
Approximate Maximum Halfspace Discrepancy
Michael Matheny #

Amazon, Seattle, WA, USA

Jeff M. Phillips #Ñ

University of Utah, Salt Lake City, UT, USA

Abstract
Consider the geometric range space (X, Hd) where X ⊂ Rd and Hd is the set of ranges defined by
d-dimensional halfspaces. In this setting we consider that X is the disjoint union of a red and blue
set. For each halfspace h ∈ Hd define a function Φ(h) that measures the “difference” between the
fraction of red and fraction of blue points which fall in the range h. In this context the maximum
discrepancy problem is to find the h∗ = arg maxh∈(X,Hd) Φ(h). We aim to instead find an ĥ such
that Φ(h∗) − Φ(ĥ) ≤ ε. This is the central problem in linear classification for machine learning,
in spatial scan statistics for spatial anomaly detection, and shows up in many other areas. We
provide a solution for this problem in O(|X| + (1/εd) log4(1/ε)) time, for constant d, which improves
polynomially over the previous best solutions. For d = 2 we show that this is nearly tight through
conditional lower bounds. For different classes of Φ we can either provide a Ω(|X|3/2−o(1)) time
lower bound for the exact solution with a reduction to APSP, or an Ω(|X| + 1/ε2−o(1)) lower bound
for the approximate solution with a reduction to 3Sum.

A key technical result is a ε-approximate halfspace range counting data structure of size O(1/εd)
with O(log(1/ε)) query time, which we can build in O(|X| + (1/εd) log4(1/ε)) time.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases range spaces, halfspaces, scan statistics, fine-grained complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.4

Related Version Full Version: https://arxiv.org/abs/2106.13851

Funding Jeff M. Phillips: Thanks to supported by NSF CCF-1350888, IIS-1251019, ACI-1443046,
CNS-1514520, and CNS-1564287.

1 Introduction

Let X be a set of m points in Rd for constant d where X can either be the union of a red,
R, and blue set, B, of points X = R ∪ B (possibly not disjoint) or a set of weighted points
where each point has weight w(x) for x ∈ X. Now let (X, Hd) be the associated range space
of all subsets of X defined by intersection with a halfspace.

We are interested in finding the halfspace h∗ and value Φ∗ that maximizes a function
ΦX(h) : Hd → R for some class of functions Φ. We characterize them by reframing it as
a function of µR and µB so ΦX(h) = ϕ(µR(h), µB(h)), where µR(h) = |R ∩ h|/|R| and
µB(h) = |B ∩ h|/|B| are the fraction of red or blue points, respectively, in the range h. In
particular, we only consider functions ΦX(h) which can be calculated in O(1) time from
µR(h) and µB(h) as ϕ(µR(h), µB(h)) (e.g., ϕ(µR, µB) = |µR − µB |). Given such a fixed ϕ,
or one from a class, we state the two main problems: exact and ε-additive error.

Problem Max-Halfspace: From a given set X = R ∪ B ⊂ Rd points where |X| = m

and a Lipshitz constant function ΦX(h) : 2X → R, find h∗ = arg maxh∈Hd
ΦX(h).

Problem ε-Max-Halfspace: From a given set X = R ∪ B ⊂ Rd points where |X| = m

and a Lipshitz constant function ΦX(h) : 2X → R where h∗ = arg maxh∈Hd
ΦX(h), find

ĥ ∈ Hd such that ΦX(h∗) − ΦX(ĥ) ≤ ε.
© Michael Matheny and Jeff M. Phillips;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 4; pp. 4:1–4:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mmath@cs.utah.edu
mailto:jeffp@cs.utah.edu
http://www.cs.utah.edu/~jeffp
https://doi.org/10.4230/LIPIcs.ISAAC.2021.4
https://arxiv.org/abs/2106.13851
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Approximate Maximum Halfspace Discrepancy

Figure 1 Plots of common ϕ functions. From left to right: ϕ||, ϕf (for f = 0.3), and ϕK .

We typically write ΦX as Φ when the set X is clear. Our algorithms will explicitly
compute µR(h) (and µB(h) separately) for each h evaluated, and so work with all functions
ϕ. Notable useful examples of ϕ, shown in Figure 1, include:

discrepancy: ϕ||(h) = |µR(h) − µB(h)|.
This measures the maximum disagreement between the proportions of the two sets B and
R: the central task of building a linear classifier (on training data) in machine learning is
often formulated to maximize precisely this function [26, 34, 12, 15]. Given a coloring of
X into R and B, this also measures the discrepancy of that coloring [32, 10].
f-balancing: ϕf (h) = 1 − |(µR(h) − µB(h)) − f |, for a fraction f ∈ (0, 1).
This scores how well a halfspaces strikes a balance of f between the two sets. By
minimizing this function (or maximizing 1 − ϕf (h)), the goal is to find a range h that
exhibits an imbalance between the sets of f . Maximizing this function (say with f = 1/2)
is the problem of finding good ham sandwich cuts [27].
Kulldorff: ϕK(h) = µR(h) log µR(h)

µB(h) + (1 − µR(h)) log 1−µR(h)
1−µB(h) .

This is the Kulldorff discrepancy function [23] which arises in spatial scan statistics [29,
30, 23, 24, 21, 33, 3, 2], for detecting spatial anomalies. This function specifically is
derived as the log-likelihood ratio test under a Poisson model, but other similar convex,
non-linear functions arise naturally from other models [24, 2]. In this setting the most
common range shape model is a disk, and the best algorithms [16, 17, 29] operate by
lifting to one-dimension higher where the ranges correspond to halfspaces.

All of these ϕ functions are Lipschitz continuous over µB and µR, and thus this extends
to a combinatorial notion of Lipschitz over the associated Φ with respect to the combinatorial
range h: that is, |ΦX(h) − ΦX(h′)| ≤ c(||h ∩ R| − |h′ ∩ R||/|R| + ||h ∩ B| − |h′ ∩ B||/|B|)
for constant c. For ϕ|| and ϕf , c = 1, and for ϕK it is bounded in a reasonable range of
µB , µR [2, 28]. This means that approximating each of µB(h) and µR(h) up to additive error
translates into at most additive error in ΦX .

We also consider the hardness of these problems, and for this we will restrict the classes of
functions ϕ considered in these problems. We will show the largest lower bound on concave
functions ϕ (like ϕf), and this construction will apply to a Lipschitz functions (again like ϕf).
However, the class of convex functions (like ϕ|| and ϕK) are more prevalent, and we present a
smaller lower bound, but which applies to convex Lipschitz functions (including ϕ|| and ϕK).

We also note that for all of the above functions and linked challenges, the ε-approximate
versions are just as relevant and common as the exact ones. For instance in machine learning,
typically ε-additive error is the baseline, on assumptions that the input X is drawn from a
fixed but unknown distribution [38, 25]. Spatial scan statistics are applicable to data sets
containing thousands to 100s of millions of spatial data points, such as census data, disease
incidents, geo-located social media posts. The exact algorithms are polynomial in m and
therefore can have massive runtimes, which become infeasible in the full data sets. Usually

M. Matheny and J. M. Phillips 4:3

the exact algorithms are not even attempted and the set of ranges considered are defined
using some heuristic such as disks with centerpoints of a grid or centered at data points. On
the other hand the ε-additive error versions are scalable with runtimes of O(m + poly(1

ε)),
depending only on the accuracy of the solution not the scale of the data or assumptions
about the data distribution.

Our Results. We connect this problem to the approximate range counting problem for
constant d ≥ 2 in the additive error model by designing a data structure of size O(1

εd) that
can be constructed in time O(m + 1

εd log4 1
ε) with constant probability and supports range

counting queries in time O(log 1
ε). This structure implies a halfspace scanning algorithm

that runs in time O(m + 1
εd log4 1

ε). The data structure is closely related to cuttings, but we
do not need the set of crossing lines, but only an approximation of their total count.

In the other direction, we show instances where ϕ is linear that are as hard as Ω(m3/2−o(1))
on the exact problem, reduced from APSP, and instances where ϕ is concave that are as
hard as Ω(m + 1

ε2−o(1)), reduced from 3Sum. This implies (conditionally) that this class of
scanning algorithms requires Ω(m + 1

ε2−o(1)) time, and any further algorithmic improvements
(beyond polylog(1/ε)) factors) would either require specific and new assumptions on ϕ or
improvement on a classic hard problem.

Relation to Prior Work. The best prior algorithms for ε-Max-Halfspace required O(m +
(1/ε)d+1/3 log2/3(1/ε)) time [28] and the best exact algorithm requires O(md) time [16, 17].
Conditioned on 3Sum, without allowing restrictions to ϕ beyond linearity, our lower bound
shows the prior exact algorithms are shown tight for d = 2 by setting m = 1/ε.

For the related problem of the range space defined by axis-aligned rectangles [39], the
story for instance is more complicated with respect to ϕ. For linear ϕ the exact problem
can be solved in O(m2) time [7] which is tight [6] assuming no subcubic algorithm for
Max-Weight-3-Clique (and hence APSP). The ε-approximate version can be solved in
O(m + 1

ε2d−2 + 1
ε2 log log 1

ε) time with constant probability [28], and by the result of Backurs
et al. [6] this cannot be improved beyond Ω(m + 1/ε2) in R2 under the same assumptions [28].
However, for general functions ϕ the best known runtimes increase to O(m4) and O(m+1/ε4)
for the exact and approximate versions, respectively [28]. Although for a big class of convex
functions (like ϕK) can be reduced back to O(m + 1/ε2.5) in the approximate case [28]. Thus,
this paper shows the situation appears significantly simpler for the halfspaces case, and we
provide a new connection to a (usually) separate [41, 6, 40] class of conditional hardness
problems through 3Sum.

Our approximate range counting structure is also new and may be of independent interest,
allowing very fast halfspace queries (in O(log 1/ε) time) in moderate dimensions d where
1/εd may not be too large. For example, 3d disk queries maps to the d = 4 setting, and
with ε = 0.01 (1% error) then 1/εd = 100 million – which can fit in the memory of most
modern systems, and allow for very fast queries. Similar structures are possible for the exact
range counting paradigm [8, 10], and these could be adapted to the approximate setting
after constructing an appropriate ε-sample of X [38, 25, 29]. But these would instead use
higher Õ(1/εd+1) preprocessing time (where Õ(z) hides polylog(z) terms). Most effort in
approximate range counting has come in the low-space regime. For instance with relative
(1 + ε) error, one can build a data structure of expected size O(poly(1/ε) · m) that answers
approximate range counting queries in O(poly(1/ε) · log m) time in R3 [1]. However for d > 3
with linear space, the query time becomes polynomial in m at Õ(m1−1/⌊d/2⌋) [5, 4, 35].

ISAAC 2021

4:4 Approximate Maximum Halfspace Discrepancy

A related line of work on robust halfspace learning under specific noise models in high
dimensions has witnessed significant progress in the last few years [12, 15, 13, 11]. These
models and algorithms also start with a sufficiently large iid sample (of size roughly 1/ε2),
and ultimately achieve a result with additive ε error from the opt. However, they assume a
specific noise model, but using this achieve runtimes polynomial in d, whereas our results
grow exponentially with d but do not require any assumptions on the noise model. A
recent focus is on Massart noise, where given a perfect classifier, each point has its sign
flipped independently with an assigned probability at most η < 1/2. Only recently [11], in
this Massart noise model it was achieved a proper learned function (a halfspace) in time
polynomial in 1/ε and in d. Recent previous work was not proper (the learned function may
not be a halfspace) [12, 15], or takes time exponential in 1/ε [13]. Indeed, under Gaussian
distributed data, the proper halfspace learning requires dΩ(1/ε) time [14], under the statistical
query model [36].

2 Background and Notation

Useful Sampling Properties. An ε-sample [19, 38] is a subset S ⊂ X so for a range space
(X, R) it preserves the density for all ranges as maxA∈R | |X∩A|

|X| − |S∩A|
|S| | ≤ ε. An ε-net is

a subset N ⊂ X so for a range space (X, R) it hits large ranges, specifically for all ranges
A ∈ R such that |X ∩ A| ≥ ε|X| we guarantee that N ∩ A ≠ ∅. For halfspaces, a random
sample S ⊂ X of size O(1

ε2 (d + log 1
δ) is an ε-sample with probability at least 1 − δ [38, 25],

and a random sample N ⊂ X of size O(d
ε log 1

εδ) is an ε-net [20] with probability at least
1 − δ.

Enumeration. Given a set of points X ⊂ Rd, Sauer’s Lemma [37] shows that there are
at most O(|X|d) combinatorially distinct ranges, where each range defined by a halfspace
contains the same subset of points. We can always take a halfspace and rotate it until it
intersects at most d boundary points without changing the set of points contained inside.
This observation immediately implies a simple algorithm for scanning the point set; we can
just enumerate all subsets of at most d points, compute a halfspace that goes through these
points, and count the red and blue points lying underneath to evaluate Φ.

Our work builds upon this simple algorithm by dividing it into two steps and optimizing
both. We first define a set of prospective ranges Ĥd to scan and then secondly compute the
function Φ on each region. Matheny et al. [28] showed that a simple random sample X0 ⊂ X

of size O(1
ε) (for constant d) induces a small range space (X0, Hd). Each range (a subset of

X0) maps to a canonical geometric halfspace h0, and this geometric halfspace in turn induces
a range h0 ∩ X, an element of (X, Hd). We refer to this subset of (X, Hd) as (X, Ĥd), it is of
size O(1/εd). Now for each range h ∩ X in (X, Hd) there is a range ĥ ∩ X ∈ (X, Ĥd) such
that the symmetric difference between them is at most ε|X|. So if every range in (X, Ĥd)
needs to be explicitly checked, and f(1/ε) is the time to compute Φ, this would imply a
(1/εd)f(1/ε) lower bound. Note that f(1/ε) may take super-constant time because we may
need to construct the (approximate) µR(h) and µB(h) values.

Cuttings. Cuttings are a useful tool to formalize divide and conquer steps in geometric
algorithm design. Given Rd, a set of halfspaces Hd of size m, and some parameter r a
1
r -cutting is a partition of Rd into a disjoint set of constant complexity cells where each cell
is crossed by at most m/r halfspaces. The set of halfspaces crossing a cell in the cutting is
referred to as the conflict list of the cell. It is well established that the number of partitions

M. Matheny and J. M. Phillips 4:5

is of size O(rd) and the partitioning can be constructed in O(rd−1m) time if the conflict
lists are needed [31]. If the crossing information is not needed then faster algorithms can
be used. For instance, the arrangement of a 1

r -net over Hd defines a partitioning of Rd into
disjoint cells where each cell is crossed by at most m/r halfspaces, and since a simple random
sample can be used to generate the net, a cutting of size O(rd logd r) can be computed
in O(m + rd logd r) time with constant probability. For r ≪ m, this can be a substantial
runtime improvement with a small increase in size.

When a cutting is restricted to a single cell there are better bounds on the size of the
partitioning. We will need this better bound for our proof and we restate it here.

▶ Theorem 1 ([9, 8]). Denote the vertices corresponding to d-way intersections of Hd as
A(Hd). A 1

r -cutting of a cell ∆ containing |A(Hd) ∩ ∆| = η vertices can be constructed with

O(η
(r

m

)d

+ rd−1) cells.

3 Approximate Halfspace Range Counting and the Upper Bound

In this section, instead of operating on R ∪ B = X ∈ Rd, as is common for halfspace range
searching, we work on the set H of dual halfspaces in Rd. In this setting a query halfspace
h ∈ Hd in the dual representation is qh ∈ Rd, and the desired quantity is the number
of halfspaces in H below qh. We apply the construction separately for R and B, so the
halfspaces H may be weighted, with positive weights.

We will construct L decompositions of Rd into disjoint trapezoidal cells: ∆0, ∆1, . . . , ∆L.
For each level of cells ∆i any cell ∆ ∈ ∆i has a set of children cells S∆. The next level of cells
∆i+1 is the disjoint union of all the S∆ children cells of ∆ ∈ ∆i; that is ∆i+1 =

⋃̇
∆∈∆i

S∆.
Initially ∆0 = Rd and therefore contains the entire domain and a corresponding sample of
this initial cell will be denoted as Ĥ; we will bound it’s required size in Lemma 6. Define
∆ ⊓ H to be the set of halfspaces in H that lie completely underneath ∆ (that is, if q ∈ ∆
then q /∈ h for any h ∈ ∆ ⊓ H), and ∆ ∩ H is the set of halfspaces in H that cross ∆.

Importantly, we maintain an estimate of the weight of each cell mi(∆), as we recursively
build the decomposition. It depends on a sufficiently large constant r. For a cell ∆
we will consider a sample H∆ ⊂ H ∩ ∆ of halfspaces. For each cell ∆′ ∈ ∆i+1 where
∆′ ∈ S∆ we take a sample H∆′ ⊂ (H∆ ∩ ∆′) of size |H∆∩∆′|

r with replacement. The value
m̂i+1(∆′) estimates the number of halfplanes lying below it, and is defined recursively as
m̂i+1(∆′) = ri+1|H∆ ⊓ ∆′| + m̂i(∆); with m̂0(∆) = 0. If a cell ∆ has a small number of
lines crossing it, specifically if |H∆| ≤ log 1

ε then the recursion terminates. Otherwise, we
split the cell, and create a 1/t∆-cutting of each (∆, H∆), and let S∆ be its cells; the value
t∆ = max(|H∆|r2i+1

|Ĥ| , 1) is 1 if |H∆| is small, otherwise it is at most r. We recurse on each cell

∆′ in each S∆ until each is sufficiently small, which will require L = O(log |Ĥ|
ε) = O(log 1

ε)
levels. See Algorithm 1 for details.

Complexity analysis. As cells are subsampled and split the number of lines and vertices
lying inside of a cell drops off quickly with the level.

▶ Lemma 2. A cell ∆ ∈ ∆i with sample H∆ is of size |H∆| ≤ |Ĥ|/r2i.

Proof. Consider a cell ∆∗ ∈ ∆i−1 where ∆ ∈ S∆∗ then |H∆| = 1
r |H∆∗ ∩ ∆| by construction,

and since ∆ is a cell in a 1
t∆∗ -cutting of H∆∗ then |H∆∗ ∩ ∆| ≤ |H∆∗ |/t∆∗ = |Ĥ|/r2i−1;

hence |H∆| = |∆ ∩ H∆∗ |/r ≤ |Ĥ|/r2i. ◀

ISAAC 2021

4:6 Approximate Maximum Halfspace Discrepancy

Algorithm 1 SampleCut(∆0, Ĥ).

for levels i = [0, L] do
for each cell in that level ∆ ∈ ∆i with |H∆| > log 1

ε do
Set t∆ = max(|H∆|r2i+1

|Ĥ| , 1)
Build S∆, the cells of a 1

t∆
-cutting on (∆, H∆).

for each child cell ∆′ ∈ S∆ do
m̂i+1(∆′) = ri+1|H∆ ⊓ ∆′| + m̂i(∆)
Sample H∆′ ⊂ H∆ where |H∆′ | = |∆′ ∩ H∆|/r

The number of vertices in the cells drops off quickly as well.

▶ Lemma 3. A cell ∆ ∈ ∆i with sample H∆ has E[|A(H∆)|] ≤ |A(Ĥ)∩∆|
rdi expected vertices.

Proof. Consider a vertex lying inside of ∆ induced by the intersection of d halfspaces
h1, . . . , hd ∈ H∆∗ in ∆ (where ∆ ⊂ ∆∗ ∈ ∆i−1). The probability that this vertex is in H∆ is
Pr(h1 ∈ H∆ ∧ . . . ∧ hd ∈ H∆) ≤ 1

rd . The probability that a vertex survives through i samples
is then upper bounded by 1

rdi and by linearity of expectation E[A(H∆)] ≤ |A(Ĥ)∩∆)|
rdi . ◀

Combining these results we show the expected number of cells increases as O(rdi). This
leverages Theorem 1 using the number of vertex dependent bound for size of the cutting.

▶ Lemma 4. At a level i the expected number of cells is E[|∆i|] = O(rdi).

Proof. The number of cells at a level i is in expectation

E[|∆i|] = E

 ∑
∆∈∆i−1

O(|A(H∆) ∩ ∆|
td
∆

|H∆|d
+ td−1

∆)

= C · E

 ∑
∆∈∆i−1

|A(H∆) ∩ ∆|
td
∆

|H∆|d
+ td−1

∆

from Theorem 1, for some sufficiently large constant C < r/4. Since t∆ = max(|H∆|r2i+1

|Ĥ| , 1)
we can divide cells in ∆i−1 into a set ∆+

i−1 where t∆ > 1, and is therefore split, and a set
of cells ∆i−1 \ ∆+

i−1 where t∆ = 1, and is therefore not split. The set of non split cells
∆i−1 \ ∆+

i−1 cannot be larger than |∆i−1|.

E[|∆i|] = C · E

 ∑
∆∈∆i−1

|A(H∆) ∩ ∆|
td
∆

|H∆|d
+ td−1

∆)

≤ C · E

|∆i−1| +
∑

∆∈∆+
i−1

|A(H∆) ∩ ∆|r
2di−d

|Ĥ|d
+ td−1

∆

M. Matheny and J. M. Phillips 4:7

By Lemma 2 we can bound t∆ ≤ |H∆|r2i+1

|Ĥ| ≤ r, to replace the last term.

E[|∆i|] ≤ C · E

|∆i−1| +
∑

∆∈∆+
i−1

|A(H∆) ∩ ∆|]r
2di−d

|Ĥ|d
+ rd−1

≤ C · r2di−d

|Ĥ|d
E

 ∑
∆∈∆+

i−1

|A(H∆) ∩ ∆|]

+ C · (rd−1 + 1)E[|∆i−1|])

By Lemma 3 E[|A(H∆) ∩ ∆|] ≤ |A(Ĥ)∩∆′|
rdi−d , and this yields

E[|∆i|] ≤ C · r2di−d

|Ĥ|d
E

 ∑
∆∈∆+

i−1

|A(Ĥ) ∩ ∆|
rdi−d

+ C · (rd−1 + 1)E[|∆i−1|])

= C · rdi

|Ĥ|d
E

 ∑
∆∈∆+

i−1

|A(Ĥ) ∩ ∆|

+ C · (rd−1 + 1)E[|∆i−1|]).

Since a vertex in A(Ĥ) ∩ ∆ can only be in one cell
∑

∆∈∆+
i−1

|A(Ĥ) ∩ ∆| ≤ |Ĥ|d, since this
quantity upper bounds the number of vertices in A(Ĥ). Hence

E[|∆i|] ≤ . . . chain of inequalities . . . ≤ C ·
(
rdi + (rd−1 + 1)E[|∆i−1|]

)
Now finally we show E[|∆i|] ≤ 2C · rdi by inductively assuming E[|∆i−1|] ≤ 2C · rd(i−1) for
C < r/4 and r sufficiently large

E[|∆i|] ≤ C ·
(

rdi + (rd−1 + 1)(2Crd(i−1))
)

≤ C ·
(
rdi + rdi/2 + rdi−d+1/2

)
≤ 2C · rdi = O(rdi). ◀

Sampling Error. Consider now that we wish to estimate |Ĥ ⊓ ∆|, the number of planes
crossing under some ∆. We will use that ∆ lies within a nested sequence of cutting cells
∆ = ∆i ⊂ ∆i−1 ⊂ . . . ⊂ ∆0 with ∆i ∈ ∆i, ∆i−1 ∈ ∆i−1, . . . , ∆0 ∈ ∆0, where i ≤ L, and
with corresponding samples Ĥ = H∆0 and H∆1 , · · · , H∆ℓ

. We can also define m̂i(∆) more
generally for a cell ∆ that is the subset of a cell ∆i ∈ ∆i (and its ancestors), but not
necessary one of those cells. It is defined m̂i(∆) = ri|H∆i−1 ⊓ ∆| +

∑i−1
j=0 rj |H∆j−1 ⊓ ∆j |. By

this definition m̂0(∆) = |Ĥ ⊓ ∆|, and we are left to bound |m̂i(∆i) − |Ĥ ⊓ ∆i||.

▶ Lemma 5. |m̂i(∆) − |Ĥ ⊓ ∆|| = O(i
√

|Ĥ| log 2ℓ
δ′) with probability 1 − δ′.

Proof. By the triangle inequality we expand

ISAAC 2021

4:8 Approximate Maximum Halfspace Discrepancy

|m̂i(∆) − m̂0(∆)| ≤
i−1∑
j=0

|m̂j+1(∆) − m̂j(∆)|

=
i−1∑
j=0

∣∣∣∣∣∣∣∣∣∣
rj+1|H∆j

⊓ ∆| +
j∑

ℓ=0
rℓ|H∆ℓ−1 ⊓ ∆ℓ|

−

(
rj |H∆j−1 ⊓ ∆| +

j−1∑
ℓ=0

rℓ−1|H∆ℓ−2 ⊓ ∆ℓ−1|

)
∣∣∣∣∣∣∣∣∣∣

=
i−1∑
j=0

∣∣rj+1|H∆j
⊓ ∆| + rj |H∆j−1 ⊓ ∆j | − rj |H∆j−1 ⊓ ∆|

∣∣
=

i−1∑
j=0

rj
∣∣r|H∆j

⊓ ∆| − |(H∆j−1 ∩ ∆j) ⊓ ∆|
∣∣

≤
i−1∑
j=0

rj · r · Cd

√
|H∆j

| log 1
δ† .

The last inequality follows since H∆j
is a random sample from H∆j−1 ∩ ∆j , and the

⊓∆ restriction is a constant VC-dimension range [38]; the constant Cd depends only on
d, and δ† is the probability of failure for each term in the sum. In particular we use∣∣∣ |H∆j

⊓∆|
|H∆j

| −
|(H∆j−1 ∩∆j)⊓∆|

|H∆j−1 ∩∆j |

∣∣∣ ≤ Cd

√
1

|H∆j
| log 1

δ† and multiply by |H∆j−1 ∩ ∆j | = r|H∆j
|.

Applying Lemma 2 then |H∆j
| ≤ |Ĥ|

r2j . Hence

i−1∑
j=0

rj

√
|H∆j

| log 1
δ† ≤

i−1∑
j=0

rj

√
|Ĥ|
r2j

log 1
δ† ≤

i−1∑
j=0

√
|Ĥ| log 1

δ† .

And to ensure a failure probability of 1 − δ′ for the sequence of samples, set δ† = δ′/2ℓ.

|m̂i(∆) − |Ĥ ⊓ ∆|| ≤ i · Cd

√
|Ĥ| log 2ℓ

δ′ . ◀

Now how large does Ĥ need to be to ensure a correct estimate of the cells at the leaves
of the arrangement. This largely depends on the number of ε-samples taken in total.

▶ Lemma 6. We can ensure that |m̂i(∆) − |Ĥ ⊓ ∆|| ≤ ε|Ĥ| for all ∆ ∈ ∆i with probability
δ by setting |Ĥ| = O(i3

ε2 log i
δ).

Proof. We can set the probability of δ′ = δ/(2|∆i|) in Lemma 5 to ensure a failure probability
of δ for each cell ∆ ∈ ∆i and therefore |m̂i(∆) − |Ĥ ⊓ ∆|| = O(i

√
|Ĥ| log 2i|∆i|

δ). So if

ε|Ĥ| = |m̂i(∆) − |Ĥ ⊓ ∆|| = O(i
√

|Ĥ| log 2i|∆i|
δ) then |Ĥ| = O(i2

ε2 log 2i|∆i|
δ).

From Lemma 4 we know that |∆i| = O(rdi), and so |Ĥ| = O(i3

ε2 log i
δ). ◀

Runtime. The time to compute an estimate for ∆ ∈ ∆i is linear in the number of
lines in H∆ ≤ |Ĥ|

r2i . We can then devise the expected runtime for computing estimates
for all cells in a level i, of which there are E[|∆i|] = O(rdi), so the total for level i is∑

∆∈∆i
O(|Ĥ|

r2i) = O(|∆i||Ĥ|
r2i) = O(ri(d−2)|Ĥ|). The total expected runtime over all levels

is then
∑L

i=0 O(ri(d−2)|Ĥ|). Furthermore, if d = 2 then this will be O(L4

ε2 log L
δ). If d > 2

M. Matheny and J. M. Phillips 4:9

then each layer of the cutting will dominate the previous layers in runtime and so the
total time will be bounded by the time to compute the last layer as

∑L
i=0 O(ri(d−2)|Ĥ|) =

O(r(L+1)(d−2) L3

ε2 log L
δ).

Next we want to achieve that all cells ∆ ∈ ∆L are of size |H∆| < logr
1
ε . This can be

achieved via |H∆| < |Ĥ|/(r2L) ≤ logr
1
ε by setting the maximum level L > 1

2 logr
|Ĥ|

logr
1
ε

=
O(log 1

ε), via Lemma 6. Then a query can at first recursively descend into the structure
for O(L) = O(log 1

ε) steps, and upon reaching a leaf node, can enumerate the leaf node’s
sample which will take at most O(log 1

ε) time again. With L = O(log 1
ε), the total time

to compute the cell division for d = 2 is O(L4

ε2 log L
δ) = O(1

ε2 log4 1
ε log log 1

ε

δ). For d >

2, then O(r(L+1)(d−2) L3

ε2 log L
δ) = O(1

εd log3 1
ε log log 1

ε

δ) since r(ℓ+1)(d−2) = rr(d−2) logr
1
ε =

rrlogr
1

εd−2 = r
εd−2 .

▶ Theorem 7. We can build an ε-approximate halfspace range counting data structure of size
O(1/εd) that for any halfspace h ∈ Hd returns in O(log(1/ε)) time returns a count m̂(h) so
that |m̂(h) − |h ∩ X|| ≤ ε|X|. The total expected construction time, with probability 1 − δ, for
d = 2 is O(|X| + 1

ε2 log4 1
ε log log 1

ε

δ), and for constant d > 2 is O(|X| + 1
εd log3 1

ε log log 1
ε

δ).

Finding the Maximum Range. To query the structure we need a set of viable halfspaces
that cover the space well enough to approximately hit the maximum region. We can use
a random sample of points from the primal space of size O(1

ε) to induce a set of O(1/εd)
halfspaces Ĥd, as was done in [28], to get a constant probability that at least one halfspace
is O(ε)-close to the maximum region. Then we repeat the procedure log 1

δ times and take
the maximum found region to magnify the success probability to 1 − δ (see [28] for details).
For each query hyperplane h we can query a structure constructed over R and over B and
then compute the function value from this; we return the h which maximizes Φ(h).

The set of query hyperplanes from this tactic is of size O(1
εd) for constant d and at each

level we can determine which cell the dual point of the halfspace falls into by testing a
constant O(rd) number of constant sized cells. At a leaf of the structure we check if the
remaining, at most log 1

ε , dual halfspaces are below the query dual point, to determine the
total count. The query structure has O(log 1

ε) levels and at each level a constant amount of
work is done; it is repeated for each of O(1

εd) halfspaces, and the entire endeavor is repeated
log 1

δ times to reduce the probability of failure. The full runtime is O(1
εd log 1

ε log 1
δ), plus

the construction time of the data structure (from Theorem 7) which dominates the cost.

▶ Theorem 8. We can solve ε-Max-Halfspace with probability 1 − δ, in expected time
O(|X| + 1

εd log4 1
ε log log 1

ε

δ) for d = 2 and O(|X| + 1
εd log3 1

ε log log 1
ε

δ) for constant d > 2.

4 Conditional Lower Bounds

Our upper bounds only restrict ΦX(h) = ϕ(µR(h), µB(h)) to be a Lipschitz function. Next
we show that an algorithm that can operate on this entire class of functions for d = 2 has a
conditional lower bound of O(m + 1

ε2−o(1)), depending on 3Sum [18].
However, the first bound requires ϕ is also concave (unlike ϕ|| or ϕK which are convex).

So we consider a different convex function ϕ(µR, µB) = µR − µB on weighted points; solving
for it, and again after flipping all signs of weights, corresponds with ϕ|| (which can be used to
approximate ϕK). We show Max-Halfspace for this ϕ is lower bounded by O(m3/2−o(1))
conditional on APSP [41] requiring Ω(n3−o(1)) time.

ISAAC 2021

4:10 Approximate Maximum Halfspace Discrepancy

Figure 2 On left converting the Point-Covering problem into the dual makes it such that a
line contains every ray that it intersects. On right the equivalent bichromatic discrepancy problem
where red points have been placed on the lower envelope.

4.1 Lower Bounds by 3SUM
Gajentaan and Overmars identified a large class of problems in computational geometry
called 3Sum hard [18]. 3Sum can be reduced to each of these problems, so an improvement
in any one of them would imply an improvement in 3Sum. While there are some loose lower
bounds for this problem, 3SUM is conjectured to not be solvable in O(m2−o(1)) time [22, 40].
3Sum reduces to the following problem in O(m log m) time [18].

Problem Point-Covering: From a given set of m halfspaces determine if there is a
point at depth k (k halfspaces lie above this point) where k ≤ m/2.

Through standard point-line duality, we transform this to its equivalent dual problem.

Problem Line-Covering: From a given set of m rays, oriented upwards or downwards,
determine if there is a line cutting through k rays where k ≤ m/2.

Define the piecewise linear function (for k ≤ m/2) on points R, B ∈ R2:

Φ(h) = ϕLC(µR, µB) = |R| − |µR|R| − µB |B| − k| = |R| − ||h ∩ R| − |h ∩ B| − k| .

▶ Lemma 9. Line-Covering is reducible to Max-Halfspace in R2 with ϕLC in O(m log m)
time.

Proof. Construct the lower envelope of all endpoints of the rays; this takes O(m log m) time.
Each upwards oriented ray is replaced with a point at its end point, and placed in R. Each
downward oriented ray is replaced with two points: its endpoint generates a point in B, and
where it intersects the lower envelope generates a point in R. See Figure 2.

Lines now correspond to halfplanes below those lines. Upward ray intersections require
lines above them. Downward rays require lines between the corresponding B and R points:
if a line is above both, they cancel in ϕLC ; if it is below both, it includes neither; if a line is
between them, it only identifies the R point. But the lines below both are below the lower
envelope, and cannot be the optimal halfspace. Thus scanning the generated point set R ∪ B,
if it identifies a halfspace h where Φ(h) > |R|, only then is Line-Covering satisfied. ◀

We can also reduce the exact version to the approximate version. If we run an ε-
approximate Max-Halfspace algorithm, and set ε = 1

2|R| then the approximate range h′

found will be off by at most a count of 1/2 from the optimal range, and hence must be the
optimal solution.

M. Matheny and J. M. Phillips 4:11

▶ Theorem 10. In R2, ε-MaxHalfspace for ϕLC takes Ω(m + 1/ε2−o(1)) assuming the
full input of size m needs to be read, and 3Sum requires Ω(n2−o(1)) time.

Since ϕLC is concave and 1-Lipschitz, this implies any algorithm that works for all concave
ϕ or all 1-Lipschitz ϕ must also take at least this long.

4.2 Lower Bound by All Pairs Shortest Path
We next provide a new construction that directly applies to the ϕ|| function on weighted
points in R2 via a reduction from All Pairs Shortest Path (APSP). We first show the Max-
Weight-3-Clique problem reduces to APSP via another problem Negative-Triangle.

Problem APSP: Given an edge-weighted undirected graph with n vertices, find the
shortest path between every pair of vertices.
Problem Negative-Triangle: Given an edge-weighted undirected graph with n vertices,
determine if there is a triangle with negative total edge weight.
Problem Max-Weight-K-Clique: Given an edge-weighted undirected graph with n

vertices, find the K-clique with the maximum total edge weight.

While the APSP is more well-known, Willams and Williams [41] showed it is equivalent
to the Negative-Triangle problem, which will be more useful. Both have well-known
O(n3) algorithms and are conjectured to not be solvable in less than O(n3−o(1)) time, and
improving that bound on one would improve on the other. Moreover, Backurs et al. [6]
used Max-Weight-K-Clique as a hard problem, believed to require O(nK−o(1)) time, for
which to reduce to several other problems involving rectangles. They note that for K = 3,
Max-Weight-3-Clique is a special case of Negative-Triangle. That is, for a guessed
max-weight ω, one can subtract ω/3 from each edge weight, then multiply all weights by
−1. If there exists a negative triangle with the new weights, there exists a triangle with
weight ω in the original. One can resolve the max weight with logarithmically number of
steps of binary search. Hence, Negative-Triangle (and hence also APSP) reduces to
Max-Weight-3-Clique.

For Max-Weight-3-Clique it is equivalent to assume a 3-partite graph G = (V, E) [6];
that is, the vertices V are the disjoint union of three independent sets A = {a1, a2, . . . , an},
B = {b1, b2, . . . , bn}, and C = {c1, c2, . . . , cn}. Each independent set will have exactly n

vertices and each vertex, for instance ai, will have an edge with every vertex in B and C.
Denote the edge between ai and bj as e(ai, bj) and the weight as w(e(ai, bj)). We reduce to
a dual of halfspace scanning in R2:

Problem Max-Weight-Point: Given m weighted lines find a point which maximizes
the sum of weights of all lines passing below that point (or intersecting that point).

Our reduction will rely on a planar geometric realization of any such graph G with
m = O(n2) lines, where the lines correspond to edges, and triple configurations of lines
correspond with cliques. Given such an instance, if we can solve the Max-Halfspace
algorithm (in the dual as Max-Weight-Point) in better than O(m 3

2 −o(1)) time we can
recover the solution to the Max-Weight-3-Clique problem in better than O(n3−o(1)) time.

The double weighted line gadget. Our full construction will use a special gadget which
will ensure the max weighted point will correspond with a vertex at a triple intersection of a
planar arrangement of lines, with each line corresponding with an edge in G. For this to hold
we instantiate each edge as a double line d(e). This consists of two parallel lines ℓu(e) and

ISAAC 2021

4:12 Approximate Maximum Halfspace Discrepancy

d(e(ai, b1))
<latexit sha1_base64="dSIJnF8d4tGIElrZVmyXOVRiZu8=">AAAENXicdVNdb9MwFPUWBqN8beMFiReLDqmTWBUXlXVIkyahSTwgGIJ9SE1UOc5ta9VxQuwMKiu/g1d4g1/Ab+GBN8QrfwE7XbW1ZZYS3dxzzr3nxnaUCa607/9cWvaurVy/sXqzduv2nbv31tY3jlVa5AyOWCrS/DSiCgSXcKS5FnCa5UCTSMBJNHrh8JMzyBVP5Xs9ziBM6EDyPmdU21QYN6BBe/xJ1CNbW721ut/0fZ8Qgl1Adp75Ntjd7bRIBxMH2VXff7A3gu/fVg57695GEKesSEBqJqhSXeJnOjQ015wJKGtBoSCjbEQH0LWhpAmo0FSuS/zYZmLcT3P7SI2rbC1QYGeQAz00gYZP+iOP9XCv3WxzWc6AbuArwYzmXMbWVWn8JFnA1IhnpWk12xV24dHQRKlxEllvCdVDNY+55P+wbqH7ndBwmRUaJCvxjBAKxXKe6YVWVblaYOdgaZJQGZsAMlWa4IzmNuAilXOwHclttbJzBVxDYsvh7Vamq6Eg29smk1in2RSyFXK4XIOVXRLaTlIVOTgLJjgo3lUOTZ2U5YIgWhS4dxRN6ZfJoxjKyc4pZtzHHB4VQliCTCf7gzerDOhN7P7aDFPEVWMb9XGg+n2acDHGrucs0Z36iUUrMcErmg/A0S5EcwLG9Xnl6syZSBRg2ZrLMe7WSTjf4M3hwevLnqe6HGIrc00d43mJrbBWs7doelXw1cFxq0meNltvSX2/gSZrFT1Ej1ADEbSD9tFLdIiOEEMf0Gf0BX31fni/vN/enwl1eelccx/NLO/vP+gQdAw=</latexit>

d(e(ai, b2))
<latexit sha1_base64="vou2FqpnHqfdojcW4f51oTMGaiA=">AAAENXicdVNdb9MwFPUWBqN8beMFiReLDqmTWBUXlXVIkyahSTwgGIJ9SE1UOc5tazVxgu0MKiu/g1d4g1/Ab+GBN8QrfwE7XbW1ZZYS3dxzzr3nxnaUJ1xp3/+5tOxdW7l+Y/Vm7dbtO3fvra1vHKuskAyOWJZk8jSiChIu4EhzncBpLoGmUQIn0eiFw0/OQCqeifd6nEOY0oHgfc6otqkwbkCD9viTqNfa2uqt1f2m7/uEEOwCsvPMt8HubqdFOpg4yK76/oO9EXz/tnLYW/c2gjhjRQpCs4Qq1SV+rkNDpeYsgbIWFApyykZ0AF0bCpqCCk3lusSPbSbG/UzaR2hcZWuBAjuDGOihCTR80h95rId77Wabi3IGdANfCeZUchFbV6Xx03QBUyOel6bVbFfYhUdDU6XGaWS9pVQP1Tzmkv/DuoXud0LDRV5oEKzEM0IoFJM81wutqnK1wM7BsjSlIjYB5Ko0wRmVNuBJJuZgO5LbamXnCriG1JbD261cV0NBvrdNJrHO8ilkK0i4XIOVXRLaTkIVEpwFExwU7yqHpk7KckEQLQrcO4qm9MvkUQzlZOcUM+5jDo+KJLEEkU32B29WGdCb2P21GWYSV41t1MeB6vdpypMxdj1nie7UTyxaiQleUTkAR7sQzQkY1+eVqzNnoqQAy9ZcjHG3TsL5Bm8OD15f9jzVSYitzDV1jOcltsJazd6i6VXBVwfHrSZ52my9JfX9BpqsVfQQPUINRNAO2kcv0SE6Qgx9QJ/RF/TV++H98n57fybU5aVzzX00s7y//wDr13QN</latexit>

d(e(ai, b3))
<latexit sha1_base64="gaMOWlKws94Wk8Rowp4789Q2CRE=">AAAENXicdVNdb9MwFPUWBqN87IMXJF4sOqROYlXcaaxDqjQJTeIBwRDsQ2qiynFuO6uxE2JnUFn5HbzCG/wCfgsPvCFe+QvY6aqtLbOU6Oaec+49N7ajLOFK+/7PhUXvxtLNW8u3a3fu3ru/srq2fqzSImdwxNIkzU8jqiDhEo401wmcZjlQESVwEg1fOPzkHHLFU/lejzIIBR1I3ueMapsK4wY0aI8/jXrbm5u91brf9H2fEIJdQHaf+TbY22u3SBsTB9lV33/YGcL3b0uHvTVvPYhTVgiQmiVUqS7xMx0ammvOEihrQaEgo2xIB9C1oaQCVGgq1yV+YjMx7qe5faTGVbYWKLAzyIE+M4GGT/ojj/VZZ6e5w2U5BbqBrwUzmnMZW1el8YWYw9SQZ6VpNXcq7NKjoUKpkYisN0H1mZrFXPJ/WLfQ/XZouMwKDZKVeEoIhWI5z/Rcq6pcLbBzsFQIKmMTQKZKE5zT3AY8SeUMbEdyW63sXAHXIGw5vNXKdDUUZJ0tMo51mk0gWyGHqzVY2SWh7SRVkYOzYIKD4l3l0NRJWc4JonmBe0fRhH6VPIyhHO+cYsZ9zOBRkSSWINPx/uCNKgN6A7u/NsVM4qqxjfo4UP0+FTwZYddzmuhO/diilZjgFc0H4GiXohkB4/qicnXmTJQUYNmayxHu1kk42+DN4cHrq54nuhxiK3NNHeN5ia2wVrO3aHJV8PXBcatJtputt6S+30DjtYweoceogQjaRfvoJTpER4ihD+gz+oK+ej+8X95v78+YurhwoXmAppb39x/vnnQO</latexit>

d(
e(
a i
, c 1

))

<latexit sha1_base64="UX0KGJLKFIBz9za3Oe9QMWvduAQ=">AAAENXicdVPLbtQwFHUbCmV4tWWDxMZiijSVYJSkT5AqVUKVWCAogj6kSTRynDtTaxLH2E5hZOU72MIOvoBvYcEOseUXsDMdtTNDLSW6ueece8+N7URkTGnf/zk3711buH5j8Wbj1u07d+8tLa8cqaKUFA5pkRXyJCEKMsbhUDOdwYmQQPIkg+Nk8MLhx2cgFSv4ez0UEOekz1mPUaJtKk5b0CJd9oR2g7W17lLTbz/b2Qo3trDf9v3tIAxcEG5vrG/gwGbcau492B3A928LB91lbyVKC1rmwDXNiFKdwBc6NkRqRjOoGlGpQBA6IH3o2JCTHFRsatcVfmwzKe4V0j5c4zrbiBTYGXhfn5pIwyf9kaX6dHezvcl4NQG6ga8EBZGMp9ZVZfw8n8HUgInKhO3NGrvwaEiu1DBPrLec6FM1jbnk/7BOqXs7sWFclBo4rfCEEEpFJRN6plVdrhHZOWiR54SnJgKhKhOdEWkDlhV8CrYjua1Wdq6IachtOfw0FLoeCsTu02AU60KMIVtBwuUatOoEse3EVSnBWTDRfvmudmiaQVXNCJJZgXsnyZh+mTxIoRrtnKLGfUzhSZlllsCL0f7g1ToDehW7vzbBzNK6sY16OFK9HslZNsSu5yTRnfqRRSsx0Ssi++BoF6IpAWX6vHJ95kySlWDZmvEh7jSDeLrBm4P915c9j3USUitzTR3jeYWtsNGwt2h8VfDVwVHYDtbb4duguddCo7WIHqJHqIUCtI320Et0gA4RRR/QZ/QFffV+eL+8396fEXV+7lxzH00s7+8/Gg10GQ==</latexit>

d(
e(
a i
, c 2

))

<latexit sha1_base64="wQSVwMjoCoiQ3IwopGjUHjqu8aE=">AAAENXicdVPLbtQwFHUbCmV4tWWDxMZiijSVYJSkT5AqVUKVWCAogj6kSTRynDtTa2wnxE5hZOU72MIOvoBvYcEOseUXsDMdtTNDLSW6ueece8+N7STnTGnf/zk3711buH5j8Wbj1u07d+8tLa8cqawsKBzSjGfFSUIUcCbhUDPN4SQvgIiEw3EyeOHw4zMoFMvkez3MIRakL1mPUaJtKk5b0CJd9oR2w7W17lLTbz/b2Qo3trDf9v3tIAxcEG5vrG/gwGbcau492B3A928LB91lbyVKM1oKkJpyolQn8HMdG1JoRjlUjahUkBM6IH3o2FASASo2tesKP7aZFPeywj5S4zrbiBTYGWRfn5pIwyf9kaX6dHezvclkNQG6ga8Ec1IwmVpXlfGFmMHUgOWVCdubNXbh0RCh1FAk1psg+lRNYy75P6xT6t5ObJjMSw2SVnhCCKWiBcv1TKu6XCOyc9BMCCJTE0GuKhOdkcIGjGdyCrYjua1Wdq6IaRC2HH4a5roeCvLdp8Eo1lk+hmyFAi7XoFUniG0nqcoCnAUT7ZfvaoemGVTVjCCZFbh3kozpl8mDFKrRzilq3McUnpScW4LMRvuDV+sM6FXs/toEk6d1Yxv1cKR6PSIYH2LXc5LoTv3IopWY6BUp+uBoF6IpAWX6vHJ95kzCS7BszeQQd5pBPN3gzcH+68uex7oCUitzTR3jeYWtsNGwt2h8VfDVwVHYDtbb4duguddCo7WIHqJHqIUCtI320Et0gA4RRR/QZ/QFffV+eL+8396fEXV+7lxzH00s7+8/HdR0Gg==</latexit>

d(
e(
a i
, c 3

))

<latexit sha1_base64="pexwm2WPUzYMPiwVz1EB+qPk9bw=">AAAENXicdVPLbtQwFHUbCmV4tWWDxMZiijSVYJSkT5AqVUKVWCAogj6kSTRynDtTa2LHxE5hZOU72MIOvoBvYcEOseUXsDMdtTNDLSW6ueece8+N7URmTGnf/zk3711buH5j8Wbj1u07d+8tLa8cqbwsKBzSPMuLk4QoyJiAQ810BieyAMKTDI6TwQuHH59BoVgu3uuhhJiTvmA9Rom2qThtQYt02RPaXV9b6y41/fazna1wYwv7bd/fDsLABeH2xvoGDmzGrebeg90BfP+2cNBd9laiNKclB6FpRpTqBL7UsSGFZjSDqhGVCiShA9KHjg0F4aBiU7uu8GObSXEvL+wjNK6zjUiBnUH09amJNHzSH1mqT3c325tMVBOgG/hKUJKCidS6qozP+QymBkxWJmxv1tiFR0O4UkOeWG+c6FM1jbnk/7BOqXs7sWFClhoErfCEEEpFCyb1TKu6XCOyc9CccyJSE4FUlYnOSGEDluViCrYjua1Wdq6IaeC2HH4aSl0PBXL3aTCKdS7HkK1QwOUatOoEse0kVFmAs2Ci/fJd7dA0g6qaESSzAvdOkjH9MnmQQjXaOUWN+5jCkzLLLEHko/3Bq3UG9Cp2f22CmaV1Yxv1cKR6PcJZNsSu5yTRnfqRRSsx0StS9MHRLkRTAsr0eeX6zJkkK8GyNRND3GkG8XSDNwf7ry97HusKSK3MNXWM5xW2wkbD3qLxVcFXB0dhO1hvh2+D5l4LjdYieogeoRYK0DbaQy/RATpEFH1An9EX9NX74f3yfnt/RtT5uXPNfTSxvL//ACGbdBs=</latexit>

d(e(b1, c1))
<latexit sha1_base64="BLLtx+ns2ak/btlDs838b7ZnJ4s=">AAAENXicdVNdaxNBFJ12rdb41dYXwZfFVEjBhmykKEKhIAUfRCOatpBdwuzsTTJkZnacma2GYX+Hr/qmv8Df4oNv4qt/wZlNQptEB3a5e8859567M5NKRrVptX6srQdXNq5e27xeu3Hz1u07W9s7JzovFIEuyVmuzlKsgVEBXUMNgzOpAPOUwWk6fu7x03NQmubinZlISDgeCjqgBBuXSrIGNNJ+9Ij0o729/la91WxVK1wNollQP7p3OIZvXzc6/e1gJ85yUnAQhjCsdS9qSZNYrAwlDMpaXGiQmIzxEHouFJiDTmzlugwfukwWDnLlHmHCKluLNbgZxNCMbGzgo/lAMzM6PGgeUFEugH7g/4ISKyoy56q0Lc5XMD2msrTt5kGFXXi0mGs94anzxrEZ6WXMJ/+F9QozeJpYKmRhQJAyXBBCoYmi0qy0qsrVYjcHyTnHIrMxSF3a+BwrF1CWiyXYjeS3Wru5YmqAu3LhfluaaiiQh/vRNDa5nEOugoLLNUjZixLXSehCgbdg4+PibeXQ1qOyXBGkqwL/TtM5/TJ5nEE53TlNrP9YwtOCMUcQ+XR/wt0qA2Y39H9tgcmyqrGLBmGsBwPMKZuEvuci0Z/6qUUnsfFLrIbgaReiJQGhZla5OnM2ZQU4tqFiEvbqUbLc4HXn+NVlz3OdgszJfFPPeFaGTliruVsULd+Z1eCk3YweN9tvovpRA03XJrqPHqAGitATdIReoA7qIoLeo0/oM/oSfA9+Br+C31Pq+tpMcxctrODPX1SDc6A=</latexit>

d(e(b2, c1))
<latexit sha1_base64="zdZ7jxL7mpNRXItgIe7dC427gwo=">AAAENXicdVNdaxNBFJ12rdb41dYXwZfFVEjBhmykKEKhIAUfRCOatpBdwuzsTTJkZnacma2GYX+Hr/qmv8Df4oNv4qt/wZlNQptEB3a5e8859567M5NKRrVptX6srQdXNq5e27xeu3Hz1u07W9s7JzovFIEuyVmuzlKsgVEBXUMNgzOpAPOUwWk6fu7x03NQmubinZlISDgeCjqgBBuXSrIGNNJ++xHpR3t7/a16q9mqVrgaRLOgfnTvcAzfvm50+tvBTpzlpOAgDGFY617UkiaxWBlKGJS1uNAgMRnjIfRcKDAHndjKdRk+dJksHOTKPcKEVbYWa3AziKEZ2djAR/OBZmZ0eNA8oKJcAP3A/wUlVlRkzlVpW5yvYHpMZWnbzYMKu/BoMdd6wlPnjWMz0suYT/4L6xVm8DSxVMjCgCBluCCEQhNFpVlpVZWrxW4OknOORWZjkLq08TlWLqAsF0uwG8lvtXZzxdQAd+XC/bY01VAgD/ejaWxyOYdcBQWXa5CyFyWuk9CFAm/BxsfF28qhrUdluSJIVwX+naZz+mXyOINyunOaWP+xhKcFY44g8un+hLtVBsxu6P/aApNlVWMXDcJYDwaYUzYJfc9Foj/1U4tOYuOXWA3B0y5ESwJCzaxydeZsygpwbEPFJOzVo2S5wevO8avLnuc6BZmT+aae8awMnbBWc7coWr4zq8FJuxk9brbfRPWjBpquTXQfPUANFKEn6Ai9QB3URQS9R5/QZ/Ql+B78DH4Fv6fU9bWZ5i5aWMGfv1hOc6E=</latexit>

d(e(b3, c1))
<latexit sha1_base64="0R69sfI9XTTZu/S5MkjqgDzsMxI=">AAAENXicdVNdaxNBFJ12rdb40Q9fBF8WUyEFG7IpQREKBSn4IFrRtIXsEmZnb5IhM7PjzGw1DPs7fNU3/QX+Fh98E1/9C85sUtokOrDL3XvOuffcnZlUMqpNq/VjZTW4tnb9xvrN2q3bd+5ubG5tn+i8UAS6JGe5OkuxBkYFdA01DM6kAsxTBqfp+LnHT89BaZqLd2YiIeF4KOiAEmxcKska0Ej7+49JP9rd7W/WW81WtcLlIJoF9cP7B2P49nXtuL8VbMdZTgoOwhCGte5FLWkSi5WhhEFZiwsNEpMxHkLPhQJz0ImtXJfhI5fJwkGu3CNMWGVrsQY3gxiakY0NfDQfaGZGB51mh4pyDvQD/xeUWFGROVelbXG+hOkxlaVtNzsVdunRYq71hKfOG8dmpBcxn/wX1ivM4GliqZCFAUHKcE4IhSaKSrPUqipXi90cJOcci8zGIHVp43OsXEBZLhZgN5Lfau3miqkB7sqFe21pqqFAHuxF09jk8gJyFRRcrUHKXpS4TkIXCrwFGx8VbyuHth6V5ZIgXRb4d5pe0K+SxxmU053TxPqPBTwtGHMEkU/3J9ypMmB2Qv/X5pgsqxq7aBDGejDAnLJJ6HvOE/2pn1p0Ehu/xGoInnYpWhAQamaVqzNnU1aAYxsqJmGvHiWLDV4fH7266vlCpyBzMt/UM56VoRPWau4WRYt3Zjk4aTej/Wb7TVQ/bKDpWkcP0EPUQBF6gg7RC3SMuoig9+gT+oy+BN+Dn8Gv4PeUuroy09xDcyv48xdcGXOi</latexit>

B,C bundles
<latexit sha1_base64="RZH2yXEHrI9gj6MUuKHBiItgfnY=">AAAENXicdVPLbhMxFHU7PEJ4tWXJxiJB6oJGmaAKhFQpoqrEAkERpK2UGVUez01qxfYY21OIrPkOtvAVfAsLdogtv4A9adQmAUszunPPOfeeO7YzxZmx3e6PtfXo2vUbNxu3mrfv3L13f2Nz68gUpaYwoAUv9ElGDHAmYWCZ5XCiNBCRcTjOJvsBPz4HbVghP9ipglSQsWQjRon1qbT98sl+G2elzDmY041Wt9OtF14N4oug1W+geh2ebkZbSV7QUoC0lBNjhnFX2dQRbRnlUDWT0oAidELGMPShJAJM6mrXFX7sMzkeFdo/0uI620wM+Bnk2J65xMJn+4nl9mxvt7PLZLUAhoH/Cyqimcy9q8p1hVjBzISpyvU6uzV26dERYcxUZN6bIPbMLGMh+S9sWNrR89QxqUoLklZ4QQiloZopu9KqLtdM/By0EILI3CWgTOWSc6J9wHghl2A/Uthq4+dKmAXhy+GdnrL1UKD2duJZbAs1h3wFDVdr0GoYp76TNKWGYMElB+X72qFrxVW1IshWBeGdZXP6VfIkh2q2c4a68LGEZyXnniCL2f7gdp0B28bhry0weV439tEIJ2Y0IoLxKQ49F4nh1M8seolLXhM9hkC7FC0JKLMXlesz5zJegmdbJqd42IrT5QZvDw/eXPU812nIvSw0DYwXFfbCZtPfonj5zqwGR71O/LTTe9dr9bdn1wk10EP0CG2jGD1DffQKHaIBougj+oK+om/R9+hn9Cv6PaOur11oHqCFFf35C4qCcbg=</latexit>

A,B bundles
<latexit sha1_base64="lBJWgD3uvu1Z2wfuvzxJ0Oq3sEA=">AAAENXicdVNdb9MwFPUWPkb52sYjLxYt0h5YFReNbUiTCmgSDwiKYB9SE02Oc9tZtZ0QO4PKyu/gFX4Fv4UH3hCv/AXsdNXWlllKdHPPOfeeG9tJLrg2YfhzaTm4dv3GzZVbjdt37t67v7q2fqizsmBwwDKRFccJ1SC4ggPDjYDjvAAqEwFHyeiVx4/OoNA8Ux/NOIdY0qHiA86ocam49eLJyxZOSpUK0CerzbAdhiEhBPuAbD8LXbC7u9MhO5h4yK1mdwXVq3eyFqxHacZKCcowQbXukzA3saWF4UxA1YhKDTllIzqEvgsVlaBjW7uu8GOXSfEgK9yjDK6zjUiDm0ENzamNDHwxn3lqTve22ltcVTOgH/hKMKcFV6lzVdlQygVMj3he2U57q8YuPFoqtR7LxHmT1Jzqecwn/4f1SzPYiS1XeWlAsQrPCKHUrOC5WWhVl2tEbg6WSUlVaiPIdWWjM1q4gItMzcFuJL/V2s0VcQPSlcObndzUQ0G+t0kmscnyKeQqFHC5Bqv6JHadlC4L8BZstF9+qB3aJqmqBUGyKPDvJJnSL5NHKVSTndPM+o85PCmFcASVTfYHt+oMmBb2f22GKdK6sYsGONKDAZVcjLHvOUv0p35i0Uls9IYWQ/C0C9GcgHFzXrk+czYRJTi24WqM+00Szzd419t/e9nzVFdA6mS+qWc8r7ATNhruFk2vCr46OOy0ydN2532n2d2YXCe0gh6iR2gDEbSNuug16qEDxNAn9BV9Q9+DH8Gv4HfwZ0JdXjrXPEAzK/j7D0mfcew=</latexit>

A,
C
bu
nd
les

<latexit sha1_base64="cowVFIxGCQvf8mqzyPatb04eq7Q=">AAAENXicdVPLbtQwFHUbHsPw6IMlG4sZpC7oKEmfIFUaVFVigaAI+pAmUeU4d6bWOE6wncLIynewha/gW1iwQ2z5BexMR+3MUEuJbu45595zYzspOFPa938uLHq3bt+527jXvP/g4aOl5ZXVY5WXksIRzXkuTxOigDMBR5ppDqeFBJIlHE6S4b7DTy5AKpaLj3pUQJyRgWB9Rom2qbj96vl+GyelSDmos+WW33mxux1ubmO/4/s7QRi4INzZ3NjEgc241eo2UL0Oz1a81SjNaZmB0JQTpXqBX+jYEKkZ5VA1o1JBQeiQDKBnQ0EyULGpXVf4mc2kuJ9L+wiN62wzUmBnEAN9biINX/Rnlurzva3OFhPVFOgGvhEsiGQita4q42fZHKaGrKhM2NmqsSuPhmRKjbLEesuIPlezmEv+D+uVur8bGyaKUoOgFZ4SQqmoZIWea1WXa0Z2DppnGRGpiaBQlYkuiLQB47mYge1IbquVnStiGjJbDq+Hha6HgmJvPRjHOi8mkK0g4XoNWvWC2HYSqpTgLJjooPxQOzStoKrmBMm8wL2TZEK/Th6mUI13TlHjPmbwpOTcEkQ+3h/crjOg29j9tSkmT+vGNurjSPX7JGN8hF3PaaI79WOLVmKiN0QOwNGuRDMCyvRl5frMmYSXYNmaiRHutYJ4tsG7w4O31z1PdBJSK3NNHeNlha2w2bS3aHJV8M3BcdgJNjrh+7DVXRtfJ9RAT9BTtIYCtIO66DU6REeIok/oK/qGvns/vF/eb+/PmLq4cKl5jKaW9/cfe5Jx+Q==</latexit>

a1
<latexit sha1_base64="GJpc6NgmNKGhdla/GdQwz2jx4r4=">AAAEK3icdVPLbhMxFHU7PEp49LXsxiJFqpAazQRCEVKlSqgSCwRFpQ8pE1Uez01ixfZYtqcQWfMJbGHBN/Ab/AArEFs+gh2emUZtEmppRnfuOefec8d2ojgzNgx/LiwGN27eur10p3H33v0Hyyura8cmyzWFI5rxTJ8mxABnEo4ssxxOlQYiEg4nyehliZ+cgzYsk+/tWEFPkIFkfUaJ9alDchadrTTDVlgtHLY6YfvZThvXmacRji6g5t66+vr3++ONg7PVYC1OM5oLkJZyYkw3CpXtOaItoxyKRpwbUISOyAC6PpREgOm5ymuBH/lMivuZ9o+0uMo2YgPeuRzYoYstfLQfWGqHu51Wh8liCizHvBZURDOZeleFC4WYw8yIqcK1W50Ku/ToiDBmLBLvTRA7NLNYmfwf1s1t/3nPMalyC5IWeEoIuaGaKTvXqirXiP0cNBOCyNTFoEzh4nOifcB4JmdgP1K5wcbPFTMLwpfD221lq6FA7W5HdWwzNYF8BQ1Xa9CiG/V8J2lyDaUFF+/nh5VD14yKYk6QzAvKd5JM6FfJoxSKeucMdeXHDJ7knHuCzOr9wZtVBuwmLv/aFJOnVWMf9XFs+n0iGB/jsuc0sTzrtUUvcfFrogdQ0i5FMwLK7EXl6sy5hOfg2ZbJMe42o95sg7cH+2+uep7oNKReVjYtGS8K7IWNhr9Fk6uCrw+O263oSav9LmrubaF6LaEN9BBtoQjtoD30Ch2gI0TRAH1Cn9GX4FvwI/gV/K6piwsXmnU0tYI//wDeOHFz</latexit>

a2
<latexit sha1_base64="Bt399rRwUFvmWq1dNSSn2kCX9dQ=">AAAEK3icdVPLbtQwFHUJjzK8+lh2YzFFqpA6SgJDEVKlSqgSCwRFpQ9pMqoc587UGsexbKcwsvIJbGHBN/Ab/AArEFs+gh120lE7M9RSopt7zrn33NhOJWfahOHPhWvB9Rs3by3ebt25e+/+g6XllUNdlIrCAS14oY5TooEzAQeGGQ7HUgHJUw5H6eilx4/OQGlWiPdmLKGfk6FgA0aJcal9chKfLLXDTlgvHHa6YfxsK8ZN5mmEo3OovbMqv/79/nht72Q5WEmygpY5CEM50boXhdL0LVGGUQ5VKyk1SEJHZAg9FwqSg+7b2muFH7lMhgeFco8wuM62Eg3OuRiaU5sY+Gg+sMycbnc7XSaqKdCPeSUoiWIic64qG+b5HKZHTFY27nRr7MKjJbnW4zx13nJiTvUs5pP/w3qlGTzvWyZkaUDQCk8JodRUMWnmWtXlWombgxZ5TkRmE5C6sskZUS5gvBAzsBvJb7B2cyXMQO7K4c1YmnookNubURObQk4gV0HB5Rq06kV910noUoG3YJPdcr92aNtRVc0J0nmBf6fphH6ZPMqganZOU+s/ZvC05NwRRNHsD16vM2DWsf9rU0ye1Y1dNMCJHgxIzvgY+57TRH/WG4tOYpPXRA3B0y5EMwLKzHnl+szZlJfg2IaJMe61o/5sg7d7u28ue57oFGRO5pt6xosKO2Gr5W7R5Krgq4PDuBM96cTvovbOBmrWIlpDD9EGitAW2kGv0B46QBQN0Sf0GX0JvgU/gl/B74Z6beFcs4qmVvDnH+H9cXQ=</latexit>

a3
<latexit sha1_base64="jnnYa+n5wy2SgoEqewYQm5bNANE=">AAAEK3icdVPLbhMxFHU7PEp49bHsxiJFqpAazaSEIqRKlVAlFgiKSh9SJqo8npvEiu2xbE8hsuYT2MKCb+A3+AFWILZ8BDs8M43aJNTSjO7cc869547tRHFmbBj+XFgMbty8dXvpTuPuvfsPHi6vrB6bLNcUjmjGM32aEAOcSTiyzHI4VRqISDicJKOXJX5yDtqwTL63YwU9QQaS9Rkl1qcOydn22XIzbIXVwmGrE7af7bRxnXka4egCau6tqa9/vz9ZPzhbCVbjNKO5AGkpJ8Z0o1DZniPaMsqhaMS5AUXoiAyg60NJBJieq7wW+LHPpLifaf9Ii6tsIzbgncuBHbrYwkf7gaV2uNtpdZgspsByzGtBRTSTqXdVuFCIOcyMmCpcu9WpsEuPjghjxiLx3gSxQzOLlcn/Yd3c9p/3HJMqtyBpgaeEkBuqmbJzrapyjdjPQTMhiExdDMoULj4n2geMZ3IG9iOVG2z8XDGzIHw5vNVWthoK1O5WVMc2UxPIV9BwtQYtulHPd5Im11BacPF+flg5dM2oKOYEybygfCfJhH6VPEqhqHfOUFd+zOBJzrknyKzeH7xRZcBu4PKvTTF5WjX2UR/Hpt8ngvExLntOE8uzXlv0Ehe/JnoAJe1SNCOgzF5Urs6cS3gOnm2ZHONuM+rNNnh7sP/mqueJTkPqZWXTkvGiwF7YaPhbNLkq+PrguN2Ktlvtd1FzbxPVawmto0doE0VoB+2hV+gAHSGKBugT+oy+BN+CH8Gv4HdNXVy40KyhqRX8+QflwnF1</latexit>

Figure 3 Max-Weight-Point construction with n = 3. Left: intersection of ai blue and red
bundles with all black double lines. Right: relation of the bundles, with 3 ai intersections marked.

ℓl(e), separated vertically by a gap of a small positive value α ≪ 1, with ℓu(e) above ℓl(e).
In what follows we will refer to a double line as a single line; to be precise this will refer to
a line at the midpoint between ℓl and ℓu. Let w̄ = 2 maxe∈E |w(e)| + 1 be a large enough
value so for any e ∈ E that w̄ + w(e) is strictly positive, and any |w(e)| < w̄/2. Then we
denote the weight of the double line as w(d(e)) = w(e) + w̄. This is transferred to the lines
as w(ℓu(e)) = −w(d(e)) and w(ℓl(e)) = w(d(e)).

Now given a query point x ∈ R2 we say it is on d(e) if it lies between lines ℓl(e) and ℓu(e),
and not on otherwise. This will allow us to control the effect of e on query x in a precise way.

▶ Lemma 11. Any point x that lies on d(e) will have weight contributed to it by e of exactly
w(e) + w̄; otherwise that contribution will be 0.

Reduction to triple intersections. Our construction will place double lines for each edge in
the graph. The edges from A to B will be blue lines; from A to C will be red lines, and from
B to C will be black lines. All lines of the same color will be parallel; this will ensure that
any query point x ∈ R2 can only be on one double line of each color. For easy of exposition,
in our construction description (and illustration; see Figure 3) the black lines will be vertical,
which makes ambiguous the “above” relation; so the final step will be to rotate the entire
construction clockwise by a small angle (less than π/4 radians).

The construction will now lay out the double lines so that every clique {ai, bj , ck} will be
realized as a triple intersection of double lines d(e(ai, bj)), d(e(ai, ck)), and d(e(bj , ck)) and
so there are no other types of triple intersections. Such a triple intersection will have weight
precisely w(e(ai, bj)) + w(e(ai, ck)) + w(e(bj , ck)) + 3w̄ > (3/2)w̄, and any other point (e.g.,
a double intersection) must have weight strictly less than (3/2)w̄.

▶ Lemma 12. The maximum weight point must occur at a triple intersection of three double
lines of different colors, and thus must correspond the max weight 3-clique.

The full construction. The blue lines (using A to B edges) will all be horizontal. Edge
e(ai, bj) will have y-coordinate yi,j = −j − i(5n2) so that yi,j+1 = yi,j − 1 and so yi+1,j =
yi,j − 3n2. Set y1,1 = −5n2 − 1. This bundles the blue lines associated with the same ai

point. Figure 3 shows a single bundle (left) and structure of all bundles (right).

M. Matheny and J. M. Phillips 4:13

The red lines (using A to C edges) will be at a 45 degree angle (a slope of 1), similarly
clustered by their ck values. Double line d(e(ai, ck)) will have equation y = x + oi,k. We
define the offsets oi,k = −k(3n) − i(5n2) so that o1,1 = −3n − 5n2; oi,k+1 = oi,k − 3n and
oi+1,k = oi,k − 5n2. And in particular, double lines d(e(ai, bj)) (at horizontal yi,j) and
d(e(ai, ck)) (at offset oi,k) will intersect at x-value xj,k = yi,j − oi,k.

The black lines (using B and C) will be vertical. Edge d(e(bj , ck)) will have x coordinate
xj,k, defined xj,k = yi,j − oi,k = −j + (3n)k. Also, these xj,k values will be distinct for
different values of j, k, but independent of the choice of ai. Moreover, these are the same
x-coordinates where the corresponding red and blue lines intersect. Thus each black line
d(e(bj , ck)) intersects the intersection of blue line d(e(ai, bj)) and d(e(ai, ck)) for each ai.

Finally, note that all black lines are in the x range [−3n2, 0] we can argue that they do
not cause any other triple intersections. Because the each red bundle has offsets separated by
more than 3n2 then a red bundle associated with ai cannot intersect a blue bundle associated
ai′ for i ̸= i′ since the red lines have linear slope and the blue bundles are also separated
by more than 3n2. Thus the intended triple intersections (of d(e(ai, bj)), d(e(ai, ck)), and
d(e(bj , ck))) are the only ones in this construction.

In total there are n2 blue, n2 blue, and n2 black double lines, thus m = O(n2). Hence,
Max-Weight-3-Clique on n vertices reduces to Max-Halfspace in time O(n2). Then
reversing the dual mapping, we consider each dual line as two points, one in R and one in B,
and this corresponds with the Max-Halfspace problem in R2 with ϕ||. Then since APSP
reduces to Max-Weight-3-Clique, we obtain the following theorem.

▶ Theorem 13. In R2, Max-Halfspace for ϕ|| on m points requires Ω(m3/2−o(1)) time
assuming that APSP on n vertices requires Ω(n3−o(1)) time.

5 Conclusions and Discussion

We have mostly closed the planar ε-Max-Halfspace problem with an Õ(m+1/εd) algorithm
in Rd and conditional (to 3Sum) Ω(m + 1/ε2−o(1)) lower bound in R2. However, the lower
bound uses a piecewise-linear function ϕLC , and while all known algorithmic improvements
that depend on ϕ take advantage of this linear structure (e.g., for rectangles [3, 28]),
the function ϕLC , perhaps strangely, is concave. Also surprisingly we can prove another
conditional lower bound for Max-Halfspace using a convex (in fact, again linear) function
ϕ, but this one is smaller at Ω(m3/2−o(1)) in R2, and because some point may have very
small weight in the construction, does not directly apply to ε-Max-Halfspace, which allows
ε additive error. Moreover, this reduces to APSP, which does not appear to be in the same
class as 3Sum [40].

We leave several curious aspects to future work. Is there a real fine-grained complexity
difference between the ϕ variants in the problems? That is, can we improve upper bounds
for convex ϕ, or improve conditional lower bounds in this case? And can we condition the
results on 3Sum in the convex ϕ case? The convex ϕ lower bound construction relies on
weighted points, can we obtain improved algorithmic runtime by only allowing {−1, +1}
weights? Moreover, are the polynomial terms (1/ε)d in the algorithmic runtime correct in
constant dimensions larger than d = 2? And can these results help resolve polynomial terms
in the high-dimensional robust statistics settings? An anonymous reviewer has suggested
to use data structure for relative-error approximate counting on an ε-sample of halfspaces,
and has argued that this can reduce the space requirements to o(1/εd); given our focus on
the runtime of the maximum halfspace problem, we did not pursue this space improvement.
If the runtime can be reduced to o(1/εd) clearly such a reduction in the space complexity
would also be required.

ISAAC 2021

4:14 Approximate Maximum Halfspace Discrepancy

References
1 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three dimensions.

In SODA, 2009.
2 Deepak Agarwal, Andrew McGregor, Jeff M. Phillips, Suresh Venkatasubramanian, and

Zhengyuan Zhu. Spatial scan statistics: Approximations and performance study. In KDD,
2006.

3 Deepak Agarwal, Jeff M. Phillips, and Suresh Venkatasubramanian. The hunting of the bump:
On maximizing statistical discrepancy. In SODA, 2006.

4 Pankaj K. Agarwal. Simplex range searching. Journey Through Discrete Mathematics, pages
1–30, 2017.

5 Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems.
SICOMP, 38:899–921, 2008.

6 Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight hardness results for maximum
weight rectangles. In ICALP, 2016.

7 Jérémy Barbay, Timothy M. Chan, Gonzalo Navarro, and Pablo Pérez-Lantero. Maximum-
weight planar boxes in time (and better). Information Processing Letters, 114(8):437–445,
2014.

8 Mark De Berg and Otfried Schwarzkopf. Cuttings and applications. International Journal of
Computational Geometry and Applications, 5:343–355, 1995.

9 Bernard Chazelle. Geometric discrepancy revisited. In FOCS, 1993.
10 Bernard Chazelle. The Discrepancy Method. Cambridge University Press, 2001.
11 Sitan Chen, Frederic Koehler, Ankur Moitra, and Morris Yau. Classification under misspe-

cification: Halfspaces, generalized linear models, and connections to evolvability. NeurIPS,
2020. arXiv:2006.04787.

12 Ilias Diakonikolas, Themis Gouleakis, and Christos Tzamos. Distribution-independent pac
learning of halfspaces with massart noise. arXiv preprint, 2019. arXiv:1906.10075.

13 Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis.
Agnostic proper learning of halfspaces under gaussian marginals. arXiv preprint, 2021.
arXiv:2102.05629.

14 Ilias Diakonikolas, Daniel M Kane, and Nikos Zarifis. Near-optimal sq lower bounds for
agnostically learning halfspaces and relus under gaussian marginals. arXiv preprint, 2020.
arXiv:2006.16200.

15 Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Learning halfspaces
with tsybakov noise. arXiv preprint, 2020. arXiv:2006.06467.

16 David Dobkin and David Eppstein. Computing the discrepancy. In Proceedings 9th Annual
Symposium on Computational Geometry, 1993.

17 David P. Dobkin, David Eppstein, and Don P. Mitchell. Computing the discrepancy with
applications to supersampling patterns. ACM Transactions on Graphics, 15:354–376, 1996.

18 Anka Gajentaan and Mark H. Overmars. On a class of o(n2) problems in computational
geometry. Computational Geometry, 5:165–185, 1995.

19 Sariel Har-Peled. Geometric Approximation Algorithms. AMS, 2011.
20 David Haussler and Emo Welzl. epsilon-nets and simplex range queries. Discrete and

Computational Geometry, 2:127–151, 1987.
21 Lan Huang, Martin Kulldorff, and David Gregorio. A spatial scan statistic for survival data.

BioMetrics, 63:109–118, 2007.
22 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 3SUM hardness in (dynamic) data structures.

Technical report, arXiv, 2014. arXiv:1407.6756.
23 Martin Kulldorff. A spatial scan statistic. Communications in Statistics: Theory and Methods,

26:1481–1496, 1997.
24 Martin Kulldorff. SatScan User Guide, 7.0 edition, 2006. URL: http://www.satscan.org/.
25 Yi Li, Philip M. Long, and Aravind Srinivasan. Improved bounds on the samples complexity

of learning. J. Comp. and Sys. Sci., 62:516–527, 2001.

http://arxiv.org/abs/2006.04787
http://arxiv.org/abs/1906.10075
http://arxiv.org/abs/2102.05629
http://arxiv.org/abs/2006.16200
http://arxiv.org/abs/2006.06467
http://arxiv.org/abs/1407.6756
http://www.satscan.org/

M. Matheny and J. M. Phillips 4:15

26 Ming C. Lin and Dinesh Manocha. Applied computational geometry. towards geometric
engineering: Selected papers. Springer Science & Business Media, 114, 1996.

27 Chi-Yuan Lo, Jirka Matousek, and William Steiger. Algorithms for ham-sandwich cuts.
Discrete & Computational Geometry, 11:433–452, 1994.

28 Michael Matheny and Jeff M. Phillips. Computing approximate statistical discrepancy. In
International Symposium on Algorithm and Computation, 2018.

29 Michael Matheny and Jeff M. Phillips. Practical low-dimensional halfspace range space
sampling. In European Symposium on Algorithms, 2018.

30 Michael Matheny, Raghvendra Singh, Liang Zhang, Kaiqiang Wang, and Jeff M. Phillips.
Scalable spatial scan statistics through sampling. In Proceedings of the 24th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, 2016.

31 Jiri Matousek. Approximations and optimal geometric divide-and-conquer. In Proceedings
23rd Symposium on Theory of Computing, pages 505–511, 1991.

32 Jiri Matousek. Geometric Discrepancy. Springer, 1999.
33 Daniel B. Neill and Andrew W. Moore. Rapid detection of significant spatial clusters. In

KDD, 2004.
34 Tan Nguyen and Scott Sanner. Algorithms for direct 0–1 loss optimization in binary classifica-

tion. In International Conference on Machine Learning, 2013.
35 Saladi Rahul. Approximate range counting revisited. In SoCG, 2017.
36 Lev Reyzin. Statistical queries and statistical algorithms: Foundations and applications. arXiv

preprint, 2020. arXiv:2004.00557.
37 Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A,

13:145–147, 1972.
38 Vladimir Vapnik and Alexey Chervonenkis. On the uniform convergence of relative frequencies

of events to their probabilities. Theo. of Prob and App, 16:264–280, 1971.
39 Zhewei Wei and Ke Yi. Tight space bounds for two-dimensional approximate range counting.

ACM Transactions on Algorithms (TALG), 14(2):1–17, 2018.
40 Virginia Vassilevska Williams. Some open problems in fine-grained complexity. ACM SIGACTT

News, 49:29–35, 2018.
41 Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,

matrix, and triangle problems. Journal of ACM, 2018.

ISAAC 2021

http://arxiv.org/abs/2004.00557

	1 Introduction
	2 Background and Notation
	3 Approximate Halfspace Range Counting and the Upper Bound
	4 Conditional Lower Bounds
	4.1 Lower Bounds by 3SUM
	4.2 Lower Bound by All Pairs Shortest Path

	5 Conclusions and Discussion

