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Abstract
Visibility problems are fundamental to computational geometry, and many versions of geometric set
cover where coverage is based on visibility have been considered. In most settings, points can see
“infinitely far” so long as visibility is not “blocked” by some obstacle. In many applications, this may
be an unreasonable assumption. In this paper, we consider a new model of visibility where no point
can see any other point beyond a sight radius ρ. In particular, we consider this visibility model in
the context of terrains. We show that the VC-dimension of limited visibility terrains is exactly 7.
We give lower bound construction that shatters a set of 7 points, and we prove that shattering 8
points is not possible.
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1 Introduction

Visibility is fundamental to computational geometry, and in particular, variants of geometric
set cover where coverage is determined by what a point “sees” have been widely considered in
the literature. One of the most famous such applications is the art gallery problem where we
are given a simple polygon P and we wish to place the minimum number of “guard” points
G such that each point inside P is seen by some guard in G. Usually, the way that visibility
is defined, is that two points p and q see each other if the line segment pq does not contain
any point outside of P . The intuition is that P is modelling some room (or art gallery), and
if the line segment connecting the two points exits P , then there is a wall of the polygon
that “blocks” their vision. The geometric set cover problem with respect to this definition
of visibility has been considered in many different contexts, for example simple polygons
[9, 15, 8, 1, 13], monotone polygons [20, 22, 12, 21, 14], rectilinear polygons [21, 22], staircase
polygons [4, 23, 25], and terrains [18, 17, 2, 16, 6, 11, 19].

A terrain T is an x-monotone polygonal chain defined by a sequence of n vertices
p1, . . . , pn. We let x(pi) and y(pi) denote the coordinates of pi. The x-monotone property
implies that x(pi) < x(pi+1) for each i ∈ {1, . . . , n − 1}. Note that given this definition, a
vertical line intersects T in at most one point. Consider three vertices of T , pi, pj , and pk

such that i < j < k. We say pj pierces pipk if pj is strictly above pipk. Similarly, if there is
some pj that pierces pipk then we say that pipk is pierced. Generally visibility in terrains is
defined in the following way: pi and pk see each other if and only if pipk is not pierced.
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5:2 The VC-Dimension of Limited Visibility Terrains
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Figure 1 a sees c. b sees d. In an LVT, a may be too far from d to see it.

1.1 A Restricted Model of Visibility
An issue with the usual visibility model for various applications is that points are assumed
to be able to see “infinitely far”. That is, a guard that is very far from p is assumed to
see p just as clearly as another guard that is very close to p. Distance does not matter so
long as the line segment connecting the points is not “blocked”. In many applications, this
assumption is not true, and a model that considers the distance between a guard and the
points it sees may be desirable. To address this undesirability, there has been some research
that has considered restricted visibility models for exploring/guarding polygons or polygonal
environments. Much of this past work is motivated by robotics, often times in an online
setting where a robot is trying to learn about its surroundings but has restrictions on how
far it can see, e.g. [3, 10, 24]. Other past work has considered restricted visibility models
when computing an optimal “watchman tour” where a single guard patrols a known polygon,
e.g. [26, 7].

In this paper we consider a limited visibility model of the terrain guarding problem, where
each point has a sight radius ρ and cannot see any points that are outside of its sight radius.
So to contrast with most of the past work with limited visibility models, we are assuming
that we have full knowledge of the terrain we wish to guard, we can use multiple guards, and
the guards are static. We call an instance of this problem a limited visibility terrain (LVT).
An LVT can be defined by a set of n, x-monotone vertices and a sight radius ρ. We say that
two points p and q see each other if and only if (1) pq is not pierced and (2) d(p, q) ≤ ρ, where
d(p, q) is the Euclidean distance between p and q. In this paper, we assume each point has
the same sight radius, although it would be interesting to also consider the scenario where
each point has its own radius. For any point p, we denote disc(p) to be a disc of radius ρ

centered at p. Then clearly p cannot see any points that are not inside disc(p) in this model.

1.2 Order Claim Generalization
One of the key properties of (regular) terrains is the order claim.

▷ Claim 1. Let a, b, c, d be four points on a regular terrain such that x(a) < x(b) < x(c) <

x(d). If (1) a sees c and (2) b sees d, then a sees d.

The intuition here is pretty simple. Since a sees c, it must be that ac is not pierced (so b

is “below” ac). Similarly bd is not pierced (so c is below bd). This implies that ad is “above”
ac and bd, and therefore ad is not pierced (implying that a and d see each other).

For LVTs the order claim does not hold if a ̸∈ disc(d). See Figure 1 for an illustration.
We can however apply a generalization of the order claim.
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▷ Claim 2. Let a, b, c, d be four points on an LVT such that x(a) < x(b) < x(c) < x(d). If
(1) ac is not pierced and (2) bd is not pierced, then ad is not pierced.

1.3 VC-Dimension
An interesting measure of the complexity of a set system is the notion of VC-dimension. To
define this, we say that a finite set of points G in T is shattered if for every subset of G′ ⊆ G

there exists some point v ∈ T such that v sees every point in G′ and does not see any point
in G \ G′. In this context, we call v a viewpoint. The VC-dimension is the largest d such
that there exists some LVT T and point set G of size d that can be shattered.

Brönnimann and Goodrich give a polynomial-time O(log OPT )-approximation algorithm
for any set system with constant VC-dimension [5] where OPT is the size of an optimal cover.
For regular terrains, King showed that the VC-dimension is 4 [17]. This result relies heavily
on the order claim, which as we mentioned above does not hold in the limited visibility
model. One would certainly expect the VC-dimension to increase in this model.

1.4 Our Results
We prove the following theorem.

▶ Theorem 3. The VC-Dimension of limited visibility terrains is 7.

We show that for any set of 8 points on a LVT, it is not possible to shatter the set,
and we show that it is possible to shatter a set of 7 points (thereby proving that our upper
bound analysis is tight). We show several key structural lemmas about visibility in a LVT,
and then use a computer program to show that there is no permutation of the 8 points and
the 28 needed viewpoints such that there is a LVT with the points in left-to-right order
according to the permutation that satisfies all of the visibility requirements. As is often
the case with VC-dimension proofs, a direct proof often involves a tedious case analysis, so
we use a computer program that is much easier to verify is correct rather than having to
analyze each case “manually”. Our proof of Theorem 3 then implies that the algorithm of
Brönnimann and Goodrich [5] is a O(log OPT )-approximation algorithm for guarding the
vertices of a LVT.

2 Upper Bound

In this section, we show that the VC-dimension of LVTs is at most 7. We will do this
by showing that any set of 8 points cannot be shattered. Suppose that it is possible to
shatter 8 points, that is there exists a LVT that shatters a set G = {g1, . . . , g8} which are
indexed according to increasing x-coordinate without loss of generality. Motivated by the
connection to geometric set cover, we sometimes call the points of G guards. For any subset
S ⊆ {1, . . . , 8}, let vpS denote a point that should see gi for each i ∈ S and does not see gj

for any j ̸∈ S. For example, vp1,6,8 should see g1, g6, and g8 and should not see any other
point of G. Let V be the set of all such viewpoints. Clearly |V | = 28 = 256.

We begin with a high-level overview of our proof strategy for showing that G cannot
be shattered. Suppose the contrary, and let T denote a LVT that does shatter G. We say
the ordering of T is the permutation of G ∪ V when sorting G ∪ V by their x-coordinates
(note T may have vertices that do not correspond with G or V ). We say any subsequence
of the ordering is a partial ordering of T . The intuition is that an ordering describes the
left-to-right order of the points of V and G with respect to T , and a partial ordering describes
the left-to-right ordering of some of the points of V and G. See Figure 2 for an illustration.

ISAAC 2021
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g1

vp1,2

g2
vp1,2,3

vp2,3

g3

vp1,3

Figure 2 The ordering of T is (g1, vp1,2, g2, vp1,2,3, vp2,3, g3, vp1,3). Partial orderings of T include
(g1, g2, vp2,3, g3), (vp1,2, vp1,2,3, g3, vp1,3), etc.

Now we view the problem in the “opposite direction”; instead of starting with a LVT and
considering its order, we start with an order and consider whether there is a LVT that has
this order. We call any permutation O of V ∪ G a candidate ordering (CO) of V ∪ G. We
say O is realizable if there is a LVT T that shatters G such that O is the ordering of T . For
every subset V ′ ⊆ V , we call a permutation of V ′ ∪ G a candidate partial ordering (CPO),
and we say it is realizable if it is a partial ordering of any LVT T that shatters G.

We obtain our result by showing that there is no realizable CPO. We do this by first
proving a set of structural lemmas. Given a CPO O, the lemmas will imply some properties
that must be satisfied by any realization of O. For example, we might be able to argue that
any realization of O must satisfy y(gi) < y(gj), or we might be able to argue that a point
v ∈ V that is not supposed to see gi must be outside the disc of gi or vgi must be pierced in
any realization. If the lemmas contradict each other then we can determine that O is not
realizable.

The proofs of VC-dimension upper bounds are often tedious case analyses. We instead
use a computer program that helps to automate this case analysis. Our program, given a
CPO O, determines if our lemmas can be used to show that O is not realizable. The CPOs
we give as inputs to the program are all of the CPOs based off G and four points of V . Each
of the CPOs can be analyzed in parallel, and therefore picking four points of V provides a
nice tradeoff between the number of CPOs that must be considered and the amount of time
it takes to evaluate a single CPO (the time to evaluate all cases on a 3.7 GHz CPU with 6
cores is less than 24 hours).

2.1 Structural Lemmas
We now give a set of structural lemmas that will help us argue when a CPO is not realizable.
We use the following definitions. Suppose that pi and pj are two points on an LVT such
that d(pi, pj) ≥ ρ and |x(pi) − x(pj)| < ρ (note that this implies that y(pi) ̸= y(pj)). Then
if y(pi) > y(pj) we say that pi is high outside disc(pj), and similarly we say that pj is low
outside disc(pi). See Figure 3.

▶ Lemma 4. Let pi, pj , pk, and pl be four points on a LVT such that x(pi) < x(pj) < x(pk) <

x(pl). If (1) pi sees pk and (2) pj sees pl, then d(pj , pk) ≤ ρ.
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pi

pj

Figure 3 pj is low
outside of disc(pi).

pi
pj

pk

pl

Figure 4 d(pj , pk) ≤ ρ.

pi

pj

pk

Figure 5 y(pj) < y(pi) and
y(pj) < y(pk).

Proof. Without loss of generality, assume that y(pj) ≤ y(pk). Then it must be that y(pk) ≤
y(pl), or else pk would pierce pjpl. Consider the triangle △pjpkpl. We have ∠pjpkpl > π

2 ,
thus pj , pl is the longest side of the triangle. Then we have d(pj , pk) < d(pj , pl) ≤ ρ. See
Figure 4 for illustration. ◀

▶ Lemma 5. Let pi, pj , and pk be three points on a LVT such that x(pi) < x(pj) < x(pk). If
(1) pk sees pi but does not see pj and (2) pjpk is not pierced, then pj is low outside disc(pk).
Moreover, we also have y(pj) < y(pi).

Proof. See Figure 5 for illustration. Since pjpk is not pierced and they do not see each
other, then clearly d(pj , pk) > ρ. Since pi ∈ disc(pk), we must have x(pk) − x(pi) ≤ ρ, and
since x(pj) is “between” x(pi) and x(pj) it therefore must be that x(pk) − x(pj) < ρ. So
it remains to show that y(pj) < y(pk) and y(pj) < y(pi). For the sake of contradiction,
suppose that y(pj) ≥ y(pi), clearly y(pk) > y(pj), otherwise pj will pierce pipk. Consider
the △pipjpk. We have ∠pipjpk is greater than π

2 , see Figure 6 for illustration. Therefore
d(pi, pk) > d(pj , pk) > ρ, contradicting that pi sees pk. Thus the initial assumption y(pj) ≥
y(pi) is wrong. We can derive a contradiction for y(pj) ≥ y(pk) similarly. ◀

▶ Lemma 6. Let pi, pj , and pk be three points on a LVT such that x(pi) < x(pj) < x(pk).
If (1) y(pi) < y(pj) and d(pi, pj) > ρ, and (2) pipk is not pierced, then y(pj) < y(pk) and
d(pi, pk) > ρ.

Proof. Clearly we must have y(pj) < y(pk) or else pj would pierce pipk. See Figure 7 for
illustration. In △pipjpk, clearly the longest edge is pipk, thus d(pi, pk) > d(pi, pj) > ρ. ◀

▶ Lemma 7. Let pi and pk be two points on a LVT that that do not see each other, but
d(pi, pk) ≤ ρ. Then there must be some point pj ∈ (pi, pk) that pierces pipk. If there is
some point pl such that d(pi, pl) ≤ ρ and d(pk, pl) ≤ ρ, then either d(pj , pl) ≤ ρ or pj is high
outside disc(pl).

Proof. It must be that x(pl) − x(pi) ≤ ρ, and since pj is “between” pi and pk then we
have x(pl) − x(pj) < ρ. We then complete the lemma by showing that if pj is such that
d(pj , pl) > ρ and y(pj) < y(pl) then it cannot pierce pipk. In this case, pj must be low
outside disc(pl). By convexity, we have that pipk is contained inside of disc(pl), and therefore
it cannot be that pj pierces pipk, see Figure 8 for illustration. ◀

ISAAC 2021
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pi
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pj

Figure 6 Contradiction with pi seeing pk.

pj

pk

pi

Figure 7 y(pi) < y(pk).

pl
pi

pk
pj

Figure 8 Contradiction with
d(pj , pl) > ρ and y(pj) < y(pl).

pi

pj

pk

v

Figure 9 Contradiction with d(v, pk) ≤ ρ.

▶ Lemma 8. Let pi, pj, and pk be three points on an LVT such that x(pi) < x(pj) < x(pk)
such that pj is low outside disc(pi) and d(pj , pk) ≤ ρ. Then there is no point v : x(pj) <

x(v) < x(pk) such that v is low outside disc(pk) and d(pi, v) ≤ ρ.

Proof. If the lemma is incorrect, then there would be a v that satisfies the following three
properties: (1) y(v) < y(pk), (2) d(v, pk) > ρ, and (3) d(pi, v) ≤ ρ. We will prove the
lemma by showing that any point that satisfies conditions (1) and (3) cannot also satisfy
condition (2). To that end, let v be any point satisfying y(v) < y(pk) and d(pi, v) ≤ ρ.
We will show that it must be such that d(v, pk) ≤ ρ. See Figure 9 for illustration. Given
x(pi) < x(pj) < x(v), d(pi, pj) > ρ, d(pi, v) ≤ ρ, from Lemma 5 clearly y(v) > y(pj). Since
y(v) < y(pk), then we have x(pj) < x(v) < x(pk) and y(pj) < y(v) < y(pk). This implies
that v is inside of the axis-parallel rectangle with pj as lower-left corner and pk as upper-right
corner. If a and b are any two points in this rectangle, then we have d(a, b) ≤ d(pj , pk) ≤ ρ,
and therefore it must be that d(v, pk) ≤ ρ. ◀

2.2 Procedure
We use a computer program to show that there does not exist a realizable CO of G ∪ V . Our
strategy is to consider a starting set of viewpoints Vstart := {vp1,3,5,7,8, vp1,2,4,6,8, vp1,3,6,8,
vp1,2,4,5,7,8}, and to show that every CPO of G ∪ Vstart is not realizable. This implies there
is no realizable CO of G ∪ V . If not, then consider the subsequence of a realizable order
when considering the vertices in G ∪ Vstart. This would be a realizable CPO of G ∪ Vstart.

Suppose O is some CPO of G ∪ Vstart that we are considering. It may be that our lemmas
can “directly” show that O is not realizable, that is we can apply the lemmas to the points
in O to derive a contradiction. In fact, this is true for roughly half of the CPOs of G ∪ Vstart

(which is why we pick this set as a starting point). If we cannot directly show O is not
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realizable, we consider extensions of O. That is, we consider a viewpoint v that is not in O,
and we consider adding v to O in one of the |O|+1 “gaps” in O. Intuitively, we add one more
viewpoint to O to obtain a new CPO O′ while ensuring that the order of the points in O is
the same in O′. Then we say that O′ is an extension of O. Using this terminology, note that
O is realizable if and only if there is at least one realizable extension of O. Similarly, if we
are considering a CPO O of G ∪ V ′ and there is a viewpoint v ∈ V \ V ′ such that our lemmas
imply a contradiction for every extension of O that includes v, then we can in turn say that
O is not realizable. When considering viewpoints for extensions, we restrict ourselves to the
set Vtest which is the set of all 96 viewpoints such satisfies either (1) they see both g1 and g8,
or (2) see g2 and g7 and exactly one of g1 and g8. The intuition is that Vtest consist of the
more “difficult” viewpoints to find a spot in an order, so by only considering extensions from
Vtest we can focus the search to “difficult” viewpoints only, speeding up our program. And
indeed it is sufficient to consider only these viewpoints given that our program verifies that
no CPO of G ∪ Vstart is realizable, even if we only needed to extend to G ∪ Vtest.

Our program consists of two main functions: isNotRealizable() (Algorithm 1 and 2
in the paper due to the length of the algorithm) and candidateOrderingIsExtendable()
(Algorithm 3 in the paper). isNotRealizable() takes a CPO as input and returns true if
our lemmas can directly show that the order is not realizable, and returns false otherwise.
candidateOrderingIsExtendable() takes a CPO as input and returns true if there is an extension
such that the lemmas cannot directly show it is not realizable, and otherwise returns false.
In this paper, we give color-coded pseudocode that explains what our program does. The
actual C++ source code that we use as well as a color-coded rich text version of the source
code is provided at https://github.com/utsa-saga/vc8proof (the colors are used to help
with the readability of the code, pairing the “sections” of the source code with the “sections”
of the pseudocode from the paper).

Given 4 fixed starting viewpoints Vstart and guard set G = {g1, g2, . . . , g8}, we consider all
11,880 CPOs of G∪Vstart. Our program handles each of these 11,880 orderings independently
(cases can be tested simultaneously in parallel). Let O1 denote one such ordering. We pass
O1 to candidateOrderingIsExtendable(). This function calls isNotRealizable() on O1. If
we determine that it is not realizable, then candidateOrderingIsExtendable() returns false
immediately. If we cannot determine that O1 is not realizable, then we add a new viewpoint
from Vtest to O1 to obtain a new candidate ordering and repeat until we find a candidate
ordering of G ∪ Vtest for which isNotRealizable() returns false (indicating that it might be
realizable) or determine that every candidate ordering of G ∪ Vtest extending from O1 is not
realizable. In our actual program, we use some heuristics for computing a “good” ordering of
the points in Vtest \ Oi that are not shown in candidateOrderingIsExtendable().

It is not too difficult to see that candidateOrderingIsExtendable() is correct given that
isNotRealizable() is correct. We will formally show that isNotRealizable() is correct. That
is, we show that if isNotRealizable() returns true for some candidate ordering Oi, then
a contradiction about any realization can be derived from our lemmas. To help show
the correctness of this function, we define some notation. We use three main variables
to detect lemma contradictions: cannotBlockWithTerrain[{u, v}], tooFarAway[{u, v}], and
higherPoint[{u, v}].

The first variable is set to true if it must be that every realization must satisfy that uv is
not pierced (following from the order claim generalization that we presented in Section 1.2.
We consider this variable for all pairs u, v ∈ O. The second variable is set to be true when
every realization (according to our lemmas) must satisfy that d(u, v) > ρ, it is set to false if
d(u, v) ≤ ρ in every realization, and it is set to unknown if our lemmas do not imply this one
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way or the other. We consider this variable for u, v pairs such that at least one of u and v is
in G. As for the third variable, it will be set to either u, v, or unknown depending on if we
can determine which point must have the larger y-coordinate in any realization according to
our lemmas. This again is defined for all pairs u, v pairs such that at least one of u and v is
in G.

In order to determine the values of variables 2 and 3, we define some extra notation and
variables that are used as “helpers”. Let O be any candidate ordering of G ∪ V ′, where V ′ is
any subset of V . For ease of description, we add to O a “dummy” point vp−∞ to the left of
every point of O and a “dummy” point vp∞ to the right of every point of O. Since we have a
fixed ordering of the points, we can determine for any two points of u, v ∈ O whether or not
u and v are can be pierced by applying the order claim generalization we presented in Section
1.2. For any guard g ∈ G, let L(g) denote all viewpoints to the left of g in O, and similarly let
R(g) denote all viewpoints to the right of g in O. Let leftMostPointGuardSees(g) denote
the leftmost point of L(g) that sees g. If there is no such point, then we define it to be g.
Similarly we let rightMostPointGuardSees(g) denote the rightmost point in R(g) that sees
g, and if no such point exists we set it to be g. Let closestHighOutsideLeft(g) denote the
rightmost point v ∈ L(G) such that g does not see v, cannotBlockWithTerrain[{g, v}] is true,
and v sees some g′ ∈ G right of g (our lemmas imply this view point must be high outside
disc(g)). If no such point exists, we let closestHighOutsideLeft(g) be vp−∞. We similarly
define closestHighOutsideRight(g) to be the leftmost point v ∈ R(g) such that g does not
see v, cannotBlockWithTerrain[{g, v}] is true, and v sees some g′ ∈ G left of g. If no such
point exists, we define closestHighOutsideRight(g) to be vp∞. For any two points u, v ∈ O,
we say u < v if u is to the left of v in O.

▶ Lemma 9. If our function isNotRealizable(O) returns true, then O is not realizable.

Proof. We will show a contradiction to realization for each line of isNotRealizable() that
returns true. To this end, we will also show that the assignments for our variables cannotB-
lockWithTerrain, tooFarAway, and highestPoint are in fact correct.

Gold Block. In the gold block (Line 1), we set the values for the variable cannotBlockWith-
Terrain. If for points a and d we have cannotBlockWithTerrain[{a, d}] set to true, then it
is true that in any realization of O that ad is not pierced as either they see each other or
there are points b and c such that ac is not pierced and ad is not pierced (second Claim from
Section 1.2). If cannotBlockWithTerrain[{a, d}] is false then we make no assumptions about
whether ad is pierced.

Green Block. Now consider the green block (Lines 2–3), and in particular suppose we
return true in line 3. Without loss of generality assume that it returned true because
leftMostPointGuardSees(g) < closestHighOutsideLeft(g). Let p denote
leftMostPointGuardSees(g), and let q denote closestHighOutsideLeft(g). Then g does
not see q and qg cannot be pierced which implies that in any realization we must have
d(q, g) > ρ. But we can apply Lemma 4 with pi, pj , pk, and pl as p, q, g, g′ respect-
ively, where g′ is a guard that q sees to the right of g (which exists by the definition of
closestHighOutsideLeft(g)). Then in any realization, d(q, g) ≤ ρ by Lemma 4, a contradic-
tion.

We also remark that closestHighOutsideRight(g) must indeed be high outside disc(g)
in any realization. This follows from Lemma 5 by letting pk be closestHighOutsideRight(g),
pj be g, and pi be any guard that closestHighOutsideRight(g) sees to the left of g. Similarly,
closestHighOutsideLeft(g) must be high outside of disc(g).
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Blue Block. Now consider the blue block of code (Lines 4–23) where we set the tooFarAway
and higherPoint variables for each pair of guards. We claim that if tooFarAway[{gi, gj}] is
set to true, then the lemmas imply that any realization must have d(gi, gj) > ρ, and if it
is set to false then every realization must have d(gi, gj) ≤ ρ. Similarly we claim that if we
set higherPoint[{gi, gj}] to be gi, then any realization must have y(gi) > y(gj) and if it is
set to be gj then any realization must have y(gi) < y(gj). We initially set both variables to
unknown, and then we change them if we detect a reason to change them.

Suppose we set tooFarAway[{gi, gj}] to be false in Line 7. Then let p be leftMostPoint-
GuardSees(gj) and let q be rightMostPointGuardSees(gi). Then from the if-statement,
we have that p < gi < gj < q and applying Lemma 4 we have that d(gi, gj) ≤ ρ in any
realization, therefore our variable setting is correct.

Now suppose that we set higherPoint[{gi, gj}] to be gi in Line 9. If closestHighOutside-
Right(gj) and rightMostPointGuardSees(gi) are the same point, then we have that y(gi) >

y(gj) in any realization by Lemma 5. If they are not the same point, then we have gi < gj <

p < q where p is closestHighOutsideRight(gj) and q is rightMostPointGuardSees(gi). If
we had y(gi) ≤ y(gj) then it would have to be that d(gi, p) > ρ and y(gi) < y(p) and therefore
we can apply Lemma 6 to gi, p, and q to get that d(gi, q) > ρ, a contradiction. Therefore it
must be that y(gi) > y(gj) in any realization. A symmetric argument holds for Line 13.

Now suppose that we set higherPoint[{gi, gj}] to be gj in Line 17 (and therefore also set
tooFarAway[{gi, gj}] to be true in the next line). Then from the if-statement, we can apply
Lemma 6 to gi, closestHighOutsideRight(gi), and gj to see that both assignments must be
true in any realization. The argument is symmetric in Line 22.

Note that each of the “return true” statements in this block occur if we get contradictory
statements about which of gi and gj has the larger y-coordinate, and therefore if we return
true in this block then O is indeed not realizable.

Light Green Block. Now consider the light green block (Lines 24–26). If we return true in
line 26, then we have that gigj cannot be pierced in any realization. But at the same time
we would need a gk between gi and gj such that y(gk) > y(gi) and y(gk) > y(gj). Clearly
the latter implies that gk pierces gigj , and therefore O cannot be realized.

Red Block. Now consider the red block of code (Lines 27–41). In this block we set the
tooFarAway and higherPoint variables for a guard g and a viewpoint p. We will argue
that if we set these variables to something other than unknown then any realization must
satisfy that assignment. If we set tooFarAway[{g, p}] to be false in Line 30 then its either
because g sees p (in which case they obviously cannot be too far away) or it’s because
leftMostPointGuardSees(g) < p < g < g′ where g′ is a guard that p sees. In this case we
can apply Lemma 4 to see that it must be that d(p, g) ≤ ρ in any realization.

Now suppose we enter the else statement starting at Line 34. In this case we have that
g does not see p and we have cannotBlockWithTerrain[{g, p}] is true. Therefore clearly
the reason why g does not see p is because d(g, p) > ρ, and therefore our assignment of
tooFarAway[{g, p}] to be true is correct. Then further suppose we set higherPoint[{g, p}]
to be g in Line 36. Then we can apply to Lemma 5 to leftMostPointGuardSees(g), p,

and g to see that indeed it must be y(p) < y(g). The argument for Line 38 where we set
higherPoint[{g, p}] to be p follows symmetrically.

Yellow Block. Now consider the yellow block (Lines 42–51). Consider any viewpoint vp

that satisfies the for-loop condition in Line 43. Then we have that vp does not see gj , but
d(vp, gj) ≤ ρ. Therefore any realization must have some point that pierces vpgj . Moreover
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gk

I1

I2

gj

gi

vp
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Figure 10 x(g′) > x(gk) and vp sees g′.

we have cannotBlockWithTerrain[{gi, gj}] is true from Line 42. Then maybe gi is a point
that pierces vpgj , but if it does not pierce it then certainly no point between gi and gj can
pierce vpgj (as it would also pierce gigj). This means that if gi does not pierce vpgj , then
we would need to find a point between vp and gi (possibly a point not in O) to pierce vpgj .
The yellow block first considers if it is possible for gi to pierce, and if it cannot, then we
consider the possibility of a “blocker” between vp and gi.

First consider the if-statement in Line 44. If this condition is true, then we have that
there is some guard gk such that vp and gj are inside of disc(gk) but gi is low outside
disc(gk). Lemma 7 implies that any point that pierces vpgj cannot be low outside disc(gk),
and therefore gi cannot pierce vpgj .

Next consider the if-statement in Line 46. If this condition is true, then we have that
there is some guard gk to the right of gj such that vp is high outside disc(gk), gi is low outside
disc(gk), and gj is inside disc(gk). Since vp is high outside disc(gk), we have that a ray shot
straight down from vp will first intersect disc(gk) at a point I1 such that y(I1) > y(gk) (recall
that this is true since vp must see a guard to the right of gk in order for higherPoint[{vp, gk}]
to be vp). Now consider walking along vpgj starting at gj and walking towards vp. Let
I2 denote the point that this walk exits disc(gk). Then we have that y(I2) > y(I1). See
Figure 10. Therefore any point that is low outside disc(gk) cannot pierce vpgj , and therefore
gi cannot pierce vpgj .

So now suppose that giCanBeBlocker was set to false by one of the two cases above.
Then indeed gi cannot pierce vpgj and we now need to consider a blocker strictly between
vp and gi. There are two potential issues this might cause. The first is that if gi does not
pierce vpgj but some point b between vp and gi does pierce vpgj , then it must be that b also
pierces vp, gi. So if we have cannotBlockWithTerrain[{vp, gi}] set to true, then we cannot
use such a blocker b. But moreover, using a blocker b in this range may cause us to have to
flip cannotBlockWithTerrain[{vp2gj}] from false to true if we use such a blocker b. Indeed,
for any point vp2 to the left of vp, if we have cannotBlockWithTerrain[{vp2, gi}] is true, then
the use of this blocker b will force us to have cannotBlockWithTerrain[{vp2, gj}] to be true
by the second claim in Section 1.2. If we previously determined that vp2 cannot be too far
away from gj , then this would imply that vp2 sees gj , a contradiction. Therefore in this case
we would not be able to use a new blocker b.

So if we determine that gi cannot be a blocker and a new point between vp and gi cannot
be the blocker, then it is not possible to pierce vpgj without changing other visibilities and
therefore O cannot be realized, and the algorithm returns true accordingly.
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Purple Block. Now consider the purple block (Lines 52–54). If there are guards gi and gj

and viewpoints vp1 and vp2 that satisfy the if-statement condition then we have vp2 sees
gj and is low outside disc(gi), and we have vp1 sees gi and is low outside disc(gj). The
left-to-right order of gi < vp2 < vp1 < gj then contradicts Lemma 8, and therefore O is not
realizable and we return true accordingly. ◀

3 Lower Bound

In this section, we show that the VC-Dimension of LVTs is at least 7. See Figure 12 for the
coordinates of the vertices of our LVT where a set of 7 vertices is shattered. We remark that
the main value of this construction is that it shows that our upper bound proof we give in
Section 2 is tight. We do not claim that this LVT is particularly interesting outside of the
fact that it proves that the upper bound cannot be improved.

Here, we assume that the radius ρ that each vertex can see is 1. The vertices that
are shattered are the vertices G = {g1, . . . , g7}. The viewpoints are labeled vp where the
subscript denotes which vertices of G the viewpoint sees. Some of the vertices are neither a
viewpoint nor a vertex in G and are labeled “-” (their role is simply to block a viewpoint
from seeing a vertex in G). The table does not contain a viewpoint for the empty set or for
the subsets of size 1. It is trivial to add these points: the empty set point can be placed to
the right of all points a distance greater than 1 to each vertex in G, and a viewpoint that
should see only one vertex gi can be placed in a steep “canyon” just to the left of gi so that
every other gj is blocked from seeing it.

To formally verify that our coordinates are correct, we wrote a computer program that
ensures each viewpoint sees exactly which guards they are supposed to see. Our program to
verify the problem is available at https://github.com/utsa-saga/vc7proof.

The aspect ratio of our construction is very large which makes it difficult to produce a
static figure that is helpful in visualizing the construction. Nonetheless, see Figure 11 for a
static figure of the LVT. Note that in this figure, we use letters A through G to represent
the guards instead of g1 - g7 (e.g., B represents g2 and BEF represents vp2,5,6). See Figure
11 for the overall the boundary of the LVT, where the viewpoints are listed in blue (many
of the labels are not visible because the points are so close together) and the guards in
G are red. There is a dynamic version of the figure that allows zooming in-and-out here:
https://www.geogebra.org/calculator/ybvdrjag. Finally we have dynamic figures for
each guard. They show the disc of the guard so it is possible to see which portions of the
LVT are too far away from certain guards. In these figures, green line segments indicate that
the guard and viewpoint see each other (their line segment is not pierced, and they are close
enough to see each other); red line segments indicate their line segment is pierced; purple
viewpoints indicate the viewpoints that are outside of the disc of the guard.

g1: https://www.geogebra.org/calculator/vcjyvhmm
g2: https://www.geogebra.org/calculator/hjnqeuqy
g3: https://www.geogebra.org/calculator/nktasnvc
g4: https://www.geogebra.org/calculator/pgb5tzj2
g5: https://www.geogebra.org/calculator/bptpyugq
g6: https://www.geogebra.org/calculator/cx8khxkc
g7: https://www.geogebra.org/calculator/t83pycpq
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Algorithm 1 boolean isNotRealizable(O) – Part 1 of 2.

1: For each pair of points u, v, set cannotBlockWithTerrain[{u, v}] to true if u sees v or the
order claim generalization implies that uv cannot be pierced, otherwise set it to be false.

2: if there is a g ∈ G such that
leftMostP ointGuardSees(g) < closestHighOutsideLeft(g) or
closestHighOutsideRight(g) < rightMostP ointGuardSees(g) then

3: return true
4: for every pair gi, gj ∈ G such that i < j do
5: tooFarAway[{gi, gj}] = unknown, higherPoint[{gi, gj}] = unknown
6: if leftMostP ointGuardSees(gj) < gi and

gj < rightMostP ointGuardSees(gi) then
7: tooFarAway[{gi, gj}] = false
8: if closestHighOutsideRight(gj) ≤ rightMostP ointGuardSees(gi) then
9: higherPoint[{gi, gj}] = gi

10: if leftMostP ointGuardSees(gj) ≤ closestHighOutsideLeft(gi) then
11: if higherPoint[{gi, gj}] is gi then
12: return true
13: higherPoint[{gi, gj}] = gj

14: if closestHighOutsideRight(gi) < gj and
cannotBlockWithTerrain[{gi, gj}] is true then

15: if higherPoint[{gi, gj}] is gi then
16: return true
17: higherPoint[{gi, gj}] = gj

18: tooFarAway[{gi, gj}] = true
19: if gi < closestHighOutsideLeft(gj) and

cannotBlockWithTerrain[{gi, gj}] is true then
20: if higherPoint[{gi, gj}] is gj then
21: return true
22: higherPoint[{gi, gj}] = gi

23: tooF arAway[{gi, gj}] = true
24: for every pair gi, gj ∈ G such that i < j do
25: if cannotBlockWithTerrain[{gi, gj}] is true and there is a k ∈ (i, j) such that

higherPoint[{gi, gk}] and higherPoint[{gk, gj}] are both gk then
26: return true
27: for all g ∈ G do
28: for all viewpoints p ∈ L(g) do
29: if g sees p or (leftMostP ointGuardSees(g) < p and

p sees a guard right of g) then
30: tooFarAway[{g, p}] = false, higherPoint[{g, p}] = unknown
31: else if cannotBlockWithTerrain[{g, p}] is false then
32: tooFarAway[{g, p}] = unknown, higherPoint[{g, p}] = unknown
33: else
34: tooFarAway[{g, p}] = true
35: if leftMostP ointGuardSees(g) < p then
36: higherPoint[{g, p}] = g

37: else if p sees a guard to the right of g then
38: higherPoint[{g, p}] = p

39: else
40: higherPoint[{g, p}] = unknown
41: Symmetrically repeat steps 28 - 40 for viewpoints p ∈ R(g).



M. Gibson-Lopez and Z. Yang 5:13

Algorithm 2 boolean isNotRealizable(O) – Part 2 of 2.

42: for every pair gi, gj ∈ G such that i < j and cannotBlockWithTerrain[{gi, gj}] is true do
43: for each viewpoint vp such that leftMostP ointGuardSees(gj) < vp < gi and vp does

not see gj and tooFarAway[{vp, gj}] is false do
44: if there is a gk ∈ G such that tooFarAway[{vp, gk}] is false and tooFarAway[{gi, gk}]

is true and higherPoint[{gk, gi}] is gk and tooFarAway[{gj , gk}] is false then
45: giCanBeBlocker = false
46: else if there is a gk ∈ G such that gj < gk and tooFarAway[{vp, gk}] is true and

higherPoint[{vp, gk}] is vp and tooFarAway[{gi, gk}] is true and higherPoint[{gk, gi}]
is gk and tooFarAway[{gj , gk}] is false then

47: giCanBeBlocker = false
48: if giCanBeBlocker is false then
49: if cannotBlockWithTerrain[{vp, gi}] is true or (there is a vp2 such that

leftMostP ointGuardSees(gj) < vp2 < vp and vp2 sees gi and vp2 does not see gj

and tooFarAway[{vp2, gj}] is false) then
50: return true
51: Repeat Lines 43 - 50 symmetrically, looking for a vp to the right of gj such that gi needs

a blocker to prevent it from seeing vp.
52: for every pair gi, gj ∈ G such that i < j do
53: if there are viewpoints vp1 and vp2 such that gi < vp2 < vp1 < gj and vp1 sees gi

and tooFarAway[{vp1, gj}] is true and higherPoint[{vp1, gj}] is gj and vp2 sees gj and
tooFarAway[{gi, vp2}] is true and higherPoint[{gi, vp2}] is gi then

54: return true
55: return false

Algorithm 3 boolean candidateOrderingIsExtendable(Oi).

1: if isNotRealizable(Oi) then
2: return false
3: else if Vtest \ Oi = ∅ then
4: return true
5: for all v ∈ Vtest \ Oi do
6: for j = 0 to |Oi| do
7: Let Oi+1 be a candidate ordering by inserting v into position j in Oi.
8: if candidateOrderingIsExtendable(Oi+1) then
9: return true

10: return false
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Figure 11 Terrain Boundary.
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Coordinate Label Coordinate Label
(0.065221878837284,-0.699711771625512) vp3,5,7 (0.573309531425741,-1.58973181578975) vp1,2,4,5,6
(0.065221883996657,-0.699711787103631) vp2,3,5,7 (0.608804212112144,-1.60869870293362) vp2,4
(0.065224793883047,-0.699755445718236) vp1,2,3,5,7 (0.608804366893335,-1.6086950913725) vp2,4,6
(0.065235112629113,-0.700075326846282) vp1,3,5,7 (0.608806017892706,-1.60869251168598) vp2,4,5,6
(0.065609528330117,-0.705692491048488) vp4,5,7 (0.656334162272601,-1.53539071931979) vp1,2,4,6,7
(0.065611746860522,-0.705696463765723) vp1,3,4,5,7 (0.656375437256865,-1.53532622715688) vp1,2,4,5,6,7
(0.067070817554251,-0.727468502027634) vp1,3,4,5,6,7 (0.656376469131471,-1.53532674309418) vp1,2,5,6,7
(0.067071333491554,-0.727471546057723) vp1,7 (0.656534954752298,-1.53526755476674) vp2,4,6,7
(0.067071849428857,-0.727471597651453) g1 (0.656535377820887,-1.535266894367) vp2,4,5,6,7
(0.067074429115374,-0.727520611695267) vp1,2,3,4,5,6,7 (0.660353313865299,-1.5324679344966) vp2,4,7
(0.067074945052677,-0.727534542002456) vp2,3,4,5,6,7 (0.660902529124661,-1.53132874493092) vp1,2,4
(0.082446781067165,-0.96428681986565) vp1,3,4,5,6 (0.660902787093312,-1.53132513336979) vp1,2,4,7
(0.082549968527825,-0.964802757168949) vp1,2,3,4,5,6 (0.660915685525895,-1.53130191619114) vp1,2,4,5,7
(0.082555127900858,-0.965009132090268) vp2,3,4,5,6 (0.663061984707618,-1.5304660977598) vp2,4,5,7
(0.099059962233389,-1.22973656241294) vp2,5,6 (0.666998070394486,-1.52760625728761) vp2,3,4
(0.099885461918668,-1.2302009059859) vp1,2,5,6 (0.666998586331789,-1.52759748635346) vp2,3,4,7
(0.099916418156866,-1.2307168432892) vp2,6 (0.667003745704822,-1.52758716760739) vp2,3,4,5,7
(0.100607258205983,-1.23053110586002) vp1,2 (0.701416763834859,-1.46577787867218) vp1,2,3,4,5,7
(0.100607774143286,-1.23051046836788) g2 (0.701421923207892,-1.46578303804522) vp1,5,7
(0.104172900909082,-1.3046919338362) vp2,4,5 (0.701427082580925,-1.465780974296) vp1,2,5,7
(0.105560772254956,-1.30552775226754) vp2,3,4,5 (0.701435337577777,-1.46578200617061) vp1,2,5
(0.111473413750761,-1.30925281959736) vp1,2,4,5 (0.701436369452384,-1.46578303804522) vp1,5
(0.113506206725759,-1.31048075037921) vp1,2,3,4,5 (0.701674732486508,-1.46526194136888) g5
(0.113764175377408,-1.31254449959241) vp1,3,4,5 (0.702087482329147,-1.47062768932319) vp5,7
(0.113769334750441,-1.31600643889755) vp4,5 (0.702190669789807,-1.47042131440187) vp5,6,7
(0.114022144029058,-1.3161560607155) vp3,4,5 (0.732501986358618,-1.47586445295168) vp2,5
(0.378697980621395,-1.67370061190164) vp1,2,3,5 (0.732527783223783,-1.47578706235618) vp2,5,7
(0.378955949273044,-1.67421654920494) vp1,3,5 (0.732630970684442,-1.47558068743486) vp2,5,6,7
(0.379007543003374,-1.67442292412626) vp3,5 (0.732638709743992,-1.47558352509003) vp2,6,7
(0.412749842639122,-1.65615874358948) vp1,2,3,5,6 (0.833197469843465,-1.37048425875288) vp2,3,5
(0.41378171724572,-1.65822249280267) vp1,3,5,6 (0.833238744827728,-1.37032947756189) vp2,3,5,6,7
(0.414204785834425,-1.65983221718897) vp5,6 (0.833239539113207,-1.3703289054906) vp2,3,7
(0.414297654549019,-1.65977030471257) vp3,5,6 (0.833239539164801,-1.37032890546481) vp2,7
(0.41842515297541,-1.6637946156783) vp2,3,5,6 (0.833239539371176,-1.37032890487148) vp2,3,6,7
(0.548214340993282,-1.57551774308386) vp1,2,3,5,6,7 (0.833806275861357,-1.36950397787661) −
(0.548216920679799,-1.57552032277038) vp1,3,5,6,7 (0.833820231965412,-1.36949386550546) vp2,3,4,6,7
(0.548219500366316,-1.57552548214341) vp3,5,6,7 (1.02748913951977,-1.22916903137931) vp2,3,4,6
(0.548441353406734,-1.57567252427485) vp1,2,3,6 (1.02756188662794,-1.22911641093374) vp2,3
(0.5484516721528,-1.57568284302092) vp1,3,6 (1.02756188667953,-1.22911640577437) vp2,3,6
(0.548456831525833,-1.57569316176698) vp3,6 (1.04219283672648,-0.925087451372909) −
(0.549466004891086,-1.57464864669645) vp1,2,3,6,7 (1.04219289863896,-0.925087358504194) vp1,2,3,4,6
(0.549466262859737,-1.57464890466511) vp1,3,6,7 (1.04219335266378,-0.925075584814933) g6
(0.549466520828389,-1.57464942060241) vp3,6,7 (1.04219336298253,-0.925075770552362) vp6,7
(0.549468068640299,-1.5746483887278) vp1,2,3,7 (1.04219338356843,-0.925075589974306) vp1,6
(0.54946832660895,-1.57464890466511) vp3,7 (1.04219338362002,-0.925075585330871) vp1,6,7
(0.549472196138725,-1.57465096841432) vp1,2,3 (1.04219341354439,-0.925075562113692) vp1,2,6
(0.549472712076029,-1.57465148435162) vp1,3 (1.04219341457626,-0.925075533221203) vp1,2,6,7
(0.549473228013332,-1.57464064966825) g3 (1.04219355903871,-0.925075275252551) vp1,2,3,4,6,7
(0.549576415473991,-1.57639483649947) vp3,4,6 (1.04219361063244,-0.925075223658821) vp1,2,7
(0.549989165316631,-1.57618846157815) vp3,4,6,7 (1.04219367254491,-0.92507512047136) vp1,2,3,4,7
(0.551640164687187,-1.57660121142079) vp1,3,4 (1.049421634283,-0.914440053244729) vp1,3,4,7
(0.552047755156793,-1.57366036879198) vp1,2,3,4 (1.04942627771873,-0.91443391359082) vp1,3,7
(0.552052914529826,-1.57360877506165) g4 (1.04951940440198,-0.913640092455965) vp1,3,4,6
(0.552070456398138,-1.5738187615441) vp4,7 (1.04951966237063,-0.913621776681697) vp1,3,4,6,7
(0.552071488272745,-1.57381721373219) vp4,6,7 (1.0498287088153,-0.912847870726749) vp3,4,5,6
(0.552073552021958,-1.57381514998297) vp4,5,6,7 (1.04982891519023,-0.912847561164367) vp3,4
(0.552506939356729,-1.57805615461609) vp4,6 (1.04982922475261,-0.912796276996419) vp3,4,5,6,7
(0.552517258102795,-1.57804583587003) vp4,5,6 (1.04984470287171,-0.912771512005861) vp3,4,5,7
(0.556087544241624,-1.58007862884502) vp1,4,5,6 (1.04984728255822,-0.912767900444738) vp3,4,7
(0.556110761420272,-1.58009410696412) vp1,4,6 (1.05251209872976,-0.711993478552486) g7
(0.556156679840266,-1.58004664073222) vp1,4 (1.05302803603306,-0.71044566664259) vp1,4,5,7
(0.556157195777569,-1.58003477417424) vp1,4,6,7 (1.05313122349372,-0.71018769799094) vp1,4,5
(0.556167514523635,-1.58002703511469) vp1,4,7 (1.05313638286675,-0.699027974120585) vp1,5,6,7
(0.556180412956217,-1.58000639762256) vp1,4,5,6,7 (1.05316372754383,-0.698461732930214) vp1,5,6
(0.573305403927315,-1.58973697516278) vp1,2,4,6

Table 1 The coordinates of our construction.Figure 12 The coordinates of our construction.
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