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Abstract
Given a set S of regions with piece-wise linear boundary and a positive angle α < 90◦, we consider
the problem of computing the locations and orientations of the minimum number of α-floodlights
positioned at points in S which suffice to illuminate the entire x-axis. We show that the problem
can be solved in O(n log n) time and O(n) space, where n is the number of vertices of the set S.
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1 Introduction

An α-floodlight is a two-dimensional floodlight whose illumination cone angle is equal to a
positive angle α. We are interested in using the minimum number of α-floodlights positioned
at points of a given set S in the plane in order to illuminate the entire x-axis; in particular,
we consider that S is a collection of regions with piece-wise linear boundary which may
degenerate into a point. We assume that no point of S lies on the x-axis (otherwise, at most
two floodlights would suffice for any value of α) and that the entire S lies in the halfplane
above the x-axis (any point of S below the x-axis can be equivalently reflected about the
x-axis into the halfplane above the x-axis). Next, regarding the angle α of the α-floodlights,
we consider that α < 90◦ because for α ≥ 90◦ the problem admits a trivial solution: if
90◦ ≤ α < 180◦ then two floodlights are necessary and sufficient to illuminate the entire
x-axis, and if α ≥ 180◦ then one floodlight is necessary and sufficient. Thus, in this paper
we focus on the following problem.

The Axis α-Illumination Problem
Given a set S of regions with piece-wise linear boundary above the x-axis and a positive
angle α < 90◦, compute the locations and orientations of the minimum number of
α-floodlights positioned at points in S which suffice to illuminate the entire x-axis.
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11:2 Illuminating the x-Axis by α-Floodlights

As the number of required α-floodlights can be very large even for a set S of small
descriptive size, we designate that a solution to an instance of the Axis α-floodlight Problem
is a set of pairs (ti, Ri) where ti ∈ S and Ri is a maximal continuous range of the x-axis to
be illuminated by α-floodlights positioned at ti such that (i) the union of all the ranges Ri

is equal to the x-axis and (ii) over all pairs, the sum
∑

i

†
angle(Ri)

α

£
is minimized where

angle(Ri) is the angle subtended by the range Ri from ti; this sum is precisely the total
number of α-floodlights needed to illuminate the entire x-axis. We note that there may be
more than one pair associated with a location ti ∈ S but if it is so, then the corresponding
x-axis ranges do not intersect; see Figure 1(right). As we show (Corollary 12), the size of
such a solution is at most linear in the number of vertices of the given set S.

Figure 1 (left) An instance of the Axis α-Illumination Problem for two floodlight locations and
α = 40◦; (middle) A solution with five floodlights; (right) A solution with three floodlights.

Clearly, any instance of the Axis α-floodlight Problem admits a solution since a single point
in the set S can illuminate the entire x-axis by using

†
180◦

α

£
α-floodlights; see Figure 1(middle)

where five 40◦-floodlights can be used to illuminate the x-axis. Yet, the minimum number of
needed floodlights may be much smaller; in Figure 1(right), for the given set S containing
two locations, three 40◦-floodlights suffice to illuminate the entire x-axis.

Our Contribution. In this paper, we present an algorithm to solve the Axis α-Illumination
Problem. Our algorithm runs in O(n log n) time where n is the number of vertices of the given
set S of potential floodlight locations. Our algorithm can be used to illuminate arbitrary
lines as well as line segments.

Related Work. Floodlight illumination problems are considered a prominent class in
Computational Geometry [14, 20] and find applications in the field of directional sensor
networks [19]. The seminal Stage Illumination Problem [3] was posed by Urrutia in 1992
and later proved to be NP-complete even with some restrictions by Ito et al. [11]. This
problem takes as inputs a line segment and a set of floodlights Fi with angles αi and apexes
at predetermined locations pi on the same side of the segment, the goal being to rotate the
floodlights around their positions in such a way that the segment is completely illuminated.
Even more related to our work is the problem of the Optimal Floodlight Illumination of the
Real Line [5], which takes as inputs a line and a set S of n points, with the goal being to
determine a finite set of floodlights Fj of arbitrary angles αj and with apexes at pj ∈ S

(more than one floodlight can have the same point as apex) such that the line is illuminated
and the sum of the angles αj is the smallest possible. This problem was shown to be solvable
in Θ(n log n) time [5]. Further, the Optimal Floodlight Illumination of a Stage, similar to the
previous one but considering a segment instead of a line, has also been considered and solved
in Θ(n log n) time even if no more than one floodlight are allowed to have the same point
as apex [7]. On the other hand, the problem of whether a polygon can be illuminated by a
given number of α-floodlights is NP-hard and APX-hard [1].
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Figure 2 (left) A hyperbola with its foci (shown in blue) on a horizontal line; (right) A hyperbola
with its foci (shown in blue) on a vertical line. The red lines are the directrices of the hyperbola.

Finally, a wider perspective locates our problem as a variant of the Art Gallery Problem,
originally posed by Klee in 1973 as the question of determining the minimum number of
guards sufficient to see every point of the interior of a simple polygon; for more details,
see the book by O’Rourke [13], the survey article by Shermer [15], and the book chapter
by Urrutia [20]. Among all these variants, we only mention just a few, chronologically,
those the most related to our problem: the searchlight problem in polygons [18], floodlight
illumination of the plane [3], floodlight illumination of polygons [8], the two-floodlight
illumination problem [9], floodlight illumination of wedges [17], continuous surveillance of
points by rotating floodlights [2], and monitoring the plane with rotating radars [4].

2 Preliminaries

Our algorithm relies on the use of hyperbola arcs and of the farthest-point Voronoi diagram
of a point set in the plane. So, we present the definition and useful properties of these two
notions.

Hyperbola. A hyperbola with foci f1 and f2 is the locus of the points in the plane such that
the absolute value of the difference of their distances from f1 and f2 is constant (and less
than the distance of the foci) [21]; see Figure 2(left). Most commonly, the foci are located at
(x0 − c, y0) and (x0 + c, y0), where c > 0. Then, if the absolute value of the difference of the
distances from the foci is equal to 2a with 0 < a < c, the expression of the hyperbola is

(x− x0)2

a2 − (y − y0)2

c2 − a2 = 1. (1)

Such a hyperbola consists of two branches separated by any vertical line x = x0 + δ where
−a < δ < a. In fact, these branches can also be defined in terms of the two directrices
of the hyperbola which, in this case, are vertical lines; the directrices are symmetrically
positioned about the center (x0, y0) of the hyperbola at distance a2/c from it. Then, each
hyperbola branch is the locus of points whose distance from one of the foci divided by the
(perpendicular) distance from the corresponding directrix is greater than 1; for the hyperbola
satisfying Equation (1), this ratio of distances is equal to c/a > 1.

If the foci are located at (x0, y0 − c) and (x0, y0 + c) (i.e., the foci are on a vertical line),
we have a symmetric case by “exchanging” the x- and y-axis, as shown in Figure 2(right).

Farthest-point Voronoi diagram. The farthest-point Voronoi diagram of a planar point
set will also be exploited in our algorithm. For a given set of points S = {p1, p2, ..., pn} in
the plane, typically called sites, the farthest-point Voronoi diagram of S divides the plane
into cells such that each cell contains all the points of the plane with the same farthest site
among the sites in S [6]. It is well known that:

ISAAC 2021



11:4 Illuminating the x-Axis by α-Floodlights

▶ Lemma 1 ([6]).
(i) A point of a point-set S has a cell in the farthest-point Voronoi diagram of S if and

only if it is a vertex of the convex hull of S.
(ii) The farthest-point Voronoi diagram of n points in the plane has O(n) vertices, edges,

and cells.
As a result of Lemma 1(i), all cells of a planar farthest-point Voronoi diagram are unbounded
and its vertices and edges form a tree-like structure (Figure 9). Additionally, the definition
of the farthest-point Voronoi diagram readily implies the following corollary.

▶ Corollary 2. Let fVD(S) be the farthest-point Voronoi diagram of a planar point-set S

and let V (p) be the cell of p ∈ S in fVD(S). Then, a point r belongs to the closure of V (p)
if and only if the entire S is enclosed by the circle with center r and radius the distance of r

to p.

3 Illuminating unbounded and bounded ranges of the x-axis

In this section, we present how to efficiently illuminate unbounded and bounded ranges of
the x-axis and we introduce some useful notation. We first consider unbounded ranges of
the x-axis, i.e., a range (−∞, χ] or a range [χ, +∞). Then, the definition of an α-floodlight
implies the following observation.

▶ Observation 3. Let t be a two-dimensional point above the x-axis. The illumination cone
of any α-floodlight positioned at t and illuminating the maximum range (−∞, χ] of the x-axis
(i.e., χ is maximized) is delimited by the t-originating leftward-pointing horizontal ray and the
t-originating downward-pointing ray that forms an angle equal to α with the positive x-axis;
see Figure 3. Symmetrically, the illumination cone of any α-floodlight positioned at t and
illuminating the maximum range [χ′, +∞) of the x-axis (i.e., χ′ is minimized) is delimited by
the t-originating rightward-pointing horizontal ray and the t-originating downward-pointing
ray that forms an angle equal to 180◦ − α with the positive x-axis.

In light of this observation, in the next lemma we show how to efficiently illuminate the
unbounded ranges of the x-axis.

α

α

α

α

Figure 3 Illuminating a maximum x-axis range (−∞, χ].

▶ Lemma 4. For the given set S of potential floodlight locations, let t ∈ S lie on the line
supporting S from below and forming angle α with the positive x-axis. Then, the maximum
range (−∞, χt] of the x-axis illuminated by an α-floodlight positioned at t is no smaller
than the maximum range (−∞, χ] of the x-axis illuminated by an α-floodlight positioned
at any other point in S; see Figure 3. A symmetric result holds for the illumination of a
range [χ′, +∞) of the x-axis where the points in S that maximize the illuminated range are
those that lie on the line supporting S from below and forming angle 180◦−α with the positive
x-axis.
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Next, let (−∞, χleft] and [χright, +∞) be the maximum such ranges of the x-axis illumin-
ated by an α-floodlight positioned at any point in the given location set S; the values χleft

and χright can be computed as described in Lemma 4. Note that χleft < χright because
α < 90◦.

t
c

p q

α
αα

Figure 4 Illuminating a bounded range of the x-axis with an α-floodlight positioned at t.

Now, let us consider the illumination of bounded ranges of the x-axis. If an α-floodlight
positioned at a point t above the x-axis illuminates the range [χL, χR] of the x-axis with
−∞ < χL < χright, we write that illum(t, χL) = [χL, χR]; the range illum(t, χL) is uniquely
defined as the range of the x-axis swept by the counterclockwise rotation by an angle α

of the t-originating ray that goes through the point (χL, 0) on the x-axis. In addition, we
extend this notation and use illum(t,−∞) to denote the maximum range of the form (−∞, χ]
illuminated by an α-floodlight at t; see Observation 3.

Assuming that illum(t, χL) = [χL, χR], let p, q be the points p = (χL, 0) and q = (χR, 0)
and let r be the radius of the circle through t, p, q (see Figure 4). Then, the distance of the
center c of this circle from the x-axis is r cos α, that is, the ratio of its distance to t over its
distance to the x-axis is 1/ cos α, which is a constant greater than 1 for any fixed α < 90◦.
Therefore, from Section 2, the center c belongs to a hyperbola branch which we formally
define next.

▶ Definition 5. For any positive angle α < 90◦ and any point t above the x-axis, we define
the hyperbola branch Ht (with the point t as focus and the x-axis as directrix) that is the
locus of points whose distance from the point t divided by the (perpendicular) distance from
the x-axis is equal to 1/ cos α > 1.

Figure 5 A set of five point locations and the corresponding hyperbola branches Hi for α = 10◦.

ISAAC 2021



11:6 Illuminating the x-Axis by α-Floodlights

Figure 5 shows the hyperbola branches Ht for a set of five points and α = 10◦. Then, from
the above discussion and from Figure 4, we have:

▶ Lemma 6. Let t be a point above the x-axis and α a positive angle where α < 90◦. Consider
an α-floodlight positioned at t which illuminates a range [χL, χR] of the x-axis, and let p, q be
the points p = (χL, 0) and q = (χR, 0) on the x-axis. If C is the circle defined by t, p, q, then:

(i) The center c of the circle C lies on the hyperbola branch Ht (see Definition 5).
(ii) The line through p and c forms a fixed angle equal to 90◦ − α with the positive x-axis.

Symmetrically, the line through q and c forms a fixed angle equal to 90◦ + α with the
positive x-axis.

As we are interested in minimizing the total number of α-floodlights used, it is important
to use floodlights positioned at points of the given set S of locations such that the illuminated
range is maximized. Thus, for −∞ ≤ χ < χright, we denote by loc_max(χ) ⊆ S the set of
locations t ∈ S such that illum(t, χ) is maximized; Lemma 4 implies that if χ = −∞, all
these locations belong to a line forming angle α with the positive x-axis whereas Figure 4
implies that for −∞ < χ < χright, they belong to an arc of a circle with endpoints being the
endpoints of illum(t, χ).

In order to determine the points in loc_max(χ) for χ such that χleft ≤ χ < χright, we
use the properties stated in the following lemma.

▶ Lemma 7. Let t be a point in the location set S. For any real number χ such that
χleft ≤ χ < χright, assume that illum(t, χ) = [χ, χR] and let p, q be the points p = (χ, 0) and
q = (χR, 0) on the x-axis. If c is the center of the circle C through t, p, q, then:

(i) The point t belongs to loc_max(χ) if and only if the circle C encloses the entire set S.
(ii) The point t belongs to loc_max(χ) if and only if c belongs to the upper envelope of the

hyperbola branches Hu for all u ∈ S.
(iii) If t belongs to loc_max(χ), then no range [χ′

L, χ′
R] with χ′

L ≤ χ and χ′
R > χR can be

illuminated by an α-floodlight located at any point of S.

4 The Algorithm

First, we show that the Axis α-Illumination Problem admits solutions in which we use
one floodlight to illuminate the range (−∞, χleft] and another one to illuminate the
range [χright, +∞) (Figure 6) where χleft, χright are as defined in Section 3.

▶ Lemma 8. Let S be a given set of locations and let α < 90◦. Then, there exists a solution
of the Axis α-Illumination Problem on S in which one floodlight is used to illuminate the
range (−∞, χleft] and another one to illuminate the range [χright, +∞) of the x-axis.

Therefore, next, we concentrate on the illumination of the range [χleft, χright] of the x-axis.
First, we note that, as is the case in [5], any instance of the Axis α-Illumination Problem
on a (possibly continuous) location set S can be reduced into an instance on the set of the
convex hull vertices of S, that is, on a discrete location set.

▶ Lemma 9. The Axis α-Illumination Problem on a set S of planar regions with piece-wise
linear boundary has the same solution as the Axis α-Illumination Problem on the vertices of
the convex hull CH(S) of S.

Because of Lemma 9, in the following, we can assume that S is a discrete set, with |S| = n.
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α

α

χleft χright

Figure 6 The upper envelope H of the hyperbola branches in Figure 5 and the α-floodlights
(shown in red) illuminating the ranges (−∞, χleft] and [χright, +∞) of the x-axis.

For the illumination of the range [χleft, χright] of the x-axis, Lemma 7(iii) suggests
that it is advantageous to use locations that belong to the corresponding loc_max(·) set.
This is what we do in First Algorithm. The algorithm determines a location in the current
loc_max(χ) set (for χleft ≤ χ < χright) from the intersection of the upper envelope H of
the hyperbola branches with a line forming angle 90◦ − α with the positive x-axis that goes
through point (χ, 0) on the x-axis (see Lemma 6(ii)); any such line intersects a hyperbola
branch Ht at exactly one point.

First Algorithm
Input: a positive angle α < 90◦, a set S of regions with piece-wise linear boundary
above the x-axis, and the range [χleft, χright] of the x-axis to be illuminated
Output: a set F of α-floodlights at points in S illuminating the entire [χleft, χright], and
the corresponding illuminated ranges

1. F ← ∅; {F will store a solution}
current_χ← χleft;
while current_χ < χright do

p← the point (current_χ, 0) on the x-axis;
v ← a vertex in loc_max(current_χ);
q ← point on the x-axis to the right of p such that the angle p̂vq is equal to α;
χ′ ← the x-coordinate of q;
F ← F ∪

{ (
v, [current_χ, χ′]

) }
;

current_χ← χ′;
return the resulting F ;

Clearly, the algorithm can be used to illuminate any subset of the range [χleft, χright]
of the x-axis, and in general any line segment in the plane. First Algorithm places an
α-floodlight at a point in loc_max(χleft), which is computed from the arc in the upper
envelope H that is intersected by the line through the point (χleft, 0) and forming angle
90◦ −α with the positive x-axis (Lemma 6 and Lemma 7(ii)), and if the illuminated range is
[χleft, χ1], in a similar fashion, places an α-floodlight at a point in loc_max(χ1), and if the
new illuminated range is [χ1, χ2], it places an α-floodlight at a point in loc_max(χ2), and so
on so forth until χright gets illuminated. Figure 7 shows how Step 2 of the First Algorithm
works in order to illuminate the range [χleft, χright] of the x-axis for the set of five point
locations of Figure 5.

ISAAC 2021



11:8 Illuminating the x-Axis by α-Floodlights

χleft χright

Figure 7 Illustration of the operation of First Algorithm on the hyperbola branches of Figure 5
and the set of floodlights produced by the algorithm to optimally illuminate the range [χleft, χright]
of the x-axis.

If the upper envelope H of the hyperbola branches Ht of the vertices of the convex
hull CH(S) of the location set S is given as a left-to-right sequence of hyperbola arcs along
with the associated vertices of CH(S), First Algorithm takes O(n + k) time where k is the
number of α-floodlights that are eventually used. If the output consists of a list of the
required floodlights, this algorithm is output-size sensitive. However, the number k may be
very large even for a location set S of small descriptive size.

In the following, we propose a modified approach which, in one fell swoop, computes
a number of illuminated ranges corresponding to many α-floodlights placed at the same
location in S; once we reach an arc A of the upper envelope H, we determine all consecutive
α-floodlights that need to be placed at the convex-hull vertex corresponding to the arc A by
using the right endpoint of A. This approach is used in Step 2 of Second Algorithm for the
general Axis α-Illumination Problem, which we give below.

Second Algorithm
Input: a positive angle α < 90◦ and a set S of regions with piece-wise linear boundary above
the x-axis
Output: a set F of α-floodlights located at points in S illuminating the entire x-axis, and the
corresponding illuminated ranges on the x-axis

1. compute the convex hull CH(S) of the given location set S;
compute the upper envelope H of the hyperbola branches (each defined by a vertex in
CH(S) and the x-axis as directrix) and store it as a left-to-right sequence of hyperbola
arcs, each associated with the corresponding vertex in CH(S);
vfirst ← a vertex of CH(S) as described in Lemma 4 in order to place an α-floodlight to
illuminate the range (−∞, χleft] of the x-axis;
vlast ← a vertex of CH(S) as described in Lemma 4 in order to place an α-floodlight to
illuminate the range [χright, +∞) of the x-axis;
F ←

{ (
vfirst, (−∞, χleft]

) }
; {F will store a solution}

continued on next page...
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Second Algorithm (continued)
2. current_χ← χleft;

while current_χ < χright do
p ← the point (current_χ, 0) on the x-axis;
L← the line through p forming angle 90◦ − α with the positive x-axis;
A← the hyperbola arc (in the upper envelope H) intersected by the line L;
v ← the vertex in CH(S) associated with A;
if the arc A has a right endpoint in H then

L′ ← the line through the right endpoint of A forming angle 90◦ + α

with the positive x-axis;
q′ ← the point of intersection of the line L′ with the x-axis;
k ←

ö‘pvq′/α
ù
; {we do not go past the right endpoint of A}

else {the arc A is the rightmost arc in H}
q′ ← the point (χright, 0) on the x-axis;
k ←

†‘pvq′/α
£
; {we reach the point (χright, 0)}

q ← the point on the x-axis such that the angle p̂vq is equal to k · α;
χ′ ← the x-coordinate of q;
F ← F ∪

{ (
v, [current_χ, χ′]

) }
;

current_χ← χ′;
F ← F ∪

{ (
vlast, [χright, +∞)

) }
;

3. in the solution F , merge any pairs associated with the same vertex and with touching
ranges of the x-axis;
return the resulting F ;

An example of how Step 2 of Second Algorithm works to illuminate the range [χleft, χright]
of the x-axis is presented in Figure 8. It is important to note that a single iteration of
the while loop in Step 2 of the Second Algorithm corresponds to several iterations of the
while loop in Step 2 of the First Algorithm for the same floodlight location and for touching
illumination ranges; to see this, observe that in the while loop in Step 2 of the Second
Algorithm, if s is the point of intersection of the hyperbola branch Hv with a line through q

that forms the angle 90◦ +α with the positive x-axis and if χ′′ is the x-coordinate of the point
of intersection of the x-axis with the line through s that forms angle 90◦−α with the positive
x-axis, then, for each χ ∈ [current_χ, χ′′], v belongs to loc_max(χ)

(
see also Lemma 6(ii)

and (iii)
)
. The correctness of the algorithm follows from the previous observation, the

correctness of the First Algorithm, the x-monotonicity of the upper envelope H, and from
Lemmas 4, 7(ii), 8, and 9, respectively.

χleft χright

Figure 8 Illustration of the operation of the Second Algorithm on the set of five points shown in
Figure 5 for α = 10◦ to illuminate the range [χleft, χright] of the x-axis and the resulting floodlights.
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11:10 Illuminating the x-Axis by α-Floodlights

4.1 Complexity of Second Algorithm
The upper envelope H of the hyperbola branches Ht for t ∈ S can be efficiently computed
by using the farthest-point Voronoi diagram fVD(S) of the vertices of the convex hull of
the set S, which coincides with the farthest point Voronoi diagram of the vertices of S (see
Lemma 1(i)). The following lemma and the corollary give the relationship of the fVD(S)
with the arcs in the upper envelope H.

▶ Lemma 10. Let H be the upper envelope of the hyperbola branches of all the vertices in
the convex hull CH(S) of S and let fVD(S) be the farthest-point Voronoi diagram of the
vertices of CH(S). Moreover, let Hv be the hyperbola branch of a vertex v of the convex hull
of S and let t be a point of Hv. Then, the point t belongs to H if and only if t belongs to the
closure of the cell of v in fVD(S).

f

e

d c

b

V (b)

V (c)
V (d)

V (e)

V (f )

Figure 9 The upper envelope H of the five points shown in Figure 5 and their farthest-point
Voronoi diagram (shown in red).

Lemma 10 implies the following corollary; see Figure 9.

▶ Corollary 11. Let H, fVD(S), v, and Hv be as in Lemma 10. Then, the following hold.
(i) The part of the hyperbola branch Hv of a vertex v ∈ CH(S) that belongs to H is precisely

the intersection of Hv with the cell of v in fVD(S).
(ii) A point t ∈ H is a vertex of H if and only if t either lies on an edge or is a vertex of

fV D(S).
(iii) The size (number of vertices or hyperbola arcs) of the upper envelope H of the hyperbola

branches of all the vertices in the convex hull of the set S is O(|CH(S)|).
Since each arc of the upper envelope H produces at most one pair in the solution F in Step 2
of the Second Algorithm (see Figure 8), Corollary 11(iii) implies that:

▶ Corollary 12. The size of the solution computed by the Second Algorithm is O(n) where n

is the total number of vertices of the location set S. Hence, the same holds for any solution
to the Axis α-Illumination Problem as it is described in Section 1.
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Now we are ready to estimate the complexity of the Second Algorithm. Let n be the
number of vertices of the set S. The computation of the convex hull of the vertices of S,
which coincides with the convex hull of S, takes O(n log n) time [6]. The computation of the
upper envelope of H can be done by computing first the farthest-point Voronoi diagram of the
convex hull vertices of S, and then the vertices of H by taking advantage of Corollary 11(ii),
the proof of Corollary 11(iii), and the appropriate hyperbola arcs of H in accordance with
Corollary 11(i); the farthest point Voronoi diagram of O(n) points can be computed in
O(n log n) time [16] and has O(n) size (see Lemma 1(ii)), while the remaining work can be
done in O(n) time. Finally, computing vfirst and vlast takes O(n) time and the initialization
of F takes constant time. In total, Step 1 can be completed in O(n log n) time.

Each iteration of the while loop in Step 2 of the algorithm requires constant time for
everything but determining the arc A intersected by the line L. Finding the arc A can be
done in O(log n) time by using binary search on the x-monotone upper envelope H; in fact,
all the arcs A needed in the different iterations of the while loop can be found in O(n)
total time by walking along H from left to right as needed by the algorithm. Because each
iteration of the while loop involves a different arc in H and the total number of arcs is O(n)
(Corollary 11(iii)), the total number of iterations is O(n). In addition to the while loop,
Step 2 contains operations that require constant total time; thus, Step 2 can be completed in
O(n log n) time. Step 3 takes O(n) time because we can efficiently merge the appropriate
pairs in the set F computed after Step 2 by processing them in the order they are produced.

Overall, the algorithm takes O(n log n) time. The space for computing and storing the up-
per envelope H of the hyperbola branches, the farthest-point Voronoi diagram (Lemma 1(ii)),
and the solution F (Corollary 12) is O(n). Thus, we conclude with the following theorem.

▶ Theorem 13. The Second Algorithm correctly computes a solution to the Axis α-Illumina-
tion Problem and requires O(n log n) time and O(n) space, where n is the number of vertices
of the given location set.

5 Concluding Remarks

We proved that the Axis α-Illumination Problem admits an O(n log n)-time and O(n)-space
algorithm where n is the number of vertices of the given location set. The obvious open
question is whether there exists a matching lower bound for that problem or if not, to find a
faster algorithm.

A natural extension of our Axis α-Illumination Problem is the case of a set S of regions
(with piece-wise linear boundary) lying in a polygon and we want to illuminate the boundary
of that polygon. This problem may be thought of as a variant of the Art Gallery polygon
where the purpose is to guard only the boundary of the input polygon [12]. We believe that
the Second Algorithm can be extended to the case where S lies in a circle or in a convex
polygon and we want to illuminate the boundary of that circle/polygon. However, in the
case of a simple polygon, the problem is NP-hard [13] and APX-hard [10].
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