On Geometric Priority Set Cover Problems

Aritra Banik &

National Institute of Science Education and Research, HBNI, Bhubaneswar, India

Rajiv Raman' &

Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Mines Saint-Etienne, LIMOS,
F-63000, Clermont-Ferrand, France

Saurabh Ray &
New York University, Abu Dhabi, UAE

—— Abstract
We study the priority set cover problem for simple geometric set systems in the plane. For pseudo-
halfspaces in the plane we obtain a PTAS via local search by showing that the corresponding set
system admits a planar support. We show that the problem is APX-hard even for unit disks in the
plane and argue that in this case the standard local search algorithm can output a solution that is
arbitrarily bad compared to the optimal solution. We then present an LP-relative constant factor
approximation algorithm (which also works in the weighted setting) for unit disks via quasi-uniform
sampling. As a consequence we obtain a constant factor approximation for the capacitated set cover
problem with unit disks. For arbitrary size disks, we show that the problem is at least as hard as
the vertex cover problem in general graphs even when the disks have nearly equal sizes. We also
present a few simple results for unit squares and orthants in the plane.
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1 Introduction

The priority set cover problem is defined as follows. Given a ground set X and a set S of
subsets of X, the where each element x € X has an associated priority 7(z) and each set
S € S has an associated priority 7(S), the goal is to pick the smallest cardinality subset
S’ C S s.t. for each x € X, there is some S € S’ contain x s.t. 7(5) > 7(x).

We study the priority set cover problem for simple geometric regions in the plane. It is
a natural generalization of the set cover problem, and is interesting in its own right. It is
also related to the capacitated covering problem via the work of Chakarabarty et al. [11].
Another motivation for studying such problems is that it leads to a better understanding of
the limitations of the current techniques and forces us to extend them.

By treating the priority as an additional dimension, these problems can be seen as special
cases of three dimensional set cover problems. However, these problems turn out to be
significantly harder than the corresponding problems without priority. For example, while the
set cover problem with disks in the plane admits a PTAS, the same problem with priorities
surprisingly turns out to be APX-hard even for unit disks. This is one of the few problems
known that is APX-hard for unit disks. One standard technique that yields a constant factor
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approximation for many geometric covering problems is quasi-uniform sampling [28, 13].
However this fails for the priority set cover problem for unit disks since the shallow cell
complezity (defined in Section 2) of the corresponding set system can be quadratic. Another
common technique used to obtain approximation algorithms is local search. The analysis of
local search requires showing the existence of a support, or the existence of a local search
graph that come from a hereditary family with sublinear size separators (see [26] and the
references therein). However, even for the priority set cover problem with unit disks, such
graphs do not exist. In fact we show that the standard local search algorithm may produce
solutions that are arbitrarily bad compared to an optimal solution.

We develop techniques to obtain the first O(1)-factor approximation algorithms for the
priority set cover problem with unit disks. The algorithm relies on tools we develop to study
the priority set cover problem defined by points and pseudo-halfspaces in the plane. For the
latter problem we show that the shallow cell complexity of the corresponding set system is
linear. For the set cover problem without priorities (or equivalently the priority set cover
problem with uniform priorities), the problem is known to be solvable in polynomial time [21].
However, we show that the introduction of priorities renders the problem NP-hard.

The proof is non-trivial and uses a novel approach that might be useful in other settings.
We also obtain a PTAS for the priority set cover problem for pseudo-halfspaces via local
search. For this, we prove that the corresponding set system admits a planar support. Again
due to priorities, the proof is much more subtle than for pseudo-halfspaces without priorities.

An identical proof also yields an O(1)-approximation for the priority set cover problem
with unit squares. In this case, we do not know if the problem is APX-hard, and this remains
an intriguing open question.

As a consequence of our results for the priority problem, we immediately obtain O(1)-
approximation algorithms for the capacitated covering problems when combined with the
results of Bansal and Pruhs [6], and Chakrabarty et al. [11]. We start with the necessary
definitions and results in Section 2, and describe related work in Section 3. In Section 4 we
present our results for pseudo-halfspaces. We present our results for disks in Section 5. We
conclude with open problems in Section 6.

2 Preliminaries

Let P be a set of points and let R be a set of regions in the plane and let 7 : PUR — R be a
function that assigns a priority to each point and each region. We say that a region R covers
a point p if R contains p and 7(R) > 7(p). We use the notation p < R for “R covers p”. For
any region R, we denote by R(P), the set of points in P covered by R. We denote the set
system (P,{R(P): R € R}) by (P,R,n) and call it the “set system defined by P and R".
For any point p, we denote by p(R) the set of regions in R covering p and we denote the set
system (R, {p(R : p € P}) by (R, P,7) and call it the “dual set system defined by P and R”.

The Priority Set Cover problem defined by P, R and 7 is the set cover problem on the
set system (P, R, 7). In other words, the goal is to find the smallest subset R’ C R s.t. each
point in P is covered by at least one of the regions in R’. In the weighted variant of this
problem, we have a weight wgr with each region R and the goal is to minimize the total
weight of the regions in R’ instead of its cardinality. We also consider the Capacitated Set
Cover problem studied by Chakrabarty et al. [11]. In this problem, we are given a set system
(X,S), where X is a set of elements, S is a collection of subsets of X with a weight function
w:S = Ry, and a capacity function ¢ : S = R;. Each element © € X has a demand
d(xz) > 0. The objective is to select the smallest weight sub-collection &’ C S such that the
total capacity of the sets in &’ containing any element z is at least d(x). A special case of
this problem is the Set Multicover problem where the capacity of each set in 8’ is 1.
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A finite collection of unbounded z-monotone curves is called a family of pseudolines if

every pair of curves intersect in at most one point and at this point the curves cross [3].

Pseudoline arrangements have a rich history and a rich combinatorial structure. See the
book [20] for further results on pseudolines. A family of pseudo-halfspaces is a collection of
closed unbounded regions in the plane whose boundaries form a family of pseudolines.

Given a set system (X, S), a support is a graph G = (X, E) s.t. any set S € S induces a
connected subgraph of G. A planar support is a support that is planar.

A plane graph is a drawing of a planar graph in the plane where the vertices are drawn
as points and edges are drawn as interior disjoint simple Jordan curves connecting the points
corresponding to the incident vertices. A triangulation is a plane graph in which all faces
have three vertices.

Given a set system (X, S), let 2(S) = {S € S : x € S}. The set system (X, S) has shallow
cell complexity [13] function f(-,-) if for any subset S’ C S, and any k € N, the number of
sets of size at most k in {z(S’) : x € X} is at most f(|S'|, k). If f(|S'], k) < ¢(|S’]) - k€ for
some constant ¢ where ¢(-) is a linear function of its argument, we say that the shallow
cell complexity of the set system is “linear”. Similarly, if ¢(-) is a quadratic function of its
argument, we say that the shallow cell complexity is “quadratic”.

3 Related Work

Packing and covering problems are central topics in computational geometry literature, and
studied intensively over several decades. Broadly, there are three main algorithmic techniques:
LP-rounding, local search and separator based methods.

The technique of Bronimann and Goodrich [9] reduces any covering problem to an e-net
question so that if the set system admits an e-net of size L- f(1), then we obtain an LP-relative
approximation algorithm with approximation factor f(OPT) where OPT is the size of the
optimal solution. Since set systems of finite VC- dimension admit e-nets of size O(% log %),
this implies an O(log OPT) approximation algorithm for covering problems involving such set
systems. Similarly, for set systems with low shallow cell complexity, we obtain algorithms with
correspondingly small approximation factors (see [28, 13]). In particular if the shallow cell
complexity is linear, we obtain constant factor approximation algorithms. Varadarajan [28]
showed via the quasi-uniform sampling technique how these results can be made to work in
the weighted setting. His technique was optimized by Chan et al. [13] who also introduced the
notion of shallow cell complexity generalizing the notion of union complexity from geometric
set systems to abstract set systems. Some of these algorithms have also been extended to
work in the multicover setting (see [15], [6]). One limitation of the approach in [9] is that
even for simple set systems with linear shallow cell complexity, the lower bound on the size
of the e-net may involve a large constant factor which then translates into a lower bound on
the approximation ratio of the corresponding rounding algorithm. For simple set systems,
such as that for points and halfspaces in the plane, Har-Peled and Lee [21] gave a polynomial
time dynamic programming algorithm. Bringmann et al. [8] show a tight O(n\/E) exact
algorithm to check if there is a set cover of size at most k, while for dimensions larger than
3, they show that under ETH, it is not possible to improve upon brute force enumeration.

The local search framework, where one starts with any feasible solution and tries to
improve the solution by only making constant size swaps (i.e., adding/removing a constant
number of elements from the solution), yields a PTAS for several packing and covering
problems (see e.g. [25, 14, 5, 19, 26, 7]). This framework also has major limitations: it is
not as broadly applicable as the LP-rounding technique (in particular it works only for the
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unweighted setting so far), often hard to analyse, and the PTASes they yield have a running
time like n°(/€*) with large constants in the exponent, making them irrelevant for practical
applications.

The third type of algorithms consists of separator based methods where some kind of
separator is used to split the problem instance into smaller problems which can be solved
independently and combined to obtain an approximate solution. Hochbaum and Maass [22]
used this idea to obtain PTASes for several packing and covering problems. More recently,
Adamaszek and Wiese [1, 2] have used this kind of idea for obtaining a QPTAS for independent
set problems. Mustafa et al. [24] extend the idea of Adamaszek and Wiese to obtain a QPTAS
for weighted set cover problem with pseudodisks in the plane and halfspaces in R3. For unit
disks, there have also been attempts to obtain better approximation algorithms that run
fast. See [17] for an 18-approximation algorithm that runs in O(mn) for m points and n unit
disks.

The priority set cover problem was introduced by Chakrabarty et al. [11] as an approach
to solve the capacitated set cover problem. In particular, they showed that an LP-relaxation
for the capacitated covering problem with knapsack cover inequalities, introduced by Carr et
al. [10] in the context of approximation algorithms has an O(1)-approximation algorithm if
there is an LP-relative O(1)-approximation for the set multicovering problem, and an O(1)
LP-relative approximation for the priority set cover problem.

4 Pseudo-halfspaces

In this section we study the priority set cover problem for pseudo-halfspaces in the plane. For
the set cover problem without priorities (or equivalently the priority set cover problem with
uniform priorities), the problem is known to be solvable in polynomial time [21]. However, in
the full version of the paper we show that the introduction of priorities renders the problem
NP-hard.

Let H = {hy,--- ,h,} be a set of pseudo-halfspaces and let P be a set of points in R?.
We denote the boundary of h; by ¢;. We assume that curves ¢, --- , ¢, lie in general position
i.e., no more that two of them intersect at any point in the plane. Each pseudo-halfspace
and each point also has an associated priority. We assume without loss of generality that
the priorities of all the pseudo-halfspaces are distinct. For any point p, let H(p) denote the
subset of pseudo-halfspaces covering p. We define depth(p) as |H(p)].

» Lemma 1. Let t be a positive integer. Let P’ be any subset of the points in P s.t. for any
point p € P’, depth(p) < t and for any two distinct points p,q € P', H(p) # H(q). Then,
|P'| is O(nt?).

Note that the above lemma implies that the shallow cell complexity of the set system
(P,{H(p) : p € P}) is linear.

For any point p, we can assume without loss of generality that p is contained in a bounded
cell in the arrangement of the boundaries of the pseudo-halfspaces in H(p). This can be
guaranteed by adding three dummy pseudo-halfspaces of priority larger than all the points in
P so that P is contained in a bounded cell defined by them. The dummy halfspaces increase
the depth of each point by 3 but this does affect the upper bound claimed above.

In order to prove Lemma 1, we define a new set @) of points as follows. For every triple
of pseudo-halfspaces h;, hj, hy s.t. w(h;) < w(h;),m(hy) and h,; contains ¢; N ¢, we define a
point g = ¢(i, j, k) located at £; N ¢, with priority m(h;). Note that ) may contain several
points with the same location but with different priorities. However no two points in @ have
the same location and priority.
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We map each p € P’ to a point in @ as follows. We consider the arrangement of the
boundaries of all the pseudo-halfspaces whose priority is at least that of p. As mentioned
above, we can assume that p lies in a bounded cell C of this arrangement. Let h; be
the pseudo-halfspace with the lowest priority in H(p). Note that the cell C' must have at
least three vertices since this is a pseudo-line arrangement. Thus, it must have a vertex
defined by the boundries of two pseudo-halfspaces h; and hj other than h;. Note that
w(h;) < w(h;),w(hi) and h; contains £; N €. We map p to ¢(i, j, k).

Since £; N ¥}, is adjacent to at most four cells in the arrangement each of which can contain
at most one point of P’, at most four points in P’ are mapped to ¢(i, j, k). Note also that
if p is mapped to ¢(i, 7, k) then the depth of p and ¢(4, j, k) differ by at most 2 depending
on whether h; and hy contain p. Thus, in order to prove the upper bound in Lemma 1, it
suffices to prove the upper bound on the number of points in ) of depth at most ¢.

> Claim 2. Let ¢ be a positive integer. The number of points in @) of depth at most ¢ is
O(nt?).

Proof. First note that any point ¢ = ¢(i, j, k) € @ has depth at least three since it is contained
in the three pseudo-halfspaces h;, h; and hy. We first prove that the number of points ¢(¢, j, k)
of depth 3 is O(n). We then use the Clarkson-Shor technique [16] to prove the lemma.

If a point ¢(7,7,k) € @ has depth 3 then note that h; is the pseudo-halfspace of the
highest priority below min{m(h;), m(hy)} containing ¢; N ¢;. This means that if we imagine
inserting the pseudo-halfspaces into an initially empty arrangement in the decreasing order
of their priorities then ¢; N ¢} is a vertex on the boundary of the arrangement until h; is
inserted at which point it is no longer a vertex on the boundary of the arrangement. Since
inserting any pseudo-halfspace can create at most two new vertices on the boundary of the
arrangement, the total number of vertices that appear on the boundary of the arrangement
throughout the process is O(n) and since only one point of depth 3 in @ is located at any
such point, the number of points in @ of depth 3 is also O(n).

We now bound the number N; of points in @ of depth <t as follows. Imagine picking
a sample of the pseudo-halfspaces where each pseudo-halfspace is picked independently
with probability p = 1/t. Let @' be the subset of points in @ that are still present and
have depth 3 in the sample. The probability that a point ¢(i, j, k) is still present in the
sample and has depth 3 in the sample is p®(1 — p)'~3 since this happens iff h;, h; and hy are
in the sample but none of remaining ¢ — 3 pseudo-halfspaces covering ¢(i, j, k) are. Thus,
E(Q') > N;-p3(1—p)t=3. On the other hand since the expected number of pseudo-halfspaces

in the sample is pn, we also have E(Q’) = O(pn). Thus, Ny = O (W) =0(nt?). <

Lemma 1 now follows. The following theorem is an immediate consequence of Lemma 1 and
the results in [13].

» Theorem 3. There is a polynomial time O(1) LP-relative® approzimation for the weighted
priority set cover problem defined by a set of points and a set of pseudo-halfspaces in the
plane.

» Theorem 4. The capacitated set cover problem defined by points and pseudo-halfspaces in
the plane has a polynomial time O(1)-approxzimation algorithm.

2 with respect to the standard LP relaxation for set cover
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Proof. Since the shallow-cell complexity of the set system defined by points and pseudo-
halfspaces (without priorities) is linear, the result of Bansal and Pruhs [6] implies an O(1)
LP-relative approximation for the multicover problem of this set system. Now, Lemma 1
implies that the set system defined by pseudo-halfspaces and points with priorities is linear,
and therefore implies an O(1) LP-relative approximation for the priority problem via the
result of Chan et al. [13]. Now, by the result of Chakrabarty et al. [11], the result follows. <

Next, we show that the set system (P, H,7) has a planar support. Our result only
requires the boundaries of the pseudo-halfspaces and not the direction of the pseudo-halfspace.
Therefore, we consider the following problem: the input is a set P of points and a set L of
pseudolines with priorities. We construct a plane graph G with vertex set P such that the
subgraphs induced on the points covered by ht(¢) and h~(£) are connected. Here, h*(£) and
h~(¢) are two pseudo-halfspaces with priority 7(¢) and boundary ¢. Such a graph G is called
a support on P with respect to L.

The proof is constructive: we process the points in increasing order of priority, and
maintain a support graph on the processed points with respect to L. We additionaly
maintain that this support graph is a triangulation on the processed points and has the
property that each edge in the graph is a simple curve that crosses any ¢ € L at most once. In
order to construct the graph, we use the following well known result called the Levi extension
lemma.

» Lemma 5 (Levi extension Lemma [20]). Given a pseudoline arrangement L and two points
p and g not lying on the same pseudoline in L, there exists a simple curve £ through p and q
such that L U ¢ is a pseudoline arrangement.

Using the Lemma above, we now construct a planar support.

» Theorem 6. Let P be a set of n points, L a family of pseudolines in R?, and w: PUL — R
be priorities. Then, there exists a graph T which is a support on P w.r.t. L such that
each edge in T crosses any pseudoline { € L at most once. Further, for anyn >3, T is a
triangulation.

Proof. Let pi,...,p, be an ordering of the points P in increasing order of priority. We
process the points in this order, and for each ¢ = 1,...,n, we maintain a graph T; that is
a support graph on the points p1,...,p; with respect to L and such that: any edge of T;
crosses the boundary of any pseudoline in L at most once. We call such a graph with its
embedding a nice graph.

For ¢ = 1, the graph T} consisting of p; and no edges clearly satisfies both the conditions,
and is a nice graph. For ¢ = 2, by Lemma 5, there is a curve ;3 between p; and ps such
that Lo = 712 U L is a pseudoline arrangement. The edge ejo is defined as v12[p1, p2], i-e.,
the segment on 15 between p; and po. It is clear that T is a nice graph.

For i = 3, we use Lemma 5 with the pseudoline arrangement Lo to construct a pseudoline
~v13 through points p; and ps3, such that L, U 713 is a pseudoline arrangment. Invoking
Lemma 5 again with Lo U 73, we obtain a pseudoline 23 between p, and ps, such that
L3 = Ly U713 U 93 is a pseudoline arrangement. The new pseudolines added define edges
e13 = 713[p1, p3] and eas = Yas[p2, p3]. Set Tz = To U ey Ueas. It is easy to see that T3 is a
nice graph.

Let T;_1 be the graph constructed for the first « — 1 points, and let L;_; be the union
of L and the additional pseudolines added in the first ¢ — 1 iterations. We construct T;
as follows: Let p; lie in a triangle A defined by points p,, pp, and p. - note that p; may
lie in the external face. Suppose that p; lies in an interior face of T;_;. Using Lemma 5
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with the arrangement L;_1 lets us construct a pseudoline ~;, through p; and p,, such that
L;_1 U~,, is a pseudoline arrangment. This gives us the edge e;, = ¥ia[pi, pa]. Note that
the interior of e;, lies in A. Otherwise, if e;, crosses A, it crosses one of the pseudolines
defining the boundaries of A, which it can not cross again without violating the assumption
that L;_1 U~,, is a pseudoline arrangement. If p; lies in an external face of T;_1, we first
pick a point o that lies in an internal face of T;_1, does lie on any pseudolines in L;_; and is
not one of the points in P. Let C be a unit circle centered at 0. We temporarily apply an
inversion® with respect to C to turn the external face in which p; lies into an internal face.
We then proceed as before and apply the inversion again to undo the first inversion.

By a similar argument, we construct edges e;;, and e;., and set L; = L;—1 U Y34 U Yip U Yic,
and T; = T;_1 Uejq Uegp Uege. Since p; lies on 74, vip and ;. it follows that the interiors of
€ia, € and e;. are pairwise internally disjoint. By construction, the edges e;q, €;» and e;. lie
in the same face of T;_1, and therefore do not intersect the interiors of edges in T;_1.

To show that T; is a nice graph, we still need to show that T; is a support on P; with
respect to L. Consider a pseudo-halfspace h = h(¢) defined by a pseudoline £ € L. First,
we will show that A’ = h \ Ueer,interior(e) is path connected. If not, let p and ¢ be two
points in A’ that cannot be connected by a continous path in h'. Let H, be the set of points
reachable from p i.e., H, is the set of points in h to which there is path from p in A, and
let H, be the set of points reachable from ¢. Since h is connected and we have removed
only the interiors of the edges that are pairwise non-intersecting, there are no vertices on
the boundary of H,, and H,. Since each edge is a simple curve, it implies that there is an
edge e that separates H, and Hg, i.e., the boundary of e crosses £ twice. This leads to a
contradiction.

Now, let u and v be any two points in P; that are contained in h. We show that there is
a path between w and v in the subgraph of T; induced by h N P;. Since u and v do not lie in
the interior of any of the edges in T}, u,v € h'. By the previous argument, there is a simple
curve o in A’ joining u and v. Observe that adjacent points of P; on o lie in the same face of
T;, and therefore are adjacent in T}, since T; is a triangulation. This implies that there is a
path in the subgraph of T; induced by h N P; joining u and v.

Let pi be the point of highest priority that is contained h. Then, by the fact that Ty is
a support on Pj with respect to L and h covers exactly the points in P, N h, we conclude
that the subgraph of T} induced by the points covered by h is connected. Since T,, contains
Ty as subgraph, the subgraph of T;, induced by the points in P = P,, covered by h is also
connected. The theorem follows. <

An immediate consequence of the above theorem is the following.
» Corollary 7. The set system (P, H,w) admits a planar support.

» Corollary 8. The set system (H, P,m) admits a planar support if the union of the pseudo-
halfspaces in H do not cover the entire plane.

Proof. If there is a point o in the plane that is not covered by any of the pseudo-halfspaces
in H then using the duality between points and pseudolines [4], we can map points to pseudo-
halfspaces and pseudo-halfspaces to points while maintaining incidences. Then, Corollary 7
implies that the set system (H, P,n) admits a planar support. |

3 https://en.wikipedia.org/wiki/Inversive_geometry
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The next theorem follows directly from the above result and the results in [26] and [27]
which show that the existence of a suitable planar support implies a PTAS.

» Theorem 9. The Set Cover, Hitting Set, Point Packing, and Region Packing problems
with priorities defined by a set of points and pseudo-halfspaces in the plane admit a PTAS.
The set multi-cover problem defined by a set of points and pseudo-halfspaces with priorities
admits a (2 + €)-approzimation algorithm for any € > 0.

The definitions of the problems mentioned in the theorem above without the priorities can
be found in [26] and [27] and naturally extend to the version with priorities.

5 Disks

Chan et al. [12] showed that the set cover problem with horizontal and vertical strips in the
plane is APX-hard. The input is a set P of n points in the plane and a set S of vertical or
horizontal strips of the form V(a,b) = {(z,y) € R?> : a < 2 < b} or H(a,b) = {(z,y) € R?:
a <y < b}. We show below that the set system defined by axis aligned strips and points
in the plane can be implemented using disks and points with priorities. This implies that
the set cover problem defined by points and axis aligned strips in the plane can be reduced
to the priority set cover problem defined by a set of points and unit disks in the plane in
polynomial time.

» Theorem 10. Given a set S of horizontal and vertical strips and a set of points P in the
plane, we can map each strip S € S to a unit radius disk S’ and each point p € P to another
point p' with appropriate priorities so that S’ covers p' iff S contains p.

Proof. Let n be the number of points in P. We can assume without loss of generality that
the points in P lie on an n X n grid G and have cartesian coordinates (i, j) where 7, € [n].
For convenience, we will assume that P consists of all points in the grid since if the theorem
holds for such a P then it certainly holds for any subset of it. We refer to the point with
cartesian coordinates (¢,7) in G as p;;.

Let D be a unit radius disk centered at the origin o. We first define n + 2 points
20,21, , Z2n+1 on the boundary of D as follows. The point z; has polar coordinates (1, 6;)
i.e., cartesian coordinates (cos 6;,sin ;) where 6; =i - ﬁ. Let @ be a unit vector along
the positive z-axis. We map the point p;; on the grid to the point q;; = 2; + j - =4 where € is
a sufficiently small constant. We assign priority n — j to the point ¢;;. Note that the points
on j*" column of the grid are mapped to the points q1j, "+ ,qn; that lie on the boundary of
a unit radius disk whose center is at o + j - ~4. We will call this disk C;. The points on the
it" row of the grid G are mapped to points on a horizontal segment of length e whose left
end-point is z;. We denote the set of points {¢;; : 4,5 € [n]} by Q.

Consider any vertical strip S = V(a, b) which contains the points in columns a,a+1,--- ;b
of G. We map this strip to the disk S’ which is identical to C}, but has priority n — a. It can
be verified that a point ¢;; € Q is covered by S’ iff the corresponding point p;; is covered
by S. Now consider any horizontal strip S = H(a,b) which contains the points in rows
a,a+1,---,bof G. We map this strip to a disk S’ defined as follows. Let u be the mid-point
on the arc on 0D joining z,_1 and z,. Similarly, let v be the mid-point on the arc on 9D
joining z, and zp11. S’ is the unique disk of unit radius whose center lies outside D and
whose boundary intersects the boundary of D at the points v and v. For sufficiently small ¢,
S’ contains exactly the subset of points in @) that correspond to the points in P contained in
S. We assign a priority of n to S’ so that it covers all the points it contains. The theorem
follows. <
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The following is an immediate consequence of Theorem 10 and the results in [12].

» Corollary 11. The priority set cover problem defined by a set of points P and a set of unit
radius disks D in the plane is APX-hard.

» Corollary 12. The shallow cell complexity of the set system defined by unit radius disks
and points with priority is quadratic.

Proof. This follows from Theorem 10 and the fact that the shallow cell complexity of the set
system defined by axis aligned strips and points in the plane is quadratic. To see the latter,

consider n disjoint horizontal strips Hy,--- , H, and n disjoint vertical strips Vi,---,V,.

Then for every pair of indices 4, j € [n], H; and Vj} intersect at a point in the plane that is
not contained in any other strip. <

» Remark. Since the shallow cell complexity is quadratic, the quasi-uniform sampling
technique [28, 13] cannot be directly applied to obtain a constant factor approximation for
the priority set cover problem defined by points and unit disks in the plane.

The next lemma shows that the standard local search algorithm does not work for the
priority set cover problem defined by unit disks and points in the plane. For minimization

problems, the standard local search algorithm is the following. It has a fixed parameter k.

The algorithm starts with any feasible solution and tries to decrease the size of the solution
by removing at most k elements from the current solution and adding fewer elements to the
solution without violating feasibility. When such improvements are not possible it returns
the current solution.

» Lemma 13. For any positive interger k, there exist instances of the priority set cover
problem defined by unit disks and points in the plane such that the standard local search
algorithm with parameter k does not yield a solution with a bounded approximation ratio.

Proof. We will construct an instance of the set cover problem defined by points and axis
aligned strips in the plane for which the standard local search algorithm with swap size k&
does not yield a solution with a bounded approximation ratio. This along with Theorem 10
implies the statement in the theorem.

Let Hy,--- , H,, be m disjoint horizontal strips and let Vi, --- .V, be n disjoint vertical
strips where m > n > k. For any i,j € [n], let p;; be a point in H; N V;. Consider the set

cover problem defined the all the horizontal and vertical strips and the points {p;; : ¢,j € [n]}.

Then, the horizontal strips form a locally optimal solution i.e., the solution cannot be

improved by swapping out at most k strips from this solution and swapping in fewer strips.

This is because if any horizontal strip is dropped, we would need to add all the vertical
strips, of which there are more than k, in order to obtain a feasible solution. Since m > n
this solution is arbitrarily large compared to the optimal solution formed by the vertical
strips. |

We now show that we can construct an arbitrarily set of disks such that every pair
intersects at a depth 2. This implies that the shallow-cell complexity of this set system is is
quadratic.

» Theorem 14. For any positive integer n, there exist a set of n disks D = {D1,--+ , Dy}
whose radii are nearly equal (i.e., the ratio of any two of the radii can be made arbitrarily
close to 1) and a set of points P with () points s.t. for any pair of disks i,j € [n] s.t. i < j,
there exists a point p;; € P which is covered by only the disks D; and D; among the disks
inD.
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Dy

Figure 1 Constructing disk Dx41 from disk Dy. The radius of Dy1 only slightly bigger than the
radius of Dy, the difference being arbitrarily small. The centers of the two disks are also arbitrarly
close to each other.

Proof. We show the existence of a family of disks D so that for any j € [n], if we consider
the arrangement of the disks in D; := {D1,--- , D,}, then i) the boundary of every disk in
D; contributes at least one arc to the boundary of the union of the disks in D; and ii) the
boundary of D; intersects the boundary of every other disk non-tangentially on the boundary
of the union of the disks in D;

We show the existence of such disks by induction on the number of disks. The base case
is m = 1 and is trivially true. Suppose that we have shown this for n = k for some k£ > 1. We
now show that we can add a disk Dy to the existing collection so that the above properties
i) and ii) hold for n = k + 1. By the inductive hypothesis, Dj, contributes an arc to the
boundary of the union of the disks in Dy. Let p be the mid-point of such an arc. Without
loss of generality assume that the radius of Dy, is 1. We construct the disk Dy41 in two steps.
See Figure 1.

First we tentatively set Diy1 to be a disk of radius 1 + dg41 for some dx41 > 0 so that
Dy 1 contains Dy and the boundaries of Dy and Dy intersect tangentially at p. We set
dr+1 to be sufficiently small so that none of the vertices in the arrangement of disks in Dy lie
in the region Dg41 \ Dg. At this point Dy41 almost satisfies the required properties. Since
Ok+1 is very small Dy, 1 is almost the same as Dy and is obtained by “growing” Dy slightly.
This means that for each j < k, D; still contributes an arc to the boundary of the union of
disks in Dy, and the boundary of Dy, intersects the boundary D; on the boundary of the
union of the disks in Dy41. D1 however intersects Dy tangentially at p which also means
that the boundary of Dj does not contribute any arc to the boundary of the union of the
disks in Dyy1. To fix these problems, we move the center of Dy,1 by a distance €51 > 0 in
the direction ¢ — p where ¢ is the center of Dy. We choose €;41 to be sufficiently small so
that during the movement, the boundary of D; does not touch any of the vertices in the
arrangement of the disks in Dj. It can be checked that after this movement the set of disks
Dy 41 satisfies the two properties. This concludes the inductive proof. By making €x; and
0r+1 appropriately small for every k, we can ensure that the disks have nearly equal radii.

We assign the priority n — ¢ to the disk D;. For any 7 < j, we define the point p;; to
be the point located where the boundaries of D; and D; intersect on the boundary of the
union of the disks in D; and having priority n — j. Note that the point p;; is covered by

both D; and D;. It is however not contained in any of other disks in {D1,---,D,} and it is
not covered by any of the disks in {Dj41,---, D, } since those disks have a lower priority
than that of p;;. <

» Remark. It can be shown that the values of €;41 and dx41 in the above proof can be
chosen so that they can be encoded using poly(n) bits. The formal proof of this statement
will appear in the extended version of the paper.
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» Corollary 15. The priority set cover problem defined by a set of points and nearly equal size
disks in the plane does not admit a strongly polynomial time approximation algorithm with
approzimation factor smaller than 1.36 unless P = NP. Under the unique games conjecture,
this implies that the priority set cover problem does not admit a strongly polynomial time
algorithm with approximation factor smaller than 2.

Proof. We give an approximation preserving reduction from vertex cover to priority set cover
problem defined by a set of points and a set of nearly equal sized disks in the plane. The
corollary then follows from the results known for the vertex cover problem [18, 23]. Given a
graph G with n vertices vy,--- ,v, and m edges, we use Theorem 14 to obtain a set D of n
disks and a set P with (g) points. The disk D; corresponds to the vertex v; of GG. For each
edge {v;,v;} in G, we retain the point p;; € P. We remove all other points. Let ) be the
set of points retained. Then, the priority set cover problem defined by the points in @) and
the disks in D is equivalent to the vertex cover problem in G. <

We now show that there exists a polynomial time constant factor approximation algorithm
for the weighted priority set cover problem defined by a set of points P and a set of unit
disks D in the plane. We first define an LP-relaxation for this problem:

minimize Z wprp s.t. foreach p e P: Z zp > 1.
DeD DED: p<D

We will show that there is a polynomial time algorithm that outputs a solution of size at
most a constant times the value OPTyp of an optimal solution to the above LP.

» Theorem 16. There is a polynomial time LP-relative O(1)-approximation algorithm for
the weighted priority set cover problem defined by a set of points P and a set of unit radius
disks D in the plane.

Proof. We first prove the theorem for disks containing a common point which without loss of
generality is assumed to be the origin o. Let * be an optimal solution to the LP-relaxation.
Counsider any one of the four quadrants formed by the axes and consider the priority set
cover problem restricted to that quadrant. Note that z* is also a feasible solution to this
problem. Since the boundaries of any two disks containing o intersect at most once in the
quadrant, they behave like pseudo-halfspaces with respect to the quadrant. By Lemma 1, the
shallow cell complexity of the corresponding set system is linear and therefore quasi-uniform
sampling [13] yields an LP-relative O(1)-approximation for this problem. Since there are
four quadrants, by taking the union of the solutions for each of the quadrants, we obtain an
LP-relative O(1) approximation for the priority set cover problem where all disks contain a
common point o.

Now, we consider the case of a general set of unit disks in the plane. We partition the
given set of disks into a constant number of families s.t. each family consists of disjoint
groups of disks so that disks in each group intersect at a common point but disks from
different groups do not intersect.

An O(1)-approximation for the priority set cover problem defined by such a family of
disks follows from the fact that disks in different groups don’t interact and for each group we
have an O(1)-approximation.

The families of the required type are obtained as follows. We place a uniform grid over
the plane having cells of size V2 x /2 i.e., each cell is a square with diameter 2. Since
there are only a finite number of disks, we can also choose the grid in such a way that the
center of each disk lies in the interior of some cell. We associate each unit disk with the cell
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containing its center. Note that the disks associated with a cell contain the center of the
cell. Next we color the cells with a constant number of colors so that two cells whose centers
have distance less than 4 get distinct colors. The disks associated with cells of a single color
then is a family of the required type. Each distinct color defines a family. Let Fi,-- - Fj be
the families obtained. As argued above, there is an O(1)-approximation algorithm for the
priority set cover problem defined by any particular family. However, a point can belong
to disks of several different families. So, we need a way to assign each point to a particular
family. To do this, we consider an optimal solution z* to the priority cover problem defined
by all disks and points. Since, for any point p, we have that ZDED:]J<D rp > 1, there is
some family F; s.t. ZDGE p<DETD = 1/k. We assign the point p to one such family.

Let P; be the subset of points assigned to family F;. Then note that Zp = k-z},, D € F;
is a feasible solution to the LP-relaxation for the priority set cover problem defined by the
points in P; and the disks in F;. Let S; be a solution to this problem using an LP-relative
O(1)-approximation. This means that S; has weight at most O(1) - Y ¢ wpZp. Note that
S = Ule S; is a solution to the weighted priority set cover problem defined by all disks and
points and has weight at most

O(1)-> > wpip <01 Z Z k-wprh =O0(1) k-3 wpah = 0(1)- Y wpat,
i D D

since k is a constant. S is therefore an LP-relative O(1)-approximation to the weighted
priority set cover problem defined by all disks and points. |

» Theorem 17. There is a polynomial time LP-relative O(1)-approximation algorithm for
the weighted priority set cover problem defined by a set of points P and a set of unit squares
S in the plane.

Proof. The proof is identical to the proof of Theorem 16, except that we have unit squares
instead of unit disks. |

» Theorem 18. The capacitated set cover problem with unit squares, or unit disks admits an
O(1)-approxzimation.

Proof. The result of Chakrabarty et al. [11] shows that there exists an O(1)-approximation
for the capacitated set cover problem whenever we have an O(1)-LP-relative approximation
for the multicover problem, and an O(1)-LP-relative approximation for the priority cover
problem. The result of Bansal and Pruhs [6] implies an O(1)-LP-relative approximation for
the multicover problem, and Theorem 16 implies an O(1)-LP-relative approximation for the
priority problem. The result for unit disks follows. For unit sqaures, the result similarly
follows from that of Bansal and Pruhs [6] and Theorem 17. <

6 Conclusion

We studied the priority set cover problem for several simple geometric set systems in the
plane. For pseudo-halfspaces in the plane we were able to obtain a PTAS but for unit disks
in the plane the problem is APX-hard and we obtained a constant factor approximation.
Obtaining a relatively small approximation factor is an interesting open question. For unit
squares in the plane we also obtain a constant factor approximation but it is not clear if the
problem is APX-hard. In fact even for orthants in the plane (possibly containing orthants
of opposite types), it is not clear if there is a PTAS. In particular, we do not know if the
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standard local search yields a PTAS. There are instances showing that the corresponding set
system does not admit a planar support. Another interesting open problem is to obtain a

constant factor approximation algorithms for disks or square of arbitrary size in the plane.
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