Efficiently Partitioning the Edges of a 1-Planar
Graph into a Planar Graph and a Forest

Sam Barr &

University of Waterloo, Canada

Therese Biedl &=

University of Waterloo, Canada

—— Abstract

1-planar graphs are graphs that can be drawn in the plane such that any edge intersects with at
most one other edge. Ackerman showed that the edges of a 1-planar graph can be partitioned into a
planar graph and a forest, and claims that the proof leads to a linear time algorithm. However, it is
not clear how one would obtain such an algorithm from his proof. In this paper, we first reprove
Ackerman’s result (in fact, we prove a slightly more general statement) and then show that the
split can be found in linear time by using an edge-contraction data structure by Holm, Italiano,
Karczmarz, Lacki, Rotenberg and Sankowski.

2012 ACM Subject Classification Mathematics of computing — Graph algorithms; Theory of
computation — Dynamic graph algorithms

Keywords and phrases 1-planar graphs, edge partitions, algorithms, data structures
Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.16

Funding Therese Biedl: Research supported by NSERC; FRN RGPIN-2020-03958.

1 Introduction

In this paper, we study the class of 1-planar graphs: graphs that can be drawn in the
plane such that every edge crosses at most one other edge. 1-planar graphs were introduced
by Ringel [21], motivated by the problem of coloring the vertices and faces of a planar
graph. Since then, there have been many publications concerning 1-planar graphs, both for
theoretical results such as coloring, as well as algorithmic results such as solving drawing
and optimization problems. The reader may refer to [18] for an annotated bibliography from
2017 and [15] for a more recent book that includes developments since then.

Many of the results for 1-planar graphs are obtained by first converting the 1-planar
graph G into a planar graph G’, applying results for planar graphs, and then expanding the
result from G’ back to G. (We will give specific examples below.) There are several ways
of how to create G’, e.g., by deleting edges or by replacing crossings with dummy-vertices.
Of particular interest to us here is to make a 1-planar graph planar by deleting edges. Put
differently, we want an edge partition, i.e., write E(G) = E' U E"” such that E’ forms a planar
graph while E” has some special structure that makes it possible to expand a solution for G’
to one for G.

Previous Work. The main focus of this paper is a result by Ackerman [1]. He established
that the edges of a 1-planar graph can be partitioned such that one partition induces a
planar graph and the other induces a forest. This was an extension of an earlier result from
Crap and Hudék [8], who proved it for optimal 1-planar graphs (simple 1-planar graphs with
the maximum 4n — 8 edges). Other partitions of near-planar graphs have also been studied;
we list a few here. Lenhart et al. [19] show that optimal 1-planar graphs can be partitioned
into a maximal planar graph and a planar graph of maximum degree four (the bound of four

© Sam Barr and Therese Biedl;
37 licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 16; pp. 16:1-16:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:s4barr@uwaterloo.ca
mailto:biedl@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ISAAC.2021.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2

Partitioning the Edges of a 1-Planar Graph

is shown to be optimal). Bekos et al. [4] provide edge partition results for some k-planar
graphs (graphs that can be drawn in the plane such that any edge crosses at most k other
edges). Di Giacomo et al. [9] prove edge partition results for so-called NIC-graphs, a subclass
of 1-planar graphs.

For algorithmic purposes, we need to find such edge partitions in linear time. With one
exception, the above papers either explicitly come with a linear-time algorithm to find the
edge-partition, or such an algorithm can easily be derived from the proof. The one exception
is the paper by Ackerman [1]. He claims that the partition of a 1-planar graph into a planar
graph and a forest can be found in linear time, but provides no details. Moreover, while his
proof clearly gives rise to a polynomial-time algorithm, it is not clear how one would achieve
linear time (or even O(nlogn) time), since he relies on contracting edges while repeatedly
testing whether two vertices share a face and occasionally splitting the graph into subgraphs,
and neither of these operations can trivially be done in constant time in planar graphs. (We
confirmed this in private communication with Ackerman.)

Our Results. In this paper, we show that a partition of a 1-planar graph into a planar
graph and a forest can be found in linear time. We were not able to use Ackerman’s proof
for this directly, so as a first step we re-prove the result in a slightly different way to avoid
some problematic situations and so that then a linear-time algorithm can be established. A
crucial ingredient for this is a data structure by Holm, Italiano, Karczmarz, L.acki, Rotenberg
and Sankowski [14] which allows for efficiently contracting edges of planar graphs. To our
knowledge, this data structure has not been implemented. Because of this, we also show that
the partition can be computed in O(nlogn) time using a simpler data structure based on
incidence lists.
As a consequence of our result, a number of related problems can be solved in linear time:
Angelini et al. [3] studied the problem of finding simultaneous quasi-planar drawings of
graphs where some edges are fixed. They used Ackerman’s partition result in order to
find such a simultaneous drawing of a 1-planar graph and a planar graph and cited its
claimed linear runtime; with our result the linear runtime of [3] is established.
It is known that every 1-planar graph has arboricity 4, i.e., its edges can be partitioned
into 4 forests. (This follows from Nash-Williams formula for arboricity [20] since 1-planar
graphs have at most 4n — 8 edges [6].) The arboricity (and the corresponding edge-
partition) of a graph can be computed in polynomial time [11], but to our knowledge not
in linear time. For planar graphs, a split into 3 forests can be found in linear time [24].
So with our result, the partition of a 1-planar graph into 4 forests can be done in linear
time as well, by first partitioning into a forest and a planar graph and then applying [24]
onto the planar graph.
If G is a bipartite 1-planar graph, then it has at most 3n — 8 edges [16] and hence
arboricity 3. With our result we can partition it into a forest and a planar bipartite graph
in linear time. The planar bipartite graph can be partitioned into two forests in linear
time [22]. In consequence, every l-planar bipartite graph can be partitioned into three
forests in linear time.
From a partition into d forests one easily obtains an edge orientation with in-degree at
most d. For bipartite graphs, such an edge-orientation can be used to prove (d+1)-list-
colorability [13], and this list-coloring can be found in O(dn) time [5]. Putting everything
together, therefore our paper fills the one missing gap to show that 1-planar bipartite
graphs can be 4-list-colored in linear time.

S. Barr and T. Biedl

Our paper is structured as follows: In Section 2 we go over necessary terminology and
present Ackerman’s proof in order to demonstrate that it does not immediately lead to a
linear time algorithm. In Section 3 we present our new proof. In Section 4 we use our
alternative proof to design an efficient algorithm for finding the partition, before concluding
in Section 5.

2 Background

We assume basic familiarity with graph theory (see e.g. [10]). All graphs in this paper are
finite and connected, but not necessarily simple.
For a (multi)graph G and a vertex x of G, d(z) is the number of edges incident to z.
We recall that a (multi)graph G is called planar if it can be drawn in the plane without
edges crossing. Let G be a planar (multi)graph given with a drawing I'. The maximal regions
of R?\ T are the faces of G. We add a chord to a face f by adding an edge between two

non-adjacent vertices on the boundary of f, and drawing the edge through the region of f.

For each vertex x with incident edges ey, ..., ek, the drawing I' places these edges in some
rotational clockwise order around z. The space between two edges which are adjacent in this
rotational order form an angle. The degree of a face f is the number of angles contained in
the face. We say that a face f is a quadrangle if it has degree 4. Note that this includes both
faces with 4 vertices on their boundary, and some faces with fewer than 4 vertices on their
boundary (see Figure 1(a)). If f is a quadrangle with exactly 4 vertices on its boundary,
then we call f a simple quadrangle (the quadrangles of a simple planar graph will all be
simple quadrangles). A face of degree 3 is a triangle, and a face of degree 2 is a bigon.

The facial cycle of a quadrangle f is a 4-tuple (2o, 21, 22, 23) such that each z; is on the
boundary of f and there are edges z;z;11 and z;z;,—1 (arithmetic modulo 4) which form an
angle in f. Note that zg, 21, 22, 23 need not be distinct if f has loops or parallel edges, or if
it is incident to a bridge. We say that zp and z are opposing vertices in f (we will often
omit mentioning the face when it is clear from context). Likewise z; and z3 are opposing
vertices in f. Note that it is possible for a vertex to oppose itself in a quadrangle.

Stellating a face f of a planar graph is the process of adding a new vertex s inside f, and
adding an edge from s to every vertex on the boundary of f. Given two vertices a and b, we
contract a and b by creating a new vertex ¢, adding an edge vc for each edge va and vb, and
deleting a and b and all their incident edges. If a and b were adjacent, then ¢ has a loop,
and if a and b were both adjacent to a vertex v, then ¢ will have parallel edges to v. If a and
b were both on the boundary of some face f in a planar graph, then we can contract a and b
through f by placing this new vertex c inside f. This preserves planarity, but destroys the
face f.

A I-planar graph is a graph G that can be drawn in the plane such that any edge
intersects with at most one other edge. Here “drawing” always means a good drawing (see
e.g. [23]), in particular this means that no three edges cross in a point, that no edge intersects
itself, and that incident edges do not cross. From now on, whenever we speak of a 1-planar
graph, we assume that one particular 1-planar drawing has been fixed. A pair of edges that
intersect each other are a crossing pair, and the point where they intersect is known as the
crossing point. The planarization is the graph G* obtained by replacing each crossing point
with a new vertex. A l-planar graph G is planar-mazimal if no uncrossed edge (i.e., an edge
which does not intersect any other edge) can be added to the fixed drawing of G without
adding a loop or a bigon.

16:3

ISAAC 2021

16:4

Partitioning the Edges of a 1-Planar Graph

For algorithmic purposes, a drawing of a planar graph can be specified by giving the
rotational clockwise order of edges at every vertex; this specifies the circuits bounding the
faces uniquely. A drawing of a 1-planar graph can be specified by giving a drawing of its
planarization, with the vertices resulting from a crossing point marked as such. Since testing
1-planarity is NP-hard [12], we assume that any l-planar graph G is given with such a
drawing. We also assume that G is planar-maximal, because any 1-planar graph can be
made planar-maximal in linear time by adding edges [2], and having more edges can only
make partitioning more difficult.

For ease of notation, we define a shortcut for our partition problem.

» Definition 1. A graph G has a PGF-partition if its edge-set E(G) can be partitioned into
two sets A and B such that G[A] is a planar graph and G[B] is a forest.

2.1 Ackerman’s Proof

To establish the difficulties of achieving a linear time algorithm, we briefly review here
Ackerman’s proof for the existence of a PGF-partition.

Let G be a (planar-maximal) 1-planar graph without loops drawn in the plane. Remove
all crossing pairs of G. Call the resulting graph H the (planar) skeleton of G [2]. Observe
that the faces of H are either bigons, triangles, or quadrangles, and that there is a 1-1
mapping between the quadrangles of H and the crossing pairs of G. Moreover, by this 1-1
mapping and the fact that the two edges forming a crossing pair do not share an endpoint,
one can see that the quadrangles of H are in fact simple quadrangles. Ackerman, similarly
to Czap and Hudék [8], establishes the following.

» Lemma 2 (Ackerman [1]). Let G be a I-planar graph, and let H be the skeleton of G. If
we can add a chord to every quadrangle of H such that the chords induce a forest, then G
has a PGF-partition.

Proof. Let C be the set of chords added to H. By the 1-1 mapping between quadrangles
of H and crossing pairs of GG, we know that exactly one edge from each crossing pair of G
is contained in C. In particular, each edge e € C forms a crossing pair with some edge €’
of G. Let C’ be the set of these edges ¢’. By assumption G[C] is a forest. Moreover, the
graph H U C’ is the graph H plus a chord added to each quadrangle of H, and so is a planar
graph. As H U’ is also the graph induced by the edge-set E(G) \ C, this gives us the
desired partition. <

Thus, in order to prove the existence of a PGF-partition, it suffices to show (typically by
induction on the number of quadrangles) that such a set of chords can be found. For the
induction to go through, Ackerman additionally forbids the chords from containing a path
between two adjacent pre-specified vertices z, y.

» Theorem 3 (Ackerman [1]). Let H be a planar multigraph without loops such that every
face has degree at most four and all quadrangles are simple. Let x,y be a pair of adjacent
vertices of H. Then we can add a chord to every simple quadrangle of H such that the
subgraph induced by the chords is a forest and does not contain a path between x and y.

Proof. Proceed by induction on the number of quadrangles in H. If H has no quadrangles,
then the statement is trivial. Otherwise, let f be a quadrangle with facial cycle (zo, 21, 22, 23);
by assumption f is simple.

S. Barr and T. Biedl

Case 1. The only face containing zg and zs is f; in particular zy and z, are not adjacent.

Contract zg and zo through f. Let H’ be the graph resulting from this contraction. Observe
that H' has one fewer quadrangle than H. All other quadrangles remain simple since f was
the only face containing zo and z3. Apply induction on H’ with the same pair of adjacent
vertices x,y to receive a set of chords C’, and then further add the chord zgzs. Chords have
now been added to every quadrangle of H, and it is easy to see that we have not added a
cycle, or a path from x to y, in the chords.

Case 2. There is some face f' # f containing zp and 29, but the only face containing z;
and z3 is f. Proceed as in Case 1, except contract z; and zs.

Case 3. None of the above. Then there is a face f’ # [containing zg and 2o, and
there is a face f” # f containing z; and z3. Ackerman argues that f' = f” (see also
Lemma 5), and therefore f’ is also a simple quadrangle. Observe that G can be split into
four connected subgraphs Hy, Hy, Ha, Hs, where H; contains z; and z;41 (addition modulo 4)
on the boundary (see Figure 1(e)). One of these subgraphs, say Hy, will contain the adjacent
pair x,y. Apply induction on Hy with z,y, and apply induction on the other H; with the
pair z;, z;11. After induction, add the chords zpz in f, and z123 in f’. One verifies that
the added chords do not add a path between x and y and that the chords do not create a
cycle. |

3 An Alternative Existence Proof

While Ackerman’s proof clearly leads to a polynomial time algorithm for finding the partition,

it is not obviously linear since distinguishing between the cases and contracting are not

obviously doable in constant time:

1. We need to test whether a given pair of vertices share more than one face.

2. The graph changes via contractions, and it is not obvious whether the existing data
structures for efficiently contracting edges in planar graphs (e.g. [14]) would support (1)
in constant time.

3. In Case 3 of Ackerman’s proof, we need to identify the four subgraphs Hy, H1, H2, Hs.
Furthermore, we need to determine which of these subgraphs contains the pair x,y.

Neither operation is obviously doable in constant time.

We now give a different proof of the existence of a PGF-partition that either avoids these
issues or addresses explicitly how to resolve them. The biggest change is how we handle
Case 3 of Ackerman’s proof. Ackerman used here a split into four graphs, which is necessary
in order to maintain that all quadrangles are simple. We prove a more general statement
that permits non-simple quadrangles and hence avoids having to split the graph. Moreover,
we generalize Ackerman’s “forbidden pair” x and y by choosing chords in such a way that the
chords do not induce a path between any pair of vertices that were adjacent in the original
graph H. Doing so simplifies the induction since we no longer need to keep track of where
the vertices = and y are. Before we state this result we need a few helper-results that hold
for all quadrangles (simple or not).

» Lemma 4. Let H be a plane multigraph without loops, let f be a quadrangle of H, and
let (20, 21, 22, 23) be the facial cycle of f. If z; = ziyo (addition modulo 4) for some i, then
Zi+1 7 zixs, and there is no face f' # f that contains z;+1 and zi13.

16:5

ISAAC 2021

16:6

Partitioning the Edges of a 1-Planar Graph

Proof. Up to renaming, we may assume that ¢ = 0, so zg = 22 (see Figure 1(a)). Assume for
contradiction that z; = z3. Then f consists of several parallel edges between zy = z, and
z1 = z3, and thus f is not a quadrangle.

Assume by way of contradiction that there is some face f’ # f which contains z; and z3.
Subdivide one of the zpz3 edges to obtain a new vertex y adjacent to zg and z3, and further
add an edge yz; within f. We have split f and attained a simple quadrangle f” with facial
cycle (zg, 21,9, 23). Stellate f” with a new vertex ¢, and add an edge z1z3 through the face
/. All these steps maintain the planarity of H. Moreover, the five vertices zg, 21, ¥, 23, ¢ are
pairwise adjacent. But this forms a K5 which is not planar, a contradiction. <

The following lemma was shown (without being stated explicitly) in Case 3 of Ackerman’s
proof.

» Lemma 5. Let H be a plane multigraph without loops, let f be a quadrangle of H, and let
(20, 21, 22, 23) be the facial cycle of f. If z; and z;y2 (addition modulo 4) are both on some
face ' #£ f for some i, then no face " # f, f' contains both z;+1 and z;13.

Proof. Up to renaming we may assume that ¢ = 0, so zp and 2y are on f and f’ (see
Figure 1(b-e)). Suppose for contradiction that such a face f” exists. By Lemma 4, z; # z3
and zg # 2o. Stellate f with a new vertex ¢, add an edge zgz5 through f’, and add an edge
2123 through f”. The original multigraph H was planar, and all of these operations preserve
planarity. However, the five vertices zq, 21, 22, 23, and ¢ are pairwise adjacent and form a K,
which is not planar, a contradiction. <

Figure 1 Some configurations where we contract z; and zs.

Now we reprove the existence of quadrangle-chords that form a forest.

» Theorem 6. Let H be a plane multigraph without loops such that every face has degree
at most 4. Then it is possible to add a chord to every quadrangle of H such that the graph
induced by the chords is a forest. Moreover, for all pairs of adjacent vertices a and b of H,
there is no path from a to b in the chords.

S. Barr and T. Biedl

Proof. Asin Ackerman’s proof, we prove the claim by induction on the number of quadrangles

in H and remove each quadrangle by contracting an opposing pair of vertices in the quadrangle.

If H has no quadrangles, the claim is trivial. Otherwise, there are quadrangles left. Pick an
arbitrary vertex x that is still incident to some quadrangles (later in our algorithm we will
deal with all its incident quadrangles). Let f be one of its incident quadrangles with facial
cycle (x = zg, 21, 22, 23). We first pick two opposing vertices of f to contract.

Case 1. This case covers when we choose to contract z; and z3, and has three sub-cases.

We contract z; and z3 whenever

Case 1.a x = zy are the same vertex, or

Case 1.b z and 29 are adjacent, or

Case 1.c z and 2z are opposing vertices of some quadrangle f' # f. !

Figure 1 illustrates possible configurations of face f where Case 1 applies: Case 1.a applies
to (a), Case 1.b applies to (b), and Case 1.c applies to (c,d,e). Note that Case 1.c covers
Case 3 of Ackerman’s proof, where z, 21, 22, 23 all belong to two simple quadrangles f, f/ (see
also Figure 1(e)). Our contraction turns f’ into a non-simple quadrangle, but our proof can
handle this.

Case 2. Otherwise, we contract z and zo.

Table 1 demonstrates when we pick Case 1 and when we pick Case 2, and crucially shows
cases which are impossible by Lemmas 4 and 5. To see that these lemmas apply in the
second row and column, observe that adjacent vertices always share at least one face, and in
particular if two opposing vertices are adjacent then they must share two faces other than
the quadrangle they are opposing in.

Table 1 All possible cases for the quadrangle f with facial cycle (x, z1, 22, 23). We either indicate
which case in the proof of Theorem 6 would be chosen, or indicate the lemma that demonstrates
that this case is impossible.

T # 225
. T # 225 .
T = 22 (2, 22) € E(H) x, ?2 a¥e / Otherwise
opposing in f
_ Impossible Impossible Impossible
A= (Lemma 4) (Lemma 4) (Lemma 4) Case 2
21 # z3; Impossible Impossible Impossible Case 2
(21,23) € E(H) | (Lemma 4) (Lemma 5) (Lemma 5)
; - . 7 77
A7 7 Impossible Impossible Tmpossible if f* 7 f
21, z3 are (Lemma 4) (Lemma 5) (Lemma 5), Case 2
opposing in f” Case 1.c otherwise
Otherwise Case l.a Case 1.b Case l.c Case 2

Let z;, z;12 be two vertices chosen for contraction and let H' be the graph resulting from

contracting z; and z;yo. By Table 1, z; and z;45 are not adjacent, and they are distinct.

Therefore our contraction has destroyed the quadrangle f and not added any loops, so we
can apply induction on H’. Let C’ be the set of chords added to H’. By the inductive

L In fact, our proof does not require Case 1.c to be separated out; we could equally have contracted z and
22 in this case.

16:7

ISAAC 2021

16:8

Partitioning the Edges of a 1-Planar Graph

hypothesis, C’ induces a forest and for any edge ab € H’, there is no path from a to b in C’.
Uncontract z; and z;42, and add a chord e := z;z; 12 between them. Define C := C’ U {e}.
We now verify that C satisfies all conditions.

Let a, b be a pair of adjacent vertices of H. Assume by way of contradiction that there is
a path from a to b in C. By the inductive hypothesis, the path must use e. Furthermore,
e cannot be the edge ab since z; and z;o are not adjacent, so the path must use some
edges from C’. Let ¢1,...,Ck,,€,Chy 41, - -, Cr, be the edges on this path, ks > 1. But then
1, ..., ck, would be a path from a to b within C’ in H' = H/e, a contradiction.

Assume by way of contradiction that C induces a cycle in H. Since e is not a loop in
H, the cycle must use edges from C’. Let e, cq,...,c, be the cycle, k > 2. Then cy,...,cx
would induce a cycle within C” in H' = H/e, a contradiction. <

4 Efficient Implementation

It is still not immediately clear how one would implement the above theorem in order to
achieve linear runtime, since as in Ackerman’s proof we need to repeatedly test how many
quadrangles two vertices share. However, if we are more careful about the order in which we
contract each quadrangle, an efficient implementation can be achieved. The crucial idea will
be to pick some vertex x and contract all quadrangles incident to x. This will allow us to
store additional information relative to x and hence speed up testing which case applies. We
note that this idea alone would not suffice to make Ackerman’s proof run in linear time, as
one would still need to find a way to implement Case 3 (where he splits the graph into four
subgraphs and determines which subgraph contains a given pair of vertices) of Ackerman’s
proof efficiently.

4.1 Data Structure Interface

As mentioned earlier, one of the major ingredients to achieve fast run-time is to use the data
structure by Holm et al. [14] for contraction in planar graphs, but we will also provide a
(simpler but slower) alternative. We will discuss these later (in Subsection 4.4) when we
analyze the run-time, but note here the two operations provided by [14] that will be needed:

x = contract(e) takes a reference to an edge e, contracts e, and returns the vertex
resulting from the contraction.

Note that contracting e creates a loop in the graph, especially if there are multiple copies
of this edge, while the proof of Theorem 6 assumed that the graph has no loops. We
could remove loops (the data structure by Holm et al. can report newly created loops
after contract), but this turns out to be unnecessary: We will only contract edges at
artificial gadgets inserted into the graph, and the created loops are at quadrangles that
are destroyed afterwards and those will not pose problems.

neighbors(x) returns an iterator over {(zv,v) : xv € E} where F is the edge set of the
graph. In other words, it returns an iterator to tuples containing each edge incident to x
and the endpoint of this edge. No guarantee is given as to the order of the neighbors.
We assume that neighbors(x) has O(1) runtime and that the returned list can be iterated
over in O(d(x)) time (recall that d(x) denotes the number of edges incident to x). Since
edge-contraction can create parallel edges, it is possible that neighbors(z) contains
parallel edges, and hence the second element of the tuple need not be unique. Again this
will not pose problems later.

S. Barr and T. Biedl

In Subsection 4.2, we will add labels and other meta-data to vertices of our graph. We
make no assumptions as to how the meta-data are updated when two vertices are contracted,
and so we will maintain those manually.

4.2 Preprocessing

We take as input a 1-planar graph G, given by specifying its planarization via the rotational
clockwise order of edges at the vertices, and assuming that vertices of the planarization
resulting from crossing points are marked as such. G need not be simple, but we assume
that it has no loops (they can always be added to the planar part) and for ease of stating
bounds we assume that it has O(n) edges. From G, we can construct a planar-maximal
supergraph G in linear time [2], and along the way construct the planarization (G*)* of
G™. As before we use H to denote the skeleton of G*, but we do not construct it explicitly.
Instead, notice that the vertices of (GT)* marked as crossings correspond uniquely to the
quadrangles of H. For this reason, we assume that these vertices are marked with a label
quad and we call such a vertex a quadrangle-vertez (whereas the corresponding face of H is
called a quadrangle-face).

Our proof of Theorem 6 relies heavily on having faces, while the data structure of Holm et
al. makes no provisions for accessing faces. For this reason, we keep the quadrangle-vertices in
the graph as representatives of the quadrangle-faces. This will make it possible to implement
the operation of “contract z; and z;;2 within quadrangle f” used in Theorem 6 via edge-
contractions at the corresponding quadrangle-vertex f. (See Procedure 1 for details.) We
also assume that any quadrangle-vertex f has references to the two original edges in G that
crossed; when doing such a contraction within f we can hence also record the corresponding
edge z;2z;12 for inclusion in the forest-part of the partition.

Procedure 1 ContractThrough(u, v, f).

Result: Contract two vertices u and v in H through a quadrangle-face f, and return
the resulting vertex y.

// pre: f is labelled quad

// pre: wu and v are opposing on face of H corresponding to f

Find the original edge uv of G that is stored with f.

Record edge uv as belonging to the forest of the partition.

for (e,w) in neighbors(f) do

L if v equals w or v equals u or w has label quad; for some 0 < i < 3 then
| y:= contract(e)
Remove labels quad, quad; from y
return y

Our proof of Theorem 6 also requires knowing the order of vertices along a quadrangle,
and the data structures do not support this directly. Therefore at any quadrangle-vertex f
we stellate each of the four incident triangular faces; see Figure 2. Since we have not yet
contracted any edges, we have access to the rotational clockwise order of edges at f; we
can hence label the added vertices with quad; (for 0 < i < 3) in clockwise order around f.
With this, we can retrieve the clockwise order (zo, ..., z3) of vertices on the quadrangle-face
corresponding to f in constant time. (See Procedure 2 for details.)

We use H® for the graph that results after all these modifications (it can be viewed as
the planar skeleton H with a “diamond”-gadget inserted into each quadrangle-face). We also
add the following meta-data to each vertex of H®:

A boolean adj, initialized to false.

A boolean in_worklist, initialized to false.

An integer opposing, initialized to 0.

16:9

ISAAC 2021

16:10 Partitioning the Edges of a 1-Planar Graph

Procedure 2 FacialCycle(f).

Result: Reconstruct the facial circuit of a quadrangle-face, given the corresponding
quadrangle-vertex.
// pre: f is a vertex of H® with label quad
for vertex v in neighbors(f) do
fori=0,...,3do
L if v has label quad; then f; :=v

// By construction f; has neighbours {z;_1,2;, f} (indices are mod 4)
fori=0,...,3do
N; := neighbors(f;) Nneighbors(f;+1)

if |N;| equals 2 then z; := N; \ {f}

// If f is not simple then |N;| =3 for two values of i, see Fig.2.
But then z; is determined since we know z;_; = z;41 already

for:=0,...,3do

L if |N;| equals 3 then z; := N; \ N;y2

return (29, 21, 22, 23)

The main idea of our algorithm is to iteratively contract all the quadrangles incident to some
vertex x. As we do this, we will use adj to mark vertices that are adjacent to z, in_worklist
to mark unprocessed quadrangles incident to x, and opposing to keep track of the number
of quadrangle-faces where vertex y is the opposing vertex of x.

Since G has O(n) edges, H has O(n) faces, so H® has O(n) edges. All steps in this
preprocessing can hence be done in linear time.

4.3 Handling the Quadrangles around a Vertex

The main subroutine of our algorithm handles all quadrangles incident to some vertex x by
contracting each of them using the criteria laid out in Theorem 6 to decide which vertices
to contract. To do so, we will initialize and maintain a work-list of faces incident to x that
we need to contract (using in_worklist to avoid putting duplicate quadrangles into the
worklist). We also mark vertices in H® as opposing and adj to x as needed; this can be
done in O(d(z)) time by retrieving all neighbours of via neighbours. (See Procedure 3 for
details.)

Now we iteratively contract all the faces in the worklist according to Theorem 6; with
adj and opposing we can determine the correct case in constant time. (See Procedure 4
for details.) In Case 1, we need to update some values of opposing: the vertex zo which
was opposing x now no longer opposes z in f (since f was destroyed), so we decrement
zg.opposing. Likewise the new vertex v resulting from the contraction will be opposing
x in all those quadrangles in which z; and z3 previously opposed z, so we set v.opposing
correspondingly. In Case 2, when we contract some vertex zo into x, we need to add the
quadrangles incident to zo to our worklist, for which we can re-use Procedure 3.

Lastly, once our worklist is empty (and hence there are no more quadrangles incident to
x), we reset the meta-data of x and its neighbors, so that when repeating the procedure with
a different vertex as x there are no stray vertices with meta-data set to erroneous values.
(See Procedure 5.)

S. Barr and T. Biedl

Figure 2 The gadget added to every quadrangle of H, shown for both a quadrangle with four
vertices on its boundary (left) and one with three vertices on its boundary (right).

Procedure 3 InitializeAtOneVertex(y, worklist).

Result: Adds all quadrangle-vertices incident to a vertex y to a worklist, taking care
not to put duplicates in the worklist.
// pre: 1y is a vertex of H
// pre: 1y equals z (the vertex we currently work on), or y will be
contracted into x
for vertex v € neighbors(y) do
v.adj := true
if v has label quad and not v.in_worklist then
v.in_worklist := true
worklist.push(v)
(20, 21, 22, z3) := FacialCycle(v)
relabel z; such that y equals zg
z9.opposing +=1

4.4 Putting it All Together

The following summarizes our algorithm: after preprocessing, and for as long as there is a
quadrangle-face f left, process all quadrangles at a vertex xz on f and record all edges that
belong to the forest along the way. See Procedure 6 for a detailed description.

It remains to analyze the run-time. For now, we ignore the time required to perform the
contractions and analyze the time for handling all quadrangles at one vertex z. Initialization
takes O(d(z)) time, and most other steps take constant time per handled quadrangle, with
one notable exception: When we contract some vertex zs into x, we must update the worklist,
which takes time O(d(z2)). Complicating matters further, zo may actually be the result of
prior contractions, so its degree may be more than what it was in H®, and we must ensure
that degrees of vertices are not counted repeatedly.

To handle this, let HJ? be the graph that results from H< after all quadrangle-vertices
have been contracted, and let s(z) be the set of vertices that were contracted into x, either
directly (when handling the quadrangles at x) or indirectly (i.e., if they had been contracted

16:11

ISAAC 2021

16:12 Partitioning the Edges of a 1-Planar Graph

Procedure 4 HandleQuadsAtOneVertex(x).

Result: Contract all the quadrangle-faces incident to a vertex z

worklist := ||
InitializeAtOneVertex (x, worklist) // see Proc.
for quadrangle-vertex f in worklist do
(20,21, 22, z3) := FacialCycle(f) // see Proc.
relabel z; such that x equals zq
if zo equals x or z9.adj is true or zy.opposing > 2 then // Case

opposingl := z;.opposing

opposing3 := z3.opposing

v := ContractThrough(zy, 23, f) // see Proc.
v.adj := true

v.opposing := opposingl + opposing3

zp.0pposing — =1

else // Case
InitializeAtOneVertex(zy, worklist)

x = ContractThrough(z, 22, f)

CleanupAtOneVertex(x) // see Proc.

Procedure 5 CleanupAtOneVertex(y).

Result: Cleanup the metadata at a vertex y and its neighbors.
// pre: 1y is a vertex of H
for vertex v € neighbors(y) U {y} do

v.adj := false

v.in_worklist := false

v.opposing :=0

Procedure 6 FindPGFPartition(G).

Result: Find a PGF-partition of a graph G.
Add edges to make G planar maximal 1-planar
Compute planarization G*, mark vertices of crossings with quad
foreach vertex f marked quad do
Insert four vertices in four incident faces of f
L Mark these vertices with quady, ..., quad; according to embedding

while there remains a vertex f labeled quad do
x := some neighbor of f not labeled quad;
HandleQuadsAtOneVertex(x)

Return all edges that were recorded as forest F' and G \ F as planar graph

S. Barr and T. Biedl

into one of the vertices zy that later get contracted into z). Crucially, note that if z, 2’ are
two vertices that are parameters during a call to Procedure 4 (i.e., we contract all quadrangles
incident to the vertex), then s(z) and s(z’) are disjoint. This holds because once we are done
with the first of them (say), all vertices in s(x) have been combined with and no longer
have any incident quadrangles. Since we only contract vertices into 2’ that are incident to
quadrangles, none of the vertices in s(z) becomes part of s(z’).

Hence for each vertex = of HJ?, the amount of work done in Procedure 4 is proportional
to the sum of the degrees dpo(y) for each y € s(z). Since H® has O(n) edges, and all other
parts of the algorithm take constant time per quadrangle-vertex, the total amount of work
done is at most

of S S dww|=0| X dw@ |=0(v(#))=01v(E))

zeV(HY)yEs(x) zeV(H®)

hence the algorithm is linear (ignoring the time for contractions).

Now we consider the run-time of possible data structures for contractions. Our first
approach is to represent the graph with incidence lists, where every vertex has a list of
incident edges, each edge knows both of its endpoints, and every list knows its length. We can
implement neighbors(x) in constant time by simply returning an iterator to the incidence
list at . Contracting two vertices u and v can be done in O(min{d(u),d(v)}) time by
re-attaching the edges of the vertex with smaller degree to the vertex with larger degree. As
with UNION-FIND data structures implemented with linked lists (see e.g. Section 4.6 of [17]),
one shows that the amortized time for this is O(logn) per contraction. In particular, for

graphs with linearly many edges, a set of ©(n) contractions can be done in O(nlogn) time.

With this we have our first result.

» Theorem 7. Let G be a 1-planar graph implemented with incidence lists and given with a
I-planar embedding. It is possible to find a PGF-partition of G in O(nlogn) time.

To improve this runtime, we appeal to the following result by Holm et al.

» Theorem 8 (Holm et al. [14]). Let G be a planar graph with n vertices and m edges.
Then there exists a data structure that supports contract and neighbors and that can be
initialized in O(n+m) time. Any calls to neighbors can be processed in worst case constant
time, and any sequence of calls to contract can be performed in time O(n + m).

Since our graph has O(n) edges, we have the main result of this paper.

» Theorem 9. Let G be a 1-planar graph with a given 1-planar embedding. Then in O(n)
time we can find an edge-partition of G into a forest and a planar graph.

5 Conclusion

In this paper, we reproved a result from Ackerman that all 1-planar graphs admit a partition
into a planar graph and a forest. Our proof is more general than Ackerman’s: the forest we
find is guaranteed to not contain a path between adjacent vertices of the input graph. Using
this proof and a data structure from Holm et al. for efficiently contracting the edges of a
planar graph, we were able to find this partition in linear time. In consequence, a number of
results for 1-planar graphs (such as splitting into 4 forests or 4-list-coloring if the graph is
bipartite) can now be achieved in linear time. We also showed that the same algorithm can
be implemented in O(nlogn) time with a simpler data structure that uses only incidence
lists.

16:13

ISAAC 2021

16:14

Partitioning the Edges of a 1-Planar Graph

As for open problems, the most interesting one is whether the partition could be found

even without being given the 1-planar drawing. (Recall that it is NP-hard to find such a
drawing [12], though it is polynomial for optimal 1-planar graphs [7].) All papers listed
in the introduction for finding various edge partitions of 1-planar graphs require such an

embedding. If this is difficult, could we at least do some of the implications (such as splitting

into 4 forests or orienting such that all in-degrees are at most 4) in linear time without a

given 1-planar drawing?

—— References

1

10

11

12

13

14

15

16

17

Eyal Ackerman. A note on l-planar graphs. Discrete Appl. Math., 175:104-108, 2014.
doi:10.1016/j.dam.2014.05.025.

Md. Jawaherul Alam, Franz J. Brandenburg, and Stephen G. Kobourov. Straight-line grid
drawings of 3-connected 1-planar graphs. In Stephen Wismath and Alexander Wolff, editors,
Graph Drawing, volume 8242 of Lecture Notes in Computer Science, pages 83-94. Springer,
2013. doi:10.1007/978-3-319-03841-4_8.

Patrizio Angelini, Henry Foérster, Michael Hoffmann, Michael Kaufmann, Stephen Kobourov,
Giuseppe Liotta, and Maurizio Patrignani. The QuaSEFE problem. In International Symposium
on Graph Drawing and Network Visualization, volume 11904 of Lecture Notes in Computer
Science, pages 268-275. Springer, 2019. doi:10.1007/978-3-030-35802-0_21.

Michael A. Bekos, Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani,
and Chrysanthi Raftopoulou. Edge partitions of optimal 2-plane and 3-plane graphs. Discrete
Mathematics, 342(4):1038-1047, 2019. doi:10.1016/j.disc.2018.12.002.

Therese Biedl, Anna Lubiw, and Owen Merkel. List coloring bipartite graphs embedded on a
surface. Unpublished Manuscript, 2019.

R. Bodendiek, H. Schumacher, and K. Wagner. Bemerkungen zu einem sechsfarbenproblem
von g. ringel. Abh. Math. Semin. Univ. Hambg., pages 41-52, 1983. doi:10.1007/BF02941309.
Franz J. Brandenburg. Recognizing optimal 1-planar graphs in linear time. Algorithmica,
80(1):1-28, 2018. doi:10.1007/s00453-016-0226-8.

Julius Czap and Déavid Huddk. On drawings and decompositions of 1-planar graphs. FElectron.
J. Combin., 20(2):Paper 54, 8, 2013. doi:10.37236/2392.

Emilio Di Giacomo, Walter Didimo, William S. Evans, Giuseppe Liotta, Henk Meijer, Fabrizio
Montecchiani, and Stephen K. Wismath. New results on edge partitions of 1-plane graphs.
Theoretical Computer Science, 713:78-84, 2018. doi:10.1016/j.tcs.2017.12.024.
Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer,
Berlin, fifth edition, 2018. doi:10.1007/978-3-662-53622-3.

Harold N. Gabow and Herbert H. Westermann. Forests, frames, and games: algorithms for
matroid sums and applications. Algorithmica, 7(5-6):465-497, 1992. doi:10.1007/BF01758774.
Alexander Grigoriev and Hans L. Bodlaender. Algorithms for graphs embeddable with few
crossings per edge. Algorithmica, 49(1):1-11, 2007. doi:10.1007/s00453-007-0010-x.

Shai Gutner and Michael Tarsi. Some results on (a:b)-choosability. Discrete Mathematics,
309(8):2260-2270, 2009. doi:10.1016/j.disc.2008.04.061.

Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Lacki Lacki, Eva Rotenberg, and
Piotr Sankowski. Contracting a planar graph efficiently. In 25th European Symposium on
Algorithms, volume 87 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 50, 15. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017.

Seok-Hee Hong and Takeshi Tokuyama. Beyond Planar Graphs. Springer Nature, Singapore,
2020.

Dmitri V. Karpov. An upper bound on the number of edges in an almost planar bipartite
graph. J. Math Sci., 196:737-746, 2014. doi:10.1007/510958-014-1690-9.

Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co.,
Inc., USA, 2005.

http://dx.doi.org/10.1016/j.dam.2014.05.025
http://dx.doi.org/10.1007/978-3-319-03841-4_8
http://dx.doi.org/10.1007/978-3-030-35802-0_21
http://dx.doi.org/10.1016/j.disc.2018.12.002
http://dx.doi.org/10.1007/BF02941309
http://dx.doi.org/10.1007/s00453-016-0226-8
http://dx.doi.org/10.37236/2392
http://dx.doi.org/10.1016/j.tcs.2017.12.024
http://dx.doi.org/10.1007/978-3-662-53622-3
http://dx.doi.org/10.1007/BF01758774
http://dx.doi.org/10.1007/s00453-007-0010-x
http://dx.doi.org/10.1016/j.disc.2008.04.061
http://dx.doi.org/10.1007/s10958-014-1690-9

S. Barr and T. Biedl

18

19

20

21

22

23

24

Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. An annotated bibliography
on 1-planarity. Comput. Sci. Rev., 25:49-67, 2017. doi:10.1016/j.cosrev.2017.06.002.
William J. Lenhart, Giuseppe Liotta, and Fabrizio Montecchiani. On partitioning the edges of
1-plane graphs. Theor. Comput. Sci., 662:59-65, 2017. doi:10.1016/j.tcs.2016.12.004.
C. St. J. A. Nash-Williams. Decomposition of finite graphs into forests. J. London Math. Soc.,
39:12, 1964. doi:10.1112/jlms/s1-39.1.12.

Gerhard Ringel. Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamburg,
29:107-117, 1965. doi:10.1007/BF02996313.

Gerhard Ringel. Two trees in maximal planar bipartite graphs. J. Graph Theory, 17(6):755-758,
1993. doi:10.1002/jgt.3190170610.

Marcus Schaefer. The graph crossing number and its variants: A survey. The Electronic
Journal of Combinatorics [electronic only], 20, April 2013. doi:10.37236/2713.

Walter Schnyder. Embedding planar graphs on the grid. In Proceedings of the First Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 90, pages 138-148, USA, 1990. Society
for Industrial and Applied Mathematics.

16:15

ISAAC 2021

http://dx.doi.org/10.1016/j.cosrev.2017.06.002
http://dx.doi.org/10.1016/j.tcs.2016.12.004
http://dx.doi.org/10.1112/jlms/s1-39.1.12
http://dx.doi.org/10.1007/BF02996313
http://dx.doi.org/10.1002/jgt.3190170610
http://dx.doi.org/10.37236/2713

	1 Introduction
	2 Background
	2.1 Ackerman's Proof

	3 An Alternative Existence Proof
	4 Efficient Implementation
	4.1 Data Structure Interface
	4.2 Preprocessing
	4.3 Handling the Quadrangles around a Vertex
	4.4 Putting it All Together

	5 Conclusion

