opt′.
Although this is a randomized construction, and it just shows that E[opt′] ≥ h−1

h opt, it is
easy to see that there must exist a value of α that yields the desired bound3.

Given a tree decomposition for G with treewidth t, and a bag B in the decomposition we
denote with T [B] the subset of vertices in the original graph spanned by the sub-decomposition
rooted at B. For each u ∈ B we define a collection orderings of subsets Su, such that for an
ordering σ of a subset S ⊆ V of vertices to be in Su we require that:

|S| ≤ hk,
u ∈ S, and
the subgraph

(
S, {(a, b) ∈ E[S] : |σ(a) − σ(b)| ≤ k}

)
is connected.

We define a dynamic programming formulation for our auxiliary problem as follows. For
each bag B in the decomposition and each |S|-tuple (σu : u ∈ B) where σu ∈ Su, we create
a dynamic programming state A[B, (σu : u ∈ B)] that corresponds to the cost of the best
solution for T [B] where each σu is the ordering of one of the clusters in the solution of the
auxiliary problem. To keep the requirements feasible we ask that for any u, v ∈ B either
σu = σv, or σu and σv do not share any vertices.

We work with a nice tree decomposition with join, forget, and introduce nodes. To define
the recurrence for A we consider each case.

Join node: Here we have two children with the same bag as the node. We simply pass
the tuple constraining the solution space to each child. To compute its value we add
the value of the two children and subtract the contribution of edges inside of B to avoid
double counting. Notice that the distance between the endpoints of E[B] is specified by
(σu : u ∈ B) so we can compute the appropriate discount of these edges.
Introduce node: Here we have a single child with a bag having one fewer element; call
it u. We remove σu from the tuple and u from B. To compute its value we add the
contribution of edges between u and other nodes in σu to the value of the child. Again,
we can use σu to discount the weight of these edges accordingly.
Forget node: Here we have a single child with a bag with one additional element, call it
u. To compute its value we need to guess the σu in the optimal solution. If u happens to
already be in the sequence σv of some v ∈ B then σu = σv. Otherwise, we must guess σu

by picking hk vertices from T [B] \ ∪v∈Bσv and checking that σu ∈ Su. Going over all
possible valid states for the child bag and keeping the state with highest value yields the
value of the state of the parent bag.

For the correctness, notice that there is no loss of information in the case of a introduce
node. Let u be the node begin introduced. Either u is the only vertex in common between
B and σu, in which case u is the only vertex in T [B] by virtue of σu being connected in G,
and so it is safe to forget σu together with u in the child node. Or, there exists another
v ∈ B − u such that v ∈ σu, which case σv = σu and so the information about the constraints
we imposed in u’s part are preserved further down the decomposition.

3 Note that the argument is non-constructive in the sense that given G it is not clear how to partition G
into clusters of size hk so that opt′ ≥ h−1

h opt. The argument only guaranteed the existence of such a
clustering.



J. Mestre, S. Pupyrev, and S. W. Umboh 42:9

For the correctness of the forget node case, note that the component that u belong to
in the optimal solution is connected and that B acts like a separator from T [B] to the rest
of the graph, so if u is not in the same component as any node in B, then it must be in a
component with only nodes in T [B] \ ∪v∈Bσv.

There are nhkt+1 states in the decomposition and each one is considered once by a state
associated with the parent bag in the decomposition, so the overall work is linear on the
number of the states. We can enumerate the states on the fly by paying another O(n) term
per state so the total running time is nhkt+2.

Now, setting h = 1 + 1/ϵ, the optimal solution found by DP is bound to be a 1 + ϵ

approximation for the original problem in nO( kt
ϵ ) as promised in the Theorem statement. ◀

We can use this result to obtain a (1 + ϵ)-approximation for planar graphs.

▶ Corollary 7. There is an nO( k
ϵ2 ) time (1 + ϵ)-approximation for Ext-TSP in planar

graphs.

Proof. Using Baker’s technique [2] we can find an ℓ-outerplanar subgraph G′ of the input
graph G such that value of the optimal solution to the Ext-TSP in G′ is at least 1 − 2/ℓ

the value of the optimal solution in G. Since the treewidth of G′ is no more than 3ℓ, we can
use the algorithm from Theorem 6 get a 1 + ϵ′ approximation in G′ in nO( kℓ

ϵ′ ) time. Setting
ϵ′ = ϵ/3 and ℓ = 6/ϵ, we get the desired result for any ϵ ≤ 1. ◀

5 Approximation Algorithms for general graph

5.1 Greedy
Consider the following greedy algorithm: Start with an arbitrary vertex, and on each step
append a vertex with the heaviest edge to the last-added vertex. That is, if u is the last-added
vertex, then we append the vertex v maximizing w(u, v) where v ∈ V has not yet been added
to the solution.

▶ Lemma 8. Greedy is a 2k-approximation and this is tight. It can be implemented to run
in O(m log n) time.

Proof. Let O be the edges realized by the optimal solution and let u1, u2, . . . , un be the
order computed by the greedy algorithm. Let d∗

u be the position of u in the optimal
solution. Observe that the value of the greedy solution is at least

∑n−1
i=1 f(1)w(ui, ui+1) =∑n−1

i=1 w(ui, ui+1) as f(1) = 1. We partition O as follows, for each ui we have a part
Oi = {(ui, uj) ∈ O : j > i}. Using the fact that f is non-increasing and the definition of
the greedy algorithm, f(|d∗

u − d∗
v|)w(u, v) ≤ w(u, v) ≤ w(ui, ui+1) for all (u, v) ∈ Oi, and

|Oi| ≤ 2k. Thus, the value of the optimal solution is

n−1∑
i=1

∑
(u,v)∈Oi

f(|du − dv|)w(u, v) ≤ 2k
n−1∑
i=1

w(ui, ui+1).

Thus, greedy is a 2k-approximation.
To show that the analysis is tight, consider the following instance with n = (2k + 1)ℓ

consisting of ℓ 2k-stars with the centers of the stars connected with a path of length of length
ℓ − 1. All edges have weight 1. The discount function f is such that f(i) = 1 when i ≤ k and
f(i) = 0 when i > k. The optimal solution sequences one star after the other and achieves a
total cost of 2kℓ. While the greedy solution may start at the center of the “left most star”
and traverse the centers of all star and then add k pendant nodes, achieving a total cost of
ℓ − 1 + k. By making ℓ large we get an approximation ratio that tends to 2k.
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Figure 3 Tight instance for greedy. Optimal solution can realize 2kℓ edges while Greedy may
end up realizing only ℓ − 1 + k edges.

For the implementation, we need to maintain a maximum priority queue with the nodes
that are yet to be added to the greedy solution. The value associated with node u is the
weight of the edge connecting u to the last node in the current partial greedy solution. When
a new node is added to the greedy solution, this causes the priority of certain vertices to
be updated (up for those incident on u or down for those incident on the second last-node
of the partial solution, or either direction if incident on both nodes). The key observation
is that each edge can cause the priority of a node to be changed twice (once when the first
endpoint is added to the solution and again when that endpoint stops being the last node of
the greedy solution). Therefore, the total number of priority updates is O(m), which using a
simple binary heap yields the desired time. ◀

5.2 Cycle cover based algorithm
We can do slightly better if we use a maximum weight cycle cover as the basis for our solution.
A similar approach has been used to design approximation algorithms for max-TSP [13].

▶ Theorem 9. There is a polynomial time
(

1 + 1
k+1

)
k-approximation for Ext-TSP in

general graphs.

Proof. Let A be a maximum weight set of edges such that the degree of every node is at
most 2. This problem is also known as maximum weight simple 2-matching and can be
reduced to regular maximum weight matching [27, Ch. 30]. Note that A is a collection of
paths and cycles in G. If there exists a cycle C in A, we break C by removing the lightest
edge. This gives us a collection of paths A′. Sequencing each path gives a solution to the
Ext-TSP problem with value at least w(A′).

Now, given a solution to the Ext-TSP problem with value opt, we claim that we can
construct a solution to the degree bounded problem that has value at least opt/k. To
see this, note that the weight of the edges whose endpoints are at distance exactly i for
i = 1, . . . , k is a candidate solution for A. It follows then that w(A) ≥ opt/k.

This is because the edges that are counted towards the objective in Ext-TSP have
maximum degree 2k and that solution can be scaled down by a factor of k to get a fractional
solution to an exact LP formulation of the degree bounded problem. Thus, we get that
w(A) ≥ opt/k.

Let alg be the value of the solution found by our algorithm. Consider a cycle C in A

with length ℓ = |C|. Let e be the edge in C with minimum weight. Therefore, C contributes
at least w(C) − w(e) + f(ℓ − 1)w(e) to alg. Since w(e) ≤ w(C)/ℓ, we can further simplify
the previous expression to

w(C)
(

1 − 1 − f(ℓ − 1)
ℓ

)
.
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Now if each cycle C in A had length at least ℓ > k + 1, the weight of C ∩ A′ would be at
least w(C)

(
1 − 1

k+2

)
. Let alg be the cost of the solution found by our algorithm. Then

alg ≥ w(A′) ≥ k + 1
k + 2w(A) ≥ k + 1

(k + 2)k opt,

which matches the approximation factor of k + 1 promised in the theorem statement.
Unfortunately, cycles can be as small as ℓ = 3, which depending on f could yield a worse
approximation factor, so we need a different approach to our analysis.

Let ℓ∗ be the number in [3, 4, . . . , k + 2] maximizing 1−f(ℓ∗−1)
ℓ . Using the same reasoning

as above, we see that

alg ≥ w(A)
(

1 − 1 − f(ℓ∗ − 1)
ℓ∗

)
.

The first thing to note is that if ℓ∗ = k + 2 then the above analysis yield the desired
approximation, so from now one assume ℓ∗ < k + 2 and 1−f(ℓ∗−1)

ℓ∗ > 1
k+2 , or equivalently,

that

1 − ℓ∗

k + 2 > f(ℓ∗ − 1).

Consider the edges realized by the optimal solution and split them into X and Y . The
first set, X, are the edges whose endpoints are at distance at most ℓ∗ − 2 from each other; the
second set, Y , are the edges whose endpoints are at distance between ℓ∗ − 1 and k. Notice
that

opt ≤ w(X) + f(ℓ∗ − 1)w(Y ),

since all edges in Y are discounted at least f(ℓ∗ − 1), and that

w(A) ≥ max
{

w(X)
ℓ∗ − 2 ,

w(Y )
k − ℓ∗ − 2

}
,

since we can use the same scaling argument on X or Y but using a smaller scaling factor
since the vertices in those edges sets have smaller degrees; namely, 2ℓ∗ − 2 and 2(k − ℓ∗ − 1)
respectively. Putting the above two inequalities together we get

opt ≤ (ℓ∗ − 2)w(A) + f(ℓ∗ − 1)(k − ℓ∗ − 2)w(A)

≤ (ℓ∗ − 2) + f(ℓ∗ − 1)(k − ℓ∗ − 2)(
1 − 1−f(ℓ∗−1)

ℓ∗

) alg.

Think of the above upper bound on the approximation ratio opt/alg as a function of
f(ℓ∗ − 1). We want to find the value 0 ≤ f(ℓ∗ − 1) ≤ 1 − ℓ∗/(k + 2) that yields the worst
bound on the approximation ratio. The upper bound is the ratio of two linear functions of
f(ℓ∗ − 1) and is thus maximized when either f(ℓ∗ − 1) = 0 or f(ℓ∗ − 1) = 1 − ℓ∗/(k + 2). If
f(ℓ∗ − 1) = 0, the ratio simplifies to ℓ∗−2

1−1/ℓ∗ , which in turn is maximized at ℓ∗ = k + 2 and
yields a ratio of k + k

k+1 , as desired. Finally, if f(ℓ∗ − 1) = 1 − ℓ∗/(k + 2), we again get the
same approximation ratio. ◀
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5.3 Local search algorithm

So far all the algorithms we have presented in this section have polynomial running times
that are independent of k. If we are willing to have algorithms that run in nO(k) we can get
arbitrarily good approximations.

Our local search algorithm is parameterized by an integer value ℓ ≥ k. The algorithm
maintains a solution τ and performs local search moves where some subset of ℓ nodes are
taken out of τ and sequenced optimally and attached to the end of the solution. At each
step we perform the best such move and we stop once there is no move that improves the
solution.

▶ Lemma 10. A local optimal solution is a 2 + 2
ℓ/k−1 approximation for the Ext-TSP in

general graphs.

Proof. We will use the following notation throughout this proof: For a given solution τ and
a permutation σ of ℓ elements, let τ − σ the permutation of n − k elements that we get by
removing the nodes in σ from τ . Also, let τ |σ be the permutation obtained by concatenating
σ to τ −σ. Finally, let wσ(τ) be the discounted weight of edges realized by τ that are incident
on vertices in σ, and w(τ) be the discounted weight of all edges realized by τ , i.e. the value
of τ .

Assume that τ is locally optimal; namely, that no local move can improve its value:

w(τ) ≥ w(τ |σ) ∀σ : |σ| = ℓ.

Notice that w(τ) ≤ w(τ − σ) + wσ(τ) and that w(τ |σ) ≥ w(τ − σ) + w(σ). Therefore, a
weaker necessary condition for being locally optimal is that

wσ(τ) ≥ w(σ) ∀σ : |σ| = ℓ.

Let us build a a collection for n + ℓ sub-sequences of the optimal solution by sliding a
window of size ℓ over opt. Call the resulting collection S. Adding up the above inequality
for all σ ∈ S we get∑

σ∈S

wσ(τ) ≥
∑
σ∈S

w(σ).

Notice that every edge realized by τ can appear in at most 2ℓ terms in the left-hand side
of the above inequality (this is because every endpoint appears in at most ℓ permutations),
while every edge realized by opt must appear in at least ℓ − k terms in the right-hand side
of the above inequality. These observation imply the following relation between τ and opt

2ℓw(τ) ≥ (ℓ − k)w(opt),

which in turn finish off the proof of the lemma. ◀

Of course, the issue with the above algorithm is that it is not clear how to compute a
locally optimal solution. However, we can use the standard technique of only making a move
if it improves the value of the objective by at least δ/nw(opt). This guarantees that we do
not perform more than n/δ and degrades the approximation ratio by no more than 2δ. This
yields an algorithm that runs in O(nℓ+1/δ) time.
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6 Conclusions and open problems

Our results can be generalized slightly. For example, one can get similar results for discount
functions f that are non-symmetric (i.e., f(u, v) ̸= f(v, u)), or when the block sizes are
non-uniform. There are, however, some interesting questions that remain unanswered:
1. Is there a polynomial-time O(1)-approximation, independent of k?
2. Is there an exact O(f(k, t)nO(k)) time algorithm where t is the treewidth of the instance?

On the other hand, there are a few things that we can rule out. Note that we cannot
expect (1 + ϵ)-approximations even in nO(k) time since that would contradict APX-hardness
of Max TSP, and we cannot expect to get exact algorithms for bounded treewidth instances
in no(k) time either due to Min Bandwidth hardness.
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Abstract
We give a probabilistic analysis of the unit-demand Euclidean capacitated vehicle routing problem
in the random setting, where the input distribution consists of n unit-demand customers modeled
as independent, identically distributed uniform random points in the two-dimensional plane. The
objective is to visit every customer using a set of routes of minimum total length, such that each
route visits at most k customers, where k is the capacity of a vehicle. All of the following results are
in the random setting and hold asymptotically almost surely.

The best known polynomial-time approximation for this problem is the iterated tour partitioning
(ITP) algorithm, introduced in 1985 by Haimovich and Rinnooy Kan [15]. They showed that the
ITP algorithm is near-optimal when k is either o(

√
n) or ω(

√
n), and they asked whether the ITP

algorithm was “also effective in the intermediate range”. In this work, we show that when k =
√

n,
the ITP algorithm is at best a (1 + c0)-approximation for some positive constant c0.

On the other hand, the approximation ratio of the ITP algorithm was known to be at most
0.995 + α due to Bompadre, Dror, and Orlin [10], where α is the approximation ratio of an algorithm
for the traveling salesman problem. In this work, we improve the upper bound on the approximation
ratio of the ITP algorithm to 0.915 + α. Our analysis is based on a new lower bound on the optimal
cost for the metric capacitated vehicle routing problem, which may be of independent interest.
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1 Introduction

Unit-Demand Euclidean CVRP. In the capacitated vehicle routing problem (CVRP), we are
given a set of n customers and a depot. There is an unlimited number of identical vehicles,
each of an integer capacity k. The route of a vehicle starts at the depot and returns there after
visiting at most k customers. The objective is to visit every customer, using a set of routes
of minimum total length. Vehicle routing is a basic type of problems in operations research,
and several books (see [3, 11, 14, 25] among others) have been written on those problems.
We study the unit-demand Euclidean version of the problem, in which each customer has
unit demand, all locations (the customers and the depot) lie in the two-dimensional plane,
and distances are given by the Euclidean metric. The unit-demand Euclidean CVRP is a
generalization of the Euclidean traveling salesman problem and is known to be NP-hard
for all k ≥ 3 (see [5]). Unless explicitly mentioned, all CVRP instances in this paper are
assumed to be unit-demand Euclidean.
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ITP Algorithm. The best known polynomial-time approximation for the CVRP is a very
simple algorithm, called iterated tour partitioning (ITP). This algorithm first computes a
traveling salesman tour (ignoring the capacity constraint) using some other algorithm, then
partitions the tour into segments such that the number of customers in each segment is at
most k, and finally connects the endpoints of each segment to the depot so as to make a
tour. The ITP algorithm was introduced and refined by Haimovich and Rinnooy Kan [15]
and Altinkemer and Gavish [2] in the 1980s. Its performance is parameterized by the choice
of traveling salesman tour : the approximation ratio of the ITP algorithm is 1 + α, where
α is the approximation ratio of the algorithm used to compute the traveling salesman tour
in the first step. Since the Euclidean traveling salesman problem admits a polynomial-time
approximation scheme (PTAS) by Arora [4] and Mitchell [20], α can be set to any constant
strictly greater than 1.

Random Setting. Given the difficult challenges posed by the CVRP, researchers turned to
an analysis beyond worst case, by making some probabilistic assumptions on the distribution
of the input instance. In 1985, Haimovich and Rinnooy Kan [15] gave the first probabilistic
analysis on the ITP algorithm for the CVRP, where the customers are independent, identically
distributed (i.i.d.) random points. An event E occurs asymptotically almost surely (a.a.s.) if
limn→∞ P[E ] = 1. They showed that, the ITP algorithm is a.a.s. an (α + o(1))-approximation
for the CVRP when k is either o(

√
n) or ω(

√
n).1 The performance of the ITP algorithm in

the intermediate range of k = Θ(
√

n) was unknown. They asked in [15] whether the ITP
algorithm was “also effective in the intermediate range”.

In our work, we study this question raised by Haimovich and Rinnooy Kan [15]. We give
a probabilistic analysis of the ITP algorithm when the points are i.i.d. random, with a focus
on the range of k = Θ(

√
n). Our first main result is a lower bound: even in the random

setting, the ITP algorithm is at best a (1 + c0)-approximation a.a.s., for some constant c0 > 0
(Theorem 1), see Section 3.

▶ Theorem 1. Consider the iterated tour partitioning algorithm for the unit-demand Euclidean
capacitated vehicle routing problem. Let V be a set of n i.i.d. uniform random points in
[0, 1]2. Let k =

√
n. For some fixed depot O ∈ R2, there exists a constant c0 > 0, such that,

for any constant α > 1, there exists an α-approximate traveling salesman tour on V ∪ {O},
such that the approximation ratio of the algorithm is at least 1 + c0 asymptotically almost
surely.

▶ Remark. The α-approximate traveling salesman tour in Theorem 1 is constructed using
Karp’s partitioning algorithm [16].

On the other hand, the approximation ratio of the ITP algorithm is at most 1 + α due
to Altinkemer and Gavish [2]. In 2007, this ratio was improved by Bompadre, Dror, and
Orlin [10] to 0.995 + α, a.a.s., when the points are i.i.d. uniform random in the unit square.2
Here, using a different approach (Theorem 4), we further improve the upper bound on the
approximation ratio in this random setting to 0.915 + α, a.a.s. (Theorem 2), see Section 4.
We generalize our results to multiple depots in the full version of the paper.

1 As observed in [15], a solution of the ITP algorithm consists of two types of costs: the radial cost and
the local cost. When k is o(

√
n) or ω(

√
n), one of the two types dominates, the reason for which the

solution is an (α + o(1))-approximation (or even a (1 + o(1))-approximation for the case of k = o(
√

n)).
2 The analysis in [10] focused on the case of α = 1, though that analysis can be easily generalized to

any α ≥ 1. Bompadre, Dror, and Orlin [10] noted in their work that a ratio of 0.985 + α is achievable
without giving the proof.
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▶ Theorem 2. Consider the iterated tour partitioning algorithm for the unit-demand Euclidean
capacitated vehicle routing problem. Let V be a set of n i.i.d. uniform random points in
[0, 1]2. Let k be any integer in [1, n]. Let the depot O be any point in R2. For any constant
α ≥ 1 and any α-approximate traveling salesman tour on V ∪ {O}, the approximation ratio
of the algorithm is at most 0.915 + α asymptotically almost surely.

1.1 Other Related Work
PTAS and Quasi-PTAS Results for the CVRP. Despite the difficulty of the CVRP, there
has been progress on several special cases. A series of papers designed PTAS algorithms
for small k: work by Haimovich and Rinnooy Kan [15], when k is constant; by Asano et
al. [5] extending techniques in [15], for k = O(log n/ log log n); and by Adamaszek, Czumaj,
and Lingas [1], when k ≤ 2logf(ϵ)(n). For higher dimensional Euclidean metrics, Khachay and
Dubinin [17] gave a PTAS for fixed dimension ℓ and k = O(log

1
ℓ (n)). For unbounded k, Das

and Mathieu [13] designed a quasi-polynomial time approximation scheme.

Probabilistic Analyses. The instance distribution when the customers are i.i.d. random
points is perhaps the most natural probabilistic setting. In that setting, Rhee [23] and
Daganzo [12] analyzed the value of an optimal solution to the CVRP for the case when k

is fixed. Baltz et al [6] studied the multiple depot vehicle routing problem when both the
customers and the depots are i.i.d. random points and assuming unlimited tour capacity.

Analyses of the ITP Algorithm. Because of the popularity of the ITP algorithm, its
approximation ratio has already been much studied and bounds were utilized in a design of
best-to-date approximation algorithms for the CVRP, see, e.g., [9]. In the metric version of
the CVRP, the approximation ratio of the ITP algorithm is at most 1 + (1 − 1

k )α due to
Altinkemer and Gavish [2]. Bompadre, Dror, and Orlin [9] reduced this bound by a factor
of Ω( 1

k3 ). On the other hand, Li and Simchi-Levi [18] showed that the ITP algorithm is at
best a (2 − 1

k )-approximation algorithm on general metrics even if α = 1. Despite of a huge
amount of research, the ITP algorithm by Haimovich and Rinnooy Kan [15] and Altinkemer
and Gavish [2] remains the polynomial-time algorithm with the best approximation guarantee
for the Euclidean CVRP.

Other Applications of the ITP Algorithm. Very recently, Blauth, Traub, and Vygen [8]
exploited properties of tight instances in the analysis of the ITP algorithm, and used those
properties in their design of the best-to-date approximation algorithm for metric CVRP with
a ratio of 1 + α − ϵ, where ϵ is roughly 1

3000 .
Because of its simplicity, the ITP algorithm is versatile and has been adapted to other

vehicle routing problems. For example, Mosheiov [21] studied the vehicle routing with pick-up
and delivery services. They showed that the ITP algorithm is efficient through worst-case
analysis and numerical tests. Li, Simchi-Levi, and Desrochers [19] considered the vehicle
routing problem with constraints on the total distance traveled by each vehicle. They showed
that the ITP algorithm has a good worst-case performance when the number of vehicles is
relatively small.

1.2 Overview of Techniques
To show that the ITP algorithm is at best a (1 + c0)-approximation for the CVRP in the
random setting (Theorem 1), we construct a significantly better solution.
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In the random setting, one may view an ITP solution as partitioning the unit square into
small regions and dedicating one tour to each small region. The cost of the solution is then
roughly the sum of two terms: the radial cost, incurred by traveling between the depot and
the small region; and the local cost, incurred by traveling from customer to customer within
the small region.

To improve that solution, the idea is that instead of traveling straight between the depot
and the small region, a smarter tour might as well make some small detours to visit some
additional nearby customers en route to the small region. We call that a mixed tour. This
modification of the solution has a positive effect because those nearby customers are covered
at little additional cost, thus saving the local cost of covering those customers; but it also
has a negative effect because visiting those nearby customers uses up some of the tour’s
capacity, and to account for that the definition of the small regions must be adjusted, and
their area shrunk. Controlling the two competing effects so that on balance the net result is
an improvement requires a delicate definition of regions. We start by decomposing the plane
into regions of three types. Then we construct a solution in which a single tour may visit
regions of different types, see Figure 1. The mixed structure of the tours enables us to show
that the constructed solution has significantly smaller cost. See Section 3 for more details.

Our proof of the improved upper bound on the approximation ratio of the ITP algorithm in
the random setting (Theorem 2) relies on a new lower bound on the optimal cost (Theorem 11).
To achieve the new lower bound, we consider the gap between the average distance to the
depot and the maximum distance to the depot among all points in a single tour of an optimal
solution. Intuitively, if this gap is large, then the gap itself contributes to the lower bound on
the optimal cost; and if this gap is small, then there are many points whose distances to the
depot is close to the maximum distance, and the total local cost of those points contributes
to the lower bound. Our analysis for the lower bound is completely different from [10] and
enables us to obtain a better approximation ratio of 0.915 + α.

Our new lower bound on the optimal cost also enables us to generalize our results to the
setting of multiple depots. This lower bound holds in the metric CVRP in general, and may
be of independent interest.
▶ Remark. The restriction to i.i.d. uniform random points in [0, 1]2 is made to simplify
the presentation. With extra work, our analysis can be extended to higher dimensional
Euclidean spaces, to general density functions, and to general bounded supports (though the
approximation guarantees in those settings may differ from that in Theorem 2).

2 Notations and Preliminaries

Let δ(·, ·) denote the Euclidean distance between two points or between a point and a set
of points. For any path P of points x1, x2, . . . , xm in R2 where m ∈ N, define cost(P ) =∑m−1

i=1 δ(xi, xi+1).

Capacitated Vehicle Routing Problem (CVRP). Given a set V of n points in R2, a depot
O in R2, and an integer capacity k ∈ [1, n], the goal is to find a collection of tours covering
V of minimum total cost, such that each tour visits O and at most k points in V . Let OPT
denote the value of an optimal solution to the CVRP.

For any point x ∈ V , let ℓ(x) = δ(O, x). Let rad denote the radial cost, defined by
rad = 2

k ·
∑

x∈V ℓ(x).

▶ Lemma 3 ([15]). Let T ∗ be an optimal traveling salesman tour on V ∪ {O}. Then
OPT ≥ max(rad, cost(T ∗)).
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Iterated Tour Partitioning (ITP). We review the iterated tour partitioning (ITP) algorithm
defined by Altinkemer and Gavish [2]. The ITP algorithm consists of a preprocessing phase
and a main phase. In the preprocessing phase, it runs an approximation algorithm for
the traveling salesman problem on V ∪ {O}. Let α denote the approximation ratio of this
algorithm. Let T = (O, x1, x2, . . . , xn, O) denote the resulting traveling salesman tour. In
the main phase, the ITP algorithm selects the best of the k solutions constructed as follows.
For each i ∈ [1, k], let ni = ⌈(n − i)/k⌉ + 1 and define a solution Si to the CVRP to be the
union of the ni tours (O, x1, . . . , xi, O), (O, xi+1, . . . , xi+k, O), (O, xi+k+1, . . . , xi+2k, O), . . . ,
(O, xi+(ni−2)k+1, . . . , xn, O). In other words, the solution Si partitions the traveling salesman
tour T into segments with k points each, except possibly the first and the last segments. The
output of the ITP algorithm is a solution among S1, . . . , Sk that achieves the minimum cost.
It is easy to see that the main phase of the ITP algorithm can be carried out in O(nk) time.3

Let ITP(T ) denote the cost of the output solution. The following classic bound on ITP(T )
was due to Altinkemer and Gavish [2] and, together with Lemma 3, immediately implies that
the ITP algorithm is a (1 + α)-approximation, where α is the approximation ratio of the
traveling salesman tour T .

▶ Lemma 4 ([2]). Let T be any traveling salesman tour on V ∪ {O}. Then

OPT ≤ ITP(T ) ≤ rad +
(

1 − 1
k

)
· cost(T ).

Probabilistic Analysis of the Traveling Salesman Problem. Beardwood, Halton, and
Hammersley [7] analyzed the value of an optimal solution to the traveling salesman problem
in the random setting.

▶ Lemma 5 ([7, 24]). Let V be a set of n i.i.d. uniform random points with bounded support
in R2. Let M denote the measure of the support. Let T ∗ denote an optimal traveling salesman
tour on V . Then there exists a universal constant β such that, for any ϵ > 0, we have

lim
n→∞

cost(T ∗)√
M · n

= β, with probability 1.

In addition, β0 < β < β1, where β0 = 0.62866 and β1 = 0.92117.

▶ Remark. Up to scaling, Lemma 5 holds for any support that is a rectangle with constant
aspect ratio.

3 Lower Bound on the Approximation Ratio

In this section, we prove Theorem 1 by providing a lower bound on the approximation ratio
ITP(T )/OPT of the ITP algorithm, where T is a traveling salesman tour. Let the depot
O =

( 1
2 , −1000

)
. Lemmas 6 and 7 are the key ingredients in the proof of Theorem 1.

▶ Lemma 6. Let β be defined as in Lemma 5. Then there exists a constant c1 ∈ (0, β) such
that for any ϵ1 > 0, OPT < (1 + ϵ1)(rad + β

√
n) − c1

√
n, a.a.s.

▶ Lemma 7. Let β be defined as in Lemma 5. Then for any α > 1, there exists an α-
approximate traveling salesman tour T on V ∪ {O}, such that for any ϵ1 > 0, ITP(T ) >

(1 − ϵ1)(rad + β
√

n), a.a.s.

3 The running time of the main phase can even be improved to O(n).
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Lemma 6 contains main novelties in this section. The proof of Lemma 7 is in the full
version of the paper. First, we show how Lemmas 6 and 7 imply Theorem 1.

Proof of Theorem 1 using Lemmas 6 and 7. Let ϵ1 > 0 be a constant to be set later. From
Lemma 6, there exists an absolute constant c1 ∈ (0, β), such that OPT < (1 + ϵ1)(rad +
β

√
n) − c1

√
n, a.a.s. From Lemma 7, for any α > 1, there exists an α-approximate traveling

salesman tour T on V ∪ {O}, such that ITP(T ) > (1 − ϵ1)(rad + β
√

n), a.a.s. Hence

ITP(T )
OPT >

(1 − ϵ1)(rad + β
√

n)
(1 + ϵ1)(rad + β

√
n) − c1

√
n

, a.a.s.

To analyze rad, let L be the expectation of ℓ(x) for x ∈ [0, 1]2 with uniform distribution.
Since the depot O is at a constant distance from [0, 1]2, L is a constant. By the law of large
numbers,∣∣∣∣ 1n ∑

x∈V

ℓ(x) − L

∣∣∣∣ < ϵ1, a.a.s.

Recall that rad = 2√
n

∑
x∈V ℓ(x). Hence (L−ϵ1)·2

√
n < rad < (L+ϵ1)·2

√
n, a.a.s. Denoting

the function f as

f(ϵ1) = (1 − ϵ1)(2L − 2ϵ1 + β)
(1 + ϵ1)(2L + 2ϵ1 + β) − c1

,

we have

ITP(T )
OPT > f(ϵ1), a.a.s.

Since L, β and c1 are positive constants and c1 < β (Lemma 6), we have

lim
ϵ1→0

f(ϵ1) = 1 + c1

2L + β − c1
.

Let c0 = 1
2 · c1

2L+β−c1
, which is a positive constant. Choosing ϵ1 small enough such that

f(ϵ1) > 1 + c0, we have

ITP(T )
OPT > f(ϵ1) > 1 + c0, a.a.s.

The claim follows. ◀

The rest of the section is dedicated to prove Lemma 6.
Without loss of generality, we assume that ϵ1 ≤ 1, since otherwise it suffices to prove the

claim for the case of ϵ1 = 1. We construct a solution to the CVRP whose cost is less than
(1 + ϵ1)(rad + β

√
n) − c1

√
n, a.a.s., where the constant c1 > 0 will be chosen at the end of

the proof.

3.1 Decomposition of the Plane
In order to construct a solution to the CVRP, we describe a decomposition of [0, 1]2 into
rectangles of three types. Let ϵ2 = ϵ1

10 . We partition4 [0, 1]2 into a lower part [0, 1] × [0, 3+ϵ2
4 ]

which is a rectangle of type III, and a collection of boxes of the form [(i − 1)D, iD] × [ 3+ϵ2
4 , 1],

with D = n−1/4 and 1 ≤ i ≤ 1/D. For simplicity, assume that 1/D is an integer. See
Figure 1a.

4 The decomposition is a partition except for the boundaries, that have measure 0.
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Next, we decompose each box, see Figure 1b. Let m = 5
40−β · n1/4. For simplicity, assume

that m is an integer. The upper half of a box is partitioned into m type I rectangles of the
form [(i − 1)D, iD] × [1 − (j − 1)H, 1 − jH], where H = 1−ϵ2

8·m and 1 ≤ j ≤ m. The lower
left part of a box is partitioned into 2m slices such that each slice is a type II rectangles
of the form [(i − 1)D + (j − 1)W, (i − 1)D + jW ] × [ 3+ϵ2

4 , 7+ϵ2
8 ], with W = β

10 · n−1/2 and
1 ≤ j ≤ 2m. The rest of the box is a single type III rectangle.

For any rectangle R in the resulting decomposition, let nR denote the number of points
of V that are in the rectangle R, and let MR denote the measure of the rectangle R. The
following fact relates nR with MR.

▶ Fact 8. A.a.s. the following event E occurs: (1 − ϵ2) · MR · n < nR < (1 + ϵ2) · MR · n for
all rectangles R in the resulting decomposition.

Proof. Let R be any rectangle in the resulting decomposition. Observe that MR = Ω(1/
√

n).
The expectation of nR is MR · n = Ω(

√
n). By Chernoff bound,

P
[
nR ≤ (1 − ϵ2)MR · n

]
≤ e−Ω(

√
n) and P

[
nR ≥ (1 + ϵ2)MR · n

]
≤ e−Ω(

√
n).

Since there are Θ(
√

n) rectangles in the decomposition, the event E occurs with probability
at least 1 − Θ(

√
n) · e−Ω(

√
n) = 1 − o(1). ◀

From now on, we condition on the occurrence of E in Fact 8.

3.2 Construction of a Solution

To construct a relative cheap solution, the main observation is that it is profitable for a tour
to visit points in rectangles of both types I and II. In each box, there are m rectangles of
type I and 2m rectangles of type II. We form m groups with those, such that each group
contains one rectangle of type I and two rectangles of type II. For each group, we cover the
points in the group by a particular tour on these points in addition to the depot O, in a way
to be described shortly. For all points in the rectangles of type III, we construct an optimal
solution to the CVRP on those points with depot O and with capacity

√
n.

A mixed tour is a tour covering points in rectangles of types I and II. Consider a box B
and a group in B consisting of a rectangle A of type I and two rectangles B1 and B2 of type
II. We construct a specific mixed tour Tmix defined as follows.

Let P1 denote the bottom left corner of the rectangle A. Let T0 denote an optimal
traveling salesman tour on the points in A ∪ {P1}. For each i ∈ {1, 2}, we define an O-to-P1
path Ti visiting the points in Bi as follows. Let Si and Qi denote the top left and bottom
left corners of the rectangle Bi. Let Ti denote the concatenation of the segment OQi, a
Qi-to-Si path visiting the points in Bi in non-decreasing order on the y-coordinate (breaking
ties arbitrarily), and the segment SiP1. Finally, the tour Tmix is defined as the concatenation
of T0, T1, and T2. See Figure 1c. This completes our construction.

Since the measure of A is D · H and the measure of Bi (for each i ∈ {1, 2}) is 1−ϵ2
8 · W ,

Event E implies that the total number of points in A ∪ B1 ∪ B2 is at most

(1 + ϵ2)
(

D · H + 2 · 1 − ϵ2

8 · W

)
· n = (1 + ϵ2)(1 − ϵ2)n−1/2 · n <

√
n,

so the constructed solution is feasible.
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O

III
1

1

1000

(a) [0, 1]2 decomposition.

Θ(n−1/4)

Θ(1)

D = n−1/4

I

II III

H =

width W = Θ(n−1/2)

(b) Box decomposition.

A

Bi

P1

P2

P3

O

Si

Qi

(c) A mixed tour.

Figure 1 Decomposition and tour construction. Figure 1a illustrates the decomposition of [0, 1]2.
The highlighted area in Figure 1a represents a box. Figure 1b illustrates the decomposition of a box
into rectangles of types I, II, and III. Figure 1c describes a tour covering points in one rectangle A

of type I and in two rectangles Bi, for i ∈ {1, 2}, of type II.

3.3 Cost of a Mixed Tour
Consider any mixed tour Tmix. We follow the same notations as in Section 3.2. From the
construction,

cost(Tmix) = cost(T0) + cost(T1) + cost(T2). (1)

Let T ∗
A denote an optimal traveling salesman tour on the points in A. The cost of T0 is

at most cost(T ∗
A) plus the cost of the detour to include the point P1. The cost of the detour

is less than 2(D + H), so

cost(T0) < cost(T ∗
A) + 2(D + H). (2)

Let n1 and n2 denote the number of points of V that are in B1 and B2, respectively. The
costs of T1 and T2 are bounded by the following fact, whose proof is in the full version of the
paper.

▶ Fact 9. For i ∈ {1, 2}, we have

cost(Ti) < δ(O, P1) + 1
4000 + niW + (W + 2D). (3)
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From Equations (1)–(3), and using the definition of W , we have

cost(Tmix) < cost(T ∗
A) + 2δ(O, P1) + 1

2000 + β

10 · n1 + n2√
n

+ (2W + 6D + 2H). (4)

It remains to bound δ(O, P1). Observe that by the definition of ℓ(·) and the triangle inequality,
and since the height of a box B is less than 1

4 ,

δ(O, P1) <

{
ℓ(x) + D + H for any x ∈ A,

ℓ(x) + 1
4 + D + H for any x ∈ B1 ∪ B2.

Let Vmix denote the set of the points of V in A ∪ B1 ∪ B2. By averaging we have

δ(O, P1) <
1

|Vmix|

( ∑
x∈Vmix

ℓ(x)
)

+ 1
|Vmix|

n1 + n2

4 + (D + H).

Since the measure of A∪B1 ∪B2 is (1−ϵ2)n−1/2, Event E implies that |Vmix| > (1−ϵ2)2 ·
√

n,
which is at least

√
n

1+ϵ1
since ϵ2 = ϵ1

10 . Hence

δ(O, P1) <
1 + ϵ1√

n

[( ∑
x∈Vmix

ℓ(x)
)

+ n1 + n2

4

]
+ (D + H). (5)

Since n1 + n2 = Θ(
√

n), we have (2W + 6D + 2H) + 2(D + H) < ϵ1√
n

· β
10 · (n1 + n2) when n

is large enough. From Equations (4) and (5), we conclude that

cost(Tmix) < cost(T ∗
A) + 1 + ϵ1√

n

[
2
( ∑

x∈Vmix

ℓ(x)
)

+
(

β

10 + 1
2

)
(n1 + n2)

]
+ 1

2000 . (6)

3.4 Cost of the Solution
3.4.1 Solution in the Rectangles of Types I and II
Let VI and VII denote the subsets of the points of V that are in the rectangles of type I and type
II, respectively. Let K denote the number of mixed tours. We have K = n1/4 ·m = 5

40−β ·
√

n.
Applying Equation (6) on each mixed tour and summing, we have

cost(Smix) ≤ Y + 1 + ϵ1√
n

[
2
( ∑

x∈VI∪VII

ℓ(x)
)

+
(

β

10 + 1
2

)
|VII|

]
+

√
n

400 · (40 − β) , (7)

where Y denotes the overall cost of T ∗
A over all rectangles A of type I.

To analyze Y , we consider any rectangle A of type I. The measure of A is MA = D · H =
(1 − ϵ2)

(
1 − β

40

)
1√
n

. The event E implies that

(1 − ϵ2)2 ·
(

1 − β

40

)
·
√

n < nA <

(
1 − β

40

)
·
√

n. (8)

We investigate the expectation of cost(T ∗
A). By a construction given in [7], there exists a

constant C such that the cost of an optimal traveling salesman tour through any nA points
in A is at most C

√
MA · nA. Together with Lemma 5, it follows that

E[cost(T ∗
A)] < (1 + ϵ2) · β

√
MA · nA < (1 + ϵ2) · β

(
1 − β

40

)
,
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for n large enough (and thus nA large enough). Since there are K = Θ(
√

n) rectangles A of
type I, by the law of large numbers,

Y =
∑

A

cost(T ∗
A) < (1 + ϵ2) · K · (1 + ϵ2) · β

(
1 − β

40

)
, a.a.s.

On the other hand, summing Equation (8) over all A, we have

|VI| =
∑

A

nA > K · (1 − ϵ2)2 ·
(

1 − β

40

)
·
√

n.

Therefore,

Y < (1 + ϵ2)2 · 1
(1 − ϵ2)2 · β · |VI|√

n
< (1 + ϵ1) · β · |VI|√

n
, a.a.s.,

where the last inequality follows since ϵ2 = ϵ1
10 . From Equation (7), we conclude that, a.a.s.,

cost(Smix) ≤ 1 + ϵ1√
n

[
2
( ∑

x∈VI∪VII

ℓ(x)
)

+ β · |VI| +
(

β

10 + 1
2

)
|VII|

]
+

√
n

400 · (40 − β) . (9)

3.4.2 Solution in the Rectangles of Type III
Let V̂ denote the subset of the points of V that are in the rectangles of types III. Let T̂

denote an optimal traveling salesman tour on V̂ ∪ {O}. Let Ŝ denote an optimal solution to
the CVRP on V̂ with depot O and with capacity k =

√
n. By Lemma 4,

cost(Ŝ) ≤ 2√
n

(∑
x∈V̂

ℓ(x)
)

+ cost(T̂ ).

The cost of T̂ is at most the cost CTSP of an optimal traveling salesman tour on V̂ plus the
detour to visit O. Since the distance between the depot and any point in [0, 1]2 is O(1), the
cost of the detour is O(1), so cost(T̂ ) ≤ CTSP + O(1).

Next, we analyze CTSP. Let L denote the width of a type III rectangle inside a box. Then
L = D − W · m = Θ(n−1/4). We observe that the length of a side of any type III rectangle is
either L or ω(L). So we partition every type III rectangle into squares of side length L. For
each square, consider an optimal traveling salesman tour on the points inside that square.
Let Z denote the overall cost of the optimal traveling salesman tours inside all squares from
all rectangles of type III. Then CTSP is at most Z plus the total lengths of the boundaries of
all squares. Using the same argument from Section 3.4.1, we have

Z <
(

1 + ϵ1

3

)
· β · |V̂ |√

n
, a.a.s.

Since the boundary length of each square is negligible compared with the TSP cost inside
that square, we have

CTSP = (1 + o(1)) · Z <
(

1 + ϵ1

2

)
· β · |V̂ |√

n
, a.a.s.

Noting that |V̂ | = Θ(n), we have

cost(T̂ ) ≤ CTSP + O(1) < (1 + ϵ1) · β · |V̂ |√
n

, a.a.s.
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Therefore,

cost(Ŝ) ≤ 2√
n

∑
x∈V̂

ℓ(x)

+ 1 + ϵ1√
n

· β · |V̂ |, a.a.s. (10)

3.4.3 The Global Solution
Let S = Smix ∪ Ŝ denote the global solution. From Equations (9) and (10), and using

2√
n

·
∑

x∈V ℓ(x) = rad and VI ∪ VII ∪ V̂ = V , we have

cost(S) ≤ (1 + ϵ1)
[
rad + β · |V |√

n
−
(

β − β

10 − 1
2

)
|VII|√

n

]
+

√
n

400 · (40 − β) , a.a.s. (11)

Observe that the rectangles of type II have an overall measure of (1 − ϵ2) · β
8·(40−β) . Event

E implies that |VII| > (1 − ϵ2)2 · β·n
8·(40−β) > 1

1+ϵ1
· β·n

8·(40−β) since ϵ2 = ϵ1
10 . By Lemma 5,

β > β0 = 0.62866. Thus 9β
10 − 1

2 > 0. From Equation (11), we have, a.a.s,

(1 + ϵ1)(rad + β
√

n) − cost(S) ≥ (1 + ϵ1) ·
(

9β

10 − 1
2

)
· |VII|√

n
−

√
n

400 · (40 − β)

>

(
9β

10 − 1
2

)
· β

√
n

8 · (40 − β) −
√

n

400 · (40 − β)

=
√

n

8 · (40 − β) ·
((

9β

10 − 1
2

)
· β − 1

50

)
>

√
n

8 · (40 − β0) ·
((

9β0

10 − 1
2

)
· β0 − 1

50

)
.

Let c1 denote the leading constant in the above bound, i.e.,

c1 = 1
8 · (40 − β0) ·

((
9β0

10 − 1
2

)
· β0 − 1

50

)
.

The value of c1 is roughly 0.000068. We conclude that

cost(S) < (1 + ϵ1)(rad + β
√

n) − c1
√

n, a.a.s.

We complete the proof of Lemma 6.

4 Upper Bound on the Approximation Ratio

In this section, we prove Theorem 2 by providing an upper bound on the approximation
ratio ITP(T )/OPT of the ITP algorithm, where T is a traveling salesman tour.

Let λ and ϵ be positive constants such that λ + ϵ < 1. We analyze the performance of
the ITP algorithm with respect to λ and ϵ. The values of λ and ϵ will be set in the end of
the proof.

4.1 Structural analysis
▶ Lemma 10. Let T = (O, y1, y2, . . . , ym, O) be any tour starting and ending at O. Let L =
1
m

(∑m
j=1 ℓ(yj)

)
. Let ∆ = max1≤j≤m{ℓ(yj)} − L. Then there exists a set W ⊆ {y1, . . . , ym}

which is of cardinality greater than (λ + ϵ) · m − 1 such that

cost(T ) ≥ 2
(

L − λ + ϵ

1 − λ − ϵ
· ∆
)

+
∑

x∈W

δ(x, W \ {x}).
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Proof. Let W denote the set of points x such that ℓ(x) ≥ L − λ+ϵ
1−λ−ϵ · ∆, other than the last

one in the order of traversal by T starting from O. Tour T must first travel through a path
to a first point of W , paying at least L − λ+ϵ

1−λ−ϵ · ∆, then proceed from each point x of W

through a path to another point of W , paying at least δ(x, W \ {x}), and finally, go to one
more point such that ℓ(x) ≥ L − λ+ϵ

1−λ−ϵ · ∆, and travel from there through a path back to the
depot, paying at least L − λ+ϵ

1−λ−ϵ · ∆. Hence the cost of T is at least as stated in Lemma 10.
Next, we bound the size of W . When ∆ = 0, we have ℓ(yj) = L for all j ∈ [1, m]. Hence

|W | = m − 1, which is greater than (λ + ϵ) · m − 1, since λ + ϵ < 1. The claim follows.
It remains to analyze the case when ∆ > 0. Every point of T is at distance at most L + ∆

from the depot. Letting m′ denote the number of points whose distance from the depot is at
least L − λ+ϵ

1−λ−ϵ · ∆, we have

mL =
m∑

j=1
ℓ(yj) < m′(L + ∆) + (m − m′)

(
L − λ + ϵ

1 − λ − ϵ
· ∆
)

.

Since 1−λ− ϵ > 0, this implies m′ − (λ+ ϵ) ·m > 0, hence |W | = m′ −1 > (λ+ ϵ) ·m−1. ◀

The following result is a strengthening of the lower bound OPT ≥ rad from Lemma 3,
and will lead to our improved analysis of the ITP algorithm.

▶ Theorem 11. Let λ and ϵ be positive constants such that λ + ϵ < 1. Let V be a set of n

points in any distance metric. Let k = ω(1). There exists a set U ⊆ V which is of cardinality
greater than

(
λ + ϵ

2
)

· n for n large enough, and such that

OPT ≥ rad + (1 − λ − ϵ)
(∑

x∈U

δ(x, U \ {x})
)

.

Proof. Let T1, . . . , Tq be the tours in an optimal solution to the CVRP. Let mi be the
number of points in V that are visited by the tour Ti. Up to combining tours that visit few
points, we may assume that mi > k

2 for all but at most one tour, so q ≤ 2n
k + 1 = o(n).

For each tour Ti, define the corresponding Li, ∆i, and Wi with respect to the tour Ti

using the notations of Lemma 10. By summation, letting U =
⋃

i Wi, Lemma 10 then implies
(using q = o(n), n large enough, and δ(x, Wi \ {x}) ≥ δ(x, U \ {x}))

|U | =
∑
i≤q

|Wi| >

(
(λ + ϵ)

∑
i

mi

)
− q = (λ + ϵ) · n − q >

(
λ + ϵ

2

)
· n

and∑
i

cost(Ti) ≥

(∑
i

2
(

Li − λ + ϵ

1 − λ − ϵ
· ∆i

))
+
(∑

x∈U

δ(x, U \ {x})
)

. (12)

On the other hand, we trivially have∑
i

cost(Ti) ≥
∑

i

2(Li + ∆i). (13)

A linear combination of Equation (12) with coefficient (1 − λ − ϵ) and of Equation (13)
with coefficient (λ + ϵ) leads to:

OPT =
∑

i

cost(Ti) ≥

(∑
i

2Li

)
+ (1 − λ − ϵ)

(∑
x∈U

δ(x, U \ {x})
)

.
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Observe that∑
i

2Li =
∑

i

∑
x∈Ti

2ℓ(x)
mi

≥
∑

i

∑
x∈Ti

2ℓ(x)
k

=
∑
x∈V

2ℓ(x)
k

= rad.

The Lemma follows. ◀

4.2 Probabilistic Analysis
The following result suggests that the closest point distance follows the law of large numbers.
It is a corollary of Theorem 2.4 in [22].5

▶ Lemma 12 ([22]). Let P be a homogeneous Poisson point process of intensity 1 on R2

and δP denote the distance from the origin of R2 to a closest point in P by the Euclidean
norm. Let V be a set of n i.i.d. uniform random points. Then, given any bounded function
ϕ : [0, ∞] → [0, ∞), as n → ∞ we have:

1
n

∑
x∈V

ϕ
(√

n · δ(x, V \ {x})
)

→ E
[
ϕ(δP)

]
.

Lemma 12 provides the rigorous setting enabling us to derive a new lower bound on the
sum of the closest point distances over a subset of a set of i.i.d. uniform random points,
which we now state.

▶ Lemma 13. Let V be a set of n i.i.d. uniform random points. Let U be any subset of V

such that |U | >
(
λ + ϵ

2
)

· n. Then, asymptotically almost surely,∑
x∈U

δ(x, V \ {x}) > (ξλ − ϵ) ·
√

n,

where ξλ is a constant defined by

ξλ := 1
2 erf

(√
ln 1

1 − λ

)
− (1 − λ) ·

√
1
π

· ln 1
1 − λ

in which erf(·) is the Gauss error function erf(z) = 2√
π

∫ z

0 e−t2
dt.

Proof. Recall the definition of δP from Lemma 12. By definition of the Poisson point process,
the probability g(r) of the event δP ≤ r equals 1 − e−πr2 .

Let Z ⊆ V be the set of points x ∈ V such that δ(x, V \{x}) ≤ r0√
n

, with r0 =
√

1
π · ln 1

1−λ .
We apply Lemma 12 with ϕ equals ϕ1, the indicator function of whether r ≤ r0, to obtain
that, as n → ∞,

|Z|
n

→ E
[
ϕ1(δP)

]
= g(r0) = λ.

Thus |Z| ≤
(
λ + ϵ

2
)

· n < |U |, a.a.s. Since Z consists of the points x ∈ V with the smallest
values of δ(x, V \ {x}), we have∑

x∈U

δ(x, V \ {x}) ≥
∑
x∈Z

δ(x, V \ {x}), a.a.s. (14)

5 To apply Theorem 2.4 in [22], we consider a directed graph G with vertex set V , such that from every
vertex x ∈ V , there is a unique outgoing edge, let it be (x, y), where y is the closest point to x among
the points in V \ {x}, breaking ties arbitrarily. Theorem 2.4 in [22] is interpreted with reference to
Remark (h) in [22].
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To analyze
∑
x∈Z

δ(x, V \ {x}), we define a bounded function ϕ2 as follows.

ϕ2(r) =
{

r, r ≤ r0

0, otherwise.

Applying Lemma 12 with ϕ = ϕ2, we have, as n → ∞,

1
n

∑
x∈Z

√
n · δ(x, V \ {x}) → E

[
ϕ2(δP)

]
,

thus∑
x∈Z

δ(x, V \ {x}) > (E
[
ϕ2(δP)

]
− ϵ) ·

√
n, a.a.s. (15)

Observe that E
[
ϕ2(δP)

]
=
∫ ∞

0
ϕ2(r) · g′(r)dr =

∫ r0

0
r · g′(r)dr, where g′(r) = 2πr · e−πr2 .

Integrating by parts, recalling the definition of the Gauss error function, and plugging in the
value of r0, we have

E
[
ϕ2(δP)

]
=
(∫ r0

0
e−πr2

dr

)
−
[
r · e−πr2

]r0

0
=
[

erf(
√

π · r)
2 − r · e−πr2

]r0

0
= ξλ.

The claim follows. ◀

4.3 Proof of Theorem 2
Let T denote an α-approximate traveling salesman tour on V ∪ {O}, where α ≥ 1 is a
constant. When k = O(1), for any ϵ > 0, ITP(T ) < (1 + ϵ)OPT a.a.s. according to [15],
which implies the claim. In the following, we assume that k = ω(1).

According to Lemma 4, we have

ITP(T ) < cost(T ) + rad.

First, we bound cost(T ). Letting T ∗ denote an optimal traveling salesman tour on
V ∪ {O}, we have cost(T ) ≤ α · cost(T ∗). By Lemma 5, the value of an optimal traveling
salesman tour on V is less than

(
β + ϵ

2
)

·
√

n, a.a.s. Since the distance between the depot
and any point in [0, 1]2 is O(1), we have cost(T ∗) <

(
β + ϵ

2
)

·
√

n + O(1), which is less than
(β + ϵ) ·

√
n when n is large enough. Thus cost(T ) < α(β + ϵ) ·

√
n, a.a.s.

Next, we analyze rad. By Theorem 11, for some U ⊆ V of size greater than
(
λ + ϵ

2
)

n we
have

rad ≤ OPT − (1 − λ − ϵ)
(∑

x∈U

δ(x, U \ {x})
)

.

By Lemma 13 and the fact that δ(x, U \ {x}) ≥ δ(x, V \ {x}), we have a.a.s.∑
x∈U

δ(x, U \ {x}) > (ξλ − ϵ) ·
√

n.

Noting that 1 − λ − ϵ > 0, we have

rad ≤ OPT − (1 − λ − ϵ) · (ξλ − ϵ) ·
√

n.
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Figure 2 Plot of the function h(λ) = (1 − λ) · ξλ for λ ∈ [0, 1). The maximum value of h(λ) is
greater than 0.078674, which is achieved when λ is roughly 0.62468.

Combining the above bounds gives a.a.s.

ITP(T ) < OPT +
(
α(β + ϵ) − (1 − λ − ϵ) · (ξλ − ϵ)

)
·
√

n. (16)

Note that the coefficient of
√

n in Equation (16) must be positive, because ITP(T ) ≥ OPT
(Lemma 4). Using Lemmas 3 and 5, and assuming ϵ < β, we have a.a.s.

√
n < cost(T ∗)

β−ϵ ≤ OPT
β−ϵ ,

and substituting into Equation (16) gives a.a.s.

ITP(T ) <

(
1 + α(β + ϵ) − (1 − λ − ϵ) · (ξλ − ϵ)

β − ϵ

)
· OPT.

Since β is a positive constant (Lemma 5), choosing λ to maximize (1 − λ) · ξλ and ϵ small
enough yields

ITP(T )
OPT < 1 + α −

maxλ

{
(1 − λ) · ξλ

}
β

+ 0.00001.

A numerical calculation (Figure 2) gives maxλ

{
(1 − λ) · ξλ

}
> 0.078674, and Lemma 5 tells

us that β < β1 = 0.92117. Substituting those values concludes the proof.
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Abstract
Given two sets S and T of points in the plane, of total size n, a many-to-many matching between
S and T is a set of pairs (p, q) such that p ∈ S, q ∈ T and for each r ∈ S ∪ T , r appears in at
least one such pair. The cost of a pair (p, q) is the (Euclidean) distance between p and q. In the
minimum-cost many-to-many matching problem, the goal is to compute a many-to-many matching
such that the sum of the costs of the pairs is minimized. This problem is a restricted version of
minimum-weight edge cover in a bipartite graph, and hence can be solved in O(n3) time. In a more
restricted setting where all the points are on a line, the problem can be solved in O(n log n) time [3].
However, no progress has been made in the general planar case in improving the cubic time bound.
In this paper, we obtain an O(n2 · poly(log n)) time exact algorithm and an O(n3/2 · poly(log n))
time (1 + ϵ)-approximation in the planar case.
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1 Introduction

Let G = (V = S ∪ T, E) be a simple bipartite graph where each edge has a non-negative real
weight, and no vertex is isolated. The many-to-many matching problem on G is to find a
subset of edges E′ ⊆ E of minimum total weight such that for each vertex v ∈ V there is an
edge in E′ incident on v. This is often referred to as the minimum-weight edge cover problem.
A standard method to compute a minimum-weight edge cover of G in polynomial-time is
to reduce the problem to the minimum-weight perfect matching problem on an equivalent
graph, see [15, 3, 4, 5]. Since the reduction takes O(|V |+ |E|) time, the running time is the
same as the fastest known algorithm for computing a minimum-weight perfect matching. A
faster 3

2 -approximation algorithm is proposed in [5].
Motivated by the computational problems in musical rhythm theory, Colannino et al. [3]

studied the many-to-many matching problem in a geometric setting. Suppose we are given
two sets S and T of points in the plane, of total size n. A many-to-many matching between
S and T is a set of pairs (p, q) such that p ∈ S, q ∈ T and for each r ∈ S ∪ T , r appears in
at least one such pair. The cost of a pair (p, q) is the (Euclidean) distance d(p, q) between p
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and q. The cost of a set of pairs is the sum of the costs of the pairs in the set. In the geometric
minimum-cost many-to-many matching problem, the goal is to compute a many-to-many
matching such that the cost of the corresponding set of pairs is minimized. For points on
a line, an O(n log n) time dynamic-programming algorithm is proposed in [3]. In the same
paper, the importance of the many-to-many matching problem for points in the plane is
stated in the context of melody matching. Furthermore, the authors state that this version
in the plane is an important open problem, especially since geometry has helped in designing
efficient algorithms for the computation of the minimum-weight perfect matching for points in
the plane (see, e.g., [16, 17]). Several variants of the 1-dimensional many-to-many matching
problem are considered in [12, 13, 14].

1.1 Our Results and Techniques
In this work, we design several exact and approximation algorithms for minimum-cost many-
to-many matching in the plane, thus affirmatively addressing the open problem posed by
[3]. First, we obtain an O(n2 · poly(log n)) time1 exact algorithm for this problem using a
connection to minimum-weight perfect matching. We note that our time-bound matches the
time bound for solving minimum-weight bipartite matching for points in the plane. Next,
for any ϵ > 0, we obtain a (1 + ϵ)-approximation algorithm for this problem with improved
O((1/ϵc) · n3/2 · poly(log n)) running time for some small constant c. We also obtain a simple
2-approximation in O(n log n) time.

Next, we give an overview of our techniques. A major reason behind the scarcity of results
for geometric many-to-many-matching is the lack of techniques to directly approach this
problem. The O(n3) algorithm known for general graphs reduces the problem to (minimum-
weight) bipartite perfect matching and uses a graph matching algorithm to solve the problem
on the new instance. However, this standard reduction [9] from many-to-many matching to
regular matching changes the weights of the edges in a convoluted manner. Hence, even if one
starts with the planar Euclidean distances, the new interpoint distances in the constructed
instance cannot be embedded in the plane or even in any metric space. As the algorithms for
planar bipartite (perfect) matching heavily exploit the properties of the plane, they cannot
be employed for solving the new instance of bipartite perfect matching. Thus, even though
there is a wealth of literature for planar bipartite matching, no progress has been made in
understanding the structure of many-to-many matching in the plane.

In our approach, we use a rather unconventional connection to bipartite perfect matching.
First, we use a different reduction to convert our instance of many-to-many matching in the
plane to an equivalent instance of bipartite perfect matching. The new instance cannot be
embedded in the plane, however it does not modify the original distances between the points.
Rather the new bipartite graph constructed is the union of (i) the original geometric bipartite
graph, (ii) a new bipartite clique all of whose edges have the same weight and (iii) a linear
number of additional edges. Thus, even though we could not use a planar matching algorithm
directly, we could successfully use ideas from the literature of planar matching exploiting
the structure of the constructed graph. A similar reduction was used in [4] in the context
of computation of link distance of graphs. However, we cannot use this reduction directly,
as we cannot afford to explicitly store the constructed graph which contains Ω(n2) edges.
Recall that we are aiming for an O((1/ϵc) · n3/2 · poly(log n)) time bound. Nevertheless, we
exploit the structure of this graph to implicitly store it in O(n) space.

1 We use the notation poly() to denote a polynomial function.
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In Section 3, we show that the Hungarian algorithm can be implemented on our constructed
graph in O(n2 ·poly(log n)) time using ideas from planar matching. To obtain a subquadratic
time bound, we implement the algorithm due to Gabow and Tarjan [6]. A straightforward
implementation of this algorithm might need Ω(n2) time. We note that this algorithm has
been used in several works on planar matching for obtaining efficient algorithms [11, 17, 2].
Our algorithm is closest to the one in [17] among these algorithms from a moral point of view.
The difference is that their algorithm is for planar points. However, we deal with a graph
which is partly embeddable. Nevertheless, in Section 4, we show that using additional ideas
and data structures, the Gabow-Tarjan algorithm can be implemented in O(n3/2 ·poly(log n))
time, albeit with a (1 + ϵ)-factor loss on the quality of the solution.

2 Preliminaries

In the bipartite perfect matching problem, we are given an edge-weighted bipartite graph
G = (R, B, E) containing a perfect matching, and the goal is to find a perfect matching
having the minimum cost or sum of the edge-weights. For our convenience, sometimes we
would assume that the edges of G are not given explicitly. For example, R and B might
be two sets of points in the plane, and G is the complete bipartite graph induced by the
bipartition (R, B). In this case, the points in R ∪B can be used to implicitly represent the
graph G. In our case, we will use similar implicit representation of input graphs for designing
subquadratic algorithm. Now, we have the following lemma, which reduces our problem to
an equivalent instance of bipartite perfect matching.

▶ Lemma 1. Given an instance I ′ of minimum-cost many-to-many matching, one can
compute in O(n log n) time an instance of bipartite perfect matching I such that (i) if there is
a many-to-many matching for I ′ of cost C, there is a perfect matching for I of cost at most
C, and (ii) if there is a perfect matching for I of cost C, there is a many-to-many matching
for I ′ of cost C.

10
15

20
18

14
12

u1

u2

v1

v2

v3

u1

u2

v1

v2

v3

û1

û2

v̂1

v̂2

v̂3

0

10
15

20
18

14
1210

10

12

14

12

Figure 1 The figure on the left shows an instance I ′ of minimum-cost many-to-many matching
along with the interpoint distances, where S = {u1, u2} and T = {v1, v2, v3}. The right figure
depicts the graph constructed from I ′ along with the edge weights, where R0 = {u1, u2}, R1 =
{v̂1, v̂2, v̂3}, B0 = {v1, v2, v3} and B1 = {û1, û2}. Solution pairs (or edges) are shown in bold.

Proof. Given the instance I ′ consisting of the two sets of points S and T , we construct
a bipartite graph G = (R = R0 ∪ R1, B = B0 ∪ B1, E), where R0 = S, B0 = T , R1
contains copies of the points in T , B1 contains copies of the points in S. E contains
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all the edges of E0 = R0 × B0 and E1 = R1 × B1, and also the ones in E2 = {(u, û) |
u ∈ R0, û is the copy of u in B1} and E3 = {(v̂, v) | v ∈ B0, v̂ is the copy of v in R1}. The
weight of each edge (u, v) ∈ E0 is the distance between the points u and v. The weight of
each edge in E1 is 0. The weight of any edge (u, û) ∈ E2 is the distance between u ∈ S and
its closest neighbor in T . The weight of any edge (v̂, v) ∈ E3 is the distance between v ∈ T

and its closest neighbor in S. See Figure 1 for an example. Note that G can be represented
implicitly in O(n) space, where |S ∪ T | = n. Let I be the constructed instance of bipartite
perfect matching that consists of G. As the closest neighbors of n points in the plane can
be found in total O(n log n) time using Voronoi diagram, construction of G takes O(n log n)
time.

Now, suppose I ′ has a many-to-many matching M ′. Consider the pairs in M ′ as the
edges of a graph G′ with vertices being the points in S ∪ T . We will use the term pairs and
edges in G′ interchangeably. First, note that wlog we can assume that G′ does not contain
any path of length 3. Otherwise, we can remove the middle edge of such a path from M ′,
and M ′ still remains a many-to-many matching. Thus, each component in G′ is a star. We
compute a perfect matching in G from M ′ as follows. For each star in G′ having only one
edge (u, v) with u ∈ S, v ∈ T , add (u, v) ∈ E0 to M . Also, add the edge (v̂, û) ∈ E1 to M .
Now, consider any star H = {(u, v1), (u, v2), . . . , (u, vt)} in G′; wlog assume that u ∈ S. Add
(u, v1) ∈ E0 to M . Also, add the edge (v̂1, û) ∈ E1 to M . For each 2 ≤ i ≤ t, add the edge
(v̂i, vi) ∈ E3 to M . It is not hard to verify that all the vertices of G are matched in M . Also,
as the weight of a star edge (u, vi) above is at least the weight of (v̂i, vi) in G by definition,
the cost of M is at most the cost of M ′.

Next, suppose I has a perfect matching M ; we construct a many-to-many matching M ′

for I ′. Consider any u ∈ S = R0. If (u, û) ∈M , add the pair (u, u′) to M ′, where u′ is the
closest neighbor of u in T . Otherwise, u is matched (in M) to some v1 ∈ B0. In this case,
simply add the pair (u, v1) to M ′. Similarly, consider any v ∈ T = B0. If (v̂, v) ∈ M , add
the pair (v′, v) to M ′, where v′ is the closest neighbor of v in S. Otherwise, v is matched (in
M) to some u1 ∈ R0. In this case, simply add the pair (u1, v) to M ′. It is not hard to verify
that M ′ is a many-to-many matching, and the cost of M ′ is same as the cost of M . ◀

Now, consider any matching in a graph. An alternating path is a path whose edges
alternate between matched and unmatched edges. Similarly, one can define alternating cycles
and trees. A vertex is called free if it is not matched. An augmenting path is an alternating
path which starts and ends at free vertices. Given an augmenting path P w.r.t. a matching
M , we can augment M by one edge if we remove the edges of P ∩M from M and add the
edges in P \M to M . The new matching is denoted by M ⊕ P . Throughout the paper,
m and n denote the number of edges and vertices, respectively, unless otherwise specified.
We denote the weight or cost of an edge (u, v) by c(u, v). In our discussions, a path can be
treated as an ordered set of vertices or edges depending on the context.

3 An Exact Algorithm

Consider the instance I obtained by the reduction in Lemma 1. In this section, we prove the
following theorem.

▶ Theorem 2. Bipartite perfect matching can be solved exactly on I in time O(n2 ·poly(log n)),
and hence there is an O(n2 ·poly(log n)) time exact algorithm for minimum-cost many-to-many
matching.
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In the rest of this section, we prove Theorem 2. To prove this theorem we use the
Hungarian algorithm [10] for computing a (minimum-cost) bipartite perfect matching.

In the Hungarian algorithm, there is a dual variable y(v) corresponding to each vertex v.
Every feasible matching M must satisfy the following two conditions.

y(u) + y(v) ≤ c(u, v) for every edge (u, v) (1)
y(u) + y(v) = c(u, v) for every edge (u, v) ∈M (2)

Given any matching M and an augmenting path P , the net-cost or augmentation cost is
defined as,

ϕ(P ) =
∑

(u,v)∈P \M

c(u, v)−
∑

(u,v)∈P ∩M

c(u, v)

ϕ(P ) is basically the cost increment for augmenting M along P . The net-cost of any
alternating cycle can be defined in the same way. The Hungarian algorithm starts with an
empty matching M . In every iteration, it computes an augmenting path of the minimum
net-cost and augments the current matching. The algorithm halts once a perfect matching is
found. If there is a perfect matching in the graph, this algorithm returns one after at most
n iterations. Moreover, an augmenting path can be found in O(m) time leading to O(mn)
running time in total.

It is possible to show that any perfect matching is a minimum-cost matching if and only
if there is no negative net-cost alternating cycle with respect to it. Moreover, a feasible
matching with dual values {y(v)} satisfies this property. Thus, it is sufficient to find a perfect
matching that is feasible.

For finding an augmenting path, a Hungarian search procedure is employed. Hungarian
search uses Dijkstra’s shortest path algorithm to find a minimum net-cost path in the graph
where the value y(u) + y(v) is subtracted from the weight of each edge (u, v). This along
with the first feasibility condition ensure that each edge has a non-negative weight, and hence
there is no negative cycle in the graph. So, one can correctly employ Dijkstra’s algorithm to
find such a shortest path. Finally, one can show that the minimum net-cost augmenting path
with original weights corresponds to a shortest path with the modified weights, and vice
versa. After augmenting the current matching with the newly found path, the dual values
are adjusted appropriately to ensure feasibility of the new matching.

Now, we describe in detail how the Hungarian search procedure is implemented in each
iteration. An edge (u, v) is called admissible if y(u) + y(v) = c(u, v). It can be shown that
it suffices to find an augmenting path consisting of only admissible edges. Let M be the
current matching and F be the free vertices of R. To obtain the desired augmenting path, a
forest F is grown whose roots are in F . Each tree in F is an augmenting tree rooted at a
vertex in F . Once F contains an augmenting path the search is completed. At any moment,
let R′ be the vertices of R in F and B′ be the vertices of B not in F . Initially, R′ = F and
B′ = B. Also, let

δ = min
{u∈R′,v∈B′}

c(u, v)− y(u)− y(v).

Note that δ = 0 means there is an admissible edge. In each step, if δ = 0, an admissible
edge (u, v) is selected where u ∈ R′ and v ∈ B′. If v is free, (u, v) is added to F and the
desired augmenting path is found. Otherwise, let v be matched to u′ (which is not in F by
an invariant). In this case, the edges (u, v) and (v, u′) are added to F ; u′ is added to R′ and
v is removed from B′.
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If at some moment, δ becomes more than 0 (no admissible edge), we perform dual
adjustments. In particular, for each u ∈ R′, y(u) is updated to y(u) + δ and for each
v ∈ F ∩ B, y(v) is updated to y(v) − δ. This ensures that at least one edge becomes
admissible, e.g., the edge corresponding to which the δ value is achieved. Thus, eventually
the search halts with an augmenting path in F .

It can be shown that if δ can be computed efficiently, then the desired augmenting path
can also be found efficiently [6, 1, 16]. For that purpose, another variable ∆ is maintained.
Also, for each vertex v, a weight σv is stored. In the beginning of each step, ∆ = 0, σv = y(v).
When the edges (u, v) and (v, u′) are added to F , σu′ is updated to y(u′) − ∆ and σv is
updated to y(v) + ∆. Once δ becomes more than 0, ∆ is updated to ∆ + δ.

Note that the weight of a vertex is updated only once when it is added to F . We have
the following observation.

▶ Observation 3 ([6, 1, 16]). For each u ∈ R′, the current dual value of u, y(u), is equal to
σu + ∆. For each v ∈ F ∩B, the current dual value of v, y(v), is equal to σv −∆.

It follows from the above observation that δ can be equivalently expressed as follows.

δ = min
u∈R′,v∈B′

{c(u, v)− σu − σv} −∆.

Hence, Hungarian search boils down to the following task ignoring the trivial details.
We need to maintain two sets R′ ⊆ R and B′ ⊆ B. Initially, B′ = B. In each step, a
vertex r is added to R′ and a vertex b is removed from B′. Additionally, each vertex v has
a weight σv. In every step, the goal is to maintain the bichromatic closest pair, which is
the pair (r, b) ∈ R′ × B′ with the minimum c(r, b) − σr − σb value. In the following, we
construct a data structure that can be used to perform the above task (a Hungarian search)
in O(n · poly(log n)) time. As we need at most n such searches, Theorem 2 follows.

Recall that in our instance I, we are given the graph G = (R = R0∪R1, B = B0∪B1, E),
where R1 contains copies of the vertices in B0, B1 contains copies of the vertices in R0.
E = E0 ∪E1 ∪E2 ∪E3, where E0 = R0×B0, E1 = R1×B1, E2 = {(u, û) | u ∈ R0, û ∈ B1},
and E3 = {(v̂, v) | v ∈ B0, v̂ ∈ R1}. Let n = |R| = |B|.

Our data structure D is a collection of three data structures. First, we construct the
dynamic bichromatic closest pair data structure from [8] for the two point sets R0 and B0
with the distance function c(r, b)−σr−σb for each pair (r, b). We refer to this data structure
as D1. Initially, it contains only the points in R′ ∪B′. Next, we construct two max-heaps Hr

1
and Hb

1 for the vertices in R1 ∩R′ and B1 ∩B′, respectively. Initially, Hr
1 contains vertices

in R′ and Hb
1 contains all the vertices in B1. The key value of each vertex v is its weight σv.

Using Hr
1 and Hb

1 , the pair (u, v) ∈ (R1 ∩R′)× (B1 ∩B′) with the maximum σu + σv value
can be found in O(1) time. We also construct another min-heap H23 to store the edges in
E2 ∪ E3 with key value c(r, b)− σr − σb for each pair (r, b). Initially, it is empty. In every
iteration, it contains only those edges (u, v) such that u ∈ R′ and v ∈ B′. We also maintain
a global closest pair (r, b) over the three data structures D1, Hr

1 ∪ Hb
1 and H23 with the

minimum key value c(r, b)− σr − σb.
Using D, we implement each step as follows. If v ∈ B0, remove v from D1. Also remove

(v̂, v) from H23 if it is in H23. If v ∈ B1, remove v from Hb
1. Also remove the edge (u′, v)

with u′ ∈ R0 from H23 if its in H23. If u ∈ R0, add u to D1. Also add the edge (u, û) to H23
if û ∈ B′. If u ∈ R1, add u to Hr

1 . Also add the edge (u, v′) with v′ ∈ B0 to H23 if v′ ∈ B′.
It is not hard to verify that at each step the correct global closest pair is stored in D.

The correctness for D1 and H23 follow trivially. Also, as the weight of the edges in E1 are
same, it is sufficient to find a pair (u, v) ∈ E1 for which σu + σv value is maximized. As E1
contains all the edges in R1×B1, equivalently it suffices to find a u ∈ R1 with the maximum
σu value and a v ∈ B1 with the maximum σv value.
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We note that the total number of steps in a Hungarian search is at most n. Also,
O(n) operations (insertions, deletions and searching) on D1 can be performed in amortized
O(n · poly(log n)) time [8]. The construction time and space of D1 are also O(n · poly(log n)).
Moreover, the O(n) operations on all max-heaps can be performed in total O(n log n) time.
It follows that Hungarian search can be implemented in O(n · poly(log n)) time leading to
the desired running time of our algorithm.

4 An Improved (1 + ϵ)-approximation

Consider the instance I obtained by the reduction in Lemma 1. In this section, we prove the
following theorem.

▶ Theorem 4. A (1 + ϵ)-approximate bipartite perfect matching for I can be computed in
time O((1/ϵc) · n3/2 · poly(log n)) for some constant c, and hence there is an O((1/ϵc) · n3/2 ·
poly(log n)) time (1 + ϵ)-approximation algorithm for minimum-cost many-to-many matching.

In the rest of this section, we prove Theorem 4. In particular, we show that the bipartite
perfect matching algorithm by Gabow and Tarjan [6] can be implemented on the instance I

in the mentioned time.
The Gabow-Tarjan algorithm is based on a popular scheme called the bit-scaling paradigm.

The algorithm is motivated by two classic matching algorithms: Hopcroft-Karp [7] for max-
imum cardinality bipartite matching with O(m

√
n) running time and Hungarian algorithm

[10] for minimum-cost bipartite matching with O(mn) running time. The Hopcroft-Karp
algorithm chooses an augmenting path of the shortest length. The Hungarian algorithm, as
mentioned before, chooses an augmenting path whose augmentation cost is the minimum.
When the weights on the edges are small an augmenting path of the shortest length approxim-
ates the latter path. The Gabow-Tarjan algorithm scales the weights in a manner so that all
the effective weights are small. This helps to combine the ideas of the two algorithms, which
leads towards an O(m

√
n log(nN)) time algorithm for (minimum-cost) bipartite perfect

matching, where N is the largest edge weight.
Next, we describe the Gabow-Tarjan algorithm. This algorithm is based on the ideas

of the Hungarian algorithm. However, here instead of a feasible matching we compute
a 1-feasible matching. A matching M is called 1-feasible if it satisfies the following two
conditions.

y(u) + y(v) ≤ c(u, v) + 1 for every edge (u, v) (3)
y(u) + y(v) = c(u, v) for every edge (u, v) ∈M (4)

Note that the only difference is that now the sum of dual variables y(u) + y(v) can be 1 plus
the cost of the edge. This additive error of 1 on every unmatched edge ensures that longer
augmenting paths have larger cost. As an effect, the algorithm picks short augmenting paths
as in the Hopcroft-Karp algorithm.

A 1-optimal matching is a perfect 1-feasible matching. Note that a 1-optimal matching
costs more than the original optimal matching. However, as the error is at most +1 for every
edge, one can show the following.

▶ Lemma 5 ([6]). Let M be a 1-optimal matching and M ′ be any perfect matching. Then
c(M ′) ≥ c(M)− n.
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It follows from the above lemma that, to annihilate the error introduced, one can scale
the weight of each edge by a factor of (n + 1), and then with the scaled weights the cost of a
1-optimal matching is same as the cost of any optimal matching. Let c(u, v) be the scaled
cost of (u, v), i.e., c(u, v) = (n + 1) · c(u, v). Let k = ⌊log((n + 1)N)⌋+ 1 be the maximum
number of bits needed to represent any new weight.

The Gabow-Tarjan algorithm runs in k different scales. In each scale i (1 ≤ i ≤ k), the
most significant i bits of c(u, v) are used for defining the current cost of each edge (u, v).
The dual values are also modified to maintain 1-feasibility of an already computed perfect
matching in the following way: y(v)← 2y(v)− 1 for every vertex v. Then with the current
edge costs and dual values, the algorithm computes a 1-optimal matching.

By the above claim, that any 1-optimal matching is also optimal with scaling factor n + 1,
the 1-optimal matching computed by the algorithm at k-th scale must be optimal.

To find a 1-optimal matching on a particular scale a procedure called match is employed
which we describe below. Before that we need a definition. Consider any 1-feasible matching
M . An edge (u, v) is called eligible if it is in M or y(u) + y(v) = c(u, v) + 1. It can be
shown that for the purpose of computing a 1-optimal matching it suffices to consider the
augmenting paths which consist of eligible edges only.

The match procedure
Initialize all the dual variables y(v) to 0 and M to ∅. Repeat the following two steps
until a perfect matching is obtained in step 1.
1. Find a maximal set A of augmenting paths of eligible edges. For each path P ∈ A,

augment the current matching M along P to obtain a new matching which is also
denoted by M . For each vertex v ∈ P ∩B, decrease y(v) by 1. (This is to ensure that
the new matching M also is 1-feasible.) If M is perfect, terminate.

2. Employ a Hungarian search to adjust the values of the dual variables (by keeping M

1-feasible), and find an augmenting path of eligible edges.

Note that the number of free vertices in every iteration of match is at least 1 less than
that in the previous iteration, as step 2 always ends with finding an augmenting path. By also
showing that the dual value of a variable is increased by at least 1 in every call of Hungarian
search, they proved that O(

√
n) iterations are sufficient to obtain a 1-optimal matching. It

can be shown that each iteration of match can be executed in general bipartite graphs in
O(m) time leading to the complexity of O(m

√
n) in each scale. As we have O(log(nN))

scales, in total the running time is O(m
√

n log(nN)).
Next, we use the Gabow-Tarjan algorithm to compute a perfect matching for our instance

of bipartite perfect matching. In particular, we show that by exploiting the structure of
our instance, it is possible to implement every iteration of match in O(n · poly(log n)) time.
First, we show that one can consider a modified instance with bounded aspect ratio of the
weights, for the purpose of computing a (1+ϵ)-approximation. For this, we need the following
theorem. (The proofs of the results marked with (∗) are deferred to the full version.)

▶ Theorem 6 (∗). There is an O(n log n) time 2-approximation algorithm for minimum-cost
many-to-many matching.

The algorithm in Theorem 6 is fairly simple. For each point in a set (S or T ), it adds the
pair corresponding to its nearest neighbor in the other set.

Let OPT be the optimal cost of perfect matching on the instance I. Recall that the
instance I consists of the graph G = (R = R0 ∪ R1, B = B0 ∪ B1, E). Given the implicit
representation of G, we compute a 2-approximate solution for minimum-cost many-to-many
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matching on the two sets of points R0 and B0 using the algorithm in Theorem 6. Let C be
the cost of this solution. By Lemma 1, OPT ≤ C ≤ 2OPT. We construct a new instance I1
which consists of the implicit representation of the same graph G. Additionally, we assume
that any edge with weight more than C in I1 will not be part of the solution, and each edge
has cost at least ϵC/(2n). Note that it is not possible to explicitly set the weight of each
and every edge if we are allowed to spend o(n2) time. Thus, for the time being, we make
the above assumptions implicitly. Later, we will make them explicit in our algorithm. Note
that the construction time of I1 is dominated by the time of the 2-approximation algorithm,
which is O(n log n). We obtain the following lemma.

▶ Lemma 7 (∗). Given I, one can compute in O(n log n) time another instance I1 of
bipartite perfect matching, such that (i) the weight of every edge is in [ϵC/(2n), C] where
OPT ≤ C ≤ 2OPT, (ii) I1 has a perfect matching of weight at most (1 + ϵ)OPT, and (iii)
any perfect matching in I1 of weight C ′ is also a perfect matching in I of weight at most C ′.

Henceforth, we solve the problem on I1. Note that the minimum edge weight in I1 is
ϵC/(2n) and the maximum is C. By scaling the weights by 2n/(ϵC), we can assume wlog
that the edge weights in I1 are in [1, n2]. Moreover, we can assume that each edge weight w

is rounded up to the nearest integer at least w. We can afford to remove the fractions, as
each fraction costs less than 1, which is at most ϵOPT/n w.r.t. the original weights. For
our convenience, we also divide the weights into O(log1+ϵ n) classes as follows. For each
weight a (an integer) with (1 + ϵ)i ≤ a < (1 + ϵ)i+1, a is rounded to the largest integer in
the range [(1 + ϵ)i, (1 + ϵ)i+1), where 0 ≤ i ≤ ⌈2 log1+ϵ n⌉. We denote this largest integer
corresponding to the i-th weight class by wi. We note that the above weight scalings are
performed implicitly. It is not hard to verify that these still preserve a (1+O(ϵ))-approximate
solution, which is sufficient for our purpose. Henceforth, we treat ϵ as a constant and hide
function of ϵ in time complexity as a constant in O() notation. It will not be hard to verify
that the dependency on ϵ that we hide is (1/ϵ)c for some true small constant c.

To implement the Gabow-Tarjan algorithm, we show how the match procedure can be
implemented efficiently. To implement step 1 of match, we store the information about
the input graph G in a data structure that we refer to as MATCH. We allow the following
operation on MATCH. In the following, we denote the current matching by M .

FIND_MAXIMAL_APS. Find a maximal set of vertex disjoint augmenting paths of eligible
edges with respect to M .

Given the MATCH data structure, we implement the step 1 of match as follows. The dual
values are stored in an array indexed by the vertices. Note that the dual values remain fixed
in step 1 while the augmenting paths are found. Afterwards, the dual values are updated.
We first make a call to FIND_MAXIMAL_APS to obtain a maximal set A of paths. For
each P ∈ A, we augment M along P to obtain a new matching M . Also, for each v ∈ P ∩B,
we decrease y(v) by 1.

In Section 5, we show how to construct and maintain MATCH so that the above subroutine
can be performed in time O(n·poly(log n)). The building time of MATCH is O(n·poly(log n)),
and it takes O(n · poly(log n)) space. Thus, by noting that A contains disjoint paths, step 1
can be implemented in O(n · poly(log n)) time and space.

We also need another data structure which will help us implement step 2 of match, which
we refer to as the Hungarian search data structure. As described before, Hungarian search
boils down to maintaining a bichromatic closest pair (r, b) of two sets with the minimum
c(r, b) − σr − σb value. However, here we have to be more careful, as for an unmatched
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eligible edge (u, v), y(u) + y(v) = c(u, v) + 1. In contrast, in the Hungarian algorithm, we had
y(u) + y(v) = c(u, v) in that case. Hence, we have to consider the c(u, v) + 1− y(u)− y(v)
value as the distance of such an unmatched pair (u, v). This apparently makes our life harder,
as now we have to deal with two types of distance functions: one for matched pairs and one
for unmatched pairs. However, we use the following observation to consider only one type of
distances, which follows from our description of Hungarian search in Section 3.

▶ Observation 8. Consider any matched edge (u, v) with u ∈ R and v ∈ B. In the Hungarian
search, if u ∈ R′, i.e., u is already in the forest, then v must also be in the forest, i.e., v /∈ B′.

Recall that for computing δ, we look into the pairs (u, v) where u ∈ R′ and v ∈ B′. By
the above observation, it suffices to probe only unmatched edges. Hence, we can again work
with only one distance function c(r, b) + 1 − σr − σb for the purpose of computing δ. As
the +1 term is common in all distances, we also drop that, and work with our old distance
function.

In Section 5, we show how to construct and maintain Hungarian search data structure so
that the task of maintaining closest pair can be performed in total O(n · poly(log n)) time.
Moreover, the data structure uses O(n · poly(log n)) construction time and space.

▶ Lemma 9. Using the MATCH and Hungarian search data structures, one can implement
the Gabow-Tarjan algorithm on the instance I1 in time O(n3/2 · poly(log n)), i.e., a minimum
cost bipartite perfect matching in I1 can be computed in time O(n3/2 · poly(log n)).

5 Data Structures

5.1 The MATCH Data Structure
We would like to construct a data structure where given a matching at a fixed scale, a
maximal set of augmenting paths can be computed efficiently. In particular, we are given
the graph G = (R = R0 ∪R1, B = B0 ∪B1, E), where R1 contains copies of the vertices in
B0, B1 contains copies of the vertices in R0. E = E0 ∪ E1 ∪ E2 ∪ E3, where E0 = R0 ×B0,
E1 = R1 × B1, E2 = {(u, û) | u ∈ R0, û ∈ B1}, and E3 = {(v̂, v) | v ∈ B0, v̂ ∈ R1}. Let
n = |R| = |B|. Also, note that each edge weight is an integer wi for 0 ≤ i ≤ ⌈(c′ log n)/ϵ⌉,
where c′ is a constant. Let E0

i be the set of edges in R0 × B0 with weights wi. We define
a bi-clique cover for each E0

i as a collection Ci = {(Pi1, Qi1), (Pi2, Qi2), . . . , (Pit(i), Qit(i))}
where Pij ⊆ R0, Qij ⊆ B0, all the edges in Pij × Qij are in E0

i and ∪t(i)
j=1Pij × Qij = E0

i .
The size of E0

i is
∑t(i)

j=1 |Pij |+ |Qij |. Given the points in R0 and B0, using standard range
searching data structures, one can compute such a bi-clique cover of size O((n/ϵ) log2 n) in
O((n/ϵ) log2 n) time. We note that bi-clique covers are also used for the algorithm in [17].
Let C = Ci. Thus C can be computed in O((n/ϵ2) log3 n) time and space.

In MATCH we store the bi-clique covers in C corresponding to the edges in E0. Also,
we store the edges in E2 along with their weights in an array A2 indexed by the vertices
of R0 and the edges in E3 and their weights in an array A3 indexed by the vertices of B0.
For finding an augmenting path efficiently, we need to store additional information. Before
describing that, we describe in more detail how the augmenting paths are found.

The maximal set of augmenting paths are found by a careful implementation of depth
first search. In this implementation, vertices can be labeled as marked. Initially all vertices
are unmarked. We select any free unmarked vertex of R and initialize a path P at that
vertex. P is extended from the last vertex u (in R as an invariant) as follows. We probe an
eligible edge (u, v). If v is already marked, the next eligible edge is considered. If no such
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edge exists, the last two edges (one unmatched and one matched) are deleted from P . If P

becomes empty, a new path is initialized. For the remaining cases, the following subroutine
is called.

AUGMENTING_PATH(v). If v is unmarked and free, we have found an augmenting path;
v is marked, P is added to A and a new path is initialized. In this case, return DONE. If v

is unmarked, but matched with another vertex w, (u, v) and (v, w) are added to P ; v, w are
marked and the extension continues from w (in R).

▶ Observation 10 (∗). In the above procedure, we always maintain the invariant that when
we extend a path it suffices to probe only unmatched edges.

Note that in the above procedure we cannot afford to probe all the unmatched edges.
So, we have to implement the above step carefully. First, note that an edge (u, v) (u ∈ R)
is never scanned twice. When (u, v) is probed the first time, if v is unmarked, it becomes
marked in all the cases. Also, once v is marked, (u, v) is never used to extend P . Thus, we
can eliminate (u, v) from further probing.

From the above discussion, as E2 and E3 contain O(n) edges in total they can be probed
in O(n) time. However, E0 and E1 contain Ω(n2) edges and thus for probing them we need
specialized data structures. Next, we describe those.

Let c(u, v) be the weight of (u, v) at the current scale. y(u) is the dual value of the vertex
u which remains fixed throughout the augmenting paths finding process. Again consider the
bi-clique covers in C. For each 0 ≤ i ≤ ⌈(c′ log n)/ϵ⌉, wi denotes the weight of the edges in
i-th class. Also, let ℓ be the weight class to which the edges in E1 belong, i.e., all of their
weights are wℓ. For each such i and 1 ≤ j ≤ t(i), we store in match the vertices of Qij in
a Red-Black tree Tij with wi + 1 − y(v) as the key of each such vertex v. Moreover, for
each u ∈ R0, we keep an ordered set of indexes I(u) = {(i, j) | u ∈ Pij}. Similarly, define
the index set I(v) for v ∈ B0. We also store the vertices of B1 in a Red-Black tree T1 with
wℓ + 1− y(v) as the key of v ∈ B1.

▶ Observation 11. MATCH uses O(n · poly(log n)) construction time and space.

The above space bound follows from the fact that the space complexity of MATCH is
dominated by the space needed for the Red-Black trees, which is O(|B1|) +

∑
(i,j) O(|Qij |) =

O((n/ϵ2) log3 n), as a Red-Black tree uses linear space. The time bound follows trivially.

FIND_MAXIMAL_APS. Let F be the set of free vertices and Π be the set of vertices
that are already marked. Initially Π = ∅. Let A be the set of augmenting paths found so far,
which is initialized to ∅. For each vertex u ∈ R1, set its E1-failed flag to 0. While there is a
vertex r1 ∈ (R ∩ F ) \Π, do the following.

Initialize a path P at r1.
While P is not empty, do the following.

Let P = {r1, b1, . . . , rτ−1, bτ−1, rτ} be the current augmenting path that we need to
extend.
(Case 1. rτ ∈ R0) Access the array A2 to find whether the copy of rτ in B1, i.e., r̂τ , is
marked and (rτ , r̂τ ) is eligible.
∗ If r̂τ is unmarked and (rτ , r̂τ ) is eligible, call the subroutine AUGMENTING_PATH

(r̂τ ). If this subroutine returns DONE, terminate this while loop. Otherwise, jump
to the next iteration.
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∗ Otherwise, search the Red-Black tree Tij where (i, j) is the first index in I(rτ ),
to find a vertex bτ with key value y(rτ ). If such a vertex bτ is found, call the
subroutine AUGMENTING_PATH(bτ ). Remove bτ from all the Red-Black trees
with indexes in I(bτ ), as it is marked in the subroutine. If this subroutine returns
DONE, terminate this while loop. Otherwise, jump to the next iteration. If no
such vertex bτ is found in Tij , remove the index (i, j) from I(rτ ) and repeat the
above step (performed for (i, j)) for the next index in I(rτ ). If I(rτ ) becomes empty,
remove rτ and bτ−1 from P , and continue to the next iteration.

(Case 2. rτ ∈ R1) Access the array A3 to find whether the original copy of rτ in B0,
say v, is marked and (rτ , v) is eligible. If v is unmarked and (rτ , v) is eligible, call the
subroutine AUGMENTING_PATH(v). If this subroutine returns DONE, terminate
this while loop. Otherwise, jump to the next iteration. If E1-failed is not set, i.e., it is
0 for rτ , search the Red-Black tree T1 to find a vertex bτ with key value y(rτ ). If such
a vertex bτ is found, call the subroutine AUGMENTING_PATH(bτ ). Remove bτ from
T1, as it is marked in the subroutine. If this subroutine returns DONE, terminate this
while loop. Otherwise, jump to the next iteration. If no such vertex bτ is found in T1,
set E1-failed flag for rτ to 1, remove rτ and bτ−1 from P , and continue to the next
iteration.

The above procedure is self-explanatory. Next, we prove its correctness and bound the
implementation time.

▶ Lemma 12 (∗). FIND_MAXIMAL_APS correctly computes a maximal set of disjoint
augmenting paths.

▶ Lemma 13 (∗). FIND_MAXIMAL_APS can be implemented in O(n · poly(log n)) time.

5.2 Hungarian Search Data Structure
Recall that in Hungarian search, we need to maintain two sets R′ ⊆ R and B′ ⊆ B. Initially,
R′ = ∅ and B′ = B. In each iteration, a vertex is added to R′ and removed from B′.
Additionally, each vertex v has a weight σv. In every iteration, the goal is to maintain the
bichromatic closest pair, which is the pair (u, v) ∈ R′×B′ with the minimum c(u, v)−σu−σv

value.
Consider the bi-clique cover C and in particular a pair (Pij , Qij) in C. Then any edge in

Pij ×Qij has the same weight wi. Thus, the pair (u, v) with the maximum σu + σv value
has the minimum c(u, v) − σu − σv value in Pij × Qij . In other words, it is sufficient to
keep track of a vertex u ∈ Pij with the maximum σu value and a vertex v ∈ Qij with the
maximum σv value.

Now, we describe the Hungarian Search data structure. For each index (i, j) in C, we
construct two max-heaps Hr

ij and Hb
ij , for Pij ∩R′ and Qij ∩B′, respectively. Initially, Hr

ij

is empty and Hb
ij contains all the vertices in Qij . The key value of each vertex v is its weight

σv. Note that using Hr
ij and Hb

ij , the pair (u, v) ∈ (Pij ∩R′)× (Qij ∩B′) with the maximum
σu + σv value can be found in O(1) time. Similarly, we construct two heaps Hr

1 and Hb
1 for

the vertices in R1 ∩R′ and B1 ∩B′, respectively. Initially, Hr
1 is empty and Hb

1 contains all
the vertices in B1. The key value of each vertex v is its weight σv. Again using Hr

1 and Hb
1 ,

the pair (u, v) ∈ (R1 ∩ R′) × (B1 ∩ B′) with the maximum σu + σv value can be found in
O(1) time. We also construct another max-heap H23 to store the edges in E2 ∪ E3. Initially,
it is empty. In every iteration, it contains only those edges (u, v) such that u ∈ R′ and
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v ∈ B′. Finally, to keep track of the global maximum pair, we create another max-heap H.
H stores a maximum pair of (Pij ∩R′)× (Qij ∩B′) for each index (i, j) and maximum pairs
of (R1 ∩R′)× (B1 ∩B′) and H23.

Note that the space complexity of the data structure is
∑

(i,j) O(|Pij |+ |Qij |) + O(n) =
O((n/ϵ2) log3 n). This follows, as a max-heap uses linear space.

▶ Observation 14. The Hungarian Search data structure uses O(n · poly(log n)) construction
time and space.

Next, we describe a procedure which will help us implement Hungarian search. This
procedure takes a pair (u, v) as input, where u ∈ R \R′ and v ∈ B′. We need to add u to R′

and remove v from B′ while maintaining the correct maximum pair.

UPDATE_CLOSEST_PAIR(u, v). If v ∈ B0, remove v from all Hb
ij that contains v. Also

remove (v̂, v) from H23 if its in H23. If v ∈ B1, remove v from Hb
1. Also remove the edge

(u′, v) with u′ ∈ R0 from H23 if its in H23. If u ∈ R0, add u to all Hr
ij such that Pij contains

u. Also add the edge (u, û) to H23 if û ∈ B′. If u ∈ R1, add u to Hr
1 . Also add the edge

(u, v′) with v′ ∈ B0 to H23 if v′ ∈ B′. Update the maximum pairs in H accordingly by
selecting the updated maximum pairs from the other max-heaps.

▶ Lemma 15 (∗). Hungarian search can be performed in O(n · poly(log n)) time.
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Abstract
We study the problem of augmenting a metric graph by adding k edges while minimizing the radius
of the augmented graph. We give a simple 3-approximation algorithm and show that there is no
polynomial-time (5/3 − ϵ)-approximation algorithm, for any ϵ > 0, unless P = NP .

We also give two exact algorithms for the special case when the input graph is a tree, one of
which is generalized to handle metric graphs with bounded treewidth.
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1 Introduction

We study the problem of minimizing the radius of a metric graph by inserting k new edges.
Let G = (V, E) be a non-negative weighted graph with n vertices, and V 2 be the set of all

possible edges on V . A non-edge of G, also referred to as shortcut, is an edge in Ē = V 2 \E.
The graph distance dG(u, v) between two vertices u, v ∈ V is the smallest weight of any path
in G joining u and v. The eccentricity of a vertex v ∈ V is the maximum graph distance
between v and any vertex in V . The radius of G is the minimum eccentricity of any vertex
in G and the center of G is a vertex with minimum eccentricity.

The radius of a graph is closely related to the diameter. The diameter of a graph is
the maximum graph distance between any pair of vertices. The problem of minimizing the
diameter of a graph by adding k new edges has been extensively studied [2, 6, 7, 8, 9, 14]
and has applications in areas such as communication networks, information networks, flight
scheduling and protein interaction.

In the general case each added edge may also have a cost, and the edge augmentation
problem for minimizing the radius or diameter can then be seen as a bicriteria optimization
problem. The two criteria are: (1) the total cost of the added edges, and (2) the radius
or diameter of the augmented graph. A bicriteria optimization problem is then either (1)
given a budget on the total cost of the added edges, minimize the radius or diameter, or (2)
given a target on the radius or diameter of the augmented graph, minimize the total cost of
the added edges. For radius, the first bicriteria optimization problem is formally defined as
follows.

PROBLEM: Bounded Cost Minimum Radius Edge Addition (bcmr)
INPUT: An undirected graph G = (V, E) with weight function ℓ : V 2 → R+ ∪ {0}, a cost
function ς : Ē → R+ ∪ {0} and a positive number B.
GOAL: Add a set F ⊆ Ē with

∑
e∈F ς(e) ⩽ B such that the radius of Ĝ = (V, E ∪ F ) is

minimized.
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In this paper we consider the bcmr problem restricted to the special case when the
costs are unit and the weights satisfy the triangle inequality. That is, given a metric graph
G = (V, E, ℓ), add k = ⌊B⌋ shortcuts to G to minimize the radius of the augmented graph.
We will refer to our restricted variant of the bcmr problem as the metric bcmr problem.

Related results

To the best of the authors’ knowledge there is only one paper on the bcmr problem. Johnson
and Wang [13] showed a linear-time algorithm for the special case when k = 1 and G is a
path embedded in a metric space. They considered the continuous version where the center
of the graph can be in the interior of an edge. However, the closely related problem of
minimizing the diameter of the augmented graph has a long and rich history.

The problem of minimizing the diameter of the augmented graph such that the total cost
of the shortcuts is within a budget (referred to as bcmd) and the problem of minimizing the
cost of added shortcuts such that the diameter of the augmented graph is within a given
value (referred to as bdmc) were shown to be NP-hard in [16] and W [2]-hard in [9, 11]. Li et
al. [14] gave a constant factor approximation algorithm for the bcmd problem restricted to
unit weights and unit costs. Later Bilò et al. [2] improved the analysis of Li et al.’s algorithm.
Bilò et al.’s analysis also implies that Li et al.’s algorithm gives a 4-approximation for bcmd
on metric graphs. Demaine and Zadimoghaddam [7] considered a variant of bcmd where
the costs are unit and all non-edges have length δ, where δ is a small constant compared
to the diameter of the graph. We will refer to this model as the DZ model. Demaine and
Zadimoghaddam gave a constant factor approximation algorithm for the bcmd problem in
the DZ model, which was later improved by Bilò et al. [2]. For the general bcmd problem
where the weights and costs are arbitrary integers, Frati et al. [9] gave a 4-approximate
Fixed-Parameter Tractable (FPT) algorithm (under the cost parameter). More restricted
variants of the bcmd problem have also been considered in the literature, where the input
graph is either a path or a tree and one shortcut is added. Section 1.1 in [13] gives a nice
overview of these results.

Compared to the bcmd problem, the bdmc problem is traditionally harder to approximate.
Dodis and Khanna [8] studied the bdmc problem in depth and gave extensive inapproximab-
ility results for different weight and cost functions. They also gave almost matching upper
bounds for these variants of the bdmc problem.

Our results

In this paper we study the metric bcmr problem. Our main results are:
1. A simple O(kn(m+n log n)) time 3-approximation algorithm and a (5/3−ϵ) approximation

hardness bound, even for metric bcmr on geometric graph1.
2. An exact O(n3 log n) time algorithm for metric bcmr when the input graph is a tree and

an exact O((k2b2 + kb32b) · n2b+2) time algorithm when the input graph has treewidth
b− 1.

Our second result shows that the metric bcmr problem on trees is in P , while whether
the bcmd problem on trees is in P is still an open problem, even for unit weights and unit
costs.

1 A geometric graph is a graph where all vertices are embedded in the Euclidean space.
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Similar to Lemma 3 in [7], we can prove that any α-approximation for the bcmr problem
is a 2α-approximation for the corresponding bcmd problem. Thus our algorithm for bcmr
on metric graphs with bounded treewidth is a 2-approximation for bcmd on metric graphs
with bounded treewidth, which is slightly better than Li et al.’s 4-approximation (however,
their result holds for metric graphs).

Paper organization

The rest of the paper is organized as follows. The 3-approximation algorithm for the metric
bcmr problem is presented in Section 2 and the approximation hardness results are given in
Section 3. Section 4 describes our algorithms for the metric bcmr problem on trees. Finally,
we present an algorithm on graphs with bounded treewidth in Section 5.

2 3-approximation algorithm

Let G = (V, E, ℓ) and k be an instance of the metric bcmr problem. Let F ∗ be an optimal
solution for the instance, and let c∗ be a center of G∗ = (V, E ∪ F ∗, ℓ).

If the center c∗ is known, then the metric bcmr problem is just adding k shortcuts to
minimize the eccentricity of c∗. However, since c∗ is not known, we will just try every vertex
in V as a candidate. We define the Graph Augmentation Eccentricity Minimization problem,
gaem for short, as follows: given a metric graph G = (V, E, ℓ), an integer k and a vertex s in
V , add k shortcuts in Ē to G such that the eccentricity of s is minimized. Obviously solving
gaem for every vertex in V gives us an optimal solution to the metric bcmr problem. Thus
in the rest of this paper we will focus our attention on solving the gaem problem.

The following lemma gives an important property for the gaem problem, which we will
utilize throughout the paper. The proof can be found in Appendix A.

▶ Lemma 1. Given a metric graph G = (V, E, ℓ), an integer k and a vertex s in V for the
gaem problem, there is an optimal solution where every shortcut is incident to s.

Lemma 1 allows us to only consider solutions in which all the shortcuts are incident to s.
It also applies when we consider approximate solutions. Our 3-approximation algorithm uses
the well-known farthest-first traversal technique popularized by Gonzalez [12]. Next we state
the approximation algorithm.

Algorithm 1 FarthestAdditionGAEM(G, k, s).

Require: A metric graph G = (V, E, ℓ), an integer k and a vertex s in V .
Ensure: An approximate optimal solution for the gaem instance.

1: Ĝ ← G

2: for i← 1 to k do
3: find the vertex u farthest from s in Ĝ.
4: add (s, u) to Ĝ.
5: end for
6: return Ĝ

The approximation bound of Algorithm 1 is given in Lemma 2. The proof is found in
Appendix B.

▶ Lemma 2. Algorithm 1 is a 3-approximation algorithm for the gaem problem.

ISAAC 2021
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Algorithm 1 is very simple and can be implemented using standard graph algorithms.
Let n = |V | and m = |E|. In each iteration of the for loop, we use Dijkstra’s algorithm to
compute the single-source shortest paths from s to all other vertices in V . Using Fibonacci
heaps [10], Dijkstra’s algorithm runs in time O(m′ + n log n), where m′ < m + k. Without
loss of generality, we may assume that k ⩽ n − 1 ⩽ m. The total running time is thus
O(km + kn log n).

Running Algorithm 1 for n times gives our main result in this section.

▶ Theorem 3. There is an O(kn(m + n log n)) time, 3-approximation algorithm for the
metric bcmr problem.

When the input graph is unweighted or in the DZ model, arguments similar to the proof
of Lemma 2 give an approximation factor of 2. For unweighted graphs, the 3-approximation
algorithm runs in O(knm) time by using BFS instead of Dijkstra’s algorithm in Step 3 of
Algorithm 1. Note that for general metric graphs we cannot use BFS in Step 3.

3 Approximation hardness

We show the approximation hardness of the metric bcmr problem by showing the approxim-
ation hardness of the gaem problem. This follows from the fact that any polynomial time
α-approximation algorithm for gaem will trivially lead to a polynomial time α-approximation
algorithm for the metric bcmr problem. The hardness proof is done using a reduction from
the Dominating Set problem.

Given a graph G = (V, E) and an integer k, the Dominating Set decision problem asks
whether there is a subset S ⊂ V of size k such that every vertex not in S is adjacent to a
vertex in S. The gaem decision problem is: given a metric graph G = (V, E, ℓ), a vertex
s ∈ V , an integer k and a target value r, decide if there is a set F of k shortcuts such that
their addition to G reduces the eccentricity of s to at most r.

G G′ s

1 1

2 2

2
2

Figure 1 Reduction from the Dominating Set decision problem. Edges in E′ are colored blue
and have weight 2. All shortcuts are dashed and have weight 1.

▶ Theorem 4. For any ϵ > 0, finding a ( 5
3 − ϵ) approximate solution for the gaem problem

is NP-hard.

Proof. Let G = (V, E) be a graph. Let I = (G, k) be an instance of the Dominating Set
decision problem. We transform I into an instance I ′ = (G′, s, k, 3) of the gaem decision
problem by adding an extra vertex s, that is, G′ = (V ′ = V ∪ {s}, E′ = E, ℓ). We set the
weight function ℓ as: the weight of any shortcut in [V ′]2 \E′ is 1 and the weight of any edge
in E′ is 2. See Figure 1. Note that ℓ satisfies triangle inequality.
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If there is a dominating set S ⊂ V of size k in G, we can choose the same k vertices in
G′ and add k shortcuts from s to every vertex in this subset. It follows that every vertex in
V is connected to s by 1 shortcut and at most 1 edge in E. The eccentricity of s is thus at
most 3.

If we can add k shortcuts to G′ such that the eccentricity of s in the resulting graph is at
most 3, we can add such k shortcuts which are all incident to s, by Lemma 1. For such k

shortcuts, all other vertices of the shortcuts except s form a subset S′ ⊂ V of size k. Since
the eccentricity of s is at most 3, every vertex in V \ S′ must be adjacent to a vertex in S′

by an edge in E. Thus S′ is dominating set of G.
Any vertex that is connected to s through 1 shortcut and 1 edge in E has distance 3 to s.

Any vertex that is connected to s through 1 shortcut and 2 edges in E has distance 5 to s.
If there is a ( 5

3 − ϵ) approximation algorithm for the gaem problem then we can use it to
solve I ′ and thus any dominating set instance. Thus finding a ( 5

3 − ϵ) approximate solution
for the gaem problem is NP-hard. ◀

The same construction can be used for the DZ model while only modifying the length
function. Assuming the length of all non-edges to be very small, we get:

▶ Lemma 5. For any ϵ > 0, finding a (2− ϵ) approximate solution for the gaem problem in
the DZ model is NP-hard.

Note that this is a tight lower bound since Algorithm 1 is a 2-approximation algorithm
for the gaem problem in the DZ model.

Somewhat surprising is that the gaem problem on geometric graphs (the weights are
Euclidean distances) is as hard to approximate as the gaem problem. This is stated in
Lemma 6 and the proof is found in Appendix C.

▶ Lemma 6. For any ϵ > 0, finding a ( 5
3 − ϵ) approximate solution for the gaem problem

on geometric graphs is NP-hard.

4 The GAEM problem on metric trees

In this section we consider the gaem problem on trees. We give two algorithms: (1) a near
quadratic-time algorithm, and (2) a slower algorithm with running time O(min{k2n3, n4}).
The first algorithm is more efficient and elegant, however, we are not able to generalize it
to graphs of bounded treewidth. Therefore we will describe the second algorithm below
(Section 4.1) while the description of the first algorithm can be found in Appendix D. We
state the result of the first algorithm here:

▶ Theorem 7. The gaem problem on trees can be solved in O(n2 log n) time.

Note that while Theorem 7 proves that the metric bcmr problem on trees can be solved
in polynomial time, the complexity status for the bcmd problem on trees remains open, even
for unit weights and unit costs.

Throughout this section we will assume that the input tree has degree at most 3. Otherwise,
we transform it into a tree of degree 3 by splitting vertices with degree greater than 3. When
a vertex of degree 3 is picked as the root, we split the vertex and get a binary tree. In the
following, we assume that the input is a binary tree rooted at s.
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4.1 The second algorithm for trees

By Lemma 1 all the shortcuts we add are incident to s. For a binary tree T = (V, E, ℓ)
rooted at s, we aim to add k shortcuts all incident to s so that the eccentricity of s in the
augmented graph is minimized.

Our algorithm is a dynamic programming approach with three parameters. Before we
define the subproblems we need to define some notations.

For a vertex v in V , let lc(v) and rc(v) denote the left and right child of v, respectively.
Let Tv denote the subtree of T rooted at v. Let D↑(v) =

⋃
u∈T \Tv

{dT (v, u) + |us|} and
let D↓(v) =

⋃
u∈Tv
{dT (v, u) + |us|}. Each distance in D↑(v) is the weight of a tree path

from v to a vertex u in T \ Tv, plus the shortcut (u, s). The distances in D↓(v) are defined
in the same way but through a vertex u in Tv. This is illustrated in Fig. 2(a), where the
weight of the blue path is in D↑(v) and the weight of the red path is in D↓(v). Note that
the number of distances in D↓(v) is |Tv| and the number of distances in D↑(v) is |T \ Tv|.
In our recursion we will need the subset D↓(v, d) of D↓(v) containing all distances in D↓(v)
that are at least d.

For a subtree Tv and three parameters d↑, d↓ and k̄, the subproblem is to find a set of k̄

shortcuts from s to vertices in Tv so that the maximum distance from vertices in Tv to s is
minimized. The parameter d↑ is the (assumed) weight of the shortest path from v to s via
the parent of v (thus through a shortcut added to a vertex out of Tv), and the parameter d↓

is the (assumed) weight of the shortest path from v to s not going through the parent of v

(thus through one of the k̄ shortcuts). Note that d↑ is in D↑(v) and its path goes through
shortcut (v↑, s) for some vertex v↑ in T \ Tv. Also d↓ is in D↓(v) and its path goes through
shortcut (v↓, s) for some vertex v↓ in Tv.

For given d↑, d↓ and k̄, let Rv[d↑][d↓][k̄] denote the minimum maximum distance from a
vertex in Tv to s, when k̄ shortcuts are allowed to be added from s to vertices in Tv.

We have two base cases. If k̄ = 0 then, by definition, d↓ =∞ and

Rv[d↑][d↓][0] = d↑ + max
u∈Tv

{dT (u, v)},

and if v is a leaf and k̄ = 1 then

Rv[d↑][d↓][1] = |vs|.

Next we state the recursion. Depending on the location of v↓, we have three different
cases for k̄ > 0: (a) v↓ lies in Tlc(v), (b) v↓ lies in Trc(v), or (c) v = v↓ which implies that
there is a shortcut connecting s to v. In all three cases, the allowed k̄ shortcuts are split
between Tlc(v) and Trc(v).

Case (a): v↓ lies in Tlc(v).

Rv[d↑][d↓][k̄] = min
1⩽k′⩽k̂

{max{Rlc(v)[d↑ + |v, lc(v)|][d↓ − |v, lc(v)|][k′],

min
d∈D↓(rc(v),d↓−|v,rc(v)|)

{Rrc(v)[min{d↑, d↓} + |v, rc(v)|][d][k̄ − k′]}, min{d↑, d↓}}},

where k̂ = min{k̄, |Tlc(v)|}. Note that k′ shortcuts are added to vertices in Tlc(v) and k̄ − k′

shortcuts are added to vertices in Trc(v). Since v↓ lies in Tlc(v), the second parameter to
Rlc(v) equals d↓ − |v, lc(v)| and the second parameter to Rrc(v) is at least d↓ − |v, rc(v)|. See
Figure 2(b). Finally, min{d↑, d↓} is the distance from v to s.
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v

s

lc(v)

v

rc(v)

d↑

k′ k̄ − k′

L↑

L↓

(a) (b) (c)

Rv

Wv

v↓

Figure 2 (a) Shortest paths from v to s. (b) v↓ lies in Tlc(v). (c) Illustrating the list structures
defined in Section 4.1.1.

Case (b): v↓ lies in Trc(v).

Rv[d↑][d↓][k̄] = min
1⩽k′⩽k̂

{max{Rrc(v)[d↑ + |v, rc(v)|][d↓ − |v, rc(v)|][k′],

min
d∈D↓(lc(v),d↓−|v,lc(v)|)

{Rlc(v)[min{d↑, d↓} + |v, lc(v)|][d][k̄ − k′]}, min{d↑, d↓}}},

where k̂ = min{k̄, |Trc(v)|}. The formula is symmetric to the formula for Case (a).

Case (c): v = v↓.

Rv[d↑][d↓][k̄] = min
0⩽k′⩽k̂

{max{ min
dl∈D↓(lc(v),|s,lc(v)|)

{Rlc(v)[|s, v|+ |v, lc(v)|][dl][k′]},

min
dr∈D↓(rc(v)),|s,rc(v)|)

{Rrc(v)[|s, v|+ |v, rc(v)|][dr][k̄ − k′ − 1]}, |vs|}}},

where k̂ = min{k̄ − 1, |Tlc(v)|}. The distance from v to s equals |vs|.

4.1.1 Data structures for DP
For efficient computation we define:

Wv[d↑][d↓][k̄] = min
d∈D↓(v,d↓)

{Rv[d↑][d][k̄]}.

Then the min
d∈D↓(...)

terms in the formulae of Rv in the last subsection are replaced by Wv

terms. By definition, Wv can be computed from Rv in an ordered manner.
For efficiency, we will use the following list structure for Rv and Wv in the dynamic

programming steps. The first level is a list, L↑, ordered on the values of d↑. Each node in L↑

contains a second level list, denoted L↓, ordered on the values of d↓. And each node in L↓

contains two arrays of size at most k, one for Rv and one for Wv. See Fig. 2(c).
The dynamic programming is done in a bottom-up manner. At a leaf node v, d↑ has

n − 1 values and dl
v has one value. We perform a tree traversal starting from v to get all

the values of d↑, and order these values in L↑. For each d↑ value, build an L↓ list containing
one node. At an internal node v, the values of its L↑ are obtained from the L↓ of its right
child and the L↑ of its left child. Its L↓ is formed by merging the L↓ lists of its left and right
child. The array elements of Rv are computed by using the formulae in the last subsection.
Array elements of Wv are computed accumulatively from the array elements of Rv.
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To get the shortcuts of an optimal solution, we need to keep some additional information.
At a node v, the L↑ list also stores the vertex v↑ for each d↑ value. The L↓ list also stores
the v↓ for each d↓ value. At an internal node v, when we use the formulae of Rv to compute
an array element, we also keep track of the array elements of lc(v)’s structure and rc(v)’s
structure that together give the solution for the current array element of Rv. When using the
formula of Wv, we keep track of the array element of Rv that gives the value for the current
array element of Wv. We can then backtrack with the above information to get the shortcuts
of the optimal solution. The extra information we kept is constant per array element.

4.1.2 Running time
To analyze the running time, we first give two bounds. Their proofs are available in
Appendix E. T is a rooted binary tree with n vertices.

▶ Lemma 8.
∑

v∈T

|Tlc(v)| · |Trc(v)| ⩽ n2.

▶ Corollary 9.
∑

v∈T

|Tv| ·min{|Tlc(v)|, |Trc(v)|} ⩽ 2n2 + n log n.

At a leaf node v, the tree traversal for computing values of d↑ takes O(n) time. Sorting
these values takes O(n log n) time. Plus computing Rv and Wv, we spend O(n log n) time in
total. At an internal node v, O(n) time is spent on obtaining the sorted d↑ values for L↑

and the sorted d↓ values for L↓. 0 ⩽ k′ ⩽ min{k̄, |Tvs|}, where |Tvs| = min{|Tlc(v)|, |Trc(v)|}.
k̄ ⩽ min{k, |Tv|}. Thus computing the array elements of Rv for given d↑ and d↓ takes
O(min{k2, |Tv| · |Tvs|}) time. Both d↑ and d↓ have at most n values. Using O(k2) as the
upper bound gives a total running time of O(k2n3). Using O(|Tv| · |Tvs|) as the upper bound
gives a total running time

∑
v∈T

n2 · |Tv| · |Tvs| = O(n4), by Corollary 9. So the total running

time is O(min{k2n3, n4}). To use less space, we can use depth first search. The space
requirement is thus O(k2n2), and we get:

▶ Theorem 10. When the input graph is a tree embedded in a metric space, gaem can be
solved in O(min{k2n3, n4}) time, using O(k2n2) storage.

5 Metric BCMR on graphs with bounded treewidth

Treewidth, introduced by Robertson and Seymour [15], measures how similar a graph is to
a tree. Many NP-hard graph problems can be solved efficiently when the input graph is
restricted to graphs with bounded treewidth [1, 3]. The notion of treewidth is based on the
notion of tree decomposition of a graph.

▶ Definition 11 ([15]). A tree decomposition of a graph G = (V, E), denoted by TD(G), is a
pair (X, T ) in which T = (I, F ) is a tree and X = {Xi|i ∈ I} is a family of subsets of V (G)
such that:
1.

⋃
i∈I Xi = V ;

2. for each edge e = {u, v} ∈ E there exists an i ∈ I such that both u and v belong to Xi;
and

3. for all v ∈ V , the set of nodes {i ∈ I|v ∈ Xi} forms a connected subtree of T .

Xi, a subset of V (G), is called the bag of node i. The maximum size of a bag in TD(G)
minus one is called the width of the tree decomposition. The treewidth of a graph, denoted
as tw(G), is the minimum width over all possible tree decompositions of the graph. The
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problem of deciding whether the treewidth of a given graph is at most k is NP-complete.
However, there are efficient constructive algorithms when k is small (k ⩽ 4) or the input graph
is outerplanar. There are also FPT approximation algorithms that guarantee a constant
approximation factor [4].

A nice tree decomposition (X = {Xi|i ∈ I}, T = (I, F )) is a tree decomposition such that
|I| = O(tw(G) · |V |), T is a rooted binary tree with three types of internal nodes:
1. a join node that has two children lc(i), rc(i) , Xlc(i) = Xrc(i) = Xi.
2. a forget node that has one child lc(i), Xi ⊂ Xlc(i) and |Xi| = |Xlc(i)| − 1.
3. an introduce node that has one child lc(i), Xlc(i) ⊂ Xi and |Xlc(i)| = |Xi| − 1.
Note that a tree decomposition can be transformed into a nice tree decomposition in linear
time.

In this section, we assume that a nice tree decomposition (X, T ) for G with width tw(G)
is given. We also assume that the bags of the root and the leaves are empty. Let Ti denote
the subtree of T rooted at node i. Let XTi

=
⋃

i∈Ti

Xi and b = tw(G) + 1.

We solve gaem for graphs with bounded treewidth by generalizing the dynamic program-
ming algorithm described in Section 4.1 for trees. Consider a tree T̂ = (V̂ , Ê). A node v̂ in
V̂ is the link point between the two subtrees T̂v̂ and T̂ \ (T̂v̂ \ {v̂}).

A tree decomposition defines a sequence of separators of the graph. The separator is
the link between the two separated parts of the graph. For any V ′ ⊆ V , let G(V ′) denote
the subgraph of the input graph G induced by vertices in V ′. For a node i of T in (X, T ),
Xi is a separator between G(XTi

) and G(V \ (XTi
\ Xi)). Each vertex in Xi is a link

point. For each vertex vi,j in Xi, let D↑(vi,j) =
⋃

u∈V \(XTi
\Xi)(dG(vi,j , u) + |us|) and let

D↓(vi,j) =
⋃

u∈XTi
(dG(vi,j , u) + |us|). Each distance in D↑(vi,j) is the weight of a path from

vi,j to a vertex u in V \ (XTi \Xi), plus the shortcut (u, s). We say the distance is realized
by u. The distances in D↓(vi,j) are defined in the same way but through a vertex u in XTi

.
As in Section 4.1 we will need the subset D↓(vi,j , d) of D↓(vi,j), containing all distances in
D↓(vi,j) that are at least d.

At node i of (X, T ), let t↑
i = (d↑

i,1, . . . , d↑
i,|Xi|) denote a tuple where d↑

i,j ∈ D↑(vi,j) is
the weight of the shortest path from vi,j to s going through a shortcut added to a vertex
in V \ (XTi

\ Xi), 1 ⩽ j ⩽ |Xi|. Similarly we can define t↓
i = (d↓

i,1, . . . , d↓
i,|Xi|). Let

v↑
i,j , 1 ⩽ j ⩽ |Xi| denote the vertex in V \ (XTi

\ Xi) that realizes d↑
i,j , and v↓

i,j denote
the vertex in XTi that realizes d↓

i,j . We say that d↑
i,j and d↓

i,j are components of t↑
i and t↓

i ,
respectively. For a given node i and three parameters t↑

i , t↓
i and k̄ the subproblem is to find

a set of k̄ shortcuts from s to vertices in XTi
so that the maximum distance from vertices in

XTi
to s is minimized, assuming the distance tuples t↑

i and t↓
i .

Before we define the recursive steps we will need a few more notations. Let Ri[t↑
i ][t↓

i ][k̄]
denote the minimum maximum distance from a vertex in XTi to s, where k̄ shortcuts are
allowed to be added between s and vertices in XTi

, assuming the distance tuples t↑
i and t↓

i .
In Section 4.1, we defined Wv̂ for a link point v̂ between T̂v̂ and T̂ \ (T̂v̂ \ {v̂}). For

graphs of bounded treewidth we have |Xi| link points at node i of (X, T ). Assume i is a join
node with left child lc(i) and right child rc(i). A component d↓

i,j of t↓
i is realized by a vertex

v↓
i,j . If v↓

i,j is in the left subtree Tlc(i) of Ti then d↓
rc(i),j must be at least d↓

i,j . The reverse is
symmetrically true. So we let t↓

i = (t↓
i1; t↓

i2) = {d↓
i,1, . . . , d↓

i,|Xi|} be the t↓ parameter to a Wi.
If d↓

i,j ∈ t↓
i1 then the component equals d↓

i,j . If d↓
i,j ∈ t↓

i2 then the component is at least d↓
i,j .

ISAAC 2021



45:10 Augmenting Graphs to Minimize the Radius

Thus

Wi[t↑
i ][t↓

i = (t↓
i1; t↓

i2)][k̄] = min{Ri[t↑
i ][di,1, . . . , di,|Xi|][k̄]},

where di,j = d↓
i,j if d↓

i,j ∈ t↓
i1 and di,j ∈ D↓(vi,j , d↓

i,j) if d↓
i,j ∈ t↓

i2. There are 2|Xi|−1 nonempty
subset of Xi, so we need to define 2|Xi| − 1 Wis with different components in t↓

i1 and t↓
i2.

Additional complexity for graphs with bounded treewidth. The definitions and notations
above corresponds closely to similar concepts in Section 4.1. However, there are a couple of
complications that we have to take care of specifically for graphs with bounded treewidth.
Firstly, we have to handle the three types of nodes (join, introduce and forget nodes)
differently. This will be discussed in detail below. Secondly, two aspects of the computation
at a node of (X, T ) become more complex.
1. Feasible values of t↑

i and t↓
i . Not every combination of the values of each d↑

i,j forms a
feasible value of t↑

i . We say a t↑
i is feasible only if it can be realized by some set of

shortcuts (The formal definition appears in Appendix F).
2. There are (2|Xi| − 1) Wis to be computed from Ri.
We discuss how to handle these two problems in Appendix F.

Next we explain the recursion steps at join, introduce and forget nodes.

Join nodes. A join node i has two children lc(i) and rc(i). We need to compute Ri from
Rlc(i), Wlc(i), Rrc(i) and Wrc(i). More specifically, we need to determine the tuples t↑

lc(i),
t↓
lc(i), t↑

rc(i) and t↓
rc(i) from t↑

i and t↓
i .

A partition of V for the separations between i and its children is shown in Figure 3(a).
We use three copies of Xi for ease of illustration. For a component d↓

i,j of t↓
i , v↓

i,j can be a
vertex in Xi, or in (XTlc(i) \Xi), or in (XTrc(i) \Xi). If v↓

i,j is in Xi, both d↓
lc(i),j and d↓

rc(i),j

equal d↓
i,j . Any path from vi,j to s that goes through a shortcut incident to a vertex in

XTrc(i) \Xi has weight at least d↓
lc(i),j so we can set d↑

lc(i),j = d↑
i,j , and similarly d↑

rc(i),j = d↑
i,j .

If v↓
i,j is in XTlc(i) \ Xi, then d↓

lc(i),j = d↓
i,j and d↓

rc(i),j is at least d↓
i,j . Any path from

vi,j to s that goes through a shortcut incident to a vertex in XTrc(i) \ Xi has length at
least d↓

lc(i),j so we can set d↑
lc(i),j = d↑

i,j . For rc(i), it is possible that d↓
i,j < d↑

i,j , so we set
d↑

rc(i),j = min{d↑
i,j , d↓

i,j}. The case when v↓
i,j is in XTrc(i) \Xi is handled symmetrically.

The recursive relation for Ri is then:

Ri[t↑
i ][t↓

i ][k̄] = min
k1,k2
{max{Wlc(i)[t↑

lc(i)][(t
↓
lc(i)1; t↓

lc(i)2)][k1],

Wrc(i)[t↑
rc(i)][(t

↓
rc(i)1; t↓

rc(i)2)][k2]}},

where k1 plus k2 equals k̄ plus the number of shortcuts added to vertices in Xi. The t↑ and
t↓ tuples for Wlc(i) and Wrc(i) are derived as discussed above. Note that when t↓

lc(i)2 = ∅,
Wlc(i) = Rlc(i).

Next we analyze the time spent at a join node. As shown in Appendix F, computing all
feasible values of t↑

i and t↓
i for Ri requires O(bnb) time. For a given t↑

i value, computing Ri

for all feasible values of t↓
i and k̄ takes O(k2b · |XTi

||Xi|) = O(k2bnb) time. As discussed in
Appendix F, computing all values for a Wi takes O(kb2n2b) time. Since there are (2b − 1)
different Wis the total time spent at a join node is O((k2b + kb22b) · n2b).
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i

lc(i) rc(i)

XTlc(i)
\Xi XTrc(i)

\Xi

V \XTi

Xi

Xi

Xi

i

XTc(i)
\Xi

V \XTi

Xi

(a) (b)

c(i)

Figure 3 (a) Partition of V at a join node i for the separations between i and its children. (b)
Separation at an introduce node i, vi,|Xi| is colored blue.

Introduce node. Consider an introduce node i and let c(i) be its child. Without loss of
generality, let vi,|Xi| be the vertex introduced at i. From the property of a tree decomposition,
any path from vi,|Xi| to a vertex in {XTi \Xi} must go through a vertex in Xi \ {v|Xi|}, see
Fig. 3(b). We compute Ri from Rc(i) or Wc(i). For given t↑

i , t↓
i and k̄, we need to determine

the corresponding t↑
c(i) and t↓

c(i). We consider two cases, depending on whether vi,|Xi| is
incident to one of the k̄ shortcuts, or not.
1. d↓

i,|Xi| ̸= |s, vi,|Xi||, that is, vi,|Xi| is not incident to any of the k̄ shortcuts. For any
d↑

i,j , j ̸= |Xi|, the corresponding d↑
c(i),j is realized by the same vertex as d↑

i,j . Thus
d↑

c(i),j = d↑
i,j , where j ̸= |Xi|. Similarly, d↓

c(i),j = d↓
i,j , where j ̸= |Xi|. For given t↑

i ,
t↓
i and k̄ at introduce node i, the maximum distance from all vertices in XTc(i) to s is

Rc(i)[t↑
c(i)][t

↓
c(i)][k̄]. The distance from vi,|Xi| to s is the minimum of d↑

i,|Xi| and d↓
i,|Xi|.

As a result we have:

Ri[t↑
i ][t↓

i ][k̄] = max{Rc(i)[t↑
i \ d↑

i,|Xi|][t
↓
i \ d↓

i,|Xi|][k̄], min{d↑
i,|Xi|, d↓

i,|Xi|}}.

2. d↓
i,|Xi| = |s, vi,|Xi||, that is, vi,|Xi| is incident to one of the k̄ shortcuts. By definition,

d↑
c(i),j , j ̸= |Xi|, equals the minimum of d↑

i,j and dG(vi,j , vi,|Xi|) + |s, vi,|Xi||. For any such
d↓

i,j , j ̸= |Xi|, that v↓
i,j is not vi,|Xi|, the corresponding d↓

c(i),j equals d↓
i,j . For any such

d↓
i,j , j ̸= |Xi|, that v↓

i,j is vi,|Xi|, the corresponding d↓
c(i),j is greater than d↓

i,j . For given
t↑
i , t↓

i and k̄ at an introduce node i, the maximum distance from all vertices in XTc(i) to
s is Wc(i)[t↑

c(i)][t
↓
c(i)][k̄ − 1]. The distance from vi,|Xi| to s is |s, vi,|Xi||. Thus,

Ri[t↑
i ][t↓

i ][k̄] = max{Wc(i)[(d↑
c(i),1, . . . , d↑

c(i),|Xi|−1)][(t↓
c(i)1; t↓

c(i)2)][k̄ − 1], |s, vi,|Xi||},

where d↑
c(i),j = min{d↑

i,j , dG(vi,j , vi,|Xi|) + |s, vi,|Xi||}, for j < |Xi|. If d↓
i,j is not realized

by vi,|Xi|, for j < |Xi|, then d↓
c(i),j = d↓

i,j and is a component of t↓
c(i)1. Otherwise,

d↓
c(i),j > d↓

i,j and is a component of t↓
c(i)2.

The time required to compute the Ri values is O(kbn2b). The Wis are computed from Ri

in the same way as for a join node, hence, in totally O(kb22bn2b) time. As a result, the time
spent at an introduce node is O(kb22b · n2b).
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Forget node. Assume i is a forget node and c(i) is its child. Without loss of generality,
assume vc(i),|Xc(i)| is the vertex forgotten at i. As usual, we compute Ri from values of Rlc(i)

or Wc(i). vi,j = vc(i),j , j < |Xc(i)|. By definition, d↑
c(i),j = d↑

i,j , for all j < |Xc(i)|. In the
input graph G, any path from vc(i),|Xc(i)| to a vertex in V \XTi

must go through a vertex
in Xi. Thus the corresponding d↑

c(i),|Xc(i)| equals min{d↑
i,j + dG(vi,j , vc(i),|Xc(i)|)|j < |Xc(i)|}.

By definition, d↓
c(i),j = d↓

i,j for all j < |Xc(i)|. However, d↓
c(i),|Xc(i)| can take a number of

different values. The only constraint is that it forms a feasible t↓
c(i) together with all other

d↓
c(i),j values, j < |Xc(i)|. Thus Ri is computed from Wc(i) where d↓

c(i),|Xc(i)| is the only
component in t↓

c(i)2 and takes the minimum value that forms a feasible t↓
c(i) with all other

d↓
c(i),j , j < |Xc(i)|.

Ri[t↑
i ][t↓

i ][k̄] = Wc(i)[t↑
c(i)][t

↓
c(i)1 = t↓

i ; t↓
c(i)2][k̄],

where d↓
c(i),|Xc(i)| ∈ t↓

c(i)2. The Wis are computed from Ri as before. The time spent at a
forget node is O(kb22b · n2b).

Since there are O(bn) nodes in a nice tree decomposition we conclude this section with
the following theorem.

▶ Theorem 12. When the input graph G is a metric graph with bounded treewidth, gaem
problem can be solved in O((k2b2 + kb32b) · n2b+1) time, where b = tw(G) + 1. The metric
bcmr problem on graphs with bounded treewidth can be solved in O((k2b2 + kb32b) · n2b+2)
time.
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A Proof of Lemma 1

▶ Lemma 1 Given a metric graph G = (V, E, ℓ), an integer k and a vertex s in V for the
gaem problem, there is an optimal solution where every shortcut is incident to s.

Proof. Let F ∗ be an optimal solution and G∗ = (V, E∪F ∗, ℓ). Let ecc∗(s) be the eccentricity
of s in G∗ and let T be the shortest path tree rooted at s. If every edge in F ∗ is incident to
s then the lemma immediately holds. Otherwise there exists at least one edge (p, q) in F ∗

that is not incident to s. We will show that (p, q) can be replaced by either (s, p) or (s, q)
such that the eccentricity of s in the resulting graph does not increase.

If (p, q) is an edge in T , then there is a subset U of V that go through (p, q) on their
shortest paths to s in T . Without loss of generality assume dT (p, s) < dT (q, s), as shown in
Fig. 4. The set U is the vertices in the subtree Tq of T rooted at q. By triangle inequality
|sq| ≤ dT (s, q). Replace (p, q) by (s, q) to get T ′. Then every vertex in T ′

q now has a path to
s no longer than its shortest path in T , and every vertex not in Tq can still use their shortest
path in T . Consequently, ecc(s) in T ′ is at most ecc∗(s).

If (p, q) is not an edge in T then replace (p, q) by either (s, p) or (s, q). Since every vertex
can still use its shortest path in T the eccentricity of s does not increase. ◀

(a) (b) s

p

q

s

T

Tq

Figure 4 (a) An example where all the edges of the graph have unit length. The two shortcuts
in red show an optimal solution for the gaem instance with k = 2. (b) Illustrating the proof for
Lemma 1.
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B Proof of Lemma 2

▶ Lemma 2 Algorithm 1 is a 3-approximation algorithm for the gaem problem.

Proof. Let A = {q1, q2, . . . , qt} be the set of vertices that are adjacent to s in G. If Algorithm
1 adds less than k shortcuts, the augmentation is optimal. Otherwise, let U = {p1, p2, . . . , pk}
be the set of vertices such that (s, pi)(i = 1, . . . , k) is a shortcut added by Algorithm 1.
Remember from Lemma 1 there is always an optimal solution F ∗ where all the shortcuts are
incident to s. Assume B = {c1, c2, . . . , ck} is the set of vertices such that (s, ci) is a shortcut
in F ∗. Let ecc∗(s) denote the eccentricity of s in G∗ = (V, E ∪ F ∗, ℓ). A ∪ B is the set of
vertices that are adjacent to s in G∗. Any vertex w other than s must go through exactly one
vertex v in A∪B (may be itself) on its shortest path to s in G∗

s . Let S(v), v ∈ A∪B denote
the set of vertices that go through v on their shortest paths to s in G∗. {S(v) : v ∈ A ∪B}
forms a partition of all the vertices other than s. We need to prove that the graph distance
from w to s in Ĝ is at most 3ecc∗(s).

If v ∈ A, dG(w, s) ⩽ ecc∗(s) so the distance from w to s in Ĝ is at most ecc∗(s). If any
pi ∈ U is in a S(qj) where qj ∈ A, dG(pi, s) ⩽ ecc∗(s). At the time pi is picked by Algorithm
1, pi is the farthest vertex to s, so Algorithm 1 returns an optimal solution. What is left
is when v ∈ B and no pi ∈ U is in any S(qj) where qj ∈ A. Any pi must be in some S(cl)
where cl ∈ B.

If there is a pi ∈ U in S(v), as in Figure 5(a), there is a path from w to s in Ĝ that goes
through v and pi and has weight dG(w, v) + dG(v, pi) + |spi|. Both dG(w, v) and dG(v, ui)
are at most ecc∗(s). By the triangle inequality, |spi| ⩽ ecc∗(s). Thus the distance from w to
s in Ĝ is at most 3ecc∗(s).

Otherwise, there is no pi ∈ U in S(v). |U | = |B|. By the pigeonhole principle, there must
exist a vertex v′ ∈ B such that two vertices pl, pm ∈ U are in S(v′), as shown in Figure 5(b).
Without loss of generality, assume pl is picked before pm in Ĝ. When pm is about to be
added a shortcut, it is the farthest vertex to s. The distance from w to s in Ĝ is thus at
most dG(pm, v′) + dG(v′, pl) + |spl| ⩽ 3ecc∗(s), which is an upper bound of pm’s distance to
s before it is added a shortcut. ◀

v

pi

v

v′

pm

pl

(a) (b)S(v)

S(v′)

Figure 5 (a) There is a vertex pi ∈ U in S(v). (b) There is no vertex pi ∈ U in S(v).
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C Proof of Lemma 6

▶ Lemma 6 For any ϵ > 0, finding a ( 5
3 − ϵ) approximate solution for the gaem problem on

geometric graphs is NP-hard.

Proof. In [5], Chang and Nemhauser proved that the Dominating Set decision problem for
bipartite graphs is NP-hard. We use a reduction from this problem to show the approximation
hardness of gaem on geometric graphs.

Let G = (V = V1∪V2, E) be a bipartite graph where V1 and V2 are disjoint and every edge
in E connects one vertex in V1 to one vertex in V2. Let I = (G, k), k < |V1∪V2|, be an instance
of the Dominating Set decision problem for bipartite graphs. Without loss of generality,
assume |V1| ⩾ |V2| and let m = |V1|. We can embed G in the plane. Place vertices in V1 at
positions (0, 0),(ϵ/2(m− 1), ϵ/2(m− 1)),. . .,(ϵ/2, ϵ/2) and place vertices in V2 at positions
(2, 0),(2− ϵ/2(m−1), 2− ϵ/2(m−1)),. . .,(2− ϵ(n−1)/2(m−1), 2− ϵ(n−1)/2(m−1)). Then
add vertex s at position (1, 0). See Figure 6. We have a graph G′ = (V ′ = V ∪{s}, E′ = E, ℓ)
where ℓ is the Euclidean distance function. I is transformed into an instance I ′ = (G′, s, k, 3)
of gaem on geometric graphs. For any point p in V1 and any point q in V2, we have
1− ϵ/2 ⩽ |sp| ⩽ 1 and 2− ϵ ⩽ |pq| ⩽ 2 . G has a dominating set of size k if and only if we
can add k shortcuts to G′ so that the eccentricity of s in the resulting graph is at most 3.
The shortest path from a vertex to s that goes through 1 shortcut and 2 edges in E has
length at least 5 − 5ϵ/2. Since 3 · ( 5

3 − ϵ) = 5 − 3ϵ < 5 − 5ϵ/2, a ( 5
3 − ϵ) approximation

algorithm for gaem on geometric graphs solves I ′ and thus any instance of the Dominating
Set decision problem. ◀

(2,0)(1,0)

y = x y = −x

(0,0)

Figure 6 A bipartite graph embedded in the plane.

D An O(n2 log n) time algorithm for GAEM on trees

We first devise an O(min{k2n, n2}) time algorithm that solves the decision problem of gaem
on trees. Then we search for an optimal solution by using the decision algorithm as a
subroutine.

D.1 The decision algorithm
Given a value D, the decision algorithm decides whether we can add k shortcuts all incident
to s to the inpdarkredut tree such that the eccentricity of s in the augmented graph is at
most D. We introduce some notations that will be used in the discussion.

Let dT (u, v) denote the distance between any two vertices u and v in T . Let ζ be a set
of k̄ (k̄ ⩽ k) shortcuts added to vertices in Tv, where Tv is the subtree of T rooted at v. If
from a vertex in Tv we can go along a path inside Tv and then through a shortcut in ζ to
reach s within distance D, we say this vertex is covered by ζ, for example the red vertex
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in Figure 7(a); otherwise we say it is uncovered by ζ. Let Uv(ζ) denote the set of vertices
uncovered by ζ in Tv. When Uv(ζ) is empty, we say Tv is covered by ζ; otherwise we say Tv

is uncovered by ζ. To reach s within D from an uncovered vertex in Uv(ζ), we have to go
along a path out of Tv and then through a shortcut2 added to a vertex in T \ Tv, if at all
possible. See the red vertex p in Figure 7(b) for an example. Let gv(ζ) = max

u∈Uv(ζ)
dT (u, v)

denote the maximum distance from a vertex in Uv(ζ) to v in T . Let dv(ζ) denote the length
of the shortest path from v to s that goes through a shortcut in ζ.

The decision algorithm is used to solve an optimization problem. The optimization
problem aims to find shortcuts that are optimal in incurring a “Yes” solution to the decision
problem. Generally, given any integer k̄ ⩽ k and any vertex v, the optimization problem is
to add k̄ shortcuts to vertices in Tv so that they are optimal in incurring a “Yes” solution
to the decision problem on T . Before we formally define the meaning of being optimal in
incurring a “Yes” solution, we first give a supporting lemma.

As discussed above, ζ is a set of k̄ shortcuts added to vertices in Tv.

T

v

s

lc(v)

v

rc(v)

s

p

x

o

(a) (b)

Figure 7 (a) k̄ shortcuts are added to Tv. (b) Some vertices in Tv are uncovered.

▶ Lemma 13. If Uv(ζ) is nonempty and ζ is part of a “Yes” solution to the decision problem
of gaem on T , then in the “Yes” solution
1) all vertices in Uv(ζ) go through the same shortcut added to a vertex in T \ Tv on their

shortest paths to s.
2) vertices in T \ Tv does not go through any shortcut in ζ on their shortest paths to s.

Proof. In the “Yes” solution, all vertices in Uv(ζ) must first go up to v, then follow the
v− s shortest path which cannot go through a shortcut in ζ. So property 1) is true. Uv(ζ) is
nonempty, thus

gv(ζ) + dv(ζ) > D. (1)

Let γ denote the shortcut that the shortest paths from vertices in Uv(ζ) to s go through. If
γ is incident to a vertex in Tv’s sibling Tw, for example the darkred vertex o in Figure 7(b),
we have

gv(ζ) + |uv|+ |uw|+ dw(ζ ′) ⩽ D, (2)

where ζ ′ is the set of shortcuts added to vertices in Tw. Equation 1 and 2 imply that
dv(ζ) > |uw|+ dw(ζ ′), which means for every vertex in T \ Tv, the shortest path through γ

to s is shorter than any shortest path through a shortcut in ζ. If γ is incident to a vertex in

2 For ease of discussion, we consider the edges that are incident to s in T as pre-added shortcuts.
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T \Tv \Tw, like the blue vertex in Figure 7(b), we can similarly show that for every vertex in
T \ Tv, a shortest path through γ to s is shorter than any shortest path through a shortcut
in ζ. Property 2) is proved. ◀

We now discuss the meaning of a ζ being optimal in incurring a “Yes” solution to the
decision problem on T . Consider two sets ζ1 and ζ2:
1. if both Uv(ζ1) and Uv(ζ2) are nonempty. Without loss of generality, assume gv(ζ1) <

gv(ζ2). Assume ζ2 is part of a “Yes” solution to the decision problem. Replace ζ2 by ζ1.
Lemma 13 implies that the resulting solution is still a “Yes” solution. The reverse is not
true. ζ1 place lower requirement on shortcuts added to vertices outside Tv. Thus ζ1 is
better in making a “Yes” solution to the decision problem than ζ2.

2. one of Uv(ζ1) and Uv(ζ2) is empty while the other is nonempty. Without loss of generality,
assume Uv(ζ1) is empty. Assume ζ2 is part of a “Yes” solution to the decision problem.
Replace ζ2 by ζ1. From Lemma 13(b), the resulting solution is still a “Yes” solution. ζ1
places no requirement on the shortcuts added to vertices in T \ Tv but ζ2 does. Thus ζ1
is better in making a “Yes” solution to the decision problem than ζ2 .

3. both Uv(ζ1) and Uv(ζ2) are empty. Assume dv(ζ1) < dv(ζ2). If ζ2 is part of a “Yes”
solution to the decision problem, replacing ζ2 by ζ1 will still give a “Yes” solution. But
for vertices in T \ Tv, ζ1 provides better shortcut than ζ2. Thus ζ1 is better in making a
“Yes” solution to the decision problem.

We can formally define the above better in making a ’Yes’ solution relation on ζs. Use ≺ to
denote this relation. Then

Uv empty, smaller dv ≺ Uv empty, greater dv

≺ Uv nonempty, smaller gv ≺ Uv nonempty, greater gv.

A ζ that has no other ζs preceding it in the ≺ relation is an optimal ζ.
The optimization problem is well-defined. By the optimal substructure of the optimization

problem, we can use dynamic programming to solve the problem. Let opt(v, k̄) denote an
optimal solution of the problem on Tv with k̄. When a solution uncovers Tv, we keep track
of gv. When a solution covers Tv, we keep track of dv. The recursive formula of opt(v, k̄) is:

opt(v, k̄) = min
≺

{combine(f, opt(lc(v), k′), opt(rc(v), k̄ − k′ − f))|0 ⩽ k′ ⩽ k̄ − f, f = 0/1},

where min≺ is the “minimum” in relation “≺” and f flags whether a shortcut is added to v.
When combining the optimal sub-solutions of the left child lc(v) and the right child rc(v),

v

lc(v) rc(v)

s

v

lc(v) rc(v)

s

Figure 8 (a) (s, v) is not added as a shortcut. (b) (s, v) is added as a shortcut.
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there are two cases: 1) v is not added a shortcut, 2) v is added a shortcut. For case 1), k′

shortcuts are added to vertices in Tlc(v) and k̄−k′ shortcuts are added to vertices in Trc(v). For
case 2), k′ shortcuts are added to vertices in Tlc(v) and k̄−1−k′ shortcuts are added to vertices
in Trc(v). See Figure 8 for an illustration. The combine procedures for case 1) and case 2)
are similar and we only discuss case 1) below. combine(0, opt(lc(v), k′), opt(rc(v), k̄ − k′))
works as follows:
Case 1: opt(lc(v), k′) covers Tlc(v) and opt(rc(v), k̄−k′) covers Trc(v).Check if min{|v, lc(v)|+

dlc(v), |v, rc(v)| + drc(v)} ⩽ D. If so, v and all other vertices in Tv are covered and
dv = min{|v, lc(v)|+ dlc(v), |v, rc(v)|+ drc(v)}; else Tv is uncovered and gv = 0.

Case 2: opt(lc(v), k′) covers Tlc(v) and opt(rc(v), k̄ − k′) uncovers Trc(v).We need to check
whether vertices in Trc(v) uncovered by opt(rc(v), k̄−k′) is covered by opt(lc(v), k′). Check
if grc(v) + |v, rc(v)|+ |v, lc(v)|+ dlc(v) ⩽ D. If so, Tv is covered and dv = |v, lc(v)|+ dlc(v);
else Tv is uncovered and gv = grc(v) + |v, rc(v)|.

Case 3: opt(lc(v), k′) uncovers Tlc(v) and opt(rc(v), k̄−k′) covers Trc(v).Symmetric to case 2.
Case 4: opt(lc(v), k′) uncovers Tlc(v) and opt(rc(v), k̄ − k′) uncovers Trc(v).Tv is uncovered

and dv = max{glc(v) + |v, lc(v)|, grc(v) + |v, rc(v)|}.
It is not hard to verify the correctness of the procedure. combine(1, opt(lc(v), k′),
opt(rc(v), k̄ − f − k′)) works similarly and is left to the interested reader. The combin-
ing procedure at the root is slightly different at the root, we omit the details here.

All that is left is analyzing the running time of the dynamic programming. Once
opt(lc(v), k′) and opt(rc(v), k̄ − f − k′) are known, the combine procedure takes constant
time. Thus we only need to count the number of times combine(0, . . .) and combine(1, . . .)
are called for computing every opt(v, k̄). k̄ ⩽ min{k, |Tv|} and k′ ⩽ min{k̄, |Tlc(v)}. Using

k̄ ⩽ k and k′ ⩽ k̄ as upper bounds, at a vertex v, combine(0, . . .) is called O(
k∑̄

k=1
k̄) = O(k2)

times. Similarly, combine(0, . . .) is called O(k2) times. So we spend O(k2) time at a vertex
v. This gives a total running time of O(k2n). We also use k̄ ⩽ |Tv| and k′ ⩽ |Tlc(v)| as upper
bounds. We assume that Tlc(v) = Tvs, otherwise we can just swap lc(v) and rc(v). Thus
for all vertices in T , combine(0, . . .) is called O(

∑
v∈T

|Tv| · |Tvs|) = O(n2) times, by Lemma 9.

Similarly, for all vertices, combine(1, . . .) is called O(n2) times. This gives a total running
time of O(n2). Thus the total running time is O(min{k2n, n2}).

▶ Theorem 14. The decision problem of gaem on trees can be solved in O(min{k2n, n2})
time.

D.2 The search algorithm
For any solution of k shortcuts all incident to s, there is a farthest vertex v to s in the
augmented graph. The shortest path from s to v goes from s to a vertex u (which may be v)
through a shortcut or an edge in T , then follows the shortest path from u to v in T . Both u

and v are vertices in T . So there are at most n2 possible values for the eccentricity of s in
any augmented graph.

▶ Lemma 15. There are at most n2 possible values for the eccentricity of s in any augmented
graph where all shortcuts are incident to s.

Since our input is a tree, we can compute all possible values in O(n2) time. Then we sort
the values and do a binary search over the sorted values, using the decision algorithm as a
subroutine. The minimum value for which the decision algorithm returns a “Yes” solution is
the minimum eccentricity incurred by an optimal solution. We can find an optimal solution
in O(min{k2n, n2} · log n + n2 log n) = O(n2 log n) time.
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▶ Theorem 16. gaem on trees can be solved in O(n2 log n) time.

E Proofs of Lemma 8 and Corollary 9

▶ Lemma 8
∑

v∈T

|Tlc(v)| · |Trc(v)| ⩽ n2.

Proof. We use induction on the number of tree nodes to prove the bound. When n = 1, the
tree contains only one node and the bound holds trivially.

Assume
∑

v∈T

|Tlc(v)| · |Trc(v)| ⩽ n2 holds for all n < k. Then for trees of size n = k,∑
v∈T

|Tlc(v)| · |Trc(v)| =
∑

v∈Tlc(s)

|Tlc(v)| · |Trc(v)| +
∑

v∈Trc(s)

|Tlc(v)| · |Trc(v)| + |Tlc(s)| · |Trc(s)|,

where s is the root of T . By the induction hypothesis,
∑

v∈Tlc(s)

|Tlc(v)| · |Trc(v)| ⩽ |Tlc(s)|2,∑
v∈Trc(s)

|Tlc(v)| · |Trc(v)| ⩽ |Trc(s)|2. Thus
∑

v∈T

|Tlc(v)| · |Trc(v)| ⩽ |Tlc(s)|2 + |Trc(s)|2 + |Tlc(s)| ·

|Trc(s)| ⩽ (|Tlc(s)|+ |Trc(s)|)2 < n2. ◀

▶ Corollary 9
∑

v∈T

|Tv| ·min{|Tlc(v)|, |Trc(v)|} ⩽ 2n2 + n log n.

Proof. Let Tvs be the subtree rooted at a child of v such that |Tvs| = min{|Tlc(v)|, |Trc(v)|}.
We know that

∑
v∈T

|Tv| · |Tvs| =
∑

v∈T

(|Tlc(v)|+ |Trc(v)|+1) · |Tvs|, and by Lemma 8,
∑

v∈T

(|Tlc(v)|+

|Trc(v)|) · |Tvs| ⩽ 2n2. For
∑

v∈T

|Tvs|, we can see that a node in T is counted at most log n

times since for any Tv, only nodes in the subtree rooted at a child of v with fewer nodes are
counted. Thus

∑
v∈T

|Tvs| ⩽ n log n and the corollary follows. ◀

F How to compute feasible values and Wis

We first formally define what is a feasible t↑
i value. The definition of a feasible t↓

i value
is similar. Let t↑

i = (d↑
i,1, . . . , d↑

i,|Xi|). For any two components d↑
i,k and d↑

i,l, the length of
the shortest path from vi,k to s that goes through shortcut (v↑

i,l, s) has to be at least d↑
i,k,

otherwise d↑
i,k would have a smaller value. Conversely, the length of the shortest path from

vi,l to s that goes through shortcut (v↑
i,k, s) has to be at least d↑

i,l. The definition follows.

▶ Definition 17. Let t↑
i = (d↑

i,1, . . . , d↑
i,|Xi|). t↑

i is feasible if and only if for any 1 ⩽ k < l ⩽

|Xi|, dG(vi,k, v↑
i,l) + |v↑

i,l, s| ⩾ d↑
i,k and dG(vi,l, v↑

i,k) + |v↑
i,k, s| ⩾ d↑

i,l.

To save space, we store feasible values of t↑
i (and t↓

i ) in a multilist. As a preprocessing step,
we compute distances between any pair of vertices in G by using an all-pairs shortest paths
algorithm. The distance between any pair of vertices in G can then be obtained in constant
time. Let L↑

i denote the multilevel list for t↑
i . Levels of L↑

i are contain ordered values of
d↑

i,1, . . . , d↑
i,|Xi|, respectively. We store the sorted values of {dG(vi,j , u)+|us||u ∈ V \(XTi

\Xi)}
for each vi,j ∈ Xi in a list l↑

j , separately. We build L↑
i from {l↑

j}.
Besides d↑

i,j value, each node of the first level of L↑
i stores a (|Xi| − 1)-level list. Each

node of a second level of L↑
i stores a (|Xi| − 2)-level list, and so on. Generally, a node in a

kth (1 ⩽ k ⩽ |Xi|) level list stores a (|Xi| − k)-level list. A kth level list is built recursively
as follows. Assume d↑

i,1, . . . , d↑
i,k−1 are the distance values contained in nodes of previous

levels. We build this kth level list by l↑
k, . . . , l↑

|Xi|. For each d↑
i,k value in l↑

k, we check whether
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the condition in Definition 17 is satisfied between d↑
i,k and each of d↑

i,1, . . . , d↑
i,k−1. If so, we

create a node with the current d↑
i,k value, and build its (|Xi| − k)-level list recursively by

l↑
k+1, . . . , l↑

|Xi|. In this way, we can build L↑
i in O(bnb) time. An example L↑

i is shown in
Figure 9(a). The d↑

i,2 value stored at a red node in a vertical (second level) list is realized by
the same vertex as the d↑

i,1 value stored at its first level list node. Feasible values of t↓
i are

constructed in the same way. To access values of Ri fast, we can encode feasible t↑
i and t↓

i

values as indices into a multidimensional array. We can then access Ri values in O(b) time.

▶ Lemma 18. For any node i of (X, T ), the feasible values of t↑
i (t↓

i ) can be computed in
O(bnb) time. Ri values can be accessed in O(b) time.

We now discuss how to compute a Wi. The feasible t↓
i values for a Wi are just the feasible

t↓
i values for Ri. However, to deal with the components in t↓

i2, we build the multilist for
t↓
i by using components in t↓

i1 for the first |t↓
i1| levels and using components in t↓

i2 for the
remaining |t↓

i2| levels. After building the multilist for t↓
i in this order, we computes values

of Wi in |t↓
i2| rounds. Assume t↓

i2 = (d↓
i,j1

, . . . , d↓
i,js

). The first round computes values such
that d↓

i,j1
, . . . , d↓

i,js−1
are fixed while d↓

i,js
is greater than or equal to the specified value. The

second round computes values such that d↓
i,j1

, . . . , d↓
i,js−2

are fixed while d↓
i,js−1

, d↓
i,js

are
greater than or equal to the specified values. And so on. By adding links between nodes
in the multilist, each round build its result on the previous round. An example is shown in
Figure 9(b). In the example, t↓

i2 = t↓
i and |Xi| = 2. The links added for the 2nd round are

drawn in blue.

▶ Lemma 19. For a given t↑
i , Wi values for all feasible t↓

i and k̄ can be computed in O(kb2nb)
time. All values of a Wi can be computed in O(kb2n2b) time.

Figure 9 (a) L↓
i where |Xi| = 2. (b) Blue links between nodes in L↓

i . The value stored in the
pointed to node is greater than or equal to the value stored in the pointed from node.
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Abstract
In this paper, we present a linear-time approximation scheme for k-means clustering of incomplete
data points in d-dimensional Euclidean space. An incomplete data point with ∆ > 0 unspecified
entries is represented as an axis-parallel affine subspace of dimension ∆. The distance between
two incomplete data points is defined as the Euclidean distance between two closest points in the
axis-parallel affine subspaces corresponding to the data points. We present an algorithm for k-means
clustering of axis-parallel affine subspaces of dimension ∆ that yields an (1 + ϵ)-approximate solution
in O(nd) time. The constants hidden behind O(·) depend only on ∆, ϵ and k. This improves the
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1 Introduction

Clustering is a fundamental research topic in computer science, which arises in various
applications [13], including pattern recognition and classification, data mining, image analysis,
and machine learning. In clustering, the objective is to group a set of data points into clusters
so that the points from the same cluster are similar to each other. Usually, input points
lie in a high-dimensional space, and the similarity between two points is defined as their
distance. Two of the popular clusterings are k-median and k-means clusterings. In the
k-means clustering problem, we wish to partition a given point set into k clusters to minimize
the sum of squared distances of each point to its cluster center. Similarly, in the k-median
clustering problem, we wish to partition a given point set into k clusters to minimize the
sum of distances of each point to its cluster center.

In this paper, we consider clustering for incomplete data points. The analysis of incomplete
data is a long-standing challenge in practical statistics. There are lots of scenarios where
entries of points of a given data set are incomplete [2]. For instance, a few questions are left
blank on a questionnaire; weather records for a region omit the figures for one weather station
for a short period because of a malfunction; stock exchange data is absent for one stock on
one day because of a trading suspension. Various heuristic, greedy, convex optimization,
statistical, or even ad hoc methods were proposed throughout the years in different practical
domains to handle missing data [2].

Gao et al. [10] introduced a geometric approach to deal with incomplete data points for
clustering problems. An incomplete point has one or more unspecified entries, which can be
represented as an axis-parallel affine subspace. The distance between two incomplete data
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46:2 Linear-Time Approximation Scheme for k-Means Clustering of Affine Subspaces

points is defined as the Euclidean distance between two closest points in the axis-parallel
affine subspaces corresponding to the data points. Since the distance between an axis-parallel
affine subspace and a point is well-defined, the classical clustering problems such as k-means,
k-median, and k-center can be defined on a set of axis-parallel affine subspaces.

The k-center problem in this setting was studied by [10, 11, 15]. Gao et al. [10, 11]
focused on the k-center clustering for k ≤ 3, and presented an approximation algorithm
for the k-center clustering of axis-parallel affine subspaces. Later, Lee and Schulman [15]
improved the running time of the algorithm by Gao et al., and then presented an O(nd)-time
approximation algorithm for the k-center clustering problem for a larger k. The constant
hidden behind O(·) depends on ∆, ϵ and k. Moreover, they showed that the running time of
an approximation algorithm with any approximation ratio cannot be polynomial in even one
of k and ∆ unless P = NP, and thus the running time of their algorithm is almost tight.

Very recently, Eiben et al. [7] presented an approximation algorithm for the k-means
clustering of n axis-parallel affine subspaces of dimension ∆. Their algorithm yields an
(1 + ϵ)-approximate solution in O(n2d) time with probability O(1). The constant hidden
behind O(·) depends on ∆, ϵ and k. Since the best-known algorithm for the k-center clustering
in this setting runs in time linear in both n and d (but exponential in both k and ∆), it is a
natural question if a similar time bound can be achieved for the k-means clustering. In this
paper, we resolve this natural question by presenting an (1 + ϵ)-approximation algorithm for
the k-means clustering problem running in time linear in n and d.

Related work. The k-median and k-means clustering problems for points in d-dimensional
Euclidean space have been studied extensively. Since these problems are NP-hard even
for k = 2 or d = 2 [3, 16, 18], the study of k-means and k-median clusterings have been
devoted to obtain (1 + ϵ)-approximation algorithms for these problems [1, 5, 8, 12, 14]. These
algorithms run in time polynomial time in the input size if one of k and d is constant. Indeed,
it is NP-hard to approximate Euclidean k-means clustering within a factor better than a
certain constant larger than one [4]. That is, the k-means clustering problem does not admit
a PTAS for arbitrary k and d unless P=NP.

Also, the clustering problems for lines (which are not necessarily axis-parallel) also
have been studied [17, 19]. More specifically, Ommer and Malik [19] presented a heur-
istic for k-median clustering of lines in three-dimensional space. Later, Marom and Feld-
man [17] presented an algorithm for computing a coreset of size dkO(k) log n/ϵ2, which gives
a polynomial-time (1 + ϵ)-approximation algorithm for the k-means clustering of lines in
d-dimensional Euclidean space.

Our results. We present an algorithm for k-means clustering of axis-parallel affine subspaces
of dimension ∆ that yields an (1 + ϵ)-approximate solution in 2O( ∆4k

ϵ (log ∆
ϵ +k))dn time with

a constant probability. This improves the previously best-known algorithm by Eiben et
al [7], which takes 2O( ∆7k3

ϵ (log k∆
ϵ ))dn2 time. Since it is a generalization of the k-means

clustering problem for points (∆ = 0), it does not admit a PTAS for arbitrary k and d unless
P=NP. Similarly to Lee and Schulman [15], we show in the full version of this paper that an
approximation algorithm with any approximation ratio cannot run in polynomial time in
even one of k and ∆ unless P=NP. The running time of our algorithm is almost tight in the
sense that it is linear in nd and exponential in k and ∆.

▶ Theorem 1 ([4, 15]). No algorithm for computing an (1+α)-approximate k-means clustering
runs in time polynomial of n, d and ∆ (or polynomial of n, d and k) unless P=NP.
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This lower bound does not rule out the possibility that this problem can be solved in
O(nd + f(k, ∆)) time for an exponential function f of k and ∆. However, it seems hard
to achieve this goal using the framework of Kumar et al. [14] and Ackermann et al. [1] as
their algorithms (for the standard clustering problem) also run in O(nd · f(k)) time for an
exponential function f of k.

▶ Remark 2. Although it seems hard to achieve a significantly better running time using
the framework of Ackermann et al., there is a merit of using this framework: we can handle
outliers without additional effort as shown in [9]. Details will be discussed in Conclusion.

2 Preliminaries

We consider points in Rd with missing entries in some coordinates. Let us denote the missing
entry value by ⊗, and let Hd denote the set of elements of Rd where we allow some coordinates
to take the value ⊗. Furthermore, we call a point in Hd a ∆-missing point if at most ∆ of its
coordinates have value ⊗. We use [k] to denote the set {1, . . . , k} for any integer k ≥ 1. For
any point u ∈ Hd and an index i ∈ [d], we use (u)i to denote the entry of the i-th coordinate
of u. If it is clear from the context, we simply use ui to denote (u)i. Throughout this paper,
we use i or j to denote an index of the coordinates of a point, and t to denote an index of a
sequence (of points or sets). We use (ut)t∈[k] to denote a k-tuple consisting of u1, u2, . . . , uk.

Distance between two ∆-missing points. The domain of a point u in Hd, denoted by
dom(u), is defined as the set of coordinate-indices i ∈ [d] with (u)i ̸= ⊗. For a set I of
coordinate-indices in [d], we say that u is fully defined on I if dom(u) ⊆ I. Similarly, we say
that u is partially defined on I if dom(u) ∩ I ̸= ∅. For a set P of points of Hd and a set I of
coordinate-indices in [d], we use FD(P, I) to denote the set of points of P fully defined on
I. Similarly, we use PD(P, I) to denote the set of points of P partially defined on I. The
null point is a point p ∈ Hd such that (p)i = ⊗ for all indices i ∈ [d]. With a slight abuse of
notation, we denote the null point by ⊗ if it is clear from the context. Also, we sometimes
use It to denote dom(ut) if it is clear from the context.

Notice that a ∆-missing point in Hd can be considered as a ∆-dimensional affine subspace
in Rd. The distance between two ∆-missing points in Hd is defined as the Euclidean distance
between their corresponding ∆-dimensional affine subspaces in Rd. More generally, we define
the distance between two points x and y in Hd on a set I ⊆ [d] as

dI(x, y) =
√∑

i∈I

|xi − yi|2,

where |a− b| = 0 for a = ⊗ or b = ⊗ by convention.

The k-Means clustering of ∆-missing points. In this paper, we consider the k-means
clustering of ∆-missing points of Hd. As in the standard setting (for ∆ = 0), we wish to
partition a given point set P into k clusters to minimize the sum of squared distances of each
point to its cluster center. For any partition (Pt)t∈[k] of P into k clusters such that each
cluster Pt is associated with a cluster center ct ∈ Rd, the cost of the partition is defined as
the sum of squared distances of each point in P to its cluster center.

To be more precise, we define the clustering cost as follows. For a set P ⊂ Hd and a
∆-missing point y, we use cost(P, y) to denote the sum of squared distances of each point
in P to y. We also define the cost on a coordinate set I ⊆ [d], denoted by costI(P, y), as
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the sum of squared distances on I between the points in P and their cluster centers. That is,∑
x∈P dI(x, y)2. For convention, costi(P, y) = cost{i}(P, y) for i ∈ [d]. The clustering cost

cost((Pt)t∈[k], (ct)t∈[k]) of clustering ((Pt)t∈[k], (ct)t∈[k]) is defined as
∑

t∈[k] cost(Pt, ct).

Now we introduce two properties of an optimal clustering ((P ∗
t )t∈[k], (c∗

t )t∈[k]) that
minimizes the clustering cost, which will be frequently used throughout this paper. For each
cluster P ∗

t , cost(P ∗
t , ct) is minimized when ct is the centroid of P ∗

t [7]. That is, c∗
t is the

centroid of P ∗
t . For a set P of points in Hd, the centroid of P , denoted by c(P ), is defined as

(c(P ))i =
{
⊗ if PD(P, i) = ∅,∑

u∈PD(P,i)
ui

|PD(P,i)| otherwise.

Also, the clustering cost is minimized when (P ∗
t )t∈[k] forms the Voronoi partition of P

induced by (c∗
t )t∈[k] [7]. That is, (P ∗

t )t∈[k] is the partition of P into k clusters in such a way
that c∗

t is the closest cluster point from any point p in P ∗
t .

Sampling. Our algorithm uses random sampling to compute an approximate k-means
clustering. Lemma 3 is a restatement of [1, Lemma 2.1], and Lemma 4 is used in [7] implicitly.
Since Lemma 4 is not explicitly stated in [7], we give a sketch of the proof in the full version
of this paper [6].

▶ Lemma 3 ([1, Lemma 2.1]). Assume that we are given a set P of points in Hd, an index
i ∈ [d], and an approximation factor α > 0. Let Q be a subset of P with |PD(Q, i)| ≥ c|P |
for some constant c, which is not given explicitly. Then we can compute a point x of R in
O(|P |dmα,δ) time satisfying with probability 1−δ

5 2Ω(−mα,δ log( 1
c mα,δ)) that

costi(Q, x) ≤ (1 + α)costi(Q, c(Q)),

where mα,δ ∈ O(1/(αδ)).

▶ Lemma 4 ([7]). Assume that we are given a set P of ∆-missing points in Hd and an
approximation factor α > 0. Let Q be a subset of P with |Q| ≥ c|P | for some constant c with
0 < c < 1, which is not given explicitly. Then we can compute a ∆-missing point u ∈ Hd in
O(|P |dλ) time satisfying with probability c8(∆+1)λ+1

4(4∆)8∆λ that

costI(Q, u) < (1 + α)costI(Q, c(Q)),

where I denotes the domain of u, and λ = max{( 3
α )1/(2∆), (128∆3)1/(2∆)}.

3 Overview of the Algorithm

We first briefly describe a (1 + ϵ)-approximation algorithm for k-means clustering for points
in d-dimensional Euclidean space given by Kumar et al. [14]. Let P be a set of n points in
Rd, and ((P ∗

t )t∈[k], (c∗
t )t∈[k]) be an optimal k-means clustering for P .

Sketches of [1] and [14]. The algorithm of Kumar et al. [14] consists of several phases of
two types: sampling phases and pruning phases. Their idealized strategy is as follows. At
the beginning of a phase, it decides the type of the phase by computing the index t that
maximizes |P ∗

t |. If the cluster center of P ∗
t has not been obtained, the algorithm enters

the sampling phase. This algorithm picks a random sample of a constant size from P , and
hopefully this sample would contain enough random samples from P ∗

t . Then one can compute
a good approximation ct to c∗

t using Lemma 3.
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If it is not the case, the algorithm enters a pruning phase, and it assigns each point to its
closest cluster if their distance is at most L, where L denotes the smallest distance between
two cluster centers we have obtained so far. They repeat this until all cluster centers are
obtained, and finally obtain a good approximation to (P ∗

t )t∈[k].
However, obviously, it is hard to implement this idealized strategy. To handle this, they

try all possibilities (for both pruning and sampling phases and for all indices t ∈ [k] to be
updated for sampling phases), and return the best solution found this way. Kumar et al. [14]
showed that their algorithm runs in O(2(k/ϵ)O(1)

dn) time, and returns an (1 + ϵ)-approximate
k-means clustering with probability 1/2. Later, Ackermann et al. [1] gave a tighter bound on
the running time of this algorithm.

Sketch of Eiben et al. [7]. To handle ∆-missing points, Eiben et al. generalized the
algorithm in [14]. Their idealized strategy can be summarized as follows. It maintains k

centers (ut)t∈[k], which are initially set to the null points. In each sampling phase, it obtains
one (or at least [d]−∆) coordinate of one of the centers.

At the beginning of a phase, it decides the type of the phase by computing the index t that
maximizes |PD(P ∗

t , [d]− It)|. A sampling phase happens if |PD(P ∗
t , [d]− It)| > c|R|, where R

denotes the number of points which are not yet assigned to any cluster. In this case, a random
sample of constant size from R would contain enough random samples from |PD(P ∗

t , j)| with
j ∈ [d]− It. Thus, using the random sample, one can obtain a good approximation to (c∗

t )j .
Otherwise, a pruning phase happens. In a pruning phase, the algorithm assigns points

which are not yet assigned to any cluster to clusters. Here, a main difficulty is that even
though the distance between a point p in R and its closest center ut is at most L, where L

denotes the distance between two cluster centers, p is not necessarily in P ∗
t . They resolved

this in a clever way by ignoring ∆ coordinates for comparing the distances from two cluster
centers.

Comparison of our contribution and Eiben et al. [7]. Our contribution is two-fold: the
dependency on n decreases to O(n) from O(n2), and the dependency of ∆ and k decreases
significantly. First, the improvement on the dependency of n comes from introducing a
faster and simpler procedure for a pruning phase. In the previous algorithm, it cannot
be guaranteed that a constant fraction of points of R is removed from R. This yields the
quadratic dependency of n in their running time. We overcome the difficulty they (and we)
face in a pruning phase in a different way. For each subset T of [k], we consider the set ST

of points x ∈ R such that dom(x) ⊂ It for every t ∈ T and dom(x) ̸⊂ It′ for every t′ /∈ T .
Then ST ’s for all subsets T ⊂ [k] form a partition of R. In a pruning phase, we choose the
set ST that maximizes |ST |. We show that the size of ST is at least a constant fraction of
|R| (unless we enter the sampling phase). Moreover, in this case, if the distance between a
point p in ST and its closest center ut is at most L, where L denotes the distance between
two cluster centers, it holds that p ∈ P ∗

t .
Second, we improved the dependency of ∆ and k using the framework of Ackermann et

al. [1]. To adapt this framework for our problem, we are required to handle several technical
difficulties. This is mainly because the center of each cluster changes during the execution of
the algorithm in our case unlike the standard setting considered in [1].

Due to the lack of space, some proofs are omitted. All missing proofs can be found in the
full version of this paper.
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Algorithm 1 Idealized k-Means.
input : A set P of ∆-missing points in the plane
output : A (1 + ϵ)-approximate k-means clustering for P

1 R← P and Pt ← ∅ for all cluster-indices t ∈ [k]
2 Initialize U = ⟨u1, . . . , uk⟩ so that (ut)i = ⊗ for all cluster-indices t ∈ [k] and i ∈ [d]
3 while R ̸= ∅ do
4 Let t be the cluster-index that maximizes |PD(R ∩ P ∗

t , [d]− It)|
5 if |PD(R ∩ P ∗

t , [d]− It)| ≥ c|R| then
/* sampling phase */

6 if It = ∅ then
/* We respresent this sampling phase as (t, dom(ut)) */

7 ut ← The ∆-missing point obtained from Lemma 4
8 else

/* We respresent this sampling phase as (t, {j}) */
9 Let j be the coordinate-index in [d]− It that maximizes PD(R ∩ P ∗

t , j)
10 (ut)j ← The value obtained from Lemma 3
11 Assign the points in FD(R,∩t∈[k]It) to their closest cluster centers in U
12 R← R− FD(R,∩t∈[k]It)
13 else

/* pruning phase */
/* UT is the set of all ut for t ∈ T */

14 T ← The set of cluster-indices that maximizes |ST |
15 B ← The first half of ST sorted in ascending order of distance from UT

16 Assign the points in B to their closest cluster centers in UT

17 R← R−B

18 return U

4 For k-Means Clustering

In this section, we describe and analyze for a k-means clustering algorithm. Let U =
⟨u1, u2, . . . , uk⟩ be a sequence of points in Hd.

4.1 Algorithm Using the Counting Oracle
We first sketch an algorithm for k-clustering assuming that we can access the counting oracle.
Let ⟨P ∗

1 , · · · , P ∗
k ⟩ be an optimal k-clustering for P induced by the centroids ⟨c∗

1, · · · , c∗
k⟩. The

counting oracle takes a subset of P and a cluster-index t ∈ [k], and it returns the number
of points in the subset which are contained in P ∗

t . Then in Section 4.3, we show how to
compute an approximate clustering without the counting oracle.

The algorithm consists of several phases of two types: a sampling phase or a pruning
phase. We initialize U to a k-tuple of null points. In a sampling phase, we obtain values of
(ut)j for indices t ∈ [k] and j ∈ [d] which were set to ⊗. Also, we assign points of P to one of
the k clusters in sampling and pruning phases. The pseudocode of the algorithm is described
in Algorithm 1. At any moment during the execution of the algorithm, we maintain a set R

of remaining points and a k-tuple U = ⟨u1, . . . , uk⟩ of (partial) centers in Hd. We let It be
dom(ut). Initially, R is set to P , and U is set to the k-tuple of null points. The algorithm
terminates if R = ∅, and finally U becomes a set of points in Rd.
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We consider the partition F of R defined as follows. For a subset T of [k], let ST denote
the set of points x ∈ R such that dom(x) ⊂ It for every t ∈ T and dom(x) ̸⊂ It′ for every
t′ /∈ T . Let F = {ST | T is a proper subset of [k]}. The following lemma shows that F is a
partition of R.

▶ Lemma 5. For any point x ∈ R, there exists a unique set in F containing x.

At the beginning of each phase, we decide the type of the current phase. Let t be the
cluster-index of [k] that maximizes |PD(R ∩ P ∗

t , [d] − It)|, where R is the set of points of
P which are not assinged to any cluster. The one of the following cases always happen:
|PD(R ∩ P ∗

t , [d] − It)| ≥ c|R|, or there exists a set T of cluster-indices in [k] such that
|ST ∩ (∪t∈T P ∗

t )| ≥ c|R| for any constant c < 1/(2k + k), which will be specified later.1

▶ Lemma 6. One of the following always holds for any constant c < 1/(2k + k).
|PD(R ∩ P ∗

t , [d]− It)| ≥ c|R| for a cluster-index t ∈ [k], or
|ST ∩ (∪t∈T P ∗

t )| ≥ c|R| for a proper subset T of [k].

Sampling phase. If the first case happens, we enter a sampling phase. Let α be a constant,
which will be specified later. We use it as an approximation factor used in Lemmas 3 and 4
for sampling. If It is empty, we replace ut with a ∆-missing point in Hd obtained from
Lemma 4. If It is not empty, then it is guaranteed that |It| is at least d−∆. We compute
the coordinate-index j in [d]− It that maximizes |PD(R ∩ P ∗

t , j)| using the counting oracle.
Clearly, (ut)j = ⊗ and |PD(R∩P ∗

t , j)| is at least c|R|/∆. Then we replace (ut)j with a value
obtained from Lemma 3. At the end of the phase, we check if FD(R,∩t∈[k]It) is not empty.
If it is not empty, we assign those points to their closest cluster centers.

Pruning phase. Otherwise, we enter a pruning phase. Instead of obtaining a new coordinate
value of ut, we assign points of R to cluster centers in a pruning phase. To do this, we find a
proper subset T of [k] which maximizes |ST |. Then among the points of ST , we choose the
|ST |/2 points closest to their closest centers in UT , where UT is the set of all ut for t ∈ T .
Then we assign each of them to its closest center in UT . In this way, points in ∪t′ /∈T P ∗

t′ might
be assigned (incorrectly) to ut for a cluster-index t ∈ T . We call such a point a stray point.

4.2 Analysis of the Approximation Factor
In this section, we analyze the approximation factor of the algorithm. We let S be the
sequence of sampling phases happened during the execution of the algorithm. At the end
of the algorithm, U becomes a (1 + ϵ)-approximate clustering as we will see later. In the
following, we use C = ⟨c1, . . . , ck⟩ to denote the output of the algorithm. For a sequence T

of cluster-indices, we use CT to denote a |T |-tuple consisting of ct for t ∈ T . Let optk(P )
denote the clustering cost of an optimal k-means clustering of P .

▶ Lemma 7. The size of S is at most k(∆ + 1).

Preliminaries. Recall that S denotes the sequence of sampling phases. Here, we represent
a sampling phase as the pair (t, I), where t is the cluster-index considered in the sampling
phase, and I is the set of indices i such that (ut)i is obtained during the sampling phase.

1 We set α = ϵ/3, and c = α
8·2kk2(∆+1) .
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Note that the size of I is either one or at least d − ∆ for any sampling phase. Also, for
s = (t, I) ∈ S, we let ts = t and Is = I. For each sampling phase s = (t, I), let Rs be the set
of points of P ∗

t which are not assigned at the beginning of the phase. Furthermore, let Is
t′

denote dom(ut′) we have at the end of the sampling phase s for a cluster-index t′ ∈ [k]. For
two sampling phases s and s′ in S, we use s ⪯ s′ if s comes before s′ in S or equals to s′.
We denote P ∗

T = ∪t∈T P ∗
t and P ∗

T̄
= ∪t′ /∈T P ∗

t′ .

Sketch. A point of P is assigned to one of the clusters during a sampling phase or a pruning
phase. That is, at the end of the execution of the algorithm, P is partitioned into k clusters
P1, . . . , Pk. Note that it is not necessarily a Voronoi partition of P with respect to C. Our goal
in this section is that the clustering cost cost((Pt)t∈[k], (ct)t∈[k]) is at most (1 + ϵ)optk(P ).
We first show that the clustering cost induced by non-stray points is (1 + α)optk(P ), and
then show that the clustering cost induced by stray points is αoptk(P ).

For this, we use the two following technical lemmas. Lemma 8 is a consequence of
Lemmas 3 and 4, and Claim 9 follows from construction. Proofs can be found in the
Appendix of the full version [6].

▶ Lemma 8.
∑

s∈S costIs(Rs, cts) ≤ (1 + α)optk(P ) with a probability at least pkqk∆,
where q and p are the probabilities in Lemmas 3 and 4.

▷ Claim 9. For a sampling phase s′ in S and a proper subset T of [k], let X be a point
subset of ST which are not assigned at the end of a sampling phase s′. Then

cost(X ∩ P ∗
T , CT ) ≤

∑
costIs(PD(X ∩ P ∗

ts , Is), cts),

where the summation is taken over all sampling phases s in S with s ⪯ s′ and ts ∈ T .

4.2.1 Clustering Cost Induced by Non-Stray Points

We first show that the clustering cost induced by non-stray points is at most (1 + α)optk(P ).
There are two types of non-stray points: the points assigned during the sampling phases,
and the points assigned during the pruning phases which are not stray. The first term in the
following lemma is the clustering cost induced by points of the first type, and the second
term is the clustering cost induced by points of the second type. For a proper subset T of
[k], let As

T be the set of points in ST assigned to U during the consecutive pruning phases
lying between two adjacent sampling phases s and s′ with s ⪯ s′.

▶ Lemma 10. Let S be the set of points assigned during the sampling phases.

cost(S, C) +
∑
s∈S

∑
T⊊[k]

cost(As
T ∩ P ∗

T , CT ) ≤ (1 + α)optk(P ),

with a probability at least pkqk∆, where q and p are the probabilities in Lemmas 3 and 4.

Proof. A point p ∈ S is assigned to its closest center in C. This is because we assign a point
during a sampling phase only if it is fully defined on dom(ut) for all cluster-indices t ∈ [k].
Thus the following holds.

cost(S, C) ≤
∑
t∈[k]

cost(S ∩ P ∗
t , ct) =

∑
s∈S

costIs(PD(S ∩Rs, I), cts).
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For the second term of this claim, we have the following:∑
s′∈S

∑
T⊊[k]

cost(As′

T ∩ P ∗
T , CT ) ≤

∑
s′∈S

∑
T⊊[k]

∑
s⪯s′

ts∈T

costIs(PD(As′

T ∩ P ∗
ts , Is), cts)

=
∑
s∈S

∑
s⪯s′

∑
ts∈T⊊[k]

costIs(PD(As′

T ∩ P ∗
ts , Is), cts)

≤
∑
s∈S

∑
s⪯s′

∑
ts∈T⊊[k]

costIs(PD(As′

T ∩Rs, Is), cts)

≤
∑
s∈S

costIs(PD(A ∩Rs, Is), cts),

where A denotes the set of points of P assigned during all pruning phases. The first inequality
holds by Claim 9. The second and the last inequalities hold since they change only the
ordering of summation. The third inequality holds since As′

T ∩ P ∗
ts ⊂ Rs if s ⪯ s′.

By combining previous properties together with Claim 9, we have:

cost(S, C) +
∑
s∈S

∑
T⊊[k]

cost(As
T ∩ P ∗

T , CT ) ≤
∑
s∈S

costIs(PD(S ∩Rs, Is), cts)

+
∑
s∈S

costIs(PD(A ∩Rs, Is), cts)

≤
∑
s∈S

costIs(Rs, cts)

≤ (1 + α)optk(P ). ◀

4.2.2 Clustering Cost Induced by Stray Points
Now we show that the clustering cost induced by stray points is αoptk(P ). Recall that the
stray points are assigned to clusters during pruning phases. We first analyze the clustering
cost by considering consecutive pruning phases lying between two adjacent sampling phases
of S. Then we show that the overall clustering cost induced by stray points.

4.2.2.1 During consecutive pruning phases

Consider a sequence P of the consecutive pruning phases lying between two adjacent sampling
phases s and s′ in S with s ⪯ s′. Let N denote the number of pruning phases in P. For a
proper subset T of [k], recall that As

T denotes the set of points in ST assigned to U during
the phases in P. During this period, ut remains the same for each cluster-index t ∈ [k]. By
definition, As

T ∩ P ∗
T̄

is the set of stray points assigned during the pruning phases in P. For
each pruning phase of P, we choose a subset T of [k] and assign a half of ST to U . Here,
note that distinct pruning phases of P might choose distinct subsets T . Therefore, there
might be more than one subsets T of [k] with As

T ̸= ∅.
We first analyze the clustering cost induced by stray points assigned during the pruning

phases in P . Recall that Rs denotes the set of points of P which are not yet assigned to any
cluster at the end of the sampling phase s. Let Ss

T denotes the set of points of x ∈ Rs such
that dom(x) ⊂ It for every t ∈ T and dom(x) ̸⊂ It′ for every t′ /∈ T .

▶ Lemma 11.
∑

T⊊[k] cost(As
T ∩ P ∗

T̄
, CT ) ≤ 8 · 2kck ·

∑
T⊊[k] cost(Ss

T ∩ P ∗
T , CT ).
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Proof (Sketch). Since Ss
T ’s form a partition of Rs, it suffices to fix a proper subset T of [k]

and show that cost(As
T ∩ P ∗

T̄
, CT ) ≤ 8 · 2kck · cost(Ss

T ∩ P ∗
T , CT ). We partition As

T into N

subsets so that A
(x)
T is the set of points of ST assigned to U at the xth pruning phase of P.

By construction, in the xth pruning phase, there exists a unique index-set T with A
(x)
T ̸= ∅.

Let XT be the increasing sequence of indices x of [N ] with A
(x)
T ̸= ∅.

For any consecutive indices x and x′ in XT with x′ < x and any proper subset T of [k], we
show that the clustering cost induced by stray points assigned during the x′th pruning phase
of P is at most 8 · 2kck times the clustering cost induced by non-stray points assigned during
the xth pruning phase of P. Also, we analyze the clustering cost induced by stray points
assigned during the last phase of P similarly. The clustering cost induced by all non-stray
points assigned during the pruning phases of P is at most

∑
T⊊[k] cost(Ss

T ∩ P ∗
T , CT ), and

thus the lemma holds. Details can be found in the full version of this paper. ◀

4.2.2.2 During the entire pruning phases

Recall that S denotes the sequence of sampling phases, and each sampling phase is represented
as (t, I), where t is the cluster-index considered in the sampling phase, and I is the set of
indices i such that (ut)i is obtained during the sampling phase.

The following lemma gives an upper bound of the total cost induced by the stray points.

▶ Lemma 12.
∑
s∈S

∑
T⊊[k]

cost(As
T ∩ P ∗

T̄
, CT ) ≤ 8 · 2kck2(∆ + 1)(1 + α)optk(P ),

with a probability at least pkqk∆, where q and p are the probabilities in Lemmas 3 and 4.

Proof. The lemma holds by the following inequalities. The first and second inequalities hold
by Claims 11 and 9, respectively. The third one holds since it changes only the ordering of
summation. The fourth one holds since for a fixed sampling phase s′ in S, Ss′

T are disjoint
for all proper subsets T of [k]. Also notice that, for two sampling phases s, s′ in S and a
proper subset T of [k], Rs contains Ss′

T ∩ P ∗
ts if s ⪯ s′. The fifth one holds since the size of S

is at most k(∆ + 1). The last two hold by the definition of cost(·).∑
s∈S

∑
T⊊[k]

cost(As
T ∩ P ∗

T̄
, CT ) ≤ 8 · 2kck

∑
s∈S

∑
T⊊[k]

cost(Ss
T ∩ P ∗

T , CT )

≤ 8 · 2kck
∑
s′∈S

∑
T⊊[k]

∑
s⪯s′

ts∈T

costIs(PD(Ss′

T ∩ P ∗
ts , Is), cts)

= 8 · 2kck
∑
s∈S

∑
s⪯s′

∑
ts∈T⊊[k]

costIs(PD(Ss′

T ∩ P ∗
ts , Is), cts)

≤ 8 · 2kck
∑
s∈S

∑
s⪯s′

costIs(PD(Rs, Is), cts)

≤ 8 · 2kck2(∆ + 1)
∑
s∈S

costIs(PD(Rs, Is), cts)

≤ 8 · 2kck2(∆ + 1)
∑
s∈S

costIs(Rs, cts),

≤ 8 · 2kck2(∆ + 1)(1 + α)optk(P ). ◀

We can obtain the following lemma by combining Lemma 10 and Lemma 12.

▶ Lemma 13. For a constant α > 0, the algorithm returns an (1 + 8 · 2kck2(∆ + 1))(1 + α)-
approximate k-means clustering for P with probability at least pkqk∆, where q and p are the
probabilities in Lemmas 3 and 4.
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Algorithm 2 k-Means.

1 R← R− FD(R,∩t∈[k]It)
2 E ← ∅
3 U ′ = ⟨u′

1, . . . , u′
k⟩ ← U = ⟨u1, . . . , uk⟩

4 if R = ∅ then return u[k]
5 for t ∈ [k] do
6 if It = ∅ then
7 u′

t ← the ∆-missing point obtained from Lemma 4
8 Add the clustering returned by k-Means (U ′, R) to E
9 else

10 foreach j ∈ [d]− It do
11 u′

t ← ut

12 (u′
t)j ← The value obtained from Lemma 3

13 Add the clustering returned by k-Means (U ′, R) to E

14 T ← the non-empty proper subset of [k] that maximizes |R ∩ ST |
15 if |R ∩ ST | ≥ |R|/(2k − 1) then

/* UT is the set of all ut for t ∈ T */
16 B ← The first half of |R ∩ ST | sorted in ascending order of distance from UT

17 Add the clustering returned by k-Means (U , R−B) to E
18 return the clustering C in E which minimizes cost(R, C)

4.3 Algorithm without Counting Oracle
The algorithm we have described uses the counting oracle in two places: determining the type
of the phase and selecting a pair of the cluster-index and coordinate-index to be updated in
a sampling phase. In this section, we explain how to avoid using the counting oracle. To
do this, we simply try all possible cases: run both phases and update each possible cluster
for all indices during a sampling phase. The main algorhm, k-Means (U , R), is described
in Algorithm 2. Its input consists of cluster centers U of a partial clustering of P and
a set R of points of P which are not yet assigned. Finally, k-Means (⊗k, P ) returns an
(1 + 8 · 2kck2(∆ + 1))(1 + α)-approximate k-means clustering of P , where ⊗k denotes the
k-tuple of Hd of null points.

The clustering cost returned by k-Means (⊗k, P ) is at most the cost returned by the
algorithm which uses the counting oracle in Section 4.1. In the following, we analyze the
running time of k-Means (⊗k, P ). Let T (n, δ) be the running of k-Means (U , R) when n = |R|
and δ =

∑
t∈[k] min{d− |It|, ∆ + 1}. Here, δ is an upper bound on the number of updates

required to make It = [d] for every cluster-index t in [k]. Then we have the following
recurrence relation for T (n, δ).

▷ Claim 14. T (n, δ) ≤ δ · T (n, δ − 1) + T
((

1− 1
2k+1−2

)
n, δ

)
+ O( kδ∆3dn

α )

Proof. In a sampling phase, k-Means calls itself at most δ times recursively with different
parameters. Each recursive call takes T (n, δ − 1) time. Also, the time for updating cluster
centers takes O(δ∆3dn/α) in total by Lemma 3 and 4. For a pruning phase, we compute
|R ∩ ST | for each T ⊊ [k] in total O(dn) time, and then choose the first half of ST in
increasing order of the distances from uT in total O(kdn) time. The recursive call invoked in
the pruning phase takes T

((
1− 1

2k+1−2

)
n, δ

)
time. We have δ + 1 clusterings returned by

recursive calls in total, and we can choose c[k] in O(δkdn) time. Thus, the claim holds. ◁
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By solving the recurrence relation, we can obtain an upper bound of T (n, δ).

▷ Claim 15. T (n, δ) ≤ (2δ(2k − 1))2δ+1(1 + 1
2k+1−3 )δ2∆3kdn/α

We obtain the following theorem by setting α = ϵ/3, and c = α
8·2kk2(∆+1) .

▶ Theorem 16. Given a ∆-missing n-point set P in Hd, a (1 + ϵ)-approximate solution
to the k-means clustering problem can be found in 2O(max{∆4k(log ∆+k), ∆k

ϵ (log 1
ϵ +k)})dn time

with a constant probability 1/2.

5 Concluding Remarks

In this paper, we gave a linear-time approximation algorithm for k-means clustering on
axis-parallel affine subspaces. Our algorithm runs in time linear in nd, which is the size of
the input. The bound is almost tight in the sense that no (1 + ϵ)-approximation algorithm
for this problem runs in time polynomial in even one of k and ∆.

Our algorithm is based on the framework of Kumar et al. [14] and Ackerman et al. [1].
One merit of using this framework is that we can handle outliers without additional effort as
shown in [9]. In this case, the goal is to minimize the clustering cost allowing to remove a
small portion of the input data. The problem of computing a k-means clustering of missing
data has not been explicitly considered in the presence of outliers. However, the observation
of [9] allows us to extend our algorithm to handle outliers.

A main idea of [9] for clustering points in Rd is as follows. Let m be the number of outliers
(the number of points which are allowed to be removed). Consider an optimal k-means
clustering (P ∗

1 , . . . , P ∗
k ) of the input point set P after removing m outliers. Then the largest

cluster, say P ∗
1 , has size at least (|P |−m)/k. Then by picking a random sample of a constant

size (but the sample size depends on m), one can compute a good approximation to c(P ∗
1 )

using Lemma 3. Using this observation, Feng et al. [9] showed that the algorithm by Kumar
et al. [14] (using a parameter slightly larger than the standard one for Lemma 3) computes
the cluster centers of an approximation k-means clustering in the presence of m outliers.
Then the m points farthest from the cluster centers are m outliers.

The observation by Feng et al. also holds for ∆-missing points. In a sampling phase, the
set R of remaining points contains at most m outliers. This means that the largest set ST

contains at least |R|/(2k + k + m) points of P ∗
T . Therefore, we can apply Lemma 6 using

a constant c < 1/(2k + k + m). Thus we can handle m outliers in O(nd) time, where the
constant hidden behind O(·) depends on m.

As mentioned in Introduction, the lower bound in Theorem 1 does not rule out the
possibility that this problem can be solved in O(nd + f(k, ∆)) time for an exponential
function f of k and ∆. Moreover, it seems hard to achieve this goal using the framework of
Kumar et al. [14] and Ackermann et al. [1] as their algorithms also run in O(nd · f(k)) time
for an exponential function of k. It is an interesting open question whether one can improve
the running time to O(nd + f(k, ∆)). Also, obtaining a coreset for this problem is also an
interesting open question.
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Abstract
In this paper, we present an algorithm for computing a feedback vertex set of a unit disk graph
of size k, if it exists, which runs in time 2O(

√
k)(n + m), where n and m denote the numbers of

vertices and edges, respectively. This improves the 2O(
√

k log k)nO(1)-time algorithm for this problem
on unit disk graphs by Fomin et al. [ICALP 2017]. Moreover, our algorithm is optimal assuming the
exponential-time hypothesis. Also, our algorithm can be extended to handle geometric intersection
graphs of similarly sized fat objects without increasing the running time.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Feedback vertex set, intersection graphs, parameterized algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.47

Funding This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No.2020R1C1C1012742).

1 Introduction

The Feedback Vertex Set problem is a classical and fundamental graph problem, which
is one of Karp’s 21 NP-complete problems. Given an undirected graph G = (V, E) and an
integer k, the goal is to find a set S of vertices of size k such that every cycle of G contains
at least one vertex of S. In other words, this problem asks to find a set S of vertices of size
k whose removal from G results in a forest. This problem has been studied extensively from
the viewpoint of exact exponential-time algorithms [13], parameterized algorithms [6, 18],
and approximation algorithms [1].

In this paper, we study the Feedback Vertex Set problem from the viewpoint of
parameterized algorithms. When the parameter is the size k of a feedback vertex set, the
best known parameterized algorithm takes 3.62knO(1) time [18]. On the other hand, it is
known that no algorithm for Feedback Vertex Set runs in 2o(k)nO(1) time assuming the
exponential-time hypothesis (ETH) [8]. For special classes of graphs such as planar graphs
and H-minor-free graphs for any fixed H, there are 2O(

√
k)nO(1)-time algorithms for the

Feedback Vertex Set problem [10]. Moreover, for planar graphs, Feedback Vertex
Set admits a linear kernel [4].

We present a subexponential-time algorithm for Feedback Vertex Set on geometric
intersection graphs, which can be considered as a natural generalization of planar graphs.
Consider a set F of geometric objects (for example, disks and polygons) in the plane. The
intersection graph G[F ] for F is defined as the undirected graph whose vertices correspond
to the objects in F such that two vertices are connected by an edge if and only if the two
objects corresponding to them intersect. In the case that F is a set of disks, its intersection
graph is called a disk graph, which has been studied extensively for various algorithmic
problems [5, 7, 17]. It can be used as a model for broadcast networks: The disks of F
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represent transmitter-receiver stations with the same transmission power. A planar graph
can be represented as a disk graph, and thus the class of disk graphs is a generalization of
the class of planar graphs.

Previous Work. Prior to our work, the best known algorithm for Feedback Vertex Set
parameterized by the size k of a feedback vertex set on unit disk graphs takes 2O(

√
k log k)nO(1)

time [14, 16]. Since the best known lower bound on the computation time is 2o(
√

n) assuming
the exponential-time hypothesis (ETH) [9], it is a natural question if Feedback Vertex
Set on unit disk graphs can be solved optimally. De Berg et al. [9] presented an (non-
parameterized) ETH-tight algorithm for this problem, which runs in 2O(

√
n) time. However,

it was not known if there is an ETH-tight parameterized algorithm for Feedback Vertex
Set on unit disk graphs.

Recently, several NP-complete problems have been studied for unit disk graphs (and
geometric intersection graphs) from the viewpoint of parameterized algorithms, for example,
the Steiner Tree, Feedback Vertex Set, Vertex Cover, k-Path and Cycle Packing
problems [2, 14, 19]. In the case of Vertex Cover, the work by de Berg et al. [9] implies
an ETH-tight parameterized algorithm. Also, in the case of k-Path problem, Fomin et
al. [15] presented an ETH-tight parameterized algorithm which runs in 2O(

√
k)O(n + m) time.

However, for the other problems, there is a gap between the running time of the best known
algorithms and the best known lower bounds.

Our Result. In this paper, we present an ETH-tight parameterized algorithm for the
Feedback Vertex Set problem on unit disk graphs, which runs in 2O(

√
k)(n + m) time,

where n and m denote the numbers of vertices and edges, respectively. This improves the
2O(

√
k log k)nO(1)-time algorithm for this problem on unit disk graphs by Fomin et al. [14].

Moreover, unlike the algorithm in [14], our algorithm works on the graph itself and do
not require the geometric representation. Also, our algorithm indeed handles geometric
intersection graphs of similarly sized fat objects in the plane without increasing the running
time, which will be defined in Section 2.1.

2 Preliminaries

For a graph G = (V, E), let V (G) and E(G) denote the sets of vertices and edges, respectively.
For a subset S of V , let G[S] be the subgraph of G induced by S. Also, let G − S be the
subgraph of G induced by V − S.

2.1 Geometric Intersection Graphs
For a constant 0 < α < 1, an object o ⊆ R2 is said to be α-fat if there are two disks B1 and
B2 with B1 ⊆ o ⊆ B2 such that the radius ratio of B1 to B2 is at least α.1 See Figure 1(a).
For example, a disk is a 1-fat object, and a square is a 1/

√
2-fat object. We call a set F of

α-fat objects a similarly sized set if the ratio of the largest diameter to the smallest diameter
of the objects in F is bounded by a fixed constant γ. For an α-fat object o of F , there are
two concentric disks B3 and B4 with B3 ⊆ o ⊆ B4 such that the radius ratio of B3 and B4
is at least α/2. We consider the center of B3 and B4 as the center of o. For convenience, we
assume that the smallest diameter of the objects of F is one.

1 An object is a point set in the plane, which is not necessarily connected.
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(a) (b)

Figure 1 (a) A r1
r2

-fat object. (b) The drawing of the geometric intersection graph G[F ].

The intersection graph G[F ] of a set F of objects in R2 is defined as the graph whose
vertex set is F and two vertices are connected by and edge if and only if their corresponding
objects intersect. The drawing of the intersection graph G[F ] is a representation of G[F ]
in the plane such that the vertices lie on the centers of the objects of F and the edges are
drawn as line segments. See Figure 1(b). We sometimes use an intersection graph G[F ] and
its drawing interchangeably if it is clear from the context.

In this paper, we focus on geometric intersection graphs of objects in the plane only.
Because Feedback Vertex Set on unit ball graphs in R3 has no subexponential-time
algorithm parameterized by k unless ETH fails [16].

2.2 Tree Decomposition and Weighted Width
A tree decomposition of a graph G = (V, E) is defined as a pair (T, β), where T is a tree and
β is a mapping from nodes of T to subsets of V (called bags) with the following properties.
Let B := {β(u) : u ∈ V (T )} be the set of bags of T .

1. For any vertex u ∈ V , there is at least one bag in B which contains u;
2. For any edge (u, v) ∈ E, there is at least one bag in B which contains both u and v.
3. For any vertex u ∈ V , the subset of bags of B containing u forms a subtree of T .

The width of a tree decomposition is defined as the size of its largest bag minus one, and
the treewidth of G is the minimum width among the tree decompositions of G. In this paper,
as in [9], we use the notion of weighted treewidth introduced by [20]. Here, assume that each
vertex v has its weight. The weight of each bag is defined as the sum of the weights of the
vertices in the bag, and the weighted width of tree decomposition is defined as the maximum
weight of the bags. The weighted treewidth of a graph G is the minimum weighted width
among the tree decompositions of G.

2.3 κ-Partition and P-Contraction
We use the concept of κ-partitions and P-contractions introduced by de Berg et al. [9]. Let
G[F ] = (V, E) be a geometric intersection graph of a set F of similarly sized α-fat objects.
A κ-partition of G is a partition P=(P1, ..., Pt) of V such that G[Pi] is connected and is the
union of at most κ cliques for every partition class Pi. Given a κ-partition P , we consider a
graph obtained by contracting the vertices in the same partition class to a single vertex and
removing all loops and parallel edges. We call the resulting graph the P-contraction of G

and denote it by GP . The weight of each vertex of GP is defined as ⌈log |Pi|⌉ + 1, where Pi

denotes the partition class of P defining the vertex.
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A greedy partition is a notion from De berg et al. [9]. For the given geometric intersection
graph G[F ], they iteratively pick one geometric object, then construct a partition class which
consist of the objects adjacent to the picked object. They denote the final partition by the
greedy partition. Since all objects are α-fat, the greedy partition is κ-partition of G[F ] and
moreover has maximum degree δ for constants κ and δ. Given a greedy partition P, they
showed that the weighted treewidth of GP is O(

√
n). Moreover, they presented a 2O(

√
n)-time

algorithm for computing a tree decomposition of GP of weighted width O(
√

n).

2.4 Overview of Our Algorithm
Our algorithm consists of two steps: computing a (weighted) tree decomposition of GP , and
then using a dynamic programming on the tree decomposition. As in [9], we first compute
a greedy partition. Then we show that the weighted treewidth of GP is O(

√
k) if (G, k) is

a yes-instance. To do this, we first show that the weighted treewidth of GP is O(
√

k) if G

has O(
√

k) vertices of degree at least three in Section 3. Then we show that G has O(
√

k)
vertices of degree at least three in Section 4.1.

Using this fact, we compute a constant approximation to the weighted treewidth of
GP . If it is ω(

√
k), we conclude that (G, k) is a no-instance immediately. Otherwise, we

compute a feedback vertex set of size k, if it exists, using dynamic programming on a tree
decomposition of GP of weighted width O(

√
k). The dynamic programming algorithm is

described in Section 4.2.

3 Tree Decomposition and Weighted Treewidth

In this section, we present the first step of our algorithm: computing a tree decomposition of
GP of weighted width O(

√
|U |) for a greedy partition P of a geometric intersection graph G,

where U denotes the set of vertices of G of degree at least three in G. More precisely, we
prove the following theorem.

▶ Theorem 1. Let G be an intersection graph of similarly sized α-fat objects with n vertices
and m edges, and let P be a greedy partition of G. Then the weighted treewidth of GP is
O(

√
|U |), where U denotes the set of vertices of G of degree at least three in G. Moreover,

we can compute a tree decomposition of GP of weighted width O(
√

|U |) in 2O(
√

|U |)(n + m)
time without using a geometric representation of G.

In the following, let G be an intersection graph of similarly sized α-fat objects, P be a
greedy partition of G, and U be the set of vertices of G of degree at least three in G. In
Section 3.1, we prove the first part of the theorem, and in Section 3.2, we prove the second
part of the theorem.

3.1 Weighted Treewidth of the P-contraction
We first show that the weighted treewidth of GP is O(

√
|U |). To do this, we transform G into

a planar graph H . As we did for G, we compute the P-contraction of H , and remove degree-2
vertices of the P-contractions of H and G in a specific way. In this way, we obtain H̄P
and ḠP of complexity O(

√
|U |). Also, we assign the weight to each vertex of the resulting

graphs. Then we transform a balanced separator of H̄P of weight O(
√

|U |) into a balanced
separator of ḠP of weight O(

√
|U |). Using a weighted balanced separator, we compute a

tree decomposition of ḠP of weighted width O(
√

|U |), and then transform it into a tree
decomposition of GP of weighted width O(

√
|U |).
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(a) (b) (c)

Figure 2 (a) The Delaunay triangulation H of the vertex set of V (G). The vertices of G of degree
at most two are colored blue. (b) P partitions V into five subsets. Each subset of P is contained in
a single pink region. Then the P-contraction of H is the cycle consisting of five edges. (c) Each
subset of P̄ consists of the black points contained in a single pink region.

Delaunay triangulation and its contraction: H and HP . Consider the Delaunay trian-
gulation H of the point set V (G). Here, we consider V (G) as the set of the centers of the
objects defining G. We consider the Delaunay triangulation H as an edge-weighted plane
graph such that the length of each edge is the Euclidean distance between their endpoints.
The Delaunay triangulation H is a 5.08 -spanner of the complete Euclidean graph defined by
V (G) [12]. That is, for any two points u and v of V (G), the length of the shortest path in H

between u and v is at most 5.08 times their Euclidean distance.
Notice that H might contain an edge which is not an edge of G. However, the following

still holds as G is a subgraph of the compete Euclidean graph. For any edge (u, v) in G,
there is a u-v path in H consisting of 5.08∥uv∥ edges. Recall that α is the measure for the
fatness of the objects defining G, which is a constant. Let HP be the P-contraction of H.
Note that V (GP) = V (HP). For a vertex v of GP or HP , we let P (v) to denote the partition
class of P corresponding to v. See Figure 2(b).

Partition P̄ of U : ḠP and H̄P . The size of GP and HP might be Θ(n) even if |U | is
small. Recall that U is the set of vertices of G of degree at least three in G. To obtain
a balanced separator of GP of small weight, we compute a new graph ḠP and H̄P of size
O(|U |) as follows.

Let P = (P1, . . . , Pt), which is a partition of V (G). Using this, we consider the partition
P̄ = (P̄1, . . . P̄t) of U such that P̄i = Pi ∩ U . Note that P̄i = ∅ if every vertex of Pi has
degree at most two in G. We first ignore the empty partition classes from P̄, and let ḠP
and H̄P be the P̄-contraction of G and the P̄-contraction of H , respectively. We add several
edges to ḠP and H̄P by considering the empty partition classes of P̄ as follows. Since G[Pi]
is connected and consists of κ cliques, G[Pi] is a simple cycle or a simple path if P̄i = ∅. Let
P∅ be the union of Pi’s for all indices with P̄i = ∅. Then each connected component of G[P∅]
is also a simple cycle or a simple path. If the connected component is a simple cycle, no
vertex in the component is connected by a vertex of U in G. Otherwise, the endpoints of the
simple path, say p and q, are contained in U . In this case, we connect the vertices of ḠP
(and H̄P) by an edge unless this edge forms a loop. See Figure 2(c).

For a vertex v̄ of ḠP or H̄P , we let P̄ (v̄) be the partition class of P̄ corresponding to v̄. By
construction, P̄ (v̄) is not empty for any vertex v̄. Each vertex v̄ of ḠP has a g-weight g(v̄) =
⌈log |P̄ (v̄)|⌉ + 1. Also, each vertex v̄ of H̄P has a h-weight h(v̄) =

∑
ū∈N(v̄)(⌈log |P̄ (ū)|⌉ + 1),

where N(v̄) is the set of vertices ū of H̄P such that there is a ū-v̄ path in H̄P consisting of
at most t = (δ + 1)(10.16(αγ)−1)2π vertices.
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(a) (b)

Figure 3 (a) A balanced separator S of H̄P consists of the red vertices. (b) A balanced separator
S′ of ḠP consists of the red vertices and the orange vertices. The vertices whose distance from the
red vertices are at most t = 1 are colored with orange.

▶ Observation 2. A vertex v̄ of H̄P has a constant degree, and thus the size of N(v̄) is O(1).

Balanced separator of H̄P of small h-weights. For a vertex-weighted graph G′ and a
subgraph H ′, we denote the sum of the weights of the vertices of H ′ by the weight of H ′.
a subset S of V (G′) is called a balanced separator of G′ if the weight of each connected
component of G′ − S is at most 2/3 of the weight of G′. The weight of a balanced separator
S of G′ is the sum of the weights of the vertices of S. Djidjev [11] showed that a planar
graph G′ has a balanced separator of weight O(

√∑
v∈V w(v)2), where w(v) is the weight of

a vertex v.

The following lemma implies that H̄P has a balanced separator of h-weight O(
√

|U |).

▶ Lemma 3. The sum of h(v̄)2 for all vertices v̄ of H̄P is O(|U |).

Proof. Let v̄ be a vertex of H̄P . The h-weight of v̄ is the sum of g(ū) = (⌈log |P̄ (ū)|⌉ + 1)
for all vertices ū of N(v̄) by definition. By Cauchy–Schwarz inequality, (

∑
ū∈N(v̄) g(ū))2 is

at most |N(v̄)|(
∑

ū∈N(v̄) g(ū)2). Since the size of N(v̄) is at most a constant, say c, we have
the following inequality.∑

v̄∈V

h(v̄)2 ≤ c ·
∑
v̄∈V

∑
ū∈N(v̄)

g(ū)2 = c ·
∑
ū∈V

∑
v̄∈N(ū)

g(ū)2,

where V denotes the vertex set of H̄P . Since
∑

v̄∈N(ū) g(ū)2 = |N(ū)|g(ū)2 ≤ c · g(ū)2, we
finally have the following.

∑
v̄∈V

h(v̄)2 ≤ c2 ·
∑
ū∈V

g(ū)2 = c2 ·
∑
ū∈V

(⌈log |P̄ (ū)|⌉ + 1)2 = O(
∑
ū∈V

|P̄ (ū)|) = O(|U |).

Here, the second equality holds because 2x ≥ (log x + 1)2 for all values x ≥ 1. Also, the last
equality holds because P̄ is a partition of U . ◀

Balanced separator of ḠP of small g-weight. Let S be a balanced separator of H̄P of
h-weight O(

√
|U |). Let S′ be the union of N(v̄) for all v̄ ∈ S. Recall that |V (ḠP)| = |V (H̄P)|.

The sum of the g-weights of the vertices of S′ is O(
√

|U |) by definition of the g- and h-weights.
Therefore, it suffices to show that the weight of each connected component of ḠP − S′ is at
most 2/3 of the weight of ḠP .
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▶ Lemma 4. For any edge (u, v) of GP , there is a u-v path in HP consisting of t vertices.2

Proof. Consider an edge (u, v) of GP . By construction, there is an edge (p, q) in G such
that p ∈ P (u) and q ∈ P (v). Recall that Delaunay triangulation is a 5.08-spanner of the
complete Euclidean graph. Therefore, there exists a p-q path τ in H such that the sum of
the lengths (Euclidean distance between two endpoints) of the edges is at most 5.08∥pq∥.

We claim that τ intersects at most (δ + 1)(10.16(αγ)−1)2π partition classes of P , where
δ is the maximum degree of GP , α is the measure for the fatness of the objects, and γ is
the ratio of the largest and smallest diameters of the objects. Consider a grid of the plane,
which is a partition of the plane into axis-parallel squares (called cells) with diameter 1/

√
2.

Recall that the smallest diameter of the objects defining G is one. For a cell σ, we denote
the set of vertices of G contained in σ by Pσ. By definition, Pσ forms a clique in G. Since
the maximum degree δ of GP is constant, at most δ + 1 partition classes of P has their
vertices in Pσ. Note that every object is contained in a ball of radius (αγ)−1. Therefore,
∥pq∥ ≤ 2(αγ)−1. Then, the Euclidean length of τ is at most 10.16(αγ)−1. This implies that
τ is contained in a ball of radius 10.16(αγ)−1 centered at p. In other words, τ intersects at
most (10.16(αγ)−1)2π cells. Since each cell intersects at most δ + 1 partition classes of P , τ

intersects (δ + 1)(10.16(αγ)−1)2π partition classes. Let t = (δ + 1)(10.16(αγ)−1)2π.
Then we consider a u-v path in HP obtained by replacing each point in τ to its contracted

point in HP . This path now consists of t different vertices of HP , but it is not necessarily
simple. We can obtain a simple path by removing duplicated subpaths that have same
endpoints. Then we obtain a simple path of consisting of t vertices. This completes the
proof. ◀

▶ Lemma 5. For any edge (ū, v̄) of ḠP , there is a ū-v̄ path in H̄P consisting of t vertices.

Proof. We consider an edge (ū, v̄) of ḠP . Let u and v be the vertices of GP with P (u) ∩ U =
P̄ (ū) and P (v) ∩ U = P̄ (v̄). By construction, either there is an edge (u, v) in GP , or there
is a u-v path in GP such that no internal vertex is contained in U . We consider these two
cases separately.

Case 1. (u, v) is an edge of GP . In this case, there is a u-v path τ1 in HP consisting
of t vertices by Lemma 4. Let I be the sequence of the indices of the partition classes
of P corresponding to the vertices of τ1. Then let I ′ be the subsequence of I consisting
of the indices j with P̄j ̸= ∅. If I = I ′, then H̄P has a ū-v̄ path consisting of s vertices.
Otherwise, since the internal vertices of τ1 has degree at least two in HP , the vertices
of H̄P corresponding to P̄ (i) and P̄ (j) are connected by an edge for every consecutive
indices i and j of I ′. Therefore, there exists a ū-v̄ path in H̄P consisting of t vertices.
Case 2. There is a u-v path τ ′ in GP with no internal vertices in U . Recall
that V (GP) = V (HP). If τ ′ entirely exists in HP , there is an edge (ū, v̄) in H̄P , and thus
we are done. If it is not the case, let (u′, v′) be an edge in τ ′ which does not exist in
HP . By Lemma 4, there is a u′-v′ path in HP consisting of t vertices. Since the internal
vertices of τ ′ have degree exactly two, the u′-v′ path contains both u and v. Therefore,
the subgraph of the u′-v′ path lying between u and v is a u-v path in HP consisting of at
most t vertices. Then similarly to Case 1, we can show that there is a ū-v̄ path in H̄P
consisting of t vertices.

Therefore, for an edge (ū, v̄) in ḠP , there is a ū-v̄ path in H̄P consisting of at most t

vertices. This completes the proof. ◀

2 Recall that t = (δ + 1)(10.16(αγ)−1)2π.
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▶ Lemma 6. The weight of each connected component of ḠP − S′ is at most 2/3 of the
weight of ḠP .

Proof. We show that each connected component of ḠP − S′ is a subset of a connected
component of H̄P − S. This implies that each connected component of ḠP − S′ consists of
at most 2|V (ḠP)|/3 vertices since S is a balanced separator of GP , and V (ḠP) = V (H̄P).

To show this, consider an edge (a, b) of ḠP − S′. We claim that a and b are contained
in the same connected component of H̄P − S. By Lemma 5, there is an a-b path in H̄P
consisting of t vertices. If this path contains a vertex of S, then a and b are contained in
S′ by construction, which makes a contradiction. Therefore, an a-b path in H̄P does not
intersects S, which means that a and b are contained in the same connected component of
H̄P − S.

Therefore, each connected component of ḠP − S′ is a subset of the connected component
of H̄P − S, and the lemma holds. ◀

Tree decomposition of ḠP . To construct a tree decomposition of ḠP , we observe that
any subgraph of ḠP also has a balanced separator of small weight. Let A be a connected
component of ḠP − S′. Then consider the subgraph H̄P [A] of H̄P induced by the vertices in
A. Since H̄P [A] is planar, it has a balanced separator with small h-weight, and thus A has a
balanced separator with small g-weight. Therefore, we can recursively compute a balanced
separator for every connected component of ḠP − S′.

We compute a tree decomposition of each connected component of ḠP − S′ recursively,
and then we connect those trees by one additional empty bag, and add the separator to
all bags of the resulting tree. Since the weight of the connected components decreases
geometrically, the maximum weight of the bags is O(

√
|U |). Therefore, we can compute a

tree decomposition (T, β) of ḠP of weighted width O(
√

|U |).

Tree decomposition of GP . The remaining step is computing a tree decomposition of GP
from (T, β). Then we start with the pair (T, β), and then add several nodes (and bags) to T

and add several vertices to the bags of β as follows.
Let Q be the set of vertices u of GP with P (u) ∩ U ̸= ∅, and let Qc be the set of vertices

of GP not in Q. For any vertex v of Q, there is a vertex v̄ in ḠP with P (v) ∩ U = P̄ (v̄), and
thus v̄ is contained bags of (T, β). We replace v̄ with v in the bags of (T, β) containing v.

On the other hand, for a vertex v of Qc, P (v) ∩ U = ∅, and thus no vertex of ḠP
corresponds to v. Thus we are required to insert v ∈ Q into T ′. Recall that every vertex in
Q has degree one or two in G, and thus it also has degree one or two in GP . Also, GP is
connected.3 Therefore, GP [Q] consists of a number of simple paths and isolated vertices, all
of which are connected to at most two vertices of Q. Thus, there are the following four cases.

Case 1. An isolated vertex v is connected to only one vertex u ∈ Q. For a bag β(x) of
(T, β) containing u, we add a leaf with bag {u, v} as a child of x.
Case 2. An isolated vertex v is connected to exactly two vertices u, w ∈ Q. By
construction, there is an edge (u, w) in ḠP . Then, there is a bag β(x) of T containing
both ū and w̄. We add a leaf with bag {u, v, w} as a child of x.
Case 3. A simple v-v′ path (v1, ..., vk) is connected to exactly one vertex u ∈ Q. Note
that either v or v′ is connected to u, but not both. Without loss of generality, we assume

3 We assume that the input intersection graph G is connected, and thus GP is connected by construction.
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that there is an edge (u, v) in GP . For a bag β(x) of T containing u, we add a node x1
with bag {u, v} as a child of x. For 1 < t < k, we add a node xt with bag {vt, vt+1} as a
child of xt−1.

Case 4. A simple v-v′ path (v1, ..., vk) is connected to two vertices u, w ∈ Q. In this
case, v is connected to one of u and w, say u, and v′ is connected to the other vertex, say
w. Since ḠP has an edge (ū, w̄), there is a bag β(x) of T that contains both u and w,
where ū and v̄ are the vertices of ḠP corresponding to u and v, respectively. We add a
node x1 with bag (u, w, v, v′) as a child of x. For 1 < t < k/2, we add a node xt with
bag {vt, vt+1, vk−t, vk−t+1} as a child of xt−1.

In this way, (T, β) is a tree decomposition of GP . Now we analyze the weight of a bag
of (T, β). Since we replace v̄ with v for a vertex v of Q in the bags of (T, β), the weight of
a bag B of (T, β) consisting of vertices of Q increases. Let v be a vertex of Q, and let v̄i

be the vertex of ḠP corresponding to v. Since P (v) is composed of at most O(1) cliques, it
contains at most O(1) vertices of V \ U . Note that B contains O(

√
|U |) vertices because

the weighted width of the tree decomposition of ḠP is O(
√

|U |). Therefore, the weight of B

increases by O(
√

|U |) after replacing vertices of ḠP with vertices of GP . Thus, the weight
of a bag consisting of vertices of Q is O(

√
|U |).

Now we show that the weight of a bag containing a vertex of Qc is O(
√

|U |). Every
vertex v ∈ Qc is a contraction of simple paths or simple cycles of length at most O(1) in G.
In particular, its weight in GP is O(1). Since a bag containing a vertex of Qc consists of at
most two vertices of Qc and at most two vertices of Q, the weight of the bag is O(

√
|U |).

3.2 Computing a Tree Decomposition of Small Weighted Width

We can compute a tree decomposition of weighted treewidth O(
√

|U |) of GP using the
algorithm proposed by de Berg et al. [9], which computes a tree decomposition of weighted
width O(w) of GP assuming that the weighted treewidth of GP is w. This algorithm runs
in 2O(w)(n + m) time. This algorithm works on the graph itself even if the geometric
representation is unknown. In this section, we briefly describe how the algorithm proposed
by de Berg et al. [9] for computing such a tree decomposition works.

A blowup of a vertex v by an integer t results in a graph where we replace a single vertex
v into a clique of size t, in which we connect every vertex to the neighbor vertices of v. We
denote the set of vertices in the clique by B(v). For the graph GP , we construct an unweighted
graph GB by blowing up each vertex v by an integer ⌈g(v)⌉ where g(v) = log |P (v)| + 1.
We compute a tree decomposition of GB, denoted by (TB, σB). Then we compute a tree
decomposition of GP by using the same tree layout of TB. In particular, we add a vertex
v ∈ GP to a bag if and only if the bag in TB contains all vertices of B(v). The Lemma 2.9
and Lemma 2.10 of [9] prove the correctness of this algorithm.

The remaining step is computing a tree decomposition of GB. We apply a constant-factor
approximation algorithm for computing an optimal tree decomposition [8]. By Theorem 1 and
Lemma 2.9 of [9], the treewidth of GB is O(

√
|U |). Therefore, the algorithm returns a tree

decomposition of GB of width O(
√

|U |). This algorithm takes a 2O(tw(GB))n = 2O(
√

|U |)(n+m)
time, and therefore, we can compute a tree decomposition of GP of weighted width O(

√
|U |)

without using the geometric representation of the graph. This completes the proof of
Theorem 1.
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4 Computing a Feedback Vertex Set

In this section, we present a 2O(
√

k)(n + m)-time algorithm for finding a feedback vertex set
of size k for the intersection graph G[F ] = (V, E) of similarly sized fat objects in the plane.

To do this, we first show that G has O(k) vertices of degree at least three if it has a
feedback vertex set of size at most k in Section 4.1. Therefore, by Theorem 1, for a greedy
partition P of G, the weighted treewidth of GP is O(

√
k) if (G, k) is a yes-instance.

To use this fact, we first compute such a greedy partition P in O(n + m) time using the
algorithm in [9]. Then we check if the weighted treewidth of GP is O(

√
k) in 2O(

√
k)(n + m)

time. If it is ω(
√

k), we conclude that (G, k) is a no-instance immediately. Otherwise, we
compute a feedback vertex set of size k, if it exists, using dynamic programming on a tree
decomposition of GP of weighted width O(

√
k). De Berg et al. [9] presented a dynamic

programming algorithm for Feedback Vertex Set which runs in 2O(
√

w)(n + m) time,
where w is the weighted treewidth of GP . We can use this algorithm, but for completeness,
we briefly describe this algorithm in Section 4.2.

4.1 Weighted Treewidth for a Yes-Instance
We first remove all degree-1 vertices from G and denote it by G′. This reduction is feasible
because no cycle encounters a degree-1 vertex. We next show that G′ has O(k) vertices of
degree at least three if it has a feedback vertex set of size k. We consider a partition of the
plane into axis-parallel squares (called cells) with diameter 1/

√
2, which we call the grid.

Recall that we let the smallest diameter of the objects defining G be one. For a cell σ, let
P (σ) be the set of the centers of the objects defining G. By definition, P (σ) forms a clique
in G. We say a grid cell is a neighbor of another grid cell if the smallest distance between
two points from the two cells is at most 2αγ, where α is the measure for the fatness of the
objects of F , and γ is the ratio of the largest and the smallest diameter of the objects. We
say a grid cell σ is heavy if P (σ) consists of at least three points, and light, otherwise. Let Ph

denote the set of vertices contained in the heavy cells, and let Pℓ denote the set of vertices
contained in the light cells.

The following lemma implies that GP has a weighted treewidth of O(
√

k) if it has a
feedback vertex set of size k. The proof of the following lemma is inspired by the proof of [8,
Lemma 9.1].

Note that the weighted treewidth of G is at most the weighted treewidth of G′ plus
one. Also, (G, k) is a yes-instance of feedback vertex set if and only if (G′, k) is a
yes-instance of feedback vertex set.

▶ Lemma 7. G′ has O(k) vertices of degree at least three if (G′, k) is a yes-instance of
feedback vertex set, where G′ is the graph obtained from G by removing all degree-1
vertices.

Proof. If G′ has a feedback vertex set of size k, the number of heavy cells is at most k, and
the size of Ph is at most 3k. This is because all but two of the vertices contained in the
same cell must be contained in a feedback vertex set of G. In the following, we show that
the number of vertices of Pℓ of degree at least three is at most O(k).

To do this, consider the subgraph Gℓ of G′ induced by Pℓ. We first observe that every
vertex of Gℓ has degree at most 4(αγ)2 in Gℓ. (But note that its degree in G′ might be
larger than 4(αγ)2.) Moreover, Gℓ also has a feedback vertex set of size k. Let X be a
feedback vertex set of Gℓ of size k, and let Y be the set of vertices of Gℓ not contained in X.
By definition, the subgraph G[Y ] of Gℓ induced by Y is a forest. The number of vertices
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of degree at least three is linear in the number of leaf nodes of the trees. Since G′ has no
degree-1 vertex, a leaf node of G[Y ] is incident to a vertex of X ∪ Ph in G′. Each vertex in
X ∪ Ph is incident to at most 4(αβ)2 vertices of Y . Since |X ∪ Ph| is O(k), the total number
of vertices of leaf nodes is O(k), and thus, the total number of vertices of degree at least
three of Gℓ (and G′) is O(k). ◀

▶ Lemma 8. For a greedy partition P, the weighted treewidth of GP is O(
√

k) if (G, k) is a
yes-instance of feedback vertex set.

4.2 Dynamic Programming
By combining Lemma 7 and Theorem 1, we can obtain a tree decomposition of weighted
width O(

√
k) if a geometric intersection graph G has a feedback vertex set of size k. De

Berg et al. [9] showed how to compute a feedback vertex set of size k in 2O(
√

w) poly n time,
where w denotes the weighted treewidth of GP . In this section, we briefly describe how this
algorithm works.

Given a tree decomposition (T, β) of a graph G′, algorithm for solving Feedback Vertex
Set computes for each bag β(t) and each subset S ⊆ β(t) together with the connectivity
information η of the vertices of S, the maximum size c[t, S, η] of a feedback vertex set Ŝ of
G[t] with Ŝ ∩ β(t) = S satisfying the connectivity information η, where G[t] denotes the
subgraph of G induced by the vertices appearing in bags in the subtree of T rooted at t.

Let t be a node of a tree decomposition (T, β) of GP . Recall that each vertex v of β(t)
corresponds to the partition class P (v). Let Xt =

⋃
v∈β(t) P (v). A feedback vertex set

contains at least |C| − 2 vertices of a clique C. Therefore, since from each partition class we
can exclude O(1) vertices (at most two vertices from each clique), the number of subsets Ŝ

that need to be considered is at most∏
v∈β(t)

|P (v)|2 = exp
( ∑

C∈β(t)

2 log |P (v)|
)

= 2O(
√

k).

Therefore, we can track connectivity of these subsets by applying the rank-based approach
of [3], which allows us to keep the number of equivalence relations considered single-exponential
in O(

√
k). Assuming that we have c[t′, ·, ·] for all descendants t′ of t in T and their connectivity

information, we can compute c[t, S, η] in 2O(
√

k) time. Since the number of nodes in the tree
decomposition is O(kn), the total running time of the dynamic programming algorithm is
2O(

√
k)(n + m). Therefore, we have the following theorem.

▶ Theorem 9. Given a intersection graph G of similarly sized fat objects in the plane (without
its geometric representation), we can compute a feedback vertex set of size k in 2O(

√
k)(n + m)

time, if it exists.
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Abstract
We present streaming algorithms for the graph k-matching problem in both the insert-only and
dynamic models. Our algorithms, while keeping the space complexity matching the best known
upper bound, have optimal or near-optimal update time, significantly improving on previous results.
More specifically, for the insert-only streaming model, we present a one-pass randomized algorithm
that runs in optimal O(k2) space and has optimal O(1) update time, and that, w.h.p. (with high
probability), computes a maximum weighted k-matching of a weighted graph. Previously, the best
upper bound on the update time was O(log k), which was achieved by a deterministic streaming
algorithm that however only works for unweighted graphs [16]. For the dynamic streaming model, we
present a one-pass randomized algorithm that, w.h.p., computes a maximum weighted k-matching of
a weighted graph in Õ(W k2) space1 and with Õ(1) update time, where W is the number of distinct
edge weights. Again the update time of our algorithm improves the previous best upper bound
Õ(k2) [7]. Moreover, we prove that in the dynamic streaming model, any randomized streaming
algorithm for the problem requires k2 · Ω(W (log W + 1)) bits of space. Hence, both the space
and update-time complexities achieved by our algorithm in the dynamic model are near-optimal.
A streaming approximation algorithm for k-matching is also presented, whose space complexity
matches the best known upper bound with a significantly improved update time.
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1 Introduction

Streaming algorithms for graph matching have been studied extensively, in which most of
the work has been focused on approximating a maximum matching. A graph stream S
for an underlying graph G is a sequence of edge operations. In the insert-only streaming
model, each operation is an edge-insertion, while in the dynamic streaming model each
operation is either an edge-insertion or an edge-deletion (with a specified weight if G is
weighted). The majority of the work on streaming algorithms for graph matching has been on
the (simpler) insert-only model. More recently, streaming algorithms for graph k-matching

1 The notation Õ() hides a poly-logarithmic factor in the input size.
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(i.e., constructing a matching of k edges in an unweighted graph or a maximum weighted
matching of k edges in a weighted graph), in both insert-only and dynamic models, have
drawn increasing interests [7, 8, 9, 16].

The performance of streaming algorithms is measured by the limited memory (space)
and the limited processing time per item (update time). For the space complexity, a lower
bound Ω(k2) has been known for the graph k-matching problem on unweighted graphs
for randomized streaming algorithms, even in the simpler insert-only model [7]. Nearly
space-optimal streaming algorithms for graph k-matching have been developed [7].

The current paper will be focused on the update time of streaming algorithms for
graph k-matching. While there has been much work on space complexity of streaming
algorithms for graph matching, much less is known regarding the update time complexity of
the problem. Note that the update time sometimes could be even more important than the
space complexity [25], since the data stream can come at a very high rate. If the update
processing does not catch the updating rate, the whole system may fail (see, e.g., [3, 34]).

We start with the insert-only model. We present a one-pass randomized streaming
algorithm that constructs a maximum weighted k-matching in a weighted graph. Our
algorithm runs in O(k2) space and has O(1) update time, both are optimal. Our techniques
rely on partitioning the graph (using hashing), and defining an auxiliary graph whose vertices
are the different parts of the partition. The auxiliary graph is updated during the stream.
By querying this auxiliary graph, the algorithm can compute a “compact” subgraph of size
O(k2) that, w.h.p., contains the edges of the desired k-matching. A maximum weighted
k-matching can then be extracted from this compact subgraph.

Previously, Fafianie and Kratsch [16] studied kernelization streaming algorithms in the
insert-only model. Their result implies a one-pass deterministic streaming algorithm for
k-matching on unweighted graphs that uses O(k2) space and O(log k) update time. In
comparison, our algorithm achieves the same space complexity but has optimal update time
O(1). While improving the update time from O(log k) on the deterministic algorithm to O(1)
on randomized algorithms for unweighted graphs may not look surprising, our streaming
algorithm with optimal space and update time for weighted graphs is a significant advance.

We then study steaming algorithms for graph k-matching in the dynamic model. We
give a one-pass randomized streaming algorithm that, for a weighted graph G containing
a k-matching, constructs a maximum weighted k-matching of G with probability at least
1 − 11

20k3 ln(2k) , and in case G does not contain a k-matching, reports correctly. The algorithm
runs in Õ(Wk2) space and has Õ(1) update time, where W is the number of distinct weights
in the graph. This result directly implies a one-pass randomized streaming algorithm for
unweighted k-matching running in Õ(k2) space with Õ(1) update time.

In order to achieve the faster update time, we prove a structural result that can be useful
in its own right for k-subset problems. Intuitively, the result states that, for any k-subset
S ⊆ U , w.h.p. we can compute k subsets T1, . . . , Tk of U that interact “nicely” with S. More
specifically, (1) the sets Ti, for i ∈ [k], are pairwise disjoint, (2) S is contained in their
union

⋃
i∈[k] Ti, and (3) each Ti contains exactly one element of S. We then apply the above

result to obtain the sets Ti of vertices that w.h.p. induce the edges of the desired k-matching.
Afterwards, we use ℓ0-sampling to select a smaller subset of edges induced by the vertices of
the Ti’s that w.h.p. contains the desired k-matching. From this smaller subset of edges, a
maximum weighted k-matching can be extracted.

Employing lower bounds for communication complexity protocols, we prove that, modulo
a poly-logarithmic function of the input size, the space complexity Õ(Wk2) achieved by our
algorithm is optimal with respect to both k and W . More specifically, neither the linear
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term W nor the quadratic function k2 in the space complexity of our algorithm for weighted
k-matching can be improved/reduced (by more than a poly-logarithmic function). Given
that our algorithms have Õ(1) update time, this implies that our algorithms are essentially
near-optimal in terms of both space and update time complexities.

Chitnis et al. [7] proposed a streaming algorithm on the dynamic model for maximum
matching. Under the promise that the cardinality of the maximum matching is not larger
than k during the entire graph stream, their algorithm runs in space Õ(k2) and has update
time Õ(1) for unweighted graphs. The assumption that the cardinality of the maximum
matching is at most k during the entire graph stream is essential for their techniques to work
since it is used to upper bound the number of vertices of degree larger than or equal to 10k by
O(k), and the number of edges whose both endpoints have degree bounded by 10k by O(k2).
They also developed a streaming algorithm that approximates the maximum matching for
unweighted graphs. These two algorithms can be combined to construct a k-matching with
update time Õ(k2) and space Õ(k2) for unweighted graphs. The algorithm for unweighted
graphs can be extended to construct a maximum weighted k-matching for weighted graphs,
which runs in space Õ(Wk2) with update time Õ(k2). In comparison, our algorithm keeps
the space complexity Õ(Wk2) while has significantly improved update time Õ(1).

A byproduct of our result is a one-pass streaming approximation algorithm that, for any
ϵ > 0, w.h.p. computes a k-matching that is within a factor of 1+ϵ from a maximum weighted
k-matching in G. The algorithm runs in Õ(k2ϵ−1 log W ′) space and has Õ(1) update time,
where W ′ is the ratio of the maximum edge-weight to the minimum edge-weight in G. This
result improves the update time complexity over the approximation result in [7], which has
the same space complexity but has update time Õ(k2).

We observe that most work on weighted graph streams, including our current paper,
assumes that the weight of an edge remains the same during the stream (see, e.g., [1, 2, 7,
20, 23]). To justify this assumption, we present an interesting lower bound result showing
that, if this assumption is lifted, then the space complexity of the k-matching problem is at
least linear in the size of the graph, and hence, can be much larger than the desirable space
complexity for streaming algorithms.

The paper is organized as follows. Section 2 provides necessary definitions and a brief
review on the related research. Improved streaming algorithms for graph k-matching in
insert-only model and in dynamic model are presented and discussed in sections 3-5. Some
lower bound results are give in section 6. Section 7 concludes with remarks.

2 Preliminaries

We refer to the following books for more detailed definitions [14, 15, 30]. We use “u.a.r.” as an
abbreviation for “uniformly at random”. For an integer i, let [i]− denote the set {0, 1, . . . , i−1},
[i] the set {1, . . . , i}, and ⌞i⌟ the binary representation of i.

Computational Model and Problem Definition. In a parameterized graph streaming
problem Q, we are given an instance of the form (S, k), where S is graph stream of some
underlying graph G and k ∈ N, and we are asked to compute a solution for (S, k) [9]. A
k-matching in a graph G is a matching of k edges in G. We study the following problems:

p-Matching: Given a graph stream S of an unweighted graph G and a parameter k,
compute a k-matching in G or report that no k-matching exists.
p-WT-Matching: Given a graph stream S of a weighted graph G and a parameter k,
compute a k-matching of maximum weight in G or report that no k-matching exists.
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We will assume that V (G) = [n]−, and that the length of S is polynomial in n. We will
design parameterized streaming algorithms for the above problems. Our algorithms first
sample a subgraph G′ of the underlying graph G in the stream such that w.h.p. G′ contains
a desired k-matching of G if and only if G has one. In the case where the size of G′ is a
function of k, such algorithms are referred to as kernelization streaming algorithms [7]. We
note that result in [7] also computes a subgraph containing the edges of the desired matching,
without computing the matching itself, as there are efficient algorithms for extracting the
desired matching from that subgraph [18].

ℓ0-Sampler. Let S = (i1, ∆1), . . . , (ip, ∆p), . . . be a stream of updates of an underlying
vector x ∈ Rn, where ij ∈ [n] and ∆j ∈ R. The j-th update (ij , ∆j) updates the ij-th
coordinate of x by setting xij

= xij
+ ∆j . Fix a parameter 0 < δ < 1. An ℓ0-sampler for

x ̸= 0 either fails with probability at most δ, or conditioned on not failing, for any non-zero
coordinate xj of x, returns the pair (j, xj) with probability 1

||x||0
, where ||x||0 is the ℓ0-norm

of x, which is the same as the number of non-zero coordinates of x. (We refer to [12].)

▶ Lemma 1 (Follows from Theorem 2.1 in [7]). Let 0 < δ < 1 be a parameter. There exists an
ℓ0-sampler algorithm that, given a dynamic graph stream, either returns FAIL with probability
at most δ, or returns an edge chosen u.a.r. from the edges of the stream that have been
inserted and not deleted. This algorithm can be implemented using O(log2 n · log(δ−1)) bits
of space and Õ(1) update time, where n is the number of vertices in the underlying graph.

We give a brief review on the known work that is related to our current paper.
Most work on graph matching in the streaming model has focused on approximating

a maximum matching (e.g., [4, 5, 19, 21, 22, 24, 26, 31]), with the majority of the work
pertaining to the (simpler) insert-only model. The most relevant to ours are [7, 8, 9, 16],
which studied parameterized streaming algorithms for the maximum matching problem.

Under the promise that the cardinality of the maximum matching at every instant of the
stream is at most k, the authors of [8, 9] presented a one-pass dynamic streaming algorithm
that w.h.p. computes a maximum matching in an unweighted graph stream. The algorithms
given in [8, 9] run in Õ(k2) space and the algorithm in [9] has Õ(k2) update time.

The authors of [7] considered the problem of computing maximum matchings in the
dynamic streaming model. For an unweighted graph G, under the promise that the cardinality
of the maximum matching at every instant of the stream is at most k, a sketch-based algorithm
is presented, which w.h.p. computes a maximum matching of G, runs in Õ(k2) space, and
has Õ(1) update time. They proved an Ω(k2) lower bound on the space complexity of any
randomized algorithm for the parameterized maximum matching problem, even in the insert-
only model, thus showing that the space complexity of their algorithm is optimal (modulo a
poly-logarithmic factor). The algorithm for unweighted graphs has been extended to weighted
graphs: under the same promise, there is an algorithm for computing a maximum weighted
matching that runs in space Õ(k2W ) and has Õ(1) update time, where W is the number
of distinct edge weights. For unweighted graphs with larger matchings, an approximation
algorithm is proposed [7]. Specifically, if the graph contains matchings of size larger than k,
then for any 1 ≤ α ≤

√
k and 0 < ϵ ≤ 1, there exists an Õ(k2α−3ϵ−2)-space algorithm that

returns a matching of size at least (1−ϵ)k
2α . The algorithm has Õ(k2α−2ϵ−2) update time.

Fafianie and Kratsch [16] studied kernelization streaming algorithms in the insert-only
model for the NP-hard d-Set Matching problem (among others), which for d = 2, is
equivalent to the k-matching problem on unweighted graphs. Their result implies a one-pass
kernelization streaming algorithm for k-matching in unweighted graphs that computes a
kernel of size O(k2 log k), runs in O(k2) space, and has O(log k) update time.
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Chen et al. [6] studied algorithms for k-matching on the RAM model with limited
computational resources, which is clearly very different from the streaming model. In order to
translate their algorithm to the streaming model, it would require Ω(nk) space and multiple
passes. However, we remark that one of the steps of our algorithm in the insert-only model
was inspired by the constructition of reduced graphs introduced in [6].

Finally, there has been work on computing matchings in special graph classes, and with
respect to parameters other than the cardinality of the matching (e.g., see [27, 28]).

3 Algorithms in Insert-Only Streaming Model

In this section, we give a streaming algorithm for p-WT-Matching, and hence for p-
Matching as a special case, in the insert-only model. We start with some notations.

Given a weighted graph G = (V = [n]−, E) along with a weight function wt : E(G) → R≥0,
and a parameter k, we define a new function β : E(G) −→ R≥0 × [n]− × [n]− as follows: for
e = [u, v] ∈ E, where u < v, let β(e) = (wt(e), u, v). Observe that β is injective.

Define a partial order relation ≺ on E(G) as follows: for any two distinct edges e, e′ ∈ E(G),
e ≺ e′ if β(e) is lexicographically smaller than β(e′). For a vertex v ∈ V and an edge e

incident to v, define Γv to be the sequence of edges incident to v, sorted in a decreasing order
w.r.t. ≺. We say that e is the i-heaviest edge w.r.t. v if e is the i-th element in Γv.

Let f : V → [4k2]− be a hash function, and let H be a subgraph of G. The function f

partitions V (H) into a collection of subsets V = {V0, V1, . . . , V4k2−1}, where each Vi consists
of the vertices in V (H) that have the same image under f . A matching M in H is said to
be nice w.r.t. f if no two vertices of M belong to the same Vi in V . When the function f is
clear from the context, we will simply say that “M is nice.” We define the compact subgraph
of H under f , denoted Compact(H, f), as the subgraph of H consisting of the edges e in H

whose endpoints belong to different subsets Vi and Vj in V, with i ̸= j, and such that β(e)
is the maximum over all edges between Vi and Vj . Finally, we define the reduced compact
subgraph of H under f , denoted Red-Com(H, f), by (1) for each pair (Vi, Vj) of subsets,
selecting edges e ∈ Compact(H, f) with endpoints in Vi and Vj such that e is among the 8k

heaviest edges incident to vertices in Vi and among the 8k heaviest edges incident to vertices
in Vj (in both subsets, if there are not that many edges, then include all edges); and then (2)
retaining from the selected edges in (1) the q = k(16k − 1) heaviest edges (again if there are
not that many edges, include all edges). We have the following:

▶ Lemma 2. The subgraph Compact(H, f) has a nice k-matching if and only if Red-
Com(H, f) has a nice k-matching. If this is the case, then the weight of a maximum weighted
nice k-matching in Compact(H, f) is equal to that in Red-Com(H, f).

Proof. Define the auxiliary weighted graph Φ whose vertices are the subsets Vi in the
collection V , where i ∈ [4k2]−, such that there is an edge [Vi, Vj ] in Φ if some vertex u ∈ Vi

is adjacent to some vertex v ∈ Vj in Compact(H, f). We associate with edge [Vi, Vj ] the
value β([u, v]) and associate the edge [u, v] with [Vi, Vj ]. Obviously, there is one-to-one
correspondence between the nice k-matchings in Compact(H, f) and the k-matchings in Φ.
Let H be the subgraph of Φ formed by selecting edges [Vi, Vj ] such that [Vi, Vj ] is among
the 8k heaviest edges incident to Vi and among the 8k heaviest edges incident to Vj . Let H′

consist of the q = k(16k − 1) heaviest edges in H (if H has at most q edges, let H′ = H).
Since there is a one-to-one correspondence between the nice k-matchings in Compact(H, f)
and the k-matchings of Φ, it suffices to prove the statement of the lemma with respect to
matchings in Φ and H′: namely, if Φ has a maximum weighted k-matching M then H′ has a
maximum weighted k-matching of the same weight as M .
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Suppose that Φ has a maximum weighted k-matching M . Choose M such that the number
of edges in M that remain in H is maximized. We first show that all the edges in M remain
in H. Suppose not, then there is an edge [Vi0 , Vi1 ] ∈ M such that [Vi0 , Vi1 ] is not among the
8k heaviest edges incident to one of its endpoints, say Vi1 . Since |V (M)| = 2k < 8k, it follows
that there is a heaviest edge [Vi1 , Vi2 ] incident to Vi1 such that β([Vi1 , Vi2 ]) > β([Vi0 , Vi1 ]) and
Vi2 /∈ VM . If [Vi1 , Vi2 ] ∈ H, then (M−[Vi0 , Vi1 ])+[Vi1 , Vi2 ] is a maximum weighted k-matching
of Φ that contains more edges of H than M , contradicting our choice of M . It follows that
[Vi1 , Vi2 ] /∈ H. Then, [Vi1 , Vi2 ] is not among the 8k heaviest edges incident to Vi2 . Now
apply the above argument to Vi2 to select the heaviest edge [Vi2 , Vi3 ] such that β([Vi2 , Vi3 ]) >

β([Vi1 , Vi2 ]) > β([Vi0 , Vi1 ]) and Vi3 /∈ VM . By applying the above argument j times, we
obtain a sequence of j vertices Vi1 , Vi2 , . . . , Vij , such that (1) {Vi2 , . . . , Vij } ∩ VM = ∅; and (2)
Via

̸= Vib
for every a ̸= b ∈ [j], which is guaranteed by β([Via

, Via+1 ]) < β([Via+1 , Via+2 ]) <

· · · < β([Vib−1 , Vib
]) and [Via , Via+1 ] is the heaviest edge incident to Via such that Via+1 /∈ VM .

Since Φ is finite, the above process must end at an edge e not in M and such that β(e)
exceeds β([Vi0 , Vi1 ]), contradicting our choice of M . Therefore, M ⊆ E(H).

Now, choose a maximum weighted k-matching of H that maximizes the number of edges
retained in H′. Without loss of generality, call it M . We prove that the edges of M are
retained in H′, thus proving the lemma. Suppose that this is not the case. Since each vertex
in V (M) has degree at most 8k and one of its edges must be in M , the number of edges in
H incident to the vertices in M is at most 2k(8k − 1) + k = k(16k − 1) = q. It follows that
there is an edge e in H′ whose endpoints are not in M and such that β(e) is larger than the
β() value of some edge in M , contradicting our choice of M . ◀

▶ Lemma 3. Let f : V → [4k2]− be a hash function, and let H be a subgraph of G. There is
an algorithm Alg-Reduce(H, f) that constructs Red-Com(H, f) and has both its time and
space complexities bounded by O(|H| + k2).

We now present the streaming algorithm AInsert for p-WT-Matching. Let (S, k) be an
instance of p-WT-Matching, where S = (e1, wt(e1)), . . . , (ei, wt(ei)), . . .. For i ∈ N, let Gi

be the subgraph of G consisting of the first i edges e1, . . . , ei of S, and for j ≤ i, let Gj,i be
the subgraph of G whose edges are {ej , . . . , ei}; if j > i, we let Gj,i = ∅. Let f be a hash
function chosen u.a.r. from a universal set H of hash functions mapping V to [4k2]−. The
algorithm AInsert, after processing the i-th element (ei, wt(ei)), computes two subgraphs Gf

i

and Gs
i defined as follows. For i = 0, Gf

i = Gs
i = ∅. For i > 0, let î be the largest multiple of

q that is smaller than i, that is, i = î + p, where 0 < p ≤ q; and let i∗ be the largest multiple
of q that is smaller than î if î > 0, and 0 otherwise. The subgraph Gf

i is defined only when i

is a multiple of q, and is defined recursively for i = j · q > 0 as Gf
i = Red-Com(Gf

î
∪ Gi∗+1,̂i);

that is, Gf
i is the reduced compact subgraph of the graph consisting of Gf

î
plus the subgraph

consisting of the edges encountered after ei∗ , starting from ei∗+1 up to eî. The subgraph
Gs

i is defined as Gs
i = Gf

î
∪ Gi∗+1,i; that is, Gs

i consists of the previous (before i) reduced
compact subgraph plus the subgraph consisting of the edges starting after i∗ up to i. We
refer to Figure 1 for an illustration of the definitions of Gf

i and Gs
i .

▶ Lemma 4. For each i ≥ 1, if Gi contains a maximum weighted k-matching, then with
probability at least 1/2, Gs

i contains a maximum weighted k-matching of Gi.

Proof. Let M = {[u0, u1], . . . , [u2k−2, u2k−1]} be a maximum weighted k-matching in Gi, and
let VM = {u0, . . . , u2k−1}. Since f is a hash function chosen u.a.r. from a universal set H of
hash functions mapping V to [4k2]−, with probability at least 1/2, f is perfect w.r.t. VM [11].
Now, suppose that f is perfect w.r.t. VM . Thus, M is a nice matching (w.r.t. f) in Gi. By the
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. . . . .e1 eq e2q ei∗ ei∗+1 eî ei

1 q 2q i∗ i∗+1 î i = jq

Red-Com(Gi∗+1,̂i ∪ Gf

î
)The definition of Gf

i = Gf
i

. . . . .e1 eq e2q ei∗ ei∗+1 eî ei

1 q 2q i∗ i∗+1 î i ̸= jq

Gi∗+1,i ∪ Gf

î
= Gs

iThe definition of Gs
i

Figure 1 Illustration of the definitions of Gf
i and Gs

i .

definition of Compact(Gi, f), there is a set M ′ of k edges M ′ = {[u′
0, u′

1], . . . , [u′
2k−2, u′

2k−1]}
in Compact(Gi, f) such that {f(u′

2i), f(u′
2i+1)} = {f(u2i), f(u2i+1)} and β([u′

2i, u′
2i+1]) ≥

β([u2i, u2i+1]) for i ∈ [k]−. It follows that wt([u′
2i, u′

2i+1]) ≥ wt([u2i, u2i+1]) for i ∈
[k]−. Therefore, Compact(Gi, f) contains a maximum weighted k-matching of Gi, namely
{[u′

0, u′
1], . . . , [u′

2k−2, u′
2k−1]}; moreover, this matching is nice. By Lemma 2, Red-Com(Gi, f)

contains a maximum weighted k-matching of Compact(Gi, f).
Next, we prove that Gs

i contains a maximum weighted k-matching of Gi. If i ≤ 2q, then
Gs

i = G1,i = Gi by definition, and hence Gs
i contains a maximum weighted k-matching

of Gi. Suppose now that i > 2q. By definition, Gs
i = Gf

î
∪ Gi∗+1,i. (Recall that, by

definition, Gf
q =∅, Gf

2q = Red-Com(Gf
q ∪ G1,q), Gf

3q = Red-Com(Gf
2q ∪ Gq+1,2q), . . . , Gf

î
=

Red-Com(Gf
i∗ ∪ Gi∗−q+1,i∗).) For each j ≥ 1 that is multiple of q, let Gj be the graph

consisting of the edges that are in Gf

ĵ
∪ Gj∗+1,ĵ but are not kept in Gf

j . Consequently,
(
⋃

q≤j<î,j is a multiple of q Gj)
⋃

Gf

î
= Gi∗ . By the definition of Red-Com(Gi, f), it is easy to

verify that Red-Com(Gi, f) does not contain the edges in Gj , for each j ≥ 1. It follows
that Red-Com(Gi, f) is a subgraph of Gs

i , and hence, Gs
i contains a maximum weighted

k-matching of Red-Com(Gi, f), and hence of Compact(Gi, f) by the above discussion. Since
Compact(Gi, f) contains a maximum weighted k-matching of Gi, Gs

i contains a maximum
weighted k-matching of Gi. It follows that, with probability at least 1/2, Gs

i contains a
maximum weighted k-matching of Gi. ◀

The algorithm AInsert, when queried at the end of the stream, either returns a maximum
weighted k-matching of G or the empty set. To do so, at every instant i, it will maintain a
subgraph Gs

i that will contain the edges of the desired matching, from which this matching
can be extracted. To maintain Gs

i , the algorithm keeps track of the subgraphs Gs
i−1, Gf

î
, the

edges ei∗+1, . . . , ei, and will use them in the computation of the subgraph Gs
i as follows. If i

is not a multiple of q, then Gs
i = Gs

i−1 + ei, and the algorithm simply computes Gs
i as such.

Otherwise (i.e., i is a multiple of q), Gs
i = Gf

î
∪ Gi∗+1,i, and the algorithm uses Gf

î
and

Gi∗+1,i = {ei∗+1, . . . , ei} to compute and return Gs
i ; however, in this case (i.e., i is a multiple

of q), the algorithm will additionally need to have Gf
i already computed, in preparation for

the potential computations of subsequent Gs
j , for j ≥ i. By Lemma 3, the subgraph Gf

i can
be computed by invoking the algorithm Alg-Reduce in Lemma 3 on Gf

î
∪ Gi∗+1,̂i, which

runs in time O(q). Note that both Gf

î
and Gi∗+1,̂i are available to AInsert at each of the

steps î + 1, . . . , i. Therefore, the algorithm will stagger the O(q) many operations needed
for the computation of Gf

i uniformly (roughly equally) over each of the steps î + 1, . . . , i,
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yielding an O(1) operations per step. Note that all the operations in Alg-Reduce can be
explicitly listed, and hence, splitting them over an interval of q steps is easily achievable.
Combining the above discussions and lemmas, we conclude with:

▶ Lemma 5. The algorithm AInsert runs in space O(k2) and has update time O(1).

▶ Theorem 6. Let 0 < δ < 1 be a parameter. There is an algorithm for p-WT-Matching
such that, on input (S, k), the algorithm outputs a matching M ′ satisfying that (1) if G

contains a k-matching then, with probability at least 1 − δ, M ′ is a maximum weighted
k-matching of G; and (2) if G does not contain a k-matching then M ′ = ∅. The algorithm
runs in O(k2 log 1

δ ) space and has O(log 1
δ ) update time. In particular, for any constant δ,

the algorithm runs in space O(k2) and has O(1) update time.

Proof. Run ⌈log 1
δ ⌉-many copies of algorithm AInsert in parallel (i.e., using dove-tailing).

Then, by the end of the stream, there are ⌈log 1
δ ⌉ copies of Gs

m, where m is the length of
the stream. Let G′ be the union of all the Gs

m’s produced by the runs of AInsert. If G′ has a
k-matching, let M ′ be a maximum weighted k-matching of G′; otherwise, let M ′ = ∅.

By Lemma 4, if Gm, i.e., G, contains a maximum weighted k-matching, with probability
at least 1/2, one copy of Gs

m contains a maximum weighted k-matching of G. Hence, with
probability at least 1 − (1/2)⌈log 1

δ ⌉ ≥ 1 − δ, G′ contains a maximum weighted k-matching of
G. It follows that if G contains a maximum weighted k-matching M then, with probability
at least 1 − δ, G′ contains a maximum weighted k-matching of the same weight as M and
hence M ′ is a maximum weighted k-matching of G.

Observe that the graph G′ is a subgraph of G. Therefore, statement (2) in the theorem
clearly holds true. By Lemma 5, the above algorithm runs in space O(k2 log 1

δ ) and has
update time O(log 1

δ ), thus completing the proof. ◀

4 The Toolkit

In this section, we prove a theorem that can be useful in its own right for subset problems,
that is, problems in which the goal is to compute a k-subset S (k ∈ N) of some universe U

such that S satisfies certain prescribed properties. Intuitively, the theorem states that, for
any k-subset S ⊆ U , w.h.p. we can compute k subsets T1, . . . , Tk of U that interact “nicely”
with S. More specifically, (1) the sets Ti, for i ∈ [k], are pairwise disjoint, (2) S is contained
in their union

⋃
i∈[k] Ti, and (3) each Ti contains exactly one element of S.

The above theorem will be used in Section 5 to design algorithms for p-Matching and
p-WT-Matching in the dynamic streaming model. Intuitively speaking, the theorem will
be invoked to obtain the sets Ti of vertices that w.h.p. induce the edges of the desired
k-matching; however, these sets may not necessarily constitute the desired subgraph as they
may not have “small” cardinalities. Sampling techniques will be used to select a smaller set
of edges induced by the vertices of the Ti’s that w.h.p. contains the edges of the k-matching.

A family H of hash functions, each mapping U to [r]−, is called κ-wise independent
if for any κ distinct keys x1, x2, ..., xκ ∈ U , and any κ (not necessarily distinct) values
a1, a2, ..., aκ ∈ [r]−, we have Prh∈u.a.rH[h(x1) = a1 ∧ h(x2) = a2 ∧ · · · ∧ h(xκ) = aκ] = 1

rκ .
Let F be a finite field. A κ-wise independent family H of hash functions can be con-

structed as follows (See Construction 3.32 in [35]): H = {ha0,a1,...,aκ−1 : F → F}, where
ha0,a1,...,aκ−1(x) = a0 + a1x + · · · + aκ−1xκ−1 for a0, . . . , aκ−1 ∈ F.

The following theorem is proved in [35], and will be used in our discussion.
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▶ Theorem 7 (Corollary 3.34 in [35]). For every u, d, κ ∈ N, there is a family of κ-wise
independent functions H = {h : {0, 1}u → {0, 1}d} such that choosing a random function
from H takes space O(κ · (u + d)). Moreover, evaluating a function from H takes time
polynomial in u, d, κ.

To prove our theorem, we proceed in two phases. We give an intuitive description of these
two phases. In the first phase, we choose a hashing function f u.a.r. from an O(ln k)-wise
independent set of hash functions, which hashes U to a set of d1 = O(k/ ln k) integers.
We use f to partition the universe U into d1-many subsets Ui. Afterwards, we choose d1
families F0, . . . , Fd1−1 of hash functions, each containing d2 = O(ln k) functions, chosen
independently and u.a.r. from a universal set of hash functions. The family Fi, i ∈ [d1]−,
will be used restrictively to map the elements of Ui. Since each family Fi is chosen from a
universal set of hash function, for the subset Si = S ∩ Ui, w.h.p. Fi contains a hash function
fi that is perfect w.r.t. Si; that is, under the function fi the elements of Si are distinguished.
This concludes the first phase of the process, which is described in Algorithm 1.

Algorithm 1 : An algorithm for partitioning U and constructing families of hash functions.
Input: |U |, k ∈ N where |U | > 1
Output: A family of sets of hash functions

1: let u and d be the unique positive integers satisfying 2u−1 < |U | ≤ 2u and 2d−1 < k
ln k ≤ 2d

2: choose f u.a.r. from H, where H = {h : {0, 1}u → {0, 1}d} is a ⌈12 ln k⌉-wise independent
set of hash functions

3: let H′ be a set of universal hash functions from U to [⌈13 ln k⌉2]−
4: let Fi, for i ∈ [2d]−, be a set of ⌈8 ln k⌉ hash functions chosen independently and

u.a.r. from H′

5: return {f, F0, . . . , F2d−1}

In the second phase, we define a relation G (from U) that, for each x ∈ U , associates
a set G(x) of integers. This relation extends the hash functions in the Fj ’s above by (1)
ensuring that elements in different parts of U (w.r.t. the partitioning) are distinguished, in
the sense that they are associated with subsets of integers that are contained in disjoint
intervals of integers; and (2) maintaining the property that elements of the same part Uj

that are distinguished under some function in Fj remain so under the extended relation.
To do so, for each part Uj , we associate an “offset” and create a large gap between any
two (consecutive) offsets; we will ensure that all the elements in the same Uj fall within
the same interval determined by two consecutive offsets. To compute the set G(x), for an
element x ∈ Uj , we start with an offset oj that depends solely on Uj (oj = j · d2 · d3 in
Algorithm 2), and consider every function in the family Fj corresponding to Uj . For each
such function hi, we associate an offset o′

i (o′
i = (i − 1) · d3 in Algorithm 2), and for x and

that particular function hi, we add to G(x) the value g(j, i, x) = oj + o′
i + hi(x). The above

phase is described in Algorithm 2.
Now that the relations G(x), for x ∈ U , have been defined, we will show in the following

theorem that, for any k-subset S of U , w.h.p. there exist k distinct elements i0, . . . , ik−1,
such that their pre-images G−1(i0), . . . , G−1(ik−1) are pairwise disjoint, contain all elements
of S, and each pre-image contains exactly one element of S; those pre-images serve as the
desired sets Ti, for i ∈ [k].

Consider Algorithm 1 and Algorithm 2, and refer to them for the terminologies used
in the subsequent discussions. For i ∈ [d1 · d2 · d3]−, define Ti = {x ∈ U | i ∈ G(x)}. We
define next two sequences of intervals, and prove certain properties about them, that will
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Algorithm 2 : An algorithm that defines the relation G from U to [d1 · d2 · d3]−.
Input: x ∈ U , k ∈ N, {f, F0, . . . , Fd1−1} is from Algorithm 1, where |F0| = · · · = |Fd1−1|
Output: a set G(x)

1: let d2 = |F0| = · · · = |Fd1−1| and d3 = ⌈13 ln k⌉2

2: G(x) = ∅
3: compute f(⌞x⌟) and let j be the integer such that ⌞j⌟ = f(⌞x⌟)
4: for i = 1 to d2 do
5: let hi be the i-th function in Fj (assuming an arbitrary ordering on Fj)
6: let g(j, i, x) = j · d2 · d3 + (i − 1) · d3 + hi(x) and let G(x) = G(x) ∪ {g(j, i, x)}
7: return G(x)

be used in the proof of Theorem 9. For q ∈ [d1 · d2]−, let Iq = {r | q · d3 ≤ r < (q + 1) · d3}.
For t ∈ [d1]−, let I ′

t = {r | t · d2 · d3 ≤ r < t · d2 · d3 + d2 · d3}. Note that each interval I ′
t is

partitioned into the d2-many intervals Iq, for q = t · d2, . . . , t · d2 + d2 − 1.

▶ Lemma 8. The following statements hold: (A) For any two distinct integers a, b ∈ Iq,
where q ∈ [d1 · d2]−, we have Ta ∩ Tb = ∅. (B) For t ∈ [d1]−, we have G(Ut) ⊆ I ′

t. Moreover,
for any a ∈ I ′

t, b ∈ I ′
s, where s ̸= t, we have Ta ∩ Tb = ∅.

▶ Theorem 9. For any subset S ⊆ U of cardinality k ≥ 2, with probability at least 1 − 4
k3 ln k ,

there exist k sets Ti0 , . . . , Tik−1 such that: (1) |Tij ∩ S| = 1 for j ∈ [k]−, (2) S ⊆ ∪j∈[k]−Tij ,
and (3) Tij

∩ Til
= ∅ for j ̸= l ∈ [k]−.

Proof. For j ∈ [d1]−, let Uj be the set of elements in U whose image is ⌞j⌟ under f (defined
in Step 2 of Algorithm 1), that is Uj = {y ∈ U | f(⌞y⌟) = ⌞j⌟}. Clearly, the sets Uj , for
j ∈ [d1]−, partition the universe U . We will show that, with probability at least 1 − 4

k3 ln k ,
there exist k sets Ti0 , . . . , Tik−1 that satisfy conditions (1)–(3) in the statement of the theorem.

Let S ⊆ U be any subset such that |S| = k. For j ∈ [d1]− and y ∈ S, let Xy,j be the
random variable defined as Xy,j = 1 if f(⌞y⌟) = ⌞j⌟ and 0 otherwise. Let Xj =

∑
y∈S Xy,j ,

and Sj = {y ∈ S | f(⌞y⌟) = ⌞j⌟}. Thus, |Sj | = Xj . Since f is ⌈12 ln k⌉-wise independent,
the random variables Xy,j , for y ∈ S, are ⌈12 ln k⌉-wise independent and Pr(Xy,j = 1) = 1

d1
.

Thus, E[Xj ] = |S| · 1
d1

. Since d1 = 2d and 2d−1 < k
ln k ≤ 2d by definition, we have k

ln k ≤ d1 <
2k

ln k and ln k
2 < E[Xj ] ≤ ln k. Applying Theorem 2 in [33] with µ = E[Xj ] and δ = 12 ln k

E[Xj ] > 1,
we get Pr(Xj ≥ (1+δ)E[Xj ]) ≤ e−E[Xj ]δ/3 = 1

k4 . Since E[Xj ] ≤ ln k and δ = 12 ln k
E[Xj ] , we have

(1+δ)E[Xj ] ≤ 13 ln k. Hence, Pr(Xj ≥ 13 ln k) ≤ Pr(Xj ≥ (1+δ)E[Xj ]) ≤ 1
k4 . Let E denote

the event
∧

i∈[d1]−(Xi ≤ 13 ln k). By the union bound, we have Pr(E) ≥ 1 − d1
k4 ≥ 1 − 2

k3 ln k ,
where the last inequality holds since d1 < 2k/ ln k.

Assume that event E occurs, i.e., that |Sj | ≤ 13 ln k holds for j ∈ [d1]−. Consider Step 4
in Algorithm 1. Fix j ∈ [d1]−, and let Ej be the event that Fj does not contain any perfect
hash function w.r.t. Sj . Let h be a hash function picked from H′ u.a.r. Since |Sj | ≤ 13 ln k

(by assumption), by Theorem 11.9 in [11], with probability at least 1/2, h is perfect w.r.t. Sj .
Since Fj consists of ⌈8 ln k⌉ hash functions chosen independently and u.a.r. from H′, we have
Pr(Ej) ≤ (1/2)⌈8 ln k⌉ < 1

k4 . Applying the union bound, we have Pr(∪j∈[d1]−Ej) ≤ d1
k4 <

2
k3 ln k . Let E ′ be the event that there exist d1 functions f0, f1, . . . , fd1−1 such that fj ∈ Fj

and fj is perfect w.r.t. Sj , j ∈ [d1]−. Therefore, Pr(E ′) ≥ Pr(E)(1 − Pr(∪j∈[d1]−Ej)) ≥
1 − 4

k3 ln k + 4
k6 ln2 k

≥ 1 − 4
k3 ln k . Suppose that such a set {f0, . . . , fd1−1} of functions exists.

Let η(q) be the iteration number i in Step 5 of Algorithm 2 during which fq ∈ Fq is chosen,
for q ∈ [d1]−. We define the following (multi-)set B as follows. For each q ∈ [d1]−, and for
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element x ∈ Sq, add to B the element g(q, η(q), x)) defined in Steps 5–6 of Algorithm 2 (by
{f, f0, . . . , fk−1}). Observe that, by the definition of B, for every x ∈ S, there exists a ∈ B

such that x ∈ Ta. We will show next that B contains exactly k distinct elements, and that,
for any a ̸= b ∈ B, it holds that Ta ∩ Tb = ∅. The above will show that the sets {Ta | a ∈ B}
satisfy conditions (1)–(3) of the theorem, thus proving the theorem.

It suffices to show that for any two distinct elements of S, the corresponding elements
added to B are distinct. Let x1 and x2 be two distinct elements of S. Assume that x1 ∈ Sj

and x2 ∈ Sl, where j, l ∈ [d1]−. We distinguish two cases based on whether or not j = l.
If j = l, we have g(j, η(j), x1) = j · d2 · d3 + (η(j) − 1) · d3 + fj(x1) and g(j, η(j), x2) =

j · d2 · d3 + (η(j) − 1) · d3 + fj(x2). Since fj is perfect w.r.t. Sj , we have g(j, η(j), x1) ̸=
g(j, η(j), x2). Moreover, both g(j, η(j), x1) and g(j, η(j), x2) are in Ij·d2+(η(j)−1) (since
0 ≤ hj(x1), hj(x2) < d3), where j · d2 + (η(j) − 1) ≤ (d1 − 1) · d2 + (d2 − 1) ∈ [d1 · d2]−. By
part (A) of Lemma 8, it holds that Tg(j,η(j),x1) ∩ Tg(j,η(j),x2) = ∅.

Suppose now that j ̸= l. By definition of Sj , Sl, Uj , Ul, we have Sj ⊆ Uj and Sl ⊆ Ul.
Consequently, g(j, η(j), x1) ∈ G(Uj) and g(l, η(l), x2) ∈ G(Ul) hold. By part (B) of Lemma
8, we have G(Uj) ⊆ I ′

j and G(Ul) ⊆ I ′
l . Therefore, g(j, η(j), x1) ̸= g(l, η(l), x2). Moreover,

Tg(j,η(j),x1) ∩ Tg(l,η(l),x2) = ∅ holds by part (B) of Lemma 8 as well. ◀

▶ Theorem 10. Algorithm 1 runs in space O(k + (log k)(log |U |)), and Algorithm 2 runs
in space O(log k) and in time polynomial in log |U |.

Proof. In Algorithm 1, since f is ⌈12 ln k⌉-wise independent, by Theorem 7, storing f uses
space O(ln k · max{u, d}) = O((log k)(log |U |)) (since k ≤ |U |). Storing a universal hash
function uses O(1) space, and thus storing {F0, . . . , Fd1−1} uses O(d1 · d2) = O(k) space.
Therefore, Algorithm 1 can be implemented in space O(k + (log k)(log |U |)).

For Algorithm 2, since G(x) contains exactly d2 elements, storing G(x) takes O(d2) =
O(ln k) space. In Step 3, again by Theorem 7, computing f(⌞x⌟) takes time polynomial
in log |U | and log k, since f is a ⌈12 ln k⌉-wise independent hash function from {0, 1}u to
{0, 1}d. Computing j in Step 3 takes time polynomial in d = O(log k) since f(⌞x⌟) ∈ {0, 1}d.
Therefore, Step 3 can be performed in time polynomial in log |U | and log k, and hence
polynomial in log |U | (since k ≤ |U |). Step 6 can be implemented in time polynomial in
log k, since |Fj | = ⌈8 ln k⌉. Altogether, Algorithm 2 takes time polynomial in log |U |. This
completes the proof. ◀

5 Algorithms in Dynamic Streaming Model

In this section, we present results on p-Matching and p-WT-Matching in the dynamic
streaming model. The algorithm uses the toolkit developed in the previous section, together
with the ℓ0-sampling technique discussed in Section 2. We first give a high-level description
of how the algorithm works.

Let S be a graph stream of a weighted graph G = (V = [n]−, E) along with the weight
function wt : E(G) −→ R≥0, and k be a parameter. Suppose G has W distinct weights.
We will hash the vertices of the graph to a range R of size O(k log2 k). For each element
(e = [u, v], wt(e), op) ∈ S, where op is either insertion or deletion, we use the relation G,
discussed in Section 4, and compute the two sets G(u) and G(v). For each i ∈ G(u) and each
j ∈ G(v), we associate an instance of an ℓ0-sampler primitive, call it Ci,j,wt(u,v), and update
it according to the operation op. Recall that it is assumed that the weight of every edge does
not change throughout the stream.
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The solution computed by the algorithm consists of a set of edges created by invoking
each of the Õ(Wk2) ℓ0-sampler algorithms to sample at most one edge from each Ci,j,w, for
each pair of i, j in the range R and each edge-weight of the graph stream.

The intuition behind the above algorithm (i.e., why it achieves the desired goal) is the
following. Suppose that there exists a maximum weighted k-matching M in G, and let
M = {[u0, u1], . . . , [u2k−2, u2k−1]}. By Theorem 9, w.h.p. there exist i0, . . . , i2k−1 in the
range R such that uj ∈ Tij

, for j ∈ [2k]−, and such that the Tij
’s are pairwise disjoint.

Consider the k ℓ0-samplers Ci2j ,i2j+1,wt(u2j ,u2j+1), where j ∈ [k]−. Then, w.h.p., the k edges
sampled from these k ℓ0-samplers are the edges of a maximum weighted k-matching (since
the Tij

’s are pairwise disjoint) whose weight equals that of M .

Algorithm 3 The streaming algorithm Adynamic in the dynamic streaming model.

Adynamic-Preprocess: The preprocessing algorithm
Input: n = |V (G)| and a parameter k ∈ N
1: let C be a set of ℓ0-samplers and C = ∅
2: let {f, F0, F1, . . . , Fd1−1} be the output of Algorithm 1 on input (n, 2k)

Adynamic-Update: The update algorithm
Input: An update (e = [u, v], wt(e), op) ∈ S, where op is either insertion or deletion
1: let G(u) be the output of Algorithm 2 on input (u, 2k, {f, F0, F1, . . . , Fd1−1})
2: let G(v) be the output of Algorithm 2 on input (v, 2k, {f, F0, F1, . . . , Fd1−1})
3: for i ∈ G(u) and j ∈ G(v) do
4: if Ci,j,wt(uv) /∈ C then
5: create the ℓ0-sampler Ci,j,wt(uv)

6: feed ⟨[u, v], op⟩ to the ℓ0-sampler algorithm Ci,j,wt(u,v) with parameter δ

Adynamic-Query: The query algorithm after an update
1: let E′ = ∅
2: for each Ci,j,w ∈ C do
3: apply the ℓ0-sampler Ci,j,w with parameter δ to sample an edge e

4: if Ci,j,w does not FAIL then set E′ = E′ ∪ {e}
5: return a maximum weighted k-matching in G′ = (V (E′), E′) if any; otherwise, return ∅

Choose δ = 1
20k4 ln(2k) . Let Adynamic be the algorithm consisting of the sequence of

three subroutines/algorithms Adynamic-Preprocess, Adynamic-Update, and Adynamic-
Query, where Adynamic-Preprocess is applied at the beginning of the stream, Adynamic-
Update is applied after each operation, and Adynamic-Query is applied whenever the
algorithm is queried for a solution after some update operation. Without loss of generality,
and for convenience, we will assume that the algorithm is queried at the end of the stream S,
even though the query could take place after any arbitrary operation.

▶ Lemma 11. Let M ′ be the matching obtained by applying the algorithm Adynamic with
Adynamic-Query invoked at the end of S. If G contains a k-matching then, with probability
at least 1 − 11

20k3 ln(2k) , M ′ is a maximum weighted k-matching of G.

▶ Theorem 12. The algorithm Adynamic outputs a matching M ′ such that (1) if G contains
a k-matching then, with probability at least 1 − 11

20k3 ln(2k) , M ′ is a maximum weighted k-
matching of G; and (2) if G does not contain a k-matching then M ′ = ∅. Moreover, the
algorithm Adynamic runs in Õ(Wk2) space and has Õ(1) update time.
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Proof. First, observe that G′ is a subgraph of G, since it consists of edges sampled from
subsets of edges in G. Therefore, statement (2) in the theorem clearly holds true. Statement
(1) follows from Lemma 11. Next, we analyze the update time of algorithm Adynamic.

From Algorithm 1 and Algorithm 2, we have d1 = O( k
ln k ), d2 = O(ln k), d3 =

O(ln2 k) and |Fi| = O(ln k) for i ∈ [d1]−. Thus, |G(u)| = O(ln k) holds for all u ∈ V .
For the update time, it suffices to examine Steps 1–6 of Adynamic-Update By Theorem
10, Steps 1–2 take time polynomial in log n, which is Õ(1). For Step 4, we can index
C using a sorted sequence of triplets (i, j, w), where i, j ∈ [d1 · d2 · d3]− and w ranges
over all possible weights. Since d1 = O( k

ln k ), d2 = O(ln k) and d3 = O(ln2 k), we have
|C| = O((d1 · d2 · d3)2 · W ) = O(Wk2 ln4 k) = Õ(Wk2). Using binary search on C, one
execution of Step 4 takes time O(log W + log k). Since |G(u)| = O(ln k) for every u ∈ V ,
and since by Lemma 1 an ℓ0-sampler algorithm has Õ(1) update time, Steps 3–6 take time
O(ln2 k) · (O(log W + log k) + Õ(1)) = Õ(1). Therefore, the overall update time is Õ(1).

Now, we analyze the space complexity of the algorithm. First, consider Adynamic-
Preprocess. Obviously, Step 1 uses O(1) space. Steps 1–2 use space O(k+(log k)(log n)) (in-
cluding the space used to store {f, F0, . . . , Fd1−1,C}) by Theorem 10. Altogether, Adynamic-
Preprocess runs in space O(k +(log k)(log n)). Next, we discuss Adynamic-Update. Steps
1–2 take space O(ln k) by Theorem 10. Observe that the space used in Steps 3–6 is dominated
by the space used by the set C of ℓ0-samplers. Since δ = 1

20k4 ln(2k) , an ℓ0-sampler algorithm
uses space O(log2 n · log k), by Lemma 1. Since |C| = O(Wk2 ln4 k), Steps 3–6 use space
O(Wk2 log2 n log5 k) = Õ(Wk2). Finally, consider Adynamic-Query The space in Steps 1 –
4 is dominated by the space used by C and the space needed to store the graph G′, and hence
E′. By the above discussion, C takes space Õ(Wk2). Since at most one edge is sampled
from each ℓ0-sampler instance and |C| = O(Wk2 ln4 k), we have |E′| = |C| = Õ(Wk2). Step
5 utilizes space O(|E′|) [17, 18]. Therefore, Adynamic-Query runs in space Õ(Wk2). It
follows that the space complexity of Adynamic is Õ(Wk2). ◀

Using Theorem 12, and following the same approach in [7], we obtain the following:

▶ Theorem 13. Let 0 < ϵ < 1. There exists an algorithm for p-WT-Matching that
computes a matching M ′ such that (1) if G contains a maximum weighted k-matching M ,
then with probability at least 1 − 11

20k3 ln(2k) , wt(M ′) > (1 − ϵ)wt(M); and (2) if G does not
contain a k-matching then M ′ = ∅. Moreover, the algorithm runs in Õ(k2ϵ−1 log W ′) space
and has Õ(1) update time, where W ′ is the ratio of the max weight to min weight.

Proof. For each edge e ∈ E, round wt(e) and assign it a new weight of (1 + ϵ)i such that
(1 + ϵ)i−1 < wt(e) ≤ (1 + ϵ)i. Thus, there are O(ϵ−1 log W ′) distinct weights after rounding.
By Theorem 12, the space and update time are Õ(k2ϵ−1 log W ′) and Õ(1) respectively, and
the success probability is at least 1 − 11

20k3 ln(2k) . Now we prove that wt(M ′) > (1 − ϵ)wt(M).
Let e ∈ M and let e′ be the edge sampled from the ℓ0-sampler that e is fed to. It suffices

to prove that wt(e′) > (1 − ϵ)wt(e). Assume that wt(e) is rounded to (1 + ϵ)i. Then, wt(e′)
is rounded to (1 + ϵ)i as well. If wt(e′) ≥ wt(e), we are done; otherwise, (1 + ϵ)i−1 < wt(e′) <

wt(e) ≤ (1 + ϵ)i. It follows that wt(e′) > (1 + ϵ)i−1 ≥ wt(e)/(1 + ϵ) > (1 − ϵ)wt(e). ◀

The following theorem is a consequence of Theorem 12 (applied with W = 1):

▶ Theorem 14. There is an algorithm for p-Matching that computes a matching M ′

satisfying that (1) if G contains a k-matching then, with probability at least 1− 11
20k3 ln(2k) , M ′

is a k-matching of G; and (2) if G does not contain a k-matching then M ′ = ∅. Moreover,
the algorithm runs in Õ(k2) space and has Õ(1) update time.
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6 Lower Bound

In this section, we discuss lower bounds on the space complexity of randomized streaming
algorithms for p-Matching in the insert-only model (hence also in the dynamic model), and
for p-WT-Matching in the dynamic model. These lower bound results, in conjunction with
the algorithms given in the previous sections, show that the space complexity achieved by
our algorithms is optimal (modulo a poly-logarithmic factor in the input size).

We will use the one-way communication model to prove lower bounds on the space
complexity of randomized streaming algorithms for p-Matching and p-WT-Matching. In
this model, there are two parties, Alice and Bob, each receiving x and y respectively, who
wish to compute f(x, y). Alice is permitted to send Bob a single message M , which only
depends on x and Alice’s random coins. Then Bob outputs b, which is his guess of f(x, y).
Here, b only depends on y, M, and Bob’s random coins. We say the protocol computing f

with success probability 1 − δ if Pr(b = f(x, y)) ≥ 1 − δ for every x and y.
For p-Matching, we have the following theorem, which is implied from the space

complexity lower-bound proof given in [7] for maximum matching.

▶ Theorem 15 ([7]). Any randomized streaming algorithm for p-Matching that, with
probability at least 2/3, computing a k-matching uses Ω(k2) bits.

For p-WT-Matching, we start by defining the following problem:

Partial Maximization: Alice has a sequence a = ⟨a1, a2, . . . , an⟩ of numbers, where
each ai ∈ [1, n1+ϵ], and Bob has a subset T ⊂ [n]. Compute maxi∈[n]\T ai.

Let X, Y, Z, Z1, Z2 be random variables. Define the Shannon entropy of X as H(X) =∑
x Pr(X = x) log( 1

Pr(X=x) ). Define the conditional entropy of Z1 given Z as H(Z1 | Z) =∑
z H(Z1|Z = z) Pr(Z = z), and the mutual information as I(Z1; Z) = H(Z) − H(Z | Z1).

Define the conditional mutual information of Z1, Z2 given Z as I(Z1; Z2 | Z) = H(Z1 |
Z) − H(Z1 | Z2, Z). X → Y → Z is said to form a Markov chain if the conditional
distribution of Z depends only on Y and is conditionally independent of X.

▶ Theorem 16. For any constant 0 ≤ δ < 1, any randomized one-way communication
protocol for Partial Maximization with success probability at least 1−δ has communication
complexity Ω(n log n) bits.

Proof. The proof has a similar fashion as Augmented Indexing problem [29, 10]. Consider the
case where each Xj , for j ∈ [n], is picked uniformly at random from [(j−1)·nϵ +1, j ·nϵ]. Note
that X1 < X2 < · · · < Xn and that H(Xj) = ϵ log n for each j ∈ [n]. For each j ∈ [n], let
Tj = [j + 1, n] and let X ′

j be Bob’s guess of maxi∈[n]\Tj
Xi = Xj . Let M be the message sent

from Alice to Bob. Since Pr(X ′
j = Xj) ≥ 1−δ and Xj → (M, Xj+1, Xj+2, . . . , Xn) → X ′

j is a
Markov chain, by Fano’s Inequality [13], for all j ∈ [n], we have H(Xj | M, Xj+1, . . . , Xn) ≤
δ · ϵ log n + 1, and hence,

I(Xj ; M | Xj+1, . . . , Xn) = H(Xj | Xj+1, . . . , Xn) − H(Xj | M, Xj+1, . . . , Xn)
= H(Xj) − H(Xj | M, Xj+1, . . . , Xn)
≥ (1 − δ)ϵ log n − 1,

where the second equality holds because Xj , Xj+1, . . . , Xn are mutually independent. By
Theorem 2.5.2 of [13], H(M) ≥ I(X1, X2, . . . , Xn; M) =

∑n
j=1 I(Xj ; M |Xj+1, . . . , Xn) =

Ω(n log n). Finally, by Theorem 2.6.4 of [13] the message M has at least 2Ω(n log n) possibilities,
hence the length of the longest possible M is Ω(n log n), completing the proof. ◀
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Theorem 16, plus a reduction from the Partial Maximization problem to the p-WT-
Matching problem with parameter value k = 1, gives directly the following result.

▶ Theorem 17. Any randomized streaming algorithm for p-WT-Matching that has success
probability at least 2/3 requires space k2 · Ω(W (log W + 1)).

7 Concluding Remarks

In this paper, we presented streaming algorithms for the fundamental k-matching problem,
for both unweighted and weighted graphs, and in both the insert-only and dynamic streaming
models. While matching the best space complexity of known algorithms, which has been
proved to be either optimal or near-optimal, our algorithms have much faster update times.
For the insert-only model, our algorithm is optimal in both space and update time complexities.
For the dynamic model, according to the new lower bounds we developed, our algorithms
are near-optimal (i.e., optimal up to a poly-logarithmic factor) in both space and update
time complexities. Our result for the weighted k-matching problem was achieved using a
newly-developed structural result that is of independent interest. We believe that our results
and techniques can have wider applicability for other fundamental graph problems.

Most work on weighted graph streams, including ours, assumes that the weight of an edge
is unchanged in the stream [1, 2, 7, 20, 23]. We give an interesting observation below to justify
this assumption and show that, if this assumption is lifted, then the space complexity of the
k-matching problem can be much larger than the desirable space complexity for streaming
algorithms. This lower bound is derived by a reduction from the following problem:

Given a data stream S ′ = x1, x2, . . . , xm, where xi ∈ {1, . . . , n′}, let ci = |{j | xj = i}|
be the number of occurrences of i in the stream S ′. Compute F∞ = max1≤i≤n′ ci.

▶ Theorem 18 ([32]). For data streams of length m, any randomized streaming algorithm
computing F∞ to within a (1 ± 0.2) factor with probability 2/3 requires space Ω(min{m, n′}).

Now we consider the p-WT-Matching problem in the more generalized dynamic stream-
ing model, in which an instance of p-WT-Matching is given by a parameter k and a
stream S = (ei1 , ∆1(ei1)), . . . , (eij , ∆j(eij )), . . . of updates of edge weights in the underlying
graph G, where the update (eij

, ∆j(eij
)) changes the current weight wt(eij

) of edge eij
to

wt(eij
) = wt(eij

) + ∆j(eij
), assuming wt(·) = 0 initially and wt(·) ≥ 0 for all updates. This

model generalizes the dynamic graph streaming model in [7].

▶ Theorem 19. Under the more generalized dynamic streaming model, any randomized
streaming algorithm that, with probability at least 2/3, approximates the maximum weighted
1-matching of the graph to a factor of 6/5 uses space Ω(min{m, (n−1)(n−2)

2 }).

Proof. Given a data stream S ′ = x1, x2, . . . , xm, where each xi ∈ {1, . . . , n′}, we define a
graph stream S for a weighted graph G on n vertices, where n satisfies (n − 1)(n − 2)/2 <

n′ ≤ n(n − 1)/2. Let V = {0 . . . , n − 1} be the vertex-set of G. We first define a bijective
function χ : {(i, j) | i < j ∈ [n]−} −→ [ n(n−1)

2 ]. Let χ−1 be the inverse function of χ. Then,
we can translate S ′ to a general dynamic graph streaming S of underlying weighted graph
G by corresponding with xi the i-th element (χ−1(xi), 1) of S, for i ∈ [m]. Observe that
computing F∞ of S ′ is equivalent to computing a maximum weighted 1-matching for the
graph stream S of G. Let uv be a maximum weighted 1-matching of S, then χ(uv) is F∞ of
S ′. By Theorem 18, it follows that any randomized approximation streaming algorithm that
approximates the maximum weighted 1-matching of G to a 6

5 -factor with probability at least
2/3 uses space Ω({m, (n−1)(n−2)

2 }), thus completing the proof. ◀
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Abstract
Two-way online correlated selection (two-way OCS) is an online algorithm that, at each timestep,
takes a pair of elements from the ground set and irrevocably chooses one of the two elements,
while ensuring negative correlation in the algorithm’s choices. Whilst OCS was initially invented
by Fahrbach, Huang, Tao, and Zadimoghaddam to break a natural long-standing barrier in the
edge-weighted online bipartite matching problem, it is an interesting technique on its own due to
its capability of introducing a powerful algorithmic tool, namely negative correlation, to online
algorithms. As such, Fahrbach et al. posed two tantalizing open questions in their paper, one of
which was the following: Can we obtain n-way OCS for n > 2, in which the algorithm can be given
n > 2 elements to choose from at each timestep?

In this paper, we affirmatively answer this open question by presenting a three-way OCS. Our
algorithm uses two-way OCS as its building block and is simple to describe; however, as it internally
runs two instances of two-way OCS, one of which is fed with the output of the other, the final output
probability distribution becomes highly elusive. We tackle this difficulty by approximating the
output distribution of OCS by a flat, less correlated function and using it as a safe “surrogate” of the
real distribution. Our three-way OCS also yields a 0.5093-competitive algorithm for edge-weighted
online matching, demonstrating its usefulness.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases online correlated selection, multi-way OCS, online algorithms, negative
correlation, edge-weighted online bipartite matching

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.49

Funding This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2019R1C1C1008934).

Acknowledgements We thank the anonymous reviewers for their helpful comments.

1 Introduction

Online correlated selection (OCS) is an online algorithm that, at each timestep, takes a subset
of the ground set as the input and irrevocably chooses a single element from the subset. When
every input subset has cardinality n, we call it n-way OCS in particular. The aim of online
correlated selection is to ensure a certain level of negative correlation in the choice made
by the algorithm. For example, suppose we run a two-way OCS and afterwards specify m

timesteps that contained some common element. The probability that this element was never
chosen would be (1/2)m if the algorithm made independent and uniformly random choices;
the goal of two-way OCS is to reduce this probability by introducing negative correlations.
(See Definition 4 for a full definition that quantifies the desired amount of reduction.)
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OCS was first invented by Fahrbach, Huang, Tao, and Zadimoghaddam [10] to attack the
edge-weighted online bipartite matching problem. Negative correlation has proven to be a
very powerful technique in approximation algorithms design (see, e.g., [34, 2, 7] for a limited
list of examples); this suggests that OCS as well bears high potential as a general tool in
online algorithms design rather than as a specialized technique to solve a particular problem.
This opportunity was also observed by the breakthrough paper of Fahrbach et al. [10] and
recently exemplified by Huang, Zhang, and Zhang [23], who devised a certain variant of OCS
called panoramic OCS to solve the AdWords problem with general bids.

In light of such value of OCS as an algorithmic tool, Fahrbach et al. [10] raised in their
paper two follow-up questions that arise quite naturally: Can we improve the performance
of their two-way OCS? Can we obtain an n-way OCS for n > 2? This paper affirmatively
answers the latter question. In this paper, we present a simple three-way OCS and analyze
its performance. We will also show that our three-way OCS can be used to improve the
previous competitive ratio of 0.5086 due to Fahrbach et al. to give a new 0.5093-competitive
algorithm for edge-weighted online bipartite matching.

In fact, the construction itself of our three-way OCS is easy to describe. It internally
executes two instances of two-way OCS. Upon arrival of a triple, we choose two of the three
elements uniformly at random, and let the first two-way OCS choose one of them. We then
pass its output, along with the element that was left out of the first OCS, to the second OCS.
The second OCS chooses one of these two elements; this choice becomes the final output of
this timestep.

In Section 3, we analyze the performance of our three-way OCS for a special case first:
we bound the probability that a certain element, say u, is never chosen for k consecutive
timesteps whose triples contain u. It is not that we require these k timesteps to be consecutive
in the original input: they need to be consecutive in the subsequence of timesteps on which
u appeared in the triple. By the definition of two-way γ-OCS, the probability that the
second two-way OCS never chooses u is no greater than (1/2)j(1 − γ)max(j−1,0) for some
constant γ, where j is the number of times u was passed to the second OCS during those k

timesteps. Since this bound depends only on j, the question really reduces to determining
(the probability distribution of) j.

In order for u to be passed to the second OCS, it needs to be either left out of the first
OCS or output by it. It is easy to count how many times u is left out of the first OCS: this
follows a binomial distribution. Therefore, the challenge is in counting the number of times u

is output by the first OCS. Unfortunately, its probability distribution highly depends on the
actual input to the first OCS, rather than the number of times u is shown to the first OCS.
Nonetheless, the following observation is crucial in coping with this difficulty: the probability
distribution of the number of times Fahrbach et al.’s two-way OCS chooses u is a unimodal
symmetric distribution. Recall that the probability that the second OCS never chooses u is
bounded by (1/2)j(1 − γ)max(j−1,0), which is “nearly” convex. Therefore, even though we
cannot exactly calculate the probability distribution of j without the full knowledge of the
input, the above observation implies that we can instead use a “flatter” unimodal symmetric
distribution in lieu of the actual distribution of j. Thanks to the near-convexity, this would
give a valid upper bound on the probability. We formalize what a “flatter” distribution is by
defining the notion of central dominance as follows.

▶ Definition 1 (Central Dominance). Given two discrete symmetric probability distributions
D1 and D2 on {0, 1, · · · , x} whose probability mass functions are p1 and p2, respectively,
we say D1 centrally dominates D2 if there exists z ∈ [0, x

2 ] such that, for any integer
y ∈ [ x

2 − z, x
2 + z], p1(y) ≥ p2(y), and for any integer y ∈ [0, x

2 − z) ∪ ( x
2 + z, x], p1(y) ≤ p2(y).
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We then construct our “surrogate” distribution that is centrally dominated by any possible
probability distribution of j. This distribution depends only on the number of times the first
OCS is given u. It is therefore much more amenable and allows us to obtain a bound on the
probability that our three-way OCS never chooses u from the given consecutive triples.

In Section 4, we generalize this bound to the non-consecutive case, i.e., a disjoint set of
consecutive subsequences of timesteps containing u. To obtain this bound, we perform a set
of surgical operations that modify the input to the first OCS, which are designed to reduce
negative correlation. These operations are inspired by those of Fahrbach et al. [10] that
they used to obtain a similar generalization. In our case, however, we face a new obstacle:
previously, it sufficed to bound only the probability that the two-way OCS never chooses a
given element, since the output of that OCS was the final output. Our final output on the
other hand is determined by the second OCS, and if our modification changes the output
distribution of the first OCS, this may affect the output of the second OCS in an obscure way.
We prove that a set of careful surgical operations can remove all correlations while ensuring
that the bound is not affected. Once the correlations are removed, the general-case bound
can be simply given as the product of our bounds from Section 3 for single subsequences.

▶ Theorem 2 (simplified). Consider a set of m disjoint consecutive subsequences of timesteps
whose triples contain some element u of the ground set. Let k1, . . . , km be the lengths of
these subsequences. The probability that our three-way OCS never chooses u from these m

subsequences is at most

m∏
i=1

[(
2
3

)ki

(1 − δ1)max(ki−1,0)(1 − δ2)max(ki−2,0)

]
,

where δ1 = 0.0309587 and δ2 = 0.0165525.

Our three-way OCS can be applied to edge-weighted and unweighted online bipartite
matching [33].

1.1 Related Work
Introduced by Karp, Vazirani, and Vazirani [25], the unweighted online bipartite matching has
been intensively and extensively studied with alternative proofs [16, 4, 8, 9] and under various
settings including stochastic models [12, 29, 17, 32, 13, 20], fully online models [18, 19, 22],
and general arrival models [14]. The study of edge-weighted online bipartite matching problem
was initiated by Kalyanasundaram & Pruhs [24] and Khuller, Mitchell, & Vazirani [27],
who independently considered this problem under the metric assumption. Feldman, Korula,
Mirrokni, Muthukrishnan, and Pál [11] first investigated the edge-weighted version on
arbitrary weights with free disposal, and more thorough understanding of this problem was
achieved by subsequent work [28, 10]. Other variants and applications of online bipartite
matching have been studied as well, including AdWords [31, 23], vertex-weighted version [1,
21, 13], stochastic or random arrival models [17, 26, 6, 20], and the windowed version [3].
We refer interested readers to the survey of Mehta [30].

Recent related works. Recently, after the authors independently obtained the present
results but prior to announcing them, the authors learned that two closely related papers
were announced on arXiv [15, 5].

The other open question raised by Fahrbach et al. [10] than the one answered by this
paper was to improve two-way OCS. Gao, He, Huang, Nie, Yuan, and Zhong [15] addresses
this question by giving a novel automata-based OCS, successfully departing from the previous
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matching-based approach: their two-way OCS is a 0.167-OCS. In addition to this, they also
give an improved primal-dual analysis and a variant of two-way OCS specifically adapted for
edge-weighted online bipartite matching, yielding a 0.519-competitve algorithm. Finally, they
consider a weaker relaxed notion of OCS called semi-OCS, where the probability bound holds
only for consecutive prefixes. They provide a multi-way version of this semi-OCS that leads
to a 0.593-competitive algorithm for unweighted/vertex-weighted online bipartite matching.

Blanc and Charikar [5] generalize Fahrbach et al.’s definition of OCS in two ways and
give m-way OCS for any m. One of the two generalizations, called (F, m)-OCS, gives the
probability bound specified as a discrete function rather than a fixed-form formula such as
(1/2)j(1 − γ)max(j−1,0). The other is called continuous OCS, which allows an element of the
ground set to appear in a subset “to a fraction”, where the probability bound is now specified
as a continuous function. Their continuous OCS along with their improved primal-dual
analysis gives a 0.5368-competitive algorithm for edge-weighted online bipartite matching.

Considering these new results, an interesting question is whether the techniques from
these papers and our independent result can together bring improvements in OCS or related
problems such as online matching. In fact, since our framework treats the second two-
way OCS as a black-box, any improved two-way OCS can be directly plugged into our
three-way OCS. Combining the new two-way 0.167-OCS of Gao et al. [15] with our results,
for example, immediately yields a 0.5132-competitive algorithm for edge-weighted online
bipartite matching.

2 Preliminaries

In this section, we present some notation, definitions, and previous results to be used
throughout this paper. Let us first introduce the definition of n-way OCS and two-way
γ-OCS.

▶ Definition 3 (n-way OCS). Given a ground set, an n-way OCS is an online algorithm that,
at each iteration, takes a subset of size n as the input and irrevocably chooses an element
from the subset.

For any element u of the ground set, we say a subsequence of subsets containing u is
consecutive if every subset containing u that arrives between the first and last subsets of
the subsequence is also in the subsequence. We also say that two or more subsequences of
subsets containing u are disjoint if no two of these subsequences share a subset.

For example, suppose we are given {u, v}, {u, w}, {v, w}, {u, x}, and {u, y} during five
timesteps, in that order. Observe that ({u, v}, {u, w}, {u, x}) is a consecutive subsequence
containing u, but ({u, v}, {u, x}, {u, y}) is not because {u, w} appears between {u, v} and
{u, x}. Note also that ({u, v}, {u, w}) and ({u, y}) constitute a set of (two) disjoint consec-
utive subsequences containing u.

▶ Definition 4 (Two-way γ-OCS). A two-way γ-OCS is a two-way OCS such that, for
any element u and a set of m disjoint consecutive subsequences of pairs containing u of
lengths k1, · · · , km, the probability that u never gets chosen by the OCS from any of the given
subsequences is at most

∏m
i=1

( 1
2
)ki (1 − γ)max(ki−1,0).

Fahrbach et al. [10] presents two versions of two-way OCS with varying performance
guarantees. We will use both in later sections. For the sake of completeness, we present a
full description of the two-way 1/16-OCS of Fahrbach et al. below.
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1/16-OCS. We will define what is called the ex-ante graph first. Although the algorithm
does not need to explicitly construct this graph, it helps simplify the presentation. The
vertices of the ex-ante graph correspond to the input pairs. For each pair, say {u, v}, we
introduce an edge between this pair and the immediately following pair that contains u,
and likewise for v. For example, if an element u appears at timesteps 2, 4, and 7, pairs 2
and 4 are adjacent, and so are 4 and 7. This implies that every vertex has degree of at
most 4. We annotate each edge with the common element that caused this edge. For example,
if two pairs i = {u, v} and j = {v, w} are adjacent due to v, let (i, j)v denote the edge
(and its annotation). Note that the ex-ante graph may have parallel edges (with different
annotations).

The algorithm samples exactly three random bits for each pair (or vertex). We will use
them to define what is called the ex-post graph and further determine the output of the
algorithm. The ex-post graph is on the same set of vertices. The first random bit is used to
determine if the vertex becomes a “sender” or a “receiver”. If it becomes a sender, we use
the second random bit to choose one of the two elements of the pair, and the sender will
“want” to select the edge to the immediately following pair that shares the chosen element (if
it exists). Similarly, if a vertex becomes a receiver, we use the second random bit to choose
one element, and the receiver will “want” to select the edge to the immediately preceding
pair that shares the element. Each edge of the ex-ante graph enters the ex-post graph if and
only if both of its endpoints want to select the edge. Observe that the ex-post graph is a
matching in the ex-ante graph.

Finally, the output of the algorithm is determined as follows. For every unmatched vertex,
its output is determined solely by its third random bit. For each edge in the ex-post graph,
we negatively correlate the choice of the two endpoints: we use the third random bit of the
sender to determine the output of the sender, and the output of the receiver is determined
so that the decision made for the shared element is the opposite. For example, if we have an
edge annotated with u in the ex-post graph and the sender did not choose u, we choose u for
the receiver; otherwise, we do not choose u for the receiver. The third random bit of the
receiver is discarded.

▶ Lemma 5 (Fahrbach et al. [10]). This algorithm is a two-way 1
16 -OCS.

This algorithm also has the following useful property.

▶ Lemma 6 (Fahrbach et al. [10]). Given a consecutive subsequence of pairs containing
an element of length k input to this algorithm, the probability that there does not exist
any edges in the subgraph of the ex-post graph induced by the consecutive pairs is at most
(1 − 1/16)max(k−1,0).

The other version is a 13
√

13−35
108 -OCS.

▶ Lemma 7 (Fahrbach et al. [10]). There exists a two-way 13
√

13−35
108 -OCS.

In the unweighted online bipartite matching problem, we are given a bipartite graph
G = (L ∪ R, E) where we only know L in advance. Each vertex v ∈ R arrives one by one,
and the edges adjacent with v are only then revealed. Upon each arrival of v, we irrevocably
decide whether we match v, and if so, to which exposed adjacent vertex in L we match. The
objective is to find a matching of the maximum size in G.

In the edge-weighted online bipartite matching problem with free disposal, we are given a
bipartite graph G = (L ∪ R, E) as well as an edge weight wuv ≥ 0 for each (u, v) ∈ E, where
we only know L in advance, again. Each vertex v ∈ R arrives one at a timestep, and the
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edges adjacent with v and their edge weights are disclosed at that time. Upon each arrival
of v, we decide whether we match v, and if so, to which adjacent vertex in L we match.
We remark that v can be matched to a vertex u that is already matched, after disposing of
the edge incident with u in the current matching (free disposal). The objective is to find a
maximum-weight matching in G.

3 Three-Way Online Correlated Selection

In this section, we present our three-way OCS and analyze it by considering the special case
where we are interested in a single consecutive subsequence of triples containing a common
element. We will extend this to the general case in Section 4.

3.1 Algorithm
Let A and B be two-way OCS algorithms whose random choices are independent. In particular,
we choose Fahrbach et al.’s 1/16-OCS as A and 13

√
13−35

108 -OCS as B. Let γA := 1/16 and
γB := 13

√
13−35

108 . We use the 1/16-OCS as A due to its property that, in its ex-post graph,
each edge’s existence is determined by (the random bits of) its endpoints only.

Upon arrival of a triple, say {u, v, w}, we choose a pair uniformly at random out of
{{u, v}, {u, w}, {v, w}}. We refer to this step as the random pair choice phase. Without loss
of generality, suppose that {u, v} is chosen. We then input {u, v} to A and let it choose one
element from the pair. Let us say (without loss of generality again) that u is returned by A.
Now we let B choose one element from {u, w}. The element chosen by B is the final output
of this iteration.

3.2 Overview of the Analysis
The goal of Section 3 is to prove the following theorem.

▶ Theorem 8. Consider a consecutive subsequence of timesteps whose triples contain some
element u of the ground set. Let k be the length of the subsequence. The probability that our
three-way OCS never chooses u during these k timesteps is at most

η(k) := c1tk
1 + c2tk

2 − c3tk
3 − c4tk

4

for some c1 ≈ 0.957795, c2 ≈ 0.176756, c3 ≈ 0.011047, c4 ≈ 0.131738, t1 ≈ 0.630024, t2 ≈
0.599919, t3 ≈ 0.148345, and t4 = 0.3125, which is bounded from above by(

2
3

)k

(1 − δ1)max(k−1,0)(1 − δ2)max(k−2,0),

where δ1 = 0.0309587 and δ2 = 0.0165525.

In what follows, we will fix an arbitrary set of random choices made during the random
pair choice phase, and condition on them. Let x be the number of pairs containing u from
the subsequence that are passed to A. Observe that these pairs also form a consecutive
subsequence to A, and that the number of u’s that are left out of the first OCS is k − x.

For y = 0, · · · , x, let p(x, y) be the (conditional) probability that A returns y number of
u’s from these pairs. Then, we can see that the (conditional) probability that u never gets
chosen from the given consecutive triples is bounded from above by

x∑
y=0

p(x, y)
(

1
2

)k−x+y

(1 − γB)max(k−x+y−1,0) (1)
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by Lemma 7 and the fact that the pairs containing u passed to B are also consecutive (see also
Definition 4). To simplify the presentation, we introduce two shorthands: for a probability
mass function p′ defined on {0, · · · , x}, let

θ(x, p′) :=
x∑

y=0
p′(y) ·

(
1
2

)y

(1 − γB)y−1 ; and (2)

θ′(x, p′) :=
x∑

y=0
p′(y) ·

(
1
2

)y

(1 − γB)max(y−1,0)
. (3)

Observe that (1) is equal to
( 1−γB

2
)k−x

θ(x, p(x, ·)) if k > x and θ′(k, p(k, ·)) otherwise (if
k = x).

We would like to bound (1), but unfortunately, p(x, y) depends on the actual input to A,
not just x. Yet, we can circumvent this problem by exploiting the behavior of A. Recall that
A constructs the ex-post graph (which is a matching in the ex-ante graph) and negatively
correlate the two endpoints of each edge in the ex-post graph. Therefore, when we consider
the subgraph of the ex-post graph induced by the given consecutive pairs, we can observe
that

for each edge in this subgraph, exactly one u is chosen from its two endpoints, and
if a vertex is isolated in this subgraph, u is chosen with probability 1/2, independently
from the other vertices.

This observation implies that the probability distribution p(x, ·) is a unimodal symmetric
distribution. Moreover, the more likely A puts an edge in the ex-post graph, the pointier
the distribution would be. Using this property, we will construct an imaginary probability
distribution {p∗(x, y)}y=0,··· ,x such that

p∗(x, y) is flatter than (or, formally, centrally dominated by) any distribution p that
results from A (see the proof of Lemma 10); and
p∗(x, y) only depends on x, not the input itself.

We will further demonstrate that, in (2) and (3), substituting p′ with a centrally dominated
distribution would only overestimate (2) and (3) (Lemma 9). Intuitively speaking, this is
because (1/2)y(1 − γB)y−1 and (1/2)y(1 − γB)max(y−1,0) are (nearly) convex functions.

Thus, the probability that our three-way OCS never chooses u from the given consecutive
triples can finally be bounded from above by

η(k) :=
k∑

x=0
binom

(
k, x,

2
3

) [
x∑

y=0
p∗(x, y)

(
1
2

)k−x+y

(1 − γB)max(k−x+y−1,0)

]
, (4)

where binom(k, x, r) represents the probability of the binomial distribution for x successes
out of k trials with probability r (Lemma 11).

3.3 Using a Centrally Dominated Distribution
Recall that k denotes the length of the subsequence, i.e., the number of triples, and x denotes
the number of pairs containing u passed to A. Let y be the number of u’s returned by A;
then, B receives a consecutive subsequence of pairs containing u of length k − x + y.

We remark that the probability that u is never chosen by B, conditioned on the event that
A takes x pairs containing u and outputs y number of u’s, can be bounded by

( 1
2
)k−x+y ·

(1 − γB)max(k−x+y−1,0) from Lemma 7. Note that this bound depends only on the lengths k,
x, and y, not the actual input to B.
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For A, on the other hand, we need to calculate the probability that exactly y number
of u’s are chosen by A from the given subsequence of pairs. However, this probability
distribution highly depends on the input to A; therefore, we cannot conveniently fix a
distribution parameterized by length x anymore. Nonetheless, we will show that there exists
a bounding distribution, depending only on x, such that it yields a valid upper bound on
the probability that u is never chosen by our entire algorithm from the given subsequence of
triples.

3.3.1 Central Dominance
To construct the bounding distribution, we need the notion of central dominance. Recall the
definition.

▶ Definition 1 (Central Dominance). Given two discrete symmetric probability distributions
D1 and D2 on {0, 1, · · · , x} whose probability mass functions are p1 and p2, respectively,
we say D1 centrally dominates D2 if there exists z ∈ [0, x

2 ] such that, for any integer
y ∈ [ x

2 − z, x
2 + z], p1(y) ≥ p2(y), and for any integer y ∈ [0, x

2 − z) ∪ ( x
2 + z, x], p1(y) ≤ p2(y).

Intuitively speaking, this definition indicates how flat a symmetric probability distribution
is. Following is the lemma that formalizes why a flat distribution helps bound the probability
that u never gets chosen from our three-way OCS. The definitions of θ(·, ·) and θ′(·, ·) can be
found in (2) and (3), respectively. It is easy to intuitively see that the first half of the lemma
should hold; yet, θ′ is only nearly convex and requires some work.

▶ Lemma 9. Suppose we are given two discrete symmetric distributions D1 and D2 on
{0, 1, · · · , x} whose probability mass functions are p1 and p2, respectively. If D1 centrally
dominates D2, we have θ(x, p1) ≤ θ(x, p2) and θ′(x, p1) ≤ θ′(x, p2).

Proof. If x = 0, 1, it is trivial since there is only one possible symmetric distribution. Now
we assume that x ≥ 2. Given a discrete symmetric distribution with a probability mass
function p, let us consider the following operation: For some w, z ∈ [0, x

2 ] such that w > z,
we decrease p( x

2 − z) and p( x
2 + z) by some ϵ > 0, and increase p( x

2 − w) and p( x
2 + w) by

ϵ, instead. We can observe that p still forms a valid probability distribution, and changes
θ(x, p) by

∆θ(x, p) = ϵ
(1

2

)x/2
(1 − γB)x/2−1

[(1 − γB

2

)w

+
(1 − γB

2

)−w

−
(1 − γB

2

)z

−
(1 − γB

2

)−z
]

.

Let α := (1 − γB)/2 and f(t) := αt + α−t. Since f ′(t) = ln α · (αt − α−t), we can verify that
f(t) is increasing on t ≥ 0. Hence, we can see that

∆θ(x, p) = ϵ

(
1
2

)x/2
(1 − γB)x/2−1(f(w) − f(z)) ≥ 0.

Since D1 centrally dominates D2, we can transform p1 into p2 by transferring the mass
through a few times of the above operation with proper w’s, z’s, and ϵ’s. For each application,
θ(x, p) only increases, yielding that θ(x, p1) ≤ θ(x, p2).

Proving the other statement is more subtle. Suppose we transform p1 into p2 through
the same method. If we increase the probabilities of x

2 − w and x
2 + w where w < x

2 , we can
apply to the above analysis since the change of θ′(x, p) is exactly the same as ∆θ(x, p).

It remains to consider when the probabilities of 0 and x get increased by ϵ. Assume that
we instead decrease the probabilities of x

2 − z and x
2 + z where 0 ≤ z ≤ x

2 − 1. The change of
θ′(x, p) would be



Y. Shin and H.-C. An 49:9

∆θ′(x, p) := ϵ

[
1 +

(1
2

)x

(1 − γB)x−1 −
(1

2

)x/2−z

(1 − γB)x/2−z−1 −
(1

2

)x/2+z

(1 − γB)x/2+z−1
]

.

Let β := (1/2)x/2(1 − γB)x/2−1 and g(z) := (2/(1 − γB))z. We then rewrite ∆θ′(x, p) as

∆θ′(x, p) = ϵ
[
1 + β2(1 − γB) − β(g(z) + 1/g(z))

]
.

The partial derivative of ∆θ′(x, p) with respect to z is

∂∆θ′(x, p)
∂z

= −ϵβ ln
(

2
1 − γB

) [(
2

1 − γB

)z

−
(

1 − γB

2

)z]
.

Note that ∂∆θ′(x,p)
∂z ≤ 0 for z ≥ 0. Thus, we can bound ∆θ′(x, p) from below by plugging

z = x
2 − 1, i.e.,

∆θ′(x, p) ≥ ϵ

[
1
2 − 1 + γB

2

(
1
2

)x−1
(1 − γB)x−2

]
.

Since x ≥ 2, we have

∆θ′(x, p) ≥ ϵ

[
1
2 − 1 + γB

4

]
≥ 0,

where the last inequality comes from the fact that γB < 1. ◀

3.3.2 Bounding Distribution
In this section, we construct the bounding distribution. As was noted earlier, A negatively
correlates the endpoints of every edge of the ex-post graph. Therefore, we can write the
probability p(x, y) that the two-way OCS chooses precisely y number of u’s out of the given
x consecutive pairs if we are given q ∈ R⌊x/2⌋+1

+ defined as follows: for i = 0, · · · , ⌊ x
2 ⌋, qi is

the probability that exactly i edges of the ex-post graph have both endpoints in the given
subsequence. Note that

∑⌊x/2⌋
i=0 qi = 1. We have

p(x, y) = q0 ·
(

x

y

) (
1
2

)x

+q1 ·
(

x − 2
y − 1

) (
1
2

)x−2
+ · · ·+q⌊x/2⌋ ·

(
x − 2⌊x/2⌋
y − ⌊x/2⌋

) (
1
2

)x−2⌊x/2⌋

,

where
(

b
c

)
:= 0 if b < c or c < 0.

Note that q (and therefore in turn p) depends on the actual input to A. Given any
probability vector q ∈ R⌊x/2⌋+1

+ , let D(q) (or D(q0, · · · , q⌊x/2⌋)) denote the probability
distribution {p(x, y)}y=0,...,x. It is easy to verify that, for all q, D(q) is a valid probability
distribution that is symmetric on y = x

2 .
Now we construct the bounding distribution. For x = 0, · · · , k, let αx := (1−γA)max(x−1,0)

for γA = 1/16. We choose D(αx, 1 − αx, 0, · · · , 0) as our bounding distribution. Let p∗(x, ·)
be the probability mass function of the bounding distribution, i.e., for each y = 0, · · · , x,

p∗(x, y) :=
{

αx

( 1
2
)x

, if y = 0 or y = x,

αx

(
x
y

) ( 1
2
)x + (1 − αx)

(
x−2
y−1

) ( 1
2
)x−2

, otherwise.

Following is a key lemma to show that D(αx, 1 − αx, 0, · · · , 0) is a good choice of the
centrally dominated distribution.
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▶ Lemma 10. Given a consecutive subsequence of pairs containing u of length x (0 ≤ x ≤ k),
let q ∈ R⌊x/2⌋+1

+ be the probability vector realized by A: i.e., qi is the probability that
exactly i edges of the ex-post graph have both endpoints in the given subsequence. We then
have θ(x, p(x, ·)) ≤ θ(x, p∗(x, ·)) and θ′(x, p(x, ·)) ≤ θ′(x, p∗(x, ·)), where p(x, ·) follows the
distribution D(q).

Proof. For x = 0, 1, it is easy to see that p(x, y) = p∗(x, y) for every possible y since
q0 = 1 = αx. For x ≥ 2, we construct intermediate distributions as follows:

D0 := D(q0, 1 − q0, 0, · · · , 0),
D1 := D(q0, q1, 1 − q0 − q1, · · · , 0),

· · · ,

D⌊x/2⌋−1 := D(q0, q1, q2, · · · , 1 −
∑⌊x/2⌋−1

i=0 qi) = D(q).

We claim that D0 centrally dominates D(αx, 1−αx, 0, · · · , 0) and, for each j = 1, · · · , ⌊ x
2 ⌋−1,

Dj centrally dominates Dj−1. Then, by repeatedly applying Lemma 9, we can prove the
lemma.

Let us first prove that D0 centrally dominates D(αx, 1 − αx, 0, · · · , 0). Since both
distributions are symmetric, it is sufficient for us to consider y ∈ [0, x

2 ]. By Lemma 6, we
have q0 ≤ αx. If q0 = αx, D0 is equivalent to D(αx, 1 − αx, 0, · · · , 0), completing the proof.
We now assume q0 < αx. If y = 0, D0 has the smaller probability. This implies that there
must exist a point in [1, x

2 ] where D0 has the greater probability since both distributions are
valid.

Let y∗ be the smallest such point. We show that for any integer y ∈ [y∗, x
2 ], D0 has

the greater probability. Let g(y) := (q0 − αx)
(

x
y

) ( 1
2
)x + (αx − q0)

(
x−2
y−1

) ( 1
2
)x−2 be the

subtraction of the probability of D0 from that of D(αx, 1 − αx, 0, · · · , 0) at point y. It
suffices to prove that g(y) is non-decreasing on [y∗, x

2 ] ⊆ [1, x
2 ]. By rewriting the formula, we

have g(y) = (αx − q0)
(

x
y

) ( 1
2
)x

(
y(x−y)
4x(x−1) − 1

)
, and it is not hard to see that the function is

increasing on [1, x
2 ].

A similar argument can be applied to show that, for each j = 1, · · · , ⌊ x
2 ⌋ − 1, Dj centrally

dominates Dj−1. Indeed, if qj = 1 −
∑j−1

i=0 qi, Dj is equivalent to Dj−1. We thus assume that
qj < 1 −

∑j−1
i=0 qi. Observe that Dj has the same probabilities as Dj−1 for y = 0, · · · , j − 1,

and has the smaller probability for y = j; hence, there exists a point in
[
j + 1, x

2
]

where Dj

has the greater probability, and let y∗ be the smallest such value. Again, let g(y) be the
difference obtained by subtracting the probability of Dj−1 from that of Dj at point y. We
can write

g(y) = (1 −
j∑

i=0
qi)

[(
x − 2j − 2
y − j − 1

) (
1
2

)x−2j−2
−

(
x − 2j

y − j

) (
1
2

)x−2j
]

= (1 −
j∑

i=0
qi)

(
x − 2j

y − j

) (
1
2

)x−2j [
(y − j)(x − y − j)

4(x − 2j)(x − 2j − 1) − 1
]

,

implying that g(y) is increasing on
[
y∗, x

2
]

⊆
[
j + 1, x

2
]
. ◀

We are now ready to bound the probability that our three-way OCS never chooses the
element u from the consecutive subsequence of triples of length k. Let binom(k, x, r) be the
probability mass function of the binomial distribution for x successes out of k trials with
probability r, i.e., binom(k, x, r) :=

(
k
x

)
rx(1 − r)k−x. Finally, we define η(k) as follows and it

will be the desired bound.
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η(k) :=
k∑

x=0
binom

(
k, x,

2
3

) [
x∑

y=0
p∗(x, y)

(
1
2

)k−x+y

(1 − γB)max(k−x+y−1,0)

]
.

▶ Lemma 11. Given a consecutive subsequence of triples containing u of length k, the
probability that our three-way OCS never chooses u from the subsequence is at most η(k).

Proof. Conditioned on the pairs selected by the random pair choice phase, let x be the
number of pairs containing u inserted into A. Recall that these pairs form a consecutive
subsequence. Let p(x, y) denote the probability that A returns y number of u’s from this
subsequence. Note that p follows D(q) for some q.

Note that, if A returns y number of u’s, B eventually takes k −x+y consecutive pairs that
originate from the given consecutive triples. By Lemma 7, we can see that the probability
that u is never selected from the given consecutive subsequences of triples is bounded from
above by

x∑
y=0

p(x, y)
(

1
2

)k−x+y

(1 − γB)max(k−x+y−1,0),

which can be rewritten as
( 1−γB

2
)k−x

θ(x, p(x, ·)) if x < k or θ′(k, p(x, ·)) if x = k. In any
case, by Lemma 10, it can be further bounded by

x∑
y=0

p∗(x, y)
(

1
2

)k−x+y

(1 − γB)max(k−x+y−1,0).

It is noteworthy that this value depends only on the number x of u’s selected by the random
pair choice phase. Observe that the probability that x pairs containing u are chosen from k

consecutive triples by the random pair choice phase is exactly binom(k, x, 2/3), completing
our proof. ◀

It still remains to calculate the bounds on η(k) in the same form as stated in Theorem 8.
We refer the interested readers to [33].

4 General Bound

We now extend our discussion to the general case and provide a bound for a set of disjoint
consecutive subsequences. The following theorem states this bound.

▶ Theorem 2 (restated). Consider a set of m disjoint consecutive subsequences of triples
containing an element u. Let k1, . . . , km be the lengths of these subsequences. The probability
that our three-way OCS never chooses u from these m subsequences is at most

∏m
i=1 η(ki).

Let k = (k1, · · · , km) be a vector whose i-th entry is the length of the i-th subsequence.
In what follows, we fix (and condition upon) the choices made by the random pair choice
phase. Let x := (x1, · · · , xm) be the (now constant) vector whose i-th entry represents
the number of pairs containing u from the i-th subsequence that are passed to A. For
y := (y1, · · · , ym) ≤ x, let p(x, y) be the conditional probability that A chooses yi number
of u’s from the i-th subsequence of pairs for all i. Finally, let p0 be the probability that our
three-way OCS never chooses u. By Lemma 7, we can observe that p0 is no greater than∑

y≤x

p(x, y)
m∏

i=1

(
1
2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0). (5)
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To prove the desired bound, we will first present how we can modify the input to A without
ever decreasing (5). After finitely many modifications, we will be able to “decouple” the
random choices across different subsequences.

Recall that each pair inserted into A takes three independent random bits. The first
random bit determines if the pair is a sender or a receiver. The second random bit decides
which adjacent vertex to correlate. The third random bit selects an element to be output
for this pair, unless the pair becomes matched as a receiver. Note that, with the first two
random bits, the ex-post graph can be determined.

For each vertex j containing u in the ex-ante graph, let pred(j, u) and pred(j, −u) be
the immediate predecessor of j linked by u and by the other element than u, respectively.
Without loss of generality, let v be the other element of j than u. If we have j′ and j, residing
in different subsequences and j′ appearing before j, such that
(A) j′ = pred(j, u) or j′ = pred(j, −u) (or both); or
(B) there exists ĵ such that

ĵ = pred(j′, u) or ĵ = pred(j′, −u),
ĵ = pred(j, −u), and
ĵ is not contained in any subsequence,

we call them violations. In particular, the first type of violations are called Type A violations
and the other Type B. Our goal is to modify the input so that there are no violations while
(5) never decreased.

For notational simplicity, we let ϕ(y) :=
( 1

2
)k−x+y (1 − γB)max(k−x+y−1,0) for all y =

0, · · · , x. Observe that ϕ(y) is decreasing over y. We can now consider (5) as the expected
value of

∏m
i=1 ϕ(yi).

Removing Type A Violations. Let us first consider the case when j′ = pred(j, u) =
pred(j, −u). We build the new input to A by inserting j1 = (u, ⋆) and j2 = (v, ⋄) right before
j is input where ⋆ and ⋄ are elements appearing nowhere else and ⋆ ̸= ⋄.

Let us fix some random bits of A: one can think of this as further conditioning on those
bits. In particular, we will fix the first two random bits of every pair except for j1 and j2.

Suppose for now that the random bits dictate that neither (j′, j)u nor (j′, j)v is present
in the ex-post graph of the original input. We claim that the probability distribution p

conditioned on this event stays the same even after the modification and therefore the
“contribution” to the expectation (5) is not affected either (or in other words, the conditional
expectation remains equal).

We will show a stronger statement that the marginal probability distribution of the pairs
in the subsequences stays the same. (Then the probability distribution p will automatically
be the same.) Note that the ex-post graph of the two inputs will look almost identical, except
for possible addition of some edges incident with j1 or j2. Therefore, the output choice of
every pair in the subsequences will be determined by the same random bit in both inputs,
except that, it may be the case that j was not adjacent with any pair in the ex-post graph
of the original input but becomes a receiver of j1 (or j2) after the modification. In this case,
the output choice of j was determined by the third random bit of j before but by that of j1
(or j2) now. However, the only pair in the subsequence whose output choice is determined
by the third random bit of j1 (or j2) is j. Moreover, the third random bits of the pairs are
i.i.d.; hence, the marginal distribution of the pairs in the subsequences stays the same, as
was claimed.

Now consider the remaining case where j′ and j are adjacent in the ex-post graph of the
original input. In this case, we will show that the conditional expectation cannot decrease
(as opposed to staying the same). To ease the argument, we will fix more random bits (and



Y. Shin and H.-C. An 49:13

argue that the conditional expectation cannot decrease in all cases): we fix the third random
bits of all pairs, except for j′, j, j1, and j2. Let z′ be the number of u’s chosen from the
subsequence containing j′, except for j′ itself, in the original input. (Since we did not fix the
third random bit of j′, we cannot determine what the output choice of j′ is.) Similarly, let z

be the number of u’s chosen from the subsequence containing j, except for j itself.
In the original input, note that the output choice of j′ and j are both determined by the

third random bit of j′. That is, with probability 1/2, z′ and z +1 respectively are the number
of u’s chosen from the subsequences containing j′ and j, and with probability 1/2, z′ + 1 and
z are. In the modified input, however, while we do not know whether j′ is adjacent with j1 or
j2 in the ex-post graph, j1 and j2 can each be adjacent with at most one pair in the ex-post
graph. Therefore, in the marginal distribution of the pairs in the subsequences, the output
choice of j′ is independent from all other pairs, including j. This shows that the number of
u’s chosen from the subsequence containing j′ in the modified input is z′ with probability
1/2 and z′ + 1 with probability 1/2, and independently from that, the number of u’s from
the subsequence containing j is z with probability 1/2 and z + 1 with probability 1/2.

Let us now calculate the increase of the conditional expectation of
∏m

i=1 ϕ(yi), but since
we are only interested in its sign, we will ignore the common terms, i.e., ϕ(yi)’s for the
subsequences other than ones containing j and j′. Note that

1
4 [ϕ(z′)ϕ(z) + ϕ(z′)ϕ(z + 1) + ϕ(z′ + 1)ϕ(z) + ϕ(z′ + 1)ϕ(z + 1)]

−1
2 [ϕ(z′)ϕ(z + 1) + ϕ(z′ + 1)ϕ(z)]

= 1
4(ϕ(z′) − ϕ (z′ + 1))(ϕ(z) − ϕ(z + 1)) ≥ 0,

where the inequality follows from the fact that ϕ(y) is decreasing over y. This shows our
claim.

Let us now consider the case where j′ = pred(j, u) ̸= pred(j, −u) or vice versa. In this
case, we insert j = (u, ⋆) or j = (v, ⋆) right before j, where ⋆ again is a unique element. A
similar argument shows that we can show that (5) can only increase in the new input.

Removing Type B Violations. We build the new input to A by inserting j = (v, ⋆) right
before j, where ⋆ is a new unique element. Let us fix the first two random bits of every pair
(including j). We claim that the marginal distributions of the pairs in the subsequences are
identical in both inputs.

Consider the ex-post graph of the two inputs. They will be almost identical only with
the following possible differences:

(ĵ, j) may be only in the original ex-post graph;
(ĵ, j) or(j, j) may be only in the new ex-post graph.

For each pair x in the subsequences, the ex-post graph determines, among the third random
bits of all pairs, which one determines the output choice of x.

Suppose (ĵ, j) is in the original ex-post graph. In this case, j is the only pair in the
subsequences whose output choice is determined by the third random bit of ĵ. (Recall that ĵ

is not in any subsequence.) In the modified input, if (j, j) is in the ex-post graph, j will be
the only pair in the subsequences whose output choice is determined by the third random
bit of j. If (j, j) is not in the ex-post graph, j will be the only pair whose output choice
is determined by j. Note that the output choice of every other pair in the subsequences is
determined by the same random bit in both inputs. Again, since the third random bits of
the pairs are i.i.d., this shows that the marginal distribution stays the same.
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Suppose now (ĵ, j) is not in the original ex-post graph. Let us focus on j, since it is the
only pair whose output choice may be determined by a different random bit in the modified
input. If j was adjacent with another pair in the original ex-post graph, the edge will remain
in the new ex-post graph, too, in which case there is nothing to prove. Otherwise, it may be
the case that (j, j) may be newly introduced as an edge in the ex-post graph, but this only
means that j will be the only pair in the subsequences whose output choice is determined by
the third random bit of j (instead of j). The marginal distribution therefore stays the same.

Further Modification. We can remove all Type A and Type B violations after finitely many
modifications of the input. We can interpret A as an algorithm that first constructs the
ex-ante graph using the first two random bits and then determines the output using only the
third random bits. Our next modification will delete some edges directly from the ex-ante
graph rather than modifying the input pairs. (You could alternatively think of this edge
being “disabled,” which can never appear in the ex-post graph even if it is chosen by the
first two random bits of the pairs.) We will now show how we can modify this input graph
without affecting (5). Suppose we have some pair j′ and j such that

j′ appears before j,
j′ and j are adjacent in the ex-ante graph, and
j is not in any subsequence.

If we delete this edge from the ex-ante graph, this can change the output choice of only j in
A’s output. (Imagine we fix all random bits, and we can easily observe this fact.) Therefore,
we can safely delete all such edges without affecting the marginal distribution of the pairs in
the subsequences.

Once we remove all such edges, the following argument shows that no two pairs in different
subsequences can belong to the same connected component of the ex-ante graph: since two
pairs that are not in any subsequences cannot be adjacent, the only way of having two pairs
from different subsequences in the same connected component is by having a direct edge
in-between (which would be a Type A violation) or a length-2 path whose “midpoint” is a
predecessor of the two pairs (which would be a Type B violation: note that, in the definition
of Type B violation, ĵ cannot be pred(j, u) because j′ appears before j).

Conclusion. Let p′(x, y) be the probability that A chooses yi number of u’s from the i-th
subsequence of pairs for all i in the modified input. We have so far shown that

p0 ≤
∑
y≤x

p′(x, y)
m∏

i=1

(
1
2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0).

For each i, let p′
i(xi, yi) be the probability that A chooses yi number of u’s from the i-

th subsequence of pairs. Since A may introduce negative correlation only on those pair
of vertices that are adjacent in the ex-ante graph, output choices made across different
connected components of the ex-ante graph will be independent. This implies that p′(x, y) =∏m

i=1 p′
i(xi, yi), yielding

p0 ≤
∑
y≤x

p′(x, y)
m∏

i=1

(
1
2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0)

=
∑
y≤x

m∏
i=1

p′
i(xi, yi)

(
1
2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0)
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=
m∏

i=1

xi∑
yi=0

p′
i(xi, yi)

(
1
2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0)

≤
m∏

i=1

xi∑
yi=0

p∗(xi, yi)
(

1
2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0),

where the last inequality follows from the proof of Lemma 11. Since p∗(x, ·) depends only
on x, rather than the actual input, the bound on p0 we obtain depends only on x. Let
binom(k, x, r) :=

∏m
i=1 binom(ki, xi, r). Now the probability that our three-way OCS never

chooses u from the given subsequences is no greater than∑
x≤k

binom
(

k, x,
2
3

) [
m∏

i=1

xi∑
yi=0

p∗(xi, yi)
(1

2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0)

]

=
∑
x≤k

[
m∏

i=1

binom
(

ki, xi,
2
3

)] [
m∏

i=1

xi∑
yi=0

p∗(xi, yi)
(1

2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0)

]

=
m∏

i=1

ki∑
xi=0

binom
(

ki, xi,
2
3

) [
xi∑

yi=0

p∗(xi, yi)
(1

2

)ki−xi+yi

(1 − γB)max(ki−xi+yi−1,0)

]

=
m∏

i=1

η(ki).

This completes the proof of Theorem 2.

5 Application to Online Bipartite Matching

Our three-way OCS can be applied to online bipartite matching problems. While the
algorithm and the factor-revealing LP had to be generalized to a higher dimension, our
algorithm and analysis are still analogous to Fahrbach et al. [10]. We refer the interested
readers to [33].

▶ Theorem 12. There exists a 0.5096-competitive algorithm for unweighted online bipartite
matching.

▶ Theorem 13. There exists a 0.5093-competitive algorithm for edge-weighted online bipartite
matching with free disposal.
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Abstract
The car-sharing problem, proposed by Luo, Erlebach and Xu in 2018, mainly focuses on an online
model in which there are two locations: 0 and 1, and k total cars. Each request which specifies its
pick-up time and pick-up location (among 0 and 1, and the other is the drop-off location) is released
in each stage a fixed amount of time before its specified start (i.e. pick-up) time. The time between
the booking (i.e. released) time and the start time is enough to move empty cars between 0 and 1
for relocation if they are not used in that stage. The model, called kS2L-F, assumes that requests in
each stage arrive sequentially regardless of the same booking time and the decision (accept or reject)
must be made immediately. The goal is to accept as many requests as possible. In spite of only two
locations, the analysis does not seem easy and the (tight) competitive ratio (CR) is only known to
be 2.0 for k = 2 and 1.5 for a restricted value of k, i.e., a multiple of three. In this paper, we remove
all the holes of unknown CR’s; namely we prove that the CR is 2k

k+⌊k/3⌋ for all k ≥ 2. Furthermore,
if the algorithm can delay its decision until all requests have come in each stage, the CR is improved
to roughly 4/3. We can take this advantage even further, precisely we can achieve a CR of 2+R

3 if
the number of requests in each stage is at most Rk, 1 ≤ R ≤ 2, where we do not have to know the
value of R in advance. Finally we demonstrate that randomization also helps to get (slightly) better
CR’s.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Car-sharing, Competitive analysis, On-line scheduling, Randomized algorithm

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.50

Funding This work was supported by MOST Taiwan under Grants 110-2223-E-007-001, 110-2811-E-
007-507 and KAKENHI Japan under Grant 16H02782.

1 Introduction

Our problem in this paper is the online car-sharing problem. In car-sharing (not only for cars,
but also for other resources like bikes and shuttle-buses), there are several service stations in
the city, for instance in residential areas and downtown, at popular sightseeing spots, and so
on. Customers can make a request with a pick-up time and place and a drop-off time and
place. The decision for accepting or rejecting a request should be made in an online fashion
and we want to maximize the profit by accepting as many requests as possible. Relocation
of (unused) resources is usually possible with a much smaller or even negligible costs. (It is
seen occasionally that a truck is carrying bikes for this purpose.) Theoretical studies of this
problem have started rather recently and turned out to be nontrivial even for two locations.
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Model. We basically follow the problem setting of previous studies by Luo et al. [7–10] with
main focus to that of two locations and k servers (i.e. cars). The two locations are denoted
by 0 and 1 and k(≥ 2) servers are initially located at location 0. The travel time from 0 to 1
and 1 to 0 is the same, denoted by t. The problem for k servers and two locations is called
the kS2L problem for short.

Figure 1 The car-sharing problem with two locations.

We denote the i-th request by ri = (t̃i, ti, pi) which is specified by the release time or the
booking time t̃i, the start time ti, and the pick-up location pi ∈ {0, 1} (the drop-off location
is 1− pi). If ri is accepted, the server must pick up the customer at pi at time ti and drop
off the customer at 1− pi at time ti + t. Suppose for each ri, ti is an integer multiple of the
travel time between location 0 and 1, i.e., ti = vt for some v ∈ N. We assume that ti − t̃i

is equal to a fixed value a, where a ≥ t for all requests. Without loss of generality, assume
a = t. Then we are only interested in a discrete-time stage, denoted by 0, 1, 2, . . ..

Each server can only serve one request at a time. Serving a request yields a fixed positive
profit y. A server used for a request with pi = 0 (pi = 1, resp.) cannot be used for a
request with pi+1 = 0 (pi+1 = 1, resp.) in the next stage. We allow empty movements,
i.e., a server can be moved from one location to the other without serving any request. An
empty movement spends time t, but takes no cost. The goal of the kS2L problem is to
maximize the total profit by serving a set of online requests. Note that the performance of
an online scheduling algorithm is typically evaluated by competitive analysis. More precisely,
the quality of an online algorithm is measured by the worst case ratio, called competitive
ratio (CR), which is defined to be the fraction of the profit of the offline optimal algorithm
over that of the online algorithm. The offline algorithm is aware of all requests in advance.
If an online algorithm is randomized, we use expected values for the output of the online
algorithm. The online algorithm is called 1/δ-competitive, if for any instances, the profit of
the algorithm is at least δ times the offline optimal profit. So far the current model is exactly
the same as kS2L-F in [7–10], although no randomized cases were discussed in these papers.

Simultaneous Decision Model. Recall that in the kS2L model, two (or more) inputs with
the same booking time still have an order. Thus we can equivalently think that if r1, . . . , rd

are requests with booking time t, they are coming later than t− 1 and before or at t, one
by one. Each of them should get a decision (accept or reject) immediately before the next
request. The adversary can change ri after looking at the response of the online algorithm
against r1, . . . , ri−1.

This setting sounds reasonable as an online model, but the following question seems
also natural; what if requests with the same booking time come exactly at the same time,
the online player can see all of them and can make decisions all together simultaneously at
the booking moment (equivalently the requests arrive in the same fashion as above but the
player can delay his/her online decisions until the booking moment). In this study we also
consider this new model, denoted by kS2L-S. We further extend the model, assuming that
the number of requests with the same booking time is at most Rk for some constant R. We
call the generalized model RkS2L-S. Notice that having more than k requests at the same
location with the same booking time never helps. Therefore, we only need to study the range
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0 ≤ R ≤ 2 and kS2L-S means the special case that R = 2. Our algorithm for RkS2L-S is
adaptive in the sense that it automatically accommodates the value of R, which does not
have to be known in advance.

Prior work. The car-sharing problem has received a considerable amount of attention in
recent years. Luo et al. [7] studied the problem with a single server and two locations with
both fixed booking time and variable booking time. Here “variable booking time” essentially
means that requests with start time t may come after requests with start time t− 1. They
gave lower bounds on the CR for both fixed and variable booking time under the positive
empty movement assumption. Later, Luo et al. [8] studied the car-sharing problem with two
servers and two locations, i.e. 2S2L. They considered only the problem with fixed booking
time and proposed an online algorithm which can achieve a tight bound of two. Luo et al. [9]
studied the car-sharing problem with k servers and two locations, for both fixed booking
time (kS2L-F) and variable booking time (kS2L-V). Namely they showed the CR is at least
1.5 for all k and at most 1.5 for k = 3i for kS2L-F and at least 5/3 for all k and at most 5/3
for k = 5i for kS2L-V. Very recently, Luo et al. [10] studied the car-sharing problem on a
star network with k servers as well as two types of travel time: a unit travel time and an
arbitrary travel time.

In comparison with the online setting, Böhmová et al. [3] considered the offline car-sharing
problem in which all input requests are known in advance. The objective is to minimize
the number of vehicles while satisfying all the requests. The offline (i.e. static) problem
can be solved in polynomial time. Another closely related problem is the on-line dial-a-ride
problem (OLDARP), where objects are transported between given points in a metric space.
The problem has been studied widely. The goal is to minimize the total makespan [1,2] or
the maximum flow time [6]. Christman et al. [4] studied a variation of OLDARP where each
request yields a revenue. Yi et al. [12] studied another variation of OLDARP where each
request has a deadline, having a similar flavor as car sharing.

Our contribution. Recall that the tight CR of kS2L-F is 1.5 for k = 3i [9] and 2 for k = 2 [8],
but open for other k’s. In this paper, we show that it is 2k

k+⌊k/3⌋ for all k ≥ 2 and 1.5 for
all k ≥ 2 if randomization is allowed. For kS2L-S that allows the online player to delay its
decision, it is shown that we can indeed take this advantage. Namely the tight CR for kS2L-S
is 2k

k+⌊k/2⌋ for all k ≥ 2 and 4/3 for all k ≥ 2 if randomization is allowed. For RkS2L-S (we
can assume 1 ≤ R ≤ 2 without loss of generality), it is shown that the CR is strictly improved
if R < 2, namely the tight CR (for randomized algorithms) is improved to (2 + R)/3. Note
that if R = 1.1 (the number of requests at each stage exceeds k by at most 10%), the CR
becomes at most 1.034.

The basic idea of our algorithms is “greedy” and “balanced”. Both notions have already
appeared in [9], but our implementation of them is significantly different from theirs. More
importantly, our analysis is completely new; namely we use a simple mathematical induction
(augmented by two interesting parameters other than the profit itself) while a classification
of request types was used in [9].

The merit of our new analysis is demonstrated more clearly in kS2L-S than in the original
kS2L-F. Therefore we present the results for kS2L-S first and then those for kS2L-F; the
deterministic case in Section 2 and the randomized case in Section 3. RkS2L-S is discussed
in Section 4, where we introduce two magic numbers calculated from the number of requests
in each stage. Finally all matching lower bounds are given in Section 5.
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Table 1 Overview of known and new results.

Problem Booking
Time

Start Time
The Cost Of
Empty Move

Types of
algorithms

Lower
Bound

Upper
Bound

Reference

2S2L Fixed ti c = y Deterministic — 1 MFCS’18 [8]
2S2L Fixed ti 0 Deterministic 2 2 MFCS’18 [8]
2S2L Fixed ti 0 < c < y Deterministic 2 2 MFCS’18 [8]

kS2L-F Fixed ti = vt for v ∈ N 0 Deterministic 1.5 1.5(k = 3i, i ∈ N) ISAAC’18 [9]
kS2L-F Fixed ti = vt for v ∈ N 0 Deterministic 2k

k+⌊k/3⌋
2k

k+⌊k/3⌋ this paper
kS2L-F Fixed ti = vt for v ∈ N 0 Randomized 1.5 1.5 this paper
kS2L-V Variant ti = vt for v ∈ N 0 Deterministic 1.5 1.5(k = 3i, i ∈ N) ISAAC’18 [9]
kS2L-V Variant ti = vt for v ∈ N 0 Deterministic 5/3 5/3(k = 5i, i ∈ N) ISAAC’18 [9]

kS2L-S Fixed ti = vt for v ∈ N 0 Deterministic 2k
k+⌊k/2⌋

2k
k+⌊k/2⌋ this paper

kS2L-S Fixed ti = vt for v ∈ N 0 Randomized 4/3 4/3 this paper
RkS2L-S (1 ≤ R ≤ 2) Fixed ti = vt for v ∈ N 0 Randomized (2+R)/3 (2+R)/3 this paper

2 Deterministic algorithms

As mentioned in the previous section, we first discuss the basic GBA that works for the
kS2L-S model and then its accept/reject version that works for the original kS2L-F model.
The analysis for the former will carry over to that of the latter pretty well. The following
table summarizes our notations which are used in the rest of the paper.

Notation
k The number of total servers
(0, 1): Requests from location 0 to 1
(1, 0): Requests from location 1 to 0
Iℓi: The number of (0,1)’s requested in stage i with start time i

Iri: The number of (1,0)’s requested in stage i with start time i

Gℓi: The number of (0,1)’s accepted by the algorithm in stage i

Gri: The number of (1,0)’s accepted by the algorithm in stage i

Gfi: The number of servers not used, i.e., k −Gri −Gℓi

Oℓi: The number of (0,1)’s accepted by OPT in stage i

Ori: The number of (1,0)’s accepted by OPT in stage i

Ofi: The number of servers not used, i.e., k −Ori −Oℓi

Suppose there are x and x′ servers at location 0 and y and y′ servers at location 1 at time
i, where x servers will serve (0,1)’s with start time i but x′ servers are not used. Similarly,
y servers will serve (1,0)’s but y′ servers not. Then at time i + 1 we can use x servers for
(1,0)’s and y servers for (0,1)’s. Furthermore, x′ + y′ servers are available for requests of
both directions since the requests with start time i + 1 come at time i and we can move
x′ + y′ servers to whichever locations as we like. Now we introduce stages and say we have
x (= Gℓi) servers at location 1, y (= Gri) servers at location 0, and x′ + y′ (= Gfi) “floating”
servers in stage i + 1. We also denote the server allocation at time i + 1 as

[
y, x′ + y′, x

]
using the new notation

[
−,−,−

]
. Note that we need to have artificial Gr0, Gℓ0 and Gf0 for

stage 1 whose values are 0, 0, and k, respectively.
Now the idea of this new greedy balanced algorithm can be illustrated as follows. Let

k = 100 and suppose requests in stage 1 are (Iℓ1, Ir1) = (100, 100). As described above,
the server allocation in stage 1 is

[
0, 100, 0

]
, and hence accepted requests, (Gℓ1, Gr1), can

be anything like (100,0), (75,25) or (0,100). However, if (100,0) is selected, then the server
allocation in stage 2 is

[
0, 0, 100

]
and the adversary would send (Iℓ2, Ir2) = (100, 0) for
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stage 2, by which no servers are available for the online player. Since the almighty adversary
can select (0,100) in stage 1 and he/she can accept all the requests in stage 2, the CR
would be 2. Thus one can easily see that the best thing an algorithm can do is to accept
(Gℓ1, Gr1) = (50, 50) in stage 1 to secure a CR of 1.5. This is the notion of “Balanced”. Note
that requests denoted by (Iℓ2, Ir2) = (100, 0) have booking time 1, but a booking time of
requests (and when they actually come) is no longer important once we know (Iℓi, Iri) and
the server allocation

[
Gri−1, Gfi−1 = k − Gℓi−1 − Gri−1, Gℓi−1

]
in stage i. Thus we will

simply use “requests for stage i” without mentioning their booking time.

What if (Iℓ1, Ir1) = (60, 20)? In this case, (Gℓ1, Gr1) = (60, 20) is the best, i.e., the
strategy is a simple “Greedy” one. If (Iℓ1, Ir1) = (100, 30), our selection is (Gℓ1, Gr1) =
(70, 30), namely “Greedy” but as “Balanced” as possible. Algorithm 1 realizes this idea
almost as it is and it will also be a core of all the subsequent algorithms in this paper.

Algorithm 1 GBA(k): Greedy Balanced Algorithm.

Input: Iℓi and Iri are the numbers of (0,1)’s and (1,0)’s in stage i, respectively. An integer
k is the number of total servers. The server allocation at the beginning of stage i is[
Gri−1, Gfi−1, Gℓi−1

]
, namely Gri−1 and Gℓi−1 servers at locations 0 and 1, respectively

and Gfi−1 = k −Gℓi−1 −Gri−1 floating servers.
Output: Gℓi and Gri are the numbers of accepted (0,1)’s and (1,0)’s, respectively.

1: if Gri−1 + Gfi−1 ≤ ⌊k/2⌋ or Iℓi ≤ ⌊k/2⌋ then
2: Gℓi ← min{Iℓi, Gri−1 + Gfi−1}; Gri ← min{Iri, Gℓi−1 + Gfi−1, k −Gℓi};
3: else
4: if Gℓi−1 + Gfi−1 ≤ ⌊k/2⌋ or Iri ≤ ⌊k/2⌋ then
5: Gri ← min{Iri, Gℓi−1 + Gfi−1}; Gℓi ← min{Iℓi, Gri−1 + Gfi−1, k −Gri};
6: else
7: Gri ← ⌊k/2⌋; Gℓi ← ⌈k/2⌉;
8: end if
9: end if

10: return Gℓi and Gri

Recall that floating servers in stage i are actually sit at location 0 or 1 at time i− 1, say
30 ones at location 0 and 10 at location 1 among 40 floating ones. So if we need 20 floating
servers in stage i at location 1, we need to move 10 servers from location 0 to 1 using the
duration from time i − 1 to i. However, we do not describe this empty movement in our
algorithms since it is easily seen and its cost is free in our model.

Observe that the greedy part of Algorithm 1 appears in lines 1 and 2 for (0,1)’s and in
lines 4 and 5 for (1,0)’s. If the condition in line 1 is met, then we accept (0,1)’s until we
have exhausted the servers or the (0,1)’s available in this stage. After that we accept as
many (1,0)’s as possible. It works similarly for lines 4 and 5. If neither the condition in
line 1 nor the one in line 4 is met, we just split the requests almost evenly in line 7. The
following theorem shows that GBA achieves the optimal 4

3 -competitiveness for all even k

and approaches this value when k is a large odd number. In the rest of this paper, we use
ALG to denote an online algorithm and OPT an offline optimal scheduler in general.

▶ Theorem 1. GBA is a 1/δ-competitive algorithm for kS2L-S for any k ≥ 2, where
δ = k+⌊k/2⌋

2k .

ISAAC 2021
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Figure 2 Server allocation in GBA.

Proof. In order to prove the theorem, we consider the following six key values:

Ai =
i∑

j=1
(Grj + Gℓj), Bi =

i∑
j=1

(Orj + Oℓj),

Xi = Ai + Gri + Gfi, Yi = Bi + Ori + Ofi,

Ui = Ai + Gℓi + Gfi, Vi = Bi + Oℓi + Ofi.

Our goal is to bound Ai by Bi. To do so, it is popular to use a potential function for
competitive analysis, which is typically the difference between configurations of ALG and
OPT. In our present case, it may be the difference between server allocations of GBA and
OPT. It turns out, however, that this configuration difference or a similar one is unlikely to
work since we still have a freedom for server selection which is not controlled by this difference
strongly. Instead we introduce four parameters, Xi, Yi, Ui and Vi, which play a key role in
our proof. Note that Xi and Yi denote the total revenue of GBA and OPT respectively for
the first i + 1 stages assuming that the adversary tries to penalize the algorithm choice by
introducing k (0,1)’s in stage i + 1; the last two values, Ui and Vi, denote the total revenue
of GBA and OPT respectively for the first i + 1 stages assuming that the adversary tries
to penalize the algorithm choice by introducing k (1,0)’s in stage i + 1. Intuitively, GBA
balances the accepted requests in both directions and guarantees that the CR’s in these two
instances ( Yi

Xi
and Vi

Ui
, respectively) are not too large. It turns out that taking care of these

two extreme instances is sufficient to keep the CR low for all instances.
In order to prove that the algorithm is 1/δ-competitive, we show that the set of the

following inequalities (i) to (iii), denoted by S(n),

(i) An ≥ δBn, (ii) Xn ≥ δYn, (iii) Un ≥ δVn

hold for every n by induction.
For the base case, n = 0, we have A0 = B0 = Gr0 = Gℓ0 = Or0 = Oℓ0 = 0 and

Gf0 = Of0 = k. Thus the three inequalities hold since δ ≤ 1.
Now the main part of the proof is proving S(n) assuming, as stated in the induction

hypothesis, that S(j) holds for all 0 ≤ j ≤ n− 1. Note that we can rewrite Ai, Bi, Xi and
so on as follows:

Ai = Ai−1 + Gℓi + Gri, Bi = Bi−1 + Oℓi + Ori,

Xi = Ai−1 + k + Gri, Yi = Bi−1 + k + Ori,

Ui = Ai−1 + k + Gℓi, Vi = Bi−1 + k + Oℓi.



Y.-C. Liang, K.-Y. Lai, H.-L. Chen, and K. Iwama 50:7

Since Oℓi ≤ min{Iℓi, Ori−1 + Ofi−1} and Ori ≤ min{Iri, Oℓi−1 + Ofi−1}, the following
lemma is obvious, but will be used frequently.

▶ Lemma 2. Oℓi ≤ Iℓi, Oℓi ≤ Ori−1 + Ofi−1, Ori ≤ Iri, and Ori ≤ Oℓi−1 + Ofi−1.

Now we are ready to prove the theorem. Suppose line 2 is executed. Then the following
(L1) or (L2) holds for the value of Gℓi and (R1), (R2) or (R3) for the value of Gri. Similarly
if line 5 is executed, (R1) or (R2) holds for Gri and (L1), (L2) or (L3) for Gℓi.

(L1) Gℓi = Iℓi, (L2) Gℓi = Gri−1 + Gfi−1, (L3) Gℓi = k −Gri(≥ ⌊k/2⌋),
(R1) Gri = Iri, (R2) Gri = Gℓi−1 + Gfi−1, (R3) Gri = k −Gℓi(≥ ⌊k/2⌋).

Note that the condition “≥ ⌊k/2⌋” in (L3) and (R3) comes from the conditions in lines 1
and 4, respectively. Now we consider stage n and show that if (L1), (L2) or (L3) holds, the
induction (iii) holds, if (R1), (R2) or (R3) hold, the induction (ii) holds and if any one of
the nine combinations {(L1), (L2), (L3)}×{(R1), (R2), (R3)} holds, (i) holds. First suppose
(L1) holds. Then since Oℓn ≤ Iℓn by Lemma 2

Un = An−1 + k + Gℓn = An−1 + k + Iℓn,

Vn = Bn−1 + k + Oℓn ≤ Bn−1 + k + Iℓn.

Thus (iii) is true by the induction hypothesis on (i). Similarly for (L2), i.e., by Lemma 2

Un = An−1 + k + Gℓn = An−1 + k + Grn−1 + Gfn−1,

Vn = Bn−1 + k + Oℓn ≤ Bn−1 + k + Orn−1 + Ofn−1.

Thus (iii) is proved by the hypothesis on (ii). Finally for (L3),

Un = An−1 + k + Gℓn ≥ An−1 + k + ⌊k/2⌋,
Vn = Bn−1 + k + Oℓn ≤ Bn−1 + k + k,

then use the hypothesis on (i) to claim (iii).
The proof that (R1) or (R2) or (R3) implies (ii) is similar and omitted.
Finally we show that (i) follows from any combination. Observe that (L1) and (R1) obvi-

ously implies (i) since no algorithms accept more requests than requested. All combinations
including (L3) or (R3) are also obvious since GBA accepts k requests. Similarly for (L2) and
(R2) when Gfi−1 = 0 (otherwise impossible). The remaining cases are (L1) and (R2), and
(L2) and (R1). For the former, by Lemma 2

An = An−1 + Gℓn + Grn = An−1 + Iℓn + Gℓn−1 + Gfn−1,

Bn = Bn−1 + Oℓn + Orn ≤ Bn−1 + Iℓn + Oℓn−1 + Ofn−1,

and we can use the hypothesis on (iii). (L2) and (R1) is similar and omitted.
What remains is the case that line 7 is executed. Observe that line 7 gives us Gℓn ≥ ⌊k/2⌋,

Grn ≥ ⌊k/2⌋ and Gℓn + Grn = k. We have already shown that the first one implies (iii),
the second one (ii) and the third one means all the servers accept requests and is obviously
enough for (i). Thus the theorem is proved. ◀

As seen in GBA and its analysis, a dangerous situation for the online player is that
ALG accepts too many requests of one direction when it is possible. If ALG knows the
total number of requests in each direction in advance, we can avoid this situation rather
easily. Now we discuss kS2L-F, in which ALG does not know the total number of requests in
advance. A simple and apparent solution is to stop accepting requests of one direction when
its number gets to some value, even if more requests of that direction are coming and could
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be accepted. In the next algorithm, ARGBA, we set this value as 2k/3. It then turns out, a
little surprisingly, that the analysis for Theorem 1 is also available for the new algorithm
almost as it is.

Algorithm 2 ARGBA(k): Accept or reject GBA.

Input: The server location is
[
Gri−1, Gfi−1 = k −Gℓi−1 −Gri−1, Gℓi−1

]
at the beginning

of this stage i. Requests are coming sequentially, each of which, r, is (0,1) or (1,0). k is
the total number of servers.

Output: Immediate accept or reject for r. Gℓi and Gri for the next server allocation.
1: Gℓi ← 0; Gri ← 0, Aℓi ← 0; Ari ← 0 (Aℓi (Ari, resp.) is the number of (0,1)’s ((1,0)’s,

resp.) received in this stage so far.)
2: while a new request r comes do
3: if r is (0,1) then
4: Aℓi ← Aℓi + 1;
5: if Aℓi < Gri−1 + Gfi−1 and Aℓi < 2k/3 and Gℓi + Gri < k then
6: accept r; Gℓi ← Gℓi + 1;
7: else
8: reject r;
9: end if

10: else (namely, r is (1,0))
11: Ari ← Ari + 1;
12: if Ari < Gℓi−1 + Gfi−1 and Ari < 2k/3 and Gℓi + Gri < k then
13: accept r; Gri ← Gri + 1;
14: else
15: reject r;
16: end if
17: end if
18: end while
19: return Gℓi and Gri

▶ Theorem 3. ARGBA is a 1/δ-competitive algorithm for kS2L-F for any k ≥ 2, where
δ = k+⌊k/3⌋

2k .

Proof. Observe that once a (0,1) (similarly for (1,0)) is rejected, then subsequent ones are
all rejected. Let Xi and Yi be the last (0,1) and (1,0), respectively, that are accepted and
Gℓi and Gri be their numbers after lines 6 and 10, respectively. Also, let Iℓi and Iri be the
total numbers of (0,1)’s and (1,0)’s in stage i, respectively (only used for analysis). Suppose
the last accepted (0,1) has gone through the conditions in line 5. Then, one can see that the
next (0,1), if any, is blocked by one of these conditions and thus one of the following four
conditions, (L1) through (L4), is met. Similarly for (1,0)’s, one of (R1) through (R4) is met.

(L1) Gℓi = Iℓi, (L2) Gℓi = Gri−1 + Gfi−1, (L3) Gℓi = ⌈2k/3⌉,
(L4) Gℓi + Gri = k and Gℓi ≥ ⌊k/3⌋ and Gri ≥ ⌊k/3⌋,

(R1) Gri = Iri, (R2) Gri = Gℓi−1 + Gfi−1, (R3) Gri = ⌈2k/3⌉,
(R4) Gℓi + Gri = k and Gℓi ≥ ⌊k/3⌋ and Gri ≥ ⌊k/3⌋.

Note that the lower bound condition in (L4) and (R4) is correct since otherwise the second
condition in line 5 or 11 should have been met before.
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Now consider stage n. In a way similar to the proof of Theorem 1, we can show that one
of (L1) to (L4) (with subscript n replacing i) implies the induction (iii). In fact, the reason
is exactly the same for (L1) and (L2) as before. Using Gℓi ≥ ⌊k/3⌋ in (L4) we have

Un = An−1 + k + Gℓn ≥ An−1 + k + ⌊k/3⌋,
Vn = Bn−1 + k + Oℓn ≤ Bn−1 + k + k,

and then use the hypothesis on (i) to claim (iii) (recall that our target CR is relaxed to
2k

k+⌊k/3⌋ ). (L3) obviously implies Gℓi ≥ ⌊k/3⌋.
Also we can show, though omitted, that one of (R1) to (R4) (with subscript n replacing

i) implies the induction (ii).
We can furthermore show that any one of the 16 combinations of (L1) to (L4) and (R1)

to (R4) implies (i): If a combination includes one of (L3), (L4), (R3) and (R4), then (i) is
obvious since ARGBA accepts at least ⌈2k/3⌉ requests in this stage. So we only have to
consider the four combinations ((L1) or (L2), and (R1) or (R2)), and these cases already
appeared in the proof of Theorem 1, which concludes the proof. ◀

3 Randomized Algorithms

Notice that the CR of GBA is 2 when k = 2. The reason is simple, i.e., the existence of
the ceiling function, namely if we can accept a fractional request, our CR would be 4/3. Of
course it is impossible to accept a request by one third, but it is possible to accept that
request with probability 1/3, which has the same effect as accepting it by one third in terms
of an expected number.

We define the following function for probabilistic rounding. Let x be a (possibly fractional)
non-negative number. Then define

prrd(x) =
{
⌈x⌉ with probability x− ⌊x⌋
⌊x⌋ with probability 1− (x− ⌊x⌋)

For instance, prrd(3.3) is 4 with probability 0.3 and 3 with probability 0.7. prrd(3) is always 3.
Note E[prrd(x)] = x. Now we are ready to introduce the Probabilistic GBA.

Algorithm 3 PrGBA(k): Probabilistic GBA.

1: The same as Algorithm 1 except that line 7 is replaced as follows: Gri ← prrd(k/2) and
Gℓi ← k −Gri

▶ Theorem 4. PrGBA is a 4/3-competitive algorithm for kS2L-S for any k ≥ 2.

Proof. Observe the induction in the proof of the deterministic case. The base case is fine with
δ = 3/4, and we can keep using this 3/4 unless line 7 is executed. Since the expected value
of Gri and Gℓi are both k/2 when the modified line 7 is executed, we can remove the ceiling
sign from the description of the algorithm. Thus our new CR is 2k/(k + k/2) = 4/3. ◀

Algorithm 4 PrARGBA(k): Probabilistic ARGBA.

1: ARGBA is modified as follows: Suppose the three conditions in line 5 are all met and
0 < 2k/3 − Aℓj−1 < 1. Then accept rj

i and increase Gℓi if prrd(2k/3 − Aℓj−1) = 1,
otherwise reject it. Similarly for line 11.
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▶ Theorem 5. PrARGBA is a 1.5-competitive algorithm for kS2L-F for any k ≥ 2.

Proof. The same idea as the proof of Theorem 4. If this modified part is executed, the
expected value of Gℓi is 2k/3 and hence the expected value of Gri is k/3 if Gℓi + Gri = k.
Thus the worst case of deterministic ARGBA, Gℓi = ⌈2k/3⌉ and Gri = ⌊k/3⌋, can be
avoided. ◀

4 Adaptive GBA

kS2L-S gives the online player the advantage of an advance knowledge of the number of
requests in the current stage. GBA does exploit this advantage, but not fully. Suppose
(Iℓ1, Ir1) = (50, 100). GBA accepts the same number, 50, of (0,1)’s and (1,0)’s in stage 1.
Then the adversary sends (Iℓ2, Ir2) = (100, 0), resulting in that only 50 (0,1)’s can be
accepted by GBA in stage 2, but 100 (0,1)’s by OPT which could accept 100 (1,0)’s in stage 1.
Thus the CR in these two steps is 4/3.

Now what about accepting roughly 28.57 (0,1)’s and 71.43 (1,0)’s in stage 1 (recall we
can handle fractional numbers due to randomized rounding)? Then the best the adversary
can do is to provide (Iℓ2, Ir2) = (100, 0) or (0, 50), in both of which the CR is 200/171.43 ≈
150/128.57 ≈ 1.17, significantly better than 1.5 of GBA. This is the basic idea of our new
algorithm, AGBA. These key values 28.57 and 71.43 are denoted by αi and βi, respectively.
The ultimate goal of AGBA is to accept exactly αi (0,1)’s and βi (1,0)’s while the ultimate
goal of GBA was to accept k/2 (0,1)’s and k/2 (1,0)’s. If this goal is unachievable, to be
figured out from the values of Iℓi, Iri, Gℓi−1, Gri−1 and Gfi−1, both algorithms simply turn
greedy.

Algorithm 5 AGBA(k): Adaptive GBA.

Input: The same as GBA
Output: The same as GBA

1: if Ri = (Iℓi + Iri)/k ≥ 1 then
2: αi = (1−Ri)k+3Iℓi

2+Ri
; βi = (1−Ri)k+3Iri

2+Ri
;

3: else
4: αi = Iℓi; βi = Iri;
5: end if
6: if Gri−1 + Gfi−1 < αi then
7: Gℓi ← Gri−1 + Gfi−1; Gri ← min{Iri, Gℓi−1};
8: else
9: if Gℓi−1 + Gfi−1 < βi then

10: Gℓi ← min{Iℓi, Gri−1}; Gri ← Gℓi−1 + Gfi−1;
11: else
12: Gℓi ← prrd(αi);
13: Gri ← βi;
14: end if
15: end if
16: return Gℓi and Gri

Suppose Iℓi + Iri is at most kRi for stage i. As mentioned in a moment, we do not lose
generality if Ri is restricted to 1 ≤ Ri ≤ 2, under which the CR of AGBA is bounded by
(2 + R)/3, where R is the maximum value of Ri in the whole stages. We do not know R in
advance and AGBA does not have to, either.
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The competitive analysis is given by the following theorem. Note that if the input in
stage i includes more than k (0,1)’s, we can select an arbitrary subset of size k and similarly
for (1,0)’s. This guarantees that R ≤ 2 and the case that Iℓi + Iri < k is covered by R = 1.
Thus the restriction of R, 1 ≤ R ≤ 2, makes sense. Also, note that αi + βi = k whenever
Ri ≥ 1. AGBA uses Ri but not R. R = max{Ri} by definition and so δ ≤ δi (where δi is
the local value of δ in this stage, see its definition at Lemma 8) for all i.

▶ Theorem 6. Suppose the number of requests is limited to at most Rk in all stages for
some R such that 1 ≤ R ≤ 2 and Rk is an integer. Then AGBA solves RkS2L-S and is
1/δ-competitive, where δ = 3/(2 + R).

Proof. Because of the probabilistic rounding used in lines 12, the expected values of Gℓi and
Gri are αi and βi, respectively, if this part is executed. We need two lemmas; the second
one illustrate a tricky nature of αi and βi.

▶ Lemma 7. For any Ri ≥ 0, αi ≤ Iℓi and βi ≤ Iri. Also, αi + βi ≤ k.

Proof. A simple calculation of the formulas in line 2 is enough if the condition Iℓi + Irr ≥ k

is met. Otherwise it is also obvious by line 4. ◀

▶ Lemma 8. Let δi = min{1, 3/(2 + Ri)}. Then k + βi = δi(k + Iri) and k + αi = δi(k + Iℓi).

Proof. If Ri < 1 then δi = 1, αi = Iℓi and βi = Iri, so the lemma is obviously true.
Otherwise, a simple calculation:

k + αi = k + (1−Ri)k + 3Iℓi

2 + Ri
= 3k + 3Iℓi

2 + Ri
= δi(k + Iℓi).

Similarly for the other. ◀

The basic strategy of the proof is the same as Theorem 1. We consider the following four
conditions for the values of Gℓi and Gri. Suppose line 7 is executed. Then Gℓi satisfies (L2)
and Gri satisfies (R1). Similarly if line 10 is executed, (L1) and (R2) hold.

(L1) Gℓi = min{Iℓi, Gri−1}, (L2) Gℓi = Gri−1 + Gfi−1,

(R1) Gri = min{Iri, Gℓi−1}, (R2) Gri = Gℓi−1 + Gfi−1.

Now consider stage n. It is shown that (L1) or (L2) implies (iii) of the induction. For (L2),
the analysis is the same as before and omitted. For (L1), using Lemma 2 for Vn, we have

Un = An−1 + k + Gℓn = An−1 + k + min{Iℓn, Grn−1},
Vn = Bn−1 + k + Oℓn ≤ Bn−1 + k + Iℓn.

If min{Iℓn, Grn−1} = Iℓn, then we are done using the hypothesis (i). Otherwise recall that the
condition of line 9, Gℓn−1 +Gfn−1 < βn, is met. So we have Grn−1 = k−(Gℓn−1 +Gfn−1) ≥
k − βn ≥ αn (by Lemma7 for the last inequality) and thus we can use Lemma 8 and the
hypothesis on (i) to claim (iii). The proof that (R1) or (R2) implies (ii) is very similar and
omitted.

Next we prove that each of the four combinations implies (i). (L1) and (R1), and
(L2) and (R2) are obvious since AGBA is as efficient as OPT or accepts k requests (recall
min{Iℓn, Grn−1} ≥ αn and min{Irn, Gℓn−1} ≥ βn mentioned above and by Lemma 7). For
(L1) and (R2), using Lemma 2 and αn ≤ Iℓn, we have
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An = An−1 + Gℓn + Grn = An−1 + min{Iℓn, Grn−1}+ Gℓn−1 + Gfn−1,

Bn = Bn−1 + Oℓn + Orn ≤ Bn−1 + Iℓn + Oℓn−1 + Ofn−1.

Thus the hypothesis on (iii) or Grn−1 + Gℓn−1 + Gfn−1 = k implies that An ≥ δBn. (L2)
and (R1) are similar.

The remaining case is the one that lines 12 and 13 are executed. If Gℓn = αn, we have
Un = An−1 + k + αn and thus we can use Lemma 8 to claim (iii) as shown above. Similarly
for Grn and (ii). (i) is obvious since Gℓi + Gri = k, completing the proof. ◀

5 CR Lower Bounds

The CR’s given so far are all tight. In this section we prove matching lower bounds for
kS2L-S, for kS2L-F, for kS2L-F with randomization, and for RkS2L-S with randomization
(including for kS2L-S with randomization as a special case).

▶ Theorem 9. No deterministic online algorithms for the kS2L-S problem can achieve a CR
of less than 2k

k+⌊k/2⌋ .

Proof. Let A be any deterministic algorithm. The adversary requests k (0,1)’s and k (1,0)’s
in stage 1. A accepts kℓ (0,1)’s and kr (1,0)’s. If kℓ ≤ ⌊k/2⌋, then the adversary requests
k (1,0)’s (and zero (0,1)’s) in stage 2. The profit of A is kℓ + kr in stage 1, and at most
(k − kℓ − kr) + kℓ in stage 2. Therefore, the total profit of A is at most k + kℓ ≤ k + ⌊k/2⌋.
The profit of OPT is 2k, and the theorem is proved. If kℓ > ⌊k/2⌋, then kr ≤ ⌊k/2⌋. Now
the adversary requests k (0,1)’s in stage 2. The profit of A and OPT are exactly the same as
above and we may omit the rest of calculation. Thus the bound is tight. ◀

▶ Theorem 10. No deterministic online algorithms for the kS2L-F problem can achieve a
CR of less than 2k

k+⌊k/3⌋ .

Proof. Let A be any deterministic algorithm. The basic idea is similar to [9]. The adversary
gives k (0,1)’s (sequentially) for stage 1. If A accepts at most ⌊2k/3⌋ ones, then the adversary
stops his/her requests and the game ends. Thus the CR is at least k

⌊2k/3⌋ . Otherwise, if A
accepts ⌈2k/3⌉ or more, then the adversary gives another k (1,0)’s for stage 1 and k (0,1)’s
for stage 2. Since A has accepted at least ⌈2k/3⌉ (0,1)’s in stage 1, A cannot use those
servers for the (0,1)’s for stage 2. Hence A can accept at most k requests in stage 1 and at
most k − ⌈2k/3⌉ requests in stage 2, meaning at most 2k − ⌈2k/3⌉ = k + ⌊k/3⌋ requests in
total. OPT can accept k (1,0)’s in stage 1 and k (0,1)’s in stage 2, i.e., 2k in total. Thus the
CR is at least 2k

k+⌊k/3⌋ . Since 2k
k+⌊k/3⌋ ≤

k
⌊2k/3⌋ for all k (this can be verified by checking for

k = 3j, k = 3j + 1 and k = 3j + 2), the theorem is proved. ◀

▶ Theorem 11. No randomized online algorithms for the kS2L-F problem can achieve a CR
of less than 1.5.

Proof. The proof is almost the same as that of Theorem 10. Since the adversary has the full
information (other than random values) of ALG, he/she can compute the expected value
of ALG’s output. So what we have to do is just removing the floor and ceiling signs from
the previous proof and considering the resulting numbers as expected values. The proof is
complete since the previous deterministic OPT has a profit of at least 2k. ◀
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▶ Theorem 12. No randomized online algorithms for the RkS2L-S problem can achieve a
CR of less than 2+R

3 .

Proof. Let A be any randomized algorithm. The adversary requests ⌊Rk/2⌋ (0,1)’s and
⌈Rk/2⌉ (1,0)’s in stage 1 (⌊Rk/2⌋+ ⌈Rk/2⌉ = Rk by the integrality condition). A accepts
kℓ (0,1)’s and kr (1,0)’s. Let α = (1−R)k+3⌊ Rk

2 ⌋
2+R and if E[kℓ] ≤ α (note that the adversary

has the full information of A, so it can compute E[kℓ]), then the adversary requests k (1,0)’s
(and zero (0,1)’s) in stage 2. The profit of A is at most

k + E[kℓ] ≤ k + α = k +
(1−R)k + 3⌊Rk

2 ⌋
2 + R

=
3(k + ⌊Rk

2 ⌋)
2 + R

.

The profit of OPT is k + ⌊Rk/2⌋, and the theorem is proved. If E[kℓ] > α then let
β = (1−R)k+3⌈ Rk

2 ⌉
2+R , and it is easy to see that α + β = k. Hence we have E[kr] ≤ β because

E[kℓ] + E[kr] = E[kℓ + kr] ≤ k. Now the adversary requests k (0,1)’s. The profit of A and
OPT are exactly the same as above by replacing ⌊Rk

2 ⌋ with ⌈Rk
2 ⌉. We may omit the rest

of calculation. Note that although the two input instances provide a tight lower bound for
the competitive ratio, applying Yao’s Minimax theorem on any probability distribution over
these two input instances does not provide the same tight bound. ◀

6 Concluding Remarks

We have presented a different greedy and balanced algorithm with a new analysis which fully
exploits the notion of “floating servers,” and the arguments of the mathematical induction
using supplementary parameters Xi and Ui (and their OPT counterparts). We believe that
the analysis technique is powerful for future studies of many extensions of the car sharing
problem, which would be worthwhile to investigate for practical purposes. In particular,
relaxation of the rental period condition should be challenging and important.
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Abstract
Consider the problem where n jobs, each with a release time, a deadline and a required processing
time are to be feasibly scheduled in a single- or multi-processor setting so as to minimize the total
energy consumption of the schedule. A processor has two available states: a sleep state where no
energy is consumed but also no processing can take place, and an active state which consumes energy
at a rate of one, and in which jobs can be processed. Transitioning from the active to the sleep does
not incur any further energy cost, but transitioning from the sleep to the active state requires q

energy units. Jobs may be preempted and (in the multi-processor case) migrated.
The single-processor case of the problem is known to be solvable in polynomial time via an involved

dynamic program, whereas the only known approximation algorithm for the multi-processor case
attains an approximation factor of 3 and is based on rounding the solution to a linear programming
relaxation of the problem. In this work, we present efficient and combinatorial approximation
algorithms for both the single- and the multi-processor setting. Before, only an algorithm based
on linear programming was known for the multi-processor case. Our algorithms build upon the
concept of a skeleton, a basic (and not necessarily feasible) schedule that captures the fact that some
processor(s) must be active at some time point during an interval. Finally, we further demonstrate
the power of skeletons by providing a 2-approximation algorithm for the multiprocessor case, thus
improving upon the recent breakthrough 3-approximation result. Our algorithm is based on a novel
rounding scheme of a linear-programming relaxation of the problem which incorporates skeletons.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases scheduling, energy-efficiency, approximation algorithms, dynamic
programming, combinatorial algorithms

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.51

Related Version Full Version: https://arxiv.org/abs/2107.07800

Funding Gunjan Kumar : This work was supported in part by National Research Foundation
Singapore under its NRF Fellowship Programme [NRF-NRFFAI1-2019-0004] and AI Singapore
Programme [AISG-RP-2018-005], and NUS ODPRT Grant [R-252-000-685-13].

1 Introduction

Energy consumption is one of the most important aspects of computing environments as
supported, for example, by the fact that data centers already account for more than 1% of
global electricity demand, and are forecast to reach 8% by 2030 [10]. With that in mind,
modern hardware increasingly incorporates power-management capabilities. However, in
order to take full advantage of these capabilities algorithms in general, and scheduling
algorithms in particular, must take energy consumption into consideration – on top of the
classical algorithm complexity measures of time and space.
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In this work we study power-down mechanisms which are one of the most popular
power-management techniques available on modern hardware. In the most basic setting,
the processor (or device) can reside either in an active state in which processing can take
place, or in a sleep state of negligible energy-consumption in which no processing can take
place. Since transitioning the processor from the sleep to the active state requires energy, the
scheduler would like to satisfy all the processing requirements, while making use of the sleep
state as efficiently as possible. To give some intuition, it is preferable to reside in the sleep
state for fewer but longer time-intervals than frequently switching between the two states.

A bit more formally, consider a set of n jobs, each with a release time, a deadline and a
processing-time requirement, to be feasibly scheduled on either a single or a multi-processor
system that is equipped with a powerdown mechanism. When the (each) processor resides
in the active state it consumes energy at a rate of one, whereas it does not consume any
energy when in the sleep state. Transitioning from the sleep state to the active state requires
a constant amount of energy (the wake-up cost), whereas transitioning from the active state
to the sleep state is free of charge (this is w. l. o. g., since positive energy cost could be folded
onto the wake-up cost). Jobs can be preempted and (in the multi-processor setting) migrated,
but every job can be processed on at most one machine at any given time. The objective is
to produce a feasible schedule (assuming that such a schedule exists) which consumes the
minimum amount of energy. In Graham’s notation, and with E being the appropriate energy
function, the problems we study can be denoted as 1|rj ; dj ; pmtn|E and m|rj ; dj ; pmtn|E
respectively.

The problem was first stated in its single-processor version by Irani et al. [9] along with an
O(n log n)-time 2-approximation algorithm for it. The algorithm, called Left-to-Right greedily
keeps the processor at its current state for as long as possible. The problem plays a central
role in the area of energy efficient algorithms [8], and the exact complexity of it was only
resolved by Baptiste et al. [5] (and a bit earlier for the special case of unit-processing-time
jobs [4]), who gave an exact polynomial-time algorithm for the problem. Their algorithm is
based on a dynamic programming approach, which at least for the arbitrary processing-time
case is rather involved, and obtains a running time of O(n5).

When considering the multi-processor setting, it is unclear how to adapt the
aforementioned dynamic programming approach to the multi-processor setting, while
enforcing that a job does not run in parallel to itself. Additionally, several structural
properties that had proven useful in the analysis of the single-processor setting do not carry
over to the multiprocessor setting. Only very recently, an approximation algorithm for the
problem that attains a non-trivial approximation guarantee was presented by Antoniadis et
al. [2]. Their algorithm is based on carefully rounding a relaxation of a linear programming
formulation for the problem and has an approximation ratio of 3. They also show that their
approach gives an LP-based 2-approximation algorithm for the single-processor case. We
note that whether the problem is NP–hard or not in the multiprocessor-setting remains a
major open question.

1.1 Formal Problem Statement and Preliminaries
Consider a set of jobs {j1, j2, . . . , jn}; job ji has release time ri, deadline di and a processing
requirement of pi, where all these quantities are non-negative integers. Let rmin and dmax

be the earliest release time and furthest deadline of any job; it is no loss of generality to
assume rmin = 0 and dmax = D. For t ∈ Z≥0, let [t, t + 1] denote the tth time-slot. Let
I = [t, t′], t, t′ ∈ Z≥0, t < t′ be an interval. The length of I, denoted by |I| is t′ − t. Finally,
we use t ∈ I = [a, b] to denote a ≤ t ≤ b and call interval [ri, di] the span of job i.
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Two intervals I1 = [a1, b1] and I2 = [a2, b2] overlap if there is a t such that t ∈ I1 and
t ∈ I2. Thus two intervals which are right next to each other would also be considered
overlapping. Intervals which do not overlap are considered disjoint. I1 is contained in I2,
denoted I1 ⊆ I2, if a2 ≤ a1 < b1 ≤ b2 and it is strictly contained in I2, denoted I1 ⊂ I2, if
a2 < a1 < b1 < b2.

At any time-slot, a processor can be in one of two states: the active, or the sleep state.
For each time-slot that a processor is in the active state, it requires one unit of power whereas
no power is consumed in the sleep state. However, q units of energy (called wake up energy)
are expended when the processor transitions from the sleep to the active state. In its active
state, the processor can either process a job (in which case we refer to it as being busy) or
just be idle. On the other hand the processor cannot perform any processing while in the
sleep state. Note that whenever a period of inactivity is at least q time-slots long then it is
worthwhile to transition to the sleep state, whereas if it is less than q time-slots long then it
is preferable to remain in the active state.

A processor can process at most one job in any time-slot and a job cannot be processed on
more than one processor in a time-slot. However, job preemption and migration are allowed,
i.e., processing of a job can be stopped at any time and resumed later on the same or on a
different processor. A job ji must be processed for a total of pi time-slots within the interval
[ri, di]. Any assignment of jobs to processors and time slots satisfying the above conditions
is called a (feasible) schedule. We assume that the processor is initially in the sleep state.
Therefore, the energy consumed by a schedule is the total length of the intervals during
which the processor is active plus q times the number of intervals in which the processor is
active. The objective of the problem is to find a schedule which consumes minimum energy.

We will use P to denote the sum of all the processing times, ie. P =
∑n

i=1 pi. We will
use OPT to denote a fixed optimal solution and Q to denote the total wake up cost incurred
by OPT . Given a solution S (not necessarily feasible), by maximal gaps of S, we will refer
to intervals [a, b] such that there are no active time slots in [a, b] and processor is active at
time slots a − 1 and b. An interval [a, b] of S is active if the processor is active in all time
slots in [a, b] and inactive in time slots a − 1 and b.

Given a single processor instance, a schedule is called a skeleton if for all jobs ji, there is
at least one active interval overlapping with the span of ji. In other words, there must be
at least one active time slot in [ri − 1, di + 1]. Note that a skeleton need not be a feasible
solution. A minimum cost skeleton is a skeleton of minimal energy consumption over all
skeletons.

In the following we let (x)+ to stand for x if x ≥ 0 and 0 otherwise. Due to space
constraints omitted proofs are deferred to the appendix.

1.2 Our Contribution

We study the problem in both the single-processor and the multi-processor setting. Our core
technical contribution is that of introducing the concept of minimum cost skeletons. We
then employ this concept to design combinatorial and efficient approximation algorithms for
single and multi-processor setting. Finally we demonstrate how skeletons can also be useful
in strengthening the LP-formulation of the problem with additional constraints by giving
the first known (2 + ϵ)-approximation algorithm for the multi-processor case. More formally,
our contribution is based on the following.

ISAAC 2021
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Single Processor

We begin by introducing the notion of skeletons for single-processor instances, and presenting
a simple dynamic programming algorithm for computing minimum cost skeletons in Section 2.
Roughly speaking, a skeleton is a (not necessarily feasible) solution which overlaps with
the span of every job. Apart from providing a lower bound for the cost of the optimal
solution OPT , a skeleton has useful structural properties that allow us to convert it into a
feasible solution without much overhead. The first result in which we demonstrate this, is
the following.

▶ Theorem 1. There exists an O(n log n)-time algorithm that computes a solution of cost at
most OPT + P .

The algorithm produces a solution of cost at most OPT + P , where OPT is the cost of
optimal solution and P is the sum of processing times. Since P ≤ OPT this implies another
2-approximation algorithm, thus matching algorithm Left-to-Right of [9] in both running
time and approximation guarantee.

We further build upon the ideas of Section 2 in Section 3 to give a O(n log n)-time
algorithm that also builds upon a minimum cost skeleton in order to compute a solution of
cost at most OPT +P/(α − 1) + Q(2α + 1). Here Q is the total wake up cost incurred by
the optimal solution and α is any real number greater than 1. We show how this result can
be used in order to obtain a O(n log2 n) algorithm that computes a near optimal solution
when P >> Q (which in most scenarios is the practically relevant case) or Q >> P :

▶ Theorem 2. Let t = max{P/Q, Q/P }. Then there exists a O(n log2 n) time algorithm
which computes a solution of cost at most OPT (1 + 8t−1/2).

Note, that this implies a (1+ϵ)-approximation algorithm when t ≥ 8/ϵ2, whereas Left-to-Right
by Irani et al. [9] remains a 2-approximation algorithm even in that case.

Finally, we give an algorithm that is also an 35/18 ≈ 1.944-approximation algorithm in
O(n log n)-time, improving upon the greedy 2-approximation algorithm of Irani et al. [9]:

▶ Theorem 3. There is a 35
18 approximation algorithm for the single processor case in

O(n log n) time.

Although (as already mentioned) Baptiste et al. [5] present an exact algorithm for the
problem, it is based on a rather involved dynamic program. In contrast, our algorithms have
as their main advantages that they are combinatorial in nature, simple to implement, it has
an improved approximation-ratio compared to all other non-exact algorithms for the problem
and even obtains a near-optimal solution for the interesting and practically relevant case of
P >> Q in near linear time.

Multiple Processors

Although the notion of a skeleton does not naturally extend to the multi-processor setting,
it is possible to define skeletons for that setting so as to capture the same intuition. In
Section 4 we do exactly that before presenting a polynomial-time algorithm for computing
minimum-cost multi-processor skeletons. In Section 5, we give an algorithm to convert any
skeleton into a feasible solution while increasing the cost by a factor of at most 6:

▶ Theorem 4. There exists a combinatorial 6-approximation algorithm for the multi-processor
case of the problem.
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This implies the first combinatorial constant-factor approximation algorithm for the
multiprocessor case. The arguments required in its analysis are however much more delicate
and involved than the single processor case and heavily build upon the tools developed in [2].

Finally, in Section 6 we further demonstrate the power of skeletons by using them to
develop a (2+ϵ)-approximation algorithm for the multi-processor case. Thus we improve upon
the recent breakthrough 3-approximation from [2]. We note, that obtaining any non-trivial
approximation guarantee in the multiprocessor setting has been a long standing open problem
(see [5]).

▶ Theorem 5. There exists a (2 + ϵ)-approximation algorithm for the problem on parallel
machines.

More specifically, we are able to strengthen the linear program used in [2] with additional
constraints that are guided by the definition of skeletons. We note that it is unclear whether
the rounding scheme used in [2] can take advantage of these new constraints. To that end
we devise a novel rounding technique, and also show that the considered linear program has
an integrality gap of at most 2. In other words, we show the following result.

▶ Theorem 6. There exists a pseudo-polynomial time 2-approximation algorithm for deadline
scheduling on parallel processors.

Theorem 6 when combined with standard arguments, which were already presented in [2],
then implies Theorem 5.

1.3 Further Related Work
The single-processor setting has also been studied in combination with the other popular
power-management mechanism of speed-scaling where the processor can additionally vary its
speed while in the active state where the power consumption grows convexly in the speed.
This allows for increased flexibility, as in some cases it may be beneficial to spend some
more energy by increasing the speed in the active state in order to incur larger savings by
transitioning the processor to the sleep state for longer periods of inactivity. This technique
is commonly referred to as race to idle in the literature. The combined problem is known to
be NP-hard [1, 11] and to admit a fully polynomial time approximation scheme (FPTAS) [3].

Finally, the problem of minimizing the number of gaps in the schedule, i. e., the number
of contiguous intervals during which the processor is idle. Note that with respect to exact
solutions our problem generalizes that of minimizing the number of gaps. Chrobak et al. [6]
present a simple O(n2 log n)-time, 2-approximation algorithm for the problem of minimizing
the number of gaps on single processor with unit-processing times. Demaine et al. [7] give
an exact algorithm for the problem of minimizing the number of gaps in the multi-processor
setting with unit-processing-times.

2 Computing Minimum Cost Skeletons for a Single Processor

The goal of this section is to prove Theorem 1. Any solution to the minimum cost skeleton
problem can be seen as a (non-overlapping) set of active intervals separated by a set of
maximal gaps. In this spirit one interpretation of a skeleton is that of a set of active intervals
which overlaps with the span of every job. An equivalent definition for a skeleton is a set of
maximal gaps such that the span of no job is properly contained inside any maximal gap: if
there is at least one active time-slot in [ri − 1, di + 1] then the span of job i is not contained
in a maximal gap and vice versa. As we will see, this alternative viewpoint will be useful in
designing a near linear time algorithm for computing a minimum cost skeleton.
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▶ Definition 7. Gap Skeleton Problem: Find a set of maximal gaps G1, G2, . . . , Gk such
that for each job ji, [ri − 1, di + 1] ̸⊆ Gp for p = 1, 2, . . . , k and the quantity

∑k
i=1(|Gi| − q)+

is maximized.

Observe that we may w. l. o. g. restrict ourselves to input instances with at least two
jobs, and may only consider minimum cost skeletons, the leftmost interval of which begins
at dmin and the rightmost active interval ends at rmax (or else we can transform them to a
skeleton satisfying the property without increasing their cost). We call such skeletons nice.
For the purpose of computing a minimum cost skeleton, we shall restrict our attention to
nice skeletons only. The maximal gaps of a nice skeleton form a feasible solution to the gap
skeleton problem. By construction, the sum of costs of a nice skeleton and the corresponding
gap skeleton is exactly equal to rmax − dmin + q. Hence, the problem of finding a minimum
cost skeleton is in fact equivalent to finding a maximum cost gap skeleton. We now show
how to compute a maximum gap skeleton by using dynamic programming.

Without loss of generality, we may also assume that maximal gaps in any maximum
cost gap skeleton start and end at one of the points in T = ∪n

i=1{ri, di} (otherwise we could
increase the length of maximal gaps, without thereby decreasing the cost of the solution). A
maximal gap [x, y] is called right maximal if there exists a ji such that di = y and ri > x.
Without loss of generality, we may assume that there exists an optimal solution to maximum
gap skeleton problem in which all the gaps are right maximal (we can always convert any given
optimal solution to one containing only right maximal gaps). Let us rename T = ∪n

i=1{ri, di}
to T = {t1, t2, . . . , t2n} such that t1 ≤ t2 ≤ . . . ≤ t2n. Observe that for any t ∈ T , at most
one right maximal gap can have its left endpoint at t and hence there can be a total of at
most 2n right maximal gaps.

We can list all the right maximal gaps in O(n log n) time as follows: we sort all the ri’s
in O(n log n) time and then for each t ∈ T , we compute the first ri to the right of t. Then
[t, di] is the unique right maximal gap starting at t. Since for each t, the above can be done
in O(log n) time (by using binary search), all the right maximal gaps can be computed in
O(n log n) time.

Let Ti = {ti, ti+1, . . . , t2n}, i = 1, . . . 2n and A[i] be the maximum value of the gap
skeleton problem when restricted to Ti. By the discussion above, we may restrict our
attention to only the right maximal gaps. Observe that A[2n] = 0 and A[1] gives the value
of maximum cost gap skeleton. A satisfies the following recurrence: let g = [ti, tj ] be the
right maximal gap starting at ti. In the optimal solution, either a right maximal gap starts
at ti or it doesn’t, giving A[i] = max{(tj − ti − q)+ + A[j + 1], A[i + 1]}. Using the above
recurrence, A[1], . . . , A[2n] can be computed in O(n) time. Hence, by the equivalence of the
two problems, a skeleton with minimum cost can be computed in O(n log n) time.

▶ Theorem 8. A minimum cost skeleton can be computed in O(n log n) time.

Since any feasible solution to the minimum energy scheduling problem is also a skeleton, the
following follows:

▶ Observation 9. The minimum cost skeleton has value at most OPT.

In Lemma 10 we show how to convert a skeleton into a feasible solution in O(n log n) time
with an additional cost of at most P . Along with Theorem 8 and Observation 9, this
completes the proof of Theorem 1

▶ Lemma 10. Let S be any feasible skeleton and PS be the maximum total volume of jobs
that can be feasibly processed in it. Then we can convert S into a feasible solution S′ with an
additional cost of P − PS in O(n log n) time.
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3 Improved Approximation Algorithms

We further develop the ideas introduced in the last section to give fast and improved
approximation algorithm for the minimum energy scheduling problem. The main insight is
to compute a minimum cost skeleton after scaling the wake up cost and then using Lemma
10 to find a feasible solution. As we will show, this leads to near optimal solutions in case
P >> Q or P << Q.

Let α > 1 be a real number and Sα be the minimum cost skeleton obtained by scaling
the wake up cost by α. Sα can be computed in O(n log n) time by Theorem 8. Let Fα be the
solution obtained by converting Sα into a feasible solution using Lemma 10. The following
theorem bounds the cost of Fα in terms of P, Q and α.

▶ Theorem 11. The cost of Fα is at most OPT + 2(α + 1)Q + P/(α − 1).

Proof. Let OPT be a fixed optimal solution to the original instance. We abuse notation
and also use OPT to denote the cost of the solution. To bound the cost of Fα, we will first
convert OPT into Sα in a series of steps, while carefully accounting for changes in the cost,
and the total volume of jobs that can be processed. Since Fα can be obtained from Sα by
using Lemma 10 with a further increase in cost equal to the missing volume, this will allow
us to obtain the desired bound. Let g = [a, b] be any maximal gap in OPT . We first show
that at most two active intervals of Sα overlap with g. The proof of this claim follows a
similar proof found in Irani et al. [9].

▷ Claim 12. At most two active intervals of Sα overlap with any maximal gap g of OPT .

Let g be a maximal gap of OPT and I1, I2 be the two intervals of Sα that overlap with g

(it is of course possible that either one or both of these intervals are empty). Recall that
|I1 ∩ g| and |I2 ∩ g| denote the length of overlap between g and I1, I2 respectively.

▷ Claim 13. |I1 ∩ g| ≤ αq and |I2 ∩ g| ≤ αq.

Proof. Let I1 ∩ g = [a, b]. For the sake of contradiction, suppose that |I1 ∩ g| > αq. Observe
that span of no job is strictly contained inside I1 ∩ g, ie. for no jk, [rk, dk] ⊂ I1 ∩ g (otherwise
job jk would not be scheduled in OPT at all). This implies that Sα remains a valid skeleton
even if we make all the time slots in [a, b] inactive. This operation decreases the total length of
active intervals in Sα by |a − b| > αq while introducing at most one new active interval. This
implies that Sα is not the optimal skeleton with wake up cost equal to αq, a contradiction
(as making all time slots in [a, b] will give a lower cost skeleton). Hence, |I1 ∩ g| ≤ αq. A
similar argument shows that |I2 ∩ g| ≤ αq. ◁

We first transform OPT so that its active intervals contain the active intervals of Sα.
More formally:

▷ Claim 14. We can modify OPT while increasing the cost by at most 2(α + 1)Q so that
for any active interval Iα ∈ Sα, there exists an active interval Io ∈ OPT such that Iα ⊆ Io.

Proof. We transform every maximal gap g of OPT as follows. Let I1, I2 be two active
intervals of Sα that overlap with g. We add (active) intervals I1 ∩ g and I2 ∩ g to OPT . The
additional cost incurred is 2q + |I1 ∩ g| + |I2 ∩ g| ≤ 2q + αq + αq = 2(α + 1)q. The condition
of the claim clearly holds after we perform the above transformation for every maximal gap
of OPT . The total cost incurred over all maximal gaps is 2(α + 1)Q and the claim follows.

◁
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Let OPT1 be the solution obtained after the modification in Claim 14. Let OPT1 \ Sα

denote the set of active intervals formed by taking the difference of active time slots in OPT1
and Sα. Let Gα be the set of all maximal gaps of Sα. By Claim 14, for every active interval
I ∈ OPT1 \ Sα, there exists a maximal gap gα ∈ Gα such that I ⊆ gα. We convert OPT1
into Sα by removing all the active intervals in OPT1 \ Sα. To bound the cost of OPT1, we
need to consider the following possibilities:

I ⊂ gα: In this case, removing I doesn’t create any new active intervals in OPT1. Hence,
decrease in the cost of OPT1 is equal to the length of I. Also, the reduction in the total
volume of jobs that can be scheduled in OPT1 is at most |I|.
I = gα: In this case, removing I creates a new interval in OPT1. Hence, total cost
of OPT1 decreases by |I| − q. Also, reduction in the total volume of jobs that can be
scheduled in OPT1 is at most |I|.

Let A the set of intervals such that I ∈ OPT1 \ Sα = gα. We need the following bound on
the cardinality of A to finish the proof.

▷ Claim 15. q|A| ≤ P/(α − 1).

Proof. Recall that we compute Sα by scaling the wake up cost by α, hence any maximal
gap of Sα has length at least αq. Since for any interval I ∈ A, there exists a maximal gap
gα ∈ Sα such that I = gα, we have |I| ≥ αq for any I ∈ A. We now show that there can’t be
more than q idle time slots in I in any feasible schedule of OPT .

Fix a feasible schedule of jobs in OPT . Since I = gα and Sα is a feasible skeleton, there
is no k such that span of jk is strictly contained in I. Let J1 be the set of jobs which overlap
with the left end point of I and J2 be the set of jobs which overlap only with the right end
point of I. Note it is possible that some job is included in both J1 and J2. By shifting the
jobs in J1 to as far left as possible and those in J2 to as far right as possible, we may assume
that all the idle slots in I appear contiguously. If the length of this idle interval is more
than q, then its removal decreases the cost of the solution without affecting the feasibility,
thus contradicting the fact that OPT is a minimum cost solution. Hence, there cannot be
more than q idle slots in any I ∈ A in any feasible schedule of OPT . This implies that
at least |I| − q volume of jobs is processed in I in any feasible schedule of OPT . Hence,
P ≥

∑
I∈A(|I| − q) ≥ (α − 1)q|A| and the statement of the claim follows. ◁

We are now ready to bound the cost of the final solution. By the case analysis above, the
cost of Sα is at most OPT1 −

∑
I∈OP T1\Sα

|I| + q|A| ≤ OPT + 2(α + 1)Q −
∑

I∈OP T1\Sα
|I| +

q|A|. The total volume of jobs that can be processed in Sα is at least P −
∑

I∈OP T1\Sα
|I|.

Hence, using Lemma 10 to convert Sα into a feasible solution gives that the total cost of Sα is at
most OPT +2(α+1)Q−

∑
I∈OP T1\Sα

|I|+q|A|+
∑

I∈OP T1\Sα
|I| = OPT +2(α+1)Q+q|A| ≤

OPT + 2(α + 1)Q + P/(α − 1). This completes the proof of the theorem. ◀

We are now ready to prove the two main theorems of this section. We start with
Theorem 2.

Proof of Theorem 2. We construct a series of solutions, F0, F1, F2, F4, . . . , F2log⌈n⌉ as follows:
F0 is the solution given by Theorem 1 of cost at most OPT + P . For each i ≥ 1, we
construct Fi by setting α =

√
P/iq in Theorem 11. Our solution F is obtained by taking

the minimum cost solution among all the F ′
i s. Since, each of F ′

i s can be constructed
in O(n log n) time, F can be constructed in O(n log2 n) time. We now show that F has
the desired approximation guarantee. First note that OPT ≥ P + Q and t ≥ 1. If
P ≤ Q, then F0 has cost at most OPT + P = OPT (1 + P

OP T ) ≤ OPT (1 + P
P +Q ) ≤
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OPT (1 + t−1) ≤ OPT (1 + 8t−1/2). Now consider the case when P > Q. One can verify
that for α ≥ 1, f(α) = Q(2α + 2) + P/(α − 1) has a unique minimum at α∗ =

√
P/2Q + 1.

We must have used exactly one α ∈ [α∗,
√

2α∗] to construct one of the Fi’s. Since, f(α)
has a unique minimum in α ≥ 1, it follows that it is increasing in [α∗,

√
2α∗]. Hence,

there exists an Fi with cost no more than guaranteed by setting α = 2α∗ in Theorem 11.
A straightforward calculation shows that f(2α∗) ≤ 8

√
PQ. Hence, F has cost at most

OPT + 8
√

PQ ≤ OPT (1 + 8
√

P Q

P +Q ) ≤ OPT
(

1 + 8
√

t
t+1

)
≤ OPT (1 + 8t−1/2). ◀

Finally, we give a O(n log n) algorithm that has a performance guarantee better than 2.

Proof of Theorem 3. We construct two solutions: first one of cost at most OPT + P (by
using Theorem 1) and second one of cost at most OPT + 8Q + P/2 (by using Theorem 11).
In case P ≤ 17Q, the first solution has cost at most OPT + P ≤ OPT + 17(P + Q)/18 ≤
OPT · 35/18. In case P > 17Q, the second solution has cost at most OPT + 8Q + P/2 ≤
OPT + 8(1/18) · OPT + 1/2 · OPT = (1 + 8/18 + 1/2) · OPT = OPT · 35/18. ◀

4 Skeletons for Parallel Processors

In this section, we extend the idea of skeletons from the single processor setting to the
multi-processor one. We design an efficient and combinatorial algorithm for finding the
minimum cost skeleton. In the next section we then show how this skeleton can be used
to design a combinatorial approximation algorithm for the multi-processor setting. Let T

be as defined in the last section, i. e. T = ∪n
i=1{ri, di}. For any ti, tj ∈ T such that ti < tj ,

let l(ti, tj) be the maximum number of processors that can be blacked out in [ti, tj ]. More
formally, l(ti, tj) is the maximum number of processors so that there exists a feasible schedule
using at most on m − l(ti, tj) many processors at any timeslot t ∈ [ti, tj). Equivalently, at
some time t ∈ [ti, tj ], at least m − l(ti, tj) processors must be active in any feasible solution.
We are now ready to define skeleton for the multi-processor case.

▶ Definition 16. A set of active intervals (not necessarily feasible) is called a skeleton if
for any time interval [ti, tj ], there exists a t ∈ [ti, tj) such that at least m − l(ti, tj) processors
are active at timeslot t.

By the definition of l(ti, tj) and the definition of multi-processor skeletons, it directly
follows that every feasible solution is also a skeleton. Hence, the cost of the optimal skeleton
is a lower bound on the cost of an optimal solution.

We note that all l(ti, tj)’s can be computed in polynomial time: there are O(n2) possible
pairs (ti, tj) and for each pair, the value l(ti, tj) can be computed in O(F log m) time by
using binary search (F here denotes the time needed to check feasibility of an instance, which
can also be done in polynomial time as we will see in the next section). Therefore, the total
time required to compute all l(ti, tj)′s is O(Fn2 log m).

4.1 Computing Minimum Cost Skeleton for Parallel Processors
We show how an optimal multi-processor skeleton can be computed by combining up to m

many distinct single-processor skeletons. To that end, let Ik be the set of all tuples (ti, tj)
such that m − l(ti, tj) ≥ k. Each of {Ik}m

k=1 can be thought of as defining an instance of the
minimum skeleton problem for a single processor as follows: for each I = [a, b] ∈ Ik, we have
a job with release time a, deadline b and a unit processing requirement. We can compute
the minimum skeleton Sk for each k = 1, 2, . . . , m using Theorem 8. It remains to show that
{Sk}m

k=1 is indeed the desired optimal skeleton.
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▶ Lemma 17. {Sk}m
k=1 is an optimal skeleton for the multi-processor case.

Proof. Let O be the optimal multi-processor skeleton for an arbitrary given instance. Without
loss of generality, we may assume that O has a laminar structure, i. e. each active interval
on processor k + 1 is a subset of some active interval on processor k. Let Ok be the set of
active intervals on processor k in the optimal solution and li be the total length of active
intervals on processor i. We consider O = {Ok}m

k=1 such that it is lexicographically maximal
with respect to the m-tuple (l1, l2, . . . , lm), and it differs from {Sk}m

k=1 in least number of
processors among those lexicographically maximal ones. If Ok = Sk for 1 ≤ k ≤ m, then the
lemma follows. For the sake of contradiction, let us assume that Ok ̸= Sk, for some k.

▷ Claim 18. Or is a feasible skeleton for the single processor instance Ir, 1 ≤ r ≤ m.

Proof. Suppose the statement of the claim doesn’t hold. Then there exists an interval [ti, tj ]
such that m − l(ti, tj) ≥ r but there is no active interval overlapping [ti, tj ] in Or. Since
the optimal solution O is laminar, there is no active interval overlapping [ti, tj ] for any
Ol, r ≤ l ≤ m. This implies that the number of active interval at any time in [ti, tj ] in O is
at most r − 1 < m − l(ti, tj). This contradicts the feasibility of the optimal solution and the
claim follows. ◁

▷ Claim 19. The solution obtained by replacing the intervals on processor k in the optimal
solution, i. e. Ok by Sk is a feasible multi-processor skeleton.

Proof. Suppose the statement of the claim doesn’t hold. Then there exists an interval [ti, tj ]
such that some active interval in Ok overlaps with [ti, tj ] but no active interval in Sk overlaps
with [ti, tj ]. Since the optimal solution O is laminar, this implies that some active interval
in Oℓ overlaps with [ti, tj ] for any 1 ≤ ℓ ≤ k. Hence, m − l(ti, tj) ≥ k, which implies that
some active interval in Sk must overlap with [ti, tj ]. This contradicts our assumption and
the claim follows. ◁

Since Ok is a feasible solution to Ik and Sk is an optimal solution for Ik, cost of Sk is at
most the cost of Ok. Hence, replacing Ok by Sk gives a feasible skeleton without increasing
the cost. The new solution as constructed above is laminar as well, otherwise we could
move active time slots from a higher numbered processor to a lower numbered processor,
contradicting our assumption that the optimal solution is the largest in lexicographical
ordering (l1, l2, . . . , lm). Thus we have obtained a different optimal solution which matches
{Si}m

i=1 on more processors. This contradicts our choice of the optimal skeleton and the
lemma follows. ◀

5 Converting a Minimum Cost Skeleton into a Feasible Solution

As argued in Lemma 17, the cost of the obtained optimal skeleton is at most the cost of an
optimal solution. However, the optimal skeleton may not be a feasible solution. In this section
we show how to overcome this by transforming the optimal skeleton {Sk}m

k=1 into a feasible
solution while increasing its energy cost by at most a factor 6. This transformation consists
of two phases: the extension phase and the tripling phase. In the following subsections we
describe each one of them in more detail.
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5.1 Extension Phase
The extension phase of the transformation is inspired by a similar transformation performed
in [2]. For the sake of completeness we give a brief and high-level description of the required
terminology and results and refer the interested reader to [2] for the details.

We begin by introducing the notions of forced volume and of deficiency:

▶ Definition 20 ([2]). The forced volume of a job ji with respect to an interval [a, b], is
defined as fv(ji, [a, b]) := max{0, pi − (|[ri, di] \ [a, b]|)}. Let D be a set of disjoint intervals.
The forced volume of job ji with respect to D is defined as fv(ji, D) := max{0, pi − |[ri, di]| −∑

D∈D |D ∩ [ri, di]|}.

Intuitively, fv(ji, [a, b]) is the minimum volume of ji that must be processed during [a, b]
in any feasible schedule, and fv(ji, D) is the amount of volume that must be processed within
the intervals of D in any feasible schedule.

▶ Definition 21 ([2]). Let D be a set of disjoint intervals, and I = {I1, I2, . . . Ik} be a set of
not necessarily disjoint intervals with the property, that for any time-point t, mt := |{i ∈ I :
Ii ∩ t ̸= ∅}| ≤ m holds. Furthermore let J be a set of jobs. The deficiency of D with respect
to I and J , denoted by def(D, I, J ), is the non-negative difference between the sum of the
forced volume of all jobs of J with respect to D and the total volume that can be processed in
D within I. Thus

def(J , D, I) = max

0,
∑
j∈J

fv(j, D) −
∑

t:[t,t+1]⊆D

mt

 .

In [2], a decision problem called deadline-scheduling-on-intervals was introduced.
More formally, problem deadline-scheduling-on-intervals takes as input k (not
necessarily disjoint) supply-intervals I = {I1, I2, . . . Ik} and the set J of jobs (each with
a release-time, a deadline and processing volume), and asks whether the jobs of J can be
feasibly scheduled on I. In [2] a polynomial-time algorithm DSI-ALG was presented that
decides deadline-scheduling-on-intervals. Furthermore, in case the input instance is
infeasible, DSI-ALG returns a minimal set of intervals D = {D1, D2, . . . Dℓ} of maximum
deficiency with respect to I. The following theorem follows from Section 4 in [2] (more
specifically the first statement appears in [2] as Theorem 4.1, the last one as Claim 4.2, and
the polynomial-time algorithm is described and analyzed throughout Section 4):

▶ Theorem 22 ([2]). An instance of deadline-scheduling-on-intervals is feasible iff
no set of disjoint intervals has positive deficiency. Additionally, there is a polynomial-time
algorithm that decides if a given instance to deadline-scheduling-on-intervals is feasible
and if it is not, then a minimal set of disjoint intervals of maximum deficiency with respect
to the instance is returned. Furthermore, increasing the volume of supply intervals at any
time point in the minimal set of maximum deficiency by one unit decreases the maximum
deficiency by one unit.

Finally, [2] presents a polynomial time algorithm EXT-ALG which extends a supply
interval I ′ ∈ I (a property that we will use later, is that I ′ is chosen so that it overlaps
some D′ ∈ D without containing D′, i.e, D′ ̸⊆ I ′ but D′ ∩ I ′ ̸= ∅) by one time slot so as to
decrease the total deficiency of the set of intervals of maximum deficiency D by one. This
is repeated until the resulting set of supply intervals becomes feasible. Since the maximal
deficiency at the beginning was at most the total processing time P of all jobs, the total
increase in energy consumption by extending the supply intervals could also only have been
at most P .
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The extension phase consists of repeatedly extending the intervals of {Sk}m
k=1 via algorithm

EXT-ALG until this is not possible anymore. Assume that at this point {Sk}m
k=1 has been

extended to an interval set I. The extension phase thus terminates either because I is a
feasible instance for J (and by Theorem 22 no set of disjoint intervals has positive deficiency
with respect to I and J ) or because the minimal set D of maximum deficiency returned by
DSI-ALG does not contain any interval D′ such that I ′ ∪ D′ ≠ ∅ and I ′ ̸⊇ D′ holds for some
I ′ ∈ I. In the later case I is still not feasible, and a further transformation (described in the
next subsection) is required. The extension phase as stated now is pseudo-polynomial but
can be carried out in polynomial time by using standard techniques (see [2] for more details).
From the argument from [2] as well as the discussion above, the following lemma follows:

▶ Lemma 23. The energy-cost of the schedule I differs from that of {Sk}m
k=1 by at most

an additive factor of P . Furthermore I is either feasible, or contains no interval I ′ ∈ I
that overlaps but does not contain an interval from the minimal set of intervals of maximum
deficiency D.

5.2 Tripling Phase
In case the extension phase terminated with an infeasible solution, then, by Lemma 23, there
is no interval I ′ ∈ I such that I ′ overlaps some interval D′ ∈ D without containing it. In
that case, we need to perform the tripling phase, in which we carefully power on further
machines at specific times so as to make the instance feasible. Let mt be the number of
machines active at time t in I. We create a new solution I ′ by setting m′

t = min{3mt, m}.
In Lemma 24, we show that I ′ is a feasible solution to the original instance. By construction,
the total cost of intervals in I ′ is at most thrice that of I. From the above discussion and
Lemma 23, it follows that the algorithm consisting of the tripling and the extension phase is
a 6-approximation algorithm. In other words Theorem 4 follows.

▶ Lemma 24. I ′ is a feasible solution to the original instance.

6 A 2-Approximation Algorithm for Multiple Processors

In this section we prove Theorem 5 thus improving upon the recent 3-approximation algorithm
of [2]. To achieve this, we introduce additional constraints to the linear programming (LP)
relaxation of [2] and devise a new rounding scheme to harness the power of new constraints. In
the remainder of the section, we prove that our rounding technique gives a pseudo-polynomial
time 2-approximation algorithm – thus also showing an upper bound of 2 on the integrality-
gap of the LP. By using standard arguments, this directly implies (2 + ϵ)-approximation
algorithm in polynomial time (see [2] for more details).

We now give a brief description of the LP relaxation of [2]. For every possible interval
I ⊆ [0, D], there is an associated variable xI , 0 ≤ xI ≤ m which indicates the number of
times I is picked in the solution. The objective is to minimize the total energy consumption,
ie.

∑
I xI(|I| + q). mt denotes the number of processors that are active during time slot t (or

equivalently total capacity of active intervals in time slot t) and f(i, t) denotes the volume of
job i that is processed in time slot t. The constraints of the LP are self explanatory; the
interested reader is referred to [2] for the details.

In the following we describe the additional constraints (in bold). Recall that for any
interval [a, b], l(a, b) ∈ Z≥0 is the maximum number of machines that can remain inactive
throughout interval [a, b] without affecting the feasibility of the instance (see Section 4). This
implies that at least m − l(a, b) active intervals are overlapping with [a, b] in any feasible
schedule. We add a constraint capturing this fact for every [a, b] ⊆ [0, D].
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minimize
∑

I(|I| + q)xI

subject to
mt =

∑
I:[t,t+1]∈I xI 0 ≤ t < D

mt ≥
∑

i:ri≤t≤di−1 f(i, t) 0 ≤ t < D

pi =
∑di−1

t=ri
f(i, t) 0 ≤ i ≤ n∑∑∑

I:[a,b]∩I ̸=∅

xI ≥ m − l(a, b) 0 ≤ a < b ≤ D

f(i, t) ∈ [0, 1] ∀i, t

xI , mt ∈ [0, m] ∀t, I ⊆ [0, D]

Suppose the optimum fractional solution to the linear program has value f . For reasons
that will become apparent later, we would like to use an optimum solution maximizing the
value

∑
t min(mt, 1). In order to compute such a solution we solve a second linear program

that is based on the previous one, as follows: we introduce a new set of variables yt and
additional constraints yt ≤ mt and 0 ≤ yt ≤ 1 for each time slot t. By adding constraint∑

I xI(|I| + q) = f we enforce that the resulting solution has energy cost equal to f and is
therefore also optimal. Finally we set the objective function to maximize

∑
t yt.

Let F = {I : xI > 0} be the optimal fractional solution after solving the second LP. Let
ϵ = gcdi∈F (xI). We create xI/ϵ copies of each I ∈ F to assume that all intervals in F have
the same xI value (note that F is a multiset). If there exist [a, b], [c, d], a < c < b < d with
x[a,b], x[c,d] = ϵ, we replace them by [a, d], [b, c] with x[a,d], x[b,c] = ϵ. It is easily verified that
this process doesn’t affect the feasibility of the solution. This process is repeated until no
such pair of intervals remain in the instance. We therefore assume from now on, that the
intervals in F are non-crossing. We would like to stress that the above is done only for the
ease of analysis and during the course of the proof, it will be clear that we don’t actually
need to do this.

We partition the time slots in [0, D] into blocks and non-blocks as follows. A duration
[a, b] is called a block iff mt ∈ [0, 1) for all a ≤ t ≤ b − 1 and ma−1, mb ≥ 1. A duration
[a, b] is called a non-block iff mt ∈ [1, m] for all a ≤ t ≤ b − 1 and ma−1, mb < 1. The
following lemma leverages the new constraints and lower bounds the total weight of intervals
of F contained in a non-block. The proof of this lemma crucially uses the fact that F is an
optimum solution maximizing the value

∑
t min(mt, 1).

▶ Lemma 25. Let N = [a, b] be a non-block. If there exists a t ∈ [a, b − 1] such that mt > 1,
then

∑
I:I∩[a,b]̸=∅ xI ≥ 2.

Proof. By noting that a non-block is a maximal contiguous set of time intervals with mt ≥ 1,
intervals in F are laminar and mt > 1 for some t ∈ [a, b], there must exist an I ∈ F such that
I ⊆ [a, b]. Let F ′ be the solution obtained by replacing I = [l, r] by I ′ = [l + 1, r] in F . Since
F is a fractional solution with minimum cost, F ′ must be infeasible. Let D = {D1, D2, . . . Dℓ}
be the minimal set of disjoint intervals of maximum deficiency (with respect to I) as returned
by Theorem 22 and J ′ be the set of jobs such that fv(ji, D) > 0 for all ji ∈ J ′. Note that
the deficiency of D with respect to the current solution is ϵ. Let m′

t be defined with respect
to F ′.

Suppose there exists a t such that [t, t + 1] ⊆ D ∈ D, [t − 1, t] is part of a non-block
and [t, t + 1] is part of a block (or vice versa). This implies that m′

t < 1 and m′
t−1 ≥ 1.

Since m′
t−1 > m′

t, there exists an I ′ ∈ F ′ which ends at t. If we extend I ′ to the right
by 1 unit, deficiency would decrease by ϵ (by Theorem 22) and we will obtain a feasible
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solution different from F , with greater value of
∑

t min(mt, 1) (as extending I ′ implies setting
m′

t = mt + ϵ > mt). Hence, no D ∈ D overlaps with a block and non-block simultaneously.
Thus we can partition the intervals in D depending on whether they are contained in a block
or a non-block. Let DNB ⊆ D and DB ⊆ D be the intervals of D contained in blocks and
non-blocks respectively.

Let D1, D2 ∈ D be such that D1, D2 do not belong to the same block or the same non-block.
Suppose there exists a ji ∈ J ′ such that [ri, di]∩D1 ̸= ∅ and [ri, di]∩D2 ̸= ∅. Then there must
exist a t such that [t, t + 1] ⊆ [ri, di] and mt < 1. Since fv(ji, D ∪ [t, t + 1]) = fv(ji, D) + 1
and mt < 1, we have that the deficiency of D ∪ [t, t + 1] is strictly more than the deficiency
of D. This contradicts the fact that D has maximum deficiency and hence no job in J ′

overlaps with distinct Di, Dj . Therefore jobs in J ′ can be partitioned according to the block
or non-block they overlap with. Let J ′

N ⊆ J ′ be the set of jobs with positive forced volume
overlapping with the non-block N and DN ⊆ DNB be the set of intervals of D overlapping
with N .

Observe that DN must contain the time slot [l, l + 1] and hence is non-empty (recall that
[l, r] was replaced by [l + 1, r] in F to obtain F ′). Also, J ′

N ̸= ∅, otherwise D \ DN would
have been the minimal set with maximum deficiency. Hence, def(J ′

N , DN , F ′) > 0. Let x be
the left end point of leftmost interval in DN and y be the right end point of the rightmost
interval in DN . Since m′

t ≥ 1 for all [t, t + 1] ∈ [x, y] ⊆ N and def(J ′
N , DN , F ) > 0, there

must exist a time slot t ∈ [x, y − 1] such that mt ≥ 2 in any integer feasible solution. This
implies that m − l(x, y) ≥ 2 and hence

∑
I:I∩[a,b] ̸=∅ xI ≥ m − l(a, b) ≥ 2. ◀

Rounding Scheme

We next convert/round F into an integral solution in a series of steps. We will denote the
three intermediate solutions by F1, F2, F3 and the corresponding m′

ts as m1
t , m2

t , m3
t . Let

TN , TB be the set of time slots in non-blocks and blocks respectively. Let PF be the total
available capacity in F (ie. P =

∑
t mt) and PB , PN be the total available capacity in the

blocks and non-blocks respectively. Let QF be the total wake up cost incurred by F , ie.
QF = q

∑
I xI . Then Cost(F ) = PF +QF and PF = PB +PN . For each non-block N = [a, b]

such that mt > 1 for some t ∈ [a, b − 1], we add an additional supply interval [a, b] with
x[a,b] = 1 to F and call this solution F1.

▷ Claim 26. Cost(F1) ≤ Cost(F ) + PN + QF .

Proof. F1 is constructed by adding an interval [a, b] with x[a,b] = 1 for a non-block [a, b] if
mt > 1 for some t ∈ [a, b]. For each time slot t in a non-block, we have mt ≥ 1 and hence the
total length of new intervals added is at most

∑
[t,t+1]⊆TN

mt ≤ PN . If we add an additional
interval for a non-block [a, b], then

∑
I:I∩[a,b] ̸=∅ xI ≥ 2 (by Lemma 25). Since the intervals in

F are non-crossing, the above implies that the total weight of intervals which are completely
contained in [a, b] is at least 1. Thus the wakeup cost of each new interval can be charged to
the wakeup cost of intervals completely contained inside the corresponding non-block, and
the total additional wake up cost incurred is no more than QF . ◁

We convert F1 into F2 by deleting the portions of existing intervals in F such that for each
time slot t ∈ TN , we have the property m2

t = ⌊m1
t ⌋. This operation might increase the total

wake up cost, but since the processing cost gets decreased by at least as much, the overall
cost of the solution does not increase. This allows us to state the following.

▷ Claim 27. Cost(F2) ≤ Cost(F ) + PN + QF . Also, m2
t is an integer and m2

t ≥ mt for each
time slot t ∈ TN .
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We now describe our third transformation. As discussed earlier, we may again assume that
all the intervals in F2 have a weight of exactly ϵ and are non-crossing. Consider the single
machine instance JS = JN ∪ JB, where JB = {ji|ji ∈ J, [ri, di] ⊆ TB} consists of jobs in J

which are completely contained inside some block and JN consists of additional jobs defined
as follows: for each time slot t ∈ TN , there is a job jt with release time t, deadline t + 1
and a processing requirement of 1. We now pick a subset F ′

2 of intervals in F2 which form a
feasible solution to the following LP relaxation of the minimum cost skeleton.

min
∑

I

xI(q + |I|)

∑
I:t∈I

xI ≤ 1 ∀t ∈ [0, D]

∑
I:I∩[ri,di] ̸=∅

xI ≥ 1∀i ∈ [1, n]

xI ≥ 0 ∀I ⊆ [a, b]

F ′
2 ⊆ F2 is the set of intervals of maximum total length such that the total weight of

intervals containing any particular time slot is at most 1. It is worth noting that any interval
containing a time slot of some block is a part of F ′

2. The proof of the following claim is
deferred to the full version.

▷ Claim 28. F ′
2 is a feasible fractional skeleton for JS .

In the full version, we also show that the LP relaxation for the minimum cost skeleton
is exact. Hence, there exists an integer skeleton JS of cost no more than F ′

2. Then our
solution F3 is (F \ F ′

2) ∪ S. Observe that Cost(F3) ≤ Cost(F2) and m3
t is an integer for

every time slot t. We may therefore assume that xI = 1 for each I ∈ F3. We now describe
the final phase our algorithm, where we convert F3 into a feasible solution by extending
some existing intervals using EXT -ALG (see Section 5). If F3 is a feasible solution, our
algorithm terminates. Otherwise we find a disjoint minimal set of intervals of maximum
deficiency D = {D1, D2, . . . , Dk} guaranteed by Theorem 22. In each subsequent iteration,
we use EXT -ALG to extend an interval of F3 by 1 unit, thereby reducing the maximum
deficiency by 1. Claim 29 shows that if the current solution is infeasible and it is not possible
to extend an interval to reduce the deficiency, then the original instance is infeasible. Hence
the extension phase of the algorithm terminates with a feasible solution.

▷ Claim 29. Let Fcurr be the current solution. If Fcurr is infeasible and for all I ∈ Fcurr

the following is true: if I ∩ Di ̸= ∅, then Di ⊆ I, then the original instance is infeasible.

The deficiency at the start of the extension phase can be at most PB as m3
t ≥ mt for t ∈ TN .

Since we decrease the deficiency by 1 in each iteration, there can be at most PB iterations of the
extension phase. In each step we increase the cost of the solution by 1, hence cost of the final
solution is at most Cost(F3)+PB ≤ Cost(F )+PN +QF +PB = Cost(F )+P +QF ≤ 2Cost(F ).
This shows that the integrality gap of the LP relaxation is at most 2. To compute F1, F2, F3,
we only need the value of mt’s and don’t need to create multiple copies of intervals in our
solution. Thus our rounding algorithm can be implemented in pseudo-polynomial time and
this completes the proof of Theorem 6.
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Abstract
In the Online Machine Covering problem jobs, defined by their sizes, arrive one by one and have
to be assigned to m parallel and identical machines, with the goal of maximizing the load of the
least-loaded machine. Unfortunately, the classical model allows only fairly pessimistic performance
guarantees: The best possible deterministic ratio of m is achieved by the Greedy-strategy, and the
best known randomized algorithm has competitive ratio Õ(

√
m) which cannot be improved by more

than a logarithmic factor.
Modern results try to mitigate this by studying semi-online models, where additional information

about the job sequence is revealed in advance or extra resources are provided to the online algorithm.
In this work we study the Machine Covering problem in the recently popular random-order model.
Here no extra resources are present, but instead the adversary is weakened in that it can only
decide upon the input set while jobs are revealed uniformly at random. It is particularly relevant to
Machine Covering where lower bounds are usually associated to highly structured input sequences.

We first analyze Graham’s Greedy-strategy in this context and establish that its competitive
ratio decreases slightly to Θ

(
m

log(m)

)
which is asymptotically tight. Then, as our main result,

we present an improved Õ( 4√m)-competitive algorithm for the problem. This result is achieved
by exploiting the extra information coming from the random order of the jobs, using sampling
techniques to devise an improved mechanism to distinguish jobs that are relatively large from small
ones. We complement this result with a first lower bound showing that no algorithm can have a
competitive ratio of O

(
log(m)

log log(m)

)
in the random-order model. This lower bound is achieved by

studying a novel variant of the Secretary problem, which could be of independent interest.
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1 Introduction

We study the Machine Covering problem, a fundamental load balancing problem where
n jobs have to be assigned (or scheduled) onto m identical parallel machines. Each job
is characterized by a non-negative size, and the goal is to maximize the smallest machine
load. This setting is motivated by applications where machines consume resources in order
to work, and the goal is to keep the whole system active for as long as possible. Machine
Covering has found additional applications in the sequencing of maintenance actions for
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aircraft engines [20] and in the design of robust Storage Area Networks [41]. The offline
problem, also known as Santa-Claus or Max-Min Allocation Problem, received quite some
research interest, see [44, 10, 6] and references therein. In particular, the problem is known to
be strongly NP-hard but to allow for a Polynomial-Time Approximation Scheme (PTAS) [44].

This paper focuses on the online version of the problem, where jobs arrive one by one
and must be assigned to some machine upon arrival. Lack of knowledge about future jobs
can enforce very bad decisions in terms of the quality of the constructed solutions: In a
classical lower bound sequence, m jobs of size 1 arrive first to the system and they must
be assigned to m different machines by a competitive deterministic online algorithm. Then
subsequent m− 1 jobs of size m arrive, which make the online algorithm perform poorly, see
Figure 1. Indeed, the best possible deterministic algorithm achieves a competitive ratio of
m [44], and if randomization is allowed, the best known competitive ratio is Õ(

√
m), which

is best possible up to logarithmic factors [7]. The corresponding lower bound also uses that
the online algorithm cannot schedule the first m jobs correctly, at least not with probability
exceeding 1√

m
.

Figure 1 The instance showing that no deterministic algorithm is better than m-competitive for
Machine Covering. To the left, the best possible solution that an online algorithm can construct
achieves minimum load 1. To the right, the optimal minimum load is m.

Such restrictive facts have motivated the study of different semi-online models that provide
extra information [7, 14, 34, 37] or extra features [41, 42, 22, 16] to the online algorithm.

This work studies the Online Machine Covering problem in the increasingly popular
random-order model. In this model, jobs are still chosen worst possible by the adversary
but they are presented to the online algorithm in a uniformly random order. The random-
order model derives from the Secretary Problem [13, 35] and has been applied to a wide
variety of problems such as generalized Secretary problems [32, 8, 33, 18, 9], Scheduling
problems [39, 38, 2, 3], Packing problems [30, 31, 5, 4], Facility Location problems [36] and
Convex Optimization problems [25] among others. See also [26] for a survey chapter. It is
particularly relevant to Machine Covering, where hard instances force online algorithms to
make an irredeemable mistake right on the first m jobs due to some hidden large job class at
the end.

Indeed, we show that the competitive ratio of Graham’s Greedy-strategy improves from m

to O
(

m
log(m)

)
, and that this is asymptotically tight. We also develop an Õ( 4

√
m)-competitive

algorithm, providing evidence that known hardness results rely on “pathological” inputs, and
complement it by proving that no algorithm can be O

(
log(m)

log log(m)

)
-competitive in this model.

1.1 Related Results
The most classical Scheduling problem is Makespan Minimization on parallel and identical
machines. Here, the goal is dual to Machine Covering; one wants to minimize the maximum
load among the machines. This problem is strongly NP-hard and there exists a PTAS [27].
The online setting received considerable research attention, and already in 1966 Graham
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showed that his famous Greedy-strategy is (2− 1/m)-competitive. A long line of research [21,
11, 29, 1, 19] starting in the 1990s lead to the currently best competitive ratio of 1.9201 due to
Fleischer and Wahl [19]. Regarding lower bounds, again after a sequence of results [17, 12, 24]
the current best one is 1.88 [40].

The landscape for Online Machine Covering differs considerably from Online Makespan
Minimization as discussed before, which has motivated the study of semi-online models to
deal with the implied hard restrictions. If the value of the optimal minimum load of the
instance is known in advance, Azar et al. have shown that a simple greedy algorithm already
is (2− 1/m)-competitive and that no algorithm can attain a competitive ratio better than
7/4 [7]. These bounds were improved by Ebenlendr et al. to 11/6 and 1.791 respectively [14].
In the bounded migration model, whenever a job of size p arrives, older jobs of total size at
most β · p can be reassigned to different machines. Sanders et al. [41] provide a 2-competitive
algorithm for β = 1. Later results [42, 22] study the interplay between improved competitive
ratios and larger values of β. Another semi-online model provides the online algorithm with
a reordering buffer, which is used to rearrange the input sequence “on the fly”. Epstein
et al. [16] provide a (Hm−1 + 1)-competitive algorithm using a buffer of size m − 1, and
show that this ratio cannot be improved for any sensible buffer size. These and many more
semi-online models have also been studied for Makespan Minimization, see the survey in [15]
and references therein.

The first Scheduling result in the random-order model is due to Osborn and Torng [39].
They establish that the Greedy-strategy for Makespan Minimization does not achieve a
competitive ratio better than 2 for general m. Recently, [2, 3] show that for Makespan
Minimization the random-order model allows for better performance guarantees than the
classical model. Molinaro [38] has studied the Online Load Balancing problem with the
objective to minimize general lp-norms of the machine loads, providing an algorithm that
returns solutions of expected norm (1 + ε)OPT + O

(
p
ε (m1/p − 1)

)
in the random-order

model, where OPT denotes the optimal norm. Göbel et al. [23] have studied Average
Weighted Completion Time Minimization on one machine in the random-order model. Their
competitive ratio is logarithmic in the input length n for general job sizes and constant if
all jobs have size 1. To the best of our knowledge, no previous result is known for Online
Machine Covering in the random-order model.

1.2 Our Contribution
We first establish that the Greedy-strategy is Θ

(
m

log(m)

)
-competitive in the random-order

model. This is only a tiny, albeit significant improvement compared to worst-case orders.
Since the bound is tight, more refined strategies that make particular use of the characteristics
of the random-order model are required. The analysis also gives first intuitions about what
these characteristics are and also about the techniques used to analyze the main algorithm.

The following theorem summarizes the central result of this paper.

▶ Theorem 1. There exists a Õ( 4
√

m)-competitive algorithm for the online Machine Covering
problem in the random-order model.

In the classical online Machine Covering problem, difficult instances are usually related to
the inability of distinguishing “small” and “large” jobs induced by a lack of knowledge about
large job classes hidden at the end of the sequence. Figure 1 depicts the easiest example on
which deterministic schedulers cannot perform well as they cannot know that the first m jobs
are tiny. Azar and Epstein [7] ameliorate this by maintaining a randomized threshold, which
is used to distinguish small and large job sizes. They have to correctly classify up to m large
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jobs with constant probability while controlling the total size of incorrectly classified small
jobs, which leads to their randomized competitive ratio of Õ(

√
m). However, their lower

bound shows that general randomized algorithms are still unable to schedule the first m jobs
correctly with probability exceeding 1√

m
, again due to relevant job classes being hidden at

the end of the input.
Random-order arrival makes such hiding impossible. This already helps the Greedy-

strategy as now large jobs in the input are evenly distributed instead of being clustered
at the end. Our Õ( 4

√
m)-competitive algorithm enhances the path described previously by

making explicit use of the no-hiding-feature; it determines those large jobs the adversary
would have liked to hide. Information about large job sizes is, as is common in Secretary
problems, estimated in a sampling phase, which returns a threshold distinguishing all except
for
√

m of the large jobs. This reduction by a square root carries over to the competitive
ratio: We now can allow to misclassify these remaining

√
m jobs with a higher probability,

which in turn leads to a better classification of small jobs and a better competitive ratio of
Õ( 4
√

m).
We complement the upper bound of Õ( 4

√
m) with a lower bound of ω

(
log(m)

log log(m)

)
for the

competitive ratio in the random-order model. Lower bounds in the random-order model are
usually considered hard to devise since one cannot hide larger pieces of input. Instead of
hiding large job classes, we figuratively make them hard to distinguish by adding noise. To
this end, we study a novel variant of the Secretary problem, the Talent Contest problem,
where the goal is to find a good but not too good candidate (or secretary).

More in detail, we want to pick the K-th best among a randomly permuted input set of
candidates. Unlike classical Secretary problems (or the more general Postdoc problem [43]),
we may pick several candidates as long as they are not better than the K-th candidate.
Furthermore, we interview candidates t times and make a decision at each arrival. In this
setting, information gained by earlier interviews helps the decisions required in later ones.
It can be proven that the expected number of times the desired candidate can be correctly
identified relates to the ability of distinguishing exactly the m−1 largest jobs from a Machine
Covering instance in the random-order model, and hence bounding the aforementioned
expected value allows us to obtain the desired hardness result.

1.3 Organization of the paper
In Section 2 we provide the required definitions and tools, and then in Section 3 analyze
the Greedy-algorithm in the context of random-order arrival. In Section 4 we present our
main algorithm and its analysis. Section 5 then introduces the Talent Contest Problem and
concludes with a lower bound for the best competitive ratio in the random-order model. Due
to space constraints, some proofs from Section 5 are deferred to the full version of the paper.

2 Preliminaries

In this section we introduce the main definitions and tools that are used along this work.
In the Machine Covering problem, we are given n jobs J = {J1, . . . , Jn}, specified by

their non-negative sizes pi, which are to be assigned onto m parallel and identical machines.
The load lM of a machine M is the sum of the sizes of all the jobs assigned to it. The goal is
to maximize the minimum load among the machines, i.e. to maximize minM lM .

To an online algorithm, jobs are revealed one-by-one and each has to be assigned
permanently and irrevocably before the next one is revealed. Formally, given the symmetric
group Sn on n elements, each permutation σ ∈ Sn defines the order in which the elements of
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J are revealed, namely J σ = (Jσ(1), . . . , Jσ(n)). Classically, the performance of an online
algorithm A is measured in terms of competitive analysis. That is, if we denote the minimum
machine load of A1 on J σ by A(J σ) and the minimum machine load an optimal offline
algorithm may achieve by OPT(J ) (which is independent on the order σ), one is interested
in finding a small (adversarial) competitive ratio c = supJ supσ∈Sn

OPT(J )
A(J σ)

2.
In the random-order model, the job order is chosen uniformly at random. We consider

the permutation group Sn as a probability space under the uniform distribution. Then,
given an input set J of size n, we charge A random-order cost Arom(J ) = Eσ∼Sn [A(J σ)] =
1
n!

∑
σ∈Sn

A(J σ). The competitive ratio in the random-order model of A is c = supJ
OPT(J )
Arom(J ) .

Throughout this work we will assume that n is known to the algorithm; this assumption
is common in the literature and it can be proven that it does not help in the adversarial
setting, see the full version of the article for details. When clear from the context, we will
omit the dependency on J .

Given 0 ≤ i ≤ n, let Pi = Pi[J ] refer to the size of the i-th largest job in J . Given
i ≥ 1, we define Li :=

∑
j≥i Pj to be the total size of jobs smaller than Pi. Note that the

terminology ’smaller’ uses an implicit tie breaker since there may be jobs of equal sizes.

3 Properties and Analysis of the Greedy-strategy

We now proceed with some useful properties of Graham’s Greedy-strategy. Recall that this
algorithm always schedules an incoming job on some least loaded machine breaking ties
arbitrarily. The following two lemmas recall useful standard properties of the algorithm,
which will help us later to restrict ourselves to simpler special instances.

▶ Lemma 2. The minimum load achieved by the Greedy-strategy is at least Pm.

Proof. If the m largest jobs get assigned to different machines, the bound holds directly. On
the other hand, if one of the m largest jobs Jj gets assigned to a machine that already had
one of the m largest jobs Jj′ , of size Pj′ , then at the arrival of Jj the minimum load was at
least Pj′ ≥ Pm, concluding the claim as the minimum load does not decrease through the
iterations. ◀

▶ Lemma 3. The minimum load achieved by the Greedy-strategy is, for each i ∈ {1, . . . , m},
bounded below by Li

m − Pi.

Proof. For each machine M , let Jlast(M) be the last job assigned to machine M . Let
Jlast be the set of all these last jobs. If ALG denotes the minimum load achieved by the
Greedy-strategy, then the load of each machine M in the schedule is at most ALG + Jlast(M)
as jobs are iteratively assigned to a least loaded machine. Now remove the i− 1 largest jobs
in Jlast from the solution and let L̃ denote the total size of the remaining jobs in Jlast. Then
the total size of all remaining jobs is at most m ·ALG + L̃. On the other hand, since we only
removed i−1 jobs, the total size of the remaining jobs is at least Li. Since L̃ ≤ (m− i+1) ·Pi,
we have that Li ≤ m · ALG + (m− i + 1) · Pi. Hence, the minimum load achieved by the
Greedy-strategy is at least Li

m −
m−i+1

m Pi ≥ Li

m − Pi. ◀

With these tools we can now prove that the Greedy-strategy has a competitive ratio of at
most O

(
m

Hm

)
in the random-order model, where Hm =

∑m
i=1

1
i denotes the m-th harmonic

number. We also describe a family of instances showing that this analysis is asymptotically
tight.

1 In case A is randomized, we then refer to the expected minimum load.
2 Using the convention that 0/0 = 1 and a/0 = ∞ for a > 0.
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Order J σ:

load S0[J σ ] load S1[J σ ] load Sk̃[J σ ]

Figure 2 A possible order J σ for an instance with k̃ < m large (dark) jobs. They partition the
sequence into sets of small (light) jobs, each one having total size Si(J σ), i = 0, . . . , k̃.

▶ Theorem 4. The Greedy-strategy is (2 + om(1)) m
Hm

-competitive in the random-order model.

Proof. Thanks to Lemma 2 we can assume that Pm ≤ Hm

2m OPT. We say that a job is large
if its size is larger than Hm

2m OPT, otherwise it is small. Let k̃ < m be the number of large
jobs in the instance. Note that Lk̃+1 ≥ (m− k̃)OPT since in the optimal solution at most k̃

machines receive large jobs. Using Lemma 3 we may assume k̃ ≥ m−Hm, as otherwise we
are done.

For a given order J σ and 0 ≤ i ≤ k̃, let Si(J σ) be the total size of small jobs preceded
by precisely i large jobs with respect to J σ (see Figure 2). We will prove that the minimum
load achieved by the Greedy-strategy is at least min

{∑k̃
i=0

Si(J σ)
m−i −

Hm

2m OPT, Hm

2m

}
OPT.

A machine is said to be full once it receives a large job, and notice that we can assume
that no full machine gets assigned further jobs as otherwise the minimum load would be
already at least Hm

2m OPT. Consider the set of small jobs that arrive to the system before
the first large job in the sequence. At this point the average load of the machines is exactly
S0(J σ)

m and, since the upcoming large job gets assigned to a least loaded machine, the average
load of the remaining machines is still at least S0(J σ)

m . Now the upcoming small jobs that
arrive before the second large job in the sequence get assigned only to these non-full machines,
whose average load is now at least S0(J σ)

m + S1(J σ)
m−1 . Since the following large job gets

assigned to the least loaded of these machines, the average load of the remaining ones is
still lower-bounded by this quantity. By iterating this argument, it can be seen that the
average load of the machines containing only small jobs is at least 1

m−k̃

∑k̃
i=0

Si(J σ)
m−i . Since

in a Greedy-strategy the load of two machines cannot differ by more than the size of the
largest job assigned to them, we conclude that the minimum load achieved by the algorithm
is at least

∑k̃
i=0

Si(J σ)
m−i −

Hm

2m OPT.
Now let us understand the random variable S(J σ) =

∑k̃
i=0

Si(J σ)
m−i . If we pick σ ∼ Sn

uniformly at random and consider the number s(J) of large jobs that precede any fixed
small job J , this number is uniformly distributed between 0 and k̃. Then we can rewrite
S(J σ) =

∑k̃
i=0

Si(J σ)
m−i =

∑
J small

pJ

m−s(J) . Since E[ 1
m−s(J) ] =

∑k̃
i=0

1
k̃+1

1
m−i = Hm−Hm−k̃−1

k̃+1
we get by linearity of expectation that

E[S(J σ)] =
∑

J small
pJ

Hm −Hm−k̃−1

k̃ + 1

=
Hm −Hm−k̃−1

k̃ + 1
Lk̃+1

≥
(m− k̃)(Hm −Hm−k̃−1)

k̃ + 1
Lk̃+1

m− k̃
.

Notice that Lk̃+1
m−k̃

is a lower bound for OPT, which we will use later. The first factor is
decreasing as a function of k̃ ≤ m− 1, and consequently the expression is at least Hm

m . Thus
E[S(J σ)] ≥ Hm

m · Lk̃+1
m−k̃

.
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We also get Var
[

1
m−s(J)

]
≤ E

[(
1

m−s(J)

)2
]

=
∑k̃

i=0
1

k̃+1
1

(m−i)2 ≤ 1
k̃+1

∑
i

1
i2 ≤ 1

k̃+1
π2

6 .

Using that k̃ ≥ m−Hm, we broadly bound k̃ via k̃ + 1 ≥ m
2 ≥

m(m−k̃)2

2H2
m

. Substituting this

in the previous bound yields Var
[

1
m−s(J)

]
≤ H2

m

m
1

(m−k̃)2
π2

3 . Moreover, for two small jobs Ji

and Jj we have Cov
[

1
m−s(Ji) , 1

m−s(Jj)

]
≤

(
Var

[
1

m−s(Ji)

]
Var

[
1

m−s(Jj)

])1/2
≤ H2

m

m
1

(m−k̃)2
π2

3 .
For i ̸= j this bound is pessimistic. The correlation between s(Ji) and s(Jj) is positive but
tiny. We use this covariance to bound Var[S(J σ)] =

∑
J small

pJ

m−s(J) .

Var[S(J σ)] =
∑

Ji,Jj small
pipjCov

[
1

m− s(Ji)
,

1
m− s(Jj)

]

≤
∑

Ji small
pi ·

∑
Jj small

pj ·
H2

m

m

1
(m− k̃)2

π2

3

≤ π2

3
H2

m

m

(
Lk̃+1

m− k̃

)2
.

The last inequality uses again that Lk̃+1 ≥ (m− k̃)OPT. Hence, the standard deviation

SD[S(J σ)] is at most C3/2 Lk̃+1
m−k̃

for C = 3
√

π2

3
H2

m

m = Θ
(

3
√

(log(m))2

m

)
. Chebyshev’s inequality,

which allows to bound the probability of deviating from the mean in terms of the standard
deviation, yields

P
[
S(J σ) ≤

(
Hm

m
− C

)
OPT

]
≤ P

[
S(J σ) ≤

(
Hm

m
− C

)
Lk̃+1

m− k̃

]
≤ P

[
|E[S(J σ)]− S(J σ)| ≥ C−1/2 · σ[S(J σ)]

]
≤ C.

We conclude that with probability 1 − C the minimum load achieved by the Greedy-
strategy exceeds min

{
S(J σ)− Hm

2m , Hm

2m

}
OPT ≥ Hm

m

( 1
2 − C

)
OPT. Thus its competitive

ratio in the random-order model is at most (1− C) m
Hm

1
( 1

2 −C) = (2 + om(1)) m
Hm

. ◀

▶ Theorem 5. The Greedy-strategy is not better than m
Hm

-competitive in the random-order
model.

Proof. Consider the following instance for ε > 0: Job set J consists of m − 1 jobs of
size 1 and 1

ε jobs of size ε. It is not difficult to see that OPT = 1 by assigning the jobs
of size 1 to different machines and the jobs of size ε together on the remaining machine.
Following a similar approach as the one above, interpreting the jobs of size 1 as large and
the rest as small, we can prove that for any given order J σ, the expected minimum load
achieved by the Greedy-strategy is at most

∑m−1
i=0

Si(J σ)
m−i + εm. If now σ ∼ Sn is chosen

uniformly at random, then the minimum load achieved by the Greedy-strategy is at most∑m−1
i=0

1
m(m−i) + εm = Hm

m + εm. In particular, the competitive ratio in the random-order
model of the Greedy-strategy is at most 1/( Hm

m + εm) which approaches m
Hm

as ε→ 0. ◀

4 An Õ( 4
√

m)-competitive algorithm

We now describe an improved competitive algorithm for the problem further exploiting the
extra features of the random-order model. More in detail, we devise a sampling-based method
to classify relatively large jobs (with respect to OPT). After this, we run a slight adaptation

ISAAC 2021
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Figure 3 A comparison of the solution returned by the Greedy-strategy (left) and the optimal
solution (right) for some order σ of the instance defined in Theorem 4. Dark jobs have size 1 and
the remaining jobs have size ε > 0.

of the algorithm Partition due to Azar and Epstein [7] in order to distinguish large jobs that
our initial procedure could not classify, leading to strictly better approximation guarantees
(see Algorithm 1 for a description). We will assume w.l.o.g. that job sizes are rounded down
to powers of 2, which induces an extra multiplicative factor of at most 2 in the competitive
ratio.

4.1 Simple and Proper Inputs
Given an input sequence J , we call any job J large if its size is larger than OPT[J ]

100 4√m
, and we

call it small otherwise. Let k = k[J ] be the number of large jobs in J . Let Lsmall = Lk+1
be the total size of small jobs. The following definition allows to recognize instances where
the Greedy-strategy performs well, see Proposition 7.

▶ Definition 6. We call the input set J simple if either
The set J has size n < m,
There are at least m large jobs, i.e. k ≥ m, or
There are at most m−

4√
m3

50 large jobs, i.e. k ≤ m−
4√

m3

50 .

Note that the first condition is mostly included for ease of notation; the third condition
implies that sequences with n < m−

4√
m3

50 are simple, which is good enough for our purposes
but somewhat clumsy to refer to.

▶ Proposition 7. The Greedy-strategy achieves minimum load at least OPT
100 4√m

on simple
inputs.

Proof. We consider each case from Definition 6 separately:
If the instance has less than m jobs, OPT = 0 and every algorithm is optimal.
If there are at least m large jobs in the instance, then the minimum load achieved by the
Greedy algorithm is at least Pm ≥ OPT

100 4√m
thanks to Lemma 2.

If there are at most m −
4√

m3

50 large jobs, then Lk+1 ≥
4√

m3

50 OPT as there are at least
4√

m3

50 machines without large jobs in the optimal solution. If we apply Lemma 3 with
i = k + 1, the minimum load achieved by the Greedy algorithm is at least OPT

100 4√m
. ◀

For an input set J which is not simple, let d := ⌈log2(m − k)⌉. Note that 0 ≤ d ≤⌈ 3
4 log(m)

⌉
. We say that such an instance J is proper (of degree d).

Algorithm 1 guesses a value t with probability Ω(1/ log(m)) to address in a different way
simple instances (case t = −1) and proper instances of degree t for each 0 ≤ t ≤

⌈ 3
4 log(m)

⌉
,

at the expense of an extra logarithmic factor in the competitive ratio. By Proposition 7,
simple instances are sufficiently handled by the Greedy-strategy. From now on we will
focus on proper instances of degree d and show that the corresponding case when t = d in
Algorithm 1 returns a O ( 4

√
m)-approximate solution.
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Algorithm 1 The online Algorithm for Random-Order Machine Covering.
Input: Job sequence J σ, m identical parallel machines.

1: Guess t ∈ {−1, 0, 1, . . . ,
⌈ 3

4 log(m)
⌉
} uniformly at random.

2: if t = −1, then Run the Greedy-strategy and return the computed solution.
3: else Partition the machines into 2t small machines and m− 2t large machines.

Phase 1 – Sampling.

4: Schedule the first n/8 jobs iteratively into a least loaded large machine.
5: Let P ↑ be the

(
m−2t

8 −
√

m
2

)
-th largest job size among these first n/8 jobs.

Phase 2 – Partition.

6: τ ← 0
7: for j = n

8 + 1, . . . , n do
8: if pσ(j) ≥ P ↑, then Schedule job Jσ(j) onto a least loaded large machine.
9: if pσ(j) > τ , then Update τ to pσ(j) with probability 1

9·2t
√

m
.

10: if pσ(j) ≤ τ , then Schedule job Jσ(j) onto a least loaded small machine.
11: if pσ(j) > τ , then Schedule job Jσ(j) onto a least loaded large machine.
12: end for
13: return the computed solution.

4.2 Algorithm for Proper Inputs of Degree d

Let J be proper of degree d and assume without loss of generality that its size n is divisible
by 8 (an online algorithm can always simulate up to 7 extra jobs of size 0 to reduce to this
case). The algorithm, assuming d is guessed correctly, chooses 2d small machines Msmall,
while the other machines Mlarge are called large machines. The algorithm will always assign
the incoming job either to a least loaded small or to a least loaded large machine, the only
choice it has to make is to which set of machines the job will go. Theoretically, the goal
would be to assign all large jobs to large machines and all small ones to small machines
according to our definition. Large and small jobs, unfortunately, cannot be distinguished by
an online algorithm with certainty. Instead, we have to use randomization and expect a small
error. We aim for a small one-sided error, meaning that we want to avoid misclassifying
large jobs at all cost while incorrectly labeling very few small jobs as large.

The algorithm starts with a sampling phase: the first n
8 jobs will be used for sampling

purposes, and since we yet lack good knowledge about what should be considered large,
these jobs will all be assigned to large machines. Let P ↑ be the element of rank m−2d

8 −
√

m
2

among these elements. The following lemma shows that P ↑ can be used as a threshold to
distinguish most of the large jobs from small ones.

▶ Lemma 8. For proper sequences, it holds that P[Pk−8
√

m−2d ≥ P ↑ ≥ Pk] ≥ 1
3 .

Proof. Let nlarge be the number of large jobs among the first n
8 jobs in the sequence. Notice

that nlarge obeys an hypergeometric distribution with parameters N = n (size of the total
population), K = k (number of elements with the desired property) and r = n

8 (size of the
sample). This implies that Eσ∼Sn

[nlarge] = k
8 ≥

m−2d

8 . Moreover

Var[nlarge] = n

8 ·
k

n
· n− k

n
· 7n

8(n− 1) = 7
64 ·

k(n− k)
n− 1 <

m

8 .
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τ

P ↑

sampling

Figure 4 The classification of large (dark) and small (light and dashed) jobs. During sampling,
all small jobs are misclassified (dashed ones). Threshold P ↑ classifies large jobs, while threshold τ

classifies small jobs. Jobs in between are conservatively classified as large, since misclassifying large
jobs is fatal. Increasing τ due to a small job is a helpful event as less small jobs will be misclassified.
On the other hand, increasing τ due to a large job below P ↑ is a fatal event as large jobs will be
misclassified. The choice of P ↑ ensures that fatal events are unlikely to happen.

If we use Cantelli’s inequality, a one-sided version of Chebyshev’s inequality, then

P[P ↑ < Pk] = P
[
nlarge <

m− 2d

8 −
√

m

2

]
≤ P

[
nlarge < E[nlarge]−

√
m

2

]
≤ m/8

m
8 + m

4
= 1

3 .

Consider now n′
large to be the number of the k − 8

√
m − 2d largest jobs among the n

8
first jobs in the sequence. Similarly as before, n′

large obeys an hypergeometric distribution
with parameters N = n, K = k − 8

√
m− 2d and r = n

8 , which implies that Eσ∼Sn
[n′

large] =
k−2d−8

√
m

8 < m−2d

8 −
√

m. Here we use that k ≤ m. Furthermore Var[n′
large] = n

8 ·
k−8

√
m−2d

n ·
n−k+8

√
m+2d

n · 7n
8(n−1) ≤

m
8 . Then, using again Cantelli’s inequality, we obtain that

P
[
Pk−8

√
m−2d < P ↑]

= P
[
n′

large ≥
m− 2d

8 −
√

m

2

]
≤ P

[
n′

large ≥ E[n′
large] +

√
m

2

]
≤ m/8

m
8 + m

4
= 1

3 .

We conclude that P[Pk−8
√

m−2d ≥ P ↑ ≥ Pk] = 1 − P
[
Pk−8

√
m−2d < P ↑]

− P[P ↑ < Pk] ≥
1/3. ◀

After the aforementioned sampling phase is finished and P ↑ is known, the algorithm will
enter a partition phase. If a job now has size at least P ↑, it is assigned to the large machines
as it will be large with high probability. The large jobs below this value are the most difficult
to assign. To this end, we define a threshold value τ , which we initialize to 0. If the incoming
job has size at most τ we simply assign it to a least loaded small machine, but whenever
we encounter a job J of size p > τ , we set τ = p with probability 1

9·2d
√

m
. If now p ≤ τ ,

which could happen if we just increased τ , we schedule J on the least loaded small machine.
Else, J is assigned to the least loaded machine in Mlarge (see Figure 4 for a depiction of the
procedure). As the following lemma shows, this procedure distinguishes all the large jobs
with constant probability.

▶ Lemma 9. All large jobs are scheduled onto large machines with constant probability.
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Proof. Let us assume that Pk−8
√

m−2d ≥ P ↑ ≥ Pk. Now, the statement of the lemma can
only be wrong if we decided to increase τ when encountering some large job of size less
than P ↑. By assumption there are less than 8

√
m + 2d such jobs. The desired probability is

thus at least(
1− 1

9 · 2d
√

m

)8
√

m+2d

≥ 1− 8
√

m + 2d

9 · 2d
√

m
≥ 1− 8

9 · 2 −
1

9
√

m
>

4
9 .

The first inequality is Bernoulli’s inequality, the second one uses that d ≥ 1. The lemma
follows by multiplying with the probability from Lemma 8. ◀

We call an input sequence orderly if it satisfies the properties of Lemmas 8 and 9. The
following lemma shows that the total size of misclassified small jobs can be, in expectation,
bounded from above. This proof is an adaptation of one of the results from Azar and
Epstein [7], which we present for the sake of completeness.

▶ Lemma 10. The expected total size of small jobs scheduled onto small machines is at least
31

800 4√m
Lsmall, even when conditioned on the input sequence being orderly.

Proof. Let L′
small be the random variable corresponding to the size of small jobs assigned to

large machines in the sampling phase. Since jobs appear in random order, we have that

Eσ∼Sn
[L′

small] = 1
n!

∑
Ji small

n

8 · (n− 1)! · pi = 1
8Lsmall.

Let us now bound the total size of misclassified small jobs in the partition phase. We
will define, for a given set of 18 · 2d 4

√
m small jobs of the same size pi (recall that jobs are

rounded down to powers of 2), the following event: after 9 · 2d 4
√

m jobs from the set arrived,
τ is at least pi. If this were not the case, τ was never updated at any of these 9 · 2d 4

√
m first

jobs albeit being smaller than pi. The probability for this is at most(
1− 1

9 · 2d
√

m

)9·2d 4√m

≤ e
− 1

4√m ≤ 1− 1
2 4
√

m
,

where we used the fact that e−x ≤ 1− x
2 if 0 ≤ x ≤ 1. This implies that the probability of

the previous event occurring is at least 1
2 4√m

.
Let S be the set of small jobs remaining after the sampling phase. We will partition S

into batches of 18 4
√

m jobs of the same size. There will be jobs that are not assigned to any
batch because there are not enough jobs of the same size to complete it, but the total size of
these jobs is at most

18 · 2d 4
√

m
∑
i≥1

OPT
100 4
√

m · 2i
≤ 18 · 2d−1 ·OPT

25 ≤ 18Lsmall

25 ,

where the last inequality holds as there are at least 2d−1 machines in the optimal solution
without large jobs. For each of the batches, the probability of assigning at least half of its
size to small machines is bounded below by the probability of the previously described event
occurring, which is at least 1

2 4√m
. Hence, the expected total size of small jobs assigned to

small machines is at least
1

2 4
√

m
· 1

2
∑

Ji∈S
pi ≥

1
4 4
√

m
·
(

1− 1
8 −

18
25

)
Lsmall = 31

800 4
√

m
Lsmall.

To observe that we can condition on the sequence being orderly, it suffices to note that the
arguments work for every way to fix P ↑ and that they do not make any assumptions on τ

being increased at large jobs. ◀
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Putting all the previous ingredients together we can conclude the following proposition.

▶ Proposition 11. The previously described algorithm is O ( 4
√

m)-competitive in the random-
order model for the case of proper inputs of degree d.

Proof. By assumption, all k ≥ m − 2d large jobs are scheduled onto large machines. A
lower bound of Pk = OPT

100 4√m
for the minimum load achieved in the large machines follows

then from Lemma 2. By Lemma 3, the minimum load among small machines is at least
31

800 4√m
Lsmall

2d − OPT
100 4√m

. The proposition follows from observing that Lsmall ≥ 2d−1OPT since
the optimal solution contains at least m− k ≥ 2d−1 machines with only small jobs. ◀

4.3 The Final Algorithm
As discussed before, our final algorithm first guesses whether the instance is simple or proper
of degree d. Then we apply the appropriate algorithm, the Greedy-strategy or the previously
described algorithm for the right degree. Since there are O(log(m)) many possibilities, this
guessing induces an extra logarithmic factor on the final competitive ratio, which concludes
the proof of Theorem 1 restated below.

▶ Theorem 1. There exists a Õ( 4
√

m)-competitive algorithm for the online Machine Covering
problem in the random-order model.

5 A Lower Bound for the Random-Order Model

The main difficulty for Online Machine Covering algorithms, including our main result, is
to tell large jobs apart from the largest small jobs. In this section we prove that doing so
is, to a certain extent, inherently hard. The main difference to adversarial models is that
hardness is not obtained through withholding information but rather through obscuring it.
This relates to some studied variants of the classical Secretary Problem such as the Postdoc
Problem [43] but requires additional features particularly catered to our needs.

5.1 The Talent Contest Problem
Consider the following selection problem: To a yearly talent show contest n candidates apply.
To appeal to a general audience, we try to exclude the best candidates because an imperfect
performance is more entertaining, but we also want to have at least an appropriate candidate
who can be presented as the winner. To do so, each candidate will participate in t trials
(each trial is considered as an arrival) and we must decide for every arrival if we mark the
candidate or not, meaning that we consider her to be the K-th best candidate or worse.
The global order in which candidates arrive for trials is uniformly distributed, thus at later
trials we have much more information to go by. Our final goal is to maximize the number of
trials for which we successfully marked the K-th best candidate without marking any better
candidate.

Formally, the Talent Contest problem is specified by three parameters K, n and t,
where K ≤ n. Candidates have pairwise different non-negative valuations v1, v2, . . . , vn,
and each candidate arrives t times; the arrival order is chosen uniformly at random. The
valuation of each candidate is revealed when the candidate arrives for the first time. We may
decide to mark each arrival or not, though once the next candidate arrives such marking
decision is permanent. For each value 1 ≤ h ≤ t we get one point if we marked the h-th
arrival of the K-th best candidate, but not the h-th arrival of any better candidate. In
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particular, we can get up to t points in total, one for each value of h. Let P (K, t, n) be the
expected number of points the optimal online algorithm scores given the three values K, t

and n. Similar to the classical Secretary problem, we are mostly interested in the limit case
P (K, t) = limn→∞ P (K, t, n).

We require for our desired results one extra technical definition. Given λ ≥ 1, we call
the valuations of candidates λ-steep if all candidate valuations are guaranteed to be at least
by a factor λ apart, i.e. minvi>vj

vi

vj
≥ λ. It is possible to prove the following bound on the

expected value P (K, t), whose proof we defer to the full version of the paper.

▶ Lemma 12. It holds that P (K, t) ≤ ζ(t/2)(t+1)t/2

2π
√

K
, where ζ is the Riemann Zeta Function.

This bound still holds if we restrict ourselves to λ-steep valuations for some λ ≥ 1.

Roughly speaking, the proof relies on the fact that if an algorithm manages to perform
relatively well in the Talent Contest problem, then it could be used to guess the value of a
binomially distributed random variable. For the latter problem, difficulty can be directly
established. However, the proof involves more technical aspects as some few irregular orders
do not allow this reduction and have to be excluded beforehand. The property of λ-steepness
is ensured by choosing µ sufficiently large and applying the transformation v 7→ µv to each
valuation.

5.2 Reduction to Machine Covering
It is possible to show that the Talent Contest problem and the Online Machine Covering
problem in the random-order model are related as the following lemma states.

▶ Lemma 13. Given K and t, let m = (K − 1) · t + 1. No (possibly randomized) algorithm
for Machine Covering in the random-order model on m machines can be better than t

P (K,t)+1 -
competitive.

Proof. Let λ > t. Consider any instance of the Talent Contest problem with λ-steep
valuations. We will treat the arrival sequence of candidates as a job sequence, where each
arrival corresponds to a job of size given by the valuation of the corresponding candidate.
We call the m− 1 = t(K − 1) jobs corresponding to the arrivals of the K largest candidates
large. The t jobs corresponding to the next candidate are called medium. Notice that the
size of a medium job is at most OP T

t as evidenced by the schedule that assigns each large
job on a separate machine and the t medium jobs onto the single remaining machine. Jobs
which are neither large nor medium have total size at most t

∑∞
i=1 λ−i OPT

t = OPT
λ−1 and are

thus called small. They will become negligible for λ→∞.
Consider an online algorithm AMC for Machine Covering in the random-order model. We

will derive an algorithm AT C for the Talent Contest problem as follows: AT C marks each job
that gets assigned to a machine that already contains a job of the same size. Let P be the
number of points this strategy gets. We will first show that the schedule of AMC contains a
machine which has at most P + 1 medium jobs and no big job. For this we consider any fixed
input order, and if AMC is randomized, we consider any fixed outcome of its coin tosses.

For 2 ≤ i ≤ t, let wi be an indicator variable that is 1 if AT C gains a point for the i-th
arrival, i.e. if it marks the i-th arrival of the K-th best candidate but not the i-th arrival of
a better candidate; wi = 0 otherwise. Let also ri be an indicator variable that is 1 if AT C

marked the i-th arrival of the K-th best candidate but still loses due to also marking the
i-th arrival of a better candidate. Finally, let Msmall be the machines which do not receive a
large job in the schedule of AMC , and let Zmed be the average number of medium jobs on
machines in Msmall. Our intermediate goal is to show that Zmed < 2 +

∑t
i=2 wi.
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Since there are only m − 1 large jobs, of which at least
∑t

i=2 ri are scheduled on a
machine already containing a large job, we have that |Msmall| ≥ 1 +

∑t
i=2 ri. Let d ≥ 0

such that |Msmall| = 1 + d +
∑t

i=2 ri. Now, observe that
∑t

i=2(wi + ri) counts the number
of medium jobs that are placed on a machine already containing a medium job. Thus,
the number of medium jobs on machines in Msmall is at most |Msmall|+

∑t
i=2(wi + ri) =

1 + d +
∑t

i=2(wi + 2ri). Now we can bound the average number of medium jobs on Msmall,

namely Zmed ≤
1+d+

∑t

i=2
(wi+2ri)

1+d+
∑t

i=2
ri

. Let us assume that Zmed ≥ 2; then the term on the right

hand side increases if we set d and all ri to zero, and we obtain that Zmed ≤ 1 +
∑t

i=2 wi

and thus Zmed < 2 +
∑t

i=2 wi. To derive this inequality we assumed that Zmed ≥ 2 but it is
trivially true if Zmed < 2.

Now, let zmed be the least number of medium jobs on a machine in Msmall. Then
zmed ≤ Zmed < 2 +

∑t
i=2 wi. Since zmed and the right hand side are both integers, it holds

that zmed ≤ 1 +
∑t

i=2 wi. Since
∑t

i=2 wi = P , the number of points obtained by algorithm
AT C for the Talent Contest problem, we have shown that the schedule of AMC contains a
machine M with at most P + 1 medium jobs and no large one as desired.

As argued before, each medium job has size at most OPT
t and the small jobs have

total size at most OPT
λ−1 in total. Thus, machine M has load at most P +1

t OPT + OPT
λ−1 . In

conclusion, the expected load of the least loaded machine in the schedule of AMC is at
most P (K,t)+1

K OPT + OPT
λ−1 , given a worst-case input for the Talent Contest Problem. This

concludes the proof by taking λ→∞. ◀

By setting K = (t + 1)t and combining this with the lower bound in Lemma 12, we obtain
the following general lower bound.

▶ Theorem 14. The competitive ratio of no online algorithm for Machine Covering in the
random-order model, deterministic or randomized, is better than ⌊e

W (ln(m))⌋−1
1.16+o(1) . Here, W (x)

is the Lambert W-function, i.e. the inverse to x 7→ xex. In particular, no algorithm can be
O

(
log(m)

log log(m)

)
-competitive for Online Machine Covering in the random-order model.

Proof. Let K = (t+1)t. Then Lemma 12 yields P (K, t) ≤ ζ(t/2)
2π ≤ 1.16+o(1). By Lemma 13

no algorithm can be better than
(

t
1.16+o(1)

)
-competitive for m = (K − 1) · t + 1 < (t + 1)t+1.

We can always add a few jobs of large enough size so that the lower bound extends to larger
numbers of machines. The theorem follows since the inverse function of x 7→ (t + 1)t+1

is t 7→ eW (ln(m)) − 1; the second part uses the identity W (x) ≥ log(x) − log log(x) + ω(1),
see [28]. ◀
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Nearly-Tight Lower Bounds for Set Cover and
Network Design with Deadlines/Delay
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Abstract
In network design problems with deadlines/delay, an algorithm must make transmissions over time
to satisfy connectivity requests on a graph. To satisfy a request, a transmission must be made that
provides the desired connectivity. In the deadline case, this transmission must occur inside a time
window associated with the request. In the delay case, the transmission should be as soon as possible
after the request’s release, to avoid delay cost.

In FOCS 2020, frameworks were given which reduce a network design problem with dead-
lines/delay to its classic, offline variant, while incurring an additional competitiveness loss factor of
O(log n), where n is the number of vertices in the graph. Trying to improve upon this loss factor is
thus a natural research direction.

The frameworks of FOCS 2020 also apply to set cover with deadlines/delay, in which requests
arrive on the elements of a universe over time, and the algorithm must transmit sets to serve them.
In this problem, a universe of sets and elements is given, requests arrive on elements over time, and
the algorithm must transmit sets to serve them.

In this paper, we give nearly tight lower bounds for set cover with deadlines/delay. These lower
bounds imply nearly-tight lower bounds of Ω(log n/ log log n) for a few network design problems,
such as node-weighted Steiner forest and directed Steiner tree. Our results imply that the frameworks
in FOCS 2020 are essentially optimal, and improve quadratically over the best previously-known
lower bounds.
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analysis of algorithms; Theory of computation → Online algorithms

Keywords and phrases Network Design, Deadlines, Delay, Online, Set Cover

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.53

1 Introduction

Network Design with Deadlines

In network design problems with deadlines, one is given a set of connectivity requests. Each
connectivity request has an associated time window, starting with a release time and ending
with a deadline. The input also contains items, with associated costs; usually, these items
are some characteristic of a given graph, such as the edges or the nodes. A solution consists
of a set of transmissions, taking place at various points in time, where each transmission is
of some set of items. Such a solution is feasible if for every connectivity request, there exists
a transmission which occurs within the request’s time window, and provides the connectivity
desired by the request.

This general description captures many network design problems. Two concrete examples
are node-weighted Steiner forest and directed Steiner tree, both of which are considered in
this paper.

In node-weighted Steiner forest with deadlines, the items are the nodes of a given graph,
with associated costs. A connectivity request is of some pair of terminal nodes in the
graph, demanding that a connection be made between these nodes. A set of items (i.e.

© Noam Touitou;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 53; pp. 53:1–53:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ISAAC.2021.53
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


53:2 Nearly-Tight Lower Bounds for Set Cover and Network Design with Deadlines/Delay

nodes) which satisfies a request must contain a path connecting the request’s terminal
nodes; such a set must be transmitted within the request’s time window to satisfy that
request.
In directed Steiner tree with deadlines, the items are the edges of a directed graph, with
associated costs. A unique node in the graph is designated as the root of the graph;
each connectivity request is of some terminal node, demanding its connection to the
root node. A set of items (i.e. edges) which satisfies a request must contain a directed
path connecting the request’s terminal node to the root. Such a satisfying set must be
transmitted within the request’s time window for the solution to be feasible.

Network design with deadlines has been studied in the online setting, in which the
algorithm constructs a solution as time advances, deciding at each point in time whether
(and what) to transmit at that time. Each request is revealed to the algorithm at the
request’s release time. In line with previous work, we consider the clairvoyant model, where
all parameters of the request are revealed at release time (in particular its deadline).

A more general model is network design with delay. In this model, each request has
a (nondecreasing, continuous) delay function in lieu of a deadline. Each request can be
served by a satisfying transmission after its release time. However, in addition to the cost of
transmissions, a solution must also pay the delay cost of each request – the value of its delay
function at the time of the earliest transmission which satisfies it (after its release time).
This model can easily be seen to generalize the deadline model.

In [8], a framework for network design problems with deadlines is presented. This
framework is in fact a polynomial-time reduction from online network design with deadlines
to offline, classic network design: given a γ-approximation algorithm for the offline problem,
the framework yields an O(γ log |U |)-competitive algorithm for the online problem with
deadlines, where U is the set of items. For most problems, in which the items are either the
nodes or edges of a given simple graph G = (V, E), we have that log |U | = O(log n) – we
only consider such problems in this paper. A similar framework for network design with
delay is also given in [8], also based on a reduction with O(log n) loss1.

In [8], a lower bound of Ω(
√

log n) is given on the competitiveness of any (randomized)
algorithm for specific network design problems (node-weighted Steiner tree and directed
Steiner tree). This implies that every reduction incurs a loss factor of Ω(

√
log n) (indeed,

this information-theoretic lower bound applies even when we allow exponential time, which
admits a 1-approximation for the offline problem). This leaves a quadratic gap between the
upper and lower bounds; a natural research question would be to close this gap. In this
paper, we give a negative answer to this question; in fact, we show that the framework of [8]
is essentially tight.

Set Cover with Deadlines

The lower bounds of Ω(
√

log n)-competitiveness for node-weighted Steiner tree and directed
Steiner tree stem from a lower bound for the problem of set cover with deadlines, which is
a special case of both problems. In the problem of set cover with deadlines, one is given a
universe which consists of a set of elements E and a collection S of subsets from E, where
the sets have costs. The input contains a set of requests, such that each request has an

1 The reduction for the delay case given in [8] is to the prize-collecting offline problem, a similar offline
problem which is almost always approximable to the same degree as the classic offline problem (up to
some small constant).
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associated element in E and a time window (release time and deadline). A solution consists
of a set of transmissions, each of which occurs at some point in time, and consists of some
set in S. A solution is feasible if the associated element of every request belongs to the set
of some transmission which occurs during the request’s time window. While not classically
considered a network design problem, the set cover with deadlines problem does conform
to the model of this paper: the sets are the items of the problem, and the requests are of
specific elements.

Set cover with deadlines is indeed a special case of both node-weighted Steiner forest
with deadlines and directed Steiner tree with deadlines, as seen by folklore reductions. In
both reductions, the set cover input is reduced to graph comprising a root node, “set” nodes
and “element” nodes, where the root node must connect to “element’ nodes through the “set”
nodes; see [8] for a full description of these reductions.

The best known lower bounds for competitiveness in the set cover with deadlines problem,
described in [3], are Ω(

√
log ℓ) and Ω(

√
log m), where ℓ and m are the number of elements

and the number of sets in the universe, respectively. In this paper, we improve these lower
bounds to Ω

(
log ℓ

log log ℓ

)
and Ω

(
log m

log log m

)
respectively.

1.1 Our Results
In this paper, we present lower bounds for three network design problems with deadlines
which are tight up to a log log factor. For set cover with deadlines or delay, where ℓ and m

are the number of elements and sets respectively, we prove the following theorem.

▶ Theorem 1.1. There exist Ω
(

log ℓ
log log ℓ

)
and Ω

(
log m

log log m

)
lower bounds on the competitiveness

on any randomized online algorithm for set cover with deadlines (or delay).

For node-weighted Steiner tree with deadlines and directed Steiner tree with deadlines or
delay, for a graph with n vertices, we prove the following theorems.

▶ Theorem 1.2. There exists an Ω
(

log n
log log n

)
lower bound on the competitiveness on any

randomized online algorithm for node-weighted Steiner tree with deadlines (or delay).

▶ Theorem 1.3. There exists an Ω
(

log n
log log n

)
lower bound on the competitiveness on any

randomized online algorithm for directed Steiner tree with deadlines (or delay).

The lower bounds of Theorems 1.1–1.3 are nearly tight – the framework of [8] implies
O(log n)-competitive algorithms for both node-weighted Steiner forest with deadlines and
directed Steiner tree with deadlines, as well as O(log m)- and O(log ℓ)-competitive algorithms
for set cover with deadlines2.

We prove the lower bounds of Theorems 1.1–1.3 for the deadline case only; as deadlines
are a special case of delay, the lower bounds apply to the delay model as well.

1.2 Our Techniques
The lower bounds of this paper stem from describing a sequence of adversaries (A0,A1, · · ·)
for set cover with deadlines. As we advance in this sequence, we describe adversaries that
use a larger universe, and force a worse a competitive ratio on the online algorithm. The
growth rate of the universe (ℓ and m) together with the growth rate of the competitive ratio
yields the desired lower bound.

2 Note that the O(log ℓ)-competitive algorithm is not a direct application of the framework of [8], but
requires a simple observation.

ISAAC 2021
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We construct each adversary Ai recursively from the description of Ai−1. The universe
of Ai, the elements Ei and sets Si, consists of multiple copies of Ei−1 and Si−1, but these
copies are interleaved in a way that creates increasing difficulty for the algorithm with each
iteration. As for requests, Ai makes recursive calls to Ai−1 on copies of Ei−1 (which appear
inside Ei) which have the structure of Ai−1 locally – specifically, restricting the sets of Si to
this copy of Ei−1 yields a copy of Si−1.

While the recursive nature of the construction is similar to the adversary in [3], the
underlying idea is different: in [3], the main idea of the adversary was to present the algorithm
with two options for sets, an “expensive” option (which serves some additional long-term
requests) and a “cheap” option (which only serves the most urgent requests). The idea
was to exploit the fact that the algorithm doesn’t know whether investing in preparation
for the future would pay off. However, our construction relies on a different principle – we
present the algorithm with many different options for sets (the number of which grows
logarithmically with the universe), the costs of which are identical (i.e. there is no cheap
option). The online algorithm will either pick some small number of these options (in which
case it would probably miss the correct one), or pick many of these options (which would be
very expensive compared to the optimal solution).

1.3 Related Work
Classic online variants for network design problems have been studied extensively in the past.
In such variants, the requests arrive over a sequence, and the items are bought rather than
transmitted, such that a bought item can be used until the end of the input sequence. Some
such problems were studied in [26, 23, 9, 29, 24, 1].

The relationship between this classic online and network design with deadlines is inter-
esting: the clairvoyant deadlines model, considered in this paper, is more closely related to
the offline problem (as shown in [8]), and can be much easier than the classic online variant.
However, the nonclairvoyant deadlines model, where the deadline becomes known only at
the end of the request’s time window, is as hard as the classic online variant: the reduction
showing this for set cover appears in [3].

The online set cover with deadlines/delay problem was first presented by Carrasco et
al. [19], who gave tight upper- and lower-bounds of logarithmic competitiveness in the
number of requests in the input. In [3], bounds referring to the size of universe (sets and
elements) were given, including an O(log ℓ log m)-competitive algorithm. This upper bound
of O(log ℓ log m) applies to the nonclairvoyant setting. As nonclairvoyant set cover with
deadlines/delay generalizes the classic online set cover, this algorithm is thus optimal for the
class of polynomial, randomized algorithms, conditioned on NP ⊊ BPP [28].

A specific network design problem which was previously considered is facility location with
deadlines/delay. In this problem, requests arrive on the nodes of a graph, and a transmission
consists of a facility at some node, to which some pending requests are connected. In [7],
O(log2 n)-competitive randomized algorithms for facility location with deadlines/delay were
presented, which only worked for the uniform case (i.e. identical facility opening costs), where
n is the number of nodes in the graph. These results were then improved to deterministic
O(log n)-competitive algorithms for both deadlines and delay in [8].

Another network design problem with deadlines/delay is multilevel aggregation, which is
in fact Steiner tree with deadlines/delay where the underlying metric space is a tree. This
problem was first presented by Bienkowski et al. [10], as a generalization to the previously
studied TCP acknowledgement [20, 27, 17] and joint replenishment [18, 15, 11] problems.
The algorithm of Bienkowski et al. had competitiveness which was exponential in the depth
of the tree D. This was first improved to O(D) for the deadline case by Buchbinder et al. [16]
and then to O(D2) for the general delay case by [7].
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Other problems with deadlines/delay, outside of network design, have also seen significant
interest. The k-server problem with delay was presented in [5], and studied in [14, 7, 25].
Interestingly, this problem is related to the network design problem of multilevel aggregation,
as discussed in [7].

Min-cost perfect matching with delays, presented in [21] is another such problem. This
problem is only tractable for specific delay functions (e.g. linear and concave), and is studied
in [2, 22, 21, 4, 12, 13, 6].

2 Preliminaries

Since our results for node-weighted Steiner forest and directed Steiner tree stem from our
result for set cover through a folklore reduction, we only provide a formal description for set
cover with deadlines.

Set cover with deadlines

In the set cover with deadlines problem, one is given a universe which consists of elements E

and a collection of sets S, such that s ⊆ E for every s ∈ S. In addition, each set s ∈ S has a
cost c(S). Additionally, the input contains a set of requests Q. Each request q ∈ Q has an
associated element eq ∈ E, a release time rq and a deadline dq (such that rq < dq).

A solution for the input is some collection of (instantaneous) transmissions {T1, · · · , Tk}
at various points in time, such that each transmission is of some set sT . The cost of this
solution is

∑k
i=1 c(sTi

), i.e. the sum of costs of transmitted sets. Note that a set can be
transmitted more than once in a solution; in this case, the set’s cost is incurred more than
once. A solution is feasible if for each request q ∈ Q, there exists a transmission T at some
time between rq and dq such that eq ∈ sT . In words, a set containing the element requested
by q must be transmitted within q’s time window.

Rigorously, the events at time t occur in the following order: first, any transmitted sets
at t serve pending requests; then, any request q with rq = t is released. Thus, in order to
serve a request q, a transmission must take place in the half-open time window (rq, dq]. We
remark that the results of this paper hold for any choice of order, and that our specific order
is chosen for ease of presentation. (Indeed, our lower bound can be stated with distinct
release/deadline times, which would bypass this issue.)

The online setting

An online algorithm receives the universe (i.e. E, S and {c(s)}s∈S) up front, while the requests
Q are revealed to the algorithm as time advances. Specifically, each request q ∈ Q appears
to the online solution only upon its release time rq. We consider the clairvoyant model, in
which all parameters of the request q are revealed at rq (in particular its deadline dq).

At any point in time, the algorithm is allowed to make a transmission T of any set s

(thus incurring a cost of c(s)).

3 Lower Bound for Set Cover

In this section, we describe and analyze an oblivious adversary for set cover with deadlines,
which we then use to prove Theorems 1.1–1.3.

ISAAC 2021
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We define the sequence (ℓi)∞
i=0 recursively by ℓ0 := 1 and by ℓi := (6i + 1)ℓi−1 for i > 0.

Similarly, we define the sequence (mi)∞
i=0 recursively by m0 := 1 and by mi := 4i ·mi−1 for

i > 0. We prove the following lemma.

▶ Lemma 3.1. For every index i, there exists an oblivious adversary Ai which generates a
set cover with deadlines instance on a universe with ℓi elements and mi sets, such that any
deterministic algorithm is at least Ω(i)-competitive against Ai.

Lemma 3.1, together with Yao’s principle and some folklore reductions, is later used to
prove Theorems 1.1–1.3.

3.1 The Set Cover Adversary
To prove Lemma 3.1, we now introduce the oblivious adversary Ai. This adversary Ai

provides a universe with elements Ei and set collection Si. The adversary always provides
unweighted instances, i.e. the cost of every set in Si is always 1.

The Universe of Ai

In the base case of i = 0, we have a universe of a single element, (E0 = {e}) and a single set
(S0 = {s}).

For i > 0, we construct the universe of Ai recursively from the universe of Ai−1. Define
bi := 2i. The set Ei contains copies of elements from Ei−1. Specifically, each element
e ∈ Ei−1 has the following copies:
1. The copy es (define Es

i−1 := {es|e ∈ Ei−1}). This copy is called the special copy.
2. The bi copies ea,1, · · · , ea,bi (for every j, define Ea,j

i−1 :=
{

ea,j
∣∣e ∈ Ei−1

}
). These are

called the ancillary copies of elements.
3. The bi copies ep,1, · · · , ep,bi (for every j, define Ep,j

i−1 :=
{

ep,j
∣∣e ∈ Ei−1

}
). These are

called the positive copies of elements.
4. The bi copies en,1, · · · , en,bi (for every j, define En,j

i−1 :=
{

en,j
∣∣e ∈ Ei−1

}
). These are

called the negative copies of elements.
The elements of the instance of Ai are defined as

Ei := Es
i−1 ∪

 bi⋃
j=1

Ea,j
i−1

 ∪
 bi⋃

j=1
Ep,j

i−1

 ∪
 bi⋃

j=1
En,j

i−1


We can now observe that |Ei| = (3bi + 1)|Ei−1| = (6i + 1)|Ei|. Since |E0 = 1|, for every i we
have |Ei| = ℓi, as required by Lemma 3.1.

Figure 1 shows the elements of A0 (upper left), A1 (lower left) and A2 (right). Each
element in A1 and A2 is a copy of an element from the universe of the previous adversary;
each copy is special (purple), ancillary (brown), positive (blue) or negative (red).

As for the sets, each set s ∈ Si−1 has the following copies in Si:
1. The bi copies sp,1, · · · , sp,bi , such that

sp,j =
⋃
e∈s

{
es, ea,j , ep,j

}
(for each j, we define Sp,j

i−1 :=
{

sp,j
∣∣s ∈ Si−1

}
). These copies are called the positive copies

of sets.
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A0

A1

A2

Figure 1 The Elements of A0, A1 and A2.

2. The bi copies sn,1, · · · , sn,bi , such that

sn,j =
⋃
e∈s

{
en,j

}
∪

 ⋃
j′ ̸=j

{
ep,j′

}
(for each j, we define Sn,j

i−1 :=
{

sn,j
∣∣s ∈ Si−1

}
). These copies are called the negative

copies of sets.
Note that holds that |Si| = 2bi · |Si−1| = 4i · |Si−1|. Combined with the fact that |S0| = 1,
for every i we have |Si| = mi, as required by Lemma 3.1.

Figure 2 shows some (not all) of the sets in A0, A1 and A2. The gray set in S0 is the
only set of that universe. The blue and red sets in S1 are positive and negative copies of the
gray set, respectively. The purple set in S2 is a positive copy of the red set. The green set in
S2 is a negative copy of the blue set.

Request sequence of Ai

We now describe the sequence of requests generated by Ai.

Recursive calls to Ai−1

For i > 0, the adversary Ai relies on recursive calls to Ai−1. Note that the elements Ei

comprise copies of Ei−1 (Es
i−1, Ep,j

i−1, et cetera). Thus, for any copy E′
i−1 of Ei−1, it is

well-defined to call Ai−1 on E′
i−1: we release a request on a copy e′ ∈ E′

i−1 of e ∈ Ei−1
whenever a request is released on e by Ai−1.

ISAAC 2021
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A0

A1

A2

Figure 2 Some Example Sets in A0, A1 and A2.

For abbreviation, we use the superscript denoting the copy of the elements on the
adversary. For example, calling Ap,j

i−1 means calling Ai−1 on the copy Ep,j
i−1.

Adversary time bounds

As we would like to pack multiple recursive Ai−1 adversaries into one timeline, we would like
to bound each Ai−1 by some time interval, so that we can charge the algorithm for solving
each Ai−1 disjointly.

Define Ti for i ≥ 0 recursively by T0 = 1 and Ti = 2bi · Ti−1. Informally, Ti defines a
time interval which contains Ai; formally, each request q which Ai can possibly release has
[rq, dq] ⊆ [0, Ti] (this can be verified for the construction of Ai we describe next).

Requests of Ai

For the case that i = 0, the adversary releases at time 0 a single request q on the single
element in E0, such that dq = 1.

For the case of i > 0, the adversary Ai is given in Procedure 1; we now provide a verbal
description of that procedure. The adversary Ai uses bi phases, each of which takes 2Ti−1
time, and makes two recursive calls to Ai−1. In the beginning of each phase k, “background”
requests are released on the elements in some positive copies of Ei−1, with deadlines at the
end of the phase (i.e. 2Ti−1 time after release). These requests are released on copies of Ei−1
whose index is in some set M , where M initially consists of all bi indices of positive copies of
Ei−1. In the first half of each phase, i.e. the first Ti−1 time units, Ai calls As

i−1 (and waits
Ti−1 time for its completion). Then, Ai chooses an index jk to remove from M , and calls
An,jk

i−1 which occurs in the second half of the phase.
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Intuitive Explanation

The intuition behind this construction of Ai is the following. When the online algorithm
handles the first recursive call in a phase, it has some choices to make. First, it has the
standard choices to make when addressing Ai−1 – that is, which sets from Si−1 to transmit.
In addition, for each set in Si−1 that it wishes to transmit, it must choose the appropriate
copy from Si. Note that the only copies of a set s ∈ Si−1 which can be used to solve As

i−1
are the positive copies, i.e. sp,j for some index j; moreover, since this first recursive call
is on the special copies, all choices of j are possible. (The purpose of the special copies is
exactly this: to be at the intersection of positive copies of sets, and force the algorithm to
make a choice.)

However, transmitting these positive copies of sets serves an additional purpose – serving
the background requests on M . For this reason, the online algorithm should choose to
transmit sp,j for some j ∈M . But note that for earlier phases, the set M is rather large –
its size is Ω(i). The size of M prohibits the algorithm from transmitting every positive copy
in M of every set – otherwise, the algorithm would incur a great cost. Instead, the algorithm
must focus on a small subset of M , which leaves many background requests unsatisfied.

The optimal solution, on the other hand, is provided a “shortcut”: it uses the second
recursive call of the phase, which is to An,jk

i−1 , to serve all background requests except for
those on Ep,jk

i−1 . The requests on Ep,jk

i−1 are served by the optimal solution in the first recursive
call to As

i−1, where the solution only transmits copies from Sp,jk

i−1 . Note that such efficient
handling of the background requests cannot be achieved by the online algorithm, since it
does not have knowledge of jk during the first half of phase k.

Near the end of a phase, when the online algorithm has (with high probability) a large
amount of pending background requests to serve, the algorithm must incur the cost of an
(offline) set cover for those pending requests; the only purpose of ancillary element copies
is to keep the cost of this offline cover large, which ensures high costs for the algorithm.
(Specifically, the ancillary element copies ensure that each positive set copy s has an element
unique to s, which forces s to be part of the offline set cover; this is used in Proposition 3.4.)

Procedure 1 Adversary Ai.

1 Function CreateInstance
2 Start with M ← {1, 2, · · · , bi}.
3 for k from 1 until bi do

// Start phase k at time 2(k − 1)Ti−1, by releasing background requests and
calling As

i−1.
4 For every j ∈M , release a request on every element in Ep,j

i−1, with a deadline
that’s 2Ti−1 time in the future.

5 Call As
i−1 and wait Ti−1 time until its completion.

// Ti−1 time after the start of phase k, call the second Ai−1 on a random
negative copy of Ei−1.

6 Choose jk ∈M uniformly at random from M .
7 Call An,jk

i−1 and wait Ti−1 time until its completion.
8 Set M ←M\{jk}.

The timeline of a possible instance created by A2 is shown in Figure 3. This figure shows
b2 = 4 phases, each of which contains two calls to Ai−1. In this figure, A2 randomly chose the
permutation (4, 2, 1, 3) of the elements of [b2]. The arrows above each phase show the release
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Figure 3 Request Timeline of A2.

times and deadlines of background requests – these requests are released at the beginning of
each phase, and have deadlines at the end of the phase. Above the arrows are the sets of
elements on which background requests are released.

3.2 Analysis
We now analyze the adversary described above, thus proving Lemma 3.1.

The Optimal Solution
The following lemma describes the optimal solution for instances generated by the adversary
Ai. Not only do they have a low cost relative to the algorithm, but they also buy every set
exactly once, which is useful due to recursion.

▶ Lemma 3.2. For every i, and for every instance generated by Ai, there exists an offline
solution that buys every set in Si exactly once, and thus has cost mi.

Proof. The proof is by induction on i. For i = 0, the adversary Ai releases a single request
on a single element at time 0, with deadline at time 1. Thus, transmitting the single set in
m at any time during the interval (0, 1] is a feasible solution.

Assume that the lemma holds for Ai−1 – i.e. there exists an offline solution sol which
buys every set in Si−1 exactly once.

Now, consider an instance generated by Ai. This instance was generated in bi phases,
each associated with some index in [bi] (the index chosen randomly by Ai in this phase).
These indices form a permutation on the elements of [bi], and we write them as a sequence
(jk)bi

k=1, such that jk is the index chosen by Ai in phase k.
We now describe an offline solution for the instance generated by Ai. Upon phase k,

consider the call to As
i−1 in the beginning of the phase. In the original universe of Ai−1,

i.e. Ei−1 and Si−1, the induction hypothesis implies that there exists an offline solution sol
for this instance which transmits every set of Si−1 exactly once. Thus, a solution for As

i−1
would be to transmit any positive copy of the set s whenever sol transmits s. Our offline
solution to Ai will transmit only the positive copies of index jk, i.e. sp,jk instead of s.

As for the call to An,jk

i−1 , which is the second recursive call in phase k, we use a similar
argument: we use the offline solution sol for Ai−1 in the original universe of Ai−1, and
transmit sn,jk whenever sol transmits j.

Observe that this offline solution for the instance generated by Ai is feasible:
The requests inside recursive calls to Ai are satisfied from the induction hypothesis.
The requests outside recursive calls, i.e. the background requests released in the beginning
of the phase, are also satisfied: in each phase k, we transmit all sets in Sp,jk

i−1 (which satisfy
all requests on Ep,jk

i−1 ) and Sn,jk

i−1 (which satisfy all requests on Ep,j
i−1 for every j ̸= jk).
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Now note that all sets in Si are bought exactly once: this is since in phase k the algorithm
buys all sets from Sp,jk

i−1 and Sn,jk

i−1 exactly once (and no other sets). Since (jk)bi

k=1 are a
permutation of [bi], this yields the desired claim. ◀

The Cost of the Algorithm
We now bound the expected cost of the algorithm. For every i, define ci := i

8 . The main
result here is the following lemma.

▶ Lemma 3.3. For every i, and for every deterministic online algorithm ALG against the
adversary Ai, it holds that the expected cost of the algorithm during the interval (0, Ti] is at
least ci ·mi (where the expectation is over the random choices of Ai).

We prove Lemma 3.3 by induction. For the base case of i = 0, note that this trivially
holds for Ai: the algorithm must transmit a set during (0, 1] at cost 1, which is more than
1
8 . For every i > 0, assuming that the lemma holds for i − 1, we prove the lemma for Ai.
We also henceforth fix ALG to be the online deterministic algorithm which runs against
the adversary Ai. Slightly abusing notation, we also use ALG to refer to the cost of the
online algorithm during the interval (0, Ti]; indeed, costs outside this interval are irrelevant
to Lemma 3.3.

First, we show an important property of the universe of Ai. For every universe with
elements E and sets S, denote by sc(E, S) the cost of the optimal (classic, offline) set cover
solution for this universe. For all (reasonable) universes, buying all sets is a feasible set cover
solution; Proposition 3.4 shows that for the universe of Ai, buying all sets is in fact the only
solution.

▶ Proposition 3.4. For every i, it holds that sc(Ei, Si) = mi.

Proof of Proposition 3.4. Clearly, buying each set in Si is a feasible solution of cost mi. It
now show that each set must be bought, which proves the proposition. To this end, we prove
that for each set s ∈ Si there exists an element e ∈ Ei such that e is in s, but in no other set
in Si. If this indeed holds for each s ∈ Si, each set must be bought, completing the proof.

We prove this claim by induction on i. For the base case of i = 0 this trivially holds.
Now, for i > 0, assume that for each set s̄ ∈ Si−1 there exists an element in Ei−1 which is in
s̄ and in no other set in Si−1.

Now, consider any set s ∈ Si. This set is a copy of some set s̄ ∈ Si−1, for which the
induction hypothesis provides an element ē ∈ Ei−1 which is in s̄ and not in any other set
in Si−1.
1. If s is a positive copy of s̄, i.e. s = s̄p,j for some j, then observe the element e := ēa,j ∈ Ei.

It holds that e is in s but in no other set in Si.
2. If s is a negative copy of s̄, i.e. s = s̄n,j for some j, then observe the element e := ēn,j ∈ Ei.

It holds that e is in s but in no other set in Si

This completes the proof of the claim, and thus the proposition. ◀

Note again that Proposition 3.4 refers to the offline cost of covering the universe of Ai;
this is not the same as the cost of the optimal solution against Ai (for example, ancillary
copies in the universe are never requested by Ai, and are only useful for future recursion).

We would now like to give a lower bound for the expected cost of the algorithm at each
phase. For every phase k, let ALGk be the cost of ALG during the phase k, i.e. during the
time interval ((2k − 2)Ti−1, 2kTi−1].
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▶ Lemma 3.5. For every phase k, it holds that:
1. If k ≤ bi

2 , then E[ALGk] ≥
(
ci−1 + 1

4
)
· 2mi−1

2. If k > bi

2 , then E[ALGk] ≥ ci−1 · 2mi−1

Proof. Fix any phase k, which starts at time τ := 2(k − 1) · Ti−1. For this proof, fix the
set of random choices made by Ai until the start of phase k; henceforth in the proof the
expectations are thus only on random choices from phase k onwards. Since we bound the
expected cost of the algorithm for every possible set of choices made up to phase k by Ai,
this lower bound also applies in expectation over those choices.

Let M denote the value of the variable of the same name in Ai at the beginning of phase
k (recall that M ⊆ [bi] is a set of indices). Since we have fixed the random choices of Ai

before phase k, the set M is some fixed set.
We divide the transmissions made by the algorithm during the phase into three disjoint

parts:
Part P1: transmissions of positive sets during (τ, τ + Ti−1] (the first half of the phase).
Part P2: transmissions of negative sets from Sn,jk

i−1 during (τ + Ti−1, τ + 2Ti−1] (the
second half of the phase).
Part P3: transmissions not in P1, P2.

We denote the number of transmissions in Pℓ (equivalently: the total cost of such transmis-
sions) by Cℓ.

Part P1. Observe that the positive sets are the only sets that can be used for As
i−1 in

the first part of the phase. Also note that intersecting all positive sets with Es
i−1 yields a

collection of sets which is identical to Si−1; that is, for every set s ∈
⋃

j Sp,j
i−1, there exists a

set s′ ∈ Si−1 such that

s ∩ Es
i−1 = {es|e ∈ s′}

(specifically, the set s′ is such that s is a positive copy of s′)
Thus, covering the elements of Es

i−1 with these sets is as hard as covering the elements of
Ei−1 with Si−1. Now, recall the induction hypothesis made for Lemma 3.3, which implied
that the expected cost of this part of the algorithm is at least ci−1 ·mi−1.

Part P2. Note that the sets of Sn,jk

i−1 are the only sets that contain elements from En,jk

i−1 ,
and are thus the only sets that can be used to serve An,jk

i−1 . Also note that intersecting the
sets of Sn,jk

i−1 with the elements En,jk

i−1 yields a collection of sets which is identical to Si−1 (in
a similar way to the argument for P1) We can thus again apply the induction hypothesis,
and see that the expected cost of the algorithm in buying the sets of Sn,jk

i−1 must be at least
ci−1 ·mi−1.

Combining Parts P1 and P2, we have

E[C1] + E[C2] ≥ ci−1 · 2mi−1 (1)

Equation (1) immediately implies the second claim of this lemma. It remains to prove
the first claim.

Assume henceforth that k ≤ bi

2 . If it holds that E[C1] ≥ bi

4 ·mi−1, then since bi

4 ·mi−1 =
i
2 ·mi−1 ≥

(
ci−1 + 1

2
)
mi−1, we have E[C1] + E[C2] ≥

(
ci−1 + 1

4
)
· 2mi−1, which completes

the proof of the second claim.
We therefore assume henceforth that E[C1] < bi

4 ·mi−1.
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Part P3. Consider the background requests of phase k which were released on Ep,j
i−1, for any

index j ∈ M . As the restriction of Si to Ep,j
i−1 is identical to Si−1, Proposition 3.4 implies

sc
(

Ep,j
i−1, Si

)
= mi−1. Thus, the algorithm has to transmit at least mi−1 sets that contain

elements from Ep,j
i−1 during the phase.

Consider the sets transmitted in Part P1. These sets are all positive sets. Each such
positive set sp,j , for some j, does not contain any positive elements outside Ep,j

i−1. Denote by
Cj

1 the number of sets from Sp,j
i−1 transmitted in P1, such that C1 =

∑
j Cj

1 . Then we know
that for each j ∈M we have that in P2 and P3 together, there must be at least mi−1 − Cj

1
transmissions of sets containing elements from Ep,j

i−1.
Now, observe that choosing j = jk, Part C2 transmits only sets from Sn,jk

i−1 , which do not
contain elements from Ep,jk

i−1 . This thus yields a lower bound of C3 ≥ mi−1 − Cjk

1 .
Overall, we have that:

E[C3] ≥
∑
j∈M

Pr(jk = j) · E
[
mi−1 − Cj

1

∣∣∣jk = j
]

= 1
|M |

∑
j∈M

(
mi−1 − E

[
Cj

1 |jk = j
])

= 1
|M |

∑
j∈M

(
mi−1 − E

[
Cj

1

])
= mi−1 −

1
|M |

E[C1] ≥ mi−1 −
2
bi
E[C1] ≥ mi−1

2

The second equality is due to the fact that Cj
1 is independent of the choice of jk (indeed, the

choice of jk only affects the input from time τ + Ti−1). The second inequality is from the fact
that k ≤ bi

2 , which implies that |M | ≥ bi

2 . The third inequality is from E[C1] < bi

4 ·mi−1.
Combining this with Equation (1), we obtain

E[C1] + E[C2] + E[C3] ≥ 2ci−1 ·mi−1 + mi−1

2 =
(

ci−1 + 1
4

)
· 2mi−1 ◀

Proof of Lemma 3.3. It holds that

E[ALG] =
bi∑

k=1
E[ALGk] ≥ bi

2

(
ci−1 + 1

4

)
· 2mi−1 + bi

2 ci−1 · 2mi−1

=
(

ci−1 + 1
8

)
2bi ·mi−1 = cimi

where the first inequality is due to applying Lemma 3.5 to the phases (using the stronger
claim for the earlier phases and the weaker claim for the later phases), and the final equality
uses the fact that mi = 2bi ·mi−1. ◀

Proof of Lemma 3.1. The lemma results immediately from Lemmas 3.2 and 3.3. ◀

3.3 Proofs of Theorems
We now use the construction above to prove the main theorems of this paper.

Proof of Theorem 1.1. Lemma 3.1 implies that any deterministic algorithm is Ω(i)-
competitive against Ai, which uses a universe of ℓi elements and mi sets. Yao’s principle
now implies that for every randomized online algorithm, there exists an instance with ℓi and
mi on which its competitive ratio is Ω(i).

For the set-based bound, note that mi = 4i · i! ≤ (4i)i, which implies i ≥ log mi

4 log i . Now
observe that mi ≥ 2i and thus i ≤ log mi. Together with the previous observation, we have
that i = Ω

(
log mi

log log mi

)
, which yields the desired Ω

(
log m

log log m

)
-competitiveness lower bound.

For the element-based bound, note that 2i ≤ ℓi ≤ (7i)i. A similar argument thus yields
that i = Ω

(
log ℓi

log log ℓi

)
, which gives us the Ω

(
log ℓ

log log ℓ

)
-competitiveness lower bound. ◀
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Proofs of Theorems 1.2 and 1.3. There exist folklore reductions from set cover to node-
weighted Steiner tree and directed Steiner tree, which reduce a set cover instance with ℓ

elements and m sets to graphs with ℓ + m + 1 nodes. These reductions carry over to the
deadline/delay setting (for a detailed description of these reductions, see e.g. [8]).

Now, Ai as described for set cover yields a graph with ℓi + mi + 1 nodes, which is at
most 3 · (7i)i nodes (and more than 2i nodes). Lemma 3.1, together with argument identical
to the proof of Theorem 1.1, yield an Ω

(
log n

log log n

)
on the competitiveness of any randomized

algorithm. ◀

4 Discussion and Open Problems

In this paper, we presented nearly-logarithmic lower bounds on competitiveness for some
network design problems with deadlines (which therefore also apply to the delay cases). In [8],
a framework is shown which solves every network design with deadlines problem using an
approximation algorithm for the corresponding offline problem, losing a logarithmic factor in
competitiveness; our results thus show that this logarithmic factor is nearly optimal.

However, the problems we consider in this paper might be tougher than other network
design problems with deadlines. While our paper shows that logarithmic loss in approximation
ratio is necessary for the general case, there exist many network design problems for which
no superconstant lower bound on competitiveness exists. Examples of such problems with
deadlines are (edge-weighted) Steiner tree and Steiner forest, facility location, and multicut.
Resolving the competitive ratio for these problems remains an interesting open problem.
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circuit complexity. Indeed, the measure that we study most closely in this paper, denoted
KT, was initially defined in order to capitalize on the framework of Kolmogorov complexity in
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related to the size of the smallest circuit computing f . Thus the problem of computing KT
complexity (denoted MKTP) was initially viewed as a more-or-less equivalent encoding of
MCSP, and it is still the case that all theorems that have been proved about the complexity
of MCSP hold also for MKTP (such as those in [5, 9, 10,17,21–24,30,31,33,34]).

In recent years, however, a few hardness results were proved for MKTP that are not yet
known to hold for MCSP [7, 8]. We believe that these results can be taken as an indication
of what is likely to be true also for MCSP. The present work gives significantly improved
hardness results for MKTP.

Reducibility and completeness are the most effective tools in the arsenal of complexity
theory for giving evidence of intractability. However, it is not clear whether MCSP or MKTP
is NP-complete; neither can be shown to be NP-complete – or even hard for ZPP – under
the usual ≤P

m reductions without first showing that EXP ̸= ZPP, a long-standing open
problem [17,31].

The strongest hardness results that have been proved thus far for MCSP and MKTP are
that both are hard for SZK under BPP-Turing reductions [5]. SZK is the class of problems
that have Statistical Zero Knowledge Interactive Proofs, and contains many problems of
interest to cryptographers. Indeed, if MCSP (or MKTP) is in P/poly, then there are no
cryptographically-secure one-way functions [26].

Our main results involve improving the hardness results for MKTP, by reducing the
number of queries from polynomially-many, to one. In the paragraphs that follow, we explain
the sense in which we accomplish this goal. Along the way, we also obtain a new circuit lower
bound for MKTP; it remains unknown whether this circuit lower bound also holds for MCSP.

SZK is not known to be contained in NP; until such a containment can be established,
there is no hope of improving the BPP-Turing reduction of [5] to a ≤P

m reduction. But
we come close in this paper. NISZK is the “non-interactive” subclass of SZK; it contains
intractable problems if and only if SZK does [18]. We show that MKTP is hard for NISZK
under ≤P/poly

m reductions. (Thus, instead of asking many queries, as in [5], a single query
suffices.1) Our proof also shows that MKTP is hard for NISZK under BPP reductions that
ask only one query. Combined with [18], this shows that MKTP is hard for SZK under
non-adaptive BPP reductions, yielding a modest improvement over [5]; this has implications
regarding the study of worst-case to average-case reductions. (See Section 1.1.)

But ≤P/poly
m reductions are still quite powerful. There is great interest currently in

proving lower bounds for MCSP, MKTP, and related problems such as MKtP (the problem
of computing a different kind of time-bounded Kolmogorov complexity, due to Levin [28]) on
very limited classes of circuits and formulae, as part of the “hardness magnification” program.
For instance, if modest lower bounds can be shown on the size required to compute MKtP
on de Morgan formulae augmented with PARITY gates at the leaves, then EXP is not
contained in non-uniform NC1 [32]. Also, there is great interest in finding lower bounds
against a variety of other models, such as depth-three threshold gates, or circuits consisting
of polynomial threshold gates [27]. If a lower bound is known against one of these limited
classes of circuits for some problem A that is reducible to, say, MKTP or MKtP under ≤P/poly

m
reductions, it implies nothing about the complexity of MKTP or MKtP, since the circuitry
involved in computing the reduction is much more powerful than the circuitry in the class of
circuits for which the lower bound is known.

1 Some readers may have mistakenly believed that we view our work as a step toward showing that MKTP
(or MCSP) is hard for SZK under (uniform) ≤P

m reductions. We do not. In fact, some of us doubt that
hardness under uniform deterministic reductions holds.
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Thus there is a great deal of interest in considering reductions that are much less powerful
than ≤P/poly

m reductions. For extremely weak (uniform) notions of reducibility (such as
log-time reductions), it is known that MCSP and MKTP are not hard for any complexity
class that contains the PARITY function [31]. However, this non-hardness result relies
on uniformity; it was later shown that MKTP is hard for the complexity class DET under
nonuniform ≤NC0

m reductions [8].
However, even ≤NC0

m reductions are too powerful a tool, when one is interested in lower
bounds against the classes of circuits discussed above, since they do not seem to be closed
under ≤NC0

m reductions. This motivates consideration of the most restrictive type of reduction
that we will be considering: projections.

A projection is a reduction that is computed by a circuit consisting only of wires and
NOT gates. Each output bit is either a constant, or is connected by a wire to a (possibly
negated) input bit. All of the classes of circuits mentioned above (and – indeed – most
conceivable classes of circuits) are closed under projections.

Prior to our work, the result of [8] showing that MKTP is hard for DET under ≤NC0

m
reductions was improved, to show that MKTP is hard for DET even under projections [3].
Since DET is a subclass of P, this provides little ammunition when one is seeking to prove
that MKTP is intractable. One of our main contributions is to show that MKTP is hard for
NISZKL under projections. As a corollary, we obtain that MKTP cannot be computed by
THRESHOLD◦MAJORITY circuits of size 2no(1) . This lower bound relies on the fact that
MKTP is hard under projections.

The reader will not be familiar with NISZKL; this complexity class makes its first ap-
pearance in the literature here. It is the “non-interactive” counterpart to the complexity
class SZKL that was studied previously by Dvir et al. [15], and was shown there to contain
several important natural problems of interest to cryptographers (such as Discrete Log and
Decisional Diffie-Hellman). NISZKL contains intractable problems if and only if SZKL does
(see Section 2). Thus, for the first time, we show that MKTP is hard under projections for
a complexity class that is widely believed to contain intractable problems. Our hardness
results carry over immediately to MKtP and to similar problems defined in terms of general
Kolmogorov complexity; no hardness results under projections had been known previously
for those problems. We present some complete problems for NISZKL and establish some
other basic facts about this class in Section 4.

1.1 Average-Case Complexity
Building on the techniques introduced in [20], we are able to establish new insights regarding
the relationship between worst-case and average-case complexity. In Theorem 35, capitalizing
on the fact that essentially every circuit complexity class C is closed under projections, we
show that if NISZKL does not lie in OR ◦ C, then there are problems A in NP that cannot
be solved in the average case by errorless heuristics in C. For instance, if one were able
to show that there is any problem NISZKL (including, but not limited to, some of the
candidate one-way functions believed to reside there) that cannot be solved in the worst
case by depth-four ACC0 circuits, it would follow that there are problems in NP that are
hard-on-average for depth-three ACC0 circuits. Such conclusions would not follow if our
reductions to MKTP had merely been computable in AC0 or NC0.

We are also able to shed more light on worst-case to average-case reductions, in the form
that they were studied by Bogdanov and Trevisan [14]. Bogdanov and Trevisan showed that
there were severe limits on the complexity of problems whose worst-case complexity could
be reduced to the average-case complexity of problems in NP via non-adaptive reductions;
all such problems lie in NP/poly ∩ coNP/poly. But it was not known how large this class of

ISAAC 2021



54:4 Cryptographic Hardness Under Projections for Kolmogorov Complexity

problems could be. Hirahara showed that every problem in SZK has an adaptive worst-case to
average-case reduction to a problem in NP [20], but the upper bound of NP/poly ∩ coNP/poly
proved by Bogdanov and Trevisan does not apply for adaptive reductions. As a consequence
of our Corollary 17, showing that MKTP is hard for SZK under nonadaptive BPP reductions,
we are able to show (in Corollary 37) that the class identified by Bogdanov and Trevisan lies
in the narrow range between SZK and NP/poly ∩ coNP/poly.
▶ Remark. This is an illustration of the utility of studying MKTP, as an example of a
theorem that does not explicitly mention MKTP or MCSP, but which was proved via the
study of MKTP. No such argument based on MCSP is known. We believe that MKTP can
in fact be viewed as a particularly convenient formulation of MCSP, since (a) KT complexity
is closely related to circuit size, (b) essentially all theorems known to hold for MCSP also
hold for MKTP, (c) some arguments that one might intend to formulate in terms of MCSP
elude current approaches, but can instead be successfully carried through by use of MKTP.
Furthermore, theorems proved for MKTP may serve as an indication of what is likely to be
true for MCSP as well.

The rest of the paper is organized as follows: Our ≤P/poly
m -hardness theorem for MKTP is

proved in Section 3. Then, after establishing some basic facts about NISZKL in Section 4, in
Section 5 we show that MKTP is hard for NISZKL under projections. We present applications
of our reductions and implications for average-case complexity in Section 6.

Due to space limitations, some proofs have been omitted from the version of this work
that appears in the ISAAC proceedings. The interested reader is encouraged to consult [6]
for complete details.

2 Preliminaries

2.1 Complexity Classes and Reducibilities
We assume familiarity with the complexity classes P, NP, L, BPP, and P/poly. We also make
use of the circuit complexity classes AC0 and NC0. For the purposes of this paper, AC0 can
be understood as the set of problems for which there is a family of circuits {Cn : n ∈ N}
with unbounded-fan-in AND and OR gates (and NOT gates of fan-in 1) of polynomial size
and constant depth. NC0 is defined similarly, but with AND and OR gates of bounded fan-in
(and thus each output bit depends on only a constant number of bits of the input). We deal
primarily with the “nonuniform” versions of these complexity classes (which means that the
mapping n 7→ Cn need not be computable).

Branching programs are a circuit-like model of computation that can be used to charac-
terize logspace computation. A branching program is a directed acyclic graph with a single
source and two sinks labeled 1 and 0, respectively. Each non-sink node in the graph is labeled
with a variable in {x1, . . . , xn} and has two edges leading out of it: one labeled 1 and one
labeled 0. A branching program computes a Boolean function f on input x = x1 . . . xn by
first placing a pebble on the source node. At any time when the pebble is on a node v labeled
xi, the pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if xi = 1
(or by the edge labeled 0 if xi = 0). If the pebble eventually reaches the sink labeled b, then
f(x) = b. Branching programs can also be used to compute functions f : {0, 1}m → {0, 1}n,
by concatenating n branching programs p1, . . . , pn, where pi computes the function fi(x) =
the i-th bit of f(x). For more information on the definitions, backgrounds, and nuances of
these complexity classes, circuits, and branching programs, see the text by Vollmer [35].

A promise problem Π is a pair of disjoint sets (ΠY ES , ΠNO). A solution to a promise
problem is any set A such that ΠY ES ⊆ A and ΠNO ⊆ A. A don’t-care instance of Π is any
string that is not in ΠY ES ∪ ΠNO. A language A can be viewed as a promise problem that
has no don’t-care instances.
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Given any class C of functions, there is an associated notion of m-reducibility or many-one
reducibility: For two languages A and B, we say that A≤C

mB if there is a function f in
C such that x ∈ A iff f(x) ∈ B. This notion of reducibility extends naturally to promise
problems, mapping yes-instances to yes-instances, and no-instances to no-instances. The
most familiar notion of m-reducibility is Karp reducibility: ≤P

m; NP-completeness is most
commonly defined in terms of Karp reducibility. However, in this paper, we will frequently
be reducing problems that are not known to reside in NP to MKTP, which does lie in NP.
Thus it is clear that a more powerful notion of reducibility is required. Some of our results
are most conveniently stated in terms of ≤P/poly

m reductions (i.e., reductions computed by
nonuniform polynomial-size circuits). We also consider restrictions of ≤P/poly

m reductions,
computed by nonuniform AC0 and NC0 circuits: ≤AC0

m and ≤NC0

m . Finally we also consider
projections (≤proj

m ), which are functions computed by NC0 circuits that have only NOT gates.
That is, in a projection, each output bit is either a constant 0 or 1, or is connected by a wire
to an input bit or its negation.

We will also make reference to various types of Turing reducibility, which are defined in
terms of oracle Turing machines, or in terms of circuit families that are augmented with
“oracle gates”. For instance, we say that A≤BPP

T B if there is a probabilistic polynomial time
oracle Turing machine M with oracle B that accepts every x ∈ A with probability 2

3 and
rejects every x ∈ A with probability 2

3 . Note that the computation tree of such a BPP-Turing
reduction can contain an exponential number of queries to different elements of B. Just as
BPP ⊆ P/poly, it also holds that A≤BPP

T B implies A≤P/poly
T B. Thus, on any input x, the

circuit computing the P/poly-Turing reduction queries only a polynomial number of elements
of B. It was shown in [5] that every problem in SZK (that is, every problem with a statistical
zero knowledge proof system) is ≤BPP

T -reducible (and hence ≤P/poly
T -reducible) to MCSP and

to MKTP. The question of interest to us here is: Is it necessary to ask so many queries?
What can we do if we ask only one query? What can be reduced to MKTP via a ≤P/poly

m
reduction?

The complexity class with which we are primarily concerned in this paper is the class of
problems that have non-interactive statistical zero knowledge proof systems: NISZK. NISZK
was originally defined and studied by Blum et al. [13]. The definition below (in terms of
promise problems) is due to Goldreich et al. [18].

▶ Definition 1. A non-interactive statistical zero-knowledge proof system for a promise
problem Π is defined by a triple of probabilistic machines P , V , and S, where V and S are
polynomial-time and P is computationally unbounded, and a polynomial r(n) (which will
give the size of the random reference string σ), such that:
1. (Completeness) For all x ∈ ΠY ES, the probability that V (x, σ, P (x, σ)) accepts is at least

1 − 2−|x|.
2. (Soundness) For all x ∈ ΠNO, the probability that V (x, σ, P (x, σ)) accepts is at most

2−|x|.
3. (Zero Knowledge) For all x ∈ ΠY ES, the statistical distance between the following two

distributions bounded by 1/β(|x|)
a. Choose σ uniformly from {0, 1}r(|x|), sample p from P (x, σ), and output (p, σ).
b. S(x) (where the coins for S are chosen uniformly at random.)

where β(n) is superpolynomial, and the probabilities in Conditions 1 and 2 are taken over
the random coins of V and P , and the choice of σ uniformly from {0, 1}r(n).

NISZK is the class of promise problems for which there is a non-interactive statistical
zero knowledge proof system.
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NISZK is not known to be closed under complementation; co-NISZK is defined as the
class of promise problems Π = (ΠY ES , ΠNO) such that (ΠNO, ΠY ES) is in NISZK. It is
known that SZK = NISZK iff NISZK = co-NISZK, and that every promise problem in SZK
efficiently (and non-adaptively) Turing-reduces to a problem in NISZK [18]. Thus NISZK
contains intractable problems if and only if SZK does.

A subclass of SZK, which we will denote by SZKL, in which the verifier V and simulator
S are restricted to being logspace machines, was defined and studied by Dvir et al. [15].
Among other things, they showed that many of the important natural problems in SZK lie
in SZKL, including Graph Isomorphism, Quadratic Residuosity, Discrete Log, and Decisional
Diffie-Helman. The non-interactive version of SZKL, which we denote by NISZKL, has not
been studied previously, but it figures prominently in our results.

▶ Definition 2. The formal definition of NISZKL is obtained by replacing each occurrence of
“polynomial-time” in Definition 1 with “logspace”. (It is important to note that, in this model,
the logspace-bounded verifier V and simulator S are allowed two-way access to the reference
string σ and to their polynomially-long sequences of probabilistic coin flips.)

The reduction presented in [18] carries over directly to the logspace setting, showing that
NISZKL contains intractable problems if and only if SZKL does. In particular, we have:

▶ Proposition 3. Every promise problem in SZKL is non-adaptively AC0-Turing-reducible to
a problem in NISZKL.

Figure 1 Diagram showing the classes NISZK, co-NISZK, and SZK. The shaded oval represents
NP. Every problem in co-NISZK is ≤P/poly

m -reducible to MKTP.

2.2 KT Complexity
The measure KT was defined in [4]. We provide a reproduction of that definition below.

▶ Definition 4 (KT). Let U be a universal Turing machine. For each string x, define KTU (x)
to be

min{|d| + T : (∀σ ∈ {0, 1, ∗}) (∀i ≤ |x| + 1) Ud(i, σ) accepts in T steps iff xi = σ}

We define xi = ∗ if i > |x|; thus, for i = |x| + 1 the machine accepts iff σ = ∗. The notation
Ud indicates that the machine U has random access to the description d.
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To understand the motivation for this definition, see [4]. Briefly: KT is a version of time-
bounded Kolmogorov complexity that (in contrast to other notions of resource-bounded
Kolmogorov complexity that have been considered) is polynomially-related to circuit com-
plexity. The minimum KT problem, henceforth MKTP, is defined below.

▶ Definition 5 (MKTP). Suppose y ∈ {0, 1}n and θ ∈ N \ {0}, then

MKTP = {(y, θ) | KT(y) ≤ θ}.

In this paper when we view MKTP as a promise problem, yes-instances will be considered
those that are in the language, and no-instances those that are not in the language.

3 MKTP is Hard For NISZK

In this section, we prove our first hardness result for MKTP; MKTP is hard for co-NISZK
under ≤P/poly

m reductions. In order to prove hardness, it suffices to provide a reduction from
the entropy approximation problem: EA, which is known to be complete for NISZK under
≤P

m reductions [18].

▶ Definition 6 (Promise-EA). Let a circuit C : {0, 1}m → {0, 1}n represent a probability
distribution X on {0, 1}n induced by the uniform distribution on {0, 1}m. We define Promise-
EA to be the promise problem

EAY ES = {(C, k) | H(X) > k + 1}
EANO = {(C, k) | H(X) < k − 1}

where H(X) denotes the entropy of X.

We will make use of some machinery that was developed in [7], in order to relate the
entropy of a distribution to the KT complexity of samples taken from the distribution.
However, these tools are only useful when applied to distributions that are sufficiently “flat”.
The next subsection provides the necessary tools to “flatten” a distribution.

3.1 Flat Distributions
A distribution is considered flat if it is uniform on its support. Goldreich et al. [18] formalized
a relaxed notion of flatness, termed ∆-flatness, which relies on the concept of ∆-typical
elements. The definitions of both concepts follow:

▶ Definition 7 (∆-typical elements). Suppose X is a distribution with element x in its support.
We say that x is ∆-typical if,

2−∆ · 2−H(X) < Pr[X = x] < 2∆ · 2−H(X).

▶ Definition 8 (∆-flatness). Suppose X is a distribution. We say that X is ∆-flat if for every
t > 0 the probability that an element of the support, x, is t · ∆-typical is at least 1 − 2−t2+1.

▶ Lemma 9 (Flattening Lemma, [18]). Suppose X is a distribution such that for all x in its
support Pr[X = x] ≥ 2−m. Then Xk is (

√
k · m)-flat.

Observe that if X is a distribution represented by a circuit C : {0, 1}m → {0, 1}n, then the
hypothesis of the Flattening Lemma holds for m. Note also that, for any distribution X,
H(Xk) = k · H(X). Thus the entropy of the distribution Xk grows linearly with respect to
k, while the deviation from flatness diminishes much more rapidly with respect to k.
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3.2 Encoding and Blocking
The Encoding Lemma is the primary tool that was developed in [7] to give short descriptions
of samples from a given distribution. Below, we give a precise statement of the version
of the Encoding Lemma that is stated informally as Remark 4.3 of [7]. (Although the
statement there is informal, the proof of the Encoding Lemma that is given there does yield
our Lemma 11.) First, we need to define Λ-encodings.

▶ Definition 10 (Λ-encodings). Let R : S → T be a random variable that induces a distribution
X. The Λ-heavy elements of T are those elements λ such that Pr[X = λ] > 1/2Λ. A Λ-
encoding of R is given by a mapping D : [N ] → S such that for every Λ-heavy element
λ, there exists i ∈ [N ] such that R(D(i)) = λ. We refer to ⌈log(N)⌉ as the length of the
encoding. The function D is also called the decoder for the encoding.

▶ Lemma 11 (Encoding Lemma). [7, Lemma 4.1] Consider an ensemble {Rx} of random
variables that sample distributions on strings of some length poly1(|x|), where there are
circuits Cx of size poly2(|x|) representing each Rx. Then there is a polynomial poly3 such
that, for every integer Λ, each Rx has a Λ-encoding of length Λ + log(Λ) + O(1) that is
decodable by circuits of size poly3(|x|).

By itself, the Encoding Lemma says nothing about KT complexity. The other important
ingredient in the toolbox developed in [7] is the Blocking Lemma, which refers to the process
of chopping a string into blocks. Let y be a string of length tn, which we think of as being the
concatenation of t samples yi of a distribution X on strings of length n. Thus y = y1 . . . yt.
Let r = ⌈t/b⌉. Equivalently, we consider y to be equal to z1 . . . zr where each zi is a string of
length bn sampled according to Xb. (In the case when |y| is not a multiple of b, zr is shorter;
this does not affect the analysis. We call the strings zi the blocks of y.)

▶ Lemma 12 (Blocking Lemma). [7, Lemma 3.3] Let {Tx} be an ensemble of sets of strings
such that all strings in Tx have the same length poly(|x|). Suppose that for each x ∈ {0, 1}∗

and for each b ∈ N there is an integer Λb and a random variable Rx,b whose image contains
(Tx)b, and such that Rx,b is computable by a circuit of size poly(|x|, b) and has a Λb-encoding
of length s′(x, b) decodable by a circuit of size poly(|x|, b). Then there are constants c1 and
c2 so that, for every constant α > 0, every t ∈ N, every sufficiently large x, and every
⌈tα⌉-suitable y ∈ (Tx)t,

KT(y) ≤ t1−α · s′(x, ⌈tα⌉) + tα·c1 · |x|c2 .

Here, we say that y ∈ (Tx)t is b-suitable if each block of y (of length bn) is Λb-heavy.

With the Encoding and Blocking Lemmas in hand, we can now show how to give upper
and lower bounds on the KT complexity of concatenated samples from a distribution. The
following lemma gives the upper bound.

▶ Lemma 13. Suppose X is a distribution sampled by a circuit Cx : {0, 1}m → {0, 1}n of
size polynomial in |x|. For every polynomial w = w(|x|) with |x| ≤ w, there exist constants
c0, c2, and α0 such that for every sufficiently large polynomial t and for all large x, if y is
the concatenation of t samples from X, then with probability at least (1 − 1/22|x|),

KT(y) ≤ tH(X) + wm(t1−α0/2) + t1−α0 |x|c0+c2

We now turn to a lower bound on KT(y).
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▶ Lemma 14. Let poly(|x|) denote some fixed polynomial in |x|, and let α0 be such that 0 <

α0 < 1/2. For all large x, if X is a distribution sampled by a circuit Cx : {0, 1}m → {0, 1}n

of polynomial size, then it holds that for every w and every t > w4, if y is sampled from Xt,
then with probability at least 1 − 2−w2 ,

KT(y) ≥ tH(X) − wm
√

t − t1−α0poly(|x|)

3.3 Reducing co-NISZK to MKTP
▶ Theorem 15. MKTP is hard for co-NISZK under P/poly many-one reductions.

Proof. We prove the claim by reduction from the NISZK-complete problem EA. Let x =
(Cx, k) be an arbitrary instance of Promise-EA, where Cx : {0, 1}m → {0, 1}n is a circuit
that represents distribution X. Let w = 2|x|, and let α0, c0, and c2 be the constants from
Lemma 13. Let λ = wmt1−α0/2. Pick the polynomial t so that t(|x|) > 2(λ + t1−α0 |x|c0+c2)
and w4 < t (and note that all large polynomials have this property). Construct y as t samples
from X. Let θ = tk + λ + t1−α0 |x|c0+c2 . We claim that, with probability at least 1 − 1

22|x| , if
(X, k) ∈ EAY ES , then (y, θ) ∈ MKTPNO and if (X, k) ∈ EANO, then (y, θ) ∈ MKTPY ES .

If (X, k) ∈ EANO, then H(X) < k. Then by Lemma 13, we have that, with high
probability,

KT(y) ≤ tH(X) + λ + t1−α0 |x|c0+c2

< tk + λ + t1−α0 |x|c0+c2

= θ

thus KT(y) ≤ θ, and thus (y, θ) ∈ MKTPY ES .
If (X, k) ∈ EAY ES , then H(X) > k + 1. Then by Lemma 14, with probability at least

1 − 2−w2
> 1 − 22|x|, we have that

KT(y) ≥ tH(X) − wm
√

t − t1−α0 |x|c0+c2 ,

> tH(X) − λ − t1−α0 |x|c0+c2 (since α0 < 1/2)
> t(k + 1) − λ − t1−α0 |x|c0+c2

> tk + λ + t1−α0 |x|c0+c2 (since t > 2(λ + t1−α0 |x|c0+c2))
= θ

thus KT(y) > θ, and thus (y, θ) ∈ MKTPNO.
We have shown that there is a polynomial-time-computable function f , such that, if

x ∈ EAY ES , then with high probability (for random r) f(x, r) = (y, θ) is in MKTPNO, and
if x ∈ EANO, then with high probability f(x, r) = (y, θ) is in MKTPY ES . By a standard
counting argument (similar to the proof that BPP ⊆ P/poly), since the probability of success
for either bound is greater than (1 − 1/22n), we can fix a sequence of random bits to hardwire
in to this reduction and obtain a family of circuits computing a ≤P/poly

m reduction from any
problem in NISZK to MKTP. ◀

▶ Corollary 16. MKTP is hard for NISZK under BPP reductions that make at most one
query along any path of the BPP machine.

Proof. This follows from the proof of Theorem 15. Namely, on input x = (Cx, k), construct
the string y consisting of t random samples from Cx and query the oracle on (y, θ). On
Yes-instances, y will have KT complexity greater than θ (with high probability), and on
No-instances, y will have KT complexity less than θ (with high probability). ◀
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▶ Corollary 17. MKTP is hard for SZK under non-adaptive BPP-Turing reductions.

Proof. Recall from [18] that SZK reduces to Promise-EA via non-adaptive (deterministic)
reductions. The result is now immediate, from Corollary 16. ◀

4 A Complete Problem for NISZKL

Having established a hardness result for MKTP under ≤P/poly
m reductions, we now establish

an analogous hardness result under the much more restrictive ≤proj
m reductions. For this, we

first need to present a complete problem for NISZKL.
Recall that the NISZK-complete problem EA deals with the question of approximating

the entropy of a distribution represented by a circuit. In order to talk about NISZKL, we
shall need to consider probability distributions that are represented using restricted class of
circuits. In particular, we shall focus on a problem that we denote EANC0 .

▶ Definition 18 (Promise-EANC0). Promise-EANC0 is the promise problem obtained from
Promise-EA, by considering only instances (C, k) such that C is a circuit of fan-in two gates,
where no output gate depends on more than four input gates.

It is not surprising that EANC0 is complete for NISZKL. The completeness proof that we
present owes much to the proof presented by Dvir et al. [15] (showing that an NC0-variant of
the SZK-complete problem EntropyDifference is complete for SZKL) and to the proof
presented by Goldreich et al. [18] showing that EA is complete for NISZK. We will need to
make use of various detailed aspects of the constructions presented in this prior work, and
thus we will present the full details here.

First, we show membership in NISZKL.

4.1 Membership in NISZKL

▶ Theorem 19. Promise-EANC0 ∈ NISZKL

The following corollary is a direct analog to [18, Proposition 1].

▶ Corollary 20. If Π is any promise problem that is ≤L
m reducible to EANC0 , then Π ∈ NISZKL.

We close this section by presenting an example of a well-studied natural problem in
NISZKL. (A graph is said to be rigid if it has no nontrivial automorphism.)

▶ Corollary 21. The Non-Isomorphism Problem for Rigid Graphs lies in NISZKL

Proof. First note that the proof of Theorem 19 carries over to show that a problem that
we may call EABP (defined just as EANC0 but where the distribution is represented as a
branching program instead of as an NC0 circuit) also lies in NISZKL. Now observe that
the reduction given in Section 3.1 of [7] shows how to take as input two rigid graphs on n

vertices (G0, G1) and build a branching program that takes as input a bitstring w of length t

and t permutations π1, . . . , πt and output the sequence of t permuted graphs πi(Gwi
). It is

observed in [7] that this distribution has entropy t(1+log n!) if the graphs are non-isomorphic,
and has entropy at most t log n! otherwise. ◀
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4.2 Hardness for NISZKL

In order to re-use the tools developed in [18], we will follow the structure of the proof
given there, showing that EA is hard for NISZK. Namely, we introduce the problem SDU
(Statistical Distance from Uniform) and its NC0 variant, and prove hardness for
SDUNC0 .

▶ Definition 22 (SDU and SDUNC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n

representing distributions X. The promise problem

SDU = (SDUY ES , SDUNO)

is given by

SDUY ES
def= {CX : ∆(X, Un) < 1/n}

SDUNO
def= {CX : ∆(X, Un) > 1 − 1/n}

where ∆(X, Y ) = Σα| Pr[X = α] − Pr[Y = α]|/2.
SDUNC0 is the analogous problem, where the distributions X are represented by NC0

circuits where no output bit depends on more than four input bits.

It is shown in [18, Lemma 4.1] that CX is in SDU if and only if (CX , n − 3) is in EA. This
yields the following corollary:

▶ Corollary 23. SDUNC0 ≤proj
m EANC0 .

Proof. This is trivial if we assume an encoding of SDUNC0 instances, such that the NC0

circuits CX : {0, 1}m 7→ {0, 1}n are encoded by strings of length given by the standard
pairing function m2+3m+2mn+n+n2

2 , so that the length of an instance of SDUNC0 completely
determines n. (An NC0 circuit with m inputs and n outputs has a description of size
O(n log m), and thus it is easy to devise a padded encoding of this much larger length.)
Thus, in the projection circuit computing the reduction CX 7→ (CX , n − 3), the output bits
encoding n−3 are hardwired to constants, and the input bits encoding CX are copied directly
to the output. ◀

▶ Theorem 24. Promise-EANC0 and Promise-SDUNC0 are hard for NISZKL under ≤proj
m

reductions.

Proof. By Corollary 23, it suffices to show hardness for SDUNC0 . In order to establish
hardness, we need to develop the machinery of perfect randomized encodings, which were
developed by Applebaum et al. [12] and then were applied in the setting of SZKL by Dvir
et al. [15]. Due to space limitations, we refer the reader to [6] for the discussion of perfect
randomized encodings.

4.2.1 SDUNC0 is Complete for NISZKL

We now have all of the tools required to complete the proof of Theorem 24.
Let

∏
be an arbitrary promise problem in NISZKL with proof system (P, V ) and simulator

S and let x be an instance of
∏

. Recall that the job of the simulator S is to take a string x

and some uniformly-generated random bits as input, and produce as output a transcript of the
form (σ, p), such that the probability that any transcript (σ, p) is output by S is very close to
the probability that, on input x with shared randomness σ, the prover P sends message p to
the verifier V . Let Mx(s) denote a routine that simulates S(x) with randomness s to obtain
a transcript (σ, p); if V (x, σ, p) accepts, then Mx(s) outputs σ, otherwise it outputs 0|σ|. (We
can assume without loss of generality that |σ| = |x|k.) It is shown in [18, Lemma 4.2] that
the map x 7→ Mx is a reduction of Π to SDU:
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▷ Claim 25. If x ∈
∏

Y ES , then ∆(Mx, U|x|k)) < 1/|x|k, and x ∈
∏

NO implies ∆(Mx, U|x|k ))
> 1 − 1/|x|k.

The proof of the preceding claim in [18, Lemma 4.2] actually shows a stronger result. It
shows that, if the statistical difference between the output distribution of the simulator and
the distribution of true transcripts is at most 1/e(n), then the statistical difference of Mx

and the uniform distribution is at most 1/e(n) + 2−n on inputs of length n. Thus, using
Definition 1 (which is equivalent to the definition of NISZK given in [18]), the simulator
produces a distribution that differs from the uniform distribution by only 1/nω(1). Thus we
have the following claim:

▷ Claim 26. Let c ∈ N. Then for all large x, If x ∈
∏

Y ES , then ∆(Mx, U|x|k)) < 1/|x|kc,
and x ∈

∏
NO implies ∆(Mx, U|x|k )) > 1 − 1/|x|kc.

Furthermore, it is also shown in [18, Lemma 3.1] that EA has a NISZK protocol in which
the completeness error, soundness error, and simulator deviation are all at most 2−m on
inputs of length m. Furthermore, that proof carries over to show that EABP ∈ NISZKL with
these same parameters. Thus we obtain the following fact, which we will use later in Section 6.

▷ Claim 27. Let c ∈ N. Then for all large x, If x is a Yes-instance of EABP, then
∆(Mx, U|x|k)) < 1/2|x|−1, and if x is a No-instance of EABP, then ∆(Mx, U|x|k )) > 1−1/2|x|−1.

Since S runs in logspace, each bit of Mx(s) can be simulated with a branching program
Qx. Furthermore, it is straightforward to see that there is an AC0-computable function that
takes x as input and produces an encoding of Qx as output, and it can even be seen that
this function can be a projection. (To see this, note that in the standard construction of a
Turing machine from a logspace-bounded Turing machine S (with input (x, s)) each node
of the branching program has a name that encodes a configuration of the machine, a time
step, and the position of the input head. This branching program can be constructed in AC0,
given only the length of x. In order to construct Qx, it suffices merely to hardwire in the
transitions from any node that is “scanning” some bit position xi. That is, if the transition
out of node v goes to node v0 if xi = 0 and to node v1 if xi = 1, then in the adjacency matrix
for Qx, entry (v, v1) = xi and entry (v, v0) is ¬xi. This is clearly a projection.)

Now apply the projection of [6, Lemma 37] to (each output bit of) the branching program
Qx of size ℓ, to obtain an NC0 circuit Cx computing a perfect randomized encoding with
blowup b = 2|x|k((ℓ

2)−1)(2(ℓ−1)2−1). (Cx has log b + |x|k output bits.)
Now consider |H(Cx)−H(Ulog b+|x|k )|. By [6, Lemma 28] this is equal to |H(Qx)+log b−

H(Ulog b+|x|k )|. Since H(Qx) = H(Mx) and H(Ulog b+|x|k ) = log b + H(U|x|k ), we have that
|H(Cx) − H(Ulog b+|x|k )| = |H(Mx) − H(U|xk|)|. The proof of Theorem 24 is now complete,
by appeal to Claim 26. ◀

5 Hardness of MKTP under Projections

▶ Theorem 28. MKTP is hard for co-NISZKL under nonuniform ≤AC0

m reductions.

An immediate corollary (making use of the “Gap Theorem” of [1]) is that MKTP is hard
for co-NISZKL under ≤NC0

m reductions. Below, we improve this, showing hardness under
projections.

▶ Corollary 29. MKTP is hard for co-NISZKL under nonuniform ≤NC0

m reductions.
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▶ Corollary 30. MKTP is hard for co-NISZKL under nonuniform ≤proj
m reductions.

Proof. We now need to claim that the AC0-computable reduction of Theorem 28 can be
replaced by a projection. Note that, since SDUNC0 is complete for NISZKL under projections,
and since the reduction from SDUNC0 to EANC0 given in Corollary 23 always uses the same
entropy bound n − 3, we have that it suffices to consider EANC0 instances x = (Cx, k) where
the bound k depends only on the length of x. Thus the bound θ produced by our AC0

reduction also depends only on the length of x, and hence can be hardwired in.
We now need only consider the string y. The ≤AC0

m reduction presented in the proof of
Theorem 28 takes as input Cx and r and produces the bits of y by feeding bits of r into Cx.
Let us recall where the NC0 circuitry producing the i-th bit of y comes from.

[6, Lemma35] shows how to take an arbitrary branching program and encode the
problem of whether the program accepts as a question about the entropy of a distribution
represented as a matrix of degree-three polynomials. Each term in this matrix is of the form∑

j,k R1 (i,k)L(k,j)R2 (j,m), where the matrices R1 and R2 are the same for all inputs of of the
same length. Thus we need only concern ourselves with the matrix L.

In Section 4.2.1, it is observed that, given an instance x of a promise problem in NISZKL,
the branching program Qx that is used, in order to build the matrix L, can be constructed
from x by means of a projection. The “input” to this branching program Qx is a sequence
of random bits (part of the random sequence r that is hardwired in, in order to create the
nonuniform AC0 reduction in the proof of Theorem 28). Thus, the only entries of the matrix
L that depend on x are entries of the form (u, v) where u and v are configurations of a
logspace machine, where the machine is scanning xi in configuration u, and it is possible
to move to configuration v. [6, Lemma 37] then shows how to construct NC0 circuitry for
each term in the degree-three polynomial constructed from Qx in the proof of [6, Lemma 35].
The important thing to notice here is that each output bit in the NC0 circuit depends on at
most one term of one of the degree-three polynomials, and hence it depends on at most one
entry of the matrix L – which means that it depends on at most one bit of the string x.

Thus, consider any bit yi of the string y produced by the nonuniform AC0 reduction from
Theorem 28. Either yi does not depend on any bit of x, or it depends on exactly one bit xj of
x. In the latter case, either yi = xj or yi = ¬xj . This defines the projection, as required. ◀

The following corollary was pointed out to us by Rahul Santhanam.

▶ Corollary 31. MKTP does not have THRESHOLD◦MAJORITY circuits of size 2no(1) .

Proof. This is immediate from the lower bound on the Inner Product mod 2 function that
is presented in [16]. (See also [11] for a slightly stronger lower bound.) ◀

It should be noted that it remains unknown whether MCSP has THRESHOLD◦MAJORITY
circuits of polynomial size.

6 An Application: Average-Case Complexity

The efficient reductions that we have presented have some immediate applications regarding
worst-case to average-case reductions. First, we recall the definition of errorless heuristics:

▶ Definition 32. Let A be any language. An errorless heuristic for A is an algorithm (or
oracle) H such that, for every x, H(x) ∈ {Yes, No, ?}, and

H(x) = Yes implies x ∈ A.
H(x) = No implies x ̸∈ A.
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▶ Definition 33. A language A has no average-case errorless heuristics in C if, for every
polynomial p, and every errorless heuristic H ∈ C for A, there exist infinitely many n such
where Prx∈Un

[H(x) =?] > 1 − 1/p(n).

In order to state our first theorem relating to average-case complexity, we need the
following circuit-based definition:

▶ Definition 34. Let C be any complexity class. (Usually, we will think of C being a class
defined in terms of circuits, and the definition is thus phrased in terms of circuits, although it
can be adapted for other complexity classes as well.) The class OR ◦ C is the class of problems
that can be solved by a family of circuits whose output gate is an unbounded fan-in OR gate,
connected to the outputs of circuits in the class C.

If problems in NISZKL are hard in the worst case, then there are problems in NP that are
hard on average:

▶ Theorem 35. Let C be any complexity class that is closed under ≤proj
m reductions. If

NISZKL ̸⊆ OR ◦ C, then there is a set A in NP that has no average-case errorless heuristics
in C.

The following definition is implicit in the work of Bogdanov and Trevisan [14].

▶ Definition 36. A worst-case to errorless average-case reduction from a promise problem
∏

to a language A is given by a polynomial p and BPP machine M , such that A is accepted by
MH for every oracle errorless heuristic H for A such that Prx∈Un

[H(x) =?] < 1 − 1/p(n).

▶ Corollary 37. There is a problem A ∈ NP such that there is a non-adaptive worst-case to
errorless average-case reduction from every problem in SZK to A.

▶ Remark. It is implicitly shown by Hirahara [20] that Corollary 37 holds under adaptive
reductions. The significance of the improvement from adaptive and non-adaptive reductions
lies in the fact that Bogdanov and Trevisan showed that the problems in NP for which there
is a non-adaptive worst-case to errorless average-case reduction to a problem in NP lie in
NP/poly ∩ coNP/poly [14, Remark (iii) in Section 4]. Thus SZK may be close to the largest
class of problems for which non-adaptive worst-case to errorless average-case reductions to
problems in NP exist.

The worst-case to average-case reductions of Definition 36, must work for every errorless
heuristic that has a sufficiently small probability of producing “?” as output. If we consider
a less-restrictive notion (allowing a different reduction for different errorless heuristics) then
in some cases we can lower the complexity of the reduction from BPP to AC0.

▶ Definition 38. Let D be a complexity class, and let R be a class of reducibilities. We say that
errorless heuristics for language A are average-case hard for D under R reductions if, for every
polynomial p and every errorless heuristic H for A where Prx∈U|x| [H(x) =?] < 1 − 1/p(|x|),
and for every language B ∈ D, there is a reduction r ∈ R reducing B to H.

▶ Corollary 39. There is a language A ∈ NP, such that errorless heuristics for A are
average-case hard for SZKL under non-adaptive AC0-Turing reductions.

▶ Corollary 40. Let C be any class that is closed under non-adaptive AC0-Turing reductions.
If SZKL ̸⊂ C, then there is a problem in NP that has no average-case errorless heuristic in C.

Proof. If SZKL ̸⊂ C, then by Proposition 3, NISZKL is also not contained in C. The result is
now immediate from Theorem 35. ◀
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▶ Remark. Building on earlier work of Goldwasser et al. [19], average-case hardness results
for some subclasses of P based on reductions computable by constant-depth threshold circuits
were presented in [2]. (Although certain aspects of the reductions presented in [2, 19] are
computable in AC0, in order to obtain deterministic worst-case algorithms, MAJORITY gates
are required in those constructions.) We are not aware of any prior work that provides average-
case hardness results based on reductions computable in AC0, particularly for classes that
are believed to contain problems whose complexity is suitable for cryptographic applications.

7 Conclusion and Open Problems

By focusing on non-uniform versions of ≤P
m reductions, we have shed additional light on

how MKTP relates to subclasses of SZK. Some researchers are of the opinion that MCSP
(and MKTP) are likely complete for NP under some type of reducibility, and some recent
progress seems to support this [25]. For those who share this opinion, a plausible first step
would be to show that MKTP is hard not only for co-NISZK, but also for NISZK, under
≤P/poly

m reductions. (Work by Lovett and Zhang points out obstacles to providing such a
reduction via “black box” techniques [29].) And of course, it will be very interesting to see if
our hardness results for MKTP hold also for MCSP.
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Abstract
Testing whether the observed data conforms to a purported model (probability distribution) is
a basic and fundamental statistical task, and one that is by now well understood. However, the
standard formulation, identity testing, fails to capture many settings of interest; in this work, we
focus on one such natural setting, identity testing under promise of permutation. In this setting, the
unknown distribution is assumed to be equal to the purported one, up to a relabeling (permutation)
of the model: however, due to a systematic error in the reporting of the data, this relabeling may
not be the identity. The goal is then to test identity under this assumption: equivalently, whether
this systematic labeling error led to a data distribution statistically far from the reference model.
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1 Introduction

Imagine you painstakingly gathered observations, data point after data point, and managed
to form an accurate estimate of the data distribution; unfortunately, you did not record the
labels correctly, and due to a systematic error the data labels have been permuted in an
unknown and arbitrary way. You did make your best educated guess to fix this though, and
are confident the data, once carefully relabeled, should reflect the reality. Can you check
this, without having to go through the whole process of obtaining an entirely new dataset?

In this paper, we are concerned with a variant of identity testing which captures the
above scenario, where one is promised that the unknown distribution is equal to the reference
distribution q up to a permutation of the domain. Formally, the algorithm has access to i.i.d.
samples from a probability distribution p over a finite domain [n] := {1, 2, . . . , n} such that
p ◦ π = q for some (unknown) π ∈ Sn, and, on input 0 ≤ ε′ < ε ≤ 1, must output yes or no
such that

if dTV(p, q) ≤ ε′, then the algorithm outputs yes with probability at least 2/3;
if dTV(p, q) > ε, then the algorithm outputs no with probability at least 2/3.

When ε′ = 0, the task is termed identity testing (under promise of permutation); otherwise,
it is tolerant identity testing. It is worth noting that this permutation promise fundamentally
changes the problem, and makes it incomparable to the standard identity testing problem. As
an illustrative example, it is known that uniformity testing, where the reference distribution
q is uniform over [n], is the “hardest” case of identity testing, with sample complexity Θ(

√
n)

and Θ(n/ log n) for the testing and tolerant testing versions, respectively [18, 22, 23, 13].
However, it is easy to see that under the permutation promise, uniformity testing is a trivial
problem which can be solved with zero samples: any permutation of the uniform distribution
is itself the uniform distribution.
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Our results further demonstrate this stark difference, showing how the difficulty of testing
and tolerant testing differ under this promise. In particular, we show an exponential gap
between the sample complexities of non-tolerant and tolerant identity testing under this
promise: to the best of our knowledge, this constitutes the first example of such a gap
between the tolerant and non-tolerant version of a problem in distribution testing.

1.1 Our results
Our results show that, quite surprinsingly, the promise of equality up to permutation of the
domain fundamentally changes the sample complexity landscape, and is both qualitatively
and quantitatively different from what one could expect from the known bounds on identity
and tolerant identity testing without this promise.

Our first set of results indeed establishes that, in contrast to the Θ(
√

n) sample complexity
of “regular” identity testing, identity testing under promise of permutation has sample
complexity merely polylogarithmic in the domain size:

▶ Theorem 1 (Theorems 5 and 8, (Informal)). Identity testing under promise of permutation
has sample complexity Θ

(
log2 n

)
, where n is the domain size.

Given the fact that (regular) tolerant identity testing has sample complexity nearly quadrat-
ically higher than (regular) identity testing, one could conjecture that the sample complexity
tolerant testing under our promise remains polylogarithmic. Our next set of results shows
that this is far from being the case: instead, allowing for some noise tolerance makes the
promise of equality up to permutation essentially useless, as the sample complexity blows up
exponentially, growing from poylogarithmic to nearly linear in the domain size:

▶ Theorem 2 (Theorems 8 and 9, (Informal)). Tolerant identity testing under promise of
permutation has sample complexity Θ

(
n1−o(1)), where n is the domain size.

We also show that relaxing the tolerance allowed from additive (as in the usual tolerant
testing setting) to multiplicative in the distance parameter does not really help, as the sample
complexity still remains polynomial:

▶ Theorem 3 (Theorem 17, (Informal)). Multiplicative-factor tolerant identity testing under
promise of permutation, where one needs to distinguish between ε-close and Cε-far, has
sample complexity Ω(

√
n) for any constant factor C > 1, where n is the domain size.

We emphasize once more that those results, and in particular the lower bounds, do not
follow from the known results on standard identity testing, as the promise of equality up to
permutation, by strenghtening the premise, drastically changes the problem. In particular,
the case where the reference q is uniform, while known to be the hardest case for identity
and tolerant identity testing, is actually a trivially easy case under our promise (as any
distribution promised to be a permutation of the uniform distribution is, of course, the
uniform distribution itself.)

1.2 Previous work
Distribution testing has a long history in Statistics, that one can trace back to the work of
Pearson [12]. More recently, from the computer science perspective, Goldreich, Goldwasser,
and Ron initiated the field of property testing [14]; of which distribution testing emerged
through the seminal work of Batu, Fortnow, Rubinfeld, Smith, and White [2]. We refer the
read to the survey [5] for a review of the area of distribution testing.
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Among the problems tackled in this field, identity testing (also known as goodness-of-fit
or one-sample testing), in which the goal is to decide whether an unknown probability
distribution p is equal to a purported model q, has received significant attention. It is
known that for identity testing with any reference distribution q over a domain of size n,
Θ(
√

n) samples are necessary and sufficient [18, 7, 1, 23]; moreover, the exact asymptotic
dependence on the distance parameter and the probability of error of the test [15, 9], as well
as some good understanding of the dependence on the reference distribution q itself [23, 4],
are now understood. Further, we also have tight bounds for the harder problem where
one seeks to allow for some noise in the data (i.e., perform tolerant identity testing, where
the algorithm has to accept distributions sufficient close to the reference q): Θ(n/ log n)
samples, a nearly linear dependence on the domain size, are known to be necessary and
sufficient [20, 21, 22, 16].

However, how the identity testing problem changes under natural constraints on the input
data, or under some variations of the formulation, remains largely unexplored. Among the
works concerned with such problems, [3, 8] consider identity testing under monotonicity or
k-modality constraints; and [10] focuses on a broad class of shape constraints on the density.
Finally, [6] focuses on a variant of identity testing, “identity up to binning,” where two
distributions are considered equal if some binning of the domain can make them coincide. To
the best of our knowledge, the question considered in the present work, albeit arguably quite
natural, has not been previously considered in the Statistics or distribution testing literature.

Organization. We provide in Section 3.1 our algorithm for testing identity under promise of
permutation, before complementing it in Section 3.2 by our matching lower bound. Section 4
is then concerned with the upper and lower bounds for the tolerant version of the problem;
the bulk of which lies in proving the two lower bounds.

2 Preliminaries

Let Sn denote the set of permutations of [n] := {1, 2, . . . , n}. We identify a probability
distribution p over [n] with its probability mass function (pmf), that is, a function p : [n]→
[0, 1] such that

∑n
i=1 p(i) = 1. For a subset S ⊆ [n], we then write p(S) =

∑
i∈S p(i) for the

probability mass assigned to S by p. Given two probability distributions p, q over [n], their
total variation distance is

dTV(p, q) = sup
S⊆[n]

(p(S)− q(S)) = 1
2∥p− q∥1 (1)

where ∥p− q∥1 =
∑n

i=1 |p(i)− q(i)| is the ℓ1 distance between the two pmfs. In what
follows, given a probability distribution q over [n], we define

Πn(q) := { q ◦ π : π ∈ Sn } , (2)

the set of distributions equal to q up to permutation of the domain.
Finally, we will rely on the so-called DKW inequality, which roughly states that O(1/ε2)

samples from any univariate distribution suffice to learn it to Kolmogorov distance ε with
high probability: this is a result due to Dvoretzky, Kiefer, and Wolfowitz from 1956 [11]
(with the optimal constant due to Massart, in 1990 [17]).

▶ Theorem 4 (DKW Inequality). Let p̂ denote the empirical distribution on m i.i.d. samples
from an arbitrary distribution p on R. Then, for every ε > 0,

Pr[ dK(p̂, p) > ε ] ≤ 2e−2mε2
,

where, for two univariate distributions p, q, dK(p, q) = supx∈R |p((−∞, x])− q((−∞, x])|
denotes the Kolmogorov distance between p and q.

ISAAC 2021
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3 Testing

In this section, we establish our matching upper and lower bounds for testing under promise
of permutation, Theorems 8 and 9.

3.1 Upper bound
We begin by proving our O(log2 n) upper bound for identity testing under promise of
permutation.

▶ Theorem 5. There exists an algorithm (Algorithm 1) which, for any reference distribution q
over [n] and any 0 < ε ≤ 1, given O

(
log2 n

ε4

)
samples from an unknown distribution p ∈ Πn(q),

distinguishes with probability at least 2/3 between (i) p = q and (ii) dTV(p, q) > ε.

Proof. We first partition the domain into L := O(log(n/ε)/ε) buckets B1, . . . , BL, where

Bℓ :=
{

i ∈ [n] : 1
(1 + ε/4)ℓ

< q(i) ≤ 1
(1 + ε/4)ℓ−1

}
, 1 ≤ ℓ ≤ L− 1 (3)

and BL :=
{

i ∈ [n] : q(i) ≤ 1
(1+ε/4)L−1

}
. Note that since q is known, we can exactly

compute the partition B1, . . . , BL, and in particular those L sets can be efficiently obtained.

Algorithm 1 Algorithm for identity testing under promise of permutation.

Require: Reference distribution q, distance parameter ε ∈ (0, 1], sample access to p ∈ Πn(q)
1: Set L← 1 +

⌈
log(4n/ε)

log(1+ε/4)

⌉
= O

(
log(n/ε)

ε

)
, δ ← ε

4(L−1)
2: Compute the bucketing B1, . . . , BL, as in (3)
3: Using O

(
1/δ2)

samples from p, use the empirical estimator to learn the distribution

p̄ := (p(B1), . . . , p(BL))

over [L] to Kolmogorov distance δ
3 , with probability of error 1/10. Let p̂ be the output.

4: if p̂(BL) > 3ε
8 or there exists ℓ∗ such that |p̂({ℓ∗, . . . , L− 1})−q(

⋃L−1
ℓ=ℓ∗ Bℓ)| > δ

3 then
5: return no
6: else
7: return yes
8: end if

For our choice of L, 1
(1+ε/4)L−1 ≤ ε

4n , so the last bucket BL has small probability mass
under the reference distribution: q(BL) ≤ ε

4 . Now, distinguishing with high constant
probability between p(BL) ≤ ε

4 and p(BL) ≥ ε
2 can be done with O(1/ε) samples, so we

can detect a discrepancy in BL with high probability if there is one (we will argue this part
formally at the end of the proof). Consequently, we hereafter assume that p(BL) < ε

2 .
If p = q, clearly p(BL) ≤ ε

4 (so the first check above passes) and q(Bℓ) = p(Bℓ) for all
1 ≤ ℓ ≤ L − 1. However, if dTV(p, q) > ε, then

∑L−1
ℓ=1

∑
i∈Bℓ
|p(i)− q(i)| > 2ε − 3ε

4 = 5
4 ε.

Moreover, letting π ∈ Sn be the permutation such that p = q ◦ π, consider the set S ⊆ [n] of
elements which π maps to an element from the same bucket:

S := { i ∈ [n] \BL : ∃ℓ ∈ [L− 1], i ∈ Bℓ, π(i) ∈ Bℓ } .



C. L. Canonne and K. Wimmer 55:5

For each such element i, by definition of the bucketing, |p(i)− q(i)| = |q(i)− q(π(i))| ≤
ε
4q(i). It follows that the elements from S amount for a total ℓ1 distance of at most ε

4 ,
and therefore a constant fraction of the distance between p and q comes from the set
T := [n] \ (BL ∪ S) of elements that π “moves to a different bucket:”

5
4ε <

∑
i∈S

|p(i)− q(i)|+
∑
i∈T

|p(i)− q(i)| ≤ ε

4q(S)+
∑
i∈T

|p(i)− q(i)| ≤ ε

4 +
∑
i∈T

|p(i)− q(i)|

that is,
∑

i∈T |p(i)− q(i)| > ε.
Partition the set T by setting Tℓ := T ∩Bℓ, for ℓ ∈ [L−1]. Rewriting the above inequality,

we obtained that

∑
i∈T

|p(i)− q(i)| =
L−1∑
ℓ=1

∑
i∈Tℓ

|p(i)− q(i)| > ε . (4)

We will use this to prove the following result.

▷ Claim 6. Suppose that dTV(p, q) > ε. Then there exists some ℓ∗ ∈ [L − 1] such that∣∣∣p(
⋃L−1

ℓ=ℓ∗ Bℓ)− q(
⋃L−1

ℓ=ℓ∗ Bℓ)
∣∣∣ > δ, where δ = ε

4(L−1) .

Proof. We note that since p(Bℓ) = p(Sℓ) + p(Tℓ) and that p(Sℓ) = q(Sℓ) (by definition of
Sℓ ⊆ S)1 for every ℓ, it suffices to prove the statement for Tℓ, that is, that there exists ℓ∗

such that∣∣∣∣∣p(
L−1⋃
ℓ=ℓ∗

Tℓ)− q(
L−1⋃
ℓ=ℓ∗

Tℓ)

∣∣∣∣∣ > δ .

The key property we will use is that, for every ℓ < ℓ′, we have q(i) ≥ q(j) for every
i ∈ Bℓ, j ∈ Bℓ′ . This property, which follows from the definition of bucketings, guarantees
that if π maps an element i ∈ Tℓ′ to element π(i) ∈ Tℓ, then p(i) ≥ q(i).

Let U, V ⊆ [L − 1] be the buckets whose probability mass under p is greater than or
equal to (resp., less than or equal to) the probability mass under q, i.e.,

U := { ℓ ∈ [L− 1] : p(Tℓ) ≥ q(Tℓ) } , V := { ℓ ∈ [L− 1] : p(Tℓ) ≤ q(Tℓ) }

This lets us rewrite (4) as

ε <
∑
ℓ∈U

∑
i∈Tℓ

|p(i)− q(i)|+
∑
ℓ∈V

∑
i∈Tℓ

|p(i)− q(i)|

and so at least one of the two terms in the RHS must exceed ε
2 . Without loss of gener-

ality, suppose
∑

ℓ∈U

∑
i∈Tℓ
|p(i)− q(i)| > ε

2 . This implies there exists ℓ∗ ∈ U such that∑
i∈Tℓ∗ |p(i)− q(i)| > ε

2(L−1) ; we will focus on this ℓ∗.

Partition Tℓ∗ further into T +
ℓ∗ and T −

ℓ∗ , where T +
ℓ∗ (resp. T −

ℓ∗ ) is the set of elements i ∈ Tℓ∗

such that π(i) belongs to a bucket Bℓ with ℓ < ℓ∗ (resp., ℓ > ℓ∗). Note that, for any i ∈ T +
ℓ∗ ,

we then have p(i) = q(π(i)) ≥ q(i), and conversely for i ∈ T −
ℓ∗ : so that we can rewrite the

above as
ε

2(L− 1) < (p(T +
ℓ∗)− q(T +

ℓ∗)) + (q(T −
ℓ∗ )− p(T −

ℓ∗ ))

1 Indeed, we have p(Sℓ) =
∑

i∈Sℓ
p(i) =

∑
i∈Sℓ

q(π(i)) = q(π−1(Sℓ)), and π(Sℓ) = Sℓ by definition.
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Now, since p(Tℓ∗) ≥ q(Tℓ∗) (as ℓ∗ ∈ U), we have p(T +
ℓ∗) − q(T +

ℓ∗) ≥ q(T −
ℓ∗ ) − p(T −

ℓ∗ ) and
therefore p(T +

ℓ∗)− q(T +
ℓ∗) > ε

4(L−1) . This implies the claim: indeed, we then have

p(∪L−1
ℓ=ℓ∗Tℓ) > q(∪L−1

ℓ=ℓ∗Tℓ) + ε

4(L− 1)

since Tℓ∗ “receives” a difference of at least ε
4(L−1) probability mass from lower-index buckets,

and besides this the total probability mass of the suffix of buckets ∪L−1
ℓ=ℓ∗Tℓ cannot decrease

by any internal swap of elements. ◀

With the above claim in hand, we can conclude the analysis. Indeed, as the sets B1, . . . , BL

are known, one can estimate the induced probability distribution p̄ := (p(B1), . . . , p(BL))
to Kolmogorov distance δ

3 (with probability at least 9/10) using O(1/δ2) = O(L2/ε2) =
O(log2(n/ε)/ε4) samples (this follows from Theorem 4). Let p̂ be the resulting distribution
over [L]. Whenever this step is successful (i.e., with probability at least 9/10, the following
holds.

If p = q, then |p̂(L)− q(BL)| ≤ δ
3 , so p̂(BL) ≤ ε

4 + δ
3 ≤

3
8 ε; and |p̂({ℓ∗, . . . , L − 1})−

q(
⋃L−1

ℓ=ℓ∗ Bℓ)| ≤ δ
3 for all ℓ. Thus, the test accepts.

If dTV(p, q) > ε, then either
p(BL) > ε

2 , in which case p̂(L) ≥ ε
2 −

δ
3 > 3

8 ε and the test rejects; or
p(BL) ≤ ε

2 , in which case by Claim 6 there exists some ℓ∗ ∈ [L − 1] such that∣∣∣p(
⋃L−1

ℓ=ℓ∗ Bℓ)− q(
⋃L−1

ℓ=ℓ∗ Bℓ)
∣∣∣ > δ. Then,∣∣∣∣∣p̂({ℓ∗, . . . , L})− q(

L−1⋃
ℓ=ℓ∗

Bℓ)

∣∣∣∣∣ ≥
∣∣∣∣∣p(

L−1⋃
ℓ=ℓ∗

Bℓ)− q(
L−1⋃
ℓ=ℓ∗

Bℓ)

∣∣∣∣∣− δ

3 >
2
3δ

and the test rejects.
This concludes the proof of correctness of the algorithm. The claimed sample complexity
readily follows from our choice of δ = Θ(L/ε) and the O(1/δ2) sample complexity of learning
an arbitrary real-valued distribution to Kolmogorov distance δ. ◀

▶ Remark 7 (On the tolerance of the tester). We note that the above analysis establishes
a slightly stronger statement; namely, that the testing algorithm allows for some small
tolerance, accepting distributions that are O(ε/ log n)-close to q, and rejecting those that
are ε-far. As we will see later, this Ω(log n) factor in the amount of tolerance is essentially
optimal, as by Theorem 17 reducing it to o(log n) would require sample complexity n1/2−o(1).

3.2 Lower bound
In this section, we show that the O(log2 n) upper bound from the previous section is tight, by
proving a matching lower bound on the sample complexity of identity testing under promise
of permutation.

▶ Theorem 8. Any algorithm which, given a reference distribution q over [n], 0 < ε ≤ 1 such
that ε = Ω̃

(
1/n1/4)

, and sample access to an unknown distribution p ∈ Πn(q), distinguishes
with probability at least 2/3 between (i) p = q and (ii) dTV(p, q) > ε, must have sample
complexity Ω

(
log2 n

ε2

)
.

Proof. We first describe a construction with constant distance ε = 1/9, leading to an
Ω

(
log2 n

)
lower bound; before explaining how to obtain the claimed Ω

( 1
ε2 log2 n

)
lower

bound from it. Our lower bound will rely on a reference distribution q piecewise-constant



C. L. Canonne and K. Wimmer 55:7

on L = Θ(log n) buckets, where bucket ℓ has a number of elements proportional to 2ℓ. The
first and last buckets (that is, the smallest and largest) will each have total probability mass
1/3 under q, and be uniform. The remaining “middle” L− 2 buckets all have 1/(3(L− 2))
total probability mass, and are uniform as well. We then build a family of perturbations
{pπ = q ◦ π}π ⊆ Πn(q), such that under each perturbation pπ the middle buckets keep the
exact same total probability mass 1/(3(L− 2)), by “cascading” mass from one bucket to the
next. Details follow.

Set L := Θ(log n) to be the largest integer such that L2L ≤
√

n, and assume for
convenience that ⌈

√
n⌉ is a multiple of 3. The ℓth bucket Bℓ, for 0 ≤ ℓ ≤ L− 2, has size

|Bℓ| =
⌈√

n
⌉
· 2ℓ

and |BL−1| = 2(L − 2)|BL−2|, so that n
8 ≤

∑L−1
ℓ=0 |Bℓ| = ⌈

√
n⌉ · 2L−1(L− 1) ≤ n . (We

hereafter focus on the first part of the domain, and will ignore the last n −
∑L−1

ℓ=0 |Bℓ|
elements.) Note that each bucket contains at least

√
n elements by construction, and has a

size which is a multiple of 3. The reference distribution q is then uniform inside each bucket,
where

q(B0) = q(BL−1) = 1
3 , and

q(Bℓ) = 1
3(L−2) for all 0 < ℓ < L− 1.

In particular, our choice of |BL−1| ensures that each element of the last bucket, under q, will
have probability mass

1
3|BL−1|

= 1
2 ·

1
3(L− 2)|BL−2|

that is, half the probability mass of elements of the (L− 2)th bucket.
Each perturbation will then have the same distribution over buckets:
each of the L− 2 middle buckets Bℓ is (independently) partitioned uniformly at random
into 3 sets Sℓ,1, Sℓ,2, Sℓ,3 of equal size. The permutation then swaps Sℓ,2 ∪ Sℓ,3 and
Sℓ+1,1, for 1 ≤ ℓ ≤ L− 3 (note that indeed |Sℓ,2 ∪ Sℓ,3| = |Sℓ+1,1|, but q(Sℓ,2 ∪ Sℓ,3) =
2q(Sℓ+1,1) = 2

9(L−2) ).
a uniformly random subset S0 ⊆ B0 of size |B1|

3(2L−5) = O(|S1,1|/L) is selected, and
the permutation swaps it with a uniformly random subset T1 ⊆ S1,1 of equal size.
By choice of the size, we had q(S0) = 2

9(2L−5) and q(T1) = 1
9(2L−5)(L−2) , so that

q(S0)− q(T1) = 1
9(L−2) .

similarly, the subset SL−2,2∪SL−2,3 of size 2
3 |BL−2| = |BL−1|

3(L−2) is swapped with a uniformly
random subset TL−1 ⊆ BL−1 of equal size. By choice of the size, we had q(SL−2,2 ∪
SL−2,3) = 2

9(L−2) and q(TL−1) = 1
9(L−2) , so that again q(SL−2,2 ∪ SL−2,3)− q(TL−1) =

1
9(L−2) .

As a result, we get that for each such perturbation p = q◦π, dTV(p, q) ≥ 1
9 . The construction

is illustrated in Figure 1.
By a birthday paradox-type argument, no element will be sampled twice unless the

number of samples is at least Ω(1/
√∑n

i=1 p(i)2) = Ω(1/
√

n maxi∈[n] p(i)) = Ω(n1/4), which
is far beyond the polylogarithmic regime we are working in. By construction, under each
p, all L − 2 middle buckets have exactly the same probability mass 1

3(L−2) , and elements
inside are perturbed randomly, either having probability (compared to q) multiplied by 2
with probability 1/3 or divided by 2 with probability 1/3. Because of the uniformly random
choice of the 3-way partition inside each bucket and the fact that each of all those inner
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Reference distribution q

0
Example of perturbation p of q

0

Figure 1 Reference distribution q and example of perturbation p, for L = 5. Note that the total
probability mass of each bucket of q is preserved under p, except for the first and last one whose
mass decreases and increases by Θ(1/L), respectively.

partitions are chosen independently across buckets, the information from those L− 2 buckets
does not provide any advantage in distinguishing them from p unless the same element is hit
twice.2

This addresses the case of the middle L− 2 buckets. Turning to the remaining two, the
probability mass of both end buckets, under any perturbation p, deviates from what it is
under q by an additive δ := 1

9(L−2) . Since those buckets each have total probability mass
1/3 under p and 1/3± δ under each q and we do not see any collisions with high probability,
detecting this requires Ω(1/δ2) = Ω(log2 n) samples, giving the lower bound for constant
ε = 1/9.

To obtain the inverse quadratic dependence on the distance parameter, one can then
simply repeat the above argument for any 0 < ε < 1/9 by replacing our reference distribution
q and all the perturbations pπ = q ◦ π by the mixtures

qε := (1− 9ε)u + 9εq, pε,π := (1− 9ε)u + 9εpπ = qε ◦ π

the last equality crucially using the fact that the uniform distribution u (over the domain) is
invariant by permutation. Note that every such pε,π then does belong to Πn(qε), and is at
total variation distance exactly ε from qε. Moreover, we can repeat the previous argument
mutatis mutandis: (i) the middle buckets provide no information whatsoever unless an
element is seen twice, which requires Ω

(
n1/4/ε

)
samples (the extra 1/ε due to our mixture

with weight 9ε); while the two outer buckets have a discrepancy only δ := ε
L−2 , which to be

detected requires at least Ω(1/δ2) = Ω((log2 n)/ε2) samples overall. The minimum of these
two quantities gives the claimed lower bound, as long as n1/4/ε = Ω((log2 n)/ε2) , that is,
ε = Ω

(
(log2 n)/n1/4)

. ◀

2 That is, conditioned on seeing each element of those L − 2 buckets at most once, the conditional
distribution over those L − 2 buckets under (i) q and (ii) the uniform mixture of all perturbations p are
indistinguishable.
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4 Tolerant testing

We now turn to the task of tolerant testing. As mentioned in the introduction, tolerant testing
is well known to be harder than standard (non-tolerant) testing, with a nearly quadratic gap
for the standard identity testing problem (

√
n vs. n

log n sample complexity). Surprisingly, we
are able to show that under the promise of permutation, the task does not suffer a merely
polynomial blowup – the sample complexity of tolerant identity testing becomes exponentially
harder than that of standard testing, jumping from log2 n to n1−o(1).

The first component, an O(n/log n) upper bound for tolerant testing under promise of
permutation (Theorem 9), is straightforward, and simply follows from the corresponding
upper bound absent this promise. A much more challenging task is in establishing the
lower bound. We actually provide two lower bounds: the first, an Ω(n1−o(1)) lower bound
(Theorem 10), applies for the usual setting of tolerant testing with an additive gap δ between
ε′ and ε). The second (Theorem 17) is an Ω

(√
n/2O(C)

)
sample complexity lower bound

for any C-factor approximation of the distance, that is to distinguish between ε-close and
Cε-far.

4.1 Upper bound

The claimed upper bound readily follows from the analogous upper bound on tolerant
testing without the promise of permutation, due to Valiant and Valiant [22, Theorem 4] (see,
also, [16]). Indeed, any such estimator can be used for our problem, ignoring the additional
promise of identity up to permutation.

▶ Theorem 9. There exists an algorithm which, for any reference distribution q over [n] and
any 0 ≤ ε, δ ≤ 1 such that δ = Ω

(
1/
√

log n
)
, and given O

(
n

δ2 log n

)
samples from an unknown

distribution p ∈ Πn(q), distinguishes with probability at least 2/3 between (i) dTV(p, q) ≤ ε

and (ii) dTV(p, q) > ε + δ.

We note that the requirement δ = Ω
(
1/
√

log n
)

has been relaxed in [16].

4.2 Lower bound

In this section, we prove the theorem below, our lower bound on the sample complexity
of tolerant testing under promise of permutation. Before doing so, we emphasize that the
known Ω

(
n

δ2 log n

)
sample complexity lower bound for tolerant testing absent this promise

does not apply to our setting, as the promise of permutation makes the testing problem
easier. In particular, the hard instances used to prove the aforementioned Ω

(
n

δ2 log n

)
lower

bound do not satisfy this promise.3

▶ Theorem 10. Any algorithm which, given a reference distribution q over [n], 0 < ε, δ ≤ 1,
and sample access to an unknown distribution p ∈ Πn(q), distinguishes with probability at
least 2/3 between (i) dTV(p, q) ≤ ε and (ii) dTV(p, q) > ε + δ, must have sample complexity
Ω

(
δ2n1−O(1/ log(1/δ))).

3 One can also note that the lower bound for “standard” tolerant testing is obtained by choosing the
reference distribution to be uniform over [n]. Under promise of permutation, this particular instance of
the problem is trivial, as any permutation of the uniform distribution is still the uniform distribution.
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Proof. In what follows, we assume that δ = Ω(1/
√

n), as otherwise there is nothing to
prove. Let k ≥ 1 be an integer to be chosen during the course of the analysis (we will set
k = Θ(1/δ)), and write n = 2mk2 for some integer m ≥ 1 (this can be done without loss of
generality, as our assumption on δ ensures that n ≥ 2mk2). For 1 ≤ ℓ ≤ 2k, we define the
integer interval Ik,ℓ := [k] + (ℓ− 1)k, so that [2k2] =

⋃2k
ℓ=1 Ik,ℓ.

Given two distributions p, q over [k], we define families of distributions Cp,q and Fp,q
over [n] as follows: first, we consider the distributions c, f , each over [2k2], obtained by
“repeating and alternating” p and q as follows:

For 1 ≤ ℓ ≤ k and j ∈ Ik,ℓ, c(j) = 1
2k p(j).

For 1 ≤ ℓ ≤ k and j ∈ Ik,k+ℓ, c(j) = 1
2k q(j).

Distribution c

0 5 10 15 20 25 30 35 40 45 500

Distribution f

0 5 10 15 20 25 30 35 40 45 500

Distribution r

0 5 10 15 20 25 30 35 40 45 500

Figure 2 An example of c (top), f (middle), and r (bottom) over [2k2], for k = 5; here, we took
p = 1

16 (3, 2, 6, 4, 1) and q = 1
18 (2, 5, 4, 4, 3).

We obtain f over [2k2] in a similar fashion, but swapping Ik,ℓ and Ik,k+ℓ:
For 1 ≤ ℓ ≤ k and j ∈ Ik,ℓ, f(j) = 1

2k q(j).
For 1 ≤ ℓ ≤ k and j ∈ Ik,k+ℓ, f(j) = 1

2k p(j).
Further, we define our “reference” distribution r over [2k2] as

For 1 ≤ ℓ ≤ k and j ∈ Ik,ℓ, r(j) = 1
2k p(ℓ).

For k + 1 ≤ ℓ ≤ 2k and j ∈ Ik,ℓ, r(j) = 1
2k q(ℓ).
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We also define the reference distribution r∗
p,q over [n] = [2k2m] by concatenating m copies of

r and normalizing the result; that is,

r∗
p,q := 1

2m
(r ⊔ r ⊔ · · · ⊔ r),

where ⊔ denotes the vector concatenation. Note that both c and f are permutations of r,
and that ∥r∥1 = ∥c∥1 = ∥f∥1 = 1. Next, we bound the gap between dTV(f , r) and dTV(c, r),
relating it to the distance between p and q.

▷ Claim 11. dTV(f , r) ≥ dTV(c, r) + 1
k dTV(p, q)

Proof. We will analyze the contributions to dTV(c, r) and dTV(c, f) on Ik,ℓ and Ik,k+ℓ for
1 ≤ ℓ ≤ k. Without loss of generality, we can assume that p, q are non-decreasing. Then,
from our definition of c, r, and f , we have

dTV(f , r) = 1
4k

k∑
i=1

k∑
j=1

(|p(i)− q(j)|+ |q(i)− p(j)|) = 1
2k

 k∑
i=1

k∑
j=1
|p(i)− q(j)|


= 1

2k

 k∑
i=1
|p(i)− q(i)|+

k∑
i=1

i−1∑
j=1

(|p(i)− q(j)|+ |p(j)− q(i)|)


dTV(c, r) = 1

4k

k∑
i=1

k∑
j=1

(|p(i)− p(j)|+ |q(i)− q(j)|)

= 1
2k

k∑
i=1

i−1∑
j=1

((p(i)− p(j)) + (q(i)− q(j)))

where for the last equality we used the assumption that p, q were non-decreasing to write
k∑

i=1

k∑
j=1
|p(i)−p(j)| =

k∑
i=1

i−1∑
j=1

(p(i)−p(j))+
k∑

i=1

k∑
j=i+1

(p(j)−p(i)) = 2
k∑

i=1

i−1∑
j=1

(p(i)−p(j)) ,

The conclusion then follows from recalling that dTV(p, q) = 1
2

∑k
i=1 |p(i) − q(i)|, and

observing that (p(i)− p(j)) + (q(i)− q(j)) = (p(i)− q(j)) + (q(i)− p(j)) ≤ |p(i)− q(j)|+
|p(j)− q(i)|. ◁

To define Cp,q and Fp,q, we will need one further piece of notation. We denote by Bk ⊆ S2k2

the set of all permutations of [2k2] “respecting the buckets,” that is,

Bk := { π ∈ S2k2 : π(Ik,ℓ) = Ik,ℓ∀ℓ ∈ [2k] }

We then let

Cp,q =
{

1
2mk

(c ◦ π1 ⊔ c ◦ π2 ⊔ · · · ⊔ c ◦ πm) : π1, . . . , πm ∈ Bk

}
and

Fp,q =
{

1
2mk

(f ◦ π1 ⊔ f ◦ π2 ⊔ · · · ⊔ f ◦ πm) : π1, . . . , πm ∈ Bk

}
where as before ⊔ denotes the vector concatenation; that is, we stitch together m blocks,
each consisting on a permuted version of either c or f . Note that since n = m · 2k2 and each
c (resp. f) is a (2k2)-dimensional vector, Cp,q and Fp,q are indeed families of probability
distributions over [n], and Cp,q,Fp,q ⊆ Πn(r∗

p,q).

The construction above allows us to convert any two distributions p, q with sufficiently
many matching moments to families of distributions (whose elements are all permutations of
a single reference one) hard to distinguish:
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▷ Claim 12. There exists some absolute constant c > 0 such that, if p, q have matching
first r-way moments, it is impossible to distinguish a uniformly random element of Cp,q from
a uniformly random element of Fp,q given fewer than cm1− 1

r+1 samples.

Proof. By assumption on p, q and out construction of c, f from them, for every of the m

contiguous blocks of 2k2 elements, the r-way moments of the corresponding conditional
distributions exactly match. Given that a uniformly element drawn of p′ from Cp,q and q′

from Fp,q corresponds to independent permutations inside each block, any block in which
fewer than r + 1 samples falls brings exactly zero information about whether it comes from
p′ or q′ (specifically, one could simulate the distribution of those s < r + 1 samples without
getting any sample from the real distribution). Since each of these m blocks has total
probability 1/m under both p′ and q′, by a generalized birthday paradox (see, e.g., [19]),
with probability at least 9/10 no block will receive more than r samples unless the total
number of samples is at least cm1− 1

r+1 , for some absolute constant c > 0. ◁

It remains to specify which pair of distributions with “sufficiently many matching mo-
ments” we will use. While we could argue directly about the existence of such a pair of
distributions with desirable properties, it is simpler to leverage a construction due to Valiant
and Valiant [22], which exhibits the desired properties.

▷ Claim 13. There exists some ε0 > 0 such that the following holds. For every
sufficiently large r, there exists a pair of distributions (without loss of generality, non-
decreasing) pVV, qVV over k = O(r2r) elements with matching first r-way moments, but
dTV(pVV, qVV) ≥ ε0.

Proof. This follows from the lower bound construction of [22]. ◁

We will rely on this pair of distributions pVV, qVV, and hereafter write C,F , and r∗ for
CpVV,qVV ,FpVV,qVV , and r∗

pVV,qVV
, respectively.

▷ Claim 14. For every p′ ∈ C and q′ ∈ F , we have dTV(q′, r∗) > dTV(p′, r∗) + ε0
k .

Proof. Due to the definition of C, F , and r∗ as m-fold concatenations, and since r is invariant
by permutations from Bk, it is sufficient to prove the claim for pVV, qVV, and r (over [2k2]).
The claimed bound then immediately follows from Claim 11. ◁

To finish the argument, it only remains to combine the various claims. We choose k ≥ ε0
δ

and m = n/(2k2) ≥ 1 (since δ = Ω(1/
√

n). By Claim 13, we can then set r := Ω(log k) and
obtain, from Claim 12, a sample complexity lower bound of

Ω
(

m1− 1
r+1

)
= Ω

(
δ2n

1−O
(

1
log(1/δ)

))
as desired. ◀

The theorem immediately implies the following two corollaries.

▶ Corollary 15. For every c > 0, there exists some δ > 0 such that the following holds.
Any algorithm which, given a reference distribution q over [n], ε ∈ (0, 1), and sample access
to an unknown distribution p ∈ Πn(q), distinguishes with probability at least 2/3 between
(i) dTV(p, q) ≤ ε and (ii) dTV(p, q) > ε + δ, must have sample complexity Ω

(
n1−c

)
.

▶ Corollary 16. Any algorithm which, given a reference distribution q over [n], ε ∈ (0, 1),
and sample access to an unknown distribution p ∈ Πn(q), distinguishes with probability at
least 2/3 between (i) dTV(p, q) ≤ ε and (ii) dTV(p, q) > ε + 1/2

√
log n, must have sample

complexity n

2O(
√

log n)
.
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Tolerant testing C-approximation
We now turn to our second tolerant testing lower bound, which applies to algorithms providing
a C-factor approximation of the distance to the reference distribution.

▶ Theorem 17. Any algorithm which, given a reference distribution q over [n], C ≥ 2, and
sample access to an unknown distribution p ∈ Πn(q), distinguishes with probability at least
2/3 between (i) dTV(p, q) ≤ 1

4C−1 and (ii) dTV(p, q) ≥ C
4C−1 , must have sample complexity

Ω
(√

n
4C

)
.

▶ Remark 18. As discussed in Remark 7, Theorem 17 is essentially optimal, as it matches
(up to polylogarithmic factors in the sample complexity) the upper bound from Theorem 5
when C = Θ(log n).

Proof of Theorem 17. We will prove the theorem via a sequence of lemmas. We will assume
that C ≥ 2 is an integer, and we define m = 2C − 1. Our proof will proceed similarly to the
proof of Theorem 10. We will begin by working over [m(2C+1 + 2C−1 − 3)]. Throughout
this section, we partition [m(2C+1 + 2C−1 − 3)] into C + 1 buckets, which we will denote
B0, B1, . . . , BC , such that each Bi is a set of consecutive integers, |BC | = m2C−1, |B0| = m,
and |Bi| = m2i+1 for 1 ≤ i ≤ C − 1. For convenience, we define s := m(4C − 1)2C−1.
We define a distribution r in the following way:

For each j ∈ B0, r(j) = 2C

s .
For each 1 ≤ i ≤ C − 1 and j ∈ Bi, r(j) = 2C−i

s .
For each j ∈ BC , r(j) = 1

s .

We define two distributions p and q such that p and q are hard to distinguish with few
samples, such that dTV(r, p) and dTV(r, q) are far apart. We define q in the following way:

For each j ∈ B0, q(j) = 2C−1

s .
For each 1 ≤ i ≤ C − 1,

For j in the first m2i elements of Bi, q(j) = 2C−i−1

s .
For j in the next m2i−1 elements of Bi, q(j) = 2C−i

s .
For j in the last m2i−1 elements of Bi, q(j) = 2C−i+1

s .
For each j ∈ BC , q(j) = 2

s .

We define p as follows:
For each j ∈ B0,

If j is in the first 2C−1 elements of B0, then p(j) = 1
s .

If j is in the last m− 2C−1 = 2C−1 − 1 elements of B0, then p(j) = 2C

s .
For each 1 ≤ i ≤ C − 1 and j ∈ Bi, p(j) = r(j) = 2C−i

s .
For each j ∈ BC ,

If j is in the first (m− 1)2C−1 elements of BC , then p(j) = 1
s .

If j is in the last 2C−1 elements of Bj , then p(j) = 2C

s .

▶ Lemma 19. For 0 ≤ i ≤ C,
∑

j∈Bi
p(j) =

∑
j∈Bi

q(j).

Proof. The proof is simply direct calculation. Observe that in bucket C,

s
∑

j∈BC

q(j) = m2C−1 · 2 = (m− 1)2C−1 + (m + 1)2C−1

= (m− 1)2C−1 · 1 + 2C · 2C−1 = s
∑

j∈BC

p(j).
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In bucket 0, we have

s
∑

j∈B0

q(j) = m · 2C−1 = (m− 1)2C−1 + 2C−1 = (2C − 2)2C−1 + 2C−1

= (2C−1 − 1) · 2C + 2C−1 · 1 = s
∑

j∈B0

p(j).

For 1 ≤ i ≤ C − 1, we have

s
∑
j∈Bi

p(j) = m2i+1 · 2C−i

= m(2i + 2(2i−1) + 2i+1)2C−1−i

= m2i · 2C−i−1 + m2i−1 · 2C−i + m2i−1 · 2C−i+1

= s
∑
j∈Bi

q(j).

The claim follows by dividing the equalities by s. ◀

▶ Lemma 20. dTV(r, q) = C
4C−1

Proof. By direct calculation,

2sdTV(r, q) = s

s∑
j=1
|r(j)− q(j)|

= m2C−1(2− 1) + m(2C − 2C−1)

+ 1
2

C−1∑
i=1

(
m2i(2C−i − 2C−i−1) + m2i−1(2C−i+1 − 2C−i)

)
= m2C +

C−1∑
i=1

(2i−1m2C−i + m2C−1−i2i)

= m2C +
C−1∑
i=1

(m2C−1 + m2C−1)

= Cm2C .

Dividing both sides by 2s yields the lemma. ◀

▶ Lemma 21. For every 0 ≤ i ≤ C, p(Bi) ≤ 2
C+1 (and similarly for q(Bi)).

Proof. We apply Lemma 19 and directly calculate. For bucket C, we get

p(BC) = q(BC) = 2
s
·m2C − 1 = 2

4C − 1 .

For bucket 0, we get

p(B0) = q(B0) = 2C−1

s
·m = 1

4C − 1 .

For 1 ≤ i ≤ C − 1, we get

q(Bi) = p(Bi) = 2i

s
·m(2C+1−i) = 4

4C − 1 .

The claim follows by observing that 4
4C−1 ≤

2
C+1 when C ≥ 3

2 . ◀
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▶ Lemma 22. dTV(r, p) = 1
4C−1

Proof. By direct calculation,

2sdTV(r, p) = 2C−1 · (2C − 1) + 2C−1 · (2C − 1) = 2C(2C−1) = m2C .

Dividing both sides by 2s yields the lemma. ◀

Let w = m(2C+1 + 2C−1 − 3). We assume that n is a multiple of w, and define t := n
w . To

define C and F over [n], we will need one further piece of notation. We denote by B′
w ⊆ Sw

the set of all permutations of [w] “respecting the buckets,” that is, for every 0 ≤ i ≤ C,

B′
w = {π ∈ Sw : π(Bi) = Bi∀i ∈ {0, 1, . . . , C}}

We then let r∗ := 1
t (r ⊔ r ⊔ · · · ⊔ r) as well as

C =
{

1
t
(c ◦ π1 ⊔ c ◦ π2 ⊔ · · · ⊔ c ◦ πt) : π1, . . . , πt ∈ B′

w

}
F =

{
1
t
(f ◦ π1 ⊔ f ◦ π2 ⊔ · · · ⊔ f ◦ πt) : π1, . . . , πt ∈ B′

w

}
where as before ⊔ denotes vector concatenation. Since dTV(r, c ◦ π) = dTV(r, c) and
dTV(r, f ◦ π) = dTV(r, f) for all π ∈ B′

s, we have that dTV(r∗, p) = 1
4C−1 for every dis-

tribution p ∈ C, and dTV(r∗, q) = C
4C−1 for every distribution q ∈ F . Further, repeating

the same partitioning of each interval of s elements of [n] into buckets B0, B1, . . . , BC , we
have t(C + 1) buckets, such that distinguishing a distribution in C from a distribution in F
requires seeing at 2 samples in at least one of these buckets. Since the probability mass on
each of the buckets at most 2

t(C+1) by Lemma 21, at least Ω(
√

t(C + 1)) = Ω(
√

n(C + 1)/w)
queries to distinguish in C from a distribution in F , completing the proof of Theorem 17. ◀
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Abstract
In recent years, high dimensional expanders have been found to have a variety of applications
in theoretical computer science, such as efficient CSPs approximations, improved sampling and
list-decoding algorithms, and more. Within that, an important high dimensional expansion notion
is cosystolic expansion, which has found applications in the construction of efficiently decodable
quantum codes and in proving lower bounds for CSPs.

Cosystolic expansion is considered with systems of equations over a group where the variables
and equations correspond to faces of the complex. Previous works that studied cosystolic expansion
were tailored to the specific group F2. In particular, Kaufman, Kazhdan and Lubotzky (FOCS 2014),
and Evra and Kaufman (STOC 2016) in their breakthrough works, who solved a famous open
question of Gromov, have studied a notion which we term “parity” expansion for small sets. They
showed that small sets of k-faces have proportionally many (k + 1)-faces that contain an odd number
of k-faces from the set. Parity expansion for small sets could then be used to imply cosystolic
expansion only over F2.

In this work we introduce a stronger unique-neighbor-like expansion for small sets. We show
that small sets of k-faces have proportionally many (k + 1)-faces that contain exactly one k-face
from the set. This notion is fundamentally stronger than parity expansion and cannot be implied by
previous works.

We then show, utilizing the new unique-neighbor-like expansion notion introduced in this work,
that cosystolic expansion can be made group-independent, i.e., unique-neighbor-like expansion for
small sets implies cosystolic expansion over any group.
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1 Introduction

High dimensional expanders

High dimensional expanders are the high dimensional analog of expander graphs. A d-
dimensional simplicial complex is a hypergraph with hyperedges of size at most d + 1 which
is downwards closed, i.e., if σ is an hyperedge and τ ⊂ σ then τ is also an hyperedge. A
hyperedge of size k + 1 is called a k-face of the complex.

In recent years, high dimensional expanders have found a variety of applications in
theoretical computer science, such as efficient CSPs approximations [2], improved sampling
algorithms [5, 4, 3, 8, 7, 6, 16], improved list-decoding algorithms [11, 1], sparse agreement
tests [12, 9, 19] and more.
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An especially important high dimensional expansion notion is cosystolic expansion. It
has been shown to be a key ingredient in the construction of efficiently decodable quantum
LDPC codes with a large distance [15], and recently it has been used in the construction of
explicit 3XOR instances that are hard for the Sum-of-Squares hierarchy [10].

Cosystolic expansion as an expanding system of equations

A simplicial complex can be viewed as forming a system of equations over some group G.
Consider a d-dimensional simplicial complex and some dimension k < d. The variables of the
system are the k-faces of the complex, and the equations are defined by the (k +1)-faces; each
(k + 1)-face σ corresponds to the equation

∑k+1
i=0 τi = 0, where τi are the k-faces contained in

σ and the sum is performed over the group (e.g., addition modulo 2 when the group is F2).
For any assignment of values to the variables which does not satisfy all the equations,

there are two measures of interest. One measure is the fraction of unsatisfied equations
(out of all the equations), and the second measure is the fraction of variables (out of all the
variables) that their value needs to be changed in order to satisfy all the equations. The
second measure is also called the distance of the assignment from a satisfying assignment.

A system of equations is said to be expanding if for any assignment of values to the
variables it holds that either all the equations are satisfied or the fraction of unsatisfied
equations is proportional to the distance of the assignment from a satisfying assignment. A
d-dimensional simplicial complex is said to be a cosystolic expander over a group G if for all
k < d, the system of equations formed by its k-faces is expanding.

As a simple example, consider a 1-dimensional simplicial complex (i.e., a graph) and the
field F2. The variables of the system are the vertices of the graph, and the equations are
vi + vj = 0 (mod 2) for each edge {vi, vj}. In this case, if the given graph is an expander
graph (i.e., each subset of vertices has proportionally many outgoing edges), then the system
of equations is expanding. This is true since each assignment of values over F2 to the vertices
can be identified with a subset of vertices, and the unsatisfied equations are exactly the
outgoing edges of this set.

Parity expansion for small sets

Kaufman, Kazhdan and Lubotzky [18], and Evra and Kaufman [14] in their breakthrough
works proved the existence of cosystolic expanders of every dimension, solving a famous
open question of Gromov [17]. In their works they have studied a notion which we term
“parity” expansion for small sets: They have shown that certain high dimensional expansion
properties imply that small sets of k-faces have proportionally many (k +1)-faces that contain
an odd number of k-faces from the given set. Then they utilized this property in order to
imply cosystolic expansion over the group F2.

δ1-expansion for small sets

In this work we study a fundamentally stronger “unique-neighbor-like” expansion in simplicial
complexes, which we call δ1-expansion. Let X be a d-dimensional simplicial complex and A

a set of k-faces in X. We define δ1(A) to be the set of (k + 1)-faces which contain exactly
one k-face from A. We say that A is δ1-expanding if the fraction of (k + 1)-faces in δ1(A)
(out of all the (k + 1)-faces) is proportional to the fraction of k-faces in A (out of all the
k-faces). Our main result is that certain high dimensional expansion properties imply that
small sets are δ1-expanding.
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δ1-expansion and group-independent cosystolic expansion

The strength of our δ1-expansion can be demonstrated by its relation to cosystolic expansion.
As explained above, cosystolic expansion is considered with a system of equations over a
group. Hence, when proving cosystolic expansion, one has to take the group into account.
For instance, previous works could obtain cosystolic expansion only over F2, because only
over F2 there is an equivalence between an unsatisfied equation and an equation that contains
an odd number of non-zero variables.

The δ1-expansion property that we study in this work has the interesting property that
it can make cosystolic expansion to be group-independent, i.e., it implies cosystolic expansion
over any group. The key point is that an equation with exactly one non-zero variable must
be unsatisfied regardless of the group. Thus, even though cosystolic expansion is defined over
a group, δ1-expansion implies it over any group.

We expect that this stronger δ1-expansion notion may have further implications to
quantum codes and CSPs lower bounds.

On the novelty of our work

We would like to provide a general outline of the differences between our work and previous
works [18, 14].1

One fundamental difference is the object we analyze. The major part of previous works
is dedicated to the analysis of the expansion of arbitrary small sets. In our work, the main
analysis is focused on the expansion of “structured” small sets (given by the coboundary of
a small set). We use a similar machinery as in previous works, but we leverage the extra
structure of the small sets in order to obtain the stronger δ1-expansion.

We note that it is not trivial how to utilize this extra structure of small sets in order
to obtain δ1-expansion. One cannot just plug it in the proof of previous works and obtain
δ1-expansion. It requires a completely different proof strategy, which we describe next.

Briefly, the proof strategy of [18] and [14] is as follows. Given a small set A of k-faces,
they define a notion of “fat” faces, where an ℓ-face, ℓ ≤ k, is considered fat if a large fraction
of the k-faces that contain it belongs to A. It is trivial that in dimension ℓ = k, the set A sits
only on fat k-faces, since every k-face that belongs to A is fat (because the only k-face that
contains a k-face is itself). It is also trivial that in dimension ℓ = −1, A sits only on thin
(−1)-faces, since the only (−1)-face is the empty set which is contained in all of the k-faces of
the complex, and A is a small set of k-faces. Therefore, there must exist a dimension ℓ ≤ k

for which a transition from mostly fat faces to mostly thin faces occurs, i.e., in dimension
ℓ, A sits mostly on fat ℓ-faces, and in dimension ℓ − 1, A sits mostly on thin (ℓ − 1)-faces.
Their argument is then that the fat ℓ-faces contribute to the parity expansion of A, whereas
the thin (ℓ − 1)-faces account for a negligible error term.

The proof strategy in our work is essentially the opposite. A fat face, which contributes
to the parity expansion in the works of [18] and [14], does not have a large δ1, and hence
it is impossible to obtain δ1-expansion from the fat faces. Our main idea is to gain the
δ1-expansion from the thin faces. We observe that if a set sits mostly on thin faces of one
dimension below then it has a large δ1. Thus, it is crucial for us to show that a small set A

1 Informal note: We are aware that the following explanation might seem not entirely clear at this stage of
the paper for an unfamiliar reader. Nevertheless, since we have been repeatedly asked for the differences
between our work and previous works, it is important for us to point that out as early as possible. We
hope that the main ideas are still clear, even if not all the details are.
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of k-faces actually sits mostly on thin faces of one dimension below. Using the terminology
of previous paragraph, we have to show that the transition from mostly fat faces to mostly
thin faces happens in dimension k itself.

This is where the “structure” comes into play. By considering small sets that are obtained
as a coboundary of another set, we know that their own coboundary is 0. Without getting
too much into the details, it allows us to bound the fraction of fat faces of dimension ℓ by
the fraction of fat faces of dimension ℓ − 1, for every 0 ≤ ℓ ≤ k − 1. Thus, since there are no
fat faces in dimension −1 (because A is small), we conclude that there are no fat faces at
any dimension! Therefore, A sits mostly on thin (k − 1)-faces and hence has a large δ1.

1.1 Some basic definitions
Coboundary and cosystolic expansion

For the sake of introduction we formally define coboundary and cosystolic expansions only
over the field F2. The general definitions will be given in section 2.

Recall that a d-dimensional simplicial complex X is a downwards closed (d+1)-hypergraph.
A k-face of X is a hyperedge of size k + 1, and the set of k-faces of X is denoted by X(k).
An assignment of values from F2 to the k-faces, k ≤ d, is called a k-cochain, and the space
of all k-cochains over F2 is denoted by Ck(X;F2).

Any assignment to the k-faces f ∈ Ck(X;F2) induces an assignment to the (k + 1)-faces
by the coboundary operator δ. For any (k + 1)-face σ = {v0, . . . , vk+1}, δ(f)(σ) is defined by

δ(f)(σ) =
k+1∑
i=0

f(σ \ {vi}) (mod 2).

We can view the complex as inducing a system of equations, where the equations are
determined by the coboundary operator; i.e., each (k + 1)-face σ ∈ X(k + 1) defines the
equation δ(f)(σ) = 0. The assignments that satisfy all the equations are called the k-cocycles
and denoted by

Zk(X;F2) = {f ∈ Ck(X;F2) | δ(f) = 0}.

One can check that δ(δ(f)) = 0 always holds; i.e., every assignment that is obtained as a
coboundary of one dimension below satisfies all the equations. These assignments, that are
the coboundary of an assignment of one dimension below, are called the k-coboundaries and
denoted by

Bk(X;F2) = {δ(f) | f ∈ Ck−1(X;F2)}.

Note that Bk(X;F2) ⊆ Zk(X;F2) ⊆ Ck(X;F2).
For a d-dimensional simplicial complex X, let Pd : X(d) → R≥0 be a probability

distribution over the d-faces of the complex. For simplicity, we will assume in this work
that Pd is the uniform distribution. This probability distribution over the d-faces induces a
probability distribution Pk for every dimension k < d by selecting a d-face σd according to
Pd and then selecting a k-face σk ⊂ σd uniformly at random.

The weight of any k-cochain f ∈ Ck(X;F2) is defined by

∥f∥ = Pr
σ∼Pk

[f(σ) ̸= 0],

i.e., the (weighted) fraction of non-zero elements in f . The distance between two k-cochains
f, g ∈ Ck(X;F2) is defined as dist(f, g) = ∥f − g∥.
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We can now introduce the notions of coboundary and cosystolic expansion. As mentioned,
a complex is said to be a cosystolic expander if for any assignment that does not satisfy
all the equations it holds that the fraction of unsatisfied equations is proportional to the
distance of the assignment from a satisfying assignment. Formally:

▶ Definition 1.1 (Cosystolic expansion). A d-dimensional simplicial complex X is said to be
an (ε, µ)-cosystolic expander over F2, if for every k < d:
1. For any f ∈ Ck(X;F2) \ Zk(X;F2) it holds that

∥δ(f)∥
dist(f, Zk(X;F2)) ≥ ε,

where dist(f, Zk(X;F2)) = min{dist(f, g) | g ∈ Zk(X;F2)}.
2. For any f ∈ Zk(X;F2) \ Bk(X;F2) it holds that ∥f∥ ≥ µ.

The second condition in the definition ensures that the complex cannot be split into many
small pieces, i.e., any satisfying assignment that is not obtained as a coboundary must be
large.

Coboundary expansion has been introduced by Linial and Meshulam [20] and inde-
pendently by Gromov [17]. It is a similar but stronger notion than cosystolic expansion.
The main difference is that the only satisfying assignments in a coboundary expander are
coboundaries (unlike cosystolic expansion, where there could be satisfying assignments which
are not coboundaries as long as they are large). Formally:

▶ Definition 1.2 (Coboundary expansion). A d-dimensional simplicial complex X is said to
be an ε-coboundary expander over F2 if for every k < d and f ∈ Ck(X;F2) \ Bk(X;F2) it
holds that

∥δ(f)∥
dist(f, Bk(X;F2)) ≥ ε,

where dist(f, Bk(X;F2)) = min{dist(f, g) | g ∈ Bk(X;F2)}.

Local spectral expansion

Another notion of high dimensional expansion, called local spectral expansion is concerned
with the spectral properties of local parts of the complex.

For every face σ ∈ X, its local view, also called its link, is a (d − |σ| − 1)-dimensional
simplicial complex defined by Xσ = {τ \ σ | σ ⊆ τ ∈ X}. The probability distribution over
the top faces of Xσ is induced from the probability distribution of X, where for any top face
τ ∈ Xσ(d − |σ| − 1), its probability is the probability to choose σ ∪ τ in X conditioned on
choosing σ. Since we assume in this work that the probability distribution over the top faces
of X is the uniform distribution, it follows that the probability distribution over the top
faces of Xσ is the uniform distribution.

We can now introduce the notion of a local spectral expander.

▶ Definition 1.3 (Local spectral expansion). A d-dimensional simplicial complex X is called
a λ-local spectral expander if for every k ≤ d − 2 and σ ∈ X(k), the underlying graph2 of
Xσ is a λ-spectral expander.

2 The graph whose vertices are Xσ(0) and its edges are Xσ(1).
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1.2 Summary of main results
Our main result is a “unique-neighbor-like” expansion for non-local small sets, which we call
δ1-expansion. We start with the definition of the δ1 of a set.

▶ Definition 1.4 (δ1). Let X be a d-dimensional simplicial complex. For any set of k-faces
A ⊆ X(k), 0 ≤ k ≤ d − 1, we define δ1(A) ⊆ X(k + 1) to be the set of (k + 1)-faces that
contain exactly one k-face from A.

Towards proving that small sets have a large δ1 we introduce an intermediate notion of
non-local sets. Roughly speaking, we say that a set of k-faces is non-local if its “local view”
in almost all of the (k − 1)-faces resemble the global picture.

In order to define this notion of non-local sets, we first define the localization of a set to a
link of a face. For any set A ⊆ X(k) and an ℓ-face σ ∈ X(ℓ), ℓ < k, the localization of A to
the link of σ is a set of (k − ℓ − 1)-faces in the link of σ defined by

Aσ = {τ ∈ Xσ(k − ℓ − 1) | σ ∪ τ ∈ A}.

We also add a useful definition of a mutual weight of two sets. For ℓ < k and two sets
A ⊆ X(k), B ⊆ X(ℓ) we define their mutual weight by

∥(A, B)∥ = Pr
σk∼Pk,σℓ⊂σk

[σk ∈ A ∧ σℓ ∈ B],

where σk is chosen according to the distribution Pk and σℓ is an ℓ-face chosen uniformly
from σk (i.e., σℓ is chosen according to Pℓ conditioned on σk being chosen). This notion
captures how much the sets are related. For instance, if ∥(A, B)∥ ≈ ∥A∥, it means that A

contains mostly faces from B.
We can now define non-local sets.

▶ Definition 1.5 (Non-local sets). Let X be a d-dimensional simplicial complex and 0 <

η, ε < 1. For any set of k-faces A ⊆ X(k), 0 ≤ k ≤ d − 1, we define the following set of
(k − 1)-faces:

Sk−1 = {σ ∈ X(k − 1) | ∥Aσ∥ ≤ η}.

We say that A is (η, ε)-non-local if ∥(A, Sk−1)∥ ≥ (1 − ε) ∥A∥.

As a simple example of a “local” set, consider a set of edges A composed of all the edges
touching a single vertex. In this case, ∥(A, S0)∥ = (1/2) ∥A∥. It can be easily checked that
in this example, all triangles contain either 0 or 2 edges. As can be seen from this example,
local sets are not necessarily δ1-expanding.

The first theorem we show is that non-local sets are δ1-expanding.

▶ Theorem 1.6 (Non-local sets are δ1-expanding - informal). Let X be a d-dimensional local
spectral expander. For any A ⊆ X(k), 1 ≤ k ≤ d−1, if A is non-local then ∥δ1(A)∥ ≥ Ω(∥A∥).

We consider now a bounded degree local spectral expander whose links are coboundary
expanders, where a complex is said to be q-bounded degree if every vertex is contained in at
most q top faces. We show that every set of unsatisfied equations can be treated as if it is
non-local. Specifically, we consider sets of the form supp(δ(f)) for a k-cochain f ∈ Ck(X; G),
over some group G. We show a procedure that is given a k-cochain f such that ∥δ(f)∥ is
small, and returns a k-cochain f ′ which is close to f such that δ(f ′) is non-local.
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▶ Theorem 1.7 (Correction algorithm – informal). Let X be a d-dimensional bounded degree
local spectral expander with coboundary expanding links over a group G. For any f ∈ Ck(X; G),
1 ≤ k ≤ d − 2, if ∥δ(f)∥ is sufficiently small, then f is close to a k-cochain f ′ ∈ Ck(X; G)
such that δ(f ′) is small and non-local. Furthermore, there is an efficient algorithm that is
given f and finds f ′.

We conclude by a similar reduction as in [18] in order to obtain cosystolic expansion
over any group. [18] and [14] could obtain cosystolic expansion only over F2 because their
expansion for small sets only guaranteed that they touch many faces of one dimension above
an odd number of times. Since we show here δ1-expansion for such sets, we obtain cosystolic
expansion which does not depend on the group.

▶ Theorem 1.8 (Cosystolic expansion over any group – informal). Let X be a d-dimensional
bounded degree local spectral expander with coboundary expanding links over a group G. Then
the (d − 1)-skeleton3 of X is a cosystolic expander over G.

A concrete example of simplicial complexes for which our theorems apply to are the famous
Ramanujan complexes [25, 24], which are the high dimensional analog of the celebrated LPS
Ramanujan graphs [23]. These complexes are local spectral expanders [14] and their links,
called spherical buildings, are coboundary expanders [22]. We note that [22] proved that
spherical buildings are coboundary expanders only over F2, but their proof can be easily
generalized to any abelian group by considering localizations with orientations of k-cochains.
As for non-abelian groups, [13] proved that spherical buildings are coboundary expanders
over non-abelian groups as well. For more on Ramanujan complexes, we refer the reader
to [21].

▶ Corollary 1.9 (Ramanujan complexes are cosystolic expanders over any group). Let X be a
d-dimensional Ramanujan complex. If X is sufficiently thick4, then the (d − 1)-skeleton of
X is a cosystolic expander over any group G.

1.3 Organization
In section 2 we provide some required preliminaries. In section 3 we prove the δ1-expansion
and cosystolic expansion results over abelian groups. In section 4 we provide the definitions
for cochains over non-abelian groups and we repeat the same process as in section 3, but this
time for non-abelian groups. The general strategy is the same for abelian and non-abelian
groups, but the details are different, hence we split them into different sections.

2 Preliminaries

Coboundary and cosystolic expansion over abelian groups

Let X be a d-dimensional simplicial complex and G an abelian group5. We first consider an
ordered version of the complex and denote it by X⃗, where

X⃗ = {(v0, . . . , vk) | k ≤ d, {v0, . . . , vk} ∈ X},

i.e., X⃗ contains all possible orderings of every face in X.

3 The complex which contains the faces of X up to dimension d − 1.
4 The explanation of the “thickness” of a Ramanujan complex is out of scope of this paper. It is only

important for us that a Ramanujan complex can be made arbitrarily thick in order to satisfy the
required criteria.

5 For simplicity we deal here only with abelian groups. We discuss non-abelian groups in section 4.
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A k-cochain over G, k ≤ d, is an antisymmetric function f : X⃗(k) → G, where f is said
to be antisymmetric if for any permutation π ∈ Sym(k + 1),

f((vπ(0), vπ(1), . . . , vπ(k))) = sgn(π)f((v0, v1, . . . , vk)).

The space of all k-cochains over G is denoted by Ck(X; G).
Any k-cochain is an assignment to the k-faces and it induces a (k + 1)-cochain, i.e., an

assignment to the (k + 1)-faces, by the coboundary operator δ. For any ordered (k + 1)-face
σ = (v0, . . . , vk+1), δ(f)(σ) is defined by

δ(f)(σ) =
k+1∑
i=0

(−1)if(v0, . . . , vi−1, vi+1, . . . , vk+1),

where the sum is performed over the group. It is not hard to check that for every k and
f ∈ Ck(X; G), δ(f) is antisymmetric, i.e., a (k + 1)-cochain.

We can view the complex as inducing a system of equations, where the equations are
determined by the coboundary operator; i.e., each (k + 1)-face σ ∈ X(k + 1) defines the
equation δ(f)(σ) = 0 (note that the ordering of the face does not matter for the satisfaction
of the equation). The assignments that satisfy all the equations are called the k-cocycles and
denoted by

Zk(X; G) = {f ∈ Ck(X; G) | δ(f) = 0}.

One can check that δ(δ(f)) = 0 always holds; i.e., every assignment that is obtained as a
coboundary of one dimension below satisfies all the equations. These assignments, that are
the coboundary of an assignment of one dimension below, are called the k-coboundaries and
denoted by

Bk(X; G) = {δ(f) | f ∈ Ck−1(X; G)}.

Note that Bk(X; G) ⊆ Zk(X; G) ⊆ Ck(X; G).
Recall that the weight of a k-cochain f ∈ Ck(X; G) is defined by

∥f∥ = Pr
σ∼Pk

[f(σ) ̸= 0],

i.e., the (weighted) fraction of non-zero elements in f . Since the weight of a cochain is
dependent only on its non-zero elements, it is often convenient to consider the set supp(f)
(i.e., the set of non-zero elements in f) and define equivalently

∥f∥ = ∥supp(f)∥ = Pr
σ∼Pk

[σ ∈ supp(f)].

For simplicity, we might abuse the notation and write σ ∈ f where we mean that σ ∈ supp(f).
Now, the formal definitions of coboundary and cosystolic expansion over general abelian

groups are identical to definitions 1.1 and 1.2 given in the introduction, with the replacement
of F2 by an abelian group G.

Links and localization

Recall that the link of a k-face σ ∈ X(k) is a (d − k − 1)-dimensional complex defined by
Xσ = {τ \ σ | σ ⊆ τ ∈ X}, where the probability distribution over faces of Xσ is induced
from the probability distribution over faces of X. Since we assume in this work that Pd is
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the uniform distribution over the d-faces of X, it follows that the probability distribution
over the top faces of Xσ is the uniform distribution. In the rest of the paper, we will omit
the explicit probability distribution when it is clear from the context.

Recall also that cochains over abelian groups are defined on ordered faces of the complex.
For convenience sake, we fix an arbitrary ordering of the faces so that for any face σ ∈ X

there is a unique corresponding ordered face σ⃗ ∈ X⃗.
For two disjoint ordered faces σ⃗ = (v0, . . . , vk) and τ⃗ = (u0, . . . , uℓ) we denote their

concatenation by σ⃗τ = (v0, . . . , vk, u0, . . . , uℓ). For any k-face σ ∈ X(k) and a (k + ℓ + 1)-
cochain f ∈ Ck+ℓ+1(X; G), the localization of f to the link of σ is an ℓ-cochain in the link
of σ, fσ ∈ Cℓ(Xσ; G) defined as follows. For any ordered ℓ-face τ⃗ ∈ X⃗σ(ℓ), fσ(τ⃗) = f(σ⃗τ),
where σ⃗τ is the concatenation of σ⃗ (i.e., the unique corresponding ordered face of σ) and τ⃗ .

By the law of total probability, the weight of any k-cochain f ∈ Ck(X; G) can be
decomposed as a sum of its weight in the links of the ℓ-faces of the complex:

▶ Lemma 2.1. Let X be a d-dimensional simplicial complex and G an abelian group. For
every f ∈ Ck(X; G), k ≤ d and ℓ < k,

∥f∥ =
∑

τ∈X(ℓ)

∥(f, τ)∥ ,

where ∥(f, τ)∥ is the mutual weight of supp(f) ⊆ X(k) and {τ} ⊆ X(ℓ).

Proof. It follows immediately from the definitions:

∥f∥ = Pr
σ∼Pk

[σ ∈ supp(f)] =
∑

τ∈X(ℓ)

Pr
σ∼Pk,τ ′⊂σ

[σ ∈ supp(f) ∧ τ ′ = τ ] =
∑

τ∈X(ℓ)

∥(f, τ)∥ ,

where the second equality follows from the law of total probability. ◀

Minimal and locally minimal cochains

One of the technical notions we use in this work is the notion of a minimal cochain. We say that
a k-cochain f ∈ Ck(X; G) is minimal if its weight cannot be reduced by adding a coboundary
to it, i.e., for every g ∈ Bk(X; G) it holds that ∥f∥ ≤ ∥f − g∥. Recall that the distance of
f from the coboundaries is defined by dist(f, Bk(X; G)) = min{dist(f, g) | g ∈ Bk(X; G)}.
Since 0 ∈ Bk(X; G), it follows that for every f ∈ Ck(X; G), ∥f∥ ≥ dist(f, Bk(X; G)). Hence,
f is minimal if and only if ∥f∥ = dist(f, Bk(X; G)).

We also define the notion of a locally minimal cochain, where we say that f ∈ Ck(X; G)
is locally minimal if for every vertex v, the localization of f to the link of v is minimal in the
link, i.e., fv is minimal in Xv for every v ∈ X(0).

Cheeger inequality for graphs

A 1-dimensional simplicial complex X is just a graph. In this case the known Cheeger
inequality gives the following (see e.g. [18] for a proof):

▶ Lemma 2.2. Let X be a 1-dimensional simplicial complex which is a λ-spectral expander
graph. For any set of vertices A ⊆ X(0) it holds that
1.

∥∥E(A, A)
∥∥ ≥ 2(1 − λ) ∥A∥ ∥A∥,

2. ∥E(A)∥ ≤ (∥A∥ + λ) ∥A∥,
where E(A, A) is the set of edges with one endpoint in A and one endpoint in A, and E(A)
is the set of edges with both endpoints in A.
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3 Result for abelian groups

3.1 Non-local sets are δ1-expanding
In this section we show our results for abelian groups.

Our first theorem is that non-local sets in a local spectral expander have δ1 that is
proportional to their size. We prove Theorem 1.6 which we restate here in a formal way.

▶ Theorem 3.1 (Non-local sets are δ1-expanding). Let X be a d-dimensional λ-local spectral
expander and 0 < η, ε < 1. For any A ⊆ X(k), 0 ≤ k ≤ d − 1, such that A is (η, ε)-non-local
it holds that

∥δ1(A)∥ ≥
(

1 −
(

k + 2
k

)(
λ + η + 2ε

))
∥A∥ .

Proof. Recall that we denote by Sk−1 the set of (k − 1)-faces σ ∈ X(k − 1) satisfying
∥Aσ∥ ≤ η. Let us define the following sets of (k + 1)-faces:

Γ(A) = {τ ∈ X(k + 1) | ∃σ ∈ A s.t. σ ⊂ τ}.
Γ(A, Sk−1) =

{
τ ∈ X(k + 1) | ∃σ ∈ A, σ′ ∈ Sk−1 s.t. σ′ ⊂ σ ⊂ τ

}
.

Υ = {τ ∈ X(k + 1) | ∃σ, σ′ ∈ A s.t. σ, σ′ ⊂ τ, σ ∩ σ′ ∈ Sk−1} .

In words: Γ(A) is the set of all (k + 1)-faces that contain a k-face from A, Γ(A, Sk−1) is
the set of all (k + 1)-faces that contain a k-face from A which contains a (k − 1)-face from
Sk−1 = X(k − 1) \ Sk−1, and Υ is the set of all (k + 1)-faces that contain two k-faces from A

such that their intersection is a (k − 1)-face from Sk−1.
Note that for every τ ∈ Γ(A) \ Γ(A, Sk−1) one of the following cases must hold: Either τ

contains exactly one k-face from A, i.e., τ ∈ δ1(A), or τ contains at least two k-faces from A

such that their intersection belongs to Sk−1, i.e., τ ∈ Υ. It follows that

∥δ1(A)∥ ≥
∥∥Γ(A) \ (Γ(A, Sk−1) ∪ Υ)

∥∥ ≥ ∥Γ(A)∥ −
∥∥Γ(A, Sk−1)

∥∥ − ∥Υ∥ . (1)

Let us bound each of the above terms separately. First, by simple laws of probability

∥Γ(A)∥ = Pr[σk+1 ∈ Γ(A)]

≥ Pr[σk+1 ∈ Γ(A) ∧ σk ∈ A]

= Pr[σk ∈ A] · Pr[σk+1 ∈ Γ(A) | σk ∈ A]

= Pr[σk ∈ A] = ∥A∥ .

(2)

Second, again by laws of probability∥∥Γ(A, Sk−1)
∥∥ = Pr[σk+1 ∈ Γ(A, Sk−1)]

= Pr[σk+1 ∈ Γ(A, Sk−1) ∧ σk ∈ A ∧ σk−1 /∈ Sk−1]
Pr[σk ∈ A ∧ σk−1 /∈ Sk−1 | σk+1 ∈ Γ(A, Sk−1)]

≤ (k + 2)(k + 1) Pr[σk ∈ A ∧ σk−1 /∈ Sk−1]

= (k + 2)(k + 1)
∥∥(A, Sk−1)

∥∥
≤ (k + 2)(k + 1)ε ∥A∥ ,

(3)

where the first inequality holds since the probability that σk ∈ A and σk−1 /∈ Sk−1 given
that σk+1 ∈ Γ(A, Sk−1) is at least 1/

(
(k + 2)(k + 1)

)
, and the second inequality follows since

A is an (η, ε)-non-local set.
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Lastly, consider a (k + 1)-face τ ∈ Υ. By definition, τ contains two k-faces σ, σ′ ∈ A such
that σ ∩ σ′ ∈ Sk−1. Let us denote qτ = σ ∩ σ′. Note that τ is seen in the link of qτ as an edge
between two vertices in A

qτ , i.e., τ \ qτ ∈ E(A
qτ ). Thus,

∥Υ∥ =
∑
τ∈Υ

Pr[σk+1 = τ ]

=
∑
τ∈Υ

Pr[σk+1 = τ ∧ σk−1 = qτ ]
Pr[σk−1 = qτ | σk+1 = τ ]

≤
∑
τ∈Υ

(
k + 2

k

)
Pr[σk+1 = τ | σk−1 = qτ ] · Pr[σk−1 = qτ ]

≤
(

k + 2
k

) ∑
σ∈Sk−1

∥E(Aσ)∥ · Pr[σk−1 = σ]

≤
(

k + 2
k

) ∑
σ∈Sk−1

(∥Aσ∥ + λ) ∥Aσ∥ · Pr[σk−1 = σ]

≤
(

k + 2
k

)
(η + λ)

∑
σ∈Sk−1

∥(Aσ, σ)∥ ≤
(

k + 2
k

)
(η + λ) ∥A∥ ,

(4)

where the third inequality follows since X is a λ-local spectral expander, and the fourth
inequality follows since σ ∈ Sk−1.

Substituting (2), (3) and (4) in (1) finishes the proof. ◀

An immediate corollary of Theorem 3.1 is that any non-local cocycle must be zero.

▶ Corollary 3.2 (Non-local cocycles vanish). For any d ∈ N, an abelian group G, and
0 < λ, η, ε < 1 such that λ + η + 2ε ≤ 2/(d + 1)2 the following holds: Let X be a d-
dimensional λ-local spectral expander. For any f ∈ Zk(X; G), 0 ≤ k ≤ d − 1, if f is
(η, ε)-non-local then f = 0.

Proof. Since f is (η, ε)-non-local, then by Theorem 3.1 it holds that

∥δ1(f)∥ ≥ ∥f∥
d + 1 .

On the other hand, f ∈ Zk(X; G) and hence ∥δ1(f)∥ ≤ ∥δ(f)∥ = 0. It follows that f = 0
as required. ◀

3.2 The correction procedure
Our aim now is to show a correction procedure for small coboundaries. We show an algorithm
that gets a cochain f such that ∥δ(f)∥ is small and returns a cochain f ′ by making a few
changes to f such that δ(f ′) is non-local.

We start by showing that any small and locally minimal cocycle is non-local. We note
that the following proposition is the main technical contribution of our work.

▶ Proposition 3.3 (Small and locally minimal cocycles are non-local). For any d ∈ N, an
abelian group G, and 0 < β, ε < 1 there exist 0 < λ, η ≤ ε such that the following holds: Let
X be a d-dimensional λ-local spectral expander with β-coboundary expanding links. For any
f ∈ Zk(X; G), 1 ≤ k ≤ d − 1, if ∥f∥ ≤ η2k+1−1 and locally minimal then f is (η, ε)-non-local.
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In order to prove Proposition 3.3 we need a few more definitions and lemmas. The proofs
of the lemmas can be found in the full version of the paper. Let f ∈ Ck(X; G), 0 ≤ k ≤ d − 1.
Recall that Sk−1 is the set of (k − 1)-faces σ satisfying ∥fσ∥ ≤ η. For any −1 ≤ i ≤ k − 2,
we define the following set of i-faces:

Si = {σ ∈ X(i) | (Si+1)σ ≤ η2k−i−1
}.

We first show that if ∥f∥ is sufficiently small then ∥S−1∥ = 1, i.e., the empty set belongs
to S−1. We will use the following lemma:

▶ Lemma 3.4. Let X be a d-dimensional simplicial complex, G an abelian group and
0 < η < 1. For any f ∈ Ck(X; G), 0 ≤ k ≤ d, if ∥f∥ ≤ η2k+1−1 then ∥S−1∥ = 1.

Let Υ ⊆ X(k + 1) be the set of (k + 1)-faces which contain two i-faces σ, σ′ ∈ Si such
that σ ∩ σ′ ∈ Si−1. We show that ∥Υ∥ is a negligible fraction of ∥f∥.

▶ Lemma 3.5. Let X be a d-dimensional λ-local spectral expander, G an abelian group and
0 < η < 1 such that λ ≤ η2d−1 . For any f ∈ Ck(X; G), 0 ≤ k ≤ d − 1, it holds that

∥Υ∥ ≤ η

(
k + 2

2

)
2k+2 ∥f∥ .

For any σ ∈ X(i), denote by f ↓ σ the set of k-faces τ ∈ f which have a sequence of
containments of faces from Sj , i < j < k, down to σ. Formally,

f ↓σ = {τ ∈ f | ∃τk−1 ∈ Sk−1, . . . , τi+1 ∈ Si+1 s.t. τ ⊃ τk−1 ⊃ · · · ⊃ τi+1 ⊃ σ}.

We show that for any cocycle f ∈ Zk(X; G) and 0 ≤ i ≤ k − 1, the fraction of f that sits
on i-faces from Si is approximately the fraction of f that sits on (i − 1)-faces from Si−1.

▶ Lemma 3.6. Let X be a d-dimensional simplicial complex such that its links are β-
coboundary expanders over an abelian group G. For any locally minimal f ∈ Zk(X; G),
1 ≤ k ≤ d − 1, and 0 ≤ i ≤ k − 1 it holds that

∑
σ∈Si

∥(f ↓σ, σ)∥ ≤ 1
β

(k + 1 − i)(i + 1)
∑

σ′∈Si−1

∥(f ↓σ′, σ′)∥ + ∥Υ∥

 .

We can now prove Proposition 3.3.

Proof of Proposition 3.3. Let

η = βd−1ε

2d((d + 1)!)2 and λ = η2d−1
.

Applying Lemma 3.6 on dimension i = k − 1, k − 2, . . . , 0 step after step yields∥∥(f, Sk−1)
∥∥ =

∑
σ∈Sk−1

∥(f ↓σ, σ)∥

≤ 1
β

∥Υ∥ + 1
β

· 2 · k
∑

σ∈Sk−2

∥(f ↓σ, σ)∥

≤ 1
β

∥Υ∥ + 1
β2 · 2 · k ∥Υ∥ + 1

β2 · 2 · k · 3 · (k − 1)
∑

σ∈Sk−3

∥(f ↓σ, σ)∥

≤
(

1
β

+ 1
β2 · 2 · k + · · · + 1

βk
(k!)2

)
∥Υ∥ + 1

βk
(k!)2(k + 1)

∑
σ∈S−1

∥(f ↓σ, σ)∥

=
(

1
β

+ 1
β2 · 2 · k + · · · + 1

βk
(k!)2

)
∥Υ∥ ≤ kβ−k(k!)2 ∥Υ∥

(5)

Substituting Lemma 3.5 in (5) completes the proof. ◀
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Now, the idea of the correction algorithm is to make δ(f) locally minimal by correcting f

in a few local parts. The algorithm runs in iterations, where at every iteration it does the
following one step of correction.

▶ Lemma 3.7 (One step of correction). Let X be a d-dimensional simplicial complex and
G an abelian group. For any f ∈ Ck(X; G), 1 ≤ k ≤ d − 1, if f is not locally minimal then
there exists a vertex v ∈ X(0) and a (k − 1)-cochain g ∈ Ck−1(X; G) such that ∥g∥ ≤ k ∥v∥
and ∥f − δ(g)∥ < ∥f∥.

Proof. Since f is not locally minimal, there exists a vertex v ∈ X(0) such that fv is not
minimal in Xv. By definition there exists a (k − 2)-cochain h ∈ Ck−2(Xv; G) in the link of v

such that ∥fv − δ(h)∥ < ∥fv∥. Define g ∈ Ck−1(X; G) by

g(σ) =
{

h(τ) σ = vτ,

0 otherwise.

Note that gv = h, therefore ∥f − δ(g)∥ < ∥f∥. Furthermore, since g(σ) = 0 for every σ

which does not contain v it follows that

∥g∥ = Pr[σk−1 ∈ g] = Pr[σk−1 ∈ g ∧ σ0 = v]
Pr[σ0 = v | σk−1 ∈ g] ≤ k ∥v∥ . ◀

We use Lemma 3.7 iteratively to prove Theorem 1.7 which we restate here in a formal
way.

▶ Theorem 3.8 (Correction algorithm). For any d, q ∈ N, an abelian group G, and 0 < β, ε < 1
there exist constants 0 < λ, η ≤ ε such that the following holds: Let X be a d-dimensional
q-bounded degree λ-local spectral expander with β-coboundary expanding links. For any
f ∈ Ck(X; G), 1 ≤ k ≤ d − 2, if ∥δ(f)∥ ≤ η2k+2−1 then there exists f ′ ∈ Ck(X; G) such that
dist(f, f ′) ≤ q

(
d

k+1
)

∥δ(f)∥, ∥δ(f ′)∥ ≤ ∥δ(f)∥, and δ(f ′) is (η, ε)-non-local.

Proof. Let λ and η be as in Proposition 3.3. Apply Lemma 3.7 for δ(f) step by step until
no more corrections are possible. Since at every step the weight decreases, this process
terminates after some r ≥ 0 steps. Denote by v1, v2, . . . , vr the vertices and by g1, g2, . . . , gr

the k-cochains given by applying Lemma 3.7 for r steps, where at step i we apply it for
δ(f − g1 − · · · − gi−1).

Let f ′ = f −g1−g2−· · ·−gr. Since the norm of δ(f) decreases at every step of correction, it
follows that ∥δ(f ′)∥ ≤ ∥δ(f)∥ ≤ η2k+2−1. Furthermore, since no more corrections are possible,
it must be that δ(f ′) is locally minimal. Thus, by Proposition 3.3, δ(f ′) is (η, ε)-non-local.

It is left to show that ∥f − f ′∥ is proportional to ∥δ(f)∥. By definition, for any σ ∈ X(k+1)
it holds that ∥σ∥ ≥

(
|X(d)|

(
d+1
k+2

))−1
, hence r ≤ |X(d)|

(
d+1
k+2

)
∥δ(f)∥. Thus,

dist(f, f ′) = ∥g1 + g2 + · · · + gr∥ ≤
r∑

i=1
(k + 1) ∥vi∥

≤ |X(d)|
(

d + 1
k + 2

)
(k + 1) q

|X(d)|(d + 1) ∥δ(f)∥ ≤
(

d

k + 1

)
q ∥δ(f)∥

which finishes the proof. ◀
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3.3 Cosystolic expansion
We use a similar reduction as in [18] in order to show that δ1-expansion of small sets implies
cosystolic expansion over any abelian group. Recall that a complex is a cosystolic expander
if the following two properties hold: (1) The systems of equations are expanding, i.e., any
assignment that does not satisfy all the equations has a large fraction of unsatisfied equations
(proportional to the distance from a satisfying assignment). (2) Every cocycle which is not a
coboundary is large. We use the following lemmas which their proofs can be found in the
full version of the paper.

▶ Lemma 3.9 (The systems of equations are expanding). For any d, q ∈ N, an abelian group
G, and 0 < β < 1 there exist 0 < λ, η < 1 such that the following holds: Let X be a
d-dimensional q-bounded degree λ-local spectral expander with β-coboundary expanding links
over G. For any f ∈ Ck(X; G) \ Zk(X; G), 1 ≤ k ≤ d − 2, it holds that

∥δ(f)∥ ≥ min
{

η2k+2−1,
1

q
(

d
k+1

)}
· dist(f, Zk(X; G)).

▶ Lemma 3.10 (Every cocycle which is not a coboundary is large). For any d ∈ N, an abelian
group G, and 0 < β < 1, there exists 0 < λ, η < 1 such that the following holds: Let X be a
d-dimensional λ-local spectral expander with β-coboundary expanding links over G. For any
f ∈ Zk(X; G) \ Bk(X; G), 0 ≤ k ≤ d − 1, it holds that ∥f∥ ≥ η2d−1.

Theorem 1.8, which we restate here in a formal way, follows immediately from the above
two lemmas.

▶ Theorem 3.11 (Cosystolic expansion over any abelian group). For any d, q ∈ N, an abelian
group G, and 0 < β < 1 there exist 0 < λ, η < 1 such that the following holds: Let X be a
d-dimensional q-bounded degree λ-local spectral expander with β-coboundary expanding links
over G. Then the (d − 1)-skeleton of X is an (ε, µ)-cosystolic expander over G, where

ε = min
{

η2d−1,
1

qdd/2

}
and µ = η2d−1.

Proof. Immediate from Lemmas 3.9 and 3.10. ◀

4 Result for non-abelian groups

4.1 Non-abelian groups
When the group is non-abelian, the coboundary operator is defined only in dimensions 0 and
1, and its definition is more delicate. Let G be a group with a multiplicative operation. The
coboundary of a 0-cochain f ∈ C0(X; G) is a 1-cochain δ(f) defined by

δ(f)(u, v) = f(u)f(v)−1.

The coboundary of a 1-cochain g ∈ C1(X; G) is a 2-cochain δ(g) defined by

δ(g)(u, v, w) = g(u, v)g(v, w)g(w, u).

One can check that for f ∈ Ci(X; G), i ∈ {0, 1}, δ(f) is an antisymmetric functions, i.e.,
δ(f) is an (i + 1)-cochain.
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The distance between two cochains f, g ∈ Ci(X; G) is defined by dist(f, g) =
∥∥gf−1

∥∥,
where gf−1(σ) = g(σ)f(σ)−1 for every σ ∈ X⃗(i).

Similar to the abelian case, we say that f ∈ Ci(X; G) is a cocycle if δ(f) = 1.6 The
distance of a cochain f ∈ Ci(X; G) from the i-cocycles is defined by

dist(f, Zi(X; G)) = min{dist(f, g) | g ∈ Zi(X; G)}.

In order to measure the distance of a 1-cochain from the 1-coboundaries, we define an
action of C0(X; G) on C1(X; G), where for f ∈ C0(X; G) and g ∈ C1(X; G), f.g(u, v) is
defined by

f.g(u, v) = f(u)g(u, v)f(v)−1.

Now, the distance of g from the 1-coboundaries is defined by

dist(g, B1(X; G)) = min{dist(g, f.g) | f ∈ C0(X; G)}.

4.2 Weakly-non-local sets and cosystolic expansion
In the case of a non-abelian group, we cannot get the same non-local property as in abelian
groups, rather we get a slightly weaker notion which we call weakly-non-local. Roughly
speaking, a set of k-faces in a given complex is weakly-non-local if its k-faces are evenly
distributed on their (k − 2)-subfaces.

▶ Definition 4.1 (Weakly-non-local sets). Let X be a d-dimensional simplicial complex and
0 < η, ε, α < 1. For any set of k-faces A ⊆ X(k), 1 ≤ k ≤ d − 1, we define the following set
of (k − 2)-faces:

Sk−2 = {σ ∈ X(k − 2) | ∥Aσ∥ ≤ η}.

We say that A is (η, ε, α)-weakly-non-local if ∥Sk−2∥ ≥ 1 − ε ∥A∥ and for every τ ∈ X(k − 1)
it holds that ∥Aτ ∥ ≤ 1 − α.

We show that this weakly-non-local property also implies that the set is δ1-expanding.

▶ Theorem 4.2 (Weakly-non-local sets are δ1-expanding). Let X be a d-dimensional λ-local
spectral expander and 0 < η, ε, α < 1. There exists a constant c = c(d, λ, η, ε, α) such that
for any A ⊆ X(k), 1 ≤ k ≤ d − 1, if A is (η, ε, α)-weakly-non-local then

∥δ1(A)∥ ≥ c ∥A∥ .

In particular, if ε ≤ α/3d3, λ ≤ ε2 and η ≤ ε3 then ∥δ1(A)∥ ≥ α ∥A∥.

The rest of the steps are similar to the abelian case (with modifications for non-abelian
groups) and can be found in the full version of the paper. We just state here the final theorem
for cosystolic expansion over non-abelian groups.

▶ Theorem 4.3 (Cosystolic expansion over any group). For any group G, q ∈ N and 0 < β < 1
there exist 0 < λ, η < 1 such that the following holds: Let X be a 3-dimensional q-bounded
degree λ-local spectral expander with β-coboundary expanding links over G. Then the 2-skeleton
of X is an (ε, µ)-cosystolic expander over G, where

ε = min
{

βη

2 ,
1
2q

}
and µ = βη

2 .

6 It is common to denote the identity element of a multiplicative group by 1 and not by 0 as in an additive
group.
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type Ãd. European Journal of Combinatorics, 26(6):965–993, 2005.

25 A. Lubotzky, B. Samuels, and U. Vishne. Ramanujan complexes of type Ãd. Israel Journal of
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Abstract
We consider evacuation of a group of n ≥ 2 autonomous mobile agents (or robots) from an unknown
exit on an infinite line. The agents are initially placed at the origin of the line and can move with
any speed up to the maximum speed 1 in any direction they wish and they all can communicate
when they are co-located. However, the agents have different wireless communication abilities: while
some are fully wireless and can send and receive messages at any distance, a subset of the agents
are senders, they can only transmit messages wirelessly, and the rest are receivers, they can only
receive messages wirelessly. The agents start at the same time and their communication abilities are
known to each other from the start. Starting at the origin of the line, the goal of the agents is to
collectively find a target/exit at an unknown location on the line while minimizing the evacuation
time, defined as the time when the last agent reaches the target.

We investigate the impact of such a mixed communication model on evacuation time on an
infinite line for a group of cooperating agents. In particular, we provide evacuation algorithms and
analyze the resulting competitive ratio (CR) of the evacuation time for such a group of agents.
If the group has two agents of two different types, we give an optimal evacuation algorithm with
competitive ratio CR = 3 + 2

√
2. If there is a single sender or fully wireless agent, and multiple

receivers we prove that CR ∈ [2 +
√

5, 5], and if there are multiple senders and a single receiver or
fully wireless agent, we show that CR ∈ [3, 5.681319]. Any group consisting of only senders or only
receivers requires competitive ratio 9, and any other combination of agents has competitive ratio 3.
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1 Introduction

Search by a group of cooperating autonomous mobile robots for a target in a given domain
is a fundamental topic in the theoretical computer science. In the search problem one is
interested in finding a target at an unknown location as soon as possible. In the related
evacuation problem one is interested in optimizing the time it takes the last robot in the
group to find the target, often called the exit. There has been a lot of interest in trying
to understand the impact of communication between agents on the search and evacuation
time in the distributed computing area. The design of optimal robot trajectories leading
to tight bounds depends not only on the fault-tolerant characteristics of the agents but
also on the communication model employed (see [14, 16]). In previous works, agents are
assumed to either have full wireless communication abilities, i.e., they can both transmit and
receive messages across any distance [10], or limited distance [4], or they have no wireless
communication abilities, and can only communicate when they are face-to-face (F2F), i.e.,
co-located. In terms of communication abilities, the agents are identical.

The present work considers evacuation on an infinite line by a group G of cooperating
robots (initially located at the origin) whose wireless communication abilities are different,
which compel them to employ a mixed communication model. At a rudimentary level they
can always communicate reliably using F2F. However, some agents in G are senders that can
transmit messages wirelessly at any distance but only receive F2F, yet others are receivers in
that they can receive messages wirelessly from any distance but can transmit only F2F, and
the remaining are fully wireless, and can both send and receive messages wirelessly. This
situation might occur because it is cheaper to build agents with limited wireless capabilities,
or because the sender or receiver module failed in receiver or sender robots, respectively.
Further, we assume the capabilities of the robots are known to each other in advance and
remain the same for the duration of an evacuation algorithm. Robots can move at any speed
up to maximum 1. We give upper and lower bounds on the competitive ratio of evacuation
algorithms, depending on the number of senders and receivers among the agents.

If there are at least two fully wireless agents in the group, then the optimal competitive
ratio is 3, see [10]. By pairing up a sender and a receiver we can simulate a fully wireless
agent. Consequently, if there is one fully wireless agent, one sender agent, and one receiver
agent, the competitive ratio is 3. Consider now the case when there is one fully wireless agent,
and one or more senders. Since the sender agents cannot receive wireless transmissions, the
sending capabilities of the fully wireless agent are useless, and it is equivalent to a receiver
agent. Similarly if there is one fully wireless agent, and one or more receivers, the receiving
module in the fully wireless agent is useless, and it is equivalent to a sender agent.

Thus we no longer consider fully wireless agents, and only consider sender and receiver
agents. When all of the agents are senders, or all of them are receivers, the only possible mode
of communication between agents is F2F; in this case, it has previously been demonstrated
that the optimal competitive ratio of evacuation for n F2F agents is 9. If there are at least
two sender agents and two receiver agents, by pairing up sender and receiver agents, we
obtain a competitive ratio of 3. It follows that the only interesting cases to consider are when
there is exactly one sender and one receiver; one sender and several receivers; one receiver
and several senders. These are the cases investigated in detail in this paper.

1.1 Model and preliminaries
We consider the problem of evacuation by n ≥ 2 mobile agents beginning at the origin of
the infinite line. All agents are assumed to have maximum speed 1 and can move in either
the positive direction (referred to as moving to the right) or the negative direction (referred
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to as moving to the left). The agents may change their speed and the direction of motion
instantaneously and arbitrarily often. Moreover, the robots can choose any speed as long as
it does not exceed the maximum speed 1.

All agents have the ability to communicate F2F, however the wireless communication
abilities of the agents are limited and are not all the same. Indeed the group of n agents
consists of a subset of agents that can only send wireless messages, called senders, and a
subset that can only receive wireless messages, called receivers. We represent by ns ≥ 0 and
nr = n − ns the number of senders and receivers respectively.

The cost of an algorithm for the evacuation problem on a given instance of the problem is
the time the last agent reaches the target, called the evacuation time. We denote by E(A, x)
the evacuation time of algorithm A when the target is at location x. Note that an offline
algorithm in which agents know the position of the target can reach it in time |x|. The
goal is to minimize the competitive ratio, denoted by CR, defined as the supremum, over all
possible target locations, of the normalized cost E(A, x)/|x|, i.e., CR(A) := sup|x|>1

E(A,x)
|x| .

An evacuation algorithm can be primarily viewed as a set of trajectories, one for each
agent. The trajectory of an agent specifies where the agent should be located at any
given time. More specifically, the trajectory of an agent is a continuous mapping from the
non-negative reals (i.e. time) to the reals (i.e., position on the line). In general, we will
represent the trajectory of an agent using the notation X = X(t) with the interpretation
that the agent with trajectory X will be located at position X(t) at time t. Due to our
assumption that the agents have maximum unit speed, an agent trajectory X must satisfy
|X(t′) − X(t)| ≤ t′ − t, ∀t′ ≥ t ≥ 0. Agents are assumed to begin their search at the
origin and so we must also have X(0) = 0. Taken together, these equations imply that
|X(t)| ≤ t, ∀t ≥ 0.

We assume that the agents are labelled so that we may assign a specific trajectory to a
specific agent. Each agent is assumed to know the trajectory of all other agents. All agents
follow their assigned trajectories until they either find the target or are otherwise notified of
the target’s location. What an agent does in the event that it finds the target depends on
the communication ability of the finder and of the other agents. For example, if the finder
is a sender and all other agents are receivers, then the sender can immediately notify the
other agents who can then proceed to move at full speed to the target. On the other hand, if
the finder is a receiver, then it must move to notify another agent(s) of the target’s location.
In any case, the cost of the algorithm will depend both on the trajectories assigned to the
agents to search for the target, as well as the subsequent phase of informing all agents, and
the agents travelling to the target.

1.2 Related work
Search by a single agent on the infinite line was initiated independently by Beck [6, 7, 8]
and Bellman [9]. These seminal papers proved the competitive ratio 9 for search on an
infinite line and also gave the impetus for additional studies, including those by Gal [20]
which proposes a minimax solution for a game in which player I chooses a real number and
player II seeks it by choosing a trajectory represented by a positive function, Friestedt [18],
Friestedt and Heath [19], and Baeza-Yates et.al.[2, 3] where search by agents in domains
other than the line were proposed, e.g. the “Lost Cow” problem in the plane or at the origin
of w concurrent rays. Additional information on search games and rendezvous can also be
found in the book [1].

Group search on an infinite line has been researched in several papers and under various
models. Evacuation by multiple cooperating robots was proposed in [10], for the case where
the robots can communicate only F2F. More recently, search on the line was considered for
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two robots which have distinct speeds in [5] and in [17] when turning costs are taken into
account. In addition, in two papers [11, 12] the authors are concerned with minimizing the
energy consumed during the search.

There are several types of robot communication models in the literature. The most
restricted type of robot communication is F2F in which robots may exchange messages only
when they are co-located. At the other extreme is wireless in which robots may communicate
regardless of how far apart they are [13]. A model where the wireless communication range
is limited has been explored for the equilateral triangle domain in [4].

Within these communication models researchers have considered search with crash [16] and
Byzantine [14] faults. The former are innocent faults caused by robot sensor malfunctioning
causing the robots an inability to communicate and/or perform their tasks. The latter,
however, are malicious faults (intentionally or otherwise) in that the robots may lie and
communicate maliciously the wrong information. Lower bounds for search in the crash fault
model are proved in [22] and for Byzantine faults in [23]. The competitive ratio for search
and evacuation in the near majority case (of n = 2f + 1 robots with f faulty) is a notoriously
hard problem and additional results can be found in the recent paper [15]. Additional
information and results can also be found in the recent PhD thesis [21].

In our paper we investigate evacuation time by agents with different wireless communica-
tion abilities; as stated earlier, some of them can only transmit wirelessly but not receive,
and the others can only receive messages sent wirelessly but not transmit. To our knowledge,
in all previous works, the communication abilities of agents were identical; group search or
evacuation by agents of different communication abilities has not been studied before.

1.3 Results

As mentioned above, we need to consider three cases: when there is exactly one sender and
one receiver; one sender and several receivers; one receiver and several senders. In Section 2
we give evacuation algorithms and analyze upper bounds on the competitive ratios for each
of these three cases. When we have one receiver and one sender agent, i.e., ns = nr = 1,
we give an evacuation algorithm whose competitive ratio is at most 3 + 2

√
2. In case when

we have one sender and several receivers, i.e., ns = 1 and nr > 1 our evacuation algorithm
has competitive ratio at most 5, and when ns > 1 and nr = 1 we specify an algorithm with
competitive ratio at most ≈ 5.681319. These results can be found in Theorems 1, 2, and 3
respectively.

In Section 3 we consider lower bounds on the competitive ratio of evacuation algorithms
for only the cases with only one sender agent, i.e., ns = 1. In particular, we prove a lower
bound matching our upper bound for the case of ns = nr = 1, which proves the optimality
of our algorithm. For the case of ns = 1 and nr > 1 we demonstrate that the evacuation
cannot be completed with a competitive ratio less than 2 +

√
5. We conclude the paper with

a discussion of open problems in Section 4.

2 Evacuation Algorithms and their Competitive Ratios

In this section we give evacuation algorithms for our communication model and investigate
their competitive ratios. We consider separately the cases, first the single sender and single
receiver, second the single sender and multiple receivers, and lastly the multiple senders and
single receiver.
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2.1 One sender, one receiver

▶ Theorem 1. When ns = nr = 1 there exists an evacuation algorithm with competitive
ratio 3 + 2

√
2.

Proof. The proof is constructive and based on the following algorithm: the receiver moves
to the left at unit speed and the sender moves to the right with speed

√
2 − 1. If the sender

finds the target first then it notifies the receiver (wirelessly) and the receiver moves at unit
speed to the target. If the receiver finds the target first then it moves at unit speed to the
right until it reaches the sender at which time both agents will move at full speed back to
the target. We illustrate this algorithm in Figure 1 using a space-time diagram which plots
an agent’s position on the x-axis, and uses the y-axis to indicate the flow of time.

Figure 1 The trajectories of the agents when the target is at location +x (left) and −x (right).
The sender is colored red and the receiver is blue. A dashed line indicates when an agent deviates
from its assigned search trajectory. Significant times and positions are indicated.

Suppose that the target is at location x > 1. The sender will find this target first and will
do so at the time x√

2−1 = (1 +
√

2)x. The sender immediately notifies the receiver which is at
location −(1 +

√
2)x. Moving at unit speed, the receiver will travel distance x + (1 +

√
2)x =

(2 +
√

2)x to reach the target and will arrive at time (1 +
√

2)x + (2 +
√

2)x = (3 + 2
√

2)x.
The competitive ratio when x > 1 is thus 3 + 2

√
2.

Suppose now that the target is at location −x < −1. The receiver will find the target first
and will do so at the time x. The receiver must move to notify the sender who is located at
(
√

2 − 1)x at time x. Hence, the distance between the agents is x + (
√

2 − 1)x =
√

2x and the
receiver will need to cross this distance with a relative speed of 1 − (

√
2 − 1) = 2 −

√
2. The

receiver will thus take time
√

2x
2−

√
2 = x√

2−1 = (1+
√

2)x, and both agents will take an additional
time (1+

√
2)x to reach the target. The time to evacuate is thus x+2(1+

√
2)x = (3+2

√
2)x,

and, evidently, the competitive ratio in this case is also 3 + 2
√

2. ◀

Notice that in the algorithm of Theorem 1 it is essential that the sender moves initially at
speed less than 1.

ISAAC 2021



57:6 Group Evacuation on a Line by Agents with Different Communication Abilities

2.2 One sender, multiple receivers
▶ Theorem 2. When ns = 1 and nr > 1 there exists an evacuation algorithm with competitive
ratio 5.

Proof sketch. The proof is constructive and based on the following algorithm: one receiver
moves to the left at unit speed and one receiver moves to the right at unit speed. When one
of the receivers finds the target it immediately moves to notify the sender (and all other
agents) at the origin. The sender immediately notifies the remaining receiver, and all agents
proceed to the target at unit speed. The complete analysis of this algorithm appears in
Appendix A. ◀

2.3 Multiple senders, one receiver
▶ Theorem 3. When ns > 2 and nr = 1 there exists an algorithm A with competitive ratio
CR(A) < 5.681319. More exactly, the competitive ratio is upper bounded by

CR(A) ≤ 1 + 1 + vr

1 − vr

(
1 + 4vr − v2

r

vr(3 − vr)

)
(1)

with vr chosen to be the root of the equation v4
r − 16v3

r + 26v2
r + 8vr − 3 = 0 satisfying

0 ≤ vr < 1.

The proof of this result is much more involved than the previous two cases. When there are
more than two senders, all but two of the senders will remain at the origin until they are
notified of the target (at which time they move to the announced location). Thus, in the
rest of this section we will present our algorithm for the specific case of two senders and one
receiver, i.e., ns = 2 and nr = 1.

Figure 2 Trajectories of the agents for the evacuation algorithm EVACRays(vr). The sender
trajectories are red, and the receiver trajectory is blue.

High level idea. The robots jointly maintain an interval around the origin of positions that
have already been explored by at least one robot. They wish to expand this interval at a
fast pace while maintaining the ability to notify all robots quickly in case an exit is found
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by at least one robot. The idea behind our algorithm is to make one sender responsible for
extending the right end of the searched interval, and another sender responsible for extending
the left end of the searched interval. The receiver zig-zags around the origin (with the lengths
of zigs and zags increasing in rounds), so that if one of the senders finds an exit, the receiver
is “close” to the other sender and can quickly notify it via F2F. In order for this idea to work,
the senders cannot simply move away from the origin at full speed, but instead they perform
zig-zags of their own (however, unlike the receiver their zig-zags are drifting away from the
origin). One can think of a sender as first extending the searched region for a while and
then coming back partway towards the origin to get notified by the receiver about what’s
happening on the other side of the origin. This strategy is illustrated in Figure 2. When the
exit is found by one of the senders, the receiver goes to intercept the other sender and they
both move towards the exit.

An interesting feature of the algorithm is that the zig-zag trajectory of the receiver non
trivially overlaps with the zig-zag trajectories of the senders, i.e., it does not simply touch
them. For example, take a particular time when the receiver meets the right sender for the
first time during one zig-zag round. Then the receiver and the right sender travel to the
right together for some time. During this time the left sender extends the searched region
on the left. If an exit is found by the left sender at this point, this is good – both the right
sender and receiver will learn about it instantaneously and will start moving towards the
exit. However, the right sender and receiver cannot keep travelling together for very long,
since the trajectory needs to have certain symmetries, lest the left sender gets too far. Thus,
at some point the receiver and the right sender part ways with the receiver moving towards
the left sender and the right sender continuing to the right. At precisely this point, the
left sender stops extending the search interval and starts to move towards the receiver (this
situation is indicated by dashed lines in Figure 2). Intuitively, this is a good timing for the
left sender to switch direction, because otherwise if it finds an exit soon after the receiver
and right sender part ways then the receiver would not be able to catch up with the right
sender for quite a while (until the right sender’s next “zag”).

Formalizing and analyzing this algorithm takes a lot of work and careful calculations,
which are deferred to the appendix. Here, we just state some of the main ingredients. We
begin by introducing a class of search trajectories that are parameterized by a four-tuple
[η, v0, v1, γ] where: η = ±1, and v0, v1, and γ are real numbers satisfying 0 ≤ v0 ≤ 1,
−1 ≤ v1 < v0, and 0 < γ ≤ 1.

Algorithm 1 Rays(η, v0, v1, γ).

Begin: Move to location ηγ and wait until time γ
v0

.
1: repeat
2: Move in direction −η at unit speed until my position x at time t satisfies x

t = ηv1;
3: Move in direction η at unit speed until my position x at time t satisfies x

t = ηv0;
:End

An example of this type of search trajectory is illustrated in Figure 3. As one can observe,
after an initial setup phase, the trajectory Rays(η, v0, v1, γ) will bounce back and forth
between two space-time rays with slopes η

v0
and η

v1
. The parameter γ dictates the “beginning”

position on the ray with slope η
v0

, and η is a symmetry parameter in the sense that trajectories
Rays(±1, v0, v1, γ) are reflections of each other about the time-axis. Although the above
specification of the trajectory Rays(η, v0, v1, γ) is simple to understand, it will be more
convenient to express these trajectories in terms of their turning-points – space-time points at
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Figure 3 Example of the trajectory Rays(1, v0, v1, γ).

which an agent changes its travel direction, and between which an agent moves at constant
unit speed. One can observe from Figure 3 that the turning-points of Rays(η, v0, v1, γ) are
precisely the points where the trajectory bounces off the rays with slopes η

v0
and η

v1
. The

next lemma provides expressions for the turning-points of the trajectory Rays(η, v0, v1, γ).

▶ Lemma 4. The turning-points (Dj , Tj), j = 0, 1, . . ., of the trajectory Rays(η, v0, v1, γ)
are given by

Dj = ηγ

[
(1 − v1)(1 + v0)
(1 + v1)(1 − v0)

]⌊ j
2 ⌋ {

1, even j
v1(1+v0)
v0(1+v1) , odd j

, Tj = Dj

η

{
1
v0

, even j
1
v1

, odd j.

We will describe our evacuation algorithm in terms of the trajectories Rays(1, v0, v1, γ).
To this end, we represent by X±(t) the trajectories of the senders and we refer to the sender
with trajectory X+ (resp. X−) as the right-sender (resp. left-sender). We use Xr(t) to
represent the trajectory of the receiver. The turning-points of the trajectories X± will be
represented by (D±

j , T ±
j ), and the turning-points of the trajectory Xr will be represented by

(Dr
j , T r

j ). With this notation our evacuation algorithm can be expressed as in Algorithm 2.
We refer to this algorithm by EvacRays(vr).

Algorithm 2 EvacRays(vr), 0 ≤ vr < 1.
1:

X±(t) = Rays(±1, v0, v1, γ±), Xr(t) = Rays(1, vr, −vr, 1). (2)

v0 = vr(3 − vr)
1 + vr

, v1 = vr(1 − vr)
1 + 3vr

, γ+ = 3 − vr

1 − vr
, γ− = 3 − vr

1 − vr

1 + vr

1 − vr
(3)

Figure 2 illustrates the trajectories of the agents for the algorithm EvacRays(vr). The
choices of v0, v1, γ± in (3) ensure that the trajectories enjoy a number of important properties,
some of which are evident in Figure 2. One immediately obvious property is the fact that the
right/left-sender spends all of its time to the right/left of the origin (and hence the naming
convention). Some other properties that are evident in Figure 2 are given in Observation 5.
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▶ Observation 5. For all k = 0, 1, 2, . . . the following properties hold for the algorithm
EvacRays(vr):
1. the receiver reaches its turning point 2k+1 (resp. 2k+2) at the same time the right-sender

(resp. left-sender) reaches its turning-point 2k.
2. the receiver and right-sender (resp. left-sender) are co-located at all times in the interval

[T +
2k+1, T r

2k+2] (resp. [T −
2k+1, T r

2k+3]),

In order to establish these properties, we carefully calculate the turning points of all
agents in terms of the parameter vr. The following lemmas summarize the calculations,
which are carried out in Appendix A due to space limit. Equipped with these formulas,
Observation 5 follows, which is also demonstrated in the appendix.

▶ Lemma 6. The turning-points of the receiver are

Dr
j = (−1)j

(
1 + vr

1 − vr

)j

, T r
j = 1

vr

(
1 + vr

1 − vr

)j

.

▶ Lemma 7. The turning-points of the right-sender are

D+
j = vrT r

j

{
3−vr

1−vr
, even j

1−vr

1+vr
, odd j

, T +
j = T r

j

{
1+vr

1−vr
, even j

1+3vr

1+vr
, odd j

▶ Lemma 8. The turning-points of the left-sender are

D−
j = −vrT r

j+1

{
3−vr

1−vr
, even j

1−vr

1+vr
, odd j

, T −
j = T r

j+1

{
1+vr

1−vr
, even j

1+3vr

1+vr
, odd j

.

The next theorem provides an expression for the competitive ratio of EvacRays(vr) as a
function of vr (see Appendix A for the proof).

▶ Theorem 9. The competitive ratio of algorithm EvacRays(vr) satisfies

CR ≤ 1 + 1 + vr

1 − vr

(
1 + 4vr − v2

r

vr(3 − vr)

)
.

Now that we have an expression for a bound on the competitive ratio we can finally prove
Theorem 3.

Proof (Theorem 3). We need to optimize the competitive ratio with respect to vr and so
we need to compute the derivative of the right hand side of (7). This is most easily done
with the aid of a computer. We find that

d

dvr

[
1 + 1 + vr

1 − vr

(
1 + 4vr − v2

r

vr(3 − vr)

)]
= v4

r − 16v3
r + 26v2

r + 8vr − 3
v2

r(3 − vr)2(1 − vr)2

and so the optimum choice of vr is a root of the quartic equation v4
r −16v3

r +26v2
r +8vr −3 = 0

satisfying 0 ≤ vr < 1. Numerically solving this equation for vr yields vr ≈ 0.228652. For this
choice of vr one can confirm that CR < 5.681319. ◀
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3 Lower bounds

In this section we investigate lower bounds on the competitive ratio of evacuation in our
communication model. Our goal is the proof of the following theorem:

▶ Theorem 10. Let A be an evacuation algorithm for one sender and nr ≥ 1 receivers.

CR(A) ≥

{
3 + 2

√
2, nr = 1

2 +
√

5, nr > 1
.

We will need to introduce a number of concepts and definitions. The first definition
concerns the knowledge that is available to an agent at a given time.

▶ Definition 11. An agent is said to know of a location x at time t if it has direct or indirect
knowledge of x at time t. An agent with direct knowledge of x at time t has visited location x

at a time t′ ≤ t. An agent has indirect knowledge of x at time t if it can be notified of x at a
time t′ ≤ t.

The direct knowledge of an agent depends only on its own trajectory, whereas an agent’s
indirect knowledge depends on both its own and the other agents’ trajectories. We define
the direct knowledge set KD

X (t) as the set of all locations that the agent with trajectory X

has direct knowledge of at time t. We similarly define the indirect knowledge set KI
X(t; A).

The (total) knowledge set is the set KX(t; A) = KD
X (t) ∪ KI

X(t; A). We make the following
simple observation which results from the unit speed assumption.

▶ Observation 12. KD
X (t) ⊆ [X(t) − t, X(t) + t].

We can use the knowledge set of an agent to lower bound the competitive ratio.

▶ Lemma 13. For any evacuation algorithm A, any X ∈ A, and any time t > 0 we have

CR(A) ≥ sup
x ̸∈KX (t;A)

|X(t) − x| + t

|x|
.

Thus, we can derive a lower bound on the competitive ratio by bounding the size of an
agent’s knowledge set.

We define the functional µ(X) which maps a search trajectory to a non-negative real
number:

µ(X) =: lim sup
t→∞

|X(t)|
t

. (4)

The quantity µ(X) can be thought of as an upper bound on the average rate at which the
direct knowledge of an agent with trajectory X grows. We naturally extend the definition of
µ to take as input an evacuation algorithm:

µ(A) := max
X∈A

µ(X). (5)

In Appendix B we establish several properties of µ(X) and KX (and relationships between
them) for trajectories X in evacuation algorithms. These are used in the proofs of the following
theorems, from which Theorem 10 follows.

▶ Theorem 14. Let A be an evacuation for one sender and one receiver. Then CR(A) ≥
3 + 2

√
2.
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Proof. Let A = {S, R} with S and R the trajectories of the sender and receiver respectively.
We must have µ(S) < µ(A) = µ(R) since otherwise the competitive ratio is at least 9. Then,
Lemma 26 states that

CR(A) ≥ 1 + (1 + µ(R))(1 + µ(S))
µ(R)(1 − µ(S))

and from Lemma 29 we have

CR(A) ≥ 1 + (1 + µ(S))(1 + µ(R))
µ(S)(1 + µ(S)) = 1 + µ(R)

µ(S)

where we have used the fact that A′ = {S} when there is only one receiver. We therefore
have

CR(A) ≥ 1 + max
{

(1 + µ(R))(1 + µ(S))
µ(R)(1 − µ(S)) ,

1 + µ(R)
µ(S)

}
.

The first term in the max decreases with µ(R) and the second term increases with µ(R) and
so our best-lower bound is achieved when increasing µ(R) is such that the two terms are
equal. We find that we need

µ(R) = µ(S)(1 + µ(S))
1 − µ(S) .

We then find that

CR(A) ≥ 1 +
1 + µ(S)(1+µ(S))

1−µ(S)

µ(S) = 1 + 1
µ(S) + 1 + µ(S)

1 − µ(S) .

Let g(u) = 1
u + 1+u

1−u and observe that

dg(u)
du

= − 1
u2 + 1

1 − u
+ 1 + u

(1 − u)2

= − 1
u2 + 2

(1 − u)2 = (1 − u)2 − 2u2

u2(1 − u)2 = (1 − u −
√

2u)(1 − u +
√

2u)
u2(1 − u)2

= [1 − (1 +
√

2)u][1 − (1 −
√

2)u]
u2(1 − u)2 .

From this last expression it is clear that g(u) is minimized when u = 1
1+

√
2 =

√
2 − 1. The

minimum is

g(
√

2 − 1) =
√

2 + 1 +
√

2
2 −

√
2

= 2 + 2
√

2

and we can conclude that

CR(A) ≥ 3 + 2
√

2. ◀

▶ Corollary 15. The evacuation algorithm for one sender and one receiver given in the proof
of Theorem 1 is optimal.

▶ Theorem 16. Let A be an evacuation for one sender and nr > 1 receivers. Then
CR(A) ≥ 2 +

√
5.
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Proof. Let A = {S, R, R′, . . .} with S the trajectory of the sender, R the trajectory of the
receiver with largest value of µ(R), and R′ the trajectory of the receiver with second largest
µ(R′). We must have µ(S) < µ(A) = µ(R) since otherwise the competitive ratio is at least 9.
Then, Lemma 26 states that

CR(A) ≥ 1 + (1 + µ(R))(1 + µ(S))
µ(R)(1 − µ(S))

and from Lemma 29 we have

CR(A) ≥ 1 + (1 + µ(A′))(1 + µ(R))
µ(A′)(1 + µ(S)) .

If µ(A′) = µ(S) then it follows from Theorem 14 that we will have CR(A) ≥ 3 + 2
√

2. Thus,
we assume that µ(S) < µ(A′). Then µ(R′) = µ(A′) and we have

CR(A) ≥ 1 + max
{

(1 + µ(R))(1 + µ(S))
µ(R)(1 − µ(S)) ,

(1 + µ(R′))(1 + µ(R))
µ(R′)(1 + µ(S))

}
.

The second term in the max increases with decreasing µ(R′) and the first term does not
depend on µ(R′). Thus, we set µ(R′) as large as possible, i.e., we take µ(R′) = µ(R). Then

CR(A) ≥ 1 + max
{

(1 + µ(R))(1 + µ(S))
µ(R)(1 − µ(S)) ,

(1 + µ(R))2

µ(R)(1 + µ(S))

}
.

Now both terms in the max increase with decreasing µ(R) and so we take µ(R) as large as
possible, i.e., µ(R) = 1. Then

CR(A) ≥ 1 + 2 max
{

1 + µ(S)
1 − µ(S) ,

2
1 + µ(S)

}
.

The first term in the max increases with µ(S) and the second term decreases with µ(S) and
so our best-lower bound is achieved when µ(S) is such that the two terms are equal. We find
that we need (1 + µ(S))2 = 2(1 − µ(S)) or

µ(S)2 + 4µ(S) − 1 = 0.

The only non-negative solution to this quadratic equation is

µ(S) = −4 +
√

20
2 =

√
5 − 2

and we can conclude that

CR(A) ≥ 1 + 4√
5 − 1

= 1 + 4(
√

5 + 1)
4 = 2 +

√
5

as required. ◀

Our upper bound for the case that ns = 1 and nr > 1 was 5 > 2 +
√

5 and so either
the lower bound is not tight and/or the upper bound must come down. If one refers to the
proof of Theorem 16 then one can observe that our best lower bound was achieved when
µs =

√
5 − 2 and µ1 = µ2 = 1. However, one can easily confirm that any algorithm with

µ1 = µ2 = 1 has a competitive ratio of at least 5 and so it is evident that, at least, the lower
bound is not tight. Thus, in order to make progress on this problem, we believe a different
lower bounding technique will be required.
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4 Conclusions

We have introduced a novel communication model that puts an interesting twist on the
classic linear group search problem. We provide upper bounds on the evacuation for the three
interesting combinations of agents – one sender and one receiver, one sender and multiple
receivers, and multiple senders and one receiver. We demonstrate that our algorithm for
the case of one sender and one receiver is optimal by providing a lower bound matching our
upper bound. For the case of one sender and two receivers we provide a non-trivial lower
bound of 2 +

√
5 which compares to our upper bound of 5. We do not provide any non-trivial

lower bounds for the case of multiple senders and one receiver and it is believed that this is
the most difficult case to do so (indeed, the upper bound for this case was considerably more
complex than the other two cases).

The most immediate open problems concern the lower bounds for the cases of multiple
senders and multiple receivers. For the multiple receiver case we provided arguments
demonstrating that the lower bound presented here cannot be tight and so in order to close
the gap between the lower and upper bounds a different lower bounding technique will be
required. Of course, it can also be the case that the upper bound must come down as well
(although this does not seem likely). We did not attempt to provide a lower bound for
the case of multiple senders (there is a trivial lower bound of 3 which can be derived by
considering the first time any agent reaches location ±x).

Our upper bounds on the evacuation seem to hint at the fact that it is better to “listen”
than it is to “speak” since our upper bound for the case of multiple receivers is 5 and
for multiple senders it is ≈ 5.681319 (and we do not believe that these can be improved).
Closing the gap between the upper and lower bounds would be interesting even just from
the standpoint of answering the question of whether or not it is better to “listen” than it is
to “speak”.
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A Proofs for Section 2 (Evacuation Algorithms and their Competitive
Ratios)

▶ Theorem 17 (Theorem 2 restated). When ns = 1 and nr > 1 there exists an evacuation
algorithm with competitive ratio 5.

Proof. The proof is constructive and based on the following algorithm: one receiver moves
to the left at unit speed and one receiver moves to the right at unit speed. When one of the
receivers finds the target it immediately moves to notify the sender (and all other agents) at
the origin. The sender immediately notifies the remaining receiver, and all agents proceed to
the target at unit speed. An illustration of this algorithm is provided in Figure 4 for the
case that the target is at location −x < −1. The situation is symmetric when x > 1.

Suppose that the target is at location −x < −1. The left receiver will find this target
first and will do so at the time x. It then immediately moves to the origin to notify the
sender, arriving at time 2x. The sender notifies the right receiver who is at location 2x. The
right receiver then moves at unit speed to the target arriving at time 5x. The competitive
ratio is thus 5. The case when x > 1 is totally symmetric and also yields a competitive ratio
of 5. ◀

▶ Lemma 18 (Lemma 4 restated). The turning-points (Dj , Tj), j = 0, 1, . . ., of the trajectory
Rays(η, v0, v1, γ) are given by

Dj = ηγ

[
(1 − v1)(1 + v0)
(1 + v1)(1 − v0)

]⌊ j
2 ⌋ {

1, even j
v1(1+v0)
v0(1+v1) , odd j

, Tj = Dj

η

{
1
v0

, even j
1
v1

, odd j.

https://doi.org/10.2307/1426208
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Figure 4 The trajectories of the agents when the target is at location −x. The sender is in red
and the receivers are in blue. A dashed line indicates when an agent deviates from its assigned
search trajectory. Significant times and positions are indicated.

Proof. We will derive the turning-points when η = 1. The turning-points for η = −1 are
just reflections about the time axis.

The first turning-point is P0 = (γ, γ/v0) which is evident from the description of
Rays(1, v0, v1, γ). This turning-point lies on the ray of slope 1

v0
and so the next turning-

point will lie on the ray with slope 1
v1

. The turning-points for larger j will then alternate
between these two rays. It follows that the turning-times Tj can be expressed in terms of the
turning-positions Dj as follows:

Tj = Dj

{
1
v0

, even j
1
v1

, odd j.

We can therefore focus on finding the turning positions Dj .
The agents travel at unit speed between turning-points Pj−1 and Pj , and an agent will

be moving to the right/left when j is even/odd. When j is even we have

1 = Tj − Tj−1

Dj − Dj−1
=

Dj

v0
− Dj−1

v1

Dj − Dj−1
→

(
1
v0

− 1
)

Dj =
(

1
v1

− 1
)

Dj−1

and finally

Dj = v0(1 − v1)
v1(1 − v0)Dj−1, even j.

When j is odd we find in a similar manner that

Dj = v1(1 + v0)
v0(1 + v1)Dj−1, odd j.

Combining these results yields, for even or odd j,

Dj = (1 − v1)(1 + v0)
(1 + v1)(1 − v0)Dj−2.
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Unrolling this recursion then gives

Dj =
[

(1 − v1)(1 + v0)
(1 + v1)(1 − v0)

]⌊ j
2 ⌋ {

D0, even j
D1, odd j

= γ

[
(1 − v1)(1 + v0)
(1 + v1)(1 − v0)

]⌊ j
2 ⌋ {

1, even j
v1(1+v0)
v0(1+v1) , odd j

where we have used the fact that D0 = γ, and our expression for Dj when j is odd. ◀

▶ Lemma 19 (Lemma 6 restated). The turning-points of the receiver are

Dr
j = (−1)j

(
1 + vr

1 − vr

)j

, T r
j = 1

vr

(
1 + vr

1 − vr

)j

.

Proof. With Xr(t) = Rays(1, −vr, vr, 1) it follows from Lemma 4 that for even j we have

Dr
j =

[
(1 + vr)(1 + vr)
(1 − vr)(1 − vr)

]⌊ j
2 ⌋

=
(

1 + vr

1 − vr

)2⌊ j
2 ⌋

=
(

1 + vr

1 − vr

)j

.

and for odd j we similarly find that Dr
j = −

(
1+vr

1−vr

)j

. Thus, for j even or odd we have

Dr
j = (−1)j

(
1+vr

1−vr

)j

. The times T r
j are

T r
j = Dr

j

{
1

vr
, even j

− 1
vr

, odd j.
= (−1)j

Dr
j

vr
= 1

vr

(
1 + vr

1 − vr

)j

.

◀

We note the following identities concerning the turning-points (Dr
j , T r

j ) which we will use
these identities often and without reference.

T r
j = 1 + vr

1 − vr
T r

j−1 = 1 − vr

1 + vr
T r

j+1, Dr
j = −1 + vr

1 − vr
Dr

j−1 = −1 − vr

1 + vr
Dr

j+1.

▶ Lemma 20 (Lemma 7 restated). The turning-points of the right-sender are

D+
j = vrT r

j

{
3−vr

1−vr
, even j

1−vr

1+vr
, odd j

, T +
j = T r

j

{
1+vr

1−vr
, even j

1+3vr

1+vr
, odd j

Proof. With X+(t) = Rays(1, v0, v1, γ+) it follows from Lemma 4 that

D+
j = γ+

[
(1 − v1)(1 + v0)
(1 + v1)(1 − v0)

]⌊ j
2 ⌋ {

1, even j
v1(1+v0)
v0(1+v1) , odd j

, T +
j = D+

j

{
1
v0

, even j
1
v1

, odd j.

With v0 and v1 given by (3) we have

(1 − v1)(1 + v0)
(1 + v1)(1 − v0) =

(
1 − vr(1−vr)

1+3vr

) (
1 + vr(3−vr)

1+vr

)
(

1 + vr(1−vr)
1+3vr

) (
1 − vr(3−vr)

1+vr

)
=

(
1 + 2vr + v2

r

)
(1 + 3vr + vr(1 − vr))

(1 + 3vr + vr(1 − vr)) (1 − 2vr + v2
r) =

(
1 + vr

1 − vr

)2
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We also observe that

v1(1 + v0)
v0(1 + v1) =

vr(1−vr)
1+3vr

(
1 + vr(3−vr)

1+vr

)
vr(3−vr)

1+vr

(
1 + vr(1−vr)

1+3vr

)
= vr(1 − vr)(1 + vr + vr(3 − vr)

vr(3 − vr)(1 + 3vr + vr(1 − vr)) = 1 − vr

3 − vr
= 1

γ+
.

Substituting these last two results into our expression for D+
j then yields

D+
j =

(
1 + vr

1 − vr

)2⌊ j
2 ⌋ {

γ+, even j

1, odd j
=

γ+

(
1+vr

1−vr

)j

, even j(
1+vr

1−vr

)j−1
, odd j

= vrT r
j

{
3−vr

1−vr
, even j

1−vr

1+vr
, odd j

as required.
For T +

j we have

T +
j = D+

j

{
1
v0

, even j
1
v1

, odd j.
= vr

{
γ+
v0

T r
j , even j

1
v1

T r
j−1, odd j

.

We observe that

γ+

v0
=

3−vr

1−vr

vr(3−vr)
1+vr

= 1
vr

(
1 + vr

1 − vr

)
and thus

T +
j = vr

 1
vr

(
1+vr

1−vr

)
T r

j , even j

1+3vr

vr(1−vr) T r
j−1, odd j

=
{

T r
j+1, even j

1+3vr

1−vr
T r

j−1, odd j
= T r

j

{
1+vr

1−vr
, even j

1+3vr

1+vr
, odd j

.

This completes the proof. ◀

▶ Lemma 21 (Lemma 8). The turning-points of the left-sender are

D−
j = −vrT r

j+1

{
3−vr

1−vr
, even j

1−vr

1+vr
, odd j

, T −
j = T r

j+1

{
1+vr

1−vr
, even j

1+3vr

1+vr
, odd j

.

Proof. The proof is essentially identical to the proof of Lemma 7. ◀

▶ Observation 22 (Observation 5 restated). For all k = 0, 1, 2, . . . the following properties
hold for the algorithm EvacRays(vr):
1. the receiver reaches its turning point 2k+1 (resp. 2k+2) at the same time the right-sender

(resp. left-sender) reaches its turning-point 2k.
2. the receiver and right-sender (resp. left-sender) are co-located at all times in the interval

[T +
2k+1, T r

2k+2] (resp. [T −
2k+1, T r

2k+3]),

Proof. (Observation 5) We will prove the properties for the right-sender only. Those for the
left-sender follow in a nearly identical manner.

The first statement we want to prove is: “the receiver reaches its turning point 2k + 1
at the same time the right-sender reaches its turning-point 2k”. The receiver reaches its
turning-point 2k + 1 at time T r

2k+1. The right-sender reaches its turning-point 2k at time
T +

2k and by Lemma 7 we have T +
2k = 1+vr

1−vr
T r

2k = T r
2k+1, which proves the statement.
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Figure 5 Setup for the proof of Theorem 9. The turning-point 2k of each agent is indicated.
On the left the target is found at time t∗ ≤ T −

2k+1 and on the right the target is found at time
t∗ > T −

2k+1.

The second statement we want to prove is: “the receiver and right-sender are co-located
at all times in the interval [T +

2k+1, T r
2k+2]”. During the interval [T +

2k+1, T +
2k+2] the right-sender

will be moving to the right along the space-time line

t = x − D+
2k+1 + T +

2k+1 = x − vr
1 − vr

1 + vr
T r

2k+1 + 1 + 3vr

1 + vr
T r

2k+1 = x + 1 + 2vr + v2
r

1 + vr
T r

2k+1

and finally

t = x + (1 + vr)T r
2k+1. (6)

During the interval [T r
2k+1, T r

2k+2] the receiver will be moving to the right along the space-time
line

t = x−Dr
2k+2 +T r

2k+2 = x−vrTR(k +2)+T 2k+2
R = x+(1−vr)T r

2k+2 = x+(1+vr)T r
2k+1.

We can thus conclude that the right-sender and receiver will be travelling along the same
space-time line and will be co-located during the interval [T +

2k+1, T +
2k+2] ∩ [T r

2k+1, T r
2k+2] =

[T +
2k+1, T r

2k+2]. ◀

▶ Theorem 23 (Theorem 9 restated). The competitive ratio of algorithm EvacRays(vr)
satisfies

CR ≤ 1 + 1 + vr

1 − vr

(
1 + 4vr − v2

r

vr(3 − vr)

)
.

Proof. Due to the symmetry between the right/left-senders, we may assume without loss of
generality that the target is found by the right-sender. Moreover, the sequence of intervals
(D+

2k, D+
2k+2], k = 0, 1, 2, . . ., collectively covers the entire line extending from D+

0 to +∞ and
so we may assume without loss of generality that the target is at location x∗ ∈ (D+

2k, D+
2k+2],

for some fixed value of k ≥ 0.
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The right-sender will reach x∗ while travelling to the right between its turning points
2k + 1 and 2k + 2, and, we demonstrated in the proof of Observation 5 that while doing so
this sender will be moving along the space-time line with equation (6). Thus, the time t∗ at
which the right-sender reaches the target is

t∗ = x∗ + (1 + vr)T r
2k+1.

After reaching the target the right-sender will wirelessly notify the receiver and the receiver
will move to notify the left-sender. There are two cases to consider, each of which is illustrated
in Figure 5. In the first case – left side of Figure 5 – the target is found at location x∗ such
that t∗ ≤ T −

2k+1. We know from Observation 5 that the receiver will be co-located with the
left-receiver at all times within the interval [T −

2k+1, T r
2k+3], and before time T −

2k+1 the receiver
and left-sender will be moving towards each other, each at unit speed. Thus, the earliest
time that the left-sender could be notified of the target is at the time T −

2k+1. Evidently, the
evacuation time for this case is

E = T −
2k+1 + |x∗ − D−

2k+1| = x∗ + 1 + 3vr

1 + vr
T r

2k+2 + vr
1 − vr

1 + vr
T r

2k+2

= x∗ + 1 + 3vr + vr(1 − vr)
1 + vr

T r
2k+2.

and the competitive ratio is

CR = E

x∗
= 1 +

1+3vr+vr(1−vr)
1+vr

T r
2k+2

x∗
.

The competitive ratio increases with decreasing x∗, and with x∗ > D+
2k = vr

3−vr

1−vr
T r

2k we get

CR ≤ 1 + 1 + 3vr + vr(1 − vr)
1 + vr

T r
2k+2

vr
3−vr

1−vr
T r

2k

= 1 + 1 + 3vr + vr(1 − vr)
1 + vr

· 1 − vr

vr(3 − vr) · (1 + vr)2

(1 − vr)2

= 1 + 1 + vr

1 − vr

(
1 + 3vr + vr(1 − vr)

vr(3 − vr)

)
= 1 + 1 + vr

1 − vr

(
1 + 4vr − v2

r

vr(3 − vr)

)
.

and finally

CR ≤ 1 + 1 + vr

1 − vr

(
1 + 4vr − v2

r

vr(3 − vr)

)
. (7)

The second case – the right side of Figure 5 – occurs when the target is found at a time
t∗ ∈ (T −

2k+1, T +
2k+2] = (T −

2k+1, T r
2k+3]. The left-sender and receiver are co-located during the

time interval (T −
2k+1, T r

2k+3], and so the left-sender will be notified of the target at time
t∗. By referring to Figure 5 one can observe that the evacuation time for this case will be
2(t∗ − T −

2k+1) more than the evacuation time of the previous case, i.e.,

E = x∗ + 1 + 3vr + vr(1 − vr)
1 + vr

T r
2k+2 + 2(t∗ − T −

2k+1).
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Since t∗ = x∗ + (1 + vr)T r
2k+1 = x∗ + (1 − vr)T r

2k+2 and T −
2k+1 = 1+3vr

1+vr
T r

2k+2 we get

E = 3x∗ + 1 + 3vr + vr(1 − vr)
1 + vr

T r
2k+2 + 2

(
(1 − vr) − 1 + 3vr

1 + vr

)
T r

2k+2

= 3x∗ + 1 + 3vr + vr(1 − vr) + 2(1 + vr)(1 − vr) − 2(1 + 3vr)
1 + vr

T r
2k+2

= 3x∗ + −(1 + 3vr) + (2 + 3vr)(1 − vr)
1 + vr

T r
2k+2

= 3x∗ + 1 − vr(2 + 3vr)
1 + vr

T r
2k+2

and the competitive ratio is

CR = 3 + 1 − vr(2 + 3vr)
1 + vr

T r
2k+2
x∗

When vr(2 + 3vr) ≥ 1 the competitive ratio is ≤ 3. When vr(2 + 3vr) < 1 the competitive
ratio is > 3 and increases with decreasing x∗, or, equivalently, with decreasing t∗. Thus, we
should take t∗ arbitrarily close to T −

2k+1. However, t∗ = T −
2k+1 gave the best-case evacuation

time for the case that t∗ ≤ T −
2k+1. We can thus conclude that a worst-case competitive

ratio can be achieved when t∗ ≤ T −
2k+1 and the competitive ratio of the algorithm is upper

bounded by (7). ◀

B Proofs for Section 3 (Lower bounds)

▶ Lemma 24. Let X be a search trajectory. If µ(X) < 1 then for all 0 < ϵ < 1 − µ(X) there
exists a time T > 0 such that

KD
X (t) ⊆

[
− (µ(X) + ϵ)(t − X(t))

1 + µ(X) + ϵ
,

(µ(X) + ϵ)(t + X(t))
1 + µ(X) + ϵ

]
, ∀t > T.

In the case of µ(X) = 1 the parameter ϵ can be taken to be 0 in the above expression.

Proof. By the definition of µ(X), it follows that for all ϵ > 0 there exists a time T ′ > 0 such
that

−(µ(X) + ϵ)t ≤ X(t) ≤ (µ(X) + ϵ)t, ∀t > T ′. (8)

Moreover, when µ(X) = 1 the ϵ can be taken to be 0, since |X(t)| ≤ t.
In order to have direct knowledge of location x at time t > T ′ there must exist a time

t′ ≤ t such that X(t′) = x. The unit speed of the agents implies that |X(t) − x| ≤ t − t′ or

t′ − t + X(t) ≤ x ≤ t + X(t) − t′. (9)

Assume that t′ > T ′. Then we can combine (8) and (9) to get

max{−(µ(X) + ϵ)t′, t′ − t + X(t)} ≤ x ≤ min{(µ(X) + ϵ)t′, t + X(t) − t′}. (10)

On the left, the first term in the max decreases with t′ and the second term increases with t′.
Thus, the best lower bound is achieved when the two terms are equal. This will occur when

t′ = t − X(t)
1 + µ(X) + ϵ

.
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For this value of t′ we get

x ≥ − (µ(X) + ϵ)(t − X(t))
1 + µ(X) + ϵ

.

At time t we have X(t) ≤ (µ(X) + ϵ)t and thus

t′ = t − X(t)
1 + µ(X) + ϵ

≥ t − (µ(X) + ϵ)t
1 + µ(X) + ϵ

= 1 − µ(X) − ϵ

1 + µ(X) + ϵ
t.

Hence, we will have t′ > T ′ for all

t > T = 1 + µ(X) + ϵ

1 − µ(X) − ϵ
T ′. (11)

When µ(X) = 1 the above expression is vacuously true, since T ′ can be taken to be 0.
In a similar manner, we get from the right side of (10) that

x ≤ (µ(X) + ϵ)(t + X(t))
1 + µ(X) + ϵ

.

for all t satisfying (11). This completes the proof. ◀

In a similar manner we can bound the total knowledge available to an agent that can
only receive messages face-to-face.

▶ Lemma 25. Let A be an evacuation algorithm and let Xf2f ∈ A represent the trajectory
of an agent that can only receive messages face-to-face. If µ(Xf2f ) < 1 then for all 0 < ϵ <

1 − µ(Xf2f ) there exists a time T > 0 such that

KXf2f
(t; A) ⊆

[
− (µ(A) + ϵ)(t − Xf2f (t))

1 + µ(A) + ϵ
,

(µ(A) + ϵ)(t + Xf2f (t))
1 + µ(A) + ϵ

]
, ∀t > T.

In the case of µ(Xf2f ) = 1 the parameter ϵ can be taken to be 0 in the above expression.

Proof. When µ(X) < 1 it follows from the definitions of A and µ(X) that there exists a
time T ′ > 0 such that for any X ∈ A we have

−(µ(A) + ϵ)t ≤ X(t) ≤ (µ(A) + ϵ)t, ∀t > T ′, ∀X ∈ A. (12)

In order to have direct knowledge of location x at time t > T ′ there must exist a time t′ ≤ t

such that Xf2f (t′) = x. The unit speed of the agents implies that |Xf2f (t) − x| ≤ t − t′ or
that (9) must be satisfied by the trajectory Xf2f at time t.

In order to have indirect knowledge of location x at time t there must exist another agent
that visits x at time t′ ≤ t and can reach location Xf2f (t) by time t. Indeed, this agent
must be able to catch the agent with trajectory Xf2f at or before time t, and the agent
with trajectory Xf2f will be at location Xf2f (t) at time t. Thus, in order to have indirect
knowledge of x, the unit speed condition implies again that |Xf2f (t) − x| ≤ t − t′ or that (9)
is satisfied. To complete the proof we follow the same steps of the proof of Lemma 24 except
with (12) used in place of (8). ◀

We will now focus on the case that there is only a single sender involved in the evacuation.
The sender can only be communicated with face-to-face and so Lemma 25 applies in this
case. We can use it to get the following result.
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▶ Lemma 26. Let A be an evacuation algorithm with one sender and let S ∈ A represent the
trajectory of this sender. If µ(S) = 1 then CR(A) is unbounded. If µ(S) < 1 then we have

CR(A) ≥ 1 + (1 + µ(A))(1 + µ(S))
µ(A)(1 − µ(S)) .

Proof. If µ(S) = 1 then the previous lemma tells us that KS(t; A) = [− t−S(t)
2 , t+S(t)

2 ].
Suppose without loss of generality that S(t) = t. Then KS(t) = [0, t] and by Lemma 13 we
have

CR(A) ≥ sup
x ̸∈KS(t;A)

|X(t) − x| + t

|x|
= sup

ϵ>1

2t + ϵ

ϵ
> 2t + 1.

Since the above holds for infinitely many arbitrary large t values, we conclude that CR(A)
is unbounded.

Suppose now that µ(S) < 1. Then for all 0 < ϵ < 1 − µ(S) there exists a time T such
that

KS(t; A) ⊆
[
− (µ(A) + ϵ)(t − S(t))

1 + µ(A) + ϵ
,

(µ(A) + ϵ)(t + S(t))
1 + µ(A) + ϵ

]
, ∀t > T.

Moreover, from the definition of µ(X) it follows that for any ∆ > 0 there exists a time τ

such that |S(τ)| = µ(S)τ ± o(τ). Take ∆ > T and assume without loss of generality that
S(τ) = µ(S)τ ± o(τ). Then

KS(τ ; A) ⊆
[
− (µ(A) + ϵ)(1 − µ(S))τ

1 + µ(A) + ϵ
,

(µ(A) + ϵ)(1 + µ(S))τ
1 + µ(A) + ϵ

]
and

CR(A) ≥ sup
x ̸∈KS(τ ;A)

|S(t) − x| + t

|x|

= 1 + sup
ϵ′>0

(1 + µ(S))τ
(µ(A)+ϵ)(1−µ(S))τ

1+µ(A)+ϵ + ϵ′
= 1 + (1 + µ(A) + ϵ)(1 + µ(S))

(µ(A) + ϵ)(1 − µ(S))

> 1 + (1 + µ(A))(1 + µ(S))
µ(A)(1 − µ(S))

[
1

1 + ϵ
µ(A)

]
.

The term in square brackets approaches 1 from below as ϵ → 0 and thus for any fixed δ > 0
we can choose ϵ > 0 small enough that

CR(A) > 1 − δ + (1 + µ(A))(1 + µ(S))
µ(A)(1 − µ(S)) .

◀

▶ Corollary 27. Let A be an evacuation algorithm with one sender and let S ∈ A represent
the trajectory of this sender. If µ(S) = µ(A) we have CR(A) ≥ 9.

Proof. With µ(S) = µ(A) we have from Lemma 26 that

CR(A) ≥ 1 + (1 + µ(S))2

µ(S)(1 − µ(S))
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for all δ > 0. Let g(u) = (1+u)2

u(1−u) and observe that

dg(u)
du

= 2(1 + u)
u(1 − u) − (1 + u)2(1 − 2u)

u2(1 − u)2 = (1 + u)
[

2u(1 − u) − (1 + u)(1 − 2u)
u2(1 − u)2

]
= (1 + u)

[
2u − 2u2 − 1 + 2u − u + 2u2

u2(1 − u)2

]
= (1 + u)(3u − 1)

u2(1 − u)2 .

From this last expression it is clear that u = 1/3 is the only non-negative minimizer. When
u = 1/3 we find g(1/3) = (1+ 1

3 )2

1
3 (1− 1

3 ) = 8 and thus we can conclude that CR(A) > 9 − δ for
arbitrary δ > 0as required. ◀

In the next lemma we consider the knowledge set of the receivers.

▶ Lemma 28. Let A be an evacuation algorithm with one sender and at least one receiver.
Let S be the trajectory of the sender and suppose that µ(S) < µ(A). Let R be the trajectory
of a receiver with µ(R) = µ(A). If µ(R) < 1 then for all 0 < ϵ < 1 − µ(R) there exists a time
T > 0 such that

KR(t; A) = KS(t; A) ∪
[
− (µ(R) + ϵ)(t − R(t))

1 + µ(R) + ϵ
,

(µ(R) + ϵ)(t + R(t))
1 + µ(R) + ϵ

]
, ∀t > T.

In the case of µ(R) = 1 the parameter ϵ can be taken to be 0 in the above expression.

Proof. The receivers can receive wireless messages from the sender and so at any time they
know what the sender knows. If we exclude knowledge from the sender, a receiver can only
possess direct knowledge, or receive knowledge indirectly from a different receiver. However,
receivers can’t send messages and so communication between receivers is face-to-face. Thus,
to complete the proof, we only need to invoke Lemma 25. ◀

▶ Lemma 29. Let A be an evacuation algorithm with one sender and at least one receiver.
Let S ∈ A represent the trajectory of this sender; let R ∈ A represent the trajectory of the
receiver with the largest value of µ(R); and define A′ = A \ {R}. Then, we have

CR(A) ≥ 1 + (1 + µ(A′))(1 + µ(R))
µ(A′)(1 + µ(S)) .

Proof. We make use of Lemma 28. If µ(R) = 1 then

KR(t; A) = KS(t; A) ∪
[
− t − R(t)

2 ,
t + R(t)

2

]
.

If µ(R) < 1 then for all 0 < ϵ < 1 − µ(R) there exists a time TR > 0 such that

KR(t; A) = KS(t; A) ∪
[
− (µ(R) + ϵ)(t − R(t))

1 + µ(R) + ϵ
,

(µ(R) + ϵ)(t + R(t))
1 + µ(R) + ϵ

]
, ∀t > TR.

Moreover, for any ∆ > 0 there exists a time τ > ∆ such that |R(t)| = µ(R)τ . Assume
without loss of generality that R(τ) = µ(R)τ . Then KR(τ ; A) = KS(τ ; A) ∪ [0, τ ] if µ(R) = 1
and for µ(R) < 1 we can take any ∆ > TR to get

KR(τ ; A) = KS(τ ; A) ∪
[
− (µ(R) + ϵ)(1 − µ(R))τ

1 + µ(R) + ϵ
,

(µ(R) + ϵ)(1 + µ(R))τ
1 + µ(R) + ϵ

]
.
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In light of the proof of Lemma 26 and its corollary, it is clear that unless the sender can
increase the lower bound of the receiver’s knowledge, we will find that CR(A) is unbounded
when µ(R) = 1, and when µ(R) < 1 we will get CR(A) > 9 − δ for all δ > 0. Thus, we
assume that the sender can increase the lower bound of the receiver’s knowledge.

Consider the knowledge set KS(t; A) of the sender. Since this must extend the knowledge
of the receiver with trajectory R we can exclude this receiver from the computation of
KS(t; A). Thus, if we take A′ = A \ {R} we can invoke Lemma 25 with respect to A′ to
conclude that for all 0 < ϵ < 1 − µ(S) there exists a time TS > 0 such that

KS(t; A′) ⊆
[
− (µ(A′) + ϵ)(t − S(t))

1 + µ(A′) + ϵ
,

(µ(A′) + ϵ)(t + S(t))
1 + µ(A′) + ϵ

]
, ∀t > TS .

We can take ∆ > max{TR, TS} so that τ > TS and as a result

KS(τ ; A) ⊆
[
− (µ(A′) + ϵ)(τ − S(τ))

1 + µ(A′) + ϵ
,

(µ(A′) + ϵ)(τ + S(τ))
1 + µ(A′) + ϵ

]
.

By definition of µ(S), at any time t > Ts we have |S(t)| ≤ (µ(S) + ϵ)t and thus

KS(τ ; A) ⊆
[
− (µ(A′) + ϵ)(1 + µ(S) + ϵ)τ

1 + µ(A′) + ϵ
,

(µ(A′) + ϵ)(1 + µ(S) + ϵ)τ
1 + µ(A′) + ϵ

]
.

By Lemma 13 we then have

CR(A) ≥ sup
x/∈KR(τ ;A)

|R(τ) − x| + τ

|x|

= 1 + sup
ϵ′>0

(1 + µ(R))τ
(µ(A′)+ϵ)(1+µ(S))τ

1+µ(A′)+ϵ + ϵ′
= 1 + (1 + µ(A′) + ϵ)(1 + µ(R))

(µ(A′) + ϵ)(1 + µ(S) + ϵ)

> 1 + (1 + µ(A′))(1 + µ(R))
µ(A′)(1 + µ(S))

[
1

1 + ϵ
µ(A′)

] [
1

1 + ϵ
µ(S)

]
.

It is clear that µ(S) > 0 (and, thus, also µ(A′) > 0) since otherwise the sender would not
extend the receiver’s knowledge. Then both of the terms in square brackets approach 1 from
below as ϵ → 0 and so we can choose ϵ > 0 small enough that for any fixed δ > 0 we have

CR(A) > 1 − δ + (1 + µ(A′))(1 + µ(R))
µ(A′)(1 + µ(S))

as required. ◀
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Abstract
The distributed subgraph detection asks, for a fixed graph H, whether the n-node input graph
contains H as a subgraph or not. In the standard CONGEST model of distributed computing, the
complexity of clique/cycle detection and listing has received a lot of attention recently.

In this paper we consider the induced variant of subgraph detection, where the goal is to decide
whether the n-node input graph contains H as an induced subgraph or not. We first show a Ω̃(n)
lower bound for detecting the existence of an induced k-cycle for any k ≥ 4 in the CONGEST model.
This lower bound is tight for k = 4, and shows that the induced variant of k-cycle detection is much
harder than the non-induced version. This lower bound is proved via a reduction from two-party
communication complexity. We complement this result by showing that for 5 ≤ k ≤ 7, this Ω̃(n)
lower bound cannot be improved via the two-party communication framework.

We then show how to prove stronger lower bounds for larger values of k. More precisely, we show
that detecting an induced k-cycle for any k ≥ 8 requires Ω̃(n2−Θ(1/k)) rounds in the CONGEST model,
nearly matching the known upper bound Õ(n2−Θ(1/k)) of the general k-node subgraph detection
(which also applies to the induced version) by Eden, Fiat, Fischer, Kuhn, and Oshman [DISC 2019].

Finally, we investigate the case where H is the diamond (the diamond is obtained by adding an
edge to a 4-cycle, or equivalently removing an edge from a 4-clique), and show non-trivial upper and
lower bounds on the complexity of the induced version of diamond detecting and listing.
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1 Introduction

Background. The subgraph detection problem asks us to decide if the n-node input graph
contains a copy of some fixed subgraph H or not. This problem has received a lot of attention
in the past 40 years, and has recently been investigated in the setting of distributed computing
as well. There are actually two versions for this problem. The first version simply requires
to decide if the input network contains H. The second version cares about induced H, and
asks to decide if the input network contains a vertex-induced copy of H . We refer to Figure 1
for an illustration of the difference between the two versions. In this paper we call the former
version “non-induced H detection” and the latter version “induced H detection”.
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Figure 1 This graph contains a 4-cycle as a subgraph but not an induced 4-cycle.

When considering subgraph detection in the (synchronous) distributed setting, the
communication network is identified with the input graph, i.e., we ask whether the n-node
communication network contains H as a subgraph (induced or non-induced, depending
on the version considered). The complexity is characterized by the number of rounds of
(synchronous) communication needed to solve the problem. For networks with unbounded
bandwidth (the so-called LOCAL model in distributed computing), both versions of the
subgraph detection problem are essentially trivial: for any O(1)-node subgraph H, the
problem can be solved in O(1) rounds by a naive approach. For networks with bounded
bandwidth (the so-called CONGEST model in distributed computing, in which the size of
each message is restricted to O(log n) bits), on the other hand, the same approach may
take many more rounds due to possible congestion in the network (see the next paragraph
for the definition of the CONGEST model). This is one of the reasons why the subgraph
detection problem is interesting in the distributed setting. In the last few years, there
has been significant progress in understanding the complexity of the non-induced subgraph
detection in the CONGEST model.

The CONGEST model. In this paper we use the standard CONGEST model, as used in
prior works [2, 3, 5, 8, 9, 11, 14, 16, 22]. In the CONGEST model, a distributed network of n

computers is represented as a simple undirected graph G = (V, E) of n nodes, where each
node corresponds to a computational device, and each edge corresponds to a communication
link. Each node v ∈ V initially has a Θ(log n)-bit unique identifier ID(v), and knows the
list of IDs of its neighbors and the parameter n = |V |. The communication proceeds in
synchronous rounds. In each round, each v ∈ V can perform unlimited local computation,
and can send an O(log n)-bit distinct message to each of its neighbors.

When considering subgraph detection in the CONGEST model, the communication network
is identified with the input graph, i.e., we ask whether the n-node communication network
contains H as a subgraph. If the network contains H as a subgraph, at least one node
outputs 1 (Yes), otherwise all nodes output 0 (No). We assume that each node knows
the graph H to be detected. The complexity is characterized by the number of rounds of
communication needed to solve the problem.

Non-induced subgraph detection in the distributed setting. Typical examples of the
non-induced subgraph detection in the CONGEST model that have been studied intensively
are cliques and cycles. For cliques, the first sublinear-round algorithm of k-clique detection
in the CONGEST model is due to Izumi and Le Gall [22], for k = 3 (i.e., triangle detection),
which runs in Õ(n2/3) rounds. Later, the complexity was brought down to Õ(

√
n) by Chang

et al. [8], and then further to Õ(n1/3) by Chang and Saranurak [9]. These upper bounds also
hold for 3-clique listing,1 and the Õ(n1/3) upper bound is tight up to polylogarithmic factors
due to the lower bounds by Pandurangan, Robinson and Scquizzato [28] and Izumi and Le

1 The listing version of the problem asks to list all instances of H in the graph.
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Table 1 Prior results for non-induced subgraph detecting and listing in the distributed setting.
Here n denotes the number of nodes in the network.

Problem Time bound Paper Model

Triangle detection
Õ(n1/3) [9] CONGEST

Õ(n1/4) [21] QUANTUM CONGEST

O(n0.159) [6] CONGESTED CLIQUE

Triangle listing Θ̃(n1/3) [22, 9, 28] CONGEST

k-clique detection, k ≥ 4 Ω(n1/2/ log n) [11] CONGEST

Õ(n1−2/k) [2] CONGEST

k-clique listing, k ≥ 4 Θ̃(n1−2/k) [16, 2] CONGEST

2k-cycle detection

k ≥ 2 Ω(n1/2/ log n) [13, 24] CONGEST

k = 7, 9, 11, ... Õ(n1−2/(k2−k+2)) [14] CONGEST

k = 6, 8, 10, ... Õ(n1−2/(k2−2k+4)) [14] CONGEST

2 ≤ k ≤ 5 Õ(n1−1/k) [4, 13] CONGEST

any constant k O(1) [4] CONGESTED CLIQUE

(2k + 1)-cycle detection, k ≥ 2 Θ̃(n) [13, 24] CONGEST

Detecting some Θ(k)-node subgraph H Ω(n2−1/k/ log n) [16] CONGEST

Detecting a k-node tree O(kk) [17, 24] CONGEST

Gall [22]. For k-cliques with k ≥ 4, the first sublinear algorithm of k-clique listing is due to
Eden et al. [14]. They showed that one can list all k-cliques in Õ(n5/6) rounds for k = 4 and
Õ(n21/22) rounds for k = 5. These results were improved to Õ(nk/(k+2)) rounds for all k ≥ 4
by Censor-Hillel, Le Gall, and Leitersdorf [5], and very recently, Õ(n1−2/k) rounds for all
k ≥ 4 by Censor-Hillel et al. [2]. The latter bound is tight up to polylogarithmic factors due
to the lower bounds by [16].

For k-cycles with k ≥ 4, it is known that non-induced k-cycle (Ck) detection requires
Ω(ex(n, Ck)/n) rounds by Drucker et al. [13], where ex(n, Ck) is the Turán number of k-cycle
(Turán number ex(n, Ck) is the maximum number of edges in an n-node graph which does
not have a k-cycle as a subgraph). This implies the Ω̃(n) lower bounds for odd k and
Ω̃(

√
n) lower bound for k = 4. Korhonen and Rybicki [24] showed Õ(n)-round algorithms

of non-induced k-cycle detection for any odd constant k. They also showed the Ω̃(
√

n)
lower bounds for even k ≥ 6. For k = 4, an optimal algorithm for non-induced 4-cycle
detection is known due to drucker et al. [13]. For even k ≥ 6, Fischer et al. [16] showed an
Õ(n1− 1

k(k−1) )-round algorithm, and this was improved to Õ(n1−2/Θ(k2)) by Eden et al. [14].
Recently, Censor-Hillel et al. [4] showed that for 3 ≤ k ≤ 5, non-induced C2k detection can
be solved in Õ(n1−1/k) rounds.

We refer to Table 1 for the summary of all these results.

Induced subgraph detection in the distributed setting. All of the above results for cycles
are only for the non-induced distributed subgraph detection problem. While for the case of
cliques, non-induced detection and induced subgraph detection are the same problem, this is
not the case for cycles (see again Figure 1 for an illustration). For instance, if we want to
know if the input graph contains a chordless cycle, we need to consider the induced version.
In the centralized (i.e., non-distributed) setting, the induced version of subgraph detection
has thus also been extensively studied [10, 15, 20, 25, 27, 30], leading to several algorithms
that significantly differ from the algorithms for the non-induced version of the problem.

Despite its importance, the induced version has almost not been studied at all in the
distributed setting. The only known results on the complexity of the induced subgraph
detection problem in the CONGEST model are generic bounds describing how large the round
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Table 2 Our results on the round complexity of induced-subgraph detecting, and the corresponding
known results. Here n denotes the number of nodes in the network.

Problem Time Bound Reference Model

induced k-node subgraph detection Õ(n2−2/(3k+1)) [14] CONGEST

induced k-cycle detection Ω(n/ log n), for k ≥ 4 Theorem 1 CONGEST
Ω(n2−1/⌊k/8⌋/ log n), for k ≥ 8 Theorem 2 CONGEST

induced diamond listing Õ(n5/6) Theorem 7 CONGEST
Ω(

√
n/ log n) Theorem 5 CONGEST

complexity can be with respect to the number of nodes in the subgraph: Fischer et al. [16]
constructed a family of graphs H with Θ(k) nodes such that (induced and non-induced) H

detection requires Ω(n2−1/k/ log n) rounds. Later, Eden et al. [14] showed that the n1/k term
cannot be removed, and also showed that for any k-node subgraph H, induced H detection
can be solved in Õ(n2− 2

3k−2 ) = Õ(n2−Θ(1/k)) rounds. These results, however, actually hold
for the non-induced version as well. Therefore, to our knowledge, it is still open whether
there exists a graph H such that the round complexities of non-induced H detection and
induced H detection are different in the CONGEST model.

Our results. In this paper we answer this question. More precisely, we seek to improve our
understanding of the round complexity of the distributed induced subgraph detection in the
CONGEST model by showing lower bounds for constant-length cycles. We refer to Table 2
for the summary of our results.

We first show that for any k ≥ 4, detecting an induced k-cycle requires a near-linear
amount of rounds; previously, no lower bound for induced cycle detection was known.

▶ Theorem 1. For any k ≥ 4, deciding if a graph contains an induced k-cycle requires
Ω(n/ log n) rounds in the CONGEST model.

For k = 4, the trivial solution of induced k-cycle detection is to have each node send its
entire neighborhood to all its neighbors, which can be done in O(n) rounds. Therefore, our
bound in Theorem 1 is tight up to logarithmic factor. Since, as already mentioned, the
non-induced version of 4-cycle detection has complexity Θ̃(

√
n), Theorem 1 proves that the

induced version is significantly harder in the CONGEST model.
We then show stronger lower bounds for induced Ck-detection for larger values of k.

▶ Theorem 2. For any constant k = 8ℓ + m where ℓ ≥ 1 and m ∈ {0, 1, . . . , 7}, deciding if a
graph contains an induced k-cycle requires Ω(n2−1/ℓ/ log n) rounds in the CONGEST model,
even when the diameter of the network is 3.

These bounds are asymptotically tight with respect to k, since for any k-node subgraph H,
induced H detection can be solved in Õ(n2−Θ(1/k)) rounds by the algorithm of [14]. We can
summarize this as follows.

▶ Corollary 3. The round complexity of induced k-cycle detection in the CONGEST model is
Θ̃(n2−Θ(1/k)).

For small k, there still exist gaps between our lower bounds and known upper bounds.
For instance, we do not know if induced 5-cycle detection can be solved in Õ(n) rounds.
This leads to the following question: can we show any improved lower bounds in the case of
k ≥ 5? We complement our results by showing that reductions from two-party communication
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complexity, which is the technique we used to show our lower bounds (as well as most of the
other lower bounds in the literature), do not have the ability to derive better lower bounds
for the case of k ≤ 7.

▶ Theorem 4 (Informal statement). For k = 5, 6, 7 and any ε > 0, reductions from two-party
communication complexity cannot give an Ω̃(n1+ε) lower bound for induced Ck detection in
the CONGEST model.

Theorem 4 is shown via an argument similar to the arguments in [11, 14]. These papers
showed that reductions from two-party communication complexity (more precisely, the
family of lower bound graphs technique) cannot show Ω̃(n1/2+ε) lower bounds of 4-clique
detection and (non-induced) 6-cycle detection. As mentioned above, to date, all known lower
bounds on the subgraph detection in the CONGEST model used reductions from two-party
communication complexity. Therefore, Theorem 4 shows that we need a fundamentally
different approach to improve these lower bounds.

The graph that is obtained by removing one edge from a 4-clique is called a diamond.
Diamonds are interesting since it is in some sense intermediate between 4-cycle and 4-clique.
We show a lower bound of induced diamond listing in the CONGEST model.

▶ Theorem 5. Listing all induced diamonds requires Ω(
√

n/ log n) rounds in the CONGEST
model.

We also prove the same result as in Theorem 4 for induced diamond listing.

▶ Theorem 6 (Informal statement). For any ε > 0, reductions from two-party communication
complexity cannot give an Ω̃(n1/2+ε) lower bound for induced diamond listing in the CONGEST
model.

Finally, we show that induced diamond listing can be done in sublinear rounds.

▶ Theorem 7. There exists an algorithm that solves induced diamond listing in Õ(n5/6)
rounds in the CONGEST model.

Due to space constraints, the proofs of Theorem 6 and Theorem 7 are omitted from the main
body of this paper – they can be found in Appendix C and Appendix D.

Other related works. Several works investigate the complexity of subgraph detection in
other models of distributed computing. In the powerful CONGESTED CLIQUE model, which
allows global communication, the induced subgraph detection (and even listing) can be
solved in sublinear rounds [12]: for any k-node subgraph H , induced H detection and listing
can be solved in O(n1−2/k) rounds. This algorithm was used as a subroutine to construct
sublinear-round CONGEST algorithms for clique detection and listing [2, 5, 8, 9, 21, 22].
In the CONGESTED CLIQUE model, for any constant k ≥ 3, k-cycle can be detected in
O(2O(k)n0.158) rounds by an algebraic algorithm which uses the matrix multiplication [6]
and for k ≥ 2, 2k-cycle can be detected in O(1) rounds [4]. In the QUANTUM CONGEST
model, in which each node represents a quantum computer and each edge represents a
quantum channel, Izumi, Le Gall and Magniez [21] showed that triangle detection can be
solved in Õ(n1/4) rounds by using quantum distributed search [26] which is the distributed
implementation of Grover’s quantum search. For any ε > 0, showing a lower bound of Ω(nε)
on directed triangle detection implies strong circuit complexity lower bounds [4]. These
bounds are included in Table 1.

Other relevant works include constant-round detection of constant-sized trees in the
CONGEST model [17, 24], and investigations of the distributed subgraph detection problem
in the framework of property testing [3, 18, 19].
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Recent independent work. Lower bounds for induced cycle detection similar to some of
the bounds in our paper have been concurrently (and independently) obtained very recently
by Korhonen and Nikabadi [23]. They showed the following results using graph constructions
different from ours (but still using reductions from two-party communication complexity):

Ω(n/ log n) lower bound for induced 2k-cycle detection for k ≥ 3,
Ω(n/ log n) lower bound for a multicolored variant of k-cycle detection for k ≥ 4.

2 Preliminaries

To prove lower bounds, we use reductions from two-party communication complexity problems.
This is the common technique to show lower bounds in the CONGEST model [16, 7, 11, 13, 1].
Here we give the precise definition of the family of lower bound graphs, which is the standard
notion to show these lower bounds (see, e.g., [7]).

▶ Definition 8 (Family of Lower Bound Graphs). Given an integer K, a boolean function f :
{0, 1}K × {0, 1}K → {0, 1} and a graph predicate P , a set of graphs {Gx,y = (V, Ex,y)|x, y ∈
{0, 1}K} is called a family of lower bound graphs with respect to f and P if the following
hold:
1. The set of vertices V is the same for all the graphs in the family, and has a fixed partition

V = VA ∪ VB. The set of edges of the cut Ecut = E(VA, VB) is the same for all graphs in
the family.

2. Given x, y ∈ {0, 1}K , E(VA, VA) only depends on x.
3. Given x, y ∈ {0, 1}K , E(VB , VB) only depends on y.
4. Gx,y satisfies P if and only if f(x, y) = 1.

▶ Theorem 9 ([7]). Fix a boolean function f : {0, 1}K×{0, 1}K → {0, 1} and a graph predicate
P . If there exists a family of lower bound graphs {Gx,y} with respect to f and P , then any
randomized algorithm for deciding P in the CONGEST model takes Ω(CCR(f)/|Ecut| log n),
where CCR(f) is the randomized communication complexity of f .
Throughout this paper, we use the set-disjointness function DISJK : {0, 1}K × {0, 1}K →
{0, 1}. For two bit strings x, y ∈ {0, 1}K , DISJK(x, y) is equal to 0 if and only if there exists
some index i ∈ [K] such that xi = yi = 1. It is well known that CCR(DISJK) = Ω(K) [29].

3 Lower Bounds for k-cycles, k ≥ 4

In this section we prove Theorem 1. To prove Theorem 1, we describe families of lower
bound graphs with respect to the set-disjointness function of the two-party communication
complexity, and the predicate P that says the graph does not contain an induced k-cycle.
We start by describing the fixed graph construction for the case of k = 4, and then define
the corresponding family of lower bound graphs.

The fixed graph construction. Create a graph G as follows: The vertex set is A1 ∪ A2 ∪
B1 ∪ B2 such that A1 and B2 are n-vertex cliques and A2 and B1 are a set of n vertices with
no edges inside of them. Denote the vertices in G as Ai = {a1

i , . . . , an
i }, Bi = {b1

i , . . . , bn
i }

for i ∈ {1, 2}. We add edges (ai
1, bi

1), (ai
2, bi

2) for all i ∈ [n].

Creating Gx,y. For two input bit strings x, y ∈ {0, 1}n2 and i, j ∈ [n], we denote the
(i + (j − 1)n)-th bit of x and y as xij and yij . Edges corresponding to inputs are added as
follows (see Figure 2 for the illustration):
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Figure 2 An illustration of Gx,y for the case of n = 3. The graph contains a copy of induced C4

if and only if it holds that xij = yij = 1 for some index i, j ∈ [n]. This illustration shows the case of
x3,1 = y3,1 = 1.

We add an edge between ai
1 and aj

2 if and only if xij = 1.
We add an edge between bi

1 and bj
2 if and only if yij = 1.

This concludes the description of Gx,y. Next, we prove that the family
{

Gx,y|x, y ∈ {0, 1}n2
}

is a family of lower bound graphs with respect to set-disjointness and the predicate that says
the graph does not contain an induced 4-cycle.

▷ Claim 10. Gx,y contains an induced C4 if and only if there exists a pair of index i, j ∈ [n]
such that xij = yij = 1.

Proof. Let U = {v1, v2, v3, v4} be a subset of V . It is clear that if it holds |U ∩ S| = 4 for
some S ∈ {A1, A2, B1, B2}, then U does not induce C4. We analyse U as follows:

If it holds |U ∩ A1| = 3 or |U ∩ B2| = 3, U induces a triangle.
If it holds |U ∩ A2| = 3 or |U ∩ B1| = 3, U induces at most three edges.
If it holds |U ∩ A1| = 2 or |U ∩ B2| = 2, and U induces a 4-cycle, the other two vertices of
U are both in A2 or both in B1. However, It is impossible since there is no edge between
any two vertices in A2 and any two vertices in B1.
If it holds |U ∩ A2| = 2 or |U ∩ B1| = 2, the two vertices does not share neighbors. Hence,
U does not induce a 4-cycle.

Now all we need is to verify whether four vertices ai
1, aj

2, bk
1 , and bℓ

2 induce a 4-cycle or not.
If (ai

1, aj
2, bk

1 , bℓ
2) induces a 4-cycle, we can say that i = k since ai

1 has to be connected to aj
2

and bk
1 (similarly we can say j = ℓ). It is straightforward to show that (ai

1, aj
2, bi

1, bj
2) induces

a 4-cycle if and only if xij = yij = 1. ◁

Proof of Theorem 1. Divide the vertices of the graph Gx,y into VA = A1 ∪ A2 and VB =
B1 ∪ B2. The size of the cut is |Ecut| = |E(VA, VB)| = 2n. Claim 10 shows that the family
of the graphs

{
Gx,y

∣∣∣x, y ∈ {0, 1}n2
}

is a family of lower bound graphs for f = DISJn2

and a predicate that says the graph include an induced C4. Hence, using Theorem 9 and
CCR(DISJn2) = Θ(n2), any randomized algorithms for induced 4-cycle detection in the
CONGEST model requires Ω(n/ log n).

To extend this result to k-cycles for k ≥ 5, we modify the graph Gx,y as follows:
For any i ∈ [n], replace the edge (ai

1, bi
1) to a path with ⌈ k−4

2 ⌉ + 2 vertices.
For any i ∈ [n], replace the edge (ai

2, bi
2) to a path with ⌊ k−4

2 ⌋ + 2 vertices. ◀
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Figure 3 An illustration of the fixed part of Gx,y. Some edges are bundled for clarity. Observe
that Ai

1 ⊆ A1 and Aj
2 ⊆ A2 are connected by additional edges iff xi,j = 1. Also, Bi

1 ⊆ B1 and
Bj

2 ⊆ B2 are connected by additional edges iff yi,j = 1.

4 Lower Bounds for Larger Cycles

In this section we prove Theorem 2, i.e., we show subquadratic, but superlinear lower bounds
for induced cycles Ck≥8, which gives nearly tight bounds for induced cycles Ck≥8 with respect
to k. The main difficulty to obtain the bounds of Theorem 2 is to reduce the size of the
cut edges of graphs while retaining the ability to simulate the set-disjointness function of
size Ω(n2). We overcome this difficulty by considering induced cycles that go around Gx,y

more than once instead of cycles that go around Gx,y exactly once (we pay for this by an
increased size of a cycle). This enables us to reduce the size of cut edges.

4.1 The fixed graph construction

We refer to Figure 3 for an illustration of the construction.

Vertices. We define the sets of vertices as follows:
Ak = A1

k ∪ · · · ∪ An
k , where Ai

k =
{

ai,j
k

∣∣∣0 ≤ j ≤ ℓ − 1
}

for i ∈ [n] and k ∈ {1, 2}.

Bk = B1
k ∪ · · · ∪ Bn

k , where Bi
k =

{
bi,j

k

∣∣∣0 ≤ j ≤ ℓ − 1
}

for i ∈ [n] and k ∈ {1, 2}.

UA =
{

ui
A

∣∣0 ≤ i ≤ ℓn1/ℓ
}

, LA =
{

li
A

∣∣0 ≤ i ≤ ℓn1/ℓ
}

.
UB =

{
ui

B

∣∣0 ≤ i ≤ ℓn1/ℓ
}

, LB =
{

li
B

∣∣0 ≤ i ≤ ℓn1/ℓ
}

.
Each S ∈ {A1, A2, B1, B2} contains ℓn vertices, and they are divided into n subsets of
size ℓ. Each C ∈ {UA, UB , LA, LB} contains ℓn1/ℓ vertices. The number of vertices V =
A1 ∪ A2 ∪ B1 ∪ B2 ∪ UA ∪ LA ∪ UB ∪ LB is Θ(ℓn + ℓn1/ℓ) = Θ(n).
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Edges. First, we add 2ℓn1/ℓ edges
{

(ui
A, ui

B), (li
A, li

B)
∣∣i ∈ [ℓn1/ℓ]

}
. Then, we consider a map

from [n] to [ℓn1/ℓ]ℓ, where [ℓn1/ℓ]ℓ is ℓ times direct product of the set [ℓn1/ℓ]. Since(
ℓn1/ℓ

ℓ

)
= ℓn1/ℓ

ℓ
· ℓn1/ℓ − 1

ℓ − 1 · · · ℓn1/ℓ − ℓ + 1
1 ≥

(
ℓn1/ℓ

ℓ

)ℓ

= n

holds, there exists an injection σ : [n] → [ℓn1/ℓ]ℓ. We arbitrarily choose one of these injections.
For i ∈ [n], we denote σ(i) = {k1, . . . , kℓ} ∈ [ℓn1/ℓ]ℓ. For all i ∈ [n], j ∈ [ℓ], we add the
edge sets

{
(ai,j

1 , u
kj

A )
∣∣∣i ∈ [n], j ∈ [ℓ]

}
,

{
(ai,j

2 , l
kj

A )
∣∣∣i ∈ [n], j ∈ [ℓ]

}
,

{
(bi,j

1 , u
kj

B )
∣∣∣i ∈ [n], j ∈ [ℓ]

}
,

and
{

(bi,j
2 , l

kj

B )
∣∣∣i ∈ [n], j ∈ [ℓ]

}
. Now we can determine exactly ℓ vertices of UA that are

adjacent to vertices of Ai
1. We denote them Code(Ai

1) ⊆ UA. In the same way, we determine
the vertex sets Code(Ai

2) ⊆ LA, Code(Bi
1) ⊆ UB, and Code(Bi

2) ⊆ LB by using the same
σ. Since σ is an injection, it holds that Code(Ai

1) ̸= Code(Aj
1), Code(Ai

2) ̸= Code(Aj
2),

Code(Bi
1) ̸= Code(Bj

1), and Code(Bi
2) ̸= Code(Bj

2) for i ̸= j.
In addition, we add the following edges.

For any i, j ∈ [n], add edges between u ∈ Ai
1, v ∈ Aj

1 if and only if i ̸= j.
For any i, j ∈ [n], add edges between u ∈ Bi

2, v ∈ Bj
2 if and only if i ̸= j.

If ℓ ≥ 2, we add the following edges.
For any i, j ∈ [n], add edges between u ∈ Ai

2, v ∈ Aj
2 if and only if i ̸= j.

For any i, j ∈ [n], add edges between u ∈ Bi
1, v ∈ Bj

1 if and only if i ̸= j.

4.2 Creating Gx,y

Note that for ℓ = 1, the fixed part of Gx,y in this section is exactly the same as the fixed part
of graphs for induced 8-cycles in Section 3. Hence, we only describe the case ℓ ≥ 2. Given
two binary strings x, y ∈ {0, 1}n2 , we add the following edges:

For i, j ∈ [n], add edges {(ai,k+1
1 , aj,k

2 )|k ∈ [ℓ − 1]} ∪ {(ai,1
1 , aj,ℓ

2 )}, if and only if xi,j = 1.
For i, j ∈ [n], add edges {(bi,k

1 , bj,k
2 )|k ∈ [ℓ]}, if and only if yi,j = 1.

This concludes the description of Gx,y. We show the following theorem which says that
{Gx,y} is a family of lower bound graphs. Due to space constraint, the proof is moved to the
Appendix.

▶ Theorem 11. Gx,y contains an induced 8ℓ-cycle if and only if DISJn2(x, y) = 0.

Having constructed a family of lower bound graphs, we are now ready to prove Theorem 2.

Proof of Theorem 2. Theorem 11 implies that a family of graphs{
Gx,y = (VA ∪ VB , Ex,y)

∣∣∣x, y ∈ {0, 1}n2
}

where VA = A1 ∪ A2 ∪ UA ∪ LA, VB = B1 ∪ B2 ∪ UB ∪ LB is a family of lower bound graphs
with respect to the set disjointness function DISJn2 and the graph predicate is whether the
graph has a copy of an induced C8ℓ or not with cut size ℓn1/ℓ. To bound the diameter of the
network to 3, we add nodes cA to VA and cB to VB such that cA is connected to all nodes
in VA and cB is connected to all nodes in VB . Finally, we add an edge (cA, cB). The above
modification does not effect to the existence of induced 8ℓ-cycles: If we choose cA as one of
the cycle nodes, then we cannot choose more than two VA nodes as cycle nodes. However, we
cannot choose more than 8ℓ − 4 nodes from VB due to Lemma 16 of Appendix A, which also
holds after this modification. The theorem is proved by applying Theorem 9 (for m = 0).
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Slightly modifying the graphs gives the same complexity for the case of k = 8ℓ + m where
m ∈ {1, 2, . . . , 7}:

Replace each edge e ∈ UA × UB by a path of length ⌊m/2⌋.
Replace each edge e ∈ LA × LB by a path of length ⌈m/2⌉. ◀

5 Limitation of the Two-Party Communication Framework

Since no Õ(n)-round algorithm for detecting an induced k-cycle for k ≥ 5 is known, the main
question is whether our lower bound can be improved or not. In this section, we show that
the family of lower bound graphs cannot derive any better lower bounds for detecting an
induced k-cycle for k ≤ 7, by giving a two-party communication protocol for listing k-cycles
for k ≤ 7 in the vertex partition model which is defined as follows.

▶ Definition 12 (Vertex Partition Model, [11]). Given a graph G = (VA ∪ VB , EA ∪ EB ∪ Ecut)
where EA = E(VA, VA), EB = E(VB , VB) and Ecut = E(VA, VB), the vertex partition model
is a two-party communication model in which Alice receives GA = (VA, EA ∪ Ecut) as the
input and Bob receives GB = (VB , EB ∪ Ecut) as the input. For any graph H, the O(k)
communication protocol for induced H listing is a protocol such that

The players communicate O(k) bits in the protocol.
At the end of the protocol, the players have their lists of H, denoted by AH , BH , such
that all of copies of H in the input graph G are contained in either AH or BH .

▶ Theorem 13. There is a two-party communication protocol in the vertex partition model
for listing all induced k-cycles for k ≤ 7 that uses Õ(n|Ecut|) bits of communication where
Ecut is the set of cut edges in the input graph.

Proof. Let V ′
A(V ′

B) be a set of VA(VB) vertices which are incident to some cut edge. The
protocol is as follows:
1. Bob sends all edges EB ∩ {V ′

B × VB} to Alice in Õ(n|Ecut|) bits since the number of edges
Bob sends to Alice is less than∑

v∈V ′
B

degVB
(v) ≤

∑
v∈V ′

B

n = n|Ecut|.

2. Alice sends all edges EA ∩ {V ′
A × VA} to Bob in Õ(n|Ecut|) bits since the number of edges

Alice sends to Bob is less than∑
v∈V ′

A

degVA
(v) ≤

∑
v∈V ′

A

n = n|Ecut|.

Consider Alice has to list all induced k-cycles such that at least ⌈k/2⌉ vertices of them are
in VA. Let U be a set of vertices in a copy of an induced k-cycle Alice should list in the
input graph G. Since k ≤ 7, U contains at most three vertices in VB. If U has at least
one vertex in VB, then the k-cycle induced by U has two cut edges. Therefore, we have
U × U ⊆ EA ∪ Ecut ∪ {EB ∩ {V ′

B × VB}}. Step 1 of the protocol enables Alice to list all
induced k-cycles she should list. Similarly, step 2 of the protocol enables Bob to list all
induced k-cycles he should list. Now all induced k-cycles of the input graph G are in either
the list of Alice or the list of Bob. ◀

▶ Theorem 4 (Formal statement). For any ε > 0, no family of lower bound graphs gives an
Ω̃(n1+ε) lower bound of induced k-cycle detection for k ≤ 7.
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Figure 4 The cut edges in the family of lower bound graphs for listing diamonds. Many edges
are omitted for clarity.

Proof. For the family of lower bound graphs{
Gx,y = (VA ∪ VB , EA ∪ EB ∪ Ecut)

∣∣x, y ∈ {0, 1}K
}

for f : {0, 1}K × {0, 1}K → {0, 1} and the property which says that the graph contains an
induced k-cycle, we can show an Ω̃(CCR(f)/|Ecut|) lower bound for induced k-cycle detection.
On the other hand, we can solve f by Õ(n|Ecut|) bits of communication through the protocol
of the vertex partition model in Theorem 13. Then it holds |Ecut| = Ω̃(CCR(f)/n), implying
that for any ε > 0, we cannot derive an Ω̃(n1+ε) lower bound for induced k-cycle listing by
the family of lower bound graphs. ◀

6 Lower Bound for Diamond Listing

We know that the round complexity of 4-clique detection is Θ̃(
√

n), and induced 4-cycle
detection is Θ̃(n). The only four-node graph that lies between 4-clique and 4-cycle is the
diamond, which is the four-node graph obtained by removing one edge from a 4-clique. Intu-
itively, the complexity of diamond detection seems to be somewhere between the complexity
of 4-clique and the complexity of 4-cycle. In this section, we make this intuition precise,
and we show a lower bound for induced diamond listing (this result is complemented by the
upper bound of Theorem 7 shown in Appendix D). Our construction of the family of lower
bound graphs is similar to [11], but has the following differences. The graphs of [11] have
two sets of vertices A and B, and edges between A and B are added randomly so that the
size of the cut edges is O(n3/2). In this random graph, w.h.p., the number of tuples of the
form (a1, a2, b1, b2) where a1, a2 ∈ A and b1, b2 ∈ B which corresponds to the i-th bit of the
input strings x, y is Ω(n2): a tuple (a1, a2, b1, b2) induces a 4-clique if and only if xi = yi = 1.
However, in the case of diamonds, the number of tuples which correspond to the input is
o(n2). To avoid this, we construct the family of lower bound graphs in a different way. This
makes it much easier to analyze the properties of the graph.

The fixed graph construction. We refer to Figure 4 for an illustration. The set of vertices
is V = A ∪ B ∪ B′ such that A, B and B′ are sets of n vertices. Each vertex is denoted as
follows:

A = A1 ∪ A2 ∪ · · · ∪ A√
n, where Ai =

{
aj

i

∣∣∣j ∈ [
√

n]
}

for all i ∈ [
√

n].

B = B1 ∪ B2 ∪ · · · ∪ B√
n, where Bi =

{
bj

i

∣∣∣j ∈ [
√

n]
}

for all i ∈ [
√

n].
B′ = {b′

i|i ∈ [n]}.
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We add the edge set
{

(aj
i , b′

j+(i−1)
√

n
)
∣∣∣i, j ∈ [

√
n]

}
. For any i, j ∈ [

√
n], we choose a bijection

uniform randomly from all possible bijection σ : Ai → Bj , and denote it σi,j : Ai → Bj .
Then, we add the edge set

{
(ak

i , σi,j(ak
i ))

∣∣i, j ∈ [
√

n], k ∈ [
√

n]
}

.

Creating Gx,y. We call a pair (aj
i , aℓ

k) is good iff |N(aj
i ) ∩ N(aℓ

k)| = 1, where N(u) is
a set of neighbors of a vertex u. Let PA be the set of good pairs in A × A. That is,
PA :=

{
(aj

i , aℓ
k)

∣∣∣|N(aj
i ) ∩ N(aℓ

k)| = 1, i, j, k, ℓ ∈ [
√

n]
}

.

▶ Lemma 14. There is a graph G created by the above procedure, in which it holds that
|PA| = Ω(n2).

The proof of Lemma 14 can be found in Appendix B. Consider the graph G in which
|PA| = Ω(n2). Let H = ∅. We partition A randomly into two sets A∗ and A\A∗ so that
|A∗| = n/2. For a pair (a1, a2) ∈ PA, there is only one vertex b1 ∈ N(a1) ∩ N(a2). For
a1, there is only one vertex b2 ∈ N(a1) ∩ B′. We add a quadruple (a1, a2, b1, b2) to H iff
|{a1, a2} ∩ A∗| = 1. This condition holds with probability 1

2 . Then, we remove (a1, a2)
from PA. We continue this operation until PA becomes the empty set. Therefore, after this
process, there are |H| = Ω(n2) quadruples in H with high probability, using Chernoff bound.
We label H as H = {h1, h2, ..., h|H|} and relabel quadruples as hk = (ak,1, ak,2, bk,1, bk,2).
Consider two bit strings x, y ∈ {0, 1}|H|. We create a graph Gx,y by adding edges to G as
follows:

If xk = 1, we add an edge between ak,1 and ak,2.
If yk = 1, we add an edge between bk,1 and bk,2.

For a quadruple D = (u1, u2, u3, u4) of vertices, we say that D is an (i, j)-diamond when
(u1, u2, u3, u4) induces a diamond,
|A ∩ {u1, u2, u3, u4}| = i and |(B ∪ B′) ∩ {u1, u2, u3, u4}| = j.

▶ Lemma 15. Gx,y contains a (2,2)-diamond if and only if there exists a pair of indices
i, j ∈ [

√
|H|] such that xij = yij = 1.

Proof. It is clear that if xk = yk = 1, then hk = (ak,1, ak,2, bk,1, bk,2) induces a diamond.
Consider four vertices a1, a2 ∈ A, b1, b2 ∈ B ∪ B′ that induce a (2,2)-diamond. If it holds that
(b1, b2) /∈ E, then (a1, a2) ∈ E. Thus, a pair (a1, a2) is good. It contradicts that vertices a1,
a2, b1, and b2 induce a diamond. Assume that (b1, b2) ∈ E. Without loss of generality, we
assume b1 ∈ B, b2 ∈ B′. Since a pair (a1, a2) is good, b1 = N(a1) ∩ N(a2) and (a1, a2) ∈ E.
Then, there is an index k ∈ [|H|] such that hk = (a1, a2, b1, b2) since (a2, b2) /∈ E holds. ◀

Proof of Theorem 5. Consider that Alice and Bob construct the graph Gx,y where VA =
A, VB = B ∪ B′. By simulating an r-round CONGEST algorithm A that solves listing all
diamonds, they can compute the set disjointness function of size |H| = Ω(n2): Bob tells
Alice if there exists a (2,2)-diamond in the output of vertices simulated by Bob by sending 1
bit. Then, from Lemma 15, Alice knows DISJ|H|(x, y) since Alice can know whether Gx,y

contains a (2,2)-diamond. The number of edges between Alice and Bob is n3/2 + n = Θ(n3/2).
Hence, O(rn3/2 log n) = Ω(|H|) and this means r = Ω(

√
n/ log n). ◀
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A Proof of Theorem 11

We first show the following two lemmas.

▶ Lemma 16. Any subset of vertices C ⊆ V of size 8ℓ in Gx,y which induces C8ℓ contains at
most ℓ vertices in S where S ∈ {A1, A2, B1, B2}.

Proof. It is enough to check the case of S = A1. Let c be the number of index i ∈ [n] such
that |C ∩ Ai

1| > 0. At first, observe that if it holds that |C ∩ Ai
1| ≥ 1, |C ∩ Aj

1| ≥ 1, and
|C ∩ Ak

1 | ≥ 1 for some distinct i, j, k ∈ [n], C induces a triangle. Hence, we have c ≤ 2. The
proof is completed by the following case analysis.
1. The case of ℓ ≥ 3: Suppose that |C ∩ A1| > ℓ. Then we have c = 2. Let i, j ∈ [n] be

the indices such that |C ∩ Ai
1| ≥ |C ∩ Aj

1| > 0. If |C ∩ Aj
1| = 1, then |C ∩ Ai

1| ≥ 3. This is
not possible since the vertices in C ∩ Aj

1 are connected at least three vertices in C ∩ Ai
1. If

|C ∩ Aj
1| ≥ 2, then |C ∩ Ai

1| ≥ 2. This is not possible since C contains a 4-cycle in this
case.
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2. The case of ℓ = 2: Suppose that |C ∩ A1| > ℓ = 2. Then we have c = 2 and
let i, j ∈ [n] be the indices such that |C ∩ Ai

1| ≥ |C ∩ Aj
1| > 0. If |C ∩ Ai

1| = 2 and
|C ∩ Aj

1| = 2, then C induces C4. Hence, we consider |C ∩ Ai
1| = 2 and |C ∩ Aj

1| = 1.
Denote {ai,1

1 , ai,2
1 } = C ∩ Ai

1, {u} = C ∩ Aj
1. Then, (ai,1

1 , u), (ai,2
1 , u) ∈ E ∩ {C × C}. The

other edges which incident on ai,1
1 , ai,2

1 are both in A2 or both in UA.
a. In the former case, we have that C ∩ A2 = Ak

2 = {ak,1
2 , ak,2

2 } for some k ∈ [n], otherwise
C includes an induced 5-cycle. Observe that due to our construction of Gx,y, six
vertices in C are automatically determined to Code(Ak

2), Code(Bk
2 ), and Bk

2 . It can
be easily checked that no matter how we choose the remaining vertices, C does not
induce a 16-cycle.

b. In the latter case, it is automatically determined that C includes Code(Ai
1), Code(Bi

1),
and Bi

1, due to our construction of Gx,y. In addition, C includes
Bk

2 , Code(Bk
2 ), Code(Ak

2) for some k ∈ [n]. Then, C does not induce a 16-cycle since
two vertices of Code(Ak

2) do not share neighbors. ◀

▶ Lemma 17. Any subset of vertices C ⊆ V of size 8ℓ in Gx,y which induces C8ℓ contains ℓ

vertices in S, where S ∈ {A1, A2, B1, B2, UA, UB , LA, LB}.

Proof. For S ⊆ V , we denote z(S) = |C ∩ S|. Observe that the number of edges in EC
between A1 and UA is at least z(UA) since each vertex in C ∩ UA has at least one neighbor
in C ∩ A1. On the other hand, the number of edges in EC between A1 and UA is at most
z(A1) since each vertex in C ∩ A1 has at most one neighbor in C ∩ UA. Hence, we have
that z(A1) ≥ z(UA). Similar observation shows that z(A2) ≥ z(LA), z(B1) ≥ z(UB), and
z(B2) ≥ z(LB). Then, it holds that

8ℓ = z(A1) + z(A2) + z(UA) + z(LA) + z(B1) + z(B2) + z(UB) + z(LB)
≤ 2(z(A1) + z(A2) + z(B1) + z(B2)).

From Lemma 16, we have z(A1) = z(A2) = z(B1) = z(B2) = ℓ. We also have z(UA) =
z(LA) = z(UB) = z(LB) = ℓ since

4ℓ = z(UA) + z(LA) + z(UB) + z(LB).◀

Proof of Theorem 11. Let C ⊆ V be a set of 8ℓ vertices which induces an 8ℓ-cycle in Gx,y.
From Lemma 16 and Lemma 17, C contains ℓ vertices in each Ai

1, Aj
2, Bs

1, and Bt
2 for some

i, j, s, t ∈ [n]. Since Ai
1 must be connected to C ∩ UA, it holds Code(Ai

1) = C ∩ UA. Similarly,
we have that Code(Aj

2) = C ∩ LA, Code(Bs
1) = C ∩ UB , and Code(Bt

2) = C ∩ LB . It can be
easily checked that C = Ai

1 ∪ Aj
2 ∪ Bs

1 ∪ Bt
2 ∪ Code(Ai

1) ∪ Code(Aj
2) ∪ Code(Bs

1) ∪ Code(Bt
2)

induces C8ℓ iff i = s, j = t, and xi,j = yi,j = 1. ◀

B Proof of Lemma 14

Let N(aj
i ) = {b1, b2, ..., b√

n} be the set of neighbors of aj
i in B. Consider Ak such that k ̸= i.

For any bl ∈ N(aj
i ), just one vertex that is connected to bl is chosen uniformly at random

from Ak. For a ∈ Ak, let X(a) be the indicator variable of the event “the pair (a, aj
i ) forms

a good pair”. Then, the expected value of X(a) is E (X(a)) =
√

n · 1√
n

·
( √

n−1√
n

)√
n−1

≥ 1/e.
Hence, the expected value of the number of vertices in Ak that form good pairs with aj

i is
greater than

√
n/e by linearity of expectation. The expected value of the number of vertices

that form good pairs with aj
i is

√
n/e × (

√
n − 1) = Ω(n). Again, by using linearity of

expectation, the expected value E(|PA|) ≥ Ω(n) · n/2 = Ω(n2). This means that there exists
a graph with the condition holds. ◀
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Figure 5 Three types of diamonds which have exactly two vertices in VA.

C Proof of Theorem 6

We show the two-party communication protocol for listing diamonds by modifying the
protocol for listing cliques in [11]. More precisely, we show the following theorem.

▶ Theorem 18. There is a two-party communication protocol in the vertex partition model
for listing all diamonds that uses Õ(

√
n|Ecut|) communication where Ecut is a set of cut

edges in the input graph.

Proof. If |Ecut| ≥ n3/2, Alice can send EA to Bob within O(
√

n|Ecut|) bits of communication
since it holds

√
n|Ecut| ≥ n2. Suppose that |Ecut| < n3/2. Since Alice (and Bob) can list all

diamonds in which three or four vertices in Alice’s side without communication, we only
care about diamonds in which exactly two vertices are in Alice’s side. Let V heavy

A = {v ∈
VA : degVB

(v) > degVA
/
√

n} and V light
A = VA\V heavy

A . As shown in Figure 5, there are three
possible cases.

To list diamonds of case 1, we can use the protocol for listing cliques in [11]. This requires
O(

√
n|Ecut|) bits.

To list diamonds of case 2, Alice sends edges EA ∩ {V heavy
A × VA} to Bob. This requires

O(
√

n|Ecut|) bits since the number of edges Alice sends to Bob is less than∑
v∈V heavy

A

degVA
(v) ≤

∑
v∈V heavy

A

√
n · degVB

(v) =
√

n|Ecut|.

To list diamonds of case 3, for every v ∈ V light
A , Bob sends edges EB ∩{NVB

(v)×NVB
(v)}

to Alice. This requires O(
√

n|Ecut|) bits since the number of edges Bob sends to Alice is
less than

∑
v∈V

light
A

(
degVB

(v)
)2 ≤

∑
v∈V

light
A

degVA
(v)

√
n

· degVB
(v) ≤

√
n

∑
v∈V

light
A

degVB
(v) ≤

√
n|Ecut|. ◀

▶ Theorem 6 (Formal statement). No family of lower bound graphs gives an Ω̃(n1/2+ε) lower
bound of induced diamond listing for any ε > 0.

Proof. Exactly the same as how Theorem 4 was proved from Theorem 13. ◀
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D Sublinear-round listing of induced diamonds (Theorem 7)

Assume that, for some edge subset E′ ⊆ E where |E′| = c|E| for some constant c > 0, all
cliques that contain at least one edge from E′ are listed by a procedure A. We recursively
apply A for E\E′ since remaining cliques are the ones whose edges are in E\E′. After O(log n)
levels of recursion of A, all cliques in the original graph are listed since removing edges does
not increase the number of cliques. Fastest (and optimal) clique listing algorithms [9, 2] use
this recursive method. On the other hand, this cannot be used for induced subgraphs since
removing edges may increase the number of induced subgraphs (e.g., removing one edge from
a 4-clique creates an additional diamond). Instead, we can use K4 listing algorithm of [14]
to list induced diamonds. The algorithm begins by computing the decomposition of edge set,
in which the edge set are decomposed into two subsets: edges that induce clusters with low
mixing time and edges between clusters. The clusters satisfy the following:

▶ Definition 19 (δ-cluster). For an n-node graph G = (V, E) and a subgraph G′ = (V ′, E′)
of G, G′ is called a δ-cluster if the following condition holds:
1. Mixing time of G′ is O(poly log (n)),
2. For any v ∈ V ′, degE′(v) = Ω(nδ).

▶ Lemma 20 (Expander Decomposition, Lemma 9 of [14]). For a n-node CONGEST network
G = (V, E), we can find, w.h.p., in Õ(n1−δ) rounds, a decomposition of E to E = Em ∪
Essatisfying the following conditions.

1. Em is the union of at most s = O(log n) sets, Em =
s⋃

i=1
Ei

m, where each Ei
m is the

vertex-disjoint union of O(n1−δ) δ-clusters, C1
i , . . . , Cki

i .
The set Ei

mis called i-th level of the decomposition. We say that a node u belongs to
cluster Cj

i if at least one of u’s edges is in Cj
i .

2. Each level-i cluster Cj
i has a unique identifier, which is a pair of the form(i, x) where

x ∈ [n1−δ], and an unique leader node, which is some node in the cluster. Each node
u knows the identifier of all the clusters Cj

i to which u belongs, the leaders for those
clusters, and it knows which of its edges belong to which clusters.

3. Es =
⋃

v∈V

Es,v, where Es,vis a subset of edges incident to v and |Es,v| ≤ nδ log n. Each

vertex v knows Es,v.

The reason that the expander decomposition is used in the distributed subgraph detection
is that δ-clusters can simulate CONGESTED CLIQUE style algorithms efficiently:

▶ Lemma 21 (Lemma 13 of [14]). For a constant 0 < ε ≤ 1, suppose an edge set E′ is
partitioned between the nodes of a δ-cluster C, so that each node u ∈ C initially knows a subset
E′

u of size at most O(n2−ε). Then a simulation of t rounds of the CONGESTED CLIQUE
algorithm on G′ = (V, E′) can be performed in Õ(n2−δ−ε + t · n2−2δ) rounds, with success
probability 1 − 1

n2 .

Roughly speaking, a δ-cluster can simulate 1 round of a CONGESTED CLIQUE style algorithm
in Õ(n2−2δ) rounds.

After doing the decomposition E = Em ∪ Es, the high-level approach of K4 listing
algorithm of [14] is as follows:

1. To list K4 in Es, we can use the trivial algorithm since the subgraph induced by Es is
sparse.
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2. To list K4 which contains at least one edge in Em, each cluster C gathers outside edges
which are incident to a cluster node in õ(n) rounds so that the number of edges gathered
by each node of C is õ(n2). All nodes that are outside of C with many neighbors
in C send all edges incident to them. This can be done efficiently since they have
enough communication bandwidth to C. Then, C simulates K4 listing algorithm of the
CONGESTED CLIQUE model.

3. Note that each outside node u with small bandwidth to C have no ability to send all
edges incident to it in õ(n) rounds. However, u can quickly gather all cluster edges that
would belong to some K4 which contains u since the number of cluster neighbors of u is
small.

The difference is that in the case of diamonds, there are several types of diamonds which
are listed in step 2 and step 3 of above algorithm (see Figure 6). For a cluster C, we call a
node v is C-heavy when v does not belong to C and has more than nε neighbors in C. The
algorithm for listing induced diamonds is as follows:
1. First, we run the expander decomposition of Lemma 20 in Õ(n1−δ) rounds.
2. To list diamonds in Es, each node u sends the edges of Es that are incident on u to all

neighbors. This requires Õ(nδ) rounds.
3. Each C-heavy node v sends N(v) to C in O(n1−ε) rounds by partitioning N(v) into

|N(v) ∩ C| = Ω(nε) subsets of size |N(v)|/|N(v) ∩ C| = O(n1−ε) and sending each subset
to a different neighbor in C. Then, since each C-node u receive at most n · n1−ε = n2−ε

edges, we can list all induced diamonds which contains at least one edge from some cluster
C, and contains a C-heavy node, in Õ(n2−δ−ε +

√
n · n2−2δ) rounds by the algorithm of

Lemma 21.
4. Each C-light node u sends N(u) ∩ C to all its neighbors in O(nε) rounds. Then, each

node v received N(u) ∩ C from u compute the following set locally:

L1
v = {{u, c1, c2}|u ∈ N(v) is C-light, c1, c2 ∈ C, c1 ∈ N(v) ∩ N(u), c2 ∈ N(u)\N(v) } ,

L2
v = {{u, c1, c2}|u /∈ N(v) is C-light, c1, c2 ∈ C, c1, c2 ∈ N(v) ∩ N(u),

(u, c1), (u, c2), (v, c1), and (v, c2) ∈ Es. } ,

where L1
v and L2

v correspond to the rightmost and leftmost diamonds in Figure 6, respect-
ively. Note that we do not have to care about the leftmost diamond of Figure 6 which
contains an edge from another cluster C ′: Among the leftmost diamonds {u, v, c1, c2} of
Figure 6, where c1, c2 belong to C and u, v are C-light nodes, we only need to enumerate
the diamonds whose four edges (u, c1), (u, c2), (v, c1) and (v, c2) are Es-edges. This is
because, for instance, if (u, c1) is C ′-edge for some cluster C ′, then this diamond is treated
by the cluster C ′ as the middle or rightmost diamond in Figure 6. Since each node sends
its Es-edges to all its neighbors in step 2, v knows the four edges (u, c1), (u, c2), (v, c1)
and (v, c2) even when u /∈ N(v). Then, v construct the following list of edge queries
locally:

Qv,c1 =
{

{c1, c2}
∣∣∃u ∈ N(v) : {u, c1, c2} ∈ L1

v or ∃u /∈ N(v) : {u, c1, c2} ∈ L2
v

}
.

We have |Qv,c1 | = O(nε): if c1 received {c1, c2} ∈ Qv,c1 , then c2 ∈ N(v) ∩ C by definition.
On the other hand, since v is C-light, |N(v) ∩ C| = O(nε) holds. Each node v sends
Qv,c1 to c1, and c1 responds with Qv,c1 ∩ ({c1} × N(c1)) in O(nε) rounds. Therefore, in
O(nε) rounds, we can list all induced diamonds which contains at least one edge from
some cluster C, and does not contain C-heavy nodes.
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Figure 6 Three types of diamonds that contain at least one edge from Em. Red edges in the figure
correspond to Em-edges, i.e., edges belong to some cluster C. Heavy node represents a C-heavy

node, i.e., a node which does not belong to C, but has more than nε neighbors in C. Light node
represents a C-light node.

Taking parameters δ = 5/6 and ε = 1/2 (same as in the algorithm of [14]), we get the
following theorem.

▶ Theorem 7. Listing all induced diamonds can be done in Õ(n5/6) rounds with high
probability in the CONGEST model.
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Abstract
We give a distributed algorithm which given ϵ > 0 finds a (1 − ϵ)-factor approximation of a maximum
f -matching in graphs G = (V, E) of sub-logarithmic expansion. Using a similar approach we also
give a distributed approximation of a maximum b-matching in the same class of graphs provided the
function b : V → Z+ is L-Lipschitz for some constant L. Both algorithms run in O(log∗ n) rounds
in the LOCAL model, which is optimal.
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1 Introduction

A matching in a graph G = (V, E) is a set of edges M ⊆ E such that every vertex v ∈ V

belongs to at most one edge e ∈ M . Although the concept of a matching can be generalized
in a few different ways, two natural and useful notions that have been considered in this
context are that of an f -matching and a b-matching. Let G = (V, E) be a (simple) graph
and let f : V → Z+. A set M ⊆ E is called an f-matching in G if for every v ∈ V , v is
incident to at most f(v) edges from M . Given a function b : V → Z+, a b-matching in G is
a function x : E → N such that for every vertex v ∈ V ,

∑
y∈N(v) x(vy) ≤ b(v). Sometimes

an f -matching is called a simple b-matching (a capacitated b-matching with bound one for
capacities) [15].

In particular, in the case when f = 1 (b = 1) , then an f -matching (b-matching)
is simply a matching. The main difference between f -matchings and b-matchings is
that in the case of b-matchings x : E → N and the corresponding assignment x for f -
matching satisfies x : E → {0, 1}. We shall use νf (G) and νb(G) to denote the maximum
f -matching and b-matching, that is νf (G) = max{|M | : M is an f -matching in G} and
νb(G) = max{

∑
e∈E x(e) : x is a b-matching in G}. In addition, we use ν(G) for the size of

a maximum matching in G.
We will use the LOCAL model from Peleg’s book [14]. In this model a distributed

network is modeled as an undirected graph with vertices corresponding to computational units
and edges representing bidirectional links between them. The computations are synchronized,
and in each round every vertex can send and receive messages from its neighbors, and, in
addition, can perform some local computations. Neither the size of messages sent nor the
amount of computations is restricted in any way. In addition, vertices have unique identifiers
from {1, . . . , n} where n is the order of the graph.
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1.1 Related Work
Although distributed algorithms for matchings have been studies extensively, little is known
about f -matchings and b-matchings.

A maximal matching gives a 1/2-factor approximation of a maximum and there has been
some success in designing distributed algorithms that find a maximal matching. Seminal
papers of Hanćkowiak, Karoński and Panconesi [8, 9] give deterministic poly-logarithmic
algorithms for the maximal matching problem. Recently, a faster distributed algorithm for the
maximal matching problem was given by Fischer [5]. This algorithm runs in O(log2 |V | log ∆)
rounds in graphs G = (V, E) of maximum degree ∆. At the same time Kuhn et al. [12]
showed that finding a maximal matching in a graph G of order n and maximum degree ∆
requires Ω(log ∆/ log log ∆ +

√
log n/ log log n) rounds.

Distributed approximations for the maximum matching problem which run in a poly-
logarithmic number of rounds are known [2, 3]. Quite recently, Ghaffari, Harris and Kuhn
[6] gave a O(log2 n log5 (∆/ϵ9)) algorithm that finds a (1 − ϵ)-factor approximation of a
maximum matching in a graph on n vertices with maximum degree ∆, and Harris [10] gave
fast approximation algorithms for weighted maximum matching and hypergraph matching.

As impressive as these algorithms are, their time complexity is often prohibitively high.
Not surprisingly, there has been a lot of interest in designing faster distributed algorithms for
special classes of graphs. For planar graphs, there is a distributed deterministic algorithm [4]
which given ϵ > 0 finds in a graph G of order n in O(log∗ n) rounds, a matching M such that
|M | ≥ (1 − ϵ)ν(G). This algorithm proceeds in two main steps. First, an ad-hoc procedure
is used to reduce a given graph G = (V, E) to a graph G′ = (V ′, E′) such that (1) |V ′| is
proportional to the size of a maximum matching and (2) a maximum matching in G′ is also
maximum in G and (3) G′ is still planar. Second, a clustering algorithm is used to partition
V ′ into sets V1, . . . , Vl so that it is possible to quickly find optimal solutions in graphs G′[Vi]
and combine them to obtain a good approximation in the whole graph G′ and so G.

The notions of an f -matching and b-matching are significantly more general. Very little
is known about the distributed complexity of f -matchings except what can be concluded
from the case f = 1. Using the Tutte’s construction (see for example [15]) one can reduce
b-matchings to matchings but this reduction infuses potentially large complete bipartite
graphs.

Hanćkowiak [7] gave a poly-logarithmic running time algorithm for the maximal f -
matching problem in general graphs which builds on the approach for matchings [8]. In
addition, extending the approach for matchings, Fischer [5] managed to give a deterministic
distributed algorithm for (1/2 − ϵ)-approximating a maximum f -matching in general graphs
that runs in O(log2 ∆ log 1/ϵ + log∗ |V |) rounds. In the case of a maximum b-matching it is
possible to reduce it to the problem of a maximum matching but the reduction leads to graphs
which can potentially contain large complete bipartite graphs. Consequently, the graph
obtained after reduction can have minors of large cliques. As a result, maximum matching
algorithms that exploit sparseness conditions cannot be invoked in the graph obtained by
the reduction.

1.2 Results
We will give approximation algorithms for f -matchings and b-matchings. Although our
primary interest comes from graphs that are Km-minor-free for a fixed integer m, it is possible
to phrase the results in terms of graphs of sub-logarithmic expansion which generalize the
former class. (See Section 2 for definitions.)
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Our first contribution is a distributed algorithm which given a graph G = (V, E) of
sub-logarithmic expansion and ϵ > 0 finds a (1 − ϵ)-factor approximation of a maximum
f -matching in G. The algorithm runs in O(log∗ |V |) rounds (Theorem 7). The algorithm
proceeds in two main steps, the first, described in detail in what follows, reduces the input
graph to a graph in which a maximum f -matching is proportional to the number of vertices
and the second invokes the clustering procedure of Amiri et al. [1].

The case of b-matchings is surprisingly more subtle in the realm of sparse graphs and
our approach requires an additional assumption about function b. Specifically, we shall
require that b is L-Lipschitz for some constant L, which is known to the algorithm. Under
the same regime as f -matchings, we again give a O(log∗ |V |)-time distributed (1 − ϵ)-factor
approximation (Theorem 17).

It is known [4] that finding a constant approximation of a maximum matching or maximum
independent set in a cycle on n vertices requires Ω(log∗ n) rounds and so the running time in
Theorem 7 and Theorem 17 cannot be improved.

Algorithms for both theorems use in their second main step, i.e. the clustering procedure,
the procedure of Amiri et al. [1] which is based on the algorithm of Czygrinow et al. [4].
However the first main step of both algorithms, i.e. the reduction phase is new and relies on
the Gallai-Edmonds theorem [11]. The rest of the paper is structured as follows. In Section
2 we introduce necessary terminology. In Section 3 we discuss f -matchings and Section 4 is
devoted to b-matchings.

2 Preliminaries

For a positive integer r and a graph H, we say that H is a minor of depth r of graph
G = (V, E) if for some subgraph G′ = (V ′, E′) of G it is possible to partition V ′ into
sets V1, . . . , Vl so that for every i, G′[Vi] has radius at most r and the graph obtained by
contracting each Vi to a vertex is isomorphic to H . We will set ∇r(G) = maxH

|E(H)|
|V (H)| where

the maximum is taken over all minors H of depth r of G. A graph G is said to have a
bounded expansion if there exists g : N → N such that for every r ∈ N, ∇r(G) ≤ g(r). Note
that surprisingly many classes of graphs have bounded expansion and we refer to [13] for an
extensive discussion. In this paper, we will consider graphs G of sub-logarithmic expansion,
that is graphs G such that ∇r(G) ≤ g(r) for some g(r) ∈ o(log r). The class was introduced
by Amiri et al. [1] where it is shown that the clustering algorithm from [4] works in this
more general setting. In the case graph G is Km-minor-free for some fixed m, ∇r(G) can be
bounded from above by a constant which depends on m only and so graphs of sub-logarithmic
expansion include graphs that are Km-minor-free for a fixed m. In addition, we obviously
have ∇r(G) ≤ ∇r+1(G).

Our analysis relies on the Gallai-Edmonds theorem. To state it we need some additional
terminology. A k-factor of a graph G is a spanning k-regular subgraph of G. In particular, a
1-factor is a perfect matching. For a graph H, we use CH to denote the set of (connected)
components of H. A graph H is called factor-critical if, for every v ∈ V (H), graph H − v has
a 1-factor. Note that a component with only one vertex is factor-critical. Gallai-Edmonds
theorem (see for example Kotlov [11]) will play a major role in our analysis. For a graph
G = (V, E) let A be the set of vertices v ∈ V such that there is a maximum matching in G

that does not cover v. Let B := N(A) = {v ∈ V \A | ∃w∈Avw ∈ E}, and let C := V \(A∪B).
Clearly, {A, B, C} is a partition V (although some sets can be empty) which we will call a
Gallai-Edmonds decomposition of graph G. We have the following theorem.
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▶ Theorem 1 (Gallai-Edmonds Theorem). Let G = (V, E) be a graph and let {A, B, C} be a
Gallai-Edmonds decomposition of G. Then the following conditions hold.
(a) Every odd component H of G − B is factor-critical and V (H) ⊆ A.
(b) Every even component H of G − B has a perfect matching and V (H) ⊆ C.
(c) For every non-empty subset X ⊆ B, N(X) has vertices from more than |X| odd com-

ponents of G − B.
In particular, in view of Hall’s theorem, B is matchable to the set of odd components in
G − B.

Fix g : N → N such that g(r) = o(log r) and ∇r(G) ≤ g(r). It will be convenient to define
D := 2 · g(1). Although the algorithms do not need to have perfect information about g, they
certainly need to know D. By definition, for every subgraph H of G we have∑

v∈V (H)

degH(v) ≤ D · |V (H)|. (1)

We will call a clique S an i-clique if |S| = i.

▶ Lemma 2. Let G be a graph of order n, D be such that ∇0(G) ≤ D/2 and let i ≥ 2. Then
there is a vertex v ∈ V (G) that belongs to at most

(
D

i−1
)

i-cliques.

Proof. Note that the statement is true when i = 2. For i ≥ 3, let v be a vertex of minimum
degree which by (1) is at most D. Then every i-clique containing v is a subset of N [v]. ◀

3 f -matchings

Assume that G satisfies ∇r(G) ≤ g(r) and D = 2 · g(1). We call u, v ∈ V (G) i-clones if
N(u) = N(v) and |N(u)| = i. Note that we consider open neighborhoods and so if uv

is an edge then u and v are not clones. The relation of being i-clones, ∼i, is symmetric,
transitive, and reflexive on the set Vi := {v | deg(v) = i}. Let v1, . . . , vl be i-clones such that
N(v1) = {u1, . . . , ui} and l ≥ i + 1. Since for every j ∈ {1, . . . , i}, deg(uj) ≥ l ≥ i + 1, uj

cannot be an i-clone of any other vertex.
In the first phase of the algorithm we trim graph G, discard some edges, and delete isolated

vertices so that for the trimmed graph G′ we have νf (G′) = νf (G) and νf (G′) = Ω(|G′|).
Phase 1 is split into two procedures Discard Edges and Trimming.

Procedure Discard Edges (G, i).

Let G′ be the graph obtained from G by deleting the following edges. For every equivalence
class {v1, . . . , vl} of ∼i in Vi which satisfies f(v1) ≥ f(v2) ≥ · · · ≥ f(vl):

If l ≥ D and N(v1) = {u1, . . . , ui} then, assuming f(u1) ≤ f(uj) for every j ∈
{1, . . . , i}, delete edges u1vj for j > max{f(u1), D}.

Return G′.

We will first show that graph G′ obtained by Discard Edges has the same size of a
maximum f -matching as G does.

▶ Lemma 3. Let i ∈ Z+ and let G′ denote the graph returned by Discard Edges(G, i).
Then

νf (G′) = νf (G).
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u1

uj

ui
F F ′

v1

Figure 1 Case 2 of the proof of Lemma 3.

Proof. Clearly νf (G′) ≤ νf (G). To prove the opposite inequality consider f -matching F in G

of size νf (G) that contains as few edges from E(G) \ E(G′) as possible. Note that only edges
incident to u1 are removed from G. Suppose F contains u1vk for some k > max{f(u1), D}.
Thus from all edges u1v1, . . . , u1vf(u1) that are in G′, at least one of them, say u1v1, is not
in F .
Case 1: If ujv1 ∈ F for at most f(v1) − 1 edges ujv1, then consider F ′ = F − u1vk + u1v1

and note that F ′ is an f -matching of size |F | with fewer edges from E(G) \ E(G′) than
F .

Case 2: For some j ∈ {1, . . . , i}, ujv1 ∈ F but ujvk /∈ F . Then consider F ′ = F − u1vk −
ujv1 + u1v1 + ujvk.

If none of the cases 1 and 2 hold, then v1 is incident to f(v1) edges v1uj ∈ F such that
j ≥ 2 and vk is incident to f(v1) + 1 edges from F because we have that ujvk ∈ F whenever
ujv1 ∈ F and additionally ujvk ∈ F . Thus f(vk) > f(v1), but by definition of the algorithm,
f(vk) is at most f(vj) for every j ≤ max{f(u1), D} . ◀

We now consider the main trimming procedure.

Procedure Trimming(G).

For i = D − 1 downto 1, let G := Discard Edges(G, i).
Let H be obtained from G by deleting all isolated vertices.
Return H.

Let H be the graph returned by Trimming(G) for the original graph G. In addition, we
use Gi to denote graph G for which we call Discard Edges(G, i) in the ith iteration of the
loop in step one. Before proving our main lemma, we show the following observation.

▶ Lemma 4. Let 1 ≤ k ≤ D − 1, and let Y = {y1, . . . , yj}, |Y | = j, be k-clones in H such
that NH(y1) = {u1, . . . , uk}. Then

j ≤ D · f∗,

where f∗ = min1≤i≤k{f(ui)}.

Proof. We claim that y1, . . . , yj are k-clones in Gk. First note that in view of the main step
of Discard Edges, if x is a vertex in G such that degGl

(x) ≥ D for some l < D, then
degH(x) ≥ D. Indeed, vj has degree less than D as l < D , moreover for u1 edges u1vj can
be deleted, but Discard Edges always keeps at least D edges incident to u1.
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We clearly have NH(yl) ⊆ NGk
(yl) for every l = 1, . . . , j. Suppose k = degH(yl) <

degGk
(yl) for some l. Then yl had some edges deleted from the set of edges incident to yl in

Gk in iteration i for some i ≤ k. However in iteration i, we delete edges incident to vertices
of degree i or vertices of degree larger than D, keeping at least D of them. Thus either
degH(yl) < k ,which is not possible, or degH(yl) ≥ D, contradicting k ≤ D − 1.

Since y1, . . . , yj are k-clones in Gk, we have j ≤ max{f∗, D} after step two of Discard
Edges(Gk, k). Consequently, j ≤ D · f∗ because f∗ and D are at least one. ◀

By Lemma 3, we have

νf (H) = νf (G), (2)

and H has no isolated vertices.
We will now establish our second fact which shows that νf (H) is proportional to the

order of H.

▶ Lemma 5. Let G be a graph such that ∇1(G) ≤ D/2 and let H be obtained by calling
Trimming(G). Then νf (H) ≥ cD|V (H)| for some cD which depends on D only.

Proof. We will use Theorem 1. Let {A, B, C} be a Gallai-Edmonds decomposition of H.
Then the size of a maximum matching in H is Ω(|B| +

∑
W |W |) where the sum is taken

over components W of H − B of order at least two. Since a maximum f -matching has size
larger than or equal to the size of a maximum matching,

νf (H) = Ω(|B| +
∑
W

|W |).

Let X be the set of components of H − B of size one. We will identify each component
from X with the vertex it contains. Since H has no isolated vertices, every component
from X has at least one neighbor in B. Let Y be the set of components in X which have
at least D neighbors in B. We have D · |Y | ≤ |EH(Y, B)| ≤ D(|Y | + |B|)/2 from (1), and
so |Y | ≤ |B|. Thus νf (H) = Ω(|Y |). For i = 1, . . . , D − 1, let Xi ⊆ X denote the set of
components that have exactly i neighbors in B. In the rest of the argument we will show
that for i ∈ {1, . . . , D − 1}, νf (H) = ΩD(|Xi|). Given that this is the case, we can conclude

νf (H) = Ω(|B| +
∑
W

|W | + |Y | +
∑
i<D

|Xi|) = ΩD(|V (H)|).

▷ Claim 6. For i ∈ {1, . . . , D − 1}, νf (H) = ΩD(|Xi|).

Proof. Let H∗ := (B, ∅) be the edge-less graph on the set B. Order the vertices in Xi and
proceed one by one for as long as possible using the following procedure. Take y ∈ Xi. If
NH(y) is not an i-clique in H∗, then take two non-adjacent vertices v1, v2 from NH(y) ⊆ B,
add an edge between them to H∗, and delete y from Xi. Formally, we delete all edges
incident to y except yv1, yv2 and contract the edge yv1. Let X∗

i denote the set of deleted
vertices. Then |X∗

i | = |E(H∗)| ≤ ∇1(G)|B| ≤ D|B|/2. We will now bound the number of
remaining vertices. Unlike the previous part of the argument, we will show that there is an
f -matching F in H such that |F | ≥ ΩD(|Xi \ X∗

i |).
For every vertex y ∈ Xi \ X∗

i , NH(y) is an i-clique in H∗, and if y, y′ ∈ Xi \ X∗
i are

such that NH(y) = NH(y′), then y and y′ are i-clones. We will put weights on these cliques.
Specifically, the weight of an i-clique T is the number of vertices y in Xi \ X∗

i such that
NH(y) = T . By Lemma 4, for every i-clique T in H∗, the weight of T satisfies ω(T ) ≤ D · fT ,
where fT = minu∈T f(u). In addition, we have∑

T

ω(T ) = |Xi \ X∗
i |. (3)
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We will now assign i-cliques to vertices from B so that the following conditions hold:
If T is assigned to v, then v ∈ T ;
There are at most

(
D

i−1
)

cliques assigned to every vertex v;
Every i-clique in H∗ is assigned to exactly one vertex from B.

This is possible, because by Lemma 2, there is a vertex v in B which is in at most
(

D
i−1

)
i-cliques

T in H∗. We assign these cliques to v and continue the process (note that ∇0(H∗ − v) ≤
∇0(H∗)). Let Ev denote the set of cliques assigned to v. For every T ∈ Ev, the weight
satisfies ω(T ) ≤ D · fT ≤ D · f(v) because v ∈ T . Let Tv ∈ Ev be an i-clique in Ev of the
largest weight. Then, by (3),

∑
v

ω(Tv) ≥
∑

v

∑
T ∈Ev

ω(T )/
(

D

i − 1

)
=

∑
T ω(T )(

D
i−1

) = |Xi \ X∗
i |/

(
D

i − 1

)
.

Since f(x) ≥ 1 for every x, we can select ⌈ω(Tv)/D⌉ ≤ f(v) vertices y ∈ Xi \ X∗
i to get star

Fv with center at v and selected vertices y as its leaves. Since Fu ∩ Fv = ∅ when u ̸= v,
⋃

Fv

is an f -matching in H of size at least |Xi \ X∗
i |/(D ·

(
D

i−1
)
). Consequently,

|Xi| = |X∗
i | + |Xi \ X∗

i | = OD(|B|) + OD(νf (H)) = OD(νf (H)). ◁

That concludes the proof of Lemma 5. ◀

We will now proceed to Phase 2 of the algorithm. For this phase we need to know that
the graph G has sub-logarithmic expansion g. Note that to use the algorithm in Phase 2,
constant cD (or a bound for it) must be provided and, in addition, the algorithm from [1]
which is used in step 2 requires some knowledge of the function g.

Procedure Approximation(G, ϵ, g).

Use Trimming(G) to obtain graph H.
Use the algorithm from [1] to find a partition of V (H) into sets V1, . . . , Vl such that
diam(Vi) = Oϵ,D(1) and the number of edges with endpoints in different sets Vi is at
most ϵ · cD|H|.
Find an optimal solution Fi in H[Vi] and return

⋃
Fi.

▶ Theorem 7. There is a distributed algorithm which given a graph G on n vertices of
expansion g such that g(r) = o(log r) and ϵ > 0 finds an f-matching F in G such that
|F | ≥ (1 − ϵ)νf (G). The algorithm runs in Oϵ,D(log∗ n) rounds.

Proof. Use Approximation(G, ϵ, g). By (2), νf (H) = νf (G) and by Lemma 5, νf (H) ≥
cD|H|. We have

νf (G) ≤
∑

i

|Fi| + ϵ · cD|V (H)| ≤ |F | + ϵνf (G).

Trimming runs in the number of rounds which depends on D only and the running time of
the algorithm from [1] is O(log∗ n). ◀
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4 b-matchings

In this section, we will discuss maximum b-matchings. All graphs are finite and simple. As
before, we will consider graphs with sub-logarithmic expansion g and set D := 2 · g(1).

▶ Definition 8. Given a (simple) graph G = (V, E) and a function b : V → Z+, let
νb(G) = max{

∑
e∈E x(e)} where the maximum is taken over all functions x : E → N such

that for every vertex v ∈ V ,
∑

y∈N(v) x(vy) ≤ b(v).

In our reduction algorithm, we will assume that b is L-Lipschitz for some given constant L,
that is b : (V, d1), → (Z+, d2) satisfies d2(b(u), b(v)) ≤ Ld1(u, v) for any u, v ∈ V , where d1
is the metric determined by the distance in graph G = (V, E) and d2(a, b) = |a − b|. The
condition will be of no relevance if u and v are in different connected components of G.

To start the analysis we have the following observation.

▶ Fact 9. Let G = (V, E) be a graph with ∇0(G) ≤ D/2 and let b : V → Z+. Define
ω : E → Z+ as

ω(uv) := min{b(u), b(v)}. (4)

Then (a) ω(E) ≤ D · b(V ) and (b) νb(G) ≤ ω(E).

Proof. We shall prove (a) by induction on |V |. The base case is obvious. For the inductive
step, by (1), the average degree of G is at most D and so there is a vertex v ∈ V of degree at
most D. By induction, ω(E(G − v)) ≤ D · b(V \ {v}) and the weight on edges incident to v

is at most D · b(v) by (4). For (b), if x : E → N is such that x(E) = νb(G), then for every
e ∈ E, x(e) ≤ ω(e). ◀

The general idea behind the approach is the same as in the case of f -matchings. We first
reduce graph G using the notion of i-clones and then apply clustering. However, the reduction
and the fact that it accomplishes the desired result (Lemma 16) require additional care.

Procedure Modify(G, b, i).

Let G′ be the graph obtained from G by deleting the following edges. For every equivalence
class {v1, . . . , vl} of ∼i in Vi in parallel:

If l > D and N(v1) = {u1, . . . , ui}, then delete vertices vD+1, . . . , vl. Set b′(vD) :=
b(vD) + · · · + b(vl) and b′(w) := b(w) for any other vertex w.

Return (G′, b′).

For a graph G = (V, E) and v ∈ V , we used EG(v) to denote the set of edges e ∈ E such
that v ∈ e.

▶ Fact 10. Let (G′, b′) denote the pair returned by Modify(G, b, i).
(a) Then νb′(G′) = νb(G).
(b) For every u ∈ V (G′) either degG′(u) ≥ D or NG′(u) = NG(u).

Proof. We will first show part (a). Let x : E(G) → N be a maximum b-matching in G

and let ap =
∑i

k=1 x(vpuk). Let x′ be obtained by setting x′(vDuk) :=
∑l

p=D x(vpuk) and
x′(vjuk) := x(vjuk) for j < D. Then x′ : E(G′) → N and for every k ∈ {1, . . . , i},∑

e∈EG(uk)

x(e) =
∑

e∈EG′ (uk)

x′(e)
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as the total value of x on edges between uk and v1, . . . , vl stays the same. Obviously, for
j < D, we have

∑i
k=1 x′(vjuk) =

∑i
k=1 x(vjuk) and, in addition,

i∑
k=1

x′(vDuk) =
l∑

p=D

ap ≤
l∑

p=D

b(vp) = b′(vD)

as ap ≤ b(vp). Thus x′ is a b′-matching in G′ of the same value as x.
Similarly, let x′ : E(G′) → N be a maximum b′-matching in G′. Then

∑
e∈EG′ (uk) x′(e) ≤

b′(uk) = b(uk) for every k ∈ {1, . . . , i}, and
∑i

k=1 x′(vDuk) ≤ b′(vD). For p > D, taking
ap to be the maximum value such that 0 ≤ ap ≤ b(vp) and

∑i
k=1 x′(vDuk) − ap ≥ 0, we

can write ap =
∑i

k=1 api where 0 ≤ api ≤ x′(vDuk) and assign api to vpuk so that the total
of ap is reassigned from E({vD}, {u1, . . . , ui}) to E({vp}, {u1, . . . , ui}). Proceeding one by
one with p = D + 1, . . . , l gives x : E(G) → N such that x(E(G)) = x′(E(G′)) and x is a
b-matching in G.

For part (b), removing vertices vj for j > D only affects the neighborhoods of vertices
u1, . . . , ui. However, for every k ∈ {1, . . . , i}, degG′(uk) ≥ D as we keep D of i-clones from
v1, . . . , vl. ◀

After Modify(G, b, i) we obtain a graph (G′, b′), where some vertices were removed from G

and for some vertices v, we have b(v) < b′(v). In this cases v will be called special. Note that
it is easy to reverse Modify and obtain x on G from x′ on G′ by making special vertices
distribute x′ to deleted vertices as described in the proof.

We will now obtain a reduction of G which will be used in further computations.

Procedure Reduction(G, b).

1. For i = D − 1 downto 1, let (G, b) :=Modify(G, b, i).
2. Return (G, b).

▶ Lemma 11. Let (G′, b′) denote the pair returned by Reduction(G, b). Then we have the
following:
(a) νb′(G′) = νb(G);
(b) For every i < D, if S ⊆ V has size i, then there are at most D i-clones v in G′ such

that NG′(v) = S.

Proof. The first part follows from Fact 10 (a). For the second part, if w1, . . . , wl are i-clones
in G′ and NG′(w1) = S, then, by Fact 10 (b), we have NG(wk) = S for every k ∈ {1, . . . , l}.
Consequently, w1, . . . wl are i-clones in the original graph G and all graphs obtained in step
one of Reduction(G, b). Therefore, in the ith iteration, all but at most D of w1, . . . , wl are
removed, and so l ≤ D. ◀

To prove our main fact (Lemma 16) we need some additional preparation. In the proof of
the main lemma, we will use the Tutte’s construction that reduce the problem of b-matchings
to matchings.

▶ Definition 12. Let G̃ = (Ṽ , Ẽ) be obtained from G = (V, E) as follows. Replace vertex v

from V with an independent set Uv of size |Uv| = b(v) so that for i ̸= j, Uv ∩ Uw = ∅. If
vw ∈ E then add all edges xy to Ẽ for every x ∈ Uv and y ∈ Uw.

The following fact is easy to see [16]:
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▶ Fact 13. νb(G) = ν(G̃).

Let {Ã, B̃, C̃} be a Gallai-Edmonds decomposition of G̃. Recall that properties of the
decomposition are given before Theorem 1.

▶ Lemma 14. Let G = (V, E) and G̃ = (Ṽ , Ẽ). Then partition {Uv | v ∈ V } of Ṽ is a
refinement of {Ã, B̃, C̃}.

Proof. Let v ∈ V and let Uv = {v1, . . . , vk}.
Suppose for some i, vi ∈ Ã and let M̃ be a maximum matching in G̃ that does not cover
vi. If vj is covered by M̃ , then vjw ∈ M̃ for some w ∈ Ṽ . By the construction, viw ∈ Ẽ

and so M̃ − vjw + viw is a maximum matching that does not cover vj . Consequently,
vj ∈ Ã.

If vi ∈ B̃ then vi /∈ Ã and viw ∈ Ẽ for some w ∈ Ã. For any j ∈ {1, . . . , k}, by the
previous observation vj /∈ Ã and by the construction vjw ∈ Ẽ. Thus vj ∈ B̃.

If vi ∈ C̃ then for any j, vj ∈ C̃, because otherwise vj ∈ Ã ∪ B̃ which in view of previous
observations gives vi ∈ Ã ∪ B̃. ◀

Lemma 14 easily gives the following fact.

▶ Fact 15. Let H̃ be a component of G̃ − B̃ that satisfies |V (H̃)| ≥ 2 and let v ∈ V (G). If
Uv ∩ V (H̃) ̸= ∅, then Uv ⊆ V (H̃).

Proof. Suppose u ∈ Uv ∩ V (H̃). Since |V (H̃)| ≥ 2, there is w ∈ V (H̃) such that wu ∈ Ẽ.

By construction, for every u′ ∈ Uv, u′w ∈ Ẽ. By Theorem 1, u /∈ B̃ and so by Lemma 14,
u′ /∈ B̃. Consequently, since H̃ is a component in G̃ − B̃, u′ ∈ V (H̃). ◀

We can now prove the main lemma. We will define ω on the edges set of G′ where (G′, b′) is
returned by Reduction(G, b) for the original graph G and function b, that is ω : E(G′) → Z+

as ω(uv) = min{b′(u), b′(v)}.

▶ Lemma 16. For every D, L ∈ Z+ there is cD,L > 0 such that the following holds. Let G

be a graph with ∇1(G) ≤ D/2, let b : V → Z+ be L-Lipschitz, and let (G′, b′) be the pair
returned by Reduction(G, b). Then

νb′(G′) ≥ cD,L · ω(E(G′)). (5)

Proof. Consider G̃ obtained from G′ and let {Ã, B̃, C̃} be the Gallai-Edmonds decomposition
of G̃. By Lemma 14, suppressing each set Uv to v gives partition {A, B, C} of V (G) defined
as A =

⋃
Uv⊆Ã{v}, B =

⋃
Uv⊆B̃{v}, C =

⋃
Uv⊆C̃{v}.

Let H̃ be a component of G̃ − B̃ such that |V (H̃)| ≥ 2 and let H be obtained by
suppressing each Uv ⊆ V (H̃) to v. If |V (H̃)| is even then H̃ has a perfect matching M̃ by
Theorem 1, and by Lemma 14, H contains a b′-matching xH : E(H) → N such that for each
vertex v ∈ V (H),

∑
e∈EH (v) xH(e) = b′(v). Thus

xH(E(H)) =
∑

v∈V (H)

b′(v). (6)

If |V (H̃)| is odd, then |V (H̃)| ≥ 3 and H̃ is factor-critical. Consequently, there is a b′-
matching xH in H such that

∑
e∈EH (v) xH(e) = b′(v) − 1 for any specified vertex v ∈ V (H)

and
∑

e∈EH (w) xH(e) = b′(w) for every vertex w ∈ V (H) \ {v}. Therefore,

xH(E(H)) =

 ∑
v∈V (H)

b′(v)

 − 1 >
1
2

∑
v∈V (H)

b′(v). (7)
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In addition, by Lemma 1, we know that B̃ is matchable to the set of odd components in
G̃ − B̃, and so, by Lemma 14, there is a b′-matching xB in G′ such that

xB(E(B, V \ B)) = |B̃| =
∑
v∈B

b′(v). (8)

Let G1 := G′[B ∪
⋃

V (H)] where the union is over all components H of G′ − B that satisfy
|V (H̃)| ≥ 2. By (6), (7), there is b′-matching x in G1 such that

x(E(G′)) ≥ 1
2

∑
H

∑
v∈V (H)

b′(v) (9)

where the sum is taken over all components H in G′ − B of order at least two. Since
1
2 (c + d) ≤ max{c, d}, by (8) and (9), there is a b′-matching x in G′ (not necessarily G1),
such that

x(E(G′)) >
1
2

xB(E(B, V \ B)) + 1
2

∑
H

∑
v∈V (H)

b′(v)

 ≥ b′(V (G1))/4 > ω(E(G1))/(4·D)

where the last inequality follow from Fact 9 (a).
We will now bound the weight of the edges of G′ that are not in G1. Let Ũ be the set of

components of size one in G̃ − B̃, and let U be obtained by suppressing each Uv ⊆ Ũ to v.
Note that each u ∈ U is a component of size one in G′ − B.

Let U ′ ⊆ U denote the set of vertices u ∈ U such that degG′(u) = |NG′(u) ∩ B| ≥ D.
From (1), for every set S ⊆ U ′,

D|S| ≤ |E(G′[S, NG′(S)])| ≤ D(|NG′(S)| + |S|)/2

which gives |S| ≤ |NG′(S)|. Thus, by Hall’s theorem, there is a matching of U ′ in G′[U ′, B].
Let {uvu | u ∈ U ′, vu ∈ B} be such a matching, and let H := G′[U ′, B]. We have |U ′| ≤ |B|
and there is orientation −→

H of the edges of H such that ∆+(−→H ) ≤ D. By definition of ω, for
v ∈ B, ω(E(v, N+(v)) ≤ D · b′(v). Similarly for u ∈ U ′,

ω(E(u, N+(u)) ≤ D · b′(u) = D · b(u) ≤ D · (b(vu) + L) ≤ D · (b′(vu) + L) ≤ D(L + 1)b′(vu)

because b ≤ b′, b is L-Lipschitz, and Reduction(G, b) does not change the values of b for
vertices of degree at least D. Consequently,

ω(E(H)) ≤ D(L + 2)
∑
v∈B

b′(v) = D(L + 2) · xB(E(B, V \ B)).

Let U ′′ := U \ U ′ and for 1 ≤ i < D, let Ui ⊆ U ′′ denote the set of vertices u ∈ U ′′ such that
degG′(u) = |NG′(u) ∩ B| = i. Let Sv = NG′(v) ∩ B for v ∈ Ui, and note that by Lemma 11
part (b) for any v ∈ Ui there are at most D vertices w ∈ Ui such that Sw = Sv. Out of these
vertices w all but at most one satisfy b(w) = b′(w) and potentially there is one vertex, called
special vertex, w such that b(w) < b′(w).

Before continuing with the main line of the argument we observe that if w ∈ Sv for some
v ∈ Ui, then b(w) = b′(w). Indeed, for b′(w) to be larger than b(w), w would have to have at
least D clones in G and v would be the neighbor of all of them. However, degG′(v) = i < D

and by Fact 10 (b), NG(v) = NG′(v) and so v cannot have D neighbors in B.
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We will now go back to the main line of the argument which is similar to the proof of
Claim 6. Starting with H∗ := (B, ∅), we add edges to H∗ as in the proof of Claim 6, i.e. if
for u ∈ Ui, there are v, w ∈ NG′(u) ⊆ B such that vw is not already in E(H∗), then add vw

to E(H∗) and remove u from Ui. We continue the process for as long as possible. After it
ends, H∗ satisfies |E(H∗)| ≤ D|̇B|/2 because ∇1(G) ≤ D/2.

Let U ′
i denote vertices from Ui that correspond to edges of H∗ and let U ′′

i = Ui \ U ′
i . As

before, there is an orientation of the edges of H∗ such that the maximum out-degree is at
most D. If the arc (v1, v2) is obtained by suppressing vertex u from Ui, then we say that u

belongs to v1. Let Wv denote the set of vertices that belong to v. Then |Wv| ≤ D and for
every u ∈ Wv, ω(uv) ≤ b′(v) = b(v) by the previous observation. Since b is L-Lipschitz, the
total weight of edges incident to vertices from Wv is at most Di(2L + 1) because if u ∈ Wv

and uv′ ∈ E(G′) for some v′ ∈ B then ω(uv′) ≤ b′(v′) = b(v′) ≤ b(v) + 2L ≤ (2L + 1)b(v) =
(2L + 1)b′(v). Consequently, the total weight of edges incident to vertices from U ′

i is a most
Di(2L + 1)

∑
v∈B b′(v) = Di(2L + 1)xB(E(B, V \ B)).

Now consider U ′′
i . By construction, for every u ∈ U ′′

i , NH∗(u) is a clique on i vertices.
Since ∇0(H∗) < D/2, by Lemma 2, we can assign i-cliques in H∗ to vertices from B so
that each vertex has at most

(
D

i−1
)

cliques assigned to it. If K1, . . . , Kl are assigned to
v, then the number of vertices u in U ′′

i such that NH∗(u) = Kj for some j ∈ {1, . . . , l}
is a most Dl ≤ D

(
D

i−1
)
, and the weight on edges incident to them is at most Di(2L +

1)
(

D
i−1

)
b′(v). Consequently, the weight of edges incident to vertices from U ′′

i is at most
Di(2L + 1)

(
D

i−1
) ∑

v∈B b′(v) = Di(2L + 1)
(

D
i−1

)
xB(E(B, V \ B)). As a result, the weight

of edges incident to vertices from Ui is at most Di(2L + 1)(1 +
(

D
i−1

)
)νb′(G′). Summing

over i = 1, . . . , D − 1 shows that the weight of edges of G′ that are not in G1 is O(νb′(G′)),
completing the proof of (5). ◀

As in the case of f -matchings, next algorithm uses constant cD,L and so it needs to know L

and D = 2 · g(1), but the clustering procedure from [1] also needs some information about g.

Procedure b-matching Approximation(G, b, g, L, ϵ).

Use Reduction(G, b) to obtain graph G′ and function b′.
Define the weights ω on E(G′) as in (4). Use the algorithm from [1] to find a partition
of V (G′) into sets V ′

1 , . . . , V ′
l such that diamG′(V ′

i ) = Oϵ,L,D(1) and the total weight of
edges with endpoints in different sets V ′

i is at most ϵ · cD,Lω(E(G′)).
Find an optimal solution x′

i in G′[V ′
i ] and let x′ : E(G′) → N be given by x′(e) := x′

i(e)
if e ∈ E(G′[V ′

i ]) and x′(e) := 0 otherwise. This gives (using the formula in Modify)
solution x in G. Return x.

▶ Theorem 17. There is a distributed algorithm which given graph G = (V, E) on n vertices,
ϵ > 0 and two functions b and g such that ∇r(G) ≤ g(r) = o(log r), and b : V ′ → Z+

is L-Lipschitz, finds a b-matching x in (G, b) such that
∑

e∈E x(e) ≥ (1 − ϵ)νb(G). The
algorithm runs in Oϵ,L,g(log∗ n) rounds.
Proof. Use b-matching Approximation(G, b, g, L, ϵ) and note that x′ is a b′-matching
in G′, and so x is a b-matching in G. By Lemma 11, νb′(G′) = νb(G) and by Lemma 5,
νb′(G′) ≥ cD,Lω(E(G′)). Consequently,

νb(G) = νb′(G′) ≤
∑

i

x′
i(E(G′[V ′

i ])) + ϵ · cD,Lω(E(G′))

≤
∑

e∈E(G)

x(e) + ϵνb′(G′) =
∑

e∈E(G)

x(e) + ϵνb(G).
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Reduction runs in the number of rounds which depends on D only and the running time
of the algorithm from [1] is Oϵ,L,g(log∗ n). Obtaining solution x from x′ requires only a
constant number of steps. ◀
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Abstract
In a 2-dimensional (2D) pattern matching problem, the text is arranged as a matrix M[1..n, 1..n]
and consists of N = n × n symbols drawn from alphabet set Σ of size σ. The query consists of a
m × m square matrix P[1..m, 1..m] drawn from the same alphabet set Σ and the task is to find all
the locations in M where P appears as a (contiguous) submatrix. The patterns can be of any size,
but as long as they are square in shape data structures like suffix trees and suffix array exist [5, 8]
for the task of efficient pattern matching. These are essentially 2D counterparts of classic suffix
trees and arrays known for traditional 1-dimensional (1D) pattern matching. They work based
on linearization of 2D suffixes which would preserve the prefix match property (i.e., every pattern
match is a prefix of some suffix).

The main limitation of the suffix trees and the suffix arrays (in 1D) was their space utilization
of O(N log N) bits, where N is the size of the text. This was suboptimal compared to N log σ

bits of space, which is information theoretic optimal for the text. With the advent of the field of
succinct/compressed data structures, it was possible to develop compressed variants of suffix trees
and array based on Burrows-Wheeler Tansform and LF-mapping (or Φ function) [7, 4, 15]. These
data structures indeed achieve O(N log σ) bits of space or better. This gives rise to the question:
analogous to 1D case, can we design a succinct or compressed index for 2D pattern matching?
Can there be a 2D compressed suffix tree? Are there analogues of Burrows–Wheeler Transform or
LF-mapping? The problem has been acknowledged for over a decade now and there have been a
few attempts at applying Φ function [1] and achieving entropy based compression [10]. However,
achieving the complexity breakthrough akin to 1D case has yet to be found.

In this paper, we still do not know how to answer suffix array queries in O(N log σ) bits of
space - which would have led to efficient pattern matching. However, for the first time, we show
an interesting result that it is indeed possible to compute inverse suffix array (ISA) queries in
near compact space in O(polylogn) time. Our 2D succinct text index design is based on two 1D
compressed suffix trees and it takes O(N log log N + N log σ) bits of space which is much smaller
than its naive design that takes O(N log N) bits.

Although the main problem is still evasive, this index gives a hope on the existence of a full 2D
succinct index with all functionalities similar to that of 1D case.
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1 Introduction

In the classical pattern matching problem we are given a text T[1..n] over an alphabet Σ,
which is a finite totally ordered set of size σ and a pattern P[1..m] drawn from the same
alphabet set. The task is to find locations of all occurrences of pattern P in T. This has been
a classic field of research since last 50 years and many algorithms were developed to achieve
this task in optimal time complexity of O(n + m) [9]. In data structural sense, the problem
becomes to index the text so that patterns can be taken as queries. Data structures like suffix
trees were proposed for this task which took optimal O(n) (words of) space and optimal
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O(m) time for the query. It was seen that even though taking theoretically optimal space,
the space utilization of suffix trees often times could be 50 times the size of original text
data. Space saving structures like suffix arrays were introduced which showed substantial
space savings at the cost of slightly worse query times. However, when measured in bits,
these still take O(n log n) bits as against the information theoretic optimal of O(n log σ)
bits. FM-Index [4] and compressed suffix array (CSA) [7] were the first to achieve this
goal. Introduction of the compressed suffix tree (CST) ensured full-functionalities of suffix
trees simulated in compressed space of O(n log σ) bits (or even lower in entropy compressed
sense) [15]. This led to the field of compressed text indexing which has seen a myriad of
results in last two decades with many positive developments [13].

There are other variants of text-indexing problems where suffix trees and suffix arrays
exist but their compressed counterparts have yet to be found. One of the problems which
has proven to be hard in this context is the problem of 2D pattern matching.

In the 2D pattern matching problem, the text is arranged as a matrix M[1..n, 1..n] and
consists of N = n × n symbols drawn from the alphabet Σ of size σ. The query consists of
m×m square matrix P[1..m, 1..m] drawn from the same alphabet set Σ and the task is to find
all the locations in M where P appears as a (contiguous) submatrix. The patterns can be of
any size, but as long as they are square in shape the data structures like suffix trees and suffix
array exist [5, 8]. The suffix starting from any location M[i, j] is the largest square matrix
which fits within M and whose top-left corner is M[i, j]. The suffixes can be linearized [5]
and indexed using a trie akin to the 1D suffix tree. The problem of designing an index for
2D pattern matching in compact O(N log σ) space (based on suffix trees/arrays BWT or
otherwise) has been long open. There were some attempts and partial results [1, 10] but
they mainly focused on entropy compression, without first addressing the more fundamental
problem of achieving the optimal space complexity (compact space). This gives rise to some
fundamental questions: analogous to 1D case, can we design a succinct or compressed index
for 2D pattern matching? Can there be a compressed suffix tree?

However, achieving the complexity breakthrough similar to 1D case has yet to be found,
in this paper, we present a text index that can answer inverse suffix array (ISA) queries in
near compact space in O(polylog(n)) time. We show this by introducing a novel technique
named LFISA-mapping that is an analogue of LF-mapping operation typically associated
with Burrows–Wheeler Transform. This technique works with linearization scheme of
Reference [5]. Our 2D succinct text index design is based on two 1D compressed suffix trees,
and it takes O(N log log N + N log σ) bits of space as compared to previous non-compact
space of O(N log N) bits.

2 Preliminaries

First, we show an overview of the classical pattern matching problem and its associated
terminology. Next, we extend the same for the 2D pattern matching problem, where we
provide additional definitions associated with the problem.

2.1 Classical Pattern Matching Problem
Let S = {T[i..n]|1 ≤ i ≤ n} be the set of all the suffixes of T. The suffix tree (denoted by ST)
of T is an edge-labeled compact trie constructed from all the suffixes in S [12, 16, 3, 17]. In
the suffix tree, concatenating all the edge labels on a particular root-to-leaf path, we get one
of the suffixes in S. In other words, each leaf of ST corresponds to a suffix of T. Additionally,
as each suffix T[i..n] in S is uniquely identified with its starting position i in T, we can map
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text positions to leaves of ST. Upon traversal of the leaves from left-to-right, we get suffixes
sorted lexicographically, and storing the corresponding text positions in an array gives an
indexing data structure called suffix array (SA) [11]. Here by i = SA[r], we mean that the
leaf with its corresponding text position i is the rth leftmost leaf (ℓr) in ST. In other words,
r is the lexicographical order or rank of the suffix T[i..n]. Similarly, the inverse suffix array
(ISA) is defined as ISA[i] = SA−1[i] = r. In other words, the inverse suffix array maps each
text position i to the leaf position r in ST.

The LF-mapping is the relation between the leaves ℓr and ℓr′ (LF(r) = r
′) such that their

corresponding text positions are i and i − 1 respectively. Formally, LF-mapping is defined in
terms of the suffix array as LF(r) = SA−1[SA[r] − 1]. But the index such as the FM-index
efficiently computes the LF-mapping using the Burrows Wheeler Transform (BWT) [2] of the
original text along with some auxiliary counting data structures. This computation lies at
the heart of BWT based text indexes that enables them to answer pattern matching queries
without actually storing the costly suffix array and instead replacing it with a sampled suffix
array.

On the contrary, just storing a CSA in itself does not provide all the required functionalities
that a full CST provide. Therefore, a CST with full functionalities is needed and is realised
using three components: 1) its underlying CSA 2) the compressed tree topology that provides
navigational operations where each operation takes O(1) time and 3) some auxiliary data
structures providing the longest common prefix (LCP) information. Moreover, the full list
of operations supported by CST is given in the Appendix. Out of which one of the most
important operations is to answer inverse suffix array queries i.e. given CSA, an ISA entry
can be decoded in O(logϵ N) time for some constant ϵ > 0. Now in the ensuing subsection,
we formally go over the 2D pattern matching problem and associated terminology.

2.2 2D Pattern Matching Problem
Let M be a square matrix of dimension N = n × n where every element M[i, j] is taken from
an alphabet Σ which is a finite totally ordered set of size σ. The query consists of a square
pattern P[1..m, 1..m] also drawn from Σ and the goal is to find all the occurrences of P in M.

In a 1D text, an ith suffix is the largest substring of the text starting from the ith position
i.e. T[i..n]. Similarly, this way of defining a suffix can be extended to 2D suffixes of a matrix.
A 2D suffix S2D

i,j defined for a position (i, j) is the largest square submatrix of M starting
at (i, j) position i.e. M[i..i + l, j..j + l], where l = n−max(i, j). Giancarlo [6] proposed a
way of linearization of 2D suffixes such that they follow the constraints of completeness and
common prefix property similar to 1D suffixes. The completeness constraint is that every
square submatrix of M in the linear form must correspond to some prefix (whatever the
definition of prefix is) of some suffix of M each represented linearly. The common prefix
constraint is that a square submatrix of M should be a prefix of some suffixes of M after
linearizing them. Giancarlo proposed Lsuffix which is a linear representation of a 2D suffix.
Here L stands for linear. An Lsuffix SL

i,j of a 2D suffix S2D
i,j is the concatenation of strings

a0, a1, a2, ..., al where a0 = M[i, j] and ak = M[i + k, j..j + k − 1] · M[i..i + k, j + k] which is
of length 2k + 1 and l = n−max(i, j) for k ̸= 0 (see Figure 1 for example). Here α · β refers
to the concatenation of the strings α and β.

Let SL be the set of all such Lsuffixes of M. Here |SL| = N as there are total N suffixes.
Let STL be the compact trie (suffix tree) constructed from Lsuffixes in SL (also known as
Lsuffix tree). The uncompressed version of STL [5] takes Θ(N log N) bits of space which
is very large compared to the optimal space required to store the original matrix M i.e.
N⌈log σ⌉. Similarly, the uncompressed version of suffix array (SAL) [8] for such suffixes also
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Figure 1 Lsuffixes and LF-mapping. a) Splitting of an Lsuffix: The characters inside the circle
are a part of the horizontal suffix SH

i−1,j−1 = abcde... and it resides on the horizontal suffix tree.
Similarly, The characters inside the triangle are a part of the vertical suffix SV

i,j−1 = fkpu... and this
suffix resides on the vertical suffix tree. Additionally, the linear form of the 2D suffix starting from
the position (i,j) is formed by the characters inside the rectangle i.e. SL

i,j = g · l ·hm ·qr ·ins ·vwx ·joty

and it resides on the Lsuffix tree (the biggest tree on the right). Here α · β denotes concatenation of
strings α and β. Now the Lsuffix starting at the position (i−1, j −1) is formed by characters of these
three sequences i.e. SL

i−1,j−2 = a ·f ·bg ·kl ·chm ·pqr ·dins ·uvwx ·ejoty b) LF-mapping: LF-mapping
takes from the leaf corresponding to the Lsuffix starting at position (i, j) to that of Lsuffix starting at
position (i − 1, j − 1). A lot of new characters are introduced in doing so. Therefore, the LF-mapping
operation in case of 2D pattern matching problem is not trivial to evaluate.

requires Θ(N log N) bits of space. The suffix array and inverse suffix array is defined in a
similar fashion as defined in the linear case. For suffix array, given the rank r, it outputs
the position in the matrix of the corresponding Lsuffix SL

i,j i.e. SAL[r] = (i, j). Furthermore,
inverse suffix array is defined as ISAL[i, j] = r. Additionally, we introduce the LF-mapping
with respect to the 2D case (LFL-mapping) and we define it as follows,

LFL(r) = ISAL[i − 1, j − 1], where SAL[r] = (i, j)

Here, ISAL[0, j′] = ISAL[i′, 0] = Ø. In other words, LFL-mapping operation outputs the
rank of the Lsuffix SL

i−1,j−1 given the rank of Lsuffix SL
i,j (i.e. it goes diagonally above).

Figure 1 shows an example of a particular LF-mapping operation and how new characters
get introduced when going from Lsuffix SL

i,j to SL
i−1,j−1 in contrast to the addition of only

one character (in front) in the case of 1D suffixes i.e. going from T[i..n] to T[i − 1..n]. This
is the reason why it is not trivial to evaluate LF-mapping for the 2D case.

As the LFL-mapping is related to the SAL, we introduce a similar mapping for ISA which
we call LF-mapping for ISA (LFISAL). We define it as,

LFISAL(i, j) = ISAL[i − 1, j − 1]

Here, for computational purposes, we provide ISAL[i, j] as an additional parameter. The
psuedocode for computing LFISAL(i, j, ISAL[i, j]) is given in Section 7. In other words, given
the position and the rank of the Lsuffix SL

i,j , LFISAL-mapping outputs the rank of the Lsuffix
SL

i−1,j−1 (diagonally above). Now, in order to compute the value of any ISAL entry, as storing
the entire ISAL takes much space, we sample it and store only those ISAL[i, j] values such
that i = 1 + (k − 1)∆ where k = {1, 2, ..., ⌈

√
N

∆ ⌉}. This reduces the problem of computing an
ISAL value to computing at most ∆ LFISAL-mapping operations. Now, in the latter sections,
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we show how to compute LFISAL-mapping in tLFISA = O((log N/ log log N)3) time using our
O(N log σ + N log log N)-bit index. Therefore, ISAL value for any position in the matrix can
be calculated in tISA = ∆ · tLFISA = O(log N · tLFISA) time as we take ∆ = O(log N) for our
case.

Till now, succinct versions of 2D text indexes have been evasive because the intuition
behind the pattern matching in 1D case does not extend directly to the 2D case due to
the non trivial nature of 2D LF-mapping. However, this does not restrict us from asking
the fundamental question as to whether it is possible to design a compact text index for
matrices. In this paper, we propose the design of a text index that can atleast answer inverse
suffix array queries in near compact space using LFISAL-mapping. Although, a solution to
the main question evades us, this is a ray of hope. Now, the following theorem states the
objective of the paper more formally as,

▶ Theorem 1. The text index for matrix M of size N = n × n can be encoded in O(N log σ +
N log log N)-bit space and any entry in the inverse suffix array ISALcan be decoded in time
O(log N · tLFISA) where tLFISA = O((log N/ log log N)3)

Proof. See Sections 8.1 and 8.2 for the proof. ◀

Our approach. The intuition here is that we split the Lsuffix for which we need the ISA value
into three subsequences, and thereby solve the problem for each subsequence to eventually
solve for the main Lsuffix. We discuss this splitting in detail in the later section. But in
order to understand this dividing strategy, first we define what we call horizontal and vertical
suffixes (or in short Hsuffix and Vsuffix respectively) and also how they relate to Lsuffixes.

3 Horizontal and Vertical Suffixes

Firstly, given a matrix M, we linearize it horizontally by concatenating all the rows of M
one after another to get a single 1D text TH of length N . The set of all the suffixes of TH is
defined as SH = {TH[i..N ]|1 ≤ i ≤ N}. We denote such suffixes as horizontal or Hsuffixes.
Let STH be the compressed suffix tree obtained from all the Hsuffixes of text TH. Secondly, by
concatenating all the columns into a single text TV we linearize M vertically. The set of all the
suffixes of TV is defined as SV = {TV[i..N ]|1 ≤ i ≤ N}. Such suffixes are denoted as vertical
or Vsuffixes. Here, let STV be the compressed suffix tree constructed from such Vsuffixes of
TV. From the context of M, Hsuffix and Vsuffix starting from M[i, j] are written as

SH
i,j = M[i, j..n] · M[i + 1, 1..n] · M[i + 2, 1..n] · ... · M[n, 1..n]

SV
i,j = M[i..n, j] · M[1..n, j + 1] · M[1..n, j + 2] · ... · M[1..n, n]

Finally, as STH and STV are the compact versions of the original suffix trees, they only
occupy O(N log σ) bits of space which is very close to the space required by the original
matrix [15]. Their full functionalities are provided in the Appendix. Next, we relate all these
defined suffixes.

4 Splitting of an Lsuffix

In this section, we show how to split an Lsuffix into three different subsequences. Given
an Lsuffix SL

i,j in the 2D form, we can split it into three subsequences: 1) The horizontal
subsequence (i.e. the first row M[i, j..n]), 2) The vertical subsequence (i.e. the first column
M[i + 1..n, j]) and 3) The subsequence (linear form) of the remaining square submatrix
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i.e. SL
i+1,j+1. An example of such a splitting is provided in Figure 1. Here, M[i, j..n] and

M[i + 1..n, j] subsequences come from the Hsuffix SH
i,j and Vsuffix SV

i+1,j respectively. Let us
denote hk and vk as the (k + 1)th characters of M[i, j..n] and M[i + 1..n, j] respectively. Now,
as mentioned before an Lsuffix SL

i,j is the concatenation of strings a0, a1, a2, ..., al where a0 =
M[i, j] and ak = M[i+k, j..j+k−1]·M[i..i+k, j+k] which is of length 2k+1 and l = n−max(i, j)
for k ̸= 0. Similarly, let SL

i+1,j+1 be the concatenation of strings b0, b1, b2, ..., bl−1 where
b0 = M[i+1, j +1] and bk = M[(i+1)+k, (j +1)..(j +1)+k−1]M[(i+1)..(i+1)+k, (j +1)+k]
when k ̸= 0. For simplicity we break each ak and bk into two parts as follows,

a
′

k = M[i + k, j..j + k − 1]

a
′′

k = M[i..i + k, j + k]

b
′

k = M[(i + 1) + k, (j + 1)..(j + 1) + k − 1]

b
′′

k = M[(i + 1)..(i + 1) + k, (j + 1) + k]

We can write ak in terms of hk and vk bk as follows,

a
′

k = M[i + k, j..j + k − 1] = vk−1b
′

k−1

a
′′

k = M[i..i + k, j + k] = hkb
′′

k−1

Therefore, we can say that ak is the concatenation of strings vk−1, b
′

k−1, hk, b
′′

k−1 where
b

′

0 = Ø and b
′′

0 = b0 and a0 = h0 as h0 = M[i, j]. We want to redirect the reader’s attention
to Figure 1 where we showcase an example that helps in better understanding of the above
concept.

Now, given ak we can get vk−1, b
′

k−1, hk, b
′′

k−1 as vk−1 and hk are characters and b
′

k−1 and
b

′′

k−1 are the strings of length k − 2 and k − 1 respectively. Here vk−1 and hk can be thought
of as delimiters of the string ak and these two uniquely breaks down ak into its constituents.
Now since we know that given ak we can get vk−1, b

′

k−1, hk, b
′′

k−1 and vice versa, we denote
the horizontal component of the entire Lsuffix SL

i,j by hc(SL
i,j) = h0h1h2...hl. Similarly, we

denote the vertical component by vc(SL
i,j) = v0v1v2...vl−1 and the square component by

sc(SL
i,j) = b0b1b2...bl−1. Likewise, we can define the same for any prefix pf of the Lsuffix

SL
i,j . We can state the following fact about the relation between the length of the three

components of the prefix pf of SL
i,j and its length. Here, by length, we mean the length of

the string.

▶ Fact 2. length(pf) = length(hc(pf)) + length(vc(pf)) + length(sc(pf))

Now, intuitively we use such a splitting to evaluate a single LFISA-mapping operation.
Next, we go over some of the basic terminologies of a suffix tree that will be needed in
understanding the construction stage of our text index.

5 Terminology of a Suffix Tree (ST)

A suffix tree is an edge-labelled compact trie. We call any character on the edge of the
suffix tree be represented as a point. Given any point c on the ST, string(c) represents the
concatenation of all the characters from root to that point (including c) along the root to c

path of ST. The string depth of a point c on a path of ST is given by the length of string(c)
i.e. depth(c) = length(string(c)). A node of the ST is also a point as that node is represented
by the character just above it. The locus u of a point c is the highest node of ST such that
string(c) is the prefix of string(u) (lets denote it as u = locus(c)). Now, we define whether
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a point c is marked or not as marked(c) = 1 or 0 respectively. The leftmost and rightmost
leaves in the subtree of a particular point c are given as lleaf(c) and rleaf(c) respectively.
Here lleaf(c) and rleaf(c) give the leaf rank from left in ST. In general, we denote rth leftmost
leaf of ST as ℓr. Let lca(c1, c2) be the lowest common ancestor of points c1 and c2. The
lowest common ancestor as the name suggests is the common ancestor node of two points
and is the farthest from the root.

6 Computing LFISA-mapping in time O((log N/ log log N)3) using
Compact Space

Just to recall, we have three suffix trees based on three different types of suffix definitions
as shown before, i.e. STL, STH and STV. Here, we store STH and STV as compressed suffix
trees (CST) [15] with full functionalities (See Theorem 10 and 11 in Appendix) and they
together occupy only O(N log σ) + O(N log σ) = O(N log σ) bits of space. On the contrary,
we won’t be storing the entire STL but only the compressed topology of the tree that has
navigational functionalities each supported in constant time and occupies 4N + o(N) bits of
space (See Theorem 10 in Appendix). In the ensuing subsection, firstly we show a scheme of
marking some relevant points on these trees (construction stage) and then explain how this
will help in computing LFISA-mapping.

6.1 Marking Scheme and Mapping
Firstly, we mark some nodes on Lsuffix tree STL. We mark a node vL

i of STL such that
vL

i = lca(ℓ(i−1)g+1, ℓig), where i = {1, 2, ..., ⌈ N
g ⌉} and g is the grouping factor. Furthermore,

we define Gi = [(i−1)g+1, ig] as the grouping interval. For our case, we shall use g = ⌈log3 N⌉.
Hence, the total number of marked nodes on STL is bounded by O( N

log3 N
). Now, we define

marked ancestor, lowest marked ancestor, cover of a leaf and coveredby(vL) set of a marked
node as follows:

▶ Definition 3 (Marked Ancestor). A marked node vL is the marked ancestor of a leaf ℓ if vL

lies on the path from root to leaf ℓ in the suffix tree.

▶ Definition 4 (Lowest Marked Ancestor). A node vL is the lowest marked ancestor of the
leaf ℓ if it is the lowest (one with the maximum string depth) among all the marked ancestors
of ℓ.

▶ Definition 5 (Cover). A node vL is the cover of the leaf ℓ if it is the lowest marked ancestor
of ℓ.

▶ Definition 6 (coveredby(vL) set). A coveredby(vL) set is the set of the leaves for which vL

is the cover.

As mentioned before in Section 4 showcasing the splitting of an Lsuffix, given a marked
node vL, its associated string i.e. string(vL) can be split into its horizontal, vertical and square
components i.e. hc(string(vL)) , vc(string(vL)) and sc(string(vL)) respectively. For a marked
node vL in STL, we mark a point pH in STH corresponding to its horizontal component such
that string(pH) = hc(string(vL)). Similarly, we mark points pV and pL corresponding to its
vertical and square components in STV and STL respectively. We call them the shadow
points. Just to recall, a point is any character on the edge of the suffix tree. Note that vL is
not the same marked node as pL even though they are marked on the same tree (see Figure
2). We repeat the above process for every marked node on vL in STL.
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At the end of the marking process, let MPH, MPV and MPL be the sets of all the shadow
points on STH, STV and STL respectively. Hence, a marked node vL in STL can be viewed
as a unique triplet of shadow points in STH, STV and STL i.e. vL = (pH, pV, pL). Therefore,
the total number of shadow points in each tree is bounded. Formally, we have |MPH|, |MPV|
and |MPL| as bounded by O( N

log3 N
), where |X| is the cardinality of the set X. Due to this

one-to-one correspondence between a marked node and the triplet of shadow points, we
define a set U ⊆ MPH × MPV × MPL which consists of only those triplets of shadow points
which come from the marked nodes.

Now, we state our central task as follows,

Given ISAL[i, j], compute ISAL[i − 1, j − 1].

We shall preprocess the text and contruct data structures that will take near compact
space and achieve this task in O(polylogN) time. The main step in this is computing
LFISAL(i, j, ISAL[i, j]). In the following subsection, we show the details on how to achieve
this, and thereafter we outline the pseudocode for the same as LFISAL(i, j, ISAL(i, j)) in the
subsection 6.2.3.

6.2 Computing LFISAL(·)
In the section, we show the details for the evaluation of LFISAL(i, j, ISAL[i, j]) given the
matrix position (i, j) and ISAL[i, j]. Firstly, using the inverse(·) function of STH and STV (See
Theorem 10 in Appendix), we evaluate the inverse suffix array values ISAH[i − 1, j − 1] and
ISAV[i, j−1] respectively. For simplicity, let ISAL[i, j] = r, ISAH[i−1, j−1] = h, ISAV[i, j−1] =
v, ISAL[i − 1, j − 1] = LFISAL(i, j, ISAL[i, j]) = s.

As inverse suffix array values are related to the leaves of the suffix tree, let ℓh, ℓv and ℓr

be hth, vth and rth leftmost leaves in their respective suffix trees. The aim here is to find the
leaf ℓs in STL using the information provided by the shadow points of our index along the
root-to-leaf paths of ℓh, ℓv and ℓr in tLFISA time. We shall use some auxiliary data structures
that we introduce in the latter subsections.

Given (h, v, r), we define a set as A = {(pH, pV, pL) ∈ U | ℓh, ℓv and ℓr lie in the respective
subtrees of pH, pV and pL}. To put it another way, A is a set of valid triplets of shadow points
that lie on the root-to-leaf paths of ℓh, ℓv and ℓr in their respective trees. Out of all the
valid triplets that are in A, let a specific triplet or its corresponding marked node vL

max be
defined as follows,

vL
max = argmax

vL=(pH,pV,pL)∈A

(depth(string(vL))).

Recall that there is a one-to-one correspondence between the marked nodes in STL and
triplets in U .

Lemma 7 proves that the marked node vL
max is the lowest marked ancestor (or cover)

of the leaf ℓs. Therefore, the marked node vL
max along with some augmenting information

shown in later subsection, will lead us to the leaf ℓs which is what we are interested in as.
Hence, we call the above query as lowest marked ancestor query.

▶ Lemma 7. The marked node vL
max in STL is the lowest marked ancestor (or cover) of the

leaf ℓs.
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Proof. Firstly, we prove that any valid triplet vL = (pH, pV, pL) ∈ A is the marked ancestor
of the leaf ℓs. As pH is the shadow point on the root-to-leaf path of ℓh, string(pH) is the
prefix of the horizontal suffix SH

i−1,j−1 as we have ISAH[i − 1, j − 1] = h. Similarly, string(pV)
and string(pL) are the prefixes of the vertical suffix SV

i,j−1 and Lsuffix SL
i,j respectively.

Furthermore, as the string(pH), string(pV) and string(pL) are the horizontal, vertical and
square components of the string(vL) respectively (as per the marking scheme), one of the
occurrences of string(vL) in its 2D form is at matrix position (i − 1, j − 1). Therefore, it
is a prefix of the suffix starting at the position (i − 1, j − 1) which in its linear form is
represented as SL

i−1,j−1. Therefore, the triplet node vL lies on the root-to-leaf path of the
leaf representing the Lsuffix SL

i−1,j−1 and that leaf is ℓs. Hence, vL is a marked ancestor of
ℓs. The same is true for ∀vL ∈ A.

Moreover, as vL
max ∈ A and is the output of the lowest marked ancestor query that

maximizes over string depth over all triplets vL ∈ A, it is the lowest marked ancestor or cover
of ℓs. ◀

Now as we are interested in obtaining cover vL
max, we reduce the above lowest marked

ancestor query to a stabbing-max query. This reduction is interesting and useful in our
context due to the result mentioned in Theorem 8. The details concerning this reduction
is discussed in the next subsection. Furthermore, after finding the cover vL

max, in order to
uniquely go to the correct leaf ℓs we store additional augmenting information [discussed in
latter subsection]. This shows the computation of an LFISAL operation. The time or query
complexity of such an operation is discussed in the Section 7.

6.2.1 Reduction to 3-dimensional (3D) Stabbing-Max Query

In this section, we show how to reduce that the aforementioned lowest marked ancestor query
to a 3D stabbing-max query. In [14], the authors proves the following theorem,

▶ Theorem 8 ([14]). Given a set I of n 3D rectangles in R3, where each rectangle rec has
a weight w(rec) associated to it, finding a rectangle with maximum weight containing (or
stabbed by) the 3D query point q can be done in O(( log n

log log n )3) time using a data structure
occupying O(n( log n

log log n )2) space.

We define the sides of the 3D rectangle rec for each marked node vL = (pH, pV, pL) in U

as follows:

(xleft, xright) =
(
lleaf(pH), rleaf(pH)

)
(yup, ydown) =

(
lleaf(pV), rleaf(pV)

)
(zfront, zback) =

(
lleaf(pL), rleaf(pL)

)
w(rec) = depth(string(vL))

This shows that each triplet in U or its corresponding marked node vL in STL is uniquely
represented as a weighted rectangle.

Next, we define the 3D query point as q = (h, v, r). Therefore, the output of this 3D
stabbing-max query is the rectangle with maximum weight i.e. the rectangle corresponding
to the cover of the leaf ℓs (vL

max). Furthermore, after obtaining the cover of the leaf, we
shall provide details on what augmenting information to store in order to get the desired leaf
uniquely, i.e. ℓs in the next subsection.
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vL.INLEN = 6, 4, 3

Intervals of vL

38456
No of leaves in 
each section

vL

vL.PSLEN = 6, 10, 13

vL.INLEFT = 1, 12,24

Associated Arrays

X

lhlr
lv

PL

PVPH

Marked Node

Shadow Points

X

Three intervals forming 3D rectangle

Figure 2 For a particular marked node vL in STL (shown in red color), the array INLEFT
corresponding to vL stores the start of its associated intervals. Likewise, the array INLEN stores
the length of such intervals and the array PSLEN is the prefix-sum array of INLEN. The points
(pL, pH, pV) are the shadow points of vL (shown as X in the figure shown on the right side).

6.2.2 Augmenting Information for getting ℓs from its Cover
In this section, we explain the procedure of obtaining the correct leaf ℓs from its cover vL by
storing the leaf’s rank q (say). Here, we define the task for this section as: Given q and vL,
find the qth leftmost leaf in coveredby(vL) (See Definition 6 of coveredby(vL)).

Now the challenge lies due to the fact that vL may have multiple marked nodes in its
subtree and due to that there may be leaves in its subtree whose lowest marked ancestor
or cover is not vL. Therefore, the set of leaves for which vL is the cover i.e. coveredby(vL)
can be represented as a set of contiguous intervals. Let us denote it as CI = {I1, I2, ..., Ik}.
Here, Ii = [ai, bi] where i ∈ {1, 2, ..., k} and all the leaves between ℓai

and ℓbi
belongs to

coveredby(vL). Here CI denotes covered intervals.
Lemma 9 proves that the total number of such intervals is bounded by O(σ), i.e. k = O(σ).

Additionally, it establishes that the total number of leaves for which vL is the cover is
bounded by

∑k
a=1 |Ia| = O(k log3 N) = O(σ log3 N) where |I| is the length of the interval

I. Furthermore, as there is a one-to-one correspondence between each marked node and a
rectangle as shown before, we store the augmenting information for each rectangle rather
than storing it explicitly for the marked node. Let the rectangle associated with vL be
denoted as rec. Therefore, let CIrec = CI.

▶ Lemma 9. The total number of intervals in CIrec is bounded by O(σ) and the total number
of leaves for which any marked node (here vL) is the cover is bounded by O(σ log3 N).

Proof. Let cL be one of the child nodes of vL. Assume that lleaf(cL) and rleaf(cL) lie inside
the intervals Ii and Ij respectively. First, we prove that Ii and Ij are consecutive intervals.

Suppose there is an interval Ik between Ii and Ij . This means that Ik is entirely contained
inside the subtree of cL. In other words, there is an interval of leaves Ik completely inside the
subtree of cL for which vL is the cover. This implies that there is at least one grouping interval
of leaves completely contained inside the subtree of cL for which vL is the lowest common
ancestor (lca) of its leftmost and rightmost leaves (See marking scheme for details). But this
is not possible as for vL to be the lca, the leftmost and rightmost leaves of that grouping
interval should exist on two separate downward branches of vL. This is the contradiction.
Therefore, this means that there is no grouping interval completely contained inside the
subtree of the child node cL. Hence, there is no Ik that is entirely contained inside the subtree
of cL.
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This means Ii and Ij are consecutive intervals. Therefore, the subtree of a child node of
vL overlaps with at most 2 consecutive intervals in CIrec. Furthermore, there are at most σ

child nodes of vL. Hence, the total number of intervals in CIrec is bounded by O(σ).
Secondly, there are at most O(σ) grouping intervals under the subtree of vL for which vL

is the lca of its leftmost and rightmost leaves, as each grouping interval need to span over two
separate downward branches of vL for vL to be that lca. Additionally, the total number of
leaves in all such grouping intervals combined is bounded by O(σ · g) = O(σ · log3 N) where
g is the grouping factor. This implies that the total number of leaves for which vL is the
lowest marked ancestor or the cover is bounded by the same factor i.e. O(σ log3 N). ◀

As the set of leaves for which vL is the cover, is divided into contiguous intervals of
leaves (as shown above), to go from the cover vL to the output leaf ℓs, first we store some
information to retrieve which interval that leaf belongs to and then where exactly that leaf is
inside that interval.

For each marked node (here vL or its associated rec) firstly we store the start of each
interval in an array INLEFTrec[·]. Additionally, we store the size of such intervals in an-
other array INLENrec[·]. Moreover, we store the prefix-sum array of INLENrec[·] in an array
PSLENrec[·] (See Figure 2 for example). Now as we are not storing the entire ISAL[·, ·] because
it requires O(log N) bits for each leaf instead we store what we call a miniISAL[·, ·], where
we store just a O(log σ + log log3 N)-bit number for each matrix position (i, j). This is
because each entry in the miniISAL[i, j] is the lexicographical rank of the leaf associated
with ISAL[i, j] under its lowest marked ancestor and the total number of leaves for which a
marked node is the lowest marked ancestor is bounded by O(σ log3 N) (Lemma 9). Now let
miniISAL[i, j] = q. First we do binary search of q in PSLENrec[·] and get the index e such that
the value of PSLENrec[e] is the largest number smaller than q. Now return the final output
s = INLEFTrec[e] + (q − PSLENrec[e]).

6.2.3 Pseudocode of LFISAL-mapping Operation
Now, we outline the pseudocode for LFISAL-mapping operation.

Algorithm 1 LFISAL(i, j, ISAL(i, j)).

1: h = STH.inverse(i, j)
2: v = STV.inverse(i, j)
3: s = ISAL[i, j]
4: rec = 3d_stabbing_max(h, v, s)
5: q = miniISAL[i, j]
6: e = binary_search(PSLENrec, q)
7: s = INLEFTrec[e] + (q − PSLENrec[e])
8: return s

7 Space and Time Complexity Analysis

7.1 Space Complexity
After the end of the construction phase, we have three suffix trees in our index based
on three different types of suffix definitions, along with some auxiliary structures that
are actually stored. The horizontal and vertical suffix trees i.e. STH and STV are stored
as compact suffix trees (See Theorem 10 and 11 in Appendix) which together occupy
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O(N log σ) + O(N log σ) = O(N log σ) bits of space. On the contrary, we only store the
compressed topology for the Lsuffix tree STL rather than storing the entire suffix tree (See
Theorem 10 in Appendix). This compressed topology provides navigational functionalities,
and overall it occupies 4N + o(N) bits of space.

As previously mentioned in the marking scheme section, the number of marked nodes on
STL is bounded by O(N/ log3 N). Thus, the number of their corresponding shadow points
on STL, STH and STV are also bounded by O(N/ log3 N). Additionally, due to one-to-one
correspondence between marked nodes and 3D rectangles, the number of such rectangles is
also bounded by the same factor.

Each rectangle has a set of arrays associated with it. The length of each of these arrays
(INLEFTrec[·], INLENrec[·],PSLENrec[·]) is the number of intervals under the marked node of
that rectangle. As per the marking scheme, the number of grouping intervals is bounded
by O(N/ log3 N). Therefore, the total number of intervals across all the rectangles is also
bounded by O(N/ log3 N) [Implication from Lemma 9]. Each number in these auxiliary data
structures take O(log N) bits to store. Identifiers for each marked node or shadow points
also take at most O(log N) bits. Thus, the storage space for all the auxiliary structures is
bounded by O(N/ log2 N) = o(N) bits.

If there are t rectangles, the data structure for stabbing-max query takes
O(t(log t/ log log t)2) [14] which is O(t log2 t) space. By taking t = O(N/ log3 N), we get that
stabbing-max data structure takes O(N/ log N) words of space which is bounded by O(N)
bits of space.

Finally, for our miniISAL structure, we simply store a matrix of dimensions n×n, with each
entry miniISAL[i, j] taking O(log σ + log log N) bits. This is because any entry in miniISAL

writes a position of the desired leaf among at most σ log3 N leaves which have the same lowest
marked node. Thus, in total we get O(N log σ + N log log N) bits for this part. Additionally,
we store the sampled inverse suffix array which has O(N/ log N) elements where each element
takes O(log N) bits. Therefore, in total it takes O(N)-bits of space.

After summing up all five parts that are considered, we get O(N log σ) + o(N) + O(N) +
O(N log σ + N log log N) + O(N) bits. This simplifies to O(N log σ + N log log N) bits as
claimed in Theorem 1.

7.2 Time Complexity

For the time complexity of query evaluation, as a key component, we first focus on computing
LFISAL-mapping operation. We follow the pseudocode step by step for this. The first two
steps take tinverse as given by CST which is O(logϵ n) (See Theorem 11 in Appendix). The
third step is constant time since the value is provided as a part of the function. The main
time consuming part is the stabbing-max data structure which takes O((log N/ log log N)3)
time. Finding corresponding marked node can be done in O(1) time using succinct tree
data structure and searching for prefix sum in the array associated with the rectangle can
be done via binary search in O(log N) time. Thus, our dominating and main query bound
for LFISAL-mapping operation is O((log N/ log log N)3). Finally, considering that our query
algorithm for ISAL can have at most log N applications of LFISAL, we get our query-time
bound as O(log4 N/(log log N)3) (as claimed in Theorem 1).
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8 Conclusion

To conclude, we provide an O(N log σ + N log log N)-bit index that supports inverse suffix
array queries in O(log4 N/(log log N)3) time. Even though the main goal of developing 2D
text index which can allow pattern matching i.e. to compute suffix array (SA) value or LF
values efficiently is not achieved, we think this is a significant step forward in understanding
the structure of the problem. Exploring the inter-relations here may lead us to better tools
to compute LF operation efficiently in compact space.

References
1 Jeffrey Scott Vitter Ankur Gupta, Roberto Grossi. Entropy-compressed indexes for multi-

dimensional pattern matching. In DIMACS working group on Burrows-Wheeler Transform,
2004.

2 M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm. Technical
report, Digital Equipment Corporation (now part of Hewlett-Packard, Palo Alto, CA), 1994.

3 Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity of
suffix tree construction. J. ACM, 47(6):987–1011, 2000. doi:10.1145/355541.355547.

4 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
2005. An extended abstract appeared in FOCS 2000 under the title “Opportunistic Data
Structures with Applications”. doi:10.1145/1082036.1082039.

5 Raffaele Giancarlo. A generalization of the suffix tree to square matrices, with applications.
SIAM J. Comput., 24(3):520–562, 1995. doi:10.1137/S0097539792231982.

6 Raffaele Giancarlo and Roberto Grossi. Suffix tree data structures for matrices. In Alberto
Apostolico and Zvi Galil, editors, Pattern Matching Algorithms, pages 293–340. Oxford
University Press, 1997.

7 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.
An extended abstract appeared in STOC 2000. doi:10.1137/S0097539702402354.

8 Dong Kyue Kim, Yoo Ah Kim, and Kunsoo Park. Constructing suffix arrays for multi-
dimensional matrices. In Martin Farach-Colton, editor, Combinatorial Pattern Matching, 9th
Annual Symposium, CPM 98, Piscataway, New Jersey, USA, July 20-22, 1998, Proceedings,
volume 1448 of Lecture Notes in Computer Science, pages 126–139. Springer, 1998. doi:
10.1007/BFb0030786.

9 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

10 Veli Mäkinen and Gonzalo Navarro. On self-indexing images – image compression with added
value. In 2008 Data Compression Conference (DCC 2008), 25-27 March 2008, Snowbird, UT,
USA, pages 422–431. IEEE Computer Society, 2008. doi:10.1109/DCC.2008.47.

11 Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993. doi:10.1137/0222058.

12 Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976. doi:10.1145/321941.321946.

13 Gonzalo Navarro. Compact Data Structures – A Practical Approach. Cambridge
University Press, 2016. URL: http://www.cambridge.org/de/academic/subjects/
computer-science/algorithmics-complexity-computer-algebra-and-computational-g/
compact-data-structures-practical-approach?format=HB.

14 Yakov Nekrich. A dynamic stabbing-max data structure with sub-logarithmic query time. In
Takao Asano, Shin-Ichi Nakano, Yoshio Okamoto, and Osamu Watanabe, editors, Algorithms
and Computation – 22nd International Symposium, ISAAC 2011, Yokohama, Japan, December
5-8, 2011. Proceedings, volume 7074 of Lecture Notes in Computer Science, pages 170–179.
Springer, 2011. doi:10.1007/978-3-642-25591-5_19.

ISAAC 2021

https://doi.org/10.1145/355541.355547
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1137/S0097539792231982
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1007/BFb0030786
https://doi.org/10.1007/BFb0030786
https://doi.org/10.1137/0206024
https://doi.org/10.1109/DCC.2008.47
https://doi.org/10.1137/0222058
https://doi.org/10.1145/321941.321946
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/compact-data-structures-practical-approach?format=HB
https://doi.org/10.1007/978-3-642-25591-5_19


60:14 Inverse Suffix Array Queries for 2D Pattern Matching in Near-Compact Space

15 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007. doi:10.1007/s00224-006-1198-x.

16 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

17 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and
Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE Computer
Society, 1973. doi:10.1109/SWAT.1973.13.

A Appendix

A fully functional compact/compressed suffix tree is realized using three components, 1) its
compressed tree topology that supports navigational functionalities [See Theorem 10] 2) the
compressed suffix array [See Theorem 11] and 3) auxiliary data structures that supports
longest common prefix (LCP) information.

▶ Theorem 10 (Fully-Functional Succinct Suffix Tree [15]). The topology of a suffix tree can
be encoded in 4N + o(N) bits to support the following operations in O(1) time.

pre-order(u)/post-order(u): pre-order/post-order rank of node u

parent(u): parent of node u

nodeDepth(u): number of edges on the path from the root to u

child(u, q): qth leftmost child of node u

sibRank(u): number of children of parent(u) to the left of u

lca(u, v): lowest common ancestor (LCA) of two nodes u and v

lleaf(u)/rleaf(u): leftmost/rightmost leaf in the subtree of u

levelAncestor(u, d): ancestor of u such that nodeDepth(u) = d

▶ Theorem 11 (Compressed Suffix Array [15]). The compressed suffix array part of the above
compressed suffix tree can be encoded in O(N log σ) bits to support the following operations.

lookup(r): returns SA[r] in time O(logϵ N)
inverse(i): returns r = SA−1[i] in time O(logϵ N).
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Abstract
We present a linear space data structure for Dynamic Evaluation of k-CNF Boolean Formulas
which achieves O(m1−1/k) query and variable update time where m is the number of clauses in the
formula and clauses are of size at most a constant k. Our algorithm is additionally able to count the
total number of satisfied clauses. We then show how this data structure can be parallelized in the
PRAM model to achieve O(log m) span (i.e. parallel time) and still O(m1−1/k) work. This parallel
algorithm works in the stronger Binary Fork model.

We then give a series of lower bounds on the problem including an average-case result showing
the lower bounds hold even when the updates to the variables are chosen at random. Specifically,
a reduction from k−Clique shows that dynamically counting the number of satisfied clauses takes
time at least n
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k), where 2 ≤ ω < 2.38 is the matrix multiplication constant. We show

the Combinatorial k-Clique Hypothesis implies a lower bound of m(1−k−1/2)(1−o(1)) which suggests
our algorithm is close to optimal without involving Matrix Multiplication or new techniques. We
next give an average-case reduction to k-clique showing the prior lower bounds hold even when
the updates are chosen at random. We use our conditional lower bound to show any Binary Fork
algorithm solving these problems requires at least Ω(log m) span, which is tight against our algorithm
in this model. Finally, we give an unconditional linear space lower bound for Dynamic k-CNF
Boolean Formula Evaluation.
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1 Introduction

Boolean formula evaluation is a fundamental problem in computer science. There are many
cases when one might want to evaluate the formula multiple times on related inputs. For
example some SAT solving algorithms evaluate all inputs within some small Hamming Ball
around certain variable settings, requiring many evaluations of a Boolean formula on very
similar inputs [39, 22, 35]. Another example is systems safety monitoring where one needs
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to check whether certain safety constraints have been violated [32, 18]. One may wonder
whether the new values in these settings can be calculated significantly faster than the time
it takes to reevaluate the entire formula.

In this paper we define a dynamically updating version of evaluating formulas on Boolean
variables in which variables are allowed to change value and the data-structure must maintain
whether the formula is still true and, in a harder version, the total number of currently
satisfied clauses. In particular, we are given a Boolean expression in k-CNF (where k is
taken to be a constant) with n variables and with m clauses. We achieve a sub-linear time
update cost for a generalized version of this problem, including counting the number of
satisfied clauses, and show a work-efficient parallelization (Section 3). We give lower bounds
on the space and time complexity of this problem, including a fine-grained average-case lower
bound when all the updates are given at random (Section 4). We find it exciting that these
average-case lower bounds are as strong as our worst case lower bounds, and that only a
small gap remains between those and our algorithmic upper bound.

The computational complexity of evaluating Boolean formulas has been well studied,
showing the problem is in ALOGTIME [17] and the related Boolean Circuit Evaluation
problem is complete for NC1 [16]. There is even a classification of Boolean Formulas under
various families of allowed connectives [38]. Since we deal with formulas in k-CNF form, this
restriction of the problem would lie in AC0, as it is by definition depth 2. However, when
we consider the counting version in which we keep track of the number of clauses currently
satisfied, it must be outside AC0 since it can trivially solve the Parity problem [25].

There has been significant work in the fine-grained complexity of dynamic problems
which give conditional lower bounds for a variety of problems such as dynamic shortest path,
graph connectivity, bipartite matching, max-flow, and graph diameter [37, 36, 3, 28, 20, 29].
Our results on the fine-grained complexity of Dynamic Boolean Formula Evaluation add
to this body of knowledge, more importantly it brings the field of average-case fine-grained
complexity to dynamic problems and data-structures. Although Alberts-Henzinger give
algorithms for some average-case dynamic problems [5], but we’re not aware of any work on
average-case lower bounds.

Common fine-grained complexity assumptions were used to establish the average-case
hardness of evaluating certain types of polynomials over finite fields in [7]. This was used
to show the average-case hardness of counting the number of k-cliques in certain easy to
sample random graphs [27]. This was then adapted to Erdős-Rényi random graphs in [14]
and to counting bicliques in [30]. More recently, hardness for evaluating lower dimensional
polynomials has been established from even weaker assumptions than those standard in
fine-grained complexity and these have been used to give average-case hardness for a variety
of problems such as Edit Distance and Max-Flow [21].

One of the goals of average-case fine-grained complexity is the development of fine-grained
cryptography where one hopes to actually prove cryptographic security from fine-grained
complexity assumptions and may offer cryptographic protocols that remain secure even if
more common cryptographic assumptions turn out to be false. One-way functions and public
key cryptography which is unconditionally secure against AC0 circuits was shown in [24]. In
[8] fine-grained proof of work was shown from standard fine-grained complexity assumptions.
Finally, one-way functions and public key encryption were built based on the average-case
complexity of zero-k-clique [34].
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2 Preliminaries

We study the problem of dynamically updating queries to a Boolean formula. We define this
problem formally and then define the hypotheses from which we get lower bounds for this
dynamic problem. Note that in this paper we treat k as a constant.

▶ Definition 1. In Dynamic Boolean Formula Evaluation you are given a fixed k-CNF
formula ϕ with m clauses and n variables. Further, the variables are given as an array x⃗

and initially set to true. The objective is to maintain a data-structure which can answer
whether the formula evaluated on the current setting of the variables evaluates to true, subject
to updates which flip the value of a single variable. Specifically an update is given as a single
index i ∈ [0, n − 1] indicating x⃗[i] =!x⃗[i].

In the counting version of the problem, Counting Dynamic k-CNF Boolean Formula,
the query instead asks how many clauses are set false. In the parity version of the dynamic
formula evaluation problem the queries ask for the parity of the number of clauses set false.

2.1 Computational Hypotheses
We get computational lower bounds on the dynamic formula evaluation problem from variants
of the k-clique problem. In this context ω is the matrix multiplication constant, that is, the
smallest real number such that an algorithm exists with running time O(nω+o(1)) exists for
matrix multiplication. It is known that ω ∈ [2, 2.37286] [6].

▶ Definition 2. The k-clique hypothesis states that the k-clique problem requires nωk/3−o(k)

time with randomized or deterministic algorithms [2].

The next hypothesis has to do with combinatorial algorithms. These are an informally
defined set of algorithms which use only “combinatorial methods”, specifically excluding fast
matrix multiplication. Although informal, these lower bounds can help inform algorithm
design. In our case, the hypothesis will also allow for a better presentation of the reduction
and analysis. For a discussion of this hypothesis see [1].

▶ Definition 3. The combinatorial k-clique hypothesis states that for combinatorial algorithms
the k-clique problem requires nk−o(1) time with randomized or deterministic algorithms [1].

There exist decision to parity reductions for the clique problem. Goldreich defines
CC

(ℓ)
2 (G) as the parity of the count of the number of ℓ cliques in G.

▶ Theorem 4 (Decision to parity ℓ-clique [26, Theorem 1]). For every integer ℓ ≥ 3, there is a
randomized reduction of determining whether a given n-vertex graph contains an ℓ-clique to
computing CC

(ℓ)
2 on n-vertex graphs such that the reduction runs in time O(n2), and makes

exp(ℓ2) queries, and has error probability at most 1/3.

2.2 Binary-Forking Model
The Binary-forking model [12, 4, 9, 10, 11, 23], formally defined in [12], is designed to capture
the performance of algorithms in the modern multicore shared-memory machines. In this
model, the computation starts with a single thread, and as the computation progresses
threads are created dynamically and asynchronously. The binary-forking model better
captures the asynchronous events such as cache misses, varying clock speed, interrupts,
etc., than the well-studied and stronger PRAM model [31] where computation progresses
synchronously. Since modern multicore architectures employ multiple caches, processor
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pipelining, branch prediction, hyper-threading, etc., many asynchronous events arise in the
system, thus demanding the development of a parallel computation model where computation
can proceed asynchronously.

Computations in the binary-forking model can be described as max-degree 3 series-parallel
directed acyclic graphs (DAGs). A node in the DAG represents a thread’s instruction and
each node has at most two children. The root of the DAG is the first instruction of the
starting thread. If node u denotes the i-th instruction of thread t and u has only one child v,
then v denotes the (i + 1)-th instruction of the same thread t. If node u has two children v

and w, then v represents the (i + 1)-th instruction of the same thread t and w represents the
first instruction of the new forked thread t

′ . Note that whether w represents the 1-st thread
t

′ or the (i + 1)-th instruction of thread t is arbitrary, we just want to model the overall
structure of the computation. The binary-forking model includes “join” instructions to join
the forking threads which are modeled as nodes with two incoming edges.

The work of the computation is the number of nodes in the series-parallel DAG and the
span of the computation is the length of the longest path in the DAG assuming unbounded
resources such as processors and space.

3 Algorithm

In this section we first describe our main algorithm which achieves an update time of
O(m1− 1

k ), and then we describe how to parallelize it in the PRAM model with total work
O(m1− 1

k ) and span (parallel time) O(log m). We assume k is a constant.

3.1 Main Algorithm
The high level idea is to take as input a formula ϕ and handle the variables which appear
in many clauses (high frequency) and variables that appear in relatively few clauses (low
frequency) with different methods. For a low frequency variable we simply update each
clause in which it is involved. For high frequency variables we group all clauses with roughly
the same structure together and simply track the number of clauses with that structure.
Fundamentally, we will try to track for each clause how many variables are set true and how
many are set false.

▶ Theorem 5. Given a k-CNF formula ϕ with m clauses and n variables there is an algorithm
which takes O(km) preprocessing time and every further update takes O(m1−1/k) time to
solve the dynamic formula evaluation problem as well as the counting and parity variants of
the dynamic formula evaluation problem.

Proof. Given the formula ϕ with m clauses split the variables into two sets: H for high
frequency variables and L for low frequency variables. Variables in H appear in at least λ

clauses. Variables in L appear in fewer than λ clauses. Let a⃗ be the current assignment,
without loss of generality assume the starting assignment is the all true assignment (a⃗ = 1⃗).

Our goal will be to spend O(λ) time updating each variable in L when it flips value. We
want to build a structure to make updates of variables in H faster than the number of clauses
that contain them. First, we will have k + 1 variables count0, . . . , countk. The variable
counti will track the count of the number of clauses with i literals set true. Now we will build
k arrays A1, . . . , Ak. The Ai array will keep track of clauses with i high frequency variables.
An entry Ai[x1][x2] . . . [xi][j] will hold a number. That number will be the count of the
number of clauses that contain literals x1, . . . , xi ∈ H and have j variables (not necessarily
from x1, . . . , xi) set true. Note, although we construct the Ai based only on high frequency
variables, there may be many clauses with a mix of high and low frequency variables and
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these arrays help track all of those clauses. So each Ai has a total of (2|H|)i · k entries,
each entry has a number in [0, m]. There are 2|H| literals for the high-frequency variables
(both x and x̄), each of the i chosen literals can be any one of those 2|H| literals, and for
each of these combinations we can have up to k literals true in a clause. Since ordering is
equivalent, this is actually an over-count of what is needed, but we work with this number
for convenience. For convenience and uniqueness, we give all variables an arbitrary order and
only fill out entries where x1 < x2 < . . . < xi. We maintain another helpful Boolean array S

that tracks the current settings of all variables: S[xi] indicates the current value of xi. Yet
another array allows the variables in L to have quick update times. We build the array B of
size 2|L| where B[x] contains a representation of the at most λ clauses in which the literal
x ∈ L appears. This is 2|L| because we have both x and x̄. We want these representations
to include a marking for which of the variables are high frequency variables.

Preprocessing. We fill in B with the representations of all clauses for low frequency variables.
Recall that we mark each clause with which of the variables in the clause are high frequency.
Set S[xi] = True for all xi. For all the Ai we go through all m clauses in ϕ and update
the counts. Consider the following example and a clause c = (x1 ∨ x2 ∨ . . . ∨ xk) where
the xi are literals. Suppose our initial assignment a⃗ = 1⃗ sets ℓ literals to true and i of
the literals are high frequency variables, x1, . . . , xi ∈ H, then increment Ai[x1] . . . [xi][ℓ] by
one. We also want to update count0, . . . , countk; note that countℓ is simply a sum of all
entries Ai[∗] . . . [∗][ℓ] for all i. We can also compute these in the preprocessing stage in
O(km + (2|H|)k · k2) time to initilize the arrays and by simply evaluating each clause. We
will later see that this is O(km) with our selection of the size of |H|.

Now every entry Ai[x1] . . . [xi][ℓ] is a count of how many clauses with the associated
literals have ℓ of those literals set to true. We want to maintain this.

Updates for variables in L. If we flip a variable xL ∈ L then go to S[xi] to see the current
setting, call it b. Flip it so that now S[xL] = b̄. Next read B[xL] and B[x̄L] to get all
clauses containing xL. We will deal with each clause differently depending on how many
high frequency variables it has.

If the clause c has no high frequency variables, then read the k entries S for the settings
of the variable to determine how many literals were set true before the flip. Let ℓ denote
this number. Now, by flipping xL we either increment or decrement the number of literals
in c that are set true (either +1 or −1 depending on the original setting and the literal).
Suppose the new number of literals set true is ℓ+∆, then we decrement countℓ and increment
countℓ+∆ (the clause is moving from being an ℓ literal true clause to an ℓ + ∆ clause). All of
this takes O(k) time.

If the clause c has i > 0 high frequency variables, then we have to make changes to Ai as
well. First, we read the k entries for variable settings in S to evaluate the clause. Suppose
the high frequency variables are x1, . . . , xi and that c had ℓ literals set true before the flip.
Suppose that after the flip of xL the clause c has ℓ + ∆ literals set true. Then we decrement
Ai[x1] . . . [xi][ℓ] and increment Ai[x1] . . . [xi][ℓ + ∆]. As before we decrement countℓ and
increment countℓ+∆. This takes O(k) time. With at most λ clauses, the total time is O(kλ).

The variable count0 now holds the correct total for the number of unsatisfied clauses.

Updates for variables in H. Now suppose we are flipping a variable in H, xH . For a
variable in H we cannot look at all of its clauses. However, we can look at all of the relevant
entries in Ai arrays. First in O(1) time read our previous setting b = S(xH) and update
S(xH) = b̄.
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Now update the Ai arrays. For all i ∈ [1, k] we will read all the entries that involve
our variable xH . Note that there are 2 · (2|H|)i−1 · k entries with xH in each Ai, and so
O((2n)k−1) entries in total since |H| < n and k is assumed to be constant. Without loss of
generality assume that b = True and we are flipping the variable from false to true. Also,
for convenience of notation assume that xH is the first variable in our arbitrary order (if
instead xH appears elsewhere simply access with the variables in order). Then for all (2n)i−1

choices of variables x2, . . . , xi we will do the following (from v = 0 to v = k):

Ai[xH ][x2] . . . [xi][v] =
{

0 if v = k

Ai[xH ][x2] . . . [xi][v + 1] if v < k

and (from v = k to v = 0)

Ai[x̄H ][x2] . . . [xi][v] =
{

0 if v = 0
Ai[x̄H ][x2] . . . [xi][v − 1] if v > 0

.

The above procedure simply moves the appropriate number of clauses up or down a
bucket depending on whether the literal is now true or false. If xH appears, it used to be
true and is now false. So, every clause with xH now has one fewer literal true, we can move
all those clauses into the bucket of the array one below it. If x̄H appears, it used to be false
and is now set true. So we can move all those clauses to the buckets above them. We also
have to update our counts. If you move t clauses from Ai[∗] . . . [∗][v] to Ai[∗] . . . [∗][v + ∆]
then decrement countv by t and increment countv+∆ by t.

The variable count0 now holds the correct total for the number of unsatisfied clauses.
Each entry Ai[∗] . . . [∗][v] takes O(1) time to update (or O(lg(n)) time in the RAM model

instead of word RAM). We need to update a total of O(k(2|H|)k−1) entries.

Overall Runtime and Space. The space usage is m+n+k(2|H|)k. The runtime is (assuming
k is a constant) O(λ + |H|k−1). Now, we can bound |H| < km/λ and so the runtime is
O(λ + (m/λ)k−1). Optimizing, we choose λ = (m/λ)k−1, and get λ = m(k−1)/k = m1−1/k.
For a total claimed runtime of O(m1−1/k). ◀

This algorithm gives a non-trivial improvement over the naive algorithm which requires
Θ(m) time updates. We will discuss lower bounds in Section 4, where we are able to show
this runtime is close to optimal if the k-clique hypothesis is true (for example a runtime of
O(n) are ruled out).

3.2 A Parallel Algorithm
We now show how to parallelize the algorithm of Section 3.1 in the PRAM CREW (concurrent
read exclusive write) model [31]. Our results also hold in a more restrictive parallel model
called the binary-forking model [12].

▶ Theorem 6. Given a k-CNF formula ϕ with m clauses and n variables there is a parallel
algorithm (in PRAM CREW model and the binary-forking model) which for each variable-
update performs O(m1− 1

k ) work in expectation and achieves O(log m) span (parallel runtime)
with high probability (in the number of clauses) to solve the dynamic formula evaluation
problem.

Proof. We use the same arrays in the parallel algorithm as in the serial algorithm to achieve
the work and span bounds.
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Updates for low frequency variables. There are at most λ clauses where low frequency
variable xL might appear. For each clause c where xL appears, we do the following. Without
loss of generality assume that clause c has i high-frequency variables x1, x2, . . . , xi and has ℓ

true literals before flipping xL. Let ℓ + ∆ be the number of true literals in c after the flip.
We update Ai[x1] . . . [xi][ℓ], Ai[x1] . . . [xi][ℓ + ∆], countℓ, and countℓ+∆ for each clause c

where xL appears.
It might happen that multiple clauses trigger updates to the same entry Ai or countℓ,

since multiple clauses may have the same set of high-frequency variables and the same number
of true literals. When multiple updates try to edit the same entry in parallel, write-write
conflicts (race conditions) arise which lead to incorrect answers. We resolve race condition
using O(λ) extra space as follows.

Since xL is a low-frequency variable, xL could appear in λ clauses at most. Suppose that
each Ai[x1] . . . [xi][ℓ] has an ID. We allocate two arrays each of size O(λ). One array is used
to compute the countℓs and the other array is used to compute the Ais. For each of the
λ clauses, we allocate a designated O(1) space in each array. Recall that countℓ denotes
the number of clauses with ℓ literals set true. We would like to update countℓ after flipping
variable xL.

We now describe how we decrement countℓ and increment countℓ+∆ for each clause c.
Each c computes corresponding countℓ and countℓ+∆ (as in the serial version) in O(k) time
(k is a constant here) and write them in the designated location in the array allocated to
compute countℓ (see Figure 1 in the Appendix A). We perform semisort [13] (i.e. collect
equal values in groups) on the array so that all the counti comes before all the countj where
i < j. The randomized semisort algorithm [13] performs O(λ) work in expectation and takes
O(log λ) parallel time with high probability. After that we do a binary reduction to get the
correct countis. We do this binary reduction in O(log λ) parallel time. Note that we avoid
race conditions by updating counti in different locations.

Similar analysis holds to calculate the Ais where we store the the value of the Ais
according to their IDs. Hence, a low frequency is updated in O(log λ) parallel time and uses
O(λ) extra space.

Updates for high frequency variables. We do not parse the clauses where the high frequency
variable occurs. Instead, we update the corresponding Ais and countis as follows.

(from v = 0 to v = k):

Ai[xH ][x2] . . . [xi][v] =
{

0 if v = k

Ai[xH ][x2] . . . [xi][v + 1] if v < k

and (from v = k to v = 0)

Ai[x̄H ][x2] . . . [xi][v] =
{

0 if v = 0
Ai[x̄H ][x2] . . . [xi][v − 1] if v > 0

.

In short, if xH appears it used to be true and is now false. So, every clause with xH now
has one fewer literal true, we can move all those clauses into the bucket of the array one
below it. If x̄H appears it used to be false and is now set true. So we can move all those
clauses to the buckets above them.

We can do all these updates in parallel in O(1) parallel time. We update the countℓ

after we update the Ais. We update O(k · 2|H|k−1) entries of Ai where xH is present. If we
move t clauses from Ai[∗] . . . [∗][v] to Ai[∗] . . . [∗][v + ∆] then we decrement countv by t and
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increment countv+∆ by t. As multiple Ai entries may update the same counti entry, we use
an array of O(k · 2|H|k−1) extra space to avoid the race condition for parallel updates. Like
before, we semisort the array based on the v of Ai[∗] . . . [∗][v]. Then we perform a parallel
sum of the the entries with the same v and then add/subtract this sum to counti. Combining
all these the span to update a high frequency variable is O(log |H|) = O(log n).

As we set λ = m1− 1
k , the span to update a low frequency variable is O(log λ) = O(log m)

and a high frequency variable is O(log n). Since we do not increase the work asymptotically,
the work in this parallel algorithm remains the same as in the serial version. Hence, total
work performed is O(λ) = O(m1− 1

k ) in expectation. The span is O(log m) w.h.p. due to
semisort. ◀

We could replace the randomized semisort algorithm with a deterministic sorting algorithm.
Cole-Ramachandran’s [19] deterministic sorting algorithm performs O(x log x) work and
takes O(log x log log x) span to sort x items in the binary-forking model (in PRAM CREW
model also) giving the following theorem.

▶ Theorem 7. Given a k-CNF formula ϕ with m clauses and n variables there is a de-
terministic parallel algorithm (in PRAM CREW model and the binary-forking model) which
for each variable update performs O(m1− 1

k log m) work and achieves O(log m log log m) span
(parallel running time) to solve the dynamic formula evaluation problem.

4 Lower Bounds for Dynamic Formula Evaluation

In this section we present lower bounds for the dynamic formula evaluation problem on
k-CNF formulas. First, we present an unconditional linear lower bound on the space of the
data-structure. Next, we present a series of conditional lower bounds on the running times
of preprocessing, updates, and queries. These are based on the k-Clique Hypothesis. This
culminates in an average-case lower bound for random updates to the variables based on
counting k-cliques in Erdős-Rényi graphs. Finally, we present a conditional lower bound on
the span of the algorithm in the binary forking model. Recall that we are treating k as a
constant in this section.

4.1 Linear Space Lower Bound
We show a space lower bound linear in the number of variables by a reduction from INDEX [33].
Details can be found in the Appendix.

▶ Theorem 8. Every randomized algorithm for dynamic-formula-evaluation which correctly
decides that the formula for each variable flip (with n variables, O(n) clauses, and clause
size at least 2) is satisfied or not with probability strictly larger than 1/2, uses Ω(n) space in
the worst case.

4.2 The k-Clique Hypotheses and a General Reduction
We give these lower bounds from hypotheses related to the ℓ-clique problem. We will use k for
the k-CNF Dynamic Counting Boolean Formula problem we reduce to. First, let us present
a generic reduction from all ℓ-clique instances to a dynamic formula evaluation formula ϕ on
n = |V | variables, where each given instance of ℓ-clique will correspond to a single setting of
the variables X.
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▶ Lemma 9. Consider a graph G, where we have not yet decided what edges exist or don’t.
There are |V | vertices and

(|V |
2

)
potential edges. There exists a formula ϕℓ with n =

(|V |
2

)
variables, width k =

(
ℓ
2
)

clauses, and a total of m =
(|V |

ℓ

)
clauses such that when the n

variables X are set with a 1 if the edge exists in G and 0 if the edge doesn’t exist then the
number of false clauses in ϕℓ(X) corresponds to the number of k cliques in G.

Next we want a useful lemma which will help us bound the preprocessing time. We will
use many smaller instances of the clique problem so that our number of update calls to our
data-structure is large compared to its initial size. Variations on this lemma are folklore, but
a proof is provided for completeness.

▶ Lemma 10. Assume (existence/counting/parity) (combinatorial) ℓ-clique requires
|V |cℓ(1−o(1)) time for some constant c. Let T (·) be the time to solve a single instance
when given a list of instances. Then giving correct answers to gℓ instances each of size
|U | = ℓ|V |/g takes gℓT (|U |) time which is at least |V |cℓ(1−o(1)) time.

Consider value 0 < d < c ≤ 1 where we insist that (ℓ|V |/g)ℓ = Θ(|V |dℓ) then T (|U |)
requires at least |U |( c−1+d

d )ℓ(1−o(1)) time.

Proof. Partition the vertex set into V1, . . . , Vg each partition of size |V |/g. Now we form
gℓ instances each of size at most |U | = ℓ|V |/g. These instances are all possible choices of
at most ℓ of our vertex sets merged together. Using inclusion exclusion we can count the
number of cliques in the original graph using calls to these problems. This inclusion and
exclusion also allows parity to solve parity. We will find a clique in these instances if and
only if there is at least one clique in the original graph.

Given this reduction we can solve a (existence/counting/parity) (combinatorial) ℓ-clique
problem with answers to gℓ instances each of size |U | = ℓ|V |/g, giving the first statement.

For the second statement note that g = Θ(|V |1−d). Then note that |U | = Θ(|V |d). Now
we can say that T (|U |) must be at least |V |(c−1+d)ℓ(1−o(1)) time. So, in terms of |U |, T (|U |)
must be at least

|U |(
c−1+d

d )ℓ(1−o(1)). ◀

Note that when c = 1 you get no loss in efficiency regardless of the constant d < 1 you
pick. This case of c = 1 happens for combinatorial ℓ-clique. It is why we use it as an example.
It simplifies the reduction to not worry about the loss that comes from a large d.

4.3 From the Combinatorial k-Clique Hypothesis

Using the reduction in the prior section, we give a lower bound from the combinatorial
ℓ-clique hypothesis. Note how we choose the value of d for the reduction from Lemma 10. We
want d to be small so that our preprocessing time is small. This is what will cause inefficiency
in the future reductions when c ̸= 1; we loose efficiency in the reduction when d is small.

▶ Theorem 11. Assume ℓ is a constant. If the combinatorial ℓ-clique hypothesis is true
then any combinatorial algorithm A for the Dynamic Counting Boolean Evaluation problem,
U(n, m, k), with polynomial preprocessing time P (n, m, k) = poly(n)·poly(m)·poly(k) requires
m(1−k−1/2)(1−o(1)) time. We can also state the lower bound in terms of the number of variables
n, in which case U(n, m, k) requires at least n(1−o(1))(

√
2k−2)/2 time.
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4.4 From the k-Clique Hypothesis
We will now use the same reduction style as the previous section. However, now c from
Lemma 10 will be c = ω/3 instead of 1. Here ω is the matrix multiplication exponent
constant. The analysis proceeds similarly to that of Section 4.3. Details are in the Appendix.

▶ Theorem 12. Assume ℓ is a constant. If the ℓ-clique hypothesis is true then any algorithm
A for the Dynamic Counting Boolean Evaluation problem, U(n, m, k), with polynomial
preprocessing time P (n, m, k) = O(m) requires m( 2ω−3

3 −k−1/2)(1−o(1)) time. We can also
state the lower bound in terms of the number of variables n, in which case U(n, m, k) requires
at least n

2ω−3
6

√
2k−1−o(

√
k) time.

4.5 Random Input Implications
Our goal is to show that with a worst-case fixed formula, specifically our k-clique formula, it
is still hard to evaluate updates to the formula when the updates are random. We will show
lower bounds against algorithms which always correctly implement updates, but, are allowed
error when responding to queries. The queries this dynamic formula evaluation algorithm
must support are queries on the number of falsified clauses.

For this result we will use a theorem from [26]1. At a high level, they show that
the counting/parity l-clique problem requires just as long over the uniform average-case
distribution as it does in the worst-case when l is a constant. First we will define the model
of average-case inputs we are considering.

▶ Definition 13. Let Average-Case counting dynamic formula evaluation (AC#DFE) be the
problem where you are given a worst-case formula to evaluate but random (so average-case)
updates on the variables. More specifically, you are given a worst-case formula ϕ, and a series
of updates where each update flips the assignment of a uniformly random chosen variable. A
data structure D for AC#DFE with error probability ϵ takes as input a worst-case ϕ and
after each random update answers the count of the number of false clauses in the formula
with probability 1 − ϵ.

▶ Definition 14 (Erdős-Rényi graphs). Create a graph with |V | vertices and no edges to
start with. Now, for every pair of vertices in the graph iid include an edge between them
with probability 1/2. Thus, every potential edge in the graph appears with probability 1/2
independently from all other edges.

Now we can describe one theorem from [26]. First we start by using a piece of their
notation. Define CC

(ℓ)
2 (G) as the parity of the count of the number of ℓ cliques in G.

▶ Theorem 15 (Average-Case ℓ-clique [26, Theorem 2]). For every integer ℓ ≥ 3, there is
a randomized reduction of computing CC

(ℓ)
2 on the worst-case n-vertex graph to correctly

computing CC
(ℓ)
2 on at least a 1 − exp(−ℓ2) fraction of the n-vertex graphs such that the

reduction runs in time O(n2), makes exp(ℓ2) queries, and has error probability at most 1/3.

So, up to sub-polynomial factors, average-case counting and parity ℓ-clique are just as
hard on average as worst-case parity ℓ-clique. Now, we can use these reductions to show
lower bounds for our problem with random inputs. First, we will show that if you start

1 For an alternate presentation of the parity proof of this result see [15]. The formulation from [26] is
easier to build on in this case.
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from a graph and make
(

n
2
)

lg2(n) random edge flips the resulting graph is drawn from a
distribution that has total variation distance less than 2−Ω(lg2(n)) from an Erdős-Rényi graph.
Note that, on an intuitive level, this means that when we sample from our edge flipping
distribution we “look like” we are sampling an Erdős-Rényi graph a 1 − 2−Ω(lg2(n)) fraction
of the time. Since our reduction represents edges as variables, flipping a random variable is
like flipping an edge in the original graph, and we want to argue that after not too many
flips we have a random looking graph.

▶ Lemma 16. Given a graph G let the procedure F be the process of selecting a uniformly
random pair of vertices (u, v) and either deleting edge (u, v) it if it exists or inserting (u, v)
if it doesn’t exist.

If we run the procedure F Θ
((

n
2
)

lg2(n)
)

times on any graph G the resulting distribution
over graphs has total variation distance at most n2−Ω(lg(n)) from the distribution over Erdős-
Rényi graphs.

The high level idea for the reduction is to take the worst-case reduction from the prior
section and at the last step add the randomized reduction. Specifically, in the worst case we
show that solving a list of instances G1, . . . , Gx is still hard. Now, for the average-case we
will use the [26] reduction to turn each Gi into exp(ℓ2) queries on random graphs, call these
G

(1)
i , . . . , G

(exp(ℓ2))
i . Note that these graphs each look random, but have correlations. So,

we can’t ask the same AC#DFE data structure about two of these. However, we can spin
up exp ℓ2 instances of data structures for AC#DFE: D1, . . . , Dexp(ℓ2). We will, implicitly,
give the data structure Dj graphs G

(j)
1 , . . . , G

(j)
x . These will be totally uncorrelated (each

are randomized under different random bits). This will correspond to random updates on
variables (which in our worst-case reduction co respond to edges in the graph).

We will show in this next theorem that even with random updates, the same lower bounds
hold (up to factors in time of 22k, which if k is a constant is simply a constant).

▶ Theorem 17. Let k be a constant. Say there is a data structure D that can solve
the AC#DFE problem on worst-case k-CNF formulas ϕ with error ϵ < exp(−2k)/3 with
PD(n, m, k) pre-processing time and UD(n, m, k) time per query and update. We will note
the lower bounds for combinatorial D from the combinatorial ℓ-clique hypothesis. We will
also note the lower bound for general D from the ℓ-clique hypothesis.

If D is a combinatorial data structure, the combinatorial ℓ-clique hypothesis is true, and
PD(n, m, k) = poly(n) · poly(m) · poly(k), then UD(n, m, k) requires m(1−k−1/2)(1−o(1))

time. We can also state the lower bound in terms of the number of variables n, in which
case UD(n, m, k) requires at least n(1−o(1))(

√
2k−2)/2 time.

If the ℓ-clique hypothesis is true and PD(n, m, k) = O(m) then UD(n, m, k) requires
m( 2ω−3

3 −k−1/2)(1−o(1)) time. We can also state the lower bound in terms of the number of
variables n, in which case UD(n, m, k) requires at least n

2ω−3
6

√
2k−1−o(

√
k) time.

Proof. First, let us describe the general reduction regardless of the hypothesis we start
with. We take the list of |V |ℓ(1−d) sub-problems G1, . . . , G|V |ℓ(1−d) and on each instance
individually we run the reduction from Theorem 15. So we take each problem, Gi, of size
|V |d and use Theorem 15 to make a list of s = exp(ℓ2) queries G

(1)
i , . . . , G

(s)
i . Now, we spin

up s different instances of D, call them D1, . . . , Ds. Consider sampling the updates from G
(j)
i

to G
(j)
i+1 uniformly at random from all random series of updates of length s = Θ(n2 lg2(n))

that flip edges to G
(j)
i+1. Because every variable corresponds to an edge in the graph flipping a

variable and flipping an edge is a one to one relationship. So, after this series of flips that look
uniformly random up to a TVD of nΩ(lg(n)) (by Lemma 16) we get the answer to the number
of ℓ-cliques in G

(j)
i+1! By the claims of the Theorem statement each Dj has an error rate of
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ϵ < exp(−2k)/3 on the random updates of the average-case distribution of AC#DFE our
TVD tells us that the error rate of Dj on this “nearly random” set of updates is at most
ϵ + nΩ(lg(n)). Now note that if each instance D1, . . . , Ds gives us the correct answer we can
correctly answer our query on all Gi by Theorem 15. So, we get a correct answer on the
worst-case Gi with probability 2/3 − exp

(
ℓ2)

n−Ω(lg(n)), note this is large enough that this
procedure can be repeated to boost this probability. Note this means we get the same lower
bounds as we did in the worst-case, but with an overhead of exp

(
ℓ2)

which is a constant
from our perspective.

First we discuss the combinatorial k-clique case. Start by taking the reduction from
Theorem 11. So if D is a combinatorial data structure, the combinatorial ℓ-clique hy-
pothesis is true, and PD(n, m, k) = poly(n) · poly(m) · poly(k), then UD(n, m, k) requires
m(1−k−1/2)(1−o(1)) time. We can also state the lower bound in terms of the number of
variables n, in which case UD(n, m, k) requires at least n(1−o(1))(

√
2k−2)/2 time.

Finally, we will address the ℓ-clique hypothesis. As before we will get the same lower
bounds, up to a factor of exp(ℓ2) which is a constant from our perspective. So if the ℓ-clique
hypothesis is true and PD(n, m, k) = O(m) then UD(n, m, k) requires m( 2ω−3

3 −k−1/2)(1−o(1))

time. We can also state the lower bound in terms of the number of variables n, in which
case UD(n, m, k) requires at least n

2ω−3
6

√
2k−1−o(

√
k) time. ◀

4.6 Span Lower Bound in the Binary-Forking Model
In the Appendix we prove an Ω(log n) span lower bound in the binary forking model. This
lower bound only requires that the work of the algorithm is Ω(nc) for some constant c, and
is thus a weaker condition than the k-Clique Hypothesis.

▶ Theorem 18. The span per update for dynamic boolean formula evaluation is Ω(log n) in
the binary forking model.

5 Conclusion and Open Problems

Defining Dynamic Boolean Formula Evaluation and giving a data-structure with sub-linear
update time is an important first step in characterizing the complexity of this problem. Our
data-structure is simple enough and provides a large enough benefit for small k that we hope
it will inspire practical implementations. On the theoretical side, although we give upper
and lower bounds that show roughly what the complexity of this problem should be, there is
still a significant gap between them and plenty of room to generalize both types of results.

With a more careful analysis both our algorithms and lower bounds should hold for some
small super-constant k. Improving this analysis may be of interest, but more importantly
finding both algorithms and lower bounds that work for a greater range of k, especially when
k = mc for some constant c.

Closing the gap between our lower and upper bounds is one obvious open question.
The conditional lower bound giving 1√

k
comes directly cliques containing l2 edges. Thus

perhaps one should be trying to use graph problems with sparse structures rather than
dense ones. However, one needs to be careful because there is only a single k-clique on k

vertices whereas there can be many isomorphic sparse structures. The larger issues comes
from the factor of the matrix multiplication constant in our lower bound. We see this
disappear with the combinatorial l-clique conjecture which suggests either 1) Dynamic
Boolean Formula Evaluation can be solved much faster, but doing so will likely require linear-
algebraic techniques or some other fundamentally different approach, 2) we need a slightly
more clever reduction. A common solution to strengthening “combinatorial” fine-grained
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assumptions is to move to a weighted version of the problem. However, the OR of variables
is symmetric under permutation and thus does not appear to be something that supports
any sort of arithmetic at the clause level. Further, our algorithms fundamentally require this
symmetry and will fail when trying to generalize in this direction.

Further, it would be interesting to have conditional lower bounds for the pure Dynamic
Boolean Formula problem rather than the counting version which seems much stronger.
Both giving lower bounds for more restricted versions of the problem and generalizing the
algorithm to handle more general formulas seems of interest. Generalizing the depth of the
formula (no longer requiring CNF form) is another obvious direction.

We believe that a log(n)-span lower bound should hold in a stronger model such as
CREW PRAM. Both improved lower bounds and whether there are better algorithms in
stronger concurrent data-structures models remains an interesting question to explore. Depth
2 Boolean formulas being in AC0 strongly suggests at least this special case should be able
to be parallelized more efficiently, perhaps at the cost of work-efficiency.

One obvious problem to consider is a version of Dynamic Boolean Formula Evaluation
in which the formula itself can be altered, instead of or in addition to the values of the
variables. These problems are equivalent in the DynamicSAT case, but looking for sub-linear
update cost we have much less leeway in the efficiency of this reduction. We believe minor
alterations to our current algorithm will allow it to handle the insertion and deletion of
literals and clauses with the same amortized worst-case cost by simply rebuilding the table
whenever variables pass some threshold for their frequency of appearing in clauses. However,
de-amortizing this does not seem at all obvious.
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A Parallel Algorithm Figure

Binary Reduction
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Figure 1 Clause c writes whether countℓ and countℓ+1 increment or decrement in their designated
locations (in color pink). We then semisort so that all the updates corresponding to countℓ come in
adjacent locations (in color yellow for countℓ). After that we do a binary reduction to get the net
update to countℓ.
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B Lower Bounds Omitted Proofs

B.1 Proof of Linear Space Lower Bound
▶ Theorem 19. Every randomized algorithm for dynamic-formula-evaluation which correctly
decides that the formula for each variable flip (with n variables, O(n) clauses, and clause
size at least 2) is satisfied or not with probability strictly larger than 1/2, uses Ω(n) space in
the worst case.

Proof. We prove this using communication complexity, specifically, reducing the problem to
the INDEX problem.

INDEX problem. Alice gets an n-bit string x ∈ {0, 1}n and Bob gets an integer i ∈ {1, n}.
Alice can communicate to Bob, but Bob cannot send messages to Alice. The goal is to find
out xi, the i-th index of x.

We know the lower bound of the randomized one-way communication complexity of
INDEX is Ω(n) [33].

We now do the following reduction. Given x ∈ {0, 1}n, Alice construct a CNF formula F

as follows. There are n clauses and 2n variables in F . For 1 ≤ j ≤ n, clause Ci = (vi,1 ∧ vi,2).
If xi = 1, we assign vi,1 = TRUE and vi,2 = FALSE. Otherwise, we assign vi,1 = FALSE
and vi,2 = TRUE. Note that in formula F , every clause is initially satisfied and only one
variable is TRUE in every clause.

Now given index i, we flip variable vi,1. If the formula remains satisfied, then xi = 0 in
Alice’s string, otherwise, xi = 1. ◀

B.2 Proofs about k-Clique reduction General Reduction
▶ Lemma 20. Consider a graph G, where we have not yet decided what edges exist or don’t.
There are |V | vertices and

(|V |
2

)
potential edges. There exists a formula ϕℓ with n =

(|V |
2

)
variables, width k =

(
ℓ
2
)

clauses, and a total of m =
(|V |

ℓ

)
clauses such that when the n

variables X are set with a 1 if the edge exists in G and 0 if the edge doesn’t exist then the
number of false clauses in ϕℓ(X) corresponds to the number of k cliques in G.

Proof. In this reduction we will use variables to represent possible edges in the graph and we
will use clauses to detect cliques. Let us index our variables X with two numbers i, j such that
X[i, j] is a variable if i < j and i, j ∈ [|V |]. We will treat X[i, j] as the variable corresponding
to if the edge (i, j) exists in G. Now, for all i1 < . . . < iℓ where i1, . . . , iℓ ∈ [|V |] add the
following clause to ϕℓ:(

X̄[i1, i2] ∨ X̄[i1, i3] ∨ . . . ∨ X̄[i1, iℓ] ∨ X̄[i2, i3] ∨ . . . ∨ X̄[iℓ−1, iℓ]
)

.

Note that if the nodes i1, . . . , iℓ in G are a ℓ-clique given the setting of edges implied by X,
then this clause is false if any of the edges among vertices 1 to l are missing.

Each clause has size k =
(

ℓ
2
)
. There are a total of m =

(|V |
ℓ

)
clauses. We need one variable

per potential edge in the graph, so there are n =
(|V |

2
)

variables. Given a setting of X we
have a corresponding graph G, and the number of false clauses in ϕℓ is exactly equal to the
number of ℓ-cliques in G. ◀

▶ Theorem 21. Assume ℓ is a constant. If the combinatorial ℓ-clique hypothesis is true
then any combinatorial algorithm A for the Dynamic Counting Boolean Evaluation problem,
U(n, m, k), with polynomial preprocessing time P (n, m, k) = poly(n)·poly(m)·poly(k) requires
m(1−k−1/2)(1−o(1)) time. We can also state the lower bound in terms of the number of variables
n, in which case U(n, m, k) requires at least n(1−o(1))(

√
2k−2)/2 time.
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Proof. We are given an instance G of the ℓ-clique problem with |V | vertices and |E| = O(|V |2)
edges. By the combinatorial ℓ-clique hypothesis this problem requires |V |ℓ(1−o(1)) time.

First note that, with Lemma 10, we want c = 1 from our combinatorial k-clique hypothesis.
Next assume that P (n, m, k) = (n · m · k)f for some constant f . Now set d = (1−ϵ)ℓ

(ℓ+2)f for
some constant ϵ > 0. Recall, with these settings, we can say that solving all |V |ℓ(1−d) clique
problems requires |V |ℓ(1−o(1)) time. This can be stated as a time for each of the problems of
size |V |d, they each require

(
|V |d

)ℓ time.
Now we will use Lemma 9 to produce our formula ϕ on our problems of size |V ′| = |V |d.

Note that n =
(|V ′|

2
)

= Θ(|V ′|2) and k =
(

ℓ
2
)

= ℓ(ℓ + 1)/2 and m =
(|V ′|

ℓ

)
= Θ(|V ′|ℓ). Finally,

observe P (n, m, k) = O
(
(|V |d(ℓ+2))f

)
which can be written as P (n, m, k) = O

(
(|V |ℓ(1−ϵ))

)
.

Thus all of the updates we do to solve our clique problem must take |V |ℓ(1−o(1)) time.
Note that with at most |E′| = O(|V |2d) variable updates we can cause the number of

false clauses in ϕℓ to be equal to the number of ℓ-cliques in a new instance. So |V |2d updates
should take at least

(
|V |d

)ℓ time. Further, U(n, m, k) must be at least |V |d(ℓ−2)(1−o(1)) =
|V ′|(ℓ−2)(1−o(1)). Now, lets re-state this in terms of n, m, k. First lets add our value of m

into this equation:

|V ′|(ℓ−2)(1−o(1)) = m(1−o(1))(ℓ−2)/ℓ = m(1−2/ℓ)(1−o(1)).

We can also write in terms of n:

|V ′|(ℓ−2)(1−o(1)) = n(1−o(1))(ℓ−2)/2.

Now note that 2
√

k > ℓ >
√

2k. So we can re-write our above equations as

|V ′|(ℓ−2)(1−o(1)) = m(1−1/
√

k)(1−o(1)),

and

|V ′|(ℓ−2)(1−o(1)) = n(1−o(1))(
√

2k−2)/2. ◀

▶ Theorem 22. Assume ℓ is a constant. If the ℓ-clique hypothesis is true then any algorithm
A for the Dynamic Counting Boolean Evaluation problem, U(n, m, k), with polynomial
preprocessing time P (n, m, k) = O(m) requires m( 2ω−3

3 −k−1/2)(1−o(1)) time. We can also
state the lower bound in terms of the number of variables n, in which case U(n, m, k) requires
at least n

2ω−3
6

√
2k−1−o(

√
k) time.

Using in ω = 2.37286 (from the best current upper bound [6]) these lower bounds per
update are: m(0.5819−k−1/2)(1−o(1)) and n0.5819

√
2k−1−o(

√
k).

Using ω = 2 (the smallest value ω could be) the lower bounds per update are:
m(1/3−k−1/2)(1−o(1)) and n

√
2k/3−1−o(

√
k).

Proof. We are given an instance G of the ℓ-clique problem with |V | vertices and |E| = O(|V |2)
edges. By the ℓ-clique hypothesis we have that this problem requires |V |(1−o(1))ωℓ/3 time.

First note that with Lemma 10, we want c = ω/3 from our l-clique hypothesis. Next
we assumed that P (n, m, k) = O(m). Now set d = (1−ϵ)ω

3 for some constant ϵ > 0 to be
set later. Recall, with these settings we can say that solving all |V |ℓ(1−d) clique problems
requires |V |(1−o(1))ωℓ/3 time. For convenience call δ = ϵω/3. This can be stated as a time for
each of the problems of size |V |d, they each require time

R(|V |) =
(
|V |d

)( c−1+d
d )ℓ(1−o(1)) =

(
|V |d

)( 2ω−3−δ
3−δ )ℓ(1−o(1))

.
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We will use the reduction from Lemma 9. Let |V ′| = |V |d Now lets note that n =
(|V ′|

2
)

=
Θ(|V ′|2) and k =

(
ℓ
2
)

= ℓ(ℓ + 1)/2 and m =
(|V ′|

ℓ

)
= Θ(|V ′|ℓ).

Now note that as before if P (n, m, ℓ) = O(m) then it is also O(|V |dℓ) which can be
restated as |V |(1−ϵ)ωℓ/3. This is small enough that the updates must take |V |(1−o(1))ωℓ/3

time.
We require O(|V |2d) updates per instance. And each instance requires R(|V |) time. So

each update requires R(|V |)|V |−2d time which we can expand to(
|V |d

)( 2ω−3−δ
3−δ )ℓ(1−o(1))−2

time. Now note that 2
√

k > ℓ >
√

2k. If we re-state this with m we get:

m( 2ω−3−δ
3−δ )(1−o(1))−1/

√
k.

If we treat ϵ as a parameter we tune to be arbitrarily small we can re-state as follows:

m
2ω−3

3 −1/
√

k−ϵ′
,

where ϵ′ is some other arbitrarily small constant (a function of ϵ implicitly). So, if someone
claims they have update time

m
2ω−3

3 −1/
√

k−γ

for a fixed constant γ then we can tune ϵ sufficiently small for that to give a contradiction
from the k-clique hypothesis.

Now, if we state in terms of n = O(|V ′|2)

n( 2ω−3−δ
6−2δ )ℓ(1−o(1))−1

we can use the same trick with ϵ′ to get the simplified version

n( 2ω−3
6 −ϵ′)ℓ−1 = Ω

(
n( 2ω−3

6 −ϵ′)
√

2k−1
)

which gives a lower bound of

n
2ω−3

6
√

2k−1−o(
√

k)

time per update. ◀

▶ Lemma 23. Given a graph G let the procedure F be the process of selecting a uniformly
random pair of vertices (u, v) and either deleting edge (u, v) it if it exists or inserting (u, v)
if it doesn’t exist.

If we run the procedure F Θ
((

n
2
)

lg2(n)
)

times on any graph G the resulting distribution
over graphs has total variation distance at most n2−Ω(lg(n)) from the distribution over Erdős-
Rényi graphs.

Proof. Let p =
(

n
2
)−1, the probability any given edge is selected to be flipped by F . Let

s = Θ
((

n
2
)

lg2(n)
)
, the number of times we run F .

For any given edge (u, v) it is flipped a Binomially distributed number of times B(s, p).
The Pr [B(s, p) ≡ 0 mod 2] = 1/2 + (1 − 2p)s/2, which is the probability that (u, v) stays an
edge if it started with one and continues to have no edge if started without one. If this were
an Erdős-Rényi graph the probability an edge exists is 1/2 iid. So on each edge the TVD
from the probability of 1/2 is (1 − 2p)s. Now note that (1 − 2p)s = (1 − 2p)(2/(2p))Θ(lg2(n)) <

e−Ω(lg2(n)) < n−Ω(lg(n)).
We can now union bound over all edges to get a TVD between running the procedure F(

n
2
)

lg2(n) times and Erdős-Rényi graphs of at most n−Ω(lg(n)) = 2−Ω(lg2(n)). ◀
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B.3 Proof of Span Lower Bound in the Binary-Forking Model
▶ Theorem 24. The span per update for dynamic boolean formula evaluation is Ω(log n) in
the binary forking model.

Proof. We first show the work lower bound for a single update (or, the time required per
update), and then using the work lower bound we compute the span lower bound in the
binary-forking model. From Theorem 12, we know that the lower bound of work per update
is nc where c = Θ(1) for constant k.

In the binary forking model [12], it takes Ω(log t) time to launch t threads. This is due
to spawning t threads in a binary tree fashion where there are t leaves in the binary tree and
the height is log t. The height log t specifies the span of this launching process.

Let p be the number of processors used for the dynamic formula evaluation problem with
n variables. The span T∞(n) in the binary forking model is lower bounded by nc/p and log p.
Combining them, we get the following:

T∞(n) = Ω(nc/p + log p)

Minimizing T∞(n) over values of p, we get T∞(n) = Ω(log n). ◀
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Abstract

A beer graph is an undirected graph G, in which each edge has a positive weight and some vertices
have a beer store. A beer path between two vertices u and v in G is any path in G between u and v

that visits at least one beer store.
We show that any outerplanar beer graph G with n vertices can be preprocessed in O(n) time

into a data structure of size O(n), such that for any two query vertices u and v, (i) the weight of
the shortest beer path between u and v can be reported in O(α(n)) time (where α(n) is the inverse
Ackermann function), and (ii) the shortest beer path between u and v can be reported in O(L) time,
where L is the number of vertices on this path. Both results are optimal, even when G is a beer tree
(i.e., a beer graph whose underlying graph is a tree).
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1 Introduction

Imagine that you are going to visit a friend and, not wanting to show up empty handed, you
decide to pick up some beer along the way. In this paper we determine the fastest way to go
from your place to your friend’s place while stopping at a beer store to buy some drinks.

A beer graph is a undirected graph G = (V, E), in which each edge (u, v) has a positive
weight ω(u, v) and some of the vertices are beer stores. For two vertices u and v of G, we
define the shortest beer path from u to v to be the shortest (potentially non-simple) path
that starts at u, ends at v, and visits at least one beer store. We denote this shortest path by
SPB(u, v). The beer distance distB(u, v) between u and v is the weight of the path SPB(u, v),
i.e., the sum of the edge weights on SPB(u, v).

Observe that even though the shortest beer path from u to v may be a non-simple path,
it is always composed of two simple paths: the shortest path from u to a beer store and
the shortest path from this same beer store to v. Thus, when looking at the shortest beer
path problem, we often need to consider the shortest path between vertices. We denote the
shortest path in G from u to v by SP(u, v) and we use dist(u, v) to denote the weight of this
path. We also say that dist(u, v) is the distance between u and v in G.

To the best of our knowledge, the problem of computing shortest beer paths has not
been considered before. Let s be a fixed source vertex of G. Recall that Dijkstra’s algorithm
computes dist(s, v) for all vertices v, by maintaining a “tentative distance” δ(v), which is the
weight of the shortest path from s to v computed so far. If we also maintain a “tentative
beer distance” δB(v) (which is the weight of the shortest beer path from s to v that has been
found so far), then a modification of Dijkstra’s algorithm allows us to compute distB(s, v)
for all vertices v, in O(|V | log |V | + |E|) total time.

© Joyce Bacic, Saeed Mehrabi, and Michiel Smid;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 62; pp. 62:1–62:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:JoyceBacic@cmail.carleton.ca
mailto:michiel@scs.carleton.ca
https://doi.org/10.4230/LIPIcs.ISAAC.2021.62
https://arxiv.org/abs/2110.15693
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


62:2 Shortest Beer Path Queries in Outerplanar Graphs

As far as we know, no non-trivial results are known for beer distance queries. In this case,
we want to preprocess the beer graph G into a data structure, such that, for any two query
vertices u and v, the shortest beer path SPB(u, v), or its weight distB(u, v), can be reported.

1.1 Our Results
We present data structures that can answer shortest beer path queries in outerplanar beer
graphs. Recall that a graph G is outerplanar, if G can be embedded in the plane, such that
all vertices are on the outer face, and no two edges cross.

Our first result is stated in terms of the inverse Ackermann function. We use the definition
as given in [3]: Let A0(i) = i + 1 and, for ℓ ≥ 0, Aℓ+1(i) = A

(i+1)
ℓ (i + 8), where A

(i+1)
ℓ is the

function Aℓ iterated i + 1 times. We define α(m, n) to be the smallest value of ℓ for which
Aℓ(⌊m/n⌋) > n, and we define α(n) = α(n, n).

▶ Theorem 1. Let G be an outerplanar beer graph with n vertices. For any integer m ≥ n,
we can preprocess G in O(m) time into a data structure of size O(m), such that for any two
query vertices u and v, both dist(u, v) and distB(u, v) can be computed in O(α(m, n)) time.

By taking m = n, both the preprocessing time and the space used are O(n), and for any
two query vertices u and v, both dist(u, v) and distB(u, v) can be computed in O(α(n)) time.

As another example, let log∗ n be the number of times the function log must be applied,
when starting with the value n, until the result is at most 1, and let log∗∗ n be the number
of times the function log∗ must be applied, again starting with n, until the result is at
most 1. Let m = n log∗∗ n. Since α(m, n) = O(1), we obtain a data structure with space and
preprocessing time O(n log∗∗ n) that can answer both distance and beer distance queries in
O(1) time.

As we mentioned before, beer distance queries have not been considered for any class of
graphs. In fact, the only result on (non-beer) distance queries in outerplanar graphs that we
are aware of is by Djidjev et al. [5]. They show that an outerplanar graph with n vertices
can be preprocessed in O(n log n) time into a data structure of size O(n log n), such that
any distance query can be answered in O(log n) time. Our result in Theorem 1 significantly
improves their result.

We also show that the result in Theorem 1 is optimal for beer distance queries, even if G

is a beer tree (i.e., a beer graph whose underlying graph is a tree). We do not know if the
query time is optimal for (non-beer) distance queries.

Our second result is on reporting the shortest beer path between two query vertices.

▶ Theorem 2. Let G be an outerplanar beer graph with n vertices. We can preprocess G in
O(n) time into a data structure of size O(n), such that for any two vertices u and v, the
shortest beer path from u to v can be reported in O(L) time, where L is the number of vertices
on this beer path.

Observe that the query time in Theorem 2 does not depend on the number n of vertices
of the graph. Again, we are not aware of any previous work on reporting shortest beer paths.
Djidjev et al. [5] show that, after O(n log n) preprocessing and using O(n log n) space, the
shortest (non-beer) path between two query vertices can be reported in O(log n + L) time,
where L is the number of vertices on the path.

1.2 Preliminaries and Organization
Throughout this paper, we only consider outerplanar beer graphs G. The number of vertices
of G is denoted by n. It is well known that G has at most 2n − 3 edges. As in [5], we say that
G satisfies the generalized triangle inequality, if for every edge (u, v) in G, dist(u, v) = ω(u, v),
i.e., the shortest path between u and v is the edge (u, v).
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The outerplanar graph G is called maximal, if adding an edge between any two non-
adjacent vertices of G results in a graph that is not outerplanar. In this case, the number of
edges is equal to 2n − 3. A maximal outerplanar graph G is 2-connected, each internal face
of G is a triangle and the outer face of G forms a Hamiltonian cycle. In such a graph, edges
on the outer face will be referred to as external edges, where all other edges will be referred
to as internal edges.

The weak dual of a maximal outerplanar graph G is the graph D(G) whose node set is
the set of all internal faces of G, and in which (F, F ′) is an edge if and only if the faces F

and F ′ share an edge in G; see Figure 1. For simplicity, we will refer to D(G) as the dual of
G. Observe that D(G) is a tree with n − 2 nodes, each of which has degree at most three.

Figure 1 A maximal outerplanar graph shown in black. Its dual is shown in red.

If H is a subgraph of the beer graph G, and u and v are vertices of H, then dist(u, v, H)
and distB(u, v, H) denote the distance and beer distance between u and v in H, respectively.
The shortest beer path in H between u and v must be entirely within H. Observe that we
use the shorthand dist(u, v) for dist(u, v, G), and distB(u, v) for distB(u, v, G).

It will not be surprising that the algorithms for computing shortest beer paths use the
dual D(G). Thus, our algorithms will need some basic data structures on trees. These data
structures will be presented in Section 2.

In Section 3, we will prove Theorem 1 for maximal outerplanar beer graphs. We also
prove that the result in Theorem 1 is optimal, even for beer trees. The proof of Theorem 2,
again for maximal outerplanar beer graphs, will be presented in Section 4. The extensions
of these theorems to arbitrary outerplanar beer graphs will be given in the full version of
this paper. The full version will also present an O(n)-time algorithm for computing the
single-source shortest beer path tree for any given source vertex.

2 Query Problems on Trees

Our algorithms for computing beer shortest paths in an outerplanar graph G will use the
dual of G, which is a tree. In order to obtain fast implementations of these algorithms, we
need to be able to solve several query problems on this tree. In this section, we present all
query problems that will be used in later sections.

▶ Lemma 3. Let T be a tree with n nodes that is rooted at an arbitrary node. We can
preprocess T in O(n) time, such that each of the following queries can be answered in O(1)
time:
1. Given a node u of T , return its level, denoted by level(u), which is the number of edges

on the path from u to the root.
2. Given two nodes u and v of T , report their lowest common ancestor, denoted by LCA(u, v).
3. Given two nodes u and v of T , decide whether or not u is in the subtree rooted at v.
4. Given two distinct nodes u and v of T , report the second node on the path from u to v.
5. Given three nodes u, v, and w, decide whether or not w is on the path between u and v.

ISAAC 2021



62:4 Shortest Beer Path Queries in Outerplanar Graphs

Proof. The first claim follows from the fact that by performing an O(n)–time pre-order
traversal of T , we can compute level(u) for each node u. A proof of the second claim can be
found in Harel and Tarjan [6] and Bender and Farach-Colton [2]. The third claim follows
from the fact that u is in the subtree rooted at v if and only LCA(u, v) = v. A proof of
the fourth claim can be found in Chazelle [4, Lemma 15]. The fifth claim follows from the
following observations. Assume that u is in the subtree rooted at v. Then w is on the path
between u and v if and only if LCA(u, w) = w and w is in the subtree rooted at v. The case
when v is in the subtree rooted at u is symmetric. Assume that LCA(u, v) ̸∈ {u, v}. Then w

is on the path between u and v if and only if w is on the path between u and LCA(u, v) or w

is on the path between v and LCA(u, v). ◀

2.1 Closest-Colour Queries in Trees
Let T be a tree with n nodes and let C be a set of colours. For each colour c in C, we are
given a path Pc in T . Even though these paths may share nodes, each node of T belongs to
at most a constant number of paths. This implies that the total size of all paths Pc is O(n).
We assume that each node u of T stores the set of all colors c such that u is on the path Pc.

In a closest-colour query, we are given two nodes u and v of T , and a colour c, such that
u is on the path Pc. The answer to the query is the node on Pc that is closest to v. Refer to
Figure 2 for an illustration.

u

w

v

Figure 2 A tree T and a collection of coloured paths. For a query with nodes u and v, and color
“red”, the answer is the node w.

▶ Lemma 4. After an O(n)–time preprocessing, we can answer any closest-colour query in
O(1) time.

Proof. We take an arbitrary node of T and make it the root. Then we preprocess T such
that each of the queries in Lemma 3 can be answered in O(1) time.

For each colour c, let c1 and c2 be the end nodes of the path Pc, and let ch be the highest
node on Pc in the tree (i.e., the node on Pc that is closest to the root). With each node of
Pc, we store pointers to c1, c2, and ch.

Since each node of T is in a constant number of coloured paths, we can compute the
pointers for all the coloured paths in O(n) total time.

The query algorithm does the following. Let u and v be two nodes of T , and let c be a
colour such that u is on the c-coloured path Pc.

If u = v or v is also on Pc, then we return the node v. From now on, assume that u ≠ v

and v is not on Pc. Below, we consider all possible cases, which are illustrated in Figure 3.
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ch

c1

c2

v

u

v

c1

c2

uv

ch

c1

c2

v
u = c1

u = ch

ch = c2

c1

u

c2

ch

v

c2

c1

v

u

(1) (2)

(3.b)(3.a)

(3.c.ii)(3.c.i)

ch

Figure 3 Illustrating all possible cases in the proof of Lemma 4. The path Pc is red and the blue
square indicates the node that is returned by the closest-colour query.

1. If LCA(u, v) = v, then u is in the subtree rooted at v. In this case, we return ch, the
highest c-coloured node.

2. Assume that LCA(u, v) = u. Then v is in the subtree rooted at u. The closest c-coloured
node to v is either LCA(v, c1) or LCA(v, c2). Since v is lower than u in the tree, we
know that the closest c-colored node to v is at level(u) or greater. If level(LCA(v, c1)) >

level(LCA(v, c2)), then LCA(v, c1) is lower in the tree and closer to v, so we return
LCA(v, c1) . Otherwise, LCA(v, c2) is lower in T or equal to both LCA(v, c1) and u, so we
return LCA(v, c2).

3. Assume that LCA(u, v) ̸= u and LCA(u, v) ̸= v. Then u and v are in different subtrees of
LCA(u, v).
a. If level(ch) > level(LCA(u, v)), then we return ch.
b. If level(ch) < level(LCA(u, v)), then we return LCA(u, v).
c. Assume that level(ch) = level(LCA(u, v)). Observe that exactly one end node of the

c-coloured path is in the subtree rooted at u.
i. If c1 is in the subtree rooted at u, then we return LCA(v, c2).
ii. If c2 is in the subtree rooted at u, then we return LCA(v, c1).

Using Lemma 3, each of these case takes O(1) time. Therefore, the entire query algorithm
takes O(1) time. ◀
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2.2 Path-Sum Queries in Trees
Let (W, ⊕) be a semigroup. Thus, W is a set and ⊕ : W × W → W is an associative binary
operator. We assume that for any two elements s and s′ in W , the value of s ⊕ s′ can be
computed in O(1) time.

Let T be a tree with n nodes in which each edge e stores a value s(e), which is an
element of W . For any two distinct nodes u and v in T , we define their path-sum PS(u, v) as
follows: Let e1, e2, . . . , ek be the edges on the path in T between u and v. Then we define
PS(u, v) = ⊕k

i=1s(ei).
Chazelle [4] considers the problem of preprocessing the tree T , such that for any two

distinct query nodes u and v, the value of PS(u, v) can be reported. (See also Alon and
Schieber [1], Thorup [8], and Chan et al. [3].) Chazelle’s result is stated in terms of the
inverse Ackermann function; see Section 1.1.

▶ Lemma 5. Let T be a tree with n nodes in which each edge stores an element of the
semigroup (W, ⊕). For any integer m ≥ n, we can preprocess T in O(m) time into a data
structure of size O(m), such that any path-sum query can be answered in O(α(m, n)) time.

▶ Remark 6. Assume that (W, ⊕) is the semigroup, where W is the set of all real numbers
and the operator ⊕ takes the minimum of its arguments. In this case, we will refer to a
query as a path-minimum query. For this semigroup, the result of Lemma 5 is optimal: Any
data structure that can be constructed in O(m) time has worst-case query time Ω(α(m, n)).
To prove this, assume that we can answer any query in o(α(m, n)) time. Then the on-line
minimum spanning tree verification problem on a tree with n vertices and m ≥ n queries can
be solved in o(m · α(m, n)) time, by performing a path-maximum query for the endpoints
of each edge e and checking that the weight of e is larger than the path-maximum. This
contradicts the lower bound for this problem proved by Pettie [7].

3 Beer Distance Queries in Maximal Outerplanar Graphs

Let G be a maximal outerplanar beer graph with n vertices that satisfies the generalized
triangle inequality. We will show how to preprocess G, such that for any two vertices u

and v, the weight, distB(u, v), of a shortest beer path between u and v can be reported. Our
approach will be to define a special semigroup (W, ⊕), such that each element of W “contains”
certain distances and beer distances. With each edge of the dual D(G), we will store one
element of the set W . As we will see later, a beer distance query can then be reduced to
a path-sum query in D(G). Thus, by applying the results of Section 2.2, we will obtain a
proof of Theorem 1.

We will need the first claim in the following lemma. The second claim will be used in
Section 4.

▶ Lemma 7. Consider the beer graph G as above.
1. In O(n) total time, we can compute distB(u, u) for each vertex u of G, and distB(u, v)

for each edge (u, v) in G.
2. After an O(n)–time preprocessing of G, we can report,

a. for any query edge (u, v) of G, the shortest beer path between u and v in O(L) time,
where L is the number of vertices on this path,

b. for any query vertex u of G, the shortest beer path from u to itself in O(L) time, where
L is the number of vertices on this path.
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Proof. We choose an arbitrary face R of G and make it the root of D(G). Let (u, v) be any
edge of G. This edge divides G into two outerplanar subgraphs, both of which contain (u, v)
as an edge. Let GR

uv be the subgraph that contains the face R, and let G¬R
uv denote the other

subgraph. Note that if (u, v) is an external edge, then GR
uv = G and G¬R

uv consists of the
single edge (u, v). By the generalized triangle inequality, the shortest beer path between u

and v is completely in GR
uv or completely in G¬R

uv . The same is true for the shortest beer
path from u to itself. Thus, for each edge (u, v) of G,

distB(u, v) = min
(
distB(u, v, GR

uv), distB(u, v, G¬R
uv )

)
,

distB(u, u) = min
(
distB(u, u, GR

uv), distB(u, u, G¬R
uv )

)
.

By performing a post-order traversal of D(G), we can compute distB(u, v, G¬R
uv ) and

distB(u, u, G¬R
uv ) for all edges (u, v), in O(n) total time. After these values have been computed,

we perform a pre-order traversal of D(G) and obtain distB(u, v, GR
uv) and distB(u, u, GR

uv),
again for all edges (u, v), in O(n) total time. The details will be given in the full version of
this paper. ◀

In the rest of this section, we assume that all beer distances in the first claim of Lemma 7
have been computed.

For any two distinct internal faces F and F ′ of G, let QF,F ′ be the union of the two sets

{(u, v, dist(u, v), D) | u is a vertex of F, v is a vertex of F ′}

and

{(u, v, distB(u, v), BD) | u is a vertex of F, v is a vertex of F ′},

where the “bits” D and BD indicate whether the tuple represents a distance or a beer distance.
In words, QF,F ′ is the set of all shortest path distances and all shortest beer distances between
a vertex in F and a vertex in F ′. Since each internal face has three vertices, the set QF,F ′

has exactly 18 elements.

▶ Observation 8. Let u and v be vertices of G, and let F and F ′ be internal faces that
contain u and v as vertices, respectively.
1. If F = F ′, then we can determine both dist(u, v) and distB(u, v) in O(1) time.
2. If F ̸= F ′ and we are given the set QF,F ′ , then we can determine both dist(u, v) and

distB(u, v) in O(1) time.

Proof. First assume that F = F ′. If u = v, then dist(u, v) = 0 and distB(u, v) has been
precomputed. If u ̸= v, then (u, v) is an edge of G and, thus, dist(u, v) = ω(u, v) and
distB(u, v) has been precomputed.

Assume that F ̸= F ′. If we know the set QF,F ′ , then we can find dist(u, v) and distB(u, v)
in O(1) time, because these two distances are in QF,F ′ . ◀

In the rest of this section, we will show that Lemma 5 can be used to compute the set
QF,F ′ for any two distinct internal faces F and F ′.

▶ Lemma 9. For any edge (F, F ′) of D(G), the set QF,F ′ can be computed in O(1) time.

Proof. Let u be a vertex of F and let v be a vertex of F ′. Consider the subgraph G[F, F ′]
of G that is induced by the four vertices of F and F ′; this subgraph has five edges. By
the generalized triangle inequality, dist(u, v) = dist(u, v, G[F, F ′]). Thus, dist(u, v) can be
computed in O(1) time.
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We now show how distB(u, v) can be computed in O(1) time. If u = v or (u, v) is an edge
of G, then distB(u, v) has been precomputed. Assume that u ̸= v and (u, v) is not an edge
of G. Let w and w′ be the two vertices that are shared by F and F ′. Since any path in G

between u and v contains at least one of w and w′, distB(u, v) is the minimum of
1. distB(u, w) + ω(w, v),
2. ω(u, w) + distB(w, v),
3. distB(u, w′) + ω(w′, v),
4. ω(u, w′) + distB(w′, v).
Since (u, w), (w, v), (u, w′), and (w′, v) are edges of G, all terms in these four sums have
been precomputed. Therefore, distB(u, v) can be computed in O(1) time.

We have shown that each of the 18 elements of QF,F ′ can be computed in O(1) time.
Therefore, this entire set can be computed in O(1) time. ◀

▶ Lemma 10. Let F , F ′, and F ′′ be three pairwise distinct internal faces of G, such that F ′

is on the path in D(G) between F and F ′′. If we are given the sets QF,F ′ and QF ′,F ′′ , then
the set QF,F ′′ can be computed in O(1) time.

Proof. Let u be a vertex of F and let v be a vertex of F ′′. Since G is an outerplanar graph,
any path in G between u and v must contain at least one vertex of F ′. It follows that

dist(u, v) = min{dist(u, w) + dist(w, v) | w is a vertex of F ′}.

Thus, since (u, w, dist(u, w), D) ∈ QF,F ′ and (w, v, dist(w, v), D) ∈ QF ′,F ′′ , the value of
dist(u, v) can be computed in O(1) time.

F

F ′′

F

F ′′

Beer

u

w
v

Beer

u

w
v

F ′ F ′

(a) (b)

Figure 4 Any beer path from u to v contains at least one vertex of F ′. In (a), we consider the
shortest beer path from u to w, followed by the shortest path from w to v. In (b), we consider the
shortest path from u to w, followed by the shortest beer path from w to v.

By a similar argument, distB(u, v) is equal to (refer to Figure 4)

min{min(distB(u, w) + dist(w, v), dist(u, w) + distB(w, v)) : w is a vertex of F ′}.

All values dist(u, w), dist(w, v), distB(u, w), and distB(w, v) are encoded in the sets QF,F ′

and QF ′,F ′′ . Therefore, we can compute distB(u, v) in O(1) time.
Thus, since each of the 18 elements of QF,F ′′ can be computed in O(1) time, the entire

set can be computed in O(1) time. ◀

We define

W = {QF,F ′ | F and F ′ are distinct internal faces of G} ∪ {⊥},

where ⊥ is a special symbol. We define the operator ⊕ : W × W → W in the following way.
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1. If F and F ′ are distinct internal faces of G, then QF,F ′ ⊕ QF,F ′ = QF,F ′ .
2. If F , F ′, and F ′′ are pairwise distinct internal faces of G such that F ′ is on the path in

D(G) between F and F ′′, then QF,F ′ ⊕ QF ′,F ′′ = QF,F ′′ .
3. In all other cases, the operator ⊕ returns ⊥.

It is not difficult to verify that ⊕ is associative, implying that (W, ⊕) is a semigroup. By
Lemma 9, we can compute QF,F ′ for all edges (F, F ′) of D(G), in O(n) total time.

Recall from Lemma 3 that, after an O(n)–time preprocessing, we can decide in O(1) time,
for any three internal faces F , F ′, and F ′′ of G, whether F ′ is on the path in D(G) between
F and F ′′. Therefore, using Lemma 10, the operator ⊕ takes O(1) time to evaluate for any
two elements of W .

Finally, let F and F ′ be two distinct internal faces of G, and let F = F0, F1, F2, . . . , Fk =
F ′ be the path in D(G) between F and F ′. Then QF,F ′ = ⊕k−1

i=0 QFi,Fi+1 . Thus, if we store
with each edge of the tree D(G), the corresponding element of the semigroup, then computing
QF,F ′ becomes a path-sum query as in Section 2.2.

To summarize, all conditions to apply Lemma 5 are satisfied. As a result, we have proved
Theorem 1 for maximal outerplanar graphs that satisfy the generalized triangle inequality.

The Result in Theorem 1 is Optimal
In Section 2.2, see also Remark 6, we have seen path-minimum queries in a tree, in which
each edge e stores a real number s(e). In such a query, we are given two distinct nodes u and
v, and have to return the smallest value s(e) among all edges e on the path between u and v.
Lemma 5 gives a trade-off between the preprocessing and query times when answering such
queries.

Let D be an arbitrary data structure that answers beer distance queries in any beer
tree. Let P (n), S(n), and Q(n) denote the preprocessing time, space, and query time of D,
respectively, when the beer tree has n nodes. We will show that D can be used to answer
path-minimum queries.

Consider an arbitrary tree T with n nodes, such that each edge e stores a real number
s(e). We may assume without loss of generality that 0 < s(e) < 1 for each edge e of T .

By making an arbitrary node the root of T , the number of edges on the path in T between
two nodes u and v is equal to

level(u) + level(v) − 2 · level(LCA(u, v)).

Thus, by Lemma 3, after an O(n)–time preprocessing, we can compute the number of edges
on this path in O(1) time.

We create a beer tree T ′ as follows. Initially, T ′ is a copy of T . For each edge e = (u, v)
of T ′, we introduce a new node xe and replace e by two edges (u, xe) and (v, xe); we assign
a weight of 1 to each of these two edges. In the current tree T ′, none of the nodes has a
beer store. For every node xe in T ′, we introduce a new node x′

e, add the edge (xe, x′
e),

assign a weight of s(e) to this edge, and make x′
e a beer store. Finally, we construct the data

structure D for the resulting beer tree T ′. Since T ′ has n + 2(n − 1) = 3n − 2 nodes, it takes
P (3n − 2) + O(n) time to construct D from the input tree T . Moreover, the amount of space
used is S(3n − 2) + O(n).

Let u and v be two distinct nodes in the original tree T , let π be the path in T between
u and v, and let ℓ be the number of edges on π. The corresponding path π′ in T ′ between u

and v has weight 2ℓ.
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For any edge e of T , let π′
e be the beer path in T ′ that starts at u, goes to xe, then goes

to x′
e and back to xe, and continues to v.

If e is an edge of π, then the weight of π′
e is equal to 2ℓ + 2 · s(e), which is less than 2ℓ + 2.

On the other hand, if e is an edge of T that is not on π, then the weight of π′
e is at least

2ℓ + 2 + 2 · s(e), which is larger than 2ℓ + 2. It follows that the shortest beer path in T ′

between u and v visits the beer store x′
e, where e is the edge on π for which s(e) is minimum.

Thus, by computing ℓ and querying D for the beer distance in T ′ between u and v, we
obtain the smallest value s(e) among all edges e on the path in T between u and v. The
query time is Q(3n − 2) + O(1).

By combining this reduction with Remark 6, it follows that the result of Theorem 1 is
optimal.

4 Reporting Shortest Beer Paths in Maximal Outerplanar Graphs

Let G be a maximal outerplanar beer graph with n vertices that satisfies the generalized
triangle inequality. In this section, we show that, after an O(n)–time preprocessing, we can
report, for any two query vertices s and t, the shortest beer path SPB(s, t) from s to t, in
O(L) time, where L is the number of vertices on this path. As before, D(G) denotes the
dual of G.

▶ Observation 11. Let v be a vertex of G. The faces of G containing v form a path of nodes
in D(G).

Define Pv to be the path in D(G) formed by the faces of G containing the vertex v. Let
G[Pv] be the subgraph of G induced by the faces of G containing v. Note that G[Pv] has a
fan shape. Let CW(v) denote the clockwise neighbor of v in G[Pv] and let CCW(v) denote
the counterclockwise neighbor of v in G[Pv]. We will refer to the clockwise path from CW(v)
to CCW(v) in G[Pv] as the v-chain and denote it by ρv. (Refer to Figure 5.)

v

u

Pv

Pu

CW(v)

CCW(v)

CCW(c)

CW(u)

Figure 5 A maximal outerplanar graph G. The subgraphs G[Pv] and G[Pu] are shown in red
and blue, respectively. Both the v-chain ρv and the u-chain ρu are shown in bold. Both paths Pv

and Pu are shown in black. Observe that Pu is a single node.

▶ Lemma 12. After an O(n)–time preprocessing, we can answer the following queries, for
any three query vertices v, u, and w, such that both u and w are on the v-chain ρv:
1. Report the weight dist(u, w, ρv) of the path from u to w along ρv in O(1) time.
2. Report the path SP(u, w, ρv) from u to w along ρv in O(L) time, where L is the number

of vertices on this path.

Proof. For any vertex v and any vertex u on ρv, we store the weight of the path from u to
CW(v) along ρv. Observe that

dist(u, w, ρv) = |dist(u, CW(v), ρv) − dist(w, CW(v), ρv)|.
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Any exterior edge in G is in exactly one chain and any interior edge in G is in exactly two
chains. Thus, the sum of the number of edges on each chain is proportional to the number of
edges of G, which is O(n). ◀

▶ Lemma 13. After an O(n)–time preprocessing, we can answer the following query in O(1)
time: Given three query vertices v, u, and w, such that both u and w are vertices of G[Pv],
report dist(u, w), i.e., the distance between u and w in G.

Proof. We get the following cases; the correctness follows from the generalized triangle
inequality:
1. If u = w then dist(u, w) = 0.
2. If u = v then (u, w) is an edge and we return ω(u, w). Similarly if w = v, we return

ω(u, w).
3. Otherwise u and w are both on ρv and we return min(dist(u, w, ρv), ω(u, v)+ω(v, w)). ◀

▶ Lemma 14. After an O(n)–time preprocessing, we can report, for any three vertices v, u,
and w, such that both u and w are vertices of G[Pv], SP(u, w) in O(L) time, where L is the
number of vertices on the path.

Proof. Using Lemma 13, we can determine in O(1) if the shortest path from u to w goes
through v or follows the v-chain ρv. (Refer to Figure 6). If it goes through v, then
SP(u, w) = (u, v, w). Otherwise, SP(u, w) takes the path along ρv and by Lemma 12, we can
find this path in O(L) time. ◀

v

u

w

v

u

w

(a) (b)

Figure 6 Two possible cases for the shortest path between u and w: (a) it goes through vertex v

(shown in dashed red), or (b) it goes through the vertices of the v-chain between u and w (shown in
dashed blue).

▶ Lemma 15. After an O(n)–time preprocessing, we can report, for any three vertices v, u

and w, such that both u and w are vertices of G[Pv], the beer distance distB(u, w) in O(1)
time. The corresponding shortest beer path SPB(u, w) can be reported in O(L) time, where L

is the number of vertices on the path.

Proof. Recall from Lemma 7 that we can compute distB(u, v) for every edge (u, v) in G, and
distB(v, v) for every vertex v in G, in O(n) time.

Let ρv = (CW(v) = u1, u2, . . . , uN = CCW(v)). Let Av[ ] be an array of size N − 1. For
i = 1, . . . , N − 1, we set Av[i] = distB(ui, ui+1) − ω(ui, ui+1). Recall that by the generalized
triangle inequality, ω(ui, ui+1) = dist(ui, ui+1). Therefore, A[i] holds the difference between
the weights of the shortest path from ui to ui+1 and the shortest beer path from ui to ui+1.
After preprocessing the array Av[ ] in O(N) time, we can conduct range minimum queries
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in O(1) time. (Bender and Farach-Colton [2] show that these queries are equivalent to
LCA-queries in the Cartesian tree of the array.) Thus, for each v-chain of N nodes, we spend
O(N) time processing the v-chain. Since every edge is in at most two chains, processing all
v-chains takes O(n) time and space.

Given two vertices u and w of G[Pv], we determine the beer distance distB(u, w) as
follows:
1. If u = w then distB(u, w) has already been computed by Lemma 7.
2. If u = v or w = v, then there is an edge from v to the other vertex. Thus, distB(u, w)

has already been computed by Lemma 7.
3. Otherwise, u, w and v are three distinct vertices. Assume without loss of generality that

w is clockwise from u on the v-chain. We take the minimum of the following two cases:
a. The shortest beer path from u to w that goes through v. Since a beer store must be

visited before or after v, this beer path has a weight of min(distB(u, v)+ω(v, w), ω(u, v)+
distB(v, w)).

b. The shortest beer path through the vertices of the v-chain. Note that this beer path
will visit each vertex on the v-chain between u and w, but may go off the v-chain
to visit a beer store. On SPB(u, w), there is one pair of vertices, ui and ui+1, such
that a beer path is taken between ui and ui+1, and ui and ui+1 are adjacent on
the v-chain; refer to Figure 7. The shortest path is taken between all other pairs of
adjacent vertices on the v-chain. From Lemma 12, we can compute dist(u, w, ρv) in
O(1) time. The shortest beer path through the vertices of the v-chain has a weight
of dist(u, w, ρv) + Av[i], where Av[i] is the additional distance needed to visit a beer
store between ui and ui+1. Let u be the jth vertex on ρv and let w be the kth vertex
in ρv. Then Av[i] is the minimum value in Av[j, . . . , k − 1]. We can determine Av[i] in
constant time using a range minimum query.

Note that in case 1 and case 2, SPB(u, w) can be constructed in O(L) time by Lemma 7.
For case 3 (a) let p = (u, v, w) and for case 3 (b) let p = SP(u, w, ρv). Let ui, ui+1 be the
pair of adjacent vertices on p between which a beer path was taken. Using Lemma 7 we can
find SPB(ui, ui+1) in O(L) time. We obtain SPB(u, w) by replacing the edge (ui, ui+1) in p

with SPB(ui, ui+1). ◀

Beer Store

v v

Beer Store

(a) (b)

CW(v)

CCW(v)

ui

ui+1

u

w

CW(v)

CCW(v)

u

ui

w = ui+1

Figure 7 Both figures show a shortest beer path from u to w through the vertices on the v-chain.
Thicker edges on the blue beer path are edges that are traversed twice; once in each direction.
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Answering Shortest Beer Path Queries
Recall that, for any vertex v of G, Pv denotes the path in D(G) formed by the faces of G

containing v. Moreover, G[Pv] denotes the subgraph of G induced by these faces.
Consider two query vertices s and t of G. Our goal is to compute the shortest beer path

SPB(s, t).
Let Fs and Ft be arbitrary faces containing s and t, respectively. If t is in G[Ps] then, by

Lemma 15, we can construct SPB(s, t) in O(L) time. For the remainder of this section, we
assume that t is not in G[Ps]. To find SPB(s, t), we start by constructing a directed acyclic
graph (DAG), H . In this DAG, vertices will be arranged in columns of constant size, and all
edges go from left to right between vertices in adjacent columns. In H, each column will
contain one vertex that is on SPB(s, t). First we will construct H and then we will show
how we can use H to construct SPB(s, t). The entire construction is illustrated in Figure 8.

▶ Observation 16. Any interior edge (a, b) of G splits G into two subgraphs such that if s is
in one subgraph and t is in the other, then any path in G from s to t must visit at least one
of a and b.

Let P be the unique path between Fs and Ft in D(G). Consider moving along P from Fs

to Ft. Let F1 be the node on Ps that is closest to Ft, and let F ′
1 be the successor of F1 on P .

Note that, by Lemmas 3 and 4, we can find F1 and F ′
1 in O(1) time.1 Let e1 = (a1, b1) be

the edge in G shared by the faces F1 and F ′
1. Since SPB(s, t) must visit both of these faces,

by Observation 16, at least one of a1 or b1 is on the shortest beer path.
We place s in the first column of H and a1 and b1 in the second column of H. We then

add two directed edges from s to a1, one with weight dist(s, a1) and the other with weight
distB(s, a1). Similarly, we add two directed edges from s to b1 with weights dist(s, b1) and
distB(s, b1).

s

Fs

a1

a2
b2

a3
b3

b1

b4

a4

Ft

t

a1

b1

a2 a3

b2 b3 b4

a4

ts
F1

F ′
1

F2

F ′
2

F3

F ′
3 F4

F ′
4

F5

(b)(a)

Figure 8 An outerplanar graph G (a) and the DAG H constructed for the shortest beer path
query from s to t (b). The path P from Fs to Ft is shown in red. Each edge ei = (ai, bi) such that
ei is shared by Fi and F ′

i is shown in blue. The green edges of H represent the beer edges.

When i ≥ 2 we construct the (i + 1)th column of H in the following way. Let ei−1 =
(ai−1, bi−1) be the edge shared by the faces Fi−1 and F ′

i−1. The ith column of H contains
the vertices ai−1 and bi−1. Note that F ′

i−1 is in both Pbi−1 and Pai−1 . Using Lemma 4, we
find the node F b

i on Pbi−1 that is closest to Ft. If the vertex ai−1 is not in F b
i , then we let

Fi = F b
i . Otherwise, we let Fi be the node on Pai−1 that is closest to Ft.

1 To apply Lemma 4, we consider each vertex of G to be a colour. For each vertex v of G, the v-coloured
path in the tree D(G) is the path Pv. The face F1 is the answer to the closest-colour query with nodes
Fs and Ft and colour s.
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If t is not a vertex of Fi, then let F ′
i be the node that follows Fi on P ; we find F ′

i

using Lemma 3. Let ei = (ai, bi) be the edge of G shared by the faces Fi and F ′
i . In the

(i + 1)th column, we place ai and bi. For each u ∈ {ai−1, bi−1} and each v ∈ {ai, bi} we add
two directed edges (u, v) to the DAG, one with weight dist(u, v) and the other with weight
distB(u, v). If Fi is in Pai−1 , all these vertices are in G[Pai−1 ]; otherwise, Fi is in Pbi−1 , and
all these vertices are in G[Pbi−1 ]. Thus, by Lemmas 13 and 15, we can find the distances and
beer distances to assign to these edges in constant time.

If t is in Fi, then in the (i + 1)th column we only place the vertex t. In this case, for each
u ∈ {ai−1, bi−1}, we add two directed edges (u, t) to the DAG with weights dist(u, t) and
distB(u, t). At this point we are done constructing H.

We define a beer edge to be an edge of H that was assigned a weight of a beer path
during the construction of H . We find the beer distance from s to t in G using the following
dynamic programming approach in H.

Let M denote the number of columns in H. For i = 3, . . . , M and for all u in the ith

column of H, compute

distB(s, u) = min


distB(s, ai−2) + dist(ai−2, u)
dist(s, ai−2) + distB(ai−2, u)
distB(s, bi−2) + dist(bi−2, u)
dist(s, bi−2) + distB(bi−2, u)

and

dist(s, u) = min
{

dist(s, ai−2) + dist(ai−2, u)
dist(s, bi−2) + dist(bi−2, u)

The vertices ai−2 and bi−2 occur in the (i − 1)th column. Thus, distB(s, ai−2),
distB(s, bi−2), dist(s, ai−2), and dist(s, bi−2) will be computed before computing the val-
ues for the ith column. We get dist(ai−2, u), distB(ai−2, u), dist(bi−2, u) and distB(bi−2, u)
from the weights of the DAG-edges between the (i − 1)th and ith columns of H.

By keeping track of which expression produced distB(s, u) and dist(s, u), we can backwards
reconstruct the shortest beer path in the DAG. Knowing the shortest beer path in the DAG
enables us to construct the corresponding beer path in G as follows.
1. Define Pst to be an empty path.
2. For each edge (w, v) of the shortest beer path in the DAG.

a. If (w, v) was a beer edge, let Pwv = SPB(w, v), which can be constructed in time
proportional to its number of vertices via Lemma 15.

b. Otherwise, let Pwv = SP(w, v) which can be constructed in time proportional to its
number of vertices as seen in Lemma 14.

Let Pst = Pst ∪ Pwv.
3. Return Pst, which is equal to SPB(w, v).

Let L denote the number of vertices on SPB(s, t). In order for the above query algorithm
to take O(L) time, the size of the DAG must be O(L). The following three lemmas will show
this to be true.

▶ Lemma 17. For 2 ≤ i < M − 1, Fi contains either ai−1 or bi−1, but not both.

Proof. Recall that we defined F b
i to be the last node on P that is also on Pbi−1 . We similarly

define F a
i to be the last node on P that is also on Pai−1 . From the way we choose Fi, Fi is

either F b
i or F a

i . We only choose Fi = F b
i after having checked that ai−1 is not in F b

i ; thus
in this case we can be sure that Fi only contains bi−1.
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Assume for the purpose of contradiction that we choose Fi = F a
i and bi−1 is also in Fi.

Let the third vertex of Fi be c. Let the face on P immediately following Fi be F ′
i . The edge

shared by Fi and F ′
i is either (bi−1, c) or (ai−1, c). If (bi−1, c) is the shared edge, then F ′

i is
a face closer to Ft that contains bi−1 and not ai−1, so we would have chosen Fi = F b

i , which
is a contradiction. Otherwise, (ai−1, c) is the edge shared by Fi and F ′

i , which implies that
there is a face containing ai−1 closer to Ft in P than F a

i , which contradicts the definition
of F a

i . ◀

▶ Lemma 18. Every vertex of G appears in at most one column of H.

Proof. Since (a1, b1) is an edge shared by both the last face of P containing s and the first
face of P that does not contain s it is not possible for either of these vertices to be the vertex
s. Thus, s will only be represented by the vertex in the first column of H. By stopping the
construction of H as soon as we add a vertex representing t, we ensure that H only contains
one vertex corresponding to the vertex t in G.

For 2 ≤ i ≤ M − 2, consider the vertex ai−1 in G represented by a vertex in the ith

column of H . If Fi = F a
i then by definition of F a

i , F ′
i does not contain ai−1. Since (ai, bi) is

an edge of F ′
i , ai ≠ ai−1 and bi ̸= ai−1. Because the face F ′

i is closer to Ft than F a
i , ai−1 is

not a vertex on any of the faces on the path from F ′
i to Ft. Thus, subsequent columns of H

will not contain vertices representing the vertex ai−1 in G.
If Fi = F b

i then by Lemma 17, ai−1 is not in Fi and since (ai, bi) is an edge of Fi,
ai ̸= ai−1 and bi ̸= ai−1. Because Fi is a face on P closer to Ft than Fi−1 (a face that
contains ai−1) it follows from Observation 11 that none of the faces on P from Fi−1 to Ft

will have the vertex ai−1 on their face and, thus, ai−1 will not be represented by vertices in
subsequent columns of H.

By switching the roles of ai−1 with bi−1 in the above reasoning we can see that this also
holds for bi−1. ◀

▶ Lemma 19. The number of vertices and edges of H is O(L).

Proof. By Observation 16 and Lemma 18, the number of columns of H is at most L. Since
each column has at most two vertices, each of which having at most four outgoing edges, the
total number of vertices and edges of H is O(L). ◀

Observe that the total preprocessing time is O(n). For two query vertices s and t, the
DAG, H , can be constructed in O(L) time. Finally, the dynamic programming algorithm on
H takes O(L) time. Thus, we have proved Theorem 2 for maximal outerplanar graphs that
satisfy the generalized triangle inequality.
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Abstract
The problem of graph Reachability is to decide whether there is a path from one vertex to another
in a given graph. In this paper, we study the Reachability problem on three distinct graph
families - intersection graphs of Jordan regions, unit contact disk graphs (penny graphs), and chordal
graphs. For each of these graph families, we present space-efficient algorithms for the Reachability
problem.

For intersection graphs of Jordan regions, we show how to obtain a “good” vertex separator in a
space-efficient manner and use it to solve the Reachability in polynomial time and O(m1/2 log n)
space, where n is the number of Jordan regions, and m is the total number of crossings among
the regions. We use a similar approach for chordal graphs and obtain a polynomial time and
O(m1/2 log n) space algorithm, where n and m are the number of vertices and edges, respectively.
However, for unit contact disk graphs (penny graphs), we use a more involved technique and obtain
a better algorithm. We show that for every ϵ > 0, there exists a polynomial time algorithm that can
solve Reachability in an n vertex directed penny graph, using O(n1/4+ϵ) space. We note that the
method used to solve penny graphs does not extend naturally to the class of geometric intersection
graphs that include arbitrary size cliques.
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1 Introduction

Given a directed graph G = (V, E) and two of its vertices s and t, the problem of Reach-
ability is to decide if there exists a path from s to t in G. Reachability is one of the
fundamental problems in theoretical computer science, and for directed and undirected graphs
the problem is known to be complete for the classes NL and L, respectively (see [26, 28]).
The famous open question L ?= NL essentially asks if there exists a deterministic log-space
algorithm for Reachability or not. Note that Reachability can be solved in Θ(n log n)
space and optimal time by using standard graph traversal algorithms such as DFS and BFS.
Furthermore, it is known that this problem can be solved in Θ(log2 n)-space and nΘ(log n)

time [32].
In the realm of space-efficient algorithms, the primary objective is to optimize the space-

complexity of an algorithm while maintaining a polynomial-time bound. Wigderson asked in
his survey of Reachability problems [33], whether there is an algorithm for Reachability
that runs in O(n1−ε) space (for some ε > 0) and polynomial time. Barnes et al. [6] partially
answered this question and showed that Reachability on general graphs can be solved in
polynomial time and O(n/2Θ(

√
log n)) space. This result is followed by numerous works on

various restricted graph families.
© Sujoy Bhore and Rahul Jain;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 63; pp. 63:1–63:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sujoy.bhore@gmail.com
https://orcid.org/0000-0003-0104-1659
mailto:rahul.jain@fernuni-hagen.de
https://orcid.org/0000-0002-8567-9475
https://doi.org/10.4230/LIPIcs.ISAAC.2021.63
https://arxiv.org/abs/2101.05235
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


63:2 Space-Efficient Algorithms for Reachability in Directed Geometric Graphs

Asano and Doerr [3] presented an algorithm for grid graphs that uses O(n1/2+ε)-space,
for any small ε > 0. Imai et al. [23] achieved the similar space bound for planar graphs.
Later, Asano et al. [4] improved the space bound to Õ(n1/2) for planar graphs. Recently,
this bound has been improved to O(n1/4+ε) for grid graphs [24]. Besides, Chakraborty et
al. [10] studied Reachability for graphs with higher genus and gave an Õ(n2/3g1/3)-space
bound algorithm, and an Õ(n2/3) space algorithm for H minor-free graphs.

For layered planar graphs, Chakraborty and Tewari [11] showed that there is an O(nε)-
space and polynomial algorithm. Gupta et al. [20] showed that given a pair {s, t} and an
embedding of an O(log n) genus graphs, Reachability from s to t in G can be decided
unambiguously in logspace (i.e. Reachability is in the class UL).

Tree-decomposition and associated treewidth is an important notion of the graphs. Many
problems which are computationally hard on general graphs are efficiently solvable on graphs
of bounded Treewidth [1]. Graphs of small Treewidth also have small vertex-separators,
which is a small set of vertices of the graph, removal of which divides the graph into pieces
whose size are at most a fraction of the original graph. Recently, Jain and Tewari [25] showed
that given an n vertex directed graph of treewidth w along with its tree decomposition, there
exists an algorithm for Rechability problem that runs polynomial time and O(w log n)
space. They achieved this result by using the vertex separator of small Treewidth graphs. In
fact, they formalized the connection between Vertex Separator and Reachability problems,
which has several consequences. For the sake of completeness, we state their result below.

▶ Theorem 1 ([25]). Let G be a class of directed graphs and w : N× N→ N be a function.
If there exist an O(w(n, m) log n) space and polynomial time algorithm, that given a graph
G ∈ G of n vertices and m edges, and a set U of V (G), outputs a separator of U in
underlying undirected graph of G1 of size O(w(n, m)), then there exists an algorithm to decide
Reachability in G that uses O(w(n, m) log n) space and polynomial time.

In this paper, we study the Reachability problem on directed geometric graph families.
Many important graph families can be described as intersection graphs of more restricted
types of set families. More often than not, the geometric intersection graph families provide
additional geometric structures that help to generate efficient algorithms. Many problems
that are NP-complete on general graphs are tractable on geometric intersection graphs [13, 22].
Indeed, such advantages have been exploited for space-efficient algorithms as well. We refer
to the survey on geometric algorithms with limited work-space [5].

In this work, we make progress towards answering the question raised by Wigderson in
his survey [33]. We primarily design and use the Vertex separator of some geometric graphs
space-efficiently. Previously, vertex separators in the context of geometric graphs have been
studied by Fox and Pach [16], who established several geometric extensions of the famous
Lipton-Tarjan separator theorem [27]. Recently, Carmi et al. [8], and Hoffmann et al. [21]
established improved bounds on the size of separators for some restricted classes of geometric
graphs.

1.1 Our Contribution
We study the Reachability problem on three different graph families – intersection Graphs
of Jordan Regions, Unit Contact Disk Graphs (Penny Graphs) and Chordal Graphs.

1 For a directed graph G, its underlying undirected graph is the graph formed by removing the orientation
of all the edges.
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First, in Section 2, we show that given a collection of Jordan regions, there exists a
polynomial time algorithm that computes a separator of size O(m1/2) using O(m1/2 log n)
space, where n is the number of Jordan regions and m is the total number of crossings
among those regions. Then, by combining this with Theorem 1, we note that Reachability
on directed intersection graphs of Jordan regions can be solved in polynomial time and
O(m1/2 log n) space.

In Section 3, we present a space-efficient algorithm for Reachability on penny graphs
that uses O(n1/4+ε) space and polynomial time. Since penny graphs are a subclass of planar
graphs, Reachability can be solved for penny graphs in O(n1/2 log n) space. However, to
reduce the space complexity, we use an involved technique. First, we use the axis-parallel
separator of Carmi et al. [8] repeatedly to form rectangular subdivision such that each
cell of a subdivision contains a bounded size subgraph of the input graph. Then using
these subdivisions, we construct a smaller auxiliary graph that preserves Reachability
information. Finally, using a notion of pseduo-separator, we solve Reachability in this
auxiliary graph in a space-efficient manner. Note that, there exists a a O(n1/4+ε) space
and polynomial time algorithm for reachability in grid graphs [24]. Since grid graphs are
a subclass of penny graphs, our result is a generalization and improvement of previously
known results.

Finally, in Section 4, we adopt the algorithm of [19] for Reachability on chordal graphs
to provide a space-efficient and polynomial time algorithm.

Even though chordal graphs seem to be an exception in the context of geometric graph
families, we note that there exists work representing chordal graphs as a subfamily of string
graphs [12]. Moreover, it is known that chordal graphs can be characterized as intersection
graphs of sub-trees of a tree [18], and interval graphs are a subfamily of chordal graphs.

1.2 Preliminaries
Throughout the text, we denote the set {1, 2, . . . , n} as [n]. For a graph G = (V, E) and a
subset U ⊆ V , G[U ] denotes the subgraph induced on U . Given a graph G = (V, E) with
vertex set V and edge set E, a weight function w : V → R≥0 is a non-negative function on
V such that the sum of the weights is 1. For any subset S ⊂ V , the weight w(S) is defined
to be

∑
v∈S w(v). A separator in a graph G with respect to a weight function w is a subset

S ⊂ V of vertices such that there is a partition V = S∪V1∪V2 such that w(V1), w(V2) ≤ 2/3
and there are no edges between V1 and V2. If the weight function is not specified, it is
assumed that w(v) = 1

|V | , for every vertex v. We refer to Arora and Barak [2] for a basic
understanding of the model and terminologies for space-efficient algorithms.

2 Intersection Graphs of Jordan Regions

In this section, we study the Reachability problem on the intersection graphs of Jordan
regions. Let C be a set such that each element C of C is a simply connected compact region
in a plane bounded by a closed Jordan curve. Let G(C) be an intersection graph on C, where
two distinct elements C1, C2 ∈ C are adjacent if and only if their intersection is not empty.
Additionally, each edge of G(C) is a directed edge. A Jordan region A contains another
Jordan region B if A ⊆ int(B), where int(B) is the interior of B. We assume that no point
is a boundary point of three elements of C, and each element of C intersects at least one
other element of C. Further, we may assume that the number of such intersection points is
finite. In [16], Fox and Pach showed the existence of a O(m1/2)-size separator on a collection
of Jordan regions, where m is the total number of crossings points in the boundary of Jordan
regions.
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Figure 1 (a) An illustration of the planar embedding of the curves in C. The black disk points
are the intersection points from set A(C), and the blue square points the three extra points from set
B(C). (b) An illustration of a face in the embedding and its corresponding planar triangulation. (c)
Traversal of the left-face of the edge e = (u, v).

For the purpose of computation, we work with those classes of Jordan regions that can
be represented compactly, i.e., the set of n Jordan regions can be represented by poly(n) bits.
Furthermore, we assume that basic operations, such as determining the intersection point
of two Jordan regions and outputting a constant number of points of given Jordan regions,
can be performed in log-space. We prove the following theorem about the separator. Note
that any vertex separator of an intersection graph does not rely on the direction of the edges.
Hence for ease of explanation, we drop the directions from the input graph G(C).

▶ Theorem 2. Let C be a collection of Jordan regions, and let G(C) be an intersection graph
on C. Let w be a weight function on C. There exists a polynomial time algorithm that takes
as an input the set C and outputs a separator of G(C) with respect to w, of size O(m1/2)
using O(m1/2 log n) space.

We assume that the sum of the weights of the given Jordan regions is one. Let H(C)
be the set of heavy regions in C whose weight is more than 1/m1/2, and let L(C) be set of
regions in C that are involved2 in at least 1

3 m1/2 containments with other elements of C. Let
I(C) = C \ (H(C) ∪ L(C)). We define a planar graph GP (C). The vertex set of this graph is
the union of two subsets, i.e., A(C) ∪B(C), where A(C) is the set of all intersection points
that lie on the boundary of at least one element of I(C) and B(C) is a collection of points
not in A(C) such that the boundary of each C ∈ I(C) contains precisely three points in B(C).
There exists an edge between two vertices of GP (C) if and only if there are consecutive points
along the boundary of an element of I(C); see Figure 1(a).

To see that the defined graph is planar, we see that we have added a vertex at every
point of intersection of the boundary of the given Jordan curves. We can now draw the edges
along the boundary. We proceed with the following lemmas.

▶ Lemma 3. There exists a log-space algorithm that takes as an input a set of Jordan regions
C and outputs a graph GP (C).

Proof. First of all, note that there exists a log-space subroutine that on an input Jordan
region C of C determines if C is in L(C). To do this, the subroutine iterates over all Jordan
regions in C and calculates the total number of containment with which C is involved. The
weight of each Jordan region comes with the input. Hence it is enough for us to determine if
a Jordan region C of C belongs to the set I(C). In order to construct the planar graph, we
essentially need to know I(C). Thereby concluding the proof of the Lemma. ◀

2 We say that a region C1 is involved in a containment with a region C2 if either C1 contains C2 or C2
contains C1.
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Next, we triangulate GP (C), and denote the triangulated planar graph by GT (C). This
triangulation can be obtained in log-space using the following lemma

▶ Lemma 4. There exists an algorithm that takes a planar graph in the input and returns a
triangulated planar graph in log-space.

Proof. Consider a planar graph GP . The embedding of a planar graph can be computed
in log-space [15]. Note that an edge e1 = (u1, v1) in GP is part of two faces in the planar
embedding of the graph. We call them the left and the right face, respectively. We explain
how to traverse the left face of e1 in log-space. In order to do this, we start by traversing e1
to one of its endpoint (say v1) and take the edge clockwise next to e1, that is incident on v1.
Let e2 be such an edge; see Figure 1. We continue the traversal along the edge e3, which
is the edge clockwise next to e2 from the endpoint v2 of e2, and so on. In general, if we
reach at the vertex vi using the edge ei, we continue along the edge clockwise next to ei from
vi. Clearly, by following this procedure, we can traverse the boundary of the face. In order
to prove this lemma, it is sufficient to show that given two vertices ul and vl of the input
planar graph GP , whether an edge el can be added between them in log-space as part of the
triangulation. We assume that the vertices of the input graph GP are indexed by an integer
from 1 to k, for some k ∈ [n]. For each edge e that is incident with u, we first traverse the
left face of e and see if (i) v is present in that face, (ii) either u or v is the lowest-indexed
vertex of that face. There is a triangulated edge between u and v if and only if both these
conditions are true for any such edge e; see Figure 1(b). This concludes the proof of the
lemma. ◀

Let d(C) be the number of points on the boundary of C that belong to the vertex set of
GT (C). For a vertex v in GT (C), we define a new weight function weight(v) as follows:
Case 1: v is part of two boundaries C1 and C2 of C, weight(v) = w(C1)

d(C1) + w(C2)
d(C2) .

Case 2: v is in the boundary of only one element C1 of C, weight(v) = w(C1)
d(C1) .

Fox and Pach [16] used the idea to find a cycle-separator in this triangulated graph GT (C)
and used it to construct a separator of the original geometric intersection graph. Instead, we
will use the result of Imai et al. [23] to obtain such a separator in a space-efficient manner.

▶ Lemma 5 ([23]). Let G be a triangulated planar graph. There exists a polynomial time
algorithm that uses O(

√
n log n) space to output a separator of G of size O(

√
n).

Now, consider the set of regions of C whose boundary contains at least one of the points
of the separator returned by the algorithm of Imai et al. on GT (C). We denote these regions
by sep(C). In the following, we show that this set is indeed the required separator. Moreover,
this set can be calculated within the required space-time bounds.

▶ Lemma 6. The set sep(C) is a separator of the intersection graph of C

Proof. First of all, note that GT (C) is a triangulated planar graph. Let S be the separator
of this graph returned by the algorithm of Imai et al. [23]. For a triangulated graph, we
observe that the separator S is a cycle. Let V0 be the set of all elements of C that are either
not in I(C), or whose boundary contains a vertex of S. Let K1 and K2 be the set of vertices
that are inside and outside the cycle S, respectively. Let Vi (for i ∈ {1, 2}) be the set of
elements of I(C), such that all vertex of V (GT (C)) which are on its boundary belong to the
component Ki. It is easy to see that V0, V1, and V2 are pairwise disjoint sets, and their union
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is C. If V0 has a weight of at least 1/3, then we see that it act as a trivial separator. Hence,
for the rest of this proof, we assume that the weight of V0 is less than 1/3. Thus, we can
also see that the weight of Vi is at most 2/3. It only remains to show that there is no edge
between a vertex of V1 and a vertex of V2.

Let us assume, w.l.o.g., that the weight of V2 is greater than the weight of V1 and hence
greater than 1/3. In order to show that there is no edge between a vertex of V1 and a vertex
of V2, let us assume to the contrary that there is one such edge. Since V1 and V2 are on two
different sides of a closed Jordan curve, there exists an element v of V1 that contains in its
interior all the elements of V2. The number of elements in V2 is at least 1

3 m1/2 contradicting
the fact that v belongs to I(C). ◀

Next, in the final lemma, we argue about the space-complexity of the above mentioned
procedure.

▶ Lemma 7. There exists a polynomial time algorithm that takes as an input C and outputs
the set sep(C) in O(m1/2 log n) space.

Proof. We first see that on input C, the graph GT (C) contains O(m) vertices. We can output
this graph in log-space (see Lemma 4). Then, using the planar separator algorithm of Imai
et al. [23], we can get a set of O(m1/2) vertices which acts as the separator of this graph.
This process can be done in O(m1/2 log n) space and polynomial time. Once we obtain this
set, it is possible to construct sep(C) by using this set. ◀

This completes the proof of Theorem 2. Then, by combining Theorem 2 and Theorem 1,
we conclude the following.

▶ Corollary 8. There exists an algorithm that solves the Reachability on the directed
intersection graph of Jordan regions in polynomial time and O(m1/2 log n) space.

3 Unit Contact Disk Graphs (Penny Graphs)

We now study the Reachability problem on directed unit contact disk graphs (penny
graphs). Penny graphs are also known as unit coin graphs [9]. Let G = (D, E) be a directed
penny graph, where D = {d1, . . . , dn} is a set of unit disks, and there is an edge e ∈ E

between two disks di and dj (for some i, j ∈ [n]) if di and dj touch each other. Moreover,
each edge in e ∈ E is a directed edge.

We prove the following theorem.

▶ Theorem 9. For every ε > 0, there exists a polynomial time algorithm that can solve
Reachability in an n vertex directed penny graph, using O(n1/4+ε) space.

We know that given a set of n unit disks with m intersections, there exists an axis-parallel
line intersecting O(

√
m + n) disks such that each half-plane separated by that line contains

at most 4n/5 disks [8]. They call such a separator a balanced separator. We first describe
that how such a balanced separator can be obtained in a space-efficient manner.

Let R be a rectangular bounding box that contains the disks in D. Our algorithm to
solve the Reachability problem on penny graphs consists of four steps: (1) we find the
balanced separators and use them to obtain a rectangular subdivision of the plane, (2) create
an auxiliary graph, (3) obtain a pseudo-separator, (4) solve the Reachability.
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3.1 Obtaining Rectangular Subdivion
In this step, the direction of the edges of G is not relevant, so we simply consider the input
as a set D of unit non-overlapping unit disks. The main idea is to divide the rectangle R

into smaller rectangles such that each smaller rectangle contains at most n1−ε unit disks,
and the number of unit disks intersecting the boundary of any rectangle is at most n1/2+ε/2.

In what follows, we describe a sweeping procedure. We discuss primarily in terms of
vertical sweeping, and the the horizontal sweeping is done similarly.

We consider the disks in sorted order based on the x-coordinates of their corresponding
centers, which can be easily done in log-space. Consider a vertical sweep line ℓ. We start with
the leftmost disk from D and sweep until we find a balanced separator that is intersecting
O(
√

m + n) many disks such that each half-plane separated by that line contains at most
4n/5 disks. If we do not find any such vertical separator, then we apply the same procedure
with a horizontal sweep line (say ℓ′) sweeping from top to bottom. From Theorem 2 in [8],
we know that there exists an axis-parallel balanced separator. Therefore, we shall obtain a
balanced separator by doing this procedure.

When the sweep line ℓ encounters or leaves a disk, we call it an event. There are precisely
2n number of events. Note that it is possible to test by using log n space whether a disk di

intersects the line ℓ. We maintain a counter cℓ corresponding to the sweep line ℓ. At each
event k (for some k ∈ [n]), we determine the number of disks that intersect ℓ, by checking
each disk that whether it is intersecting with ℓ or not in log-space. Then, when the next event
happens, we increase the value of the counter by 1 if it intersects a new disk, or decrease it
by 1, otherwise. By using this procedure, we can find a separator line ℓ, that is, a balanced
separator. It is also clear that we can determine such a separator by using log n space. Once
we find such a separator, we only store the x-coordinate (resp. y-coordinate) of the vertical
line ℓ (resp. horizontal line ℓ′). Note that it is possible to find the actual set of disks that
form such a separator in log-space when needed.

We subdivide the rectangles repeatedly until each of the rectangles has smaller than
n1−ε disks. Initially, we have the rectangle R containing all the disks. Let R0 = {R} be the
initial set of rectangles. After step i, we have the rectangles Ri be the set of rectangles, and
We pick the rectangle with more than n1−ε disks and subdivide it further using the above
process to get Ri+1. See Figure 2 for an illustration.

b`1

b`2

b`3

b`4

b`5

b`6

b`7

Figure 2 An illustration of the rectangular subdivision by using the balanced separators. The
blue disks are the ones intersected by the balanced separator lines, and the red disks are contained
inside the rectangles.

We calculate the number of separators required to reach this termination point. From [8],
we know that one

√
m + n size separator guarantees that on each side there are at most 4n

5
disks. Since the class of penny graphs is a subclass of planar graphs, the total number of
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edges is at most 3n− 6. Now at each step, we have obtained a balanced separator whenever
it has satisfied the criteria. We need O(nε) many separators to have at most O(n1−ε) disks
in each cell. To store these line separators, we need to use O(nε log n) space.

The initial graph G is divided into nε × nε rectangles obtained from the above procedure.
Let Z be the set of all rectangles. The idea is to reduce the size of the graph G by dropping the
disks that are completely contained inside some rectangle and are not touched or intersected
by its boundary line. However, while reducing the size of the number of disks, we need to
ensure that the Reachability information is fully preserved between any pair of disks in G.
For that, we proceed to the next step and build an auxiliary graph.

3.2 Building Auxiliary Graph
For a rectangle R, let GR be the graph defined as follows. The vertex set of GR is the set of
all disks which intersect at least one of the boundaries of R. We add an edge from a vertex
u to a vertex v in GR if there is a directed path from u to v, which contains only the disks
present inside the rectangle R. Let v1 be an arbitrary disk, and let {v1, . . . , vk} be the sets
of disks intersecting the boundary of R in the anti-clockwise order. We place the disk centers
on the boundary while preserving (1) the order of them on the boundary, (2) each vertex vi

is on the side of the boundary that it intersects. However, if it is intersected by more than
one side (one vertical and one horizontal) then we create an additional dummy vertex (say
v′

i) and assign vi and v′
i to the horizontal and vertical side, respectively. Moreover, we add a

bidirectional edge between vi and v′
i. see Figure 3(b)) for an illustration.

The edges of GR are drawn in the following manner. If there is an edge between two
vertices that are on different sides, then we give a directed straight line edge. Otherwise, we
join them by a directed circular arc. Moreover, we ensure that there is a crossing between
two edges (vi, vk) and (vl, vj) in the drawing if and only if there is an ordering on the
boundary which is one of the followings - 1. {vi ≺ vl ≺ vk ≺ vj}, 2. {vj ≺ vl ≺ vk ≺ vi}, 3.
{vl ≺ vi ≺ vj ≺ vk}, 4. {vl ≺ vi ≺ vj ≺ vk}. Clearly, there exists such a drawing as their arc
edges can be drawn arbitrarily close to the boundary lines.

v3v4v6
v5

v8

v9

v7

v2

v1

v12v11v10

v3v4v5

v′12

v6

v7

v8

v9

v2

v1

(b)(a)

v10 v11 v12

Figure 3 An illustration of the representation of the graph GR, (a) the blue disks are the vertices
of GR intersecting the boundary of the rectangle (b) drawing of GR.

Now, by combining the graphs defined for each rectangle, we define the auxiliary graph
Auxε(G), for 0 < ε < 1. The vertex set of Auxε(G) is

⋃
R∈Z V (GR) and the edge set

is
⋃

R∈Z E(GR). Notice that Auxε(G) might have parallel edges, since there exists paths
between vertices in two adjacent rectangles, and in that case we keep both of these edges
in their respective rectangles. The total number of vertices in each cell is O(n1−ε). Hence
the total number of vertices in Auxε(G) is O(n1/2+ε/2). We point out that we do not store
Auxε(G) explicitly because that requires too much space. Instead, we deal with each cell
recursively when the subroutine queries for an edge in that cell of Auxε(G). Now, we prove
the following property about the auxiliary graph.
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▶ Lemma 10. Let G be a penny graph and e = (vi, vj) and e′ = (vk, vl) be two edges in
Auxε(G). If e and e′ cross each other, then Auxε(G) also contains the edges (vi, vl) and
(vk, vj).

Proof. Consider two edges e = (vi, vj) and e′ = (vk, vl) be two edges in Auxε(G). From
the definition, these edges corresponding to the directed paths in the input graph G. From
the construction, we know that the ordering of the end vertices are one of the following -
{vi ≺ vl ≺ vk ≺ vj}, {vj ≺ vl ≺ vk ≺ vi}, {vl ≺ vi ≺ vj ≺ vk}, {vl ≺ vi ≺ vj ≺ vk}. Now,
we know that the corresponding directed paths are fully embedded inside the grid cell. If two
directed path intersects in the Auxiliary graph (based on our definition) of an input penny
graph, that is embedded inside a rectangle, then they must have one common vertex; see
Figure 4. Otherwise, it will not admit a planar embedding. Hence, there must be directed
path from vi to vl, and vk to vj . Thereby proving the lemma. ◀

vl

vi
vk

vj

Figure 4 An illustration of two directed paths inside a grid cell.

3.3 Constructing Pseudo-Separator
An essential property of a vertex separator is that, for any two vertices u and v, a path
between them must contain a vertex from the separator if u and v lie in two different
components with respect to the separator. We use a separator construction for the auxiliary
graph Auxε(G). However, note that Auxε(G) is not a planar graph anymore. Therefore, we
need a special kind of separator, which we call a pseudo-separator.

The notion of the pseudo-separator was introduced by Jain and Tewari [24] in the context
of grid graphs. However, since the class of Penny graphs is a superclass of grid graphs, it is
not possible to use their idea directly.

Let G be a penny graph and H = (V1, E1) be a vertex induced subgraph of Auxε(G)
with h vertices. Let f : N→ N be a function. A subgraph C = (V2, E2) of H is said to be an
f(h)-PseudoSeparator of H , if the size of every connected component in H ·C is at most f(h),
where the graph H ·C = (V3, E3) is defined as V3 = V1\V2 and E3 = E1\{e ∈ E1 | ∃e′ ∈ E2, e

crosses e′}. The size of C is the total number of vertices and edges of C summed together.
The general idea of our approach is the following. Consider a vertex induced subgraph

H of Auxε(G). We choose a maximal subset of edges such that H is a planar graph, thus
admits a planar embedding. Next, we triangulate this chosen sub-graph. We show that until
this point, each operation can be performed in log-space. Then, we use the algorithm of Imai
et al. [23] to obtain a separator of the triangulated graph. In what follows, we describe these
procedures in detail.

We start with a maximal planar graph H(Auxε(G)) of Auxε(G). The vertex set of
H(Auxε(G)) is same as the vertex set of Auxε(G). For each rectangle, we index the vertices
in ascending order while traversing them in anti-clockwise direction. For each rectangle R, an
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edge el = (ul, vl) of GR is added to H(Auxε(G)) if there is no edge ek = (uk, vk) such that
the ordering of the vertices is one of the following - {uk ≺ ul ≺ vk ≺ vl}, {vk ≺ ul ≺ uk ≺ vl},
{uk ≺ vl ≺ vk ≺ ul}, {uk ≺ vl ≺ vk ≺ ul}. We prove that, H(Auxε(G)) is indeed a maximal
planar graph of Auxε(G).

▶ Lemma 11. H(Auxε(G)) is a maximal planar graph of Auxε(G).

Proof of Lemma 11 can be found in the full version [7].
Next, we triangulate H(Auxε(G)) by adding the boundary edges. Then for each rectangle,

we consider a face of H(Auxε(G)) and add the edges to complete the triangulation by a
similar procedure described in Lemma 4 from Section 2. Moreover, the direction of the edges
are arbitrary. Let Ĥ(Auxε(G)) be the triangulated graph. Note that this procedure can be
done in log-space. Next, we use a Lemma from [23] that is stated below.

▶ Lemma 12 ([23]). For each β > 0, there exists a polynomial time algorithm and Õ(h1/2+β/2)
space algorithm that takes a h-vertex planar graph P as input and and outputs a set of vertices
S, such that |S| is O(h1/2+β/2) and removal of S disconnects the graph into components of
size O(h1−β).

Next, we construct the pseudo-separator SH(Auxε(G)) by using the following steps. First,
by Lemma 12 we find a set S in Ĥ(Auxε(G)) that divides it into components of size O(h1−β),
where h is the number vertices in Ĥ(Auxε(G)). We add the vertices and edges of S to the
vertex and edge set of SH(Auxε(G)), respectively. However, there is a small caveat to use
Lemma 12 on Ĥ(Auxε(G)). In order to triangulate the graph, we have added edges that
were originally not part of the auxiliary graph. Therefore, for each edge ek = (uk, vk) of the
triangulation that is present in some rectangle R, we consider a set of at most four edges of
Auxε(G) that form a so-called shield around the edge ek. Two of these edges start from uk

ending at two vertices vp, v′
p, where vp and v′

p are the closest point to the left and closest
point to the right of uk, respectively, in the total ordering of the boundary vertices. The
other two edges start from vk and end at two vertices uq, u′

q, where uq and u′
q are the closest

points to the right and the left of vk respectively, in the total ordering of boundary vertices.
See Figure 5(a) for an illustration. Later, we argue that if these edges do not exist, and the
cycle separator intersects the corresponding triangulation edge, then there must be other
edges chosen in the maximal planar graph intersecting that triangulation edge, and hence
this gives a contradiction.

In order to prove that SH(Auxε(G)) is indeed a pseudo-separator, we need a property of
triangulated graphs from [25].

▶ Lemma 13 ([25]). Let G be a triangulated planar graph and S be a subset of its vertices.
For every pair of vertex u, v which belong to different components of G \ S, there exists a
cycle in G[S], such that u and v belong to different sides of this cycle.

Next, we prove the Lemma about pseudo-separator.

▶ Lemma 14 (Pseudo-Separator Lemma). Let G be a penny graph and H(Auxε(G)) be a
vertex induced subgraph of Auxε(G). The graph SH(Auxε(G)) is a h1−β-pseudo-separator of
H(Auxε(G)).

Proof. Let S be a set of vertices chosen from Ĥ(Auxε(G)) by using Lemma 12. The claim
is that if two vertices u and v belong to two different components in Ĥ(Auxε(G)) \ S, then
a path between u and v in G either takes a vertex of SH(Auxε(G)) or crosses an edge of
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v′pvp vk

uku′
q uq

(a)

ek

(b)

u

v
ek e′o

eo

eb

eg

Figure 5 An illustration of the pseudo-separator. The red edge is an edge of the triangulation
and part of the red cycle separator. The yellow edges are chosen to form the shield (a) when the
proper shield exists (b) otherwise.

SH(Auxε(G)). Note that due to Lemma 13, we know that u and v are on two different sides
of a cycle of S. Thus, any edge drawn in the plane connecting u and v (not necessarily a
straight line edge) crosses the cycle of S. If the path crosses non-triangulation edge or an
edge which is shielded properly (see Figure 5(a)), we are done as the path will intersect an
edge of SH(Auxε(G)). The other situation is when such a path intersects a triangulation
edge. We prove by contradiction that this can not happen. Assume that it does happen (see
Figure 5(b)). Let er be the triangulation edge intersected by the edge eb of the path from u

to v. Now, since eb is not chosen in the maximal planar graph, this means there exist other
edges chosen in the H(Auxε(G)). Let eo and e′

o be two such edges with maximum width on
either side of the triangulated edge (see the orange edges in Figure 5(b)). By Lemma 10,
there exists an edge eg from the tail of eo to the head of e′

o (the green path in Figure 5(b)).
Since this edge eg also crosses the triangulation edge er, it is not present in the maximal
planar graph. Any edge that is present in maximal planar graph and crosses eg contradicts
the fact that eo and e′

o are of maximum width. There are other cases when either eo or
e′

o is not present, but they can be handled similarly. Thereby concluding the proof of the
Lemma. ◀

3.4 The Algorithm
Let H be a vertex induced subgraph of an auxiliary graph. We first explain how to solve
Reachability in H. Initially, H is the whole auxiliary graph, and we wish to find the
Reachability between given two vertices s and t of H.

By using Lemma 14, we find a pseudo-separator S of H. W.l.o.g., assume that s and t

are both in S. The pseudo-separator divides the graph into components C1, C2, . . . , Ck, for
k ∈ [h]. We maintain a set of vertices M that we call marked vertex set. We use an array of
size at most |S| to mark a set of vertices M1 of the pseudo-separator. Additionally, for each
edge of the pseudo-separator we have at most one associated vertex, and they form the set
M2. Then, M = M1 ∪M2 is called a marked vertex set.

Throughout the algorithm, we maintain that if a vertex is marked, then there is a path
from s to that vertex in the auxiliary graph. Initially, only the vertex s is marked. We then
perform h iterations. In each iteration, we update the set of marked vertices as follows:

Step 1. For every vertex of S, we mark it if there is a path from an already marked vertex
to it such that the internal vertices of that path all belong to only one component Ci, for
i ∈ [h]. We check this by recursively running our algorithm on the subgraph of H induced
by the vertex set Ci.
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Step 2. For each edge e of S, the algorithm sets the associated marked vertex to u if the
following three conditions are satisfied: (a) There exists an edge e′ = (u, v) which crosses e,
(b) there exists a path from a marked vertex to u such that the internal vertices of that path
all belong to only one component Ci (we check this by recursively running our algorithm on
the vertex induced subgraph of Ci), (c) e′ is the closest such edge to u.

Finally, we output ’YES’ if and only if t is marked at the end of these iterations.

3.5 Correctness
Let P be a path from s to t in H. Suppose P passes through the components Cσ1 , Cσ2 , . . . , Cσl

(each σi is a value in [k]) in this order. By the definition of a pseudo-separator, the path can
go from one component, Cσi

to the next component Cσi+1 in the following ways only:
Case 1: The path exits Cσi

and enters Cσi+1 through a vertex w of the pseudo-separator.
Case 2: The path exits Cσi

and enters Cσi+1 through an edge e′ = (u, v) whose tail is in
Cσi

and head is in Cσi+1 . This edge will cross an edge e = (x, y) of the pseudo-separator.

We see that after the i-th iteration, our algorithm will traverse the fragment of the path
in the component Cσi

and either mark in Case 1 its endpoint or in Case 2 a vertex u′ such
that the edge (u′, v) exist. Thus, t will be marked after l iterations if and only if there is a
path from s to t in H. Since l can be at most h, these many iterations would suffice.

From the above discussion, we know how to solve Reachability on the auxiliary
graph with the desired space-bound. To solve the problem on the input graph, we find the
rectangular subdivision of the input graph. Then, we form the auxiliary graph by solving
each rectangle recursively. Next, we solve the Reachability problem on the auxiliary graph
by following the above procedure. We have shown earlier that the reachability information
of the input graph is fully preserved in the auxiliary graph. Hence, it is possible to report
the solution of the input directed penny graph from the solution on the auxiliary graph.

3.6 Space-Complexity
The space complexity of our algorithm is dominated by the space required to store the marked
vertices. Since there can be only h1/2+ε/2 such vertices, we need O(h1/2+ε/2 log n) space. It is
easy to see that for every ε′ > 0, there exists an ε > 0 such that O(h1/2+ε/2 log n) = O(h1/2+ε′)
Note that, for the input auxiliary graph H , our algorithm recurses on vertex induced subgraphs
whose size is O(h1−ε). Hence, the depth of recursion is bounded by a constant. This increases
the space required by at most a constant factor. Since the number of vertices in the initial
auxiliary graph was itself O(n1/2+ε/2), we get the desired space bound.

From the correctness and the space-complexity analysis of the algorithm, we conclude
the proof of Theorem 9

4 Chordal Graphs

In this section, we study the Reachibility problem on directed chordal graphs and design a
space-efficient algorithm. A graph is said to be chordal if every cycle of length at least four has
a chord, which is an edge joining two vertices that are not adjacent on the cycle. A directed
chordal graph is a graph whose underlying undirected graph is chordal. See [14, 17, 31]
for the basic theory on chordal graphs. We adopt the algorithm of Gilbert et al. [19] for
Vertex Separator and analyze to obtain the desired space-bound. In [25], it was noted
that Reachibility on chordal graphs could be solved in a space-efficient manner, however,
without any formal explanation. Here we provide a detailed analysis of this claim.



S. Bhore and R. Jain 63:13

Let G = (V, E) be a directed chordal graph. For the sake of completeness, we will
state some of the known results that are relevant to us. Chordal graphs are also known
as triangulated graphs, monotone transitive graphs, rigid circuit graphs, perfect elimination
graphs in the literature.

Finding Separator

Gilbert et al. [19] presented O(mn)-time algorithm for finding Vertex Separator on chordal
graphs. Furthermore, a better algorithm of time complexity O(m) is also shown. We design
a space-efficient algorithm for Vertex separator that uses O(m1/2 log n) space and polynomial
time. We adopt the O(mn)-time algorithm from [19] and analyze it to provide the desired
space-bound. In order to do that, we allow time complexity that is much larger than O(mn)
but remains polynomial in n. We proceed with the following lemma: A similar property is
somewhat implicitly used by [19].

▶ Lemma 15. Let G be a chordal graph and let C be a clique. Let A be the largest component
in G \ C. Then, either of the following two statements is true:

There exists a vertex v in C which is not adjacent to any vertex in A.
There exists a vertex u in A which is adjacent to every vertex in C.

We need several definitions and structural properties of the Chordal graphs in order to
prove this Lemma. However, some of the properties are well-known results for chordal graphs.
We proceed with the following definitions.

▶ Definition 16. Let G be a graph and v be a vertex of G. The deficiency of v, denoted by
D(v) is defined as follows: D(v) = {{u1, u2} | {u1, v} ∈ E(G), {u2, v} ∈ E(G) and {u1, u2} /∈
E(G)}

▶ Definition 17. Let G be a graph and v be a vertex of G. We define the graph Gv as
follows: Gv = (V (G) \ {v}, E(G[V (G) \ {v}]) ∪D(v)). We say that the graph Gv is formed
by eliminating v from G.

▶ Definition 18. When a sequence of vertices is eliminated from a graph, the edges in the
deficiencies that are added are called fill-in edges. A simplicial vertex of a graph is a vertex
that has a deficiency of 0.

We state the following known facts about the chordal graphs. The following Lemmas are
due to [14, 17, 30, 29, 31]. For the sake of completion, we state them here in the form that
we will be using and provide their proofs.

▶ Lemma 19. Let G be a chordal graph and a and b be two vertices in V (G). Let S be a
set of vertices of G such that: 1) a and b are in different components of the graph G \ S; 2)
there exists no proper subset S′ ⊆ S such that vertices a, b are in different components of the
graph G \ S′. If these conditions hold, then the set S forms a clique in G.

Proof. Let Ca and Cb be the components in G\S containing a and b, respectively. Note that,
each vertex s ∈ S is adjacent to some vertices in Ca, and some vertices in Cb. Consider two
vertices x, y ∈ S. Let Pa be the shortest path between x and y in G[Ca ∪ {x, y}]. Similarly,
let Pb be the shortest path between x and y in G[Cb ∪{x, y}]. The paths Pa and Pb together
forms a cycle. Hence, there must be an edge between x and y, since it is the only chord that
is possible. This argument holds for any pair of vertices in S. This completes the proof. ◀

▶ Lemma 20. Let G be a chordal graph and let C be any clique of G. Then, either G is a
complete graph, or there is a vertex v ∈ G \ C that is simplicial.
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Proof. We prove this by induction on |G|. The base case |G| = 1 is trivial. Let us assume
that the Lemma holds for all G such that |G| ≤ k, for some k ∈ [n]. Now, G be a graph such
that |G| = k + 1. If G is not a complete graph then, let a, b be two vertices of G, that are
not adjacent. Due to Lemma 19, there exists a set S that separates a and b. Let Ca, Cb, be
the corresponding components G containing a and b, respectively. Note that, the vertices
in C \ S should be in one component. W.l.o.g., assume that they belong to Ca. Consider
the graph Gb = G[S ∪ Cb]. We have |Gb| ≤ k. Hence, by induction, either Gb is a clique or
there is a vertex u /∈ S, that is simplical in Gb. In either of the cases, there exists a vertex
u /∈ S that is simplicial in Gb since Gb must contain at least one vertex, not in S. Note, u is
a simplicial vertex in G since u is not adjacent to a vertex in any component other than Cb.
This completes the proof. ◀

▶ Corollary 21. Let G be a chordal graph and C be a clique. Let A be the largest component
in G \ C. If B is a non-empty subset of A, then B contains a vertex whose neighbours in
G[B ∪ C] forms a clique.

▶ Lemma 22 ([19]). Let a0, a1, . . . , ak be an elimination ordering for a graph G. Let v and
w be nonadjacent vertices of G. Then {v, w} is a fill-in edge if and only if there is a path
from v to w consisting of vertices that are eliminated earlier than both v and w.

Now, we have the ingredients to prove the main Lemma 15.

Proof. Let G be a chordal graph, and let C be a clique. Let A be the largest component in
G \C. Let us assume that each vertex v ∈ C is adjacent to at least one vertex in A. We will
show that under this assumption, there exists a vertex u in A that is adjacent to each vertex
in C, thereby proving the Lemma.

It is known that a vertex induced subgraph of a chordal graph is also a chordal graph.
Hence, the subgraph G0 := G[A ∪ C] is a chordal graph. Due to Lemma 20, we know
that there is a vertex u0 ∈ G0 \ C, that is simplicial, whose neighbors form a clique. Let
G1 := G[(A ∪ C) \ {u0}]. Similarly, let u1 be a vertex in G1 \ C that is simplicial. In
general, let ui be a vertex in Gi \ C whose neigbhours forms a clique, where Gi is defined as
G[(A ∪ C) \ {u0, u1, . . . , ui−1}]. Let k be an integer such that Gk+1 = G[C]. We claim that
uk is adjacent to every vertex of C.

Consider a vertex x in C. Since A is connected and by our assumption, x is adjacent
to a vertex of A, there is a path from x to uk in G[A ∪ C] that uses only vertices of A.
Lemma 22 says that if {x, uk} is not an edge of G[A ∪ C], then it is a fill-in edge. But a
perfect elimination ordering has no fill-in, so x is adjacent to uk in G[A ∪ C]. Thus uk is
adjacent to every vertex of C. This completes the proof. ◀

Given the above lemma, the algorithm for finding a separator in a chordal graph is
rather straightforward, as also observed by [19]. The algorithm is described in the following
Procedure 1.

The correctness of the algorithm directly comes from Lemma 15. We show that this
algorithm uses O(m1/2 log n) space.

Space-Complexity
To see that the above algorithm can be implemented in O(m1/2 log n)-space and polynomial
time, we first recall that the separator S always forms a clique in the graph. Since the size
of a clique is upper-bounded by m1/2, it will require at most O(m1/2 log n) space to store
the clique.
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Algorithm 1 Vertex Separator in Chordal Graphs.

Input: A chordal graph G

Output: A separator S of G of size
√

m

1 S ← ∅;
2 while there exists a component A of G \ S that has weight more than n/2 do
3 while there exists a vertex x of S that is adjacent to no vertex of A do
4 S ← S \ {x};
5 end
6 v ← a vertex of A adjacent to every vertex of S;
7 S ← S ∪ {v};
8 end
9 Return S;

Now, to implement the algorithm, we need to calculate the weights of each of the connected
components of G \ S. However, we cannot afford to store these components explicitly, since
the number of vertices present in these components could be large. Instead, we identify
a component with the lowest-index vertex present in it. We call the lowest-index vertex
a marker of the component. In order to check that whether a vertex v is a marker, we
run Reingold’s undirected Reachability algorithm to see if it is not connected with any
vertex u in G \ S such that the index of u is lower than v. Also, to know the size of the
connected component for a marker vertex v, we use Reingold’s algorithm [28] to count the
number of vertices that are connected to it. Therefore it is possible to count the weight of
any component of G \ S in the desired space-bound. We conclude the following theorem.

▶ Theorem 23. Given a chordal graph G = (V, E), there exists an algorithm that computes
a
√

m separator in polynomial time by using O(m1/2 log n)-space.

From Theorem 23 and Theorem 1, we have the following corollary.

▶ Corollary 24. There exists an algorithm that solves the Reachability problem for chordal
graphs by using O(m1/2 log n)-space and polynomial time.

5 Conclusion

We studied Reachability problem on three important graph families and obtained space-
efficient algorithms for each of these classes. An interesting open problem is whether one
can obtain a space-efficient algorithm for intersection graphs of Jordan regions when the
embedding of the graph is not provided in the input. Another important open problem is
to study the Reachability for unit disk intersection graphs and obtain a space-efficient
algorithm. Our method that we used for unit contact disk graphs does not generalize to
the case of unit disk intersection graphs, as in the latter case, there can be arbitrarily large
directed cliques, and it is not possible to obtain auxiliary graphs while preserving reachability
information between every pair of vertices. However, we believe that our method can be
used to solve to Reachability for other classes of geometric contact graphs.
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√

n)-space and
polynomial-time algorithm for planar directed graph reachability. In International Symposium
on Mathematical Foundations of Computer Science, pages 45–56. Springer, 2014.

5 Bahareh Banyassady, Matias Korman, and Wolfgang Mulzer. Geometric algorithms with
limited workspace: A survey. CoRR, abs/1806.05868, 2018. arXiv:1806.05868.

6 Greg Barnes, Jonathan F Buss, Walter L Ruzzo, and Baruch Schieber. A sublinear space, poly-
nomial time algorithm for directed st connectivity. SIAM Journal on Computing, 27(5):1273–
1282, 1998.

7 Sujoy Bhore and Rahul Jain. Space-efficient algorithms for reachability in geometric graphs.
CoRR, abs/2101.05235, 2021. arXiv:2101.05235.

8 Paz Carmi, Man-Kwun Chiu, Matthew J. Katz, Matias Korman, Yoshio Okamoto, André
van Renssen, Marcel Roeloffzen, Taichi Shiitada, and Shakhar Smorodinsky. Balanced line
separators of unit disk graphs. Comput. Geom., 86, 2020.

9 Marcia R Cerioli, Luerbio Faria, Talita O Ferreira, and Fábio Protti. A note on maximum
independent sets and minimum clique partitions in unit disk graphs and penny graphs:
complexity and approximation. RAIRO-Theoretical Informatics and Applications, 45(3):331–
346, 2011.

10 Diptarka Chakraborty, Aduri Pavan, Raghunath Tewari, N. V. Vinodchandran, and Lin F.
Yang. New time-space upperbounds for directed reachability in high-genus and h-minor-
free graphs. In Venkatesh Raman and S. P. Suresh, editors, 34th International Conference
on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014,
December 15-17, 2014, New Delhi, India, volume 29 of LIPIcs, pages 585–595. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2014.

11 Diptarka Chakraborty and Raghunath Tewari. An o(nϵ) space and polynomial time algorithm
for reachability in directed layered planar graphs. ACM Trans. Comput. Theory, 9(4):19:1–
19:11, 2018.

12 Steven Chaplick, Vít Jelínek, Jan Kratochvíl, and Tomáš Vyskočil. Bend-bounded path
intersection graphs: Sausages, noodles, and waffles on a grill. In International Workshop on
Graph-Theoretic Concepts in Computer Science, pages 274–285. Springer, 2012.

13 Brent N Clark, Charles J Colbourn, and David S Johnson. Unit disk graphs. In Annals of
Discrete Mathematics, volume 48, pages 165–177. Elsevier, 1991.

14 Gabriel Andrew Dirac. On rigid circuit graphs. In Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, volume 25, pages 71–76. Springer, 1961.

15 Michael Elberfeld and Ken-ichi Kawarabayashi. Embedding and canonizing graphs of bounded
genus in logspace. In Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, pages 383–392, 2014.

16 Jacob Fox and János Pach. Separator theorems and turán-type results for planar intersection
graphs. Advances in Mathematics, 219(3):1070–1080, 2008.

17 Delbert Fulkerson and Oliver Gross. Incidence matrices and interval graphs. Pacific journal
of mathematics, 15(3):835–855, 1965.
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Abstract
We revisit the fundamental problem of compressing an integer dictionary that supports efficient
rank and select operations by exploiting two kinds of regularities arising in real data: repetitiveness
and approximate linearity. Our first contribution is a Lempel-Ziv parsing properly enriched to also
capture approximate linearity in the data and still be compressed to the kth order entropy. Our
second contribution is a variant of the block tree structure whose space complexity takes advantage
of both repetitiveness and approximate linearity, and results highly competitive in time too. Our
third and final contribution is an implementation and experimentation of this last data structure,
which achieves new space-time trade-offs compared to known data structures that exploit only one
of the two regularities.
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1 Introduction

We focus on the fundamental problem of representing an ordered dictionary A of n distinct
elements drawn from the integer universe [u] = {0, . . . , u} while supporting the operation
rank(x), that returns the number of elements in A which are ≤ x; and select(i), that returns
the ith smallest element in A.

Rank/select dictionaries are at the heart of virtually any compact data structure [34],
such as text indexes [15,18,20,22,30,36], succinct trees and graphs [32,41], hash tables [4],
permutations [3], etc. Unsurprisingly, the literature is abundant in solutions, e.g. [2, 8,
21, 24, 31, 37, 40, 41]. Yet, the problem of designing theoretically and practically efficient
rank/select structures is anything but closed. The reason is threefold. First, there is
an ever-growing list of applications of compact data structures (in bioinformatics [13, 29],
information retrieval [33], and databases [1], just to mention a few) each having different
characteristics and requirements on the use of computational resources, such as time, space,
and energy consumption. Second, the hardware is evolving [23], sometimes requiring new
data structuring techniques to fully exploit it, e.g. larger CPU registers, new instructions,
parallelism, next-generation memories such as PMem. Third, data may present different
kinds of regularities, which require different techniques that exploit them to improve the
space-time performance.
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Among the latest of such regularities to be exploited, there is a geometric concept
of approximate linearity [7]. Regard A as a sorted array A[1, n], so that select(i) can be
implemented as A[i]. The idea is to first map each element A[i] to a point (i, A[i]) in the
Cartesian plane, for i = 1, 2, . . . , n. Intuitively, any function f that passes through all the
points in this plane can be thought of as an encoding of A because we can recover A[i] by
querying f(i). Now the challenge is to find a representation of f which is both fast to be
computed and compressed in space. To this end, the authors of [7] implemented f via a
piecewise linear model whose error, measured as the vertical distance between the prediction
and the actual value of A, is bounded by a given integer parameter ε.

▶ Definition 1. A piecewise linear ε-approximation for the integer array A[1, n] is a partition
of A into subarrays such that each subarray A[i, j] of the partition is covered by a segment,
represented by a pair ⟨α, β⟩ of numbers, such that |(α · k + β)−A[k]| ≤ ε for each k ∈ [i, j].

Among all possible piecewise linear ε-approximations, one aims for the most succinct one,
namely the one with the least amount of segments. This is a classical computational geometry
problem that admits an O(n)-time algorithm [38]. The structure introduced by [7], named
LA-vector, uses this succinct piecewise linear ε-approximation as a lossy representation
of A, and it mends the information loss by storing the vertical errors into an array C of
⌈log(2ε + 1)⌉-bit integers, called corrections (all logarithms are to the base two). To answer
select(i), the LA-vector uses a constant-time rank structure on a bitvector of size n to find
the segment ⟨α, β⟩ covering i, and it returns the value ⌊(α · i + β)⌋ + C[i]. The rank(x)
operation is implemented via a sort of binary search that exploits the information encoded
in the piecewise linear ε-approximation [7]. In practical implementations, we allocate c ≥ 0
bits for each correction and set ε = 2c − 1. The space usage in bits of an LA-vector consists
therefore of a term O(nc) accounting for the corrections array C, and a term O(wm), where
w is the word size, that grows with the number of segments m in the piecewise linear
ε-approximation. Despite the apparent simplicity of the piecewise linear representation,
the experiments in [7] show that the LA-vector offers the fastest select and competitive
rank performance with respect to several well-established structures implemented in the
sdsl library [19]. In addition to its good practical performance, recent results [14,17] have
shown there are also theoretical reasons that justify the effectiveness of the piecewise linear
ε-approximation in certain contexts.

Despite their succinctness and power in capturing linear trends, piecewise linear ε-approx-
imations still lack the capacity to find and exploit one fundamental source of compressibility
arising in real data: repetitiveness [35]. Although the input consists in an array A of strictly
increasing values, there can be significant repetitiveness in the differences between consecutive
elements. Consider the gap-string S[1, n] defined as S[i] = A[i] − A[i − 1], with A[0] = 0,
and suppose the substring S[i, j] has been encountered earlier at S[i′, i′ + j − i] (we write
S[i, j] ≡ S[i′, i′ + j − i]). Then, instead of finding a new set of segments ε-approximating
the subarray A[i, j], we can use the segments ε-approximating the subarray A[i′, j′] properly
shifted. Note that, even if A[i′, j′] is covered by many segments, the same shift will transform
all of them into an approximation for A[i, j] (see example in Figure 1). Therefore, in this
case, we would need to store only the shift and the reference to the segments of A[i′, j′]. The
LA-vector is unable to take advantage of such regularities. In the extreme case where A

consists of the concatenation of a small subarray A′ shifted by some amounts ∆is for k times,
that is A = A′, A′ + ∆1, A′ + ∆2, . . . , A′ + ∆k−1, the overall cost of representing A with an
LA-vector will be roughly k + 1 times the cost of representing A′.

The goal of this paper is to harness the repetitions in the gap-string S to make the
LA-vector repetition aware. In fact, the approximate linearity and the repetitiveness of a
string are different proxies of its compressibility and therefore it is interesting to take both of
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Figure 1 The points in the top-right circle follows the same “pattern” (i.e. the same distance
between consecutive points) of the ones in the bottom-left circle. A piecewise linear ε-approximation
for the top-right set can be obtained by shifting the segments for the bottom-left set.

them into account. Take as an example an order-h De Bruijn binary sequence B[1, 2h] and
define A[i] = 2i + B[i], then the line with slope 2 and intercept 0 is a linear approximation
of the entire array A with ε = 1. Conversely, following the argument above and considering
the gap-string S[i] = A[i] − A[i − 1] = 2 + B[i] − B[i − 1], we would not find repetitions
longer than h− 1 in S. The challenge is to devise techniques that are able to exploit both
the presence of repetitions in the gap-string S and the presence of subarrays in A which
can be linearly ε-approximated well, while still supporting efficient rank/select primitives
on A. We point out that, although in this paper we consider only linear approximations, our
techniques can be applied also to other data approximation functions, such as polynomials
and rational functions.

Our contribution in context. The most common approach in the literature to design a
succinct dictionary for a set of distinct integers A over the universe {0, . . . , u} is to represent A

using the characteristic bitvector bv(A), which has length u + 1 and is such that bv(A)[i] = 1
iff i ∈ A. In this paper, we use instead linear ε-approximations of A and the gap string S,
and we show how to modify two known compression methods so that they can take advantage
of approximate linearity. The first method is the Lempel-Ziv (LZ) parsing [26–28,44], which
is one of the best-known approaches to exploit repetitiveness [35]. The second method is
the block tree [5], which is a recently proposed query-efficient alternative to LZ-parsing
and grammar-based representations [6] suitable also for highly repetitive inputs since its
space usage can be bounded in terms of the string complexity measure δ (see [25, 35] for the
definition and significance of this measure).

Our first contribution is a novel parsing scheme, the LZρ
ε parsing, whose phrases are

a combination of a backward copy and a linear ε-approximation, i.e., a segment and the
corresponding correction values. The LZρ

ε parsing encapsulates a piecewise linear ε-ap-
proximation of the array A and supports efficient rank/select primitives on A. Surprisingly,
this combination uses space bounded by the kth order entropy Hk(S) of the gap-string S

(see [26] for the definition and significance of kth order entropy). More precisely (Theorems 7
and 9), if σ denotes the number of distinct gaps in S, the LZρ

ε parsing supports rank in
O(log1+ρ n+log ε) time and select inO(log1+ρ n) time using nHk(S)+O(n/ logρ n)+o(n log σ)
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bits of space, for any positive ρ and k = o(logσ n), plus the space to store the segments and
the correction values that are used to advance the parsing (like the explicit characters in
traditional LZ-parsing).

The best succinct data structure based on bv(A) is the one by Sadakane and Grossi [43]
that supports constant-time rank and select in uHk(bv(A)) + O(u log log u/ log u) bits of
space. This space bound cannot be compared to ours since it is given in terms of Hk(bv(A))
instead of Hk(S). To achieve space nHk(S) one can use an entropy-compressed representation
of S enriched with auxiliary data structures to support rank/select on A. For example, by
sampling one value of A out of log n and performing a binary search followed by a prefix sum
of the gaps one can support O(log n)-time rank and select queries. Using the representation
of [16], this solution uses nHk(S) +O(n log u/ log n) + o(n log σ) = nHk(S) + o(n log u) bits
of space, which is worse in space than our solution but faster in query time. Other trade-offs
are possible: the crucial point however is that none of the known techniques is able to exploit
simultaneously the presence of exact repetitions and approximate linearity in the input
data as instead our LZρ

ε does. In the best scenario, LZρ
ε parsing uses segments to quickly

consume any approximate linearity in A thus potentially reducing significantly the number
of LZ-phrases. On the other hand, if A cannot be linearly approximated, segments will be
short and the overall space occupancy of LZρ

ε parsing will be nHk(S) + o(n log σ) bits, i.e.
no worse than a traditional LZ-parsing.

Our second contribution is the block-ε tree, an orchestration of block trees [5, 25] and
linear ε-approximations. The main idea is to build the block tree over the gap-string S and
to prune the subtrees whose corresponding subarray can be covered more succinctly using a
linear ε-approximation in place of a block (sub)tree. We show that this solution supports
rank in O(log log u

δ +log n
δ +log ε) time and select in O(log n

δ ) time using O(δ log n
δ log n) bits

of space in the worst case, where δ is the string complexity of S [25, 35].
A block tree built on bv(A), instead, supports rank and select in O(log u

δ′ ) time using
O(δ′ log u

δ′ log u) bits of space, where δ′ is the string complexity measure on bv(A). The time
and space bounds achieved by the block tree and by our block-ε tree are not comparable
due to the use of δ′ instead of δ. Therefore, as our third contribution, we provide an
implementation of our block-ε tree built on S, and we compare it with the standard block
tree built on bv(A). Our proposal turns out to be more space-efficient for some of the
experimented sparse datasets and, as far as query time is concerned, it is 2.19× faster in
select, and it is either faster (1.32×) or slower (1.27×) in rank than the block tree.

In the Conclusions, we comment on several research directions that naturally arise from
the novel approaches described in this paper.

2 Tools

We use as a black box the Elias-Fano [9, 10] representation for compressing and random-
accessing monotone integer sequences [34, §4.4].

▶ Lemma 2 (Elias-Fano encoding). We can store a sequence of n increasing positive integers
over a universe of size u in n⌈log u

n⌉+ 2n + o(n) = n log u
n +O(n) bits and access any integer

of the sequence in O(1) time.

Henceforth, we always assume that a piecewise linear ε-approximation for an input
array A is the most succinct one in terms of the number of segments, or equivalently, that
we always maximise the length ℓ of the subarray A[i, i + ℓ− 1] covered by a segment starting
at i. This is possible thanks to the algorithm of O’Rourke [38], which in optimal O(n) time
computes the piecewise linear ε-approximation with the smallest number of segments for the
set of points {(i, A[i]) | i = 1, . . . , n}.
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Another key tool that we use is LZ-end [27]. Formally, the LZ-end parsing of a text
T [1, n] is a sequence f1, f2, . . . , fz of phrases, such that T = f1f2 · · · fz, built as follows. If
T [1, i] has been parsed as f1f2 · · · fq−1, the next phrase fq is obtained by finding the longest
prefix of T [i + 1, n] that appears also in T [1, i] ending at a phrase boundary, i.e. the longest
prefix of T [i + 1, n] which is a suffix of f1 · · · fr for some r ≤ q − 1. If T [i + 1, j] is the prefix
with the above property, the next phrase is fq = T [i + 1, j + 1] (notice the addition of T [j + 1]
to the longest copied prefix). The occurrence in T [1, i] of the prefix T [i + 1, j] is called the
source of the phrase fq.

Although LZ-end is less powerful than the classic LZ77 parsing, which allows the end of
a source to be anywhere in T [1, i], it compresses any text T up to its kth order entropy, and
it is more efficient than LZ77 in extracting any substring of T .

With the advent of large datasets containing many repetitions, researchers have observed
that the entropy does not always provide a meaningful lower bound to the information
content of such datasets [27]. Recently, [35] has given a complete picture of several alternative
measures of information content and has shown that they are all lower bounded by the
complexity measure δ defined as max{T (k)/k | 1 ≤ k ≤ n}, where T (k) is the number of
distinct length-k substrings of T [42]. In [25], it is shown that using the block tree [5] it is
possible to represent a text T [1, n] in space bounded in terms of δ while supporting: ranka(i),
which returns the number of occurrences of the character a in T [1, i], and selecta(j), which
returns the position of the jth occurrence of a in T . Specifically, their block tree supports
ranka and selecta in O(log n

δ ) time using O(σδ log n
δ log n) bits of space.

3 Two novel LZ-parsings: LZε and LZρ
ε

Assume that A contains distinct positive elements and consider the gap-string S[1, n] defined
as S[i] = A[i]−A[i− 1], where A[0] = 0. To make the LA-vector repetition aware, we parse
S via a strategy that combines linear ε-approximation with LZ-end parsing. We generalise
the phrases of the LZ-end parsing in a way that they are a “combination” of a backward
copy ending at a phrase boundary (as in the classic LZ-end), computed over the gap-string
S, plus a segment covering a subarray of A with an error of at most ε (unlike classic LZ-end,
which instead adds a single trailing character). We call this parsing the LZε parsing of S.

Suppose that LZε has partitioned S[1, i] into Z[1], Z[2], . . . , Z[q − 1]. We determine the
next phrase Z[q] as follows (see Figure 2):
1. We compute the longest prefix S[i + 1, j] of S[i + 1, n] that is a suffix of the concatenation

Z[1] · · ·Z[r] for some r ≤ q − 1 (i.e. the source must end at a previous phrase boundary).
2. We find the longest subarray A[j, h] that may be ε-approximated linearly, as well as the

slope and intercept of such approximation. Note that using the algorithm of [38] the time
complexity of this step is O(h− j), i.e. linear in the length of the processed array.

The new phrase Z[q] is then the substring S[i + 1, j] · S[j + 1, h]. If h = n, the parsing is
complete. Otherwise, we continue the parsing with i← h + 1. As depicted in Figure 2, we
call S[i + 1, j] the head of Z[q] and S[j + 1, h] the tail of Z[q]. Note that the tail covers also
the value A[j] corresponding to the head’s last position S[j]. When S[i + 1, j] is the empty
string (e.g. at the beginning of the parsing), the head is empty, and thus no backward copy is
executed. In the worst case, the longest subarray we can ε-approximate has length 2, which
nonetheless guarantees that Z[q] is nonempty. Experiments in [7] show that the average
segment length ranges from 76 when ε = 31 to 1480 when ε = 511.
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S = . . .

1 n

i j h

Head of Z[q]
The longest prefix

S[i + 1, j] that is a suffix
of Z[1] · · ·Z[r], for some r < q

Tail of Z[q]
Associated to a segment
⟨mq, rq⟩ covering A[j, h].

Figure 2 Computation of the next phrase Z[q] in the parsing of the gap-string S of the array A,
where the prefix S[1, i] has already been parsed into Z[1], Z[2], . . . , Z[q − 1].

If the complete parsing consists of λ phrases, we store it using:
An integer vector PE[1, λ] (Phrase Ending position) such that h = PE[q] is the ending
position of phrase Z[q], that is, Z[q] = S[i + 1, h], where i = PE[q − 1] + 1.
An integer vector HE[1, λ] (Head Ending position) such that j = HE[q] is the last
position of Z[q]’s head. Hence, Z[q]’s head is S[PE[q − 1] + 1, HE[q]], and Z[q]’s tail is
S[HE[q] + 1, PE[q]].
An integer vector HS[1, λ] (Head Source) such that r = HS[q] is the index of the last
phrase in Z[q]’s source. Hence, the head of Z[q] is a suffix of Z[1] · · ·Z[r]. If the head of
Z[q] is empty then HS[q] = 0.
A vector of pairs TL[1, λ] (Tail Line) such that TL[q] = ⟨αq, βq⟩ are the coefficients of the
segment associated to the tail of Z[q]. By construction, such segment provides a linear
ε-approximation for the subarray A[HE[q], PE[q]].
A vector of arrays TC[1, λ] (Tail Corrections) such that TC[q] is an array of length
PE[q]−HE[q]+1 providing the corrections for the elements in the subarray A[HE[q], PE[q]]
covered by Z[q]’s tail. By construction, such corrections are smaller than ε in modulus.

Using the values in TL and TC we can recover the subarrays A[j, h] corresponding to the
phrases’ tails. We show that using all the above vectors we can recover the whole array A.

▶ Lemma 3. Let S[i + 1, j] denote the head of phrase Z[q], and let r = HS[q] and e = PE[r].
Then, for t = i + 1, . . . j, it holds

A[t] = A[t− (j − e)] + (A[j]−A[e]), (1)

where A[j] (resp. A[e]) can be retrieved in constant time from TL[q] and TC[q] (resp. TL[r]
and TC[r]).

Proof. By construction, S[i + 1, j] is identical to a suffix of Z[1] · · ·Z[r]. Since such a suffix
ends at position e = PE[r], it holds S[i + 1, j] ≡ S[e− j + i + 1, e] and

A[t] = A[j]− (S[j] + S[j − 1] + · · ·+ S[t + 1])
= (A[j]−A[e]) + A[e]− (S[e] + S[e− 1] + · · ·S[t + 1− (j − e)])
= (A[j]−A[e]) + A[t− (j − e)].

For the second part of the lemma, we notice that A[j] is the first value covered by Z[q]’s tail,
while A[e] is the last value covered by Z[r]’s tail. ◀

Using the above lemma, we can show by induction that given a position t ∈ [1, n] we
can retrieve A[t]. The main idea is to use a binary search on PE to retrieve the phrase
Z[q] containing t. Then, if t ≥ HE[q], we get A[t] from TL[q] and TC[q]; otherwise, we use
Lemma 3 and get A[t] by retrieving A[t− (j − e)] using recursion. In the following, we will
formalise this intuition in a complete algorithm, but before doing so, we need to introduce
some additional notation.



P. Ferragina, G. Manzini, and G. Vinciguerra 64:7

Z[6]Z[4]Z[3]Z[2]Z[1] Z[5] Z[7]

Z[4]Z[3]Z[2] Z[5]

Figure 3 The LZε parsing with the definition of meta-characters. Cells represent meta-characters,
and the coloured cells are also tails. Z[7]’s head consists of a copy of a substring that starts inside
Z[2] and ends at the end of Z[5] (notice the diagonal patterns in Z[7]’s head with the same colours
of the tails in Z[2] · · · [5]). Meta-characters in Z[7]’s head are defined from the meta-characters in
the copy. Note that Z[7]’s first meta-character is a suffix of Z[2]’s first meta-character.

Using the LZε parsing, we partition the string S into meta-characters as follows. The
first phrase in the parsing Z[1] = S[1, PE[1]] is our first meta-character (note Z[1] has an
empty head, so HE[1] = 0 and the pair ⟨TL[1], TC[1]⟩ encodes the subarray A[0, PE[1]]).
Now, assuming we have already parsed Z[1] · · ·Z[q − 1] and partitioned S[1, PE[q − 1]] into
meta-characters, we partition the next phrase Z[q] into meta-characters as follows: Z[q]’s
tail will form a meta-character by itself, while Z[q]’s head “inherits” the partition into meta-
characters from its source. Indeed, recall that Z[q]’s head is a copy of a suffix of Z[1] · · ·Z[r],
with r = HS[q]. Such a suffix, say S[a, b], belongs to the portion of S already partitioned
into meta-characters. Since by construction Z[r]’s tail is a meta-character Xr, we know
that Xr is a suffix of S[a, b]. Working backwards from Xr we obtain the sequence X0 · · ·Xr

of meta-characters covering S[a, b]. Note that it is possible that X0, the meta-character
containing S[a], starts before S[a]. We thus define X ′

0 as the suffix of X0 starting at S[a] and
define the meta-character partition of Z[q]’s head as X ′

0X1 · · ·Xr. This process is depicted
in Figure 3. Note that each meta-character is either the tail of some phrase or it is the suffix
of a tail. We do not really compute the meta-characters but only use them in our analysis,
as in the following result.

▶ Lemma 4. Algorithm 1 computes select(t) = A[t] in O(log λ + Mmax) time, where λ is the
number of phrases in the LZε parsing and Mmax is the maximum number of meta-characters
in a single phrase.

Proof. The correctness of the algorithm follows by Lemma 3. To prove the time bound,
observe that Line 2 clearly takes O(log λ) time. Let ℓ denote the number of meta-characters
between the one containing position t up to the end of Z[q]. We show by induction on ℓ that
Select-Aux(t, q) takes O(ℓ) time. If ℓ = 1, then t belongs to Z[q]’s tail, and the value A[t]
is retrieved in O(1) time from TL[q] and TC[q].

If ℓ > 1, the algorithm retrieves the value A[t′] from a previous phrase Z[q′], with
q′ = r − k, where k is the number of times Line 13 is executed. Since Z[q] meta-characters
are induced by those in its source, we get that the number of meta-characters between the
one containing t′ and the end of Z[r] is ℓ− 1, and the number of meta-characters between the
one containing t′ and the end of Z[q′] is ℓ′ ≤ ℓ− 1− k. By the inductive hypothesis, the call
to Select-Aux(t′, q′) takes O(ℓ′), and the overall cost of Select-Aux(t, q) is O(k) +O(ℓ′)
= O(ℓ), as claimed. ◀

It is easy to see that for some input t Algorithm 1 takes Θ(Mmax) time. To reduce the
complexity, we now show how to modify the parsing so that Mmax is upper bounded by a
user-defined parameter M > 1. The resulting parsing could contain some repeated phrases,
but note that Lemma 4 does not require the phrases to be different: repeated phrases will
only affect the space usage.
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Algorithm 1 Recursive select procedure.

1: procedure Select(t)
2: q ← the smallest i such that PE[i] ≥ t, found via a binary search on PE
3: return Select-Aux(t,q)

4: procedure Select-Aux(t,q) ▷ Invariant: PE[q − 1] < t ≤ PE[q]
5: if t > HE[q] then ▷ If t belongs to the tail of Z[q]
6: return A[t] ▷ A[t] is computed from TL[q], TC[q]
7: r ← q′ ← HS[q] ▷ The head of Z[q] is a suffix of Z[1] · · ·Z[r]
8: j ← HE[q] ▷ j is the last position of the head of Z[q]
9: e← PE[r] ▷ e is the last position of Z[r]

10: ∆← A[j]−A[e] ▷ ∆ can be computed in O(1) time by Lemma 3
11: t′ ← t− (j − e); ▷ A[t] = A[t′] + ∆ by Lemma 3
12: while t′ > PE[q′] do ▷ Find the phrase Z[·] containing t′

13: q′ ← q′ − 1 ▷ Go back one word
14: return Select-Aux(t′, q′) + ∆ ▷ The returned value is A[t] by Lemma 3

Z[6]Z[4]Z[3]Z[2]Z[1] Z[5] Z[7]

Z[4]Z[3]Z[2]

Z[8]

Figure 4 The LZε parsing of the same string of Figure 3 with M = 5. The phrase Z[7] from
Figure 3 is invalid since it has 13 meta-characters. Z[7] head can have at most 4 meta-characters, so
we define Z[7] by setting HS[7] = 3 (Step 2b). Next, we define Z[8] by setting HS[8] = 4 (Step 2c).

To build a LZε parsing in which each phrase contains at most M meta-characters, we
proceed as follows. Assuming S[1, i] has already been parsed as Z[1], . . . , Z[q − 1], we first
compute the longest prefix S[i + 1, j] which is a suffix of Z[1] · · ·Z[r] for some r < q. Let m

denote the number of meta-characters in S[i + 1, j]. Then (see Figure 4):
1. If m < M , then Z[q] is defined as usual with HS[q] = r. Since Z[q]’s tails constitute an

additional meta-character, Z[q] has m + 1 ≤M meta-characters, as required.
2. Otherwise, if m ≥M , we do the following.

a. We scan S[i + 1, j] backward dropping copies of Z[r], Z[r − 1], . . . until we are left
with a prefix S[i + 1, ks] containing less than M meta-characters. By construction,
S[i + 1, ks] is a suffix of Z[1] · · ·Z[s] for some s < r and since each phrase contains at
most M meta-characters, S[i + 1, ks] is non-empty.

b. We define Z[q] by setting S[i + 1, ks] as its head, HS[q] = s, and by defining Z[q]’s tail
as usual.

c. Next, we consider Z[s + 1] ≡ S[ks, ks+1]. By construction, Z[s + 1] contains at most
M meta-characters while S[i + 1, ks+1] contains more than M meta-characters. If Z[q]
ends before position ks+1 (i.e. PE[q] < ks+1), we define an additional phrase Z[q + 1]
with heads equal to S[PE[q]+1, ks+1], HS[q +1] = s+1 and with a tail defined as usual.
This ensures that Z[q] alone or Z[q]Z[q + 1] contains at least M meta-characters.

▶ Lemma 5. The LZε parsing with limit M contains at most 2n/M repeated phrases.
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Proof. In the algorithm described above, repeated phrases are created only at Steps 2b
and 2c. Indeed, both Z[q] defined in Step 2b and Z[q +1] defined in Step 2c could be identical
to a previous phrase. However, the concatenation Z[q]Z[q + 1] covers at least S[i + 1, ks+1]
so by construction contains at least M meta-characters. Hence, Steps 2b and 2c can be
executed at most n/M times. ◀

In the following, let σ denote the number of distinct gaps in S (i.e., the alphabet size
of S), for any ρ > 0, we denote by LZρ

ε the parsing computed with the above algorithm with
M = log1+ρ n. The following lemma shows that the space to represent the parsing can be
bounded in terms of the kth order entropy of the gap-string S plus o(n log σ) bits.

▶ Lemma 6. Let σ denote the number of distinct gaps in S. The arrays PE, HE, and HS
produced by the LZρ

ε parsing can be stored in nHk(S) +O(n/ logρ n) + o(n log σ) bits for any
positive k = o(logσ n), and still support constant-time access to their elements.

Proof. Let λ denote the number of phrases in the parsing. We write λ = λr +λd, where λr is
the number of repeated phrases, and λd is the number of distinct phrases. By Lemma 5 it is
λr ≤ n/(2 log1+ρ n), while for the number λd of distinct phrases it is [27, Lemmas 3.9 and 3.10]

λd = O
(

n

logσ n

)
and λd log λd ≤ nHk(S) + λd log n

λd
+O(λd(1 + k log σ)) (2)

for any constant k ≥ 0. The vectors PE and HE contain λ increasing values in the
range [1, n]. We encode each of them in λ log n

λ + O(λ) bits using Lemma 2. Since
f(x) = x log(n/x) is increasing for x ≤ n/e and λ = O(n/ logσ n), it is λ log n

λ + O(λ) =
O(n(log σ)(log log n)/ log n) = o(n log σ).

We encode HS using λ cells of size ⌈log λ⌉ = log λ +O(1) bits for a total of

λr log(λr + λd) + λd log(λr + λd) + O(λ) bits.

Since λd = O(n/ logσ n) and λr = O(n/ log1+ρ n), it is λd + λr = O(n/ logσ n) and the first
term is O(n/ logρ n). The second term can be bounded by noticing that, if λd ≤ λr, the
second term is smaller than the first. Otherwise, from (2) we have

λd log(λr + λd) ≤ λd log(2λd) ≤ nHk(S) + λd log n
λd

+O(λd(1 + k log σ)).

By the same reasoning as above, we have λd log n
λd

= o(n log σ) and λd(1 + k log σ) =
O((nk log σ)/ logσ n) = o(n log σ) for k = o(logσ n). ◀

Combining Lemma 6 with 4 and recalling that log λ = O(log1+ρ n), we get

▶ Theorem 7. Let σ denote the number of distinct gaps in S. Using the LZρ
ε parsing we can

compute select(t) in O(log1+ρ n) time using nHk(S) +O(n/ logρ n) + o(n log σ) bits of space
plus the space used for the λ segments (array TL) and for the corrections of the elements in
A covered by the tails in the parsing (array TC), for any positive k = o(logσ n).

In the proof of Lemma 6 one can see the interplay between the term O(n/ logρ n) coming
from the repeated phrases and the term o(n log σ) coming from the distinct phrases in
LZρ

ε . In particular, if σ is small (i.e., there are few distinct gaps), then o(n log σ) becomes
O(n log log n/ log n) and the space bound turns out to be nHk(S) +O(n/ logρ n) bits. Also,
note that the number of segments λ in LZρ

ε is always smaller than the number of segments
in a plain LA-vector. Also, the total length of the LZρ

ε tails is always smaller than n. Hence,
our approach is no worse than the LA-vector in space.
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We now show that the LZρ
ε parsing support efficient rank queries. The starting point is

the following lemma, whose proof is analogous to the one of Lemma 3.

▶ Lemma 8. Let S[i + 1, j] denote the head of phrase Z[q], and let r = HS[q] and e = PE[r].
Then, for any v such that A[i] < v ≤ A[j], it holds rank(v) = rank(v− (A[j]−A[e])) + (j− e).

▶ Theorem 9. Using the LZρ
ε parsing we can compute rank(v) in O(log1+ρ n + log ε) time

within the space stated in Theorem 7.

Proof. We answer rank(v) with an algorithm similar to Algorithm 1. First, we compute the
index q of the phrase Z[q] such that A[PE[q− 1]] < v ≤ A[PE[q]] with a binary search on the
values A[PE[i]]. If the parsing has λ phrases this takes O(log λ) time, since we can retrieve
A[PE[i]] in constant time using PE[i], TL[i] and TC[i].

Next, we set j = HE[q] and compare v with A[j] (which again we can retrieve in constant
time since it is the first value covered by Z[q]’s tail). If v ≥ A[j], we return j plus the rank
of v in A[j, PE[q]], which we can compute in O(log ε) time from TL[q] and TC[q] using the
algorithm in [7, §4]. If v < A[j], we set e = PE[HS[q]] and compute rank(v) recursively using
Lemma 8. Before the recursive call, we need to compute the index q′ of the phrase such
that A[PE[q′ − 1]] < v′ ≤ A[PE[q′]], for v′ = v − (A[j]−A[e]). To this end, we execute the
same while loop as the one in Lines 12–13 of Algorithm 1 with the test t′ > PE[q′] replaced
by v′ > A[PE[q′]]. Reasoning as in the proof of Lemma 4, we get that the overall time
complexity is O(log λ + Mmax + log ε) = O(log1+ρ n + log ε). ◀

4 The block-ε tree

In this section, we design a repetition aware version of the LA-vector by following an approach
that focuses on query efficiency and uses space bounded in terms of the complexity measure δ

reviewed in Section 2. We do so by building a variant of the block tree [5] on a combination of
the gap-string S and the piecewise linear ε-approximation. We name this variant block-ε tree,
and show that it achieves time-space bounds which are competitive with the ones achieved by
block trees and LA-vectors [7] because it combines both forms of compressibility discussed
in this paper: repetitiveness and approximate linearity.

The main idea of the block-ε tree consists in first building a traditional block tree structure
over the gap-string S[1, n] of A. Recall that every node of the block tree represents a substring
of S, and thus it implicitly represents the corresponding subarray of A. Then, we prune
the tree by dropping the subtrees whose corresponding subarray of A can be covered more
succinctly by segments and corrections (i.e. whose LA-vector representation wins over the
block-tree representation). Note that, compared to LA-vector, we do not encode segments
and corrections corresponding to substrings of S that have been encountered earlier, that
is, we exploit the repetitiveness of S to compress the piecewise linear ε-approximation at
the core of LA-vector. On the other hand, compared to block trees, we drop subtrees whose
substrings can be encoded more efficiently by segments and corrections, that is, we exploit
the approximate linearity of subarrays of A. Below we detail how to orchestrate this interplay
to achieve efficient queries and compressed space occupancy in the block-ε tree.

For simplicity of exposition, assume that n = δ2h for some integer h, where δ is the string
complexity of S. The block-ε tree is organised into h′ ≤ h levels. The first level (level zero)
logically divides the string S into δ blocks of size s0 = n/δ. In general, blocks at level ℓ have
size sℓ = n/(δ2ℓ), because they are recursively halved until possibly reaching the last level
h = log n

δ , where blocks have size sh = 1.
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At any level, if two blocks Sq and Sq+1 are consecutive in S and they form the leftmost
occurrence in S of their content, then we say that both Sq and Sq+1 are marked. A marked
block Sq that is not in the last level becomes an internal node of the tree. Such an internal
node has two children corresponding to the two equal-size sub-blocks in which Sq is split into.
On the other hand, an unmarked block Sr becomes a leaf of the tree because, by construction,
its content occurs earlier in S and thus we can encode it by storing (i) a leftward pointer q

to the marked blocks Sq, Sq+1 at the same level ℓ containing its leftmost occurrence, taking
log n

sℓ
bits; (ii) the offset o of Sr into the substring Sq · Sq+1, taking log sℓ bits. Furthermore,

to recover the values of A corresponding to Sr, we store (iii) the difference ∆ between the
value of A corresponding to the beginning of Sr and the value of A at the pointed occurrence
of Sr, taking log u bits. Overall, each unmarked block needs log n + log u bits of space.

To describe the pruning process, we first define a cost function c on the nodes of the
block-ε tree. For an unmarked block Sr, we define the cost c(Sr) = log n + log u, which
accounts for the space in bits taken by q, o and ∆. For a marked block Sq at the last level h,
we define the cost c(Sq) = log u, which accounts for the space in bits taken by its single
corresponding element of A. Instead, consider a marked block Sq at level ℓ < h for which there
exists a segment approximating with error εq ≤ ε the corresponding elements of A. Suppose
εq is minimal, that is, there is no ε′ < εq such that there exists a segment ε′-approximating
those same elements of A. Let κ be the space in bits taken by the parameters ⟨α, β⟩ of the
segment, e.g. κ = 2 log u + log n if we encode β in log u bits and α as a rational number with
a log u-bit numerator and a log n-bit denominator [7, §2]. We assign to such Sq a cost c(Sq)
defined recursively as

c(Sq) = min
{

κ + sℓ log εq + log log u

2 log n +
∑

Sx∈child(Sq) c(Sx)
(3)

The first branch of Equation (3) accounts for an encoding of the subarray of A corresponding
to Sq via an εq-approximate segment, the corrections of log εq bits for each of the sℓ elements
in Sq, and the exponent y of εq = 2y − 1 to keep track of its value, respectively. The second
branch of Equation (3) accounts for an encoding that recursively splits Sq into two children,
i.e. an encoding via two log n-bit pointers plus the optimal cost of the children. Finally, if
there is no linear ε-approximation (and thus no εq-approximation with εq ≤ ε) for Sq, we
assign to such Sq the cost indicated in the second branch of Equation (3).

A postorder traversal of the block-ε tree is sufficient to assign a cost to its nodes and
possibly prune some of its subtrees. Specifically, after recursing on the two children of a
marked block Sq at level ℓ, we check if the first branch of Equation (3) gives the minimum.
In that case, we prune the subtree rooted at Sq and store instead the encoding of the block
via the parameters ⟨α, β⟩ and the sℓ corrections in an array Cq. As a technical remark, this
pruning requires fixing the destination of any leftward pointer that starts from an unmarked
block Sr and ends to a (pruned) descendant of Sq. For this purpose, we first make Sr pointing
to Sq. Then, since any leftward pointer points to a pair of marked blocks (unless the offset is
zero), both or just one of them belongs to the pruned subtree. In the second case, we require
an additional pointer from Sr to the block that does not belong to the pruned subtree. This
additional pointer does not change the asymptotic complexity of the structure. Overall, this
pruning process yields a tree with h′ ≤ h levels.

In the full paper, we show how to support rank and select queries on the block-ε tree in
worst-case O(log logw

u
δ + h′ + log ε) time and O(h′) time, respectively.

We observe that the block-ε tree achieves space-time complexities no worse than a
standard block tree construction on S. This is due to the pruning of subtrees guided by the
space-conscious cost function c(·) and by the resulting reduction in the number of levels,
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which positively impact the query time. Compared to LA-vector, the block-ε tree can take
advantage of repetitions and avoid the encoding of subarrays of A corresponding to repeated
substrings of S. Furthermore, since the block-ε tree allocates the most succinct encoding for
a subarray of A by considering the smallest εq ≤ ε giving a linear εq-approximation, it could
be regarded as the repetition-aware analogous of the space-optimised LA-vector [7, §6], in
which all values of ε = 0, 20, 21, . . . , 2log u are considered. The block-ε tree has the advantage
of potentially storing fewer corrections at the cost of storing the tree topology. Using
the straightforward pointer-based encoding we discussed above, the tree topology takes
O(δ log n

δ log n) bits in the worst case, but for the next section we implement a more succinct
pointerless encoding (details in the full paper). We notice, nonetheless, that the more
repetitive is the string S, the smaller is δ, thus the overhead of the tree topology gets
negligible.

Finally, we mention that the block-ε tree could employ other compressed rank-select
dictionaries in its nodes, yielding a hybrid compression approach [39] that can benefit from
the orchestration of bicriteria optimisation and proper pruning of its topology to achieve the
best space occupancy, given a bound on the query time, or vice versa (à la [12,17,39]).

5 Experiments

We implemented the block-ε tree, as it is the simplest and most practical contribution of
this paper.

We compare our block-ε tree with the block tree of [5], built on the characteristic bitvector
bv(A), and with the space-optimised LA-vector of [7]. All these implementations are written
in C++ and build on the sdsl library [19]. For both the block tree and the block-ε tree, we use
a branching factor of two and vary the length b of the last-level blocks as b ∈ {23, 24, . . . , 29}.
Due to space limitations, we do not show the full space-time trade-off of each structure but
report only the most space-efficient configurations. A comparison with other rank/select
dictionaries is beyond the scope of our work, and it was already investigated in the literature
for the individual LA-vector and the block tree [5, 7]. On the other hand, we note that our
experimental study is the first to compare LA-vectors and block trees.

As datasets, we use (i) three postings lists with different densities n/u from the GOV2
inverted index [39]; (ii) six integers lists obtained by enumerating the positions of the first,
second and third most frequent character in each of the Burrows-Wheeler transform of two
text files: URL and 5GRAM [7]; (iii) three integers lists obtained by enumerating, respectively,
the positions of both Ts and Gs, of Ts, and of Gs in the Burrows-Wheeler transform of the
first gigabyte of the human reference genome GRCh38.p13.

For each tested structure, query operation, and dataset, we generate a batch of 105

random queries and measure the average query time in nanoseconds and the space occupancy
of the structure in bits per integer on a machine with 202 GB of RAM and a 2.30 GHz Intel
Xeon Gold 5118 CPU.

Table 1 shows the results. First and foremost, we note that LA-vector is 10.51× faster in
select and 4.69× faster in rank than the block tree on average, while for space there is no
clear winner over all the datasets. This comparison, which was not known in the literature,
illustrates that the combination of approximate linearity and repetitiveness is interesting not
only from a theoretical point of view, as commented in the introduction, but also from a
practical point of view.

Let us now compare the performance of our block-ε tree against the block tree and the
LA-vector. The block-ε tree is 2.19× faster in select than the block tree, and it is either faster
(1.32×) or slower (1.27×) in rank. With respect to LA-vector, the block-ε tree is always
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Table 1 The performance of LA-vector, the block tree over the characteristic bitvector bv(A)
and the block-ε tree over twelve datasets of different size n and universe size u. The select and rank
columns show the average query time of the operations in nanoseconds. The space of each structure
is shown in Bits Per Integer (BPI). For the block tree and the block-ε tree, the value b denotes the
length of the last-level block that gave the most space-efficient configuration.

Dataset LA-vector Block tree on bv(A) Block-ε tree on S

Name (n/u) n/106 u/106 select rank BPI b select rank BPI Depth b select rank BPI Depth (Avg)

GOV2 (76.6%) 18.85 24.62 69 130 1.85 64 668 519 0.69 12 16 451 825 1.89 14 (9.98)
GOV2 (40.6%) 9.85 24.62 60 129 3.48 128 686 531 1.56 11 256 367 638 3.26 10 (8.73)
GOV2 (4.1%) 1.00 24.62 33 96 3.01 32 645 573 4.62 13 128 407 465 2.92 10 (9.73)

URL (5.6%) 57.98 1039.92 124 144 2.83 32 1017 733 2.58 18 16 762 909 3.41 16 (12.94)
URL (1.3%) 13.56 1039.91 98 123 6.34 32 987 753 8.57 18 32 463 664 7.32 10 (8.39)
URL (0.4%) 3.73 1039.86 34 87 1.28 32 831 783 1.84 19 16 400 553 1.51 11 (7.92)

5GRAM (9.8%) 145.40 1476.73 171 249 4.40 32 1176 876 3.64 18 32 621 999 5.01 12 (10.27)
5GRAM (2.0%) 29.20 1476.73 132 177 6.37 32 1143 863 8.80 18 64 483 733 6.96 9 (7.81)
5GRAM (0.8%) 11.22 1476.69 95 125 7.56 32 1017 826 11.25 19 64 421 592 8.34 9 (7.61)

DNA (49.0%) 490.10 1000.00 250 446 5.27 512 1158 922 2.09 14 512 535 1070 3.65 3 (2.98)
DNA (29.5%) 294.68 1000.00 218 416 6.20 512 1227 989 3.46 14 512 368 718 4.57 2 (1.96)
DNA (19.6%) 195.42 1000.00 195 384 6.69 512 1206 972 5.21 14 512 335 654 5.01 2 (1.94)

slower. But, for what concerns the space, the block-ε tree improves both the LA-vector and
the block tree in the sparsest GOV2 and DNA, and in the vast majority of the remaining
datasets it is the second-best structure for space occupancy (except for the densest GOV2,
URL and 5GRAM). This shows that space-wise, the block-ε tree can be a robust data
structure in that it often achieves a good compromise by exploiting both kinds of regularities:
repetitiveness (block trees) and approximate linearity (LA-vectors).

For future work, we believe the block-ε tree can be improved along at least two avenues.
First, the block-ε tree at a certain level is constrained to use fixed-length blocks (and
thus segments), whilst the LA-vector minimises its space occupancy using segments whose
start/end positions do not have to coincide with a subdivision in blocks. Removing this
limitation, inherited from the block tree, would help to better capture approximate linearity
and improve the space occupancy of the block-ε tree. Second, the block-ε tree captures
the repetitiveness of the gap string S, while for the densest datasets of Table 1 it appears
worthwhile to consider the repetitiveness in bv(A), as done by the block tree. Therefore,
adapting our pruning strategy to bv(A) is likely to improve the space occupancy in these
densest datasets (though, the space-time bounds will then depend on u instead of n).

6 Conclusions

We introduced novel compressed rank/select dictionaries by exploiting two sources of regularity
arising in real data: repetitiveness and approximate linearity. Our first contribution, the
LZρ

ε parsing, combines backward copies with linear ε-approximation thus supporting efficient
queries within a space complexity bounded by the kth order entropy of the gaps in the
input data. Our second contribution, the block-ε tree, is a structure that adapts smoothly
to both sources of regularities by offering an improved query-time efficiency compared to
LZρ

ε . We experimented with a preliminary implementation of the block-ε tree showing that
it effectively exploits both repetitiveness and approximate linearity.

Our study opens up a plethora of opportunities for future research. Firstly, we notice that
the PGM-index [17] is also based on a variant of the piecewise linear ε-approximation, and
thus it can still benefit from the ideas presented in this paper to make its space occupancy
repetition aware. Secondly, the compression of segments and corrections in both LZρ

ε and
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the block-ε tree is an orthogonal problem for which one can devise further compression
mechanisms (see e.g. [17, Theorem 3]). Thirdly, the construction of the LZρ

ε phrases and
the block-ε tree could be investigated inside a bicriteria framework, which seeks to optimise
the query time and space usage under some given constraints [11]. Finally, inspired by
our preliminary results, we plan to engineer a more query-efficient implementation of the
block-ε tree that computes an optimal node pruning using a family of compressed data
structures in addition to ε-approximate segments.
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Abstract
Data masking is a common technique for sanitizing sensitive data maintained in database systems,
and it is also becoming increasingly important in various application areas, such as in record linkage
of personal data. This work formalizes the Pattern Masking for Dictionary Matching (PMDM)
problem. In PMDM, we are given a dictionary D of d strings, each of length ℓ, a query string q of
length ℓ, and a positive integer z, and we are asked to compute a smallest set K ⊆ {1, . . . , ℓ}, so
that if q[i] is replaced by a wildcard for all i ∈ K, then q matches at least z strings from D. Solving
PMDM allows providing data utility guarantees as opposed to existing approaches.

We first show, through a reduction from the well-known k-Clique problem, that a decision version
of the PMDM problem is NP-complete, even for strings over a binary alphabet. We thus approach
the problem from a more practical perspective. We show a combinatorial O((dℓ)|K|/3 + dℓ)-time and
O(dℓ)-space algorithm for PMDM for |K| = O(1). In fact, we show that we cannot hope for a faster
combinatorial algorithm, unless the combinatorial k-Clique hypothesis fails [Abboud et al., SIAM
J. Comput. 2018; Lincoln et al., SODA 2018]. We also generalize this algorithm for the problem of
masking multiple query strings simultaneously so that every string has at least z matches in D.

Note that PMDM can be viewed as a generalization of the decision version of the dictionary
matching with mismatches problem: by querying a PMDM data structure with string q and z = 1,
one obtains the minimal number of mismatches of q with any string from D. The query time or
space of all known data structures for the more restricted problem of dictionary matching with at
most k mismatches incurs some exponential factor with respect to k. A simple exact algorithm for
PMDM runs in time O(2ℓd). We present a data structure for PMDM that answers queries over D
in time O(2ℓ/2(2ℓ/2 + τ)ℓ) and requires space O(2ℓd2/τ2 + 2ℓ/2d), for any parameter τ ∈ [1, d].

We complement our results by showing a two-way polynomial-time reduction between PMDM and
the Minimum Union problem [Chlamtáč et al., SODA 2017]. This gives a polynomial-time O(d1/4+ϵ)-
approximation algorithm for PMDM, which is tight under a plausible complexity conjecture.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases string algorithms, dictionary matching, wildcards, record linkage, query term
dropping

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.65

Related Version Extended Version: https://arxiv.org/abs/2006.16137

© Panagiotis Charalampopoulos, Huiping Chen, Peter Christen, Grigorios Loukides, Nadia Pisanti,
Solon P. Pissis, and Jakub Radoszewski;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 65; pp. 65:1–65:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:panagiotis.charalampopoulos@post.idc.ac.il
https://orcid.org/0000-0002-6024-1557
mailto:huiping.chen@kcl.ac.uk
https://orcid.org/0000-0003-1782-667X
mailto:peter.christen@anu.edu.au
https://orcid.org/0000-0003-3435-2015
mailto:grigorios.loukides@kcl.ac.uk
https://orcid.org/0000-0003-0888-5061
mailto:pisanti@di.unipi.it
https://orcid.org/0000-0003-3915-7665
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
mailto:jrad@mimuw.edu.pl
https://orcid.org/0000-0002-0067-6401
https://doi.org/10.4230/LIPIcs.ISAAC.2021.65
https://arxiv.org/abs/2006.16137
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


65:2 Pattern Masking for Dictionary Matching

Funding This paper is part of the PANGAIA project that has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement no. 872539. This paper is also part of the ALPACA project that has received funding
from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement no. 956229.
Panagiotis Charalampopoulos: Supported by the Israel Science Foundation grant 592/17.
Huiping Chen: Supported by a CSC Scholarship.
Grigorios Loukides: Supported in part by the Leverhulme Trust RPG-2019-399 project.
Nadia Pisanti: Supported by the University of Pisa under the “PRA – Progetti di Ricerca di Ateneo”
(Institutional Research Grants) – Project no. PRA_2020-2021_26.
Jakub Radoszewski: Supported by the Polish National Science Center, grant number
2018/31/D/ST6/03991.

1 Introduction

Let us start with a true incident to illustrate the essence of the computational problem
formalized in this work. In the Netherlands, water companies bill the non-drinking and
drinking water separately. The 6th author of this paper had direct debit for the former but
not for the latter. When he tried to set up the direct debit for the latter, he received the
following masked message by the company:

Is this you?
Initial : S. Name: P****s E-mail address : s ******13 @g ***l.com
Bank account number : NL10RABO ********11.

The rationale of the data masking is: the client should be able to identify themselves, to help
the companies link the client’s profiles, but not infer the identity of any other client, so that
clients’ privacy is preserved. Thus, the masked version of the data is required to conceal as
few symbols as possible but correspond to a sufficient number of other clients.

This requirement can be formalized as the Pattern Masking for Dictionary Matching
(PMDM) problem: Given a dictionary D of d strings, each of length ℓ, a query string q of
length ℓ, and a positive integer z, PMDM asks to compute a smallest set K ⊆ {1, . . . , ℓ},
so that if q[i], for all i ∈ K, is replaced by a wildcard, q matches at least z strings from
D. The PMDM problem applies data masking, a common operation to sanitize personal
data maintained in database systems [1, 26, 56]. In particular, PMDM lies at the heart of
record linkage of databases containing personal data [23, 39, 40, 52, 59, 61], which is the
main application we consider in this work.

Record linkage is the task of identifying records that refer to the same entities across
databases, in situations where no entity identifiers are available in these databases [22, 32, 47].
This task is of high importance in various application domains featuring personal data,
ranging from the health sector and social science research, to national statistics and crime
and fraud detection [23, 36]. In a typical setting, the task is to link two databases that
contain names or other attributes, known collectively as quasi-identifiers (QIDs) [60]. The
similarity between each pair of records (a record from one of the databases and a record
from the other) is calculated with respect to their values in QIDs, and then all compared
record pairs are classified into matches (the pair is assumed to refer to the same person), non-
matches (the two records in the pair are assumed to refer to different people), and potential
matches (no decision about whether the pair is a match or non-match can be made) [22, 32].
Unfortunately, potential matches happen quite often [9]. A common approach [52, 59] to
deal with potential matches is to conduct a manual clerical review, where a domain expert
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looks at the attribute values in record pairs and then makes a manual match or non-match
decision. At the same time, to comply with policies and legislation, one needs to prevent
domain experts from inferring the identity of the people represented in the manually assessed
record pairs [52]. The challenge is to achieve desired data protection/utility guarantees;
i.e. enabling a domain expert to make good decisions without inferring peoples’ identities.

To address this challenge, we can solve PMDM twice, for a potential match (q1, q2).
The first time we use as input the query string q1 and a reference dictionary (database) D
containing personal records from a sufficiently large population (typically, much larger than
the databases to be linked). The second time, we use as input q2 instead of q1. Since each
masked q derived by solving PMDM matches at least z records in D, the domain expert
would need to distinguish between at least z individuals in D to be able to infer the identity
of the individual corresponding to the masked string. The underlying assumption is that
D contains one record per individual. Also, some wildcards from one masked string can
be superimposed on another to ensure that the expert does not gain more knowledge from
combining the two strings, and the resulting strings would still match at least z records in
D. Thus, by solving PMDM in this setting, we provide privacy guarantees alike z-map [57];
a variant of the well-studied z-anonymity [54] privacy model.1 In z-map, each record of
a dataset must match at least z records in a reference dataset, from which the dataset is
derived. In our setting, we consider a pattern that is not necessarily contained in the reference
dataset. Offering such privacy is desirable in real record linkage systems where databases
containing personal data are being linked [23, 40, 61]. On the other hand, since each masked
q contains the minimum number of wildcards, the domain expert is still able to use the
masked q to meaningfully classify a record pair as a match or as a non-match. Offering
such utility is again desirable in record linkage systems [52]. Record linkage is an important
application for our techniques, because no existing approach can provide privacy and utility
guarantees when releasing linkage results to domain experts [41]. In particular, existing
approaches [40, 41] recognize the need to offer privacy by preventing the domain expert from
distinguishing between a small number of individuals, but they provide no algorithm for
offering such privacy, let alone an algorithm offering utility guarantees as we do.

A secondary application where PMDM is of importance is query term dropping, an
information retrieval task that seeks to drop keywords (terms) from a query, so that the
remaining keywords retrieve a sufficiently large number of documents. This task is performed
by search engines, such as Google [8], and by e-commerce platforms such as e-Bay [42], to
improve users’ experience [29, 58] by making sufficiently many search results available to
users. For example, e-Bay applies query term dropping, removing one term, in our test
query:

Query: vacuum database cleaner
Query results : 0 results found for vacuum database cleaner

42 results found for vacuum cleaner

We could perform query term dropping by solving PMDM in a setting where strings in a
dictionary correspond to document terms and a query string corresponds to a user’s query.
Then, we provide the user with the masked query, after removing all wildcards, and with
its matching strings from the dictionary. Query term dropping is a relevant application for
our techniques, because existing techniques [58] do not minimize the number of dropped
terms. Rather, they drop keywords randomly, which may unnecessarily shorten the query,

1 The notation used for such privacy models is generally k instead of z, e.g. k-anonymity [55, 57].
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or drop keywords based on custom rules, which is not sufficiently generic to deal with all
queries. More generally, our techniques can be applied to drop terms from any top-z database
query [33] to ensure there are z results in the query answer.

Related Algorithmic Work. Let us denote the wildcard symbol by ⋆ and provide a brief
overview of works related to PMDM, the main problem considered in this paper.

Partial Match: Given a dictionary D of d strings over an alphabet Σ = {0, 1}, each of
length ℓ, and a string q over Σ ⊔ {⋆} of length ℓ, the problem asks whether q matches any
string from D. This is a well-studied problem [14, 18, 35, 46, 50, 51, 53]. Patrascu [50]
showed that any data structure for the Partial Match problem with cell-probe complexity
t must use space 2Ω(ℓ/t), assuming the word size is O(d1−ϵ/t), for any constant ϵ > 0.
The key difference to PMDM is that the wildcard positions in the query strings are fixed.
Dictionary Matching with k-errors: A similar line of research to that of Partial Match
has been conducted under the Hamming and edit distances, where, in this case, k is the
maximum allowed distance between the query string and a dictionary string [11, 12, 15,
17, 25, 64]. The structure of Dictionary Matching with k-errors is very similar to Partial
Match as each wildcard in the query string gives |Σ| possibilities for the corresponding
symbol in the dictionary strings. On the other hand, in Partial Match the wildcard
positions are fixed. The PMDM problem is a generalization of the decision version of
the Dictionary Matching with k-errors problem (under Hamming distance): by querying
a data structure for PMDM with string q and z = 1, one obtains the minimum number
of mismatches of q with any string from D, which suffices to answer the decision version
of the Dictionary Matching with k-errors problem. The query time or space of all known
data structures for Dictionary Matching with k-mismatches incurs some exponential
factor with respect to k. In [24], Cohen-Addad et al. showed that, in the pointer machine
model, for the reporting version of the problem, one cannot avoid exponential dependency
on k either in the space or in the query time. In the word-RAM model, Rubinstein showed
that, conditional on the Strong Exponential Time Hypothesis [16], any data structure
that can be constructed in time polynomial in the total size ||D|| of the strings in the
dictionary cannot answer queries in time strongly sublinear in ||D||.

We next provide a brief overview of other algorithmic works related to PMDM.
Dictionary Matching with k-wildcards: Given a dictionary D of total size N over an
alphabet Σ and a query string q of length ℓ over Σ ⊔ {⋆} with up to k wildcards, the
problem asks for the set of matches of q in D. This is essentially a parameterized variant of
the Partial Match problem. The seminal paper of Cole et al. [25] proposed a data structure
occupying O(N logkN) space allowing for O(ℓ+2klog log N+|output|)-time querying. This
data structure is based on recursively computing a heavy-light decomposition of the
suffix tree and copying the subtrees hanging off light children. Generalizations and slight
improvements have been proposed in [13], [43], and [28]. In [13] the authors also proposed
an alternative data structure that instead of a logkN factor in the space complexity has
a multiplicative |Σ|k2 factor. Nearly-linear-sized data structures that essentially try all
different combinations of letters in the place of wildcards and hence incur a |Σ|k factor in
the query time have been proposed in [13, 44]. On the lower bound side, Afshani and
Nielsen [3] showed that, in the pointer machine model, essentially any data structure for
the problem in scope must have exponential dependency on k in either the space or the
query time, explaining the barriers hit by the existing approaches.
Enumerating Motifs with k-wildcards: Given an input string s of length n over an alphabet
Σ and positive integers k and z, this problem asks to enumerate all motifs over Σ ⊔ {⋆}
with up to k wildcards that occur at least z times in s. As the size of the output is
exponential in k, the enumeration problem has such a lower bound. Several approaches
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exist for efficient motif enumeration, all aimed at reducing the impact of the output’s size:
efficient indexing to minimise the output delay [7, 30]; exploiting a hierarchy of wildcards
positions according to the number of occurrences [10]; or defining a subset of motifs of
fixed-parameter tractable size (in k or z) that can generate all the others [5, 48, 49].

Our Contributions. We consider the word-RAM model of computations with w-bit machine
words, where w = Ω(log(dℓ)), for stating our results. We make the following contributions:
1. (Section 3) A reduction from the k-Clique problem to a decision version of the PMDM

problem, which implies that PMDM is NP-hard, even for strings over a binary alphabet.
2. (Section 4) A combinatorial O((dℓ)k/3 + dℓ)-time and O(dℓ)-space algorithm for PMDM

if k = |K| = O(1), which is optimal if the combinatorial k-Clique hypothesis is true.
3. (Section 5) We consider a generalized version of PMDM, referred to as MPMDM: we

are given a collection M of m query strings (instead of one query string) and we are
asked to compute a smallest set K so that, for every q from M, if q[i], for all i ∈ K, is
replaced by a wildcard, then q matches at least z strings from dictionary D. We show an
O((dℓ)k/3zm−1 + dℓ)-time algorithm for MPMDM, for k = |K| = O(1) and m = O(1).

4. (Section 6) A data structure for PMDM that answers queries over D in O(2ℓ/2(2ℓ/2 + τ)ℓ)
time and requires space O(2ℓd2/τ2 + 2ℓ/2d), for any parameter τ ∈ [1, d].

5. (Section 7) A polynomial-time O(d1/4+ϵ)-approximation algorithm for PMDM, which
we show to be tight under a plausible complexity conjecture.

Let us now discuss why our data structure results (Section 6) cannot be directly obtained
using data structures for Dictionary Matching with k-wildcards. Conceivably, one could
construct such a data structure, and then iterate over all subsets of {1, . . . , ℓ}, querying for
the masked string. Existing data structures for dictionary matching with wildcards (cf. [13,
Table 1], [44], and [28]), that allow querying a pattern with at most ℓ wildcards, have
(a) either Ω(min{σℓ, d}) query time, thus yielding Ω(2ℓ ·min{σℓ, d}) query time for our prob-

lem, and space Ω(dℓ), a trade-off dominated by the Small-ℓ algorithm (cf. our Table 1);
(b) or Ω(ℓ) query time, thus yielding Ω(2ℓℓ) query time for our problem, and Ω(dℓ logℓ log(dℓ))

space, a trade-off dominated by the DS Simple (cf. our Table 1).

2 Definitions and Notation

Strings. An alphabet Σ is a finite nonempty set whose elements are called letters. We
assume throughout an integer alphabet Σ = [1, |Σ|]. Let x = x[1] · · · x[n] be a string of length
|x| = n over Σ. For two indices 1 ≤ i ≤ j ≤ n, x[i . . j] = x[i] · · · x[j] is the substring of x

that starts at position i and ends at position j of x. By ε we denote the empty string of
length 0. A prefix of x is a substring of x of the form x[1 . . j], and a suffix of x is a substring
of x of the form x[i . . n]. A dictionary is a collection of strings. We also consider alphabet
Σ⋆ = Σ ⊔ {⋆}, where ⋆ is a wildcard letter that is not in Σ and matches all letters from Σ⋆.
Then, given a string x over Σ⋆ and a string y over Σ with |x| = |y|, we say that x matches y

if and only if x[i] = y[i] or x[i] = ⋆, for all 1 ≤ i ≤ |x|. Given a string x of length n and a
set S ⊆ {1, . . . , n}, we denote by xS = x ⊗ S the string obtained by first setting xS = x and
then xS [i] = ⋆, for all i ∈ S. We then say that x is masked by S.

The main problem considered in this paper is the following.
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Pattern Masking for Dictionary Matching (PMDM)
Input: A dictionary D of d strings, each of length ℓ, a string q of length ℓ, and a positive
integer z.
Output: A smallest set K ⊆ {1, . . . , ℓ} such that qK =q⊗K matches at least z strings
from D.

We refer to the problem of computing only the size k of a smallest set K as PMDM-Size.
We also consider the data structure variant of the PMDM problem in which D is given for
preprocessing, and q, z queries are to be answered on-line. Throughout, we assume that
k ≥ 1 as the case k = 0 corresponds to the well-studied dictionary matching problem for
which there exists a classic optimal solution [4]. We further assume z ≤ d; otherwise the
PMDM has trivially no solution. In what follows, we use N to denote dℓ.

Tries. Let M be a finite set containing m > 0 strings over Σ. The trie of M, denoted by
R(M), contains a node for every distinct prefix of a string in M; the root node is ε; the set
of leaf nodes is M; and edges are of the form (u, α, uα), where u and uα are nodes and α ∈ Σ
is the label. The compacted trie of M, denoted by T (M), contains the root, the branching
nodes, and the leaf nodes of R(M). Each maximal branchless path segment from R(M) is
replaced by a single edge, and a fragment of a string M ∈ M is used to represent the label
of this edge in O(1) space. The size of T (M) is thus O(m). The most well-known example
of a compacted trie is the suffix tree of a string: the compacted trie of all the suffixes of
the string [62]. To access the children of a trie node by the first letter of their edge label in
O(1) time we use perfect hashing [27]. In this case, the claimed complexities hold with high
probability (w.h.p., for short), that is, with probability at least 1 − N−c (recall that N = dℓ),
where c > 0 is a constant fixed at construction time. Assuming that the children of every
trie node are sorted by the first letters of their edge labels, randomization can be avoided at
the expense of a log |Σ| factor incurred by binary searching for the appropriate child.

3 PMDM-Size is NP-hard

We show that the following decision version of PMDM-Size is NP-complete.

k-PMDM
Input: A dictionary D of d strings, each of length ℓ, a string q of length ℓ, and positive
integers z ≤ d and k ≤ ℓ.
Output: Is there a set K ⊆ {1, . . . , ℓ} of size k, such that qK =q⊗K matches at least z

strings from D?

Our reduction is from the well-known NP-complete k-Clique problem [37]: Given an
undirected graph G on n nodes and a positive integer k, decide whether G contains a clique
of size k (a clique is a subset of the nodes of G that are pairwise adjacent).

▶ Theorem 1. Any instance of the k-Clique problem for a graph with n nodes and m edges
can be reduced in O(nm) time to a k-PMDM instance with ℓ = n, d = m and Σ = {a, b}.

Proof. Let G = (V, E) be an undirected graph on n = |V | nodes numbered 1 through n, in
which we are looking for a clique of size k. We reduce k-Clique to k-PMDM as follows.
Consider the alphabet {a, b}. Set q = an, and for every edge (u, v) ∈ E such that u < v, add
string au−1bav−u−1ban−v to D. Set z = k(k − 1)/2. Then G contains a clique of size k, if
and only if k-PMDM returns a positive answer. This can be seen by the fact that cliques of
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1 2

3 4

n=4
k=3

Instance of k-PMDM
e1

e3

e4

e2

Instance of k-CLIQUE
D : s1 = bbaa <-> e1 s3 = abba <-> e3

s2 = baba <-> e2 s4 = aabb <-> e4
q = aaaa z = 3{1,2,3} is

a 3-Clique K = {1,2,3} as qK =         a  matches 3=k(k-1)/2=z strings in D

Figure 1 An example of the reduction from k-Clique to k-PMDM. The solution for both is
{1, 2, 3} as shown. Note that, for k = 4, the instance of 4-PMDM would need z = 6 matches; neither
this many matches can be found in D nor a 4-clique can be found in the graph.

size k in G are in one-to-one correspondence with subsets K ⊆ {1, . . . , n} of size k for which
qK matches z strings from D: the elements of K correspond to the nodes of a clique and the
z strings correspond to its edges. k-PMDM is clearly in NP and the result follows. ◀

An example of the reduction from k-Clique to k-PMDM is shown in Figure 1.

▶ Corollary 2. k-PMDM is NP-complete for strings over a binary alphabet.

Our reduction (Theorem 1) shows that solving k-PMDM efficiently even for strings over
a binary alphabet would imply a breakthrough for the k-Clique problem for which it is
known that, in general, no fixed-parameter tractable algorithm with respect to parameter k

exists unless the Exponential Time Hypothesis (ETH) fails [19, 34]. That is, k-Clique has
no f(k)no(k) time algorithm, and is thus W[1]-complete (again, under the ETH hypothesis).
On the upper bound side, k-Clique can be trivially solved in O(nk) time (enumerating all
subsets of nodes of size k), and this can be improved to O(nωk/3) time for k divisible by 3
using square matrices multiplication (ω is the exponent of square matrix multiplication).
However, for general k ≥ 3 and any constant ϵ > 0, the k-Clique hypothesis states that there
is no O(n(ω/3−ϵ)k)-time algorithm and no combinatorial O(n(1−ϵ)k)-time algorithm [2, 45, 63].

In particular, assuming that the k-Clique hypothesis is true, due to Theorem 1, we
cannot hope to devise a combinatorial algorithm for k-PMDM requiring O((dℓ)(1−ϵ)k/3)
time, for any k ≥ 3 and ϵ > 0, since dℓ = nm. In Section 4, we show a combinatorial
O((dℓ)k/3)-time algorithm, for constant k ≥ 3, for the optimization version of k-PMDM
(seeking to maximize the matches), which can then be trivially applied to solve k-PMDM in
the same time complexity, thus matching the above conditional lower bound.

Given an undirected graph G, an independent set is a subset of nodes of G such that no
two distinct nodes of the subset are adjacent. Let us note that the problem of computing
a maximum clique in a graph G, which is equivalent to that of computing the maximum
independent set in the complement of G, cannot be n1−ϵ-approximated in polynomial time,
for any ϵ > 0, unless P = NP [31, 65].

Any algorithm solving PMDM-Size can be trivially applied to solve k-PMDM.

▶ Corollary 3. PMDM-Size is NP-hard for strings over a binary alphabet.

4 Exact Algorithms for a Bounded Number k of Wildcards

We consider the following problem, which we solve by exact algorithms.

Heaviest k-PMDM
Input: A dictionary D of d strings, each of length ℓ, a string q of length ℓ, and a positive
integer k ≤ ℓ.
Output: A set K ⊆ {1, . . . , ℓ} of size k such that qK = q⊗K matches the maximum
number of strings in D.
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We will show the following result, which we will employ to solve the PMDM problem.

▶ Theorem 4. Heaviest k-PMDM for k = O(1) can be solved in O(N +min{Nk/3, ℓk})
time, where N = dℓ.

A hypergraph H is a pair (V, E), where V is the set of nodes of H and E is a set of
non-empty subsets of V , called hyperedges – in order to simplify terminology we will simply
call them edges. Hypergraphs are a generalization of graphs in the sense that an edge can
connect more than two nodes. Recall that the size of an edge is the number of nodes it
contains. The rank of H, denoted by r(H), is the maximum size of an edge of H.

We refer to a hypergraph H × K = (K, {e : e ∈ E, e ⊆ K}), where K is a subset of V , as
a |K|-section. H × K is the hypergraph induced by H on the nodes of K, and it contains all
edges of H whose elements are all in K. A hypergraph is weighted when each of its edges is
associated with a weight. We define the weight of a weighted hypergraph as the sum of the
weights of all of its edges. In what follows, we also refer to weights of nodes for conceptual
clarity; this is equivalent to having a singleton edge of equal weight consisting of that node.

We define the following auxiliary problem on hypergraphs (see also [20]).

Heaviest k-Section
Input: A weighted hypergraph H = (V, E), with E given as a list, and an integer k > 0.
Output: A subset K of size k of V such that H × K has maximum weight.

When k = O(1), we preprocess the edges of H as follows in order to have O(1)-time
access to any queried edge. We represent each edge as a string, whose letters correspond
to its elements in increasing order. Then, we sort all such strings lexicographically using
radix sort in O(|E|) time and construct a trie over them. An edge can then be accessed in
O(k log k) = O(1) time by a forward search starting from the root node of the trie.

A polynomial-time O(n0.697831+ϵ)-approximation for Heaviest k-Section, for any ϵ > 0,
for the case when all hyperedges of H have size at most 3 was shown in [20] (see also [6]).

Two remarks are in place. First, we can focus on edges of size up to k as larger edges
cannot, by definition, exist in any k-section. Second, Heaviest k-Section is a generalization
of the problem of deciding whether a (c, k)-hyperclique (i.e. a set of k nodes whose subsets
of size c are all in E) exists in a graph, which in turn is a generalization of k-Clique.
Unlike k-Clique, the (c, k)-hyperclique problem is not known to benefit from fast matrix
multiplication in general; see [45] for a discussion on its hardness.

▶ Lemma 5. Heaviest k-PMDM can be reduced to Heaviest k-Section for a hypergraph
with ℓ nodes and d edges in O(N) time, where N = dℓ.

Proof. We first compute the set Ms of positions of mismatches of q with each string s ∈ D.
We ignore strings from D that match q exactly, as they will match q after changing any set
of letters of q to wildcards. This requires O(dℓ) = O(N) time in total.

Let us consider an empty hypergraph (i.e. with no edges) H on ℓ nodes, numbered 1
through ℓ. Then, for each string s ∈ D, we add Ms to the edge-set of H if |Ms| ≤ k; if this
edge already exists, we simply increment its weight by 1.

We set the parameter k of Heaviest k-Section to the parameter k of Heaviest k-
PMDM. We now observe that for K ⊆ V with |K| = k, the weight of H × K is equal to the
number of strings that would match q after replacing with wildcards the k letters of q at the
positions corresponding to elements of K. The statement follows. ◀
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Instance	of	HEAVIEST	k-SECTION	Instance	of	HEAVIEST	k-PMDM	
D	:	 	s1	=	abcda 	q	=	aaaaa	

	s2	=	aadba 	k	=	3	
	s3	=	acaba 	d=6	
	s4	=	adaca 	l=5	
	s5	=	bbaac	
	s6	=	acdaa	

K={2,3,4}	of	size	k=3	has	maximum		
number	of	matches	(5)	as	qK	=	a									a	

matches	s1,	s2,	s3,	s4,	and	s6.	 K	=	{2,3,4}	of	size	k=3	is	s.t.	H	x	K	has	maximum	weight	5	

1	

e1	(1)	e3	(2)	

e5	(1)	

e2	(1)	

5	

e6	(1)	

Hypergraph	H	with	l =	5	nodes		
a	weight-2	edge	(e3)	and	
4	weight-1	edges	

4	
3	

2	

e1={2,3,4}	from	s1	
e2={3,4}	from	s2	
e3=e4={2,4}	from	s3	and	s4	
e5={1,2,5}	from	s5	
e6={2,3}	from	s6	

Figure 2 An example of the reduction from Heaviest k-PMDM to Heaviest k-Section. The
solutions are at the bottom. Each edge has its weight in brackets and the total weight is d = 6.

An example of the reduction in Lemma 5 is shown in Figure 2.
The next lemma gives a straightforward solution to Heaviest k-Section. It is analogous

to algorithm Small-ℓ, presented in Section 6, but without the optimization in computing
sums of weights over subsets. It implies a linear-time algorithm for Heaviest 1-Section.

▶ Lemma 6. Heaviest k-Section, for any constant k, can be solved in O(|V |k + |E|) time
and O(|V | + |E|) space.

Proof. For every subset K ⊆ V of size at most k, we sum the weights of all edges correspond-
ing to its subsets. There are

(|V |
k

)
= O(|V |k) choices for |K|, each having 2k − 1 non-empty

subsets: for every subset, we can access the corresponding edge (if it exists) in O(1) time. ◀

We next show that for the cases k = 2 and k = 3, there exist more efficient solutions. In
particular, we provide a linear-time algorithm for Heaviest 2-Section.

▶ Lemma 7. Heaviest 2-Section can be solved in O(|V | + |E|) time.

Proof. Let K be a set of nodes of size 2 such that H × K has maximum weight. We
decompose the problem in two cases. For each of the cases, we give an algorithm that
considers several 2-sections such that the heaviest of them has weight equal to that of H × K.

Case 1. There is an edge e = K in E. For each edge e ∈ E of size 2, i.e. edge in the classic
sense, we compute the sum of its weight and the weights of the nodes that it is incident to.
This step requires O(|E|) time.

Case 2. There is no edge equal to K in E. We compute H × {v1, v2}, where v1, v2 are
the two nodes with maximum weight, i.e. max and second-max. This step takes O(|V |) time.

In the end, we return the heaviest 2-section among those returned by the algorithms for
the two cases, breaking ties arbitrarily. ◀

We next show that for k = 3 the result of Lemma 6 can be improved when |E| = o(|V |2).

▶ Lemma 8. Heaviest 3-Section can be solved in time O(|V | · |E|) using O(|V | + |E|)
space.

Proof. Let K be a set of nodes of size 3 such that H × K has maximum weight. We
decompose the problem into the following three cases.

Case 1. There is an edge e = K in E. We go through each edge e ∈ E of size 3 and
compute the weight of H × e in O(1) time. This takes O(|E|) time in total. Let the edge
yielding the maximum weight be emax.

Case 2. There is no edge of size larger than one in H × K. We compute H × {v1, v2, v3},
where v1, v2, v3 are the three nodes with maximum weight, i.e. max, second-max and third-
max. This step takes O(|V |) time.
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Case 3. There is an edge of size 2 in H × K. We can pick an edge e of size 2 from E in
O(|E|) ways and a node v from V in O(|V |) ways. We compute the weight of H × (e ∪ {v})
for all such pairs. Let the pair yielding maximum weight be (e′, u′).

Finally, the maximum weight of H × K ′ for K ′ ∈ { emax, {v1, v2, v3}, e′ ∪ {u′} } is equal
to the weight of H × K, breaking ties arbitrarily. ◀

▶ Lemma 9. Heaviest k-Section for an arbitrarily large constant k ≥ 4 can be solved in
time O((|V | · |E|)k/3) using O(|V | + |E|) space.

Proof. If |E| > |V |2, then the simple algorithm of Lemma 6 solves the problem in time

O(|V |k + |E|) = O(|V |k/3(|V |2)k/3 + |E|) = O((|V | · |E|)k/3)

and linear space. We can thus henceforth assume that |E| ≤ |V |2.
Let K be a set of nodes of size at most k such that H ×K has maximum weight. If H ×K

contains isolated nodes (i.e. nodes not contained in any edge), they can be safely deleted
without altering the result. We can thus assume that H × K does not contain isolated nodes,
and that |V | ≤ k|E| since otherwise the hypergraph H would contain isolated nodes.

We first consider the case that the rank r(H × K) > 1, i.e. there is an edge of H × K of
size at least 2. We design a branching algorithm that constructs several candidate sets; the
ones with maximum weight will have weight equal to that of H × K. We will construct a set
of nodes X, starting with X := ∅. For each set X that we process, let ZX be the superset
of X of size at most k such that H × ZX has maximum weight. We have the following two
cases:

Case 1. There is an edge e in H × ZX that contains at least two nodes from ZX \ X. To
account for this case, we select every possible such edge e, set X := X ∪ e, and continue the
branching algorithm.

Case 2. Each edge in H × ZX contains at most one node from ZX \ X. In this case
we conclude the branching algorithm as follows. For every node v ∈ V \ X we compute its
weight as the total weight of edges Y ∪ {v} ∈ E for Y ⊆ X in O(2k) = O(1) time. Finally,
in O(|V |k) = O(|V |) time we select k − |X| nodes with largest weights and insert them into
X. The total time complexity of this step is O(|V |). This case also works if |X| = k and
then its time complexity is only O(1).

The correctness of this branching algorithm follows from an easy induction, showing that
at every level of the branching tree there is a subset of K.

Let us now analyze the time complexity of this branching algorithm. Each branching in
Case 1 takes O(|E|) time and increases the size of |X| by at least 2. At every node of the
branching tree we call the procedure of Case 2. It takes O(|V |) time if |X| < k.

If the procedure of Case 2 is called in a non-leaf node of the branching tree, then its O(|V |)
running time is dominated by the O(|E|) time that is required for further branching since
we have assumed that |V | ≤ k|E|. Hence, it suffices to bound (a) the total time complexity
of calls to the algorithm for Case 2 in leaves that correspond to sets X such that |X| < k

and (b) the total number of leaves that correspond to sets X such that |X| = k.
If k is even, (a) is bounded by O(|E|(k−2)/2|V |) and (b) is bounded by O(|E|k/2). Hence,

(b) dominates (a) and we have

O(|E|k/2) = O(|E|k/3|E|k/6) = O(|E|k/3|V |k/3). (1)

If k is odd, (a) is bounded by O(|E|(k−1)/2|V |) and (b) is bounded by O(|E|(k−1)/2),
which is dominated by (a). By using (1) for k − 3 we also have:

O(|E|(k−1)/2·|V |) = O(|E|(k−3)/2·|E|·|V |) = O((|E|·|V |)(k−3)/3·|E|·|V |) = O((|E|·|V |)k/3).
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We now consider the case that r(H × K) = 1. We use the algorithm for Case 2 above
that works in O(|V |) time, which is O(|V | · |E|). ◀

Lemmas 5-9 imply Theorem 4, which we employ iteratively to obtain the following result.

▶ Theorem 10. PMDM can be solved in time O(N + min{Nk/3, ℓk}) using space O(N) if
k = O(1), where N = dℓ.

Proof. We apply Lemma 5 to obtain a hypergraph with |V | = ℓ and |E| = d. Starting with
k = 1 and for growing values of k, we solve Heaviest k-Section until we obtain a solution
of weight at least z, employing either only Lemma 6, or Lemmas 6, 7, 8, 9 for k = 1, 2, 3 and
k ≥ 4, respectively. We obtain O(N + min{Nk/3, ℓk}) time and O(N) space. ◀

5 Exact Algorithms for a Bounded Number m of Query Strings

Recall that masking a potential match (q1, q2) in record linkage can be performed by solving
PMDM twice and superimposing the wildcards (see Section 1). In this section, we consider
the following generalized version of PMDM to perform the masking simultaneously. The
advantage of this approach is that it minimizes the final number of wildcards in q1 and q2.

Multiple Pattern Masking for Dictionary Matching (MPMDM)
Input: A dictionary D of d strings, each of length ℓ, a collection M of m strings, each
of length ℓ, and a positive integer z.
Output: A smallest set K ⊆ {1, . . . , ℓ} such that, for every q from M, qK = q ⊗K

matches at least z strings from D.

Let N = dℓ. We show the following theorem.

▶ Theorem 11. MPMDM can be solved in time O(N + min{Nk/3zm−1, ℓk}) if k = O(1)
and m = O(1), where N = dℓ.

We use a generalization of Heaviest k-Section in which the weights are m-tuples that
are added and compared component-wise, and we aim to find a subset K such that the
weight of H ×K is at least (z, . . . , z). An analogue of Lemma 6 holds without any alterations,
which accounts for the O(N + ℓk)-time algorithm. We adapt the proof of Lemma 9 as follows.
The branching remains the same, but we have to tweak the final step, that is, what happens
when we are in Case 2. For m = 1 we could simply select a number of largest weights, but for
m > 1 multiple criteria need to be taken into consideration. All in all, the problem reduces
to a variation of the classic Multiple-Choice Knapsack problem [38], which we solve using
dynamic programming. Overall, we pay an additional O(zm−1) factor in the complexity of
handling of Case 2, which yields the complexity of Theorem 11.

6 A Data Structure for PMDM Queries

We next show algorithms and data structures for the PMDM problem under the assumption
that 2ℓ is reasonably small. We measure space in terms of w-bit machine words, where
w = Ω(log(dℓ)), and focus on showing space vs. query-time trade-offs for answering q, z

PMDM queries over D. A summary of the complexities of the data structures is shown
in Table 1. Specifically, algorithm Small-ℓ and data structure Simple are used as building
blocks in the more involved data structure Split underlying the following theorem.

▶ Theorem 12. There exists a data structure that answers q, z PMDM queries over D in
time O(2ℓ/2(2ℓ/2 + τ)ℓ) w.h.p. and requires space O(2ℓd2/τ2 + 2ℓ/2d), for any τ ∈ [1, d].
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Table 1 Basic complexities of the data structures from Section 6.

Data structure Space Query time
Algorithm Small-ℓ O(dℓ) O(2ℓℓ + dℓ)

DS Simple O(2ℓd) O(2ℓℓ)
DS Split, any τ O(2ℓd2/τ2 + 2ℓ/2d) O(2ℓ/2 · (2ℓ/2 + τ)ℓ)

DS Split for τ = 2ℓ/4√
d O(2ℓ/2d) O(2ℓℓ + 23ℓ/4√

dℓ)

Algorithm Small-ℓ: O(dℓ) Space, O(2ℓℓ + dℓ) Query Time. No data structure on top
of the dictionary D is stored. In the query algorithm, we initialize an array A of size 2ℓ with
zeros. For an ℓ-bit vector m, by Km ⊆ {1, . . . , ℓ} let us denote the set of the positions of set
bits of m. Now for every possible ℓ-bit vector m we want to compute the number of strings
in D that match qKm = q ⊗ Km.

To this end, for every string s ∈ D, we compute the set K of positions in which s and
q differ. For m that satisfies K = Km, we increment A[m]. This computation takes O(dℓ)
time and O(1) extra space. Then we apply a folklore dynamic-programming-based approach
to compute array B, which is defined as follows:

B[m] =
∑

j∈S(m)

A[j], where S(m) = {j ∈ [1, 2ℓ] : Kj ⊆ Km}.

In other words, B[m] stores the number of strings from D that match qKm
. It takes O(ℓ2ℓ)

time and O(2ℓ) extra space. Thus, overall, the (query) time required by algorithm Small-ℓ
is O(ℓ2ℓ+dℓ), the data structure space is O(dℓ), and the extra space is O(2ℓ).

We first present Simple, an auxiliary data structure, which we will apply later on to
construct DS Split, a data structure with the space/query-time trade-off of Theorem 12.

DS Simple: O(2ℓd) Space, O(2ℓℓ) Query Time. We initialize an empty set Q. For each
possible subset of {1, . . . , ℓ} we do the following. We mask the corresponding positions in
all strings from D and then sort the masked strings lexicographically. By iterating over the
lexicographically sorted list of the masked strings, we count how many copies of each distinct
(masked) string we have in our list. We insert each such (masked) string to Q along with
its count. After processing all 2ℓ subsets, we construct a compacted trie for the strings in
Q; each leaf corresponds to a unique element of Q, and stores this element’s count. The
total space occupied by this compacted trie is thus O(2ℓd). Upon an on-line query q (of
length ℓ) and z, we apply all possible 2ℓ masks to q and read the count for each of them from
the compacted trie in O(ℓ) time per mask. Next, we show how to decrease the exponential
dependency on ℓ in the space complexity when 2ℓ = o(d), incurring extra time in the query.

DS Split: O(2ℓd2/τ 2 + 2ℓ/2d) Space, O(2ℓ/2 · (2ℓ/2 + τ)ℓ) Query Time, for any τ .
This trade-off is relevant when τ = ω(

√
d); otherwise the DS Simple is better. We split each

string p ∈ D roughly in the middle, to prefix pL and suffix pR; specifically, p = pLpR and
|pL| = ⌈ℓ/2⌉. We create dictionaries DL = {pL : p ∈ D} and DR = {pR : p ∈ D}. Let us now
explain how to process DL; we process DR analogously. Let λ = ⌈ℓ/2⌉. We construct DS
Simple over DL. This requires space O(2ℓ/2d). Let τ be an input parameter, intuitively
used as the minimum frequency threshold. For each of the possible 2λ masks, we can have at
most ⌊d/τ⌋ (masked) strings with frequency at least τ . Over all masks, we thus have at most
2λ⌊d/τ⌋ such strings, which we call τ -frequent. For every pair of τ -frequent strings, one from
DL and one from DR, we store the number of occurrences of their concatenation in D using
a compacted trie as in DS Simple. This requires space O(2ℓd2/τ2).
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Figure 3 Let τ = 3. If both q′
L and q′

R are 3-frequent (we check this using the counts of DS
Simple), we read the count for q′

Lq′
R from the compacted trie of DS Split. If q′

L is 3-infrequent, we
apply Small-ℓ on qR and the dictionary consisting of at most τ = 3 strings from DR corresponding
to the right halves of strings in DL that match q′

L.

Consider DL. For each mask i and each string pL ∈ DL, we can afford to store the
list of all strings in DL that match pL ⊗ i. Note that we have computed this information
when sorting for constructing DS Simple over DL. This information requires space O(2ℓ/2d).
Thus, DS Split requires O(2ℓd2/τ2 + 2ℓ/2d) space overall.

Let us now show how to answer an on-line q, z query. Let q = qLqR with |qL| = ⌈ℓ/2⌉.
We iterate over all possible 2ℓ masks.

For a mask i, let q′ = q ⊗ i. We split q′ into two halves, q′
L and q′

R with q′ = q′
Lq′

R and
|q′

L| = ⌈ℓ/2⌉. First, we check whether each of q′
L and q′

R is τ -infrequent using the DS Simple
we have constructed for DL and DR, respectively, in time O(ℓ). We have the following two
cases (inspect also Figure 3).

If both halves are τ -frequent, we can read the frequency of their concatenation using the
stored compacted trie in time O(ℓ).
Else, at least one of the two halves is τ -infrequent. Assume without loss of generality
that q′

L is τ -infrequent. Let F be the dictionary consisting of at most τ strings from DR

that correspond to the right halves of strings in DL that match q′
L. Naïvely counting

how many elements of F match q′
R could require Ω(τℓ) time, and thus Ω(2ℓτℓ) overall.

Instead, we apply algorithm Small-ℓ on qR and F . The crucial point is that if we ever
come across q′

L again (for a different mask on q), we will not need to do anything. We can
maintain whether q′

L has been processed by temporarily marking the leaf corresponding
to it in DS Simple for DL. Thus, overall, we perform the Small-ℓ algorithm O(2ℓ/2)
times, each time in O((2ℓ/2 + τ)ℓ) time. This completes the proof of Theorem 12.

Efficient Construction. For completeness, we next show how to construct DS Split in
O(dℓ log(dℓ) + 2ℓdℓ + 2ℓℓd2/τ2) time. We preprocess D by sorting its letters in O(dℓ log(dℓ))
time. The DS Simple for DL and DR can then be constructed in O(2ℓ/2dℓ) time. We then
create the compacted trie for pairs of τ -frequent strings. For each of the 2ℓ possible masks,
say i, and each string p ∈ D, we split p′ = p ⊗ i in the middle to obtain p′

L and p′
R. If both

p′
L and p′

R are τ -frequent then p′ will be in the set of strings for which we will construct the
compacted trie for pairs of τ -frequent strings. The counts for each of those strings can be
read in O(ℓ) time from a DS Simple over D, which we can construct in time O(2ℓdℓ) – this
data structure is then discarded. The compacted trie construction requires time O(2ℓℓd2/τ2).

Comparison of the Data Structures. DS Simple has lower query time than algorithm
Small-ℓ. However, its space complexity can be much higher. DS Split can be viewed as an
intermediate option. For τ as in Table 1, it has lower query time than algorithm Small-ℓ for
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d = ω(23ℓ/2), while keeping moderate space complexity. DS Split always has higher query
time than DS Simple, but its space complexity is lower by a factor of 2ℓ/2. For example, for
d = 22ℓ we get the complexities shown in Table 2.

Table 2 Basic complexities of the data structures from Section 6 for d = 22ℓ.

Data structure Space Query time
Algorithm Small-ℓ O(22ℓℓ) O(22ℓℓ)

DS Simple O(23ℓ) O(2ℓℓ)
DS Split for τ = 25ℓ/4 O(25ℓ/2) O(27ℓ/4ℓ)

7 Approximation Algorithm for PMDM

Clearly, PMDM is at least as hard as PMDM-Size because it also outputs the positions of
the wildcards (set K). Thus, PMDM is also NP-hard. In what follows, we show existence of
a polynomial-time approximation algorithm for PMDM whose approximation factor is given
with respect to d. Specifically, we show the following approximation result for PMDM.

▶ Theorem 13. For any constant ϵ > 0, there is an O(d1/4+ϵ)-approximation algorithm for
PMDM, whose running time is polynomial in N , where N = dℓ.

Our result is based on the Minimum Union (MU) problem [21], which we define next.

Minimum Union (MU)
Input: A collection S of d sets over a universe U and a positive integer z ≤ d.
Output: A collection T ⊆ S with |T | = z such that the size of ∪S∈T S is minimized.

To illustrate the MU problem, consider an instance of it where U = {1, 2, 3, 4, 5},
S = {{1}, {1, 2, 3}, {1, 3, 5}, {3}, {3, 4, 5}, {4}, {4, 5}, {5}}, with d = |S| = 8, and z = 4.
Then T = {{3}, {3, 4, 5}, {4}, {4, 5}} is a solution because |T | = z = 4 and | ∪S∈T S| = 3 is
minimum. The MU problem is NP-hard and the following approximation result is known.

▶ Theorem 14 ([21]). For any constant ϵ > 0, there is an O(d1/4+ϵ)-approximation algorithm
for MU, whose running time is polynomial in the size of S.

▶ Theorem 15. PMDM can be reduced to MU in time polynomial in N .

Proof. We reduce the PMDM problem to MU in polynomial time as follows. Given
any instance IPMDM of PMDM, we construct an instance IMU of MU in time O(dℓ) by
performing the following steps:
1. The universe U is set to {1, . . . , ℓ}.
2. We start with an empty collection S. Then, for each string si in D, we add member Si

to S, where Si is the set of positions where string q and string si have a mismatch. This
can be done trivially in time O(dℓ) for all strings in D.

3. Set the z of the MU problem to the z of the PMDM problem.

Thus, the total time O(dℓ) needed for Steps 1 to 3 above is clearly polynomial in the size
of IPMDM.

▷ Claim 16. For any solution T to IMU and any solution K to IPMDM, |K| = | ∪S∈T S|.
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Proof. Let F ⊆ D consist of z strings that match qK . Further, let the set F∗ consist of the
elements of S corresponding to strings in F . We have | ∪S∈T S| ≤ | ∪S∈F∗ S| ≤ |K|.

Now, let C = ∪S∈T S. Then, qC = q⊗C matches at least z strings from D and hence
|K| ≤ |C| = | ∪S∈T S|. ◁

To conclude the proof, it remains to show that given a solution T to IMU we can obtain
a solution K to IPMDM in time polynomial in the size of IMU. This readily follows from the
proof of the above claim: it suffices to set K = ∪S∈T S. ◀

Proof of Theorem 13. The reduction in Theorem 15 implies that there is a polynomial-time
approximation algorithm for PMDM. In particular, Theorem 14 provides an approximation
guarantee for MU that depends on the number of sets of the input S. In Step 2 of the
reduction of Theorem 15, we construct one set for the MU instance per one string of the
dictionary D of the PMDM instance. Also, from the constructed solution T to the MU
instance, we obtain a solution K to the PMDM instance by simply substituting the positions
of q corresponding to the elements of the sets of T with wildcards. This construction implies
the approximation result of Theorem 13 that depends on the size of D. ◀

Sanity Check. Theorem 1 (reduction from k-Clique to k-PMDM) and Theorem 13
(approximation algorithm for PMDM) do not contradict the inapproximability results for the
maximum clique problem (see Section 3), since our reduction from k-Clique to k-PMDM
cannot be adapted to a reduction from maximum clique to PMDM-Size.

Two-Way Reduction. Chlamtáč et al. [21] also show that their polynomial-time O(d1/4+ϵ)-
approximation algorithm for MU is tight under a plausible conjecture for the so-called
Hypergraph Dense vs Random problem. In what follows, we also show that approximating
the MU problem can be reduced to approximating PMDM in polynomial time and hence
the same tightness result applies to PMDM.

▶ Theorem 17. MU can be reduced to PMDM in time polynomial in the size of S.

Proof. Let ||S|| denote the total number of elements in the d members of S. We reduce the
MU problem to the PMDM problem in polynomial time as follows. Given any instance IMU
of MU, we construct an instance IPMDM of PMDM by performing the following steps:
1. Sort the union of all elements of members of S, and assign to each element j a unique

rank rank(j) ∈ {1, . . . , |U |}. Set ℓ = |U |. This can be done in O(||S|| log ||S||) time.
2. Set the query string q equal to the string aℓ of length ℓ. For each set Si in S, construct a

string si = aℓ, set si[rank(j)] := b if and only if j ∈ Si, and add si to dictionary D. This
can be done in O(dℓ) time.

3. Set the z of the PMDM problem equal to the z of the MU problem. This can be done
in O(1) time.

Thus, the total time O(dℓ log(dℓ)) needed for Steps 1 to 3 above is clearly polynomial in
the size of IMU as ℓ ≤ ||S||.

A proof of the following claim is analogous to that of Claim 16.

▷ Claim 18. For any solution T to IMU and any solution K to IPMDM, |K| = | ∪S∈T S|.

To conclude the proof, it remains to show that, given a solution K to IPMDM, we can
obtain a solution T to IMU in time polynomial in the size of IPMDM. It suffices to pick z

sets in S that are subsets of K. Their existence is guaranteed by construction, because such
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sets correspond to the at least z strings in D that have b in a subset of the positions in K.
This selection can be done naïvely in O(||S||) time. Finally, the above claim guarantees that
they indeed form a solution to IMU. ◀
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1 Introduction

Due to a diverse spectrum of reasons, ranging from manufacturing defects to charge collection,
the data stored in modern memories can sometimes face corruptions, a problem that is
exacerbated by the recent growth in the amount of stored data. To make matters worse,
even a single memory corruption can cause classical algorithms and data structures to fail
catastrophically. One mitigation approach relies on low-level error-correcting schemes that
transparently detect and correct such errors. These schemes however either require expensive
hardware or employ space-consuming replication strategies. Another approach, which has
recently received considerable attention [8, 17, 19, 23, 24, 25, 27], aims to design resilient
algorithms and data structures that are able to remain operational even in the presence of
memory faults, at least with respect to the set of uncorrupted values.

In this paper we consider the problem of designing resilient data structures that store
a dynamic rooted tree T while answering several types of queries. More formally, we focus
on maintaining a tree that initially consists of a single vertex (the root of the tree) and can
be dynamically augmented via the AddLeaf(v) operation that appends a new leaf as a child
of an existing vertex v.1 It is possible to query T in order to obtain information about its
current topology. We mainly concerned on the following well-known query types:

1 In the literature this setting is also called incremental or semi-dynamic to emphasize that arbitrary
insertions and deletions of tree vertices/edges are not supported. In this paper, unless otherwise specified,
we follow the terminology of [14] by considering dynamic trees that only support insertion of leaves.
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(Weighted) Level Ancestor Queries: Given a vertex v and an integer k, the query LA(v, k)
returns the k-parent of v, i.e., the vertex at distance k from v among the ancestors of
v. In the weighted version of the problem each vertex of the tree T is associated with a
small (polylogarithmic) positive integer weight, and a query needs to report the closest
ancestor u of v such that the total weight of the path from v to u in T is at least k.

Lowest Common Ancestor Queries: Given two vertices u, v, the query LCA(u, v) returns
the vertex at maximum depth in T that is simultaneously and ancestor of both u and v.

Bottleneck Queries: In this problem, each vertex has an associated integer weight and,
given two vertices u, v, a BVQ(u, v) query reports the minimum/maximum-weight vertex
in the path between u and v in T .2 It is worth noticing that, when T is a path, the above
problem can be seen as a dynamic version of the classical range minimum query problem.
In the range minimum query problem, a query RMQ(i, j) reports the minimum element
between the i-th and the j-th element of a (static) input sequence [4].

For all of the above problems, linear-size non-resilient data structures supporting both
the AddLeaf and the query operations in constant worst-case time are known [2, 11]. It is
then natural to investigate what can be achieved for the above problem when the sought
data structures are required to withstand memory faults.

To precisely capture the behaviour of resilient algorithms, one needs to employ a model of
computation that takes into account potential memory corruptions. To this aim, we adopt the
Faulty-RAM model introduced by Finocchi and Italiano in [19]. This model is similar to the
classical RAM model except that all but O(1) memory words can be subject to corruptions
that alter theirs contents to an arbitrary value. The overall number of corruptions is upper
bounded by a parameter δ and such corruptions are chosen in a worst-case fashion by a
computationally unbounded adversary.

A simple error-correcting strategy based on replication provides a general scheme for
obtaining resilient versions of any classical non-resilient data structure at a cost of a Θ(δ)
blowup in both the time needed for each operation and the size of the data structure. This
space overhead is undesirable, especially when δ can be large. For the above reason, the
main goal in the area is obtaining compact solutions with a particular focus on linear-size
data structures [8, 16, 17, 18, 19, 23, 24, 27]. However, for linear-size data structures, even
δ = ω(1) corruptions can be already sufficient for the adversary to irreversibly corrupt some
of the stored elements [16]. The solution adopted in the literature is that of suitable relaxing
the notion of correctness by only requiring queries to answer correctly with respect to the
portions of the data structure that are uncorrupted. Notice that this is not easy to obtain
since corruptions in unrelated parts of the data structure can still misguide the execution of
a query (see [16] for a discussion).3

1.1 Our results
We design a data structure maintaining a dynamic tree that can be updated via the addition
of new leaves, and supports resilient (weighted) LA, LCA, and BVQ queries.

2 It is easy to see that this also captures the well-known bottleneck edge query variant [12], in which
weights are placed on edges instead of vertices.

3 For example, the authors of [16] consider the problem of designing linear-size resilient dictionaries adopt
a notion of resilient search that requires the search procedure to answer correctly w.r.t. all uncorrupted
keys (see Section 1.2 for a more precise definition). Notice how the classical solutions based on search
trees do not meet this requirement since a single unrelated corruption can destroy the tree path leading
to the sought key.
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Figure 1 Illustration of resilient LA queries. The current tree T logically maintained by the data
structure is depicted in (a). In this example, each vertex maintains a reference to its parent in T .
In (b) some of the parent-child relationships have been altered by the adversary by corrupting the
nodes highlighted in red. Since the algorithm cannot distinguish corrupted memory words from
uncorrupted ones, its (defective) view of T is shown in (c). Nevertheless, a resilient data structure
must still be able to correctly answer queries involving uncorrupted paths. For exampple, the query
LA(v, k) is required to answer correctly for all (meaningful) values of k since the path from v to
the root is uncorrupted, while query LA(w, k) is required to answer correctly for k ≤ 2. Since u is
corrupted, the query LA(u, k) is allowed to answer incorrectly for every value of k.

Our data structure stores each vertex of the current tree T in a single memory word
of Θ(log n) bits. We will say that a vertex v is corrupted if the memory word associated
with v has been modified by the adversary. A resilient query is required to correctly report
the answer when no vertex in the tree path between the two vertices explicitly or implicitly
defined by the query is corrupted. For example, a LA(v, k) query correctly reports the
k-parent u of v whenever every vertex in the unique path from u to v in T is uncorrupted.

We deem our notion of resilient query to be quite natural since in any reasonable
representation of T the adversary can locally corrupt the parent-children relationship and
hence change the observed topology of T . See Figure 1 for an example.

Our data structure occupies linear (w.r.t. the current number of nodes) space, and
supports the AddLeaf operation and LA, BVQ, and LCA queries in O(δ) worst-case time. For
weighted LA queries, the above bound on the query time holds as long as δ = O(polylogn).

We point out that our solution is obtained through a general vertex-coloring scheme
which is, in turn, used to “shrink” T down to a compact tree Q of size O(n/δ) that can
be made resilient via replication. Each edge of Q represents a path of length δ between
two consecutive colored nodes in T . If no corruption occurs, this coloring scheme is regular
and will color all vertices having a depth that is a multiple of δ. While it is possible for
corruptions to locally destroy the above pattern, our coloring is able to automatically recover
as soon as we move away from the corrupted portions of the tree. We feel that such a scheme
can be of independent interest as an useful tool to design other resilient data structures
involving dynamic trees.

We leave the problem of understanding whether, similarly to other resilient data struc-
tures [16,24], one can prove a lower bound of Ω(δ) on the time needed to perform AddLeaf
operation and/or to answer our queries.

1.2 Related work
Non-resilient data structures. Before discussing the known result in our faulty memory
model, we fist give an overview of the closest related results in the fault-free case. Since the
landscape of data structures that answer queries on dynamic trees is vast and diverse, we will
focus only on the best-known data-structures capable of answering LA, BVQ, or LCA queries.
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As far as LA queries are concerned, the problem has been first formalized in [5] and
in [14]. Both papers consider the case in which the tree T is static and show how to built, in
linear-time, a data structure that requires linear space and that answers queries in constant
worst-case time (albeit the hidden constant in [5] is quite large). A simple and elegant
construction achieving the same (optimal) asymptotic bounds is given in [3]. In [14], the
dynamic version of the problem was also considered: the authors provide a data structure
supporting both LA queries and the AddLeaf operation in constant amortized time. The best
known dynamic data structure is the one of [2], which implements the above operations in
constant worst-case time. This data structure also supports constant-time BVQ queries and
constant-time weighted LA queries when the vertex weights are polylogarithmically bounded
integers. Moreover, the solution of [2] also provides amortized bounds for the problem of
maintaining a forest of n nodes under link operations (i.e., edge additions that connect
two vertices in different trees of the forest) and LA queries. In this case, a sequence of m

operations requires O(mα(m, n)) time, where α is the inverse Ackermann function.
Regarding BVQ queries with integer weights, in addition to the solution discussed above

(which supports leaf additions and queries in constant-time), [7] shows how to also support
leaf deletions using O(1) amortized time per update and constant worst-case query time.

The problem of answering LCA queries is a fundamental problem which has been introduced
in [1]. In [22], Harel and Tarjan show how to preprocess in linear time any static tree in
order to to build a linear-space data structure that is able to answer LCA queries in O(1)
time. The case of dynamic trees is also well-understood: it is possible to simultaneously
support (i) insertions of leaves and internal nodes, (ii) deletion of leaves and internal nodes
with a single child, and (iii) LA queries, in constant worst-case time per operation [11].

Resilient data structures. As already mentioned, the Faulty-RAM model has been intro-
duced in [19] and used in the context of resilient data structures in [17] where the authors
focused on designing resilient dictionaries, i.e., dynamic sets that support insertions, deletions,
and lookup of elements. Here the lookup operation is only required to answer correctly if
either (i) the searched key k is in the dictionary and is uncorrupted, or (ii) k is not in the
dictionary and no corrupted key equals k. The best-known (linear-size) resilient dictionary
is provided in [8] and supports each operation in the optimal O(log n + δ) worst-case time,
where n is the number of stored elements. The Faulty-RAM model has also been adopted
in [24], where the authors design a (linear-size) resilient priority queue, i.e., a priority queue
supporting two operations: insert (which adds a new element in the queue) and deletemin.
Here deletemin deletes and returns either the minimum uncorrupted value or one of the
corrupted values. Each operation requires O(log n + δ) amortized time, while Ω(log n + δ)
time is needed to answer an insert followed by a deletemin.

The Faulty-RAM model has also been adopted in the context of designing resilient
algorithms. We refer the reader to [23] for a survey on this topic.

A resilient dictionary for a variant of the Faulty-RAM model in which the set of corruptible
memory words is random (but still unknown to the algorithm) has been designed in [25].

In a broader sense, problems that involve non-reliable computation have received consid-
erable attention in the literature, especially in the context of sorting and searching. See for
example [9, 10,13,15,20,21,26].

1.3 Structure of the paper
The paper is organized as follows. Section 2 introduces the used notation and formally defines
the Faulty-RAM model. It also briefly describes the error-correcting replication strategy
mentioned in the introduction. For technical convenience, in Section 3 and 4 we describe our
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data structure for LA queries only. This allows us to introduce all the ideas behind the more
general coloring scheme discussed above. As a warm up, we first consider the simpler case
in which the tree T is static and is already known at construction time (Section 3), and we
then tackle the dynamic version of the problem (Section 4) for which we give our main result.
Due to space limitation, the description of how to modify our data structure to handle the
other types of queries is omitted and can be found in the full version of the paper.

2 Preliminaries

Notation. Let T be a rooted tree. For each node v ∈ T , we denote with parent(v) the
parent of v. If π is a path, we denote by |π| its length, i.e., the number of its edges. Given
any two nodes u, v, we denote by dT (u, v) the length of the (unique) path between u and v

in T . Moreover, if π traverses u and v, we denote by π[u : v] the subpath of π between u

and v, endpoints included. We will use round brackets instead of square brackets to denote
that the corresponding endpoint is excluded (so that, e.g., π(u : v] denotes the subpath of π

between u and v where u is excluded and v is included).

Faulty memory model. We now formally describe the Faulty-RAM model introduced by
Finocchi and Italiano in [19]. In this model the memory is divided in two regions: a safe
region with O(1) memory locations, whose locations are known to the algorithm designer,
and the (unreliable) main memory. An adaptive adversary can perform up to δ corruptions,
where a corruption consists in instantly modifying the content of a word from the main
memory. The adversary knows the algorithm and the current contents of the memory, has an
unbounded computational power, and can simultaneously perform one or more corruptions
at any point in time. The safe region cannot be corrupted by the adversary and there is no
error-detection mechanism that allows the algorithm to distinguish the corrupted memory
locations from the uncorrupted ones.

Without assuming the existence of O(1) words of safe memory, no reliable computation
is possible: in particular, the safe memory can store the code of the algorithm itself, which
otherwise could be corrupted by the adversary.

As observed in [16] (and already mentioned in the introduction), there is a simple strategy
that allows any non-fault tolerant data structure on the RAM model to also work on the
Faulty-RAM model, albeit with multiplicative Θ(δ) blow-up in its time and space complexities.
Essentially, such a solution implements a trivial error-correcting mechanism by simulating
each memory word w in the RAM model with a set W of 2δ + 1 memory words in the
Faulty-RAM model: writing a value x to w means writing x to all words in W , and reading w

means computing the majority value of the words in W (which can be done in O(δ) time, and
O(1) space using the safe memory region and the Boyer-Moore majority vote algorithm [6]).
We refer to such technique as the replication strategy.

3 Warming Up: LA queries in Static Trees

In order to introduce our ideas, in this section we will show how to build a simplified
version of our resilient data structure when the tree T cannot be dynamically modified. Our
simplified data structure requires linear space and answers level-ancestor queries in O(δ)
time. As opposed to our dynamic data structure, in this special case the tree T must be
known in advance and hence we need to initialize our data structure from an input tree
T . For simplicity, we assume that no corruptions occur while our data structure is being
built. Notice that this assumption can be removed by carefully using the replication strategy
described in Section 2.
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Algorithm 1 Answers a level ancestor query LA(v, k) in the special case of static trees.

1 if k ≤ 2δ then return climb(v, k) ;
2 Climb up the tree T from v for 2δ nodes searching a black node;
3 if the previous procedure did not find a black node then return error;
4 v′ ← a black node found in the previous procedure;
5 d← distance between v′ and v; k′ ← k − d;
6 u′ ← LAQ(qv′ , ⌊k′/δ⌋);
7 krest ← k′ − ⌊k′/δ⌋ · δ;
8 return climb(u′, krest);

Description of the Data Structure. Let T be a rooted tree with n nodes. To define the
data structure for T , we need to divide the nodes of T into two sets: the black nodes and
the white nodes. We define the set of black nodes to ensure that its cardinality is O(n/δ): a
node v in T is black if we simultaneously have that (i) its depth in T is a multiple of δ, and
(ii) the subtree of T rooted in v has height at least δ − 1. A node v in T is white if it is not
black. We notice that for each black v node in T there are at least δ distinct nodes (i.e., all
the vertices in the path from v to any vertex having depth δ − 1 in the subtree of T rooted
at v), thus implying that the total number of black nodes in T is at most n/δ.

If we define a relation of parenthood for the black nodes of T , we can define a new black
tree Q in which each vertex v is associated with black vertex v of T . The parent of v in Q is
the vertex u corresponding to the lowest black proper ancestor u of v in T . See Figure 2 for
an example.

Our data structure stores the (colored) tree T , as described in the following, along with
an additional data structure DQ that is able to answer LA queries on Q. The tree T is stored
as an array of records, where each record is associated with a vertex of T , occupies Θ(log n)
bits, and is stored in a single memory word. The memory word associated with a node v

stores:
a pointer pv to parent(v), if any. If v is the root of T then pv = null;
a pointer qv to the corresponding node v in Q, if any. If no such node exists, i.e. if v is
white, then qv = null.

Moreover we maintain, for each vertex v of Q, a pointer to the corresponding vertex v

of T as satellite data. The data structure DQ is the resilient version of any (non-resilient)
data structure that is capable of answering LA queries on static trees in constant time and
requires linear space (see, e.g., the data structure in [3]).

As we observed before, any data structure can be made resilient with a multiplicative
Θ(δ) blow-up in its time and space complexities. In our case, since the number of vertices in
Q is O(n/δ), the final space required to store DQ is O(n) and the query time becomes O(δ).
Notice that, in spite of the (at most δ) memory corruptions performed by the adversary,
the data structure DQ always returns the correct answer to all possible LA queries on Q.
We will denote by LAQ(v, k) the level-ancestor query on Q, which returns the vertex of T

corresponding to the k-parent of v in Q.

The resilient level-ancestor query. In this section we show how to implement our resilient
LA query. We start by defining a routine that will be useful in the sequel: if v is a node of T

and i is a non-negative integer, we denote by climb(v, i) a procedure that returns the vertex
reached by a walk on T that starts from v and iteratively moves to the parent of the current
vertex i times. When the procedure encounters a vertex u with pointer pu = null that has



L. Gualà, S. Leucci, and I. Ziccardi 66:7
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v′

u′
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u′
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bk′/δcδ
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Figure 2 Left: A static tree T that has been colored according to the scheme in Section 3 for
δ = 3. Right: the corresponding black tree Q. We also show the path climbed while answering the
query LA(v, k) with k = 8. In this case d = 3, ⌊k′/δ⌋ = 1 and krest = 2. Notice how Q is used to
quickly reach u′ from v′.

to be followed, climb(v, i) reports that the root has been reached. Notice that climb(v, i)
requires O(i) time and, whenever no corrupted vertices are encountered during the walk, it
correctly returns the i-parent of v. Although the climb(·, ·) procedure could immediately be
used to answer an LA query, doing so require Ω(n) time in the worst case. To improve the
query time we use the data structure DQ described above and we distinguish between short
and long LA(v, k) queries depending on the value of k.

Short queries, i.e., queries LA(v, k) with k ≤ 2δ, are handled by simply invoking climb(v, k)
and, from the above observation, it follows that this is a resilient query. For longer queries
the idea is that of locating a nearby black ancestor of v, performing an LAQ query on Q to
quickly reach a black descendant u′ of the k-parent w of v such that d(u′, w) ≤ δ, and finally
using the climb procedure once more to reach w from u′. See Algorithm 1.

During the execution of our resilient query algorithm we always ensure that all followed
pointers are valid. Since we are dealing with a static tree T , we can handle invalid pointers
simply by halting the whole query procedure and reporting an error. A slightly more
sophisticated handling of invalid pointers will be used to tackle the dynamic case. An
example LA query is given in Figure 2.

The correctness of the above algorithm immediately follows from the fact that, when
no vertex between v and the k-th ancestor v is corrupted, v must have a black ancestor at
distance at most 2δ and from the fact that the replication strategy ensures that all queries
on Q are always answered correctly.4

To show that Algorithm 1 answers an LA query in O(δ) time, we notice that the climb
operations in lines 1 and 8 require time O(δ), and so does line 2. Moreover, the query to DQ

(line 6) can also be performed in O(δ) time as discussed above.

4 LA queries in dynamic trees

In this section we provide our main result for LA queries. In the full version of the paper, we
show how our ideas can be extended to also handle weighted LA, BVQ, and LCA queries.

4 Here the distance of 2δ is essentially tight as it can be seen, e.g., by considering a tree T consisting of a
path of length 2δ − 2 rooted in one of its endpoints. The only black vertex of T is the root. Notice how
the vertex u at depth δ is white since the subtree of T rooted in u has height δ − 2.
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4.1 Description of the Data Structure
Some of the key ideas behind our data structure for LA queries in dynamic trees are extensions
of the ones used for static case. Namely, the nodes of T are colored with either black or
white, the set of black nodes will have size O(n/δ), and it will correspond to the vertex set of
an auxiliary black forest Q. Ideally, in absence of corruptions, Q is exactly the black tree as
defined in the static case, namely the tree in which the parent of each (black) node v in Q is
the vertex u associated with the lowest black proper ancestor u of v in T .

Moreover, we would still like the vertices of T having a depth that is a multiple of
δ to be colored black, similarly to the static case. However, we can no longer afford to
maintain such a rigid coloring scheme since the tree is now being dynamically constructed
via successive AddLeaf operations, and the adversary’s corruptions might cause vertices to
become miscolored. We will however ensure that such a regular coloring pattern will be
followed by the portions of T that are sufficiently distant from the adversary’s corruptions.
This will allow us to answer LA queries using a strategy similar to the one employed for the
static case.

Our data structure stores the following information. The record of a node v maintains, in
addition to the pointer pv to its parent and to the pointer qv to the corresponding node v in
Q (if any), an additional field flagv. Intuitively, flagv can be thought of as a Boolean value
in {⊥, ⊤}. The initial value of a flag is ⊥ and we say that the flag is unspent. Spending a
flag means setting it to ⊤. We will spend these flags to “pay” for the creation of new black
nodes. Spent flags will also signal the presence of a nearby black ancestor.

For technical reasons, we also allow an unspent flag flagv to be additionally annotated
with a pair (x, i) where x is (the name of) a node and i is an integer. In practice this amounts
to setting flagv to (x, i), which is logically interpreted as ⊥. Such an annotated flag is still
unspent. This provides an additional safeguard against corruptions that may occur during
the execution of our leaf insertion algorithm (see Section 4.2).

The node records are stored into a dynamic array A, whose current size n is kept in the
safe region of memory. This array supports both elements insertions and random accesses in
constant worst-case time.5

The pointer pv is then the index (in {0, . . . , n − 1}) of the record corresponding to the
parent of v in A. Initially, A only contains the root r of T at index 0. Moreover, we will
always store new leaves at the end of A so that, in absence of corruptions, the index of a
vertex v in A is always smaller than the index of any of its descendants. As a consequence,
whenever we observe the index stored in pointer pv is greater than or equal to the index of v

itself, we know that v must have been corrupted by the adversary. We find convenient to
use the above fact to simplify the handling of corrupted vertices: whenever we encounter an
invalid pointer pv ≥ v we treat it as being equal to 0, i.e., an invalid pointer pv always refers
to the root r of T . This rules also applies to any read pointer, including those accessed by
the climb(·, ·) procedure already defined in Section 3.

Then the (possibly corrupted) contents of A, at any point in time, induce a noisy tree T
whose root is r, and the parent of each vertex v ̸= r is the vertex pointed by pv according to
the above rule. Clearly, if no corruptions occur T and T coincide.

5 The standard textbook technique which handles insertions into already full array by moving the current
elements into a new array of double capacity already achieves O(1) amortized time per insertion. With
some additional technical care, the above bound also holds in the worst case. The idea is to distribute
the work needed to move elements into the new array over the insertions operations that would cause
the current array to become full (it suffices to move 2 elements per insertion). Using this scheme, at
any point in time, each element is stored into a single memory word.
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Moreover, we store a resilient data structure DQ that, in addition to the already-defined
LAQ(v, k) query, also supports the following additional operations in O(δ) time.
NewTreeQ(v): Given a vertex v of T , it creates a new tree in the forest Q consisting of a

single vertex v associated to v, and it returns a pointer to v.
AddLeafQ(u, v): Given a vertex u of Q, and a vertex v of T , it creates a new vertex v

associated to v as a children of u in Q. Finally, it returns a pointer to the newly added
vertex v.

This data structure DQ is the resilient version, obtained using the replication strategy, of
the linear-size data structure that supports both the AddLeaf operation and LA queries in
constant time [2]. Notice that DQ always returns the correct answer to all possible LA queries
on Q. Moreover, once we ensure that the number of vertices that become black (and hence
the size of Q) is always O(n/δ), we have that the (resilient) data structure DQ requires O(n)
space (this will be shown formally in the proof Theorem 6).

4.2 The AddLeaf operation
Before describing our implementation of the AddLeaf operation, it is useful to give some
additional definitions. We say that v is near-a-black in a tree T̃ if there exists some
k ∈ {1, 2, . . . , δ} such that the k-parent of v in T̃ is black. Moreover, we say that v is
black-free in T̃ if no k-parent of v in T̃ for k ∈ {1, 2, . . . , 2δ − 1} is black.

The procedure AddLeaf(xpar) takes a vertex xpar of T as input and adds a new child x

of xpar to T (see Algorithm 2). The record corresponding to new vertex x is appended at
the end of the dynamic array A. For simplicity we will assume that, during the execution
of AddLeaf(xpar), the record of vertex x is never corrupted by the adversary. This can be
guaranteed without loss of generality since a (temporary) record for x can be kept in safe
memory and copied back to A (which is stored in the unreliable main memory) at the end of
the procedure.

Our algorithm consists of a first discovery phase and possibly of a second additional
execution phase. The aim of the discovery phase is that of exploring the current tree by
climbing up to 3δ − 1 levels of T from x while gathering information for the second phase. In
order to do so, Algorithm 2 climbs δ levels of T from the newly inserted node x, reaching a
vertex y, and checks during the process that all the flags associated with the traversed nodes
are unspent. If any of these flags is spent, we immediately return from the AddLeaf(xpar)
procedure without performing the execution phase. Otherwise, the algorithm climbs 2δ − 1
further levels from y to determine whether y appears to be black-free or near-a-black. In
the latter case, it keeps track of the distance ℓ from y to the closest black proper ancestor
y′ of y that is encountered. If y is neither black-free nor near-a-black, we return from the
AddLeaf(xpar) procedure (without performing the execution phase), otherwise we move on to
the execution phase. A technical detail of the discovery phase is the following: while climbing
from xpar to y, the generic i-th unspent flag is annotated with (x, i) (possibly overwriting
any existing previous annotation) and will be checked by the execution phase. Recall that
these flags remain unspent.

The execution phase once again climbs δ levels of T staring from x, with the goal of
changing the color of an existing white vertex to black (hence creating a corresponding black
node in Q). This is guaranteed to happen unless the annotations of the unspent flags set
during the discovery phase reveal that one such vertex has been corrupted in the meantime.
The creation of a new black vertex in Q is “paid for” by spending these δ unspent flags
(i.e., setting them to ⊤). The position of the new black vertex depends on whether y was
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Algorithm 2 AddLeaf(xpar).

1 Add a new record x at the end of A; px ← xpar; flagx ← ⊥; qx ← null;
// Discovery Phase

2 y ← x; // Check the flags of the lowest δ proper ancestors of x

3 for i = 1, . . . , δ do
4 if y = r then return x;
5 y ← py;
6 if flagy = ⊤ then return x; // Return immediately if a spent flag is found
7 flagy ← (x, i); // Annotate flagy

// Check whether y is near-a-black.
// ℓ will be the distance to the closest proper black ancestor y′ of y, if any

8 y′ ← y; ℓ← 0; near_black← false;
9 while ℓ < δ and y′ ̸= r and near_black= false do

10 y′ ← py′ ; ℓ← ℓ + 1;
11 if y′ is black then near_black ← true;

// If y is not near-a-black, check whether it is black-free
12 if near_black = false then
13 z ← y′;
14 for δ − 1 times do
15 if z = r then break;
16 z ← pz;
17 if z is black then return x;

// Execution Phase. (Node y was either near-a-black or black-free)
// Acquire the flags of the lowest δ proper ancestors of x

18 z ← x;
19 for i = 1, . . . , δ do
20 if z = r then return x;
21 z ← pz;
22 if flagz ̸= (x, i) then return x; // Check the annotation of flagz

23 if near_black = true and i = ℓ then x′ ← z; // y′ is the δ-parent of x′

24 flagz ← ⊤; // Spend flagz

25 if near_black = true then
26 qx′ ← AddLeafQ(qy′ , x′);
27 else
28 qy ← NewTreeQ(y);
29 return x;

near-a-black or black-free. In the former case the vertex y′ discovered in the first phase will
be the δ-parent of the new black vertex x′, and a new leaf x′ is appended to y′ in Q. In the
latter case, y will become black and a new tree containing a single vertex y is added to Q.
Notice that, if a vertex b is colored black during the AddLeaf operation, the execution phase
always spends flagb.

4.3 Analysis of the data structure
In this section we analyze our data structure. The core of the analysis is to show that the
AddLeaf operation in Algorithm 2 guarantees that in T , if we are sufficiently distant from
all the corrupted vertices, the black nodes are regularly distributed. The formal property
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Figure 3 An example showing that an uncorrupted path π (depicted in blue) can exhibit an
irregular pattern of black vertices (d). Situation (a) can be reached when the adversary corrupts r

by setting flagr = ⊤ before the insertions of the other nodes take place. To obtain (b), the adversary
can set flagu = flagv = ⊤, thus corrupting u and v before u and v’s descendants are inserted. If the
adversary sets flagu and flagv back to ⊥ before x, y, and z are inserted (in this order), we arrive in
configuration (c) in which b1, b2, and b3 have been colored black. Inserting the remaining vertices
yields (d).

is stated in Lemma 5. We first need to prove auxiliary properties. In Figure 3 we give an
example that shows that, even in an uncorrupted path, if we are not sufficiently distant from
corruptions, the black nodes can form irregular patterns in the path.

The following lemma shows that if the flag of a vertex w appears to be spent, then
either there must be a nearby black ancestor of w, unless a nearby corruption occurred. See
Figure 4 (a).

▶ Lemma 1. Let w and z be two nodes such that z is the δ-parent of w in T and such that
no node in the path π from z to w in T has been corrupted. If flagw = ⊤, then there exists a
black node in π(z : w].

Proof. Let x be the node whose insertion in T caused flagw to be set to ⊤. Moreover, let P

be the path of length δ from x to y traversed in the discovery phase of Algorithm 2 in lines
2–7. Similarly, let P ′ be the path from x to y traversed in the execution phase of Algorithm 2
in lines 18–24.

Clearly, P ′ contains w. Moreover, if w is the i-th node traversed in P ′, then flagw = (x, i)
in the execution phase and (since w is uncorrupted), flagw was set to (x, i) in the discovery
phase. As a consequence, w is also the i-th node in P and P [y : w] = P ′[y : w]. Hence, y is
at distance at most δ − 1 from w in P (and in T ) showing that z is a proper ancestor of y.
Therefore all nodes in P ′[y : w] are uncorrupted, and the loop in in lines 18–24 of Algorithm 2
is executed to completion. This ensures that the execution phase will color a node b black. We
distinguish two cases depending on whether y was observed to be near-a-black or black-free
in the discovery phase.

If y is black-free, then b is exactly y and the claim follows. Otherwise, y is near-a-black
and the discovery phase computed the distance ℓ between x and its closest black proper
ancestor. If ℓ ≥ i, then Algorithm 2 colors a vertex in P (z : w] = π(z : w] black. Otherwise,
if ℓ < i, the discovery phase observed that the ℓ-parent y′ of y was black. Since ℓ < δ, y′ lies
in π(z : y]. ◀

Next lemma shows that an uncorrupted path of length at least 3δ must contain a black
vertex.
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Figure 4 (a) Graphical representation of the proof of Lemma 1, for δ = 5. (b), (c), (d):
Representations of the statements of Lemma 3, Lemma 4, and Lemma 5, respectively.

▶ Lemma 2. Let x and z be nodes in T such that z is the 3δ-parent of x in T and such that
no node in the path π from x to z in T has been corrupted. Then, there exists a black node
w in π[z : x).

Proof. Since no vertex in π has been corrupted, the path π must also belong to the noisy
tree T . In the rest of the proof we assume that π[z : x) contains no black nodes and show
that this leads to a contradiction.

Let y the δ-parent of x in π and let tx be the time at which the AddLeaf(·) operation that
adds x to T is invoked. We know that, at time tx, there exists no node w in π[y : x) such
that flagw = ⊤ since otherwise Lemma 1 would immediately imply the existence of a black
node in π[z : w] contradicting the initial assumption. Then, the invocation of Algorithm 2
that inserts x also performs its execution phase.

Moreover, y must be black-free at time tx, and hence it is colored black during such
a phase (refer to the pseudocode of Algorithm 2, and recall that a black-free node is not
near-a-black). Since y is not corrupted it must still be black, leading to a contradiction. ◀

Recall that we would like each uncorrupted path to contain a black vertex every δ levels.
Consider an uncorrupted path π of length between δ and 2δ with a single black vertex z on
top. Then, the vertex at distance δ from z is “overdue” to become black. Next lemma shows
that all flags associated with descendants of the overdue vertex in π must be unspent. In
some sense, the data structure is preparing to recolor the missing black vertex. This will
happen once δ unspent flags are available. See Figure 4 (b).

▶ Lemma 3. Let x and z be two nodes in T such that: z is an ancestor of x in T , no node in
the path π from z to x in T has been corrupted, and δ ≤ |π| < 2δ. We have that, immediately
after vertex x is inserted, if the only black vertex in π is z then all the nodes w in π at
distance at least δ from z in T are such that flagw ̸= ⊤.

Proof. Since no vertex in π has been corrupted, the path π must also belong to the noisy tree
T . In what follows, we prove that, immediately after vertex x is inserted, the existence of a
node w between x and z in π such that dT (w, z) ≥ δ and flagw = ⊤ leads to a contradiction.
Indeed, since flagw = ⊤, Lemma 1 implies the existence of a black node in π(z : w], and this
contradicts the fact that z is the only black node in π[z : x]. ◀
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The next technical lemma is about the timing at which vertices of a long uncorrupted
path become black. This will be instrumental to prove Lemma 5. See Figure 4 (c).

▶ Lemma 4. Let u and v be two nodes in T such that u is an ancestor of v, dT (u, v) ≥ 3δ

and no node in the path π from v to u in T has been corrupted. Let y (resp. x) be the node
in π at distance 2δ (resp. 3δ) from u in π. Let t′

v (resp. t′
x) be the time immediately after

the vertex v (resp. x) is inserted. If the node y is black at time t′
v, then there exists a node

w′ in π[y : x] that is black at time t′
x.

Proof. Since no vertex in π has been corrupted, the path π must also belong to the noisy
tree T . In the rest of the proof we assume towards a contradiction that y is black at time t′

v,
yet there are no black nodes in π[y : x] at time t′

x.
Let z be the δ-parent of y in π. Let ty be the time immediately before y is colored black.

At time ty there are only two possible scenarios:
Scenario 1: At time ty, the node y is black-free;
Scenario 2: At time ty, the node z is the only black node in T in π[z : y].

We denote with tx the time immediately before vertex x is inserted in T and we consider
the two scenarios separately (notice that ty refers to a later time than tx). We split scenario 1
into two additional subcases:
Subcase 1.1: at time tx all the nodes w in π[y : x) are such that flagw ̸= ⊤;
Subcase 1.2: at time tx there is a node w in π[y : x) such that flagw = ⊤.

We start considering subcase 1.1. Since ty follows tx, and y is black-free at time ty, vertex
y must also be black-free at time tx. Then, during the insertion of x, Algorithm 2 colors y

black yielding a contradiction.
We now analyze subcase 1.2. Since flagw = ⊤, Lemma 1 implies the existence of a black

node b in π[w, z) and, since we assume that there are no black nodes in π[y : x], b is in
π(z : y). This shows that y cannot be black-free at time ty and contradicts the hypothesis of
scenario 1.1.

We now consider Scenario 2, which we subdivide into three subcases:
Subcase 2.1. at time tx all the nodes w in π[y : x) are such that flagw ̸= ⊤ and z is white;
Subcase 2.2. at time tx all the nodes w in π[y : x) are such that flagw ̸= ⊤ and z is black;
Subcase 2.3. at time tx there is a node w in π[y : x) such that flagw = ⊤.

We start by handling subcase 2.1. For the initial assumption, and for definition of this
case, we have that there are no black nodes in π[z : x] at time tx. Since z is colored black
at some time tz following tx, we know that the δ − 1 nodes ancestor of z are not black at
time tx, since this is incompatible with the fact that z will become black. Since π is not
corrupted, we know that y is black-free in T at time tx. This implies that y is colored black
during the insertion of x in T , and hence y is black at time t′

x contradicting our hypotheses.
We proceed by analyzing subcase 2.2. At time ty all nodes in π[z : y], except for z, are

white and hence the same is true at time tx. Since z is black at time tx and flagw ̸= ⊤ for
all nodes w in π[y : x), the AddLeaf procedure adding x will color y black. Hence y is black
at time t′

x. This is a contradiction.
We now consider subcase 2.3. Together with Lemma 1, flagw = ⊤ implies the existence

of a black node b in π(z : w]. Since we assume all the nodes in π[y : x] to be white, the black
node b is in π(z, y), contradicting the hypothesis of scenario 2. ◀

Now, we are ready to prove our main property about the pattern of black vertices discussed
at the beginning of this section. See Figure 4 (d).
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▶ Lemma 5. Let u and v be two nodes in T such that u is an ancestor of v, the distance
between u and v is at least 7δ, and no node in the path π from u to v has been corrupted.
Let ũ be the node at distance 5δ from u in π and let ṽ be the node at distance δ from v in π.
Then there is a black node w∗ in π[ũ : v] such that:

The distance between w∗ and ũ is at most δ.
A generic node in π[w∗ : ṽ] at distance d from w∗ is black iff d is a multiple of δ. Moreover,
if w is a black vertex in π(w∗, ṽ] and w is the associated black vertex in Q, the parent of
w in Q corresponds to the δ-parent of w in π.

Proof. Since no vertex in π has been corrupted, the path π must also belong to the noisy
tree T . Then, Lemma 2 ensures that, at any time following the insertion of ũ in T , there
exists a black ancestor y of ũ such that dπ(y, ũ) ≤ 3δ. Such a vertex y is the δ-parent of
some vertex x in π. We denote by u′ the 2δ-parent of y in π and by t′

x the time immediately
after x is inserted. Since the length of π[u′ : v] is at least 3δ and y must be black when v is
inserted, we can invoke Lemma 4 to conclude that there exists a node in π[y : x] that is black
at time t′

x. We choose w0 as the closest ancestor of x that is black at time t′
x. Moreover, for

i = 1, . . . , ⌊|π[w0 : v]|/δ⌋ we let wi be the unique vertex at distance δi from w0 in π[w0, v].
Finally, let t′

i be the time immediately after the insertion of wi into T .
We will prove by induction on i ≥ 1 that (i) at time t′

i, all vertices w0, w1, . . . , wi−1 are
black; (ii) from time t′

i onward, all vertices in π[w0, wi] that do not belong to {w0, w1, . . . , wi}
are white.

We start by considering the base case i = 1. Regarding (i), we know that w0 is black at
time t′

x, and hence w0 is also black at time t′
1 (which cannot precede t′

x). Regarding (ii), by
our choice of w0 we know that at time t′

x, the only black vertex in π[w0, x] is w0. Moreover,
Algorithm 2 can only color a node b black if none of the δ − 1 lowest proper ancestors of b is
black. This implies that no vertex in π(w0, w1) will be colored black.

We now assume that the claim is true up to i ≥ 1 and prove it for i + 1. We first argue
that the following property holds: (*) at time t′

i+1 all vertices in π(wi : wi+1) are white.
Indeed, suppose towards a contradiction that there exists some black vertex b in π(wi : wi+1)
at time t′

i+1. When b was colored black, either its δ-parent b′ was black or b was black-free. In
the former case we immediately have a contradiction since b′ must be a vertex of π(wi−1, wi)
but all such vertices are white by the induction hypothesis. In the latter case b must have
been colored black after the insertion of wi but, by the induction hypothesis, we know that
from time t′

i onwards wi−1 is black. This contradicts the hypothesis that b was black-free.
Next, we prove (i). Suppose towards a contradiction that wi is white at time t′

i+1. Then,
using (*) and the induction hypothesis, we can invoke Lemma 3 on the subpath of π between
wi−1 and the parent of wi+1 to conclude that all nodes w in π[wi : wi+1) are such that
flagw ̸= ⊤. Hence, during the insertion of wi+1, Algorithm 2 reaches line 8 and checks
whether wi is near-a-black. Since this is indeed the case, a new black vertex is created in
π[wi : wi+1), providing the sought contradiction. Let wi (resp. wi−1) be the vertex in Q

associated with wi (resp. wi−1). Notice that this argument also shows that, at time t′
i+1,

wi is a child of wi−1 in Q since wi becomes black after time t′
i and not later than time t′

i+1,
when wi−1 was already black.

To prove (ii) it suffices to notice that, by inductive hypothesis, we only need to argue
about the nodes in π(wi : wi+1). From (*) we know that these nodes are white at time t′

i+1,
while (i) ensures that wi is black at time t′

i+1. Then, a similar argument to the one used in
the base case shows that Algorithm 2 will never color any node in π(wi : wi+1) black (as
long as the nodes in π remain uncorrupted). This concludes the proof by induction.

Let w′ be the node at distance δ from ũ in π[ũ : v]. Notice that w0 belongs to π[u : w′].
If w0 lies in π(ũ : w′], we can choose w∗ = w0. Otherwise, w0 is an ancestor of ũ and, from
(i) and (ii), there is exactly one black vertex b in π(ũ : w′] and we choose w∗ = b. ◀
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Algorithm 3 Answers a level ancestor query LA(v, k) in dynamic trees.

1 if k ≤ 7δ then
2 return climb(v, k);

3 ṽ ← climb(v, δ);
4 Climb up the tree T from ṽ for up to δ nodes searching a black node;
5 if the previous procedure did not find a black node then
6 return error;

7 v′ ← a black node found in the previous procedure;
8 d← distance between v′ and v;
9 k′ ← k − d− 5δ;

10 u′ ← LAQ(qv′ , ⌊k′/δ⌋);
11 krest ← k′ − ⌊k′/δ⌋ · δ + 5δ;
12 return climb(u′, krest) ;

The above lemma suggests a natural query algorithm. The query procedure is similar
to the one for static case. When k ≤ 7δ we climb in T the nodes of the path from v to the
k-parent of v in a trivial way. Otherwise, Lemma 5 ensures that if no vertex in the path
P from v to its level ancestor in T was corrupted by the adversary, then every other δ-th
vertex of P is colored black except, possibly, for an initial subpath of length δ and for a
trailing subpath of length 5δ. The query procedure explicitly “climbs” these portions of P

and queries DQ to quickly skip over its remaining “middle” part. The pseudo-code is given
in Algorithm 3.
We are now ready to prove the main theorem of this section.

▶ Theorem 6. Our data structure requires linear space, supports the AddLeaf operation in
O(δ) worst-case time, and can answer resilient LA queries in O(δ) worst-case time.

Proof. The correctness of the query immediately follows from Lemma 5. Moreover, the time
required to perform an AddLeaf or an LA operation is O(δ) since in both cases O(δ) vertices
of T are visited and a single O(δ)-time operation involving DQ is performed.

We now discuss the size of our data structure. Clearly, the space used to store the vector
A of all records is O(n). We only need to argue about the size of DQ. Recall that DQ is the
resilient version, obtained using the replication strategy, of the data structure that requires
linear space, takes constant time to answer each LA query and to perform each AddLeaf
operation [2]. In order to show that DQ requires O(n) space we will argue that the number
of black vertices is O( n

δ ). As consequence we have that the size of DQ is O(n).
To bound the number of vertices in Q, notice that in order to add a new vertex to Q we

need to spend δ flags that were previously unspent. Moreover, a spent flag never becomes
unspent unless the adversary corrupts the record of the corresponding node (by using one of
its δ corruptions). As a consequence the nodes in Q are at most (n + δ)/δ = O(n/δ). ◀

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. On finding lowest common ancestors

in trees. SIAM J. Comput., 5(1):115–132, 1976. doi:10.1137/0205011.
2 Stephen Alstrup and Jacob Holm. Improved algorithms for finding level ancestors in dynamic

trees. In Proceedings of the 27th International Colloquium on Automata, Languages and
Programming, ICALP ’00, pages 73–84, Berlin, Heidelberg, 2000. Springer-Verlag.

3 Michael Bender and Martin Farach-Colton. The level ancestor problem simplified. Theor.
Comput. Sci., 321:5–12, January 2004.

ISAAC 2021

https://doi.org/10.1137/0205011


66:16 Resilient Level Ancestors, Bottleneck, and LCA Queries in Dynamic Trees

4 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000. doi:
10.1007/10719839_9.

5 Omer Berkman and Uzi Vishkin. Finding level-ancestors in trees. J. Comput. Syst. Sci.,
48(2):214–230, April 1994. doi:10.1016/S0022-0000(05)80002-9.

6 Robert S. Boyer and J. Strother Moore. MJRTY: A fast majority vote algorithm. In Robert S.
Boyer, editor, Automated Reasoning: Essays in Honor of Woody Bledsoe, Automated Reasoning
Series, pages 105–118. Kluwer Academic Publishers, 1991.

7 Gerth Stølting Brodal, Pooya Davoodi, and S. Srinivasa Rao. Path minima queries in dynamic
weighted trees. In Frank Dehne, John Iacono, and Jörg-Rüdiger Sack, editors, Algorithms and
Data Structures, pages 290–301, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

8 Gerth Stølting Brodal, Rolf Fagerberg, Irene Finocchi, Fabrizio Grandoni, Giuseppe F. Italiano,
Allan Grønlund Jørgensen, Gabriel Moruz, and Thomas Mølhave. Optimal resilient dynamic
dictionaries. In Lars Arge, Michael Hoffmann, and Emo Welzl, editors, Algorithms – ESA
2007, pages 347–358, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

9 Xi Chen, Sivakanth Gopi, Jieming Mao, and Jon Schneider. Competitive analysis of the
top-K ranking problem. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 1245–1264. SIAM, 2017. doi:10.1137/1.9781611974782.81.

10 Ferdinando Cicalese. Fault-Tolerant Search Algorithms – Reliable Computation with Unreliable
Information. Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2013.
doi:10.1007/978-3-642-17327-1.

11 Richard Cole and Ramesh Hariharan. Dynamic LCA queries on trees. SIAM J. Comput.,
34(4):894–923, 2005. doi:10.1137/S0097539700370539.

12 Erik D. Demaine, Gad M. Landau, and Oren Weimann. On cartesian trees and range minimum
queries. Algorithmica, 68(3):610–625, 2014. doi:10.1007/s00453-012-9683-x.

13 Dariusz Dereniowski, Aleksander Łukasiewicz, and Przemysław Uznański. An efficient noisy
binary search in graphs via median approximation. In Paola Flocchini and Lucia Moura, editors,
Combinatorial Algorithms, pages 265–281, Cham, 2021. Springer International Publishing.

14 Paul F. Dietz. Finding level-ancestors in dynamic trees. In Frank Dehne, Jörg-Rüdiger Sack,
and Nicola Santoro, editors, Algorithms and Data Structures, pages 32–40, Berlin, Heidelberg,
1991. Springer Berlin Heidelberg.

15 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy informa-
tion. SIAM J. Comput., 23(5):1001–1018, 1994. doi:10.1137/S0097539791195877.

16 Irene Finocchi, Fabrizio Grandoni, and Giuseppe Italiano. Resilient dictionaries. ACM
Transactions on Algorithms, 6, December 2009. doi:10.1145/1644015.1644016.

17 Irene Finocchi, Fabrizio Grandoni, and Giuseppe F. Italiano. Resilient search trees. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’07, pages 547–553, USA, 2007. Society for Industrial and Applied Mathematics.

18 Irene Finocchi, Fabrizio Grandoni, and Giuseppe F. Italiano. Optimal resilient sorting and
searching in the presence of memory faults. Theor. Comput. Sci., 410(44):4457–4470, 2009.
doi:10.1016/j.tcs.2009.07.026.

19 Irene Finocchi and Giuseppe F. Italiano. Sorting and searching in the presence of memory
faults (without redundancy). In Proceedings of the Thirty-Sixth Annual ACM Symposium on
Theory of Computing, STOC ’04, pages 101–110, New York, NY, USA, 2004. Association for
Computing Machinery. doi:10.1145/1007352.1007375.

20 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, and Paolo Penna. Optimal sorting with
persistent comparison errors. In Michael A. Bender, Ola Svensson, and Grzegorz Herman,
editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019,
Munich/Garching, Germany, volume 144 of LIPIcs, pages 49:1–49:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.49.

https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/10719839_9
https://doi.org/10.1016/S0022-0000(05)80002-9
https://doi.org/10.1137/1.9781611974782.81
https://doi.org/10.1007/978-3-642-17327-1
https://doi.org/10.1137/S0097539700370539
https://doi.org/10.1007/s00453-012-9683-x
https://doi.org/10.1137/S0097539791195877
https://doi.org/10.1145/1644015.1644016
https://doi.org/10.1016/j.tcs.2009.07.026
https://doi.org/10.1145/1007352.1007375
https://doi.org/10.4230/LIPIcs.ESA.2019.49


L. Gualà, S. Leucci, and I. Ziccardi 66:17

21 Barbara Geissmann, Stefano Leucci, Chih-Hung Liu, Paolo Penna, and Guido Proietti. Dual-
mode greedy algorithms can save energy. In Pinyan Lu and Guochuan Zhang, editors,
30th International Symposium on Algorithms and Computation, ISAAC 2019, December 8-
11, 2019, Shanghai University of Finance and Economics, Shanghai, China, volume 149 of
LIPIcs, pages 64:1–64:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ISAAC.2019.64.

22 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

23 Giuseppe F. Italiano. Resilient algorithms and data structures. In Tiziana Calamoneri and
Josep Díaz, editors, Algorithms and Complexity, 7th International Conference, CIAC 2010,
Rome, Italy, May 26-28, 2010. Proceedings, volume 6078 of Lecture Notes in Computer Science,
pages 13–24. Springer, 2010. doi:10.1007/978-3-642-13073-1_3.

24 Allan Grønlund Jørgensen, Gabriel Moruz, and Thomas Mølhave. Priority queues resilient
to memory faults. In Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Norbert Zeh, editors,
Proceedings of the 10th International Workshop on Algorithms and Data Structures (WADS’07),
volume 4619 of Lecture Notes in Computer Science, pages 127–138. Springer, 2007. doi:
10.1007/978-3-540-73951-7_12.

25 Stefano Leucci, Chih-Hung Liu, and Simon Meierhans. Resilient dictionaries for randomly
unreliable memory. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th
Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garch-
ing, Germany, volume 144 of LIPIcs, pages 70:1–70:16. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.70.

26 Andrzej Pelc. Searching games with errors – fifty years of coping with liars. Theor. Comput.
Sci., 270(1-2):71–109, 2002. doi:10.1016/S0304-3975(01)00303-6.

27 Umberto Ferraro Petrillo, Fabrizio Grandoni, and Giuseppe F. Italiano. Data structures
resilient to memory faults: An experimental study of dictionaries. ACM J. Exp. Algorithmics,
18, 2013. doi:10.1145/2444016.2444022.

ISAAC 2021

https://doi.org/10.4230/LIPIcs.ISAAC.2019.64
https://doi.org/10.4230/LIPIcs.ISAAC.2019.64
https://doi.org/10.1137/0213024
https://doi.org/10.1007/978-3-642-13073-1_3
https://doi.org/10.1007/978-3-540-73951-7_12
https://doi.org/10.1007/978-3-540-73951-7_12
https://doi.org/10.4230/LIPIcs.ESA.2019.70
https://doi.org/10.1016/S0304-3975(01)00303-6
https://doi.org/10.1145/2444016.2444022




Computing Shapley Values for Mean Width in 3-D
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Abstract
The Shapley value is a classical concept from game theory, which is used to evaluate the importance
of a player in a cooperative setting. Assuming that players are inserted in a uniformly random
order, the Shapley value of a player p is the expected increase in the value of the characteristic
function when p is inserted. Cabello and Chan (SoCG 2019) recently showed how to adapt this to a
geometric context on planar point sets. For example, when the characteristic function is the area of
the convex hull, the Shapley value of a point is the average amount by which the convex-hull area
increases when this point is added to the set. Shapley values can be viewed as an indication of the
relative importance/impact of a point on the function of interest.

In this paper, we present an efficient algorithm for computing Shapley values in 3-dimensional
space, where the function of interest is the mean width of the point set. Our algorithm runs in
O(n3 log2 n) time and O(n) space. This result can be generalized to any point set in d-dimensional
space (d ≥ 3) to compute the Shapley values for the mean volume of the convex hull projected onto
a uniformly random (d− 2)-subspace in O(nd log2 n) time and O(n) space. These results are based
on a new data structure for a dynamic variant of the convolution problem, which is of independent
interest. Our data structure supports incremental modifications to n-element vectors (including
cyclical rotation by one position). We show that n operations can be executed in O(n log2 n) time
and O(n) space.
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1 Introduction

Given a point set P in d-dimensional space, many different functions can be applied to extract
information about the set’s geometric structure. Often, this involves properties of the convex
hull of the set, such as its surface area and mean width. In the context of approximation,
a natural question involves the “impact” that any given point of P has on the measure
of interest. One method for modeling the notion of impact arises from the concept of the
Shapley value (defined below) in the context of cooperative games in game theory. In this
paper, we will present an efficient algorithm to compute the Shapley values for points in 3-D
where the payoff of a point set is defined as the mean width of its convex hull.

Formally, a coalition game consists of a set of players N and a characteristic function
v : 2N → R, where v(∅) = 0. In our setting, we take the players to be a point set N ⊂ R3

and consider the characteristic function v(Q) = w(conv(Q)) for Q ⊂ N , where conv(Q)
denotes the convex hull of Q, and w(conv(Q)) denotes the mean width of conv(Q). (Formal
definitions will be given in Section 2.)
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To define Shapley values, let π be a uniformly random permutation of N , and PN (π, i)
be the set of players in N that appear before player i in the permutation π. The Shapley
value of player i ∈ N is defined to be the expected increase in v induced by the addition of
player i, that is,

ϕ(i) = Eπ[v(PN (π, i) ∪ {i}) − v(PN (π, i))]. (1)

Thus, the Shapley value represents the expected marginal contribution of i to the objective
function over all permutations of N .

There are wide applications of Shapley values. A survey by Winter [27] and a book
dedicated to this topic [24] provide insights on how the concept can be interpreted and applied
in multiple ways, such as utility of players, allocation of resources of the grand coalition and
measure of power in a voting system. Moreover, the values can be characterized axiomatically,
making it the only natural quantity that satisfies certain properties. More details can be
found in standard game theory textbooks ([14], [8, Chapter 5], [22, Section 9.4]).

In convex geometry and measure theory, intrinsic volumes are a key concept to characterize
the “size” and “shape” of a convex body regardless of the translation and rotation in its
underlying space. For example, Steiner’s formula [12] relates intrinsic volumes to the volume
of the Minkowski-sum of a convex body and a ball. In general, one can define valuation to be
a class of measure-like maps on open sets in a topological space. A formal definition of this
concept can be found in [4, 16]. Functions such as volume and surface area fall into this class.
Hadwiger’s Theorem [13, 17] asserts that every valuation that is continuous and invariant
under rigid motion in Rd is a linear combination of intrinsic volumes. In d-dimensional
space, the d-th, (d− 1)-st and first intrinsic volumes are proportional to the usual Lebesgue
measure, the surface area and the mean width, respectively [25, Chapter 4]. Cabello and
Chan [7] presented efficient algorithms to compute Shapley values for area and perimeter for
a point set in 2-D, which can be naturally extended to volume and surface area in 3-D. An
algorithm that efficiently computes Shapley values for mean width in 3-D will then imply an
algorithm that efficiently computes Shapley values for any continuous valuation in 3-D.

Related work

The problem of computing Shapley values for area functions on a point set was introduced
by Cabello and Chan [7]. They provided algorithms to compute Shapley values for area of
convex hull, area of minimum enclosing disk, area of anchored rectangle, area of bounding
box and area of anchored bounding box for a point set in 2-D. They also gave algorithms for
the hull perimeter by slightly modifying these algorithms. All the quantities they considered
are defined in 2-D space. Although their algorithms naturally extend to higher dimension,
there are interesting applications of Shapley values in higher dimension that have yet been
explored. The mean width considered in this paper is one such example.

Cabello and Chan also drew connections between computing Shapley values and stochastic
computational geometry models. There have been many studies on the behavior of the
convex hull under unipoint model where each point has an existential probability, for example
see [1, 10, 15, 19, 26, 28]. In particular, Xue et al. [28] discussed the expected diameter
and width of the convex hull. Huang et al. [15] presented a way to construct ϵ-coreset for
directional width under the model.

Mean width is often considered in the context of random polytopes in stochastic geometry.
Müller [21] showed the asymptotic behavior of the mean width for a random polytope
generated by sampling points on a convex body. Böroczyky [6] refined the result under the
assumption that the convex body is smooth. Alonso-Gutiérrez and Prochno [3] considered
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the case when the points are sampled inside an isotropic convex body. However, these results
only consider the statistics when the number of points is large and the results are asymptotic.
This paper views mean width on a computational perspective instead.

Our contributions

We show that the Shapley values for mean width of the convex hull for a point set in R3 can
be computed in O(n3 log2 n) time and O(n) space. Our approach is similar to the one used
by Cabello and Chan for the case of the convex-hull area, in the sense that we look at the
incremental formation of convex hull and consider the contribution of individual geometric
objects. In our case, we break down the mean width and express that in terms of quantities
related only to edges and then apply the linearity of Shapley values.

A major difference is that the expression for mean width contains angle at the edge,
making the calculation for the probability term for Shapley values depend on the intersection
of two halfspaces as opposed to only one halfspace. This prompts an expression that looks
like a convolution. This convolution only changes slightly when evaluated from one point to
another. The setup can be captured as an instance of dynamic convolution, where one can
change the convolution kernel at any position, and query any single position in the vector
involved in the convolution. Algebraic computations of this form were explored by Reif and
Tate [23]. Frandsen et al. [11] gave a worst-case lower bound of Ω(

√
n) time per operation for

this problem. By exploiting the structure of sweeping by polar angle, we obtain a variant of
dynamic convolution, where we have a pointer to the convolution kernel and another pointer
to the convolution result. We are only allowed to query at the pointer, update the convolution
kernel at the pointer and move the pointers by one position. We present an online data
structure for this variant that has O(n log2 n) overall time for n operations. There are some
occurrences of algebraic computation in computational geometry, but many works [2, 5, 7, 18]
do not have such dynamic setting and rely mostly on computing a single convolution or
multi-point evaluation of polynomials. Only a few (see, e.g., [9]) employed a dynamic data
structure. We believe our data structure is of independent interest for algorithms based on
sweeping.

2 Preliminaries

Mean width. The mean width of a compact convex body X can be seen as the mean
1-volume of X projected on a uniformly random 1-subspace. More formally, let X ⊂ Rd be a
compact convex body. For 1 ≤ s ≤ d, the mean s-projection of X is defined as:

Ms(X) =
∫

Qs

|Xu|fs(u) du, (2)

where Qs is the set of s-subspace, Xu is the projection of X on u, | · | is the volume or
the canonical measure in the underlying space, fs is the probability density function for
uniformly sampling s-subspace from Qs.

In this manner, the mean width of a point set P can be defined as M1(conv(P )) where
conv(P ) is the convex hull of P . It turns out that the mean s-projection of a convex polytope
(1 ≤ s ≤ d− 2) can be decomposed into values only related to its s-faces.

For a vertex of a polygon in 2-D, its interior angle can be naturally defined as the angle
containing points within the polygon. And its exterior angle is the complement of the interior
angle. This notion can be similarly generalized to higher dimensional faces in higher dimension.
More formally, let X ⊂ Rd be a convex polytope. Let V be a s-face of X. Let Q(V ) be
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the set of halfspaces such that V is on the hyperplanes defining the halfspace. The exterior
angle of V is defined as ψ(V ) = |{q∈Q(V ):X⊂q}|

|Q(V )| . Let n(q) be the normal vector contained by
the halfspace q. The interior angle of V is defined as χ(V ) = |{q∈Q(V ):∃p∈V,∃ϵ>0,p+ϵn(q)∈X|

|Q(V )| .
Moreover, when s = d− 2, and V ̸= X, we have χ(V ) + ψ(V ) = 1/2 for all s-face V of X.

▶ Lemma 1 (Miles [20]). Let X ⊂ Rd be a convex polytope, and 1 ≤ s ≤ d− 2. Let Vs(X) be
the set of s-face of X. We have:

Ms(X) = Cs,d

∑
V ∈Vs(X)

|V |ψ(V ). (3)

where Cs,d is some constant related to s and d, in particular, C1,3 = 1/2.

Random permutations. When considering random permutations, it is common to compute
probabilities where constraints on the order of appearance of disjoint sets are imposed. The
following lemma follows from simple counting where a proof can be found in [7].

▶ Lemma 2. Let N be a set with n elements. Let {x}, A and B be disjoint sets. The
probability that all of A appears before x and all of B appears after x in a uniformly random
permutation π is |A|!|B|!

(|A|+|B|+1)! .

Assumptions. We assume points in 3-D are of general positions where no three points are
co-linear and no four points are co-planar. All points are assumed distinct. Throughout the
paper, we often look at the projection of a 3-D point p on a plane, we will still use the same
symbol p when looking on the plane for simplicity. We also assume a unit-cost real-RAM
model of computation, where any arithmetic operation between two real numbers costs unit
time, and a real number costs unit space to store.

3 Dynamic Convolution with Local Updates and Queries

Before presenting the algorithm to compute mean width, we first present a data structure
that is central to the algorithm.

We consider a variant of dynamic convolution where only local updates and queries are
permitted. More formally, let g : Z → R be a fixed function where we can evaluate g(x) in
constant time for any x. Let f : Z → R initially be a zero function where we can change its
values later. Let p, c ∈ Z be two variables initially 0. We want to design a data structure
that supports the following operations:

Query Update(x) IncP DecP
Output

∑
i∈Z f(i+ c)g(i) f(p)← f(p) + x p← p+ 1 p← p− 1

RotateLeft RotateRight
c← c+ 1 c← c− 1

Let f (i) be the f after the i-th operation, so f (0) = 0. And similarly for p(i), and c(i).
We can make the following observations:

▶ Lemma 3. For any 0 ≤ i < j, max supp(f (j) − f (i)) − min supp(f (j) − f (i)) ≤ j− i, where
supp(f) is the support of f .

Proof. There are at most j − i IncP or DecP operations between the i-th and the j-th
operation, so maxi≤k≤j p

(k) − mini≤k≤j p
(k) ≤ j − i. And we have max supp(f (j) − f (i)) ≤

maxi≤k≤j p
(k) and min supp(f (j) − f (i)) ≥ mini≤k≤j p

(k). ◀
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1 2 3 4 5 6 7 8 9 10 11 12 13

H(3) = f (8) − f (0) H(2) = f (12) − f (8)

H(0) = f (13) − f (12)

Figure 1 An example for n = 13 = 23 + 22 + 20. Each box represents an operation.

▶ Corollary 4. For any 0 ≤ i < j, | supp(f (j) − f (i))| ≤ j − i.

▶ Lemma 5. For any 0 ≤ i < j, maxi≤k≤j c
(k) − mini≤k≤j c

(k) ≤ j − i.

Proof. There are at most j − i RotateLeft or RotateRight operations between the i-th
and the j-th operation. ◀

▶ Lemma 6. For any 0 ≤ i < j,
∑

k f
(j)(k + c)g(k) =

∑
k f

(i)(k + c)g(k) +
∑

k(f (j) −
f (i))(k + c)g(k).

From Lemma 6, we can see that it is possible to break the operations into chunks, and only
consider the changes on f for each chunk. Lemma 3 ensures that the actual differences are
proportional to the size of a chunk. So the idea is: after a chunk of size m is finished, we
pre-compute all queries for the next m operations by considering all possible changes in c.
We incrementally build different levels of chunks so that after finishing a chunk, we merge
it with smaller chunks to build a larger chunk. Lemma 5 and Corollary 4 ensure that the
prediction only depends on a small set of values of g. More specifically, we will use chunks
sizes with power of two based on the binary form of the number of operations so far and
merge chunks when needed. A binary-counter-like argument can be applied to achieve a
amortized time of O(log2 n) per operation.

We maintain chunks of changes based on the binary representation of the number of
operations we have seen so far. Assume we’ve just performed the k-th operation. Let b(k, i)
be the i-th bit from right in the binary representation of k. We can write k =

∑
i:b(k,i)=1 2i

and we are going to use chunks of size 2i for b(k, i) = 1, where larger chunks are closer
to the start of operations. Let i1 < i2 < · · · < iq be the i’s such that b(k, i) = 1, and
d(l) =

∑l
j=1 2ij . Let s(j) = k−d(j) and e(j) = k−d(j− 1). (s(j), e(j)] represents the range

of the j-th chunk. In other words, we split the operations into chunks of size 2iq , 2iq−1 , . . . , 2i1 .
We maintain chunks of changes as H(ij) = f (e(j)) − f (s(j)). See Figure 1 for an example.
Moreover, for each chunk, we maintain an array of predicted queries A(ij) on the chunk
H(ij), so that A(ij , 2ij + c) =

∑
p H(ij)(p + c(e(j)) + c)g(p) for −2ij ≤ c ≤ 2ij . We also

maintain an array of I so that I(ij) = c(k) − c(e(j)).
Assume we have A, H , and I after n operations, the (n+1)-st operation can be performed

easily: Query should output
∑

p f
(n)(p+ c(n))g(p), and we have:

∑
p

f (n)(p+ c(n))g(p) =
∑

p

 ∑
ij :b(n,ij)=1

f (e(j)) − f (s(j))

 (p+ c(n))g(p)

=
∑

ij :b(k,ij)=1

∑
p

(f (e(j)) − f (s(j)))(p+ c(e(j)) + I(ij))g(p)

=
∑

ij :b(k,ij)=1

∑
p

H(ij)(p+ c(e(j)) + I(ij))g(p)

=
∑

ij :b(k,ij)=1

A(ij , 2ij + I(ij)).
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So we can answer query by performing a summation over A. Update is handled
by simply documenting the change. IncP and DecP are handled by incrementing and
decrementing p, respectively. RotateLeft and RotateRight are handled by incrementing
and decrementing all entries of I, respectively.

After each operation, an additional maintaining step is performed to ensure A, H, I
contain the correct information for the following operations. Assume that we want to maintain
the data structure after the n-th operation, we record the change in f as ∆f = f (n) − f (n−1).
Observe that A(i) doesn’t change if b(n, i) = b(n − 1, i). Let i∗ = min{i : b(n, i) = 1},
then only A(i)’s such that i ≤ i∗ change. Moreover, A(i) becomes empty if i < i∗. Similar
phenomenon can be seen in the increment of a binary counter. We expect:

A(i∗, 2i∗
+ c) =

∑
p

H(i∗)(p+ c(n) + c)g(p)

=
∑

p

(f (n) − f (n−2i∗
))(p+ c(n) + c)g(p)

=
∑

p

∆f +
i∗−1∑
j=0

f (n−2j) − f (n−2j+1)

 (p+ c(n) + c)g(p)

=
∑

p

∆f +
i∗−1∑
j=0

H(j)

 (p+ c(n) + c)g(p).

So we can merge ∆f and {H(j) : j < i∗} to get H(j∗) = f (n) − f (n−2i∗
), and compute

A(i∗, 2i∗ + c) =
∑

p H(i∗)(p + c(n) + c)g(p) for all −2i∗ ≤ c ≤ 2i∗ . This is almost a
convolution. To see it clearer, let L = min suppH(i∗) and R = max suppH(i∗), we can
rewrite the expression as A(i∗, 2i∗ + c) =

∑R
p=L H(i∗)(p)g(p − c(n) − c). We now want to

shift the origin so that suppH can start at 0 to conform to the definition of a convolution.
Let H ′(p) = H(i∗)(L + p) for 0 ≤ p ≤ R − L, and H ′(p) = 0 otherwise. Let g′(p) =
g(−p+ L− c(n) + 2i∗+1), for 0 ≤ p ≤ 3 · 2i∗ , and g′(p) = 0 otherwise. we have:

A(i∗, 2i∗
+ c) =

R∑
p=L

H(i∗)(p)g(p− c(n) − c)

=
R−L∑
p=0

H(i∗)(L+ p)g(p− c+ L− c(n))

=
R−L∑
p=0

H ′(p)g′(2i∗+1 + c− p)

= H ′ ∗ g′[2i∗+1 + c]

Where H ′ ∗ g′ is the discrete convolution of H ′ and g′.
By Lemma 3, R−L ≤ 2i∗ , so 0 ≤ 2i∗+1 + c− p ≤ 3 · 2i∗ . We can treat both H ′ and g′ as

circular vectors of size 3 · 2i∗ , and compute H ′ ∗ g′[2i∗ + c] for all −2i∗ ≤ c ≤ 2i∗ by the Fast
Fourier Transform. We then use the result to construct A(i∗). We set I(i∗) = 0, and clear
all A(i), H(i), and I(i) where i < i∗.

Now that we have a way to maintain A, H, and I, the following Lemma shows that the
Query operation always succeed, i.e., −2i ≤ I(i) ≤ 2i.

▶ Lemma 7. After the n-th operation, for any ij such that b(n, ij) = 1, |c(n) − c(e(j))| ≤ 2ij .
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Proof. |c(n) − c(e(j))| ≤ maxe(j)≤k≤n c
(k) − mine(j)≤k≤n c

(k) ≤ n − e(j) = d(j − 1) ≤∑ij−1
k=0 2k = 2ij . ◀

We now analyze the complexity of the data structure:

▶ Theorem 8. There is a data structure that supports n operations for Dynamic Convolution
with Local Updates and Queries in O(log2 n) amortized time and O(n) space.

Proof. Without considering the additional maintaining step after each operation, it is easy
to see a single IncP, DecP, or Update takes O(1) time. Likewise a single RotateLeft,
RotateRight, or Query takes O(log n) time since the number of bits in the binary
representation of n is O(log n).

In the maintaining step, whenever the i-th bit in the binary representation of n changes
from 0 to 1, we need to merge changes of total size O(2i), run FFT on two arrays of size
3 · 2i, and clear histories of total size O(2i). These in all take O(2i log(2i)) time where
the bottleneck is FFT. Like the analysis in binary counter, i-th bit flips from 0 to 1 in
every 2i operations, so the total time spent on maintaining step is:

∑log n
i=0

n
2iO(2i log(2i)) =

O
(
n

∑log n
i=0 i log(2)

)
= O(n log2 n).

Adding two parts, the total time for n operation is O(n log2 n), yielding an amortized
time of O(log2 n) per operation.

At any point, the space used by the data structure is linear to the size of A, H, I, even
during the maintaining step. So the space complexity is O

(∑log n
i=0 2i

)
= O(n). ◀

▶ Corollary 9. Let g : Z → R be a fixed function where we can evaluate g(x) in constant time.
Let Q be a queue with elements in R. There is a data structure that supports n operations in
O(log2 n) amortized time and O(n) space, where each operation is either pushing to the tail
of Q, popping from the head of Q or querying

∑|Q|
i=1 Q(i)g(|Q| − i).

Proof. We use two instances of data structure I1 = (f1, g1, p1, c1) and I2 = (f2, g2, p2, c2)
from Theorem 8. We make g1(x) = g2(x) = g(−x). Whenever we want to perform a push x,
we perform Update(x), RotateLeft and IncP on I1, and perform RotateLeft on I2.
Whenever we want to perform a pop x, we perform Update(−x) and IncP on I2. Whenever
we want to query, we query both I1 and I2 and return the sum. Each operation to the queue
expands to constant number of operations on I1 and I2, so the running time is still O(log2 n)
amortized and the space is O(n). ◀

4 Computing Shapley Value of Mean Width in 3-D

4.1 Classification of Cases
Let X be a convex polyhedron in 3-D, Lemma 1 becomes:

M1(X) = 1
2

∑
e∈E(X)

l(e)ψ(e), (4)

where E(X) is the set of edges of X and l(e) is the length of edge e.
Let N ⊂ R3 be a point set. Let n be the number of points in the point set. The mean

width we are considering is M1(conv(N)). Given a permutation π, and a point p ∈ N , for
convenience we define C(π, p) = conv(PN (π, p) ∪ {p}) and C ′(π, p) = conv(PN (π, p)). We
then define the contribution of p under permutation π to be:

∆(π, p) = M1(C(π, p)) −M1(C ′(π, p)). (5)

ISAAC 2021



67:8 Computing Shapley Values for Mean Width in 3-D

When there are at least three points in N , we have ψ(e) = 1/2 − χ(e) for all e ∈ E(N).
In the case where N is an edge e, we have ψ(e) = 1. It is also clear that a single point
has width 0. So for p ∈ N , when considering the Shapley value ϕ(p), we can classify the
permutations into three cases:

Case 1: There is one point before p in the permutation. i.e., after inserting p, the point
set forms a line segment.
Case 2: There are two points before p in the permutation. i.e., after inserting p, the
point set forms a triangle.
Case 3: There are three or more points before p in the permutation.

In other words, we can write ϕ(p) as:

ϕ(p) =
∑

π

∆(π, p)
n! =

∑
π:Case 1

∆(π, p)
n! +

∑
π:Case 2

∆(π, p)
n! +

∑
π:Case 3

∆(π, p)
n! . (6)

For Case 1, we can rewrite the summation as:∑
π:Case 1

∆(π, p)
n! =

∑
q∈P
q ̸=p

∑
π:π=(q,p,... )

∆(π, p)
n! =

∑
q∈P
q ̸=p

∑
π:π=(q,p,... )

d(p, q)/2
n!

=
∑
q∈P
q ̸=p

d(p, q)
2 Pr(π = (q, p, . . . )) =

∑
q∈P
q ̸=p

d(p, q)
2

1
n(n− 1) . (7)

Here d(·, ·) is the Euclidean distance function. So for any p, we can compute the summation
in O(n) time by enumerating q. And it takes O(n2) in total to compute for every p.

For Case 2, we can rewrite the summation as:∑
π:Case 2

∆(π, p)
n! =

∑
q,r∈P

p,q,r are distinct

∑
π:π=(q,r,p,... )

∆(π, p)
n!

=
∑

q,r∈P
p,q,r are distinct

∑
π:π=(q,r,p,... )

d(p,q)+d(r,q)+d(p,r)
4 − d(r,q)

2
n!

=
∑

q,r∈P
p,q,r are distinct

d(p, q) + d(p, r) − d(r, q)
4 Pr(π = (q, r, p, . . . ))

=
∑

q,r∈P
p,q,r are distinct

d(p, q) + d(p, r) − d(r, q)
4

1
n(n− 1)(n− 2) . (8)

Like Case 1, we can compute the summation in O(n2) time by enumerating q and r. And
it takes O(n3) in total to compute for every p.

In Case 3, each edge we are considering has two faces attached to it. In other words, each
edge can be characterized by the common edge shared by two triangles formed by four points.
We can denote an edge by (q, r, t1, t2), where (q, r) is the edge and is the common edge of
△qrt1 and △qrt2. Without loss of generality, we assume unordered tuples when writing
(q, r) and (t1, t2) to avoid double-counting. The exterior angle is completely determined by
the quadruple. In case the convex hull has only 3 points, we allow t1 = t2. We can then
apply Lemma 1 and express M1(conv(N ′)) for a point set N ′ as:
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p

Figure 2 Change of edges when p is inserted, showing only the part visible to p. Red edges:
edges added to the convex hull. Blue edges: edges removed from the convex hull. Orange edges:
edges with angle changed.

M1(conv(N ′)) = 1
2

∑
e∈E(conv(N ′))

l(e)ψ(e) = 1
2

∑
e=(q,r,t1,t2)
q,r,t1,t2∈N ′

△qrt1,△qrt2 are faces of conv(N ′)

l(e)ψ(e)

= 1
2

∑
e=(q,r,t1,t2)
q,r,t1,t2∈N ′

d(q, r)ψ(e)Iconv(N ′)(q, r, t1, t2)

where we use an indicator variable:

IX(q, r, t1, t2) =
{

1 △qrt1,△qrt2 are faces of convex polyhedron X

0 otherwise

Conditioning on π being Case 3, we can write ∆(π, p) as:

∆(π, p) = 1
2

∑
e=(q,r,t1,t2)
q,r,t1,t2∈N

l(e)ψ(e)
(
IC(π,p)(q, r, t1, t2) − IC′(π,p)(q, r, t1, t2)

)

We can write in the form of expectation as:∑
π:Case 3

∆(π, p)
n! = Eπ[∆(π, p)|π : Case 3] Pr(π : Case 3)

=1
2

∑
e=(q,r,t1,t2)
q,r,t1,t2∈N

l(e)ψ(e)Eπ

[
IC(π,p)(q, r, t1, t2)− IC′(π,p)(q, r, t1, t2)

∣∣π : Case 3
]

Pr(π : Case 3)

Observe that IC(π,p)(q, r, t1, t2) = 1 implies π being Case 3. The summation reduces to:

1
2

∑
q,r∈N

∑
t1,t2∈N

e=(q,r,t1,t2)

l(e)ψ(e)Eπ[IC(π,p)(q, r, t1, t2) − IC′(π,p)(q, r, t1, t2)] (9)

Now consider the impact when inserting p to PN (π, p). The convex hull does not change
if p is inside C ′(π, p). Otherwise if we treat C ′(π, p) as an opaque object, all the faces visible
to p will be removed in C(π, p) and a pyramid-like cone with apex at p will be added to
C(π, p). In terms of edges, there are three types of edges: edges removed, edges added and
edges with angle changed. See Figure 2 for an illustration.
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p

qr

t1

t2

Figure 3 Projection of N along qr. Edge qr gets removed when forming conv(PN (π, p) ∪ {p}) if
and only if (a) p is not in the cone formed by qr, t1 and t2, (b) q, r, t1 and t2 appear before p in π

and (c) No point outside the cone (red point) appears before p in π.

As we are using a 4-tuple to represent an edge in the summation, edges with angles
changed can be seen as removal and addition with different (t1, t2). We have:

IC(π,p)(q, r, t1, t2) − IC′(π,p)(q, r, t1, t2)

=


−1 (q, r, t1, t2) is an edge of C ′(π, p) and visible to p
1 (q, r, t1, t2) is an edge of C(π, p) and p ∈ {t1, t2}
1 (q, r, t1, t2) is an edge of C(π, p) and p ∈ {q, r}
0 otherwise

The first three cases are correspondent to blue+orange, orange and red edges in Figure 2
respectively. So we can write:

Eπ[IC(π,p)(q, r, t1, t2) − IC′(π,p)(q, r, t1, t2)]
= Pr((q, r, t1, t2) is an edge of C(π, p) and p ∈ {t1, t2})

+ Pr((q, r, t1, t2) is an edge of C(π, p) and p ∈ {q, r})
− Pr((q, r, t1, t2) is an edge of C ′(π, p) and visible to p)

(10)

This gives us a way to split the final summation in Equation 9 further into 3 summations.
We will show how to compute them efficiently in the following subsection.

4.2 Handling Case 3
The idea is to enumerate edges (q, r) and compute

∑
t1,t2∈N

e=(q,r,t1,t2)
l(e)ψ(e) Pr(·) for all p where

Pr(·) is one of the three probabilities in Equation 10.

(q, r, t1, t2) is an edge of C′(π, p) and visible to p

Given a pair of points (q, r), we look at the projection of N along the direction of qr.

▶ Lemma 10. (q, r, t1, t2) is an edge of C ′(π, p) and visible to p if and only if
(a) p is not in the cone formed by qr, t1 and t2.
(b) q, r, t1 and t2 appear before p in π.
(c) No point outside the cone appears before p in π.
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qr
p

L(p)

R(p)

Figure 4 Partition of points based on whether a point is left to p− qr or right to p− qr. Red
points are left, and blue points are right.

Proof. (b) is immediate as we need q, r, t1 and t2 to be in PN (π, p) so that the edge can be
in C ′(π, p). Given (b), (q, r, t1, t2) is an edge of C ′(π, p) if and only if △qrt1 and △qrt2 form
two supporting planes of PN (π, p) if and only if no point outside the cone appears before p in
π. Finally, (q, r, t1, t2) is visible to p if and only if pq and pr are completely outside C ′(π, p)
if and only if p is not in the cone formed by qr, t1 and t2. See Figure 3 for an example. ◀

Treat qr as the origin and let p1, p2, . . . , pn−2 be the rest of the points in N sorted by polar
angles relative to qr. In other words, p1, p2, . . . , pn−2 is the order of points when we sweep
a ray starting from qr around counterclockwise, initially to the direction of positive x-axis.
Let θi be the polar angle of pi. For convenience, we treat the sequence p1, p2, . . . , pn−2 as a
cyclic array, in the sense that pn−1 = p1. Moreover, when we iterate through the sequence,
θi is non-decreasing. In other words, when we iterate p1, p2, . . . , pn−1, pn, . . . , although pn−1
and p1 are the same point, we treat θn−1 = θ1 + 2π.

Let Wqr(pi, pj) be the number of points in the cone formed by qr, pi and pj . Let
g(i) = 4!(n− 5 − i)!/(n− i)!. For a point p outside the cone, Lemma 2 gives us:

Pr((q, r, pi, pj) is an edge of C ′(π, p) and visible to p) = g(Wqr(pi, pj)) (11)

Let S(i) be the set of pairs (pj , pk) such that pi is not in the cone formed by qr, pj and
pk. We assume j ≤ k and the cone is formed by sweeping from pj to pk counterclockwise.
For a given point pi, Lemma 10 and Equation 11 gives:∑

t1,t2∈N
e=(q,r,t1,t2)

l(e)ψ(e) Pr((q, r, t1, t2) is an edge of C ′(π, p) and visible to pi)

=
∑

(pj ,pk)∈S(i)

d(q, r)
(

1
2 − θk − θj

2π

)
g(Wqr(pj , pk))

Splitting the summation we get:

d(q, r)

 ∑
(pj ,pk)∈S(i)

1
2g(Wqr(pj , pk)) −

∑
(pj ,pk)∈S(i)

θk − θj

2π g(Wqr(pj , pk))

 (12)

We now show how to compute
∑

(pj ,pk)∈S(i)
θk−θj

2π g(Wqr(pj , pk)) for all i. For each point
p, we partition the point set by whether a point is left to p− qr or right to p− qr. As shown
in Figure 4, we define:

L(p) = {p′ ∈ N : (p− qr) × (p′ − qr) > 0} R(p) = {p′ ∈ N : (p− qr) × (p′ − qr) < 0} (13)
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qr

pi

pi+1

qr

pi

pi+1

Figure 5 When changing from S(i) to S(i+ 1), pairs formed between pi+1 and L(pi+1) ∪ {pi+1}
are removed and pairs formed between pi and R(pi) ∪ {pi} are added. Left: pi+1 ∈ L(pi). Right:
pi+1 ∈ R(pi).

Consider the difference between S(i) and S(i+ 1). It is easy to see:∑
(pj ,pk)∈S(i+1)

θk − θj

2π g(Wqr(pj , pk)) =
∑

(pj ,pk)∈S(i)

θk − θj

2π g(Wqr(pj , pk))

+
∑

pj∈R(pi)∪{pi}

θi − θj

2π g(Wqr(pi, pj))

−
∑

pj∈L(pi+1)∪{pi+1}

θj − θi+1

2π g(Wqr(pj , pi+1)) (14)

as demonstrated in Figure 5. We can further write:∑
pj∈R(pi)∪{pi}

θi − θj

2π g(Wqr(pi, pj))

=θi

∑
pj∈R(pi)∪{pi}

1
2πg(Wqr(pi, pj)) −

∑
pj∈R(pi)∪{pi}

θj

2πg(Wqr(pi, pj)) (15)

We will show how to compute
∑

pj∈R(pi)∪{pi} f(j)g(Wqr(pi, pj)) for an arbitrary function f

and for all i at the same time. Equation 15 can then be computed by using f(j) = 1/2π and
f(j) = θj/2π, respectively.

If we sort the points in R(pi)∪{pi} by polar angles as q1, q2, . . . , ql, where l = |R(pi)∪{pi}|,
it is easy to see Wqr(pi, qj) = l− j for 1 ≤ j ≤ l. In other words, the number of points within
the cone formed by qr, pi, and qj is equal to the distance between qj and pi in the sequence
p1, p2, . . . .

Now we consider an instance of the data structure from Corollary 9. We use g(i) =
4!(n− 5 − i)!/(n− i)! as the function used by the data structure. We start by choosing an
arbitrary point pi and consider a ray opposite to pi − qr. We sweep this ray counterclockwise
until hitting pi, for each point pj hit by the ray, we perform a push f(j) to the data structure.
After we hit pi, we perform a query and the result is exactly

∑
pj∈R(pi)∪{pi} f(j)g(Wqr(pi, pj)).

Next we sweep the ray to pi+1 and pop all the points that are left to pi+1. They should
all appear at the head of the data structure. We then perform a query and the result is
exactly

∑
pj∈R(pi+1)∪{pi+1} f(j)g(Wqr(pi, pj)). We keep sweeping, popping and querying

until coming back to pi+n−3 which is pi−1. During this process, each point gets pushed and
popped at most twice and we perform n− 2 queries. So the running time is O(n log2 n) and
the space complexity is O(n) according to Corollary 9.
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p

qr

t2

Figure 6 Projection of N along qr. Edge qr gets added when forming conv(PN (π, p) ∪ {p}) if
and only if (a) q, r and t2 appear before p in π (b) No point outside the cone formed by qr, p and t2
(red point) appears before p in π.

Hence we can compute
∑

pj∈R(pi)∪{pi}
θi−θj

2π g(Wqr(pi, pj)) for all i in O(n log2 n) time
and O(n) space. With the same idea but sweeping the other way around, we can also compute∑

pj∈L(pi+1)∪{pi+1}
θj−θi+1

2π g(Wqr(pj , pi+1)) for all i in the same time and space complexity.
Next we only need to compute

∑
(pj ,pk)∈S(i)

θk−θj

2π g(Wqr(pj , pk)) for a single i and then
used the pre-computed result to update to next

∑
(pj ,pk)∈S(i+1)

θk−θj

2π g(Wqr(pj , pk)) in
constant time. Like in the previous case, we need to compute summations of the form∑

(pj ,pk)∈S(i) f(j)g(Wqr(pj , pk)). We again use an instance of data structure from Corollary 9
and use the same g as above. We start by pushing pi+1 and sweep counterclockwise. For
each point hit, we first pop all the points that are left to the point, push the point to the
data structure and finally perform a query. We stop after hitting pi+n−3 which is pi−1. The
sum of all the queries will then be

∑
(pj ,pk)∈S(i) f(j)g(Wqr(pj , pk)). In this procedure, each

point is pushed and popped at most once, and n− 3 queries are made. So it takes O(n log2 n)
time and O(n) space to compute for a single i. After that it takes O(n) time to compute for
all i by transitioning from i to i+ 1 in constant time.

Using the same idea, we can compute the other part of Equation 12 in O(n log2 n) time
and O(n) space as well.

For a fixed pair (q, r), it takes O(n log n) to sort other points by polar angles on the
projected plane. And it takes O(n) to pre-compute g. Hence, it takes O(n log2 n) time and
O(n) space to compute

∑
t1,t2∈N

e=(q,r,t1,t2)
l(e)ψ(e) Pr(·) for all p for the case where (q, r, t1, t2) is

edge of C ′(π, p) and visible to p. And it takes O(n3 log2 n) time and O(n) space overall by
enumerating all pairs of (q, r).

(q, r, t1, t2) is an edge of C(π, p) and p ∈ {t1, t2}

Again we fix a pair (q, r), and look at the projection of N along the direction of qr. Without
loss of generality, assume p = t1 in this case.

▶ Lemma 11. (q, r, p, t2) is edge of C(π, p) if and only if
(a) q, r and t2 appear before p in π.
(b) No point outside the cone formed by qr, p and t2 appears before p in π.
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The proof will be almost the same as the proof for Lemma 10. See Figure 6 for an
illustration.

In this case

Pr((q, r, p, t2) is an edge of C(π, p)) = 3!(n− 4 −Wqr(p, t2))!
(n−Wqr(p, t2))! (16)

We have a slightly different g(i) = 3!(n − 4 − i)!/(n − i)!. Any point except p can form a
cone with p. So we can write∑

t2∈N
e=(q,r,pi,t2)

l(e)ψ(e) Pr((q, r, p, t2) is an edge of C(π, p) )

=
∑

pj∈R(pi)

d(q, r)
(

1
2 − θi − θj

2π

)
g(Wqr(pi, pj))

+
∑

pj∈L(pi)

d(q, r)
(

1
2 − θj − θi

2π

)
g(Wqr(pj , pi)) (17)

In Subsection 4.2, we’ve shown how to compute summations with very similar form as
summations in Equation 17. The only differences are that we take pj ∈ R(pi) instead of
pj ∈ R(pi) ∪ {pi} and we have a slightly different g here. But clearly these don’t change the
asymptotic running time. Hence it takes O(n3 log2 n) time in total and O(n) space by using
the same method.

(q, r, t1, t2) is an edge of C(π, p) and p ∈ {q, r}

Without loss of generality, assume p = q. We look at the projection of N along the direction
of pr.

▶ Lemma 12. (p, r, t1, t2) is edge of C(π, p) if and only if
(a) r, t1 and t2 appear before p in π.
(b) No point outside the cone formed by pr, t1 and t2 appears before p in π.

The proof will be almost the same as the proof for Lemma 10. See Figure 7 for an
illustration.

In this case

Pr((p, r, t1, t2) is an edge of C(π, p)) = 3!(n− 4 −Wqr(t1, t2))!
(n−Wqr(t1, t2))! (18)

And we use g(i) = 3!(n − 4 − i)!/(n − i)!. In this case, any pair (t1, t2) with t1 ̸= t2 will
contribute to result. So we can write∑

t1,t2∈N
e=(p,r,t1,t2)

l(e)ψ(e) Pr((p, r, t1, t2) is an edge of C(π, p))

=1
2

∑
pk

∑
pj∈R(pk)

d(p, r)
(

1
2 − θk − θj

2π

)
g(Wqr(pk, pj))

+1
2

∑
pk

∑
pj∈L(pk)

d(p, r)
(

1
2 − θj − θk

2π

)
g(Wqr(pj , pk)) (19)
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pr

t2

t1

Figure 7 Projection of N along pr. Edge pr gets added when forming conv(PN (π, p) ∪ {p}) if
and only if (a) r, t1 and t2 appear before p in π (b) No point outside the cone formed by pr, t1 and
t2 (red point) appears before p in π.

We have a factor of 1
2 because each pair is counted twice. In the previous case, all the

inner summations have been pre-computed. So for a fixed (p, r), the summation can be
computed in O(n) time given previous computation. Hence in total it takes O(n3) time and
no additional space to compute this case.

Now that all the cases take no more than O(n3 log2 n) time and O(n) space to compute,
we present our main theorem:

▶ Theorem 13. Shapley values for mean width for a point set in 3-D can be computed in
O(n3 log2 n) time and O(n) space.

5 Discussion

We have presented an algorithm to compute Shapley values of a point set in 3-D with respect
to the mean width of its convex hull. We provided an efficient algorithm based on a data
structure for a variant of dynamic convolution. We believe the data structure may be of
independent interest.

Our algorithm naturally extends to higher dimension to compute Shapley values for
Md−2(conv(P )) for a d-dimensional point set P . This relies on the fact that the orthogonal
space of a (d − 2)-face is a plane. In general, it takes O(nd log2 n) time to compute the
Shapley values. It is also known that for a convex polytope X, Md−1(X) is equivalent to
the (d − 1)-volume of the boundary of X up to some constant [20]. Hence the algorithm
by Cabello and Chan [7] with natural extension can be used to compute Shapley values
for Md−1(conv(P )) in O(nd) time. It would be natural to ask whether there are efficient
algorithms to compute Mi(conv(P )) in general.

We can also consider ϵ-coreset of Shapley values for geometric objects. Let P be a
set of geometric objects and v be a characteristic function on P . We can define the ϵ-
coreset P̃ to be a weighted set of geometric objects such that, for any geometric objects
x, (1 − ϵ)ϕP ∪{x}(x) ≤ ϕ

P̃ ∪{x}(x) ≤ (1 + ϵ)ϕP ∪{x}(x) where ϕN means that the underlying
player set for the Shapley value is N . Intuitively, ϕP ∪{x}(x) means the contribution x makes
when x is added as an additional player. Does P̃ exist? If so, what is the upper and lower
bound of its size? How fast can we find a coreset?

ISAAC 2021
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Simple Envy-Free and Truthful Mechanisms for
Cake Cutting with a Small Number of Cuts
Takao Asano #

Chuo University, Tokyo, Japan

Abstract
For the cake-cutting problem, Alijani, et al. [2, 25] and Asano and Umeda [4, 5] gave envy-free and
truthful mechanisms with a small number of cuts, where the desired part of each player’s valuation
function is a single interval on a given cake. In this paper, we give envy-free and truthful mechanisms
with a small number of cuts, which are much simpler than those proposed by Alijani, et al. [2, 25]
and Asano and Umeda [4, 5]. Furthermore, we show that this approach can be applied to the
envy-free and truthful mechanism proposed by Chen, et al. [13], where the valuation function of
each player is more general and piecewise uniform. Thus, we can obtain an envy-free and truthful
mechanism with a small number of cuts even if the valuation function of each player is piecewise
uniform, which solves the future problem posed by Alijani, et al. [2, 25].
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1 Introduction

The problem of dividing a cake among players in a fair manner has attracted the attention of
mathematicians, economists, political scientists and computer scientists [6, 7, 11, 13, 14, 15,
16, 22, 23, 24] since it was first considered by Banach and Knaster [11] and Steinhaus [27, 28].
The cake-cutting problem is often used as a metaphor for prominent real-world problems
that involve the division of a heterogeneous divisible good [10, 14, 26, 32].

Formally, the cake-cutting problem is stated as follows [13]: Given a divisible heterogeneous
cake C represented by an interval [ 0, 1) and n players N = {1, 2, . . . , n} where each player
i ∈ N has a valuation function vi over the cake C, divide the cake C and find an allocation
of the cake C to the players that satisfies one or several fairness criteria. In the cake cutting
literature, one of the most important criteria is envy-freeness [7]. In an envy-free allocation,
each player considers her/his own allocation at least as good as any other player’s allocation.

A piece A of cake C is a finite union of disjoint subintervals X of C. A piece A can also
be viewed as a set of disjoint subintervals X of C. For a general valuation function vi of
player i ∈ N which is integrable or piecewise continuous, the value Vi(A) of a piece A of
cake C for player i can be written by

∫
x∈A

vi(x)dx. Thus, the value Vi(A) of the piece A of
disjoint subintervals X of C for player i is Vi(A) =

∑
X∈A Vi(X).

Since general valuation functions may not have a finite discrete representation as an input
to the cake-cutting problem, most algorithms and computational complexity analyses are
based on oracle computation models. Among them a most popular computation model for
general integrable valuation functions is the Robertson-Webb model based on two types of
queries: evaluation and cut [24]. For envy-freeness, Stromquist [23, 30] showed that there is
no finite envy-free cake cutting algorithm that outputs a contiguous allocation to each player
for any n ≥ 3, although an envy-free allocation with a contiguous interval allocation to each
player is guaranteed to exist [29, 31]. Note that any cake cutting algorithm that outputs a
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contiguous allocation to each player uses n − 1 cuts on the cake C. If a contiguous allocation
to each player is not required, Aziz and Mackenzie [6] showed that there is an envy-free cake

cutting algorithm with O(nnnnnn

) queries. Procaccia showed that any envy-free cake cutting
algorithm requires Ω(n2) queries [21]. Furthermore, Deng, Qi and Saberi [14] showed that
finding an envy-free allocation using n − 1 cuts on cake C is PPAD-complete when valuation
functions are given explicitly by polynomial-time algorithms, although their result requires
very general (e.g., non-additive, non monotone) valuation functions [18].

In recent papers, some restricted classes of valuation functions have been studied [7, 8,
10, 12, 13, 20]. Piecewise uniform and piecewise constant valuation functions are two special
classes of valuation functions [2, 7, 13, 25]. For a nonnegative valuation function v on cake C,
let D(v) = {x ∈ C | v(x) > 0}. Thus, we can consider that D(v) consists of several disjoint
maximal contiguous intervals. Then v is called piecewise uniform if v(x) = v(y) holds for
all x, y ∈ D(v). Similarly, v is called piecewise constant if, for each contiguous interval I

in D(v), v(x′) = v(x′′) holds for all x′, x′′ ∈ I. Note that v(x) ̸= v(y) may hold for x ∈ I

and y ∈ J when I, J are two distinct maximal contiguous intervals in D(v) of piecewise
constant valuation v. Thus, a piecewise uniform valuation is always piecewise constant. One
of the most important properties of these valuation functions is that they can be described
concisely. Kurokawa, Lai, and Procaccia [19] proved that finding an envy-free allocation in
the Robertson-Webb model when the valuation functions are piecewise uniform is as hard as
solving the problem without any restriction on the valuation functions.

The cake-cutting problem has been studied not only from the viewpoint of computational
complexity but also from the game theoretical point of view [2, 7, 8, 9, 13, 20, 25]. Chen, Lai,
Parkes, and Procaccia [13] considered a strong notion of truthfulness (denoted by strategy-
proofness), in which the players’ dominant strategies are to reveal their true valuations
over the cake. They presented an envy-free and truthful mechanism for the cake-cutting
problem based on maximum flow and minimum cut techniques [34] when the valuation
functions are piecewise uniform. Aziz and Ye [7] considered the problem when valuation
functions are piecewise constant and piecewise uniform. They designed three algorithms
CCEA, MEA, and CSD for piecewise constant valuations, which partially solve an open
problem for piecewise constant valuations posed by Chen et al. in [13]. They showed that
CCEA runs in O(n5M2 log( n2

M )) time, where M is the number of subintervals defined by the
union of discontinuity points of the players’ piecewise constant valuations (M ≤ 2

∑
i∈N mi

where mi is the number of maximal contiguous intervals in D(vi) = {x ∈ C | vi(x) > 0}
of piecewise constant valuation vi). They also showed that, when CCEA and MEA are
restricted to piecewise uniform valuations, CCEA and MEA become essentially the same
as the mechanism in [13]. However, note that CCEA, MEA and the mechanism in [13] for
dividing the cake use Ω(nM) cuts [2, 25].

Alijani, Farhadi, Ghodsi, Seddighin, and Tajik [2, 25] considered that the number of
cuts is important and considered the following cake-cutting problem by requiring D(vi) =
{x ∈ C | vi(x) > 0} of piecewise uniform valuation vi of each player i ∈ N to be a single
contiguous interval Ci in cake C: Given a divisible heterogeneous cake C, n strategic players
N = {1, 2, . . . , n} with valuation interval Ci ⊆ C of each player i ∈ N , find a mechanism
for dividing C into pieces and allocating pieces of C to n players N to meet the following
conditions: (i) the mechanism is envy-free; (ii) the mechanism is truthful; and (iii) the
number of cuts made on cake C is small. And they gave an envy-free and truthful mechanism
with at most 2n − 2 cuts [2, 25], although their original mechanism is not actually envy
free [5] and corrected later by themselves. Asano and Umeda [4, 5] also gave an alternative
envy-free and truthful mechanism with at most 2n − 2 cuts.
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In this paper, we give envy-free and truthful mechanisms with a small number of cuts,
which lead to a much simpler mechanism than those proposed by Alijani, et al. [2, 25]
and Asano and Umeda [4, 5]. Thus, we can obtain a much simpler envy-free and truthful
mechanism with at most 2n − 2 cuts which runs in O(n3) time for the above cake-cutting
problem. Furthermore, we show that this approach can be applied to the envy-free and
truthful mechanism proposed by Chen, et al. [13] for the more general cake-cutting problem
where the valuation function vi of each player i ∈ N is piecewise uniform. Thus, this approach
can make their envy-free and truthful mechanism use at most 2M − 2 cuts and we solve the
open problem posed by Alijani, et al. [2, 25], where M ≤ 2

∑
i∈N mi and mi is the number

of maximal contiguous intervals in D(vi) = {x ∈ C | vi(x) > 0} of vi as mentioned above.

2 Preliminaries

We are given a divisible heterogeneous cake C = [ 0, 1) = {x | 0 ≤ x < 1}1, n strategic players
N = {1, 2, . . . , n} with valuation interval Ci = [αi, βi) = {x | 0 ≤ αi ≤ x < βi ≤ 1} ⊆ C

of each player i ∈ N . We denote by CN the (multi-) set of valuation intervals of all the
players N , i.e., CN = (C1, C2, . . . , Cn). We also write CN = (Ci : i ∈ N). Valuation intervals
CN is called solid, if, for every x ∈ C, there is a player i ∈ N whose valuation interval
Ci ∈ CN contains x. As in [2, 4, 7, 25], we will assume that CN is solid, i.e.,

⋃
Ci∈CN

Ci = C,

throughout this paper.
A union X of mutual disjoint sets X1, X2, . . . , Xk is denoted by X = X1 +X2 + · · ·+Xk =∑k

ℓ=1 Xℓ. A piece Ai of cake C is a union of mutually disjoint subintervals Ai1 , Ai2 , . . . , Aiki

of C. Thus, Ai = Ai1 + Ai2 + · · · + Aiki
=

∑ki

ℓ=1 Aiℓ
. A partition AN = (A1, A2, . . . , An) of

cake C into n disjoint pieces A1, A2, . . . , An is called an allocation of C to n players N if each
piece Ai =

∑ki

ℓ=1 Aiℓ
is allocated to player i ∈ N . We also write AN = (Ai : i ∈ N). Thus, in

allocation AN = (Ai : i ∈ N) of C to n players N ,
∑

i∈N Ai = C holds and Ai =
∑ki

ℓ=1 Aiℓ

is called an allocated piece of C to player i ∈ N .
For an interval X = [x′, x′′), we denote by cl(X) the closure of X and thus cl(X) =

[x′, x′′] = {x | x′ ≤ x ≤ x′′}. For an interval X = [x′, x′′) of C, the length of X, denoted by
len(X), is defined by x′′ −x′. For a piece A =

∑k
ℓ=1 Xℓ of cake C, the length of A, denoted by

len(A), is defined by the total sum of len(Xℓ), i.e., len(A) =
∑k

ℓ=1 len(Xℓ). For each i ∈ N

and valuation interval Ci of player i, the value of piece A =
∑k

ℓ=1 Xℓ for player i, denoted by
Vi(A), is the total sum of len(Xℓ ∩ Ci), i.e., Vi(A) =

∑k
ℓ=1 len(Xℓ ∩ Ci). For an allocation

AN = (Ai : i ∈ N) of cake C to n players N , if Vi(Ai) ≥ Vi(Aj) for all j ∈ N , then the
allocated piece Ai to player i is called envy-free for player i. If, for every player i ∈ N , the
allocated piece Ai to player i is envy-free for player i, then the allocation AN = (Ai : i ∈ N)
to n players N is called envy-free.

Let M be a mechanism (i.e., a polynomial-time algorithm in this paper) for the cake-
cutting problem. Let CN = (Ci : i ∈ N) be an arbitrary input to M and AN = (Ai : i ∈ N)
be an allocation of cake C to n players N obtained by M. If AN = (Ai : i ∈ N) for every
input CN = (Ci : i ∈ N) to M is envy-free then M is called envy-free.

Now, assume that only player i ∈ N gives a false valuation interval C ′
i and let C′

N (i) =
(C ′

j : j ∈ N) (all the other players j ≠ i give true valuation intervals Cj and thus C ′
j = Cj

for each j ̸= i) be an input to M and let an allocation of cake C to n players N obtained

1 We assume C = [ 0, 1) = {x | 0 ≤ x < 1}. We also assume, if an interval X = [x′, x′′) = {x | x′ ≤ x < x′′}
of C = [ 0, 1) is cut at y ∈ X with x′ < y < x′′ then X is divided into two subintervals X ′ = [x′, y) and
X ′′ = [y, x′′).
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by M be A′
N (i) = (A′

j : j ∈ N). The values of Ai =
∑ki

ℓ=1 Aiℓ
and A′

i =
∑k′

i

ℓ=1 A′
iℓ

for
player i are Vi(Ai) =

∑ki

ℓ=1 len(Aiℓ
∩ Ci) and Vi(A′

i) =
∑k′

i

ℓ=1 len(A′
iℓ

∩ Ci) (note that
Vi(A′

i) ̸=
∑k′

i

ℓ=1 len(A′
iℓ

∩ C ′
i)). If Vi(Ai) ≥ Vi(A′

i), then there is no merit for player i to give
false C ′

i and player i will report true valuation interval Ci to M. For each player i ∈ N , if
this holds for all such C ′

is, then M is called truthful (allocation AN = (Ai : i ∈ N) obtained
by M is also called truthful ).

For valuation intervals CN = (Ci : i ∈ N) and an interval X = [x′, x′′) of cake C, let
N(X) be the set of players i in N whose valuation interval Ci is contained in X and let
CN(X) be the (multi-) set of valuation intervals in CN which are contained in X. Thus,
N(X) = {i ∈ N | Ci ⊆ X, Ci ∈ CN } and CN(X) = (Ci ∈ CN : i ∈ N(X)). The density of
interval X = [x′, x′′) of C, denoted by ρ(X), is defined by ρ(X) = len(X)

|N(X)| = x′′−x′

|N(X)| . The
density ρ(X) is the average length of pieces of the players in N(X) when the part X of
cake C is divided among the players in N(X). Let X be the set of all nonempty intervals
in C. Let ρmin be the minimum density among the densities of all nonempty intervals in
C, i.e., ρmin = minX∈X ρ(X). Let Xmin = {X ∈ X | ρ(X) = ρmin}. Thus, Xmin is the set
of all intervals of minimum density in C. Note that, for each interval X = [ x′, x′′) ∈ Xmin,
there are valuation intervals Ci = [ αi, βi), Cj = [ αj , βj) ∈ CN with x′ = αi and x′′ = βj .
Thus, the set of all intervals of minimum density in C can be computed in O(n2) time. An
interval X ∈ Xmin is called a maximal interval of minimum density if no other interval of
Xmin contains X properly. A minimal interval of minimum density is similarly defined.

3 Core Mechanism M1

For cake C = [ 0, 1), n strategic players N = {1, 2, . . . , n}, and solid valuation intervals
CN = (Ci : i ∈ N) with Ci = [αi, βi) ⊆ C of each player i ∈ N , each mechanism M in [2, 25]
and [4, 5] uses a small number of cuts and finds an allocation AN = (Ai : i ∈ N) to players
N satisfying the following: (a) M is envy-free; (b) M is truthful; (c) Ai ⊆ Ci for each i ∈ N ;
and (d)

∑
i∈N Ai = C. However, their mechanisms were quite complicated.

In this paper, we give a much simpler envy-free and truthful mechanism with a small
number of cuts. For this purpose, we first give a core mechanism M1 which assumes that
cake C = [ 0, 1) is an interval of minimum density ρmin in C = [ 0, 1) (thus, ρmin = 1

n ).

Algorithm 1 Core Mechanism M1.

Input: Cake C = [ 0, 1), n players N = {1, 2, . . . , n} and solid valuation intervals
CN = (Ci : i ∈ N) with valuation interval Ci = [αi, βi) ⊆ C of each player
i ∈ N and

⋃
Ci∈CN

Ci = C, where C = [ 0, 1) is an interval of minimum
density ρmin = 1

n in cake C = [ 0, 1).
Output: Allocation AN = (Ai : i ∈ N) with Ai ⊆ Ci, len(Ai) = ρmin for each

i ∈ N and
∑

i∈N Ai = C.
sort CN = (Ci : i ∈ N) in a lexicographic order with respect to (βi, αi) and assume

C1 ≤ C2 ≤ · · · ≤ Cn in this lexicographic order;
set A1 = [a1, b1) ⊆ C1 with length ρmin such that a1 = α1 and b1 = α1 + ρmin;
for i = 2 to n do

set Ai = [ai, bi) \
∑i−1

ℓ=1 Aℓ with length ρmin such that [ai, bi) ⊆ Ci and ai is the
leftmost endpoint in Ci \

∑i−1
ℓ=1 Aℓ;
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Figure 1 (a) Solid valuation intervals CN = (Ci : i ∈ N) with ρ(C) = ρmin = 0.2. (b) Allocation
AN = (Ai : i ∈ N) obtained by M1.

Figure 1 shows an example of solid valuation intervals CN = (Ci : i ∈ N) with ρ(C) =
ρmin = 0.2 and an allocation AN = (Ai : i ∈ N) obtained by M1.

▶ Theorem 1. For cake C = [ 0, 1), n players N = {1, 2, . . . , n}, and solid valuation
intervals CN = (Ci : i ∈ N) with valuation interval Ci = [αi, βi) of each player i ∈ N and⋃

Ci∈CN
Ci = C, let C = [ 0, 1) be an interval of minimum density ρmin = 1

n in cake C = [ 0, 1).
Then, M1 finds an allocation AN = (Ai : i ∈ N) with Ai ⊆ Ci and len(Ai) = ρmin for each
i ∈ N and

∑
i∈N Ai = C in O(n log n) time. Furthermore, the number of cuts made by M1

on cake C is at most 2n − 2.

Proof. The number of cuts made on cake C is clearly at most 2n − 2, since M1 uses at
most two cuts at ai and bi for each i ∈ N to obtain Ai and no cut is required at 0, 1 of
cake C = [ 0, 1). Similarly, it can be easily shown that M1 runs in O(n log n) time, since
lexicographical sorting of CN = (Ci : i ∈ N) requires O(n log n) time and ai, bi for each i ∈ N

can be found in O(log n) time based on appropriate data structures.
We next prove the proposition that M1 correctly finds an allocation AN = (Ai : i ∈ N)

with Ai ⊆ Ci and len(Ai) = ρmin for each i ∈ N and
∑

i∈N Ai = C by induction on n.
If n = 1 then the proposition is clearly true.
Now we assume that the proposition is true for n − 1 players and consider n ≥ 2 players.

Of course, A1 = [a1, b1) ⊆ C1 = [α1, β1) with a1 = α1 and b1 = α1 + ρmin (thus of length
ρmin) is allocated to player 1, since ρ(C1) ≥ ρmin and thus the length of C1 is β1 − α1 ≥ ρmin.
Then we delete A1 = [a1, b1) and virtually consider a1 = b1 (we call this as virtual shrinking
of hollow interval A1 after deletion of A1). Note that, since we performed virtual shrinking of
hollow interval A1 = [a1, b1) and virtually considered a1 = b1, the remaining cake C ′ = C \A1
may be considered as a single interval and each C ′

k = Ck \ A1 (k ∈ N \ {1}) may also be
considered as a single interval. Thus, the resulting cake-cutting problem may be considered
to be the same as the original cake-cutting problem, that is, it consists of cake C ′ = C \ A1
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which is a single interval, players N ′ = N \ {1}, and valuation intervals C′
N ′ with a single

interval C ′
k = Ck \ A1 ⊆ C ′ of each remaining player k ∈ N ′. The solidness of C′

N ′ (i.e.,⋃
C′

i
∈C′

N′
C ′

i = C ′) also holds, which can be obtained as follows.
If α1 > 0 then there is a valuation interval Cj = [αj , βj) ∈ CN with αj = 0 and βj ≥ β1 by

the solidness of CN (i.e.,
⋃

Ci∈CN
Ci = C) and the fact that CN was sorted in the lexicographic

order, and thus,
⋃

C′
i
∈CN′ C ′

i = C ′.
If α1 = 0 then let α = min{αi | Ci = [αi, βi) ∈ CN \ {C1}} < 1. Then we have α ≤ ρmin,

since if α > ρmin then, for interval X = [α, 1), we would have N(X) = N ′ = N \ {1} and
ρ(X) = len(X)

|N(X)| = 1−α
n−1 < ρmin by ρmin = 1

n , a contradiction since ρmin is the minimum density
of all intervals of C and thus ρ(X) ≥ ρmin. This implies that

⋃
C′

i
∈CN′ C ′

i = C ′ even if α1 = 0.
The density ρ′ of intervals in this resulting cake-cutting problem can be easily shown

to satisfy ρ′(X ′) ≥ ρmin for each nonempty interval X ′ of C ′ and ρ′(C ′) = ρmin. Actually,
ρ′(C ′) = len(C′)

|N ′| = 1−ρmin
n−1 = 1− 1

n

n−1 = 1
n = ρmin. Each nonempty interval X ′ ⊆ C ′ can be

written by X ′ = X \ A1 for some interval X = [x′, x′′) ⊆ C. Let Y = X ′ ∪ A1 = X ∪ A1 (it
is possible that there are many X, but Y is uniquely determined). Of course, X ′ = Y \ A1.

If Y is not a single interval of C, then cl(X) ∩ cl(A1) = [x′, x′′] ∩ [α1, α1 + ρmin] = ∅ (i.e.,
x′ < x′′ < α1 < α1 + ρmin or α1 < α1 + ρmin < x′ < x′′), which implies that there is unique
X ⊆ C with X ′ = X \ A1 = Y \ A1 = X and ρ′(X ′) = ρ(X) ≥ ρmin.

Thus, we can assume that Y is a single interval Y = [y′, y′′) of C with y′ ≤ α1 <

α1 + ρmin ≤ y′′ by A1 = [α1, α1 + ρmin) ⊆ Y = X ∪ A1. For each k ∈ N ′ = N \ {1} and
Ck = [αk, βk) ∈ CN , if Ck ⊆ Y , then we have ∅ ≠ C ′

k = Ck \ A1 ∈ C′
N ′ and C ′

k ⊆ X ′ = Y \ A1
(since if Ck ⊆ A1 then βk ≤ α1 + ρmin ≤ β1 by A1 = [α1, α1 + ρmin) ⊆ C1 = [α1, β1) and we
would have βk = α1+ρmin = β1 and A1 = C1 by the fact that CN = (Ci : i ∈ N) was sorted in
a lexicographic order with respect to (βi, αi), and thus ρ(A1) ≤ 1

2 ρmin < ρmin, a contradiction).
Similarly, if Ck ̸⊆ Y , then it is clear that ∅ ≠ C ′

k = Ck \ A1 ∈ C′
N ′ and C ′

k ̸⊆ X ′ = Y \ A1.
Thus, N ′(X ′) = {k ∈ N ′ | C ′

k ∈ C′
N ′ , C ′

k ⊆ X ′} = {k ∈ N \ {1} | Ck ∈ CN , Ck ⊆ Y } =
N(Y ) \ {1}. This implies |N ′(X ′)| = |N(Y )| − 1 or |N ′(X ′)| = |N(Y )|. If 1 ̸∈ N(Y ) (i.e.,
if C1 = [α1, β1) ̸⊆ Y = [y′, y′′)) then y′′ < β1 by y′ ≤ α1 and we have N(Y ) = ∅ since
CN = (Ci : i ∈ N) was sorted in a lexicographic order with respect to (βi, αi). Thus, if
1 ̸∈ N(Y ) then |N ′(X ′)| = |N(Y )| = 0 and ρ′(X ′) = len(X′)

|N ′(X′)| = ∞ ≥ ρmin. Now, assume
1 ∈ N(Y ). Then, |N ′(X ′)| = |N(Y )| − 1 and, by len(Y ) = |N(Y )|ρ(Y ) and ρ(Y ) ≥ ρmin, we
have ρ′(X ′) = len(X′)

|N ′(X′)| = len(Y )−len(A1)
|N(Y )|−1 = |N(Y )|ρ(Y )−ρmin

|N(Y )|−1 ≥ |N(Y )|ρmin−ρmin
|N(Y )|−1 = ρmin.

Thus, since we performed virtual shrinking of hollow interval A1 = [a1, b1) and virtually
considered a1 = b1, the resulting cake-cutting problem with density ρ′ may be considered to
be the same as the original cake-cutting problem, that is, it consists of cake C ′ = C \ A1
which is a single interval of length 1− 1

n and ρ′(C ′) = ρ′
min = ρmin = 1

n , players N ′ = N \{1},
and solid valuation intervals C′

N ′ with a single interval C ′
k = Ck \ A1 ⊆ C ′ of each remaining

player k ∈ N ′ and
⋃

C′
i
∈C′

N′
C ′

i = C ′. Note that the lexicographic order of C′
N ′ is the same

as that of CN ′ and C ′
2 ≤ · · · ≤ C ′

n holds. Note also that, if we consider the cake C ′ of
length 1 − 1

n as being of length 1 by virtually multiplying n
n−1 then the minimum density

ρ′
min = ρmin = 1

n will become ρ′
min = 1

n−1 and we can use induction hypothesis as usual.
By induction hypothesis, the proposition is true in the resulting cake-cutting problem

and we can obtain an allocation A′
N ′ = (A′

i : i ∈ N ′) with A′
i ⊆ C ′

i and len(A′
i) = ρmin for

each i ∈ N ′ and
∑

i∈N ′ A′
i = C ′. From A′

N ′ = (A′
i : i ∈ N ′), we can obtain an allocation

AN = (Ai : i ∈ N) with Ai ⊆ Ci and len(Ai) = ρmin for each i ∈ N ′ as follows: if A′
i = [a′

i, b′
i)

contains the virtually shrunken interval A1 = [a1, b1) then let Ai = [ai, a1) + [b1, bi) by
considering a1 ≠ b1; otherwise, let Ai = A′

i. This is called inverse virtual shrinking of A1.
Thus, the proposition is true for n players. ◀
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4 Application to Mechanism of Asano and Umeda [4]

For a given input of cake C = [ 0, 1), n players N = {1, 2, . . . , n}, and solid valuation intervals
CN = (Ci : i ∈ N) with valuation interval Ci = [ αi, βi) of each player i ∈ N , the mechanism
of Asano and Umeda [4] first finds all the maximal intervals of minimum density ρmin. Let
H1 = [ h′

1, h′′
1), . . . , HL = [ h′

L, h′′
L) be all the maximal intervals of minimum density ρmin in

cake C = [ 0, 1). Their mechanism then cuts cake C = [ 0, 1) at both endpoints of each Hℓ

(ℓ = 1, . . . , L). As shown in [4], the closures of two distinct maximal intervals of minimum
density are disjoint and these cuts at both endpoints of each maximal interval of minimum
density can be done independently. By these cuts, the original cake-cutting problem is
reduced into two types of cake-cutting subproblems of type (i) and type (ii) as follows:

(i) the cake-cutting problem within each maximal interval Hℓ = [ h′
ℓ, h′′

ℓ ) (ℓ = 1, . . . , L) of
minimum density (which consists of cake Hℓ, players N(Hℓ) whose valuation intervals
are in Hℓ and valuations CN(Hℓ) with density ρ); and

(ii) the cake-cutting problem obtained by deleting all Hℓ = [ h′
ℓ, h′′

ℓ ) (ℓ = 1, . . . , L), i.e., the
cake-cutting problem for cake C ′ = C \

∑L
ℓ=1 Hℓ, players N ′ = N \

∑L
ℓ=1 N(Hℓ) and

valuations C′
N ′ (which consists of valuations C ′

k = Ck \
∑L

ℓ=1 Hℓ ̸= ∅ for all k ∈ N ′)
with density ρ′ and

⋃
C′

k
∈C′

N′
C ′

k = C ′.
Note that the cake-cutting problem of type (i) is almost the same as the original cake-cutting
problem, since cake Hℓ is a single interval, each valuation Ck ∈ CN(Hℓ) is also a single interval,
and the valuation intervals CN(Hℓ) is solid as shown in [4]. Thus, based on the core mechanism
M1 (Algorithm 1), for each ℓ = 1, . . . , L, we can find an allocation AN(Hℓ) = (Ai : i ∈ N(Hℓ))
with Ai ⊆ Ci and len(Ai) = ρmin for each i ∈ N(Hℓ) and

∑
i∈N(Hℓ) Ai = Hℓ.

On the other hand, the cake-cutting problem of type (ii) is different from the original cake-
cutting problem, because the resulting cake C ′ = C \

∑L
ℓ=1 Hℓ may become a set of two or

more disjoint intervals and each remaining valuation C ′
k = Ck \

∑L
ℓ=1 Hℓ ̸= ∅ may also become

a set of two or more disjoint intervals. However, the cake-cutting problem of type (ii) can be
solved in almost the same way by virtually shrinking all Hℓ. That is, we virtually shrink each
hollow interval Hℓ = [ h′

ℓ, h′′
ℓ ) (since Hℓ was already deleted) and virtually consider h′

ℓ = h′′
ℓ .

By virtually shrinking of all Hℓ = [ h′
ℓ, h′′

ℓ ), cake C ′ = C \
∑L

ℓ=1 Hℓ becomes a single interval
C ′(S), players N ′ = N \

∑L
ℓ=1 N(Hℓ) remains the same, each valuation C ′

k ∈ C′
N ′ becomes a

single interval C
′(S)
k of C ′(S), and the valuation intervals C′(S)

N ′ = (C ′(S)
k : k ∈ N ′) becomes

solid (i.e.,
⋃

k∈N ′ C
′(S)
k = C ′(S)). Thus, by virtually shrinking of all Hℓ, the cake-cutting

problem of type (ii) above can be reduced to the cake-cutting problem of type (i) for cake
C ′(S), players N ′ = N \

∑L
ℓ=1 N(Hℓ), solid valuation intervals C′(S)

N ′ = (C ′(S)
k : C ′

k ∈ C′
N ′)

with
⋃

k∈N ′ C
′(S)
k = C ′(S) and the same density ρ′(S) = ρ′, which can be solved recursively.

Note that, if ρ(C) > ρmin then the minimum density ρ′
min of intervals in the cake-cutting

problem of type (ii) satisfies ρ′
min > ρmin as shown in [4, 5].

From an allocation A
′(S)
N ′ = (A′(S)

k : k ∈ N ′) to players N ′ where A
′(S)
k is the allocated

piece of cake C ′(S) to player k ∈ N ′ with A
′(S)
k ⊆ C

′(S)
k and

∑
i∈N ′ A

′(S)
k = C ′(S), we obtain

an allocation A′
N ′ = (A′

k : k ∈ N ′) to players N ′ where A′
k is the allocated piece of cake C ′ to

player k with A′
k ⊆ C ′

k and
∑

i∈N ′ A′
k = C ′ as follows: if A

′(S)
k contains a shrunken interval

H
(S)
ℓ of hollow interval Hℓ, then let A′

k be the set of disjoint intervals obtained from A
′(S)
k by

restoring each shrunken interval H
(S)
ℓ in A

′(S)
k to the original hollow interval Hℓ = [ h′

ℓ, h′′
ℓ );

otherwise, let A′
k = A

′(S)
k . They called this inverse shrinking of all Hℓ (ℓ = 1, . . . , L) in [4].

We call the method based on the core mechanism M1 (Algorithm 1) described above the
modified mechanism of Asano and Umeda. The details are in Section 5. Note that all the
maximal intervals of minimum density ρmin can be obtained in O(n2) time, since there are
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0 1

[0,1)C =

4 [0.1,0.5)C =

1 [0.15,0.35)C =

6 [0,0.8)C =

8 [0.2,1)C =

7 [0.55,0.8)C =

3 [0.25,0.45)C =

2 [0.25,0.35)C =

5 [0.65,0.75)C =

0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

(a)

(c)

0 1

[0,1)C =

0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

4 [0.1,0.5)C =

1 [0.15,0.35)C =

6 [0,0.8)C =

8 [0.2,1)C =

7 [0.55,0.8)C =

3 [0.25,0.45)C =

2 [0.25,0.35)C =

5 [0.65,0.75)C =

4 [0.1,0.15) [0.45,0.5)A = +

1 [0.15,0.25)A =

3 [0.35,0.45)A =

2 [0.25,0.35)A =

5 [0.65,0.75)A =

(b)

1 [0.1,0.5)H =

2 [0.65,0.75)H =

0 1

[0,1)C =

0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

4 [0.1,0.5)C =

1 [0.15,0.35)C =

6 [0,0.8)C =

8 [0.2,1)C =

7 [0.55,0.8)C =

3 [0.25,0.45)C =

2 [0.25,0.35)C =

5 [0.65,0.75)C =

4 [0.1,0.15) [0.45,0.5)A = +

1 [0.15,0.25)A =

6 [0,0.1) [0.5,0.55)A = +

8 [0.8,1)A =

7 [0.55,0.65) [0.75,0.8)A = +

3 [0.35,0.45)A =

2 [0.25,0.35)A =

5 [0.65,0.75)A =

Figure 2 (a) Example of CN = (Ci : i ∈ N). (b) The maximal intervals H1, H2 of minimum
density ρmin = 0.1, with N(H1) = {1, 2, 3, 4}, AN(H1) = (Ai : i ∈ N(H1)), N(H2) = {5}, AN(H2)
=(A5) in the 1st iteration.

at most 2n endpoints of the valuation intervals in CN and the endpoints of each interval of
minimum density are endpoints of some valuation intervals. The number of cuts made over
C is also at most 2n − 2. Envy-freeness and truthfulness will be given in Section 5, although
they were given in [5] (also given in [2, 13, 25]). Thus, the following theorem holds as in [4].

▶ Theorem 2. The modified mechanism of Asano and Umeda correctly finds, in O(n3) time,
an envy-free and truthful allocation AN = (Ai : i ∈ N) of cake C to n players N with Ai ⊆ Ci

for each player i ∈ N and
∑

i∈N Ai = C. Furthermore, the number of cuts made over C by
the mechanism is at most 2n − 2.

For an input example in Figure 2(a), the modified mechanism of Asano and Umeda works
as shown in Figure 2(b) and Figure 3.

5 Details of Modified Mechanism of Asano and Umeda

As we described in Section 4, Mechanism of Asano and Umeda [4] can be significantly
simplified based on M1 (Algorithm 1). Actually, M1 can be slightly modified and used as
Procedure CutMaxInterval(·, ·, ·) in Mechanism of Asano and Umeda [4] as follows.
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0 1

[0,1)C =

4 [0.1,0.5)C =

1 [0.15,0.35)C =
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8 [0.2,1)C =

7 [0.55,0.8)C =

3 [0.25,0.45)C =

2 [0.25,0.35)C =

5 [0.65,0.75)C =

0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

(a)

(c)

0 1

[0,1)C =

0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

4 [0.1,0.5)C =

1 [0.15,0.35)C =

6 [0,0.8)C =

8 [0.2,1)C =

7 [0.55,0.8)C =

3 [0.25,0.45)C =

2 [0.25,0.35)C =

5 [0.65,0.75)C =

4 [0.1,0.15) [0.45,0.5)A = +

1 [0.15,0.25)A =

3 [0.35,0.45)A =

2 [0.25,0.35)A =

5 [0.65,0.75)A =

(b)

1 [0.1,0.5)H =

2 [0.65,0.75)H =

0 1

[0,1)C =

0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

4 [0.1,0.5)C =

1 [0.15,0.35)C =

6 [0,0.8)C =

8 [0.2,1)C =

7 [0.55,0.8)C =

3 [0.25,0.45)C =

2 [0.25,0.35)C =

5 [0.65,0.75)C =

4 [0.1,0.15) [0.45,0.5)A = +

1 [0.15,0.25)A =

6 [0,0.1) [0.5,0.55)A = +

8 [0.8,1)A =

7 [0.55,0.65) [0.75,0.8)A = +

3 [0.35,0.45)A =

2 [0.25,0.35)A =

5 [0.65,0.75)A =

Figure 3 The second and third iterations for the example in Figure 2. In the second iteration,
the minimum density is ρmin = 0.15 and N(H1) = {6, 7}, A6 = [0, 0.1) + [0.5, 0.55) and A7 =
[0.55, 0.65) + [0.75, 0.8). In the third (last) iteration, the minimum density is ρmin = 0.2 and
N(H1) = {8} and A8 = [0.8, 1).

Procedure CutMaxInterval(R, H, DR).

Input: Cake H = [h′, h′′), players R and solid valuation intervals DR = (Di : i ∈ R)
with valuation interval Di = [α′

i, β′
i) ⊆ H of each player i ∈ R and⋃

Di∈DR
Di = H, where H is an interval of minimum density ρmin in H.

Output: Allocation AR = (Ai : i ∈ R) with Ai ⊆ Di and len(Ai) = ρmin for each
i ∈ R and

∑
i∈R Ai = H.

sort DR = (Di = [α′
i, β′

i) : i ∈ R) in a lexicographic order with respect to (β′
i, α′

i) and
assume R = {r1, r2, . . . , r|R|} and Dr1 ≤ Dr2 ≤ · · · ≤ Dr|R| in this order;

set Ar1 = [ar1 , br1) ⊆ Dr1 with length ρmin such that ar1 = α′
r1

and br1 = α′
r1

+ ρmin;
for i = 2 to |R| do

set Ari
= [ari

, bri
) \

∑i−1
ℓ=1 Arℓ

with length ρmin such that [ari
, bri

) ⊆ Dri
and

ari
is the leftmost endpoint in Dri

\
∑i−1

ℓ=1 Arℓ
;

Thus, our modified mechanism of Asano and Umeda can be written as follows (we omit
inverse virtual shrinking).

Algorithm 2 Modified Mechanism of Asano and Umeda.

Input: Cake C = [ 0, 1), n players N = {1, 2, . . . , n} and solid valuation intervals
CN = (Ci : i ∈ N) with valuation interval Ci = [αi, βi) ⊆ C of each player
i ∈ N and

⋃
Ci∈CN

Ci = C.
Output: Allocation AN = (Ai : i ∈ N) with Ai ⊆ Ci for i ∈ N and

∑
i∈N Ai = C.

CutCake(N, C, CN );

Now we will give a proof of envy-freeness and truthfulness of Modified Mechanism of
Asano and Umeda (Alogorithm 2) described in Theorem 2, which is almost the same as given
in [13, 25].

Let T be the number of recursive calls CutCake(·, ·, ·) in Modified Mechanism of As-
ano and Umeda (Algorithm 2). Note that, although we use D(S), D

(S)
k ∈ D(S)

P ′ , D(S)
P ′ in

CutCake(P ′, D(S), D(S)
P ′ ) which are obtained from D′, D′

k ∈ D′
P ′ , D′

P ′ by virtual shrinking of
all H1, . . . , HL, we will not distinguish them from now on, since we just performed virtual
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Procedure CutCake(P, D, DP ).

Input: Cake D which can be considered to be a single interval, players P , and solid
valuation intervals DP = (Di : i ∈ P ) with valuation interval
Di = [α′

i, β′
i) ⊆ D of each player i ∈ P and

⋃
Di∈DP

Di = D (the density of
each interval X of D is denoted by ρ(X)).

Output: Allocation AP = (Ai : i ∈ P ) with Ai ⊆ Di for i ∈ P and
∑

i∈P Ai = D.
Find all the maximal intervals of minimum density ρmin in the cake-cutting problem

with cake D, players P and solid valuation intervals DP ;
Let H1 = [h′

1, h′′
1), . . . , HL = [h′

L, h′′
L) be all the maximal intervals of minimum

density ρmin;
for ℓ = 1 to L do

cut cake D at both endpoints h′
ℓ, h′′

ℓ of Hℓ;
Rℓ = {k ∈ P | Dk ⊆ Hℓ, Dk ∈ DP }; DRℓ

= (Dk ∈ DP : k ∈ Rℓ);
CutMaxInterval(Rℓ, Hℓ, DRℓ

);
P ′ = P ; D′ = D;
for ℓ = 1 to L do P ′ = P ′ \ Rℓ; D′ = D′ \ Hℓ;
// P ′ = P \

∑L
ℓ=1 Rℓ and D′ = D \

∑L
ℓ=1 Hℓ

if P ′ ̸= ∅ then
D′

P ′ = ∅;
for each Dk ∈ DP with k ∈ P ′ do D′

k = Dk \
∑L

ℓ=1 Hℓ; D′
P ′ = D′

P ′ + {D′
k};

Let D(S), D
(S)
k ∈ D(S)

P ′ , D(S)
P ′ be obtained from D′, D′

k ∈ D′
P ′ , D′

P ′ by virtual
shrinking of all H1, . . . , HL;

CutCake(P ′, D(S), D(S)
P ′ );

shrinking. Thus, we consider D(S) = D′, (D(S)
k ∈ D(S)

P ′ ) = (D′
k ∈ D′

P ′) and D(S)
P ′ = D′

P ′ . We
denote by CutCake(P (t), D(t), DP (t)) the t-th recursive call of CutCake(·, ·, ·). Note that the
first call of CutCake(·, ·, ·) is CutCake(N, C, CN ). Let ρ

(t)
min be the minimum density of the

cake cutting problem with cake D(t), players P (t) and the solid valuation intervals DP (t) .
Clearly, C = D(1) ⊃ D(2) ⊃ · · · ⊃ D(T ) and N = P (1) ⊃ P (2) ⊃ · · · ⊃ P (T ). Furthermore, as
shown in [4, 5], the inequality

ρ
(1)
min < ρ

(2)
min < · · · < ρ

(T )
min

holds. We denote by CutMaxInterval(R(t)
ℓ , H

(t)
ℓ , D

R
(t)
ℓ

) the CutMaxInterval(·, ·, ·) called in

CutCake(P (t), D(t), DP (t)), where H
(t)
ℓ is a maximal interval of minimum density ρ

(t)
min in

cake D(t), players P (t) and solid valuation intervals DP (t) by virtualy shrinking of hollow
pieces in C \ D(t). For each player i ∈ N , there is t ∈ {1, . . . , T } such that allocation Ai ⊆ Ci

to player i is determined in CutMaxInterval(R(t)
ℓ , H

(t)
ℓ , D

R
(t)
ℓ

). Thus, it is clear that Modified
Mechanism of Asano and Umeda (Algorithm 2) finds an allocation AN = (Ai : i ∈ N) of
cake C to n players N with Ai ⊆ Ci for each player i ∈ N and

∑
i∈N Ai = C.

Envy-freeness can be proved as follows (which is almost the same as given in [13, 25]).
Let Ai ⊆ Ci to player i be determined in CutMaxInterval(R(t)

ℓ , H
(t)
ℓ , D

R
(t)
ℓ

) called in the

t-th recursive call CutCake(P (t), D(t), DP (t)). Thus, Vi(Ai) = len(Ai) = ρ
(t)
min. Similarly,

let Aj ⊆ Cj to player j be determined in CutMaxInterval(R(t′)
ℓ′ , H

(t′)
ℓ′ , D

R
(t′)
ℓ′

) called in

the t′-th recursive call CutCake(P (t′), D(t′), DP (t′)). If t′ ≤ t then Vi(Aj) = len(Aj ∩
Ci) ≤ len(Aj) = ρ

(t′)
min ≤ ρ

(t)
min = len(Ai) = Vi(Ai). Otherwise (i.e., if t′ > t), although

Vj(Aj) = len(Aj) = ρ
(t′)
min > ρ

(t)
min = len(Ai) = Vi(Ai), we have Aj ∩ Ci = ∅ and Vi(Aj) =

len(Aj ∩ Ci) = 0 ≤ ρ
(t)
min = len(Ai) = Vi(Ai). Thus, envy-freeness is clear.
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Truthfulness can be proved as follows. Assume that only player i ∈ N gives a false
valuation interval C ′

i and let C′
N (i) = (C ′

j : j ∈ N) be an input to Modified Mechanism
of Asano and Umeda (Algorithm 2) and A′

N (i) = (A′
j : j ∈ N) be the obtained allocation

of cake C to n players N (in the argument below, we assume that C′
N (i) = (C ′

j : j ∈ N)
is solid, although this restriction can be removed by a little more complicated argument).
Let Ai ⊆ Ci to player i be determined in CutMaxInterval(R(t)

ℓ , H
(t)
ℓ , D

R
(t)
ℓ

) called in the

t-th recursive call CutCake(P (t), D(t), DP (t)). Similarly, let A′
i ⊆ C ′

i with A′
i =

∑k′
i

ℓ′=1 A′
iℓ′

to player i be determined in CutMaxInterval(R
′(t′)
ℓ′ , H

′(t′)
ℓ′ , D′

R
′(t′)
ℓ′

) called in the t′-th re-

cursive call CutCake(P ′(t′), D
′(t′), D′

P ′(t′)). Thus, Vi(Ai) = len(Ai) = ρ
(t)
min and Vi(A′

i) =∑k′
i

ℓ′=1 len(A′
iℓ′ ∩ Ci) ≤

∑k′
i

ℓ′=1 len(A′
iℓ′ ) = ρ′ (t′)

min , where ρ′ (t′)
min is the minimum density of

the intervals in cake D
′(t′) with P

′(t′) and D′
P ′(t′) . We divide the case into two cases: (i)

ρ′ (t′)
min ≤ ρ

(t)
min; and (ii) ρ′ (t′)

min > ρ
(t)
min.

(i) ρ′ (t′)
min ≤ ρ

(t)
min. In this case, it is clear that Vi(Ai) = len(Ai) = ρ

(t)
min ≥ ρ′ (t′)

min =∑k′
i

ℓ′=1 len(A′
iℓ′ ) ≥

∑k′
i

ℓ′=1 len(A′
iℓ′ ∩ Ci) = Vi(A′

i).

(ii) ρ′ (t′)
min > ρ

(t)
min. In this case, t′ ≥ t holds, which can be shown as follows.

Suppose contrarily that t′ < t. Then for two inputs CN = (Cj : j ∈ N) and C′
N (i) = (C ′

j :
j ∈ N), Modified Mechanism of Asano and Umeda (Algorithm 2) makes the same behavior
before the t′-th recursive calls CutCake(P (t′), D(t′), DP (t′)) and CutCake(P ′(t′), D

′(t′), D′
P ′(t′)).

Thus, P
′(t′′) = P (t′′), D

′(t′′) = D(t′′) and D′
P ′(t′′) \ {D′ (t′′)

i } = DP (t′′) \ {D
(t′′)
i } for each

t′′ = 1, . . . , t′, where D
(t′′)
i = Ci ∩ D(t′′) and D′ (t′′)

i = C ′
i ∩ D

′(t′′). Let X = [x′, x′′) be
a maximal interval of minimum density ρ

(t′)
min in D(t′) = D

′(t′). Thus, ρ(t′)(X) = ρ
(t′)
min.

Furthermore, D
(t′)
i = Ci ∩ D(t′) ̸⊆ X, since otherwise (i.e., if D

(t′)
i ⊆ X) Ai to player i would

be determined in the t′-th recursive call CutCake(P (t′), D(t′), DP (t′)), which is a contadiction
(since t > t′ and Ai is determined in the t-th call CutCake(P (t), D(t), DP (t))). Thus, if
D′ (t′)

i = C ′
i ∩ D

′(t′) ̸⊆ X then ρ′ (t′)(X) = ρ(t′)(X) holds by D
(t′)
i ̸⊆ X, and otherwise (i.e., if

D′ (t′)
i ⊆ X) ρ′ (t′)(X) < ρ(t′)(X) holds by D

(t′)
i ̸⊆ X. This implies that ρ′ (t′)(X) ≤ ρ(t′)(X)

and ρ′ (t′)
min ≤ ρ′ (t′)(X) ≤ ρ(t′)(X) = ρ

(t′)
min < ρ

(t)
min by t′ < t. However, this is a contradiction,

since ρ′ (t′)
min > ρ

(t)
min in this case.

Thus, we have t′ ≥ t in this case of ρ′ (t′)
min > ρ

(t)
min. As we mentioned above, for two inputs

CN = (Cj : j ∈ N) and C′
N (i) = (C ′

j : j ∈ N), Modified Mechanism of Asano and Umeda (Al-
gorithm 2) makes the same behavior before the t-th recursive calls CutCake(P (t), D(t), DP (t))
and CutCake(P ′(t), D

′(t), D′
P ′(t)). Thus, P

′(t) = P (t), D
′(t) = D(t) and D′

P ′(t) \ {D′ (t)
i } =

DP (t) \ {D
(t)
i }, where D

(t)
i = Ci ∩ D(t) and D′ (t)

i = C ′
i ∩ D

′(t). For each player j ∈ N with Aj

determined in CutMaxInterval(R(t)
ℓ , H

(t)
ℓ , D

R
(t)
ℓ

) in the t-th call CutCake(P (t), D(t), DP (t)),

let A′
j be determined in the t′

j-th call CutCake(P
′(t′

j), D
′(t′

j), D′
P ′ (t′

j
)). Thus t′

j ≥ t.

We will show that ρ′ (t)
min ≥ ρ

(t)
min. If t′ = t then this is true since ρ′ (t)

min = ρ′ (t′)
min > ρ

(t)
min.

Now we assume t′ > t. Let X = [x′, x′′) be a maximal interval of minimum density ρ′ (t)
min

in D
′(t) = D(t). Thus, ρ′ (t)(X) = ρ′ (t)

min. Furthermore, D′ (t)
i = C ′

i ∩ D
′(t) ̸⊆ X holds, since

otherwise (i.e., if D′ (t)
i ⊆ X) A′

i to player i would be determined in the t-th recursive
call CutCake(P ′(t), D

′(t), D′
P ′(t)) and t′ = t (which contradicts t′ > t). Thus, if D

(t)
i =

Ci ∩ D(t) ̸⊆ X, then ρ′ (t)(X) = ρ(t)(X) by D′ (t)
i ̸⊆ X and ρ′ (t)

min = ρ′ (t)(X) = ρ(t)(X) ≥ ρ
(t)
min.

If D
(t)
i ⊆ X, then ρ′ (t)(X) > ρ(t)(X) by D′ (t)

i ̸⊆ X and ρ′ (t)
min = ρ′ (t)(X) > ρ(t)(X) ≥ ρ

(t)
min.

By the argument above, we have ρ′ (t)
min ≥ ρ

(t)
min.
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Thus, for each j ∈ R
(t)
ℓ \{i}, we have len(A′

j) = ρ
′ (t′

j)
min ≥ ρ′ (t)

min ≥ ρ
(t)
min and A′

j ⊆ Cj∩D
′(t) =

Cj ∩ D(t) ⊆ H
(t)
ℓ . By

∑
j∈N A′

j = C and
∑

j∈R
(t)
ℓ

Aj = (∪
j∈R

(t)
ℓ

Cj) ∩ D(t) = H
(t)
ℓ , we have

Vi(A′
i) = len(A′

i ∩ Ci) = len(A′
i ∩ Ci ∩ D(t))

≤ len(H(t)
ℓ ) −

∑
j∈R

(t)
ℓ

\{i}

len(A′
j ∩ Cj ∩ D(t)) = len(H(t)

ℓ ) −
∑

j∈R
(t)
ℓ

\{i}

len(A′
j)

≤ len(H(t)
ℓ ) − ρ

(t)
min(|R(t)

ℓ | − 1) = |R(t)
ℓ |ρ(t)

min − ρ
(t)
min(|R(t)

ℓ | − 1)

= ρ
(t)
min = Vi(Ai).

Thus, truthfulness of Modified Mechanism of Asano and Umeda (Algorithm 2) is proved.

6 Second Mechanism M2

In this section, we give the second version M2 which can be applied to the envy-free and
truthful mechanism proposed by Chen, et al. [13] where the valuation function of each
player is more general and piecewise uniform. We are given a cake C = [ 0, 1), n players
N = {1, 2, . . . , n}, and solid valuation intervals CN = (Ci : i ∈ N) with valuation interval
Ci = [αi, βi) ⊆ C of each player i ∈ N as before. We are also given (si : i ∈ N) such that
there is an allocation A′

N = (A′
i : i ∈ N) to players N with A′

i ⊆ Ci and si = len(A′
i) > 0 for

each i ∈ N and
∑

i∈N A′
i = C (thus

∑
i∈N si = 1). Note that there is no need to have such

an allocation A′
N = (A′

i : i ∈ N) in hand.
Then M2 is almost the same as M1 and can be written as follows.

Algorithm 3 Second Mechanism M2.

Input: Cake C = [ 0, 1), n players N = {1, 2, . . . , n} and solid valuation intervals
CN = (Ci : i ∈ N) with valuation interval Ci = [αi, βi) of each player i ∈ N

and
⋃

Ci∈CN
Ci = C and (si : i ∈ N) for players N such that there is an

allocation A′
N = (A′

i : i ∈ N) to players N with A′
i ⊆ Ci and len(A′

i) = si for
each i ∈ N and

∑
i∈N A′

i = C (thus
∑

i∈N si = 1).
Output: Allocation AN = (Ai : i ∈ N) with Ai ⊆ Ci and len(Ai) = si for each

i ∈ N and
∑

i∈N Ai = C.
sort CN = (Ci : i ∈ N) in a lexicographic order with respect to (βi, αi) and assume

C1 ≤ C2 ≤ · · · ≤ Cn in this lexicographic order;
set A1 = [a1, b1) ⊆ C1 with length s1 such that a1 = α1 and b1 = α1 + s1;
for i = 2 to n do

set Ai = [ai, bi) \
∑i−1

ℓ=1 Aℓ with length si such that [ai, bi) ⊆ Ci and ai is the
leftmost endpoint in Ci \

∑i−1
ℓ=1 Aℓ;

Figure 4 shows an example of solid valuation intervals CN = (Ci : i ∈ N) and (si : i ∈ N)
with

∑
i∈N si = 1 and an allocation AN = (Ai : i ∈ N) obtained by M2. By an argument

similar to one in Proof of Theorem 1 we have the following theorem.

▶ Theorem 3. M2 correctly finds an allocation AN = (Ai : i ∈ N) with Ai ⊆ Ci and
len(Ai) = si for each i ∈ N and

∑
i∈N Ai = C in O(n log n) time. Furthermore, the number

of cuts made by M2 on cake C is at most 2n − 2.

Proof. Since the time complexity O(n log n) and the number of cuts at most 2n − 2 can be
obtained by the same argument as in Proof of Theorem 1, we only prove that M2 correctly
finds an allocation AN = (Ai : i ∈ N) with Ai ⊆ Ci, len(Ai) = si and

∑
i∈N Ai = C.
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Figure 4 (a) Example of CN = (Ci : i ∈ N) and (si : i ∈ N) with
∑

i∈N
si = 1. (b) Allocation

AN = (Ai : i ∈ N) obtained by M2.

Suppose contrarily that M2 could not set Ai ⊆ Ci with length si for some i ∈ N . Let j

be the minimum among such i s and let J = {1, 2, . . . , j}. Of course, j > 1, since we assumed
that there is an allocation A′

N = (A′
i : i ∈ N) to players N with A′

i ⊆ Ci and len(A′
i) = si for

each i ∈ N and
∑

i∈N A′
i = C (thus C1 = [α1, β1) is of length at least s1 and A1 = [a1, b1) =

[α1, α1 + s1) ⊆ C1). Now we consider valuation intervals CJ = (Ci : i ∈ J). Note that each
Ci = [αi, βi) ∈ CJ satisfies βi ≤ βj , since CN = (Ci : i ∈ N) was sorted in the lexicographic
order with respect to (βi, αi). Thus, M2 could set Ai = [ai, bi) \

∑i−1
ℓ=1 Aℓ ⊆ Ci = [αi, βi)

with length si for each i ∈ J \ {j} but could not set Aj = [aj , bj) \
∑j−1

ℓ=1 Aℓ ⊆ Cj = [αj , βj)
with length sj . This implies that Cj \

∑j−1
ℓ=1 Aℓ is of length s′

j < sj . Let

A′′
i =Ai (i ∈J \ {j}), A′′

j =Cj \
j−1∑
ℓ=1

A′′
ℓ = [aj , βj) \

j−1∑
ℓ=1

Aℓ.

Thus,
∑

i∈J A′′
i of allocation (A′′

i : i ∈ J) consists of several maximal contiguous intervals.
Let I = [a, b) be the rightmost maximal contiguous interval among the maximal contiguous
intervals in

∑
i∈J A′′

i (Figure 5). Thus, b = βj . Define K ⊆ J by

K = {j} ∪ {i ∈ J | A′′
i ∩ I ̸= ∅}.

Now we consider valuation intervals CK = (Ci : i ∈ K). Then each Ci ∈ CK is contained in
I, which can be obtained as follows.
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Figure 5 Illustration of I = [a, b) and I ′ = [a′, a).

Of course, Cj = [αj , βj) is contained in I. Actually, since Cj\
∑j−1

ℓ=1 A′′
ℓ = [aj , βj)\

∑j−1
ℓ=1 Aℓ

is of length s′
j < sj and A′′

j = Cj \
∑j−1

ℓ=1 A′′
ℓ = [aj , βj) \

∑j−1
ℓ=1 Aℓ, we have: if A′′

j = ∅ then
Cj ⊆

∑j−1
ℓ=1 A′′

ℓ and a single contiguous interval Cj is contained in the rightmost maximal
contiguous interval I in

∑j
ℓ=1 A′′

ℓ =
∑j−1

ℓ=1 A′′
ℓ (i.e., Cj ⊆ I); and otherwise (i.e., if A′′

j ̸= ∅),
Cj ⊆ A′′

j ∪
∑j−1

ℓ=1 A′′
ℓ =

∑j
ℓ=1 A′′

ℓ and a single contiguous interval Cj is contained in the
rightmost maximal contiguous interval I in

∑j
ℓ=1 A′′

ℓ .
Now suppose that there were i ∈ K \ {j} such that Ci ∈ CK is not contained in I. Thus,

I = [a, b) is a proper subinterval of [0, b) = [0, βj) (i.e., a > 0) and Ci = [αi, βi) ∈ CK \ {Cj}
contains a point x in [0, b) \ I = [0, a). Let k ∈ K \ {j} be the minimum among such i s
and let xk be a point of Ck = [αk, βk) ∈ CK contained in [0, a) = [0, b) \ I. Note that
Ck ∩ I ⊇ A′′

k ∩ I ̸= ∅ since k ∈ K \ {j} ⊆ J \ {j}. Thus, βk ≤ βj and αk ≤ xk < a ≤ a′
k < βk

for some a′
k ∈ A′′

k ∩ I ̸= ∅. Furthermore, since we chose I = [a, b) ̸= [0, b) as the rightmost
maximal contiguous interval among the maximal contiguous intervals in

∑
i∈J A′′

i , we have∑
i∈J A′′

i ̸= [0, b) = [0, βj). Let I ′ = [a′, a) be the rightmost maximal contiguous interval
in [0, b) \

∑
i∈J A′′

i (Figure 5). Since Ck = [αk, βk) is a contiguous interval and satisfies
αk ≤ xk < a ≤ a′

k < βk, we can choose xk with xk ∈ I ′ ∩ Ck ̸= ∅. Thus, xk ̸∈ A′′
k by

I ′ ∩ A′′
k ⊆ I ′ ∩

∑
i∈J A′′

i = ∅. Then, however, M2 would have tried to include xk into A′′
k

rather than a′
k ∈ A′′

k ∩ I ̸= ∅, because M2 sets A′′
k = Ak = [ak, bk) \

∑k−1
ℓ=1 A′′

ℓ ⊆ Ck with
length sk such that ak is the leftmost endpoint in Ck \

∑k−1
ℓ=1 A′′

ℓ . This is a contradiction.
Thus, each Ci ∈ CK is contained in I and

⋃
i∈K Ci ⊆ I. By the argument above, we have

⋃
i∈K

Ci = I =
∑
i∈K

A′′
i ,

since A′′
h ∩ I = ∅ for h ∈ J \ K and I =

∑
i∈J A′′

i ∩ I =
∑

i∈K A′′
i ∩ I ⊆

∑
i∈K A′′

i ⊆
∑

i∈K Ci

by the definitions of I and K and A′′
i ⊆ Ci for each i ∈ K. Thus,∑

i∈K

len(A′′
i ) = s′

j +
∑

i∈K\{j}

si = len(I) = b − a < sj +
∑

i∈K\{j}

si

since s′
j < sj . However, this is a contradiction, since we assumed that there is an allocation

A′
N = (A′

i : i ∈ N) to players N with A′
i ⊆ Ci and len(A′

i) = si for each i ∈ N and∑
i∈N A′

i = C, and thus

sj +
∑

i∈K\{j}

si =
∑
i∈K

len(A′
i) ≤ len(

⋃
i∈K

Ci) = len(I) = b − a.

Thus, M2 correctly finds an allocation AN = (Ai : i ∈ N) with Ai ⊆ Ci, len(Ai) = si

and
∑

i∈N Ai = C. ◀
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7 Application to Mechanism of Chen et al. [13]

By Theorem 3, in order to obtain an envy-free and truthful allocation AN = (Ai : i ∈ N)
with Ai ⊆ Ci and len(Ai) = si for each i ∈ N and

∑
i∈N Ai = C, we only need (si : i ∈ N)

such that there is an envy-free and truthful allocation A′
N = (A′

i : i ∈ N) to players N

with A′
i ⊆ Ci and len(A′

i) = si for each i ∈ N and
∑

i∈N A′
i = C. Thus, Theorem 3 can

be applied to the mechanism of Chen, et al. [13] where the valuation function vi of each
player i ∈ N is more general and piecewise uniform: Given a cake C = [ 0, 1), n players
N = {1, 2, . . . , n} and solid piecewise uniform valuation functions (vi : i ∈ N) such that
D(vi) = {x ∈ C | vi(x) > 0} of each valuation function vi consists of mi ≥ 1 maximal
contiguous intervals Ci1 , . . . , Cimi

in C and
⋃

i∈N D(vi) = C.
The mechanism of Chen, et al. [13] finds an envy-free and truthful allocation A′

N =
(A′

i : i ∈ N) such that
∑

i∈N A′
i = C and A′

i =
∑mi

j=1 A′
ij

with A′
ij

⊆ Cij for each i ∈ N

and for each j = 1, 2, . . . , mi. Thus, we can set sij
= len(A′

ij
) and apply Theorem 3 to

obtain an envy-free and truthful allocation AN = (Ai : i ∈ N) such that Ai =
∑mi

j=1 Aij

for each i ∈ N with Aij
⊆ Cij

and len(Aij
) = sij

for each j = 1, 2, . . . , mi with at most
2(

∑
i∈N mi) − 2 cuts. Note that, we can delete all Cij

if sij
= len(A′

ij
) = 0, and thus, we

can assume sij
= len(A′

ij
) > 0 for each i ∈ N and for each j = 1, 2, . . . , mi.

In summary, we have the following corollary.

▶ Corollary 4. Suppose that we are given (sij
: i ∈ N, j = 1, 2, . . . , mi) such that there is an

envy-free and truthful allocation A′
N = (A′

i : i ∈ N) to players N satisfying
∑

i∈N A′
i = C

and A′
i =

∑mi

j=1 A′
ij

with A′
ij

⊆ Cij
and len(A′

ij
) = sij

> 0 for each i ∈ N and for each
j = 1, 2, . . . , mi for the cake-cutting problem with cake C = [ 0, 1), n players N = {1, 2, . . . , n}
and solid piecewise uniform valuation functions (vi : i ∈ N) such that D(vi) = {x ∈ C |
vi(x) > 0} of each piecewise uniform valuation function vi consists of mi ≥ 1 maximal
contiguous intervals Ci1 , . . . , Cimi

in C and
⋃

i∈N D(vi) = C (such A′
N = (A′

i : i ∈ N)
to players N can be obtained, for example, by Mechanism of Chen, et al. [13]). Then,
Second Mechanism M2 (Algorithm 3) correctly finds an envy-free and truthful allocation
AN = (Ai : i ∈ N) with

∑
i∈N Ai = C and Ai =

∑mi

j=1 Aij
with Aij

⊆ Cij
and len(Aij

) = sij

for each i ∈ N and for each j = 1, 2, . . . , mi in O(
∑

i∈N mi log
∑

i∈N mi) time. Furthermore,
the number of cuts made by M2 on cake C is at most 2(

∑
i∈N mi) − 2. Thus, Mechanism of

Chen, et al. [13] can be implemented to make at most 2(
∑

i∈N mi) − 2 cuts on cake C.

8 Concluding Remarks

We gave a much simpler envy-free and truthful mechanism with a small number of cuts for
the cake-cutting problem posed in [2, 25]. Furthermore, we showed that this approach can
be applied to the envy-free and truthful mechanism proposed by Chen, et al. [13] for the
more general cake-cutting problem where the valuation function of each player is piecewise
uniform. Thus, we can make their envy-free and truthful mechanism use 2

∑
i∈N mi − 2

cuts and settle the problem posed by [2, 25], where mi is the number of maximal contiguous
intervals in D(vi) = {x ∈ C | vi(x) > 0} of each player i’s piecewise uniform valuation vi.

If we require the piecewise uniform valuation vi of each player i to be a single contiguous
interval Ci in cake C, then Modified Mechanism of Asano and Umeda can be implemented
to run in O(n2 log n) time based on parametric flows on the network arising from valuation
intervals Ci [3] (Parametric flows and parametric searching have been studied by many
researchers [1, 17, 33]). We expect this would lead to a faster envy-free and truthful
mechanism for the general piecewise uniform valuations.
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Abstract
In this paper, we study the problem of maximizing the difference between an adaptive submodular
(revenue) function and a non-negative modular (cost) function. The input of our problem is a set
of n items, where each item has a particular state drawn from some known prior distribution The
revenue function g is defined over items and states, and the cost function c is defined over items,
i.e., each item has a fixed cost. The state of each item is unknown initially and one must select an
item in order to observe its realized state. A policy π specifies which item to pick next based on
the observations made so far. Denote by gavg(π) the expected revenue of π and let cavg(π) denote
the expected cost of π. Our objective is to identify the best policy πo ∈ arg maxπ gavg(π) − cavg(π)
under a k-cardinality constraint. Since our objective function can take on both negative and positive
values, the existing results of submodular maximization may not be applicable. To overcome this
challenge, we develop a series of effective solutions with performance guarantees. Let πo denote the
optimal policy. For the case when g is adaptive monotone and adaptive submodular, we develop
an effective policy πl such that gavg(πl) − cavg(πl) ≥ (1 − 1

e
− ϵ)gavg(πo) − cavg(πo), using only

O(nϵ−2 log ϵ−1) value oracle queries. For the case when g is adaptive submodular, we present a
randomized policy πr such that gavg(πr) − cavg(πr) ≥ 1

e
gavg(πo) − cavg(πo).

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Mathematics of computing → Approximation algorithms; Mathematics of computing → Submodular
optimization and polymatroids

Keywords and phrases Adaptive submodularity, approximation algorithms, active learning

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.69

1 Introduction

Maximizing a submodular function subject to practical constraints has attracted increased
attention recently [3, 16, 17, 7]. Submodularity encodes a natural diminishing returns
property, which can be found in a wide variety of machine learning tasks such as active
learning [3], virtual marketing [16, 17], sensor placement [7], and data summarization [8].
Under the non-adaptive setting, where one must select a group of items all at once, [11]
shows that a classic greedy algorithm achieves 1− 1/e approximation ratio for the problem
of maximizing a monotone and non-negative submodular function subject to a cardinality
constraint. For non-monotone and non-negative objectives, [1] obtains an approximation of
1/e+ 0.004.

Very recently, [4] studies the problem of maximizing the difference between a monotone
non-negative submodular function and a non-negative modular function. Given that the
objective function of the above problem may take both positive and negative values, most
existing technologies, which require the objective function to take only non-negative values,
can not provide nontrivial approximation guarantees. They overcome this challenge by
developing a series of effective algorithms. In this paper, we extend their work to the adaptive
setting by considering the problem of adaptive regularized submodular maximization, i.e., our
goal is to adaptively select a group of items to maximize the difference between an adaptive
submodular (revenue) function and a non-negative modular (cost) function. We next provide
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more details about our adaptive setting. Following the framework of adaptive submodular
maximization [3], a natural stochastic variant of the classical non-adaptive submodular
maximization problem, we assume that each item is in a particular state drawn from a
known prior distribution. The state of each item is unknown initially and one must select an
item before observing its state. A policy π specifies which item to pick next based on the
observations made so far. Note that the decision on selecting an item is irrevocable, that is,
we can not discard any item that is previously selected. The revenue function g is defined
over items and states, and the cost function c is defined over items. Note that there are
two sources of randomness that make our problem more complicated than its non-adaptive
counterpart. One is the random realization of items’ states, and the other one is the random
decision that is made by the policy. We use gavg(π) to denote the expected revenue of π and
let cavg(π) denote the expected cost of π. Our objective is to identify the best policy:

max
π

gavg(π)− cavg(π)

under a k-cardinality constraint. The above formulation has its applications in many
domains [5, 12]. When gavg(π) represents the revenue of π and cavg(π) encodes the cost of
π, the above formulation is to maximize profits. In general, the above formulation may be
interpreted as a regularized submodular maximization problem under the adaptive setting.
Since our objective function can take on both negative and positive values, the existing results
of non-monotone adaptive submodular maximization [14, 15], which require the objective
function to take only non-negative values, may not be applicable.

Our contribution is threefold. We first consider the case when the revenue function g

is adaptive monotone and adaptive submodular. Letting πo denote the optimal policy, we
develop an effective policy πd such that gavg(πd) − cavg(πd) ≥ (1 − 1

e )gavg(πo) − cavg(πo),
using O(kn) value oracle queries. Our second result is the development of a faster policy πl

such that gavg(πl) − cavg(πl) ≥ (1 − 1
e − ϵ)gavg(π

o) − cavg(πo), using only O(nϵ−2 log ϵ−1)
value oracle queries. For the case when g is (non-monotone) adaptive submodular, we present
a randomized policy πr such that gavg(πr)− cavg(πr) ≥ 1

egavg(π
o)− cavg(πo).

2 Related Work

Submodular maximization is a well-studied topic due to its applications in a wide range of
domains including active learning [3], virtual marketing [16, 17], sensor placement [7]. Most
of existing studies focus on the non-adaptive setting where one must select a group of items
all at once. [11] shows that a classic greedy algorithm, which iteratively selects the item
that has the largest marginal revenue on top of the previously selected items, achieves a
1− 1/e approximation ratio when maximizing a monotone non-negative submodular function
subject to a cardinality constraint. The problem of maximizing a sum of a non-negative
monotone submodular function and an (arbitrary) modular function is first studied in [13].
Notably, their objective function may take on negative values. [2] develops a faster algorithm
using a surrogate objective that varies with time. For the case of a cardinality constraint
and a non-negative c, [4] develops the first practical algorithm. Their results have been
enhanced by [5] for the unconstrained case. Recently, [6, 12] extend this study to streaming
and distributed settings. Our work is different from theirs in that we focus on the adaptive
setting [3, 14, 15]. Moreover, we consider a more general problem of maximizing the difference
of a non-negative non-monotone adaptive submodular function and a non-negative modular
function.
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3 Preliminaries

In the rest of this paper, we use [m] to denote the set {0, 1, · · · ,m}. We mostly follow [3]
and adopt similar notations.

3.1 Items and States
The input of our problem is a set E of n items. Each item e ∈ E is in a random state Φ(e) ∈ O
where O represents the set of all possible states. We use a function ϕ : E → O, called a
realization, to represent the realized states of all items, i.e., ϕ(e) represents a realization
of Φ(e). There is a known prior probability distribution p = {Pr[Φ = ϕ] : ϕ ∈ U} over all
possible realizations U . The state Φ(e) of each item e ∈ E is unknown initially and one must
select e before observing its realized state. If we select multiple items S ⊆ E, then we are
able to observe a partial realization ψ : S → O and dom(ψ) = S is called the domain of
ψ. A partial realization ψ is said to be consistent with a realization ϕ, denoted ϕ ∼ ψ, if
they are equal everywhere in dom(ψ). A partial realization ψ is said to be a subrealization
of ψ′, denoted ψ ⊆ ψ′, if dom(ψ) ⊆ dom(ψ′) and they are equal everywhere in the domain
dom(ψ) of ψ. Let p(ϕ | ψ) denote the conditional distribution over realizations conditioned
on a partial realization ψ: p(ϕ | ψ) = Pr[Φ = ϕ | Φ ∼ ψ]. In the rest of this paper, we use
uppercase letters to denote random variables, and lowercase letters for realizations. For
example, Ψ refers to a random variable, and ψ is a realization of Ψ.

3.2 Revenue and Cost
For a set Y ⊆ E of items and a realization ϕ, let g(Y, ϕ) represent the revenue of selecting Y
conditioned on ϕ, where g is called revenue function. Moreover, each item e ∈ E has a fixed
cost ce. For any set subset of items Y ⊆ E, let c(Y ) =

∑
e∈Y ce denote the total cost of Y ,

where c is called cost function.

3.3 Problem Formulation
A policy specifies which item to select next based on the partial realization observed so far.
Mathematically, we represent a policy using a function π that maps a set of observations to
a distribution P(E) of E: π : 2E ×OE → P(E).

▶ Definition 1 ([3], Policy Concatenation). Given two policies π and π′, let π@π′ denote a
policy that runs π first, and then runs π′, ignoring the observation obtained from running π.

▶ Definition 2 ([3], Level-t-Truncation of a Policy). Given a policy π, we define its level-t-
truncation πt as a policy that runs π until it selects t items.

For each realization ϕ, let E(π, ϕ) denote the subset of items selected by π under realization
ϕ. Note that E(π, ϕ) is a random variable. The expected revenue gavg(π) of a policy π can
be written as

gavg(π) = EΦ,Π[g(E(π,Φ),Φ)]

where the expectation is taken over possible realizations according to p and the internal
randomness of the policy. Similarly, the expected cost cavg(π) of a policy π can be written as

cavg(π) = EΦ,Π[c(E(π,Φ))]
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We next introduce the conditional expected marginal revenue g(e | ψ) of e conditioned
on a partial realization ψ:

g(e | ψ) = EΦ[g(dom(ψ) ∪ {e},Φ)− g(dom(ψ),Φ) | Φ ∼ ψ]

where the expectation is taken over Φ with respect to p(ϕ | ψ) = Pr(Φ = ϕ | Φ ∼ ψ).

▶ Definition 3 ([3], Adaptive Submodularity). For any two partial realizations ψ and ψ′ such
that ψ ⊆ ψ′, we assume that the following holds for each e ∈ E \ dom(ψ′):

g(e | ψ) ≥ g(e | ψ′) (1)

Let Ω = {π | ∀ϕ ∈ U+, |E(π, ϕ)| ≤ k} denote the set of all policies that select at most k
items where U+ = {ϕ ∈ U | p(ϕ) > 0}, our objective is listed in below:

max
π∈Ω

gavg(π)− cavg(π) (2)

Before presenting our solutions to the above problem, we introduce some additional
notations. By abuse of notation, for any partial realization ψ, we define g(ψ) =
EΦ∼ψ[g(dom(ψ),Φ)]. We next introduce two useful functions: Gi, the distorted object-
ive function, and Hi, which is used to analyze the trajectory of Gi. For any partial realization
ψ, and any iteration i ∈ [k] of our algorithms, we define

Gi(ψ) = (1− 1
k

)k−ig(ψ)− c(dom(ψ))

For any partial realization ψ, and any iteration i ∈ [k − 1] of our algorithms, we define

Hi(ψ, e) = (1− 1
k

)k−(i+1)g(e | ψ)− ce

4 Monotone g: Adaptive Distorted Greedy Policy

We start with the case when g is adaptive submodular and adaptive monotone [3], i.e., for
any realization ψ, the following holds for each e ∈ E \ dom(ψ): g(e | ψ) ≥ 0. Our approach
is a natural extension of the Distorted-Greedy algorithm, the first practical non-adaptive
algorithm developed in [4]. Note that there are two factors that make our problem more
complicated than its non-adaptive counterpart. First, since the objective function is defined
over random realization, the key of analysis is to estimate the expected utility under the
distribution of realizations p. Second, the policy itself might produce random outputs even
under the same realization, this adds an additional layer of difficulty to the design and
analysis of our policy. To address the above complications, we develop an Adaptive Distorted
Greedy Policy πd such that gavg(πd) − cavg(πd) ≥ (1 − 1

e )gavg(πo) − cavg(πo), where πo

denotes the optimal policy. We next explain the idea of πd (Algorithm 1), then analyze its
performance bound.

4.1 Design of πd

We first add a dummy item d to the ground set, such that, cd = 0, and for any partial
realization ψ, we have g(d | ψ) = 0. Let E′ = E ∪ {d}. We add this to ensure that our policy
will not select an item that has an negative profit. Note that d can be safely removed from
the final solution without affecting its performance. πd performs in k iterations: It starts
with an empty set. In each iteration i ∈ [k − 1], let ψi denote the current partial realization,
πd selects an item ei that maximizes Hi(ψi, ·):

ei ← arg max
e∈E′

Hi(ψi, e)
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After observing the state Φ(ei) of ei, we update the current partial realization ψi+1 using
ψi ∪ {(ei,Φ(ei))} and enter the next iteration. This process iterates until all k items have
been selected.

Algorithm 1 Adaptive Distorted Greedy Policy πd.

1: S0 = ∅; i = 0;ψ0 = ∅.
2: while i < k do
3: ei ← arg maxe∈E′ Hi(ψi, e);
4: Si+1 ← Si ∪ {ei};
5: ψi+1 ← ψi ∪ {(ei,Φ(ei))}; i← i+ 1;
6: return Sk

4.2 Performance Analysis
We first present three preparatory lemmas which are used to lower bound the marginal
gain in the distorted objective. Recall that Ψi+1 refers to a random variable, and ψi+1 is a
realization of Ψi+1.

▶ Lemma 4. In each iteration of πd,

EΦ∼ψi [Gi+1(Ψi+1)−Gi(ψi)] = Hi(ψi, ei) + 1
k

(1− 1
k

)k−(i+1)g(ψi)

Proof. We start with the case when ei ∈ dom(ψi),

EΦ∼ψi
[Gi+1(Ψi+1)−Gi(ψi)]

= (1− 1
k

)k−(i+1)g(ψi)− (1− 1
k

)k−ig(ψi)

= (1− 1
k

)k−(i+1)g(ψi)− (1− 1
k

)(1− 1
k

)k−(i+1)g(ψi)

= 1
k

(1− 1
k

)k−(i+1)g(ψi)

= Hi(ψi, ei) + 1
k

(1− 1
k

)k−(i+1)g(ψi)

The last equality is due to Hi(ψi, ei) = 0 when ei ∈ dom(ψi). We next prove the case when
ei /∈ dom(ψi),

EΦ∼ψi [Gi+1(Ψi+1)−Gi(ψi)]

= EΦ∼ψi [(1−
1
k

)k−(i+1)g(ψi ∪ {Φ(ei)})

−c(dom(ψi) ∪ {ei})−
(

(1− 1
k

)k−ig(ψi)− c(dom(ψi))
)

]

= EΦ∼ψi [(1−
1
k

)k−(i+1)g(ψi ∪ {Φ(ei)})]

−c(dom(ψi) ∪ {ei})−
(

(1− 1
k

)k−ig(ψi)− c(dom(ψi))
)

= EΦ∼ψi [(1−
1
k

)k−(i+1)g(ψi ∪ {Φ(ei)})]

−c(dom(ψi) ∪ {ei})− ((1− 1
k

)k−(i+1)(1− 1
k

)g(ψi)− c(dom(ψi))

= EΦ∼ψi [(1−
1
k

)k−(i+1)(g(ψi ∪ {Φ(ei)})− g(ψi))]− cei + 1
k

(1− 1
k

)k−(i+1)g(ψi)
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= g(ei | ψi)− cei
+ 1
k

(1− 1
k

)k−(i+1)g(ψi)

= Hi(ψi, ei) + 1
k

(1− 1
k

)k−(i+1)g(ψi)

The fourth equality is due to ei /∈ dom(ψi). ◀

▶ Lemma 5. In each iteration of πd,

Hi(ψi, ei) ≥ 1
k (1− 1

k )k−(i+1)EΦ∼ψi
[gavg(πo)− gavg(πdi )]− 1

kEΦ∼ψi
[cavg(πo)]

Proof. Let Ae be an indicator that e is selected by the optimal solution πo conditioned on a
partial realization ψi, then we have

Hi(ψi, ei) = (1− 1
k

)k−(i+1)g(ei | ψi)− cei

= max
e∈E′

[(1− 1
k

)k−(i+1)g(e | ψi)− ce]

≥ 1
k

∑
e∈E′

Pr[Ae = 1]
[
(1− 1

k
)k−(i+1)g(e | ψi)− ce

]
= 1
k

∑
e∈E′

Pr[Ae = 1]
[
(1− 1

k
)k−(i+1)g(e | ψi)

]
− 1
k

∑
e∈E′

Pr[Ae = 1]× ce

= 1
k

∑
e∈E′

Pr[Ae = 1]
[
(1− 1

k
)k−(i+1)g(e | ψi)

]
− 1
k
EΦ∼ψi [cavg(πo)]

≥ 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi [gavg(πo)− gavg(πdi )]− 1
k
EΦ∼ψi [cavg(πo)]

The second equality is due to the design of πd, i.e., it selects an item ei that maximizes
Hi(ψi, ·). The first inequality is due to

∑
e∈E′ Pr[Ae = 1] ≤ k since πo selects at most

k items. The third equality is due to the assumption that Pr[Ae = 1] is the probability
that e is selected by πo conditioned on ψi. The second inequality is due to g is adaptive
submodular. ◀

▶ Lemma 6. In each iteration of πd,

EΨi [EΦ∼Ψi [Gi+1(Ψi+1)−Gi(Ψi)]] ≥
1
k

(1− 1
k

)k−(i+1)gavg(πo)−
1
k
cavg(πo)

Proof. We first prove that for any fixed partial realization ψi, the following inequality holds:

EΦ∼ψi [Gi+1(Ψi+1) −Gi(ψi)] ≥ 1
k

(1 − 1
k

)k−(i+1)EΦ∼ψi [gavg(πo)] − 1
k
EΦ∼ψi [cavg(πo)] (3)

Due to Lemma 4, we have

EΦ∼ψi
[Gi+1(Ψi+1)−Gi(ψi)]

= Hi(ψi, ei) + 1
k

(1− 1
k

)k−(i+1)g(ψi)

≥ 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi [gavg(πo)− gavg(πdi )]

−1
k
EΦ∼ψi

[cavg(πo)] + 1
k

(1− 1
k

)k−(i+1)g(ψi)

= 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi [gavg(πo)]−
1
k
EΦ∼ψi [cavg(πo)]
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The inequality is due to Lemma 5 and the second equality is due to EΦ∼ψi [gavg(πdi )] = g(ψi).
Now we are ready to prove this lemma.

EΨi [EΦ∼Ψi [Gi+1(Ψi+1)−Gi(Ψi)]]

≥ EΨi

[
1
k

(1− 1
k

)k−(i+1)EΦ∼Ψi
[gavg(πo)]−

1
k
EΦ∼Ψi

[cavg(πo)]
]

= EΨi

[
1
k

(1− 1
k

)k−(i+1)EΦ∼Ψi [gavg(πo)]
]
− EΨi

[
1
k
EΦ∼Ψi [cavg(πo)]

]
= 1
k

(1− 1
k

)k−(i+1)gavg(πo)−
1
k
cavg(πo)

The inequality is due to (3). ◀

We next present the first main theorem of this paper.

▶ Theorem 7. gavg(πd)− cavg(πd) ≥ (1− 1
e )gavg(πo)− cavg(πo).

Proof. According to the definition of Gk, we have EΨk
[Gk(Ψk)] = EΨk

[(1 − 1
k )0g(Ψk) −

c(dom(Ψk))] = gavg(πd)−cavg(πd) and EΨ0 [G0(Ψ0)] = EΨ0 [(1− 1
k )kg(Φ(S0))−c(dom(Ψ0))] =

0. Hence,

gavg(πd)− cavg(πd) = EΨk
[Gk(Ψk)]− EΨ0 [G0(Ψ0)]

= EΨk−1

[
EΦ∼Ψk−1 [Gk(Ψk)]

]
− EΨ0 [EΦ∼Ψ0 [G0(Ψ0)]]

=
∑

i∈[k−1]

(EΨi [EΦ∼Ψi [Gi+1(Ψi+1)]]− EΨi [EΦ∼Ψi [Gi(Ψi)]])

=
∑

i∈[k−1]

EΨi [EΦ∼Ψi [Gi+1(Ψi+1)−Gi(Ψi)]]

≥
∑

i∈[k−1]

(
1
k

(1− 1
k

)k−(i+1)gavg(πo)−
1
k
cavg(πo)

)

=
∑

i∈[k−1]

(
1
k

(1− 1
k

)k−(i+1)gavg(πo)
)
− cavg(πo)

≥ (1− 1
e

)gavg(πo)− cavg(πo)

The first inequality is due to Lemma 6. ◀

5 Monotone g: Linear-time Adaptive Distorted Greedy Policy

We next propose a faster algorithm Linear-time Adaptive Distorted Greedy Policy, denoted
by πl, for the case when g is adaptive monotone. As compared with πd whose running time
is O(nk), our new policy πl achieves nearly the same performance guarantee with O(n log 1

ϵ )
value oracle queries. Our design is inspired by the sampling technique developed in [10] for
maximizing a monotone and submodular function. Very recently, [14] extends this approach
to the adaptive setting to develop a linear-time adaptive policy for maximizing an adaptive
submodular and adaptive monotone function. In this work, we apply this technique to design
a linear-time adaptive policy for our adaptive regularized submodular maximization problem.
Note that our objectives are not adaptive monotone and they may take negative values.
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5.1 Design of πl

We present the details of our algorithm in Algorithm 2. We first add a set D of k− 1 dummy
items to the ground set, such that, each dummy item d ∈ D has zero cost, i.e., ∀d ∈ D, cd = 0,
and for any d ∈ D, and any partial realization ψ, we have g(d | ψ) = 0. Let E′ = E ∪D. We
next explain the idea of πl: It starts with an empty set. In each iteration i ∈ [k − 1], πl first
samples a set Ri of size n

k log 1
ϵ uniformly at random, then adds an item ei with the largest

Hi(ψi, ·) from Ri to the solution. After observing the state Φ(ei) of ei, we update the current
partial realization ψi+1 using ψi ∪ {(ei,Φ(ei))} and enter the next iteration. This process
iterates until all k items have been selected. It was worth noting that the technique of lazy
updates [9] can be used to further accelerate the computation of our algorithms in practice.

Algorithm 2 Linear-time Adaptive Distorted Greedy Policy πl.

1: S0 = ∅; i = 0;ψ0 = ∅.
2: while i < k do
3: Ri ← a random set sampled uniformly at random from E′;
4: ei ← arg maxe∈Ri Hi(ψi, e);
5: Si+1 ← Si ∪ {ei};
6: ψi+1 ← ψi ∪ {(ei,Φ(ei))}; i← i+ 1;
7: return Sk

5.2 Performance Analysis
We first present three preparatory lemmas.

▶ Lemma 8. In each iteration of πl,

EΦ∼ψi
[Gi+1(Ψi+1)−Gi(ψi)] = Eei

[Hi(ψi, ei)] + 1
k

(1− 1
k

)k−(i+1)g(ψi)

The above lemma immediately follows from Lemma 4.

▶ Lemma 9. In each iteration of πl, Eei [Hi(ψi, ei)] ≥ 1
k (1 − 1

k )k−(i+1)EΦ∼ψi [gavg(πo) −
gavg(πli)]− 1

kEΦ∼ψi
[cavg(πo)].

Proof. Let Ae be an indicator that e is selected by the optimal solution πo conditioned on a
partial realization ψi. Let Be be an indicator that e is selected by πl in iteration i conditioned
on a partial realization ψi. Let M(ψi) denote the top k items with the largest marginal
contribution to ψi in terms of Hi(ψi, ·), i.e., M(ψi) ← arg maxS⊆E′,|S|=k

∑
e∈S Hi(ψi, e).

Then we have

Eei
[Hi(ψi, ei)]

=
∑
e∈E′

Pr[Be = 1]
(

(1− 1
k

)k−(i+1)g(e | ψi)− ce
)

≥ Pr[Ri ∩M(ψi) ̸= ∅]
1
k

∑
e∈M(ψi)

((1− 1
k

)k−(i+1)g(e | ψi)− ce)

≥ (1− ϵ) 1
k

∑
e∈M(ψi)

(
(1− 1

k
)k−(i+1)g(e | ψi)− ce

)

≥ (1− ϵ) 1
k

∑
e∈E′

Pr[Ae = 1]
(

(1− 1
k

)k−(i+1)g(e | ψi)− ce
)

≥ (1− ϵ) 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi
[gavg(πo)− gavg(πli)]− (1− ϵ) 1

k
EΦ∼ψi

[cavg(πo)]
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The second inequality is due to Lemma 4 in [14], where they show that Pr[Ri∩M(ψi) ̸= ∅] ≥
1− ϵ given that Ri has size of n

k log 1
ϵ . The third inequality is due to

∑
e∈E′ Pr[Ae = 1] ≤ k.

The last inequality is due to g is adaptive submodular and c is modular. ◀

▶ Lemma 10. In each iteration of πl,

EΨi
[EΦ∼Ψi

[Gi+1(Ψi+1)−Gi(Ψi)]]

≥ (1− ϵ) 1
k

(1− 1
k

)k−(i+1)gavg(πo)− (1− ϵ) 1
k
cavg(πo)

Proof. We first show that for any fixed partial realization ψi,

EΦ∼ψi [Gi+1(Ψi+1)−Gi(ψi)] (4)
≥ (1− ϵ)( 1

k (1− 1
k )k−(i+1)EΦ∼ψi [gavg(πo)]− 1

kEΦ∼ψi [cavg(πo)])

Due to Lemma 8, we have

EΦ∼ψi [Gi+1(Ψi+1)−Gi(ψi)]

= Eei [Hi(ψi, ei)] + 1
k

(1− 1
k

)k−(i+1)g(ψi)

≥ (1− ϵ) 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi
[gavg(πo)− gavg(πli)]

−(1− ϵ) 1
k
EΦ∼ψi [cavg(πo)] + 1

k
(1− 1

k
)k−(i+1)g(ψi)

= (1− ϵ)
(

1
k

(1− 1
k

)k−(i+1)EΦ∼ψi
[gavg(πo)]−

1
k
EΦ∼ψi

[cavg(πo)]
)

+ϵ1
k

(1− 1
k

)k−(i+1)g(ψi)

≥ (1− ϵ)
(

1
k

(1− 1
k

)k−(i+1)EΦ∼ψi [gavg(πo)]−
1
k
EΦ∼ψi [cavg(πo)]

)
The first inequality is due to Lemma 9, the second equality is due to EΦ∼ψi

[gavg(πli)] = g(ψi),
and the last inequality is due to g is non-negative. Now we are ready to prove this lemma.

EΨi [EΦ∼Ψi [Gi+1(Ψi+1)−Gi(Ψi)]]

≥ (1− ϵ)EΨi

[
1
k

(1− 1
k

)k−(i+1)EΦ∼Ψi
[gavg(πo)]−

1
k
EΦ∼Ψi

[cavg(πo)]
]

= (1− ϵ)EΨi

[
1
k

(1− 1
k

)k−(i+1)EΦ∼Ψi
[gavg(πo)]

]
− EΨi

[
1
k
EΦ∼Ψi

[cavg(πo)]
]

= (1− ϵ) 1
k

(1− 1
k

)k−(i+1)gavg(πo)− (1− ϵ) 1
k
cavg(πo)

The first inequality is due to (4). ◀

We next present the second main theorem of this paper.

▶ Theorem 11. gavg(πl)− cavg(πl) ≥ (1− 1
e − ϵ)gavg(π

o)− cavg(πo).

Proof. According to the definition of Gk, we have EΨk
[Gk(Ψk)] = EΨk

[(1 − 1
k )0g(Ψk) −

c(dom(Ψk))] = gavg(πl)−cavg(πl) and EΨ0 [G0(Ψ0)] = EΨ0 [(1− 1
k )kg(Φ(S0))−c(dom(Ψ0))] =

0. Hence,
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gavg(πl)− cavg(πl)
= EΨk

[Gk(Ψk)]− EΨ0 [G0(Ψ0)]
= EΨk−1

[
EΦ∼Ψk−1 [Gk(Ψk)]

]
− EΨ0 [EΦ∼Ψ0 [G0(Ψ0)]]

=
∑

i∈[k−1]

(EΨi
[EΦ∼Ψi

[Gi+1(Ψi+1)]]− EΨi
[EΦ∼Ψi

[Gi(Ψi)]])

=
∑

i∈[k−1]

EΨi
[EΦ∼Ψi

[Gi+1(Ψi+1)−Gi(Ψi)]]

≥
∑

i∈[k−1]

(
(1− ϵ) 1

k
(1− 1

k
)k−(i+1)gavg(πo)− (1− ϵ) 1

k
cavg(πo)

)

=
∑

i∈[k−1]

(
(1− ϵ) 1

k
(1− 1

k
)k−(i+1)gavg(πo)

)
− (1− ϵ)cavg(πo)

≥ (1− ϵ)(1− 1
e

)gavg(πo)− (1− ϵ)cavg(πo)

≥ (1− 1
e
− ϵ)gavg(πo)− cavg(πo)

The first inequality is due to Lemma 10. ◀

6 Non-monotone g: Adaptive Random Distorted Greedy Policy

We next discuss the case when g is non-monotone adaptive submodular. We present an
Adaptive Random Distorted Greedy Policy πr for this case.

6.1 Design of πr

The detailed implementation of πr is listed in Algorithm 3. We first add a set D of k − 1
dummy items to the ground set, such that, for any d ∈ D, and any partial realization ψ, we
have cd = 0 and g(d | ψ) = 0. Let E′ = E ∪D. πr runs round by round: Starting with an
empty set. In each iteration i ∈ [k − 1], πr randomly selects an item from the set M(ψi).
Recall that M(ψi) is a set of k items that have the largest Hi(ψi, ·), i.e.,

M(ψi)← arg max
S⊆E′;|S|=k

∑
e∈S

Hi(ψi, e)

After observing the state Φ(ei) of ei, we update the current partial realization ψi+1 using
ψi ∪ {(ei,Φ(ei))} and enter the next iteration. This process iterates until all k items have
been selected.

Algorithm 3 Adaptive Random Distorted Greedy Policy πr.

1: S0 = ∅; i = 0;ψ0 = ∅.
2: while i < k do
3: M(ψi)← arg maxS⊆E′;|S|=k

∑
e∈S Hi(ψi, e);

4: sample ei uniformly at random from M(ψi);
5: Si+1 ← Si ∪ {ei};
6: ψi+1 ← ψi ∪ {(ei,Φ(ei))}; i← i+ 1;
7: return Sk
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6.2 Performance Analysis

We first present three preparatory lemmas. The first lemma immediately follows from
Lemma 4.

▶ Lemma 12. In each iteration of πr,

EΦ∼ψi [Gi+1(Ψi+1)−Gi(ψi)] = Eei [Hi(ψi, ei)] + 1
k

(1− 1
k

)k−(i+1)g(ψi)

▶ Lemma 13. In each iteration of πr, Eei [Hi(ψi, ei)] ≥ 1
k (1− 1

k )k−(i+1)EΦ∼ψi [gavg(πo@πri )−
gavg(πri )]− 1

kEΦ∼ψi
[cavg(πo)].

Proof. Recall that Ae is an indicator that e is selected by the optimal solution πo conditioned
on a partial realization ψi,

Eei [Hi(ψi, ei)]

= 1
k

∑
e∈M(ψi)

(
(1− 1

k
)k−(i+1)g(e | ψi)− ce

)

≥ 1
k

∑
e∈E′

Pr[Ae = 1]
(

(1− 1
k

)k−(i+1)g(e | ψi)− ce
)

≥ 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi
[gavg(πo@πri )− gavg(πri )]−

1
k
EΦ∼ψi

[cavg(πo)]

The equality is due to the design of πr, i.e., it selects an item ei uniformly at random from
M(ψi). The first inequality is due to

∑
e∈E′ Pr[Ae = 1] ≤ k since πo selects at most k items,

and M(ψi) contains a set of k items that have the largest Hi(ψi, ·). The second inequality is
due to g is adaptive submodular and c is modular. ◀

▶ Lemma 14. In each iteration of πr,

EΨi [EΦ∼Ψi [Gi+1(Ψi+1)−Gi(Ψi)]] ≥
1
k

(1− 1
k

)k−1gavg(πo)−
1
k
cavg(πo)

Proof. We first show that for any fixed partial realization ψi,

EΦ∼ψi [Gi+1(Ψi+1) −Gi(ψi)] ≥ 1
k

(1 − 1
k

)k−(i+1)EΦ∼ψi [gavg(πo@πri )] − 1
k
EΦ∼ψi [cavg(πo)] (5)

Due to Lemma 12, we have

EΦ∼ψi [Gi+1(Ψi+1)−Gi(ψi)]

= Eei [Hi(ψi, ei)] + 1
k

(1− 1
k

)k−(i+1)g(ψi)

≥ 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi
[gavg(πo@πri )− gavg(πri )]

−1
k
EΦ∼ψi [cavg(πo)] + 1

k
(1− 1

k
)k−(i+1)g(ψi)

= 1
k

(1− 1
k

)k−(i+1)EΦ∼ψi
[gavg(πo@πri )]−

1
k
EΦ∼ψi

[cavg(πo)]
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The first inequality is due to Lemma 13. The second equality is due to EΦ∼ψi [gavg(πri )] =
g(ψi). The last inequality is due to g is non-negative. Now we are ready to prove this lemma.

EΨi
[EΦ∼Ψi

[Gi+1(Ψi+1)−Gi(Ψi)]]

≥ EΨi

[
1
k

(1− 1
k

)k−(i+1)EΦ∼Ψi [gavg(πo@πri )]−
1
k
EΦ∼Ψi [cavg(πo)]

]
= EΨi

[
1
k

(1− 1
k

)k−(i+1)EΦ∼Ψi
[gavg(πo@πri )]

]
− EΨi

[
1
k
EΦ∼Ψi

[cavg(πo)]
]

= 1
k

(1− 1
k

)k−(i+1)gavg(πo@πri )−
1
k
cavg(πo)

≥ 1
k

(1− 1
k

)k−(i+1)(1− 1
k

)igavg(πo)−
1
k
cavg(πo)

= 1
k

(1− 1
k

)k−1gavg(πo)−
1
k
cavg(πo)

The first inequality is due to (5), and the second inequality is due to Lemma 1 in [14], where
they show that gavg(πo@πri ) ≥ (1− 1

k )igavg(πo). ◀

We next present the third main theorem of this paper.

▶ Theorem 15. gavg(πr)− cavg(πr) ≥ 1
egavg(π

o)− cavg(πo).

Proof. According to the definition of Gk, we have EΨk
[Gk(Ψk)] = EΨk

[(1 − 1
k )0g(Ψk) −

c(dom(Ψk))] = gavg(πr)−cavg(πr) and EΨ0 [G0(Ψ0)] = EΨ0 [(1− 1
k )kg(Φ(S0))−c(dom(Ψ0))] =

0. Hence,

gavg(πr)− cavg(πr) = EΨk
[Gk(Ψk)]− EΨ0 [G0(Ψ0)]

= EΨk−1

[
EΦ∼Ψk−1 [Gk(Ψk)]

]
− EΨ0 [EΦ∼Ψ0 [G0(Ψ0)]]

=
∑

i∈[k−1]

(EΨi
[EΦ∼Ψi

[Gi+1(Ψi+1)]]− EΨi
[EΦ∼Ψi

[Gi(Ψi)]])

=
∑

i∈[k−1]

EΨi
[EΦ∼Ψi

[Gi+1(Ψi+1)−Gi(Ψi)]]

≥
∑

i∈[k−1]

(
1
k

(1− 1
k

)k−1gavg(πo)−
1
k
cavg(πo)

)
=

∑
i∈[k−1]

1
k

(1− 1
k

)k−1gavg(πo)− cavg(πo)

≥ 1
e
gavg(πo)− cavg(πo)

The first inequality is due to Lemma 14. ◀

7 Conclusion

In this paper, we study the adaptive regularized submodular maximization problem. Because
our objective function may take both negative and positive values, most existing technologies
of submodular maximization do not apply to our setting. We develop a series of effective
policies for this problem.
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Abstract
For an abelian group Γ, a Γ-labelled graph is a graph whose vertices are labelled by elements of Γ.
We prove that a certain collection of edge sets of a Γ-labelled graph forms a delta-matroid, which
we call a Γ-graphic delta-matroid, and provide a polynomial-time algorithm to solve the separation
problem, which allows us to apply the symmetric greedy algorithm of Bouchet to find a maximum
weight feasible set in such a delta-matroid. We present two algorithmic applications on graphs;
Maximum Weight Packing of Trees of Order Not Divisible by k and Maximum Weight
S-Tree Packing. We also discuss various properties of Γ-graphic delta-matroids.
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1 Introduction

We introduce the class of Γ-graphic delta-matroids arising from graphs whose vertices are
labelled by elements of an abelian group Γ. This allows us to show that the following
problems are solvable in polynomial time by using the symmetric greedy algorithm [1].

Maximum Weight Packing of Trees of Order Not Divisible by k

Input: An integer k ≥ 2, a graph G, and a weight w : E(G)→ Q.
Problem: Find vertex-disjoint trees T1, T2, . . . , Tm for some m such that |V (Ti)| ̸≡ 0
(mod k) for each i ∈ {1, . . . , m} and

∑m
i=1

∑
e∈E(Ti) w(e) is maximized.

For a vertex set S of a graph G, a subgraph of G is an S-tree if it is a tree intersecting S.

Maximum Weight S-Tree Packing
Input: A graph G, a nonempty subset S of V (G), and a weight w : E(G)→ Q.
Problem: Find vertex-disjoint S-trees T1, T2, . . . , Tm for some m such that⋃m

i=1 V (Ti) = V (G) and
∑m

i=1
∑

e∈E(Ti) w(e) is maximized.

Let Γ be an abelian group. We assume that Γ is an additive group. A Γ-labelled graph is
a pair (G, γ) of a graph G and a map γ : V (G)→ Γ. A subgraph H of G is γ-nonzero if, for
each component C of H,
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(G1)
∑

v∈V (C) γ(v) ̸= 0 or γ|V (C) ≡ 0, and
(G2) if γ|V (C) ≡ 0, then G[V (C)] is a component of G.
A subset F of E(G) is γ-nonzero in G if a subgraph (V (G), F ) is γ-nonzero. A subset F of
E(G) is acyclic in G if a subgraph (V (G), F ) has no cycle.

Bouchet [1] introduced delta-matroids which are set systems (E,F) satisfying certain
axioms. Our first theorem proves that the set of acyclic γ-nonzero sets in a Γ-labelled graph
(G, γ) forms a delta-matroid, which we call a Γ-graphic delta-matroid. For sets X and Y , let
X△Y = (X − Y ) ∪ (Y −X).

▶ Theorem 1. Let Γ be an abelian group and (G, γ) be a Γ-labelled graph. If F is the set of
acyclic γ-nonzero sets in G, then the following hold.
(1) F ̸= ∅.
(2) For X, Y ∈ F and e ∈ X△Y , there exists f ∈ X△Y such that X△{e, f} ∈ F .
Bouchet [1] proved that the symmetric greedy algorithm finds a maximum weight set in
F for a delta-matroid (E,F). But it requires the separation oracle, which determines, for
two disjoint subsets X and Y of E, whether there exists a set F ∈ F such that X ⊆ F and
F ∩ Y = ∅. We provide the separation oracle that runs in polynomial time for Γ-graphic
delta-matroids given by Γ-labelled graphs. As a consequence, we prove the following theorem.

Maximum Weight Acyclic γ-nonzero Set
Input: A Γ-labelled graph (G, γ) and a weight w : E(G)→ Q.
Problem: Find an acyclic γ-nonzero set F in G maximizing

∑
e∈F w(e).

▶ Theorem 2. Maximum Weight Acyclic γ-nonzero Set is solvable in polynomial
time.

From Theorem 2, we can easily deduce that both Maximum Weight Packing of
Trees of Order Not Divisible by k and Maximum Weight S-Tree Packing are
solvable in polynomial time.

▶ Corollary 3. Maximum Weight Packing of Trees of Order Not Divisible by k

is solvable in polynomial time.

Proof. Let Γ = Zk and γ : V (G)→ Zk be a map such that γ(v) = 1 for each v ∈ V (G). Then,
an edge set F is an acyclic γ-nonzero set in (G, γ) if and only if there exist vertex-disjoint
trees T1, . . . , Tm for some m such that

⋃m
i=1 E(Ti) = F and |V (Ti)| ̸≡ 0 (mod k) for each

i ∈ {1, . . . , m}. ◀

▶ Corollary 4. Maximum Weight S-Tree Packing is solvable in polynomial time.

Proof. We may assume that every component of G has a vertex in S. Let Γ = Z and
γ : V (G)→ Z be a map such that

γ(v) =
{

1 if v ∈ S,
0 otherwise.

Then, an edge set F is an acyclic γ-nonzero set in (G, γ) if and only if there exist vertex-disjoint
S-trees T1, . . . , Tm for some m such that

⋃m
i=1 V (Ti) = V (G) and

⋃m
i=1 E(Ti) = F . ◀

One of the major motivations to introduce Γ-graphic delta-matroids is to generalize the
concept of graphic delta-matroids introduced by Oum [8], which are precisely Z2-graphic
delta-matroids. Oum [8] proved that every minor of graphic delta-matroids is graphic. We
will prove that every minor of a Γ-graphic delta-matroid is Γ-graphic.



D. Kim, D. Lee, and S. Oum 70:3

A delta-matroid (E,F) is even if |X△Y | is even for all X, Y ∈ F . Oum [8] proved
that every graphic delta-matroid is even. We characterize even Γ-graphic delta-matroids as
follows.

▶ Theorem 5. Let Γ be an abelian group. Then a Γ-graphic delta-matroid is even if and
only if it is graphic.

Bouchet [2] proved that for a symmetric or skew-symmetric matrix A over a field F, the
set of index sets of nonsingular principal submatrices of A forms a delta-matroid, which we
call a delta-matroid representable over F. Oum [8] proved that every graphic delta-matroid
is representable over GF(2). Our next theorem partially characterizes a pair of an abelian
group Γ and a field F such that every Γ-graphic delta-matroid is representable over F.

If F1 is a subfield of a field F2, then F2 is an extension field of F1, denoted by F2/F1.
The degree of a field extension F2/F1, denoted by [F2 : F1], is the dimension of F2 as a vector
space over F1.

▶ Theorem 6. Let p be a prime, k be a positive integer, and F be a field of characteristic p.
If [F : GF(p)] ≥ k, then every Zk

p-graphic delta-matroid is representable over F.

For a prime p, an abelian group is an elementary abelian p-group if every nonzero element
has order p.

▶ Theorem 7. Let F be a finite field of characteristic p and Γ be an abelian group. If every
Γ-graphic delta-matroid is representable over F, then Γ is an elementary abelian p-group.

Theorems 6 and 7 allow us to partially characterize pairs of a finite field F and an abelian
group Γ for which every Γ-graphic delta-matroid is representable over F as follows. We omit
its easy proof.

▶ Corollary 8. Let Γ be a finite abelian group of order at least 2 and F be a finite field.
(i) For every prime p and integers 1 ≤ k ≤ ℓ, every Zk

p-graphic delta-matroid is repre-
sentable over GF(pℓ).

(ii) If every Γ-graphic delta-matroid is representable over F, then Γ is isomorphic to Zk
p

and F is isomorphic to GF(pℓ) for a prime p and positive integers k and ℓ.

We suspect that the following could be the complete characterization.

▶ Conjecture 9. Let Γ be a finite abelian group of order at least 2 and F be a finite field.
Then every Γ-graphic delta-matroid is representable over F if and only if (Γ,F) = (Zk

p, GF(pℓ))
for some prime p and positive integers k ≤ ℓ.

This paper is organized as follows. In Section 2, we review some terminologies and
results on delta-matroids and graphic delta-matroids. In Section 3, we introduce Γ-graphic
delta-matroids. We show that the class of Γ-graphic delta-matroids is closed under taking
minors in Section 4. In Section 5, we present a polynomial-time algorithm to solve Maximum
Weight Acyclic γ-nonzero Set, proving Theorem 2. We characterize even Γ-graphic
delta-matroids in Section 6. In Section 7, we prove Theorems 6 and 7. We provide some
proofs in the full version when lemmas and theorems are marked by *.

2 Preliminaries

In this paper, all graphs are finite and may have parallel edges and loops. A graph is simple
if it has neither loops nor parallel edges. For a graph G, contracting an edge e is an operation
to obtain a new graph G/e from G by deleting e and identifying ends of e. For a set X and

ISAAC 2021
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a positive integer s, let
(

X
s

)
be the set of s-element subsets of X. For two sets A and B, let

A△B = (A−B)∪ (B −A). For a function f : X → Y and a subset A ⊆ X, we write f |A to
denote the restriction of f on A.

Delta-matroids. Bouchet [1] introduced delta-matroids. A delta-matroid is a pair M =
(E,F) of a finite set E and a nonempty set F of subsets of E such that if X, Y ∈ F and
x ∈ X△Y , then there is y ∈ X△Y such that X△{x, y} ∈ F . We write E(M) = E to denote
the ground set of M . An element of F is called a feasible set. An element of E is a loop
of M if it is not contained in any feasible set of M . An element of E is a coloop of M if it is
contained in every feasible set of M .

Minors. For a delta-matroid M = (E,F) and a subset X of E, we can obtain a new
delta-matroid M△X = (E,F△X) from M where F△X = {F△X : F ∈ F}. This operation
is called twisting a set X in M . A delta-matroid N is equivalent to M if N = M△X for
some set X.

If there is a feasible subset of E −X, then M \X = (E −X,F \X) is a delta-matroid
where F \ X = {F ∈ F : F ∩ X = ∅}. This operation of obtaining M \ X is called the
deletion of X in M . A delta-matroid N is a minor of a delta-matroid M if N = M△X \ Y

for some subsets X, Y of E.
A delta-matroid is normal if ∅ is feasible. A delta-matroid is even if |X△Y | is even for

all feasible sets X and Y . It is easy to see that all minors of even delta-matroids are even.
The following theorem gives the minimal obstruction for even delta-matroids, which is

implied by Bouchet [3, Lemma 5.4].

▶ Theorem 10 (Bouchet [3]). A delta-matroid is even if and only if it does not have a minor
isomorphic to ({e}, {∅, {e}}).

It is easy to observe the following.

▶ Lemma 11. Let N be a minor of a delta-matroid M such that |E(M)| > |E(N)|. Then
there exists an element e ∈ E(M)− E(N) such that N is a minor of M \ e or a minor of
M△{e} \ e.

Representable delta-matroids. For an R× C matrix A and subsets X of R and Y of C,
we write A[X, Y ] to denote the X × Y submatrix of A. For an E × E square matrix A and
a subset X of E, we write A[X] to denote A[X, X], which is called an X × X principal
submatrix of A.

For an E × E square matrix A, let F(A) = {X ⊆ E : A[X] is nonsingular}. We assume
that A[∅] is nonsingular and so ∅ ∈ F(A). Bouchet [2] proved that, (E,F(A)) is a delta-
matroid if A is an E×E symmetric or skew-symmetric matrix. A delta-matroid M = (E,F)
is representable over a field F if F = F(A)△X for a symmetric or skew-symmetric matrix
A over F and a subset X of E. Since ∅ ∈ F(A), it is natural to define representable delta-
matroids with twisting so that the empty set is not necessarily feasible in representable
delta-matroids.

A delta-matroid is binary if it is representable over GF(2). Note that all diagonal entries
of a skew-symmetric matrix are zero, even if the characteristic of a field is 2.

▶ Proposition 12 (Bouchet [2]). Let M = (E,F) be a delta-matroid. Then M is normal and
representable over a field F if and only if there is an E × E symmetric or skew-symmetric
matrix A over F such that F = F(A).
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▶ Lemma 13 (Geelen [5, page 27]). Let M be a delta-matroid representable over a field F.
Then M is even if and only if M is representable by a skew-symmetric matrix over F.

Pivoting. For a finite set E and a symmetric or skew-symmetric E × E matrix A, if A is
represented by

A =

X Y( )
X α β

Y γ δ

after selecting a linear ordering of E and A[X] = α is nonsingular, then let

A ∗X =

X Y( )
X α−1 α−1β

Y −γα−1 δ − γα−1β

This operation is called pivoting. Tucker [11] proved that when A[X] is nonsingular, A∗X[Y ]
is nonsingular if and only if A[X△Y ] is nonsingular for each subset Y of E. Hence, if X is a
feasible set of a delta-matroid M = (E,F(A)), then M△X = (E,F(A ∗X)). It implies that
all minors of delta-matroids representable over a field F are representable over F [4].

Greedy algorithm. Let M = (E,F) be a set system such that E is finite and F ̸= ∅. A pair
(X, Y ) of disjoint subsets X and Y of E is separable in M if there exists a set F ∈ F such
that X ⊆ F and Y ∩ F = ∅. The following theorem characterizes delta-matroids in terms
of a greedy algorithm. Note that this greedy algorithm requires an oracle which answers
whether a pair (X, Y ) of disjoint subsets X and Y of E is separable in M .

▶ Theorem 14 (Bouchet [1]; see Moffatt [7]). Let M = (E,F) be a set system such that E is
finite and F ̸= ∅. Then M is a delta-matroid if and only if the symmetric greedy algorithm
in Algorithm 1 gives a set F ∈ F maximizing

∑
e∈F w(e) for each w : E → R.

Graphic delta-matroids. Oum [8] introduced graphic delta-matroid. A graft is a pair
(G, T ) of a graph G and a subset T of V (G). A subgraph H of G is T -spanning in G if
V (H) = V (G), for each component C of H, either

(i) |V (C) ∩ T | is odd, or
(ii) V (C) ∩ T = ∅ and G[V (C)] is a component of G.

An edge set F of G is T -spanning in G if a subgraph (V (G), F ) is T -spanning in G. For a
graft (G, T ), let G(G, T ) = (E(G),F) where F is the set of acyclic T -spanning sets in G.
Oum [8] proved that G(G, T ) is an even binary delta-matroid. A delta-matroid is graphic if
it is equivalent to G(G, T ) for a graft (G, T ).

3 Delta-matroids from group-labelled graphs

Let Γ be an abelian group. A Γ-labelled graph (G, γ) is a pair of a graph G and a map
γ : V (G)→ Γ. We say γ ≡ 0 if γ(v) = 0 for all v ∈ V (G). A Γ-labelled graph (G, γ) and a
Γ′-labelled graph (G′, γ′) are isomorphic if there are a graph isomorphism f from G to G′

and a group isomorphism ϕ : Γ→ Γ′ such that ϕ(γ(v)) = γ′(f(v)) for each v ∈ V (G).
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Algorithm 1 Symmetric greedy algorithm.

1: function Symmetric Greedy Algorithm(M, w) ▷ M = (E,F) and w : E → R
2: Enumerate E = {e1, e2, . . . , en} such that |w(e1)| ≥ |w(e2)| ≥ · · · ≥ |w(en)|
3: X ← ∅ and Y ← ∅
4: for i← 1 to n do
5: if w(ei) ≥ 0 then
6: if (X ∪ {ei}, Y ) is separable then
7: X ← X ∪ {ei}
8: else
9: Y ← Y ∪ {ei}

10: end if
11: else
12: if (X, Y ∪ {ei}) is separable then
13: Y ← Y ∪ {ei}
14: else
15: X ← X ∪ {ei}
16: end if
17: end if
18: end for
19: end function
20: return X ▷ X ∈ F

A subgraph H of G is γ-nonzero if, for each component C of H,
(G1)

∑
v∈V (C) γ(v) ̸= 0 or γ|V (C) ≡ 0, and

(G2) if γ|V (C) ≡ 0, then G[V (C)] is a component of G.
An edge set F of E(G) is γ-nonzero in G if a subgraph (V (G), F ) is γ-nonzero. An edge set
F of E(G) is acyclic in G if a subgraph (V (G), F ) has no cycle.

For an abelian group Γ and a Γ-labelled graph (G, γ), let F be the set of acyclic γ-nonzero
sets in G. Now we are ready to show Theorem 1, which proves that (E(G),F) is a delta-
matroid. We denote (E(G),F) by G(G, γ). A delta-matroid M is Γ-graphic if there exist a
Γ-labelled graph (G, γ) and X ⊆ E(G) such that M = G(G, γ)△X.

▶ Theorem 1. Let Γ be an abelian group and (G, γ) be a Γ-labelled graph. If F is the set of
acyclic γ-nonzero sets in G, then the following hold.
(1) F ̸= ∅.
(2) For X, Y ∈ F and e ∈ X△Y , there exists f ∈ X△Y such that X△{e, f} ∈ F .

Proof. By considering each component, we may assume that G is connected. If γ ≡ 0, then
we choose a vertex v of G and a map γ′ : V (G)→ Γ such that γ′(u) ̸= 0 if and only if u = v.
Then the set of acyclic γ-nonzero sets in G is equal to the set of acyclic γ′-nonzero sets in
G. Hence, we can assume that γ is not identically zero. Therefore, a subgraph H of G is
γ-nonzero if and only if

∑
u∈V (C) γ(u) ̸= 0 for each component C of H.

Let us first prove (1), stating that F ̸= ∅. Let S = {v ∈ V (G) : γ(v) ̸= 0} and T be
a spanning tree of G. Then by the assumption, we have S ̸= ∅. We may assume that∑

u∈V (G) γ(u) = 0 because otherwise E(T ) is acyclic γ-nonzero in G. Let e be an edge of
T such that one of two components C1 and C2 of T \ e has exactly one vertex in S. Then∑

u∈V (C1) γ(u) = −
∑

u∈V (C2) γ(u) ̸= 0. So E(T ) − {e} is acyclic γ-nonzero in G, and (1)
holds.
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Now let us prove (2). We proceed by induction on |E(G)|. It is obvious if |E(G)| = 0. If
there is an edge g = vw in X ∩ Y , then let γ′ : V (G/g)→ Γ such that, for each vertex x of
G/g,

γ′(x) =
{

γ(v) + γ(w) if x is the vertex of G/g corresponding to g,
γ(x) otherwise.

Then both X−{g} and Y −{g} are acyclic γ′-nonzero sets in G/g. Let e ∈ (X−{g})△(Y −
{g}) = X△Y . By the induction hypothesis, there exists f ∈ X△Y such that (X −
{g})△{e, f} is an acyclic γ′-nonzero set in G/g.

We now claim that X△{e, f} is an acyclic γ-nonzero set in G. It is obvious that X△{e, f}
is acyclic in G. If γ′ ≡ 0, then γ(v) = −γ(w) ̸= 0 and γ(u) = 0 for every u in V (G)− {v, w}.
Then X is not γ-nonzero, contradicting our assumption. Hence, γ′ ̸≡ 0 and let C be a
component of (V (G), X△{e, f}). If C contains g, then

∑
u∈V (C) γ(u) =

∑
u∈V (C/g) γ′(u) ̸= 0.

If C does not contain g, then
∑

u∈V (C) γ(u) =
∑

u∈V (C) γ′(u) ̸= 0. It implies that X△{e, f}
is γ-nonzero in G, so the claim is verified.

Therefore we may assume that X ∩ Y = ∅. Let H1 = (V (G), X) and H2 = (V (G), Y ).

▶ Case 1. e ∈ X.

Let C be the component of H1 containing e and C1, C2 be two components of C \ e. If both∑
u∈V (C1) γ(u) and

∑
u∈V (C2) γ(u) are nonzero, then X△{e} is acyclic γ-nonzero and so we

can choose f = e. So we may assume that
∑

u∈V (C1) γ(u) = 0 and therefore∑
u∈V (C2)

γ(u) =
∑

u∈V (C)

γ(u)−
∑

u∈V (C1)

γ(u) ̸= 0.

If there exists f ∈ Y joining a vertex in V (C1) to a vertex in V (G) − V (C1), then
X△{e, f} is acyclic γ-nonzero. Therefore, we may assume that there is a component D1 of
H2 such that V (D1) ⊆ V (C1). Since

∑
u∈V (D1) γ(u) ̸= 0, there is a vertex x of D1 such that

γ(x) ̸= 0. So γ|V (C1) ̸≡ 0 and there is an edge f of C1 such that one of the components of
C1 \ f , say U , has exactly one vertex v with γ(v) ̸= 0. If U ′ is the component of C1 \ f other
than U , then

∑
u∈V (U ′) γ(u) = −

∑
u∈V (U) γ(u) ̸= 0. So X△{e, f} is acyclic γ-nonzero.

▶ Case 2. e ∈ Y .

Let H̃ = (V (G), X ∪ {e}). If H̃ contains a cycle D, then, since X and Y are acyclic, D is a
unique cycle of H̃ and there is an edge f ∈ E(D)− Y . Then X△{e, f} is acyclic γ-nonzero.
Therefore, we can assume that e joins two distinct components C ′, C ′′ of H1.

Since
∑

u∈V (C′) γ(u) ̸= 0, there is an edge f of C ′ such that one of the components of
C ′ \ f , say U , has exactly one vertex v with γ(v) ̸= 0. If U ′ is the component of C ′ \ f other
than U , then

∑
u∈V (U ′) γ(u) = −

∑
u∈V (U) γ(u) ̸= 0. So X△{e, f} is acyclic γ-nonzero. ◀

4 Minors of group-labelled graphs

Let Γ be an abelian group. Now we define minors of Γ-labelled graphs as follows. Let (G, γ)
be a Γ-labelled graph and e = uv be an edge of G. Then (G, γ) \ e = (G \ e, γ) is the
Γ-labelled graph obtained by deleting the edge e from (G, γ). For an isolated vertex v of
G, (G, γ) \ v = (G \ v, γ|V (G)−{v}) is the Γ-labelled graph obtained by deleting the vertex v

from (G, γ). If e is not a loop, then let (G, γ)/e = (G/e, γ′) such that, for each x ∈ V (G/e),

γ′(x) =
{

γ(u) + γ(v) if x is the vertex of G/e corresponding to e,
γ(x) otherwise.
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If e is a loop, then let (G, γ)/e = (G, γ) \ e. Contracting the edge e is an operation obtaining
(G, γ)/e from (G, γ). For an edge set X = {e1, . . . , et}, let (G, γ)/X = (G, γ)/e1/ . . . /et

and (G, γ) \X = (G \X, γ). A Γ-labelled graph (G′, γ′) is a minor of (G, γ) if (G′, γ′) is
obtained from (G, γ) by deleting some edges, contracting some edges, and deleting some
isolated vertices. Let κ(G, γ) be the number of components C of G such that γ(x) = 0 for all
x ∈ V (C). An edge e of G is a γ-bridge if κ((G, γ) \ e) > κ(G, γ). A non-loop edge e = uv

of G is a γ-tunnel if, for the component C of G containing e, the following hold:
(i) For each x ∈ V (C), γ(x) ̸= 0 if and only if x ∈ {u, v}.
(ii) γ(u) + γ(v) = 0.

From the definition of a γ-tunnel, it is easy to see that an edge e is a γ-tunnel in G if and
only if κ((G, γ)/e) > κ(G, γ).

The following lemmas are analogous to properties of graphic delta-matroids in Oum [8,
Propositions 8, 9, 10, and 11].

▶ Lemma 15 (*). Let (G, γ) be a Γ-labelled graph and e be an edge of G. The following are
equivalent.

(i) Every acyclic γ-nonzero set in G contains e.
(ii) The edge e is a γ-bridge in G.
(iii) Every γ-nonzero set in G contains e.

▶ Lemma 16 (*). Let (G, γ) be a Γ-labelled graph. Then, for an edge e of G,

G((G, γ) \ e) =
{
G(G, γ) \ e if e is not a γ-bridge,
G(G, γ)△{e} \ e otherwise.

▶ Lemma 17 (*). Let (G, γ) be a Γ-labelled graph and e be a non-loop edge of G. Then the
following are equivalent.

(i) No acyclic γ-nonzero set in G contains e.
(ii) The edge e is a γ-tunnel in G.
(iii) No γ-nonzero set in G contains e.

▶ Lemma 18 (*). Let (G, γ) be a Γ-labelled graph. Then, for an edge e of G,

G((G, γ)/e) =
{
G(G, γ)△{e} \ e if e is neither a loop nor a γ-tunnel,
G(G, γ) \ e otherwise.

We omit the proof of the following lemma.

▶ Lemma 19. Let (G, γ) be a Γ-labelled graph and v be an isolated vertex of G. Then
G((G, γ) \ v) = G(G \ v, γ|V (G)−{v}).

▶ Proposition 20. Let (G, γ) be a Γ-labelled graph and M = G(G, γ)△X for some X ⊆ E(G).
(i) If (G′, γ′) is a minor of (G, γ), then G(G′, γ′) is a minor of M .
(ii) If M ′ is a minor of M , then there exists a minor (G′, γ′) of (G, γ) such that M ′ =
G(G′, γ′)△X ′ for some X ′ ⊆ E(G′).

Proof. We may assume that X = ∅. Lemmas 16, 18, and 19 imply (i) and Lemmas 11, 16,
18, and 19 imply (ii). ◀
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5 Maximum weight acyclic γ-nonzero set

In this section, we prove that one can find a maximum weight acyclic γ-nonzero set in a
Γ-labelled graph (G, γ) in polynomial time by applying the symmetric greedy algorithm on
Γ-graphic delta-matroids. Let us first state the problem.

Maximum Weight Acyclic γ-nonzero Set
Input: A Γ-labelled graph (G, γ) and a weight w : E(G)→ Q.
Problem: Find an acyclic γ-nonzero set F in G maximizing

∑
e∈F w(e).

Recall that Theorem 14 allows us to find a maximum weight feasible set in a delta-matroid
by using the symmetric greedy algorithm in Algorithm 1. As we proved that the set of acyclic
γ-nonzero sets in a Γ-labelled graph (G, γ) forms a Γ-graphic delta-matroid in Section 3,
we can apply Theorem 14 to solve Maximum Weight Acyclic γ-nonzero Set, but it
requires a subroutine that decides in polynomial time whether a pair of two disjoint sets
X and Y of E(G) is separable in G(G, γ). In the remainder of this section, we focus on
developing this subroutine.

We assume that the addition of two elements of Γ and testing whether an element of Γ is
zero can be done in time polynomial in the length of the input.

▶ Theorem 21. Given a Γ-labelled graph (G, γ) and disjoint subsets X, Y of E(G), one can
decide in polynomial time whether G has an acyclic γ-nonzero set F such that X ⊆ F and
Y ∩ F = ∅.

To prove Theorem 21, we will characterize separable pairs (X, Y ) in G(G, γ). Recall
that, for a Γ-labelled graph (G, γ), κ(G, γ) is the number of components C of G such that
γ|V (C) ≡ 0.

▶ Lemma 22. Let Γ be an abelian group and (G, γ) be a Γ-labelled graph. Then κ((G, γ)\e) ≥
κ(G, γ) and κ((G, γ)/e) ≥ κ(G, γ) for every edge e of G.

Proof. We may assume that G is connected and κ(G, γ) = 1. Then γ ≡ 0 and therefore
κ((G, γ) \ e) ≥ 1 and κ((G, γ)/e) = 1. ◀

▶ Lemma 23. Let Γ be an abelian group, (G, γ) be a Γ-labelled graph, and X be an acyclic
set of edges of G. Let γ′ : V (G/X) → Γ be a map such that (G/X, γ′) = (G, γ)/X. Then
the following hold.
(1) If κ((G, γ)/X) = κ(G, γ) and F is an acyclic γ′-nonzero set in G/X, then F ∪X is an

acyclic γ-nonzero set in G.
(2) If κ((G, γ)/X) > κ(G, γ), then G has no acyclic γ-nonzero set containing X.

Proof. Let us first prove (1). By considering each component, we may assume that G is
connected. Since X is acyclic, F ∪X is acyclic in G.

If κ((G, γ)/X) = κ(G, γ) = 1, then γ ≡ 0 and F is the edge set of a spanning tree of
G/X by (G2). Hence F ∪ X is the edge set of a spanning tree of G, which implies that
F ∪X is acyclic γ-nonzero in G.

If κ((G, γ)/X) = κ(G, γ) = 0, then let H ′ = (V (G/X), F ) be a subgraph of G/X and
H = (V (G), F ∪X) be a subgraph of G. Then, for each component C of H, there exists a
component C ′ of H ′ such that C ′ = C/(E(C)∩X). Then

∑
u∈V (C) γ(u) =

∑
u∈V (C′) γ′(u) ̸=

0 by (G1). Hence F ∪X is an acyclic γ-nonzero set in G and (1) holds.
Now let us prove (2). We proceed by induction on |X|.

ISAAC 2021



70:10 Γ-Graphic Delta-Matroids and Their Applications

If |X| = 1, then e ∈ X is a γ-tunnel and by Lemma 17, there is no acyclic γ-nonzero set
containing X. So we may assume that |X| > 1. Let e ∈ X and X ′ = X − {e}.

By the induction hypothesis, we may assume that κ((G, γ)/X ′) = κ(G, γ). Let
γ′′ : V (G/X ′) → Γ be a map such that (G/X ′, γ′′) = (G, γ)/X ′. Since κ((G, γ)/X) =
κ((G, γ)/X ′/e) > κ((G, γ)/X ′), by the induction hypothesis, G/X ′ has no acyclic γ′′-nonzero
set containing e. Therefore, G has no acyclic γ-nonzero set containing X. ◀

▶ Lemma 24. Let Γ be an abelian group, (G, γ) be a Γ-labelled graph, and Y be a set of
edges of G. Then the following hold.
(1) If κ((G, γ) \ Y ) = κ(G, γ) and F is an acyclic γ-nonzero set in G \ Y , then F is an

acyclic γ-nonzero set in G.
(2) If κ((G, γ) \ Y ) > κ(G, γ), then G has no acyclic γ-nonzero set F such that Y ∩ F = ∅.

Proof. Let us first prove (1). By considering each component, we may assume that G is
connected.

If κ((G, γ) \ Y ) = κ(G, γ) = 1, then γ ≡ 0 and the set F is the edge set of a spanning
tree of G \ Y by (G2). Then F is an acyclic γ-nonzero set in G.

If κ((G, γ) \ Y ) = κ(G, γ) = 0, then for each component C of G \ Y , we have γ|V (C) ̸≡ 0.
Then,

∑
v∈V (C) γ(v) ̸= 0 for each component C of (V (G), F ). So F is an acyclic γ-nonzero

set in G.
Let us show (2). We proceed by induction on |Y |. If |Y | = 1, then e ∈ Y is a γ-bridge

so it is done by Lemma 15. Now we assume |Y | ≥ 2. Let e ∈ Y and Y ′ = Y − {e}. By
the induction hypothesis, we may assume that κ(G \ Y ′, γ) = κ(G, γ). Since κ(G \ Y, γ) =
κ(G \ Y ′ \ e, γ) > κ(G \ Y ′, γ), by the induction hypothesis, every acyclic γ-nonzero set in
G \ Y ′ contains e. Since every acyclic γ-nonzero set F in G not intersecting Y ′ is an acyclic
γ-nonzero set in G \ Y ′, every acyclic γ-nonzero set in G intersects Y . ◀

▶ Proposition 25. Let Γ be an abelian group and (G, γ) be a Γ-labelled graph. Let X and Y

be disjoint subsets of E(G) such that X is acyclic in G. Then κ((G, γ)/X \ Y ) = κ(G, γ) if
and only if G has an acyclic γ-nonzero set F such that X ⊆ F and Y ∩ F = ∅.

Proof. Let us prove the forward direction. By Lemma 22, κ((G, γ)/X \Y ) = κ((G, γ)/X) =
κ(G, γ). Let γ′ : V (G/X \ Y ) → Γ be a map such that (G/X \ Y, γ′) = (G, γ)/X \
Y . By (1) of Theorem 1, there exists an acyclic γ′-nonzero set F ′ in G/X \ Y . Since
κ((G, γ)/X \ Y ) = κ((G, γ)/X), F ′ is acyclic γ′-nonzero in G/X by (1) of Lemma 24. Since
κ((G, γ)/X) = κ(G, γ), F := F ′∪X is acyclic γ-nonzero in G by (1) of Lemma 23. Therefore,
F is an acyclic γ-nonzero set in G such that X ⊆ F and Y ∩ F = ∅.

Now let us prove the backward direction. Let F be an acyclic γ-nonzero set in G such
that X ⊆ F and Y ∩ F = ∅. Let γ′ : V (G/X) → Γ be a map such that (G/X, γ′) =
(G, γ)/X. Then F −X is an acyclic γ′-nonzero set in G/X not intersecting Y , so we have
κ((G, γ)/X \ Y ) = κ((G, γ)/X) by (2) of Lemma 24. Since F is an acyclic γ-nonzero set
containing X in G, we have κ((G, γ)/X) = κ(G, γ) by (2) of Lemma 23. ◀

Proof of Theorem 21. Given a Γ-labelled graph (G, γ) and disjoint subsets X, Y of E(G),
we can compute κ((G, γ)/X \ Y ) in polynomial time and therefore, by Proposition 25, we
can decide whether there exists an acyclic γ-nonzero set F in G such that X ⊆ F and
Y ∩ F = ∅. ◀

Now we are ready to show Theorem 2

▶ Theorem 2. Maximum Weight Acyclic γ-nonzero Set is solvable in polynomial
time.
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Proof. Let M = G(G, γ) be a Γ-graphic delta-matroid. The set of acyclic γ-nonzero sets in
G is equal to the set of feasible sets of M . By Theorem 21, we can decide in polynomial time
whether a pair (X, Y ) of disjoint subsets X and Y of E(G) is separable in M . It implies that
the symmetric greedy algorithm in Algorithm 1 for M and w runs in polynomial time. By
Theorem 14, we can obtain an acyclic γ-nonzero set F in G maximizing

∑
e∈F w(e). ◀

6 Even Γ-graphic delta-matroids

In this section, we show that every even Γ-graphic delta-matroid is graphic.

▶ Lemma 26 (*). Let (G, γ) be a Γ-labelled graph, and η : V (G)→ Z2 such that η(v) = 0 if
and only if γ(v) = 0 for each v ∈ V (G). If G(G, γ) is even, then, for each connected subgraph
H of G,

∑
u∈V (H) η(u) = 0 if and only if

∑
u∈V (H) γ(u) = 0.

▶ Proposition 27. Let (G, γ) be a Γ-labelled graph. If G(G, γ) is even, then there is a map
η : V (G)→ Z2 such that G(G, γ) = G(G, η).

Proof. Let η : V (G) → Z2 is a map such that, for every u ∈ V (G), η(u) = 0 if and only
if γ(u) = 0. Let F be a set of edges of G. Then, for each component C of (V (G), F ),
γ|V (C) ≡ 0 if and only if η|V (C) ≡ 0 and, by Lemma 26,

∑
u∈V (C) γ(u) ̸= 0 if and only if∑

u∈V (C) η(u) ̸= 0. Therefore, F is acyclic γ-nonzero in G if and only if it is acyclic η-nonzero
in G. ◀

We are ready to prove Theorem 5.

▶ Theorem 5. Let Γ be an abelian group. Then a Γ-graphic delta-matroid is even if and
only if it is graphic.

Proof of Theorem 5. Let M be an even Γ-graphic delta-matroid. By twisting, we may
assume that M = G(G, γ) for a Γ-labelled graph (G, γ). By Proposition 27, M is Z2-graphic.
Conversely, Oum [8, Theorem 5] proved that every graphic delta-matroid is even. ◀

7 Representations of Γ-graphic delta-matroids

We aim to study the condition on an abelian group Γ and a field F such that every Γ-
graphic delta-matroid is representable over F. Recall that a delta-matroid M = (E,F) is
representable over F if there is an E × E symmetric or skew-symmetric A over F such that
F = {F ⊆ E : A[X] is nonsingular}△X for some X ⊆ E. If every Γ-graphic delta-matroid
is representable over F, then to prove this, we will construct symmetric matrices over F
representing Γ-graphic delta-matroids.

For a graph G = (V, E), let G⃗ be an orientation obtained from G by arbitrarily assigning
a direction to each edge. Let IG⃗ = (ave)v∈V, e∈E be a V × E matrix over F such that, for a
vertex v ∈ V and an edge e ∈ E,

ave =


1 if v is the head of a non-loop edge e in G⃗,

−1 if v is the tail of a non-loop edge e in G⃗,

0 otherwise.

▶ Lemma 28. Let G = (V, E) be a graph and G⃗1, G⃗2 be orientations of G. If W ⊆ V ,
F ⊆ E, and |W | = |F |, then det(IG⃗1

[W, F ]) = ± det(IG⃗2
[W, F ]).
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Proof. The matrix IG⃗1
can be obtained from IG⃗2

by multiplying −1 to some columns. ◀

By slightly abusing the notation, we simply write IG to denote IG⃗ for some orientation G⃗

of G. The following two lemmas are easy exercises.

▶ Lemma 29 (see Oxley [9, Lemma 5.1.3]). Let G be a graph and F be an edge set of G.
Then F is acyclic if and only if column vectors of IG indexed by the elements of F are linearly
independent.

▶ Lemma 30 (see Matoušek and Nešetřil [6, Lemma 8.5.3]). Let G = (V, E) be a tree. Then
det(IG[V − {v}, E]) = ±1 for any vertex v ∈ V .

▶ Lemma 31 (*). Let Γ be an abelian group with at least one nonzero element, and (G, γ)
be a Γ-labelled graph. Then there is a Γ-labelled graph (H, η) such that

(i) η(v) ̸= 0 for each vertex v ∈ V (H) and
(ii) (G, γ) is a minor of (H, η).

▶ Theorem 32 (Binet-Cauchy theorem). Let X and Y be finite sets. Let M be an X × Y

matrix and N be a Y ×X matrix with |Y | ≥ |X| = s. Then

det(MN) =
∑

S∈(Y
s )

det(M [X, S]) · det(N [S, X]).

It is straightforward to prove the following lemma from the Binet-Cauchy theorem.

▶ Corollary 33. Let X, Y , Z be finite sets. Let L, M , N be X × Y , Y ×Z, Z ×X matrices,
respectively, with |Y |, |Z| ≥ |X| = s. Then

det(LMN) =
∑

S∈(Y
s ), T ∈(Z

s)
det(L[X, S]) · det(M [S, T ]) · det(N [T, X]).

▶ Theorem 6 (*). Let p be a prime, k be a positive integer, and F be a field of characteristic
p. If [F : GF(p)] ≥ k, then every Zk

p-graphic delta-matroid is representable over F.

Now we show that for some pairs of an abelian group Γ and a finite field F, not every
Γ-graphic delta-matroid is representable over F. Let R(n; m) be the Ramsey number that
is the minimum integer t such that any coloring of edges of Kt into m colors induces a
monochromatic copy of Kn.

▶ Theorem 34 (Ramsey [10]). For positive integers m and n, R(n; m) is finite.

▶ Corollary 35. Let k be a positive integer and F be a finite field of order m. If N ≥ R(k; m),
then each N ×N symmetric matrix A over F has a k × k principal submatrix A′ such that
all non-diagonal entries are equal.

▶ Lemma 36 (*). Let F be a field. If every Z2-graphic delta-matroid is representable over F,
then the characteristic of F is 2.

▶ Theorem 7 (*). Let F be a finite field of characteristic p, and Γ be an abelian group.
If every Γ-graphic delta-matroid is representable over F, then Γ is an elementary abelian
p-group.
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Abstract
We present a polynomial-time 3

2 -approximation algorithm for the problem of finding a maximum-
cardinality stable matching in a many-to-many matching model with ties and laminar constraints
on both sides. We formulate our problem using a bipartite multigraph whose vertices are called
workers and firms, and edges are called contracts. Our algorithm is described as the computation of
a stable matching in an auxiliary instance, in which each contract is replaced with three of its copies
and all agents have strict preferences on the copied contracts. The construction of this auxiliary
instance is symmetric for the two sides, which facilitates a simple symmetric analysis. We use the
notion of matroid-kernel for computation in the auxiliary instance and exploit the base-orderability
of laminar matroids to show the approximation ratio.

In a special case in which each worker is assigned at most one contract and each firm has a strict
preference, our algorithm defines a 3

2 -approximation mechanism that is strategy-proof for workers.
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1 Introduction

The college admission problem (ca) is a many-to-one generalization of the well-known stable
marriage problem [18,32,34], introduced by Gale and Shapley [16]. An instance of ca involves
two disjoint agent sets called students and colleges. Each agent has a strict linear order of
preference over agents on the opposite side, and each college has an upper quota for the
number of assigned students. It is known that any instance of ca has a stable matching, we
can find it efficiently, and all stable matchings have the same cardinality.

Recently, matching problems with constraints have been studied extensively [6,9,15,27,28].
Motivated by the matching scheme used in the higher education sector in Hungary, Biró et
al. [4] studied ca with common quotas. In this problem, in addition to individual colleges,
certain subsets of colleges, called bounded sets, have upper quotas. Such constraints are
also called regional caps or distributional constraints, and they have been studied in [17, 29].
Meanwhile, motivated by academic hiring, Huang [21] introduced the classified stable matching
problem. This is an extension of ca in which each individual college has quotas for subsets
of students, called classes. Its many-to-many generalizations have been studied in [14, 44].1

1 In [14,17,21,44], not only upper quotas but also lower quotas are considered. With lower quotas, the
existence of stable matching is not guaranteed. In this paper, we consider only upper quotas.
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71:2 Maximum Stable Matching with Ties and Constraints

For these models, the laminar structure of constraints is commonly found to be the key to
the existence of a stable matching. A family L of sets is called laminar if any L, L′ ∈ L
satisfy L ⊆ L′ or L ⊇ L′ or L ∩ L′ = ∅ (also called nested or hierarchical). In [4, 21], the
authors showed that a stable matching exists in their models if regions or classes form laminar
families, whereas the existence is not guaranteed in the general case. Furthermore, in the
laminar case, a stable matching can be found efficiently, and all stable matchings have the
same cardinality. Applications with laminar constraints have been discussed in [29].

The purpose of this paper is to introduce ties to a matching model with laminar constraints.
In the previous studies described above, the preferences of agents were assumed to be strictly
ordered. However, ties naturally arise in real problems. Matching models with ties have
been studied widely in the literature [18, 23,34], where the preference of an agent is said to
contain a tie if she is indifferent between two or more agents on the opposite side. When
ties are allowed, the existence of a stable matching is maintained; however, stable matchings
vary in cardinalities. As it is desirable to produce a large matching in practical applications,
we consider the problem of finding a maximum-cardinality stable matching.

Such a problem is known to be difficult even in the simple matching model without
constraints. The problem of finding a maximum stable matching in the setting of stable
marriage with ties and incomplete lists, called max-smti, is NP-hard [24, 35], as is obtaining
an approximation ratio within 33

29 [43]. For its approximability, several algorithms with
improved approximation ratios have been proposed [25,26,30,31,36,38]. The current best
ratio is 3

2 by a polynomial-time algorithm proposed by McDermid [36] as well as linear-time
algorithms proposed by Paluch [38] and Király [31]. The 3

2 -approximability extends to the
settings of ca with ties [31] and the student-project allocation problem with ties [8].

Our Contribution. We present a polynomial-time 3
2 -approximation algorithm for the prob-

lem of finding a maximum-cardinality stable matching in a many-to-many matching model
with ties and laminar constraints on both sides. We call this problem max-smti-lc and
formulate it using a bipartite multigraph, where we call the two vertex sets workers and
firms, respectively, and each edge a contract. Each agent has upper quotas on a laminar
family defined on incident contracts. Our formulation can deal with each agent’s constraints,
such as classified stable matching. Furthermore, distributional constraints such as ca with
common quotas can be handled by considering a dummy agent that represents a consortium
of the agents on one side (see the remark at the end of Section 2). Our algorithm runs in
O(k · |E|2) time, where E is the set of contracts and k is the maximum level of nesting of
laminar constraints. The level of nesting of a laminar family L is the maximum length of a
chain L1 ⊊ L2 ⊊ · · · ⊊ Lk of members of L; hence, k ≤ |E|.

Our algorithm is described as the computation of a stable matching in an auxiliary
instance. Here, we explain the ideas underlying the construction of the auxiliary instance,
which is inspired by the algorithms of Király [31] and Hamada, Miyazaki, and Yanagisawa [19].

First, we briefly explain Király’s 3
2 -approximation algorithm for max-smti [31]. In this

algorithm, each worker makes proposals from top to bottom in her list sequentially, as with
the worker-oriented Gale–Shapley algorithm. A worker rejected by all firms is given a second
chance for proposals. Each firm prioritizes a worker in the second cycle over a worker in the
first cycle if they are tied in its preference list. This idea of promotion is used to handle
ties in firms’ preference lists. To handle ties in workers’ lists, Király’s algorithm lets each
worker prioritize a currently unmatched firm over a currently matched firm if they are tied in
her preference list. This priority rule depends on the states of firms at each moment, which
makes the algorithm complicated when we introduce constraints on both sides.
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Then, we introduce the idea of the algorithm of Hamada et al. [19], who proposed a
worker-strategy-proof algorithm for max-smti that attains the 3

2 -approximation ratio when
ties appear only in workers’ lists. They modified Király’s algorithm such that each worker’s
proposal order is predetermined and is not affected by the history of the algorithm. Their
algorithm can be seen as a Gale–Shapley-type algorithm in which each worker makes proposals
twice to each firm in a tie before proceeding to the next tie, and each firm prioritizes second
proposals over first proposals regardless of its preference. By combining their algorithm with
the promotion operation of Király’s algorithm, we obtain a Gale–Shapley-type algorithm in
which each worker makes at most three proposals to each firm.

Based on these observations, we propose a method for transforming a max-smti-lc
instance I into an auxiliary instance I∗, which is also a max-smti-lc instance. Each contract
ei in I is replaced with three copies xi, yi, zi in I∗. Each agent has a strict preference
on the copied contracts, which reflects the priority rules in the algorithms of Király and
Hamada et al. The instance I∗ has an upper bound 1 for each triple {xi, yi, zi} and also
has constraints corresponding to those in I. The construction of I∗ is completely symmetric
for workers and firms. We show that, for any stable matching M∗ of I∗, its projection
M := { ei | {xi, yi, zi} ∩M∗ ̸= ∅ } is a 3

2 -approximate solution for I. Both the stability and
the approximation ratio of M are implied by the stability of M∗ in I∗, and the process of
computing M∗ is irrelevant. Thus, our method enables us to conduct a symmetric and static
analysis even with constraints.

Because the auxiliary instance I∗ has no ties, we can find a stable matching of I∗ efficiently
by using the matroid framework of Fleiner [12, 13]. In the analysis of the approximation
ratio, we exploit the fact that the family of feasible sets defined by laminar constraints forms
a matroid with a property called base-orderability.

In the last section, we show that the result of Hamada et al. [19] mentioned above is
generalized to a many-to-one matching setting with laminar constraints on the firm side.
In other words, if we restrict max-smti-lc such that each worker is assigned at most one
contract and each firm has a strict preference, then we can provide a worker-strategy-proof
mechanism that returns a 3

2 -approximate solution. We obtain this conclusion using the
strategy-proofness result of Hatfield and Milgrom [20].

Paper Organization. The remainder of this paper is organized as follows. Section 2
formulates our matching model, while Section 3 describes our algorithm. Section 4 presents
a lemma on base-orderable matroids that is the key to our proof of the approximation ratio.
Sections 5 and 6 are devoted to the proofs of correctness and time complexity, respectively.
Section 7 investigates strategy-proof approximation mechanisms for our model.

Throughout the paper, we denote the set of non-negative integers by Z+. For a subset
S ⊆ E and an element e ∈ E, we denote S + e := S ∪ {e} and S − e := S \ {e}.

2 Problem Formulation

An instance of the stable matching with ties and laminar constraints, which we call smti-lc,
is a tuple I = (W, F, E, {La, qa, Pa}a∈W ∪F ) defined as follows. Let W and F be disjoint
finite sets called workers and firms, respectively. We call a ∈W ∪ F an agent when we do
not distinguish between workers and firms. We are provided a set E of contracts. Each
contract e ∈ E is associated with one worker and one firm, denoted by ∂W (e) and ∂F (e),
respectively. Multiple contracts are allowed to exist between a worker–firm pair. Then,
(W, F ; E) is represented as a bipartite multigraph in which W and F are vertex sets, and
each e ∈ E is an edge connecting ∂W (e) and ∂F (e). For each a ∈W ∪ F , we denote the set
of associated contracts by Ea, i.e.,

ISAAC 2021



71:4 Maximum Stable Matching with Ties and Constraints

Ew := { e ∈ E | ∂W (e) = w } (w ∈W ), Ef := { e ∈ E | ∂F (e) = f } (f ∈ F ).

Then, the family {Ew | w ∈W } forms a partition of E, as does {Ef | f ∈ F }.
Each agent a ∈ W ∪ F has a laminar family La of subsets of Ea and a quota function

qa : La → Z+. For any subset M ⊆ E of contracts and an agent a ∈ W ∪ F , we denote by
Ma := M ∩Ea the set of contracts assigned to a. We say that M is feasible for a ∈W ∪ F if

∀L ∈ La : |Ma ∩ L| ≤ qa(L).

A set M ⊆ E is called a matching if it is feasible for all agents in W ∪ F .
Each agent a ∈W ∪F has a preference list Pa that consists of all elements in Ea and may

contain ties. In this paper, a preference list is written in one row, from left to right according
to preference, where two or more contracts with equal preference are included in the same
parentheses. For example, if the preference list Pa of an agent a ∈W ∪ F is represented as

Pa : e2 ( e1 e4 ) e3,

then e2 is a’s top choice, e1 and e4 are the second choices with equal preference, and e3 is
the last choice. For contracts e, e′ ∈ Ea, we write e ≻a e′ if a prefers e to e′. Furthermore,
we write e ⪰a e′ if e ≻a e′ or a is indifferent between e and e′ (including the case e = e′).

For a matching M ⊆ E, a contract e ∈ E\M , and an associated agent a ∈ {∂W (e), ∂F (e)},
we say that e is free for a in M if

Ma + e is feasible for a, or
there is e′ ∈Ma such that e ≻a e′ and Ma + e− e′ is feasible for a.

In other words, a contract e is free for an agent a if a has an incentive to add e to the current
assignment possibly at the expense of some less preferred contract e′. A contract e ∈ E \M

blocks M if e is free for both ∂W (e) and ∂F (e). A matching M is stable if there is no contract
in E \M that blocks M .

The goal of our problem max-smti-lc is to find a maximum-cardinality stable matching
for a given smti-lc instance. Because max-smti-lc is a generalization of the NP-hard
problem max-smti, we consider the approximability. Similarly to the case of max-smti,
for the problem max-smti-lc, a 2-approximate solution can be easily obtained using an
arbitrary tie-breaking method (see the full version [45] for the proof). In the next section,
we present a 3

2 -approximation algorithm.

▶ Remark. We demonstrate that smti-lc includes several models investigated in previous
works, which implies that our algorithm finds 3

2 -approximate solutions for the problems of
finding maximum-cardinality stable matchings in those models with ties.

First, smti and the stable b-matching problem are special cases such that E ⊆W × F

and La = {Ea} for every a ∈W ∪ F . Furthermore, the two-sided laminar classified stable
matching problem [14,21], if lower quotas are absent, is a special case with E ⊆W × F .

To represent ca with laminar common quotas [4], let W be the set of students and let
F := {f}, where f is regarded as a consortium of all colleges in C. The set of contracts
is defined by E := { (w, f, c) | a college c ∈ C is acceptable for a student w ∈W }, where
∂W (e)=w, ∂F (e)=f for any e = (w, f, c). Note that E = Ef . A quota for a region C ′ ⊆ C

is then represented as a quota for the set { (w, f, c) ∈ E | c ∈ C ′ } ⊆ Ef . Thus, laminar
common quotas can be represented as constraints on a laminar family on Ef .
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For the student-project allocation problem [8], let W and F be the sets of students and
lecturers, respectively, and E := {(w, f, p) | a project p acceptable for w ∈W is offered by
f ∈ F}. Let Ef,p ⊆ Ef be the set of contracts associated with a project p offered by a
lecturer f . Then, the lecturer’s upper quota and projects’ upper quotas define two-level
laminar constraints on the family Lf = {Ef} ∪ {Ef,p | p is offered by f }.

For the above-mentioned settings, we can appropriately set the preferences of agents such
that the stability in the previous works coincides with the stability in smti-lc.

3 Algorithm

Our approximation algorithm for max-smti-lc consists of three steps: (i) construction of an
auxiliary instance, (ii) computation of any stable matching of this auxiliary instance, and
(iii) mapping the obtained matching to a matching of the original instance. In what follows,
we describe how to construct an auxiliary instance I∗ from a given instance I and how to
map a matching of I∗ to that of I.

Let I = (W, F, E, {La, qa, Pa}a∈W ∪F ) be an instance of max-smti-lc, where the set
E of contracts is represented as E = { ei | i = 1, 2, . . . , n }. We construct an auxiliary
instance I∗ = (W, F, E∗, {L∗

a, q∗
a, P ∗

a }a∈W ∪F ), which is also an smti-lc instance; however,
each preference list P ∗

a does not contain ties.
The sets of workers and firms in I∗ are the same as those in I. The set E∗ of contracts in

I∗ is given as E∗ = {xi, yi, zi | i = 1, 2, . . . , n }, where xi, yi, and zi are copies of ei; hence,
∂W (xi) = ∂W (yi) = ∂W (zi) = ∂W (ei) and ∂F (xi) = ∂F (yi) = ∂F (zi) = ∂F (ei). We define a
mapping π : 2E∗ → 2E by π(S∗) = { ei | {xi, yi, zi} ∩ S∗ ̸= ∅ } for any S∗ ⊆ E∗.

For any agent a ∈ W ∪ F , the laminar family L∗
a and the quota function q∗

a : L∗
a → Z+

are defined as follows. For each ei ∈ Ea, we have {xi, yi, zi} ∈ L∗
a and q∗

a({xi, yi, zi}) = 1.
For each L ∈ La, we have L∗ := {xi, yi, zi | ei ∈ L } ∈ L∗

a and q∗
a(L∗) = qa(L). These are all

that L∗
a contains. Then, for any set M∗ ⊆ E∗ of contracts, we see that M∗ is feasible for

a in I∗ if and only if M∗ contains at most one copy of each ei ∈ Ea and the set π(M∗) is
feasible for a in I.

The preference list P ∗
w of each worker w ∈W is defined as follows. Take a tie (ei1ei2 · · · eiℓ

)
in Pw. We replace it with a strict linear order of 2ℓ contracts xi1xi2 · · ·xiℓ

yi1yi2 · · · yiℓ
. Apply

this operation to all the ties in Pw, where we regard a contract not included in any tie as
a tie of length one. Next, at the end of the resultant list, append the original list Pw with
each ei replaced with zi and all the parentheses omitted. Here is a demonstration. If the
preference list of a worker w is

Pw : ( e2 e6 ) e1 ( e3 e4 ),

then her list in I∗ is

P ∗
w : x2 x6 y2 y6 x1 y1 x3 x4 y3 y4 z2 z6 z1 z3 z4.

The preference list P ∗
f of each firm f ∈ F is defined in the same manner, where the roles of

xi and zi are interchanged. For example, if the preference list of a firm f is

Pf : e3 ( e2 e4 e7 ) e5,

then its list in I∗ is

P ∗
f : z3 y3 z2 z4 z7 y2 y4 y7 z5 y5 x3 x2 x4 x7 x5.
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71:6 Maximum Stable Matching with Ties and Constraints

Thus, we have defined the auxiliary instance I∗. As this is again an smti-lc instance,
a stable matching of I∗ is defined as before. The existence of a stable matching of I∗ is
guaranteed by the existing framework of Fleiner [12,13], as will be explained in Section 6.
Here is the main theorem of this paper, which states that any stable matching of I∗ defines
a 3

2 -approximate solution for I.

▶ Theorem 1. For a stable matching M∗ of I∗, let M := π(M∗). Then, M is a
stable matching of I with |M | ≥ 2

3 |MOPT|, where MOPT is a maximum-cardinality stable
matching of I.

We prove Theorem 1 in Section 5. This theorem guarantees the correctness of Algorithm 1.

Algorithm 1 3
2 -approximation algorithm for max-smti-lc.

Input: An instance I = (W, F, E, {La, qa, Pa}a∈W ∪F ).
Output: A stable matching M with |M | ≥ 2

3 |MOPT|, where MOPT is an optimal solution.
1: Construct an auxiliary instance I∗.
2: Find any stable matching M∗ of I∗.
3: Let M = π(M∗) and return M .

Clearly, the first and third steps of Algorithm 1 can be performed efficiently. Furthermore,
the second step can be executed in polynomial time by applying the generalized Gale–Shapley
algorithm of Fleiner [12,13]. In Section 6, we will explain this more precisely and present the
time complexity represented in the following theorem.

▶ Theorem 2. One can find a stable matching M of I with |M | ≥ 2
3 |MOPT| in O(k · |E|2)

time, where MOPT is a maximum-cardinality stable matching and k is the maximum level of
nesting of laminar families La (a ∈W ∪ F ).

4 Base-orderable Matroids

For the proofs of Theorems 1 and 2, we introduce some concepts related to matroids (see,
e.g., Oxley [37] for more information on matroids).

For a finite set E and a family I ⊆ 2E , a pair (E, I) is called a matroid if the following
three conditions hold: (I1) ∅ ∈ I, (I2) S ⊆ T ∈ I implies S ∈ I, and (I3) for any S, T ∈ I
with |S| < |T |, there exists e ∈ T \ S such that S + e ∈ I.

For a matroid (E, I), each member of I is called an independent set. An independent set
is called a base if it is inclusion-wise maximal in I. We denote the family of all bases by B.
By the matroid axiom (I3), it follows that |B1| = |B2| holds for any bases B1, B2 ∈ B.

▶ Definition 3 (Base-orderable Matroid). A matroid (E, I) is called base-orderable if for any
two bases B1, B2 ∈ B, there exists a bijection φ : B1 → B2 with the property that, for every
e ∈ B1, both B1 − e + φ(e) and B2 + e− φ(e) are bases.

A class of base-orderable matroids includes gammoids (see [7] and [42, Theorem 42.12]), and
gammoids include laminar matroids described below (see [10] and [11, Section 2.3.1]).

▶ Example 4 (Laminar Matroid). For a laminar family L on E and a function q : L → Z+,
define I = {S ⊆ E | ∀L ∈ L : |S ∩ L| ≤ q(L) }. Then, (E, I) is a base-orderable matroid.

A matroid is laminar if it can be defined in the above-mentioned manner for some L and q.
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Base-orderability is known to be closed under the following operations (see, e.g., [5, 22]).

Contraction.2 For a matroid (E, I) and any S ∈ I, define IS := {T ⊆ E \ S | S ∪ T ∈ I }.
Then, (E \ S, IS) is a matroid. If (E, I) is base-orderable, then so is (E \ S, IS).

Truncation. For a matroid (E, I) and any integer p ∈ Z+, define Ip := {S ∈ I | |S| ≤ p }.
Then, (E, Ip) is a matroid. If (E, I) is base-orderable, then so is (E, Ip).

Direct Sum. For matroids (Ej , Ij) (j = 1, 2, . . . , ℓ) such that Ej are all pairwise disjoint,
let E := E1∪E2∪· · ·∪Eℓ and I := {S1 ∪ S2 ∪ · · · ∪ Sℓ | Sj ∈ Ij (j = 1, 2, . . . , ℓ) }. Then,
(E, I) is a matroid. If all (Ej , Ij) are base-orderable, then so is (E, I).

On the intersection of two base-orderable matroids, we show the following property, which
plays a key role in proving the 3

2 -approximation ratio of our algorithm. This generalizes
the fact that, if (one-to-one) bipartite matchings M and N satisfy |M | < 2

3 |N |, then M△N

contains a connected component that forms an alternating path of length at most three.

▶ Lemma 5. For base-orderable matroids (E, I1) and (E, I2), suppose that S, T ∈ I1 ∩ I2
and |S| < 2

3 |T |. If S + e ̸∈ I1 ∩ I2 for every e ∈ T \ S, then there exist distinct elements
ei, ej , ek such that ei, ek ∈ T \ S, ej ∈ S \ T , and the following conditions hold:

S + ei ∈ I1,
both S + ei − ej and T − ei + ej belong to I2,
both S − ej + ek and T + ej − ek belong to I1,
S + ek ∈ I2.

Proof. By the matroid axiom (I3), there is a subset A1 ⊆ T \ S such that |A1| = |T | − |S|
and S1 := S ∪ A1 ∈ I1. Then, |S1| = |T |; hence, |S1 \ T | = |T \ S1|. Let (E′, I ′

1) be a
matroid obtained from (E, I1) by contracting S1 ∩ T and truncating with size |S1 \ T |, i.e.,
E′ = E \ (S1 ∩T ) and I ′

1 := {R ⊆ E′ | R ∪ (S1 ∩ T ) ∈ I1, |R| ≤ |S1 \ T | }. Then, S1 \T and
T \S1 are bases of (E′, I ′

1). As (E′, I ′
1) is base-orderable, there is a bijection φ1 : S1\T → T \S1

such that both (S1 \ T )− e + φ1(e) and (T \ S1) + e− φ1(e) are bases of (E′, I ′
1) for every

e ∈ S1 \ T . By the definition of I ′
1, this implies that both S − e + φ1(e) and T + e− φ1(e)

belong to I1 for every e ∈ S1 \ T . By the same argument, there exists A2 ⊆ T \ S such that
|A2| = |T | − |S| and S2 := S ∪A2 ∈ I2, and there exists a bijection φ2 : S2 \T → T \S2 such
that both S − e + φ2(e) and T + e− φ2(e) belong to I2 for every e ∈ S2 \ T .

We represent φ1 and φ2 using a bipartite graph as follows. Note that, for each ℓ ∈ {1, 2},
we have Sℓ\T = S\T and T \Sℓ = T \(S∪Aℓ) ⊆ T \S. Let S\T and T \S be two vertex sets
and let Mℓ := { (e, φℓ(e)) | e ∈ S \ T } for ℓ = 1, 2. Then, each Mℓ is a one-to-one matching
that covers S \ T and T \ (S ∪Aℓ). Note that the sets A1, A2 ⊆ S \ T are mutually disjoint
since, otherwise, some e ∈ A1∩A2 satisfies S + e ∈ I1∩I2, which contradicts the assumption.
Then, |T \ (S ∪A1 ∪A2)| = |T \ S| − |A1| − |A2| = |T \ S| − 2|T |+ 2|S|. Therefore, at most
2(|T \S|−2|T |+2|S|) vertices in S\T are adjacent to T \(S∪A1∪A2) via the edges in M1∪M2.
Because |S\T |−2(|T \S|−2|T |+2|S|) = −3|S|+2|T |+|S∩T | > −3· 23 |T |+2|T |+|S∩T | ≥ 0,
there exists ẽ ∈ S \ T that is not adjacent to T \ (S ∪A1 ∪A2) via M1 ∪M2. This implies
that φ2(ẽ) ∈ A1 and φ1(ẽ) ∈ A2; hence, S + φ2(ẽ) ∈ I1 and S + φ1(ẽ) ∈ I2. Let ei := φ2(ẽ),
ej := ẽ, and ek := φ1(ẽ). Then, these three elements satisfy all the required conditions. ◀

2 Contraction is defined for any subset of E [37]; however this paper uses only contraction by independent
sets.
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5 Correctness

This section is devoted to showing Theorem 1, which establishes the correctness of Algorithm 1.
As in Section 3, let I be an smti-lc instance with E = { ei | i = 1, 2, . . . , n } and let I∗

be the auxiliary instance I∗, whose contract set is E∗ = {xi, yi, zi | i = 1, 2, . . . , n }.
For any agent a ∈W ∪F , let E∗

a = {xi, yi, zi | ei ∈ Ea } and define families Ia and I∗
a by

Ia = { S ⊆ Ea | ∀L ∈ La : |S ∩ L | ≤ qa(L ) } ,

I∗
a = {S∗ ⊆ E∗

a | ∀L∗∈ L∗
a : |S∗∩ L∗| ≤ q∗

a(L∗) } ,

i.e., Ia and I∗
a are the families of feasible sets in I and I∗, respectively. Then, (Ea, Ia) and

(E∗
a , I∗

a) are laminar matroids and base-orderable. The definitions of L∗
a and q∗

a imply the
following fact. Recall that π : 2E∗ → 2E is defined by π(S∗) = { ei | {xi, yi, zi} ∩ S∗ ̸= ∅ }.

▶ Observation 6. For a set S∗ ⊆ E∗
a, we have S∗ ∈ I∗

a if and only if |{xi, yi, zi} ∩ S∗| ≤ 1
for every ei ∈ Ea and π(S∗) ∈ Ia.

Take any stable matching M∗ of I∗ and let M := π(M∗). As M∗ is feasible in I∗, it
contains at most one copy of each contract ei. For any ei ∈ M , we denote by π−1(ei) the
unique element in {xi, yi, zi} ∩M∗.

By the definitions of the preference lists {P ∗
a }a∈W ∪F in I∗, we can observe the following

properties. For any agent a ∈W ∪ F and contracts e, e′ ∈ E∗
a , we write e ≻∗

a e′ if a prefers e

to e′ with respect to P ∗
a . Recall that P ∗

a does not contain ties, while Pa may contain.

▶ Observation 7. For any ei ∈ E \M and ej ∈M , the following conditions hold.

For any agent a ∈W ∪F , if ei, ej ∈ Ea and ei ≻a ej , then yi ≻∗
a π−1(ej) holds regardless

of which of {xi, yi, zi} is π−1(ei).

For any worker w ∈W , if ei, ej ∈ Ew and π−1(ej) ≻∗
w xi, then we have either

[ π−1(ej) = xj and ej ⪰w ei ] or [ π−1(ej) = yj and ej ≻w ei ].

For any firm f ∈ F , if ei, ej ∈ Ef and π−1(ej) ≻∗
f zi, then we have either

[ π−1(ej) = zj and ej ⪰f ei ] or [ π−1(ej) = yj and ej ≻f ei ].

First, we show the stability of M in I. For each agent a ∈W ∪F , we write M∗
a = M∗∩E∗

a ,
which implies that π(M∗

a ) = Ma.

▶ Lemma 8. The set M is a stable matching of I.

Proof. Since M∗ is feasible for all agents in I∗, Observation 6 implies that M = π(M∗) is
feasible for all agents in I, i.e., M is a matching in I.

Suppose, to the contrary, that M is not stable. Then, some contract ei ∈ E \M blocks
M . Let w = ∂W (ei) and f = ∂F (ei). Then, ei is free for both w and f in M . We now show
that yi is free for both w and f in M∗, which contradicts the stability of M∗.

As ei is free for w in I, we have (i) Mw + ei ∈ Iw or (ii) there exists ej ∈Ma such that
ei ≻w ej and Ma + ei − ej ∈ Iw. Note that ei ∈ E \M implies {xi, yi, zi} ∩M∗ = ∅. In case
(i), we have π(M∗

w + yi) = Mw + ei ∈ Iw, which implies M∗
w + yi ∈ I∗

w ; hence, yi is free for
w in M∗. In case (ii), we have π(M∗

w + yi − π−1(ej)) = Mw + ei − ej ∈ Iw, which implies
M∗

w + yi − π−1(ej) ∈ I∗
w. Furthermore, as ei ≻w ej , the first statement of Observation 7

implies yi ≻∗
w π−1(ej). Thus, in each case, yi is free for w in M∗.

Similarly, we can show that yi is free for f in M∗. Thus, yi blocks M∗, a contradiction. ◀
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Next, we show the approximation ratio using Lemma 5. Note that {Ew | w ∈W } is a
partition of E, as is {Ef | f ∈ F }. Let (E, IW ) be the direct sum of base-orderable matroids
{ (Ew, Iw) | w ∈W } and (E, IF ) be the direct sum of { (Ef , If ) | f ∈ F }. Then, they are
both base-orderable matroids on E.

By the definitions of IW and IF , for any subset N ⊆ E, we have N ∈ IW ∩IF if and only
if Na := N ∩ Ea is feasible for each a ∈W ∪ F , i.e., N is a matching. Furthermore, for any
matching N ∈ IW ∪IF and contract ei ∈ E\N , which is associated with a worker w = ∂W (ei)
(and a firm f = ∂F (ei)), the condition N +ei ∈ IW is equivalent to Nw +ei ∈ Iw. In addition,
if N + ei ̸∈ IW , we have N + ei − ej ∈ IW if and only if ej ∈ Nw and Nw + ei − ej ∈ Iw.
The same statements hold when w and W are replaced with f and F , respectively.

▶ Lemma 9. The set M satisfies |M | ≥ 2
3 |MOPT|, where MOPT is a maximum-cardinality

stable matching of I.

Proof. Set N := MOPT for notational simplicity. Since M and N are stable matchings,
M, N ∈ IW ∩ IF . In addition, M + ei ̸∈ IW ∩ IF for any ei ∈ N \M since, otherwise, ei

blocks M . Suppose, to the contrary, that |M | < 2
3 |N |. Then, by Lemma 5 and the definitions

of IW and IF , there exist three contracts ei, ej , ek such that ei, ek ∈ N \M , ej ∈ M \N ,
and the following conditions hold:

Mw + ei ∈ Iw,
both Mf + ei − ej and Nf − ei + ej belong to If ,
both Mw′ − ej + ek and Nw′ + ej − ek belong to Iw′ ,
Mf ′ + ek ∈ If ′ ,

where w = ∂W (ei), f = ∂F (ei) = ∂F (ej), w′ = ∂W (ej) = ∂W (ek), f ′ = ∂F (ek).

Since ei ̸∈ M and Mw + ei ∈ Iw, we have M∗
w + zi ∈ I∗

w; hence, zi is free for the
worker w = ∂W (zi) in M∗. Then, the stability of M∗ implies that zi is not free for the firm
f = ∂F (zi). Since π(M∗

f + zi−π−1(ej)) = Mf + ei− ej ∈ If implies M∗
f + zi−π−1(ej) ∈ I∗

f ,
we should have π−1(ej) ≻∗

f zi. Then, the third statement of Observation 7 implies that we
have either [π−1(ej) = zj and ej ⪰f ei] or [π−1(ej) = yj and ej ≻f ei].

Meanwhile, since ek ̸∈M and Mf ′ +ek ∈ If ′ , we have M∗
f ′ +xk ∈ I∗

f ′ ; hence, xk is free for
the firm f ′ = ∂W (xk) in M∗. As M∗ is stable, then xk is not free for the worker w′ = ∂W (xk).
Since π(M∗

w′ + xk − π−1(ej)) = Mw′ + ek − ej ∈ Iw′ implies M∗
w′ + xk − π−1(ej) ∈ I∗

w′ , we
should have π−1(ej) ≻∗

w′ xk. Then, the second statement of Observation 7 implies that we
have either [π−1(ej) = xj and ej ⪰w′ ek] or [π−1(ej) = yj and ej ≻w′ ek].

Because we cannot have π−1(ej) = zj and π−1(ej) = xj simultaneously, we must have
π−1(ej) = yj , ej ≻f ei, and ej ≻w′ ek. As we have Nf −ei +ej ∈ If and Nw′ +ej−ek ∈ Iw′ ,
these preference relations imply that ej blocks N , which contradicts the stability of N . ◀

Proof of Theorem 1. Combining Lemmas 8 and 9, we obtain Theorem 1. ◀

6 Time Complexity

We explain how to implement the second step of Algorithm 1 and estimate its time complexity,
which establishes Theorem 2. For this purpose, we introduce the notion of a matroid-kernel,
which is a matroid generalization of a stable matching proposed by Fleiner [12, 13]. Note
that it is defined not only for base-orderable matroids but for general matroids.
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6.1 Matroid-kernels
A triple M = (E, I,≻) is called an ordered matroid if (E, I) is a matroid and ≻ is a strict
linear order on E. For an ordered matroid M = (E, I,≻) and an independent set S ∈ I, an
element e ∈ E \ S is said to be dominated by S in M if S + e ̸∈ I and there is no element
e′ ∈ S such that e ≻ e′ and S + e− e′ ∈ I.

Let M1 = (E, I1,≻1) and M2 = (E, I2,≻2) be two ordered matroids on the same ground
set E. Then, a set S ⊆ E is called an M1M2-kernel if S ∈ I1 ∩I2 and any element e ∈ E \S

is dominated by S in M1 or M2.
In [12], an algorithm for finding a matroid-kernel has been described using choice functions

defined as follows. For an ordered matroid M = (E, I,≻), give indices of elements in E

such that E = {e1, e2, . . . , en} and e1 ≻ e2 ≻ · · · ≻ en. Define a function CM : 2E → 2E by
letting CM be the output of the following greedy algorithm for every S ⊆ E. Let T 0 := ∅
and define T ℓ for ℓ = 1, 2, . . . , n by

T ℓ :=
{

T ℓ−1 + eℓ if eℓ ∈ S and T ℓ−1 + eℓ ∈ I,

T ℓ−1 otherwise;

then, let M(S) := T n.
Let CM1 , CM2 be the choice functions defined from M1 = (E, I1,≻1), M2 = (E, I2,≻2),

respectively. In [12, Theorem 2], Fleiner showed that an M1M2-kernel can be found using
the following algorithm, which can be regarded as a generalization of the Gale–Shapley
algorithm. First, set R← ∅. Then, repeat the following three steps: (1) S ← CM1(E \R),
(2) T ← CM2(S ∪R), and (3) R← (S ∪R) \ T . Stop the repetition if R is not changed at
(3) and return T at that moment. In terms of the ordinary Gale–Shapley algorithm, R, S,
and T correspond to the sets of contracts that are rejected by firms thus far, proposed by
workers, and accepted by firms, respectively.

▶ Theorem 10 (Fleiner [12, 13]). For any pair of ordered matroids M1 and M2 on the same
ground set E, there exists an M1M2-kernel. One can find an M1M2-kernel in O(|E| · EO)
time, where EO is the time required to compute CM1(S) and CM2(S) for any S ⊆ E.

6.2 Implementation of Our Algorithm
We show that the second step of Algorithm 1 is reduced to a computation of a matroid-kernel.

For an auxiliary instance I∗ defined in Section 2, note that {E∗
w | w ∈W } is a partition

of E∗ and let (E∗, I∗
W ) be the direct sum of {(E∗

w, I∗
w)}w∈W . Furthermore, let ≻W be a

strict linear order on E∗ that is consistent with the workers’ preferences {P ∗
w}w∈W in I∗.

For example, obtain ≻W by concatenating the lists P ∗
w of all workers in an arbitrary order.

Then, MW = (E∗, I∗
W ,≻W ) is an ordered matroid on the contract set E∗. As {E∗

f | f ∈ F }
is also a partition of E∗, we can define an ordered matroid MF = (E∗, I∗

F ,≻F ) in the same
manner from {(E∗

f , I∗
f )}f∈F and {P ∗

f }f∈F .
We show that MWMF -kernels are equivalent to stable matchings of I. This has already

been shown in several previous works [14,44]. We present a proof for the completeness.

▶ Lemma 11. M∗ ⊆ E∗ is a stable matching of I∗ if and only if M∗ is an MWMF -kernel.

Proof. By the definitions of (E∗, I∗
W ) and (E∗, I∗

f ), a set M∗ ⊆ E∗ is feasible for all agents
in I∗ if and only if M∗ ∈ I∗

W ∩ I∗
F . Recall that a contract e ∈ E∗ \M∗ is free for the

associated worker w := ∂W (e) if M∗
w + e ∈ I∗

w or there exists e′ ∈ M∗
w such that e ≻∗

w e′

and M∗
w + e − e′ ∈ I∗

w. By the definition of I∗
W , we have M∗

w + e ∈ I∗
w if and only if
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M∗ + e ∈ I∗
W . In addition, if M∗

w + e ̸∈ I∗
w, then M∗

w + e− e′ ∈ I∗
w holds for e′ ∈Mw if and

only if M∗ + e− e′ ∈ I∗
W . Because ≻W is consistent with ≻∗

w, these imply that e is free for
w = ∂W (e) in M∗ if and only if e is not dominated by M∗ in MW . Similarly, we can show
that e is free for the associated firm f := ∂F (e) in M∗ if and only if e is not dominated by
M∗ in MF . Thus, the equivalence holds. ◀

▶ Lemma 12. For any subset S∗ ⊆ E∗, we can compute CMW
(S∗) and CMF

(S∗) in
O(k∗·|E∗|) time, where k∗ is the maximum level of nesting of laminar families L∗

a (a ∈W∪F ).

Proof. We only explain the computation of CMW
(S∗) because that of CMF

(S∗) is similar.
Let L be the union of {L∗

w}w∈W and define q : L → Z+ by setting q(L) = q∗
w(L) for each

w ∈W and L ∈ L∗
w. Then, L is a laminar family on E∗ and the matroid (E∗, I∗

W ) is defined
by L and q. The maximum level of nesting of L is again k∗.

Referring to [4], we represent L by a forest G whose node set is { vL | L ∈ L}. Node vL

is the parent of vL′ in G if L ⊆ L′ and there is no L′′ ∈ L such that L ⊊ L′′ ⊊ L′. Note
that L contains the set {xi, yi, zi} for every ei ∈ E, which is inclusion-wise minimal in L.
Therefore, the node vi := v{xi,yi,zi} is a leaf for any ei ∈ E, and any leaf has this form.

We compute the sequence T 0, T 1, . . . , T |E∗| of sets in the definition of CMW
(S∗) as follows.

For each vL, we store a pointer to its parent, the value of q(L), and the value of |T ℓ−1 ∩ L|.
For each eℓ ∈ E∗, we have T ℓ−1 + eℓ ∈ I∗

W if and only if there is no ancestor node vL of
vi with q(L) = |T ℓ−1 ∩ L|, where vi is the leaf with eℓ ∈ {xi, yi, zi}. Then, we can check
whether T ℓ−1 + eℓ ∈ I∗

W in O(k∗) time by following the path of the parent pointers from vi.
When T ℓ = T ℓ−1 + eℓ, we update the stored values |T ℓ−1 ∩L| to |T ℓ ∩L| for each L ∈ L with
eℓ ∈ L. This is also performed in O(k∗) time by following the path of the parent pointers. ◀

Proof of Theorem 2. As we have Theorem 1, what is left is to show the time complexity.
The set E∗ of contracts in I∗ satisfies |E∗| = 3|E|. The maximum level of nesting of laminar
families L∗

a in I∗ is k + 1. By Theorem 10 and Lemmas 11 and 12, then the second step of
Algorithm 1 is computed in O((k + 1) · |E∗|2) = O(k · |E|2) time. Since the first and third
steps can be performed in O(k · |E|2) time, Algorithm 1 runs in O(k · |E|2) time. ◀

▶ Remark. Our analysis depends on the fact that the feasible set family defined by laminar
constraints forms the independent set family of a base-orderable matroid. Actually, we can
extend Theorem 1 to a setting where the family of feasible sets of each agent a ∈W ∪ F is
represented by the independent set family Ia of an arbitrary base-orderable matroid. To
construct I∗ in this case, we define E∗ and {P ∗

a }a∈W ∪F as in Section 3 and define the feasible
set family I∗

a by I∗
a = {S∗ ⊆ E∗

a | |{xi, yi, zi} ∩ S∗| ≤ 1 for any ei ∈ Ea and π(S∗) ∈ Ia }.
We can easily show that (E∗

a , I∗
a) is also a base-orderable matroid and apply the arguments

in Sections 5 and 6, except Lemma 12. Given a membership oracle for each Ia available,
Algorithm 1 runs in O(τ · |E|2) time in this case, where τ is the time for an oracle call.

7 Strategy-Proof Approximation Mechanisms

In this section, we investigate approximation ratios for max-smti-lc attained by strategy-
proof mechanisms. First, note that our setting smti-lc is a generalization of the stable
marriage model of Gale and Shapley [16]; hence, Roth’s impossibility theorem [40] implies
that there is no mechanism that returns a stable matching and is strategy-proof for agents
on both sides. As with many existing works on strategy-proofness in two-sided matching
models, we consider one-sided strategy-proofness in the setting of many-to-one matching.
Many-to-one matching models have various applications such as assignment of residents to
hospitals [39, 41] and students to high schools [1–3]. In such applications, strategy-proofness
for residents or students is a desirable property preventing their strategic behavior.
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7.1 Model and Definitions
We define a setting of smti-olc, which is a many-to-one variant of smti-lc. (Here, olc
stands for “one-sided laminar constraints”). In smti-olc, each worker is assigned at most
one contract and hence has no laminar constraints. An instance of smti-olc is described
as I = (W, F, E, {Pw}w∈W , {Lf , qf , Pf}f∈F ). To consider strategies of workers, we slightly
change the assumption on each Pw. In Section 2, it is assumed that Pw contains all contracts
in Ew. Here, we allow each worker to submit a preference list Pw that is defined on any
subset of Ew and regard contracts not appearing in Pw as unacceptable for w. Let E◦ be
the set of acceptable contracts, that is, E◦ = { e ∈ E | e appears in Pw, where w = ∂W (e) }.

A set M ⊆ E is called a matching if M ⊆ E◦, |Mw| ≤ 1 for every worker w ∈ W , and
M is feasible for every firm f ∈ F . For a matching M , a contract e ∈ E \M blocks M if
it is free for both ∂W (e) and ∂F (e), where we say that e is free for the associated worker
w := ∂W (e) if e ∈ E◦ and either w is assigned no contract in M or prefers e to the contract
assigned in M . A matching M is stable if there is no contract that blocks M . The auxiliary
instance I∗ = (W, F, E∗, {P ∗

w}w∈W , {L∗
f , q∗

f , P ∗
f }f∈F ) of I is defined similarly as in Section 3.

We remark that smti-olc can be seen as a special case of smti-lc, although the
assumption on workers’ preference lists is slightly different from that of smti-lc. From
an smti-olc instance I, define I◦ = (W, F, E◦, {L◦

a, q◦
a, P ◦

a }a∈W ∪F ) as follows. For each
worker w ∈ W , set L◦

w = {E◦
w}, q◦

w(E◦
w) = 1, and P ◦

w = Pw. For each firm f ∈ F , set
L◦

f = {L ∩ E◦ | L ∈ Lf }, q◦
f (L∩E◦) = qf (L) for each L ∈ Lf , and let P ◦

f be the restriction
of Pf on E◦

f (i.e., delete the elements in Ef \E◦
f from Pf ). Then, I◦ is an instance of smti-lc

in Section 2. By definition, we can observe that a subset M ⊆ E is a stable matching of I if
and only if it is a stable matching of I◦. Therefore, we can apply Algorithm 1 to smti-olc
instances.

For subsets M, N ⊆ E, a worker w ∈W , and a preference list Pw, we say that w weakly
prefers M to N with respect to Pw if either (i) w is assigned a contract appearing in Pw only
in M or (ii) w is assigned a contract appearing in Pw in both M and N and does not strictly
prefer the one assigned in N with respect to Pw. A stable matching M of an smti-olc
instance I is worker-optimal if, for any other stable matching N of I, every worker w weakly
prefers M to N .

A mechanism is a mapping from smti-olc instances to matchings. Here, we define the
worker-strategy-proofness of a mechanism. Let A be a mechanism. For any instance I and
any worker w, let I ′ be an instance obtained from I by replacing w’s list Pw with some other
list P ′

w. Let M and M ′ be the outputs of A for instances I and I ′, respectively. We say that
A is worker-strategy-proof if w weakly prefers M to M ′ with respect to the original list Pw

regardless of the choices of I, w, and P ′
w.

7.2 Approximation Mechanisms
Before providing our results on smti-olc, we introduce some existing results on special cases
of smti-olc. We first present a result on the setting without ties.

▶ Lemma 13. In a restriction of smti-olc in which all agents have strict preferences, a
mechanism that returns the worker-optimal stable matching is worker-strategy-proof.

Lemma 13 is a natural consequence of the results shown in previous works [17, 33]. For the
completeness, the full version [45] provides the proof, which uses the fact that smti-olc can
be reduced to the model of Hatfield and Milgrom [20] if there are no ties.

Next, we introduce the results of Hamada et al. [19] on max-smti, which is a special case
of max-smti-olc in which every agent is assigned at most one contract.
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▶ Theorem 14 (Hamada et al. [19, Theorem 2]). For max-smti, there is a worker-strategy-
proof mechanism that returns a 2-approximate solution. On the other hand, for any ϵ > 0,
there is no worker-strategy-proof mechanism that returns a (2− ϵ)-approximate solution.

▶ Theorem 15 (Hamada et al. [19, Theorem 4]). For a restriction of max-smti in which
ties appear in only workers’ preference lists, there is a worker-strategy-proof mechanism
that returns a 3

2 -approximate solution. On the other hand, for any ϵ > 0, there is no
worker-strategy-proof mechanism that returns a ( 3

2 − ϵ)-approximate solution.

The first statement of Theorem 14 is attained by a naive mechanism that first breaks ties
in an increasing order of the indices and then finds the worker-optimal stable matching of
the resultant instance. This method naturally extends to the setting of smti-olc and yields
the following theorem. See the full version [45] for the proof.

▶ Theorem 16. For smti-olc, there is a worker-strategy-proof mechanism that returns a
stable matching M with |M | ≥ 1

2 |MOPT| in O(k · |E|2) time, where MOPT is a maximum-
cardinality stable matching and k is the maximum level of nesting of Lf (f ∈ F ).

Since smti-olc is a generalization of smti, the second statement (i.e., the hardness part)
of Theorem 14 immediately extends to max-smti-olc. Therefore, for the general smti-olc,
there is no worker-strategy-proof mechanism with an approximation ratio better than 2.

However, in a special case in which firms’ lists contain no ties, Algorithm 1 in Section 3
defines a worker-strategy-proof mechanism whose approximation ratio is 3

2 . That is, we
can extend the first statement of Theorem 15 to the setting of smti-olc. According to
the second statement of Theorem 15, this is the best approximation ratio attained by a
worker-strategy-proof mechanism.

▶ Theorem 17. For a restriction of smti-olc in which ties appear in only workers’ lists, there
is a worker-strategy-proof mechanism that returns a stable matching M with |M | ≥ 2

3 |MOPT|
in O(k · |E|2) time, where MOPT is a maximum-cardinality stable matching and k is the
maximum level of nesting of laminar families Lf (f ∈ F ).

We provide a mechanism that meets the requirements in Theorem 17. Our mechanism
is regarded as a possible realization of Algorithm 1. In the second step of Algorithm 1,
we should choose the worker-optimal stable matching of the auxiliary instance I∗. Our
mechanism is described as follows.

1. Given an instance I (in which ties appear in only workers’ lists), construct I∗.
2. Find the worker-optimal stable matching M∗ of I∗.
3. Let M = π(M∗) and return M .

In the proof of Theorem 10 (Fleiner [12, p.113]), it is shown that one can find the M1-optimal
M1M2-kernel in O(|E| · EO) time. The arguments in Section 6 then imply that one can
find the worker-optimal stable matching of I∗ in O(k · |E|2) time. As we have Theorem 2,
showing the strategy-proofness of the above-mentioned mechanism completes the proof of
Theorem 17. To this end, we show the following lemma.

▶ Lemma 18. Let I be an smti-olc instance with E = { ei | i = 1, 2, . . . , n } and let I∗ be
the auxiliary instance. If ties appear in only workers’ lists in I, then the worker-optimal
stable matching M∗ of I∗ satisfies M∗ ∩ { zi | i = 1, 2, . . . , n } = ∅.
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Proof. Suppose, to the contrary, that zi ∈M∗ for some index i. Then N := M∗ − zi + yi is
a matching of I∗ and w := ∂W (zi) = ∂W (yi) prefers N to M∗. We intend to show that N is
stable in I∗. Take any e ∈ E∗ \N = (E∗ \M∗) + zi − yi. If e = zi, then it does not block N

because yi ≻∗
w zi. If e ̸= zi, then the assignment of ∂W (e) does not change in M∗ and N ,

and hence e can block N only if f := ∂F (e) = ∂F (zi) and zi ≻∗
f e ≻∗

f yi. This is impossible
because no contract lies between zi and yi in P ∗

f as the list Pf of the firm f is strict. Thus,
N is a stable matching of I∗, which contradicts the worker-optimality of M∗. ◀

Proof of Theorem 17. As we have Theorem 2, what is left is to show that our mechanism
is worker-strategy-proof. Let I = (W, F, E, {Pw}w∈W , {Lf , qf , Pf}f∈F ) be an instance of the
setting in the statement and let E = { ei | i = 1, 2, . . . , n }. Furthermore, let I ′ be obtained
from I by replacing Pw with some other list P ′

w. Let M∗ and N∗ be the worker-optimal
stable matchings of the auxiliary instances defined from I and I ′, respectively. Note that the
two auxiliary instances have no ties and they differ only in the preference list of w. Then,
Lemma 13 implies that w weakly prefers M∗ to N∗ with respect to P ∗

w. In other words, either
(i) w is assigned a contract on P ∗

w only in M∗, or (ii) w is assigned a contract on P ∗
w in both

M∗ and N∗ and does not strictly prefer the one assigned in N∗ w.r.t. P ∗
w. By Lemma 18, w

is not assigned a contract of type zi in M∗ or N∗. Then, the definition of P ∗
w implies that w

weakly prefers π(M∗) to π(N∗) w.r.t. Pw. Thus the mechanism is worker-strategy-proof. ◀

References
1 A. Abdulkadiroğlu, P. A. Pathak, and A. E. Roth. The New York city high school match.

American Economic Review, 95:364–367, 2005.
2 A. Abdulkadiroğlu, P. A. Pathak, and A. E. Roth. Strategy-proofness versus efficiency in

matching with indifferences: Redesigning the NYC high school match. American Economic
Review, 99(5):1954–1978, 2009.

3 A. Abdulkadiroğlu, P. A. Pathak, A. E. Roth, and T. Sönmez. The Boston public school
match. American Economic Review, 95:368–371, 2005.

4 P. Biró, T. Fleiner, R. W. Irving, and D. F. Manlove. The college admissions problem with
lower and common quotas. Theoretical Computer Science, 411(34):3136–3153, 2010.

5 J. E. Bonin and T. J. Savitsky. An infinite family of excluded minors for strong base-orderability.
Linear Algebra and its Applications, 488:396–429, 2016.

6 S. Braun, N. Dwenger, D. Kübler, and A. Westkamp. Implementing quotas in university
admissions: An experimental analysis. Games and Economic Behavior, 85:232–251, 2014.

7 R. A. Brualdi. Induced matroids. Proceedings of the American Mathematical Society, 29(2):213–
221, 1971.

8 F. Cooper and D. Manlove. A 3/2-approximation algorithm for the student-project allocation
problem. In Proc. 17th International Symposium on Experimental Algorithms (SEA 2018),
volume 103, pages 8:1–8:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

9 L. Ehlers, I. E. Hafalir, M. B. Yenmez, and M. A. Yildirim. School choice with controlled
choice constraints: Hard bounds versus soft bounds. Journal of Economic Theory, 153:648–683,
2014.

10 T. Fife and J. Oxley. Laminar matroids. European Journal of Combinatorics, 62:206–216,
2017.

11 L. Finkelstein. Two algorithms for the matroid secretary problem. Master’s thesis, Technion-
Israel Institute of Technology, Faculty of Industrial and Management Engineering, 2011.

12 T. Fleiner. A matroid generalization of the stable matching polytope. In Proc. Eighth
International Conference on Integer Programming and Combinatorial Optimization (IPCO
2001), volume 2081 of LNCS, pages 105–114. Springer-Verlag, Berlin & Heidelberg, 2001.

13 T. Fleiner. A fixed-point approach to stable matchings and some applications. Mathematics
of Operations Research, 28(1):103–126, 2003.



Y. Yokoi 71:15

14 T. Fleiner and N. Kamiyama. A matroid approach to stable matchings with lower quotas.
Mathematics of Operations Research, 41(2):734–744, 2016.

15 D. Fragiadakis and P. Troyan. Improving matching under hard distributional constraints.
Theoretical Economics, 12(2):863–908, 2017.

16 D. Gale and L. S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

17 M. Goto, A. Iwasaki, Y. Kawasaki, R. Kurata, Y. Yasuda, and M. Yokoo. Strategyproof
matching with regional minimum and maximum quotas. Artificial Intelligence, 235:40–57,
2016.

18 D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT
Press, Cambridge, MA, 1989.

19 K. Hamada, S. Miyazaki, and H Yanagisawa. Strategy-proof approximation algorithms for the
stable marriage problem with ties and incomplete lists. In Proc. 30th International Symposium
on Algorithms and Computation (ISAAC 2019), volume 149 of LIPIcs, pages 9:1–9:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

20 J. W. Hatfield and P. R. Milgrom. Matching with contracts. American Economic Review,
95(4):913–935, 2005.

21 C. C. Huang. Classified stable matching. In Proc. 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA2010), pages 1235–1253. SIAM, Philadelphia, 2010.

22 A. W. Ingleton. Transversal matroids and related structures. In Higher Combinatorics (M.
Aigner eds.), pages 117–131. Reidel, Dordrecht, 1977.

23 R. W. Irving. Stable marriage and indifference. Discrete Applied Mathematics, 48(3):261–272,
1994.

24 K. Iwama, D. F. Manlove, S. Miyazaki, and Y. Morita. Stable marriage with incomplete lists
and ties. In Proc. 26th International Colloquium on Automata, Languages, and Programming
(ICALP1999), pages 443–452. Springer, 1999.

25 K. Iwama, S. Miyazaki, and N. Yamauchi. A 1.875-approximation algorithm for the stable
marriage problem. In Proc. 18th annual ACM-SIAM symposium on Discrete algorithms
(SODA2007), pages 288–297. SIAM, Philadelphia, 2007.

26 K. Iwama, S. Miyazaki, and N. Yamauchi. A (2 − c 1√
n

)-approximation algorithm for the stable
marriage problem. Algorithmica, 51(3):342–356, 2008.

27 Y. Kamada and F. Kojima. Efficient matching under distributional constraints: Theory and
applications. American Economic Review, 105(1):67–99, 2015.

28 Y. Kamada and F. Kojima. Stability concepts in matching under distributional constraints.
Journal of Economic Theory, 168:107–142, 2017.

29 Y. Kamada and F. Kojima. Stability and strategy-proofness for matching with constraints: A
necessary and sufficient condition. Theoretical Economics, 13(2):761–793, 2018.

30 Z. Király. Better and simpler approximation algorithms for the stable marriage problem.
Algorithmica, 60(1):3–20, 2011.

31 Z. Király. Linear time local approximation algorithm for maximum stable marriage. Algorithms,
6(3):471–484, 2013.

32 D. E. Knuth. Stable Marriage and Its Relation to Other Combinatorial Problems. American
Mathematical Society, Providence, 1996.

33 F. Kojima, A. Tamura, and M. Yokoo. Designing matching mechanisms under constraints:
An approach from discrete convex analysis. Journal of Economic Theory, 176:803–833, 2018.

34 D. F. Manlove. Algorithmics of Matching under Preferences. World Scientific Publishing,
Singapore, 2013.

35 D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants of stable
marriage. Theoretical Computer Science, 276(1-2):261–279, 2002.

36 E. Mcdermid. A 3/2-approximation algorithm for general stable marriage. In Proc. 36th
International Colloquium on Automata, Languages, and Programming (ICALP2009), pages
689–700. Springer, 2009.

ISAAC 2021



71:16 Maximum Stable Matching with Ties and Constraints

37 J. G. Oxley. Matroid Theory (2nd ed.). Oxford University Press, Oxford, 2011.
38 K. Paluch. Faster and simpler approximation of stable matchings. Algorithms, 7(2):189–202,

2014.
39 A. E. Roth. The evolution of the labor market for medical interns and residents: A case study

in game theory. The Journal of Political Economy, 92(6):991–1016, 1984.
40 A. E. Roth. On the allocation of residents to rural hospitals: A general property of two-sided

matching markets. Econometrica, 54(2):425–427, 1986.
41 A. E. Roth and E. Peranson. The redesign of the matching market for american physicians:

Some engineering aspects of economic design. American economic review, 89(4):748–780, 1999.
42 A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer-Verlag, Heidel-

berg, 2003.
43 H. Yanagisawa. Approximation algorithms for stable marriage problems. Ph.D. Thesis, Kyoto

University, 2007.
44 Y. Yokoi. A generalized polymatroid approach to stable matchings with lower quotas. Math-

ematics of Operations Research, 42(1):238–255, 2017.
45 Y. Yokoi. An approximation algorithm for maximum stable matching with ties and constraints.

arXiv preprint, 2021. arXiv:2107.03076.

http://arxiv.org/abs/2107.03076


A Faster Algorithm for Maximum Flow in Directed
Planar Graphs with Vertex Capacities
Julian Enoch #

Department of Computer Science, University of Texas at Dallas, TX, USA

Kyle Fox #

Department of Computer Science, University of Texas at Dallas, TX, USA

Dor Mesica #

Efi Arazi School of Computer Science, The Interdisciplinary Center Herzliya, Israel

Shay Mozes #

Efi Arazi School of Computer Science, The Interdisciplinary Center Herzliya, Israel

Abstract
We give an O(k3∆n log n min(k, log2 n) log2(nC))-time algorithm for computing maximum integer
flows in planar graphs with integer arc and vertex capacities bounded by C, and k sources and sinks.
This improves by a factor of max(k2, k log2 n) over the fastest algorithm previously known for this
problem [Wang, SODA 2019].

The speedup is obtained by two independent ideas. First we replace an iterative procedure of
Wang that uses O(k) invocations of an O(k3n log3 n)-time algorithm for maximum flow algorithm
in a planar graph with k apices [Borradaile et al., FOCS 2012, SICOMP 2017], by an alternative
procedure that only makes one invocation of the algorithm of Borradaile et al. Second, we show
two alternatives for computing flows in the k-apex graphs that arise in our modification of Wang’s
procedure faster than the algorithm of Borradaile et al. In doing so, we introduce and analyze a
sequential implementation of the parallel highest-distance push-relabel algorithm of Goldberg and
Tarjan [JACM 1988].
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1 Introduction

The maximum flow problem has been extensively studied in many different settings and
variations. This work concerns two related variants of the maximum flow problem in planar
graphs. The first variant is the problem of computing a maximum flow in a directed planar
network with integer arc and vertex capacities, and k sources and sinks. The second variant,
which is used in algorithms for the first variant, is the problem of computing a maximum
flow in a directed network that is nearly planar; there is a set of k vertices, called apices,
whose removal turns the graph planar.

The problem of maximum flow in a planar graph with vertex capacities has been studied
in several works since the 1990s [9, 14, 7, 2, 13]. For a more detailed survey of the history of
this problem and other relevant results see [13] and references therein. Vertex capacities pose
a challenge in planar graphs because the standard reduction from a flow network with vertex
capacities to a flow network with only arc capacities does not preserve planarity. The problem
can be solved by algorithms for maximum flow in sparse graphs (i.e., graphs with n vertices
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and O(n) edges that are not necessarily planar). The fastest such algorithms currently known
are an O(n2/ log n)-time algorithm [11] for sparse graphs, and an O(n4/3+o(1)C1/3)-time
algorithm for sparse graphs with integer capacities bounded by C [8]. Until recently, there
was no planarity exploiting algorithm for the case of more than a single source and a single
sink. Significant progress on this problem was recently made by Wang [13]. Wang developed
an O(k5∆n log3 n log2(nC))-time algorithm, where k is the number of sources and sinks,
∆ is the maximum vertex degree, and C is the largest capacity of a single vertex.1 This
is faster than using the two algorithms for general sparse graphs mentioned above when
k = Õ(n1/5/(∆ log2 C) + (nC)1/15/∆).

Wang’s algorithm uses multiple calls to an algorithm of Borradaile et al. [2] for computing
a maximum flow in a k-apex graph with only arc capacities. The algorithm of Borradaile
et al. [2] is based on an approach originally suggested by Hochstein and Weihe [6] for a
slightly more restricted problem. In Borradaile et al.’s approach, a maximum flow in a k-apex
graph with n vertices is computed by simulating the Push-Relabel algorithm of Goldberg and
Tarjan [4] on a complete graph with k vertices, corresponding to the k apices of the input
graph. Whenever the Push-Relabel algorithm pushes flow on an arc of the complete graph,
the push operation is simulated by sending flow between the two corresponding apices in the
input k-apex graph. This can be done efficiently using an O(n log3 n) time multiple-source
multiple-sink (MSMS) maximum flow algorithm in planar graphs, which is the main result of
the paper of Borradaile et al. [2]. Overall, their algorithm for maximum flow in k-apex graphs
takes O(k3n log3 n) time. Flow in k-apex graphs can also be computed using the algorithms
for sparse graphs mentioned above. The O(k3n log3 n)-time algorithm of Borradaile et al. is
faster than these algorithms when k = Õ(n1/3/ log2 C + (nC)1/9).

1.1 Our results and techniques
We improve the running time of Wang’s algorithm to O(k3∆n log n min(k, log2 n) log2(nC)).
This is faster than Wang’s result by a factor of max(k2, k log2 n), extending the range of
values of k for which the planarity exploiting algorithm is the fastest known algorithm for
the problem to k = Õ(n1/3/(∆ log2 C) + (nC)1/9/∆). The improvement is achieved by two
main ideas. At the heart of Wang’s algorithm is an iterative procedure for eliminating excess
flow from vertices violating the capacity constraints. Each iteration consists of computing a
circulation with some desired properties. Wang computes this circulation using O(k) calls
to the algorithm of Borradaile et al. for maximum flow in k-apex graphs. We show how to
compute this circulation using a constant number of invocations of the algorithm for k-apex
graphs. This idea alone improves on Wang’s algorithm by a factor of k.

To further improve the running time, we modify the algorithm of Borradaile et al. for
maximum flow in k-apex graphs [2]. The algorithm of Borradaile et al. uses the Push-Relabel
algorithm of Goldberg and Tarjan [4]. We introduce a sequential implementation of the
parallel highest-distance Push-Relabel algorithm. In this algorithm, which we call batch-
highest-distance, a single operation, Bulk-Push, pushes flow on multiple arcs simultaneously,
instead of just on a single arc as in Goldberg and Tarjan’s Push operation. More specifically,
we simultaneously push flow on all admissible arcs whose tails have maximum height (see
Section 3). This is reminiscent of parallel and distributed Push-Relabel algorithms [4, 3],

1 In a very recent personal communication, Wang informed the authors of a subtle bug in the published
version [13] of his result that led to the ∆ factor not appearing in the claimed running time. The full
version of Wang’s paper (which has not been published yet) fixes the bug, and we refer to his corrected
claims throughout the current work.
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but our algorithm is sequential, not parallel. We prove that the total number of Bulk-Push
operations performed by the batch-highest-distance algorithm is O(k2) (this should be
compared to O(k3) Push operations for the FIFO or highest-distance Push-Relabel algorithms).
We then show that, in the case of the k-apex graphs that show up in Wang’s algorithm,
we can implement each Bulk-Push operation using a constant number of invocations of the
O(n log3 n)-time MSMS maximum flow algorithm for planar graphs [2]. Hence, we can find
a maximum flow in such k-apex graphs in O(k2n log3 n) time, which is faster by a factor of
k than the time required by the algorithm of Borradaile et al.

We also give another way to modify the algorithm of Borradaile et al. for maximum
flow in k-apex graphs; the second way is better when k = o(log2 n). We observe that the
structure of the k-apex graphs that arise in Wang’s algorithm allows us to implement each
of the O(k3) Push operations of the FIFO Push-Relabel algorithm used by Borradaile et al.
in just O(n log n) time. This is done using a procedure due to Miller and Naor [10] for the
case when all sources and sinks lie on a single face.

Roadmap. In Section 2 we provide preliminary background and notations. Section 3 de-
scribes the sequential implementation of the parallel highest-distance Push-Relabel algorithm,
and its use in an algorithm for finding maximum flow in k-apex graphs. In Section 4 we
describe how to use this Push-Relabel variant to obtain an improved algorithm for computing
maximum flow in planar graphs with vertex capacities.

2 Preliminaries

All the graphs we consider in this paper are directed. For a graph G we use V (G) and E(G)
to denote the vertex set and arc set of G, respectively. For any vertex v ∈ V (G), let deg(v)
denote the degree of v in G.

For a path P we denote by P [u, v] the subpath of P that starts at u and ends at v. We
denote by P ◦Q the concatenation of two paths P, Q such that the first vertex of Q is the
last vertex of P .

A flow network is a directed graph G with a capacity function c : V (G) ∪E(G)→ [0,∞)
on the vertices and arcs of G, along with two disjoint sets S, T ⊂ V (G) called sources and
sinks, respectively. We assume without loss of generality that sources and sinks have infinite
capacities, and that, for any arc e = (u, v) ∈ E(G), the reverse arc (v, u), denoted rev(e) is
also in E(G), and has capacity c(rev(e)) = 0.

Let ρ : E(G) → [0,∞). To avoid clutter we write ρ(u, v) instead on ρ((u, v)). For
each vertex v let ρin(v) =

∑
(u,v)∈E(G) ρ(u, v), and ρout(v) =

∑
(v,u)∈E(G) ρ(v, u). The

function ρ is called a preflow if it satisfies the following conservation constraint: for all
v ∈ V (G) \ (S), ρin(v) ≥ ρout(v). The excess of a vertex v with respect to a preflow ρ is
defined by ex(ρ, v) = ρin(v)−ρout(v). A preflow is feasible on an arc e ∈ E(G) if ρ(e) ≤ c(e).
It is feasible on a vertex v ∈ V (G) if ρin(v) ≤ c(v). A preflow is said to be feasible if, in
addition to the conservation constraint, it is feasible on all arcs and vertices. The value of a
preflow ρ is defined as |ρ| =

∑
s∈S ρout(s)− ρin(s). A preflow f satisfying ex(f, v) = 0 for

all v ∈ V (G) \ (S ∪ T ), is called a flow. A flow whose value is 0 is called a circulation. A
maximum flow is a feasible flow whose value is maximum.

▶ Remark 1. The problem of finding a maximum flow in a flow network with multiple sources
and sinks can be reduced to the single-source, single-sink case by adding a super source s and
super sink t, and infinite-capacity arcs (s, si) and (ti, t) for every si ∈ S and ti ∈ T . If the
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original network is planar then this transformation adds two apices to the graph. Throughout
the paper, whenever we refer to the graph G, we mean the graph G after this transformation,
i.e., with a single source, the apex s, and a single sink, the apex t.

The violation of a flow f at a vertex v is defined by vio(f, v) = max{0, f in(v) − c(v)}.
Thus, if f is a feasible flow then vio(f, v) = 0 for all vertices v. The violation of the flow f is
defined to be vio(f) = maxv∈V (G) vio(f, v).2

A preflow ρ is acyclic if there is no cycle C such that ρ(e) > 0 for every arc e ∈ C. A
preflow saturates an arc e if ρ(e) = c(e).

The sum of two preflows ρ and η is defined as follows. For every arc e ∈ E(G), (ρ+η)(e) =
max{0, ρ(e) + η(e)− ρ(rev(e))− η(rev(e))}. Multiplying the preflow ρ by some constant c to
get the flow cρ is defined as (cρ)(e) = c · ρ(e) for all e ∈ E(G).

The residual capacity cρ(e) of an arc e with respect to a preflow ρ is c(e)−ρ(e)+ρ(rev(e)).
The residual graph of a flow network G with respect to a preflow ρ is the graph G where the
capacity of every arc e ∈ E(G) is set to cρ(e). It is denoted by Gρ. A path of G is called
augmenting or residual (with respect to a preflow ρ) if it is also a path of Gρ.

Suppose G and H are flow networks such that every arc in G is also an arc in H . If f ′ is a
(pre)flow in H then the restriction of f ′ to G is the (pre)flow f in G defined by f(e) = f ′(e)
for all e ∈ E(G).

3 An algorithm for maximum flow in k-apex graphs

In this section we introduce a sequential implementation of the parallel highest-distance
Push-Relabel algorithm of Goldberg and Tarjan [4], and use it in the algorithm of Borradaile
et al. [2] for maximum flow in k-apex graphs. We first give a high-level description of the
Push-Relabel algorithm.

3.1 The Push-Relabel algorithm [4]
Let H be a flow network (not necessarily planar) with source s and sink t, arc capacities
c : E(H) → R, and no finite vertex capacities. The Push-Relabel algorithm maintains a
feasible preflow function, ρ, on the arcs of H . A vertex u is called active if ex(ρ, u) > 0. The
algorithm starts with a preflow that is zero on all arcs, except for the arcs leaving the source
s, which are saturated. Thus, all the neighbors of s are initially active. When the algorithm
terminates, no vertex is active and the preflow function is guaranteed to be a maximum flow.
The algorithm also maintains a label function h (also known as distance or height function)
over the vertices of H. The label function h : V (H)→ N is valid if h(s) = |V (H)|, h(t) = 0
and h(u) ≤ h(v) + 1 for every residual arc (u, v) ∈ E(Hρ).

The algorithm progresses by performing two basic operations, Push and Relabel. A
Push operation applies to an arc (u, v) if (u, v) is residual, ex(ρ, u) > 0, and h(u) =
h(v) + 1. The operation moves excess flow from u to v by increasing the flow on e by
min{ex(ρ, u), c(e)− ρ(e)}.

The other basic operation, Relabel(u), assigns u the label h(u) = min{h(v) : (u, v) ∈
E(Hρ)} + 1 and applies to u only if u is active and h(u) is not greater than the label of
any neighbor of u in Hρ. In other words, Relabel applies to an active vertex u only if the
excess flow in u cannot be pushed out of u (because h(u) is not high enough). The algorithm
performs applicable Push and Relabel operations until no vertex is active.

2 We define violations only with respect to flows (rather than preflows) because we will only discuss
preflows in the context of flow networks without finite vertex capacities.
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To fit our purposes, we think of the algorithm as one that only maintains explicitly
the excess ex(ρ, v) and residual capacity cρ(e) of each vertex v and arc e of H. The
preflow ρ is implicit. In this view, a Push(u, v) operation decreases ex(ρ, u) and cρ(u, v) by
min{ex(ρ, u), cρ(u, v)} and increases ex(ρ, v) and cρ(v, u) by the same amount.

We reformulate Goldberg and Tarjan’s correctness proof of the generic Push-Relabel
algorithm to fit this view.

▶ Lemma 2 ([4]). Any algorithm that performs applicable Push and Relabel operations in
any order satisfies the following properties and invariants:
(1) ex(ρ, ·) and cρ(·) are non-negative.3
(2) The function h is a valid labeling function.
(3) For all v ∈ V , the value of h(v) never decreases, and strictly increases when Relabel(v)

is called.
(4) h(v) ≤ 2|V (H)| − 1 for all v ∈ V (H).
(5) Immediately after Push(u, v) is performed, either (u, v) is saturated or u is inactive.

Proof. Properties (1) and (5) are immediate from the definition of Push and the fact that
excess and residual capacities only change during Push operations. Property (2) corresponds
to Lemma 3.1 in [4], Property (3) is proved in Lemma 3.6 in [4], and Property (4) in
Lemma 3.7 in [4]. ◀

▶ Lemma 3 ([4, Lemma 3.3]). Properties (1), (2) imply that there is no augmenting path
from s to t at any point of the algorithm.

▶ Lemma 4 ([4, Lemma 3.8]). Properties (3), (4) imply that the number of Relabel operations
is at most 2|V (H)| − 1 per vertex and at most 2|V (H)|2 overall.

▶ Lemma 5 ([4, Lemmas 3.9, 3.10]). Properties (1)-(5) imply that the number of Push
operations is O(|V (H)|2|E(H)|).

By Lemmas 4 and 5, the algorithm terminates. Upon termination no vertex is active, so
the implicit preflow ρ is in fact a feasible flow. By Lemma 3 ρ is a maximum flow from s to t.

Variants of the Push-Relabel algorithm differ in the order in which applicable Push and
Relabel operations are applied. Some variants, such as FIFO, highest-distance, maximal-
excess, etc., guarantee faster termination than the O(|V (H)|2|E(H)|) guarantee given above.

3.2 A sequential implementation of the parallel highest-distance
Push-Relabel algorithm

We present a sequential implementation of the parallel highest-distance Push-Relabel al-
gorithm, which we call Batch-Highest-Distance. This algorithm attempts to push flow on
multiple edges simultaneously in an operation called Bulk-Push. In that sense, it resembles
the parallel version of the highest-distance Push-Relabel algorithm. It is important to note,
however, that Bulk-Push is a sequential operation and not a parallel/distributed one.

We define Bulk-Push, a batched version of the Push operation. Bulk-Push(U, W ) operates
on two sets of vertices, U and W . It is applicable under the following requirements:

(i) ex(u) > 0 for all u ∈ U .
(ii) There exists an integer h such that h(u) = h and h(w) = h − 1 for all u ∈ U and

w ∈W .
(iii) There is a residual arc (u, w) for some u ∈ U and w ∈W .

3 This corresponds to the function ρ being a feasible preflow.

ISAAC 2021



72:6 A Faster Algorithm for Max Flow in Directed Planar Graphs with Vertex Capacities

Note that in a regular Push-Relabel algorithm, conditions (i) and (ii) imply that Push(u, w)
is applicable to any residual arc (u, w) with u ∈ U and w ∈W . Condition (iii) guarantees
there is at least one such arc. Bulk-Push pushes as much excess flow as possible from vertices
in U to vertices in W so that after Bulk-Push the following property holds:

(5*) Immediately after Bulk-Push(U, W ) is called, for all u ∈ U and w ∈W , either (u, w) is
saturated or u is inactive.

We replace property (5) with the more general property (5*) in Lemma 2 and Lemma 5.
With this modification, Lemmas 2, 3, 4 and 5 apply to our sequential implementation. The
proofs from [4] need no change except replacing Push with Bulk-Push. Hence, our variant
terminates correctly with a maximum flow from s to t.
▶ Remark. One may think of Bulk-Push(U, W ) as performing in parallel all Push operations
on arcs whose tail is in U and whose head is in W . However, not every maximum flow
with sources U and sinks W can be achieved as the sum of flows pushed by multiple Push
operations. For example, consider the case where U consists of a single vertex u, with
ex(u) = 2, W = {w1, w2}, and the residual capacities of (u, w1) and (u, w2) are both 2.
Bulk-Push(U, W ) may push one unit of excess flow from u on each of (u, w1) and (u, w2), but
Push(u, wi) would push 2 units of flow on (u, wi), and no flow on the other arc. Therefore, the
correctness of this variant cannot be argued just by simulating Bulk-Push by multiple Push
operations. Instead we chose to argue correctness by stating the generalized property (5*).

We now discuss a concrete policy for choosing which Bulk-Push and Relabel operations
to perform in the above algorithm. This policy is similar, but not identical, to the highest-
distance Push-Relabel algorithm [4, 3]. As long as there is an active vertex, the algorithm
repeatedly executes the following two steps, which together are called a pulse. Let hmax

be the maximum label of an active vertex. That is, hmax = max{h(v) : ex(ρ, v) > 0}. Let
Hmax be the set of all the active vertices whose height is hmax. In the first step of the pulse,
the algorithm invokes Bulk-Push(Hmax, W ) where W is the set of all vertices w ∈ V such
that h(w) = hmax − 1.4 In the second step of the pulse, the algorithm applies the Relabel
operation to all remaining active vertices in Hmax in arbitrary order.

Algorithm 1 Batch-Highest-Distance(G, c).

1: Initialize h(·), cρ(·) and ex(·)
2: while there exists an active vertex do
3: hmax ← max{h(v) : ex(ρ, v) > 0}
4: Hmax ← {v ∈ V (H) : ex(ρ, v) > 0, h(v) = hmax}
5: W ← {w ∈ V (H) : h(w) = hmax − 1}
6: Bulk-Push(Hmax, W )
7: Relabel all active vertices in Hmax in arbitrary order
8: end while

▶ Remark. The crucial difference between this policy and the highest-distance Push-Relabel
algorithm [4, 3] is that in the highest-distance algorithm a vertex u with height hmax is
relabeled as soon as no more Push operations can be applied to u. In contrast, our variant
first pushes flow from all vertices with height hmax and only then relabels all of them.

4 Formally it may be that Bulk-Push(Hmax, W ) is not applicable because condition (iii) is not satisfied,
e.g., when W = ∅. In such cases Bulk-Push does not push any flow. Condition (iii) is essential for
the termination of the generic generalized algorithm, which may repeat such empty calls to Bulk-Push
indefinitely. However, we prove in Lemma 6 that in our specific policy there are O(|V (H)|2) pulses,
regardless of the flow pushed (or not pushed) by Bulk-Push in each pulse.
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We partition the pulses into two types according to whether any vertices are relabeled
in the relabel step of the pulse. A pulse in which at least one vertex is relabeled is called
saturating. All other pulses are called non-saturating.5

By Lemma 4, the total number of Relabel operations executed by the batch-highest-
distance algorithm is O(|V (H)|2). We now prove the same bound for Bulk-Push operations.

▶ Lemma 6. The number of pulses (and hence also the number of calls to Bulk-Push) executed
by the batch-highest-distance algorithm is O(|V (H)|2).

Proof. Note that the Relabel step of a saturating pulse consists of at least one call to Relabel
which strictly increases the height of an active vertex v whose height (before the increase)
was hmax. Hence, a saturating pulse strictly increases the value of hmax. The fact that
the height of each vertex never decreases and is bound by 2|V (H)| implies that (i) there
are O(|V (H)|2) saturating pulses, and (ii) the total increase in hmax over all saturating
Bulk-Push operations is O(|V (H)|2).

As for non-saturating pulses, note that since excess flow is always pushed to a vertex with
lower height, the push step of a pulse does not create excess in any vertex with height greater
than or equal to hmax, so all vertices with height greater than hmax remain inactive during
the pulse. By property (5*), for every u ∈ Hmax and w ∈W , either (u, w) is saturated, or u

is inactive. Since the pulse is non-saturating, it follows that all the vertices in Hmax become
inactive during the pulse. Hence, the value of hmax strictly decreases during a non-saturating
pulse. Since hmax ≥ 0, the total decrease in hmax is also O(|V (H)|2), so there are O(|V (H)|2)
non-saturating pulses. ◀

Note that we do not claim that implementing the Bulk-Push operation by applying
applicable Push(u, w) operations for u ∈ U , w ∈ W until no more such operations can be
applied would result in fewer Push operations than the O(|V (H)|2|E(H)|) bound of Lemma 5
for the generic Push-Relabel algorithm. However, in Section 4 we will show a situation
where each call to Bulk-Push can be efficiently implemented using a single invocation of a
multiple-source multiple-sink algorithm in a planar graph.

3.3 The algorithm of Borradaile et al. for k-apex graphs [2]
The algorithm of Borradaile et al. [2, Section 5] uses the framework of Hochstein and Weihe [6].
Let H be a graph with a set V × of k apices. Denote V0 = V (H) \ V ×. The goal is to
compute a maximum flow in H from a source s ∈ V (H) to a sink t ∈ V (H). We assume
that s and t are apices. This is without loss of generality since treating s and t as apices
leaves the number of apices in O(k). Let K× be a complete graph over V ×. The algorithm
computes a maximum flow ρ from s to t in H by simulating a maximum flow computation
from s to t in K× using the Push-Relabel algorithm. Whenever a Push operation is performed
on an arc (u, v) of K× it is implemented by pushing flow from u to v in the graph Huv,
induced by V0 ∪ {u, v} on the residual graph of H with respect to the flow computed so far.
Note that, because no vertex of V0 is an apex of H, Huv is a 2-apex graph with apices u, v.
Borradaile et al. use this fact to compute a maximum flow from u to v in Huv as follows.
They split u into multiple copies, each incident to a different vertex w for which (u, w) is
an arc of Huv. A similar process is then applied to v. Note that the resulting graph is
planar. A maximum flow from u to v in Huv is equivalent to a maximum flow with sources

5 This is a generalization of the notions of saturating and non-saturating Push operations in [4].

ISAAC 2021



72:8 A Faster Algorithm for Max Flow in Directed Planar Graphs with Vertex Capacities

the copies of u and sinks the copies of v in the resulting graph. This flow can be computed
by the multiple-source multiple-sink maximum flow algorithm (the main result in [2]) in
O(|V (H)| log3 |V (H)|) time.

The correctness of implementing the Push-Relabel algorithm on K× in this way was
proved by Hochstein and Weihe [6] by proving essentially that the algorithm satisfies the
properties in Lemma 2. Borradaile et al. used the FIFO policy of Push-Relabel, which
guarantees that the number of Push operations is O(k3), so the overall running time of their
algorithm is O(k3|V (H)| log3 |V (H)|).

3.4 An algorithm for maximum flow in k-apex graphs
We use the algorithm of Borradaile et al. for maximum flow in k-apex graphs from the
previous section, but use our new batch-highest-distance Push-Relabel algorithm instead
of the FIFO Push-Relabel algorithm to compute the maximum flow in K×. In order to
implement the batch-highest-distance algorithm on K× we only need to maintain the excess
ex(ρ, v) and labels h(v) of each vertex v ∈ K×, and to be able to implement Bulk-Push so
that after the execution, property (5*) is fulfilled. We do not define a flow function in K× nor
do we explicitly maintain residual capacities of arcs of K×. Instead, we maintain a preflow ρ

in H, and say an arc (u, v) of K× is residual if and only if there exists a residual path from
u to v in Hρ that is internally disjoint from the vertices of V ×. Under this definition, there
is no path of residual arcs in K× starting at s and ending at t if and only if there is no such
path in H. Since K× has O(k) vertices, by Lemma 6, the algorithm performs O(k2) pulses.

We next describe how a Bulk-Push(U, W ) operation in K× is implemented. Let A = U∪W .
Let HA be the graph obtained from Hρ by deleting the vertices V × \ A. Bulk-Push(U, W )
in K× is implemented by pushing a maximum flow in HA with sources the vertices U and
sinks the vertices W , with the additional restriction that the amount of flow leaving each
vertex u ∈ U is at most the excess of u. The efficiency of the procedure depends on how
fast we can compute the maximum flow in HA. We denote the time to execute a single
Bulk-Push operation in the graph HA by TBP . Note that TBP = Ω(k), as it takes Ω(k) time
to construct HA from Hρ.

The proof of correctness is an easy adaptation of the proof of Hochstein and Weihe [6].
We cannot use their proof without change because Hochstein and Weihe considered only Push
operations along a single arc of K× rather than the Bulk-Push operations which involves
more than a single pair of vertices of K×.

▶ Lemma 7. Maximum flow in k-apex graphs can be computed in O(k2 · TBP ) time.

Proof. We first show that the properties (1)-(4) in the statement of Lemma 2, and the
generalized property (5*) from Section 3.2 hold. Property (1) holds since Bulk-Push(U, W )
limits the amount of flow pushed from each vertex u ∈ U by the excess of u. Properties (3)
and (4) hold without change since Relabel is not changed.

To show property (5*) holds, recall that an arc (u, w) of K× is residual if there exists,
in the residual graph Hρ with respect to the current preflow ρ, a residual path from u to
w that is internally disjoint from any vertex of V ×. With this definition it is immediate
that property (5*) holds, since our implementation of Bulk-Push(U, W ) pushes a maximum
flow in HA from U that is limited by the excess flow in each vertex of U . Hence, after
Bulk-Push(U, W ) is executed, for every u ∈ U and w ∈ W , either there is no residual path
from u to w in Hρ that is internally disjoint from V ×, or u is inactive.

As for property (2), since we did not change Relabel, h remains valid after calls to Relabel.
It remains to show that h remains a valid labeling after Bulk-Push(U, W ). Consider two
vertices a, b ∈ V ×. We will show that after Bulk-Push(U, W ), either the arc (a, b) of K× is
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Figure 1 Illustration of property (2) in the proof of Lemma 7. A Bulk-Push(U, W ) operation
pushes flow along paths P and P ′ (dashed red paths). If Q (blue solid path) is residual after the
Bulk-Push operation then the dotted black paths were residual before.

saturated (i.e., is no residual path from a to b in Hρ), or h(a) ≤ h(b) + 1. The flow pushed
(in HA) by the call Bulk-Push(U, W ) can be decomposed into a set P of flow paths, each of
which starts at a vertex of U and ends at a vertex of W .

Assume that after performing Bulk-Push(U, W ) there is an augmenting a-to-b path, Q

in Hρ. If Q does not intersect any path P ∈ P then Q was residual before Bulk-Push(U, W )
was called, so h(a) ≤ h(b) + 1 because h was a valid labeling before the call. Otherwise, Q

intersects some path in P . Let c, d be the first and last vertices of Q that also belong to paths
in P. Let P, P ′ ∈ P be paths such that c ∈ P and d ∈ P ′. Let w ∈W be the last vertex of
P and let u ∈ U be the first vertex of P ′. See Figure 1. Then, before Bulk-Push(U, W ) was
called, Q[a, c] ◦ P [c, w] was a residual path from a to w, and P ′[u, d] ◦Q[d, b] was a residual
path from u to b. Since h was a valid labeling before the call, we have

h(u) ≤ h(b) + 1 and h(a) ≤ h(w) + 1.

Since h(u) = h(w) + 1 it follows that

h(a) ≤ h(w) + 1 = h(u) ≤ h(b) + 1,

showing property (2).
We have shown that properties (1)-(4) and (5*) hold. Hence, by Lemmas 6 and 4, the

algorithm terminates after performing O(|V ×|2) = O(k2) Bulk-Push and Relabel operations.
Since each Relabel takes O(k) time, and each Bulk-Push takes Ω(k) time, the total running
time of the algorithm is O(k2 · TBP ). By Lemma 3, when the algorithm terminates there is
no residual path from s to t in K×. By our definition of residual arcs of K× this implies that
there is no residual path from s to t in Hρ, so ρ is a maximum flow from s to t in H. ◀

4 A faster algorithm for maximum flow with vertex capacities

In this section, we give a faster algorithm for computing a maximum flow in a directed planar
graph with integer arc and vertex capacities bounded by C, parameterized by the number
k of terminal vertices (sources and sinks). The fastest algorithm currently known for this
problem is by Wang [13] and runs in O(k5∆n polylog(nC)) time. We first sketch Wang’s
algorithm, only detailing the parts that will be modified in our algorithm in Section 4.2.
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4.1 Wang’s algorithm
Wang’s algorithm uses some auxiliary graphs, in which only the arcs are capacitated.

▶ Definition 8 (The graph G◦). For a flow network G, the network G◦ is obtained by the
following procedure. For each vertex v ∈ V (G), replace v with an undirected cycle Cv with
d = deg(v) vertices v1, ..., vd.6 Each arc in Cv has capacity c(v)/2. Connect each arc incident
to v with a different vertex vi, preserving the clockwise order of the arcs so that the graph
remains planar.

Recall that if H and G are two graphs such that every arc of G is also an arc of H, then
the restriction of a flow f ′ in H to G is a flow f in G such that f(e) = f ′(e) for all e ∈ E(G).
Thus we can speak of the restriction of a flow f◦ in G◦, to a flow f in G.

Kaplan and Nussbaum [7] used the reduction from G to G◦ to compute a maximum flow
in directed planar graphs with vertex capacities and a single source and a single sink. Their
algorithm computes a maximum flow f◦ in the graph G◦. Let f be the restriction of f◦ to
G. Kaplan and Nussbaum then proved that, provided there is only a single source and a
single sink, the values of the maximum flow in G◦ and in G are the same and that if f is
acyclic then it is a feasible maximum flow in G.

However, when dealing with multiple source and sinks this approach fails because the
resulting flow f may violate vertex capacities in G. In fact, the value of the maximum flow
in G◦ may be greater than the value of the maximum flow in G. Wang proves that the set
X of vertices whose capacities are violated by f (after canceling flow cycles) has size at most
k − 2, and that the sum of the violations of the vertices in X is at most (k − 2)C. In order
to overcome this obstacle, Wang’s algorithm uses binary search to find the value λ⋆ of the
maximum flow in G.

Let λ be the current candidate value for λ∗. The algorithm computes a flow f◦ with value
λ in the graph G◦ (recall, G◦ has a super source s connected to all sources, and a super sink
t, connected to all sinks. Thus G◦ has an apex set of size 2). Let f be the restriction of f◦ to
G. As long as vio(f) > 2k∆, the algorithm improves f . This improvement phase, which will
be described shortly, is the crux of the algorithm. If vio(f) ≤ 2k∆, then O(k2∆) iterations
of the classical Ford-Fulkerson algorithm suffice to get rid of all the remaining violations.

The improvement phase of the algorithm is based on finding a circulation g that cancels the
violations on the infeasible vertices and does not create too much violations on other vertices.
It can then be shown that adding 1/(k∆) ·g to the flow f decreases vio(f) by a multiplicative
factor of roughly 1−1/(k∆). After O(k∆ log(kC)) iterations of the improvement step, vio(f)
is at most 2k∆.

In order to find the circulation g Wang defines the following auxiliary graph.

▶ Definition 9 (The graph G×). Let f be a flow in G. Let X be the set of infeasible vertices.
I.e., vertices x ∈ V (G) s.t. f in(x) > c(x). The graph G× is defined as follows. Starting with
G◦, for each vertex x ∈ X, replace the cycle representing x with two vertices xin, xout and
an arc (xin, xout) of capacity c(x).

Every arc of capacity c going from a vertex u /∈ Cx to a vertex in Cx becomes an arc
(u, xin) of capacity c. Similarly, every arc of capacity c going from a vertex of Cx to a vertex
u /∈ Cx becomes an arc (xout, u) with capacity c.

6 By undirected cycle we mean that there are directed arcs in both directions between every pair of
consecutive vertices of the cycle Cv.
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Since arcs of G◦ can be identified with arcs of G×, the flow f◦ can be viewed as a flow f×

in G×, setting f×(xin, xout) =
∑

(u,xi)∈E(G◦) f◦(u, xi). The flow f× can then be restricted
to a flow in G.

Wang proves that in order to find the circulation g described above, it suffices to compute
a circulation g× in G× that satisfies the following properties:
1. f× + g× is feasible in G×.
2. The restriction of f× + g× to G has no violations on vertices of X.
3. The restriction of f× + g× to G has at most (k − 2)∆ · vio(f) violation on any vertex in

V (G) \X.
The desired circulation g is the restriction of g× to G. If no such g× exists then g does
not exist, which implies that λ > λ∗. Otherwise, λ ≤ λ∗. The binary search for λ∗ then
continues with a different value of λ.

Wang essentially shows that any algorithm for finding g× in O(T ) time, where T = Ω(n),
yields an algorithm for maximum flow with vertex capacities in O(k∆T log(kC) log(nC))
time. The additional terms stem from the O(k∆ log(kC)) iterations of the improvement
step, and the log(nC) steps of the binary search. Wang shows how to compute g× in
T = O(k4n log3 n) time, by eliminating the violation at each vertex of X one after the other
in some auxiliary graph obtained from G×. Thus, the overall running time of his algorithm
is O(k5∆n log3 n log(kC) log(nC)).

4.2 A faster algorithm for computing g×

We propose a faster way of computing the circulation g× by eliminating the violations in
all the vertices of X in a single shot. Doing so correctly requires some care in defining
the appropriate capacities in the auxiliary graph, since we only know that for each x ∈ X,
g× should eliminate at least vio(f, x) units of flow from x, but the actual amount of flow
eliminated from x may have to be larger. This issue does not come up when resolving the
violations one vertex at a time as was done by Wang.

Define an auxiliary graph H as follows. Starting with G×
f× , the residual graph of G×

with respect to f×,
For each x ∈ X, set the capacity of the arc (xin, xout) to be 0 and the capacity of
(xout, xin) to be c(x).
Add a super source s′ and arcs (s′, xin) with capacity vio(f, x) for every x ∈ X.
Add a super sink t′ and arcs (xout, t′) with capacity vio(f, x) for every x ∈ X.

Note that {s, t} ∪
⋃

x∈X{xin, xout} ∪ {s′, t′} is an apex set of size O(k) in H (recall from
Remark 1 that s and t are the super source and super sink of the original graph G).

The circulation g× can be found using the following algorithm. Find a maximum flow h′

from s′ to t′ in H using Lemma 7. Convert h′ to an acyclic flow h of the same value using the
algorithm of Sleator and Tarjan [12] (cf. [13, Lemma 2.5]). If h does not saturate every arc
incident to s′ and t′, return that the desired circulation g does not exist. Otherwise, h can
be extended to the desired circulation g× by setting g×(xout, xin) = h(xout, xin) + vio(f, x)
for every x ∈ X and g×(e) = h(e) for all other arcs.

The following lemma shows that any single Bulk-Push operation in the algorithm of
Lemma 7 on H can be implemented by a constant number of calls to the O(n log3 n)-time
multiple-source multiple-sink maximum flow algorithm in planar graphs of Borradaile et
al. [2]. There are two challenges that need to be overcome. First, the graph H is O(k)-apex
graph rather than planar. Second, the algorithm of Borradaile et al. computes a maximum
flow from multiple sources to multiple sinks, not a maximum flow under the restriction that
each source sends at most some given limit. This is not a problem in the case of a single
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source, or a limit on just the total value of the flow, since then some of the flow pushed can
be “undone”. When each of the multiple sources has a different limit, undoing the flow from
one source can create residual paths from another source that did not yet reach its limit.

▶ Lemma 10. Any single Bulk-Push operation in the execution of the algorithm of Lemma 7
on the graph H defined above can be implemented in O(n log3 n) time.

Proof. Let V × = {s, t} ∪
⋃

x∈X{xin, xout} ∪ {s′, t′} be the set of apices of H. Recall that
the algorithm of Lemma 7 invokes the batch-highest-distance Push-Relabel algorithm on
a complete graph K× over V ×, and maintains a corresponding preflow in H. Consider a
single Bulk-Push(U, W ) operation from a set of apices U to a set of apices W . Let ρ denote
the preflow pushed in H up to this Bulk-Push operation. Let A = U ∪W . To correctly
implement Bulk-Push(U, W ), we find a flow ρ′ with sources U and sinks W in the graph H,
which satisfies the following properties:

(i) For every u ∈ U , ex(ρ + ρ′, u) ≥ 0, and
(ii) For every u ∈ U and w ∈ W , either ex(ρ + ρ′, u) = 0 or there is no residual path in

Hρ+ρ′ from u to w that is internally disjoint from V ×.
Condition (i) guarantees that ρ′ does not push more flow from a vertex u ∈ U than the
current excess of u. Condition (ii) is condition (5*) from Section 3.2.

Let H ′′ be the graph obtained from Hρ by deleting the vertices V × \A. Note that the
absence of residual paths that are internally disjoint from V × in H ′′ is equivalent to the
absence of such paths in H. We will compute ρ′ using a constant number of invocations of
the O(n log3 n)-time multiple-source multiple-sink maximum flow algorithm in planar graphs
of Borradaile et al. [2]. Instead of invoking this algorithm on H ′′, which is not planar, we
shall invoke it on modified versions of H ′′ which are planar.

Starting with H ′′, we split each vertex w ∈W into deg(w) copies. Each arc e that was
incident to w before the split is now incident to a distinct copy of w, and is embedded so
that it does not cross any other arc in the graph. Let H ′ denote the resulting graph, and let
W ′ denote the set of vertices created as a result of splitting all the vertices of W .

The set W ′ replaces W as the set of sinks of the flow ρ′ we need to compute. Note that
U is an apex set in H ′. We then build the flow ρ′ gradually, by computing the following
steps, each using a single invocation of the multiple-source multiple-sink maximum flow
algorithm of Borradaile et al. in O(n log3 n) time. In what follows, when we say that the
flow ρ′ satisfies condition (ii) for a subset U ′ of U we mean that for every u ∈ U ′ and w ∈W ,
either ex(ρ + ρ′, u) = 0 or there is no residual path in Hρ+ρ′ from u to w that is internally
disjoint from V ×.
(1) If s ∈ U , starting with H ′, we split s into deg(s) copies. Each arc e that was incident

to s before the split is now incident to a distinct copy of s, and is embedded so that it
does not cross any other arc in the graph. We also delete all other vertices of U . We
compute in the resulting graph, which is planar, a maximum flow with sources the copies
of s and the sinks W ′. Let ρ′

s be the flow computed. If |ρ′
s| > ex(ρ, s), we decrease |ρ′

s|
by pushing |ρ′

s| − ex(ρ, s) units of flow back from W ′ to the copies of s. This can be
done in O(n) time in reverse topological order w.r.t. ρ′

s (cf. [2, Section 1.4]). We view ρ′
s

as a flow in H, and set ρ′ = ρ′
s. By construction ρ′ satisfies condition (i), and satisfies

condition (ii) for the subset {s}.
(2) If t ∈ U , starting with H ′

ρ′ , we repeat step (1) with t taking the role of s to compute a
flow ρ′

t. Set ρ′ ← ρ′ + ρ′
t By construction of ρ′

t, ρ′ now satisfies satisfies condition (i),
and satisfies condition (ii) for the subset U ∩ {s, t}.

(3) Let U in be the set U ∩ {xin : x ∈ X}. If U in ̸= ∅, starting with H ′
ρ′ , we delete all the

vertices of U that are not in U in. Note that, since the resulting graph does not contain
s, t, s′, t′, nor any xout for any x ∈ X, and since arcs incident to xin only cross those
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(b)

xin xout

(c)

xin

xout1

xout2

xout3

xout4
Cx

(a)

Figure 2 Illustration of the auxiliary graphs used in the algorithm of Lemma 10. Only a portion
of the graphs around some vertex x ∈ X is shown. (a) the graph G◦. (b) the graph H. Note that
the only crossings are between arcs incident to xin and arcs incident to xout. (c) the graph H ′ in
the case that xout belongs to W . xout is split into multiple copies, eliminating all arc crossings.

incident to xout, the resulting graph is planar. For every xin ∈ U in we add a vertex x′

and an arc (x′, xin) with capacity ex(ρ, xin). The resulting graph is still planar. We
compute a maximum flow ρ′

in with sources {x′ : xin ∈ U in} and sinks W ′. We view ρ′
in

as a flow in H, and set ρ′ ← ρ′ + ρ′
in. By construction of ρ′

in, ρ′ now satisfies condition
(i), and satisfies condition (ii) for the subset U ∩ ({s, t} ∪ U in).

(4) We repeat step (3) with out taking the role of in to compute a flow ρ′
out. By construction

of ρ′
in, ρ′ now satisfies condition (i), and satisfies condition (ii) for U∩({s, t}∪U in∪Uout).

Since s′ and t′ are the source and sink of the flow computed by the Push-Relabel algorithm,
they are never active vertices, so they never belong to U . Hence {s, t} ∪ U in ∪ Uout ⊇ U ,
and conditions (i) and (ii) are fully satisfied by ρ′. ◀

Using Lemma 10 and Lemma 7, we get the following lemma.

▶ Lemma 11. The algorithm described above finds a circulation g× such that
1. f× + g× is feasible in G×.
2. The restriction of f× + g× to G has no violations at vertices of X.
3. The restriction of f× + g× to G has violation at most (k − 2)∆ · vio(f) at any vertex in

V (G) \X.
in O(k2n log3 n) time if such a circulation exists.

Proof. We first analyze the running time. Computing the graph H can be done in O(n)
time. Computing the flow h′ in H using the algorithm of Lemma 7 takes O(k2 · TBP ) time.
By Lemma 10, TBP = O(n log3 n) for the graph H. Transforming h′ to an acyclic flow h

using the algorithm of Sleator and Tarjan [12] takes O(n log n) time. Finally, computing g×

from h takes O(n) time. Hence, the total time to compute g× is O(k2n log3 n).
In order to prove the correctness of the algorithm, we will first prove that there exists a

feasible flow h in H that saturates every arc incident to s′ and t′ if and only if there exists a
circulation g× in G× that satisfies conditions (1) and (2) in the statement of the lemma.

(⇐) Assume the circulation g× exists in G×. Define a flow h in H as follows. For
every arc e ∈ E(H) not of the form (xout, xin) set h(e) = g×(e). For every x ∈ X, set
h(xout, xin) = g×(xout, xin)− vio(f, x), h(s, xin) = vio(f, x) and h(xout, t) = vio(f, x). Since
the restriction of f× +g× to G has no violations on the vertices of x, g×(xout, xin) ≥ vio(f, x),
so h(xout, xin) ≥ 0 and h is a well defined flow. By definition, the flow h saturates every arc
incident to s′ and t′.
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To show that h is feasible in H it is enough to show that h(xout, xin) ≤ c(x) for every
x ∈ X (on all other arcs h is feasible because g× is feasible in G×

f×). Let x ∈ X. Since f× +g×

is feasible in G×, g×(xout, xin) ≤ f×(xin, xout). Since h(xout, xin) = g×(xout, xin)−vio(f, x),
h(xout, xin) ≤ f×(xin, xout)− vio(f, x) = c(x).

(⇒) Assume there exist a feasible flow h in H that saturates every arc incident to s′

and t′, and let g× be the circulation obtained from h as described above. We show that
f× + g× is feasible in G×. On all arcs e not of the form (xout, xin), g×(e) = h(e) and the
capacity of e in G×

f× equals the capacity of e in H. Therefore, since h is a feasible flow in
H, g× is feasible on e in G×

f× , so f× + g× is feasible on e in G×. We now focus on the
arcs (xout, xin) for each x ∈ X. Let e = (xout, xin). Observe that 0 ≤ h(e) ≤ c(x). Since
g×(e) = h(e) + vio(f, x) we have that vio(f, x) ≤ g×(e) ≤ c(x) + vio(f, x) = f×(e). Since
(f× +g×)(xin, xout) = f×(xin, xout)−g×(xout, xin), we have 0 ≤ (f× +g×)(xin, xout) ≤ c(x),
so f× + g× is feasible in G×.

To finish proving the (⇒) direction, we show that the restriction of f× + g× to G has
no violations on the vertices of X. By definition of G× and of residual graph, the only arcs
in G×

f× that can carry flow out of xin are the reverses of the arcs that carry flow into x in
f , and the only arcs that can carry flow into xout are the reverses of the arcs that carry
flow out of x in f . We will show that (f + g)in(x) ≤ c(x) by considering separately the
contribution of the flow on arcs of G that in G× are incident to xout, and arcs of G that in
G× are incident to xin.

The only arc of f× that carries flow into xout is (xin, xout). Thus, there is no arc e of G

such that f×(e) carries flow into xout. Since g× only carries flow into xout along the reverses
of arcs that carry flow out of xout in f× and since for every such arc e′, g×(e′) ≤ f×(rev(e′)),
there is also no arc e of G such that (f× + g×)(e) carries flow into xout.

The total flow that f× carries into xin is c(x) + vio(f, x). Let z denote the total amount
of flow that g× carries into xin. Since the only arc incident to xin that carries flow in g×

and does not belong to G is (xout, xin), the total amount of flow that g× carries into xin on
arcs that belong to G is z − g×(xout, xin). On the other hand, g× carries z units of flow out
of xin, and all of this flow is pushed along the reverses of arcs that carry flow into xin in f×

(and also belong to G). Hence, the total amount of flow that f× + g× carries into xin on
arcs that belong to G is c(x) + vio(f, x) + (z − g×(xout, xin))− z. Therefore,

(f + g)in(x) = c(x) + vio(f, x)− g×(xout, xin))
= c(x) + vio(f, x)− (h(xout, xin) + vio(f, x))
= c(x)− h(xout, xin)
≤ c(x).

We have thus shown that the algorithm computes a flow g× satisfying conditions (1) and
(2) in the statement of the lemma. To see that condition (3) is also satisfied, note that the value
of the flow h is

∑
x∈X vio(f, x) ≤ (k − 2) · vio(f). Since h is acyclic, hin(v) ≤ (k − 2) · vio(f)

for all v ∈ H . Since for all v ∈ V (G) \X, f in(v) ≤ c(v), and hin(v) ≤ ∆(g×)in(v), it follows
that the violation of f× + g× at v is at most (k − 2)∆ · vio(f). ◀

Using the O(k2n log3 n)-time algorithm of Lemma 11 in the improvement phase of Wang’s
algorithm instead of using Wang’s O(k4n log3 n)-time procedure for this phase results in a
running time of O(k3∆n polylog(nC)) for finding a maximum flow in G.
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4.3 The case k = o(log2 n)
We now provide an algorithm that is faster for small k = o(log2 n). Specifically, we describe
an algorithm for computing the circulation g× that runs in O(k3n log n) time instead of
the O(k2n log3 n) time required by the algorithm of Lemma 11.

We use the same auxiliary graph H as defined above and again compute a maximum
flow h′ from s′ to t′ in H. Let V × = {s, t} ∪

⋃
x∈X{xin, xout} ∪ {s′, t′} ∪ S ∪ T be the

set of apices of H along with the original sources S and sinks T of G, and let K× be the
complete graph on V ×. Instead of using the batch-highest-distance Push-Relabel algorithm
as in Lemma 7, we more directly follow the strategy of Borradaile et al. [2] by simulating a
maximum flow computation from s to t in K× using the FIFO Push-Relabel algorithm. We
do not wish to directly use the multiple-source multiple-sink flow algorithm of Borradaile et
al. [2], because then each of the O(k3) Push operations would take O(n log3 n) time.
▶ Lemma 12. Any single (individual arc) Push operation in the graph H defined above can
be implemented in O(n log n) time.
Proof. Consider a single Push(u, v) operation where u, v ∈ V ×. Let ρ denote the preflow
pushed in H by the FIFO Push-Relabel algorithm up to this Push operation. We find a flow ρ′

with source u and sink v in the graph H such that either ex(ρ + ρ′, u) = 0 or ex(ρ + ρ′, u) > 0
and there is no residual path in Hρ+ρ′ from u to v that is internally disjoint from V ×.

Let H ′ be the graph obtained from Hρ by deleting vertices V ×\{u, v}. Instead of invoking
the O(n log3 n)-time multiple-source multiple-sink maximum flow algorithm of Borradaile et
al. [2], we will compute ρ′ as follows. As before, we must consider a few different cases.

If u = s or v = s, then v ∈ S or u ∈ S, respectively. We push up to ex(ρ, u) units of flow
directly along the arc (u, v) in constant time, either saturating the arc or reducing the
excess flow in u to 0. We may similarly push directly along the arc (u, v) in constant
time if one of u or v is one of t, s′, or t′ instead.
If u ∈ {xin

1 , xout
1 } and v ∈ {xin

2 , xout
2 } for two distinct vertices x1, x2 ∈ X, then the graph

H ′ is planar. We add a vertex u′ and an arc (u′, u) with capacity ex(ρ, u) and compute the
maximum flow ρ′ with source u′ and sink v using the single-source single-sink maximum
flow algorithm in planar graphs of Borradaile and Klein [1].
If neither of the above cases apply, then u, v ∈ {xin, xout} for some x ∈ X. If arc (u, v)
has positive residual capacity, we push up to ex(ρ, u) units of flow directly along it in
constant time. Similar to Step 1 in the proof of Lemma 10, starting with H ′, we split u

into deg(u) copies so that each arc that was incident to u is now incident to a distinct
copy of u. Similarly, we split v into deg(v) copies so each arc that was incident to v is
now incident to a distinct copy of v. The resulting graph is planar, and all copies of u

and v lie on a common face. As mentioned by Borradaile et al. [2, p. 1280], we can then
plug the linear time shortest paths in planar graphs algorithm of Henzinger et al. [5]
into a divide-and-conquer procedure of Miller and Naor [10] to compute a maximum
flow ρ′

u with sources the copies of u and sinks the copies of v in O(n log n) time. Again,
if the value of this flow is greater than the excess of u, we push the appropriate amount
of flow back to the copies of u in O(n) time. Finally, we view ρ′

u as a flow in H to set
ρ′ = ρ′

u. ◀

We immediately get a variation of Lemma 11 with a running time of O(k3n log n). By
using the better of the two procedures for computing g×, we get our main theorem.
▶ Theorem 13. A maximum flow in an n-vertex planar flow network G

with integer arc and vertex capacities bounded by C can be computed in
O(k3∆n log n min(k, log2 n) log(kC) log(nC)) time.
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Abstract
We study the maximum-weight matching problem in the sliding-window model. In this model, we
are given an adversarially ordered stream of edges of an underlying edge-weighted graph G(V, E),
and a parameter L specifying the window size, and we want to maintain an approximation of the
maximum-weight matching of the current graph G(t); here G(t) is defined as the subgraph of G

consisting of the edges that arrived during the time interval [max(t − L, 1), t], where t is the current
time. The goal is to do this with Õ(n) space, where n is the number of vertices of G. We present a
deterministic (3.5 + ε)-approximation algorithm for this problem, thus significantly improving the
(6 + ε)-approximation algorithm due to Crouch and Stubbs [5].

We also present a generic machinery for approximating subadditve functions in the sliding-window
model. A function f is called subadditive if for every disjoint substreams A, B of a stream S it
holds that f(AB) ⩽ f(A) + f(B), where AB denotes the concatenation of A and B. We show that
given an α-approximation algorithm for a subadditive function f in the insertion-only model we can
maintain a (2α + ε)-approximation of f in the sliding-window model. This improves upon recent
result Krauthgamer and Reitblat [14], who obtained a (2α2 + ε)-approximation.
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1 Introduction

A matching in a graph G(V, E) is a subset M ⊆ E of pairwise non-adjacent edges. Matchings
play an important role in applications and they form a central concept in combinatorial
and algorithmic graph theory. They have been studied extensively; there is even a book,
by Lovasz and Plummer, dedicated completely to matching theory [16]. One of the most
studied algorithmic problems concerning matchings is the maximum-matching problem. In
the unweighted version, the goal is to compute a maximum-cardinality matching and in the
weighted version – here every edge in the input graph has a non-negative weight – the goal
is to compute a maximum-weight matching (MWM). In the classical offline setting we are
given the graph G completely in advance and we have enough space to store all vertices and
edges. In this setting, the fastest algorithm to compute a maximum matching is still the
30-years-old algorithm due to Micali and Vazirani [17] with running time O(m

√
n), where

n := |V | and m := |E|.
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In this paper, we study the maximum-weight matching problem in a streaming setting.
Here we are given a stream S of edges of an underlying graph G(V, E) and we only have
Õ(n) := O(n · polylog(n)) storage available. This means that we cannot store all edges
from G, and it becomes impossible to compute a solution that is guaranteed to be optimal.
The goal thus becomes to maintain a matching on the current graph whose total weight is
as close to optimal as possible. In the insertion-only model, the current graph G(t) is the
graph whose edge set consists of all edges that have arrived up to the current time t. We
will be working in the sliding-window model [6], where we are given a window length L and
the current graph G(t) consists of the last L edges from the stream. Thus, at any time t we
are interested in approximating the maximum-weight matching of the edges that are within
the window [max(t− L, 1), t].

Our results. We present a (3.5 + ε)-approximation for the maximum-weight matching
problem in the sliding-window model. The following theorem states our main result more
formally.

▶ Theorem 1. Let G(V, E) be a graph with n = |V | vertices and let w : E → R+ be a
function that assigns a weight w(e) to each edge e ∈ E such that the ratio of the maximum
edge weight to the minimum edge weight is at most W for some W = nO(1). Then, for any
given ε > 0, there exists a deterministic algorithm that maintains a (3.5 + ε)-approximate
maximum-weight matching in the sliding-window model using Õ(n) space.

A comparison of our result with the existing streaming algorithms for maximum-weight
matchings is given in Table 1.

The algorithm in Theorem 1 takes the algorithm by Paz and Schwartzman [18] as a
starting point. Our (3.5 + ε)-approximation is then based on two contributions: a mechanism
to convert an algorithm in the insertion-only model into an algorithm in the sliding-window
model, and an intricate analysis of the resulting algorithm in the case of maximum-weight
matchings. The mechanism to obtain a sliding-window algorithm from an insertion-only
algorithm actually works in a much more general setting, namely when we want to compute
subadditive functions, defined as follows. Let f be a function that assigns a value to a data
stream. Then f is called subadditive if for every disjoint substreams A, B of a stream S it
holds that f(AB) ⩽ f(A) + f(B), where AB denotes the concatenation of A and B. We
say that f is monotone if for all A ⊆ B we have f(A) ⩽ f(B). Observe that (the cost of a)
maximum weight matching is a subadditive and monotone function. We prove the following
result in Section 4.

▶ Theorem 2. Let 0 < ε ⩽ 1/2 and α ⩾ 1 be two parameters. Let f be a function defined
on streams that is subadditive, non-negative, and monotone. Let σ := fmax/fmin+ , where
fmin+ := min{f(X) : X is a substream of the input and f(X) > 0} and fmax := max{f(X) :
X is a substream of the input}. Suppose there is an algorithm in the insertion-only streaming
model that α-approximates f using space s. Then, there is an algorithm in the sliding-window
model that maintains a (2α + ε)-approximation of f using O(ε−1s · log σ) space.

Previous Work. Given the prominence of the matching problem, it is not surprising that it
has already received considerable attention in the streaming setting.

In the insertion-only model, a maximal matching – a matching M such that adding any
edge from E to M would violate the condition that the edges are pairwise non-adjacent –
can be computed greedily using O(n) space. This immediately gives a 2-approximation for
maximum-cardinality matching (MCM) [9]. If the stream is in adversarial order, obtaining an
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approximation ratio better than 2 for the MCM problem is one of the most important open
problems in streaming algorithms. Interestingly, Kapralov [12] showed that any streaming
algorithm that achieves an approximation ratio better than e/(1 − e) ≈ 1.58 must use
n1+Ω( 1

log log n ) storage. In the random-order model, where the edges from E arrive in random
order, better approximation ratios than 2 have been obtained [13, 10, 7, 8, 1]. In particular,
very recently, Bernstein [1] showed that we can compute a ( 3

2 + ε)-approximate matching in
random order streams using Õ(n) space.

Maximum-weighted matchings (MWM) have also been studied in the insertion-only model.
Crouch and Stubbs [5] presented a technique that makes it possible to turn a c-approximation
algorithm for the MCM problem into a 2(1 + ε)c-approximation algorithm for the MWM
problem. A combination of this reduction and the greedy matching achieves a (4 + ε)-
approximation algorithm for the maximum-weight matching problem in the insertion-only
model. In a breakthrough result, Paz and Schwartzman [18] developed a (2+ε)-approximation
algorithm for the maximum-weight matching problem in the insertion-only model, using
O(n log2 n) bits of space. Later, Ghaffari and Wajc [11] improved the space of Paz and
Schwartzman’s algorithm to O(n log n) bits of space.

We now turn our attention to the sliding-window model. Braverman and Ostrovsky [2]
introduced smooth histograms, a powerful framework to maintain a class of functions, called
smooth function in the sliding-window model. Crouch, McGregor, and Stubbs [4] showed
that the smooth-histograms technique can be applied to maintain an approximately maximal
matching that achieves a (3 + ε)-approximation of the maximum-cardinality matching. They
also presented a 9.027-approximation algorithm for the maximum-weight matching in the
sliding-window model. This can be improved using the already mentioned (more recent)
technique by Crouch and Stubbs [5] to turn a c-approximation algorithm for the MCM
problem into a 2(1+ε)c-approximation algorithm for the MWM problem. Using this reduction
and the algorithm of [4] we can achieve (6 + ε)-approximation weighted matching in the
sliding-window model. This reduction, which yields the best previously known result for
the MWM problem in the sliding-window model, partitions the edges into weight classes
and maintains a matching on the edges in each weight class. At the end of the stream, it
greedily merges the matchings from largest weight class to smallest weight class. However,
our algorithm is based on the algorithm by Paz and Schwartzman [18] that is explained in
Section 2.

We next explain the previous work on subadditive functions in data streams. Let
f be a function defined on streams, which is subadditive, non-negative, and monotone.
Recently, Krauthgamer and Reitblat [14] showed that given a streaming algorithm ALG that
α-approximates f using space s, we can develop a sliding-window algorithm that (2α2 + ε)-
approximates f using space O(ε−1s · log σ), where σ is ratio of the maximum value of f to
the minimum value of f . They also showed that if ALG is monotone and subadditive, we
can reduce the approximation factor of the sliding-window algorithm down to (2α + ε)-factor.
Unfortunately, it is not always easy to show a streaming algorithm is monotone and/or
subadditive. In some cases, this is not in fact, the case. On the other hand, Theorem 2
shows that we can achieve (2α + ε)-approximation factor independent of the monotonicity or
subadditivity of the streaming algorithm ALG. We should mention that there is a similar
result for constrained submodular maximization in the sliding-window model due to Chen,
Nguyen, and Zhang [3].

Notation and terminology. In this paper, we assume we are given a weighted graph G(V, E)
with n = |V | vertices and a weight function w : E → R+ that assigns a non-negative weight
w(e) to each edge e = (u, v) ∈ E, where the ratio of the maximum edge weight to the
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Table 1 Overview of results on the maximum-weight matching problem.

Model Problem Approximation Adversarial Order Reference

insertion-only
MCM 2 ✓ [9]

1.5 + ε Random Order [1]

MWM 4 + ε ✓ [5]
2 + ε ✓ [18]

sliding-window

MCM 3 + ε ✓ [4]

MWM
9.027 ✓ [4]
6 + ε ✓ [5]

3.5 + ε ✓ [this paper]

minimum edge weight is upper-bounded by W = nO(1). We assume that the graph is simple,
that is, it does not have parallel edges. We denote by NG(v) = {u ∈ V : ∃(u, v) ∈ E} the
set of neighbors of a vertex v in G. We drop the subscript G and write N(v) when G is
clear from the context. Similarly, we denote by NG(e) the set of edges that are neighbors of
an edge e = (u, v), that is, those edges such that one of their endpoints is in the {u, v}. A
matching M of G is a set of pairwise non-adjacent edges, that is, a set where no two edges
share a common vertex. The weight of the matching M is defined as w(M) =

∑
e∈M w(e).

A maximum matching of graph G(V, E) is a matching of maximum weight. Throughout the
paper, when we fix a maximum-weight matching of a graph G, we denote it by Mopt(G), or
simply Mopt when G is clear from the context. We say a matching M is an α-approximate
weighted matching, for some α > 1, when w(M) ⩾ (1/α) · w(Mopt). Finally, with a slight
abuse of notation, we will often not distinguish between sets of edges and streams of edges. As
an example, given a stream S of edges of an underlying graph G(V, E), we do not distinguish
between G(V, E) and G(V, S).

2 Maximum-weight matching in the insertion-only model

As mentioned in the introduction, in a breakthrough paper [18], Paz and Schwartzman
showed that there exists an algorithm in the insertion-only model that computes a (2 + ε)-
approximate weighted matching of a graph G(V, E). Their algorithm forms the basis of our
(3.5 + ε)-approximation algorithm in the sliding-window model. In this section, we explain
Paz and Schwartzman’s algorithm and we give various properties – some already proved by
Ghaffari and Wajc [11], some new – that we later use.

Overview of algorithm. Before the stream starts, we initialize an empty stack. The
streaming algorithm then processes the edges in the stream one by one. While doing so, it
maintains a potential ϕ(v) for every vertex v ∈ V (which is initialized to zero before the
stream starts). For each arriving edge e = (u, v), it is decided whether or not to push e on
the stack based on its weight w(e) and on the potential of its endpoints. In particular, if
w(e) ⩾ (1 + ε) · (ϕ(u) + ϕ(v)), then e is added to the stack. When e is added to the stack,
we assign a reduced weight w′(e) to it, defined as w′(e) := w(e)− (ϕ(u) + ϕ(v)); from now on
we refer to w(e) as the original weight of e. If e is added to the stack, we add w′(e) to the
potential of its endpoints. It will be convenient to set w′(e) := 0 when e is not added to the
stack.

After all edges have been handled in this manner, the matching is computed greedily: we
pop edges from the stack and add them to the matching Malg(G) if they have no neighboring
edge in Malg(G).



L. Biabani, M. de Berg, and M. Monemizadeh 73:5

Algorithm 1 MWM-Streaming [18, 11].
Streaming:

1: while a new edge e = (u, v) of the stream S is revealed do
2: if w(e) < (1 + ε) · (ϕ(u) + ϕ(v)) then w′(e)← 0
3: else
4: w′(e)← w(e)− (ϕ(u) + ϕ(v)) ▷ w′(e) is the reduced weight of e

5: ϕ(u)← ϕ(u) + w′(e); ϕ(v)← ϕ(v) + w′(e) ▷ update potentials
6: Stack.push(e)

Postprocessing:
1: Let Malg(G)← ∅ be an empty matching set.
2: while Stack ̸= ∅ do
3: e← Stack.pop()
4: if Malg(G) ∩N(e) = ∅ then Malg(G)←Malg(G) ∪ {e}.
5: return Malg(G).

Properties of the algorithm. Let te be the arrival time of the edge e. Let P (e) := {e′ ∈
E : e′ ∈ N(e) ∪ {e} and te′ ⩽ te} be the set of neighbor edges of e that arrive in the
stream before e plus the edge e itself. Observe that if e is not added to the stack, then
w(e) < (1 + ε) · (ϕ(u) + ϕ(v)); and if this happens, the reduced weight must be w′(e) = 0.

The first lemma shows that the original weight of every edge in the graph is upper-bounded
by (1 + ε)-factor of the sum of the potentials that are assigned to its end-points regardless of
the fact that the edge is pushed onto the stack or not. The following lemma was proved by
Ghaffari and Wajc [11, Observation 3.2].

▶ Lemma 3 ([11]). After the algorithm has finished we have w(e) ⩽ (1 + ε) · (ϕ(v) + ϕ(u))
for each e = (u, v) in E.

The next lemma gives a relation between the original weight w(e) of an edge e and the
reduced weights w′(e′) of the edges e′ ∈ P (e). It is a special case of Lemma 3.4 of [11], where
it was stated that w(e) ⩾

∑
e′∈P (e) w′(e′). As follows from their proof, we can only have

w(e) >
∑

e′∈P (e) w′(e′) when there are parallel edges. As we assume in this paper that G is
a simple graph (i.e., does not contain any parallel edge) we state the result as follows.

▶ Lemma 4 ([11]). Suppose that the graph G(V, E) is a simple graph. Let e ∈ E be an edge
that is added to the stack. Then w(e) =

∑
e′∈P (e) w′(e′).

Lemma 4 is about edges that are added to the stack. The next lemma states a similar result
for any edge e, regardless of whether it is added to the stack.

▶ Lemma 5. For each e ∈ E we have w(e) ⩽ (1 + ε)
∑

e′∈P (e) w′(e′).

Proof. If e = (u, v) is added to the stack, the inequality holds according to Lemma 4. Suppose
that e is not added to the stack. We use ϕ−

e (u) and ϕ−
e (v) for the potential values just before

the arrival of e. As e is not added to the stack, we have w(e) < (1 + ε) · (ϕ−
e (u) + ϕ−

e (v)). Let
e′ be an edge in P (e) \ {e}. As G does not contain parallel edges, e′ increases exactly one
of ϕ(u) or ϕ(v) by w′(e′). (This also holds when w′(e′) = 0.) Therefore, ϕ−

e (u) + ϕ−
e (v) =∑

e′∈P (e)\{e} w′(e′). Thus,

w(e) < (1 + ε) · (ϕ−
e (v) + ϕ−

e (u)) = (1 + ε) ·
∑

e′∈P (e)\{e}

w′(e′) ⩽ (1 + ε) ·
∑

e′∈P (e)

w′(e′) . ◀
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We also need Lemma 3.1 of [11], which states that the weight of the reported matching
Malg(G) is lower-bounded by the sum of reduced weights of all edges of the graph G, which
is in fact, one half of the sum of potentials that we place on vertices. The latter is a
(1 + ε)-approximation of the optimal weight w(Mopt(G)).

▶ Lemma 6 ([11]). Let Malg(G) be the matching reported by Algorithm MWM-Streaming.
Then,

w(Malg(G)) ⩾
∑
e∈E

w′(e) = 1
2

∑
v∈V

ϕ(v) ⩾ 1
2(1 + ε) · w(Mopt(G)) .

Suppose we have two substreams B and BC, i.e., B is a prefix of BC. The next lemma
shows that the reduced weight of an edge e ∈ B is the same when the algorithm is run on B

as when it is run on BC. It immediately follows from the fact that w′(e) is set when e is
processed, and it will not be changed afterwards.

▶ Lemma 7. Let S be a stream of edges of an underlying simple weighted graph G(V, E).
Let B, C be two disjoint segments of the stream S. Let e ∈ B be an arbitrary edge in B. Let
w′

B(e) and w′
BC(e) be the reduced weights of e when we run Algorithm MWM-Streaming

on the streams B and BC, respectively. Then, w′
B(e) = w′

BC(e).

Making MWM-Streaming monotone. Later, when we develop our sliding-window algo-
rithm, we need Algorithm MWM-Streaming to be monotone, that is, we need that the
weight of the reported matching for a stream BC is at least the weight of the reported
matching for B. Unfortunately, this need not be the case, because in the reporting phase the
edges are popped from the stack in reverse order of their arrival and added to the matching
greedily.

However, we can simply make Algorithm MWM-Streaming monotone by maintaining
the best solution over all prefixes encountered so far. More precisely, while we run the
algorithm on the input stream S as usual, we maintain Mmon(S) := arg max{w(Malg(T )) :
T is a prefix of S}. To this end, we just run the Postprocessing subroutine after each arrival
on a copy of the current stack, and update Mmon(S) if the computed solution is better. We
denote by MWM-Monotone this monotone version of Algorithm MWM-Streaming.

Next, we state two useful properties of the monotone matching Mmon(S).

▶ Lemma 8. Let S be a stream of edges of an underlying simple weighted graph G(V, E).
Suppose that we have two disjoint substreams B and C of the stream S. Then,

Monotonicity Property 1: w(Malg(B)) ⩽ w(Mmon(B)) ⩽ w(Mopt(B)).
Monotonicity Property 2: w(Mmon(B)) ⩽ w(Mmon(BC)).

3 Maximum-weight matching in the sliding-window model

In this section, we develop our 3.5-approximation algorithm for the maximum-weight matching
problem in the sliding-window model. As the first step, we next provide a generic framework
for computing monotone bounded functions in the sliding-window model. Our framework
is based on the smooth-histogram techniques developed by Braverman and Ostrovsky [2]
for the sliding-window model. The smooth histogram technique was later used by Crouch,
McGregor, and Stubbs [4] to develop algorithms for graph problems in the sliding-window
model.

The idea behind this technique is that at any time t, we have a logarithmic number
of insertion-only algorithms running in parallel, that each started at different times. As
our answer at time t we then report, roughly speaking, the answer given by the “oldest”
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still running algorithm; the technique ensures that this algorithm started shortly after time
t− L, so that the answer is a good approximation of the actual answer. The next definition
formalizes the properties we need to apply the technique. Suppose we want to approximate a
function f in a sliding-window setting, and we have an algorithm ALG for the insertion-only
setting. The idea is that if A, B are two substreams such that f(ABC) ⩽ α · ALG(BC) for
any substream C, then we can α-approximate f(ABC) by ALG(BC).

▶ Definition 9 ((f, α, β)-lookahead algorithm). Let β ∈ (0, 1) and α ∈ R+ be two parameters.
Let f be a real-valued monotone function defined on subsets of a ground set X . Let S be
a stream of items of the set X . Let ALG be a streaming algorithm. We say the streaming
algorithm ALG is an (f, α, β)-lookahead algorithm if for any partitioning of S into three
disjoint sub-streams A, B, and C with ALG(B) ⩾ (1− β) · ALG(AB), we have f(ABC) ⩽
α · ALG(BC).

The following theorem shows that if we have such a lookahead algorithm, we can develop
a sliding-window algorithm for the function f . The proof of this theorem is based on the
techniques developed in [4] and we give the full proof for the sake of completeness.

▶ Theorem 10. Let 0 < β < 1 and α ⩾ 1 be two parameters. Let S be a stream of items from
an underlying ground set X . Let f be a monotone function defined on subsets of a ground set
X . Let σ := fmax/fmin+ , where fmin+ := min{f(X) : X is a substream of S and f(X) > 0}
and fmax := max{f(X) : X is a substream of the input}. Suppose there exists an (f, α, β)-
lookahead algorithm that uses space s. Then there exists a sliding-window algorithm that
maintains an α-approximation of f using O(β−1 · s log σ) space.

Proof. We first present our algorithm SlidingLookahead, which is based on the smooth
histograms developed by Braverman and Ostrovsky [2] for the sliding-window model.

Algorithm 2 SlidingLookahead (Based on Smooth Histogram [2, 14]).
Initialization:

1: Let k ← 0 be the number of buckets.

Streaming:
1: while a new item e of the stream S is revealed at time t do
2: Create an empty bucket Bk+1.
3: Let ALGk+1 be an instance of ALG for the bucket Bk+1.
4: for i = 1, . . . , k + 1 do
5: Feed e to the bucket Bi, and update its associated instance ALGi.
6: for i = 1, . . . , k − 1 do
7: Let j > i be the largest index for which ALG(Bj) ⩾ (1− β) · ALG(Bi).
8: Delete buckets Br for i < r < j and their associated instances ALGr.
9: if W ⊆ B2 then Delete bucket B1 and its associated instance ALG1.

10: Let k be number of remaining buckets.
11: Renumber buckets and their associated instances.

Output:
1: if W = B1 then return the solution of the ALG1, which equals ALG(B1).
2: else return the solution of the ALG2, which equals ALG(B2).
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Let W = [max(t − L, 1), t] be the active window. With a slight abuse of notation,
we will use W both for the time interval of the active window as well as for the set of
items that arrive during this time interval. We consider k buckets B1, · · · , Bk such that
B1 ⊇ W ⊋ B2 ⊋ · · · ⊋ Bk. We later show that k = O(ε−1 log σ). For each bucket, we
instantiate an instance of (f, α, β)-lookahead algorithm ALG. Upon arrival of a new item e

at a time t, we create a new bucket Bk+1 and add e to all buckets B1, · · · , Bk+1. Next, if
there exists a sequence of buckets whose values of ALG are too close, we keep the bucket in
this sequence that has the lowest index and delete the rest of the buckets in this sequence.

Observe that the active window W is always sandwiched between the buckets B1 and
B2. If at any time t, the active window W is covered by the bucket B2 (i.e., W ⊆ B2), we
then delete B1 and renumber the buckets accordingly. The output of smooth histogram is
reported by the instance ALG of the bucket B2.

Next, we prove the theorem which is based on the combination of the proofs of Lemma 3
and Theorem 4 in [4]. (We should mention that the proof in [4] is for α = 3 + ε, but we
prove it for any α.)

Let ALG be a (f, α, β)-lookahead algorithm using space s. We show that SlidingLooka-
head maintains an α-approximation of f , using O(β−1 · s log σ) space. First, we prove the
approximation ratio. Later, we show that k = O(β−1 log σ) at any time t.

Let W = [max(t−L, 1), t] be the active window and let 0 < β < 1. Recall that the buckets
B1, · · · , Bk satisfy B1 ⊇W ⊋ B2 ⊋ · · · ⊋ Bk. If W = B1, we return ALG(B1) = ALG(W ),
which satisfies f(W ) ⩽ α ·ALG(B1). Now, suppose that W ̸= B1. Since we report ALG(B2),
we must show that f(W ) ⩽ α ·ALG(B2). To this end, let t∗ be the first time that buckets B1
and B2 became adjacent; it is the time when buckets in between B1 and B2 were removed
in step 8 of the streaming phase. We denote these buckets at time t∗ by B∗

1 and B∗
2 . So,

ALG(B∗
2) > (1− β)ALG(B∗

1). Moreover, B1 = B∗
1C, B2 = B∗

2C for the stream C consisting
of the items that arrived since time t∗. Now, according to the (f, α, β)-lookahead property
of ALG, we can conclude f(B1) ⩽ α · ALG(B2). As f is monotone, we have:

f(W ) ⩽ f(B1) ⩽ α · ALG(B2) .

Recall that k is the number of buckets. Next, we prove that at any time t, we have
k = O(β−1 log σ). Recall that for each index i ∈ [1..k − 2], we have

ALG(Bi+2) < (1− β) · ALG(Bi).

Since 1/(1− β) > 1 + β, we have

ALG(Bi) >
1

1− β
· ALG(Bi+2) > (1 + β) · ALG(Bi+2).

Thus,

ALG(B1) ⩾ (1 + β)⌊k/2⌋ · ALG(Bk) .

Recall that f(B1)
f(Bk) ⩽ σ. This essentially means that ALG(B1) ⩽ σα · ALG(Bk). Therefore,

k ⩽ O(log1+β(σα)) = O(β−1 · log σ). ◀

Our main result in this paper is that there exists a lookahead algorithm for the maximum
weight matching problem. We state this result formally next.
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▶ Lemma 11. Let G(V, E) be a graph with n = |V | vertices and let w : E → R+ be a function
that assigns a non-negative weight w(e) to each edge e ∈ E. Let 0 < ε ⩽ 1

10 and 0 < β ⩽ ε
9 be

two parameters. Let f be defined as the weight of a maximum weight matching of G. Then,
Algorithm MWM-Monotone is a (f, (3.5 + ε), β)-lookahead algorithm. That is, for any
partitioning of a stream S of edges of G into three disjoint sub-streams A, B, and C with
w(Mmon(B)) ⩾ (1−β) ·w(Mmon(AB)), we have w(Mopt(ABC)) ⩽ (3.5 + ε) ·w(Mmon(BC)).

Thus, we can use the machinery developed in Theorem 10 to obtain a (3.5+ε)-approximate
sliding-window algorithm for the maximum-weight matching.

We first define some notation and prove auxiliary tools to later prove Lemma 11.

Notation. Suppose we have a simple weighted graph G(V, E), whose edges are revealed in
a streaming fashion and let that stream be S. Suppose we partition the stream S into three
disjoint consecutive substreams A, B, and C. Let Mopt(ABC) be a fixed maximum-weight
matching of G. Let X ∈ {A, B, C, AB, BC}.

We denote by Mopt(ABC)∩X those edges of the maximum-weight matching Mopt(ABC)
that belong to the substream X.
We denote by Malg(X) the reported matching of Algorithm MWM-Streaming if we
invoke it on the input substream X.
We let ϕX(v) be the potential that is assigned to a vertex v ∈ V if we execute Algorithm
MWM-Streaming on the input substream X.
We let w′

X(e) be the reduced weight that we assign to an edge e ∈ E if we execute
Algorithm MWM-Streaming on the input substream X.

A key concept in our analysis is the so-called critical subgraph of a graph G. We take advantage
of this concept to show upper bounds for w(Mopt(ABC) ∩AB) and w(Mopt(ABC) ∩ C) in
Lemmas 13–16.

▶ Definition 12 (Critical Subgraph). Consider a graph G specified by a stream S of edges.
Let A, B, C be disjoint substreams of S such that S = ABC. Then, the critical subgraph
of G with respect to the matching Mopt(ABC) and the substreams A, B, C is the subgraph
H = (VH , EH) such that

EH := {e ∈ B|e has two neighbors in Mopt(ABC) ∩ C}.
VH := {v ∈ V |∃u ∈ V : (u, v) ∈ EH}, i.e., VH is the set of endpoints of the edges in EH .

Outline of the proof of Lemma 11. We show an upper-bound for w(Mopt(ABC)) based
on w(Malg(AB)) and w(Malg(BC)). In particular, we show that

w(Mopt(ABC)) ⩽ 2(1 + ε)w(Malg(AB)) + 2(1 + ε)w(Malg(BC))−Z . (1)

The slack term Z shows that there might be a double counting in the above inequality.
Intuitively, this makes sense as the substream B is repeated in the first and the second terms.

However, for the moment, suppose this is not the case and Z = 0. Assume that
w(Malg(B)) ⩾ (1− β) ·w(Malg(AB)), that is, the sets A and B (and our algorithm) are such
that Malg(B) gives a good approximation of Malg(AB). Then, we have

w(Mopt(ABC)) ⩽ 2 · (1 + ε)
(1− β) · w(Malg(B)) + 2(1 + ε) · w(Malg(BC))

⩽ 2 · (1 + ε)
(1− β) · w(Mmon(B)) + 2(1 + ε) · w(Mmon(BC))

⩽ 4 · (1 + O(ε)) · w(Mmon(BC)) ,
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where for the second inequality we switch from Algorithm MWM-Streaming to its monotone
version which is Algorithm MWM-Streaming-Monotone and the third inequality uses
Monotonicity Property 2 of Lemma 8.

Observe that this result already improves upon the (6 + ε)-approximation algorithm in
the sliding-window model due to Crouch and Stubbs [5]. To obtain an even better bound,
we show that Z is lower-bounded by a constant factor of the optimal matching of the
substream B. In particular, we show that Inequality (1) holds for Z = 1

2(1+ε) · w(Mopt(B)).
Since w(Mopt(B)) ⩾ w(Mmon(B)), we then have

w(Mopt(ABC)) ⩽ 2 (1 + ε)
(1− β)w(Mmon(B)) + 2(1 + ε)w(Mmon(BC))− 1

2(1 + ε)w(Mmon(B))

⩽ (3.5 + O(ε))w(Mmon(BC)) .

The complete proof of Lemma 11. We find the bound on w(Mopt(ABC)) that we claimed
in Equation 1 in three steps. First in Lemma 13, we find an upper-bound on the contribution
of the substream AB towards Mopt(ABC). Next, we upper-bound the weight of edges of
the optimal matching Mopt(ABC) that are in the substream C. This is done in Lemma 14.
Finally, in Lemma 15 we obtain a lower-bound for the slack term Z of Equation 1.

▶ Lemma 13. w(Mopt(ABC) ∩AB) ⩽ 2(1 + ε)w(Malg(AB))− (1 + ε) ·
∑

v∈VH
ϕAB(v) .

Proof. By definition, w(Mopt(ABC) ∩ AB) =
∑

e∗∈Mopt(ABC)∩AB w(e∗). Let us consider
an arbitrary edge e∗ = (u, v) ∈ Mopt(ABC) ∩ AB. Using Lemma 3, we have w(e∗) ⩽
(1 + ε) · (ϕAB(u) + ϕAB(v)). Observe that the vertices u and v cannot be in VH . Thus, we
obtain

w(Mopt(ABC)∩AB) ⩽ (1+ε)·
∑

v∈V \VH

ϕAB(v) = (1+ε)·
∑
v∈V

ϕAB(v)−(1+ε)·
∑

v∈VH

ϕAB(v) .

Now we use Lemma 6 that shows
∑

v∈V ϕAB(v) ⩽ 2w(Malg(AB)). Hence,

w(Mopt(ABC) ∩AB) ⩽ 2(1 + ε) · w(Malg(AB))− (1 + ε) ·
∑

v∈VH

ϕAB(v) . ◀

The next lemma shows that the contribution of optimal edges that are in the substream C

is upper-bounded by twice the weight of the reported matching of the substream BC minus
the reduced weight of edges of B that are not in the critical subgraph H.

▶ Lemma 14. w(Mopt(ABC) ∩ C) ⩽ 2(1 + ε) · w(Malg(BC))− (1 + ε) ·
∑

e∈B\EH
w′

B(e) .

Proof. Recall that for every edge e ∈ E, w′
BC(e) is the reduced weight of e if we run

Algorithm MWM-Streaming on the input stream BC, where we define w′
BC(e) = 0 if

e /∈ BC. To prove the lemma, we will show that

w(Mopt(ABC) ∩ C) ⩽ 2(1 + ε) ·
∑

e∈BC

w′
BC(e)− (1 + ε) ·

∑
e∈B\EH

w′
BC(e) . (2)

Suppose for now that Inequality (2) is correct. According to Lemma 7, for every e ∈ B,
we have w′

BC(e) = w′
B(e). Thus,

∑
e∈B\EH

w′
BC(e) =

∑
e∈B\EH

w′
B(v).

Next, we use Lemma 6, where we replace the graph G in that lemma with the subgraph
G′(V, BC) to show that

∑
e∈BC w′

BC(e) ⩽ w(Malg(BC)).
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Putting everything together, we prove the statement of this lemma as follows:

w(Mopt(ABC) ∩ C) ⩽ 2(1 + ε) ·
∑

e∈BC

w′
BC(e)− (1 + ε) ·

∑
e∈B\EH

w′
BC(e)

⩽ 2(1 + ε) · w(Malg(BC))− (1 + ε) ·
∑

e∈B\EH

w′
BC(e)

= 2(1 + ε) · w(Malg(BC))− (1 + ε) ·
∑

e∈B\EH

w′
B(e) .

It remains to prove Inequality (2). Let e∗ ∈Mopt(ABC) ∩ C. We use Lemma 5, where
we replace the graph G in that lemma with the subgraph G′(V, BC). Then, Lemma 5
shows that w(e∗) ⩽ (1 + ε) ·

∑
e′∈PBC(e∗) w′

BC(e′), where PBC(e) := {e′ ∈ BC : e′ ∈
NG′(e) ∪ {e} and te′ ⩽ te}. (Here te′ and te are the arrival time of edges e and e′ in the
substream BC.)

Hence,

w(Mopt(ABC) ∩ C) =
∑

e∗∈Mopt(ABC)∩C

w(e∗) ⩽ (1 + ε)
∑

e∗∈Mopt(ABC)∩C

∑
e′∈PBC(e∗)

w′
BC(e′)

Consider the double summation
∑

e∗∈Mopt(ABC)∩C

∑
e′∈PBC(e∗) w′

BC(e′). Every edge e′ ∈ BC

appears in PBC(e∗) for at most two edges e∗, because each endpoint of e′ is incident to
at most one edge from Mopt(ABC). Hence, the double summation can be bounded by
2 ·

∑
e∈BC w′

BC(e). If, however, e′ appears twice then e′ ∈ EH , that is, e′ is part of the
critical subgraph H. This means that the edges in B \ EH appear at most once in the sum.
Therefore,

w(Mopt(ABC) ∩ C) ⩽ 2(1 + ε) ·
∑

e∈BC

w′
BC(e)− (1 + ε) ·

∑
e∈B\EH

w′
BC(e),

which proves Inequality (2) and finishes the proof of the lemma. ◀

▶ Lemma 15. Suppose we execute Algorithm MWM-Streaming on the substream AB.
Let ϕAB(v) be the potential assigned to a vertex v ∈ VH at the end of this algorithm. Then,
(1 + ε) ·

∑
v∈VH

ϕAB(v) ⩾
∑

e∈EH
w′

B(e) .

Proof. Observe that EH ⊆ B ⊆ AB. Let us consider an arbitrary edge e = (u, v) in EH . By
applying Lemma 3 to the graph G′(V, AB) we obtain w(e) ⩽ (1 + ε)(ϕAB(u) + ϕAB(v)). Fix
a maximum-weight matching Mopt(H) of the critical subgraph H(VH , EH). Then,

w(Mopt(H)) =
∑

e=(u,v)∈Mopt(H)

w(e) ⩽
∑

(u,v)∈Mopt(H)

(1 + ε)(ϕAB(u) + ϕAB(v))

⩽ (1 + ε)
∑

u∈VH

ϕAB(u) ,

where the last inequality is due to the fact that the degree of any vertex u ∈ VH in the
matching Mopt(H) is at most one. We next find a lower bound for w(Mopt(H)), which in
turns yields a lower bound for (1 + ε)

∑
u∈VH

ϕAB(v).
Now, suppose we execute Algorithm MWM-Streaming on the stream B. However,

during the postprocessing phase, once we pop an edge e from the stack, we add it to the
matching Malg if both end-points of e are free and e ∈ EH . Thus, the reported matching
Malg of the substream B is influenced by the edge set EH . We denote by Malg(B|EH) the
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reported matching of B that is influenced by EH . Observe that Malg(B|EH) is a matching
of the critical subgraph H(VH , EH). Therefore, w(Malg(B|EH)) ⩽ w(Mopt(H)). We next
find a lower bound for w(Malg(B|EH)).

Consider the graph G′(V, B). Let us fix an arbitrary edge e ∈ B. Recall that PB(e) =
{e′ ∈ B : e′ ∈ NG′(e)∪{e} and te′ ⩽ te}. (Here te′ and te are the arrival time of edges e and
e′ in the substream B.) Observe that if e ∈Malg(B|EH), then e was added to the stack at
some point. Using Lemma 4, we then have w(e) =

∑
e′∈PB(e) w′

B(e′). Therefore,∑
e∈Malg(B|EH )

w(e) =
∑

e∈Malg(B|EH )

∑
e′∈PB(e)

w′
B(e′).

Now, let us consider an arbitrary edge e′ ∈ EH . For e′ we have three cases. The first
case is that e′ is not in the stack, which implies w′

B(e′) = 0. The second case is that
e′ ∈Malg(B|EH), so e′ contributes to the sum

∑
e∈Malg(B|EH ) w(e). The third case is that

e′ has a neighbor e ∈ Malg(B|EH), so that e′ ∈ PB(e). Considering all the three cases we
conclude∑

e∈Malg(B|EH )

w(e) =
∑

e∈Malg(B|EH )

∑
e′∈PB(e)

w′
B(e′) ⩾

∑
e∈EH

w′
B(e).

Putting everything together, we obtain the statement of this lemma as follows:

(1 + ε) ·
∑

v∈VH

ϕAB(v) ⩾ w(Mopt(H)) ⩾ w(Malg(B|EH)) ⩾
∑

e∈EH

w′
B(e) . ◀

We are now finally ready to prove Inequality (1) on page 9, with Z = 1
2(1+ε) w(Mopt(B)).

▶ Lemma 16. Let S = ABC be a stream of edges of an underlying weighted graph G(V, E).
Then, there exists the following upper bound for the weight of Mopt(ABC):

w(Mopt(ABC)) ⩽ 2(1 + ε)w(Malg(AB)) + 2(1 + ε)w(Malg(BC))− 1
2(1 + ε)w(Mopt(B)) .

Proof. First of all, observe that we can decompose the edges of the optimal matching
Mopt(ABC) into the subset of edges that are in the substreams AB and C. Thus, we have

w(Mopt(ABC)) = w(Mopt(ABC) ∩AB) + w(Mopt(ABC) ∩ C) .

Using Lemma 14 and Lemma 13, we then obtain

w(Mopt(ABC)) ⩽ 2(1 + ε) · w(Malg(AB))− (1 + ε) ·
∑

v∈VH

ϕAB(v)

+ 2(1 + ε) · w(Malg(BC))− (1 + ε) ·
∑

e∈B\EH

w′
B(e) .

Next, we replace the negative term on the sum of the potentials for vertices in VH with its
lower-bound as in Lemma 15 .

w(Mopt(ABC))

⩽ 2(1 + ε) · w(Malg(AB))−
∑

e∈EH

w′
B(e) + 2(1 + ε) · w(Malg(BC))− (1 + ε)

∑
e∈B\EH

w′
B(e)

= 2(1 + ε) · w(Malg(AB)) + 2(1 + ε)w(Malg(BC))−
∑
e∈B

w′
B(e) .
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Applying Lemma 6 to the subgraph G′(V, B) gives
∑

e∈B w′
B(e) ⩾ 1

2(1+ε) ·w(Mopt(G′(V, B))).
Hence,

w(Mopt(ABC)) ⩽ 2(1+ε)·w(Malg(AB))+2(1+ε)·w(Malg(BC))− 1
2(1 + ε) ·w(Mopt(B)) .◀

With the help of Lemma 16 we can now prove Lemma 11.

Proof of Lemma 11. First of all using Lemma 16, we have the following upper-bound for
the weight of Mopt(ABC):

w(Mopt(ABC)) ⩽ 2(1 + ε)w(Malg(AB)) + 2(1 + ε)w(Malg(BC))− 1
2(1 + ε)w(Mopt(B)) .

Now, we switch from Algorithm MWM-Streaming to its monotone version, which is
Algorithm MWM-Monotone. Monotonicity Property 1 of Lemma 8 states that for the
substream B we have w(Malg(B)) ⩽ w(Mmon(B)) ⩽ w(Mopt(B)). The same bounds also
hold for the substream AB and BC. Therefore,

w(Mopt(ABC)) ⩽ 2(1 + ε)w(Mmon(AB)) + 2(1 + ε)w(Mmon(BC))− 1
2(1 + ε)w(Mmon(B))

⩽
2(1 + ε)

1− β
· w(Mmon(B)) + 2(1 + ε)w(Mmon(BC))− 1

2(1 + ε)w(Mmon(B))

⩽ 1.5(1 + 3ε) · w(Mmon(B)) + 2(1 + ε)w(Mmon(BC)) ,

where for the second inequality we use the assumption of this lemma, which is

w(Mmon(B)) ⩾ (1− β) · w(Mmon(AB)) .

From Monotonicity Property 2 of Lemma 8, which is w(Mmon(B)) ⩽ w(Mmon(BC)), we now
for ε ⩽ 1

10 conclude

w(Mopt(ABC)) ⩽ 1.5(1 + 3ε)w(Mmon(B)) + 2(1 + ε)w(Mmon(BC))
⩽ (3.5 + ε)w(Mmon(BC)) . ◀

4 Subadditive functions in the sliding-window model

In this section, we prove Theorem 2 and then we show that using this theorem, we can
improve the approximation factor of quite a few submodular matching problems in the
sliding-window model. We first explain the notations that we use in this section.

Let f be a function defined on streams, which is subadditive, non-negative, and monotone.
Let σ := fmax/fmin+ , where

fmin+ := min{f(X) : X is a substream of the input and f(X) > 0} ,

and

fmax := max{f(X) : X is a substream of the input}

Suppose we are given a streaming algorithm ALG that α-approximates f using space s.
Very recently Krauthgamer and Reitblat [14] showed that we can use the streaming algorithm
ALG to develop a sliding-window algorithm that (2α2 + ε)-approximates f using space
O(ε−1s · log σ). They also showed that if the streaming algorithm ALG is monotone and
subadditive, we can reduce the approximation factor of the sliding-window algorithm down
to (2α + ε)-factor. Unfortunately, in some cases, although f is subadditive, ALG is not
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subadditive, or it is not easy to show that ALG is also subadditive. So, the (2α + ε)-factor
cannot always be a result of [14]. Nevertheless, Theorem 2 shows that we can obtain a (2α+ε)-
approximation algorithm in the sliding-window model, independent of the monotonicity or
subadditivity of the streaming algorithm ALG. Our main result in this paper is that there
exists a lookahead algorithm for the maximum weight matching problem. We state this
result formally next.

Next, we prove Theorem 2. To this end, in Lemma 17, we show how to transform a
non-monotone algorithm ALG into a monotone algorithm ALGmon. Later, in Lemma 18
we show that a monotone algorithm ALGmon that α-approximates a subadditive monotone
function f is in fact, a (f, 2α+ε(β), β)-lookahead algorithm. Thus, we can use the machinery
of Theorem 10 to develop (2α + ε)-approximation sliding-window algorithms for f using the
streaming algorithm ALGmon.

▶ Lemma 17. Let f be a non-negative and monotone function defined on streams. Let ALG
be a streaming algorithm that α-approximates f using space s, where α ⩾ 1. Then, there is a
monotone algorithm ALGmon that α-approximates f using O(s) space.

Proof. Let S be a stream of items of the domain X of the subadditive f . In order to make
the algorithm ALG monotone, we store the maximum f of all prefixes of the stream S.
Formally, we define ALGmon as follow: ALGmon(S) := max{ALG(T ) : T is a prefix of S} .

To prove the approximation factor, we show that 1
α ·f(S) ⩽ ALGmon(S) ⩽ f(S). Observe

that ALG returns a α-approximation of f(S). Thus, 1
α · f(S) ⩽ ALG(S) ⩽ ALGmon(S).

Now, it is enough to show that ALGmon(S) ⩽ f(S). Let T ∗ be the prefix of S for which
ALG returns the maximum value among all prefixes of S. That is, ALGmon(S) = ALG(T ∗).
Since f is monotone f(T ∗) ⩽ f(S), we then have

ALGmon(S) = ALG(T ∗) ⩽ f(T ∗) ⩽ f(S) . ◀

▶ Lemma 18. Let 0 < ε ⩽ 1/2, α ⩾ 1 and 0 < β ⩽ ε/2α be three parameters. Let f be a
subadditive, non-negative, and monotone function defined on streams. Suppose we have a
monotone streaming algorithm ALGmon that α-approximates f . Then, Algorithm ALGmon
is a (f, (2α + ε), β)-lookahead algorithm. That is, for any partitioning of a stream S of
items of the domain X of f into three disjoint sub-streams A, B, and C with ALGmon(B) ⩾
(1− β) · ALGmon(AB), we have

f(ABC) ⩽ (2α + ε) · ALGmon(BC) .

Proof. First of all since f is subadditive, we have f(ABC) ⩽ f(A)+f(BC). Also, the function
f is monotone, which means that f(A) ⩽ f(AB). Therefore, f(ABC) ⩽ f(AB) + f(BC).

Since ALGmon is an α-approximate algorithm for f , we then have

f(ABC) ⩽ α · ALGmon(AB) + α · ALGmon(BC) .

We assume that ALGmon(B) ⩾ (1− β) · ALGmon(AB). Using which, we have

f(ABC) ⩽ α

(1− β) · ALGmon(B) + α · ALGmon(BC) .

Since ALGmon is a monotone algorithm, we have ALGmon(B) ⩽ ALGmon(BC). Thus,

f(ABC) ⩽ α

(1− β) · ALGmon(BC) + α · ALGmon(BC)

⩽ α(1 + 2β) · ALGmon(BC) + α · ALGmon(BC)
⩽ (2α + ε) · ALGmon(BC) ,

by setting 0 < β ⩽ ε
2α and using the Maclaurin series 1

1−ε = 1 + ε + ε2 + ε3 + · · · ≤ 1 + 2ε

for ε ≤ 1/2. ◀
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Having Theorem 2 in hand, we can improve quite a few sliding-window algorithms that
have (2α2 + ε)-approximation factor. As an example, if we have α-approximation streaming
algorithms for the maximum submodular matching, maximum submodular b-matching, and
in general, maximum submodular rank p hypergraph b-matching, we can then use Theorem 2
to develop sliding-window algorithms for all these problems with the approximation factor of
(2α + ε) which significantly improves upon the best known approximation factor of (2α2 + ε)
of these problems due to Krauthgamer and Reitblat [14].

As an example, we consider next the maximum submodular matching, which is defined
as follows. We are given a simple graph G(V, E). A non-negative submodular function
w : 2E → R⩾0 is defined on subsets of edges. The goal is to find a matching Mopt, whose
submodular function w(Mopt) is maximum. We next show that the maximum submodular
matching is indeed a subadditive function.

▶ Lemma 19. Let w be a non-negative submodular function defined on subsets of edges of a
simple graph G(V, E). Then, the maximum submodular matching of G(V, E) is subadditive.

Proof. Let us consider an arbitrary stream S of edges of the underlying graph G(V, E).
Suppose we partition S into two disjoint consecutive substreams A and B. Since w is
non-negative, we then have w(Mopt(AB)) ⩽ w(Mopt(AB)) + w(∅).

Next, we use the property of submodular functions that for every two sets X, Y we have
w(X ∪ Y ) + w(X ∩ Y ) ⩽ w(X) + w(Y ). Let X = Mopt(AB) ∩ A and Y = Mopt(AB) ∩ B.
Since A and B are disjoint substreams, we then have X ∪ Y = Mopt(AB) and w(X ∩ Y ) = ∅.
Therefore, we have

w(Mopt(AB)) ⩽ w(Mopt(AB) ∩A) + w(Mopt(AB) ∩B) .

Finally, since Mopt(AB) ∩ A and Mopt(AB) ∩ B are valid matchings for A and B,
respectively, then w(Mopt(AB) ∩ A) ⩽ w(Mopt(A)) and w(Mopt(AB) ∩ B) ⩽ w(Mopt(B)).
Thus, we have

w(Mopt(AB)) ⩽ w(Mopt(A)) + w(Mopt(B)) ,

as we need. ◀

For the maximum monotone submodular matching problem, Levin and Wajc [15] develop
a 5.828-approximation streaming algorithm. If we plug this streaming algorithm into the
generic machinery of Theorem 2, we obtain 11.656-approximation sliding-window algorithm
for this problem. This significantly improves upon the 67.93-approximation factor that the
result of [14] achieves.

On the other hand, for the maximum non-monotone submodular matching problem,
there exists a 7.464-approximation streaming algorithm due to Levin and Wajc [15]. We
use this streaming algorithm for the the generic machinery of Theorem 2 and obtain 14.9-
approximation sliding-window algorithm for this problem improving the 111.4-approximation
factor that the result of [14] achieves.
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Abstract
Recent works by Bravyi, Gosset and König (Science 2018), Bene Watts et al. (STOC 2019), Coudron,
Stark and Vidick (QIP 2019) and Le Gall (CCC 2019) have shown unconditional separations between
the computational powers of shallow (i.e., small-depth) quantum and classical circuits: quantum
circuits can solve in constant depth computational problems that require logarithmic depth to solve
with classical circuits. Using quantum error correction, Bravyi, Gosset, König and Tomamichel
(Nature Physics 2020) further proved that a similar separation still persists even if quantum circuits
are subject to local stochastic noise.

In this paper, we consider the case where any constant fraction of the qubits (for instance, huge
blocks of qubits) may be arbitrarily corrupted at the end of the computation. We make a first step
forward towards establishing a quantum advantage even in this extremely challenging setting: we
show that there exists a computational problem that can be solved in constant depth by a quantum
circuit but such that even solving any large subproblem of this problem requires logarithmic depth
with bounded fan-in classical circuits. This gives another compelling evidence of the computational
power of quantum shallow circuits.

In order to show our result, we consider the Graph State Sampling problem (which was also used
in prior works) on expander graphs. We exploit the “robustness” of expander graphs against vertex
corruption to show that a subproblem hard for small-depth classical circuits can still be extracted
from the output of the corrupted quantum circuit.
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1 Introduction

Background. Quantum computing was introduced in the early 1980s as a quantum mech-
anical model of the Turing machine that has a potential to simulate things that a classical
computer could not [11, 25]. In 1994, Peter Shor developed a polynomial-time quantum
algorithm for factoring integers [43], which gave an exponential speedup over the most
efficient known classical algorithms for this task.

While initially realizing a physical quantum computer was thought to be extremely
challenging, nowadays various types of high-fidelity processors capable of quantum algorithms
have been developed [10, 24, 36, 38, 45]. These devices with noise and relatively small
scale are called NISQ (Noisy Intermediate-Scale Quantum) devices [41]. For such devices,
“quantum supremacy” [40] has been recently reported [6, 46].
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While Shor’s algorithm and such quantum supremacy results strongly suggest that
quantum computation is more powerful than classical computation, they are not mathematical
proofs. While the superiority of quantum computation has been formally shown in constrained
models such as query complexity [4] and communication complexity [22, 34] and considering
complexity classes relative to an oracle [12, 42], almost no definite answer is known in
standard computational models such as Turing machines or general circuits. Since the
complexity class BQP (the class of the problems that can be solved efficiently by a quantum
computer) satisfies the inclusions P ⊆ BPP ⊆ BQP ⊆ PSPACE, an unconditional separation
between BPP and BQP would imply a separation between P and PSPACE, which would be
a significant breakthrough. Therefore, unconditional separations between the computational
powers of quantum computers and classical computers in a general setting are expected to
be very hard to obtain.

However, with several assumptions from computational complexity such as non-collapse
of the polynomial hierarchy or some conjectures on the hardness of the permanent, the
superiority of quantum computation has been shown in the circuit model: even approximate
or noisy probabilistic distributions of small depth quantum circuits are hard to simulate for
classical computers [1, 2, 3, 13, 16, 17, 18, 44]. A recent breakthrough by Bravyi, Gosset
and König [14] showed an unconditional separation between the computational powers of
small-depth quantum and classical circuits: they constructed a computational problem that
can be solved by quantum circuits of constant depth composed of one- and two-qubit gates
acting locally on a grid and showed that any probabilistic classical circuit with bounded
fan-in gates solving this problem on all inputs must have depth Ω(log n), where n denotes
the input size. The computational problem they use is a relation problem (i.e., for any input
there are several possible outputs). Besides its theoretical importance, this separation is
also important since shallow quantum circuits are likely to be easy to implement on physical
devices experimentally due to their robustness to noise and decoherence.

There are several results related to this separation. Coudron, Stark and Vidick [21]
and Le Gall [26] showed a similar separation in the average case setting, instead of the
worst case setting considered in the original version of [14]: there exists a relation problem
such that constant-depth quantum circuits can solve the relation on all inputs, but any
O(log n) depth randomized bounded fan-in classical circuits cannot solve it on most inputs
with high probability. Bene Watts et al. [9] showed that a similar separation holds against
classical circuits using unbounded fan-in gates and, considering interactive tasks, Grier and
Schaeffer [28] showed even stronger classical lower bounds.

Bravyi et al. [15] additionally proved, using quantum error-correction, that a similar
separation holds even if quantum circuits are corrupted by local stochastic noise (see
Definition 1 below). The computational problem used in [15] is a generalized version,
defined on a 3D grid, of the magic square game [35, 39], which is a nonlocal game with two
cooperating players Alice and Bob who cannot communicate. The noise model is as follows.

▶ Definition 1 (Definition 9 in [15]). Consider a random n-qubit Pauli error E ∈
{I,X, Y, Z}⊗n and let Supp(E) ⊆ [n] denote its support, i.e., the subset of qubits acted
on by either X,Y, or Z. For any constant p ∈ [0,1], E is called p-local stochastic noise if

Pr[F ⊆ Supp(E)] ≤ p|F | for all F ⊆ [n].

In this model, an error is given as applying a gate which is X,Y or Z. This definition assumes
that when picking an arbitrary subset of qubits, the probability of all qubits are corrupted
is an exponentially small function of the size of the subset. This property, which implies
that a subset of size Ω(log n) contains with probability 1 − 1/poly(n) at least one qubit that
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is not corrupted, is crucial in [15] to use quantum error correction. Note that, considering
interactive tasks, Grier, Ju and Schaeffer [27] showed even stronger classical lower bounds in
the same noise setting.

The Graph State Sampling problem. Before presenting our results, let us describe in more
details the computational problem introduced in [14], which is called the 2D Hidden Linear
Function problem and corresponds to an extension of the Bernstein-Vazirani problem [12].

We actually describe a slightly more general computational problem that we name the
“Graph State Sampling problem” and denote ρ(G). Here G = (V,E) is a graph specifying the
problem. For any graph G, the problem ρ(G) is a relation ρ(G) ⊆ {0, 1}|V |+|E| × {0, 1}|V |.
Given an input x ∈ {0, 1}|V |+|E| for this relation problem, which we interpret as a pair
x = (y,H) with y ∈ {0, 1}|V | and H being a subgraph of G, we ask to output any bit string
z ∈ {0, 1}|V | that may appear with nonzero probability when measuring the graph state
corresponding to the subgraph H in a basis determined by the bit string y. We refer to
Section 5.1 for details of the definition of the problem.

The 2D Hidden Linear Function problem considered in [14] is essentially the problem
ρ(G) where G is the family of 2D grid graphs. Since the graph states of subgraphs of a
2D grid can be constructed by constant-depth quantum circuits whose gates act locally on
the grid graphs, the problem ρ(G) can be solved by a constant-depth quantum circuit. At
the same time, Bravyi et al. [14] prove that no small-depth classical circuits can solve this
problem using an argument based on the existence of quantum nonlocality in a triangle (first
shown by Barrett et al. [7]). The main result in [14] can essentially be restated as follows.1

▶ Theorem 2 ([14]). There exist a constant α > 0 such that the following holds for all
sufficiently large 2D grid graphs G:

(i) ρ(G) can be solved on all inputs with certainty by a constant-depth quantum circuit on
Θ(|G|) qubits composed of one- and two-qubit gates;

(ii) no bounded-fanin classical probabilistic circuit whose depth is less than α log(|G|) can
solve with high probability ρ(G) on all inputs.

Description of our results. In this paper we show the following result.

▶ Theorem 3. There exist constants α > 0 and ϵ > 0, and a family of graphs (Gi)i∈N with
lim

i→∞
|Gi| = ∞ such that the following holds for all sufficiently large i:

(i) ρ(Gi) can be solved on all inputs with certainty by a constant-depth quantum circuit on
Θ(|Gi|) qubits composed of one- and two-qubit gates;

(ii) for any induced subgraph Si of Gi such that |Si| ≥ (1−ϵ)|Gi|, no bounded-fanin classical
probabilistic circuit whose depth is less than α log(|Si|) can solve with high probability
ρ(Si) on all inputs.

Item (ii) of Theorem 3, which is proved by considering the Graph State Sampling problem
over expander graphs, gives a significantly stronger hardness guarantee than in Theorem 2
and thus provides us further compelling evidence of the computational power of quantum
shallow circuits.

We stress that Theorem 3 does not claim a quantum advantage for noisy shallow quantum
circuits: Theorem 3 simply shows that there exists a problem that can be computed by
shallow quantum circuit but such that a shallow classical circuit cannot solve any (large)

1 In this paper, for any graph G we use the notation |G| to denote the size of the vertex set of G.
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subproblem of it. We can nevertheless interpret Item (ii) as follows. A quantum circuit C
solving the relation ρ(Gi) has |Gi| output qubits, which are measured at the end of the
computation to give the output string z ∈ {0, 1}|Gi| that is a solution for the relation. Assume
that an adversary chooses up to ϵ|Gi| qubits among these |Gi| qubits and corrupts them in
an arbitrary way (or, essentially equivalently, corrupts the bits of the measurement outcomes
corresponding to these positions). Let Si denote the set of qubits that are not corrupted by
the adversary. Since ρ(Si) corresponds to a subproblem2 of ρ(Gi), and since C before the
corruption solved the problem ρ(Gi) on all inputs, even after the corruption the part of the
output of C corresponding to the qubits in Si gives a correct solution to the problem ρ(Si).
On the other hand, Item (ii) of Theorem 3 shows that no small-depth classical circuit can
solve ρ(Si). (Note that in Item (ii) we even allow the classical circuit to depend on Si.)

Let us compare this model of corruption of qubits with the model of noise considered
in [15]. As already mentioned, in the error model of [15] (Definition 1 above), the probability
that all qubits in a given set of size Θ(log n), where n denotes the total number of qubits,
are corrupted by the noise is polynomially small and thus can be neglected. In comparison,
Theorem 3 deals with the case where any subset of qubits of size as large as Θ(n) can be
corrupted, and shows that the quantum advantage is still preserved in this case. In this
sense, our result gives a further compelling evidence of the computational power of quantum
shallow circuits.

Brief overview of our techniques and organization of the paper. The family of graph
(Gi)i∈N used to prove Theorem 3 is a class of expander graphs of constant degree.3 Item (i)
of Theorem 3 essentially follows from the fact the graph state of a bounded-degree graph
can be created by a constant-depth quantum circuit composed of one- and two-qubit gates.
The proof of Item (ii) of Theorem 3 exploits the “robustness” of expander graphs against
corruption of vertices. More precisely, we show that even after corrupting a constant fraction
of vertices, an expander graph still has a large grid minor (see Lemma 8 in Section 3). Finally,
exploiting the existence of a large grid minor, we can use arguments based on quantum
nonlocality (very similarly to the arguments used in prior works [14, 26]) to conclude that any
classical circuit solving the Graph State Sampling problem on the expander graph requires
logarithmic depth.

After giving preliminaries in Section 2, in Section 3 we present graph-theoretical results
about expander graphs. In particular, we prove Lemma 8 about the existence of large
grid minors in corrupted expander graphs. In Section 4, we review the result about the
nonlocality of a triangle quantum graph state used in prior works. In Section 5, we define
our computational problem and prove Theorem 3.

2 Preliminaries

Graph theory. All graphs considered in this paper are undirected. We write a graph as
G = (V,E) where V is the vertex set and E is the edge set. |G| means the number of vertex
of graph G, i.e., |V |. The degree of a vertex is the number of edges that are incident to
the vertex. We denote deg(v) the degree of a vertex v. Given a graph G = (V,E) and any
vertex set U ⊆ V , we denote NG(U) = {v ∈ V \ U : v has a neighbor in U} the external
neighborhood of U in G.

2 This property can immediately be derived from the formal definition of the computational problem
given in Section 5.1

3 For technical reasons, we actually consider a family of graphs of the form G × K2, where G is an
expander graph of constant degree and K2 is the graph consisting of a single edge.
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Let us describe the definition of graph minors. Graph Γ is a graph minor of graph G if it
is isomorphic to a graph obtained from G by deleting edges and vertices and by contracting
edges. Note that if a graph Γ is a minor of a subgraph S of a graph G, Γ is also a minor
of G. The definition is equivalent to the following definition, that if graph Γ is a minor of
graph G, we can decompose G to connected subgraphs which connect to each other like Γ.
We will use this definition later for explicit explanations.

▶ Definition 4 (Minor, Definition 1 in [33]). A graph Γ is a minor of a graph G if for every
vertex u ∈ Γ there is a connected subgraph Gu of G such that all subgraphs Gu are vertex
disjoint, and G contains an edge between Gu and Gu′ whenever {u, u′} is an edge of Γ.

Next, we will define the product of graphs G × H of graphs G = (VG, EG) and H =
(VH , EH). The vertex set of G×H is the Cartesian product VG ×VH and an edge is spanned
between (uG, uH) and (vG, vH) if and only if uG = vG and {uH , vH} ∈ EH , or uH = vH

and {uG, vG} ∈ EG. There are several ways to define graph products but we will use the
definition above. In this paper, we particularly use G×K2, which K2 is the complete graph
of two vertices. Given a graph G = (V,E), the graph product G×K2 is with 2|V | vertices
and 2|E| + |V | edges.

Lastly, we refer to the Vizing’s theorem, which is about edge coloring. Edge coloring is
to assign colors to edges so that the edges of the same color are not incident.

▶ Lemma 5 (Vizing’s theorem [23]). Every simple undirected graph can be edge colored using
a number of colors that is the maximum degree or the maximum degree+1.

Quantum circuits. The textbook [37] is a good reference about notations of quantum
computation in our paper. We will use the Pauli X, Y and Z gates, the Hadamard gate and
the S and T gates as single qubit gates:

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, H =

1
√

2

(
1 1
1 −1

)
, S =

(
1 0
0 −i

)
, T =

(
1 0
0 eiπ/4

)
,

where i denotes the imaginary unit of complex numbers. (Note the Phase gate S differs
from the standard one in [37].) We also use the controlled Pauli Z gate (or CZ = |0⟩ ⟨0| ⊗
I + |1⟩ ⟨1| ⊗ Z) as two-qubit gate.

Let us explain about quantum circuits. An n-qubit quantum circuit is initialized to |0n⟩
and then arbitrary gates are applied to the state. We can apply gates at one time if each
gate is applied to disjoint sets of qubits. The depth of a quantum circuit is d if the whole
operation of circuits can be decomposed to Ud...U2U1 where each Uj is a tensor product of
one- and two-qubit gates which act on disjoint sets of qubits.

Next, we describe measurements of quantum states. Mathematically, (projective) meas-
urements are projections to some orthogonal bases. In this paper, We will use two kinds of
measurements with the X basis and the Y basis. The orthogonal two states of X basis are
{|+⟩ , |−⟩} and the ones of Y basis are { |0⟩+i|1⟩√

2 , |0⟩−i|1⟩√
2 }. Note that the measurements of X

and Y basis are equivalent to the measurements of the computational basis if we apply H

and HS gates before the measurements respectively.

Quantum graph states. Quantum graph states are a certain type of entangled states
corresponding to graphs first introduced by [30]. Let G = (V,E) be a finite simple graph.
Define an associated |V | qubit graph state |ΦG⟩ by

|ΦG⟩ =
(∏

e∈E

CZe

)
H⊗|V | |0|V |⟩ . (1)

The graph state |ΦG⟩ is a stabilizer state with stabilizer group generated by the operators
gv = Xv

(∏
w:{w,v}∈E Zw

)
for all v ∈ V .
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Classical circuits. A classical circuit is specified by a directed acyclic graphs. Vertices with
no incoming and outgoing edges are inputs and outputs respectively and all other vertices
are called gates. We must specify a function of each gate {0, 1}k → {0, 1} where k is the
fan-in. We assume a classical probabilistic circuit receives an arbitrary binary x as an input
and outputs a binary z and it also could input a random string r drawn from some arbitrary
distribution. We say an input bit and an output bit are correlated iff the value of the output
bit depends on the value of the input bit. For each input bit xi, we denote the lightcone
LC(xi) the set of output bits correlated with xi through a classical circuit C. Likewise, the
lightcone LC(zi) is the set of input bits correlated with an output bit zi. In this paper,
we are interested in small-depth classical circuits with bounded fan-in. We also say that a
classical probabilistic circuit solves the relation R on all inputs if and only if the circuit takes
any x ∈ {0, 1}n and a random string r as input and outputs z ∈ {0, 1}m such that xRz with
high probability.

3 Expander graphs and their properties

Expander graphs are highly sparse but well connected graphs. Notable applications of the
graphs have been found in mathematics and computer science [8, 19, 29]. Before giving the
definition, we define the expansion ratio h(G) of graph G. There are several ways to define
the expansion ratio, for example edge expansion, vertex expansion and spectral expansion,
but these are related to each other. The way we use is called vertex expansion.

▶ Definition 6 (Expansion ratio). h(G) = min
{

|NG(U)|
|U |

∣∣∣ U ⊂ V such that 1 ≤ |U | ≤ 1
2 |V |

}
The definition of expander graphs we use in this paper is as follows.

▶ Definition 7 (Expander graphs, Definition 3.1.8 in [31]). A family (Γi)i∈N of finite non-empty
connected graphs Γi = (Vi, Ei) is an expander family, if there exist constants d ≥ 1 and h > 0,
independent of i, such that:
(1) The number of vertices |Vi| “tends to infinity”, in the sense that for any N ≥ 1, there

are only finitely many i ∈ N such that Γi has at most N vertices.
(2) For each i ∈ N, we have maxv∈Vi

deg(v) ≤ d, i.e., the maximum degree of the graphs is
bounded independently of i.

(3) For each i ∈ N, the expansion constant satisfies h(Γi) ≥ h > 0, i.e., it is bounded away
from 0 by a constant independent of i.

h and d specify the family of expander graphs. The existence of expander graphs is by no
means obvious, but it can be shown using probabilistic approaches or concrete constructions
of such graphs [31]. In this paper, an expander graph denotes a graph with sufficiently large
i of an expander family.

We want to prove the robustness of expander graphs to arbitrary vertex removals in terms
of the size of grid minor, which is Lemma 8. We provide its proof in Appendix A.

▶ Lemma 8. Let G = (V,E) be a expander graph. If we take a sufficiently small constant
ϵ > 0, the graph has a connected component C which contains a Ω(|V | 1

4 ) × Ω(|V | 1
4 ) grid as a

minor after up to an ϵ fraction of V are adversarially removed.
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4 Quantum nonlocality of a triangle graph state

In specific circumstances, local classical circuits cannot simulate measurement outcomes of
entangled quantum states. This is called quantum nonlocality. In this section, we explain it
occurs in a triangle graph state, as first shown in [7]. We will use this property to show the
hardness of classical circuits to solve the relation problem in Section 5.

Figure 1 We consider an even cycle Γ and three vertices u, v, w such that all pairwise distances
are even. L, R, B are the region between the three vertices. Each qubit of the corresponding graph
state is measured by the X or Y basis.

First, we note about properties of a graph state in a triangle shape. Let Γ be a triangle such
that the distance between three vertices u, v, w are all even and |ψΓ⟩ be a graph state for Γ as in
Equation (1). We define L,R,B as the vertices between u and v, v and w, u and w, and M as
a total number of vertices in Γ. Also define Lodd, Leven, Rodd, Reven, Bodd, Beven as vertices of
L,R,B which have odd and even distance from u, v, w respectively. The three bits x = xuxvxw

decide the measurement basis of u, v, w (the X basis if xi = 0 and the Y basis if xi = 1) and the
other vertices are measured in the X basis. We denote τ(x) possible measurement outcomes
of all qubits of |ψΓ⟩ for input x, i.e., τ(x) =

{
z ∈ {0, 1}M : ⟨z|H⊗MSu

xuSv
xvSw

xw |ψΓ⟩ ̸= 0
}

.
We consider a relationship between input x and output z ∈ τ(x). Define the following
summations:

zL =
⊕

i∈Lodd

zi zR =
⊕

i∈Rodd

zB =
⊕

i∈Bodd

zi zE =
⊕

i∈{u,v,w}∪Reven∪Leven∪Beven

zi.

▷ Claim 9 (Claim 3 in [14]). Let x = xuxvxw ∈ {0, 1}3 and suppose z ∈ τ(x). Then
zR ⊕ zB ⊕ zL = 0. Moreover, if xu ⊕ xv ⊕ xw = 0 then

(xuxvxw = 000) zE = 0, (xuxvxw = 110) zE ⊕ zL = 1,
(xuxvxw = 101) zE ⊕ zB = 1, (xuxvxw = 011) zE ⊕ zR = 1.

The following lemma is about quantum nonlocality in graph states of triangles and similar
to Lemma 3 in Section 4.1 of [14]. It shows that when we assume a classical circuit has a kind
of locality, the classical circuit cannot satisfy the relation of Claim 9 as inputs and outputs.

▶ Lemma 10 ([7, 14, 26]). Consider a classical circuit which takes as an input a bit
string x = xuxvxw ∈ {0, 1}3 and a random string r, and outputs z ∈ {0, 1}M which are
corresponding to vertices of Γ. Let us assume output bits in L depend on r and at most one
geometrically near input bit, which is either xu or xv. Similarly, we assume output bits in R

and B depend on r and at most one geometrically near input bit. Then, the classical circuit
C cannot output z ∈ τ(x) with high probability.

ISAAC 2021
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5 Proof of separation of depth between quantum and classical circuits
to solve Graph State Sampling problem

In this section, we define Graph State Sampling problem and prove a separation of depth
between quantum circuits and classical circuits. We consider an almost all induced subgraph
S of a graph G × K2 such that G is an expander graph. Then, we prove ρ(G × K2) can
be solved on all inputs by a constant-depth quantum circuit on Θ(|G × K2|) qubits, but
Ω(log |S|) depth is required for any classical probabilistic circuits to solve ρ(S) on all inputs.

5.1 Definition of Graph State Sampling problem ρ(G)
In this subsection, for any graph G, we define Graph State Sampling problem ρ(G).

The relation is defined as a subset of {0, 1}|V |+|E| × {0, 1}|V | and thus consists of pairs
(x, z), where x ∈ {0, 1}|V |+|E| represents the input and z ∈ {0, 1}|V | represents the output.
Each bit of x corresponds to a vertex or a edge. The string x decides the quantum graph
state and the measurement bases: a CZ gate corresponding to edge e is applied if xe = 1, and
the qubit corresponding to a vertex v is measured in the X basis if xv is 0, or in the Y basis
if xv is 1. The quantum state |ψx⟩ for each x before the measurement in the computational
basis is thus:

|ψx⟩ = H⊗|V |
∏

xv=1
Sv

(∏
xe=1

CZe

)
H⊗|V | |0|V |⟩ .

The output z ∈ {0, 1}|V | of the relation is any possible outcome of the measurement of
this quantum state (note that there are possibly several measurement outcomes z for each
x). Since the probability of measurement results of each binary string z is | ⟨z|ψx⟩ |2, the
definition of ρ(G) is as follows.

▶ Definition 11. Given a graph G,

ρ(G) = {(x, z)|x ∈ {0, 1}|V |+|E| and z ∈ {0, 1}|V | such that | ⟨z|ψx⟩ |2 > 0}.

5.2 Constant-depth quantum circuits to solve Graph State Sampling
problem

The following is easily shown by Lemma 5.

▶ Lemma 12. When the maximum degree of graph G = (V,E) is bounded by a constant,
ρ(G) on all inputs can be solved with certainty by a constant-depth quantum circuit on Θ(|G|)
qubits composed of one- and two-qubit gates.

Proof. The initial state |x⟩ ⊗ |0|V |⟩ is prepared on |E| + 2|V | = Θ(|G|) qubits. We apply
H⊗|V | to the last |V | qubits and then controlled-CZ (CCZ) gates and controlled-S (CS)
gates that apply CZe if xe = 1 and Sv if xv = 1. Since G is edge colorable with a constant
number from Lemma 5 and CCZ gates corresponding to edges assigned the same color can
be applied simultaneously (since they act on disjoint sets of qubits), the total depth of CCZ
gates can be bounded by a constant. CS gates can also be applied in constant depth. We
finally apply H⊗|V | to the last |V | qubits and measure these qubits in the computational
basis, which gives a string z such that (x, z) ∈ ρ(G).

The total depth of this circuit can be bounded by a constant. (Note that each CCZ and
CS gate can be implemented in constant depth using our elementary gates [5].) We refer to
Figure 2 for an illustration. ◀
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Figure 2 Constant-depth quantum circuit to solve ρ(G).

5.3 Hardness to solve Graph State Sampling problem with shallow
classical circuits

In this subsection, we prove Theorem 3, and especially the classical hardness. The impossib-
ility argument in Section 4 assumed classical circuits had a kind of geometrical locality. The
lower bounds in this section, however, do not require any geometrical locality of shallow
classical circuits. The proofs are similar to the proofs of the results of Section 4.2 in [14],
with the notable exception of Claim 16 and the discussion afterwards (in particular, the
definition of boxes), which are specifically tailored for the expander graphs we consider.

5.3.1 Good and bad vertices
To begin with, we define “good” and “bad” vertices. In a shallow classical circuit, most input
bits are not correlated with many output bits. We call a vertex “bad” if the corresponding
input bit are correlated with many output bits. Here is the formal definition.

▶ Definition 13. Given a graph G = (V,E), we consider ρ(G) and a classical probabilistic
circuit C for it. Then, a vertex v ∈ V is good if LC(xv) = O(|V | 1

16 ) and bad if v is not good.

The following claim is similar to Claim 5 in [14].

▷ Claim 14. Let G = (V,E) be a graph such that the maximum degree is bounded by a
constant and C be a classical probabilistic circuit for ρ(G). Suppose the fan-in is bounded
by a constant K and the depth d is less than log |V |

32 log K , the number of bad vertices is o(|V |).

Proof. Since the number of correlated input bits increases by at most K times when the
depth increases by 1,

|LC(zi)| ≤ Kd < |V | 1
32 for all v ∈ V. (2)

Let us consider a bipartite graph whose vertices are respective bits of x and z, and a edge is
spanned if and only if xi and zj are correlated. Since the maximum degree of G is bounded
by a constant, we have |x| = |V | + |E| = Θ(|V |). From Equation (2) and considering edges
spanned from z, the total number of edges is limited by |V | · |V | 1

32 . Since bad vertices are
correlated with Ω(|V | 1

16 ) output bits, the total number of xv such that v is bad is O(|V | 31
32 )

and this means the number of bad vertices is o(|V |). ◁

5.3.2 Proof of Theorem 3
Before the proof, we rewrite Theorem 3 using the notations we defined. The reason we
consider the graph product G × K2 is to take a cycle which has even length for using
Lemma 10.

ISAAC 2021



74:10 Quantum Advantage with Shallow Circuits Under Arbitrary Corruption

▶ Theorem 15. There exist constants α > 0 and ϵ > 0 such that the following holds for all
sufficiently large expander graphs G:

(i) ρ(G×K2) can be solved on all inputs with certainty by a constant-depth quantum circuit
on Θ(|G×K2|) qubits composed of one- and two-qubit gates;

(ii) for any induced subgraph S such that |S| ≥ (1 − ϵ)|G×K2|, no bounded-fanin classical
probabilistic circuits whose depth is less than α log(|S|) can solve ρ(S) on all inputs.

Proof of Theorem 15. We can take |G| = |V | arbitrary large from the property of expander
graphs. Then |G×K2| = 2|G| and |S| ≥ (1 − ϵ)|G×K2| are also sufficiently large. Let us
introduce some convenient notations. Given a vertex u ∈ G, we denote u′ and u′′ the two
corresponding vertices in G×K2 (with no special order). Given a vertex v ∈ G×K2, we
denote v̄ the other vertex in G×K2 associated to the same vertex in G.

First, we prove Theorem 15 (i). We consider the Graph State Sampling problem ρ(G×K2).
Since the maximum degree of G is bounded by a constant d, the maximum degree of G×K2
is bounded by d + 1. From Lemma 12, ρ(G × K2) can be solved with a constant-depth
quantum circuit.

Next, we will prove Theorem 15 (ii), the hardness to solve ρ(S) on all inputs with shallow
classical circuits. Let C be a classical probabilistic circuit to solve ρ(S) on all inputs and K

be the bounded fan-in of C. In order to reach a contradiction, we assume the depth of C is
less than log |S|

32 log K . Then the number of bad vertices is small, which enables us to prove the
following claim.

▷ Claim 16. S contains an induced subgraph G′ ×K2 such that all vertices are good and
G′ contains a Ω(|V | 1

4 ) × Ω(|V | 1
4 ) grid as a minor.

Proof. From Claim 14, we know that S contains o(|S|) bad vertices. Let us remove all these
bad vertices, and write Sgood the remaining set. We further remove all vertices u ∈ Sgood

such that ū /∈ Sgood. The remaining set of vertices induces a graph H ×K2, for an induced
subgraph H of G such that |H| ≥ (1 − 2ϵ− o(1))|G|. From Lemma 8, when ϵ is taken small
enough, the graph H × K2 has a connected component G′ × K2, where G′ is contains a
Ω(|V | 1

4 ) × Ω(|V | 1
4 ) grid as a minor. ◁

Remember the definition of a graph minor (Definition 2 in Section 2.1). Each connected
subgraph Gu in G′ forming the grid (except connected subgraphs on the corners of the
grid) is adjacent to the four connected subgraphs Gv1 , Gv2 , Gv3 , Gv4 where {u, v1}, {u, v2},
{u, v3} and {u, v4} are edges of the grid. For each Gu, we arbitrarily select two of these four
components. Assume for instance that we selected Gv1 and Gv2 . We choose arbitrarily one
vertex v in Gu adjacent to a vertex of Gv1 , and one vertex w in Gu adjacent to a vertex of
Gv2 . We then arbitrarily choose one path inside Gu that connects v and w (such a path
necessarily exists). We refer to Figure 3 for an illustration.

We denote T the length of one side of the grid (T = Ω(|V | 1
4 )). From each connected

subgraph forming the T ×T grid of G′, we choose one vertex such that it is on a path selected
in the way above (this condition of the vertices is required when adding missing segments
inside boxes for Claim 18). For such a vertex j, we define Box(j) ⊆ G′ ×K2 as a 2D grid of
connected subgraphs of size ⌊|V | 1

8 ⌋ × ⌊|V | 1
8 ⌋ centered at the connected subgraph which j′

and j′′ belong to. We choose grid-shaped regions P,Q,R ⊆ G′ ×K2 as shown in Figure 4.
P is a upper-left region of the graph product of K2 and a ⌊T/3⌋ × ⌊T/3⌋ grid of connected
subgraphs cut from G′ ×K2. Q is a upper-right region and R is a bottom-left region. The
following claim is similar to Claim 6 in [14].
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Figure 3 The path in Gu described with blue line connects Gv1 and Gv2 .

Figure 4 Definition of the regions P, Q, R of
G′ × K2.

Figure 5 Definition of Box(j) and a possible
choice of p, q, r.
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▷ Claim 17. For all large enough |V |, we can choose a triple of vertices p, q, r ∈ V such that
p′, p′′ ∈ P , q′, q′′ ∈ Q, r′, r′′ ∈ R and

Box(p) ⊆ P, Box(q) ⊆ Q, Box(r) ⊆ R, (3)
LC(xp′ ∪ xp′′) ∩ Box(q) = ∅, LC(xp′ ∪ xp′′) ∩ Box(r) = ∅, (4)
LC(xq′ ∪ xq′′) ∩ Box(p) = ∅, LC(xq′ ∪ xq′′) ∩ Box(r) = ∅, (5)
LC(xr′ ∪ xr′′) ∩ Box(p) = ∅, LC(xr′ ∪ xr′′) ∩ Box(q) = ∅. (6)

Proof. One connected subgraph in the grid minor can belong to at most |V | 1
8 × |V | 1

8 = |V | 1
4

boxes. Since the vertices in G′ ×K2 are good, a given lightcone LC(xu′ ∪ xu′′) can intersect
with at most |V | 1

4 × |LC(xu′ ∪ xu′′)| = |V | 1
4 ×O(|S| 1

16 ) = O(|V | 5
16 ) boxes. The number of

possibilites to choose a box in Q is Ω(|V | 1
4 ) × Ω(|V | 1

4 ) = Ω(|V | 1
2 ). Thus if we pick boxes

uniformly at random then

Pr[LC(xp′ ∪ xp′′) ∩ Box(q) = ∅] ≤ O

(
|V | 5

16

|V | 1
2

)
<

1
6 (7)

for large enough |V |. A similar bound applies to the five others that appear in the three
equations (4, 5, 6). By the union bound, there exists at least one choice of p, q, r that satisfies
all the four equations (3, 4, 5, 6). ◁

Below we consider a cycle Γ that is a subgraph of G′ ×K2. The following claim is similar
to Claim 7 in [14].

▷ Claim 18. The following holds for all sufficiently large |V |. Fix some triple of vertices p, q, r
satisfying the four equations (3, 4, 5, 6). Then there exists an even length cycle Γ containing
p′, p′′, q′, q′′, r′, r′′ such that the lightcones LC(xp′ ∪xp′′), LC(xq′ ∪xq′′), LC(xr′ ∪xr′′) contain
no vertices of Γ lying outside of Box(p) ∪ Box(q) ∪ Box(r).

Proof. Since the size of connected subgraphs of each box is ⌊|V | 1
8 ⌋ × ⌊|V | 1

8 ⌋, we can choose
⌊|V | 1

8 ⌋ pairwise vertex disjoint paths γ that connect any pair of boxes Box(p), Box(q), Box(r)
(in each connected subgraph, we can always find a path which connects adjacent connected
subgraphs). We refer to Figure 5 for an illustration. Let γ(a, b) be a path connecting
Box(a) and Box(b), where a ≠ b ∈ {p, q, r}. Any triple of paths γ(p, q), γ(q, r), γ(p, r) can be
completed to a cycle Γ by adding the missing segments of the cycle inside the boxes Box(p),
Box(q), Box(r) because p, q, r are defined to take such a path inside each box. Since all
vertices are good in G′ ×K2 and each connected subgraph belongs to at most one path γ,
we infer that LC(xp′ ∪ xp′′) intersects with at most 2 ·O(|S| 1

16 ) = O(|V | 1
16 ) paths γ. Thus if

we pick the path γ(p, q) uniformly at random among all ⌊|V | 1
8 ⌋ possible choices then

Pr[LC(xp′ ∪ xp′′) ∩ γ(p, q) ̸= ∅] ≤ O

(
|V | 1

16

|V | 1
8

)
<

1
9 (8)

for enough large |V |. The same bound applies to eight remaining combinations of lightcones
LC(xp′ ∪ xp′′), LC(xq′ ∪ xq′′), LC(xr′ ∪ xr′′) and paths γ(p, q), γ(p, r), and γ(q, r). By the
union bound, there exists at least one triple of paths γ(p, q), γ(q, r), γ(p, r) that do not
intersect with LC(xp′ ∪ xp′′), LC(xq′ ∪ xq′′), LC(xr′ ∪ xr′′). When we choose v′ and v′′

consecutively, any cycle in G′ ×K2 has an even length. Since we can take the cycle in the
way above, the cycle has a even length and is the desired cycle Γ. ◁
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Let p, q, r and Γ be chosen as described in Claim 18. Let M be the even number of vertices
of Γ. When we choose p′, p′′, q′, q′′, r′, r′′ properly, the distances between p′, q′, r′ are all even.
Consider the subset of instances where

xe =
{

1 if e is an edge of Γ
0 otherwise and xv = 0 if (v ∈ V \ {p′, q′, r′})

There are 23 = 8 such instances corresponding to choices of input bits xp′ , xq′ , xr′ ∈ {0, 1}.
Let us fix inputs x of the circuit C except {xp′ , xq′ , xr′} and consider only output bits zj

with j ∈ Γ. By the way of fixing, we obtain a classical circuit D which takes a three-bit
string xp′xq′xr′ ∈ {0, 1}3 and a random string r as input and output zΓ ∈ {0, 1}M . For any
input bit xi ∈ {xp′ , xq′ , xr′} we have LD(xi) ⊆ LC(xi) since any pair of input and output
variables which are correlated in D are also correlated in C, by definition. Our assumption
that C can solve ρ(S) on all inputs implies that D can output zΓ ∈ τ(xp′xq′xr′). From
Lemma 10, at least one output bit zj such that j ∈ Γ and j /∈ {p′, q′, r′} depends on the
two geometrically near inputs from xp′ , xq′ , xr′ . By LD(xi) ⊆ LC(xi), the same is true for
the input-output dependency of C. From Claim 9, for each xi, LC(xi) only intersects with
zj such that j ∈ Box(i) and there is a contradiction. Therefore, the depth of any classical
probabilistic circuit that has bounded fan-in K and solves ρ(S) on all inputs is not less than

log |S|
32 log K . This concludes the proof of Theorem 3. ◀
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A Proof of Lemma 8

First, we introduce a notation. The range in Definition 6, 1 ≤ |U | ≤ 1
2 |V |, may be a little

arbitrary. In terms of the range where the expansion ratio is considered, we define more
general expander graphs as follows.

▶ Definition 19 (Definition 2.2 in [32]). Let G = (V,E) be a graph, let I be a set of positive
integers. The graph G is an I-expander if a positive constant h exists such that NG(U) ≥ h|U |
for every vertex subset U ⊂ V satisfying |U | ∈ I.

Note that this definition does not limit the maximum degree of graphs. When the graph G is
an expander graph (as defined as Definition 7), G is also a

[
1, |V |

2

]
-expander with bounded

degree.
Then, the following claim shows an expander graph still has a large connected component

and it can be described using the notation of Definition 19 when a small fraction of vertices
are adversarially removed.

▷ Claim 20. Let G = (V,E) be an expander graph. If we take a sufficiently small constant
ϵ > 0, the graph has a connected component C which has more than |V |

2 vertices and is a[
|C|
3 , 2|C|

3

]
-expander after up to an ϵ fraction of the vertices are adversarially removed.
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Proof. Let h be the expansion ratio and d be the maximum degree of the graph G. Let
V ′ ⊂ V be an arbitrary subset of vertices such that |V ′| ≤ ϵ|V |. Let C1, ..., Cm be the
connected components of the left graph after |V ′| vertices are adversarially removed.

To reach a contradiction, we assume every connected component is equal to or smaller than
half of |V |, i.e., for all i, |Ci| ≤ |V |

2 . From |V \V ′|+|V ′| = |V |, |V \V ′| = |V |−|V ′| ≥ (1−ϵ)|V |.
Each connected component Ci has its neighbor NG(Ci) such that |NG(Ci)| ≥ h|Ci| since
|Ci| ≤ |V |

2 . A vertex can be a neighbor of at most d connected components at the same time.
Therefore, by the summation of neighbors of all connected components Ci,

|NG(V \ V ′)| ≥ h|V \ V ′|
d

≥ h

d
(1 − ϵ)|V |.

In terms of the total number of vertices, |V \ V ′| + |NG(V \ V ′)| ≤ |V |. Then,

ϵ|V | ≥ |V ′| = |V | − |V \ V ′| ≥ |NG(V \ V ′)| ≥ h

d
(1 − ϵ)|V |.

Thus, ϵ ≥
h
d

1+ h
d

and this contradicts ϵ is sufficiently small. Therefore we can pick a connected

component C such that |C| > |V |
2 from C1, ..., Cm.

In the graph C, we consider an arbitrary subset of vertices W , which satisfies |C|
3 ≤

W ≤ 2|C|
3 . From the expander property of G, |NG(W )| ≥ h|C|

3 > h|V |
6 . Since the number of

removed vertices is up to ϵ|V |, |NC(W )| >
(

h
6 − ϵ

)
|V |. If we take ϵ smaller than h

6 , C is a[
|C|
3 , 2|C|

3

]
-expander. ◁

The next claim is to show there is a relation between I-expanders of Definition 5.

▷ Claim 21 (Lemma 2.4 in [32]). Let graph G = (V,E) be a
[

|V |
3 , 2|V |

3

]
-expander. Then

there is a vertex subset Z ⊂ V such that |Z| < |V |
3 and the graph G′ = G[V \ Z] is a[

1, |G′|
2

]
-expander.

The most significant result of minors of expander graphs is Claim 22 below. It is known
that this bound (O( |V |

log(|V |) )) is tight especially in terms of the size of grid minors.

▷ Claim 22 (Corollary 8.3 in [32] and Theorem 1.1 in [20]). Let graph G = (V,E) be a[
1, |V |

2

]
-expander. For any graph H with O( |V |

log(|V |) ) vertices and edges, G contains H as a
minor.

Finally, using the above claims, we can prove Lemma 8.

Proof of Lemma 8. From Claim 20, after the removal, the left graph has a connected
component C which is a

[
|C|
3 , 2|C|

3

]
-expander. Using Claim 21, C contains an induced

subgraph C ′ such that C ′ is a
[
1, |C′|

2

]
-expander and |C ′| > 2|C|

3 > |V |
3 . When n is

sufficiently large, n
log(n) ≫ n

1
2 . Therefore, from Claim 22, C contains a Ω(|V | 1

4 ) × Ω(|V | 1
4 )

grid as a minor since the maximum degree of grid graphs is 4, which is a constant, and the
number of vertices and edges of a Ω(|V | 1

4 ) × Ω(|V | 1
4 ) grid is Ω(|V | 1

2 ). ◀
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